1982-02-01
EXPERIMENTAL EVIDENCE ...... ....... ....... ....... ... 27 2.6 LOAD REDISTRIBUTION DUE TO DISBONDS IN ADHESIVE IN STEPPED-LAP JOINTS...SINGLE FASTENER " . ;39 3.4 LOAD SHARING BETWEEN MULTIRUW FASTENERS.."."..-.."." ൴ 3.5 FAILURE CRITERIA AT FASTENER HOLES . . ... 3.6 EXPERIMENTAL ...PLASTIC C. PERFECTLY ELASTIC THROUGHOUT A. ULL PLSTC SEAR TRS•WITHOUT $1IGN REVERSAL WITHOUT S:IG13 REVERSAL IOR FULLY NEGATIVE QUIVALENT ) (OR FULLY
Fatigue data for polyether ether ketone (PEEK) under fully-reversed cyclic loading
Shrestha, Rakish; Simsiriwong, Jutima; Shamsaei, Nima
2016-01-01
In this article, the data obtained from the uniaxial fully-reversed fatigue experiments conducted on polyether ether ketone (PEEK), a semi-crystalline thermoplastic, are presented. The tests were performed in either strain-controlled or load-controlled mode under various levels of loading. The data are categorized into four subsets according to the type of tests, including (1) strain-controlled fatigue tests with adjusted frequency to obtain the nominal temperature rise of the specimen surface, (2) strain-controlled fatigue tests with various frequencies, (3) load-controlled fatigue tests without step loadings, and (4) load-controlled fatigue tests with step loadings. Accompanied data for each test include the fatigue life, the maximum (peak) and minimum (valley) stress–strain responses for each cycle, and the hysteresis stress–strain responses for each collected cycle in a logarithmic increment. A brief description of the experimental method is also given. PMID:26937465
Fatigue data for polyether ether ketone (PEEK) under fully-reversed cyclic loading.
Shrestha, Rakish; Simsiriwong, Jutima; Shamsaei, Nima
2016-03-01
In this article, the data obtained from the uniaxial fully-reversed fatigue experiments conducted on polyether ether ketone (PEEK), a semi-crystalline thermoplastic, are presented. The tests were performed in either strain-controlled or load-controlled mode under various levels of loading. The data are categorized into four subsets according to the type of tests, including (1) strain-controlled fatigue tests with adjusted frequency to obtain the nominal temperature rise of the specimen surface, (2) strain-controlled fatigue tests with various frequencies, (3) load-controlled fatigue tests without step loadings, and (4) load-controlled fatigue tests with step loadings. Accompanied data for each test include the fatigue life, the maximum (peak) and minimum (valley) stress-strain responses for each cycle, and the hysteresis stress-strain responses for each collected cycle in a logarithmic increment. A brief description of the experimental method is also given.
A Fatigue Life Prediction Method Based on Strain Intensity Factor
Zhang, Wei; Liu, Huili; Wang, Qiang; He, Jingjing
2017-01-01
In this paper, a strain-intensity-factor-based method is proposed to calculate the fatigue crack growth under the fully reversed loading condition. A theoretical analysis is conducted in detail to demonstrate that the strain intensity factor is likely to be a better driving parameter correlated with the fatigue crack growth rate than the stress intensity factor (SIF), especially for some metallic materials (such as 316 austenitic stainless steel) in the low cycle fatigue region with negative stress ratios R (typically R = −1). For fully reversed cyclic loading, the constitutive relation between stress and strain should follow the cyclic stress-strain curve rather than the monotonic one (it is a nonlinear function even within the elastic region). Based on that, a transformation algorithm between the SIF and the strain intensity factor is developed, and the fatigue crack growth rate testing data of 316 austenitic stainless steel and AZ31 magnesium alloy are employed to validate the proposed model. It is clearly observed that the scatter band width of crack growth rate vs. strain intensity factor is narrower than that vs. the SIF for different load ranges (which indicates that the strain intensity factor is a better parameter than the stress intensity factor under the fully reversed load condition). It is also shown that the crack growth rate is not uniquely determined by the SIF range even under the same R, but is also influenced by the maximum loading. Additionally, the fatigue life data (strain-life curve) of smooth cylindrical specimens are also used for further comparison, where a modified Paris equation and the equivalent initial flaw size (EIFS) are involved. The results of the proposed method have a better agreement with the experimental data compared to the stress intensity factor based method. Overall, the strain intensity factor method shows a fairly good ability in calculating the fatigue crack propagation, especially for the fully reversed cyclic loading condition. PMID:28773049
NASA Technical Reports Server (NTRS)
Jones, David J.; Kurath, Peter
1988-01-01
Fully reversed uniaxial strain controlled fatigue tests were performed on smooth cylindrical specimens made of 304 stainless steel. Fatigue life data and cracking observations for uniaxial tests were compared with life data and cracking behavior observed in fully reversed torsional tests. It was determined that the product of maximum principle strain amplitude and maximum principle stress provided the best correlation of fatigue lives for these two loading conditions. Implementation of this parameter is in agreement with observed physical damage and it accounts for the variation of stress-strain response, which is unique to specific loading conditions. Biaxial fatigue tests were conducted on tubular specimens employing both in-phase and out-of-phase tension torsion cyclic strain paths. Cracking observations indicated that the physical damage which occurred in the biaxial tests was similar to the damage observed in uniaxial and torsional tests. The Smith, Watson, and Topper parameter was then extended to predict the fatigue lives resulting from the more complex loading conditions.
Effects of Control Mode and R-Ratio on the Fatigue Behavior of a Metal Matrix Composite
NASA Technical Reports Server (NTRS)
2005-01-01
Composite Because of their high specific stiffness and strength at elevated temperatures, continuously reinforced metal matrix composites (MMC's) are under consideration for a future generation of aeropropulsion systems. Since components in aeropropulsion systems experience substantial cyclic thermal and mechanical loads, the fatigue behavior of MMC's is of great interest. Almost without exception, previous investigations of the fatigue behavior of MMC's have been conducted in a tension-tension, load-controlled mode. This has been due to the fact that available material is typically less than 2.5-mm thick and, therefore, unable to withstand high compressive loads without buckling. Since one possible use of MMC's is in aircraft skins, this type of testing mode may be appropriate. However, unlike aircraft skins, most engine components are thick. In addition, the transient thermal gradients experienced in an aircraft engine will impose tension-compression loading on engine components, requiring designers to understand how the MMC will behave under fully reversed loading conditions. The increased thickness of the MMC may also affect the fatigue life. Traditionally, low-cycle fatigue (LCF) tests on MMC's have been performed in load control. For monolithic alloys, low-cycle fatigue tests are more typically performed in strain control. Two reasons justify this choice: (1) the critical volume from which cracks initiate and grow is generally small and elastically constrained by the larger surrounding volume of material, and (2) load-controlled, low-cycle fatigue tests of monolithics invariably lead to unconstrained ratcheting and localized necking--an undesired material response because the failure mechanism is far more severe than, and unrelated to, the fatigue mechanism being studied. It is unknown if this is the proper approach to composite testing. However, there is a lack of strain-controlled data on which to base any decisions. Consequently, this study addresses the isothermal, LCF behavior of a [0]_32 MMC tested under strain- and load-controlled conditions for both zero-tension and tension-compression loading conditions. These tests were run at 427 C on thick specimens of SiC-reinforced Ti-15-3. For the fully-reversed tests, no difference was observed in the lives between the load- and strain-controlled tests. However, for the zero-tension tests, the strain-controlled tests had longer lives by a factor of 3 in comparison to the load-controlled tests. This was due to the fact that under strain-control the specimens cyclically softened, reducing the cracking potential. In contrast, the load-controlled tests ratcheted toward larger tensile strains leading to an eventual overload of the fibers. Fatigue tests revealed that specimens tested under fully-reversed conditions had lives approximately an order of magnitude longer than for those specimens tested under zero tension. When examined on a strain-range basis, the fully reversed specimens had similar, but still shorter lives than those of the unreinforced matrix material. However, the composite had a strain limitation at short lives because of the limited strain capacity of the brittle ceramic fiber. The composite also suffered at very high lives because of the lack of an apparent fatigue limit in comparison to the unreinforced matrix. The value of adding fibers to the matrix is apparent when the fatigue lives are plotted as a function of stress range. Here, the composite is far superior to the unreinforced matrix because of the additional load-carrying capacity of the fibers.
Superelasticity by reversible variant reorientation in a Ni-Mn-Ga microwire with bamboo grains
Wang, Z. L.; Zheng, P.; Nie, Z. H.; ...
2015-08-26
The link between microstructure and mechanical properties is investigated for a superelastic Ni–Mn–Ga microwire with 226 μm diameter, created by solidification via the Taylor method. The wire, which consists of bamboo grains with tetragonal martensite matrix and coarse γ precipitates, exhibits fully reversible superelastic behavior up to 4% tensile strain. Upon multiple tensile load–unload cycles, reproducible stress fluctuations of ~3 MPa are measured on the loading superelastic stress plateau of ~50 MPa. During cycles at various temperatures spanning -70 to 55 °C, the plateau stress decreases from 58 to 48 MPa near linearly with increasing temperature. Based on in situmore » synchrotron X-ray diffraction measurements, we conclude that this superelastic behavior is due to reversible martensite variants reorientation (i.e., reversible twinning) with lattice rotation of ~13°. The reproducible stress plateau fluctuations are assigned to reversible twinning at well-defined locations along the wire. The strain recovery during unloading is attributed to reverse twinning, driven by the internal stress generated on loading between the elastic γ precipitates and the twinning martensite matrix. Lastly, the temperature dependence of the twining stress on loading is related to the change in tetragonality of the martensite, as measured by X-ray diffraction.« less
Spherical nanoindentation study of the deformation micromechanisms of LiTaO{sub 3} single crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anasori, B.; Barsoum, M. W.; Sickafus, K. E.
2011-07-15
Herein, spherical nanoindentation (NI) was used to investigate the room temperature deformation behavior of C-plane LiTaO{sub 3} single crystals loaded along the [0001] direction as a function of ion irradiation. When the NI load-displacement curves of 3 different nanoindenter radii (1.4 {mu}m, 5 {mu}m, and 21 {mu}m) were converted to NI stress-strain curves, good agreement between them was found. The surface first deforms elastically - with a Young's modulus of 205 {+-} 5 GPa, calculated from the stiffness versus contact radii curves and 207 {+-} 3 GPa measured using a Berkovich tip - and then plastically deforms at {approx_equal} 6more » GPa. Repeated loading into the same location results in large, reproducible, fully reversible, nested hysteresis loops attributed to the formation of incipient kink bands (IKBs). The latter are coaxial fully reversible dislocation loops that spontaneously shrink when the load is removed. The IKBs most probably nucleate within the (1012) twins that form near the surface. The sharper radii resulted in twin nucleation at lower stresses. The changes in the reversible loops' shape and areas can be related to the width of the twins that form. The latter were proportional to the nanoindenter tip radii and confirmed by scanning electron microscopy and by the fact that larger threshold stresses were needed for IKB nucleation with the smaller tip sizes. No effect of irradiation was observed on the NI response, presumably because of the mildness of the irradiation damage.« less
Steady-state temperature determination on the base of hysteresis loop energy for CuZn37 brass
NASA Astrophysics Data System (ADS)
Lipski, Adam; Skibicki, Dariusz; Pejkowski, Łukasz
2017-03-01
This paper presents the verification of the relationship between the temperature and the hysteresis loop energy for the CuZn37 brass under multiaxial fatigue loading. Fatigue tests were performed on the hollow specimens subjected to fully reversed tension-compression, torsion, proportional loading, 90° out-of-phase non-proportional loading and two another non-proportional loadings with frequency differences. All test were strain-controlled. Calculations of a plastic strain energy were based on midlife strain hysteresis loops data. The calculated specimen temperatures were compared with temperatures observed by thermographic camera.
Cyclic steady state stress-strain behavior of UHMW polyethylene.
Krzypow, D J; Rimnac, C M
2000-10-01
To increase the long-term performance of total joint replacements, finite element analyses of ultra high molecular weight polyethylene (UHMWPE) components have been conducted to predict the effect of load on the stress and strain distributions occurring on and within these components. Early models incorporated the monotonic behavior of UHMWPE without considering the unloading and cyclic loading behavior. However, UHMWPE components undergo cyclic loading during use and at least two wear damage modes (pitting and delamination) are thought to be associated with the fatigue fracture properties of UHMWPE. The objective of this study was to examine the fully reversed uniaxial tension/compression cyclic steady state stress-strain behavior of UHMWPE as a first step towards developing a cyclic constitutive relationship for UHMWPE. The hypothesis that cycling results in a permanent change in the stress-strain relationship, that is, that the cyclic steady state represents a new cyclically stabilized state, was examined. It was found that, like other ductile polymers, UHMWPE substantially cyclically softens under fully reversed uniaxial straining. More cyclic softening occurred in tension than in compression. Furthermore, cyclic steady state was attained, but not cyclic stability. It is suggested that it may be more appropriate to base a material constitutive relationship for UHMWPE for finite element analyses of components upon a cyclically modified stress-strain relationship.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dennis, L.B.
1994-12-01
This research extends the existing knowledge of cross-ply metal matrix composites (MMC) to include fatigue behavior under strain-controlled fully reversed loading. This study investigated fatigue life, failure modes and damage mechanisms of the SCS-6/Ti-15-3, (O/9O)2s, MMC. The laminate was subjected to fully reversed fatigue at elevated temperature (427 deg C) at various strain levels. Stress, strain and modulus data were analyzed to characterize the macro-mechanical behavior of the composite. Microscopy and fractography were accomplished to identify and characterize the damage mechanisms at the microscopic level. Failure modes varied according to the maximum applied strain level showing either mixed mode (i.e.more » combination of both fiber and matrix dominated modes) or matrix dominated fatigue failures. As expected, higher strain loadings resulted in more ductility of the matrix at failure, evidenced by fracture surface features. For testing of the same composite laminate, the fatigue life under strain controlled mode slightly increased, compared to its load-controlled mode counterpart, using the effective strain range comparison basis. However, the respective fatigue life curves converged in the high cycle region, suggesting that the matrix dominated failure mode produces equivalent predicted fatigue lives for both control modes.« less
A fully redundant power hinge for LANDSAT-D appendages
NASA Technical Reports Server (NTRS)
Mamrol, F. E.; Matteo, D. N.
1981-01-01
The configuration and testing of a power driven hinge for deployment of the solar array and antenna boom for the LANDSAT-D spacecraft is discussed. The hinge is fully mechanically and electrically redundant and, thereby, can sustain a single point failure of any one motor (or its power supply), speed reducer, or bearing set without loss of its ability to function. This design utilizes the capability of the stepper motor drive to remove the flexibility of the drive train from the joint stiffness equation when the hinge is loaded against its stop. This feature precludes gapping of the joint under spacecraft maneuver loads even in the absence of a latching feature. Thus, retraction is easily accomplished by motor reversal without the need for a solenoid function to remove the latch.
Cumulative fatigue damage behavior of MAR M-247
NASA Technical Reports Server (NTRS)
Mcgaw, Michael A.; Halford, Gary R.; Kalluri, Sreeramesh
1991-01-01
The objective was to examine the room temperature fatigue and nonlinear cumulative fatigue damage behavior of the cast nickel-based superalloy, MAR M-247. The fatigue test matrix consisted of single-level, fully reversed fatigue experiments. Two series of tests were performed: one of the two baseline fatigue LCF (Low-Cycle Fatigue) life levels was used in the first loading block, and the HCF (High-Cycle Fatigue) baseline loading level was used in the second block in each series. For each series, duplicate tests were performed at each applied LCF life fraction.
Fracture Test Methods for Plastically Responding COPV Liners
NASA Technical Reports Server (NTRS)
Dawicke, David S.; Lewis, Joseph C.
2009-01-01
An experimental procedure for evaluating the validity of using uniaxial tests to provide a conservative bound on the fatigue crack growth rate behavior small cracks in bi-axially loaded Composite Overwrapped Pressure Vessel (COPV) liners is described. The experimental procedure included the use of a laser notch to quickly generate small surface fatigue cracks with the desired size and aspect ratios. An out-of-plane constraint system was designed to allow fully reversed, fully plastic testing of thin sheet uniaxial coupons. Finally, a method was developed to determine to initiate small cracks in the liner of COPVs.
NASA Astrophysics Data System (ADS)
Micka, K.; Mrha, J.; Klapste, B.
1980-06-01
The active layer of plastic-bonded nickel oxide electrodes undergoes expansion during discharging and contraction during charging; the latter however does not fully compensate for the expansion. These volume changes can be made reversible by the action of an external pressure. The electro-chemical behavior of the conductive components, carbon black and graphite, shows more or less severe corrosion during anodic current loading.
Fatigue properties of type 316LN stainless steel in air and mercury
NASA Astrophysics Data System (ADS)
Strizak, J. P.; Tian, H.; Liaw, P. K.; Mansur, L. K.
2005-08-01
An extensive fatigue testing program on 316LN stainless steel was recently carried out to support the design of the mercury target container for the spallation neutron source (SNS) that is currently under construction at the Oak Ridge National Laboratory in the United States. The major objective was to determine the effects of mercury on fatigue behavior. The S- N fatigue behavior of 316LN stainless steel is characterized by a family of bilinear fatigue curves which are dependent on frequency, environment, mean stress and cold work. Generally, fatigue life increases with decreasing stress and levels off in the high cycle region to an endurance limit below which the material will not fail. For fully reversed loading as well as tensile mean stress loading conditions mercury had no effect on endurance limit. However, at higher stresses a synergistic relationship between mercury and cyclic loading frequency was observed at low frequencies. As expected, fatigue life decreased with decreasing frequency, but the response was more pronounced in mercury compared with air. As a result of liquid metal embrittlement (LME), fracture surfaces of specimens tested in mercury showed widespread brittle intergranular cracking as opposed to typical transgranular cracking for specimens tested in air. For fully reversed loading (zero mean stress) the effect of mercury disappeared as frequency increased to 10 Hz. For mean stress conditions with R-ratios of 0.1 and 0.3, LME was still evident at 10 Hz, but at 700 Hz the effect of mercury had disappeared ( R = 0.1). Further, for higher R-ratios (0.5 and 0.75) fatigue curves for 10 Hz showed no environmental effect. Finally, cold working (20%) increased tensile strength and hardness, and improved fatigue resistance. Fatigue behavior at 10 and 700 Hz was similar and no environmental effect was observed.
Cumulative Axial and Torsional Fatigue: An Investigation of Load-Type Sequencing Effects
NASA Technical Reports Server (NTRS)
Kalluri, Sreeramesh; Bonacuse, Peter J.
2000-01-01
Cumulative fatigue behavior of a wrought cobalt-base superalloy, Haynes 188 was investigated at 538 C under various single-step sequences of axial and torsional loading conditions. Initially, fully-reversed, axial and torsional fatigue tests were conducted under strain control at 538 C on thin-walled tubular specimens to establish baseline fatigue life relationships. Subsequently, four sequences (axial/axial, torsional/torsional, axial/torsional, and torsional/axial) of two load-level fatigue tests were conducted to characterize both the load-order (high/low) and load-type sequencing effects. For the two load-level tests, summations of life fractions and the remaining fatigue lives at the second load-level were computed by the Miner's Linear Damage Rule (LDR) and a nonlinear Damage Curve Approach (DCA). In general, for all four cases predictions by LDR were unconservative. Predictions by the DCA were within a factor of two of the experimentally observed fatigue lives for a majority of the cumulative axial and torsional fatigue tests.
DOE Office of Scientific and Technical Information (OSTI.GOV)
P. Andresen
2000-11-08
Stress corrosion crack growth studies have been performed on annealed and cold worked Titanium Grade 7 and Alloy 22 in 110 C, aerated, concentrated, high pH salt environments characteristic of concentrated ground water. Following a very careful transition from fatigue precracking conditions to SCC conditions, the long term behavior under very stable conditions was monitored using reversing dc potential drop. Titanium Grade 7 exhibited continuous crack growth under both near-static and complete static loading conditions. Alloy 22 exhibited similar growth rates, but was less prone to maintain stable crack growth as conditions approached fully static loading.
2008-06-01
joint classification 3 b. Hot spot-stress approach c. Notch-stress approach * d. Mesh-insensitive approach 2. Fracture mechanics (used for crack... classification approach, which is an adaptation of the nominal stress approach just discussed, with the welded joint fatigue curves as given in Table...used. More detail is provided on the joint classifications , and -- 19 I graphic representations are also included. It is explained that the stress
Fatigue Behavior and Deformation Mechanisms in Inconel 718 Superalloy Investigated
NASA Technical Reports Server (NTRS)
2005-01-01
The nickel-base superalloy Inconel 718 (IN 718) is used as a structural material for a variety of components in the space shuttle main engine (SSME) and accounts for more than half of the total weight of this engine. IN 718 is the bill-of-material for the pressure vessels of nickel-hydrogen batteries for the space station. In the case of the space shuttle main engine, structural components are typically subjected to startup and shutdown load transients and occasional overloads in addition to high-frequency vibratory loads from routine operation. The nickel-hydrogen battery cells are prooftested before service and are subjected to fluctuating pressure loads during operation. In both of these applications, the structural material is subjected to a monotonic load initially, which is subsequently followed by fatigue. To assess the life of these structural components, it is necessary to determine the influence of a prior monotonic load on the subsequent fatigue life of the superalloy. An insight into the underlying deformation and damage mechanisms is also required to properly account for the interaction between the prior monotonic load and the subsequent fatigue loading. An experimental investigation was conducted to establish the effect of prior monotonic straining on the subsequent fatigue behavior of wrought, double-aged, IN 718 at room temperature. First, monotonic strain tests and fully-reversed, strain-controlled fatigue tests were conducted on uniform-gage-section IN 718 specimens. Next, fully reversed fatigue tests were conducted under strain control on specimens that were monotonically strained in tension. Results from this investigation indicated that prior monotonic straining reduced the fatigue resistance of the superalloy particularly at the lowest strain range. Some of the tested specimens were sectioned and examined by transmission electron microscopy to reveal typical microstructures as well as the active deformation and damage mechanisms under each of the loading conditions. In monotonically strained specimens, deformation during the subsequent fatigue loading was mainly confined to the deformation bands initiated during the prior monotonic straining. This can cause dislocations to move more readily along the previously activated deformation bands and to pile up near grain boundaries, eventually making the grain boundaries susceptible to fatigue crack initiation. The mechanisms inferred from the microstructural investigation were extremely valuable in interpreting the influence of prior monotonic straining on the subsequent fatigue life of Inconel 718 superalloy.
1994-12-01
1991. 114 22. Nimmer, R. P. et al. "Fiber Array Geometry Effects Upon Composite Transverse Tensile Behavior," Titanium Aluminide Composites. February... Titanium , Silicon Carbide, Strain Control Mode 17. SECURITY CLASSIFICATION I18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFIKATION 20. LIMITATION OF...ends. Boyum was the first to examine fully reversed (R=-l) fatigue of a titanium composite under the load control mode, at both room and elevated
Flow determination of a pump-turbine at zero discharge
NASA Astrophysics Data System (ADS)
Edinger, G.; Erne, S.; Doujak, E.; Bauer, C.
2014-03-01
When starting up a reversible Francis pump-turbine in pump mode, the machine may operate at zero flow at a given gate opening. Besides reversal flow and prerotation in the draft tube cone, the onset of a fully separated flow in the vaned diffuser is observable at zero- discharge condition. In this paper, the occurrence of prerotation and reversal flow in the conical draft tube and the flow in one stay vane channel of a pump-turbine are examined experimentally and compared to numerical simulations. In order to assess the strongly three-dimensional flow in the stay vane channel, measurements with a 2D laser doppler velocimeter (LDV) were performed at various positions. The inlet flow in the draft tube cone, which becomes significantly at zero discharge in pump mode, is investigated by velocity measurements at two different positions. Pressure fluctuations in the draft tube cone induced by complex flow patterns are also recorded and analyzed. It is found that the swirl number at zero discharge does not significant differ from the values obtained at very low load pumping. Experimental investigations combined with CFD have shown that in the stay vane channel flow velocity components different from zero occur even at no discharge. Streamline plots show the fully separated flow structure.
Preparation of Monodomain Liquid Crystal Elastomers and Liquid Crystal Elastomer Nanocomposites.
Kim, Hojin; Zhu, Bohan; Chen, Huiying; Adetiba, Oluwatomiyin; Agrawal, Aditya; Ajayan, Pulickel; Jacot, Jeffrey G; Verduzco, Rafael
2016-02-06
LCEs are shape-responsive materials with fully reversible shape change and potential applications in medicine, tissue engineering, artificial muscles, and as soft robots. Here, we demonstrate the preparation of shape-responsive liquid crystal elastomers (LCEs) and LCE nanocomposites along with characterization of their shape-responsiveness, mechanical properties, and microstructure. Two types of LCEs - polysiloxane-based and epoxy-based - are synthesized, aligned, and characterized. Polysiloxane-based LCEs are prepared through two crosslinking steps, the second under an applied load, resulting in monodomain LCEs. Polysiloxane LCE nanocomposites are prepared through the addition of conductive carbon black nanoparticles, both throughout the bulk of the LCE and to the LCE surface. Epoxy-based LCEs are prepared through a reversible esterification reaction. Epoxy-based LCEs are aligned through the application of a uniaxial load at elevated (160 °C) temperatures. Aligned LCEs and LCE nanocomposites are characterized with respect to reversible strain, mechanical stiffness, and liquid crystal ordering using a combination of imaging, two-dimensional X-ray diffraction measurements, differential scanning calorimetry, and dynamic mechanical analysis. LCEs and LCE nanocomposites can be stimulated with heat and/or electrical potential to controllably generate strains in cell culture media, and we demonstrate the application of LCEs as shape-responsive substrates for cell culture using a custom-made apparatus.
NASA Astrophysics Data System (ADS)
Miraz, Md Alamin
In this study, Liposome was decorated with graphene oxide (GO) to synthesize fully-biocompatible theranostic vesicle that can carry bovine serum albumin (BSA) as a model protein. Graphene oxide has been studied as one of the most promising platforms for promoting the growth and repair of neurons. Our graphene oxide based structure could account for the high efficiency of protein loading and deliver to the damaged neuron cell which can reverse the neurodegeneration associated with Alzheimer's disease. The resultant vesicle exhibited high stability in aqueous solution. We investigated the protein adsorption capacity and protein interaction to carbon-based nanomaterials. The Liposome, graphene oxide and bovine serum albumin (BSA) are all biocompatible and hence will not trigger an immune response in vivo.
Dynamic strain aging behavior of 10Cr steel under low cycle fatigue at 650°C
NASA Astrophysics Data System (ADS)
Mishnev, Roman; Dudova, Nadezhda; Kaibyshev, Rustam
2017-12-01
The low cycle fatigue behavior of a 10Cr-2W-0.7Mo-3Co-NbV steel with 80 ppm of B additions was studied at elevated temperatures of 600 and 650°C. The steel after normalizing and tempering at 770°C was tested under fully reversed tension-compression loading with the total strain amplitude controlled from ±0.2 to ±1.0% at temperatures of 600 and 650°C. It was revealed that the steel exhibits a positive temperature dependence of both the cyclic strain hardening exponent n' and the cyclic strength coefficient K ' during cyclic loading at 650°C. It was suggested that dynamic strain aging causes fatigue resistance degradation through facilitating microcrack initiation.
Cook, Linda; Ng, Ka-Wing; Bagabag, Arthur; Corey, Lawrence; Jerome, Keith R.
2004-01-01
Hepatitis C virus (HCV) infection is an increasing health problem worldwide. Quantitative assays for HCV viral load are valuable in predicting response to therapy and for following treatment efficacy. Unfortunately, most quantitative tests for HCV RNA are limited by poor sensitivity. We have developed a convenient, highly sensitive real-time reverse transcription-PCR assay for HCV RNA. The assay amplifies a portion of the 5′ untranslated region of HCV, which is then quantitated using the TaqMan 7700 detection system. Extraction of viral RNA for our assay is fully automated with the MagNA Pure LC extraction system (Roche). Our assay has a 100% detection rate for samples containing 50 IU of HCV RNA/ml and is linear up to viral loads of at least 109 IU/ml. The assay detects genotypes 1a, 2a, and 3a with equal efficiency. Quantitative results by our assay correlate well with HCV viral load as determined by the Bayer VERSANT HCV RNA 3.0 bDNA assay. In clinical use, our assay is highly reproducible, with high and low control specimens showing a coefficient of variation for the logarithmic result of 2.8 and 7.0%, respectively. The combination of reproducibility, extreme sensitivity, and ease of performance makes this assay an attractive option for routine HCV viral load testing. PMID:15365000
A Fully Associative, Non-Linear Kinematic, Unified Viscoplastic Model for Titanium Based Matrices
NASA Technical Reports Server (NTRS)
Arnold, S. M.; Saleeb, A. F.; Castelli, M. G.
1994-01-01
Specific forms for both the Gibb's and complementary dissipation potentials are chosen such that a complete (i.e., fully associative) potential based multiaxial unified viscoplastic model is obtained. This model possesses one tensorial internal state variable that is associated with dislocation substructure, with an evolutionary law that has nonlinear kinematic hardening and both thermal and strain induced recovery mechanisms. A unique aspect of the present model is the inclusion of non-linear hardening through the use of a compliance operator, derived from the Gibb's potential, in the evolution law for the back stress. This non-linear tensorial operator is significant in that it allows both the flow and evolutionary laws to be fully associative (and therefore easily integrated) and greatly influences the multiaxial response under non-proportional loading paths. In addition to this nonlinear compliance operator, a new consistent, potential preserving, internal strain unloading criterion has been introduced to prevent abnormalities in the predicted stress-strain curves, which are present with nonlinear hardening formulations, during unloading and reversed loading of the external variables. Specification of an experimental program for the complete determination of the material functions and parameters for characterizing a metallic matrix, e.g., TIMETAL 21S, is given. The experiments utilized are tensile, creep, and step creep tests. Finally, a comparison of this model and a commonly used Bodner-Partom model is made on the basis of predictive accuracy and numerical efficiency.
Improved pump turbine transient behaviour prediction using a Thoma number-dependent hillchart model
NASA Astrophysics Data System (ADS)
Manderla, M.; Kiniger, K.; Koutnik, J.
2014-03-01
Water hammer phenomena are important issues for high head hydro power plants. Especially, if several reversible pump-turbines are connected to the same waterways there may be strong interactions between the hydraulic machines. The prediction and coverage of all relevant load cases is challenging and difficult using classical simulation models. On the basis of a recent pump-storage project, dynamic measurements motivate an improved modeling approach making use of the Thoma number dependency of the actual turbine behaviour. The proposed approach is validated for several transient scenarios and turns out to increase correlation between measurement and simulation results significantly. By applying a fully automated simulation procedure broad operating ranges can be covered which provides a consistent insight into critical load case scenarios. This finally allows the optimization of the closing strategy and hence the overall power plant performance.
NASA Astrophysics Data System (ADS)
Gorospe, Alking; Bautista, Zhierwinjay; Shin, Hyung-Seop
2016-10-01
Coated conductor (CC) tapes utilized in high-current-density superconducting cables are commonly subjected to different loading modes, primarily torsion and tension especially in the case of twisted stacked-tape cable. Torsion load can occur due to twisting along the length or when winding the CC tapes around a former, while tension load can occur due to pre-tension when coiled and as a hoop stress when the coil is energized. In this study, electromechanical properties of single CC tapes under torsion load were investigated using a new test apparatus. The results could provide basic information for cable designers to fully characterize stacked cables. Copper-electroplated and brass-laminated CC tapes fabricated with different deposition techniques were subjected to pure torsion and combined tension-torsion loading. The critical current, I c degradation behaviours of CC tapes under torsional deformation were examined. Also, the effect of further external lamination on the I c degradation behaviour of the CC tapes under such loading conditions was investigated. In the case of the combined tension-torsion test, short samples were subjected to twist pitches of 200 mm and 100 mm. Critical parameters including reversible axial stress and strain in such twist pitch conditions were also investigated.
NASA Astrophysics Data System (ADS)
Arnold, S. M.; Saleeb, A. F.; Castelli, M. G.
1995-05-01
Specific forms for both the Gibb's and complementary dissipation potentials are chosen such that a complete (i.e., fully associative) potential base multiaxial, nonisothermal unified viscoplastic model is obtained. This model possesses one tensorial internal state variable (that is, associated with dislocation substructure) and an evolutionary law that has nonlinear kinematic hardening and both thermal and strain induced recovery mechanisms. A unique aspect of the present model is the inclusion of nonlinear hardening through the use of a compliance operator, derived from the Gibb's potential, in the evolution law for the back stress. This nonlinear tensorial operator is significant in that it allows both the flow and evolutionary laws to be fully associative (and therefore easily integrated), greatly influences the multiaxial response under non-proportional loading paths, and in the case of nonisothermal histories, introduces an instantaneous thermal softening mechanism proportional to the rate of change in temperature. In addition to this nonlinear compliance operator, a new consistent, potential preserving, internal strain unloading criterion has been introduced to prevent abnormalities in the predicted stress-strain curves, which are present with nonlinear hardening formulations, during unloading and reversed loading of the external variables. The specific model proposed is characterized for a representative titanium alloy commonly used as the matrix material in SiC fiber reinforced composites, i.e., TIMETAL 21S. Verification of the proposed model is shown using 'specialized' non-standard isothermal and thermomechanical deformation tests.
NASA Technical Reports Server (NTRS)
Arnold, S. M.; Saleeb, A. F.; Castelli, M. G.
1995-01-01
Specific forms for both the Gibb's and complementary dissipation potentials are chosen such that a complete (i.e., fully associative) potential base multiaxial, nonisothermal unified viscoplastic model is obtained. This model possesses one tensorial internal state variable (that is, associated with dislocation substructure) and an evolutionary law that has nonlinear kinematic hardening and both thermal and strain induced recovery mechanisms. A unique aspect of the present model is the inclusion of nonlinear hardening through the use of a compliance operator, derived from the Gibb's potential, in the evolution law for the back stress. This nonlinear tensorial operator is significant in that it allows both the flow and evolutionary laws to be fully associative (and therefore easily integrated), greatly influences the multiaxial response under non-proportional loading paths, and in the case of nonisothermal histories, introduces an instantaneous thermal softening mechanism proportional to the rate of change in temperature. In addition to this nonlinear compliance operator, a new consistent, potential preserving, internal strain unloading criterion has been introduced to prevent abnormalities in the predicted stress-strain curves, which are present with nonlinear hardening formulations, during unloading and reversed loading of the external variables. The specific model proposed is characterized for a representative titanium alloy commonly used as the matrix material in SiC fiber reinforced composites, i.e., TIMETAL 21S. Verification of the proposed model is shown using 'specialized' non-standard isothermal and thermomechanical deformation tests.
Zheng, Jianming; Yan, Pengfei; Gu, Meng; ...
2015-05-26
Lithium-sulfur (Li-S) battery is a promising energy storage system due to its high energy density, cost effectiveness and environmental friendliness of sulfur. However, there are still a number of challenges, such as low Coulombic efficiency and poor long-term cycling stability, impeding the commercialization of Li-S battery. The electrochemical performance of Li-S battery is closely related with the interfacial reactions occurring between hosting substrate and active sulfur species which are poorly conducting at fully oxidized and reduced states. Here, we correlate the relationship between the performance and interfacial reactions in the Li-S battery system, using a hollow carbon nanosphere (HCNS) withmore » highly graphitic character as hosting substrate for sulfur. With an appropriate amount of sulfur loading, HCNS/S composite exhibits excellent electrochemical performance because of the fast interfacial reactions between HCNS and the polysulfides. However, further increase of sulfur loading leads to increased formation of highly resistive insoluble reaction products (Li 2S 2/Li 2S) which limits the reversibility of the interfacial reactions and results in poor electrochemical performance. In conclusion, these findings demonstrate the importance of the interfacial reaction reversibility in the whole electrode system on achieving high capacity and long cycle life of sulfur cathode for Li-S batteries.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lankford, J.
High-strain-rate compressive failure mechanisms in fiber-reinforced ceramic-matrix composite materials were characterized. These are contrasted with composite damage development at low-strain rates, and with the dynamic failure of monolithic ceramics. It is shown that it is possible to derive major strain-rate strengthening benefits if a major fraction of the fiber reinforcement is aligned with the load axis. This effect considerably exceeds the inertial microfracture strengthening observed in monolithic ceramics, and non-aligned composites. Its basis is shown to be the trans-specimen propagation time period for heterogeneously-nucleated, high-strain kink bands. A brief study on zirconia focused on the remarkable inverse strength-strain rate resultmore » previously observed for both fully and partially-stabilized zirconia single crystals, whereby the strength decreased with increasing strain rate. Based on the hypothesis that the suppression of microplastic flow, hence, local stress relaxation, might be responsible for this behavior, fully stabilized (i.e., non-transformable) specimens were strain-gaged and subjected to compressive microstrain. The rather stunning observation was that the crystals are highly microplastic, exhibiting plastic yield on loading and anelasticity and reverse plasticity upon unloading. These results clearly support the hypothesis that with increasing strain rate, microcracking is favored at the expense of microplasticity.« less
Ma, Jian-Xiong; Wang, Jie; Xu, Wei-Guo; Yu, Jing-Tao; Yang, Yang; Ma, Xin-Long
2015-01-01
Reverse obliquity intertrochanteric fractures are a challenge for orthopedic surgeons. The optimal internal fixation for repairing this type of unstable intertrochanteric fractures remains controversial. This study aimed to compare the biomechanical properties in axial load and cyclical axial load of proximal femoral nail antirotation (PFNA) and proximal femoral locking compression plate (PFLCP) for fixation of reverse obliquity intertrochanteric fractures. Sixteen embalmed cadaver femurs were sawed to simulate reverse obliquity intertrochanteric fracture and instrumented with PFNA or PFLCP. Axial loads and axial cyclic loads were applied to the femoral head by an Instron tester. If the implant-femur constructs did not fail, axial failure load was added to the remaining implant-femur constructs. Mean axial stiffness for PFNA was 21.10% greater than that of PFLCP. Cyclic axial loading caused significantly less (p=0.022) mean irreversible deformation in PFNA (3.43 mm) than in PFLCP (4.34 mm). Significantly less (p=0.002) mean total deformation was detected in PFNA (6.16 mm) than in PFLCP (8.67 mm). For fixing reverse obliquity intertrochanteric fractures, PFNA is superior to PFLCP under axial load.
Experimental and Theoretical Study of a Rectangular Wing in a Vortical Wake at Low Speed
NASA Technical Reports Server (NTRS)
Smith, Willard G.; Lazzeroni, Frank A.
1960-01-01
A systematic study has been made, experimentally and theoretically, of the effects of a vortical wake on the aerodynamic characteristics of a rectangular wing at subsonic speed. The vortex generator and wing were mounted on a reflection plane to avoid body-wing interference. Vortex position, relative to the wing, was varied both in the spanwise direction and normal to the wing. Angle of attack of the wing was varied from -40 to +60. Both chordwise and spanwise pressure distributions were obtained with the wing in uniform and vortical flow fields. Stream surveys were made to determine the flow characteristics in the vortical wake. The vortex-induced lift was calculated by several theoretical methods including strip theory, reverse-flow theory, and reverse-flow theory including a finite vortex core. In addition, the Prandtl lifting-line theory and the Weissinger theory were used to calculate the spanwise distribution of vortex-induced loads. With reverse-flow theory, predictions of the interference lift were generally good, and with Weissinger's theory the agreement between the theoretical spanwise variation of induced load and the experimental variation was good. Results of the stream survey show that the vortex generated by a lifting surface of rectangular plan form tends to trail back streamwise from the tip and does not approach the theoretical location, or centroid of circulation, given by theory. This discrepancy introduced errors in the prediction of vortex interference, especially when the vortex core passed immediately outboard of the wing tip. The wake produced by the vortex generator in these tests was not fully rolled up into a circular vortex, and so lacked symmetry in the vertical direction of the transverse plane. It was found that the direction of circulation affected the induced loads on the wing either when the wing was at angle of attack or when the vortex was some distance away from the plane of the wing.
A novel dynamic mechanical testing technique for reverse shoulder replacements.
Dabirrahmani, Danè; Bokor, Desmond; Appleyard, Richard
2014-04-01
In vitro mechanical testing of orthopedic implants provides information regarding their mechanical performance under simulated biomechanical conditions. Current in vitro component stability testing methods for reverse shoulder implants are based on anatomical shoulder designs, which do not capture the dynamic nature of these loads. With glenoid component loosening as one of the most prevalent modes of failure in reverse shoulder replacements, it is important to establish a testing protocol with a more realistic loading regime. This paper introduces a novel method of mechanically testing reverse shoulder implants, using more realistic load magnitudes and vectors, than is currently practiced. Using a custom made jig setup within an Instron mechanical testing system, it is possible to simulate the change in magnitude and direction of the joint load during arm abduction. This method is a step towards a more realistic testing protocol for measuring reverse shoulder implant stability.
Wishaupt, Jérôme O; Ploeg, Tjeerd van der; Smeets, Leo C; Groot, Ronald de; Versteegh, Florens G A; Hartwig, Nico G
2017-05-01
The relation between viral load and disease severity in childhood acute respiratory tract infections (ARI) is not fully understood. To assess the clinical relevance of the relation between viral load, determined by cycle threshold (CT) value of real-time reverse transcription-polymerase chain reaction assays and disease severity in children with single- and multiple viral ARI. 582 children with ARI were prospectively followed and tested for 15 viruses. Correlations were calculated between CT values and clinical parameters. In single viral ARI, statistically significant correlations were found between viral loads of Respiratory Syncytial Virus (RSV) and hospitalization and between viral loads of Human Coronavirus (HCoV) and a disease severity score. In multiple-viral ARI, statistically significant correlations between viral load and clinical parameters were found. In RSV-Rhinovirus (RV) multiple infections, a low viral load of RV was correlated with a high length of hospital stay and a high duration of extra oxygen use. The mean CT value for RV, HCoV and Parainfluenza virus was significantly lower in single- versus multiple infections. Although correlations between CT values and clinical parameters in patients with single and multiple viral infection were found, the clinical importance of these findings is limited because individual differences in host-, viral and laboratory factors complicate the interpretation of statistically significant findings. In multiple infections, viral load cannot be used to differentiate between disease causing virus and innocent bystanders. Copyright © 2017 Elsevier B.V. All rights reserved.
Bernal, Rodrigo A; Aghaei, Amin; Lee, Sangjun; Ryu, Seunghwa; Sohn, Kwonnam; Huang, Jiaxing; Cai, Wei; Espinosa, Horacio
2015-01-14
Silver nanowires are promising components of flexible electronics such as interconnects and touch displays. Despite the expected cyclic loading in these applications, characterization of the cyclic mechanical behavior of chemically synthesized high-quality nanowires has not been reported. Here, we combine in situ TEM tensile tests and atomistic simulations to characterize the cyclic stress-strain behavior and plasticity mechanisms of pentatwinned silver nanowires with diameters thinner than 120 nm. The experimental measurements were enabled by a novel system allowing displacement-controlled tensile testing of nanowires, which also affords higher resolution for capturing stress-strain curves. We observe the Bauschinger effect, that is, asymmetric plastic flow, and partial recovery of the plastic deformation upon unloading. TEM observations and atomistic simulations reveal that these processes occur due to the pentatwinned structure and emerge from reversible dislocation activity. While the incipient plastic mechanism through the nucleation of stacking fault decahedrons (SFDs) is fully reversible, plasticity becomes only partially reversible as intersecting SFDs lead to dislocation reactions and entanglements. The observed plastic recovery is expected to have implications to the fatigue life and the application of silver nanowires to flexible electronics.
Nawathe, Shashank; Yang, Haisheng; Fields, Aaron J; Bouxsein, Mary L; Keaveny, Tony M
2015-05-01
The influence of the ductility of bone tissue on whole-bone strength represents a fundamental issue of multi-scale biomechanics. To gain insight, we performed a computational study of 16 human proximal femurs and 12 T9 vertebral bodies, comparing the whole-bone strength for the two hypothetical bounding cases of fully brittle versus fully ductile tissue-level failure behaviors, all other factors, including tissue-level elastic modulus and yield stress, held fixed. For each bone, a finite element model was generated (60-82 μm element size; up to 120 million elements) and was virtually loaded in habitual (stance for femur, compression for vertebra) and non-habitual (sideways fall, only for femur) loading modes. Using a geometrically and materially non-linear model, the tissue was assumed to be either fully brittle or fully ductile. We found that, under habitual loading, changing the tissue behavior from fully ductile to fully brittle reduced whole-bone strength by 38.3±2.4% (mean±SD) and 39.4±1.9% for the femur and vertebra, respectively (p=0.39 for site difference). These reductions were remarkably uniform across bones, but (for the femur) were greater for non-habitual (57.1±4.7%) than habitual loading (p<0.001). At overall structural failure, there was 5-10-fold less failed tissue for the fully brittle than fully ductile cases. These theoretical results suggest that the whole-bone strength of the proximal femur and vertebra can vary substantially between fully brittle and fully ductile tissue-level behaviors, an effect that is relatively insensitive to bone morphology but greater for non-habitual loading. Copyright © 2015 Elsevier Ltd. All rights reserved.
Microfluidic integration of parallel solid-phase liquid chromatography.
Huft, Jens; Haynes, Charles A; Hansen, Carl L
2013-03-05
We report the development of a fully integrated microfluidic chromatography system based on a recently developed column geometry that allows for robust packing of high-performance separation columns in poly(dimethylsiloxane) microfluidic devices having integrated valves made by multilayer soft lithography (MSL). The combination of parallel high-performance separation columns and on-chip plumbing was used to achieve a fully integrated system for on-chip chromatography, including all steps of automated sample loading, programmable gradient generation, separation, fluorescent detection, and sample recovery. We demonstrate this system in the separation of fluorescently labeled DNA and parallel purification of reverse transcription polymerase chain reaction (RT-PCR) amplified variable regions of mouse immunoglobulin genes using a strong anion exchange (AEX) resin. Parallel sample recovery in an immiscible oil stream offers the advantage of low sample dilution and high recovery rates. The ability to perform nucleic acid size selection and recovery on subnanogram samples of DNA holds promise for on-chip genomics applications including sequencing library preparation, cloning, and sample fractionation for diagnostics.
Sheybani, Roya; Cobo, Angelica; Meng, Ellis
2015-08-01
We present a fully integrated implantable electrolysis-based micropump with incorporated EI dosing sensors. Wireless powering and data telemetry (through amplitude and frequency modulation) were utilized to achieve variable flow control and a bi-directional data link with the sensors. Wireless infusion rate control (0.14-1.04 μL/min) and dose sensing (bolus resolution of 0.55-2 μL) were each calibrated separately with the final circuit architecture and then simultaneous wireless flow control and dose sensing were demonstrated. Recombination detection using the dosing system, as well as, effects of coil separation distance and misalignment in wireless power and data transfer were studied. A custom-made normally closed spring-loaded ball check valve was designed and incorporated at the reservoir outlet to prevent backflow of fluids as a result of the reverse pressure gradient caused by recombination of electrolysis gases. Successful delivery, infusion rate control, and dose sensing were achieved in simulated brain tissue.
DOT National Transportation Integrated Search
2009-08-01
Asphalt binders have an inherent ability to reverse damage in the form of micro-cracks that is caused : due to the repeated action of external loads. This reversal occurs during rest periods between load : cycles. The phenomenon of crack reversal is ...
Lietaert, Karel; Cutolo, Antonio; Boey, Dries; Van Hooreweder, Brecht
2018-03-21
Mechanical performance of additively manufactured (AM) Ti6Al4V scaffolds has mostly been studied in uniaxial compression. However, in real-life applications, more complex load conditions occur. To address this, a novel sample geometry was designed, tested and analyzed in this work. The new scaffold geometry, with porosity gradient between the solid ends and scaffold middle, was successfully used for quasi-static tension, tension-tension (R = 0.1), tension-compression (R = -1) and compression-compression (R = 10) fatigue tests. Results show that global loading in tension-tension leads to a decreased fatigue performance compared to global loading in compression-compression. This difference in fatigue life can be understood fairly well by approximating the local tensile stress amplitudes in the struts near the nodes. Local stress based Haigh diagrams were constructed to provide more insight in the fatigue behavior. When fatigue life is interpreted in terms of local stresses, the behavior of single struts is shown to be qualitatively the same as bulk Ti6Al4V. Compression-compression and tension-tension fatigue regimes lead to a shorter fatigue life than fully reversed loading due to the presence of a mean local tensile stress. Fractographic analysis showed that most fracture sites were located close to the nodes, where the highest tensile stresses are located.
Protein-like fully reversible tetramerisation and super-association of an aminocellulose
NASA Astrophysics Data System (ADS)
Nikolajski, Melanie; Adams, Gary G.; Gillis, Richard B.; Besong, David Tabot; Rowe, Arthur J.; Heinze, Thomas; Harding, Stephen E.
2014-01-01
Unusual protein-like, partially reversible associative behaviour has recently been observed in solutions of the water soluble carbohydrates known as 6-deoxy-6-(ω-aminoalkyl)aminocelluloses, which produce controllable self-assembling films for enzyme immobilisation and other biotechnological applications. Now, for the first time, we have found a fully reversible self-association (tetramerisation) within this family of polysaccharides. Remarkably these carbohydrate tetramers are then seen to associate further in a regular way into supra-molecular complexes. Fully reversible oligomerisation has been hitherto completely unknown for carbohydrates and instead resembles in some respects the assembly of polypeptides and proteins like haemoglobin and its sickle cell mutation. Our traditional perceptions as to what might be considered ``protein-like'' and what might be considered as ``carbohydrate-like'' behaviour may need to be rendered more flexible, at least as far as interaction phenomena are concerned.
Feng, Shini; Zhi, Chunyi; Gao, Xiao-Dong
2018-01-01
Background Anticancer drug-delivery systems (DDSs) capable of responding to the physiological stimuli and efficiently releasing drugs inside tumor cells are highly desirable for effective cancer therapy. Herein, pH-responsive, charge-reversal poly(allylamine hydrochlorid)−citraconic anhydride (PAH-cit) functionalized boron nitride nanospheres (BNNS) were fabricated and used as a carrier for the delivery and controlled release of doxorubicin (DOX) into cancer cells. Methods BNNS was synthesized through a chemical vapor deposition method and then functionalized with synthesized charge-reversal PAH-cit polymer. DOX@PAH-cit–BNNS complexes were prepared via step-by-step electrostatic interactions and were fully characterized. The cellular uptake of DOX@PAH-cit–BNNS complexes and DOX release inside cancer cells were visualized by confocal laser scanning microscopy. The in vitro anticancer activity of DOX@ PAH-cit–BNNS was examined using CCK-8 and live/dead viability/cytotoxicity assay. Results The PAH-cit–BNNS complexes were nontoxic to normal and cancer cells up to a concentration of 100 µg/mL. DOX was loaded on PAH-cit–BNNS complexes with high efficiency. In a neutral environment, the DOX@PAH-cit–BNNS was stable, whereas the loaded DOX was effectively released from these complexes at low pH condition due to amide hydrolysis of PAH-cit. Enhanced cellular uptake of DOX@PAH-cit–BNNS complexes and DOX release in the nucleus of cancer cells were revealed by confocal microscopy. Additionally, the effective delivery and release of DOX into the nucleus of cancer cells led to high therapeutic efficiency. Conclusion Our findings indicated that the newly developed PAH-cit–BNNS complexes are promising as an efficient pH-responsive DDS for cancer therapy. PMID:29440891
NASA Astrophysics Data System (ADS)
Yu, Qiang; Fein, Jeremy B.
2015-10-01
The adsorption and desorption of Cd onto Shewanella oneidensis bacterial cells with and without blocking of sulfhydryl sites was measured in order to determine the effect of metal loading and to understand the role of sulfhydryl sites in the adsorption reactions. The observed adsorption/desorption behaviors display strong dependence on metal loading. Under a high loading of 40 μmol Cd/g bacterial cells, blocking the sulfhydryl sites within the cell envelope by exposure of the biomass to monobromo(trimethylammonio)bimane bromide (qBBr) does not significantly affect the extent of Cd adsorption, and we observed fully reversible adsorption under this condition. In contrast, under a low metal loading of 1.3 μmol Cd/g bacterial cells, the extent of Cd adsorption onto sulfhydryl-blocked S. oneidensis cells was significantly lower than that onto untreated cells, and only approximately 50-60% of the adsorbed Cd desorbed from the cells upon acidification. In conjunction with previous EXAFS results, our findings demonstrate that Cd adsorption onto S. oneidensis under low metal loading conditions is dominated by sulfhydryl binding, and thus is controlled by a distinct adsorption mechanism from the non-sulfhydryl site binding which controls Cd adsorption under high metal loading conditions. We use the data to develop a surface complexation model that constrains the values of the stability constants for individual Cd-sulfhydryl and Cd-non-sulfhydryl bacterial complexes, and we use this approach to account for the Cd adsorption behavior as a function of both pH and metal loading. This approach is crucial in order to predict metal adsorption onto bacteria under environmentally relevant metal loading conditions where sulfhydryl binding sites can dominate the adsorption reaction.
Lee, Ji-Hye; Lee, Won; Huh, Yoon-Hyuk; Park, Chan-Jin; Cho, Lee-Ra
2017-09-05
To evaluate the axial displacement of the implant-abutment assembly of different implant diameter after static and cyclic loading of overload condition. An internal conical connection system with three diameters (Ø 4.0, 4.5, and 5.0) applying identical abutment dimension and the same abutment screw was evaluated. Axial displacement of abutment and reverse torque loss of abutment screw were evaluated under static and cyclic loading conditions. Static loading test groups were subjected to vertical static loading of 250, 400, 500, 600, 700, and 800 N consecutively. Cyclic loading test groups were subjected to 500 N cyclic loading to evaluate the effect of excessive masticatory loading. After abutment screw tightening for 30 Ncm, axial displacement was measured upon 1, 3, 10, and 1,000,000 cyclic loadings of 500 N. Repeated-measure ANOVA and 2-way ANOVA were used for statistical analysis (α = 0.05). The increasing magnitude of vertical load and thinner wall thickness of implant increased axial displacement of abutment and reverse torque loss of abutment screw (p < 0.05). Implants in the Ø 5.0 diameter group demonstrated significantly low axial displacement, and reverse torque loss after static loading than Ø 4.0 and Ø 4.5 diameter groups (p < 0.05). In the cyclic loading test, all diameter groups of implant showed significant axial displacement after 1 cycle of loading of 500 N (p < 0.05). There was no significant axial displacement after 3, 10, or 1,000,000 cycles of loading (p = 0.603). Implants with Ø 5.0 diameter demonstrated significantly low axial displacement and reverse torque loss after the cyclic and static loading of overload condition. © 2017 by the American College of Prosthodontists.
de Bakker, Chantal M. J.; Altman-Singles, Allison R.; Li, Yihan; Tseng, Wei-Ju; Li, Connie; Liu, X. Sherry
2017-01-01
Pregnancy, lactation, and weaning result in dramatic changes in maternal calcium metabolism. In particular, the increased calcium demand during lactation causes a substantial degree of maternal bone loss. This reproductive bone loss has been suggested to be largely reversible, as multiple clinical studies have found that parity and lactation history have no adverse effect on post-menopausal fracture risk. However, the precise effects of pregnancy, lactation, and post-weaning recovery on maternal bone structure are not well understood. Our study aimed to address this question by longitudinally tracking changes in trabecular and cortical bone microarchitecture at the proximal tibia in rats throughout three cycles of pregnancy, lactation, and post-weaning using in vivo μCT. We found that the trabecular thickness underwent a reversible deterioration during pregnancy and lactation, which was fully recovered after weaning, while other parameters of trabecular microarchitecture (including trabecular number, spacing, connectivity density, and structure model index) underwent a more permanent deterioration which recovered minimally. Thus, pregnancy and lactation resulted in both transient and long-lasting alterations in trabecular microstructure. In the meantime, multiple reproductive cycles appeared to improve the robustness of cortical bone (resulting in an elevated cortical area and polar moment of inertia), as well as increase the proportion of the total load carried by the cortical bone at the proximal tibia. Taken together, changes in the cortical and trabecular compartments suggest that while rat tibial trabecular bone appears to be highly involved in maintaining calcium homeostasis during female reproduction, cortical bone adapts to increase its load-bearing capacity, allowing the overall mechanical function of the tibia to be maintained. PMID:28109138
Thrust-isolating mounting. [characteristics of support for loads mounted in spacecraft
NASA Technical Reports Server (NTRS)
Wetzler, D. G. (Inventor)
1974-01-01
A supporting frame for a load, such as one or more telescopes, is isolated from all multi-gravitational forces, which will be developed within that load as that load is propelled into space, by using a shroud to fully and solidly hold that load until that load has been propelled into space. Thereafter, that shroud will be jettisoned; and then supports which are on, and which are movable with, that load will have surfaces thereon moved into supporting engagement with complementary surfaces on that supporting frame to enable that supporting frame and those supports to fully and solidly hold that load.
Reversing-counterpulse repetitive-pulse inductive storage circuit
Honig, Emanuel M.
1987-01-01
A high-power reversing-counterpulse repetitive-pulse inductive storage and transfer circuit includes an opening switch, a main energy storage coil, a counterpulse capacitor and a small inductor. After counterpulsing the opening switch off, the counterpulse capacitor is recharged by the main energy storage coil before the load pulse is initiated. This gives the counterpulse capacitor sufficient energy for the next counterpulse operation, although the polarity of the capacitor's voltage must be reversed before that can occur. By using a current-zero switch as the counterpulse start switch, the capacitor is disconnected from the circuit (with a full charge) when the load pulse is initiated, preventing the capacitor from depleting its energy store by discharging through the load. After the load pulse is terminated by reclosing the main opening switch, the polarity of the counterpulse capacitor voltage is reversed by discharging the capacitor through a small inductor and interrupting the discharge current oscillation at zero current and peak reversed voltage. The circuit enables high-power, high-repetition-rate operation with reusable switches and features total control (pulse-to-pulse) over output pulse initiation, duration, repetition rate, and, to some extent, risetime.
Reversing-counterpulse repetitive-pulse inductive storage circuit
Honig, E.M.
1984-06-05
A high power reversing-counterpulse repetitive-pulse inductive storage and transfer circuit includes an opening switch, a main energy storage coil, a counterpulse capacitor and a small inductor. After counterpulsing the opening switch off, the counterpulse capacitor is recharged by the main energy storage coil before the load pulse is initiated. This gives the counterpulse capacitor sufficient energy for the next counterpulse operation, although the polarity of the capacitor's voltage must be reversed before that can occur. By using a current-zero switch as the counterpulse start switch, the capacitor is disconnected from the circuit (with a full charge) when the load pulse is initiated, preventing the capacitor from depleting its energy store by discharging through the load. After the load pulse is terminated by reclosing the main opening switch, the polarity of the counterpulse capacitor voltage is reversed by discharging the capacitor through a small inductor and interrupting the discharge current oscillation at zero current and peak reversed voltage. The circuit enables high-power, high-repetition-rate operation with reusable switches and features total control (pulse-to-pulse) over output pulse initiation, duration, repetition rate, and, to some extent, risetime.
Fundamental Understanding of Rotor Aeromechanics at High Advance Ratio Through Wind Tunnel Testing
NASA Astrophysics Data System (ADS)
Berry, Benjamin
The purpose of this research is to further the understanding of rotor aeromechanics at advance ratios (mu) beyond the maximum of 0.5 (ratio of forward airspeed to rotor tip speed) for conventional helicopters. High advance ratio rotors have applications in high speed compound helicopters. In addition to one or more conventional main rotors, these aircraft employ either thrust compounding (propellers), lift compounding (fixed-wings), or both. An articulated 4-bladed model rotor was constructed, instrumented, and tested up to a maximum advance ratio of mu=1.6 in the Glenn L. Martin Wind Tunnel at the University of Maryland. The data set includes steady and unsteady rotor hub forces and moments, blade structural loads, blade flapping angles, swashplate control angles, and unsteady blade pressures. A collective-thrust control reversal--where increasing collective pitch results in lower rotor thrust--was observed and is a unique phenomenon to the high advance ratio flight regime. The thrust reversal is explained in a physical manner as well as through an analytical formulation. The requirements for the occurrence of the thrust reversal are enumerated. The effects of rotor geometry design on the thrust reversal onset are explored through the formulation and compared to the measured data. Reverse-flow dynamic stall was observed to extend the the lifting capability of the edgewise rotor well beyond the expected static stall behavior of the airfoil sections. Through embedded unsteady blade surface pressure transducers, the normal force, pitching moment, and shed dynamic stall vortex time histories at a blade section in strong reverse flow were analyzed. Favorable comparisons with published 2-D pitching airfoil reverse flow dynamic stall data indicate that the 3-D stall environment can likely be predicted using models developed from such 2-D experiments. Vibratory hub loads were observed to increase with advance ratio. Maximum amplitude was observed near mu=1, with a reduction in vibratory loads at higher advance ratios. Blade load 4/rev harmonics dominated due to operation near a 4/rev fanplot crossing of the 2nd flap bending mode natural frequency. Oscillatory loads sharply increase in the presence of retreating blade reverse flow dynamic stall, and are evident in blade torsion, pitch link, and hub load measurements. The blades exhibited torsion moment vibrations at the frequency of the 1st torsion mode in response to the reverse flow pitching moment loading.
BOLD response to semantic and syntactic processing during hypoglycemia is load-dependent.
Schafer, Robin J; Page, Kathleen A; Arora, Jagriti; Sherwin, Robert; Constable, R Todd
2012-01-01
This study investigates how syntactic and semantic load factors impact sentence comprehension and BOLD signal under moderate hypoglycemia. A dual session, whole brain fMRI study was conducted on 16 healthy participants using the glucose clamp technique. In one session, they experienced insulin-induced hypoglycemia (plasma glucose at ∼50mg/dL); in the other, plasma glucose was maintained at euglycemic levels (∼100mg/dL). During scans subjects were presented with sentences of contrasting syntactic (embedding vs. conjunction) and semantic (reversibility vs. irreversibility) load. Semantic factors dominated the overall load effects on both performance (p<0.001) and BOLD response (p<0.01, corrected). Differential BOLD signal was observed in frontal, temporal, temporo-parietal and medio-temporal regions. Hypoglycemia and syntactic factors significantly impacted performance (p=0.002) and BOLD response (p<0.01, corrected) in the reversible clause conditions, more extensively in reversible-embedded than in reversible-conjoined clauses. Hypoglycemia resulted in a robust decrease in performance on reversible clauses and exerted attenuating effects on BOLD unselectively across cortical circuits. The dominance of reversibility in all measures underscores the distinction between the syntactic and semantic contrasts. The syntactic is based in a quantitative difference in algorithms interpreting embedded and conjoined structures. We suggest that the semantic is based in a qualitative difference between algorithmic mapping of arguments in reversible clauses and heuristic linking in irreversible clauses. Because heuristics drastically reduce resource demand, the operations they support would resist the load-dependent cognitive consequences of hypoglycemia. © 2011 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Kuhn, Matthew R.; Daouadji, Ali
2018-05-01
The paper addresses a common assumption of elastoplastic modeling: that the recoverable, elastic strain increment is unaffected by alterations of the elastic moduli that accompany loading. This assumption is found to be false for a granular material, and discrete element (DEM) simulations demonstrate that granular materials are coupled materials at both micro- and macro-scales. Elasto-plastic coupling at the macro-scale is placed in the context of thermomechanics framework of Tomasz Hueckel and Hans Ziegler, in which the elastic moduli are altered by irreversible processes during loading. This complex behavior is explored for multi-directional loading probes that follow an initial monotonic loading. An advanced DEM model is used in the study, with non-convex non-spherical particles and two different contact models: a conventional linear-frictional model and an exact implementation of the Hertz-like Cattaneo-Mindlin model. Orthotropic true-triaxial probes were used in the study (i.e., no direct shear strain), with tiny strain increments of 2 ×10-6 . At the micro-scale, contact movements were monitored during small increments of loading and load-reversal, and results show that these movements are not reversed by a reversal of strain direction, and some contacts that were sliding during a loading increment continue to slide during reversal. The probes show that the coupled part of a strain increment, the difference between the recoverable (elastic) increment and its reversible part, must be considered when partitioning strain increments into elastic and plastic parts. Small increments of irreversible (and plastic) strain and contact slipping and frictional dissipation occur for all directions of loading, and an elastic domain, if it exists at all, is smaller than the strain increment used in the simulations.
Effect of load transients on SOFC operation—current reversal on loss of load
NASA Astrophysics Data System (ADS)
Gemmen, Randall S.; Johnson, Christopher D.
The dynamics of solid oxide fuel cell (SOFC) operation have been considered previously, but mainly through the use of one-dimensional codes applied to co-flow fuel cell systems. In this paper several geometries are considered, including cross-flow, co-flow, and counter-flow. The details of the model are provided, and the model is compared with some initial experimental data. For parameters typical of SOFC operation, a variety of transient cases are investigated, including representative load increase and decrease and system shutdown. Of particular note for large load decrease conditions (e.g., shutdown) is the occurrence of reverse current over significant portions of the cell, starting from the moment of load loss up to the point where equilibrated conditions again provide positive current. Consideration is given as to when such reverse current conditions might most significantly impact the reliability of the cell.
Reversing-counterpulse repetitive-pulse inductive storage circuit
Honig, E.M.
1987-02-10
A high-power reversing-counterpulse repetitive-pulse inductive storage and transfer circuit includes an opening switch, a main energy storage coil, a counterpulse capacitor and a small inductor. After counterpulsing the opening switch off, the counterpulse capacitor is recharged by the main energy storage coil before the load pulse is initiated. This gives the counterpulse capacitor sufficient energy for the next counterpulse operation, although the polarity of the capacitor's voltage must be reversed before that can occur. By using a current-zero switch as the counterpulse start switch, the capacitor is disconnected from the circuit (with a full charge) when the load pulse is initiated, preventing the capacitor from depleting its energy store by discharging through the load. After the load pulse is terminated by reclosing the main opening switch, the polarity of the counterpulse capacitor voltage is reversed by discharging the capacitor through a small inductor and interrupting the discharge current oscillation at zero current and peak reversed voltage. The circuit enables high-power, high-repetition-rate operation with reusable switches and features total control (pulse-to-pulse) over output pulse initiation, duration, repetition rate, and, to some extent, risetime. 10 figs.
El-Far, Yousra M; Zakaria, Mahmoud M; Gabr, Mahmoud M; El Gayar, Amal M; El-Sherbiny, Ibrahim M; Eissa, Laila A
2016-10-01
This study aimed to develop a new stable nanoformulation of silymarin (SM) with optimum enhanced oral bioavailability and to evaluate its effect as well as mechanism of action as a superior antidiabetic agent over native SM using streptozotocin-induced diabetic rats. SM-loaded pluronic nanomicelles (SMnp) were prepared and fully characterized. Biochemical parameters were performed as well as histological, confocal and reverse-transcription polymerase chain reaction studies on pancreatic target tissues. SMnp were found to improve significantly the antihyperglycemic, antioxidant and antihyperlipidemic properties as compared with native SM. In addition, SMnp was found to be a more efficient agent over SM in the management of diabetes and its associated complications due to its superior bioavailability in vivo, and the controlled release profile of SM. [Formula: see text].
Kinetic control of the coverage of oil droplets by DNA-functionalized colloids
Joshi, Darshana; Bargteil, Dylan; Caciagli, Alessio; Burelbach, Jerome; Xing, Zhongyang; Nunes, André S.; Pinto, Diogo E. P.; Araújo, Nuno A. M.; Brujic, Jasna; Eiser, Erika
2016-01-01
We report a study of reversible adsorption of DNA-coated colloids on complementary functionalized oil droplets. We show that it is possible to control the surface coverage of oil droplets using colloidal particles by exploiting the fact that, during slow adsorption, compositional arrest takes place well before structural arrest occurs. As a consequence, we can prepare colloid-coated oil droplets with a “frozen” degree of loading but with fully ergodic colloidal dynamics on the droplets. We illustrate the equilibrium nature of the adsorbed colloidal phase by exploring the quasi–two-dimensional phase behavior of the adsorbed colloids under the influence of depletion interactions and present simulations of a simple model that illustrates the nature of the compositional arrest and the structural ergodicity. PMID:27532053
NASA Astrophysics Data System (ADS)
Natesan, K.; Li, Meimei; Chopra, O. K.; Majumdar, S.
2009-07-01
Sodium environmental effects are key limiting factors in the high temperature structural design of advanced sodium-cooled reactors. A guideline is needed to incorporate environmental effects in the ASME design rules to improve the performance reliability over long operating times. This paper summarizes the influence of sodium exposure on mechanical performance of selected austenitic stainless and ferritic/martensitic steels. Focus is on Type 316SS and mod.9Cr-1Mo. The sodium effects were evaluated by comparing the mechanical properties data in air and sodium. Carburization and decarburization were found to be the key factors that determine the tensile and creep properties of the steels. A beneficial effect of sodium exposure on fatigue life was observed under fully reversed cyclic loading in both austenitic stainless steels and ferritic/martensitic steels. However, when hold time was applied during cyclic loading, the fatigue life was significantly reduced. Based on the mechanical performance of the steels in sodium, consideration of sodium effects in high temperature structural design of advanced fast reactors is discussed.
Bachar, Michal; Mandelbaum, Amitai; Portnaya, Irina; Perlstein, Hadas; Even-Chen, Simcha; Barenholz, Yechezkel; Danino, Dganit
2012-06-10
β-casein is an amphiphilic protein that self-organizes into well-defined core-shell micelles. We developed these micelles as efficient nanocarriers for oral drug delivery. Our model drug is celecoxib, an anti-inflammatory hydrophobic drug utilized for treatment of rheumatoid arthritis and osteoarthritis, now also evaluated as a potent anticancer drug. This system is unique as it enables encapsulation loads >100-fold higher than other β-casein/drug formulations, and does not require additives as do other formulations that have high loadings. This is combined with the ability to lyophilize the formulation without a cryoprotectant, long-term physical and chemical stability of the resulting powder, and fully reversible reconstitution of the structures by rehydration. The dry dosage form, in which >95% of the drug is encapsulated, meets the daily dose. Cryo-TEM and DLS prove that drug encapsulation results in micelle swelling, and X-ray diffraction shows that the encapsulated drug is amorphous. Altogether, our novel dosage form is highly advantageous for oral administration. Copyright © 2012 Elsevier B.V. All rights reserved.
Fatigue Life Estimation under Cumulative Cyclic Loading Conditions
NASA Technical Reports Server (NTRS)
Kalluri, Sreeramesh; McGaw, Michael A; Halford, Gary R.
1999-01-01
The cumulative fatigue behavior of a cobalt-base superalloy, Haynes 188 was investigated at 760 C in air. Initially strain-controlled tests were conducted on solid cylindrical gauge section specimens of Haynes 188 under fully-reversed, tensile and compressive mean strain-controlled fatigue tests. Fatigue data from these tests were used to establish the baseline fatigue behavior of the alloy with 1) a total strain range type fatigue life relation and 2) the Smith-Wastson-Topper (SWT) parameter. Subsequently, two load-level multi-block fatigue tests were conducted on similar specimens of Haynes 188 at the same temperature. Fatigue lives of the multi-block tests were estimated with 1) the Linear Damage Rule (LDR) and 2) the nonlinear Damage Curve Approach (DCA) both with and without the consideration of mean stresses generated during the cumulative fatigue tests. Fatigue life predictions by the nonlinear DCA were much closer to the experimentally observed lives than those obtained by the LDR. In the presence of mean stresses, the SWT parameter estimated the fatigue lives more accurately under tensile conditions than under compressive conditions.
NASA Technical Reports Server (NTRS)
Przekop, Adam; Rizzi, Stephen A.; Sweitzer, Karl A.
2007-01-01
A study is undertaken to develop a methodology for determining the suitability of various high-cycle fatigue models for metallic structures subjected to combined thermal-acoustic loadings. Two features of this problem differentiate it from the fatigue of structures subject to acoustic loading alone. Potentially large mean stresses associated with the thermally pre- and post-buckled states require models capable of handling those conditions. Snap-through motion between multiple post-buckled equilibrium positions introduces very high alternating stress. The thermal-acoustic time history response of a clamped aluminum beam structure with geometric and material nonlinearities is determined via numerical simulation. A cumulative damage model is employed using a rainflow cycle counting scheme and fatigue estimates are made for 2024-T3 aluminum using various non-zero mean fatigue models, including Walker, Morrow, Morrow with true fracture strength, and MMPDS. A baseline zero-mean model is additionally considered. It is shown that for this material, the Walker model produces the most conservative fatigue estimates when the stress response has a tensile mean introduced by geometric nonlinearity, but remains in the linear elastic range. However, when the loading level is sufficiently high to produce plasticity, the response becomes more fully reversed and the baseline, Morrow, and Morrow with true fracture strength models produce the most conservative fatigue estimates.
Cryogenic properties of dispersion strengthened copper for high magnetic fields
NASA Astrophysics Data System (ADS)
Toplosky, V. J.; Han, K.; Walsh, R. P.; Swenson, C. A.
2014-01-01
Cold deformed copper matrix composite conductors, developed for use in the 100 tesla multi-shot pulsed magnet at the National High Magnetic Field Laboratory (NHMFL), have been characterized. The conductors are alumina strengthened copper which is fabricated by cold drawing that introduces high dislocation densities and high internal stresses. Both alumina particles and high density of dislocations provide us with high tensile strength and fatigue endurance. The conductors also have high electrical conductivities because alumina has limited solubility in Cu and dislocations have little scattering effect on conduction electrons. Such a combination of high strength and high conductivity makes it an excellent candidate over other resistive magnet materials. Thus, characterization is carried out by tensile testing and fully reversible fatigue testing. In tensile tests, the material exceeds the design criteria parameters. In the fatigue tests, both the load and displacement were measured and used to control the amplitude of the tests to simulate the various loading conditions in the pulsed magnet which is operated at 77 K in a non-destructive mode. In order to properly simulate the pulsed magnet operation, strain-controlled tests were more suitable than load controlled tests. For the dispersion strengthened coppers, the strengthening mechanism of the aluminum oxide provided better tensile and fatigue properties over convention copper.
Xie, Jun; Xu, Guanghua; Wang, Jing; Li, Min; Han, Chengcheng; Jia, Yaguang
Steady-state visual evoked potentials (SSVEP) based paradigm is a conventional BCI method with the advantages of high information transfer rate, high tolerance to artifacts and the robust performance across users. But the occurrence of mental load and fatigue when users stare at flickering stimuli is a critical problem in implementation of SSVEP-based BCIs. Based on electroencephalography (EEG) power indices α, θ, θ + α, ratio index θ/α and response properties of amplitude and SNR, this study quantitatively evaluated the mental load and fatigue in both of conventional flickering and the novel motion-reversal visual attention tasks. Results over nine subjects revealed significant mental load alleviation in motion-reversal task rather than flickering task. The interaction between factors of "stimulation type" and "fatigue level" also illustrated the motion-reversal stimulation as a superior anti-fatigue solution for long-term BCI operation. Taken together, our work provided an objective method favorable for the design of more practically applicable steady-state evoked potential based BCIs.
Cubas, Rafael; van Grevenynghe, Julien; Wills, Saintedym; Kardava, Lela; Santich, Brian H.; Buckner, Clarisa M.; Muir, Roshell; Tardif, Virginie; Nichols, Carmen; Procopio, Francesco; He, Zhong; Metcalf, Talibah; Ghneim, Khader; Locci, Michela; Ancuta, Petronella; Routy, Jean-Pierre; Trautmann, Lydie; Li, Yuxing; McDermott, Adrian B.; Koup, Rick A.; Petrovas, Constantinos; Migueles, Steven A.; Connors, Mark; Tomaras, Georgia D.; Moir, Susan; Crotty, Shane
2015-01-01
Despite the overwhelming benefits of antiretroviral therapy (ART) in curtailing viral load in HIV-infected individuals, ART does not fully restore cellular and humoral immunity. HIV-infected individuals under ART show reduced responses to vaccination and infections and are unable to mount an effective antiviral immune response upon ART cessation. Many factors contribute to these defects, including persistent inflammation, especially in lymphoid tissues, where T follicular helper (Tfh) cells instruct and help B cells launch an effective humoral immune response. In this study we investigated the phenotype and function of circulating memory Tfh cells as a surrogate of Tfh cells in lymph nodes and found significant impairment of this cell population in chronically HIV-infected individuals, leading to reduced B cell responses. We further show that these aberrant memory Tfh cells exhibit an IL-2–responsive gene signature and are more polarized toward a Th1 phenotype. Treatment of functional memory Tfh cells with IL-2 was able to recapitulate the detrimental reprogramming. Importantly, this defect was reversible, as interfering with the IL-2 signaling pathway helped reverse the abnormal differentiation and improved Ab responses. Thus, reversible reprogramming of memory Tfh cells in HIV-infected individuals could be used to enhance Ab responses. Altered microenvironmental conditions in lymphoid tissues leading to altered Tfh cell differentiation could provide one explanation for the poor responsiveness of HIV-infected individuals to new Ags. This explanation has important implications for the development of therapeutic interventions to enhance HIV- and vaccine-mediated Ab responses in patients under ART. PMID:26546609
De Luca, Andrea; Hamers, Raphael L; Schapiro, Jonathan M
2013-06-15
Antiretroviral treatment (ART) is expanding to human immunodeficiency virus type 1 (HIV-1)-infected persons in low-middle income countries, thanks to a public health approach. With 3 available drug classes, 2 ART sequencing lines are programmatically foreseen. The emergence and transmission of viral drug resistance represents a challenge to the efficacy of ART. Knowledge of HIV-1 drug resistance selection associated with specific drugs and regimens and the consequent activity of residual drug options are essential in programming ART sequencing options aimed at preserving ART efficacy for as long as possible. This article determines optimal ART sequencing options for overcoming HIV-1 drug resistance in resource-limited settings, using currently available drugs and treatment monitoring opportunities. From the perspective of drug resistance and on the basis of limited virologic monitoring data, optimal sequencing seems to involve use of a tenofovir-containing nonnucleoside reverse-transcriptase inhibitor-based first-line regimen, followed by a zidovudine-containing, protease inhibitor (PI)-based second-line regimen. Other options and their consequences are explored by considering within-class and between-class sequencing opportunities, including boosted PI monotherapies and future options with integrase inhibitors. Nucleoside reverse-transcriptase inhibitor resistance pathways in HIV-1 subtype C suggest an additional reason for accelerating stavudine phase out. Viral load monitoring avoids the accumulation of resistance mutations that significantly reduce the activity of next-line options. Rational use of resources, including broader access to viral load monitoring, will help ensure 3 lines of fully active treatment options, thereby increasing the duration of ART success.
Weak Bond-Based Injectable and Stimuli Responsive Hydrogels for Biomedical Applications
Ding, Xiaochu; Wang, Yadong
2017-01-01
Here we define hydrogels crosslinked by weak bonds as physical hydrogels. They possess unique features including reversible bonding, shear thinning and stimuli-responsiveness. Unlike covalently crosslinked hydrogels, physical hydrogels do not require triggers to initiate chemical reactions for in situ gelation. The drug can be fully loaded in a pre-formed hydrogel for delivery with minimal cargo leakage during injection. These benefits make physical hydrogels useful as delivery vehicles for applications in biomedical engineering. This review focuses on recent advances of physical hydrogels crosslinked by weak bonds: hydrogen bonds, ionic interactions, host-guest chemistry, hydrophobic interactions, coordination bonds and π-π stacking interactions. Understanding the principles and the state of the art of gels with these dynamic bonds may give rise to breakthroughs in many biomedical research areas including drug delivery and tissue engineering. PMID:29062484
Thermal-mechanical fatigue crack growth in Inconel X-750
NASA Technical Reports Server (NTRS)
Marchand, N.; Pelloux, R. M.
1984-01-01
Thermal-mechanical fatigue crack growth (TMFCG) was studied in a gamma-gamma' nickel base superalloy Inconel X-750 under controlled load amplitude in the temperature range from 300 to 650 C. In-phase (T sub max at sigma sub max), out-of-phase (T sub min at sigma sub max), and isothermal tests at 650 C were performed on single-edge notch bars under fully reversed cyclic conditions. A dc electrical potential method was used to measure crack length. The electrical potential response obtained for each cycle of a given wave form and R value yields information on crack closure and crack extension per cycle. The macroscopic crack growth rates are reported as a function of delta k and the relative magnitude of the TMFCG are discussed in the light of the potential drop information and of the fractographic observations.
Fully reversible current driven by a dual marine photosynthetic microbial community.
Darus, Libertus; Lu, Yang; Ledezma, Pablo; Keller, Jürg; Freguia, Stefano
2015-11-01
The electrochemical activity of two seawater microbial consortia were investigated in three-electrode bioelectrochemical cells. Two seawater inocula - from the Sunshine Coast (SC) and Gold Coast (GC) shores of Australia - were enriched at +0.6 V vs. SHE using 12/12 h day/night cycles. After re-inoculation, the SC consortium developed a fully-reversible cathodic/anodic current, with a max. of -62 mA m(-2) during the day and +110 mA m(-2) at night, while the GC exhibited negligible daytime output but +98 mA m(-2) at night. Community analysis revealed that both enrichments were dominated by cyanobacteria, indicating their potential as biocatalysts for indirect light conversion to electricity. Moreover, the presence of γ-proteobacterium Congregibacter in SC biofilm was likely related to the cathodic reductive current, indicating its effectiveness at catalysing cathodic oxygen reduction at a surprisingly high potential. For the first time a correlation between a dual microbial community and fully reversible current is reported. Copyright © 2015 Elsevier Ltd. All rights reserved.
Dynamic fatigue performance of implant-abutment assemblies with different tightening torque values.
Xia, Dandan; Lin, Hong; Yuan, Shenpo; Bai, Wei; Zheng, Gang
2014-01-01
Implant-abutment assemblies are usually subject to long-term cyclic loading. To evaluate the dynamic fatigue performance of implant-abutment assemblies with different tightening torque values, thirty implant-abutment assemblies (Zimmer Dental, Carlsbad, CA, USA) were randomly assigned to three tightening groups (24 Ncm; 30 Ncm; 36 Ncm), each consisted of 10 implants. Five specimens from each group were unscrewed, and their reverse torque values recorded. The remaining specimens were subjected to a load between 30 N~300 N at a loading frequency of 15 Hz for 5 × 10(6) cycles. After fatigue tests, residual reverse torque values were recorded if available. In the 24 Ncm tightening group, all the implants fractured at the first outer thread of the implant after fatigue loading, with fatigue crack propagation at the fractured surface showed by SEM observation. For the 30 Ncm and 36 Ncm tightening groups, a statistical significant difference (p<0.05) between the unloaded and loaded groups was revealed. Compared with the unloaded specimens, the specimens went through fatigue loading had decreased reverse torque values. It was demonstrated that insufficient torque will lead to poor fatigue performance of dental implant-abutment assemblies and abutment screws should be tightened to the torque recommended by the manufacturer. It was also concluded that fatigue loading would lead to preload loss.
Static internal performance characteristics of two thrust reverser concepts for axisymmetric nozzles
NASA Technical Reports Server (NTRS)
Leavitt, L. D.; Re, R. J.
1982-01-01
The statis performance of two axisymmetric nozzle thrust reverser concepts was investigated. A rotating vane thrust reverser represented a concept in which reversing is accomplished upstream of the nozzle throat, and a three door reverser concept provided reversing downstream of the nozzle throat. Nozzle pressure ratio was varied from 2.0 to approximately 6.0. The results of this investigation indicate that both the rotating vane and three door reverser concepts were effective static thrust spoilers with the landing approach nozzle geometry and were capable of providing at least a 50 percent reversal of static thrust when fully deployed with the ground roll nozzle geometry.
Isothermal Fatigue, Damage Accumulation, and Life Prediction of a Woven PMC
NASA Technical Reports Server (NTRS)
Gyekenyesi, Andrew L.
1998-01-01
This dissertation focuses on the characterization of the fully reversed fatigue behavior exhibited by a carbon fiber/polyimide resin, woven laminate at room and elevated temperatures. Nondestructive video edge view microscopy and destructive sectioning techniques were used to study the microscopic damage mechanisms that evolved. The residual elastic stiffness was monitored and recorded throughout the fatigue life of the coupon. In addition, residual compressive strength tests were conducted on fatigue coupons with various degrees of damage as quantified by stiffness reduction. Experimental results indicated that the monotonic tensile properties were only minimally influenced by temperature, while the monotonic compressive and fully reversed fatigue properties displayed noticeable reductions due to the elevated temperature. The stiffness degradation, as a function of cycles, consisted of three stages; a short-lived high degradation period, a constant degradation rate segment composing the majority of the life, and a final stage demonstrating an increasing rate of degradation up to failure. Concerning the residual compressive strength tests at room and elevated temperatures, the elevated temperature coupons appeared much more sensitive to damage. At elevated temperatures, coupons experienced a much larger loss in compressive strength when compared to room temperature coupons with equivalent damage. The fatigue damage accumulation law proposed for the model incorporates a scalar representation for damage, but admits a multiaxial, anisotropic evolutionary law. The model predicts the current damage (as quantified by residual stiffness) and remnant life of a composite that has undergone a known load at temperature. The damage/life model is dependent on the applied multiaxial stress state as well as temperature. Comparisons between the model and data showed good predictive capabilities concerning stiffness degradation and cycles to failure.
NASA Astrophysics Data System (ADS)
Gallagher, John A.
2016-04-01
The desired operating range of ferroelectric materials with compositions near the morphotropic phase boundary is limited by field induced phase transformations. In [001]C cut and poled relaxor ferroelectric single crystals the mechanically driven ferroelectric rhombohedral to ferroelectric orthorhombic phase transformation is hindered by antagonistic electrical loading. Instability around the phase transformation makes the current experimental technique for characterization of the large field behavior very time consuming. Characterization requires specialized equipment and involves an extensive set of measurements under combined electrical, mechanical, and thermal loads. In this work a mechanism-based model is combined with a more limited set of experiments to obtain the same results. The model utilizes a work-energy criterion that calculates the mechanical work required to induce the transformation and the required electrical work that is removed to reverse the transformation. This is done by defining energy barriers to the transformation. The results of the combined experiment and modeling approach are compared to the fully experimental approach and error is discussed. The model shows excellent predictive capability and is used to substantially reduce the total number of experiments required for characterization. This decreases the time and resources required for characterization of new compositions.
Rotavirus vaccine strain transmission by vaccinated infants in the foster home.
Miura, Hiroki; Kawamura, Yoshiki; Sugata, Ken; Koshiyama, Nozomi; Yoshikawa, Akiko; Komoto, Satoshi; Taniguchi, Koki; Ihira, Masaru; Yoshikawa, Tetsushi
2017-01-01
Previous studies have demonstrated the transmission of rotavirus vaccine strains from vaccinated children to nonvaccinated siblings. We sought to fully elucidate the safety of rotavirus (RV) vaccination in closed contact circumstance, such as the foster home for future assessment of the vaccine safety in an neonatal intensive care unit. Stool samples were collected from 4 RV vaccinated (160 samples) and 23 unvaccinated (766 samples) infants. RV viral RNA loads were measured using real-time reverse transcription polymerase chain reaction (RT-PCR). RV vaccine strain RNA was persistently detected in stool samples collected from the four vaccine recipients and one unvaccinated infant, but not in the stool samples collected from the 22 other unvaccinated infants. The unvaccinated infant who tested positive for the RV vaccine strain was vaccinated prior to enrollment in this study. The quantitative real-time RT-PCR data revealed a peak viral RNA load 1 week after vaccination followed by a gradual decrease. The current study suggests that RV vaccination may be safe in a close contact environment because there was limited transmission from RV vaccinated to unvaccinated infants. J. Med. Virol. 89:79-84, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Effect of Microstructure on the Mechanical Properties of Extruded Magnesium and a Magnesium Alloy
NASA Astrophysics Data System (ADS)
McGhee, Paul
The main objective of this research was to investigate the relationship between the fatigue behavior and crystallographic texture evolution of magnesium (Mg) alloys with a range of microalloying element content processed under various extrusion conditions. Several Mg alloys were processed under a range of extrusion temperatures, extrusion ratios, and alloying content and tested under monotonic and cyclic fatigue loading conditions: fully-reversed condition tested at strain amplitudes of 0.15% - 1.00% in strain-control mode. After fatigue testing, Mg microstructural analysis was performed using SEM, TEM, optical microscopy, and X-ray diffraction techniques. Microstructural observations revealed significant grain refinement through a combination of zirconium (Zr) addition and hot-extrusion, producing fine equiaxed grain structure with grain sizes ranging between 1-5 microm. Texture analysis and partial compression testing results showed that the initial texture of the extruded alloy gradually evolved upon compressive loading along the c-axes inducing extension twinning creating a strong basal texture along the extrusion direction. Full tensile and compression testing at room temperature showed that the combination of hot extrusion and Zr addition can further refine the grains of the Mg alloys microstructure and enhance the texture while simultaneously enhancing the mechanical properties.
Equivalent damage: A critical assessment
NASA Technical Reports Server (NTRS)
Laflen, J. R.; Cook, T. S.
1982-01-01
Concepts in equivalent damage were evaluated to determine their applicability to the life prediction of hot path components of aircraft gas turbine engines. Equivalent damage was defined as being those effects which influence the crack initiation life-time beyond the damage that is measured in uniaxial, fully-reversed sinusoidal and isothermal experiments at low homologous temperatures. Three areas of equivalent damage were examined: mean stress, cumulative damage, and multiaxiality. For each area, a literature survey was conducted to aid in selecting the most appropriate theories. Where possible, data correlations were also used in the evaluation process. A set of criteria was developed for ranking the theories in each equivalent damage regime. These criteria considered aspects of engine utilization as well as the theoretical basis and correlative ability of each theory. In addition, consideration was given to the complex nature of the loading cycle at fatigue critical locations of hot path components; this loading includes non-proportional multiaxial stressing, combined temperature and strain fluctuations, and general creep-fatigue interactions. Through applications of selected equivalent damage theories to some suitable data sets it was found that there is insufficient data to allow specific recommendations of preferred theories for general applications. A series of experiments and areas of further investigations were identified.
Chong, Alexander Cm; Prohaska, Daniel J; Bye, Brian P
2017-05-01
With arthroscopic techniques being used, the importance of knot tying has been examined. Previous literature has examined the use of reversing half-hitches on alternating posts (RHAPs) on knot security. Separately, there has been research regarding different suture materials commonly used in the operating room. The specific aim of this study was to validate the effect of different stacked half-hitch configuration and different braided suture materials on arthroscopic knot integrity. Three different suture materials tied with five different RHAPs in arthroscopic knots were compared. A single load-to-failure test was performed and the mean ultimate clinical failure load was obtained. Significant knot holding strength improvement was found when one half-hitch was reversed as compared to baseline knot. When two of the half-hitches were reversed, there was a greater improvement with all knots having a mean ultimate clinical failure load greater than 150 newtons (N). Comparison of the suture materials demonstrated a higher mean ultimate clinical failure load when Force Fiber ® was used and at least one half-hitch was reversed. Knots tied with either Force Fiber ® or Orthocord ® showed 0% chance of knot slippage while knots tied with FiberWire ® or braided fishing line had about 10 and 30% knot slippage chances, respectively. A significant effect was observed in regards to both stacked half-hitch configuration and suture materials used on knot loop and knot security. Caution should be used with tying three RHAPs in arthroscopic surgery, particularly with a standard knot pusher and arthroscopic cannulas. The findings of this study indicated the importance of three RHAPs in performing arthroscopic knot tying and provided evidence regarding discrepancies of maximum clinical failure loads observed between orthopaedic surgeons, thereby leading to better surgical outcomes in the future.
Fatigue crack growth at elevated temperature 316 stainless steel and H-13 steel
NASA Technical Reports Server (NTRS)
Chen, W. C.; Liu, H. W.
1976-01-01
Crack growths were measured at elevated temperatures under four types of loading: pp, pc, cp, and cc. In H-13 steel, all these four types of loading gave nearly the same crack growth rates, and the length of hold time had negligible effects. In AISI 316 stainless steel, the hold time effects on crack growth rate were negligible if the loading was tension-tension type; however, these effects were significant in reversed bending load, and the crack growth rates under these four types of loading varied considerably. Both tensile and compressive hold times caused increased crack growth rate, but the compressive hold period was more deleterious than the tensile one. Metallographic examination showed that all the crack paths under different types of loading were largely transgranular for both CTS tension-tension specimens and SEN reversed cantilever bending specimens. In addition, an electric potential technique was used to monitor crack growth at elevated temperature.
Control of HIV infection by IFN-α: implications for latency and a cure.
Bourke, Nollaig M; Napoletano, Silvia; Bannan, Ciaran; Ahmed, Suaad; Bergin, Colm; McKnight, Áine; Stevenson, Nigel J
2018-03-01
Viral infections, including HIV, trigger the production of type I interferons (IFNs), which in turn, activate a signalling cascade that ultimately culminates with the expression of anti-viral proteins. Mounting evidence suggests that type I IFNs, in particular IFN-α, play a pivotal role in limiting acute HIV infection. Highly active anti-retroviral treatment reduces viral load and increases life expectancy in HIV positive patients; however, it fails to fully eliminate latent HIV reservoirs. To revisit HIV as a curable disease, this article reviews a body of literature that highlights type I IFNs as mediators in the control of HIV infection, with particular focus on the anti-HIV restriction factors induced and/or activated by IFN-α. In addition, we discuss the relevance of type I IFN treatment in the context of HIV latency reversal, novel therapeutic intervention strategies and the potential for full HIV clearance.
High temperature tension-compression fatigue behavior of a tungsten copper composite
NASA Technical Reports Server (NTRS)
Verrilli, Michael J.; Gabb, Timothy P.
1990-01-01
The high temperature fatigue of a (O)12 tungsten fiber reinforced copper matrix composite was investigated. Specimens having fiber volume percentages of 10 and 36 were fatigued under fully-reversed, strain-controlled conditions at both 260 and 560 C. The fatigue life was found to be independent of fiber volume fraction because fatigue damage preferentially occurred in the matrix. Also, the composite fatigue lives were shorter at 560 C as compared to 260 C due to changes in mode of matrix failure. On a total strain basis, the fatigue life of the composite at 560 C was the same as the life of unreinforced copper, indicating that the presence of the fibers did not degrade the fatigue resistance of the copper matrix in this composite system. Comparison of strain-controlled fatigue data to previously-generated load-controlled data revealed that the strain-controlled fatigue lives were longer because of mean strain and mean stress effects.
Low-Cycle Fatigue Behavior of Die-Cast Mg Alloy AZ91
NASA Astrophysics Data System (ADS)
Rettberg, Luke; Anderson, Warwick; Jones, J. Wayne
An investigation has been conducted on the influence of microstructure and artificial aging response (T6) on the low-cycle fatigue behavior of super vacuum die-cast (SVDC) AZ91. Fatigue lifetimes were determined from total strain-controlled fatigue tests for strain amplitudes of 0.2%, 0.4% and 0.6%, under fully reversed loading at a frequency of 5 Hz. Cyclic stress-strain behavior was determined using incremental step test (IST) methods. Two locations in a prototype casting with different thicknesses and, therefore, solidification rates, microstructure and porosity, were examined. In general., at all total strain amplitudes fatigue life was unaffected by microstructure refinement and was attributed to significant levels of porosity. Cyclic softening and a subsequent increased cyclic hardening rate, compared to monotonic tests, were observed, independent of microstructure. These results, fractography and damage accumulation processes, determined from metallographic sectioning, are discussed.
RNA Replicon Delivery via Lipid-Complexed PRINT Protein Particles
Xu, Jing; Luft, J. Christopher; Yi, Xianwen; Tian, Shaomin; Owens, Gary; Wang, Jin; Johnson, Ashley; Berglund, Peter; Smith, Jonathan; Napier, Mary E.; DeSimone, Joseph M.
2013-01-01
Herein we report the development of a non-viral lipid-complexed PRINT® (particle replication in non-wetting templates) protein particle system (LPP particle) for RNA replicon delivery with a view towards RNA replicon-based vaccination. Cylindrical bovine serum albumin (BSA) particles (diameter (d) 1 µm, height (h) 1 µm) loaded with RNA replicon and stabilized with a fully reversible disulfide cross-linker were fabricated using PRINT technology. Highly efficient delivery of the particles to Vero cells was achieved by complexing particles with a mixture of 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) and 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) lipids. Our data suggest that: 1) this lipid-complexed protein particle is a promising system for delivery of RNA replicon-based vaccines, and 2) it is necessary to use a degradable cross-linker for successful delivery of RNA replicon via protein-based particles. PMID:23924216
A constitutive theory for shape memory polymers: coupling of small and large deformation
NASA Astrophysics Data System (ADS)
Tan, Qiao; Liu, Liwu; Liu, Yanju; Leng, Jinsong; Yan, Xiangqiao; Wang, Haifang
2013-04-01
At high temperatures, SMPs share attributes like rubber and exhibit long-range reversibility. In contrast, at low temperatures they become very rigid and are susceptible to plastic, only small strains are allowable. But there relatively little literature has considered the unique small stain (rubber phase) and large stain (glass phase) coupling in SMPs when developing the constitutive modeling. In this work, we present a 3D constitutive model for shape memory polymers in both low temperature small strain regime and high temperature large strain regime. The theory is based on the work of Liu et al. [15]. Four steps of SMP's thermomechanical loadings cycle are considered in the constitutive model completely. The linear elastic and hyperelastic effects of SMP in different temperatures are also fully accounted for in the proposed model by adopt the neo-Hookean model and the Generalized Hooke's laws.
NASA Astrophysics Data System (ADS)
Pang, G. M.; Nie, Z. Y.; Wang, A.; Singh, D.; Xie, W.; Jiang, W. B.; Chen, Y.; Singh, R. P.; Smidman, M.; Yuan, H. Q.
2018-06-01
The noncentrosymmetric superconductor Re6Zr has attracted much interest due to the observation of broken time-reversal symmetry in the superconducting state. Here we report an investigation of the superconducting gap structure of Re6Zr single crystals by measuring the magnetic penetration depth shift Δ λ (T ) and electronic specific heat Ce(T ) . Δ λ (T ) exhibits an exponential temperature dependence behavior for T ≪Tc , which indicates a fully open superconducting gap. Our analysis shows that a single gap s -wave model is sufficient to describe both the superfluid density ρs(T ) and Ce(T ) results, with a fitted gap magnitude larger than the weak coupling BCS value, providing evidence for fully gapped superconductivity in Re6Zr with moderate coupling.
Monitoring of Pre-Load on Rock Bolt Using Piezoceramic-Transducer Enabled Time Reversal Method.
Huo, Linsheng; Wang, Bo; Chen, Dongdong; Song, Gangbing
2017-10-27
Rock bolts ensure structural stability for tunnels and many other underground structures. The pre-load on a rock bolt plays an important role in the structural reinforcement and it is vital to monitor the pre-load status of rock bolts. In this paper, a rock bolt pre-load monitoring method based on the piezoceramic enabled time reversal method is proposed. A lead zirconate titanate (PZT) patch transducer, which works as an actuator to generate stress waves, is bonded onto the anchor plate of the rock bolt. A smart washer, which is fabricated by sandwiching a PZT patch between two metal rings, is installed between the hex nut and the anchor plate along the rock bolt. The smart washer functions as a sensor to detect the stress wave. With the increase of the pre-load values on the rock bolt, the effective contact surface area between the smart washer and the anchor plate, benefiting the stress wave propagation crossing the contact surface. With the help of time reversal technique, experimental results reveal that the magnitude of focused signal clearly increases with the increase of the pre-load on a rock bolt before the saturation which happens beyond a relatively high value of the pre-load. The proposed method provides an innovative and real time means to monitor the pre-load level of a rock bolt. By employing this method, the pre-load degradation process on a rock bolt can be clearly monitored. Please note that, currently, the proposed method applies to only new rock bolts, on which it is possible to install the PZT smart washer.
Effect of cyclic loading and retightening on reverse torque value in external and internal implants.
Cho, Woong-Rae; Huh, Yoon-Hyuk; Park, Chan-Jin; Cho, Lee-Ra
2015-08-01
The aim of this study was to evaluate the effect of cyclic loading and screw retightening on reverse torque value (RTV) in external and internal type implants. Cement-retained abutments were connected with 30 Ncm torque to external and internal type implants. Experimental groups were classified according to implant connection type and retightening/loading protocol. In groups with no retightening, RTV was evaluated after cyclic loading for 100,000 cycles. In groups with retightening, RTV was measured after 3, 10, 100 cycles as well as every 20,000 cycles until 100,000 cycles of loading. Every group showed decreased RTV after cyclic loading. Before and after cyclic loading, external type implants had significantly higher RTVs than internal type implants. In external type implants, retightening did not affect the decrease in RTV. In contrast, retightening 5 times and retightening after 10 cycles of dynamic loading was effective for maintaining RTV in internal type implants. Retightening of screws is more effective in internal type implants than external type implants. Retightening of screws is recommended in the early stage of functional loading.
Frozen, Fully-Cooked Products and Botulism--Food Safety Advisory
... Administrative Forms Standard Forms Skip Navigation Z7_0Q0619C0JGR010IFST1G5B10H1 Web Content Viewer (JSR 286) Actions ${title} Loading... / Topics / ... Frozen Fully-cooked Products and Botulism Z7_0Q0619C0JGR010IFST1G5B10H3 Web Content Viewer (JSR 286) Actions ${title} Loading... Z7_ ...
Fully-reversible optical sensor for hydrogen peroxide with fast response.
Ding, Longjiang; Chen, Siyu; Zhang, Wei; Zhang, Yinglu; Wang, Xu-Dong
2018-05-09
A fully reversible optical sensor for hydrogen peroxide with fast response is presented. The sensor was fabricated by in-situ growing ultra-small platinum nanoparticles (PtNPs) inside the pores of fibrous silica particles (KCC-1). The nanocomposite was then embedded into a hydrogel matrix and form a sensor layer, the immobilized PtNPs can catalytically convert hydrogen peroxide into molecular oxygen, which is measured via luminescent quenching based oxygen sensor underneath. Owing to the high porosity and permeability of KCC-1 and high local concentration of PtNPs, the sensor exhibits fast response (less than 1 min) and full reversibility. The measurement range of the sensor covers 1.0 μM to 10.0 mM, and very small amount of sample is required during measurement (200 μL). Because of its high stability, excellent reversibility and selectivity, and extremely fast response, the sensor could fulfill all industry requirements for real-time measurement, and fill market vacancy.
Inrush Current Suppression Circuit and Method for Controlling When a Load May Be Fully Energized
NASA Technical Reports Server (NTRS)
Schwerman, Paul (Inventor)
2017-01-01
A circuit and method for controlling when a load may be fully energized includes directing electrical current through a current limiting resistor that has a first terminal connected to a source terminal of a field effect transistor (FET), and a second terminal connected to a drain terminal of the FET. The gate voltage magnitude on a gate terminal of the FET is varied, whereby current flow through the FET is increased while current flow through the current limiting resistor is simultaneously decreased. A determination is made as to when the gate voltage magnitude on the gate terminal is equal to or exceeds a predetermined reference voltage magnitude, and the load is enabled to be fully energized when the gate voltage magnitude is equal to or exceeds the predetermined reference voltage magnitude.
Thermodynamic dislocation theory: Bauschinger effect
NASA Astrophysics Data System (ADS)
Le, K. C.; Tran, T. M.
2018-04-01
The thermodynamic dislocation theory developed for nonuniform plastic deformations is used here to simulate the stress-strain curves for crystals subjected to antiplane shear-controlled load reversal. We show that the presence of the positive back stress during the load reversal reduces the magnitude of shear stress required to pull excess dislocations back to the center of the specimen. There, the excess dislocations of opposite signs meet and annihilate each other leading to the Bauschinger effect.
Lei, Yang; Nosoudi, Nasim; Vyavahare, Naren
2014-01-01
Background and aims Elastin-specific medial arterial calcification (MAC) is an arterial disease commonly referred as Monckeberg’s sclerosis. It causes significant arterial stiffness, and as yet, no clinical therapy exists to prevent or reverse it. We developed albumin nanoparticles (NPs) loaded with disodium ethylene diaminetetraacetic acid (EDTA) that were designed to target calcified elastic lamina when administrated by intravenous injection. Methods and Results We optimized NP size, charge, and EDTA-loading efficiency (150~200 nm, zeta potential of − 22.89 ~ − 31.72 mV, loading efficiency for EDTA ~20 %) for in vivo targeting in rats. These NPs released EDTA slowly for up to 5 days. In both ex-vivo study and in vivo study with injury-induced local abdominal aortic calcification, we showed that elastin antibody-coated and EDTA-loaded albumin NPs targeted the damaged elastic lamina while sparing healthy artery. Intravenous NP injections reversed elastin-specific MAC in rats after four injections over a 2-week period. EDTA-loaded albumin NPs did not cause the side effects observed in EDTA injection alone, such as decrease in serum calcium (Ca), increase in urine Ca, or toxicity to kidney. There was no bone loss in any treated groups. Conclusion We demonstrate that elastin antibody-coated and EDTA-loaded albumin NPs might be a promising nanoparticle therapy to reverse elastin-specific MAC and circumvent side effects associated with systemic EDTA chelation therapy. PMID:25285609
de Toledo, Joelly Mahnic; Loss, Jefferson Fagundes; Janssen, Thomas W; van der Scheer, Jan W; Alta, Tjarco D; Willems, W Jaap; Veeger, DirkJan H E J
2012-10-01
Following shoulder arthroplasty, any well-planned rehabilitation program should include muscle strengthening. However, it is not always clear how different external loads influence shoulder kinematics in patients with shoulder prostheses. The objective of this study was to describe shoulder kinematics and determine the contribution of the scapulothoracic joint to total shoulder motion of patients with total and reverse shoulder arthroplasties and of healthy individuals during rehabilitation exercises (anteflexion and elevation in the scapular plane) using different loading conditions (without external load, 1 kg and elastic resistance). Shoulder motions were measured using an electromagnetic tracking device. A force transducer was used to record force signals during loaded conditions using elastic resistance. Statistical comparisons were made using a three-way repeated-measures analysis of variance with a Bonferroni post hoc testing. The scapula contributed more to movement of the arm in subjects with prostheses compared to healthy subjects. The same applies for loaded conditions (1 kg and elastic resistance) relative to unloaded tasks. For scapular internal rotation, upward rotation and posterior tilt no significant differences among groups were found during both exercises. Glenohumeral elevation angles during anteflexion were significantly higher in the total shoulder arthroplasty group compared to the reverse shoulder arthroplasty group. Differences in contribution of the scapula to total shoulder motion between patients with different types of arthroplasties were not significant. However, compared to healthy subjects, they were. Furthermore, scapular kinematics of patients with shoulder arthroplasty was influenced by implementation of external loads, but not by the type of load. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Mathieson, Haley Aaron
This thesis investigates experimentally and analytically the structural performance of sandwich panels composed of glass fibre reinforced polymer (GFRP) skins and a soft polyurethane foam core, with or without thin GFRP ribs connecting skins. The study includes three main components: (a) out-of-plane bending fatigue, (b) axial compression loading, and (c) in-plane bending of sandwich beams. Fatigue studies included 28 specimens and looked into establishing service life (S-N) curves of sandwich panels without ribs, governed by soft core shear failure and also ribbed panels governed by failure at the rib-skin junction. Additionally, the study compared fatigue life curves of sandwich panels loaded under fully reversed bending conditions (R=-1) with panels cyclically loaded in one direction only (R=0) and established the stiffness degradation characteristics throughout their fatigue life. Mathematical models expressing fatigue life and stiffness degradation curves were calibrated and expanded forms for various loading ratios were developed. Approximate fatigue thresholds of 37% and 23% were determined for non-ribbed panels loaded at R=0 and -1, respectively. Digital imaging techniques showed significant shear contribution significantly (90%) to deflections if no ribs used. Axial loading work included 51 specimens and examined the behavior of panels of various lengths (slenderness ratios), skin thicknesses, and also panels of similar length with various rib configurations. Observed failure modes governing were global buckling, skin wrinkling or skin crushing. In-plane bending involved testing 18 sandwich beams of various shear span-to-depth ratios and skin thicknesses, which failed by skin wrinkling at the compression side. The analytical modeling components of axially loaded panels include; a simple design-oriented analytical failure model and a robust non-linear model capable of predicting the full load-displacement response of axially loaded slender sandwich panels, accounting for P-Delta effects, inherent out-of-straightness profile of any shape at initial conditions, and the excessive shear deformation of soft core and its effect on buckling capacity. Another model was developed to predict the load-deflection response and failure modes of in-plane loaded sandwich beams. After successful verification of the models using experimental results, comprehensive parametric studies were carried out using these models to cover parameters beyond the limitations of the experimental program.
Analysis of postural load during tasks related to milking cows-a case study.
Groborz, Anna; Tokarski, Tomasz; Roman-Liu, Danuta
2011-01-01
The aim of this study was to analyse postural load during tasks related to milking cows of 2 farmers on 2 different farms (one with a manual milk transport system, the other with a fully automated milk transport system) as a case study. The participants were full-time farmers, they were both healthy and experienced in their job. The Ovako Working Posture Analyzing System (OWAS) was used to evaluate postural load and postural risk. Postural load was medium for the farmer on the farm with a manual milk transport system and high for the farmer working on the farm with a fully automated milk transport system. Thus, it can be concluded that a higher level of farm mechanization not always mean that the farmer's postural load is lower, but limitation of OWAS should be considered.
Alignment verification procedures
NASA Technical Reports Server (NTRS)
Edwards, P. R.; Phillips, E. P.; Newman, J. C., Jr.
1988-01-01
In alignment verification procedures each laboratory is required to align its test machines and gripping fixtures to produce a nearly uniform tensile stress field on an un-notched sheet specimen. The blank specimens (50 mm w X 305 mm l X 2.3 mm th) supplied by the coordinators were strain gauged. Strain gauge readings were taken at all gauges (n = 1 through 10). The alignment verification procedures are as follows: (1) zero all strain gauges while specimen is in a free-supported condition; (2) put strain-gauged specimen in the test machine so that specimen front face (face 1) is in contact with reference jaw (standard position of specimen), tighten grips, and at zero load measure strains on all gauges. (epsilon sub nS0 is strain at gauge n, standard position, zero load); (3) with specimen in machine and at a tensile load of 10 kN measure strains (specimen in standard position). (Strain = epsilon sub nS10); (4) remove specimen from machine. Put specimen in machine so that specimen back face (face 2) is in contact with reference jaw (reverse position of specimen), tighten grips, and at zero load measure strains on all gauges. (Strain - epsilon sub nR0); and (5) with specimen in machine and at tensile load of 10 kN measure strains (specimen in reverse position). (epsilon sub nR10 is strain at gauge n, reverse position, 10 kN load).
Altered sensory-motor control of the head as an etiological factor in space-motion sickness
NASA Technical Reports Server (NTRS)
Lackner, J. R.; DiZio, P.
1989-01-01
Mechanical unloading during head movements in weightlessness may be an etiological factor in space-motion sickness. We simulated altered head loading on Earth without affecting vestibular stimulation by having subjects wear a weighted helmet. Eight subjects were exposed to constant velocity rotation about a vertical axis with direction reversals every 60 sec. for eight reversals with the head loaded and eight with the head unloaded. The severity of motion sickness elicited was significantly higher when the head was loaded. This suggests that altered sensory-motor control of the head is also an etiological factor in space-motion sickness.
Manipulations in Maternal Environment Reverse Periodontitis in Genetically Predisposed Rats
Sluyter, Frans; Breivik, Torbjørn; Cools, Alexander
2002-01-01
The predisposition to develop periodontitis is partly genetically determined in humans as well as in animals. Here we demonstrate, however, that early manipulations in the maternal environment of an animal (rat) model of periodontitis can fully reverse the genetic predisposition to develop periodontitis at adult age. PMID:12093700
Multifunctional High Drug Loading Nanocarriers for Cancer Drug Delivery
NASA Astrophysics Data System (ADS)
Jin, Erlei
2011-12-01
Most anticancer drugs have poor water-solubility, rapid blood clearance, low tumor-selectivity and severe systemic toxicity to healthy tissues. Thus, polymeric nanocarriers have been widely explored for anticancer drugs to solve these problems. However, polymer nanocarriers developed to date still suffer drawbacks including low drug loading contents, premature drug release, slow cellular internalization, slow intracellular drug release and thereby low therapeutic efficiency in cancer thermotherapy. Accordingly, in this dissertation, functional nanocapsules and nanoparticles including high drug loading liposome-like nanocapsules, high drug loading phospholipid-mimic nanocapsules with fast intracellular drug release, high drug loading charge-reversal nanocapsules, TAT based long blood circulation nanoparticles and charge-reversal nuclear targeted nanoparticles are designed and synthesized. These functional carriers have advantages such as high drug loading contents without premature drug release, fast cellular internalization and intracellular drug release, nuclear targeted delivery and long blood circulation. As a result, all these drug carriers show much higher in vitro and in vivo anti-cancer activities.
Effect of cyclic loading and retightening on reverse torque value in external and internal implants
Cho, Woong-Rae; Huh, Yoon-Hyuk; Park, Chan-Jin
2015-01-01
PURPOSE The aim of this study was to evaluate the effect of cyclic loading and screw retightening on reverse torque value (RTV) in external and internal type implants. MATERIALS AND METHODS Cement-retained abutments were connected with 30 Ncm torque to external and internal type implants. Experimental groups were classified according to implant connection type and retightening/loading protocol. In groups with no retightening, RTV was evaluated after cyclic loading for 100,000 cycles. In groups with retightening, RTV was measured after 3, 10, 100 cycles as well as every 20,000 cycles until 100,000 cycles of loading. RESULTS Every group showed decreased RTV after cyclic loading. Before and after cyclic loading, external type implants had significantly higher RTVs than internal type implants. In external type implants, retightening did not affect the decrease in RTV. In contrast, retightening 5 times and retightening after 10 cycles of dynamic loading was effective for maintaining RTV in internal type implants. CONCLUSION Retightening of screws is more effective in internal type implants than external type implants. Retightening of screws is recommended in the early stage of functional loading. PMID:26330975
The Expertise Reversal Effect Is a Variant of the More General Element Interactivity Effect
ERIC Educational Resources Information Center
Chen, Ouhao; Kalyuga, Slava; Sweller, John
2017-01-01
Within the framework of cognitive load theory, the element interactivity and the expertise reversal effects usually are not treated as closely related effects. We argue that the two effects may be intertwined with the expertise reversal effect constituting a particular example of the element interactivity effect. Specifically, the element…
Photoinduced local heating in silica photonic crystals for fast and reversible switching.
Gallego-Gómez, Francisco; Blanco, Alvaro; López, Cefe
2012-12-04
Fast and reversible photonic-bandgap tunability is achieved in silica artificial opals by local heating. The effect is fully reversible as heat rapidly dissipates through the non-irradiated structure without active cooling and water is readsorbed. The performance is strongly enhanced by decreasing the photoirradiated opal volume, allowing bandgap shifts of 12 nm and response times of 20 ms. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Expanded algal cultivation can reverse key planetary boundary transgressions.
Calahan, Dean; Osenbaugh, Edward; Adey, Walter
2018-02-01
Humanity is degrading multiple ecosystem services, potentially irreversibly. Two of the most important human impacts are excess agricultural nutrient loading in our fresh and estuarine waters and excess carbon dioxide in our oceans and atmosphere. Large-scale global intervention is required to slow, halt, and eventually reverse these stresses. Cultivating attached polyculture algae within controlled open-field photobioreactors is a practical technique for exploiting the ubiquity and high primary productivity of algae to capture and recycle the pollutants driving humanity into unsafe regimes of biogeochemical cycling, ocean acidification, and global warming. Expanded globally and appropriately distributed, algal cultivation is capable of removing excess nutrients from global environments, while additionally sequestering appreciable excess carbon. While obviously a major capital and operational investment, such a project is comparable in magnitude to the construction and maintenance of the global road transportation network. Beyond direct amelioration of critical threats, expanded algal cultivation would produce a major new commodity flow of biomass, potentially useful either as a valuable organic commodity itself, or used to reduce the scale of the problem by improving soils, slowing or reversing the loss of arable land. A 100 year project to expand algal cultivation to completely recycle excess global agricultural N and P would, when fully operational, require gross global expenses no greater than $2.3 × 10 12 yr -1 , (3.0% of the 2016 global domestic product) and less than 1.9 × 10 7 ha (4.7 × 10 7 ac), 0.38% of the land area used globally to grow food. The biomass generated embodies renewable energy equivalent to 2.8% of global primary energy production.
Deformation history and load sequence effects on cumulative fatigue damage and life predictions
NASA Astrophysics Data System (ADS)
Colin, Julie
Fatigue loading seldom involves constant amplitude loading. This is especially true in the cooling systems of nuclear power plants, typically made of stainless steel, where thermal fluctuations and water turbulent flow create variable amplitude loads, with presence of mean stresses and overloads. These complex loading sequences lead to the formation of networks of microcracks (crazing) that can propagate. As stainless steel is a material with strong deformation history effects and phase transformation resulting from plastic straining, such load sequence and variable amplitude loading effects are significant to its fatigue behavior and life predictions. The goal of this study was to investigate the effects of cyclic deformation on fatigue behavior of stainless steel 304L as a deformation history sensitive material and determine how to quantify and accumulate fatigue damage to enable life predictions under variable amplitude loading conditions for such materials. A comprehensive experimental program including testing under fully-reversed, as well as mean stress and/or mean strain conditions, with initial or periodic overloads, along with step testing and random loading histories was conducted on two grades of stainless steel 304L, under both strain-controlled and load-controlled conditions. To facilitate comparisons with a material without deformation history effects, similar tests were also carried out on aluminum 7075-T6. Experimental results are discussed, including peculiarities observed with stainless steel behavior, such as a phenomenon, referred to as secondary hardening characterized by a continuous increase in the stress response in a strain-controlled test and often leading to runout fatigue life. Possible mechanisms for secondary hardening observed in some tests are also discussed. The behavior of aluminum is shown not to be affected by preloading, whereas the behavior of stainless steel is greatly influenced by prior loading. Mean stress relaxation in strain control and ratcheting in load control and their influence on fatigue life are discussed. Some unusual mean strain test results are presented for stainless steel 304L, where in spite of mean stress relaxation fatigue lives were significantly longer than fully-reversed tests. Prestraining indicated no effect on either deformation or fatigue behavior of aluminum, while it induced considerable hardening in stainless steel 304L and led to different results on fatigue life, depending on the test control mode. In step tests for stainless steel 304L, strong hardening induced by the first step of a high-low sequence significantly affects the fatigue behavior, depending on the test control mode used. For periodic overload tests of stainless steel 340L, hardening due to the overloads was progressive throughout life and more significant than in high-low step tests. For aluminum, no effect on deformation behavior was observed due to periodic overloads. However, the direction of the overloads was found to affect fatigue life, as tensile overloads led to longer lives, while compressive overloads led to shorter lives. Deformation and fatigue behaviors under random loading conditions are also presented and discussed for the two materials. The applicability of a common cumulative damage rule, the linear damage rule, is assessed for the two types of material, and for various loading conditions. While the linear damage rule associated with a strain-life or stress-life curve is shown to be fairly accurate for life predictions for aluminum, it is shown to poorly represent the behavior of stainless steel, especially in prestrained and high-low step tests, in load control. In order to account for prior deformation effects and achieve accurate fatigue life predictions for stainless steel, parameters including both stress and strain terms are required. The Smith-Watson-Topper and Fatemi-Socie approaches, as such parameters, are shown to correlate most test data fairly accurately. For damage accumulation under variable amplitude loading, the linear damage rule associated with strain-life or stress-life curves can lead to inaccurate fatigue life predictions, especially for materials presenting strong deformation memory effect, such as stainless steel 304L. The inadequacy of this method is typically attributed to the linear damage rule itself. On the contrary, this study demonstrates that damage accumulation using the linear damage rule can be accurate, provided that the linear damage rule is used in conjunction with parameters including both stress and strain terms. By including both loading history and response of the material in damage quantification, shortcomings of the commonly used linear damage rule approach can be circumvented in an effective manner. In addition, cracking behavior was also analyzed under various loading conditions. Results on microcrack initiation and propagation are presented in relation to deformation and fatigue behaviors of the materials. Microcracks were observed to form during the first few percent of life, indicating that most of the fatigue life of smooth specimens is spent in microcrack formation and growth. Analyses of fractured specimens showed that microcrack formation and growth is dependent on the loading history, and less important in aluminum than stainless steel 304L, due to the higher toughness of this latter material.
Investigation of Noise and Vibration in Tires Through Analytical Modeling, Tests and Simulations
NASA Astrophysics Data System (ADS)
Cao, Rui
Tire noise and vibration is an interesting topic, with more and more people paying attention to this issue. Tire noise can both propagate into the vehicle interior and radiate directly toward the immediate environment. Tire noise is not only related to vehicle passengers' comfort but also affects the residential or working area near highways, especially in high population density regions. The emerging electric vehicles also emphasize tires' role in vehicle Noise Vibration and Harshness (NVH) since power-train noises are significantly reduced. The study in this research focuses on the noise and vibration of tires from the low to high frequency range, typically from 60 kHz to 2 kHz. From the analytical point of view, forced vibration of a fully coupled 2D structural-acoustical model is presented and a 3D structural model is also investigated for various input conditions. Both circumferential and cross-sectional shearing motions in the analytical tire models can be observed. Static tire surface mobilities were also measured to verify the findings from the developed models. On the experimental side, the loading effect on tire noise radiation was studied, where applied loads ranged from 500 lbs to 1300 lbs. Results indicate that sound radiation is usually proportional to the loading, except between 1.1 kHz to 1.7 kHz where the load-noise relation is reversed. In addition, tire noise generated by road surface discontinuities was also studied experimentally. As expected, a broadband increase of the noise spectrum can be observed below 1 kHz compared to the noise on a continuous surface. However, the difference tends to diminish above 1 kHz except in a certain narrow frequency band depending on the particular tire tested. High frequency waves and motions in tire cross-sectional directions were identified as occurring in the frequency range of interest. A two-dimensional cross-sectional analytical tire model was proposed for further investigations, in order to verify the relation among high frequency tire noise properties and the fast propagating waves and cross-sectional motions in tires. Finally, a fully coupled finite element tire-wheel model was developed to simulate the tire deformation under static vertical loading and to explore the influence of various excitation forces. The forces or accelerations, depending on the boundary conditions, at the wheel center can be calculated from the tire model up to 500 Hz. The results can be potentially used as input for vehicle full body simulations, thus accelerating the optimization process of new product development.
NASA Astrophysics Data System (ADS)
Subotić, Vanja; Schluckner, Christoph; Mathe, Jörg; Rechberger, Jürgen; Schroettner, Hartmuth; Hochenauer, Christoph
2015-11-01
Carbon deposition is a primary concern during operation of solid oxide fuel cells (SOFCs) fueled with carbon-containing fuels. It leads to cell degradation and thus reduces SOFC sustained operation and durability. This paper reports on an experimental investigation of carbon formation on the nickel/yttria-stabilized zirconia (Ni/YSZ) anode of an anode-supported SOFC and its regeneration. The cell was fueled with a synthetically produced diesel reformate to investigate and simulate the cell behavior under real operating conditions. For this purpose the cell was operated under load to determine the critical operating time. Rapid carbon generation, such as at open circuit voltage (OCV), can be prevented when the cell is under load. Carbon depositions were detected using scanning electron microscopy (SEM) and further analyzed by Raman spectroscopy. Industrial-size cells suitable for commercial applications were studied. This study proves the reversibility of carbon formation and the reproducibility of the regeneration process. It shows that carbon formations can be recognized and effectively, fully and cell-protecting regenerated. It indicates the excellent possibility of using SOFCs in the automotive industry as an auxiliary power unit (APU) or combined power-heat unit, operated with diesel reformate, without danger from cell degradation caused by carbon-containing fuels.
Creep fatigue life prediction for engine hot section materials (isotropic)
NASA Technical Reports Server (NTRS)
Moreno, Vito; Nissley, David; Lin, Li-Sen Jim
1985-01-01
The first two years of a two-phase program aimed at improving the high temperature crack initiation life prediction technology for gas turbine hot section components are discussed. In Phase 1 (baseline) effort, low cycle fatigue (LCF) models, using a data base generated for a cast nickel base gas turbine hot section alloy (B1900+Hf), were evaluated for their ability to predict the crack initiation life for relevant creep-fatigue loading conditions and to define data required for determination of model constants. The variables included strain range and rate, mean strain, strain hold times and temperature. None of the models predicted all of the life trends within reasonable data requirements. A Cycle Damage Accumulation (CDA) was therefore developed which follows an exhaustion of material ductility approach. Material ductility is estimated based on observed similarities of deformation structure between fatigue, tensile and creep tests. The cycle damage function is based on total strain range, maximum stress and stress amplitude and includes both time independent and time dependent components. The CDA model accurately predicts all of the trends in creep-fatigue life with loading conditions. In addition, all of the CDA model constants are determinable from rapid cycle, fully reversed fatigue tests and monotonic tensile and/or creep data.
Successful NEES Grand Challenge Tests on Non-Ductile Beam-Column Joints
potential of existing gravity load designed RC buildings is a great concern during intense seismic events evaluate unreinforced corner joints shear strength and axial residual capacity under high axial load axial load is 0.20f Âc Ag , while the overturning axial loads vary with displacement reversals to range
NASA Astrophysics Data System (ADS)
Manigandan, K.; Srivatsan, T. S.; Vasudevan, V. K.; Tammana, D.; Poorganji, B.
2016-01-01
In this paper, the results of a study on microstructural influences on mechanical behavior of the high-strength alloy steel Tenax™ 310 are presented and discussed. Under the influence of fully reversed strain cycling, the stress response of this alloy steel revealed softening from the onset of deformation. Cyclic strain resistance exhibited a linear trend for the variation of both elastic strain amplitude with reversals-to-failure, and plastic strain amplitude with reversals-to-failure. Fracture morphology was essentially the same at the macroscopic level over the entire range of cyclic strain amplitudes examined. However, at the fine microscopic level, this high-strength alloy steel revealed fracture to be mixed-mode with features reminiscent of "locally" ductile and brittle mechanisms. The macroscopic mechanisms governing stress response at the fine microscopic level, resultant fatigue life, and final fracture behavior are presented and discussed in light of the mutually interactive influences of intrinsic microstructural effects, deformation characteristics of the microstructural constituents during fully reversed strain cycling, cyclic strain amplitude, and resultant response stress.
Mechanical behaviour of TWIP steel under shear loading
NASA Astrophysics Data System (ADS)
Vincze, G.; Butuc, M. C.; Barlat, F.
2016-08-01
Twinning induced plasticity steels (TWIP) are very good candidate for automotive industry applications because they potentially offer large energy absorption before failure due to their exceptional strain hardening capability and high strength. However, their behaviour is drastically influenced by the loading conditions. In this work, the mechanical behaviour of a TWIP steel sheet sample was investigated at room temperature under monotonic and reverse simple shear loading. It was shown that all the expected features of load reversal such as Bauschinger effect, transient strain hardening with high rate and permanent softening, depend on the prestrain level. This is in agreement with the fact that these effects, which occur during reloading, are related to the rearrangement of the dislocation structure induced during the predeformation. The homogeneous anisotropic hardening (HAH) approach proposed by Barlat et al. (2011) [1] was successfully employed to predict the experimental results.
NASA Astrophysics Data System (ADS)
Chow, L. C.; Hahn, O. J.; Nguyen, H. X.
1992-08-01
This report presents the description of a liquid sodium heat transfer facility (sodium loop) constructed to support the study of transient response of heat pipes. The facility, consisting of the loop itself, a safety system, and a data acquisition system, can be safely operated over a wide range of temperature and sodium flow rate. The transient response of a heat pipe to pulse heat load at the condenser section was experimentally investigated. A 0.457 m screen wick, sodium heat pipe with an outer diameter of 0.127 m was tested under different heat loading conditions. A major finding was that the heat pipe reversed under a pulse heat load applied at the condenser. The time of reversal was approximately 15 to 25 seconds. The startup of the heat pipe from frozen state was also studied. It was found that during the startup process, at least part of the heat pipe was active. The active region extended gradually down to the end of the condenser until all of the working fluid in the heat pipe was molten.
Königshausen, M; Jettkant, B; Sverdlova, N; Ehlert, C; Gessmann, J; Schildhauer, T A; Seybold, D
2015-01-01
There is no biomechanical basis to determine the influence of different length of the central peg of the baseplate anchored within the native scapula in glenoid defect reconstruction in cases of degenerative or posttraumatic glenoid bone loss in reversed shoulder arthroplasty. The purpose of this study was to analyse the stability of different peg lengths used in glenoid bone loss in reversed shoulder arthroplasty. Different lengths of metaglene pegs with different depths of peg anchorage performed with or without metaglene screws in sawbone foam blocks were loaded in vertical and horizontal directions for differentiating load capacities. Simulated physiological loadings were then applied to the peg implants to determine the limits of loading in each depth of anchorage. The loading capacity of the implant was reduced as less of the peg was anchored. The vertically loaded implants showed a significantly higher stability, in contrast to those loaded horizontally at a corresponding peg length and depth of anchorage (p < 0.05). The tests revealed that the metaglene screws are more essential for primary stability than is the peg particularly in the vertically directed loadings (2/3 anchored: peg contributed to 28% of the stability, 1/3 anchorage: peg contributed to 12%). Under the second test conditions, the lowest depth of peg anchorage (1/3) resulted in 322 Newtons [N] in the long peg with a vertical loading direction, and in 130 N in the long peg with a horizontal loading direction (p < 0.05). The pegs should be anchored as deeply as possible into the native scapula bone stock. The metaglene screws play a major role in the initial stability, in contrast to the peg, and they become more important when the depth of the peg anchorage is reduced. If possible, four metaglene screws should be used in cases of uncontained bone loss to guarantee the highest stability.
Risk of population extinction from fixation of deleterious and reverse mutations.
Lande, R
1998-01-01
A model is developed for alternate fixations of mildly deleterious and wild-type alleles arising by forward and reverse mutation in a finite population. For almost all parameter values, this gives an equilibrium load that agrees closely with the general expression derived from diffusion theory. Nearly neutral mutations with selection coefficient a few times larger than 1/(2N(e)) do the most damage by increasing the equilibrium load. The model of alternate fixations facilitates dynamical analysis of the expected load and the mean time to extinction in a population that has been suddenly reduced from a very large size to a small size. Reverse mutation can substantially improve population viability, increasing the mean time to extinction by an order of magnitude or more, but because many mutations are irreversible the effects may not be large. Populations with initially high mean fitness and small effective size, N(e) below a few hundred individuals, may be at serious risk of extinction from fixation of deleterious mutations within 10(3) to 10(4) generations.
NASA Astrophysics Data System (ADS)
Bouhon, Adrien; Schmidt, Johann; Black-Schaffer, Annica M.
2018-03-01
We establish the topology of the spin-singlet superconducting states in the bare hyperhoneycomb lattice, and we derive analytically the full phase diagram using only symmetry and topology in combination with simple energy arguments. The phase diagram is dominated by two states preserving time-reversal symmetry. We find a line-nodal state dominating at low doping levels that is topologically nontrivial and exhibits surface Majorana flatbands, which we show perfectly match the bulk-boundary correspondence using the Berry phase approach. At higher doping levels, we find a fully gapped state with trivial topology. By analytically calculating the topological invariant of the nodal lines, we derive the critical point between the line-nodal and fully gapped states as a function of both pairing parameters and doping. We find that the line-nodal state is favored not only at lower doping levels but also if symmetry-allowed deformations of the lattice are present. Adding simple energy arguments, we establish that a fully gapped state with broken time-reversal symmetry likely appears covering the actual phase transition. We find this fully gapped state to be topologically trivial, while we find an additional point-nodal state at very low doing levels that also break time-reversal symmetry and has nontrivial topology with associated Fermi surface arcs. We eventually address the robustness of the phase diagram to generalized models also including adiabatic spin-orbit coupling, and we show how all but the point-nodal state are reasonably stable.
Achieving fixation in glenoids with superior wear using reverse shoulder arthroplasty.
Roche, Christopher P; Stroud, Nicholas J; Martin, Brian L; Steiler, Cindy A; Flurin, Pierre-Henri; Wright, Thomas W; Zuckerman, Joseph D; Dipaola, Matthew J
2013-12-01
Superior glenoid wear is a common challenge with reverse shoulder arthroplasty and, if left uncorrected, can result in superior glenoid tilt, which increases the risk of aseptic glenoid loosening. This study evaluates the impact of an E2 superior defect on reverse shoulder glenoid fixation in composite scapulae after correction of glenoid tilt by use of 2 different glenoid reaming techniques: eccentric reaming and off-axis reaming. A superior glenoid defect was created in 14 composite scapulae. The superior defect was corrected by 2 different glenoid reaming techniques: (1) eccentric reaming with implantation of a standard glenoid baseplate and (2) off-axis reaming with implantation of a superior-augment glenoid baseplate. Each corrected superior-defect scapula was then cyclically loaded (along with a control group consisting of 7 non-worn scapulae) for 10,000 cycles at 750 N; glenoid baseplate displacement was measured for each group to quantify fixation before and after cyclic loading. Regardless of the glenoid reaming technique or the glenoid baseplate type, each standard and superior-augment glenoid baseplate remained well fixed in this superior-defect model scenario after cyclic loading. No differences in baseplate displacement were observed either before or after cyclic loading between groups. Our results suggest that either glenoid reaming technique may be used to achieve fixation in the clinically challenging situation of superior wear with reverse shoulder arthroplasty. Basic science, biomechanical study. Copyright © 2013 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Mosby, Inc. All rights reserved.
Zhong, Yinan; Zhang, Jian; Cheng, Ru; Deng, Chao; Meng, Fenghua; Xie, Fang; Zhong, Zhiyuan
2015-05-10
The existence of drug resistance poses a major obstacle for the treatment of various malignant human cancers. Here, we report on reduction-sensitive reversibly crosslinked hyaluronic acid (HA) nanoparticles based on HA-Lys-LA conjugates (Lys: l-lysine methyl ester, LA: lipoic acid) for active targeting delivery of doxorubicin (DOX) to CD44+ breast cancers in vitro and in vivo, effectively overcoming drug resistance (ADR). HA-Lys-LA with degrees of substitution of 5, 10 and 28% formed robust nano-sized nanoparticles (152-219nm) following auto-crosslinking. DOX-loaded crosslinked nanoparticles revealed inhibited DOX release under physiological conditions while fast drug release in the presence of 10mM glutathione (GSH). Notably, MTT assays showed that DOX-loaded crosslinked HA-Lys-LA10 nanoparticles possessed an apparent targetability and a superior antitumor activity toward CD44 receptor overexpressing DOX-resistant MCF-7 human breast cancer cells (MCF-7/ADR). The in vivo pharmacokinetics and biodistribution studies in MCF-7/ADR tumor xenografts in nude mice showed that DOX-loaded crosslinked HA-Lys-LA10 nanoparticles had a prolonged circulation time and a remarkably high accumulation in the tumor (12.71%ID/g). Notably, DOX-loaded crosslinked HA-Lys-LA10 nanoparticles exhibited effective inhibition of tumor growth while continuous tumor growth was observed for mice treated with free drug. The Kaplan-Meier survival curves showed that in contrast to control groups, all mice treated with DOX-loaded crosslinked HA-Lys-LA10 nanoparticles survived over an experimental period of 44days. Importantly, DOX-loaded crosslinked HA nanoparticles caused low side effects. The reversibly crosslinked hyaluronic acid nanoparticles with excellent biocompatibility, CD44-targetability, and effective reversal of drug resistance have a great potential in cancer therapy. Copyright © 2015 Elsevier B.V. All rights reserved.
Gearbox Reliability Collaborative Investigation of Gearbox Motion and High-Speed-Shaft Loads
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keller, Jon; Guo, Yi; Sethuraman, Latha
2016-03-18
This paper extends a model-to-test validation effort to examine the effect of different constant rotor torque and moment conditions and intentional generator misalignment on the gearbox motion and high-speed-shaft loads. Fully validating gearbox motion and high-speed-shaft loads across a range of test conditions is a critical precursor to examining the bearing loads, as the gearbox motion and high-speed-shaft loads are the drivers of these bearing loads.
Advances in Developing HIV-1 Viral Load Assays for Resource-Limited Settings
Wang, ShuQi; Xu, Feng; Demirci, Utkan
2010-01-01
Commercial HIV-1 RNA viral load assays have been routinely used in developed countries to monitor antiretroviral treatment (ART). However, these assays require expensive equipment and reagents, well-trained operators, and established laboratory infrastructure. These requirements restrict their use in resource-limited settings where people are most afflicted with the HIV-1 epidemic. Inexpensive alternatives such as the Ultrasensitive p24 assay, the Reverse Transcriptase (RT) assay and in-house reverse transcription quantitative polymerase chain reaction (RT-qPCR) have been developed. However, they are still time-consuming, technologically complex and inappropriate for decentralized laboratories as point-of-care (POC) tests. Recent advances in microfluidics and nanotechnology offer new strategies to develop low-cost, rapid, robust and simple HIV-1 viral load monitoring systems. We review state-of-the-art technologies used for HIV-1 viral load monitoring in both developed and developing settings. Emerging approaches based on microfluidics and nanotechnology, which have potential to be integrated into POC HIV-1 viral load assays, are also discussed. PMID:20600784
Resizing procedure for optimum design of structures under combined mechanical and thermal loading
NASA Technical Reports Server (NTRS)
Adelman, H. M.; Narayanaswami, R.
1976-01-01
An algorithm is reported for resizing structures subjected to combined thermal and mechanical loading. The algorithm is applicable to uniaxial stress elements (rods) and membrane biaxial stress members. Thermal Fully Stressed Design (TFSD) is based on the basic difference between mechanical and thermal stresses in their response to resizing. The TFSD technique is found to converge in fewer iterations than ordinary fully stressed design for problems where thermal stresses are comparable to the mechanical stresses. The improved convergence is demonstrated by example with a study of a simplified wing structure, built-up with rods and membranes and subjected to a combination of mechanical loads and a three dimensional temperature distribution.
Zhao, Xi; Xu, Haitao; Wang, XiaoXiao; Zheng, Zhizhong; Xu, Zhenliang; Ge, Jianping
2018-05-02
A new microporous metal-organic framework (MOF) with formula {Co 2 (oba) 4 (3-bpdh) 2 }4H 2 O [oba = 4,4'-oxybis(benzoic acid); 3-bpdh = N, N'-bis-(1-pyridine-3-yl-ethylidene)-hydrazine] was assembled, and its morphology was found to undergo a microrod-to-nanosphere transformation with temperature variation. Core-shell Au@Pd functional nanoparticles (NPs) were successfully encapsulated in the center of the monodisperse nanospheres, and Pt NPs were well-dispersed and fully immobilized on the surface of Au@Pd@1Co to build the Pt/Au@Pd@1Co composites, which exhibited NPs catalytic activity for the reverse water gas shift reaction. The core-shell Au@Pd NPs in MOF significantly enchanced the CO selectivity of the catalyst, and the Pt NP loading on the surface of the nanosphere afforded a desirable CO 2 conversion.
Approaching the ideal elastic strain limit in silicon nanowires
Zhang, Hongti; Tersoff, Jerry; Xu, Shang; Chen, Huixin; Zhang, Qiaobao; Zhang, Kaili; Yang, Yong; Lee, Chun-Sing; Tu, King-Ning; Li, Ju; Lu, Yang
2016-01-01
Achieving high elasticity for silicon (Si) nanowires, one of the most important and versatile building blocks in nanoelectronics, would enable their application in flexible electronics and bio-nano interfaces. We show that vapor-liquid-solid–grown single-crystalline Si nanowires with diameters of ~100 nm can be repeatedly stretched above 10% elastic strain at room temperature, approaching the theoretical elastic limit of silicon (17 to 20%). A few samples even reached ~16% tensile strain, with estimated fracture stress up to ~20 GPa. The deformations were fully reversible and hysteresis-free under loading-unloading tests with varied strain rates, and the failures still occurred in brittle fracture, with no visible sign of plasticity. The ability to achieve this “deep ultra-strength” for Si nanowires can be attributed mainly to their pristine, defect-scarce, nanosized single-crystalline structure and atomically smooth surfaces. This result indicates that semiconductor nanowires could have ultra-large elasticity with tunable band structures for promising “elastic strain engineering” applications. PMID:27540586
Pattathil, Praveen; Scarfiello, Riccardo; Giannuzzi, Roberto; Veramonti, Giulia; Sibillano, Teresa; Qualtieri, Antonio; Giannini, Cinzia; Cozzoli, P Davide; Manca, Michele
2016-12-08
Recent developments in the exploitation of transparent conductive oxide nanocrystals paved the way to the realization of a new class of electrochemical systems capable of selectively shielding the infrared heat loads carried by sunlight and prospected the blooming of a key enabling technology to be implemented in the next generation of "zero-energy" building envelopes. Here we report the fabrication of a set of electrochromic devices embodying an engineered nanostructured electrode made by high aspect-ratio tungsten oxide nanorods, which allow for selectively and dynamically controlling sunlight transmission over the near-infrared to visible range. Varying the intensity of applied voltage makes the spectral response of the device change across three different optical regimes, namely fully transparent, near-infrared only blocking and both visible and near-infrared blocking. It is demonstrated that the degree of reversible modulation of the thermal radiation entering the glazing element can approach a remarkable 85%, accompanied by only a modest reduction in the luminous transmittance.
NASA Astrophysics Data System (ADS)
Bao, Cheng; Cai, Ningsheng; Croiset, Eric
2011-10-01
Following our integrated hierarchical modeling framework of natural gas internal reforming solid oxide fuel cell (IRSOFC), this paper firstly introduces the model libraries of main balancing units, including some state-of-the-art achievements and our specific work. Based on gPROMS programming code, flexible configuration and modular design are fully realized by specifying graphically all unit models in each level. Via comparison with the steady-state experimental data of Siemens-Westinghouse demonstration system, the in-house multi-level SOFC-gas turbine (GT) simulation platform is validated to be more accurate than the advanced power system analysis tool (APSAT). Moreover, some units of the demonstration system are designed reversely for analysis of a typically part-load transient process. The framework of distributed and dynamic modeling in most of units is significant for the development of control strategies in the future.
Enhancement and suppression in the visual field under perceptual load.
Parks, Nathan A; Beck, Diane M; Kramer, Arthur F
2013-01-01
The perceptual load theory of attention proposes that the degree to which visual distractors are processed is a function of the attentional demands of a task-greater demands increase filtering of irrelevant distractors. The spatial configuration of such filtering is unknown. Here, we used steady-state visual evoked potentials (SSVEPs) in conjunction with time-domain event-related potentials (ERPs) to investigate the distribution of load-induced distractor suppression and task-relevant enhancement in the visual field. Electroencephalogram (EEG) was recorded while subjects performed a foveal go/no-go task that varied in perceptual load. Load-dependent distractor suppression was assessed by presenting a contrast reversing ring at one of three eccentricities (2, 6, or 11°) during performance of the go/no-go task. Rings contrast reversed at 8.3 Hz, allowing load-dependent changes in distractor processing to be tracked in the frequency-domain. ERPs were calculated to the onset of stimuli in the load task to examine load-dependent modulation of task-relevant processing. Results showed that the amplitude of the distractor SSVEP (8.3 Hz) was attenuated under high perceptual load (relative to low load) at the most proximal (2°) eccentricity but not at more eccentric locations (6 or 11°). Task-relevant ERPs revealed a significant increase in N1 amplitude under high load. These results are consistent with a center-surround configuration of load-induced enhancement and suppression in the visual field.
2016-01-01
In this update, antiretroviral therapy (ART) is recommended for all patients infected by type 1 human immunodeficiency virus (HIV-1). The objective of ART is to achieve an undetectable plasma viral load (PVL). Initial ART should comprise 3 drugs, namely, 2 nucleoside reverse transcriptase inhibitors (NRTI), and 1 drug from another family. Four of the recommended regimens, all of which have an integrase strand transfer inhibitor (INSTI) as the third drug, are considered a preferred regimen; a further 6 regimens, which are based on an INSTI, a non-nucleoside reverse transcriptase inhibitor (NNRTI), or a protease inhibitor boosted with cobicistat or ritonavir (PI/COBI, PI/r), are considered alternatives. The reasons and criteria for switching ART are presented both for patients with an undetectable PVL and for patients who experience virological failure, in which case the rescue regimen should include 3 (or at least 2) drugs that are fully active against HIV. The specific criteria for ART in special situations (acute infection, HIV-2 infection, pregnancy) and comorbid conditions (tuberculosis and other opportunistic infections, kidney disease, liver disease, and cancer) are updated. Copyright © 2016 Elsevier España, S.L.U. and Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.
A reverse order interview does not aid deception detection regarding intentions
Fenn, Elise; McGuire, Mollie; Langben, Sara; Blandón-Gitlin, Iris
2015-01-01
Promising recent research suggests that more cognitively demanding interviews improve deception detection accuracy. Would these cognitively demanding techniques work in the same way when discriminating between true and false future intentions? In Experiment 1 participants planned to complete a task, but instead were intercepted and interviewed about their intentions. Participants lied or told the truth, and were subjected to high (reverse order) or low (sequential order) cognitive load interviews. Third-party observers watched these interviews and indicated whether they thought the person was lying or telling the truth. Subjecting participants to a reverse compared to sequential interview increased the misidentification rate and the appearance of cognitive load in truth tellers. People lying about false intentions were not better identified. In Experiment 2, a second set of third-party observers rated behavioral cues. Consistent with Experiment 1, truth tellers, but not liars, exhibited more behaviors associated with lying and fewer behaviors associated with truth telling in the reverse than sequential interview. Together these results suggest that certain cognitively demanding interviews may be less useful when interviewing to detect false intentions. Explaining a true intention while under higher cognitive demand places truth tellers at risk of being misclassified. There may be such a thing as too much cognitive load induced by certain techniques PMID:26379610
NASA Astrophysics Data System (ADS)
Alfaraj, Nasir; Hussain, Aftab M.; Torres Sevilla, Galo A.; Ghoneim, Mohamed T.; Rojas, Jhonathan P.; Aljedaani, Abdulrahman B.; Hussain, Muhammad M.
2015-10-01
Flexibility can bring a new dimension to state-of-the-art electronics, such as rollable displays and integrated circuit systems being transformed into more powerful resources. Flexible electronics are typically hosted on polymeric substrates. Such substrates can be bent and rolled up, but cannot be independently fixed at the rigid perpendicular position necessary to realize rollable display-integrated gadgets and electronics. A reversibly bistable material can assume two stable states in a reversible way: flexibly rolled state and independently unbent state. Such materials are used in cycling and biking safety wristbands and a variety of ankle bracelets for orthopedic healthcare. They are often wrapped around an object with high impulsive force loading. Here, we study the effects of cumulative impulsive force loading on thinned (25 μm) flexible silicon-based n-channel metal-oxide-semiconductor field-effect transistor devices housed on a reversibly bistable flexible platform. We found that the transistors have maintained their high performance level up to an accumulated 180 kN of impact force loading. The gate dielectric layers have maintained their reliability, which is evidenced by the low leakage current densities. Also, we observed low variation in the effective electron mobility values, which manifests that the device channels have maintained their carrier transport properties.
A reverse order interview does not aid deception detection regarding intentions.
Fenn, Elise; McGuire, Mollie; Langben, Sara; Blandón-Gitlin, Iris
2015-01-01
Promising recent research suggests that more cognitively demanding interviews improve deception detection accuracy. Would these cognitively demanding techniques work in the same way when discriminating between true and false future intentions? In Experiment 1 participants planned to complete a task, but instead were intercepted and interviewed about their intentions. Participants lied or told the truth, and were subjected to high (reverse order) or low (sequential order) cognitive load interviews. Third-party observers watched these interviews and indicated whether they thought the person was lying or telling the truth. Subjecting participants to a reverse compared to sequential interview increased the misidentification rate and the appearance of cognitive load in truth tellers. People lying about false intentions were not better identified. In Experiment 2, a second set of third-party observers rated behavioral cues. Consistent with Experiment 1, truth tellers, but not liars, exhibited more behaviors associated with lying and fewer behaviors associated with truth telling in the reverse than sequential interview. Together these results suggest that certain cognitively demanding interviews may be less useful when interviewing to detect false intentions. Explaining a true intention while under higher cognitive demand places truth tellers at risk of being misclassified. There may be such a thing as too much cognitive load induced by certain techniques.
Deformation behavior of additively manufactured GP1 stainless steel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clausen, B.; Brown, D. W.; Carpenter, J. S.
In-situ neutron diffraction measurements were performed in this paper during heat-treating and uniaxial loading of additively manufactured (AM) GP1 material. Although the measured chemical composition of the GP1 powder falls within the composition specifications of 17-4 PH steel, a fully martensitic alloy in the wrought condition, the crystal structure of the as-built GP1 material is fully austenitic. Chemical analysis of the as-built material shows high oxygen and nitrogen content, which then significantly decreased after heat-treating in a vacuum furnace at 650 °C for one hour. Significant austenite-to-martensite phase transformation is observed during compressive and tensile loading of the as-built andmore » heat-treated material with accompanied strengthening as martensite volume fraction increases. During loading, the initial average phase stress state in the martensite is hydrostatic compression independent of the loading direction. Finally, preferred orientation transformation in austenite and applied load accommodation by variant selection in martensite are observed via measurements of the texture development.« less
Computational fluid dynamics modeling of bun baking process under different oven load conditions.
Tank, A; Chhanwal, N; Indrani, D; Anandharamakrishnan, C
2014-09-01
A computational fluid dynamics (CFD) model was developed to study the temperature profile of the bun during baking process. Evaporation-condensation mechanism and effect of the latent heat during phase change of water was incorporated in this model to represent actual bun baking process. Simulation results were validated with experimental measurements of bun temperature at two different positions. Baking process is completed within 20 min, after the temperature of crumb become stable at 98 °C. Further, this study was extended to investigate the effect of partially (two baking trays) loaded and fully loaded (eight baking trays) oven on temperature profile of bun. Velocity and temperature profile differs in partially loaded and fully loaded oven. Bun placed in top rack showed rapid baking while bun placed in bottom rack showed slower baking due to uneven temperature distribution in the oven. Hence, placement of bun inside the oven affects temperature of bun and consequently, the quality of the product.
Deformation behavior of additively manufactured GP1 stainless steel
Clausen, B.; Brown, D. W.; Carpenter, J. S.; ...
2017-04-22
In-situ neutron diffraction measurements were performed in this paper during heat-treating and uniaxial loading of additively manufactured (AM) GP1 material. Although the measured chemical composition of the GP1 powder falls within the composition specifications of 17-4 PH steel, a fully martensitic alloy in the wrought condition, the crystal structure of the as-built GP1 material is fully austenitic. Chemical analysis of the as-built material shows high oxygen and nitrogen content, which then significantly decreased after heat-treating in a vacuum furnace at 650 °C for one hour. Significant austenite-to-martensite phase transformation is observed during compressive and tensile loading of the as-built andmore » heat-treated material with accompanied strengthening as martensite volume fraction increases. During loading, the initial average phase stress state in the martensite is hydrostatic compression independent of the loading direction. Finally, preferred orientation transformation in austenite and applied load accommodation by variant selection in martensite are observed via measurements of the texture development.« less
Ma, Xue-Ming; Lin, Zhen; Zhang, Jia-Wei; Sang, Chao-Hui; Qu, Dong-Bin; Jiang, Jian-Ming
2016-03-01
To fabricate a new composite scaffold material as an implant for sustained delivery of rifampicin and evaluate its performance of sustained drug release and biocompatibility. The composite scaffold material was prepared by loading poly(lactic-co-glycolic) acid (PLGA) microspheres that encapsulated rifampicin in a biphasic calcium composite material with a negative surface charge. The in vitro drug release characteristics of the microspheres and the composite scaffold material were evaluated; the in vivo drug release profile of the composite scaffold material implanted in a rat muscle pouch was evaluated using high-performance liquid chromatography. The biochemical parameters of the serum and liver histopathologies of the rats receiving the transplantation were observed to assess the biocompatibility of the composite scaffold material. The encapsulation efficiency and drug loading efficiency of microspheres were (56.05±5.33)% and (29.80±2.88)%, respectively. The cumulative drug release rate of the microspheres in vitro was (94.19±5.4)% at 28 days, as compared with the rate of (82.23±6.28)% of composite scaffold material. The drug-loaded composite scaffold material showed a good performance of in vivo drug release in rats, and the local drug concentration still reached 16.18±0.35 µg/g at 28 days after implantation. Implantation of the composite scaffold material resulted in transient and reversible liver injury, which was fully reparred at 28 days after the implantation. The composite scaffold material possesses a good sustained drug release capacity and a good biocompatibility, and can serve as an alternative approach to conventional antituberculous chemotherapy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knipe, David M., E-mail: david_knipe@hms.harvard.edu
Herpes simplex virus (HSV) undergoes a lytic infection in epithelial cells and a latent infection in neuronal cells, and epigenetic mechanisms play a major role in the differential gene expression under the two conditions. HSV viron DNA is not associated with histones but is rapidly loaded with heterochromatin upon entry into the cell. Viral proteins promote reversal of the epigenetic silencing in epithelial cells while the viral latency-associated transcript promotes additional heterochromatin in neuronal cells. The cellular sensors that initiate the chromatinization of foreign DNA have not been fully defined. IFI16 and cGAS are both essential for innate sensing ofmore » HSV DNA, and new evidence shows how they work together to initiate innate signaling. IFI16 also plays a role in the heterochromatinization of HSV DNA, and this review will examine how IFI16 integrates epigenetic regulation and innate sensing of foreign viral DNA to show how these two responses are related. - Highlights: • HSV lytic and latent gene expression is regulated differentially by epigenetic processes. • The sensors of foreign DNA have not been defined fully. • IFI16 and cGAS cooperate to sense viral DNA in HSV-infected cells. • IFI16 plays a role in both innate sensing of HSV DNA and in restricting its expression.« less
Stavila, Vitalie; Bhakta, Raghunandan K; Alam, Todd M; Majzoub, Eric H; Allendorf, Mark D
2012-11-27
We demonstrate that NaAlH(4) confined within the nanopores of a titanium-functionalized metal-organic framework (MOF) template MOF-74(Mg) can reversibly store hydrogen with minimal loss of capacity. Hydride-infiltrated samples were synthesized by melt infiltration, achieving loadings up to 21 wt %. MOF-74(Mg) possesses one-dimensional, 12 Å channels lined with Mg atoms having open coordination sites, which can serve as sites for Ti catalyst stabilization. MOF-74(Mg) is stable under repeated hydrogen desorption and hydride regeneration cycles, allowing it to serve as a "nanoreactor". Confining NaAlH(4) within these pores alters the decomposition pathway by eliminating the stable intermediate Na(3)AlH(6) phase observed during bulk decomposition and proceeding directly to NaH, Al, and H(2), in agreement with theory. The onset of hydrogen desorption for both Ti-doped and undoped nano-NaAlH(4)@MOF-74(Mg) is ∼50 °C, nearly 100 °C lower than bulk NaAlH(4). However, the presence of titanium is not necessary for this increase in desorption kinetics but enables rehydriding to be almost fully reversible. Isothermal kinetic studies indicate that the activation energy for H(2) desorption is reduced from 79.5 kJ mol(-1) in bulk Ti-doped NaAlH(4) to 57.4 kJ mol(-1) for nanoconfined NaAlH(4). The structural properties of nano-NaAlH(4)@MOF-74(Mg) were probed using (23)Na and (27)Al solid-state MAS NMR, which indicates that the hydride is not decomposed during infiltration and that Al is present as tetrahedral AlH(4)(-) anions prior to desorption and as Al metal after desorption. Because of the highly ordered MOF structure and monodisperse pore dimensions, our results allow key template features to be identified to ensure reversible, low-temperature hydrogen storage.
Wing loading in 15 species of North American owls
David H. Johnson
1997-01-01
Information on wing morphology is important in understanding the mechanics and energetics of flight and in aspects related to reversed sexual size dimorphism in owls. I summarized wing span, wing area, wing loading, root box, and aspect ratio calculations from the available literature and from 113 owls examined in this study. Wing loading estimates for 15 species...
49 CFR 571.206 - Standard No. 206; Door locks and door retention components.
Code of Federal Regulations, 2012 CFR
2012-10-01
... (GVWR) of 4,536 kg or less. S3. Definitions. Auxiliary Door Latch is a latch equipped with a fully... auxiliary door latch on each hinged door shall not disengage from the fully latched position when an inertia... hinged back door shall also not disengage from the fully latched position when an inertia load is applied...
49 CFR 571.206 - Standard No. 206; Door locks and door retention components.
Code of Federal Regulations, 2013 CFR
2013-10-01
... (GVWR) of 4,536 kg or less. S3. Definitions. Auxiliary Door Latch is a latch equipped with a fully... auxiliary door latch on each hinged door shall not disengage from the fully latched position when an inertia... hinged back door shall also not disengage from the fully latched position when an inertia load is applied...
49 CFR 571.206 - Standard No. 206; Door locks and door retention components.
Code of Federal Regulations, 2011 CFR
2011-10-01
... (GVWR) of 4,536 kg or less. S3. Definitions. Auxiliary Door Latch is a latch equipped with a fully... auxiliary door latch on each hinged door shall not disengage from the fully latched position when an inertia... hinged back door shall also not disengage from the fully latched position when an inertia load is applied...
49 CFR 571.206 - Standard No. 206; Door locks and door retention components.
Code of Federal Regulations, 2014 CFR
2014-10-01
... (GVWR) of 4,536 kg or less. S3. Definitions. Auxiliary Door Latch is a latch equipped with a fully... auxiliary door latch on each hinged door shall not disengage from the fully latched position when an inertia... hinged back door shall also not disengage from the fully latched position when an inertia load is applied...
NASA Astrophysics Data System (ADS)
Manigandan, K.; Srivatsan, T. S.
2015-06-01
In this paper, the results of an experimental study that focused on evaluating the conjoint influence of microstructure and test specimen orientation on fully reversed strain-controlled fatigue behavior of the high alloy steel X2M are presented and discussed. The cyclic stress response of this high-strength alloy steel revealed initial hardening during the first few cycles followed by gradual softening for most of fatigue life. Cyclic strain resistance exhibited a linear trend for the variation of elastic strain amplitude with reversals to failure, and plastic strain amplitude with reversals to failure. Fracture morphology was the same at the macroscopic level over the entire range of cyclic strain amplitudes examined. However, at the fine microscopic level, the alloy steel revealed fracture to be essentially ductile with features reminiscent of predominantly "locally" ductile and isolated brittle mechanisms. The mechanisms governing stress response at the fine microscopic level, fatigue life, and final fracture behavior are presented and discussed in light of the mutually interactive influences of intrinsic microstructural effects, deformation characteristics of the microstructural constituents during fully reversed strain cycling, cyclic strain amplitude, and resultant response stress.
The Expertise Reversal Effect Concerning Instructional Explanations
ERIC Educational Resources Information Center
Rey, Gunter Daniel; Fischer, Andreas
2013-01-01
The expertise reversal effect occurs when learner's expertise moderates design principles derived from cognitive load theory. Although this effect is supported by numerous empirical studies, indicating an overall large effect size, the effect was never tested by inducing expertise experimentally and using instructional explanations in a…
Rational load rating of deck-girder bridges with girder end shear cracks in reverse orientation.
DOT National Transportation Integrated Search
2017-04-01
Reverse diagonal shear cracking at reinforced concrete girder supports affects many low-volume bridges built : in the early 1900s in Kansas. This phenomenon, however, is not addressed in the American Association of State : Highway and Transportation ...
Knight, M M; Toyoda, T; Lee, D A; Bader, D L
2006-01-01
In numerous cell types, the cytoskeleton has been widely implicated in mechanotransduction pathways involving stretch-activated ion channels, integrins and deformation of intracellular organelles. Studies have also demonstrated that the cytoskeleton can undergo remodelling in response to mechanical stimuli such as tensile strain or fluid flow. In articular chondrocytes, the mechanotransduction pathways are complex, inter-related and as yet, poorly understood. Furthermore, little is known of how the chondrocyte cytoskeleton responds to physiological mechanical loading. This study utilises the well-characterised chondrocyte-agarose model and an established confocal image-analysis technique to demonstrate that both static and cyclic, compressive strain and hydrostatic pressure all induce remodelling of actin microfilaments. This remodelling was characterised by a change from a uniform to a more punctate distribution of cortical actin around the cell periphery. For some loading regimes, this remodelling was reversed over a subsequent 1h unloaded period. This reversible remodelling of actin cytoskeleton may therefore represent a mechanism through which the chondrocyte alters its mechanical properties and mechanosensitivity in response to physiological mechanical loading.
NASA Astrophysics Data System (ADS)
Amiri, Ali
Carbon fiber reinforced polymers (CFRP) have become an increasingly notable material for use in structural engineering applications. Some of their advantages include high strength-to-weight ratio, high stiffness-to-weight ratio, and good moldability. Prediction of the fatigue life of composite laminates has been the subject of various studies due to the cyclic loading experienced in many applications. Both theoretical studies and experimental tests have been performed to estimate the endurance limit and fatigue life of composite plates. One of the main methods to predict fatigue life is the four-point bending test. In most previous works, the tests have been done in one direction (load ratio, R, > 0). In the current work, we have designed and manufactured a special fixture to perform a fully reversed bending test (R = -1). Static four-point bending tests were carried out on three (0°/90°)15 and (± 45°)15 samples to measure the mechanical properties of CFRP. Testing was displacement-controlled at the rate of 10 mm/min until failure. In (0°/90°)15 samples, all failed by cracking/buckling on the compressive side of the sample. While in (± 45°)15 all three tests, no visual fracture or failure of the samples was observed. 3.4 times higher stresses were reached during four-point static bending test of (0° /90°)15 samples compared to (± 45°)15. Same trend was seen in literature for similar tests. Four-point bending fatigue tests were carried out on (0° /90°)15 sample with stress ratio, R = -1 and frequency of 5 Hz. Applied maximum stresses were approximately 45%, 56%, 67%, 72% and 76% of the measured yield stress for (0° /90°)15 samples. There was visible cracking through the thickness of the samples. The expected downward trend in fatigue life with increasing maximum applied stress was observed in S-N curves of samples. There appears to be a threshold for ‘infinite’ life, defined as 1.7 million cycles in the current work, at a maximum stress of about 200 MPa. The decay in flexural modulus of the beam as it goes under cyclic loading was calculated and it was seen that flexural modulus shows an exponential decay which can be expressed as: E = E0e AN. Four-point bending fatigue tests were carried out on three (±45°)15 samples with stress ratio, R = -1 and frequency of 5 Hz. Maximum applied stress was 85% of the measured yield stress of (±45°)15 samples. None of the samples failed, nor any sign of crack was seen. Tests were stopped once the number of cycles passed 1.7×106. In general, current study provided additional insight into the fatigue and static behavior of polymer composites and effect of fiber orientation in their mechanical behavior.
NASA Technical Reports Server (NTRS)
Lee, Henry A.
1952-01-01
An investigation has been conducted in the Langley 20-foot free-spinning tunnel on a l/20-scale model of the Consolidated Vultee XFY-1 airplane with a windmilling propeller simulated to determine the effects of control setting and movements upon the erect spin and recovery characteristics for a range of airplane-loading conditions. The effects on the model's spin-recovery characteristics of removing the lower vertical tail, removing the gun pods, and fixing the rudders at neutral were also investigated briefly. The investigation included determination of the size parachute required for emergency recovery from demonstration spins. The tumbling tendencies of the model were also investigated. Brief static force tests were made to determine the aerodynamic characteristics in pitch at high angles of attack. The investigation indicated that the spin and recovery characteristics of the airplane with propeller windmilling will be satisfactory for all loading conditions if recovery is attempted by full rudder reversal accompanied by simultaneous movement of the stick laterally to full with the spin (stick right in a right spin) and longitudinally to neutral. Inverted spins should be satisfactorily terminated by fully reversing the rudder followed immediately by moving the stick laterally towards the forward rudder pedal and longitudinally to neutral. Removal of the gun pods or fixing the rudders at neutral will not adversely affect the airplane's spin-recovery characteristics, but removal of the lower vertical tail will result in unsatisfactory spin-recovery characteristics. The model-test results showed that a 13.3-foot wing-tip conventional parachute (drag coefficient approximately 0.7) should be effective as an emergency spin-recovery device during demonstration spins of the airplane. It was indicated that the airplane should not tumble and that no unusual longitudinal-trim characteristics should be obtained for the center-of-gravity positions investigated.
Shu, Beatrice; Johnston, Tyler; Lindsey, Derek P; McAdams, Timothy R
2012-02-01
Enhancing anterior-posterior (AP) stability in acromioclavicular (AC) reconstruction may be advantageous. To compare the initial stability of AC reconstructions with and without augmentation by either (1) a novel "reverse" coracoacromial (CA) ligament transfer or (2) an intramedullary AC tendon graft. Reverse CA transfer will improve AP stability compared with isolated coracoclavicular (CC) reconstruction. Controlled laboratory study. Six matched pairs of cadaveric shoulders underwent distal clavicle resection and CC reconstruction. Displacement (mm) was measured during cyclic loading along AP (±25 N) and superior-inferior (SI; 10-N compression, 70-N tension) axes. Pairs were randomized to receive each augmentation and the same loading protocol applied. Reverse CA transfer (3.71 ± 1.3 mm, standard error of the mean [SEM]; P = .03) and intramedullary graft (3.41 ± 1.1 mm; P = .03) decreased AP translation compared with CC reconstruction alone. The SI displacement did not differ. Equivalence tests suggest no difference between augmentations in AP or SI restraint. Addition of either reverse CA transfer or intramedullary graft demonstrates improved AP restraint and provides similar SI stability compared with isolated CC reconstruction. Reverse CA ligament transfer may be a reasonable alternative to a free tendon graft to augment AP restraint in AC reconstruction.
Staresinic, M; Sebecic, B; Patrlj, L; Jadrijevic, S; Suknaic, S; Perovic, D; Aralica, G; Zarkovic, N; Borovic, S; Srdjak, M; Hajdarevic, K; Kopljar, M; Batelja, L; Boban-Blagaic, A; Turcic, I; Anic, T; Seiwerth, S; Sikiric, P
2003-11-01
In studies intended to improve healing of transected Achilles tendon, effective was a stable gastric pentadecapeptide BPC 157 (GEPPPGKPADDAGLV, M.W. 1419). Currently in clinical trials for inflammatory bowel disease (PLD-116, PL 14736, Pliva), it ameliorates internal and external wound healing. In rats, the right Achilles tendon transected (5 mm proximal to its calcaneal insertion) presents with a large tendon defect between cut ends. Agents (/kg b.w., i.p., once time daily) (BPC 157 (dissolved in saline, with no carrier addition) (10 microg, 10 ng or 10 pg) or saline (5.0 ml)), were firstly applied at 30 min after surgery, the last application at 24 h before autopsy. Achilles functional index (AFI) was assessed once time daily. Biomechanical, microscopical and macroscopical assessment was on day 1, 4, 7, 10 and 14. Controls generally have severely compromised healing. In comparison, pentadecapeptide BPC 157 fully improves recovery: (i) biomechanically, increased load of failure, load of failure per area and Young's modulus of elasticity; (ii) functionally, significantly higher AFI-values; (iii) microscopically, more mononuclears and less granulocytes, superior formation of fibroblasts, reticulin and collagen; (iv) macroscopically, smaller size and depth of tendon defect, and subsequently the reestablishment of full tendon integrity. Likewise, unlike TGF-beta, pentadecapeptide BPC 157, presenting with no effect on the growth of cultured cell of its own, consistently opposed 4-hydroxynonenal (HNE), a negative modulator of the growth. HNE-effect is opposed in both combinations: BPC 157+HNE (HNE growth inhibiting effect reversed into growth stimulation of cultured tendocytes) and HNE+BPC 157(abolished inhibiting activity of the aldehyde), both in the presence of serum and serum deprived conditions. In conclusion, these findings, particularly, Achilles tendon transection fully recovered in rats, peptide stability suitable delivery, usefully favor gastric pentadecapeptide BPC 157 in future Achilles tendon therapy.
Detection of Respiratory Viruses in Sputum from Adults by Use of Automated Multiplex PCR
Walsh, Edward E.; Formica, Maria A.; Falsey, Ann R.
2014-01-01
Respiratory tract infections (RTI) frequently cause hospital admissions among adults. Diagnostic viral reverse transcriptase PCR (RT-PCR) of nose and throat swabs (NTS) is useful for patient care by informing antiviral use and appropriate isolation. However, automated RT-PCR systems are not amenable to utilizing sputum due to its viscosity. We evaluated a simple method of processing sputum samples in a fully automated respiratory viral panel RT-PCR assay (FilmArray). Archived sputum and NTS samples collected in 2008-2012 from hospitalized adults with RTI were evaluated. A subset of sputum samples positive for 10 common viruses by a uniplex RT-PCR was selected. A sterile cotton-tip swab was dunked in sputum, swirled in 700 μL of sterile water (dunk and swirl method) and tested by the FilmArray assay. Quantitative RT-PCR was performed on “dunked” sputum and NTS samples for influenza A (Flu A), respiratory syncytial virus (RSV), coronavirus OC43 (OC43), and human metapneumovirus (HMPV). Viruses were identified in 31% of 965 illnesses using a uniplex RT-PCR. The sputum sample was the only sample positive for 105 subjects, including 35% (22/64) of influenza cases and significantly increased the diagnostic yield of NTS alone (302/965 [31%] versus 197/965 [20%]; P = 0.0001). Of 108 sputum samples evaluated by the FilmArray assay using the dunk and swirl method, 99 (92%) were positive. Quantitative RT-PCR revealed higher mean viral loads in dunked sputum samples compared to NTS samples for Flu A, RSV, and HMPV (P = 0.0001, P = 0.006, and P = 0.011, respectively). The dunk and swirl method is a simple and practical method for reliably processing sputum samples in a fully automated PCR system. The higher viral loads in sputa may increase detection over NTS testing alone. PMID:25056335
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boyum, E.A.
1993-12-01
This research, the first load-controlled tension-compression fatigue testing to be performed on a MMC, extends the existing knowledge of MMC fatigue damage mechanisms to include the tension compression loading condition. To accomplish this, a (0/90)2, SCS-6/Ti-15-3 laminate was subjected to tension-tension fatigue at room temperature, and tension-compression fatigue at both room temperature and 427 deg C. Stress and strain data was taken to evaluate the macro-mechanic behavior of the material. Microscopy and fractography were performed to characterize the damage on a micro-mechanic level. On a maximum applied stress basis, the room temperature tension-tension specimens had longer fatigue lives than themore » room temperature tension-compression specimens. The room and high temperature tension-compression fatigue lives were nearly identical in the fiber-dominated high stress region of the SN curve. However, the increased ductility and diffused plasticity of the titanium matrix at 427 deg C delayed the onset and severity of matrix cracking, and thus increased the elevated temperature fatigue lives in the matrix dominated region of the SN curve. In all cases, matrix damage initiated at reaction zone cracks which nucleated both matrix plasticity and matrix cracking. Metal matrix composite, Elevated temperature, Fatigue testing, Compression, Fully-reversed, Titanium, Silicon carbide.« less
Li, Wei; Deng, Hailong; Liu, Pengfei
2016-10-18
The interior defect-induced fracture of surface-hardened metallic materials in the long life region has become a key issue on engineering design. In the present study, the axial loading test with fully reversed condition was performed to examine the fatigue property of a surface-carburized low alloy gear steel in the long life region. Results show that this steel represents the duplex S-N (stress-number of cycles) characteristics without conventional fatigue limit related to 10⁷ cycles. Fatigue cracks are all originated from the interior inclusions in the matrix region due to the inhabitation effect of carburized layer. The inclusion induced fracture with fisheye occurs in the short life region below 5 × 10⁵ cycles, whereas the inclusion induced fracture with fine granular area (FGA) and fisheye occurs in the long life region beyond 10⁶ cycles. The stress intensity factor range at the front of FGA can be regarded as the threshold value controlling stable growth of interior long crack. The evaluated maximum inclusion size in the effective damage volume of specimen is about 27.29 μm. Considering the size relationships between fisheye and FGA, and inclusion, the developed life prediction method involving crack growth can be acceptable on the basis of the good agreement between the predicted and experimental results.
NASA Astrophysics Data System (ADS)
Krooß, P.; Niendorf, T.; Kadletz, P. M.; Somsen, C.; Gutmann, M. J.; Chumlyakov, Y. I.; Schmahl, W. W.; Eggeler, G.; Maier, H. J.
2015-03-01
Conventional shape memory alloys cannot be employed for applications in the elevated temperature regime due to rapid functional degradation. Co-Ni-Ga has shown the potential to be used up to temperatures of about 400 °C due to a fully reversible superelastic stress-strain response. However, available results only highlight the superelastic response for single cycle tests. So far, no data addressing cyclic loading and functional fatigue are available. In order to close this gap, the current study reports on the cyclic degradation behavior and tension-compression asymmetry in [001]-oriented Co49Ni21Ga30 single crystals at elevated temperatures. The cyclic stress-strain response of the material under displacement controlled superelastic loading conditions was found to be dictated by the number of active martensite variants and different resulting stabilization effects. Co-Ni-Ga shows a large superelastic temperature window of about 400 °C under tension and compression, but a linear Clausius-Clapeyron relationship could only be observed up to a temperature of 200 °C. In the present experiments, the samples were subjected to 1000 cycles at different temperatures. Degradation mechanisms were characterized by neutron diffraction and transmission electron microscopy. The results in this study confirm the potential of these alloys for damping applications at elevated temperatures.
Working memory involved in predicting future outcomes based on past experiences.
Dretsch, Michael N; Tipples, Jason
2008-02-01
Deficits in working memory have been shown to contribute to poor performance on the Iowa Gambling Task [IGT: Bechara, A., & Martin, E.M. (2004). Impaired decision making related to working memory deficits in individuals with substance addictions. Neuropsychology, 18, 152-162]. Similarly, a secondary memory load task has been shown to impair task performance [Hinson, J., Jameson, T. & Whitney, P. (2002). Somatic markers, working memory, and decision making. Cognitive, Affective, & Behavioural Neuroscience, 2, 341-353]. In the present study, we investigate whether the latter findings were due to increased random responding [Franco-Watkins, A. M., Pashler, H., & Rickard, T. C. (2006). Does working memory load lead to greater impulsivity? Commentary on Hinson, Jameson, and Whitney's (2003). Journal of Experimental Psychology: Learning, Memory & Cognition, 32, 443-447]. Participants were tested under Low Working Memory (LWM; n=18) or High Working Memory (HWM; n=17) conditions while performing the Reversed IGT in which punishment was immediate and reward delayed [Bechara, A., Dolan, S., & Hindes, A. (2002). Decision making and addiction (part II): Myopia for the future or hypersensitivity to reward? Neuropsychologia, 40, 1690-1705]. In support of a role for working memory in emotional decision making, compared to the LWM condition, participants in the HWM condition made significantly greater number of disadvantageous selections than that predicted by chance. Performance by the HWM group could not be fully explained by random responding.
Dickson, Price E.; Corkill, Beau; McKimm, Eric; Miller, Mellessa M.; Calton, Michele A.; Goldowitz, Daniel; Blaha, Charles D.; Mittleman, Guy
2013-01-01
Fragile X syndrome (FXS) is the most common inherited form of intellectual disability in males and the most common genetic cause of autism. Although executive dysfunction is consistently found in humans with FXS, evidence of executive dysfunction in Fmr1 KO mice, a mouse model of FXS, has been inconsistent. One possible explanation for this is that executive dysfunction in Fmr1 KO mice, similar to humans with FXS, is only evident when cognitive demands are high. Using touchscreen operant conditioning chambers, male Fmr1 KO mice and their male wildtype littermates were tested on the acquisition of a pairwise visual discrimination followed by four serial reversals of the response rule. We assessed reversal learning performance under two different conditions. In the first, the correct stimulus was salient and the incorrect stimulus was non-salient. In the second and more challenging condition, the incorrect stimulus was salient and the correct stimulus was non-salient; this increased cognitive load by introducing conflict between sensory-driven (i.e., bottom-up) and task-dependent (i.e., top-down) signals. Fmr1 KOs displayed two distinct impairments relative to wildtype littermates. First, Fmr1 KOs committed significantly more learning-type errors during the second reversal stage, but only under high cognitive load. Second, during the first reversal stage, Fmr1 KOs committed significantly more attempts to collect a reward during the timeout following an incorrect response. These findings indicate that Fmr1 KO mice display executive dysfunction that, in some cases, is only evident under high cognitive load. PMID:23747611
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alfaraj, Nasir; Hussain, Aftab M.; Torres Sevilla, Galo A.
Flexibility can bring a new dimension to state-of-the-art electronics, such as rollable displays and integrated circuit systems being transformed into more powerful resources. Flexible electronics are typically hosted on polymeric substrates. Such substrates can be bent and rolled up, but cannot be independently fixed at the rigid perpendicular position necessary to realize rollable display-integrated gadgets and electronics. A reversibly bistable material can assume two stable states in a reversible way: flexibly rolled state and independently unbent state. Such materials are used in cycling and biking safety wristbands and a variety of ankle bracelets for orthopedic healthcare. They are often wrappedmore » around an object with high impulsive force loading. Here, we study the effects of cumulative impulsive force loading on thinned (25 μm) flexible silicon-based n-channel metal–oxide–semiconductor field-effect transistor devices housed on a reversibly bistable flexible platform. We found that the transistors have maintained their high performance level up to an accumulated 180 kN of impact force loading. The gate dielectric layers have maintained their reliability, which is evidenced by the low leakage current densities. Also, we observed low variation in the effective electron mobility values, which manifests that the device channels have maintained their carrier transport properties.« less
Resizing procedure for structures under combined mechanical and thermal loading
NASA Technical Reports Server (NTRS)
Adelman, H. M.; Narayanaswami, R.
1976-01-01
The fully-stressed design (FSD) appears to be the most widely used approach for sizing of flight structures under strength and minimum-gage constraints. Almost all of the experience with FSD has been with structures primarily under mechanical loading as opposed to thermal loading. In this method the structural sizes are iterated with the step size, depending on the ratio of the total stress to the allowable stress. In this paper, the thermal fully-stressed design (TFSD) procedure developed for problems involving substantial thermal stress is extended to biaxial stress members using a Von Mises failure criterion. The TFSD resizing procedure for uniaxial stress is restated and the new procedure for biaxial stress members is developed. Results are presented for an application of the two procedures to size a simplified wing structure.
DOT National Transportation Integrated Search
2017-04-01
A user interface creates a grillage model of an existing bridge and places various rating trucks on the : bridge. Equivalent flexibility analysis distributes truck live loads within deck panels to surrounding : girders and diaphragms. Stiffness matri...
Thangarajah, Tanujan; Higgs, Deborah; Bayley, J I L; Lambert, Simon M
2016-01-01
AIM: To report the results of fixed-fulcrum fully constrained reverse shoulder arthroplasty for the treatment of recurrent shoulder instability in patients with epilepsy. METHODS: A retrospective review was conducted at a single facility. Cases were identified using a computerized database and all clinic notes and operative reports were reviewed. All patients with epilepsy and recurrent shoulder instability were included for study. Between July 2003 and August 2011 five shoulders in five consecutive patients with epilepsy underwent fixed-fulcrum fully constrained reverse shoulder arthroplasty for recurrent anterior shoulder instability. The mean duration of epilepsy in the cohort was 21 years (range, 5-51) and all patients suffered from grand mal seizures. RESULTS: Mean age at the time of surgery was 47 years (range, 32-64). The cohort consisted of four males and one female. Mean follow-up was 4.7 years (range, 4.3-5 years). There were no further episodes of instability, and no further stabilisation or revision procedures were performed. The mean Oxford shoulder instability score improved from 8 preoperatively (range, 5-15) to 30 postoperatively (range, 16-37) (P = 0.015) and the mean subjective shoulder value improved from 20 (range, 0-50) preoperatively to 60 (range, 50-70) postoperatively (P = 0.016). Mean active forward elevation improved from 71° preoperatively (range, 45°-130°) to 100° postoperatively (range, 80°-90°) and mean active external rotation improved from 15° preoperatively (range, 0°-30°) to 40° (20°-70°) postoperatively. No cases of scapular notching or loosening were noted. CONCLUSION: Fixed-fulcrum fully constrained reverse shoulder arthroplasty should be considered for the treatment of recurrent shoulder instability in patients with epilepsy. PMID:27458554
Yield Behavior of Solution Treated and Aged Ti-6Al-4V
NASA Technical Reports Server (NTRS)
Ring, Andrew J.; Baker, Eric H.; Salem, Jonathan A.; Thesken, John C.
2014-01-01
Post yield uniaxial tension-compression tests were run on a solution treated and aged (STA), titanium 6-percent aluminum 4-percent vanadium (Ti-6Al-4V) alloy to determine the yield behavior on load reversal. The material exhibits plastic behavior almost immediately on load reversal implying a strong Bauschinger effect. The resultant stress-strain data was compared to a 1D mechanics model and a finite element model used to design a composite overwrapped pressure vessel (COPV). Although the models and experimental data compare well for the initial loading and unloading in the tensile regime, agreement is lost in the compressive regime due to the Bauschinger effect and the assumption of perfect plasticity. The test data presented here are being used to develop more accurate cyclic hardening constitutive models for future finite element design analysis of COPVs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Jung Hwa; Hyung, Seok-Won; Mun, Dong-Gi
2012-08-03
A multi-functional liquid chromatography system that performs 1-dimensional, 2-dimensional (strong cation exchange/reverse phase liquid chromatography, or SCX/RPLC) separations, and online phosphopeptides enrichment using a single binary nano-flow pump has been developed. With a simple operation of a function selection valve, which is equipped with a SCX column and a TiO2 (titanium dioxide) column, a fully automated selection of three different experiment modes was achieved. Because the current system uses essentially the same solvent flow paths, the same trap column, and the same separation column for reverse-phase separation of 1D, 2D, and online phosphopeptides enrichment experiments, the elution time information obtainedmore » from these experiments is in excellent agreement, which facilitates correlating peptide information from different experiments.« less
23 CFR 650.307 - Bridge inspection organization.
Code of Federal Regulations, 2010 CFR
2010-04-01
... bridges located on public roads that are fully or partially located within the State's boundaries, except... inspected, all highway bridges located on public roads that are fully or partially located within the... preparation and maintenance of a bridge inventory. (2) Bridge inspections, reports, load ratings and other...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferreira, C; Ahmad, S; Firestone, B
Purpose: To compare dosimetrically three plan calculation systems (Plato, Varian Brachytherapy, and in-house-made Excel) available for I-125 COMS eye plaque treatment with measurement. Methods: All systems assume homogeneous media and calculations are based on a three-dimensional Cartesian coordinates, Plato and Brachytherapy Planning are based on AAPM TG-43 and the in-house Excel program only on inverse square corrections. Doses at specific depths were measured with EBT3 Gafchromic film from a fully loaded and a partially loaded 16 mm plaque (13 and 8 seeds respectively, I-125, model 6711 GE, Oncura). Measurements took place in a water tank, utilizing solid water blocks andmore » a 3D-printed plaque holder. Taking advantage that gafchromic film has low energy dependence, a dose step wedge was delivered with 6 MV photon beam from a Varian 2100 EX linac for calibration. The gray-scale to dose in cGy was obtained with an Epson Expression 10000 XL scanner in the green channel. Treatment plans were generated for doses of 2200 cGy to a depth of 7 mm, and measurements were taken on a sagittal plane. Results: The calculated dose at the prescription point was 2242, 2344, and 2211 cGy with Excel, Brachyvision and Plato respectively for a fully loaded plaque, for the partially loaded plaque the doses were 2266, 2477, and 2193 cGy respectively. At 5 mm depth the doses for Brachyvision and Plato were comparable (3399 and 3267 cGy respectively), however, the measured dose in film was 3180 cGy which was lower by as much as 6.4% in the fully loaded plaque and 7.6% in the partially loaded plaque. Conclusion: Careful methodology and calibration are essential when measuring doses at specific depth due to the sensitivity and rapid dose fall off of I-125.« less
NASA Astrophysics Data System (ADS)
Howser, Rachel; Moslehy, Yashar; Gu, Haichang; Dhonde, Hemant; Mo, Y. L.; Ayoub, Ashraf; Song, Gangbing
2011-07-01
Structural health monitoring is an important aspect of the maintenance of large civil infrastructures, especially for bridge columns in areas of high seismic activity. In this project, recently developed innovative piezoceramic-based sensors were utilized to perform the health monitoring of a shear-critical reinforced concrete (RC) bridge column subjected to reversed cyclic loading. After the column failed, it was wrapped with fiber reinforced polymer (FRP) sheets, commonly used to retrofit seismically damaged structures. The FRP-strengthened column was retested under the same reversed cyclic loading pattern. Innovative piezoceramic-based sensors, called 'smart aggregates', were utilized as transducers for health monitoring purposes. On the basis of the smart aggregates developed, an active-sensing approach and an impact-hammer-based approach were used to evaluate the health status of the RC column during the loading procedure. Wave transmission energy is attenuated by the existence of cracks during the loading procedure, and this attenuation phenomenon alters the curve of the transfer function between the actuator and sensor. To detect the damage occurrence and evaluate the damage severity, transfer function curves were compared with those obtained during the period of healthy status. A transfer-function-based damage index matrix was developed to demonstrate the damage severity at different locations. Experimental results verified the effectiveness of the smart aggregates in health monitoring of the FRP-strengthened column as well as the unstrengthened column. The experimental results show that the proposed smart-aggregate-based approach can successfully detect damage occurrence and evaluate its severity.
1984-02-01
Added Generators and Breakers 116 * ix I~ Table of Contents (cont.) Item Pace Excitation System 117 Connection to Load 117 Bridge Crane 117 Lower St...118 Added Generator and Breaker 119 Excitation System 120 Connection to Load 120 Mobile Crane 120 Civil Features - Upper Falls 120 Powerhouse 121...intermediate plants fully integrated with the base loaded thermal plants in the area. Gavins Point is generally base- loaded to provide steady flows for
Quality factor concept in piezoceramic transformer performance description.
Mezheritsky, Alex V
2006-02-01
A new general approach based on the quality factor concept to piezoceramic transformer (PT) performance description is proposed. The system's quality factor, material elastic anisotropy, and coupling factors of the input and output sections of an electrically excited and electrically loaded PT fully characterize its resonance and near-resonance behavior. The PT efficiency, transformation ratio, and input and output power were analytically analyzed and simulated as functions of the load and frequency for the simplest classical Langevin-type and Rosen-type PT designs. A new formulation of the electrical input impedance allows one to separate the power consumed by PT from the power transferred into the load. The system's PT quality factor takes into account losses in each PT "input-output-load" functional components. The loading process is changing PT input electrical impedance on the way that under loading the minimum series impedance is increasing and the maximum parallel impedance is decreasing coincidentally. The quality-factors ratio, between the states of fully loaded and nonloaded PT, is one of the best measures of PTs dynamic performance--practically, the lower the ratio is, the better PT efficiency. A simple and effective method for the loaded PT quality factor determination is proposed. As was found, a piezoceramic with low piezoelectric anisotropy is required to provide maximum PT efficiency and higher corresponding voltage gain. Limitations on the PT output voltage and power, caused by nonlinear effects in piezoceramics, were established.
Seismic analysis of offshore wind turbines on bottom-fixed support structures.
Alati, Natale; Failla, Giuseppe; Arena, Felice
2015-02-28
This study investigates the seismic response of a horizontal axis wind turbine on two bottom-fixed support structures for transitional water depths (30-60 m), a tripod and a jacket, both resting on pile foundations. Fully coupled, nonlinear time-domain simulations on full system models are carried out under combined wind-wave-earthquake loadings, for different load cases, considering fixed and flexible foundation models. It is shown that earthquake loading may cause a significant increase of stress resultant demands, even for moderate peak ground accelerations, and that fully coupled nonlinear time-domain simulations on full system models are essential to capture relevant information on the moment demand in the rotor blades, which cannot be predicted by analyses on simplified models allowed by existing standards. A comparison with some typical design load cases substantiates the need for an accurate seismic assessment in sites at risk from earthquakes. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Large-Eddy Simulation of Propeller Crashback
NASA Astrophysics Data System (ADS)
Kumar, Praveen; Mahesh, Krishnan
2013-11-01
Crashback is an operating condition to quickly stop a propelled vehicle, where the propeller is rotated in the reverse direction to yield negative thrust. The crashback condition is dominated by the interaction of free stream flow with strong reverse flow. Crashback causes highly unsteady loads and flow separation on blade surface. This study uses Large-Eddy Simulation to predict the highly unsteady flow field in propeller crashback. Results are shown for a stand-alone open propeller, hull-attached open propeller and a ducted propeller. The simulations are compared to experiment, and used to discuss the essential physics behind the unsteady loads. This work is supported by the Office of Naval Research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Sen; Zhang, Wei; Lian, Jianming
This paper studies a multi-stage pricing problem for a large population of thermostatically controlled loads. The problem is formulated as a reverse Stackelberg game that involves a mean field game in the hierarchy of decision making. In particular, in the higher level, a coordinator needs to design a pricing function to motivate individual agents to maximize the social welfare. In the lower level, the individual utility maximization problem of each agent forms a mean field game coupled through the pricing function that depends on the average of the population control/state. We derive the solution to the reverse Stackelberg game bymore » connecting it to a team problem and the competitive equilibrium, and we show that this solution corresponds to the optimal mean field control that maximizes the social welfare. Realistic simulations are presented to validate the proposed methods.« less
Espy, K A; Kaufmann, P M; McDiarmid, M D; Glisky, M L
1999-11-01
The A-not-B (AB) task has been hypothesized to measure executive/frontal lobe function; however, the developmental and measurement characteristics of this task have not been investigated. Performances on AB and comparison tasks adapted from developmental and neuroscience literature was examined in 117 preschool children (ages 23-66 months). Age significantly predicted performance on AB, Delayed Alternation, Spatial Reversal, Color Reversal, and Self-Control tasks. A four-factor analytic model best fit task performance data. AB task indices loaded on two factors with measures from the Self-Control and Delayed Alternation tasks, respectively. AB indices did not load with those from the reversal tasks despite similarities in task administration and presumed cognitive demand (working memory). These results indicate that AB is sensitive to individual differences in age-related performance in preschool children and suggest that AB performance is related to both working memory and inhibition processes in this age range.
Effect of varying internal geometry on the static performance of rectangular thrust-reverser ports
NASA Technical Reports Server (NTRS)
Re, Richard J.; Mason, Mary L.
1987-01-01
An investigation has been conducted to evaluate the effects of several geometric parameters on the internal performance of rectangular thrust-reverser ports for nonaxisymmetric nozzles. Internal geometry was varied with a test apparatus which simulated a forward-flight nozzle with a single, fully deployed reverser port. The test apparatus was designed to simulate thrust reversal (conceptually) either in the convergent section of the nozzle or in the constant-area duct just upstream of the nozzle. The main geometric parameters investigated were port angle, port corner radius, port location, and internal flow blocker angle. For all reverser port geometries, the port opening had an aspect ratio (throat width to throat height) of 6.1 and had a constant passage area from the geometric port throat to the exit. Reverser-port internal performance and thrust-vector angles computed from force-balance measurements are presented.
Free-Spinning-Tunnel Investigation of a 1/20-Scale Model of the North American T2J-1 Airplane
NASA Technical Reports Server (NTRS)
Bowman, James S., Jr.; Healy, Frederick M.
1959-01-01
An investigation has been made in the Langley 20-foot free-spinning tunnel to determine the erect and inverted spin and recovery characteristics of a 1/20-scale dynamic model of the North American T2J-1 airplane. The model results indicate that the optimum technique for recovery from erect spins of the airplane will be dependent on the distribution of the disposable load. The recommended recovery procedure for spins encountered at the flight design gross weight is simultaneous rudder reversal to against the spin and aileron movement to with the spin. With full wingtip tanks plus rocket installation and full internal fuel load, rudder reversal should be followed by a downward movement of the elevator. For the flight design gross weight plus partially full wingtip tanks, recovery should be attempted by simultaneous rudder reversal to against the spin, movement of ailerons to with the spin, and ejection of the wing-tip tanks. The optimum recovery technique for airplane-inverted spins is rudder reversal to against the spin with the stick maintained longitudinally and laterally neutral.
Solar-heated and cooled savings and loan building-1-Leavenworth, Kanasas
NASA Technical Reports Server (NTRS)
1981-01-01
Report describes heating and cooling system which furnishes 90 percent of annual heating load, 70 percent of cooling load, and all hot water for two-story building. Roof-mounted flat-plate collectors allow three distinct flow rates and are oriented south for optimum energy collection. Building contains fully automated temperature controls is divided into five temperature-load zones, each with independent heat pump.
Cufí, Sílvia; Bonavia, Rosa; Vazquez-Martin, Alejandro; Oliveras-Ferraros, Cristina; Corominas-Faja, Bruna; Cuyàs, Elisabet; Martin-Castillo, Begoña; Barrajón-Catalán, Enrique; Visa, Joana; Segura-Carretero, Antonio; Joven, Jorge; Bosch-Barrera, Joaquim; Micol, Vicente; Menendez, Javier A.
2013-01-01
The flavolignan silibinin was studied for its ability to restore drug sensitivity to EGFR-mutant NSCLC xenografts with epithelial-to-mesenchymal transition (EMT)-driven resistance to erlotinib. As a single agent, silibinin significantly decreased the tumor volumes of erlotinib-refractory NSCLC xenografts by approximately 50%. Furthermore, the complete abrogation of tumor growth was observed with the co-treatment of erlotinib and silibinin. Silibinin fully reversed the EMT-related high miR-21/low miR-200c microRNA signature and repressed the mesenchymal markers SNAIL, ZEB, and N-cadherin observed in erlotinib-refractory tumors. Silibinin was sufficient to fully activate a reciprocal mesenchymal-to-epithelial transition (MET) in erlotinib-refractory cells and prevent the highly migratogenic phenotype of erlotinib-resistant NSCLC cells. Given that the various mechanisms of resistance to erlotinib result from EMT, regardless of the EGFR mutation status, a water-soluble, silibinin-rich milk thistle extract might be a suitable candidate therapy for upcoming clinical trials aimed at preventing or reversing NSCLC progression following erlotinib treatment. PMID:23963283
14 CFR 25.507 - Reversed braking.
Code of Federal Regulations, 2010 CFR
2010-01-01
... must be in a three point static ground attitude. Horizontal reactions parallel to the ground and... must be equal to 0.55 times the vertical load at each wheel or to the load developed by 1.2 times the... ground reactions must pass through the center of gravity of the airplane. ...
14 CFR 25.507 - Reversed braking.
Code of Federal Regulations, 2014 CFR
2014-01-01
... must be in a three point static ground attitude. Horizontal reactions parallel to the ground and... must be equal to 0.55 times the vertical load at each wheel or to the load developed by 1.2 times the... ground reactions must pass through the center of gravity of the airplane. ...
14 CFR 25.507 - Reversed braking.
Code of Federal Regulations, 2011 CFR
2011-01-01
... must be in a three point static ground attitude. Horizontal reactions parallel to the ground and... must be equal to 0.55 times the vertical load at each wheel or to the load developed by 1.2 times the... ground reactions must pass through the center of gravity of the airplane. ...
14 CFR 25.507 - Reversed braking.
Code of Federal Regulations, 2012 CFR
2012-01-01
... must be in a three point static ground attitude. Horizontal reactions parallel to the ground and... must be equal to 0.55 times the vertical load at each wheel or to the load developed by 1.2 times the... ground reactions must pass through the center of gravity of the airplane. ...
14 CFR 25.507 - Reversed braking.
Code of Federal Regulations, 2013 CFR
2013-01-01
... must be in a three point static ground attitude. Horizontal reactions parallel to the ground and... must be equal to 0.55 times the vertical load at each wheel or to the load developed by 1.2 times the... ground reactions must pass through the center of gravity of the airplane. ...
NASA Technical Reports Server (NTRS)
Klinar, Walter J.; Healy, Frederick M.
1955-01-01
An investigation of a 0.034-scale model of the production version of the Chance Vought F7U-3 airplane has been conducted in the Langley 20-foot free-spinning tunnel. The inverted and erect spin and recovery characteristics of the model were determined for the combat loading with the model in the clean condition and the effect of extending slats was investigated. A brief investigation of pilot ejection was also performed. The results indicate that the inverted spin-recovery characteristics of the airplane will be satisfactory by full rudder reversal. If the rudders can only be neutralized because of high pedal forces in the inverted spins, satisfactory recovery will be obtained if the auxiliary rudders can be moved to neutral or against the spin provided the stick is held full forward. Optimum control technique for satisfactory recovery from erect spins will be full rudder reversal in conjunction with aileron movement to full with the spin (stick right in a right spin). Extension of the slats will have a slightly adverse effect on recoveries from (1 inverted spins but will have a favorable effect on recoveries from erect spins. The results of brief tests indicate that if a pilot is ejected during a spin while a spin-recovery parachute is extended and fully inflated, he will probably clear the tail parachute.
Influence of interface inhomogeneities in thin-film Schottky diodes
NASA Astrophysics Data System (ADS)
Wilson, Joshua; Zhang, Jiawei; Li, Yunpeng; Wang, Yiming; Xin, Qian; Song, Aimin
2017-11-01
The scalability of thin-film transistors has been well documented, but there have been very few investigations into the effects of device scalability in Schottky diodes. Indium-gallium-zinc-oxide (IGZO) Schottky diodes were fabricated with IGZO thicknesses of 50, 150, and 250 nm. Despite the same IGZO-Pt interface and Schottky barrier being formed in all devices, reducing the IGZO thickness caused a dramatic deterioration of the current-voltage characteristics, most notably increasing the reverse current by nearly five orders of magnitude. Furthermore, the forward characteristics display an increase in the ideality factor and a reduction in the barrier height. The origins of this phenomenon have been elucidated using device simulations. First, when the semiconductor layer is fully depleted, the electric field increases with the reducing thickness, leading to an increased diffusion current. However, the effects of diffusion only offer a small contribution to the huge variations in reverse current seen in the experiments. To fully explain this effect, the role of inhomogeneities in the Schottky barrier height has been considered. Contributions from lower barrier regions (LBRs) are found to dominate the reverse current. The conduction band minimum below these LBRs is strongly dependent upon thickness and bias, leading to reverse current variations as large as several orders of magnitude. Finally, it is demonstrated that the thickness dependence of the reverse current is exacerbated as the magnitude of the inhomogeneities is increased and alleviated in the limit where the LBRs are large enough not to be influenced by the adjacent higher barrier regions.
Joint Kinetics and Kinematics During Common Lower Limb Rehabilitation Exercises.
Comfort, Paul; Jones, Paul Anthony; Smith, Laura Constance; Herrington, Lee
2015-10-01
Unilateral body-weight exercises are commonly used to strengthen the lower limbs during rehabilitation after injury, but data comparing the loading of the limbs during these tasks are limited. To compare joint kinetics and kinematics during 3 commonly used rehabilitation exercises. Descriptive laboratory study. Laboratory. A total of 9 men (age = 22.1 ± 1.3 years, height = 1.76 ± 0.08 m, mass = 80.1 ± 12.2 kg) participated. Participants performed the single-legged squat, forward lunge, and reverse lunge with kinetic data captured via 2 force plates and 3-dimensional kinematic data collected using a motion-capture system. Peak ground reaction forces, maximum joint angles, and peak sagittal-joint moments. We observed greater eccentric and concentric peak vertical ground reaction forces during the single-legged squat than during both lunge variations (P ≤ .001). Both lunge variations demonstrated greater knee and hip angles than did the single-legged squat (P < .001), but we observed no differences between lunges (P > .05). Greater dorsiflexion occurred during the single-legged squat than during both lunge variations (P < .05), but we noted no differences between lunge variations (P = .70). Hip-joint moments were greater during the forward lunge than during the reverse lunge (P = .003) and the single-legged squat (P = .011). Knee-joint moments were greater in the single-legged squat than in the reverse lunge (P < .001) but not greater in the single-legged squat than in the forward lunge (P = .41). Ankle-joint moments were greater during the single-legged squat than during the forward lunge (P = .002) and reverse lunge (P < .001). Appropriate loading progressions for the hip should begin with the single-legged squat and progress to the reverse lunge and then the forward lunge. In contrast, loading progressions for the knee and ankle should begin with the reverse lunge and progress to the forward lunge and then the single-legged squat.
Prosperi, Mattia C F; Mackie, Nicola; Di Giambenedetto, Simona; Zazzi, Maurizio; Camacho, Ricardo; Fanti, Iuri; Torti, Carlo; Sönnerborg, Anders; Kaiser, Rolf; Codoñer, Francisco M; Van Laethem, Kristel; Bansi, Loveleen; van de Vijver, David A M C; Geretti, Anna Maria; De Luca, Andrea
2011-08-01
Guidelines indicate a plasma HIV-1 RNA load of 500-1000 copies/mL as the minimal threshold for antiretroviral drug resistance testing. Resistance testing at lower viral load levels may be useful to guide timely treatment switches, although data on the clinical utility of this remain limited. We report here the influence of viral load levels on the probability of detecting drug resistance mutations (DRMs) and other mutations by routine genotypic testing in a large multicentre European cohort, with a focus on tests performed at a viral load <1000 copies/mL. A total of 16 511 HIV-1 reverse transcriptase and protease sequences from 11 492 treatment-experienced patients were identified, and linked to clinical data on viral load, CD4 T cell counts and antiretroviral treatment history. Test results from 3162 treatment-naive patients served as controls. Multivariable analysis was employed to identify predictors of reverse transcriptase and protease DRMs. Overall, 2500/16 511 (15.14%) test results were obtained at a viral load <1000 copies/mL. Individuals with viral load levels of 1000-10000 copies/mL showed the highest probability of drug resistance to any drug class. Independently from other measurable confounders, treatment-experienced patients showed a trend for DRMs and other mutations to decrease at viral load levels <500 copies/mL. Genotypic testing at low viral load may identify emerging antiretroviral drug resistance at an early stage, and thus might be successfully employed in guiding prompt management strategies that may reduce the accumulation of resistance and cross-resistance, viral adaptive changes, and larger viral load increases.
Hartman, Emily A; McCarthy, Robert J; Labato, Mary A
2017-01-01
A 10-year-old neutered male domestic shorthair cat was evaluated because of signs of stertorous breathing and reverse sneezing of 8 months' duration. A CT scan performed 1 week before evaluation indicated nasopharyngeal stenosis or collapse. Increased respiratory effort, stertorous breathing, coughing, reverse sneezing, bilateral black ocular discharge and mucoid left nasal discharge were noted. Rhinoscopy suggested possible nasopharyngeal stenosis. Balloon dilation was attempted but unsuccessful. Ventral rhinotomy was performed the following day using a spring-loaded mouth gag to access the surgical site. After rhinotomy, the patient had neurologic signs attributed to global cerebral ischemia that progressed to respiratory arrest, subsequently resulting in euthanasia. While ischemic brain injury has been associated with the use of a spring-loaded mouth gag in cats, to our knowledge this is the first reported instance where use resulted in respiratory arrest culminating in euthanasia.
Sclerostin's role in bone's adaptive response to mechanical loading.
Galea, Gabriel L; Lanyon, Lance E; Price, Joanna S
2017-03-01
Mechanical loading is the primary functional determinant of bone mass and architecture, and osteocytes play a key role in translating mechanical signals into (re)modelling responses. Although the precise mechanisms remain unclear, Wnt signalling pathway components, and the anti-osteogenic canonical Wnt inhibitor Sost/sclerostin in particular, play an important role in regulating bone's adaptive response to loading. Increases in loading-engendered strains down-regulate osteocyte sclerostin expression, whereas reduced strains, as in disuse, are associated with increased sclerostin production and bone loss. However, while sclerostin up-regulation appears to be necessary for the loss of bone with disuse, the role of sclerostin in the osteogenic response to loading is more complex. While mice unable to down-regulate sclerostin do not gain bone with loading, Sost knockout mice have an enhanced osteogenic response to loading. The molecular mechanisms by which osteocytes sense and transduce loading-related stimuli into changes in sclerostin expression remain unclear but include several, potentially interlinked, signalling cascades involving periostin/integrin, prostaglandin, estrogen receptor, calcium/NO and Igf signalling. Deciphering the mechanisms by which changes in the mechanical environment regulate sclerostin production may lead to the development of therapeutic strategies that can reverse the skeletal structural deterioration characteristic of disuse and age-related osteoporosis and enhance bones' functional adaptation to loading. By enhancing the osteogenic potential of the context in which individual therapies such as sclerostin antibodies act it may become possible to both prevent and reverse the age-related skeletal structural deterioration characteristic of osteoporosis. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Bruno, Alexander G.; Bouxsein, Mary L.; Anderson, Dennis E.
2015-01-01
We developed and validated a fully articulated model of the thoracolumbar spine in opensim that includes the individual vertebrae, ribs, and sternum. To ensure trunk muscles in the model accurately represent muscles in vivo, we used a novel approach to adjust muscle cross-sectional area (CSA) and position using computed tomography (CT) scans of the trunk sampled from a community-based cohort. Model predictions of vertebral compressive loading and trunk muscle tension were highly correlated to previous in vivo measures of intradiscal pressure (IDP), vertebral loading from telemeterized implants and trunk muscle myoelectric activity recorded by electromyography (EMG). PMID:25901907
Foreign Object Damage Behavior of a SiC/SiC Composite at Ambient and Elevated Temperatures
NASA Technical Reports Server (NTRS)
Bhatt, Ramakrishna T.; Pereira, J. Michael; Gyekenyesi, John P.; Choi, Sung R.
2004-01-01
Foreign object damage (FOD) behavior of a gas-turbine grade SiC/SiC ceramic matrix composite (CMC) was determined at 25 and 1316 C, employing impact velocities from 115 to 440 meters per second by 1.59-mm diameter stell-ball projectiles. Two different types of specimen support were used at each temperature: fully supported and partially supported. For a given temperature, the degree of post-impact strength degradation increased with increasing impact velocity, and was greater in a partially supported configuration than in a fully supported one. The elevated-temperature FOD resistance of the composite, particularly under partially supported loading at higher impact velocities greater than or equal to 350 meters per second, was significantly less than the ambient-temperature counterpart, attributed to a weakening effect of the composite. For fully supported loading, frontal contact stress played a major role in generating composite damage; whereas, for partially supported loading, both frontal contact and backside bending stresses were combined sources of damage generation. The SiC/SiC composite was able to survive higher energy impacts without complete structural failure but suffered more strength affecting damage from low energy impacts than AS800 and SN282 silicon nitrides.
32 CFR 989.28 - Airspace and range proposals.
Code of Federal Regulations, 2011 CFR
2011-07-01
... initiated by the FAA affect military use, the roles are reversed. The proponent's action officers (civil engineering and local airspace management) must ensure that the FAA is fully integrated into the airspace...
32 CFR 989.28 - Airspace and range proposals.
Code of Federal Regulations, 2013 CFR
2013-07-01
... initiated by the FAA affect military use, the roles are reversed. The proponent's action officers (civil engineering and local airspace management) must ensure that the FAA is fully integrated into the airspace...
32 CFR 989.28 - Airspace and range proposals.
Code of Federal Regulations, 2014 CFR
2014-07-01
... initiated by the FAA affect military use, the roles are reversed. The proponent's action officers (civil engineering and local airspace management) must ensure that the FAA is fully integrated into the airspace...
32 CFR 989.28 - Airspace and range proposals.
Code of Federal Regulations, 2012 CFR
2012-07-01
... initiated by the FAA affect military use, the roles are reversed. The proponent's action officers (civil engineering and local airspace management) must ensure that the FAA is fully integrated into the airspace...
32 CFR 989.28 - Airspace and range proposals.
Code of Federal Regulations, 2010 CFR
2010-07-01
... initiated by the FAA affect military use, the roles are reversed. The proponent's action officers (civil engineering and local airspace management) must ensure that the FAA is fully integrated into the airspace...
Cyclic hardening behavior of extruded ZK60 magnesium alloy with different grain sizes
NASA Astrophysics Data System (ADS)
Zhang, Lixin; Zhang, Wencong; Chen, Wenzhen; Wang, Wenke
2018-04-01
Montonic and fully reversed strain-controlled cyclic deformation experiments were conducted on extruded ZK60 magnesium alloy with two different grain sizes in ambient air. Results revealed that the hardening rates of the ZK60 magnesium alloy rods with fine grain and coarse grain in the monotonic deformation and the fully reversed strain-controlled cyclic deformation were opposite along the extrusion direction. Electron Backscatter Diffration analysis revealed that fine grains were more easily rotated than coarse grains under the cyclic deformation. Under the twinning and detwinning process of the cyclic deformation at a large strain amplitude, the coarse grained ZK60 magnesium alloys were more prone to tension twinning {10-12}<10-11> and more residual twins were observed. Texture hardening of coarse grained magnesium alloy was more obvious in cyclic defromation than fine-grained magnesium alloy.
Schäfer, Christian G; Lederle, Christina; Zentel, Kristina; Stühn, Bernd; Gallei, Markus
2014-11-01
In this work, the preparation of highly thermoresponsive and fully reversible stretch-tunable elastomeric opal films featuring switchable structural colors is reported. Novel particle architectures based on poly(diethylene glycol methylether methacrylate-co-ethyl acrylate) (PDEGMEMA-co-PEA) as shell polymer are synthesized via seeded and stepwise emulsion polymerization protocols. The use of DEGMEMA as comonomer and herein established synthetic strategies leads to monodisperse soft shell particles, which can be directly processed to opal films by using the feasible melt-shear organization technique. Subsequent UV crosslinking strategies open access to mechanically stable and homogeneous elastomeric opal films. The structural colors of the opal films feature mechano- and thermoresponsiveness, which is found to be fully reversible. Optical characterization shows that the combination of both stimuli provokes a photonic bandgap shift of more than 50 nm from 560 nm in the stretched state to 611 nm in the fully swollen state. In addition, versatile colorful patterns onto the colloidal crystal structure are produced by spatial UV-induced crosslinking by using a photomask. This facile approach enables the generation of spatially cross-linked switchable opal films with fascinating optical properties. Herein described strategies for the preparation of PDEGMEMA-containing colloidal architectures, application of the melt-shear ordering technique, and patterned crosslinking of the final opal films open access to novel stimuli-responsive colloidal crystal films, which are expected to be promising materials in the field of security and sensing applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fully localized post-buckling states of cylindrical shells under axial compression
NASA Astrophysics Data System (ADS)
Kreilos, Tobias; Schneider, Tobias M.
2017-09-01
We compute nonlinear force equilibrium solutions for a clamped thin cylindrical shell under axial compression. The equilibrium solutions are dynamically unstable and located on the stability boundary of the unbuckled state. A fully localized single dimple deformation is identified as the edge state-the attractor for the dynamics restricted to the stability boundary. Under variation of the axial load, the single dimple undergoes homoclinic snaking in the azimuthal direction, creating states with multiple dimples arranged around the central circumference. Once the circumference is completely filled with a ring of dimples, snaking in the axial direction leads to further growth of the dimple pattern. These fully nonlinear solutions embedded in the stability boundary of the unbuckled state constitute critical shape deformations. The solutions may thus be a step towards explaining when the buckling and subsequent collapse of an axially loaded cylinder shell is triggered.
Spin and Recovery Characteristics of the Curtiss-Wright XP-87 Airplane
NASA Technical Reports Server (NTRS)
Berman, Theodore
1947-01-01
The spin and recovery characteristics of the Curtiss-Wright XP-87 airplane, as well as the spin-recovery parachute requirements, the control forces that would be encountered in the spin, and the best method for the crew to attempt an emergency escape, are presented in this report. The characteristics were estimated rather than determined by model tests because the XP-87 dimensional and mass characteristics were considered to be noncritical and because data were available from model tests of several similar airplanes. The study indicated that the recovery characteristics of the airplane will be satisfactory for all loadings if the controls are reversed fully and rapidly. The control forces, however, will probably be beyond the capabilities of the pilot unless some additional balance or a booster is used. A 6-foot tail parachute or a 3.5-foot wing-tip parachute with a drag coefficient of 0.7 will be a satisfactory, emergency spin-recovery device for spin demonstrations. If it is necessary for the crew to abandon the spinning airplane, they should leave from the outboard side of the cockpit.
The V-ATPase membrane domain is a sensor of granular pH that controls the exocytotic machinery.
Poëa-Guyon, Sandrine; Ammar, Mohamed Raafet; Erard, Marie; Amar, Muriel; Moreau, Alexandre W; Fossier, Philippe; Gleize, Vincent; Vitale, Nicolas; Morel, Nicolas
2013-10-28
Several studies have suggested that the V0 domain of the vacuolar-type H(+)-adenosine triphosphatase (V-ATPase) is directly implicated in secretory vesicle exocytosis through a role in membrane fusion. We report in this paper that there was a rapid decrease in neurotransmitter release after acute photoinactivation of the V0 a1-I subunit in neuronal pairs. Likewise, inactivation of the V0 a1-I subunit in chromaffin cells resulted in a decreased frequency and prolonged kinetics of amperometric spikes induced by depolarization, with shortening of the fusion pore open time. Dissipation of the granular pH gradient was associated with an inhibition of exocytosis and correlated with the V1-V0 association status in secretory granules. We thus conclude that V0 serves as a sensor of intragranular pH that controls exocytosis and synaptic transmission via the reversible dissociation of V1 at acidic pH. Hence, the V-ATPase membrane domain would allow the exocytotic machinery to discriminate fully loaded and acidified vesicles from vesicles undergoing neurotransmitter reloading.
The V-ATPase membrane domain is a sensor of granular pH that controls the exocytotic machinery
Poëa-Guyon, Sandrine; Ammar, Mohamed Raafet; Erard, Marie; Amar, Muriel; Moreau, Alexandre W.; Fossier, Philippe; Gleize, Vincent
2013-01-01
Several studies have suggested that the V0 domain of the vacuolar-type H+-adenosine triphosphatase (V-ATPase) is directly implicated in secretory vesicle exocytosis through a role in membrane fusion. We report in this paper that there was a rapid decrease in neurotransmitter release after acute photoinactivation of the V0 a1-I subunit in neuronal pairs. Likewise, inactivation of the V0 a1-I subunit in chromaffin cells resulted in a decreased frequency and prolonged kinetics of amperometric spikes induced by depolarization, with shortening of the fusion pore open time. Dissipation of the granular pH gradient was associated with an inhibition of exocytosis and correlated with the V1–V0 association status in secretory granules. We thus conclude that V0 serves as a sensor of intragranular pH that controls exocytosis and synaptic transmission via the reversible dissociation of V1 at acidic pH. Hence, the V-ATPase membrane domain would allow the exocytotic machinery to discriminate fully loaded and acidified vesicles from vesicles undergoing neurotransmitter reloading. PMID:24165939
Flexible and transparent strain sensors based on super-aligned carbon nanotube films.
Yu, Yang; Luo, Yufeng; Guo, Alexander; Yan, Lingjia; Wu, Yang; Jiang, Kaili; Li, Qunqing; Fan, Shoushan; Wang, Jiaping
2017-05-25
Highly flexible and transparent strain sensors are fabricated by directly coating super-aligned carbon nanotube (SACNT) films on polydimethylsiloxane (PDMS) substrates. The fabrication process is simple, low cost, and favorable for industrial scalability. The SACNT/PDMS strain sensors present a high sensing range of 400%, a fast response of less than 98 ms, and a low creep of 4% at 400% strain. The SACNT/PDMS strain sensors can withstand 5000 stretching-releasing cycles at 400% strain. Moreover, the SACNT/PDMS strain sensors are transparent with 80% transmittance at 550 nm. In situ microscopic observation clarifies that the surface morphology of the SACNT film exhibits a reversible change during the stretching and releasing processes and thus its electrical conductance is able to fully recover to the original value after the loading-unloading cycles. The SACNT/PDMS strain sensors have the advantages of a wide sensing range, fast response, low creep, transparency, and excellent durability, and thus show great potential in wearable devices to monitor fast and large-scale movements without affecting the appearance of the devices.
Gambarini, G
2001-12-01
The main problem with the NiTi rotary instrumentation technique is instrument failure. During shaping procedures, rotary instruments might lock and/or screw into canals and, consequently, be subjected to high levels of stress. This may frequently lead to instrument separation or deformation. If a high-torque motor is used, the applied forces are usually very high and the instrument-fracture limit is often exceeded, thus increasing the risk of intracanal failure. A possible solution of this problem is to use a low-torque endodontic motor, which operates below the maximum permissible torque limit of each and every rotary instrument. During clinical instrumentation of root canals, if a torque-controlled motor is loaded right up to the instrument-specific torque, the motor stops momentarily and/or starts rotating counter-clockwise (auto-reverse function) to disengage the locked instrument. These safety mechanisms were developed to reduce the risk of instrument fracture. The author fully discusses the rationale for selecting lower torque values in everyday endodontic practice, and provides clinicians with useful information on the advantages and disadvantages of new endodontic motors with torque control.
Influence of Austenite Stability on Steel Low Cycle Fatigue Response
NASA Astrophysics Data System (ADS)
Lehnhoff, G. R.; Findley, K. O.
Austenitic steels were subjected to tensile and total strain controlled, fully reversed axial low cycle fatigue (LCF) testing to determine the influence of stacking fault energy on austenite stability, or resistance to strain induced martensitic transformation during tensile and fatigue deformation. Expected differences in stacking fault energy were achieved by modifying alloys with different amounts of silicon and aluminum. Al alloying was found to promote martensite formation during both tensile and LCF loading, while Si was found to stabilize austenite. Martensite formation increases tensile work hardening rates, though Si additions also increase the work hardening rate without martensite transformation. Similarly, secondary cyclic strain hardening during LCF is attributed to strain induced martensite formation, but Si alloying resulted in less secondary cyclic strain hardening. The amount of secondary cyclic hardening scales linearly with martensite fraction and depends only on the martensite fraction achieved and not on the martensite (i.e. parent austenite) chemistry. Martensite formation was detrimental to LCF lives at all strain amplitudes tested, although the total amount of martensitic transformation during LCF did not always monotonically increase with strain amplitude nor correlate to the amount of tensile transformation.
A plant derived multifunctional tool for nanobiotechnology based on Tomato bushy stunt virus.
Grasso, Simone; Lico, Chiara; Imperatori, Francesca; Santi, Luca
2013-06-01
Structure, size, physicochemical properties and production strategies make many plant viruses ideal protein based nanoscaffolds, nanocontainers and nano-building blocks expected to deliver a multitude of applications in different fields such as biomedicine, pharmaceutical chemistry, separation science, catalytic chemistry, crop pest control and biomaterials science. Functionalization of viral nanoparticles through modification by design of their external and internal surfaces is essential to fully exploit the potentiality of these objects. In the present paper we describe the development of a plant derived multifunctional tool for nanobiotechnology based on Tomato bushy stunt virus. We demonstrate the ability of this system to remarkably sustain genetic modifications and in vitro chemical derivatizations of its outer surface, which resulted in the successful display of large chimeric peptides fusions and small chemical molecules, respectively. Moreover, we have defined physicochemical conditions for viral swelling and reversible viral pore gating that we have successfully employed for foreign molecules loading and retention in the inner cavity of this plant virus nanoparticles system. Finally, a production and purification strategy from Nicotiana benthamiana plants has been addressed and optimized.
Open-mouthed hybrid microcapsules with elevated enzyme loading and enhanced catalytic activity.
Shi, Jiafu; Zhang, Shaohua; Wang, Xiaoli; Jiang, Zhongyi
2014-10-25
Open-mouthed hybrid microcapsules (HMCs) are synthesized through a hard-templating method. When utilized for enzyme immobilization and enzymatic catalysis, the open-mouthed HMCs show high enzyme loading capability, enhanced catalytic activity and desirable recycling stability, due to their fully exposed outer and inner surfaces.
Hilt, Sabine; Alirangues Nuñez, Marta M; Bakker, Elisabeth S; Blindow, Irmgard; Davidson, Thomas A; Gillefalk, Mikael; Hansson, Lars-Anders; Janse, Jan H; Janssen, Annette B G; Jeppesen, Erik; Kabus, Timm; Kelly, Andrea; Köhler, Jan; Lauridsen, Torben L; Mooij, Wolf M; Noordhuis, Ruurd; Phillips, Geoff; Rücker, Jacqueline; Schuster, Hans-Heinrich; Søndergaard, Martin; Teurlincx, Sven; van de Weyer, Klaus; van Donk, Ellen; Waterstraat, Arno; Willby, Nigel; Sayer, Carl D
2018-01-01
Submerged macrophytes play a key role in north temperate shallow lakes by stabilizing clear-water conditions. Eutrophication has resulted in macrophyte loss and shifts to turbid conditions in many lakes. Considerable efforts have been devoted to shallow lake restoration in many countries, but long-term success depends on a stable recovery of submerged macrophytes. However, recovery patterns vary widely and remain to be fully understood. We hypothesize that reduced external nutrient loading leads to an intermediate recovery state with clear spring and turbid summer conditions similar to the pattern described for eutrophication. In contrast, lake internal restoration measures can result in transient clear-water conditions both in spring and summer and reversals to turbid conditions. Furthermore, we hypothesize that these contrasting restoration measures result in different macrophyte species composition, with added implications for seasonal dynamics due to differences in plant traits. To test these hypotheses, we analyzed data on water quality and submerged macrophytes from 49 north temperate shallow lakes that were in a turbid state and subjected to restoration measures. To study the dynamics of macrophytes during nutrient load reduction, we adapted the ecosystem model PCLake. Our survey and model simulations revealed the existence of an intermediate recovery state upon reduced external nutrient loading, characterized by spring clear-water phases and turbid summers, whereas internal lake restoration measures often resulted in clear-water conditions in spring and summer with returns to turbid conditions after some years. External and internal lake restoration measures resulted in different macrophyte communities. The intermediate recovery state following reduced nutrient loading is characterized by a few macrophyte species (mainly pondweeds) that can resist wave action allowing survival in shallow areas, germinate early in spring, have energy-rich vegetative propagules facilitating rapid initial growth and that can complete their life cycle by early summer. Later in the growing season these plants are, according to our simulations, outcompeted by periphyton, leading to late-summer phytoplankton blooms. Internal lake restoration measures often coincide with a rapid but transient colonization by hornworts, waterweeds or charophytes. Stable clear-water conditions and a diverse macrophyte flora only occurred decades after external nutrient load reduction or when measures were combined.
Functionalization of a membrane sublayer using reverse filtration of enzymes and dopamine coating.
Luo, Jianquan; Meyer, Anne S; Mateiu, R V; Kalyani, Dayanand; Pinelo, Manuel
2014-12-24
High permeability, high enzyme loading, and strong antifouling ability are the desired features for a biocatalytic membrane to be used in an enzymatic membrane reactor (EMR). To achieve these goals, the membrane sublayer was enriched with laccase by reverse filtration in this case, and the resulting enzyme-loaded sublayer was covered with a dopamine coating. After membrane reversal, the virgin membrane skin layer was facing the feed and the enzymes were entrapped by a polydopamine network in the membrane sublayer. Thus, the membrane sublayer was functionalized as a catalytically active layer. The effects of the original membrane properties (i.e., materials, pore size, and structure), enzyme type (i.e., laccase and alcohol dehydrogenase), and coating conditions (i.e., time and pH) on the resulting biocatalytic membrane permeability, enzyme loading, and activity were investigated. Using a RC10 kDa membrane with sponge-like sublayer to immobilize laccase with dopamine coating, the trade-off between permeability and enzyme loading was broken, and enzyme loading reached 44.5% without any permeability loss. After 85 days of storage and reuse 14 times, more than 80% of the immobilized laccase activity was retained for the membrane with a dopamine coating, while the relative activity was less than 40% without the coating. The resistance to high temperature and acidic/alkaline pH was also improved by the dopamine coating for the immobilized laccase. Moreover, this biocatalytic membrane could resist mild hydrodynamic cleaning (e.g., back-flushing), but the catalytic ability was reduced by chemical cleaning at extreme pH (e.g., 1.5 and 11.5). Since the immobilized enzyme is not directly facing the bulk of EMRs and the substrate can be specifically selected by the separation skin layer, this biocatalytic membrane is promising for cascade catalytic reactions.
NASA Astrophysics Data System (ADS)
Dong, Hao; Hu, Yahui
2018-04-01
The bend-torsion coupling dynamics load-sharing model of the helicopter face gear split torque transmission system is established by using concentrated quality standard, to analyzing the dynamic load-sharing characteristic. The mathematical models include nonlinear support stiffness, time-varying meshing stiffness, damping, gear backlash. The results showed that the errors collectively influenced the load sharing characteristics, only reduce a certain error, it is never fully reached the perfect loading sharing characteristics. The system load-sharing performance can be improved through floating shaft support. The above-method will provide a theoretical basis and data support for its dynamic performance optimization design.
Influence of wheelchair front caster wheel on reverse directional stability.
Guo, Songfeng; Cooper, Rory A; Corfman, Tom; Ding, Dan; Grindle, Garrett
2003-01-01
The purpose of this research was to study directional stability during reversing of rear-wheel drive, electric powered wheelchairs (EPW) under different initial front caster orientations. Specifically, the weight distribution differences caused by certain initial caster orientations were examined as a possible mechanism for causing directional instability that could lead to accidents. Directional stability was quantified by measuring the drive direction error of the EPW by a motion analysis system. The ground reaction forces were collected to determine the load on the front casters, as well as back-emf data to attain the speed of the motors. The drive direction error was found to be different for various initial caster orientations. Drive direction error was greatest when both casters were oriented 90 degrees to the left or right, and least when both casters were oriented forward. The results show that drive direction error corresponds to the loading difference on the casters. The data indicates that loading differences may cause asymmetric drag on the casters, which in turn causes unbalanced torque load on the motors. This leads to a difference in motor speed and drive direction error.
Axial-Load Fatigue Tests on 17-7 PH Stainless Steel Under Constant-Amplitude Loading
NASA Technical Reports Server (NTRS)
Leybold, Herbert A.
1960-01-01
Axial-load fatigue tests were conducted at room temperature on notched and unnotched sheet specimens of 17-7 PH stainless steel in Condition TH 1050. The notched specimens had theoretical stress-concentration factors of 2.32, 4.00, and 5.00. All specimens were tested under completely reversed loading. S-N curves are presented for each specimen configuration and ratios of fatigue strengths of unnotched specimens to those of notched specimens are given. Predictions of the fatigue behavior of notched specimens near the fatigue limit were made.
Design and fabrication of composite wing panels containing a production splice
NASA Technical Reports Server (NTRS)
Reed, D. L.
1975-01-01
Bolted specimens representative of both upper and lower wing surface splices of a transport aircraft were designed and manufactured for static and random load tension and compression fatigue testing including ground-air-ground load reversals. The specimens were fabricated with graphite-epoxy composite material. Multiple tests were conducted at various load levels and the results were used as input to a statistical wearout model. The statically designed specimens performed very well under highly magnified fatigue loadings. Two large panels, one tension and compression, were fabricated for testing by NASA-LRC.
In situ multi-axial loading frame to probe elastomers using X-ray scattering.
Pannier, Yannick; Proudhon, Henry; Mocuta, Cristian; Thiaudière, Dominique; Cantournet, Sabine
2011-11-01
An in situ tensile-shear loading device has been designed to study elastomer crystallization using synchrotron X-ray scattering at the Synchrotron Soleil on the DiffAbs beamline. Elastomer tape specimens of thickness 2 mm can be elongated by up to 500% in the longitudinal direction and sheared by up to 200% in the transverse direction. The device is fully automated and plugged into the TANGO control system of the beamline allowing synchronization between acquisition and loading sequences. Experimental results revealing the evolution of crystallization peaks under load are presented for several tension/shear loading sequences.
El-Atwani, Osman; El-Atwani, Osman C; Aytun, Taner; Mutaf, Omer Faruk; Srot, Vesna; van Aken, Peter A; Ow-Yang, Cleva W
2010-05-18
We report the use of reverse PS-b-P2VP diblock copolymer micelles as true nanoscale-sized reactor vessels to synthesize ZnO nanoparticles. The reverse micelles were formed in toluene and then sequentially loaded with zinc acetate dihydrate and tetramethylammonium hydroxide reactants. Moreover, high spatial resolution Z-contrast imaging and EDX spectroscopy techniques were used to confirm the segregation of the Zn cation to the core of the loaded micelles. Determining the chemical distribution with high nanoscale spatial resolution is shown to complement the less direct characterization by AFM, DLS and FTIR, thus demonstrating broader implications for the characterization of hybrid nanocomposite systems.
Tong, Ying; Jiao, Xiangyu; Yang, Hankun; Wen, Yongqiang; Su, Lei; Zhang, Xueji
2016-04-01
Herein we report for the first time fabrication of reverse bumpy ball (RBB)-type-nanoreactor-based flexible peroxidase-mimic membrane reactors (MRs). The RBB-type nanoreactors with gold nanoparticles embedded in the inner walls of carbon shells were loaded on nylon membranes through a facile filtration approach. The as-prepared flexible catalytic membrane was studied as a peroxidase-mimic MR. It was found that the obtained peroxidase-mimic MR could exhibit several advantages over natural enzymes, such as facile and good recyclability, long-term stability and easy storage. Moreover, the RBB NS-modified nylon MRs as a peroxidase mimic provide a useful colorimetric assay for H₂O₂.
NASA Astrophysics Data System (ADS)
Wang, Han; Gou, Chao; Luo, Kai
2017-04-01
This paper presents a fully on-chip NMOS low-dropout regulator (LDO) for portable applications with quasi floating gate pass element and fast transient response. The quasi floating gate structure makes the gate of the NMOS transistor only periodically charged or refreshed by the charge pump, which allows the charge pump to be a small economical circuit with small silicon area. In addition, a variable reference circuit is introduced enlarging the dynamic range of error amplifier during load transient. The proposed LDO has been implemented in a 0.35 μm BCD process. From experimental results, the regulator can operate with a minimum dropout voltage of 250 mV at a maximum 1 A load and {I}{{Q}} of 395 μA. Under full-range load current step, the voltage undershoot and overshoot of the proposed LDO are reduced to 50 and 26 mV, respectively.
The effect of transmitted HIV-1 drug resistance on pre-therapy viral load.
Harrison, Linda; Castro, Hannah; Cane, Patricia; Pillay, Deenan; Booth, Clare; Phillips, Andrew; Geretti, Anna Maria; Dunn, David
2010-07-31
Reduced replication capacity of viruses expressing drug resistant mutations implies that patients with transmitted drug resistance (TDR) could have lower HIV RNA viral load than those infected with wild-type virus. We performed analysis using data from the UK HIV Drug Resistance Database and the UK CHIC study. Eligible patients had a resistance test performed between 1997 and 2007 while naive to antiretroviral therapy, were 16 years or older, and had a viral load and CD4 cell count measurement within 6 months of this test. Models were adjusted for CD4 cell count, viral subtype, ethnicity, risk group, sex, age, calendar year, clinical centre, and viral load assay. Of a total of 7994 patients included, 709 (9%) had TDR: 604 (85%) had resistance to one drug class only [350 nucleos(t)ide reverse transcriptase inhibitors (NRTIs), 164 non-nucleos(t)ide reverse transcriptase inhibitors (NNRTIs), 90 protease inhibitors (PIs)], 77 (11%) to two classes (42 NRTIs/NNRTIs, 31 NRTIs/PIs, 4 NNRTIs/PIs), and 28 (4%) had resistance to all three classes. The overall mean (SD) viral load at the time of resistance testing was 4.60 (0.82) log(10) copies/ml, and did not differ by class of TDR. However, patients harbouring M184V/I (n = 61) had a significantly lower viral load [adjusted mean difference -0.33 log10 copies/ml (95% CI -0.54 to -0.11), 53% lower (95% CI 22 to 71%), P = 0.002] compared to wild-type virus. Our study provides clear evidence of an in-vivo fitness cost associated with the M184V/I mutation independent of drug effects which select for this mutation. This was not observed for any other mutation, but true effects may have been obscured by reversion of initially resistant viruses to wild-type.
Reversible polyelectrolyte capsules as carriers for protein delivery.
Anandhakumar, S; Nagaraja, V; Raichur, Ashok M
2010-07-01
A reversible drug delivery system based on spontaneous deposition of a model protein into preformed microcapsules has been demonstrated for protein delivery applications. Layer-by-Layer assembly of poly(allylamine hydrochloride) (PAH) and poly(methacrylic acid) (PMA) onto polystyrene sulfonate (PSS) doped CaCO3 particles, followed by core removal yielded intact hollow microcapsules having a unique property to induce spontaneous deposition of bovine serum albumin (BSA) at pH below its isoelectric point of 4.8, where it was positively charged. These capsules showed reversible pH dependent open and closed states to fluorescence labeled dextran (FITC-Dextran) and BSA (FITC-BSA). The loading capacity of BSA increased from 9.1 x 10(7) to 2.03 x 10(8) molecules per capsule with decrease in pH from 4.5 to 3. The loading of BSA-FITC was observed by confocal laser scanning microscopy (CLSM), which showed homogeneous distribution of protein inside the capsule. Efficient loading of BSA was further confirmed by atomic force microscopy (AFM) and scanning electron microscopy (SEM). The interior capsule concentration was as high as 209 times the feeding concentration when the feeding concentration was increased from 1 to 10 mg/ml. The deposition was initially controlled by spontaneous loading mechanism at lower BSA concentration followed by diffusion controlled loading at higher concentration; which decreased the loading efficiency from 35% to 7%. Circular dichroism (CD) measurements and Fourier transform infrared spectroscopy (FTIR) confirmed that there was no significant change in conformation of released BSA in comparison with native BSA. The release was initially burst in the first 0.5 h and sustained up to 5 h. The hollow capsules were found to be biocompatible with mouse embryonic fibroblast (MEF) cells during in vitro cell culture studies. Thus these pH sensitive polyelectrolyte microcapsules may offer a promising delivery system for water soluble proteins and peptides. 2010 Elsevier B.V. All rights reserved.
Comparing the Use of Dynamic Response Index (DRI) and Lumbar Load as Relevant Spinal Injury Metrics
2014-01-09
reproducible results in greater detail under controlled testing conditions • Biofidelic enhancements to the Hybrid III design were made which support...occupants 4) General discussion on continued use of DRI as a design criterion for spinal injuries given the availability of the more direct Lumbar...load from fully encumbered ATDs in underbody blast testing . 15. SUBJECT TERMS DRI, Lumbar Load, Blast, LSDYNA, MADYMO, occupant, injury, pelvic
Cochis, A; Grad, S; Stoddart, M J; Farè, S; Altomare, L; Azzimonti, B; Alini, M; Rimondini, L
2017-03-23
Autologous chondrocyte implantation for cartilage repair represents a challenge because strongly limited by chondrocytes' poor expansion capacity in vitro. Mesenchymal stem cells (MSCs) can differentiate into chondrocytes, while mechanical loading has been proposed as alternative strategy to induce chondrogenesis excluding the use of exogenous factors. Moreover, MSC supporting material selection is fundamental to allow for an active interaction with cells. Here, we tested a novel thermo-reversible hydrogel composed of 8% w/v methylcellulose (MC) in a 0.05 M Na 2 SO 4 solution. MC hydrogel was obtained by dispersion technique and its thermo-reversibility, mechanical properties, degradation and swelling were investigated, demonstrating a solution-gelation transition between 34 and 37 °C and a low bulk degradation (<20%) after 1 month. The lack of any hydrogel-derived immunoreaction was demonstrated in vivo by mice subcutaneous implantation. To induce in vitro chondrogenesis, MSCs were seeded into MC solution retained within a porous polyurethane (PU) matrix. PU-MC composites were subjected to a combination of compression and shear forces for 21 days in a custom made bioreactor. Mechanical stimulation led to a significant increase in chondrogenic gene expression, while histological analysis detected sulphated glycosaminoglycans and collagen II only in loaded specimens, confirming MC hydrogel suitability to support load induced MSCs chondrogenesis.
Fekete, Szabolcs; Veuthey, Jean-Luc; Eeltink, Sebastiaan; Guillarme, Davy
2013-04-01
Various recent wide-pore reversed-phase stationary phases were studied for the analysis of intact monoclonal antibodies (mAbs) of 150 kDa and their fragments possessing sizes between 25 and 50 kDa. Different types of column technology were evaluated, namely, a prototype silica-based inorganic monolith containing mesopores of ~250 Å and macropores of ~ 1.1 μm, a column packed with 3.6 μm wide-pore core-shell particles possessing a wide pore size distribution with an average around 200 Å and a column packed with fully porous 1.7 μm particles having pore size of ~300 Å. The performance of these wide-pore materials was compared with that of a poly(styrene-divinyl benzene) organic monolithic column, with a macropore size of approximately 1 μm but without mesopores (stagnant pores). A systematic investigation was carried out using model IgG1 and IgG2 mAbs, namely rituximab, panitumumab, and bevacizumab. Firstly, the recoveries of intact and reduced mAbs were compared on the two monolithic phases, and it appeared that adsorption was less pronounced on the organic monolith, probably due to the difference in chemistry (C18 versus phenyl) and the absence of mesopores (stagnant zones). Secondly, the kinetic performance was investigated in gradient elution mode for all columns. For this purpose, peak capacities per meter as well as peak capacities per time unit and per pressure unit (PPT) were calculated at various flow rates, to compare performance of columns with different dimensions. In terms of peak capacity per meter, the core-shell 3.6 μm and fully porous 1.7 μm columns outperformed the two monolithic phases, at a temperature of 60 °C. However, when considering the PPT values, the core-shell 3.6 μm column remained the best phase while the prototype silica-based monoliths became very interesting, mostly due to a very high permeability compared with the organic monolith. Therefore, these core-shell and silica-based monolith provided the fastest achievable separation. Finally, at the maximal working temperature of each column, the core-shell 3.6 μm column was far better than the other one, because it is the only one stable up to 90 °C. Lastly, the loading capacity was also measured on these four different phases. It appeared that the organic monolith was the less interesting and rapidly overloaded, due to the absence of mesopores. On the other hand, the loading capacity of prototype silica-based monolith was indeed reasonable.
Floating Breakwaters: State-of-the-Art Literature Review.
1981-10-01
transmission Mooring loads 20. / . 20. STR ACT (Continue on reverse ide If necessary and Identify by block number) A multitude of conceptual models of...are designed by finding the ultimate lateral resistance of the pile-soil system and increasing the lateral mooring load , Ft, by a fac- tor of safety...Fs, to determine the design lateral load on the pile. The ultimate lateral resistance of the anchor pile is reached when either the passive strength of
Proton-Fueled, Reversible DNA Hybridization Chain Assembly for pH Sensing and Imaging.
Liu, Lan; Liu, Jin-Wen; Huang, Zhi-Mei; Wu, Han; Li, Na; Tang, Li-Juan; Jiang, Jian-Hui
2017-07-05
Design of DNA self-assembly with reversible responsiveness to external stimuli is of great interest for diverse applications. We for the first time develop a pH-responsive, fully reversible hybridization chain reaction (HCR) assembly that allows sensitive sensing and imaging of pH in living cells. Our design relies on the triplex forming sequences that form DNA triplex with toehold regions under acidic conditions and then induce a cascade of strand displacement and DNA assembly. The HCR assembly has shown dynamic responses in physiological pH ranges with excellent reversibility and demonstrated the potential for in vitro detection and live-cell imaging of pH. Moreover, this method affords HCR assemblies with highly localized fluorescence responses, offering advantages of improving sensitivity and better selectivity. The proton-fueled, reversible HCR assembly may provide a useful approach for pH-related cell biology study and disease diagnostics.
46 CFR 42.20-9 - Initial conditions of loading.
Code of Federal Regulations, 2013 CFR
2013-10-01
...) Fifty percent of the total capacity of all tanks and spaces fitted to contain consumable liquids or stores must be assumed to be distributed to accomplish the following: (i) Each tank and space fitted to... only partially filled. In the case of liquid cargoes, fully loaded means 98 percent full. (3) If the...
46 CFR 42.20-9 - Initial conditions of loading.
Code of Federal Regulations, 2012 CFR
2012-10-01
...) Fifty percent of the total capacity of all tanks and spaces fitted to contain consumable liquids or stores must be assumed to be distributed to accomplish the following: (i) Each tank and space fitted to... only partially filled. In the case of liquid cargoes, fully loaded means 98 percent full. (3) If the...
46 CFR 42.20-9 - Initial conditions of loading.
Code of Federal Regulations, 2011 CFR
2011-10-01
...) Fifty percent of the total capacity of all tanks and spaces fitted to contain consumable liquids or stores must be assumed to be distributed to accomplish the following: (i) Each tank and space fitted to... only partially filled. In the case of liquid cargoes, fully loaded means 98 percent full. (3) If the...
46 CFR 42.20-9 - Initial conditions of loading.
Code of Federal Regulations, 2014 CFR
2014-10-01
...) Fifty percent of the total capacity of all tanks and spaces fitted to contain consumable liquids or stores must be assumed to be distributed to accomplish the following: (i) Each tank and space fitted to... only partially filled. In the case of liquid cargoes, fully loaded means 98 percent full. (3) If the...
46 CFR 42.20-9 - Initial conditions of loading.
Code of Federal Regulations, 2010 CFR
2010-10-01
...) Fifty percent of the total capacity of all tanks and spaces fitted to contain consumable liquids or stores must be assumed to be distributed to accomplish the following: (i) Each tank and space fitted to... only partially filled. In the case of liquid cargoes, fully loaded means 98 percent full. (3) If the...
Bergquist, Ronny; Iversen, Vegard Moe; Mork, Paul J; Fimland, Marius Steiro
2018-01-01
Abstract Elastic resistance bands require little space, are light and portable, but their efficacy has not yet been established for several resistance exercises. The main objective of this study was to compare the muscle activation levels induced by elastic resistance bands versus conventional resistance training equipment (dumbbells) in the upper-body resistance exercises flyes and reverse flyes. The level of muscle activation was measured with surface electromyography in 29 men and women in a cross-over design where resistance loadings with elastic resistance bands and dumbbells were matched using 10-repetition maximum loadings. Elastic resistance bands induced slightly lower muscle activity in the muscles most people aim to activate during flyes and reverse flies, namely pectoralis major and deltoideus posterior, respectively. However, elastic resistance bands increased the muscle activation level substantially in perceived ancillary muscles, that is deltoideus anterior in flyes, and deltoideus medius and trapezius descendens in reverse flyes, possibly due to elastic bands being a more unstable resistance modality. Overall, the results show that elastic resistance bands can be considered a feasible alternative to dumbbells in flyes and reverse flyes. PMID:29599855
NASA Technical Reports Server (NTRS)
Anderson, Seth B.; Cooper, George E.; Faye, Alan E., Jr.
1959-01-01
A flight investigation was undertaken to determine the effect of a fully controllable thrust reverser on the flight characteristics of a single-engine jet airplane. Tests were made using a cylindrical target-type reverser actuated by a hydraulic cylinder through a "beep-type" cockpit control mounted at the base of the throttle. The thrust reverser was evaluated as an in-flight decelerating device, as a flight path control and airspeed control in landing approach, and as a braking device during the ground roll. Full deflection of the reverser for one reverser configuration resulted in a reverse thrust ratio of as much as 85 percent, which at maximum engine power corresponded to a reversed thrust of 5100 pounds. Use of the reverser in landing approach made possible a wide selection of approach angles, a large reduction in approach speed at steep approach angles, improved control of flight path angle, and more accuracy in hitting a given touchdown point. The use of the reverser as a speed brake at lower airspeeds was compromised by a longitudinal trim change. At the lower airspeeds and higher engine powers there was insufficient elevator power to overcome the nose-down trim change at full reverser deflection.
Ultrasonic Time Reversal Mirrors
NASA Astrophysics Data System (ADS)
Fink, Mathias; Montaldo, Gabriel; Tanter, Mickael
2004-11-01
For more than ten years, time reversal techniques have been developed in many different fields of applications including detection of defects in solids, underwater acoustics, room acoustics and also ultrasound medical imaging and therapy. The essential property that makes time reversed acoustics possible is that the underlying physical process of wave propagation would be unchanged if time were reversed. In a non dissipative medium, the equations governing the waves guarantee that for every burst of sound that diverges from a source there exists in theory a set of waves that would precisely retrace the path of the sound back to the source. If the source is pointlike, this allows focusing back on the source whatever the medium complexity. For this reason, time reversal represents a very powerful adaptive focusing technique for complex media. The generation of this reconverging wave can be achieved by using Time Reversal Mirrors (TRM). It is made of arrays of ultrasonic reversible piezoelectric transducers that can record the wavefield coming from the sources and send back its time-reversed version in the medium. It relies on the use of fully programmable multi-channel electronics. In this paper we present some applications of iterative time reversal mirrors to target detection in medical applications.
Oh, Joo Han; Shin, Sang-Jin; McGarry, Michelle H; Scott, Jonathan H; Heckmann, Nathanael; Lee, Thay Q
2014-08-01
The variability in functional outcomes and the occurrence of scapular notching and instability after reverse total shoulder arthroplasty remain problems. The objectives of this study were to measure the effect of reverse humeral component neck-shaft angle on impingement-free range of motion, abduction moment, and anterior dislocation force and to evaluate the effect of subscapularis loading on dislocation force. Six cadaveric shoulders were tested with 155°, 145°, and 135° reverse shoulder humeral neck-shaft angles. The adduction angle at which bone contact occurred and the internal and external rotational impingement-free range of motion angles were measured. Glenohumeral abduction moment was measured at 0° and 30° of abduction, and anterior dislocation forces were measured at 30° of internal rotation, 0°, and 30° of external rotation with and without subscapularis loading. Adduction deficit angles for 155°, 145°, and 135° neck-shaft angle were 2° ± 5° of abduction, 7° ± 4° of adduction, and 12° ± 2° of adduction (P < .05). Impingement-free angles of humeral rotation and abduction moments were not statistically different between the neck-shaft angles. The anterior dislocation force was significantly higher for the 135° neck-shaft angle at 30° of external rotation and significantly higher for the 155° neck-shaft angle at 30° of internal rotation (P < .01). The anterior dislocation forces were significantly higher when the subscapularis was loaded (P < .01). The 155° neck-shaft angle was more prone to scapular bone contact during adduction but was more stable at the internally rotated position, which was the least stable humeral rotation position. Subscapularis loading gave further anterior stability with all neck-shaft angles at all positions. Published by Mosby, Inc.
Factor Structure of the Penn State Worry Questionnaire: Examination of a Method Factor
ERIC Educational Resources Information Center
Hazlett-Stevens, Holly; Ullman, Jodie B.; Craske, Michelle G.
2004-01-01
The Penn State Worry Questionnaire (PSWQ) was originally designed as a unifactorial measure of pathological trait worry. However, recent studies supported a two-factor solution with positively worded items loading on the first factor and reverse-scored items loading on a second factor. The current study compared this two-factor model to a negative…
Theparambil, Shefeeq M; Naoshin, Zinnia; Thyssen, Anne; Deitmer, Joachim W
2015-01-01
Recovery of intracellular pH from cytosolic alkalosis has been attributed primarily to Cl– coupled acid loaders/base extruders such as Cl–/HCO3– or Cl–/OH– exchangers. We have studied this process in cortical astrocytes from wild-type and transgenic mouse models with gene deletion for the electrogenic sodium bicarbonate cotransporter 1 (NBCe1) and for carbonic anhydrase (CA) isoform II. An acute cytosolic alkalosis was induced by the removal of either CO2/HCO3– or butyric acid, and the subsequent acid loading was analysed by monitoring changes in cytosolic H+ or Na+ using ion-sensitive fluorescent dyes. We have identified that NBCe1 reverses during alkalosis and contributes more than 70% to the rate of recovery from alkalosis by extruding Na+ and HCO3–. After CA inhibition or in CAII-knockout (KO) cells, the rate of recovery was reduced by 40%, and even by 70% in the nominal absence of CO2/HCO3–. Increasing the extracellular K+ concentration modulated the rate of acid loading in wild-type cells, but not in NBCe1-KO cells. Removing chloride had only a minor effect on the recovery from alkalosis. Reversal of NBCe1 by reducing pH/[HCO3–] was demonstrated in astrocytes and in Xenopus oocytes, in which human NBCe1 was heterologously expressed. The results obtained suggest that reversed NBCe1, supported by CAII activity, plays a major role in acid-loading cortical astrocytes to support recovery from cytosolic alkalosis. PMID:25990710
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nagarajan, Adarsh; Coddington, Michael H.; Brown, David
Voltage regulators perform as desired when regulating from the source to the load and when regulating from a strong source (utility) to a weak source (distributed generation). (See the glossary for definitions of a strong source and weak source.) Even when the control is provisioned for reverse operation, it has been observed that tap-changing voltage regulators do not perform as desired in reverse when attempting regulation from the weak source to the strong source. The region of performance that is not as well understood is the regulation between sources that are approaching equal strength. As part of this study, wemore » explored all three scenarios: regulator control from a strong source to a weak source (classic case), control from a weak source to a strong source (during reverse power flow), and control between equivalent sources.« less
NASA Astrophysics Data System (ADS)
Li, Faxin; Wang, Qiangzhong; Miao, Hongchen
2017-08-01
The widely used ferroelectric ceramics based actuators always suffer from small output strains (typically ˜0.1%-0.15%). Non-180° domain switching can generate a large strain in ferroelectrics but it is usually irreversible. In this work, we tailored the domain structures in a soft lead titanate zirconate (PZT) ceramic by periodical orthogonal poling. The non-180° switching in this domain-engineered PZT ceramics turns to be reversible, resulting in a local giant actuation strain of nearly 0.6% under a field of 2 kV/mm at 0.1 Hz. The large interfacial stresses between regions with different poling directions during electric loading/unloading were thought to be responsible for the reversible non-180° domain switching. The switching strain drops quickly with the increasing frequency, and stabilized at about 0.2% at or above 1.0 Hz. The large actuation strain remains quite stable after 104 cycles of loading, which is very promising for low-frequency, large-strain actuators.
Compact piezoelectric tripod manipulator based on a reverse bridge-type amplification mechanism
NASA Astrophysics Data System (ADS)
Na, Tae-Won; Choi, Jun-Ho; Jung, Jin-Young; Kim, Hyeong-Geon; Han, Jae-Hung; Park, Kwang-Chun; Oh, Il-Kwon
2016-09-01
We report a hierarchical piezoelectric tripod manipulator based on a reverse bridge-type displacement amplifier. The reverse bridge-type amplification mechanism is pre-strained by each piezo-stack actuator up to 60 μm and is cross-stacked in a series arrangement to make a compact and high-stroke manipulator having load-bearing characteristics. The designed manipulator with three degrees of freedom is compact with a height of 56.0 mm, a diameter of 48.6 mm and total weight of 115 g. It achieves a translational stroke of up to 880 μm in heaving motion and a tilting angle of up to 2.0° in rotational motion within the operating voltage and power range of the piezoelectric stack actuator. A key feature of the present design is built-in and pre-strained displacement amplification mechanisms integrated with piezoelectric stacked actuators, resulting in a compact tripod manipulator having exceptionally high stroke and load-bearing capacity.
Reversible photocapture of a [2]rotaxane harnessing a barbiturate template.
Tron, Arnaud; Thornton, Peter J; Lincheneau, Christophe; Desvergne, Jean-Pierre; Spencer, Neil; Tucker, James H R; McClenaghan, Nathan D
2015-01-16
Photoirradiation of a hydrogen-bonded molecular complex comprising acyclic components, namely, a stoppered thread (1) with a central barbiturate motif and an optimized doubly anthracene-terminated acyclic Hamilton-like receptor (2b), leads to an interlocked architecture, which was isolated and fully characterized. The sole isolated interlocked photoproduct (Φ = 0.06) is a [2]rotaxane, with the dimerized anthracenes assuming a head-to-tail geometry, as evidenced by NMR spectroscopy and consistent with molecular modeling (PM6). A different behavior was observed on irradiating homologous molecular complexes 1⊂2a, 1⊂2b, and 1⊂2c, where the spacers of 2a, 2b, and 2c incorporated 3, 6, and 9 methylene units, respectively. While no evidence of interlocked structure formation was observed following irradiation of 1⊂2a, a kinetically labile rotaxane was obtained on irradiating the complex 1⊂2c, and ring slippage was revealed. A more stable [2]rotaxane was formed on irradiating 1⊂2b, whose capture is found to be fully reversible upon heating, thereby resetting the system, with some fatigue (38%) after four irradiation–thermal reversion cycles.
Micromechanics of composite laminate compression failure
NASA Technical Reports Server (NTRS)
Guynn, E. Gail; Bradley, Walter L.
1986-01-01
The Dugdale analysis for metals loaded in tension was adapted to model the failure of notched composite laminates loaded in compression. Compression testing details, MTS alignment verification, and equipment needs were resolved. Thus far, only 2 ductile material systems, HST7 and F155, were selected for study. A Wild M8 Zoom Stereomicroscope and necessary attachments for video taping and 35 mm pictures were purchased. Currently, this compression test system is fully operational. A specimen is loaded in compression, and load vs shear-crippling zone size is monitored and recorded. Data from initial compression tests indicate that the Dugdale model does not accurately predict the load vs damage zone size relationship of notched composite specimens loaded in compression.
A high yield reverse micelle synthesis of catalysts and catalyst precursors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Linehan, J.C.; Matson, D.W.; Darab, J.G.
1995-04-01
Reverse micelles or water-in-oil microemulsions have been prepared using a mixed AOT/SDS surfactant to increase the stability of the microemulsion and thereby allow a high loading of particle-forming precursors in the aqueous cores. The Modified Reverse Micelles (MRM), as these new binary surfactant microemulsions are called, have proven useful for the laboratory-scale synthesis of nanoscale metals, metal oxides, metal sulfides, and mixed metal materials. The system allows control over the phase and size of the precipitated crystallites and is ideal for producing nanocrystalline powders and suspensions.
Two-dimensional interpreter for field-reversed configurations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steinhauer, Loren, E-mail: lstein@uw.edu
2014-08-15
An interpretive method is developed for extracting details of the fully two-dimensional (2D) “internal” structure of field-reversed configurations (FRC) from common diagnostics. The challenge is that only external and “gross” diagnostics are routinely available in FRC experiments. Inferring such critical quantities as the poloidal flux and the particle inventory has commonly relied on a theoretical construct based on a quasi-one-dimensional approximation. Such inferences sometimes differ markedly from the more accurate, fully 2D reconstructions of equilibria. An interpreter based on a fully 2D reconstruction is needed to enable realistic within-the-shot tracking of evolving equilibrium properties. Presented here is a flexible equilibriummore » reconstruction with which an extensive data base of equilibria was constructed. An automated interpreter then uses this data base as a look-up table to extract evolving properties. This tool is applied to data from the FRC facility at Tri Alpha Energy. It yields surprising results at several points, such as the inferences that the local β (plasma pressure/external magnetic pressure) of the plasma climbs well above unity and the poloidal flux loss time is somewhat longer than previously thought, both of which arise from full two-dimensionality of FRCs.« less
2017-09-01
12. xii THIS PAGE INTENTIONALLY LEFT BLANK xiii LIST OF ACRONYMS AND ABBREVIATIONS AC alternating current ATG auxiliary turbine generator...invariant MTG main turbine generator MVDC medium voltage DC NAVSEA U.S. Naval Sea Systems Command PGM power generation module RC resistor-capacitor RL...arrangement because the gas turbines used for prime movers are more efficient when they are fully loaded. By amalgamating loads onto fewer machines
Assessment of dynamic effects on aircraft design loads: The landing impact case
NASA Astrophysics Data System (ADS)
Bronstein, Michael; Feldman, Esther; Vescovini, Riccardo; Bisagni, Chiara
2015-10-01
This paper addresses the potential benefits due to a fully dynamic approach to determine the design loads of a mid-size business jet. The study is conducted by considering the fuselage midsection of the DAEDALOS aircraft model with landing impact conditions. The comparison is presented in terms of stress levels between the novel dynamic approach and the standard design practice based on the use of equivalent static loads. The results illustrate that a slight reduction of the load levels can be achieved, but careful modeling of the damping level is needed. Guidelines for an improved load definition are discussed, and suggestions for future research activities are provided.
Failure of a laminated composite under tension-compression fatigue loading
NASA Technical Reports Server (NTRS)
Rotem, A.; Nelson, H. G.
1989-01-01
The fatigue behavior of composite laminates under tension-compression loading is analyzed and compared with behavior under tension-tension and compression-compression loading. It is shown that for meaningful fatigue conditions, the tension-compression case is the dominant one. Both tension and compression failure modes can occur under the reversed loading, and failure is dependent on the specific lay-up of the laminate and the difference between the tensile static strength and the absolute value of the compressive static strength. The use of a fatigue failure envelope for determining the fatigue life and mode of failure is proposed and demonstrated.
Frentzou, Georgia A; Drinkhill, Mark J; Turner, Neil A; Ball, Stephen G; Ainscough, Justin F X
2015-08-01
Cardiac dysfunction is commonly associated with high-blood-pressure-induced cardiomyocyte hypertrophy, in response to aberrant renin-angiotensin system (RAS) activity. Ensuing pathological remodelling promotes cardiomyocyte death and cardiac fibroblast activation, leading to cardiac fibrosis. The initiating cellular mechanisms that underlie this progressive disease are poorly understood. We previously reported a conditional mouse model in which a human angiotensin II type-I receptor transgene (HART) was expressed in differentiated cardiomyocytes after they had fully matured, but not during development. Twelve-month-old HART mice exhibited ventricular dysfunction and cardiomyocyte hypertrophy with interstitial fibrosis following full receptor stimulation, without affecting blood pressure. Here, we show that chronic HART activity in young adult mice causes ventricular dysfunction without hypertrophy, fibrosis or cardiomyocyte death. Dysfunction correlated with reduced expression of pro-hypertrophy markers and increased expression of pro-angiogenic markers in the cardiomyocytes experiencing increased receptor load. This stimulates responsive changes in closely associated non-myocyte cells, including the downregulation of pro-angiogenic genes, a dampened inflammatory response and upregulation of Tgfβ. Importantly, this state of compensated dysfunction was reversible. Furthermore, increased stimulation of the receptors on the cardiomyocytes caused a switch in the secondary response from the non-myocyte cells. Progressive cardiac remodelling was stimulated through hypertrophy and death of individual cardiomyocytes, with infiltration, proliferation and activation of fibroblast and inflammatory cells, leading to increased angiogenic and inflammatory signalling. Together, these data demonstrate that a state of pre-hypertrophic compensated dysfunction can exist in affected individuals before common markers of heart disease are detectable. The data also suggest that there is an initial response from the housekeeping cells of the heart to signals emanating from distressed neighbouring cardiomyocytes to suppress those changes most commonly associated with progressive heart disease. We suggest that the reversible nature of this state of compensated dysfunction presents an ideal window of opportunity for personalised therapeutic intervention. © 2015. Published by The Company of Biologists Ltd.
Costantini, Oren; Choi, Daniel S; Kontaxis, Andreas; Gulotta, Lawrence V
2015-07-01
There has been a renewed interest in lateralizing the center of rotation (CoR) in implants used in reverse shoulder arthroplasty. The aim of this study was to determine the sensitivity of lateralization of the CoR on the glenohumeral joint contact forces, muscle moment arms, torque across the bone-implant interface, and the stability of the implant. A 3-dimensional virtual model was used to investigate how lateralization affects deltoid muscle moment arm and glenohumeral joint contact forces. This model was virtually implanted with 5 progressively lateralized reverse shoulder prostheses. The joint contact loads and deltoid moment arms were calculated for each lateralization over the course of 3 simulated standard humerothoracic motions. Lateralization of the CoR leads to an increase in the overall joint contact forces across the glenosphere. Most of this increased loading occurred through compression, although increases in anterior/posterior and superior/inferior shear were also observed. Moment arms of the deltoid consistently decreased with lateralization. Bending moments at the implant interface increased with lateralization. Progressive lateralization resulted in improved stability ratios. Lateralization results in increased joint loading. Most of that loading occurs through compression, although there were also increases in shear forces. Anterior/posterior shear is currently not accounted for in implant fixation studies, leaving its effect on implant fixation unknown. Future studies should incorporate shear forces into their models to more accurately assess fixation methods. Copyright © 2015 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Bowman, James S., Jr.
1956-01-01
An investigation has been conducted in the Langley 20-foot free-spinning tunnel on a l/19-scale model of the North American T-28C airplane to determine the spin and recovery characteristics. The T-28C airplane is similar to the T-28B airplane except for slight modifications for the arresting hook. The lower rear section of the fuselage was cut out and, consequently, the lower part of the rudder was removed to make a smooth fairing with the fuselage. The T-28B airplane had good recovery characteristics; but these modifications, along with the addition of gun packages on the wings, led to poor and unsatisfactory spin-recovery characteristics during demonstration spins of the T-28C airplane. Model test results indicated that without the gun packages installed, satisfactory recoveries could be obtained if the elevators were held full back while the rudder was fully reversed and the ailerons were held neutral. However, with the addition of gun packages to the wings and the corresponding change in loading, recoveries were considered unsatisfactory. Recoveries attempted by using a larger chord or larger span rudder were improved very slightly, but were still considered marginal or unsatisfactory. Strakes placed on the nose of the model were effective in slowing the spin rotation slightly and, in most instances, decreased the turns for recovery slightly. Recovery characteristics were slightly marginal for the full fuel loading when strakes and the extended-chord rudder were installed; but with the wing fuel partly used, recovery characteristics were again considered unsatisfactory or, at least, definitely on the marginal side. The optimum control technique for recovery is movement of the rudder to full against the spin with the stick held full back (elevators full up) and the ailerons held neutral, followed by forward movement of the stick only after the spin rotation ceases. Inverted-spin test results indicate that the airplane will spin steep and fast and that recovery by full rudder reversal will be satisfactory if the ailerons are held neutral.
NASA Astrophysics Data System (ADS)
Wang, H. C.; Chen, G. F.; Gong, M. Q.; Li, X.
2017-12-01
Thermodynamic performance comparison of single-stage mixed-refrigerant Joule-Thomson cycle (MJTR) and pure refrigerant reverse Brayton cycle (RBC) for cooling 80 to 120 K temperature-distributed heat loads was conducted in this paper. Nitrogen under various liquefaction pressures was employed as the heat load. The research was conducted under nonideal conditions by exergy analysis methods. Exergy efficiency and volumetric cooling capacity are two main evaluation parameters. Exergy loss distribution in each process of refrigeration cycle was also investigated. The exergy efficiency and volumetric cooling capacity of MJTR were obviously superior to RBC in 90 to 120 K temperature zone, but still inferior to RBC at 80 K. The performance degradation of MJTR was caused by two main reasons: The high fraction of neon resulted in large entropy generation and exergy loss in throttling process. Larger duty and WLMTD lead to larger exergy losses in recuperator.
Microstructural fingerprints of phase transitions in shock-loaded iron
NASA Astrophysics Data System (ADS)
Wang, S. J.; Sui, M. L.; Chen, Y. T.; Lu, Q. H.; Ma, E.; Pei, X. Y.; Li, Q. Z.; Hu, H. B.
2013-01-01
The complex structural transformation in crystals under static pressure or shock loading has been a subject of long-standing interest to materials scientists and physicists. The polymorphic transformation is of particular importance for iron (Fe), due to its technological and sociological significance in the development of human civilization, as well as its prominent presence in the earth's core. The martensitic transformation α-->ɛ (bcc-->hcp) in iron under shock-loading, due to its reversible and transient nature, requires non-trivial detective work to uncover its occurrence. Here we reveal refined microstructural fingerprints, needle-like colonies and three sets of {112}<111> twins with a threefold symmetry, with tell-tale features that are indicative of two sequential martensitic transformations in the reversible α-->ɛ phase transition, even though no ɛ is retained in the post-shock samples. The signature orientation relationships are consistent with previously-proposed transformation mechanisms, and the unique microstructural fingerprints enable a quantitative assessment of the volume fraction transformed.
Joint Kinetics and Kinematics During Common Lower Limb Rehabilitation Exercises
Comfort, Paul; Jones, Paul Anthony; Smith, Laura Constance; Herrington, Lee
2015-01-01
Context Unilateral body-weight exercises are commonly used to strengthen the lower limbs during rehabilitation after injury, but data comparing the loading of the limbs during these tasks are limited. Objective To compare joint kinetics and kinematics during 3 commonly used rehabilitation exercises. Design Descriptive laboratory study. Setting Laboratory. Patients or Other Participants A total of 9 men (age = 22.1 ± 1.3 years, height = 1.76 ± 0.08 m, mass = 80.1 ± 12.2 kg) participated. Intervention(s) Participants performed the single-legged squat, forward lunge, and reverse lunge with kinetic data captured via 2 force plates and 3-dimensional kinematic data collected using a motion-capture system. Main Outcome Measure(s) Peak ground reaction forces, maximum joint angles, and peak sagittal-joint moments. Results We observed greater eccentric and concentric peak vertical ground reaction forces during the single-legged squat than during both lunge variations (P ≤ .001). Both lunge variations demonstrated greater knee and hip angles than did the single-legged squat (P < .001), but we observed no differences between lunges (P > .05). Greater dorsiflexion occurred during the single-legged squat than during both lunge variations (P < .05), but we noted no differences between lunge variations (P = .70). Hip-joint moments were greater during the forward lunge than during the reverse lunge (P = .003) and the single-legged squat (P = .011). Knee-joint moments were greater in the single-legged squat than in the reverse lunge (P < .001) but not greater in the single-legged squat than in the forward lunge (P = .41). Ankle-joint moments were greater during the single-legged squat than during the forward lunge (P = .002) and reverse lunge (P < .001). Conclusions Appropriate loading progressions for the hip should begin with the single-legged squat and progress to the reverse lunge and then the forward lunge. In contrast, loading progressions for the knee and ankle should begin with the reverse lunge and progress to the forward lunge and then the single-legged squat. PMID:26418958
40 CFR 86.884-7 - Dynamometer operation cycle for smoke emission tests.
Code of Federal Regulations, 2014 CFR
2014-07-01
... provide the speed and load necessary to comply with the heavy-duty “curb idle” definition per § 86.084-2..., and held in, the fully open position. The inertia of the engine and the dynamometer, or alternately a... mode, motoring assist may be used to offset excessive dynamometer inertia load when necessary. No...
40 CFR 86.884-7 - Dynamometer operation cycle for smoke emission tests.
Code of Federal Regulations, 2012 CFR
2012-07-01
... be set to provide the speed and load necessary to comply with the heavy-duty “curb idle” definition..., and held in, the fully open position. The inertia of the engine and the dynamometer, or alternately a... mode, motoring assist may be used to offset excessive dynamometer inertia load when necessary. No...
40 CFR 86.884-7 - Dynamometer operation cycle for smoke emission tests.
Code of Federal Regulations, 2013 CFR
2013-07-01
... be set to provide the speed and load necessary to comply with the heavy-duty “curb idle” definition..., and held in, the fully open position. The inertia of the engine and the dynamometer, or alternately a... mode, motoring assist may be used to offset excessive dynamometer inertia load when necessary. No...
40 CFR 86.884-7 - Dynamometer operation cycle for smoke emission tests.
Code of Federal Regulations, 2011 CFR
2011-07-01
... be set to provide the speed and load necessary to comply with the heavy-duty “curb idle” definition..., and held in, the fully open position. The inertia of the engine and the dynamometer, or alternately a... mode, motoring assist may be used to offset excessive dynamometer inertia load when necessary. No...
Berenguer, Juan; Polo, Rosa; Aldeguer, José López; Lozano, Fernando; Aguirrebengoa, Koldo; Arribas, José Ramón; Blanco, José Ramón; Boix, Vicente; Casado, José Luis; Clotet, Bonaventura; Crespo, Manuel; Domingo, Pere; Estrada, Vicente; García, Federico; Gatell, José María; González-García, Juan; Gutiérrez, Félix; Iribarren, José Antonio; Knobel, Hernando; Llibre, Josep María; Locutura, Jaime; López, Juan Carlos; Miró, José M; Moreno, Santiago; Podzamczer, Daniel; Portilla, Joaquín; Pulido, Federico; Ribera, Esteban; Riera, Melchor; Rubio, Rafael; Santos, Jesús; Sanz-Moreno, José; Sanz, Jesús; Téllez, María Jesús; Tuset, Montserrat; Rivero, Antonio
2015-10-01
In this update, antiretroviral therapy (ART) is recommended for all patients infected by type 1 human immunodeficiency virus (HIV-1). The strength and grade of the recommendation vary depending on the CD4+ T-lymphocyte count, the presence of opportunistic infections or comorbid conditions, age, and the efforts to prevent the transmission of HIV. The objective of ART is to achieve an undetectable plasma viral load (PVL). Initial ART should comprise three drugs, namely, two nucleoside reverse transcriptase inhibitors (NRTI) and one drug from another family. Three of the recommended regimens, all of which have an integrase strand transfer inhibitor (INSTI) as the third drug, are considered a preferred regimen; a further seven regimens, which are based on an INSTI, an non-nucleoside reverse transcriptase inhibitor (NNRTI), or a protease inhibitor boosted with ritonavir (PI/r), are considered alternatives. The reasons and criteria for switching ART are presented both for patients with an undetectable PVL and for patients who experience virological failure, in which case the rescue regimen should include three (or at least two) drugs that are fully active against HIV. The specific criteria for ART in special situations (acute infection, HIV-2 infection, pregnancy) and comorbid conditions (tuberculosis and other opportunistic infections, kidney disease, liver disease, and cancer) are updated. Copyright © 2015 Elsevier España, S.L.U. y Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.
Faded-example as a Tool to Acquire and Automate Mathematics Knowledge
NASA Astrophysics Data System (ADS)
Retnowati, E.
2017-04-01
Students themselves accomplish Knowledge acquisition and automation. The teacher plays a role as the facilitator by creating mathematics tasks that assist students in building knowledge efficiently and effectively. Cognitive load caused by learning material presented by teachers should be considered as a critical factor. While the intrinsic cognitive load is related to the degree of complexity of the material learning ones can handle, the extraneous cognitive load is directly caused by how the material is presented. Strategies to present a learning material in computational learning domains like mathematics are a namely worked example (fully-guided task) or problem-solving (discovery task with no guidance). According to the empirical evidence, learning based on problem-solving may cause high-extraneous cognitive load for students who have limited prior knowledge, conversely learn based on worked example may cause high-extraneous cognitive load for students who have mastered the knowledge base. An alternative is a faded example consisting of the partly-completed task. Learning from faded-example can facilitate students who already acquire some knowledge about the to-be-learned material but still need more practice to automate the knowledge further. This instructional strategy provides a smooth transition from a fully-guided into an independent problem solver. Designs of faded examples for learning trigonometry are discussed.
Effect of loading speed on the stress-induced magnetic behavior of ferromagnetic steel
NASA Astrophysics Data System (ADS)
Bao, Sheng; Gu, Yibin; Fu, Meili; Zhang, Da; Hu, Shengnan
2017-02-01
The primary goal of this research is to investigate the effect of loading speed on the stress-induced magnetic behavior of a ferromagnetic steel. Uniaxial tension tests on Q235 steel were carried out with various stress levels under different loading speeds. The variation of the magnetic signals surrounding the tested specimen was detected by a fluxgate magnetometer. The results indicated that the magnetic signal variations depended not only on the tensile load level but on the loading speed during the test. The magnetic field amplitude seemed to decrease gradually with the increase in loading speed at the same tensile load level. Furthermore, the evolution of the magnetic reversals is also related to the loading speed. Accordingly, the loading speed should be considered as one of the influencing variables in the Jies-Atherton model theory of the magnetomechanical effect.
Simulating the Solar Wind Interaction with Comet 67P/Churyumov-Gerasimenko: Latest Results
NASA Astrophysics Data System (ADS)
Deca, J.; Divin, A. V.; Henri, P.; Eriksson, A. I.; Markidis, S.; Olshevsky, V.; Goldstein, R.; Myllys, M. E.; Horanyi, M.
2017-12-01
First observed in 1969, comet 67P/Churyumov-Gerasimenko was escorted for almost two years along its 6.45-yr elliptical orbit by ESA's Rosetta orbiter spacecraft. When a comet is sufficiently close to the Sun, the sublimation of ice leads to an outgassing atmosphere and the formation of a coma, and a dust and plasma tail. Comets are critical to decipher the physics of gas release processes in space. The latter result in mass-loaded plasmas, which more than three decades after the Active Magnetospheric Particle Tracer Explorers (AMPTE) space release experiments are still not fully understood. Using a 3D fully kinetic approach, we study the solar wind interaction with comet 67P/Churyumov-Gerasimenko, focusing in particular on the ion-electron dynamics for various outgassing rates. A detailed kinetic treatment of the electron dynamics is critical to fully capture the complex physics of mass-loading plasmas and to describe the strongly inhomogeneous plasma dynamics observed by Rosetta, down to electron kinetic scales.
Reversible and Irreversible Time-Dependent Behavior of GRCop-84
NASA Technical Reports Server (NTRS)
Lerch, Bradley A.; Arnold, Steven M.; Ellis, David L.
2017-01-01
A series of mechanical tests were conducted on a high-conductivity copper alloy, GRCop-84, in order to understand the time dependent response of this material. Tensile, creep, and stress relaxation tests were performed over a wide range of temperatures, strain rates, and stress levels to excite various amounts of time-dependent behavior. At low applied stresses the deformation behavior was found to be fully reversible. Above a certain stress, termed the viscoelastic threshold, irreversible deformation was observed. At these higher stresses the deformation was observed to be viscoplastic. Both reversible and irreversible regions contained time dependent deformation. These experimental data are documented to enable characterization of constitutive models to aid in design of high temperature components.
Reverse osmosis water purification system
NASA Technical Reports Server (NTRS)
Ahlstrom, H. G.; Hames, P. S.; Menninger, F. J.
1986-01-01
A reverse osmosis water purification system, which uses a programmable controller (PC) as the control system, was designed and built to maintain the cleanliness and level of water for various systems of a 64-m antenna. The installation operates with other equipment of the antenna at the Goldstone Deep Space Communication Complex. The reverse osmosis system was designed to be fully automatic; with the PC, many complex sequential and timed logic networks were easily implemented and are modified. The PC monitors water levels, pressures, flows, control panel requests, and set points on analog meters; with this information various processes are initiated, monitored, modified, halted, or eliminated as required by the equipment being supplied pure water.
Basnar, Bernhard; Schartner, Stephan; Austerer, Maximilian; Andrews, Aaron Maxwell; Roch, Tomas; Schrenk, Werner; Strasser, Gottfried
2008-06-09
We present a novel approach for the reversible switching of the emission wavelength of a quantum cascade laser (QCL) using a halochromic cladding. An air-waveguide laser ridge is coated with a thin layer of polyacrylic acid. This cladding introduces losses corresponding to the absorption spectrum of the polymer. By changing the state of the polymer, the absorption spectrum and losses change, inducing a shift of 7 cm(-1) in the emission wavelength. This change is induced by exposure to acidic or alkaline vapors under ambient conditions and is fully reversible. Such lasers can be used as multi-color light source and as sensor for atmospheric pH.
Simulation and resolution of voltage reversal in microbial fuel cell stack.
Sugnaux, Marc; Savy, Cyrille; Cachelin, Christian Pierre; Hugenin, Gérald; Fischer, Fabian
2017-08-01
To understand the biotic and non-biotic contributions of voltage reversals in microbial fuel cell stacks (MFC) they were simulated with an electronic MFC-Stack mimic. The simulation was then compared with results from a real 3L triple MFC-Stack with shared anolyte. It showed that voltage reversals originate from the variability of biofilms, but also the external load plays a role. When similar biofilm properties were created on all anodes the likelihood of voltage reversals was largely reduced. Homogenous biofilms on all anodes were created by electrical circuit alternation and electrostimulation. Conversely, anolyte recirculation, or increased nutriment supply, postponed reversals and unfavourable voltage asymmetries on anodes persisted. In conclusion, voltage reversals are often a negative event but occur also in close to best MFC-Stack performance. They were manageable and this with a simplified MFC architecture in which multiple anodes share the same anolyte. Copyright © 2017 Elsevier Ltd. All rights reserved.
Diluting the burden of load: perceptual load effects are simply dilution effects.
Tsal, Yehoshua; Benoni, Hanna
2010-12-01
The substantial distractor interference obtained for small displays when the target appears alone is reduced in large displays when the target is embedded among neutral letters. This finding has been interpreted as reflecting low-load and high-load processing, respectively, thereby supporting the theory of perceptual load (Lavie & Tsal, 1994). However, a possible alternative interpretation of this effect is that the distractor is similarly processed in both displays, yet its interference in the large ones is diluted by the presence of the neutral letters. We separated the effects of load and dilution by introducing dilution displays. They contained as many letters as the high-load displays but were clearly distinguished from the target, thus allowing for a low-load processing mode. Distractor interference obtained under both the low-load and high-load conditions disappeared under the dilution condition. Hence, the display size effect traditionally misattributed to perceptual load is fully accounted for by dilution. Furthermore, when dilution is controlled for, it is high load not low load producing greater interference.
Smart cushion innovations (ACI) 100gm crash attenuator.
DOT National Transportation Integrated Search
2015-03-01
Determine the effectiveness of the SCI100GM in a mainline application. The : SCI100GM is a fully redirective, speed-dependent, non-gating, bi-directional crash : attenuator with a reverse-tapered design to eliminate side panel stress during a : colla...
SPREADSHEET BASED SCALING CALCULATIONS AND MEMBRANE PERFORMANCE
Many membrane element manufacturers provide a computer program to aid buyers in the use of their elements. However, to date there are few examples of fully integrated public domain software available for calculating reverse osmosis and nanofiltration system performance. The Total...
Conduction block of mammalian myelinated nerve by local cooling to 15–30°C after a brief heating
Zhang, Zhaocun; Lyon, Timothy D.; Kadow, Brian T.; Shen, Bing; Wang, Jicheng; Lee, Andy; Kang, Audry; Roppolo, James R.; de Groat, William C.
2016-01-01
This study aimed at understanding thermal effects on nerve conduction and developing new methods to produce a reversible thermal block of axonal conduction in mammalian myelinated nerves. In 13 cats under α-chloralose anesthesia, conduction block of pudendal nerves (n = 20) by cooling (5–30°C) or heating (42–54°C) a small segment (9 mm) of the nerve was monitored by the urethral striated muscle contractions and increases in intraurethral pressure induced by intermittent (5 s on and 20 s off) electrical stimulation (50 Hz, 0.2 ms) of the nerve. Cold block was observed at 5–15°C while heat block occurred at 50–54°C. A complete cold block up to 10 min was fully reversible, but a complete heat block was only reversible when the heating duration was less than 1.3 ± 0.1 min. A brief (<1 min) reversible complete heat block at 50–54°C or 15 min of nonblock mild heating at 46–48°C significantly increased the cold block temperature to 15–30°C. The effect of heating on cold block fully reversed within ∼40 min. This study discovered a novel method to block mammalian myelinated nerves at 15–30°C, providing the possibility to develop an implantable device to block axonal conduction and treat many chronic disorders. The effect of heating on cold block is of considerable interest because it raises many basic scientific questions that may help reveal the mechanisms underlying cold or heat block of axonal conduction. PMID:26740534
Cochis, A.; Grad, S.; Stoddart, M. J.; Farè, S.; Altomare, L.; Azzimonti, B.; Alini, M.; Rimondini, L.
2017-01-01
Autologous chondrocyte implantation for cartilage repair represents a challenge because strongly limited by chondrocytes’ poor expansion capacity in vitro. Mesenchymal stem cells (MSCs) can differentiate into chondrocytes, while mechanical loading has been proposed as alternative strategy to induce chondrogenesis excluding the use of exogenous factors. Moreover, MSC supporting material selection is fundamental to allow for an active interaction with cells. Here, we tested a novel thermo-reversible hydrogel composed of 8% w/v methylcellulose (MC) in a 0.05 M Na2SO4 solution. MC hydrogel was obtained by dispersion technique and its thermo-reversibility, mechanical properties, degradation and swelling were investigated, demonstrating a solution-gelation transition between 34 and 37 °C and a low bulk degradation (<20%) after 1 month. The lack of any hydrogel-derived immunoreaction was demonstrated in vivo by mice subcutaneous implantation. To induce in vitro chondrogenesis, MSCs were seeded into MC solution retained within a porous polyurethane (PU) matrix. PU-MC composites were subjected to a combination of compression and shear forces for 21 days in a custom made bioreactor. Mechanical stimulation led to a significant increase in chondrogenic gene expression, while histological analysis detected sulphated glycosaminoglycans and collagen II only in loaded specimens, confirming MC hydrogel suitability to support load induced MSCs chondrogenesis. PMID:28332587
Series-counterpulse repetitive-pulse inductive storage circuit
Honig, Emanuel M.
1986-01-01
A high-power series-counterpulse repetitive-pulse inductive energy storage and transfer circuit includes an opening switch, a main energy storage coil, and a counterpulse capacitor. The load pulse is initiated simultaneously with the initiation of the counterpulse which is used to turn the opening switch off. There is no delay from command to output pulse. During the load pulse, the counterpulse capacitor is first discharged and then recharged in the opposite polarity with sufficient energy to accomplish the load counterpulse which terminates the load pulse and turns the load switch off. When the main opening switch is triggered closed again to terminate the load pulse, the counterpulse capacitor discharges in the reverse direction through the load switch and through the load, causing a rapid, sharp cutoff of the load pulse as well as recovering any energy remaining in the load inductance. The counterpulse capacitor is recharged to its original condition by the main energy storage coil after the load pulse is over, not before it begins.
Development of an Aeroelastic Modeling Capability for Transient Nozzle Side Load Analysis
NASA Technical Reports Server (NTRS)
Wang, Ten-See; Zhao, Xiang; Zhang, Sijun; Chen, Yen-Sen
2013-01-01
Lateral nozzle forces are known to cause severe structural damage to any new rocket engine in development. Currently there is no fully coupled computational tool to analyze this fluid/structure interaction process. The objective of this study was to develop a fully coupled aeroelastic modeling capability to describe the fluid/structure interaction process during the transient nozzle operations. The aeroelastic model composes of three components: the computational fluid dynamics component based on an unstructured-grid, pressure-based computational fluid dynamics formulation, the computational structural dynamics component developed in the framework of modal analysis, and the fluid-structural interface component. The developed aeroelastic model was applied to the transient nozzle startup process of the Space Shuttle Main Engine at sea level. The computed nozzle side loads and the axial nozzle wall pressure profiles from the aeroelastic nozzle are compared with those of the published rigid nozzle results, and the impact of the fluid/structure interaction on nozzle side loads is interrogated and presented.
Development of a Practical Methodology for Elastic-Plastic and Fully Plastic Fatigue Crack Growth
NASA Technical Reports Server (NTRS)
McClung, R. C.; Chell, G. G.; Lee, Y. -D.; Russell, D. A.; Orient, G. E.
1999-01-01
A practical engineering methodology has been developed to analyze and predict fatigue crack growth rates under elastic-plastic and fully plastic conditions. The methodology employs the closure-corrected effective range of the J-integral, delta J(sub eff) as the governing parameter. The methodology contains original and literature J and delta J solutions for specific geometries, along with general methods for estimating J for other geometries and other loading conditions, including combined mechanical loading and combined primary and secondary loading. The methodology also contains specific practical algorithms that translate a J solution into a prediction of fatigue crack growth rate or life, including methods for determining crack opening levels, crack instability conditions, and material properties. A critical core subset of the J solutions and the practical algorithms has been implemented into independent elastic-plastic NASGRO modules. All components of the entire methodology, including the NASGRO modules, have been verified through analysis and experiment, and limits of applicability have been identified.
Development of a Practical Methodology for Elastic-Plastic and Fully Plastic Fatigue Crack Growth
NASA Technical Reports Server (NTRS)
McClung, R. C.; Chell, G. G.; Lee, Y.-D.; Russell, D. A.; Orient, G. E.
1999-01-01
A practical engineering methodology has been developed to analyze and predict fatigue crack growth rates under elastic-plastic and fully plastic conditions. The methodology employs the closure-corrected effective range of the J-integral, (Delta)J(sub eff), as the governing parameter. The methodology contains original and literature J and (Delta)J solutions for specific geometries, along with general methods for estimating J for other geometries and other loading conditions, including combined mechanical loading and combined primary and secondary loading. The methodology also contains specific practical algorithms that translate a J solution into a prediction of fatigue crack growth rate or life, including methods for determining crack opening levels, crack instability conditions, and material properties. A critical core subset of the J solutions and the practical algorithms has been implemented into independent elastic-plastic NASGRO modules. All components of the entire methodology, including the NASGRO modules, have been verified through analysis and experiment, and limits of applicability have been identified.
NASA Technical Reports Server (NTRS)
Castelli, Michael G.; Arnold, Steven M.
2000-01-01
Structural materials for the design of advanced aeropropulsion components are usually subject to loading under elevated temperatures, where a material's viscosity (resistance to flow) is greatly reduced in comparison to its viscosity under low-temperature conditions. As a result, the propensity for the material to exhibit time-dependent deformation is significantly enhanced, even when loading is limited to a quasi-linear stress-strain regime as an effort to avoid permanent (irreversible) nonlinear deformation. An understanding and assessment of such time-dependent effects in the context of combined reversible and irreversible deformation is critical to the development of constitutive models that can accurately predict the general hereditary behavior of material deformation. To this end, researchers at the NASA Glenn Research Center at Lewis Field developed a unique experimental technique that identifies the existence of and explicitly determines a threshold stress k, below which the time-dependent material deformation is wholly reversible, and above which irreversible deformation is incurred. This technique is unique in the sense that it allows, for the first time, an objective, explicit, experimental measurement of k. The underlying concept for the experiment is based on the assumption that the material s time-dependent reversible response is invariable, even in the presence of irreversible deformation.
Sensorless Load Torque Estimation and Passivity Based Control of Buck Converter Fed DC Motor
Kumar, S. Ganesh; Thilagar, S. Hosimin
2015-01-01
Passivity based control of DC motor in sensorless configuration is proposed in this paper. Exact tracking error dynamics passive output feedback control is used for stabilizing the speed of Buck converter fed DC motor under various load torques such as constant type, fan type, propeller type, and unknown load torques. Under load conditions, sensorless online algebraic approach is proposed, and it is compared with sensorless reduced order observer approach. The former produces better response in estimating the load torque. Sensitivity analysis is also performed to select the appropriate control variables. Simulation and experimental results fully confirm the superiority of the proposed approach suggested in this paper. PMID:25893208
Biomimetic Design of an Under-Actuated Leg Exoskeleton for Load-Carrying Augmentation
2006-02-01
exoskeleton design has not considered the passive dynamics of walking and has focused on fully actuated systems that are inefficient and heavy. In this...passive dynamics of walking and has focused on fully actuated systems that are inefficient and heavy. In this thesis, an under-actuated exoskeleton...40 Figure 3.22 Braking torque of the magnetorheological damper vs. current .................... 41 Figure
Fully Loaded: Outfitting a Teacher Librarian for the 21st Century. Here's What It Takes
ERIC Educational Resources Information Center
Valenza, Joyce Kasman
2011-01-01
Like many teacher librarians, this author is often blessed with the opportunity to mentor preservice teacher librarians. There are "apps" she would like to "load" onto every student teacher-librarian's "screen," if he or she is to have true credibility in leading a school through an information and communication landscape that is continually in…
Effect of Roller Profile on Cylindrical Roller Bearing Life Prediction
NASA Technical Reports Server (NTRS)
Poplawski, Joseph V.; Zaretsky, Erwin V.; Peters, Steven M.
2000-01-01
Four roller profiles used in cylindrical roller bearing design and manufacture were analyzed using both a closed form solution and finite element analysis (FEA) for stress and life. The roller profiles analyzed were flat, tapered end, aerospace, and fully crowned loaded against a flat raceway. Four rolling-element bearing life models were chosen for this analysis and compared. These were those of Weibull, Lundberg and Palmgren, Ioannides and Harris, and Zaretsky. The flat roller profile without edge loading has the longest predicted life. However, edge loading can reduce life by as much as 98 percent. The end tapered profile produced the highest lives but not significantly different than the aerospace profile. The fully crowned profile produces the lowest lives. The resultant predicted life at each stress condition not only depends on the life equation used but also on the Weibull slope assumed. For Weibull slopes of 1.5 and 2, both Lundberg-Palmgren and Iaonnides-Harris equations predict lower lives than the ANSI/ABMAJISO standards. Based upon the Hertz stresses for line contact, the accepted load-life exponent of 10/3 results in a maximum Hertz stress-life exponent equal to 6.6. This value is inconsistent with that experienced in the field.
NASA Astrophysics Data System (ADS)
Zhu, Hong; Huang, Mai; Sadagopan, Sriram; Yao, Hong
2017-09-01
With increasing vehicle fuel economy standards, automotive OEMs are widely using various AHSS grades including DP, TRIP, CP and 3rd Gen AHSS to reduce vehicle weight due to their good combination of strength and formability. As one of enabling technologies for AHSS application, the requirement for requiring accurate prediction of springback for cold stamped AHSS parts stimulated a large number of investigations in the past decade with reversed loading path at large strains followed by constitutive modeling. With a spectrum of complex loading histories occurring in production stamping processes, there were many challenges in this field including issues of test data reliability, loading path representability, constitutive model robustness and non-unique constitutive parameter-identification. In this paper, various testing approaches and constitutive modeling will be reviewed briefly and a systematic methodology from stress-strain characterization, constitutive model parameter identification for material card generation will be presented in order to support automotive OEM’s need on virtual stamping. This systematic methodology features a tension-compression test at large strain with robust anti-buckling device with concurrent friction force correction, properly selected loading paths to represent material behavior during different springback modes as well as the 10-parameter Yoshida model with knowledge-based parameter-identification through nonlinear optimization. Validation cases for lab AHSS parts will also be discussed to check applicability of this methodology.
Islam, Anowarul; Bohl, Michael S.; Tsai, Andrew G; Younesi, Mousa; Gillespie, Robert; Akkus, Ozan
2015-01-01
Background Currently, there are no well-established suture protocols to attach fully load-bearing scaffolds which span tendon defects between bone and muscle for repair of critical sized tendon tears. Methods to attach load-bearing tissue repair scaffolds could enable functional repair of tendon injuries. Methods Sixteen rabbit shoulders were dissected (New Zealand white rabbits, 1 yr. old, female) to isolate the humeral-infraspinatus muscle complex. A unique suture technique was developed to allow for a 5 mm segmental defect in infraspinatus tendon to be replaced with a mechanically strong bioscaffold woven from pure collagen threads. The suturing pattern resulted in a fully load-bearing scaffold. The tensile stiffness and strength of scaffold repair was compared with intact infraspinatus and regular direct repair. Findings The failure load and displacement at failure of the scaffold repair group were 59.9 N (Standard Deviation, SD = 10.7) and 10.3 mm (SD = 2.9), respectively and matched those obtained by direct repair group which were 57.5 N (SD = 15.3) and 8.6 mm (SD = 1.5), (p > 0.05). Failure load, displacement at failure and stiffness of both of the repair groups were half of the intact infraspinatus shoulder group. Interpretation With the developed suture technique, scaffolds repair showed similar failure load, displacement at failure and stiffness to the direct repair. This novel suturing pattern and the mechanical robustness of the scaffold at time zero indicates that the proposed model is mechanically viable for future in vivo studies which has a higher potential to translate into clinical uses. PMID:26009492
Facilitated movement of inertial Brownian motors driven by a load under an asymmetric potential.
Ai, Bao-quan; Liu, Liang-gang
2007-10-01
Based on recent work [L. Machura, M. Kostur, P. Talkner, J. Luczka, and P. Hanggi, Phys. Rev. Lett. 98, 040601 (2007)], we extend the study of inertial Brownian motors to the case of an asymmetric potential. It is found that some transport phenomena appear in the presence of an asymmetric potential. Within tailored parameter regimes, there exists two optimal values of the load at which the mean velocity takes its maximum, which means that a load can facilitate the transport in the two parameter regimes. In addition, the phenomenon of multiple current reversals can be observed when the load is increased.
Production enhancement through aggressive flowback procedures in the Codell formation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, A.J.; Ashton, P.J.N.; Lang, J.
1996-12-31
Proppant flowback following fracture stimulation treatments continues to be a major concern in many wells around the world. The current trend towards more tip screen out (TSO) and reverse screenout designs has increased the need for better control of proppant flowback under increasingly severe drag force conditions. Recent studies in the Codell formation have indicated a correlation between load water and polymer recovery on fracture cleanup and subsequent gas production. This paper describes a subsequent twenty-five well study of the specific effects of combining forced closure/reverse gravel packs along with varying flowback rates and choke schedules on load water recoverymore » and normalized gas and condensate production. One of the key issues addressed is the use of aggressive flowback schedules while maintaining proppant flowback control.« less
Effects of Load, Cognitive Complexity and Type A on Satisfaction.
1983-06-01
load, performance , style, cognitive style, Type A, cognitive complexity, stress, satisfaction , visual motor tasks 20. ABSTRAC (Continue on reverse side...1982) and Ewen (1973) have pointed toward pressure to perform as a condition which modifies the satisfaction - performance relationship. Other moderator...1975; Mehrabian and West, 1977) are much more rare than theory and research focused on, for example, the performance - satisfaction relationship
NASA Astrophysics Data System (ADS)
Winklhofer, M.
2007-05-01
First-order-reversal curve (FORC) diagrams have proven useful in characterizing fine magnetic particle systems in terms of microscopic switching field distributions, characteristic interaction strengths and mean-field effects. Despite the profusion of measured FORC data, we still lack a simple, generally valid recipe for the quantitative analysis of FORC diagrams, the reason being that most samples do not act like classical linear Preisach systems, giving rise to reversible magnetization changes that tend to blur contributions from irreversible switching events. A good example illustrating the confounding influence of reversible contributions are FORC diagrams for particle systems in which vortex configurations occur as remanent states. For non-interacting Fe nanodots with well-defined grain sizes around the zero-field SD/PSD transition and random easy-axis orientation, we will show how a combination of micromagnetic modelling and second-order- reversal-curves can be used to disentangle reversible and irreversible contributions to the FORC diagram. It will also be shown that remanence-based Preisach diagrams do not fully capture the irreversible parts.
Rasmuson, J; Pourazar, J; Mohamed, N; Lejon, K; Evander, M; Blomberg, A; Ahlm, C
2016-04-01
Hantavirus infections may cause severe and sometime life-threatening lung failure. The pathogenesis is not fully known and there is an urgent need for effective treatment. We aimed to investigate the association between pulmonary viral load and immune responses, and their relation to disease severity. Bronchoscopy with sampling of bronchoalveolar lavage (BAL) fluid was performed in 17 patients with acute Puumala hantavirus infection and 16 healthy volunteers acting as controls. Lymphocyte subsets, granzyme concentrations, and viral load were determined by flow cytometry, enzyme-linked immunosorbent assay (ELISA), and quantitative reverse transcription polymerase chain reaction (RT-PCR), respectively. Analyses of BAL fluid revealed significantly higher numbers of activated CD8(+) T cells and natural killer (NK) cells, as well as higher concentrations of the cytotoxins granzymes A and B in hantavirus-infected patients, compared to controls. In patients, Puumala hantavirus RNA was detected in 88 % of BAL cell samples and correlated inversely to the T cell response. The magnitude of the pulmonary cytotoxic lymphocyte response correlated to the severity of disease and systemic organ dysfunction, in terms of need for supplemental oxygen treatment, hypotension, and laboratory data indicating renal failure, cardiac dysfunction, vascular leakage, and cell damage. Regulatory T cell numbers were significantly lower in patients compared to controls, and may reflect inadequate immune regulation during hantavirus infection. Hantavirus infection elicits a pronounced cytotoxic lymphocyte response in the lungs. The magnitude of the immune response was associated with disease severity. These results give insights into the pathogenesis and possibilities for new treatments.
Zeng, Ni; Gao, Xiaoling; Hu, Quanyin; Song, Qingxiang; Xia, Huimin; Liu, Zhongyang; Gu, Guangzhi; Jiang, Mengyin; Pang, Zhiqing; Chen, Hongzhuan; Chen, Jun; Fang, Liang
2012-01-01
Background Lipid-based liquid crystalline nanoparticles (LCNPs) have attracted growing interest as novel drug-delivery systems for improving the bioavailability of both hydrophilic and hydrophobic drugs. However, their cellular interaction and in vivo behavior have not been fully developed and characterized. Methods In this study, self-assembled LCNPs prepared from soy phosphatidylcholine and glycerol dioleate were developed as a platform for oral delivery of paclitaxel. The particle size of empty LCNPs and paclitaxel-loaded LCNPs was around 80 nm. The phase behavior of the liquid crystalline matrix was characterized using crossed polarized light microscopy and small-angle X-ray scattering, and showed both reversed cubic and hexagonal phase in the liquid crystalline matrix. Transmission electron microscopy and cryofield emission scanning electron microscopy analysis revealed an inner winding water channel in LCNPs and a “ ball-like”/“hexagonal” morphology. Results Cellular uptake of LCNPs in Caco-2 cells was found to be concentration-dependent and time-dependent, with involvement of both clathrin and caveolae/lipid raft-mediated endocytosis. Under confocal laser scanning microscopy, soy phosphatidylcholine was observed to segregate from the internalized LCNPs and to fuse with the cell membrane. An in vivo pharmacokinetic study showed that the oral bioavailability of paclitaxel-loaded LCNPs (13.16%) was 2.1 times that of Taxol® (the commercial formulation of paclitaxel, 6.39%). Conclusion The findings of this study suggest that this LCNP delivery system may be a promising candidate for improving the oral bioavailability of poorly water-soluble agents. PMID:22888230
Energy efficiency of batch and semi-batch (CCRO) reverse osmosis desalination.
Warsinger, David M; Tow, Emily W; Nayar, Kishor G; Maswadeh, Laith A; Lienhard V, John H
2016-12-01
As reverse osmosis (RO) desalination capacity increases worldwide, the need to reduce its specific energy consumption becomes more urgent. In addition to the incremental changes attainable with improved components such as membranes and pumps, more significant reduction of energy consumption can be achieved through time-varying RO processes including semi-batch processes such as closed-circuit reverse osmosis (CCRO) and fully-batch processes that have not yet been commercialized or modelled in detail. In this study, numerical models of the energy consumption of batch RO (BRO), CCRO, and the standard continuous RO process are detailed. Two new energy-efficient configurations of batch RO are analyzed. Batch systems use significantly less energy than continuous RO over a wide range of recovery ratios and source water salinities. Relative to continuous RO, models predict that CCRO and batch RO demonstrate up to 37% and 64% energy savings, respectively, for brackish water desalination at high water recovery. For batch RO and CCRO, the primary reductions in energy use stem from atmospheric pressure brine discharge and reduced streamwise variation in driving pressure. Fully-batch systems further reduce energy consumption by not mixing streams of different concentrations, which CCRO does. These results demonstrate that time-varying processes can significantly raise RO energy efficiency. Copyright © 2016 Elsevier Ltd. All rights reserved.
Reversible Heat-Induced Inactivation of Chimeric β-Glucuronidase in Transgenic Plants1
Almoguera, Concepción; Rojas, Anabel; Jordano, Juan
2002-01-01
We compared the expression patterns in transgenic tobacco (Nicotiana tabacum) of two chimeric genes: a translational fusion to β-glucuronidase (GUS) and a transcriptional fusion, both with the same promoter and 5′-flanking sequences of Ha hsp17.7 G4, a small heat shock protein (sHSP) gene from sunflower (Helianthus annuus). We found that immediately after heat shock, the induced expression from the two fusions in seedlings was similar, considering chimeric mRNA or GUS protein accumulation. Surprisingly, we discovered that the chimeric GUS protein encoded by the translational fusion was mostly inactive in such conditions. We also found that this inactivation was fully reversible. Thus, after returning to control temperature, the GUS activity was fully recovered without substantial changes in GUS protein accumulation. In contrast, we did not find differences in the in vitro heat inactivation of the respective GUS proteins. Insolubilization of the chimeric GUS protein correlated with its inactivation, as indicated by immunoprecipitation analyses. The inclusion in another chimeric gene of the 21 amino-terminal amino acids from a different sHSP lead to a comparable reversible inactivation. That effect not only illustrates unexpected post-translational problems, but may also point to sequences involved in interactions specific to sHSPs and in vivo heat stress conditions. PMID:12011363
RF-DC converter for HF RFID sensing applications powered by a near-field loop antenna
NASA Astrophysics Data System (ADS)
Colella, R.; Pasca, M.; Catarinucci, L.; Tarricone, L.; D'Amico, S.
2016-07-01
In this paper, an RF-DC converter operating at 13.56 MHz (HF radio frequency identification (RFID) frequency band) is presented. Its architecture provides RF to load isolation, reducing the losses due to the reverse saturation current and improving the sensitivity. Fed by a loop antenna, the RF-DC converter is made by a Dickson's RF-DC rectifier and an additional Pelliconi's charge pump driven by a fully integrated 50 kHz ring oscillator realized using an application-specific integrated circuit (ASIC). The input RF signal from the reader is converted to DC supply voltage and stored on a 1 μF capacitor. Mathematical model of the converter is developed and verified through measurements. Silicon prototypes of the ASIC have been realized in 350 nm complementary metal-oxide semiconductor technology. Measurements have been done on 10 different samples showing an output voltage in the range of 0.5 V-3.11 V in correspondence of an RF input signal power in the range of -19 dBm-0 dBm. These output voltage levels are suitable to power HF RFID sensing platforms and sensor nodes of body sensor networks.
"HausTeleDienst"--a CATV-based interactive video service for elderly people.
Stroetmann, K A; Erkert, T
1999-01-01
Since 1991, 17 elderly persons (aged 75 to over 90) in 15 households have been connected via TV-videophones to a service centre. A standard CATV network was modified to support a reverse channel. This has been world-wide the first fully interactive broadband video communications project implemented in a real setting and operating over an extended period of time. The overall aim has been to prove the ability of frail elderly and mobility-impaired persons to live independently, and to demonstrate strategies for reducing the load on social and health care service resources. Service components include remote care; information and assistance; emergency, counselling, training and exercise services. Practical experience, both from the side of the service provider and that of the users, is discussed. Simplicity of technical design and ease of handling contributed to a feeling of being empowered by the technology. In addition, the very personal and close relationship to the staff--which was strongly supported, not inhibited by the video communications--was a major factor in acceptance of the service. It proved a highly successful activity with a great potential for the future: In different contexts with newer technology, market trials are underway to commercialize this service.
2017-05-31
Antiretroviral therapy (ART) is recommended for all patients infected by HIV-1. The objective of ART is to achieve an undetectable plasma viral load (PVL). Initial ART should be based on a combination of 3 drugs, including 2 nucleoside reverse transcriptase inhibitors (tenofovir in either of its two formulations plus emtricitabine or abacavir plus lamivudine) and another drug from a different family. Four of the recommended regimens, all of which have an integrase inhibitor as the third drug (dolutegravir, elvitegravir boosted with cobicistat or raltegravir), are considered preferential, whereas a further 3 regimens (based on elvitegravir/cobicistat, rilpivirine, or darunavir boosted with cobicistat or ritonavir) are considered alternatives. We present the reasons and criteria for switching ART in patients with an undetectable PVL and in those who present virological failure, in which case salvage ART should include 3 (or at least 2) drugs that are fully active against HIV. We also update the criteria for ART in specific situations (acute infection, HIV-2 infection, pregnancy) and comorbidities (tuberculosis or other opportunistic infections, kidney disease, liver disease and cancer). Copyright © 2017. Publicado por Elsevier España, S.L.U.
Nucleation of ripplocations through atomistic modeling of surface nanoindentation in graphite
NASA Astrophysics Data System (ADS)
Freiberg, D.; Barsoum, M. W.; Tucker, G. J.
2018-05-01
In this work, we study the nucleation and subsequent evolution behavior of ripplocations - a newly proposed strain accommodating defect in layered materials where one, or more, layers buckle orthogonally to the layers - using atomistic modeling of graphite. To that effect, we model the response to cylindrical indenters with radii R of 50, 100, and 250 nm, loaded edge-on into graphite layers and the strain gradient effects beneath the indenter are quantified. We show that the response is initially elastic followed by ripplocation nucleation, and growth of multiple fully reversible ripplocation boundaries below the indenter. In the elastic region, the stress is found to be a function of indentation volume; beyond the elastic regime, the interlayer strain gradient emerges as paramount in the onset of ripplocation nucleation and subsequent in-plane stress relaxation. Furthermore, ripplocation boundaries that nucleate from the alignment of ripplocations on adjacent layers are exceedingly nonlocal and propagate, wavelike, away from the indented surface. This work not only provides a critical understanding of the mechanistic underpinnings of the deformation of layered solids and formation of kink boundaries, but also provides a more complete description of the nucleation mechanics of ripplocations and their strain field dependence.
Tubulin Dimer Reversible Dissociation
Schuck, Peter; Sackett, Dan L.
2016-01-01
Tubulins are evolutionarily conserved proteins that reversibly polymerize and direct intracellular traffic. Of the tubulin family only αβ-tubulin forms stable dimers. We investigated the monomer-dimer equilibrium of rat brain αβ-tubulin using analytical ultracentrifugation and fluorescence anisotropy, observing tubulin in virtually fully monomeric and dimeric states. Monomeric tubulin was stable for a few hours and exchanged into preformed dimers, demonstrating reversibility of dimer dissociation. Global analysis combining sedimentation velocity and fluorescence anisotropy yielded Kd = 84 (54–123) nm. Dimer dissociation kinetics were measured by analyzing the shape of the sedimentation boundary and by the relaxation of fluorescence anisotropy following rapid dilution of labeled tubulin, yielding koff in the range 10−3–10−2 s−1. Thus, tubulin dimers reversibly dissociate with moderately fast kinetics. Monomer-monomer association is much less sensitive than dimer-dimer association to solution changes (GTP/GDP, urea, and trimethylamine oxide). PMID:26934918
NASA Astrophysics Data System (ADS)
Shan, Chao; Yong, Jiale; Yang, Qing; Chen, Feng; Huo, Jinglan; Zhuang, Jian; Jiang, Zhuangde; Hou, Xun
2018-04-01
Controlling the underwater bubble wettability on a solid surface is of great research significance. In this letter, a simple method to achieve reversible switch between underwater superaerophilicity and underwater superaerophobicity on a superhydrophobic nanowire-haired mesh by alternately vacuumizing treatment in water and drying in air is reported. Such reversible switch endows the as-prepared mesh with many functional applications in controlling bubble's behavior on a solid substrate. The underwater superaerophilic mesh is able to absorb/capture bubbles in water, while the superaerophobic mesh has great anti-bubble ability. The reversible switch between underwater superaerophilicity and superaerophobicity can selectively allow bubbles to go through the resultant mesh; that is, bubbles can pass through the underwater superaerophilic mesh while are fully intercepted by the underwater superaerophobic mesh in a water medium. We believe these meshes will have important applications in removing or capturing underwater bubbles/gas.
Underachieving Gifted Students: Two Case Studies
ERIC Educational Resources Information Center
Bennett-Rappell, Hannah; Northcote, Maria
2016-01-01
Almost half of all gifted students do not achieve according to their exceptional potential. Though significant research has investigated identifying characteristics of underachieving gifted students, current research is yet to fully employ the established theoretical knowledge to determine practical strategies for the reversal and remediation of…
Kistler, C. Andrew; McCall, Joseph Caleb; Ghumman, Saad Sultan; Ali, Ijlal Akbar
2014-01-01
Posterior reversible encephalopathy syndrome (PRES) is a rare complication of transarterial chemoembolization (TACE) used to treat liver metastases and has never been reported in a patient with metastatic uveal melanoma (UM) to the liver. We report the first case of PRES secondary to TACE with drug eluting beads (DEBs) loaded with doxorubicin in a 56-year-old woman with metastatic UM to the liver. PMID:24772346
Prestraining and Its Influence on Subsequent Fatigue Life
NASA Technical Reports Server (NTRS)
Halford, Gary R.; Mcgaw, Michael A.; Kalluri, Sreeramesh
1995-01-01
An experimental program was conducted to study the damaging effects of tensile and compressive prestrains on the fatigue life of nickel-base, Inconel 718 superalloy at room temperature. To establish baseline fatigue behavior, virgin specimens with a solid uniform gage section were fatigued to failure under fully-reversed strain-control. Additional specimens were prestrained to 2 percent, 5 percent, and 10 percent (engineering strains) in the tensile direction and to 2 percent (engineering strain) in the compressive direction under stroke-control, and were subsequently fatigued to failure under fully-reversed strain-control. Experimental results are compared with estimates of remaining fatigue lives (after prestraining) using three life prediction approaches: (1) the Linear Damage Rule; (2) the Linear Strain and Life Fraction Rule; and (3) the nonlinear Damage Curve Approach. The Smith-Watson-Topper parameter was used to estimate fatigue lives in the presence of mean stresses. Among the cumulative damage rules investigated, best remaining fatigue life predictions were obtained with the nonlinear Damage Curve Approach.
NASA Astrophysics Data System (ADS)
Byrne, J. M.; Little, L. J.; Dodgson, K. A.; MacDonald, R. J.; Graham, J.
2009-12-01
The problems of waterway eutrophication and coastal zone hypoxia are reaching epidemic proportions. Fresh water and coastal marine environments around the world are suffering unprecedented pollution loadings. We are developing an education program to address the dramatic need for public, community and K-12 education about the harsh impacts of elevated nutrient loads on fresh and marine water environments. The Lake Winnipeg watershed is adopted as the poster child of fresh water eutrophication in western North America. The watershed, one of the largest on the continent, is in rapid decline due to pollution, population pressures and water diversion. A concerted education program is needed to change personal and society actions that negatively impact the Winnipeg watershed; and the confluence of the watershed - Lake Winnipeg. But the education program goes beyond Lake Winnipeg. Negative impacts of nutrient loads are adversely affecting environments right to the oceans. Major dead zones that are expanding on our continental shelves due to nutrient overloading threaten to coalesce into extensive regions of marine life die-off. This presentation outlines the documentary education production process under development. We are building a series of Public Service Announcements (PSAs) for national television networks. The PSAs will direct educators, stakeholders and citizens to an associated website with educational video clips detailing the issues of eutrophication and hypoxia. The video clips or webisodes, present interviews with leading scientists. The discussions address the causes of the problems, and presents workable solutions to nutrient overloads from a variety of sources. The webisodes are accompanied by notes and advice to teachers on ways and means to use the webisodes in classrooms. The project is fully funed by a group of Canadian Community Foundations, with the understanding the work wil be available free to educators anywhere in the world. Our education program will enhance public awareness, beg scrutiny of the issues and promote informed discussion about possible solutions. This education program will enlighten all parties and facilitate personal and societal actions to reverse and control pollution of our rivers, lakes and oceans.
NASA Astrophysics Data System (ADS)
Myers-Pigg, A.; Teisserenc, R.; Tananaev, N.; Louchouarn, P.
2015-12-01
Arctic Rivers transport vast amounts of terrestrial organic material (TOM) to the Arctic Ocean. The Yenisei River delivers ~18% of total dissolved organic carbon (DOC) exported to the Arctic Ocean each year during peak river discharge (May-June), known as the spring freshet. Previously published DOC fluxes for the freshet period extrapolate from relatively few data points, due to the uniquely difficult sampling conditions during this dynamic period. Here, we present new high resolution data collected from an extensive sampling campaign from April-July 2014 using a reverse osmosis system for DOC isolation. The similarity between the calculated DOC load delivered during the 2014 freshet (2.94 TgC) and the ten-year average from the previous decade (2.92 TgC for 1999-2008) validates the methodological approach used here. In contrast, the total measured load of polymeric lignin phenols (∑8: 643 Gg), an indicator of TOM input, was one order of magnitude higher than a previously estimated load (42 Gg) for May-June. Hence, we may need to re-evaluate the magnitude of terrestrial carbon exported, including the efficiencies of different sampling methods. Additionally, we present the first simultaneous particulate and dissolved lignin analyses in a major Arctic river. Approximately 30% of the total lignin flux in the Yenisei River is delivered in the particulate phase. Particulate lignin export is decoupled from dissolved lignin during the freshet; the initial flush is dominated by dissolved lignin, while the latter portion of the freshet is dominated by particulate lignin. The chemical signatures of lignin in both phases are similar throughout the freshet, suggesting a mobilization of the same source of carbon each spring. This conclusion is at odds with reported isotopic sources signatures (14C age) of bulk organic matter and lignin in these rivers, requiring a multi-faceted approach to fully understand the sources and ages of terrestrial organic matter in Arctic rivers.
Wemmelund, K B; Lie, R H; Juhl-Olsen, P; Frederiksen, C A; Hermansen, J F; Sloth, E
2012-08-01
Although pleural effusion is a common complication in critically ill patients, detailed knowledge is missing about the haemodynamic impact and the underlining mechanisms. The aim of this study was to evaluate the haemodynamic effect of incremental pleural effusion by means of invasive haemodynamic parameters and transthoracic echocardiography. This experimental interventional study was conducted using 22 female piglets (17.5-21.5 kg) randomized for right-side (n = 9) and left-side (n = 9) pleural effusion, or sham operation (n = 4). Pleural effusion was induced by infusing incremental volumes of saline into the pleural cavity. Invasive haemodynamic measurements and echocardiographical images were obtained at baseline, a volume of 45 ml/kg, a volume of 75 ml/kg and 45 min after drainage. No difference (all P > 0.147) was found between right- and left-side pleural effusion, and the groups were thus pooled. At 45 ml/kg cardiac output, mean arterial pressure, stroke volume and mixed venous saturation decreased (all P < 0.003); central venous pressure and pulmonary arterial pressure increased (both P > 0.003) at this point. The changes accelerated at 75 ml/kg. At 45 ml/kg left ventricular pre-load in terms of end-diastolic area decreased significantly (P < 0.001). The effect on haemodynamics and cardiac dimensions changed dramatically at 75 ml/kg. Cardiac output, mean arterial pressure, central venous pressure and left ventricular end-diastolic area returned to normal during a recovery period of 45 min (all P > 0.061). Incremental volumes of unilateral pleural effusion induced a significant haemodynamic impact fully reversible after drainage. Pleural effusion causes a significant decrease of left ventricular pre-load in a diverse picture of haemodynamic compromise. © 2012 The Authors. Acta Anaesthesiologica Scandinavica © 2012 The Acta Anaesthesiologica Scandinavica Foundation.
Hilt, Sabine; Alirangues Nuñez, Marta M.; Bakker, Elisabeth S.; Blindow, Irmgard; Davidson, Thomas A.; Gillefalk, Mikael; Hansson, Lars-Anders; Janse, Jan H.; Janssen, Annette B. G.; Jeppesen, Erik; Kabus, Timm; Kelly, Andrea; Köhler, Jan; Lauridsen, Torben L.; Mooij, Wolf M.; Noordhuis, Ruurd; Phillips, Geoff; Rücker, Jacqueline; Schuster, Hans-Heinrich; Søndergaard, Martin; Teurlincx, Sven; van de Weyer, Klaus; van Donk, Ellen; Waterstraat, Arno; Willby, Nigel; Sayer, Carl D.
2018-01-01
Submerged macrophytes play a key role in north temperate shallow lakes by stabilizing clear-water conditions. Eutrophication has resulted in macrophyte loss and shifts to turbid conditions in many lakes. Considerable efforts have been devoted to shallow lake restoration in many countries, but long-term success depends on a stable recovery of submerged macrophytes. However, recovery patterns vary widely and remain to be fully understood. We hypothesize that reduced external nutrient loading leads to an intermediate recovery state with clear spring and turbid summer conditions similar to the pattern described for eutrophication. In contrast, lake internal restoration measures can result in transient clear-water conditions both in spring and summer and reversals to turbid conditions. Furthermore, we hypothesize that these contrasting restoration measures result in different macrophyte species composition, with added implications for seasonal dynamics due to differences in plant traits. To test these hypotheses, we analyzed data on water quality and submerged macrophytes from 49 north temperate shallow lakes that were in a turbid state and subjected to restoration measures. To study the dynamics of macrophytes during nutrient load reduction, we adapted the ecosystem model PCLake. Our survey and model simulations revealed the existence of an intermediate recovery state upon reduced external nutrient loading, characterized by spring clear-water phases and turbid summers, whereas internal lake restoration measures often resulted in clear-water conditions in spring and summer with returns to turbid conditions after some years. External and internal lake restoration measures resulted in different macrophyte communities. The intermediate recovery state following reduced nutrient loading is characterized by a few macrophyte species (mainly pondweeds) that can resist wave action allowing survival in shallow areas, germinate early in spring, have energy-rich vegetative propagules facilitating rapid initial growth and that can complete their life cycle by early summer. Later in the growing season these plants are, according to our simulations, outcompeted by periphyton, leading to late-summer phytoplankton blooms. Internal lake restoration measures often coincide with a rapid but transient colonization by hornworts, waterweeds or charophytes. Stable clear-water conditions and a diverse macrophyte flora only occurred decades after external nutrient load reduction or when measures were combined. PMID:29515607
NASA Technical Reports Server (NTRS)
Lewis, James L. (Inventor); Carroll, Monty B. (Inventor); Morales, Ray H. (Inventor); Le, Thang D. (Inventor)
2002-01-01
The present invention relates to a fully androgynous, reconfigurable closed loop feedback controlled low impact docking system with load sensing electromagnetic capture ring. The docking system of the present invention preferably comprises two Docking- assemblies, each docking assembly comprising a load sensing ring having an outer face, one of more electromagnets, one or more load cells coupled to said load sensing ring. The docking assembly further comprises a plurality of actuator arms coupled to said load sensing ring and capable of dynamically adjusting the orientation of said load sensing ring and a reconfigurable closed loop control system capable of analyzing signals originating from said plurality of load cells and of outputting real time control for each of the actuators. The docking assembly of the present invention incorporates an active load sensing system to automatically dynamically adjust the load sensing ring during capture instead of requiring significant force to push and realign the ring.
NASA Astrophysics Data System (ADS)
Movchan, A. A.; Sil'chenko, L. G.
2008-02-01
We solve the axisymmetric buckling problem for a circular plate made of a shape memory alloy undergoing reverse martensite transformation under the action of a compressing load, which occurs after the direct martensite transformation under the action of a generally different (extending or compressing) load. The problem was solved without any simplifying assumptions concerning the transverse dimension of the supplementary phase transition region related to buckling. The mathematical problem was reduced to a nonlinear eigenvalue problem. An algorithm for solving this problem was proposed. It was shown that the critical buckling load under the reverse transition, which is obtained by taking into account the evolution of the phase strains, can be many times lower than the same quantity obtained under the assumption that the material behavior is elastic even for the least (martensite) values of the elastic moduli. The critical buckling force decreases with increasing modulus of the load applied at the preliminary stage of direct transition and weakly depends on whether this load was extending or compressing. In shape memory alloys (SMA), mutually related processes of strain and direct (from the austenitic into the martensite phase) or reverse thermoelastic phase transitions may occur. The direct transition occurs under cooling and (or) an increase in stresses and is accompanied by a significant decrease (nearly by a factor of three in titan nickelide) of the Young modulus. If the direct transition occurs under the action of stresses with nonzero deviator, then it is accompanied by accumulation of macroscopic phase strains, whose intensity may reach 8%. Under the reverse transition, which occurs under heating and (or) unloading, the moduli increase and the accumulated strain is removed. For plates compressed in their plane, in the case of uniform temperature distribution over the thickness, one can separate trivial processes under which the strained plate remains plane and the phase ratio has a uniform distribution over the thickness. For sufficiently high compressing loads, the trivial process of uniform compression may become unstable in the sense that, for small perturbations of the plate deflection, temperature, the phase ratio, or the load, the difference between the corresponding perturbed process and the unperturbed process may be significant. The results of several experiments concerning the buckling of SMA elements are given in [1, 2], and the statement and solution of the corresponding boundary value problems can be found in [3-11]. The experimental studies [2] and several analytic solutions obtained for the Shanley column [3, 4], rods [5-7], rectangular plates under direct [8] and reverse [9] transitions showed that the processes of thermoelastic phase transitions can significantly (by several times) decrease the critical buckling loads compared with their elastic values calculated for the less rigid martensite state of the material. Moreover, buckling does not occur in the one-phase martensite state in which the elastic moduli are minimal but in the two-phase state in which the values of the volume fractions of the austenitic and martensite phase are approximately equal to each other. This fact is most astonishing for buckling, studied in the present paper, under the reverse transition in which the Young modulus increases approximately half as much from the beginning of the phase transition to the moment of buckling. In [3-9] and in the present paper, the static buckling criterion is used. Following this criterion, the critical load is defined to be the load such that a nontrivial solution of the corresponding quasistatic problem is possible under the action of this load. If, in the problems of stability of rods and SMA plates, small perturbations of the external load are added to small perturbations of the deflection (the critical force is independent of the amplitude of the latter), then the critical forces vary depending on the value of perturbations of the external load [5, 8, 9]. Thus, in the case of small perturbations of the load, the problem of stability of SMA elements becomes indeterminate. The solution of the stability problem for SMA elements also depends on whether the small perturbations of the phase ratio and the phase strain tensor are taken into account. According to this, the problem of stability of SMA elements can be solved in the framework of several statements (concepts, hypotheses) which differ in the set of quantities whose perturbations are admissible (taken into account) in the process of solving the problem. The variety of these statements applied to the problem of buckling of SMA elements under direct martensite transformation is briefly described in [4, 5]. But, in the problem of buckling under the reverse transformation, some of these statements must be changed. The main question which we should answer when solving the problem of stability of SMA elements is whether small perturbations of the phase ratio (the volume fraction of the martensite phase q) are taken into account, because an appropriate choice significantly varies the results of solving the stability problem. If, under the transition to the adjacent form of equilibrium, the phase ratio of all points of the body is assumed to remain the same, then we deal with the "fixed phase atio" concept. The opposite approach can be classified as the "supplementary phase transition" concept (which occurs under the transition to the adjacent form of equilibrium). It should be noted that, since SMA have temperature hysteresis, the phase ratio in SMA can endure only one-sided small variations. But if we deal with buckling under the inverse transformation, then the variation in the volume fraction of the martensite phase cannot be positive. The phase ratio is not an independent variable, like loads or temperature, but, due to the constitutive relations, its variations occur together with the temperature variations and, in the framework of connected models for a majority of SMA, together with variations in the actual stresses. Therefore, the presence or absence of variations in q is determined by the presence or absence of variations in the temperature, deflection, and load, as well as by the system of constitutive relations used in this particular problem. In the framework of unconnected models which do not take the influence of actual stresses on the phase ratio into account, the "fixed phase ratio" concept corresponds to the case of absence of temperature variations. The variations in the phase ratio may also be absent in connected models in the case of specially chosen values of variations in the temperature and (or) in the external load, as well as in the case of SMA of CuMn type, for which the influence of the actual stresses on the phase compound is absent or negligible. In the framework of the "fixed phase ratio" hypothesis, the stability problem for SMA elements has a solution coinciding in form with the solution of the corresponding elastic problem, with the elastic moduli replaced by the corresponding functions of the phase ratio. In the framework of the supplementary phase transition" concept, the result of solving the stability problem essentially depends on whether the small perturbations of the external loads are taken into account in the process of solving the problem. The point is that, when solving the problem in the connected setting, the supplementary phase transition region occupies, in general, not the entire cross-section of the plate but only part of it, and the location of the boundary of this region depends on the existence and the value of these small perturbations. More precisely, the existence of arbitrarily small perturbations of the actual load can result in finite changes of the configuration of the supplementary phase transition region and hence in finite change of the critical values of the load. Here we must distinguish the "fixed load" hypothesis where no perturbations of the external loads are admitted and the "variable load" hypothesis in the opposite case. The conditions that there no variations in the external loads imply additional equations for determining the boundary of the supplementary phase transition region. If the "supplementary phase transition" concept and the "fixed load" concept are used together, then the solution of the stability problem of SMA is uniquely determined in the same sense as the solution of the elastic stability problem under the static approach. In the framework of the "variable load" concept, the result of solving the stability problem for SMA ceases to be unique. But one can find the upper and lower bounds for the critical forces which correspond to the cases of total absence of the supplementary phase transition: the upper bound corresponds to the critical load coinciding with that determined in the framework of the "fixed phase ratio" concept, and the lower bound corresponds to the case where the entire cross-section of the plate experiences the supplementary phase transition. The first version does not need any additional name, and the second version can be called as the "all-round supplementary phase transition" hypothesis. In the present paper, the above concepts are illustrated by examples of solving problems about axisymmetric buckling of a circular freely supported or rigidly fixed plate experiencing reverse martensite transformation under the action of an external force uniformly distributed over the contour. We find analytic solutions in the framework of all the above-listed statements except for the case of free support in the "fixed load" concept, for which we obtain a numerical solution.
Photoswitchable nanoporous films by loading azobenzene in metal-organic frameworks of type HKUST-1.
Müller, Kai; Wadhwa, Jasmine; Singh Malhi, Jasleen; Schöttner, Ludger; Welle, Alexander; Schwartz, Heidi; Hermann, Daniela; Ruschewitz, Uwe; Heinke, Lars
2017-07-13
Photoswitchable metal-organic frameworks (MOFs) enable the dynamic remote control of their key properties. Here, a readily producible approach is presented where photochromic molecules, i.e. azobenzene (AB) and o-tetrafluoroazobenzene (tfAB), are loaded in MOF films of type HKUST-1. These nanoporous films, which can be reversibly switched with UV/visible or only visible light, have remote-controllable guest uptake properties.
Fox, Howard S.; Weed, Michael R.; Huitron-Resendiz, Salvador; Baig, Jamal; Horn, Thomas F.W.; Dailey, Peter J.; Bischofberger, Norbert; Henriksen, Steven J.
2000-01-01
Simian immunodeficiency virus (SIV) infection of rhesus monkeys provides an excellent model of the central nervous system (CNS) consequences of HIV infection. To discern the relationship between viral load and abnormalities induced in the CNS by the virus, we infected animals with SIV and later instituted antiviral treatment to lower peripheral viral load. Measurement of sensory-evoked potentials, assessing CNS neuronal circuitry, revealed delayed latencies after infection that could be reversed by lowering viral load. Cessation of treatment led to the reappearance of these abnormalities. In contrast, the decline in general motor activity induced by SIV infection was unaffected by antiviral treatment. An acute increase in the level of the chemokine monocyte chemoattractant protein-1 (MCP-1) was found in the cerebrospinal fluid (CSF) relative to plasma in the infected animals at the peak of acute viremia, likely contributing to an early influx of immune cells into the CNS. Examination of the brains of the infected animals after return of the electrophysiological abnormalities revealed diverse viral and inflammatory findings. Although some of the physiological abnormalities resulting from SIV infection can be at least temporarily reversed by lowering viral load, the viral-host interactions initiated by infection may result in long-lasting changes in CNS-mediated functions. PMID:10880046
Fox, H S; Weed, M R; Huitron-Resendiz, S; Baig, J; Horn, T F; Dailey, P J; Bischofberger, N; Henriksen, S J
2000-07-01
Simian immunodeficiency virus (SIV) infection of rhesus monkeys provides an excellent model of the central nervous system (CNS) consequences of HIV infection. To discern the relationship between viral load and abnormalities induced in the CNS by the virus, we infected animals with SIV and later instituted antiviral treatment to lower peripheral viral load. Measurement of sensory-evoked potentials, assessing CNS neuronal circuitry, revealed delayed latencies after infection that could be reversed by lowering viral load. Cessation of treatment led to the reappearance of these abnormalities. In contrast, the decline in general motor activity induced by SIV infection was unaffected by antiviral treatment. An acute increase in the level of the chemokine monocyte chemoattractant protein-1 (MCP-1) was found in the cerebrospinal fluid (CSF) relative to plasma in the infected animals at the peak of acute viremia, likely contributing to an early influx of immune cells into the CNS. Examination of the brains of the infected animals after return of the electrophysiological abnormalities revealed diverse viral and inflammatory findings. Although some of the physiological abnormalities resulting from SIV infection can be at least temporarily reversed by lowering viral load, the viral-host interactions initiated by infection may result in long-lasting changes in CNS-mediated functions.
The effect of movement and load on the dynamic coupling of abdominal electromyography.
King, Adam C
2018-05-14
This study investigated the degree of neural coupling in abdominal muscle activity and whether the task constraints of movement and load altered the coupling within three muscle pairings. Nineteen young, physically-active individuals performed sit-up and reverse crunch movements in bodyweight (BW) and loaded (+4.54 kg) conditions. Surface electromyography (sEMG) was recorded from the rectus abdominus (RA), external oblique (EO), and transverse abdominus (TA) muscles. Linear (correlation coefficient) and non-linear (Cross-Approximate Entropy) measurements evaluated the degree of couplings across three muscle pairings. Compared to a resting coupling state, most conditions showed evidence of coupling. The linear coupling showed greater coupling compared to the resting state. Dynamic coupling showed lower degrees of coupling for the RA-EO and RA-TA pairings but stronger coupling for the EO-TA pairing with the sit-up movement exhibiting lower Cross-ApEn (higher dynamic coupling) than the reverse crunch. The results provide preliminary evidence of coupling in abdominal muscle activity that was influenced by movement, but not load. The functional roles of the RA (prime mover), EO and TA (stabilizers) muscles may have influenced the degree of coupling and future investigations are needed to better understand the coupling of abdominal muscle activity. Copyright © 2018 Elsevier B.V. All rights reserved.
Investigation of Deformation Dynamics in a Wrought Magnesium Alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Wei; Qiao, Hua; An, Ke
2014-11-01
In the present research, the deformation dynamics and the effect of the deformation history on plastic deformation in a wrought magnesium alloy have been studied using real-time in-situ neutron diffraction measurements under a continuous loading condition and elastic-viscoplastic self-consistent (EVPSC) polycrystal modeling. The experimental results reveal that the pre-deformation delayed the activation of the tensile twinning during subsequent compression, mainly resulting from the residual strain. No apparent detwinning occurred during unloading and even in the elastic region during reverse loading. It is believed that the grain rotation played an important role in the elastic region during reverse loading. The EVPSCmore » model, which has been recently updated by implementing the twinning and detwinning model, was employed to characterize the deformation mechanism during the strain-path changes. The simulation result predicts well the experimental observation from the real-time in-situ neutron diffraction measurements. The present study provides a deep insight of the nature of deformation mechanisms in a hexagonal close-packed structured polycrystalline wrought magnesium alloy, which might lead to a new era of deformation-mechanism research.« less
NASA Technical Reports Server (NTRS)
Klinar, Walter J.; Healy, Frederick M.
1952-01-01
An investigation of a 1/24-scale model of the Grumman F9F-6 airplane has been conducted in the Langley 20-foot free-spinning tunnel. The erect and inverted spin and recovery characteristics of the model were determined for the normal flight loading with the model in the clean condition. The effect of loading variations was investigated briefly. Spin-recovery parachute tests were also performed. The results indicate that erect spins obtained on the airplane in the clean condition will be satisfactorily terminated for all loading conditions provided full rudder reversal is accompanied by moving the ailerons and flaperons (lateral controls) to full with the spin (stick right in a right spin). Inverted spins should be satisfactorily terminated by full reversal of the rudder alone. The model tests indicate that an 11.4-foot (laid-out-flat diameter) tail parachute (drag coefficient approximately 0.73) should be effective as an emergency spin-recovery device during demonstration spins of the airplane provided the towline is attached above the horizontal stabilizer.
Urdea, M S; Wilber, J C; Yeghiazarian, T; Todd, J A; Kern, D G; Fong, S J; Besemer, D; Hoo, B; Sheridan, P J; Kokka, R
1993-11-01
To determine the relative effect of sample matrix on the quantitation of HIV RNA in plasma. Two HIV-positive specimens were diluted into five and 10 different HIV-negative plasma samples, respectively. Branched DNA signal amplification technology and reverse-transcriptase polymerase chain reaction were used to measure the viral load. In one sample the viral load by polymerase chain reaction ranged from undetectable to 1.9 x 10(5) copies/ml, and the branched DNA results ranged from 2.6 x 10(4) to 4.2 x 10(4) HIV RNA equivalent/ml. In the other sample the corresponding figures were 6.3 x 10(4) to 5.5 x 10(5) copies/ml and 5.7 x 10(4) to 7.5 x 10(4) HIV RNA equivalents/ml. In contrast to reverse-transcriptase polymerase chain reaction the branched DNA signal amplification assay does not require a separate extraction step or enzymatic amplification of the target. Therefore this measurement is less affected by the sample matrix and the signal generated is directly proportional to the viral load.
Preliminary weight and costs of sandwich panels to distribute concentrated loads
NASA Technical Reports Server (NTRS)
Belleman, G.; Mccarty, J. E.
1976-01-01
Minimum mass honeycomb sandwich panels were sized for transmitting a concentrated load to a uniform reaction through various distances. The form skin gages were fully stressed with a finite element computer code. The panel general stability was evaluated with a buckling computer code labeled STAGS-B. Two skin materials were considered; aluminum and graphite-epoxy. The core was constant thickness aluminum honeycomb. Various panel sizes and load levels were considered. The computer generated data were generalized to allow preliminary least mass panel designs for a wide range of panel sizes and load intensities. An assessment of panel fabrication cost was also conducted. Various comparisons between panel mass, panel size, panel loading, and panel cost are presented in both tabular and graphical form.
30 CFR 77.1607 - Loading and haulage equipment; operation.
Code of Federal Regulations, 2010 CFR
2010-07-01
... to vehicular traffic. (p) Dippers, buckets, scraper blades, and similar movable parts shall be... to prevent conveyors from running in reverse if a hazard to personnel would be caused. (ee) Aerial...
30 CFR 77.1607 - Loading and haulage equipment; operation.
Code of Federal Regulations, 2012 CFR
2012-07-01
... to vehicular traffic. (p) Dippers, buckets, scraper blades, and similar movable parts shall be... to prevent conveyors from running in reverse if a hazard to personnel would be caused. (ee) Aerial...
30 CFR 77.1607 - Loading and haulage equipment; operation.
Code of Federal Regulations, 2013 CFR
2013-07-01
... to vehicular traffic. (p) Dippers, buckets, scraper blades, and similar movable parts shall be... to prevent conveyors from running in reverse if a hazard to personnel would be caused. (ee) Aerial...
30 CFR 77.1607 - Loading and haulage equipment; operation.
Code of Federal Regulations, 2014 CFR
2014-07-01
... to vehicular traffic. (p) Dippers, buckets, scraper blades, and similar movable parts shall be... to prevent conveyors from running in reverse if a hazard to personnel would be caused. (ee) Aerial...
30 CFR 77.1607 - Loading and haulage equipment; operation.
Code of Federal Regulations, 2011 CFR
2011-07-01
... to vehicular traffic. (p) Dippers, buckets, scraper blades, and similar movable parts shall be... to prevent conveyors from running in reverse if a hazard to personnel would be caused. (ee) Aerial...
No negative priming without cognitive control.
de Fockert, Jan W; Mizon, Guy A; D'Ubaldo, Mariangela
2010-12-01
There is evidence that the efficiency of selective attention depends on the availability of cognitive control mechanisms as distractor processing has been found to increase with high load on working memory or dual task coordination (Lavie, Hirst, de Fockert, & Viding, 2004). We tested the prediction that cognitive control load would also affect the negative priming effect produced when a distractor from 1 trial appears as a target on the next trial. We measured priming on trials that involved either high or low cognitive control load, and found that under high control load, negative priming was eliminated, and could even be reversed to positive priming, suggesting that the negative priming effect depends on the availability of cognitive control resources.
Guo, Yuanyuan; He, Wenxiu; Yang, Shengfeng; Zhao, Dujuan; Li, Zhonghao; Luan, Yuxia
2017-03-01
The clinical usage of docetaxel (DTX) has been blocked in the clinic because of its poor solubility and tumour multi-drug resistance (MDR). The dominating mechanism of MDR is the over-expression of p-gp on tumour cells. Traditional nano-medicines, such as nanoparticles and micelles, have been used to physically entrap DTX to improve their solubility, while the drug loading content was very low and the tumour resistance was neglected. In this study, the synthesized reduction-sensitive mPEG-PLGA-SS-DTX conjugate was utilized to load the p-gp inhibitor veraparmil (VRP) to prepare DTX and VRP co-delivered mPEG-PLGA-SS-DTX/VRP (PP-SS-DTX/VRP) multi-functional micelles to reverse MDR and enhance the anti-tumour effect of DTX. The micelles had a high drug loading content and showed an obvious reduction-sensitive release property for both DTX and VRP. In addition, an in vitro anti-tumour assay revealed that the micelles markedly inhibited the efflux activity of p-gp and accelerated cell apoptosis, resulting in the improvement of anti-tumour activity and reversal of MDR. The PP-SS-DTX micelles markedly enhanced the in vivo circulation time and increased the drug accumulation in tumour tissues. Therefore, the PP-SS-DTX/VRP micelle is a desirable drug delivery system for multi-drug resistance therapy of DTX and is very promising for clinical usage. Copyright © 2016 Elsevier B.V. All rights reserved.
Gale, Catharine R; Booth, Tom; Starr, John M; Deary, Ian J
2016-01-01
Background Information on childhood determinants of frailty or allostatic load in later life is sparse. We investigated whether lower intelligence and greater socioeconomic disadvantage in childhood increased the risk of frailty and higher allostatic load, and explored the mediating roles of adult socioeconomic position, educational attainment and health behaviours. Methods Participants were 876 members of the Lothian Birth Cohort 1936 whose intelligence was assessed at age 11. At age 70, frailty was assessed using the Fried criteria. Measurements were made of fibrinogen, triglyceride, total and high-density lipoprotein cholesterol, albumin, glycated haemoglobin, C reactive protein, body mass index and blood pressure, from which an allostatic load score was calculated. Results In sex-adjusted analyses, lower intelligence and lower social class in childhood were associated with an increased risk of frailty: relative risks (95% CIs) were 1.57 (1.21 to 2.03) for a SD decrease in intelligence and 1.48 (1.12 to 1.96) for a category decrease in social class. In the fully adjusted model, both associations ceased to be significant: relative risks were 1.13 (0.83 to 1.54) and 1.19 (0.86 to 1.61), respectively. Educational attainment had a significant mediating effect. Lower childhood intelligence in childhood, but not social class, was associated with higher allostatic load. The sex-adjusted coefficient for allostatic load for a SD decrease in intelligence was 0.10 (0.07 to 0.14). In the fully adjusted model, this association was attenuated but remained significant (0.05 (0.01 to 0.09)). Conclusions Further research will need to investigate the mechanisms whereby lower childhood intelligence is linked to higher allostatic load in later life. PMID:26700299
Vielhauer, S; Rudolphi, A; Boos, K S; Seidel, D
1995-04-21
A fully automated coupled-column HPLC method for on-line sample processing and determination of the photoreactive drug 8-methoxypsoralen (8-MOP) in plasma has been developed. The method is based on the novel internal-surface reversed-phase precolumn packing materials Alkyl-Diol Silica (ADS). This new family of restricted-access materials has a hydrophilic, electroneutral outer particle surface and a hydrophobic internal pore surface. The supports tolerate the direct and repetitive injection of proteinaceous fluids such as plasma and allow a classical C18-, C8- or C4-reversed-phase partitioning at the internal (pore) surface. The total protein load, i.e. the lifetime of the precolumn used in this study (C8-Alkyl-Diol Silica, 25 microns, 25 x 4 mm I.D.), exceeds more than 100 ml of plasma. 8-MOP was detected by its native fluorescence (excitation 312 nm, emission 540 nm). Validation of the method revealed a quantitative and matrix-independent recovery (99.5-101.3% measured at five concentrations between 21.3 and 625.2 ng of 8-MOP per milliliter of plasma), linearity over a wide range of 8-MOP concentrations (1.2-3070 ng of 8-MOP/ml, r = 0.999), low limits of detection (0.39 ng of 8-MOP/ml) and quantitation (0.79 ng of 8-MOP/ml) and a high between-run (C.V. 1.47%, n = 10) and within-run (C.V. 1.33%, n = 10) reproducibility. This paper introduces coupled-column HPLC as a suitable method for on-site analysis of drug plasma profiles (bedside-monitoring).
Cil, Onur; Esteva-Font, Cristina; Tas, Sadik Taskin; Su, Tao; Lee, Sujin; Anderson, Marc O.; Ertunc, Mert; Verkman, A. S.
2015-01-01
Inhibitors of kidney urea transporter (UT) proteins have potential use as salt-sparing diuretics (‘urearetics’) with a different mechanism of action than diuretics that target salt transporters. To study UT inhibition in rats, we screened about 10,000 drugs, natural products and urea analogs for inhibition of rat UT-A1. Drug and natural product screening found nicotine, sanguinarine and an indolcarbonylchromenone with IC50 of 10–20 μM. Urea analog screening found methylacetamide and dimethylthiourea (DMTU). DMTU fully and reversibly inhibited rat UT-A1 and UT-B by a noncompetitive mechanism with IC50 of 2–3 mM. Homology modeling and docking computations suggested DMTU binding sites on rat UT-A1. Following a single intraperitoneal injection of 500 mg/kg DMTU, peak plasma concentration was 9 mM with t1/2 of about 10 hours, and a urine concentration of 20–40 mM. Rats chronically treated with DMTU had a sustained, reversible reduction in urine osmolality from 1800 to 600 mOsm, a 3-fold increase in urine output, and mild hypokalemia. DMTU did not impair urinary concentrating function in rats on a low protein diet. Compared to furosemide-treated rats, the DMTU-treated rats had greater diuresis and reduced urinary salt loss. In a model of Syndrome of Inappropriate Antidiuretic Hormone secretion, DMTU treatment prevented hyponatremia and water retention produced by water-loading in dDAVP-treated rats. Thus, our results establish a rat model of UT inhibition and demonstrate the diuretic efficacy of UT inhibition. PMID:25993324
Cil, Onur; Esteva-Font, Cristina; Tas, Sadik Taskin; Su, Tao; Lee, Sujin; Anderson, Marc O; Ertunc, Mert; Verkman, Alan S
2015-08-01
Inhibitors of kidney urea transporter (UT) proteins have potential use as salt-sparing diuretics ('urearetics') with a different mechanism of action than diuretics that target salt transporters. To study UT inhibition in rats, we screened about 10,000 drugs, natural products and urea analogs for inhibition of rat UT-A1. Drug and natural product screening found nicotine, sanguinarine and an indolcarbonylchromenone with IC50 of 10-20 μM. Urea analog screening found methylacetamide and dimethylthiourea (DMTU). DMTU fully and reversibly inhibited rat UT-A1 and UT-B by a noncompetitive mechanism with IC50 of 2-3 mM. Homology modeling and docking computations suggested DMTU binding sites on rat UT-A1. Following a single intraperitoneal injection of 500 mg/kg DMTU, peak plasma concentration was 9 mM with t1/2 of about 10 h, and a urine concentration of 20-40 mM. Rats chronically treated with DMTU had a sustained, reversible reduction in urine osmolality from 1800 to 600 mOsm, a 3-fold increase in urine output, and mild hypokalemia. DMTU did not impair urinary concentrating function in rats on a low protein diet. Compared to furosemide-treated rats, the DMTU-treated rats had greater diuresis and reduced urinary salt loss. In a model of syndrome of inappropriate antidiuretic hormone secretion, DMTU treatment prevented hyponatremia and water retention produced by water-loading in dDAVP-treated rats. Thus, our results establish a rat model of UT inhibition and demonstrate the diuretic efficacy of UT inhibition.
Microstructure-sensitive plasticity and fatigue modeling of extruded 6061 aluminum alloys
NASA Astrophysics Data System (ADS)
McCullough, Robert Ross
In this study, the development of fatigue failure and stress anisotropy in light weight ductile metal alloys, specifically Al-Mg-Si aluminum alloys, was investigated. The experiments were carried out on an extruded 6061 aluminum alloy. Reverse loading experiments were performed up to a prestrain of 5% in both tension-followed-by-compression and compression-followed-by-tension. The development of isotropic and kinematic hardening and subsequent anisotropy was indicated by the observation of the Bauschinger effect phenomenon. Experimental results show that 6061 aluminum alloy exhibited a slight increase in the kinematic hardening versus applied prestrain. However, the ratio of kinematic-to-isotropic hardening remained near unity. An internal state variable (ISV) plasticity and damage model was used to capture the evolution of the anisotropy for the as-received T6 and partially annealed conditions. Following the stress anisotropy experiments, the same extruded 6061 aluminum alloy was tested under fully reversing, strain-controlled low cycle fatigue at up to 2.5% strain amplitudes and two heat treatment conditions. Observations were made of the development of striation fields up to the point of nucleation at cracked and clustered precipitants and free surfaces through localized precipitant slip band development. A finite element enabled micro-mechanics study of fatigue damage development of local strain field in the presence of hard phases was conducted. Both the FEA and experimental data sets were utilized in the implementation of a multi-stage fatigue model in order to predict the microstructure response, including fatigue nucleation and propagation contributions on the total fatigue life in AA6061. Good correlation between experimental and predicted results in the number of cycles to final failure was observed. The AA6061 material maintained relatively consistent low cycle fatigue performance despite two different heat treatments.
Rolling moments in a trailing vortex flow field
NASA Technical Reports Server (NTRS)
Mcmillan, O. J.; Schwind, R. G.; Nielsen, J. N.; Dillenius, M. F. E.
1977-01-01
Pressure distributions are presented which were measured on a wing in close proximity to a tip vortex of known structure generated by a larger, upstream semispan wing. Overall loads calculated by integration of these pressures are checked by independent measurements made with an identical model mounted on a force balance. Several conventional methods of wing analysis are used to predict the loads on the following wing. Strip theory is shown to give uniformly poor results for loading distribution, although predictions of overall lift and rolling moment are sometimes acceptable. Good results are obtained for overall coefficients and loading distribution by using linearized pressures in vortex-lattice theory in conjunction with a rectilinear vortex. The equivalent relation from reverse-flow theory that can be used to give economic predictions for overall loads is presented.
Damhorst, Gregory L.; Duarte-Guevara, Carlos; Chen, Weili; Ghonge, Tanmay; Cunningham, Brian T.; Bashir, Rashid
2015-01-01
Viral load measurements are an essential tool for the long-term clinical care of hum an immunodeficiency virus (HIV)-positive individuals. The gold standards in viral load instrumentation, however, are still too limited by their size, cost, and sophisticated operation for these measurements to be ubiquitous in remote settings with poor healthcare infrastructure, including parts of the world that are disproportionately affected by HIV infection. The challenge of developing a point-of-care platform capable of making viral load more accessible has been frequently approached but no solution has yet emerged that meets the practical requirements of low cost, portability, and ease-of-use. In this paper, we perform reverse-transcription loop-mediated isothermal amplification (RT-LAMP) on minimally processed HIV-spiked whole blood samples with a microfluidic and silicon microchip platform, and perform fluorescence measurements with a consumer smartphone. Our integrated assay shows amplification from as few as three viruses in a ~ 60 nL RT-LAMP droplet, corresponding to a whole blood concentration of 670 viruses per µL of whole blood. The technology contains greater power in a digital RT-LAMP approach that could be scaled up for the determination of viral load from a finger prick of blood in the clinical care of HIV-positive individuals. We demonstrate that all aspects of this viral load approach, from a drop of blood to imaging the RT-LAMP reaction, are compatible with lab-on-a-chip components and mobile instrumentation. PMID:26705482
Sun, Minjie; Li, Jing; Zhang, Cuiting; Xie, Ying; Qiao, Hongzhi; Su, Zhigui; Oupický, David; Ping, Qineng
2017-04-01
The ability to escape endo/lysosomal trafficking is critically important to prevent entrapment of nanomedicines in lysosomes and to achieve maximum therapeutic efficacy of drugs delivered to cells through endocytosis. In this study, a novel pH-sensitive chitosan carrier with the ability to reverse its charge during endo/lysosomal trafficking is developed as a way of improving lysosomal disruption. N-Arginine-N-octyl chitosan (AOCS) is synthesized by grafting l-arginine onto carboxymethyl chitosan. The AOCS is used to modify the surface of nanostructured lipid carriers (NLC) to prepare pH-sensitive charge-reversal lysosomolytic nanocarriers (ANLC). The ANLC is loaded with 10-hydroxycamptothecin (HCPT). The results show that ANLC is able to reverse surface zeta potential from negative to positive at lysosomal pH, which contributes to improved release of encapsulated drugs into cytoplasm. The lysosomolytic capability of ANLC is confirmed by confocal microscopy and transmission electron microscopy. In vitro studies demonstrate that the anticancer activity of HCPT-loaded ANLC is improved when compared with HCPT-NLC and free HCPT. In vivo pharmacokinetics and tissue distribution analysis show improved delivery of HCPT-ANLC to subcutaneous Heps mouse liver tumors and greatly improved antitumor activity. The results present ANLC as a promising drug delivery carrier for improved antitumor therapy. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Electrochemical treatment of concentrate from reverse osmosis of sanitary landfill leachate.
Labiadh, Lazhar; Fernandes, Annabel; Ciríaco, Lurdes; Pacheco, Maria José; Gadri, Abdellatif; Ammar, Salah; Lopes, Ana
2016-10-01
Conventional sanitary landfill leachate treatment has recently been complemented and, in some cases, completely replaced by reverse osmosis technology. Despite the good quality of treated water, the efficiency of the process is low and a large volume of reverse osmosis concentrate has to be either discharged or further treated. In this study, the use of anodic oxidation combined with electro-Fenton processes to treat the concentrate obtained in the reverse osmosis of sanitary landfill leachate was evaluated. The anodic oxidation pretreatment was performed in a pilot plant using an electrochemical cell with boron-doped diamond electrodes. In the electro-Fenton experiments, a boron-doped diamond anode and carbon-felt cathode were used, and the influence of the initial pH and iron concentration were studied. For the experimental conditions, the electro-Fenton assays performed at an initial pH of 3 had higher organic load removal levels, whereas the best nitrogen removal was attained when the electrochemical process was performed at the natural pH of 8.8. The increase in the iron concentration had an adverse impact on treatment under natural pH conditions, but it enhanced the nitrogen removal in the electro-Fenton assays performed at an initial pH of 3. The combined anodic oxidation and electro-Fenton process is useful for treating the reverse osmosis concentrate because it is effective at removing the organic load and nitrogen-containing species. Additionally, this process potentiates the increase in the biodegradability index of the treated effluent. Copyright © 2016 Elsevier Ltd. All rights reserved.
Santos Ferreira, Inês; Kikhney, Judith; Kursawe, Laura; Kasper, Stefanie; Gonçalves, Lídia M D; Trampuz, Andrej; Moter, Annette; Bettencourt, Ana Francisca; Almeida, António J
2018-05-01
Eradication of Gram-positive biofilms is a critical aspect in implant-associated infection treatment. Although antibiotic-containing particulate carriers may be a promising strategy for overcoming biofilm tolerance, the assessment of their interaction with biofilms has not been fully explored. In the present work, the antibiofilm activity of daptomycin- and vancomycin-loaded poly(methyl methacrylate) (PMMA) and PMMA-Eudragit RL 100 (EUD) microparticles against methicillin-resistant Staphylococcus aureus (MRSA) and polysaccharide intercellular adhesin-positive S. epidermidis biofilms was investigated using isothermal microcalorimetry (IMC) and fluorescence in situ hybridization (FISH). The minimal biofilm inhibitory concentrations (MBIC) of MRSA biofilms, as determined by IMC, were 5 and 20 mg/mL for daptomycin- and vancomycin-loaded PMMA microparticles, respectively. S. epidermidis biofilms were less susceptible, with a MBIC of 20 mg/mL for daptomycin-loaded PMMA microparticles. Vancomycin-loaded microparticles were ineffective. Adding EUD to the formulation caused a 4- and 16-fold reduction of the MBIC values of daptomycin-loaded microparticles for S. aureus and S. epidermidis, respectively. FISH corroborated the IMC results and provided additional insights on the antibiofilm effect of these particles. According to microscopic analysis, only daptomycin-loaded PMMA-EUD microparticles were causing a pronounced reduction in biofilm mass for both strains. Taken together, although IMC indicated that a biofilm inhibition was achieved, microscopy showed that the biofilm was not eradicated and still contained FISH-positive, presumably viable bacteria, thus indicating that combining the two techniques is essential to fully assess the effect of microparticles on staphylococcal biofilms.
NASA Astrophysics Data System (ADS)
Asano, Hiroki; Hirose, Tetsuya; Kojima, Yuta; Kuroki, Nobutaka; Numa, Masahiro
2018-04-01
In this paper, we present a wide-load-range switched-capacitor DC-DC buck converter with an adaptive bias comparator for ultra-low-power power management integrated circuit. The proposed converter is based on a conventional one and modified to operate in a wide load range by developing a load current monitor used in an adaptive bias comparator. Measurement results demonstrated that our proposed converter generates a 1.0 V output voltage from a 3.0 V input voltage at a load of up to 100 µA, which is 20 times higher than that of the conventional one. The power conversion efficiency was higher than 60% in the load range from 0.8 to 100 µA.
Magnus effects at high angles of attack and critical Reynolds numbers
NASA Technical Reports Server (NTRS)
Seginer, A.; Ringel, M.
1983-01-01
The Magnus force and moment experienced by a yawed, spinning cylinder were studied experimentally in low speed and subsonic flows at high angles of attack and critical Reynolds numbers. Flow-field visualization aided in describing a flow model that divides the Magnus phenomenon into a subcritical region, where reverse Magnus loads are experienced, and a supercritical region where these loads are not encountered. The roles of the spin rate, angle of attack, and crossflow Reynolds number in determining the boundaries of the subcritical region and the variations of the Magnus loads were studied.
Dynamic Failure Processes Under Confining Stress in AlON, a Transparent Polycrystalline Ceramic
2008-12-01
axes, the dynamic loading is imposed (using MKB) along the second specimen axis and the third axis is used for the ultra-high-speed photography. The...to its optically isotropic cubic crystal structure, fully dense, polycrystalline bodies can be rendered completely transparent, making it a viable... tribological loading conditions. During indentation, the region beneath the indenter is effectively confined due to the surrounding medium, and it
NASA Astrophysics Data System (ADS)
Andersson, Magnus; Marashi, Seyedeh Sepideh; Karlsson, Matts
2012-11-01
In the present study, aerodynamic drag (AD) has been estimated for an empty and a fully loaded conceptual timber truck (TT) using Computational Fluid Dynamics (CFD). The increasing fuel prices have challenged heavy duty vehicle (HDV) manufactures to strive for better fuel economy, by e.g. utilizing drag reducing external devices. Despite this knowledge, the TT fleets seem to be left in the dark. Like HDV aerodynamics, similarities can be observed as a large low pressure wake is formed behind the tractor (unloaded) and downstream of the trailer (full load) thus generating AD. As TTs travel half the time without any cargo, focus on drag reduction is important. The full scaled TTs where simulated using the realizable k-epsilon model with grid adaption techniques for mesh independence. Our results indicate that a loaded TT reduces the AD significantly as both wake size and turbulence kinetic energy are lowered. In contrast to HDV the unloaded TTs have a much larger design space available for possible drag reducing devices, e.g. plastic wrapping and/or flaps. This conceptual CFD study has given an indication of the large AD difference between the unloaded and fully loaded TT, showing the potential for significant AD improvements.
Bolivar, Juan M; Nidetzky, Bernd
2012-07-03
Silica is a highly attractive support material for protein immobilization in a wide range of biotechnological and biomedical-analytical applications. Without suitable derivatization, however, the silica surface is not generally usable for attachment of proteins. We show here that Z(basic2) (a three α-helix bundle mini-protein of 7 kDa size that exposes clustered positive charges from multiple arginine residues on one side) functions as highly efficient silica binding module (SBM), allowing chimeras of target protein with SBM to become very tightly attached to underivatized glass at physiological pH conditions. We used two enzymes, d-amino acid oxidase and sucrose phosphorylase, to demonstrate direct immobilization of Z(basic2) protein from complex biological samples with extremely high selectivity. Immobilized enzymes displayed full biological activity, suggesting that their binding to the glass surface had occurred in a preferred orientation via the SBM. We also show that charge complementarity was the main principle of affinity between SBM and glass surface, and Z(basic2) proteins were bound in a very strong, yet fully reversible manner, presumably through multipoint noncovalent interactions. Z(basic2) proteins were immobilized on porous glass in a loading of 30 mg protein/g support or higher, showing that attachment via the SBM combines excellent binding selectivity with a technically useful binding capacity. Therefore, Z(basic2) and silica constitute a fully orthogonal pair of binding module and insoluble support for oriented protein immobilization, and this opens up new opportunities for the application of silica-based materials in the development of supported heterogeneous biocatalysts.
NASA Astrophysics Data System (ADS)
Kondylis, Georgios P.; Vokas, Georgios A.; Anastasiadis, Anestis G.; Konstantinopoulos, Stavros A.
2017-02-01
The main purpose of this paper is to examine the technological feasibility of a small autonomous network, with electricity storage capability, which is completely electrified by wind energy. The excess energy produced, with respect to the load requirements, is sent to the batteries for storage. When the energy produced by the wind generator is not sufficient, load's energy requirement is covered by the battery system, ensuring, however, that voltage, frequency and other system characteristics are within the proper boundaries. For the purpose of this study, a Voltage Oriented Control system has been developed in order to monitor the autonomous operation and perform the energy management of the network. This system manages the power flows between the load and the storage system by properly controlling the Pulse Width Modulation pulses in the converter, thus ensuring power flows are adequate and frequency remains under control. The experimental results clearly indicate that a stand-alone wind energy system based on battery energy storage system is feasible and reliable. This paves the way for fully renewable and zero emission energy schemes.
Photodriven [2]rotaxane-[2]catenane interconversion.
Tron, Arnaud; Jacquot de Rouville, Henri-Pierre; Ducrot, Aurélien; Tucker, James H R; Baroncini, Massimo; Credi, Alberto; McClenaghan, Nathan D
2015-02-18
A [2]rotaxane, whose thread component comprises a central dibenzylammonium group and 9-alkoxyanthracene stoppers and is hosted by a 24-dibenzo-8-crown bead, undergoes an efficient photocatenation step resulting in a [2]rotaxane-to-[2]catenane topology interconversion via a fully reversible [4π+4π] photocyclomerization of terminal anthracene groups.
Evaluating age-related sensitivity to carbaryl-induced behavorial changes by PBPK/PD modeling
Due to its reversible inhibition of cholinesterases (ChEs), acute neurotoxicity is the primary effect of concern for carbaryl. Sensitivity to acute behavioral neurotoxicity of carbaryl was observed to be greater in aged rats, which was not fully attributable to differences in ChE...
Modular microfluidic valve structures based on reversible thermoresponsive ionogel actuators.
Benito-Lopez, Fernando; Antoñana-Díez, Marta; Curto, Vincenzo F; Diamond, Dermot; Castro-López, Vanessa
2014-09-21
This paper reports for the first time the use of a cross-linked poly(N-isopropylacrylamide) ionogel encapsulating the ionic liquid 1-ethyl-3-methylimidazolium ethyl sulphate as a thermoresponsive and modular microfluidic valve. The ionogel presents superior actuation behaviour to its equivalent hydrogel. Ionogel swelling and shrinking mechanisms and kinetics are investigated as well as the performance of the ionogel when integrated as a valve in a microfluidic device. The modular microfluidic valve demonstrates fully a reversible on-off behaviour without failure for up to eight actuation cycles and a pressure resistance of 1100 mbar.
Achieving a long-lived high-beta plasma state by energetic beam injection
NASA Astrophysics Data System (ADS)
Guo, H. Y.; Binderbauer, M. W.; Tajima, T.; Milroy, R. D.; Steinhauer, L. C.; Yang, X.; Garate, E. G.; Gota, H.; Korepanov, S.; Necas, A.; Roche, T.; Smirnov, A.; Trask, E.
2015-04-01
Developing a stable plasma state with high-beta (ratio of plasma to magnetic pressures) is of critical importance for an economic magnetic fusion reactor. At the forefront of this endeavour is the field-reversed configuration. Here we demonstrate the kinetic stabilizing effect of fast ions on a disruptive magneto-hydrodynamic instability, known as a tilt mode, which poses a central obstacle to further field-reversed configuration development, by energetic beam injection. This technique, combined with the synergistic effect of active plasma boundary control, enables a fully stable ultra-high-beta (approaching 100%) plasma with a long lifetime.
Langohr, G Daniel G; Giles, Joshua W; Athwal, George S; Johnson, James A
2015-06-01
Little is known about the effects of glenosphere diameter on shoulder joint loads. The purpose of this biomechanical study was to investigate the effects of glenosphere diameter on joint load, load angle, and total deltoid force required for active abduction and range of motion in internal/external rotation and abduction. A custom, instrumented reverse shoulder arthroplasty implant system capable of measuring joint load and varying glenosphere diameter (38 and 42 mm) and glenoid offset (neutral and lateral) was implanted in 6 cadaveric shoulders to provide at least 80% power for all variables. A shoulder motion simulator was used to produce active glenohumeral and scapulothoracic motion. All implant configurations were tested with active and passive motion with joint kinematics, loads, and moments recorded. At neutral and lateralized glenosphere positions, increasing diameter significantly increased joint load (+12 ± 21 N and +6 ± 9 N; P < .01) and deltoid load required for active abduction (+9 ± 22 N and +11 ± 15 N; P < .02), whereas joint load angle was unaffected (P > .8). Passive internal rotation was reduced with increased diameter at both neutral and lateralized glenosphere positions (-6° ± 6° and -12° ± 6°; P < .002); however, external rotation was not affected (P > .05). At neutral glenosphere position, increasing diameter increased the maximum angles of both adduction (+1° ± 1°; P = .03) and abduction (+8° ± 9°; P < .05). Lateralization also increased abduction range of motion compared with neutral (P < .01). Although increasing glenosphere diameter significantly increased joint load and deltoid force, the clinical impact of these changes is presently unclear. Internal rotation, however, was reduced, which contradicts previous bone modeling studies, which we postulate is due to increased posterior capsular tension as it is forced to wrap around a larger 42 mm implant assembly. Copyright © 2015 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.
Designing divertor targets for uniform power load
NASA Astrophysics Data System (ADS)
Dekeyser, W.; Reiter, D.; Baelmans, M.
2015-08-01
Divertor design for next step fusion reactors heavily relies on 2D edge plasma modeling with codes as e.g. B2-EIRENE. While these codes are typically used in a design-by-analysis approach, in previous work we have shown that divertor design can alternatively be posed as a mathematical optimization problem, and solved very efficiently using adjoint methods adapted from computational aerodynamics. This approach has been applied successfully to divertor target shape design for more uniform power load. In this paper, the concept is further extended to include all contributions to the target power load, with particular focus on radiation. In a simplified test problem, we show the potential benefits of fully including the radiation load in the design cycle as compared to only assessing this load in a post-processing step.
Experimental Verification of the Structural Glass Beam-Columns Strength
NASA Astrophysics Data System (ADS)
Pešek, Ondřej; Melcher, Jindřich; Balázs, Ivan
2017-10-01
This paper deals with experimental research of axially and laterally loaded members made of structural (laminated) glass. The purpose of the research is the evaluation of buckling strength and actual behaviour of the beam-columns due to absence of standards for design of glass load-bearing structures. The experimental research follows the previous one focusing on measuring of initial geometrical imperfections of glass members, testing of glass beams and columns. Within the frame of the research 9 specimens were tested. All of them were of the same geometry (length 2000 mm, width 200 mm and thickness 16 mm) but different composition - laminated double glass made of annealed glass or fully tempered glass panes bonded together by PVB or EVASAFE foil. Specimens were at first loaded by axial force and then by constantly increasing bending moment up to failure. During testing lateral deflections, vertical deflection and normal stresses at mid-span were measured. A maximum load achieved during testing has been adopted as flexural-lateral-torsional buckling strength. The results of experiments were statistically evaluated according to the European standard for design of structures EN 1990, appendix D. There are significant differences between specimens made of annealed glass or fully tempered glass. Differences between specimens loaded by axial forces 1 kN and 2 kN are negligible. The next step was to determine the design strength by calculation procedure based on buckling curves approach intended for design of steel columns and develop interaction criterion for glass beams-columns.
Macroscopic strain controlled ion current in an elastomeric microchannel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuo, Chin-Chang; Nguyen, Du; Buchsbaum, Steven
We report on the fabrication of an ultra-high aspect ratio ionically conductive single microchannel with tunable diameter from ≈ 20 μm to fully closed. The 4 mm-long channel is fabricated in a Polydimethylsiloxane (PDMS) mold and its cross-sectional area is controlled by applying macroscopic compressive strain to the mold in a direction perpendicular to the channel length. We investigated the ionic conduction properties of the channel. For a wide range of compressive strain up to ≈ 0.27, the strain dependence of the resistance is monotonic and fully reversible. For strain > 0.27, ionic conduction suddenly shuts off and the system becomes hystereticmore » (whereby a finite strain reduction is required to reopen the channel). Upon unloading, the original behavior is retrieved. This reversible behavior is observed over 200 compression cycles. The cross-sectional area of the channel can be inferred from the ion current measurement, as confirmed by a Nano-Computed Tomography investigation. We show that the cross-sectional area decreases monotonically with the applied compressive strain in the reversible range, in qualitative agreement with linear elasticity theory. We find that the shut-off strain is affected by the spatial extent of the applied strain, which provides additional tunability. Our tunable channel is well-suited for multiple applications in micro/nano-fluidic devices.« less
Time reversal invariance for a nonlinear scatterer exhibiting contact acoustic nonlinearity
NASA Astrophysics Data System (ADS)
Blanloeuil, Philippe; Rose, L. R. Francis; Veidt, Martin; Wang, Chun H.
2018-03-01
The time reversal invariance of an ultrasonic plane wave interacting with a contact interface characterized by a unilateral contact law is investigated analytically and numerically. It is shown analytically that despite the contact nonlinearity, the re-emission of a time reversed version of the reflected and transmitted waves can perfectly recover the original pulse shape, thereby demonstrating time reversal invariance for this type of contact acoustic nonlinearity. With the aid of finite element modelling, the time-reversal analysis is extended to finite-size nonlinear scatterers such as closed cracks. The results show that time reversal invariance holds provided that all the additional frequencies generated during the forward propagation, such as higher harmonics, sub-harmonics and zero-frequency component, are fully included in the retro-propagation. If the scattered waves are frequency filtered during receiving or transmitting, such as through the use of narrowband transducers, the recombination of the time-reversed waves will not exactly recover the original incident wave. This discrepancy due to incomplete time invariance can be exploited as a new method for characterizing damage by defining damage indices that quantify the departure from time reversal invariance. The sensitivity of these damage indices for various crack lengths and contact stress levels is investigated computationally, indicating some advantages of this narrowband approach relative to the more conventional measurement of higher harmonic amplitude, which requires broadband transducers.
das Neves, José; Sarmento, Bruno; Amiji, Mansoor M; Bahia, Maria Fernanda
2010-06-05
The objective of this work was to develop and validate a rapid reversed-phase (RP) high-performance liquid chromatography (HPLC) method for the in vitro pharmaceutical characterization of dapivirine-loaded polymeric nanoparticles. Chromatographic runs were performed on a RP C18 column with a mobile phase comprising acetonitrile-0.5% (w/v) triethanolamine solution in isocratic mode (80:20, v/v) at a flow rate of 1 ml/min. Dapivirine was detected at a wavelength of 290 nm. The method was shown to be specific, linear in the range of 1-50 microg/ml (R(2)=0.9998), precise at the intra-day and inter-day levels as reflected by the relative standard deviation values (less than 0.85%), accurate (recovery rate of 100.17+/-0.35%), and robust to changes in the mobile phase and column brand. The detection and quantitation limits were 0.08 and 0.24 microg/ml, respectively. The method was successfully used to determine the loading capacity and association efficiency of dapivirine in poly(lactic-co-glycolic acid)-based nanoparticles and its in vitro release. Copyright (c) 2010 Elsevier B.V. All rights reserved.
Power control system and method
Steigerwald, Robert Louis [Burnt Hills, NY; Anderson, Todd Alan [Niskayuna, NY
2008-02-19
A power system includes an energy harvesting device, a battery coupled to the energy harvesting device, and a circuit coupled to the energy harvesting device and the battery. The circuit is adapted to deliver power to a load by providing power generated by the energy harvesting device to the load without delivering excess power to the battery and to supplement the power generated by the energy harvesting device with power from the battery if the power generated by the energy harvesting device is insufficient to fully power the load. A method of operating the power system is also provided.
Power control system and method
Steigerwald, Robert Louis; Anderson, Todd Alan
2006-11-07
A power system includes an energy harvesting device, a battery coupled to the energy harvesting device, and a circuit coupled to the energy harvesting device and the battery. The circuit is adapted to deliver power to a load by providing power generated by the energy harvesting device to the load without delivering excess power to the battery and to supplement the power generated by the energy harvesting device with power from the battery if the power generated by the energy harvesting device is insufficient to fully power the load. A method of operating the power system is also provided.
Nonlinear behavior of shells of revolution under cyclic loading.
NASA Technical Reports Server (NTRS)
Levine, H. S.; Armen, H., Jr.; Winter, R.; Pifko, A.
1973-01-01
A large deflection elastic-plastic analysis is presented applicable to orthotropic axisymmetric plates and shells of revolution subjected to monotonic and cyclic loading conditions. The analysis is based on the finite-element method. It employs a new higher order, fully compatible, doubly curved orthotropic shell-of-revolution element using cubic Hermitian expansions for both meridional and normal displacements. Both perfectly plastic and strain hardening behavior are considered. Strain hardening is incorporated through use of the Prager-Ziegler kinematic hardening theory, which predicts an ideal Bauschinger effect. Numerous sample problems involving monotonic and cyclic loading conditions are analyzed.
Liu, Jie; Gong, Tao; Wang, Changguang; Zhong, Zhirong; Zhang, Zhirong
2007-08-01
Solid lipid nanoparticles (SLNs) loaded with insulin-mixed micelles (Ins-MMs) were prepared by a novel reverse micelle-double emulsion method, in which sodium cholate (SC) and soybean phosphatidylcholine (SPC) were employed to improve the liposolubility of insulin, and the mixture of stearic acid and palmitic acid were employed to prepare insulin loaded solid lipid nanoparticles (Ins-MM-SLNs). Some of the formulation parameters were optimized to obtain high quality nanoparticles. The particle size and zeta potential measured by photon correlation spectroscopy (PCS) were 114.7+/-4.68 nm and -51.36+/-2.04 mV, respectively. Nanospheres observed by transmission electron microscopy (TEM) and scanning electron microscopy (SEM) showed extremely spherical shape. The entrapment efficiency (EE%) and drug loading capacity (DL%) determined with high performance liquid chromatogram (HPLC) by modified ultracentrifuge method were 97.78+/-0.37% and 18.92+/-0.07%, respectively. Differential scanning calorimetry (DSC) of Ins-MM-SLNs indicated no tendency of recrystallisation. The core-shell drug loading pattern of the SLNs was confirmed by fluorescence spectra and polyacrylamide gel electrophoresis (PAGE) which also proved the integrity of insulin after being incorporated into lipid carrier. The drug release behavior was studied by in situ and externally sink method and the release pattern of drug was found to follow Weibull and Higuchi equations. Results of stability evaluation showed a relatively long-term stability after storage at 4 degrees C for 6 months. In conclusion, SLNs with small particle size, excellent physical stability, high entrapment efficiency, good loading capacity for protein drug can be produced by this novel reverse micelle-double emulsion method in present study.
Interleukin-2 therapy reverses some immunosuppressive effects of skeletal unloading
NASA Technical Reports Server (NTRS)
Armstrong, Jason W.; Balch, Signe; Chapes, Stephen K.
1994-01-01
Using antiorthostatic suspension, we characterized hematopoietic changes that may be responsible for the detrimental effect of skeletal unloading on macrophage development. Skeletally unloaded mice had suppressed macrophage development in unloaded and loaded bones, which indicated a systemic effect. Bone marrow cells from unloaded mice secreted less macrophage colony-stimulating factor and interleukin-6 than control mice. Additionally, T-lymphocyte proliferation was reduced after skeletal unloading. We show that polyethylene glycol-interleukin-2 therapy reversed the effects of skeletal unloading on macrophage development and cell proliferation.
Din, Fakhar Ud; Mustapha, Omer; Kim, Dong Wuk; Rashid, Rehmana; Park, Jong Hyuck; Choi, Ju Yeon; Ku, Sae Kwang; Yong, Chul Soon; Kim, Jong Oh; Choi, Han-Gon
2015-08-01
The purpose of this study was to develop novel solid lipid nanoparticle (SLN)-loaded dual-reverse thermosensitive hydrogel (DRTH) for rectal administration of flurbiprofen with improved bioavailability and reduced initial burst effect. The flurbiprofen-loaded SLNs were prepared by hot homogenisation technique, after optimising the amounts of lipid mixture (tricaprin and triethanolamine in 8:2 weight ratio), drug and surfactant. The flurbiprofen-loaded thermosensitive SLN composed of drug, lipid mixture and surfactant at a weight ratio of 10/15/1.3 was a solid at room temperature, and changed to liquid form at physiological temperature due to its melting point of about 32°C. This SLN gave the mean particle size of about 190nm and entrapment efficiency of around 90%. The DRTHs were prepared by adding this flurbiprofen-loaded thermosensitive SLN in various poloxamer solutions. Their rheological characterisation, release and stability were investigated while a morphological and pharmacokinetic study was performed after its rectal administration to rats compared with the drug and hydrogel. Poloxamer 188 and SLN decreased the gelation temperature and gelation time, but increased the viscosity at 25°C, gel strength and mucoadhesive force of DRTHs. In particular, the DRTH composed of [SLN/P 407/P 188 (10%/15%/25%)] with the gelation temperature of about 35°C existed as liquid at room temperature, but gelled at 30-36°C, leading to opposite reversible property of SLN. Thus, it was easy to administer rectally, and it gelled rapidly inside the body. This DRTH gave a significantly increased dissolution rate of the drug as compared to the flurbiprofen, but significantly retarded as compared to the hydrogel, including the initial dissolution rate. Moreover, this DRTH gave significantly higher plasma concentration and 7.5-fold AUC values compared to the drug, and lower initial plasma concentration and Cmax value compared to the hydrogel due to reduced initial burst effect. No damage in rectal mucosa was observed after the application of DRTH. Thus, this DRTH system with improved bioavailability and reduced initial burst effect would be recommended as an alternative for the flurbiprofen-loaded rectal pharmaceutical products. Copyright © 2015 Elsevier B.V. All rights reserved.
SHAKING TABLE TESTS ON SEISMIC DEFORMATION OF PILE SUPPORTED PIER
NASA Astrophysics Data System (ADS)
Fujita, Daiki; Kohama, Eiji; Takenobu, Masahiro; Yoshida, Makoto; Kiku, Hiroyoshi
The seismic deformation characeteristics of a pile supported pier was examined with the shake table test, especially focusing on the pier after its deformation during earthquakes. The model based on the similitude of the fully-plastic moment in piles was prepared to confirm the deformation and stress characteristic after reaching the fully-plastic moment. Moreover, assuming transportation of emergency supplies and occurrence of after shock in the post-disaster period, the pile supported pier was loaded with weight after reaching fully-plastic moment and excited with the shaking table. As the result, it is identified that the displacement of the pile supported pier is comparatively small if bending strength of piles does not decrease after reaching fully-plastic moment due to nonoccourrence of local backling or strain hardening.
Cambón, A; Rey-Rico, A; Mistry, D; Brea, J; Loza, M I; Attwood, D; Barbosa, S; Alvarez-Lorenzo, C; Concheiro, A; Taboada, P; Mosquera, V
2013-03-10
Five reverse poly(butylene oxide)-poly(ethylene oxide)-poly(butylene oxide) block copolymers, BOnEOmBOn, with BO ranging from 8 to 21 units and EO from 90 to 411 were synthesized and evaluated as efficient chemotherapeutic drug delivery nanocarriers and inhibitors of the P-glycoprotein (P-gp) efflux pump in a multidrug resistant (MDR) cell line. The copolymers were obtained by reverse polymerization of poly(butylene oxide), which avoids transfer reaction and widening of the EO block distribution, commonly found in commercial poly(ethylene oxide)-poly(propylene oxide) block copolymers (poloxamers). BOnEOmBOn copolymers formed spherical micelles of 10-40 nm diameter at lower concentrations (one order of magnitude) than those of equivalent poloxamers. The influence of copolymer block lengths and BO/EO ratios on the solubilization capacity and protective environment for doxorubicin (DOXO) was investigated. Micelles showed drug loading capacity ranging from ca. 0.04% to 1.5%, more than 150 times the aqueous solubility of DOXO, and protected the cargo from hydrolysis for more than a month due to their greater colloidal stability in solution. Drug release profiles at various pHs, and the cytocompatibility and cytotoxicity of the DOXO-loaded micelles were assessed in vitro. DOXO loaded in the polymeric micelles accumulated more slowly inside the cells than free DOXO due to its sustained release. All copolymers were found to be cytocompatible, with viability extents larger than 95%. In addition, the cytotoxicity of DOXO-loaded micelles was higher than that observed for free drug solutions in a MDR ovarian NCI-ADR-RES cell line which overexpressed P-gp. The inhibition of the P-gp efflux pump by some BOnEOmBOn copolymers, similar to that measured for the common P-gp inhibitor verapamil, favored the retention of DOXO inside the cell increasing its cytotoxic activity. Therefore, poly(butylene oxide)-poly(ethylene oxide) block copolymers offer interesting features as cell response modifiers to complement their role as efficient nanocarriers for cancer chemotherapy. Copyright © 2013 Elsevier B.V. All rights reserved.
Grange, Christopher S; Meijer, Anthony J H M; Ward, Michael D
2010-01-07
The trinuclear complexes [{(R2bipy)2Ru}3(mu3-HHTP)](PF6)3 [1(PF6)3, R = H; 2(PF6)3, R = 4-tBu] contain three {Ru(R2bipy)2}2+ fragments connected to the triangular tris-chelating ligand hexahydroxytriphenylene (H6HHTP). This bridging ligand contains three dioxolene-type binding sites, each of which can reversibly convert between dianionic catecholate (cat), monoanionic semiquinone (sq) or neutral quinone (q) redox states. The bridging ligand as a whole can therefore exist in seven different redox states from fully reduced [cat,cat,cat]6- through to fully oxidised, neutral [q,q,q]. Cyclic voltammetry of 1(PF6)3 in MeCN reveals six redox processes of which the three at more positive potentials (the sq/q couples) are reversible but the three at more negative potentials (the sq/cat couples) are irreversible with distorted wave shapes due to the insolubility of the reduced forms of the complex. In contrast, the more soluble complex 2(PF6)3 displays six reversible one-electron redox processes making all components of a seven-membered redox chain accessible. UV/Vis/NIR spectro-electrochemical studies reveal rich spectroscopic behaviour, with--in particular--very intense transitions in the near-IR region in many of the oxidation states associated with Ru(II)-->(dioxolene) MLCT and bridging ligand centred pi-pi* transitions. TDDFT calculations were used to analyse the electronic spectra in all seven oxidation states; the calculated spectra generally show very good agreement with experiment, which has allowed a fairly complete assignment of the low-energy transitions. The strong electrochromism of the complexes in the near-IR region has formed the basis of an optical window in which a thin film of 1(PF6)3 or 2(PF6)3 on a conductive glass surface can be reversibly and rapidly switched between redox states that alternate between strongly absorbing or near-transparent at 1100 nm, with--for 2(PF6)3--the switching being stable and reversible in water over thousands of cycles.
Estimation of wing nonlinear aerodynamic characteristics at supersonic speeds
NASA Technical Reports Server (NTRS)
Carlson, H. W.; Mack, R. J.
1980-01-01
A computational system for estimation of nonlinear aerodynamic characteristics of wings at supersonic speeds was developed and was incorporated in a computer program. This corrected linearized theory method accounts for nonlinearities in the variation of basic pressure loadings with local surface slopes, predicts the degree of attainment of theoretical leading edge thrust, and provides an estimate of detached leading edge vortex loadings that result when the theoretical thrust forces are not fully realized.
Health Monitoring for Condition-Based Maintenance of a HMMWV using an Instrumented Diagnostic Cleat
2008-10-15
identify faults in the bearings, shaft , etc. In wheeled ground vehicles, loading varies significantly as mentioned above. If loads acting on the...vehicle could be fully measured or controlled in terms of the terrain input motions and/or spindle forces/moments, fault identification in wheeled...diagnostic results. - Vehicle speed traversing the cleat can be controlled. - Configuration of cleats can be designed to develop specific tests for
NCEL (Naval Civil Engineering Lab.) Ocean Platforms Seminar.
1983-11-01
propagating and evanescent modes. The resulting pressure field from both the scattered and radiated waves are integrated over the submerged surface of...fully submerged value. At the same time, an impact load occurs due to water entry of the member. Repeated loading of this type can result in fatigue...pronounced on deeply submerged caissons than on surface-piercing caissons. In the case of surface piercing caissons where the nonlinear effects tend to
NASA Astrophysics Data System (ADS)
Kumar, Bhupesh; Singh, Kamal P.
2014-11-01
We demonstrate that spider draglines exhibit a fatigueless response in extreme cyclic torsion up to its breaking limit. The well defined Raman bands at 1095 and 1245 cm-1 shifted linearly towards lower wavenumbers versus increasing twist in both clockwise and counter-clockwise directions. Under thousands of continuous loading cycles of twist strain approaching its breaking limit, all the Raman bands were preserved and the characteristic Raman peak shifts were found to be reversible. Besides, nanoscale surface profile of the worked silk appeared as good as the pristine silk. This unique fatigueless twist response of draglines, facilitated by reversible deformation of protein molecules, could find applications in durable miniatured devices.
Asymmetric Spatial Processing Under Cognitive Load.
Naert, Lien; Bonato, Mario; Fias, Wim
2018-01-01
Spatial attention allows us to selectively process information within a certain location in space. Despite the vast literature on spatial attention, the effect of cognitive load on spatial processing is still not fully understood. In this study we added cognitive load to a spatial processing task, so as to see whether it would differentially impact upon the processing of visual information in the left versus the right hemispace. The main paradigm consisted of a detection task that was performed during the maintenance interval of a verbal working memory task. We found that increasing cognitive working memory load had a more negative impact on detecting targets presented on the left side compared to those on the right side. The strength of the load effect correlated with the strength of the interaction on an individual level. The implications of an asymmetric attentional bias with a relative disadvantage for the left (vs the right) hemispace under high verbal working memory (WM) load are discussed.
Home Health Compare: Find a Home Health Agency
... page could not be loaded. The Medicare.gov Home page currently does not fully support browsers with " ... widget - Select to show Back to top Footer Home A federal government website managed and paid for ...
Understanding Low-cycle Fatigue Life Improvement Mechanisms in a Pre-twinned Magnesium Alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Wei; An, Ke
The mechanisms of fatigue life improvement by pre-twinning process in a commercial rolled magnesium (Mg) alloy have been investigated using real-time in situ neutron diffraction under a continuous-loading condition. It is found that by introducing the excess twinned grains through pre-compression along the rolling direction the fatigue life was enhanced approximately 50%, mainly resulting from the prolonged detwinning process and inhibited dislocation slip during reverse tension. Moreover, after pre-twinning process, the removal of the rapid strain hardening during reverse tension leads to a compressive mean stress value and more symmetric shape of stress-strain hysteresis loop. The pre-twinning has significant impactsmore » on the twinning-detwinning characteristics and deformation modes during cyclic loading and greatly facilitates the twinning-detwinning activities in plastic deformation. The cyclic straining leads to the increase of contribution of tensile twinning deformation in overall plastic deformation in both the as-received and pre-deformed sample. The mechanisms of load partitioning in different groups of grains are closely related to the deformation modes in each deformation stage, while the fatigue cycling has little influence on the load sharing. The pre-twinning process provides an easy and cost-effective route to improve the low-cycle fatigue life through manufacturing and processing, which would advance the wide application of light-weight wrought Mg alloys as structural materials.« less
Understanding Low-cycle Fatigue Life Improvement Mechanisms in a Pre-twinned Magnesium Alloy
Wu, Wei; An, Ke
2015-10-03
The mechanisms of fatigue life improvement by pre-twinning process in a commercial rolled magnesium (Mg) alloy have been investigated using real-time in situ neutron diffraction under a continuous-loading condition. It is found that by introducing the excess twinned grains through pre-compression along the rolling direction the fatigue life was enhanced approximately 50%, mainly resulting from the prolonged detwinning process and inhibited dislocation slip during reverse tension. Moreover, after pre-twinning process, the removal of the rapid strain hardening during reverse tension leads to a compressive mean stress value and more symmetric shape of stress-strain hysteresis loop. The pre-twinning has significant impactsmore » on the twinning-detwinning characteristics and deformation modes during cyclic loading and greatly facilitates the twinning-detwinning activities in plastic deformation. The cyclic straining leads to the increase of contribution of tensile twinning deformation in overall plastic deformation in both the as-received and pre-deformed sample. The mechanisms of load partitioning in different groups of grains are closely related to the deformation modes in each deformation stage, while the fatigue cycling has little influence on the load sharing. The pre-twinning process provides an easy and cost-effective route to improve the low-cycle fatigue life through manufacturing and processing, which would advance the wide application of light-weight wrought Mg alloys as structural materials.« less
Ahmed, Lubna; de Fockert, Jan W
2012-10-01
Selective attention to relevant targets has been shown to depend on the availability of working memory (WM). Under conditions of high WM load, processing of irrelevant distractors is enhanced. Here we showed that this detrimental effect of WM load on selective attention efficiency is reversed when the task requires global- rather than local-level processing. Participants were asked to attend to either the local or the global level of a hierarchical Navon stimulus while keeping either a low or a high load in WM. In line with previous findings, during attention to the local level, distractors at the global level produced more interference under high than under low WM load. By contrast, loading WM had the opposite effect of improving selective attention during attention to the global level. The findings demonstrate that the impact of WM load on selective attention is not invariant, but rather is dependent on the level of the to-be-attended information.
NASA Technical Reports Server (NTRS)
Carter, Michael T.
2003-01-01
Reversible, colorimetric fiber-optic sensors are undergoing development for use in measuring concentrations of ammonia in air at levels relevant to human health [0 to 50 parts per million (ppm)]. A sensor of this type includes an optical fiber that has been modified by replacing a portion of its cladding with a polymer coat that contains a dye that reacts reversibly with ammonia and changes color when it does so. The change in color is measured as a change in the amount of light transmitted from one end of the fiber to the other. Responses are reversible and proportional to the concentration of ammonia over the range from 9 to 175 ppm and in some cases the range of reversibility extends up to 270 ppm. The characteristic time for the response of a sensor to rise from 10 to 90 percent of full scale is about 25 seconds. These sensors are fully operational in pure carbon dioxide and are not adversely affected by humidity. This work was done by Michael T. Carter
Orringer, Jeffrey S; Sachs, Dana L; Shao, Yuan; Hammerberg, Craig; Cui, Yilei; Voorhees, John J; Fisher, Gary J
2012-10-01
Fractionated ablative laser resurfacing has become a widely used treatment modality. Its clinical results are often found to approach those of traditional fully ablative laser resurfacing. To directly compare the molecular changes that result from fractionated and fully ablative carbon dioxide (CO(2)) laser resurfacing in photodamaged human skin. Photodamaged skin of 34 adult volunteers was focally treated at distinct sites with a fully ablative CO(2) laser and a fractionated CO(2) laser. Serial skin samples were obtained at baseline and several time points after treatment. Real-time reverse transcriptase polymerase chain reaction technology and immunohistochemistry were used to quantify molecular responses to each type of laser treatment. Fully ablative and fractionated CO(2) laser resurfacing induced significant dermal remodeling and collagen induction. After a single treatment, fractionated ablative laser resurfacing resulted in collagen induction that was approximately 40% to 50% as pronounced as that induced by fully ablative laser resurfacing. The fundamental cutaneous responses that result from fully ablative and fractionated carbon dioxide laser resurfacing are similar but differ in magnitude and duration, with the fully ablative procedure inducing relatively greater changes including more pronounced collagen induction. However, the molecular data reported here provide substantial support for fractionated ablative resurfacing as an effective treatment modality for improving skin texture. © 2012 by the American Society for Dermatologic Surgery, Inc. Published by Wiley Periodicals, Inc.
Prediction of plastic instabilities under thermo-mechanical loadings in tension and simple shear
NASA Astrophysics Data System (ADS)
Manach, P. Y.; Mansouri, L. F.; Thuillier, S.
2016-08-01
Plastic instabilities like Portevin-Le Châtelier were quite thoroughly investigated experimentally in tension, under a large range of strain rates and temperatures. Such instabilities are characterized both by a jerky flow and a localization of the strain in bands. Similar phenomena were also recorded for example in simple shear [1]. Modelling of this phenomenon is mainly performed at room temperature, taking into account the strain rate sensitivity, though an extension of the classical Estrin-Kubin-McCormick was proposed in the literature, by making some of the material parameters dependent on temperature. A similar approach is considered in this study, furthermore extended for anisotropic plasticity with Hill's 1948 yield criterion. Material parameters are identified at 4 different temperatures, ranging from room temperature up to 250°C. The identification procedure is split in 3 steps, related to the elasticity, the average stress level and the magnitude of the stress drops. The anisotropy is considered constant in this temperature range, as evidenced by experimental results [2]. The model is then used to investigate the temperature dependence of the critical strain, as well as its capability to represent the propagation of the bands. Numerical predictions of the instabilities in tension and simple shear at room temperature and up to 250°C are compared with experimental results [3]. In the case of simple shear, a monotonic loading followed by unloading and reloading in the reverse direction (“Bauschinger-type” test) is also considered, showing that (i) kinematic hardening should be taken into account to fully describe the transition at re-yielding (ii) the modelling of the critical strain has to be improved.
Sensitivity of polycrystal plasticity to slip system kinematic hardening laws for Al 7075-T6
Hennessey, Conor; Castelluccio, Gustavo M.; McDowell, David L.
2017-02-01
The prediction of formation and early growth of microstructurally small fatigue cracks requires use of constitutive models that accurately estimate local states of stress, strain, and cyclic plastic strain. However, few research efforts have attempted to systematically consider the sensitivity of overall cyclic stress-strain hysteresis and higher order mean stress relaxation and plastic strain ratcheting responses introduced by the slip system back-stress formulation in crystal plasticity, even for face centered cubic (FCC) crystal systems. This paper explores the performance of two slip system level kinematic hardening models using a finite element crystal plasticity implementation as a User Material Subroutine (UMAT)more » within ABAQUS, with fully implicit numerical integration. The two kinematic hardening formulations aim to reproduce the cyclic deformation of polycrystalline Al 7075-T6 in terms of both macroscopic cyclic stress-strain hysteresis loop shape, as well as ratcheting and mean stress relaxation under strain- or stress-controlled loading with mean strain or stress, respectively. The first formulation is an Armstrong-Frederick type hardening-dynamic recovery law for evolution of the back stress. This approach is capable of reproducing observed deformation under completely reversed uniaxial loading conditions, but overpredicts the rate of cyclic ratcheting and associated mean stress relaxation. The second formulation corresponds to a multiple back stress Ohno-Wang type hardening law with nonlinear dynamic recovery. The adoption of this back stress evolution law greatly improves the capability to model experimental results for polycrystalline specimens subjected to cycling with mean stress or strain. As a result, the relation of such nonlinear dynamic recovery effects are related to slip system interactions with dislocation substructures.« less
Sensitivity of polycrystal plasticity to slip system kinematic hardening laws for Al 7075-T6
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hennessey, Conor; Castelluccio, Gustavo M.; McDowell, David L.
The prediction of formation and early growth of microstructurally small fatigue cracks requires use of constitutive models that accurately estimate local states of stress, strain, and cyclic plastic strain. However, few research efforts have attempted to systematically consider the sensitivity of overall cyclic stress-strain hysteresis and higher order mean stress relaxation and plastic strain ratcheting responses introduced by the slip system back-stress formulation in crystal plasticity, even for face centered cubic (FCC) crystal systems. This paper explores the performance of two slip system level kinematic hardening models using a finite element crystal plasticity implementation as a User Material Subroutine (UMAT)more » within ABAQUS, with fully implicit numerical integration. The two kinematic hardening formulations aim to reproduce the cyclic deformation of polycrystalline Al 7075-T6 in terms of both macroscopic cyclic stress-strain hysteresis loop shape, as well as ratcheting and mean stress relaxation under strain- or stress-controlled loading with mean strain or stress, respectively. The first formulation is an Armstrong-Frederick type hardening-dynamic recovery law for evolution of the back stress. This approach is capable of reproducing observed deformation under completely reversed uniaxial loading conditions, but overpredicts the rate of cyclic ratcheting and associated mean stress relaxation. The second formulation corresponds to a multiple back stress Ohno-Wang type hardening law with nonlinear dynamic recovery. The adoption of this back stress evolution law greatly improves the capability to model experimental results for polycrystalline specimens subjected to cycling with mean stress or strain. As a result, the relation of such nonlinear dynamic recovery effects are related to slip system interactions with dislocation substructures.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirka, Michael M.; Greeley, Duncan A.; Hawkins, Charles S.
Here in this study, the impact of texture (columnar/equiax grain structure) and influence of material orientation on the low cycle fatigue (LCF) behavior of hot isostatic pressed (HIP) and heat-treated Inconel 718 fabricated through electron beam melting (EBM) is investigated. Material was tested both parallel and perpendicular (transverse) to the build direction. In all instances, the EBM HIP and heat-treated Inconel 718 performed similarly or exceeded the LCF life of wrought Inconel 718 plate and bar stock under fully reversed strain-controlled loading at 650 °C. Amongst the textures, the columnar grains oriented parallel to the build direction exhibited the highestmore » life on average compared to the transverse columnar and equiax EBM material. Further, in relation to the reference wrought material the parallel columnar grain material exhibited a greater life. While a negligible life difference was observed in the equiax grained material between the two orientations, a consistently lower accumulated inelastic strain was measured for the material loaded parallel to the build direction than the transverse orientation. Failure of the parallel columnar material occurred in a transgranular manner with cracks emanating from the surface whereas the transverse columnar material failed in a intergranular manner, with crack growth occurring through repeated rupture of oxide at the crack-tip. Finally, in the case of the equiax material, an influence of material orientation was not observed on the failure mechanism with crack propagation occurring through a combination of debonded/cracked carbides and void formation along twin boundaries resulting in a mixture of intergranular and transgranular crack propagation.« less
Janssen, Dennis; Mann, Kenneth A; Verdonschot, Nico
2008-11-14
In order to gain insight into the micro-mechanical behavior of the cement-bone interface, the effect of parametric variations of frictional, morphological and material properties on the mechanical response of the cement-bone interface were analyzed using a finite element approach. Finite element models of a cement-bone interface specimen were created from micro-computed tomography data of a physical specimen that was sectioned from an in vitro cemented total hip arthroplasty. In five models the friction coefficient was varied (mu=0.0; 0.3; 0.7; 1.0 and 3.0), while in one model an ideally bonded interface was assumed. In two models cement interface gaps and an optimal cement penetration were simulated. Finally, the effect of bone cement stiffness variations was simulated (2.0 and 2.5 GPa, relative to the default 3.0 GPa). All models were loaded for a cycle of fully reversible tension-compression. From the simulated stress-displacement curves the interface deformation, stiffness and hysteresis were calculated. The results indicate that in the current model the mechanical properties of the cement-bone interface were caused by frictional phenomena at the shape-closed interlock rather than by adhesive properties of the cement. Our findings furthermore show that in our model maximizing cement penetration improved the micromechanical response of the cement-bone interface stiffness, while interface gaps had a detrimental effect. Relative to the frictional and morphological variations, variations in the cement stiffness had only a modest effect on the micro-mechanical behavior of the cement-bone interface. The current study provides information that may help to better understand the load-transfer mechanisms taking place at the cement-bone interface.
Kirka, Michael M.; Greeley, Duncan A.; Hawkins, Charles S.; ...
2017-09-11
Here in this study, the impact of texture (columnar/equiax grain structure) and influence of material orientation on the low cycle fatigue (LCF) behavior of hot isostatic pressed (HIP) and heat-treated Inconel 718 fabricated through electron beam melting (EBM) is investigated. Material was tested both parallel and perpendicular (transverse) to the build direction. In all instances, the EBM HIP and heat-treated Inconel 718 performed similarly or exceeded the LCF life of wrought Inconel 718 plate and bar stock under fully reversed strain-controlled loading at 650 °C. Amongst the textures, the columnar grains oriented parallel to the build direction exhibited the highestmore » life on average compared to the transverse columnar and equiax EBM material. Further, in relation to the reference wrought material the parallel columnar grain material exhibited a greater life. While a negligible life difference was observed in the equiax grained material between the two orientations, a consistently lower accumulated inelastic strain was measured for the material loaded parallel to the build direction than the transverse orientation. Failure of the parallel columnar material occurred in a transgranular manner with cracks emanating from the surface whereas the transverse columnar material failed in a intergranular manner, with crack growth occurring through repeated rupture of oxide at the crack-tip. Finally, in the case of the equiax material, an influence of material orientation was not observed on the failure mechanism with crack propagation occurring through a combination of debonded/cracked carbides and void formation along twin boundaries resulting in a mixture of intergranular and transgranular crack propagation.« less
2015-10-01
This consensus document is an update of combined antiretroviral therapy (cART) guidelines and recommendations for HIV-1 infected adult patients. To formulate these recommendations, a panel composed of members of the AIDS Study Group and the AIDS National Plan (GeSIDA/Plan Nacional sobre el Sida) reviewed the efficacy and safety advances in clinical trials, and cohort and pharmacokinetic studies published in medical journals (PubMed and Embase) or presented in medical scientific meetings. The strength of the recommendations, and the evidence that supports them, are based on modified criteria of the Infectious Diseases Society of America. In this update, cART is recommended for all patients infected by type 1 human immunodeficiency virus (HIV-1). The strength and level of the recommendation depends on the CD4+T-lymphocyte count, the presence of opportunistic diseases or comorbid conditions, age, and prevention of transmission of HIV. The objective of cART is to achieve an undetectable plasma viral load. Initial cART should always comprise a combination of 3 drugs, including 2 nucleoside reverse transcriptase inhibitors, and a third drug from a different family. Three out of the ten recommended regimes are regarded as preferential (all of them with an integrase inhibitor as the third drug), and the other seven (based on a non-nucleoside reverse transcriptase inhibitor, a ritonavir-boosted protease inhibitor, or an integrase inhibitor) as alternatives. This update presents the causes and criteria for switching cART in patients with undetectable plasma viral load, and in cases of virological failure where rescue cART should comprise 3 (or at least 2) drugs that are fully active against the virus. An update is also provided for the specific criteria for cART in special situations (acute infection, HIV-2 infection, and pregnancy) and with comorbid conditions (tuberculosis or other opportunistic infections, kidney disease, liver disease, and cancer). These new guidelines update previous recommendations related to cART (when to begin and what drugs should be used), how to monitor and what to do in case of viral failure or drug adverse reactions. cART specific criteria in comorbid patients and special situations are equally updated. Copyright © 2015 Elsevier España, S.L.U. y Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.
Dovgan, Barbara; Barlič, Ariana; Knežević, Miomir; Miklavčič, Damijan
2017-02-01
New cryopreservation approaches for medically applicable cells are of great importance in clinical medicine. Current protocols employ the use of dimethyl sulfoxide (DMSO), which is toxic to cells and causes undesirable side effects in patients, such as cardiac arrhythmias, neurological events, and others. Trehalose, a nontoxic disaccharide, has been already studied as a cryoprotectant. However, an efficient approach for loading this impermeable sugar into mammalian cells is missing. In our study, we assessed the efficiency of combining reversible electroporation and trehalose for cryopreservation of human adipose-derived stem cells. First, we determined reversible electroporation threshold by loading of propidium iodide into cells. The highest permeabilization while maintaining high cell viability was reached at 1.5 kV/cm, at 8 pulses, 100 µs, and 1 Hz. Second, cells were incubated in 250 or 400 mM trehalose and electroporated before cryopreservation. After thawing, 83.8 ± 1.8 % (mean ± SE) cell recovery was obtained at 250 mM trehalose. By using a standard freezing protocol (10 % DMSO in 90 % fetal bovine serum), cell survival after thawing was about 91.5 ± 1.6 %. We also evaluated possible effects of electroporation on cells' functionality before and after thawing. Successful cell growth and efficient adipogenic and osteogenic differentiation were achieved. In conclusion, electroporation seems to be an efficient method for loading nonpermeable trehalose into human adipose-derived stem cells, allowing long-term cryopreservation in DMSO-free and xeno-free conditions.
Hsiao, Meng-Hsuan; Chiou, Shih-Hwa; Larsson, Mikael; Hung, Kuo-Hsuan; Wang, Yi-Ling; Liu, Catherine Jui-Ling; Liu, Dean-Mo
2014-07-01
Hydrogels composed of assembled colloids is a material class that is currently receiving much interest and shows great promise for use in biomedical applications. This emerging material class presents unique properties derived from the combination of nanosized domains in the form of colloidal particles with a continuous gel network and an interspersed liquid phase. Here we developed an amphiphilic chitosan-based, thermogelling, shear-reversible colloidal gel system for improved glaucoma treatment and addressed how preparation procedures and loading with the anti-glaucoma drug latanoprost and commonly used preservative benzalkonium chloride influenced the mechanical properties of and drug release from the colloidal gels. The results highlight that incorporated substances and preparation procedures have effects both on mechanical properties and drug release, but that the release of drug loaded in the colloidal carriers is mainly limited by transport out of the carriers, rather than by diffusion within the gel. The developed colloidal chitosan based gels hold outstanding biomedical potential, as confirmed by the ease of preparation and administration, low cytotoxicity in MTT assay, excellent biocompatibility and lowering of intraocular pressure for 40 days in a rabbit glaucoma model. The findings clearly justify further investigations towards clinical use in the treatment of glaucoma. Furthermore, the use of this shear-reversible colloidal gel could easily be extended to localized treatment of a number of critical conditions, from chronic disorders to cancer, potentially resulting in a number of new therapeutics with improved clinical performance. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Gradient-type modeling of the effects of plastic recovery and surface passivation in thin films
NASA Astrophysics Data System (ADS)
Liu, Jinxing; Kah Soh, Ai
2016-08-01
The elasto-plastic responses of thin films subjected to cyclic tension-compression loading and bending are studied, with a focus on Bauschinger and size effects. For this purpose, a model is established by incorporating plastic recovery into the strain gradient plasticity theory we proposed recently. Elastic and plastic parts of strain and strain gradient, which are determined by the elasto-plastic decomposition according to the associative rule, are assumed to have a degree of material-dependent reversibility. Based on the above assumption, a dislocation reversibility-dependent rule is built to describe evolutions of different deformation components under cyclic loadings. Furthermore, a simple strategy is provided to implement the passivated boundary effects by introducing a gradual change to relevant material parameters in the yield function. Based on this theory, both bulge and bending tests under cyclic loading conditions are investigated. By comparing the present predictions with the existing experimental data, it is found that the yield function is able to exhibit the size effect, the Bauschinger effect, the influence of surface passivation and the hysteresis-loop phenomenon. Thus, the proposed model is deemed helpful in studying plastic deformations of micron-scale films.
Honeycomb Core Permeability Under Mechanical Loads
NASA Technical Reports Server (NTRS)
Glass, David E.; Raman, V. V.; Venkat, Venki S.; Sankaran, Sankara N.
1997-01-01
A method for characterizing the air permeability of sandwich core materials as a function of applied shear stress was developed. The core material for the test specimens was either Hexcel HRP-3/16-8.0 and or DuPont Korex-1/8-4.5 and was nominally one-half inch thick and six inches square. The facesheets where made of Hercules' AS4/8552 graphite/epoxy (Gr/Ep) composites and were nominally 0.059-in. thick. Cytec's Metalbond 1515-3M epoxy film adhesive was used for co-curing the facesheets to the core. The permeability of the specimens during both static (tension) and dynamic (reversed and non-reversed) shear loads were measured. The permeability was measured as the rate of air flow through the core from a circular 1-in2 area of the core exposed to an air pressure of 10.0 psig. In both the static and dynamic testing, the Korex core experienced sudden increases in core permeability corresponding to a core catastrophic failure, while the URP core experienced a gradual increase in the permeability prior to core failure. The Korex core failed at lower loads than the HRP core both in the transverse and ribbon directions.
Investigation of the Flow Field and Performances of a Centrifugal Pump at Part Load
NASA Astrophysics Data System (ADS)
Prunières, R.; Inoue, Y.; Nagahara, T.
2016-11-01
Centrifugal pump performance curve instability, characterized by a local dent at part load, can be the consequence of flow instabilities in rotating or stationary parts. Such flow instabilities often result in abnormal operating conditions which can damage both the pump and the system. In order for the pump to have reliable operation over a wide flow rate range, it is necessary to achieve a design free of instability. The present paper focuses on performance curve instability of a centrifugal pump of mid specific speed (ωs = 0.65) for which instability was observed at part load during tests. The geometry used for this research consist of the first stage of a multi-stage centrifugal pump and is composed of a suction bend, a closed-type impeller, a vaned diffuser and return guide vanes. In order to analyse the instability phenomenon, PIV and CFD analysis were performed. Both methods qualitatively agree relatively well. It appears that the main difference before and after head drop is an increase of reverse flow rate at the diffuser passage inlet on the hub side. This reverse flow decreases the flow passing area at the diffuser passage inlet, disallowing effective flow deceleration and impairing static pressure recovery.
HIV post exposure prophylaxis induced bicytopenia: a case report
2014-01-01
Long and short term side effects of antiretroviral drugs are not fully understood yet. Here a case of reversible blood count changes following post exposure prophylaxis with tenofovir/emtricitabin and lopinavir/ritonavir is reported. We propose that antiretroviral drugs used in post exposure prophylaxis may have a significant impact on hematopoiesis. PMID:24506969
Learning Biological Networks via Bootstrapping with Optimized GO-based Gene Similarity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, Ronald C.; Sanfilippo, Antonio P.; McDermott, Jason E.
2010-08-02
Microarray gene expression data provide a unique information resource for learning biological networks using "reverse engineering" methods. However, there are a variety of cases in which we know which genes are involved in a given pathology of interest, but we do not have enough experimental evidence to support the use of fully-supervised/reverse-engineering learning methods. In this paper, we explore a novel semi-supervised approach in which biological networks are learned from a reference list of genes and a partial set of links for these genes extracted automatically from PubMed abstracts, using a knowledge-driven bootstrapping algorithm. We show how new relevant linksmore » across genes can be iteratively derived using a gene similarity measure based on the Gene Ontology that is optimized on the input network at each iteration. We describe an application of this approach to the TGFB pathway as a case study and show how the ensuing results prove the feasibility of the approach as an alternate or complementary technique to fully supervised methods.« less
Interface bonding of shotcrete reinforced brick masonry assemblages, volume 1
NASA Astrophysics Data System (ADS)
Robinson, D. W.; Kahn, L. F.
1982-09-01
Nine 9 sq ft. shotcrete reinforced brick masonry assemblages and one 9 sq ft brick masonry control specimen were tested under a single reversed cycle diagonal compression load similar to the ASTM E519-74 testing procedures. The interface surface conditions, between the brick and shotcrete were varied. The surfaces of the single sythe of old brick were either dry, wet, or epoxy coated before application of the 3-inch reinforced shotcrete layer. Ultimate load capacities of the specimens were similar, however, specimens with epoxy-enhanced interfaces were the most ductile; the dry brick specimens showed interface bond failure immediately after the ultimate inplane load was attained.
Factors affecting the stability of reverse shoulder arthroplasty: a biomechanical study.
Clouthier, Allison L; Hetzler, Markus A; Fedorak, Graham; Bryant, J Tim; Deluzio, Kevin J; Bicknell, Ryan T
2013-04-01
Despite the success of reverse shoulder arthroplasty (RSA) in treating patients with painful pseudoparalytic shoulders, instability is a common complication and currently the factors affecting stability are not well understood. The objective of this study was to investigate a number of factors as well as the interactions between factors to determine how they affect the stability of the prosthesis. These factors included: active arm posture (abduction and abduction plane angles), loading direction, glenosphere diameter and eccentricity, and humeral socket constraint. Force required to dislocate the joint, determined using a biomechanical shoulder simulator, was used as a measure of stability. A factorial design experiment was implemented to examine the factors and interactions. Actively increasing the abduction angle by 15° leads to a 30% increase in stability and use of an inferior-offset rather than a centered glenosphere improved stability by 17%. Use of a more constrained humeral socket also increased stability; but the effect was dependent on loading direction, with a 88% improvement for superior loading, 66% for posterior, 36% for anterior, and no change for inferior loading. Abduction plane angle and glenosphere diameter had no effect on stability. Increased glenohumeral abduction and the use of an inferior-offset glenosphere were found to increase the stability of RSA. Additionally, use of a more constrained humeral socket increased stability for anterior, posterior, and superior loading. These identified factor effects have the potential to decrease the risk of dislocation following RSA. Copyright © 2013 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Mosby, Inc. All rights reserved.
Force encoding in stick insect legs delineates a reference frame for motor control
Schmitz, Josef; Chaudhry, Sumaiya; Büschges, Ansgar
2012-01-01
The regulation of forces is integral to motor control. However, it is unclear how information from sense organs that detect forces at individual muscles or joints is incorporated into a frame of reference for motor control. Campaniform sensilla are receptors that monitor forces by cuticular strains. We studied how loads and muscle forces are encoded by trochanteral campaniform sensilla in stick insects. Forces were applied to the middle leg to emulate loading and/or muscle contractions. Selective sensory ablations limited activities recorded in the main leg nerve to specific receptor groups. The trochanteral campaniform sensilla consist of four discrete groups. We found that the dorsal groups (Groups 3 and 4) encoded force increases and decreases in the plane of movement of the coxo-trochanteral joint. Group 3 receptors discharged to increases in dorsal loading and decreases in ventral load. Group 4 showed the reverse directional sensitivities. Vigorous, directional responses also occurred to contractions of the trochanteral depressor muscle and to forces applied at the muscle insertion. All sensory discharges encoded the amplitude and rate of loading or muscle force. Stimulation of the receptors produced reflex effects in the depressor motoneurons that could reverse in sign during active movements. These data, in conjunction with findings of previous studies, support a model in which the trochanteral receptors function as an array that can detect forces in all directions relative to the intrinsic plane of leg movement. The array could provide requisite information about forces and simplify the control and adaptation of posture and walking. PMID:22673329
Unsteady RANS/DES analysis of flow around helicopter rotor blades at forword flight conditions
NASA Astrophysics Data System (ADS)
Zhang, Zhenyu; Qian, Yaoru
2018-05-01
In this paper, the complex flows around forward-flying helicopter blades are numerically investigated. Both the Reynolds-averaged Navier-Stokes (RANS) and the Detached Eddy Simulation (DES) methods are used for the analysis of characteristics like local dynamic flow separation, effects of radial sweeping and reversed flow. The flow was solved by a highly efficient finite volume solver with multi-block structured grids. Focusing upon the complexity of the advance ratio effects, above properties are fully recognized. The current results showed significant agreements between both RANS and DES methods at phases with attached flow phases. Detailed information of separating flow near the withdrawal phases are given by DES results. The flow analysis of these blades under reversed flow reveals a significant interaction between the reversed flow and the span-wise sweeping.
Magnetisation reversal in anisotropy graded Co/Pd multilayers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barton, C. W., E-mail: craig.barton-2@postgrad.manchester.ac.uk; Thomson, T.
2015-08-14
We demonstrate high precision controllability of the magnetization reversal nucleation process in [Co/Pd]{sub 8} multilayer films consisting of two sets of bilayers with high and low perpendicular anisotropy, respectively. The anisotropy of the entire film is set by the degree of Co/Pd interfacial mixing during deposition which provides fine control of the anisotropy of an individual bilayer in the multilayer stack. The relative number of each type of bilayer is used to select the magnetisation reversal behavior such that changing one bilayer changes the properties of the entire multilayer through anisotropy averaging. A simple extension to the sputtering protocol wouldmore » provide multilayer films with fully graded anisotropy, while maintaining a constant saturation magnetization opening new possibilities for the creation of highly engineered multilayer structures for spin torque devices and future magnetic recording media.« less
Tan, Chun Kiat; Ng, Jason Changwei; Xu, Xiaotian; Poh, Chueh Loo; Guan, Yong Liang; Sheah, Kenneth
2011-06-01
Teleradiology applications and universal availability of patient records using web-based technology are rapidly gaining importance. Consequently, digital medical image security has become an important issue when images and their pertinent patient information are transmitted across public networks, such as the Internet. Health mandates such as the Health Insurance Portability and Accountability Act require healthcare providers to adhere to security measures in order to protect sensitive patient information. This paper presents a fully reversible, dual-layer watermarking scheme with tamper detection capability for medical images. The scheme utilizes concepts of public-key cryptography and reversible data-hiding technique. The scheme was tested using medical images in DICOM format. The results show that the scheme is able to ensure image authenticity and integrity, and to locate tampered regions in the images.
Review of Residential Low-Load HVAC Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Scott A.; Thornton, Brian A.; Widder, Sarah H.
In support of the U.S. Department of Energy’s (DOE’s) Building America Program, Pacific Northwest National Laboratory (PNNL) conducted an investigation to inventory commercially available HVAC technologies that are being installed in low-load homes. The first step in this investigation was to conduct a review of published literature to identify low-load HVAC technologies available in the United States and abroad, and document the findings of existing case studies that have evaluated the performance of the identified technologies. This report presents the findings of the literature review, identifies gaps in the literature or technical understanding that must be addressed before low-load HVACmore » technologies can be fully evaluated, and introduces PNNL’s planned research and analysis for this project to address identified gaps and potential future work on residential low-load HVAC systems.« less
Physics Based Model for Cryogenic Chilldown and Loading. Part I: Algorithm
NASA Technical Reports Server (NTRS)
Luchinsky, Dmitry G.; Smelyanskiy, Vadim N.; Brown, Barbara
2014-01-01
We report the progress in the development of the physics based model for cryogenic chilldown and loading. The chilldown and loading is model as fully separated non-equilibrium two-phase flow of cryogenic fluid thermally coupled to the pipe walls. The solution follow closely nearly-implicit and semi-implicit algorithms developed for autonomous control of thermal-hydraulic systems developed by Idaho National Laboratory. A special attention is paid to the treatment of instabilities. The model is applied to the analysis of chilldown in rapid loading system developed at NASA-Kennedy Space Center. The nontrivial characteristic feature of the analyzed chilldown regime is its active control by dump valves. The numerical predictions are in reasonable agreement with the experimental time traces. The obtained results pave the way to the development of autonomous loading operation on the ground and space.
Electronic system for high power load control. [solar arrays
NASA Technical Reports Server (NTRS)
Miller, E. L. (Inventor)
1980-01-01
Parallel current paths are divided into two groups, with control devices in the current paths of one group each having a current limiting resistor, and the control devices in the other group each having no limiting resistor, so that when the control devices of the second group are turned fully on, a short circuit is achieved by the arrangement of parallel current paths. Separate but coordinated control signals are provided to turn on the control devices of the first group and increase their conduction toward saturation as a function of control input, and when fully on, or shortly before, to turn on the control devices of the second group and increase their conduction toward saturation as a function of the control input as that input continues to increase. Electronic means may be used to generate signals. The system may be used for 1-V characteristic measurements of solar arrays as well as for other load control purposes.
Study for prediction of rotor/wake/fuselage interference, part 1
NASA Technical Reports Server (NTRS)
Clark, D. R.; Maskew, B.
1985-01-01
A method was developed which allows the fully coupled calculation of fuselage and rotor airloads for typical helicopter configurations in forward flight. To do this, an iterative solution is carried out based on a conventional panel representation of the fuselage and a blade element representation of the rotor where fuselage and rotor singularity strengths are determined simultaneously at each step and the rotor wake is allowed to relax (deform) in response to changes in rotor wake loading and fuselage presence. On completion of the iteration, rotor loading and inflow, fuselage singularity strength (and, hence, pressure and velocity distributions) and rotor wake are all consistent. The results of a fully coupled calculation of the flow around representative helicopter configurations are presented. The effect of fuselage components on the rotor flow field and the overall wake structure is detailed and the aerodynamic interference between the different parts of the aircraft is discussed.
Gupta, Soham; Palchaudhuri, Riya; Neogi, Ujjwal; Srinivasa, Hiresave; Ashorn, Per; De Costa, Ayesha; Källander, Clas; Shet, Anita
2016-01-27
To evaluate the performance and cost of an HIV reverse transcriptase-enzyme activity (HIV-RT) assay in comparison to an HIV-1 RNA assay for routine viral load monitoring in resource limited settings. A cohort-based longitudinal study. Two antiretroviral therapy (ART) centres in Karnataka state, South India, providing treatment under the Indian AIDS control programme. A cohort of 327 HIV-1-infected Indian adult patients initiating first-line ART. Performance and cost of an HIV-RT assay (ExaVir Load V3) in comparison to a gold standard HIV-1 RNA assay (Abbott m2000rt) in a cohort of 327 Indian patients before (WK00) and 4 weeks (WK04) after initiation of first-line therapy. Plasma viral load was determined by an HIV-1 RNA assay and an HIV-RT assay in 629 samples (302 paired samples and 25 single time point samples at WK00) obtained from 327 patients. Overall, a strong correlation of r=0.96 was observed, with good correlation at WK00 (r=0.84) and at WK04 (r=0.77). Bland-Altman analysis of all samples showed a good level of agreement with a mean difference (bias) of 0.22 log10copies/mL. The performance of ExaVir Load V3 was not negatively affected by a nevirapine/efavirenz based antiretroviral regimen. The per test cost of measuring plasma viral load by the Abbott m2000rt and ExaVir Load V3 assays in a basic lab setting was $36.4 and $16.8, respectively. The strong correlation between the HIV-RT and HIV-1 RNA assays suggests that the HIV-RT assay can be an affordable alternative option for monitoring patients on antiretroviral therapy in resource-limited settings. ISRCTN79261738. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
McNulty, P A; Cresswell, A G
2004-06-01
We investigated the recruitment behaviour of low threshold motor units in flexor digitorum superficialis by altering two biomechanical constraints: the load against which the muscle worked and the initial muscle length. The load was increased using isotonic (low load), loaded dynamic (intermediate load) and isometric (high load) contractions in two studies. The initial muscle position reflected resting muscle length in series A, and a longer length with digit III fully extended in series B. Intramuscular EMG was recorded from 48 single motor units in 10 experiments on five healthy subjects, 21 units in series A and 27 in series B, while subjects performed ramp up, hold and ramp down contractions. Increasing the load on the muscle decreased the force, displacement and firing rate of single motor units at recruitment at shorter muscle lengths (P<0.001, dependent t-test). At longer muscle lengths this recruitment pattern was observed between loaded dynamic and isotonic contractions, but not between isometric and loaded dynamic contractions. Thus, the recruitment properties of single motor units in human flexor digitorum superficialis are sensitive to changes in both imposed external loads and the initial length of the muscle.
Zhao, Guijuan; Li, Huijie; Wang, Lianshan; Meng, Yulin; Ji, Zesheng; Li, Fangzheng; Wei, Hongyuan; Yang, Shaoyan; Wang, Zhanguo
2017-07-03
In this study, the indium composition x as well as the anisotropically biaxial strain in non-polar a-plane In x Ga 1-x N on GaN is studied by X-ray diffraction (XRD) analysis. In accordance with XRD reciprocal lattice space mapping, with increasing indium composition, the maximum of the In x Ga 1-x N reciprocal lattice points progressively shifts from a fully compressive strained to a fully relaxed position, then to reversed tensile strained. To fully understand the strain in the ternary alloy layers, it is helpful to grow high-quality device structures using a-plane nitrides. As the layer thickness increases, the strain of In x Ga 1-x N layer releases through surface roughening and the 3D growth-mode.
Feaster, Toby D.; Conrads, Paul; Guimaraes, Wladmir B.; Sanders, Curtis L.; Bales, Jerad D.
2003-01-01
Time-series plots of dissolved-oxygen concentrations were determined for various simulated hydrologic and point-source loading conditions along a free-flowing section of the Catawba River from Lake Wylie Dam to the headwaters of Fishing Creek Reservoir in South Carolina. The U.S. Geological Survey one-dimensional dynamic-flow model, BRANCH, was used to simulate hydrodynamic data for the Branched Lagrangian Transport Model. Waterquality data were used to calibrate the Branched Lagrangian Transport Model and included concentrations of nutrients, chlorophyll a, and biochemical oxygen demand in water samples collected during two synoptic sampling surveys at 10 sites along the main stem of the Catawba River and at 3 tributaries; and continuous water temperature and dissolved-oxygen concentrations measured at 5 locations along the main stem of the Catawba River. A sensitivity analysis of the simulated dissolved-oxygen concentrations to model coefficients and data inputs indicated that the simulated dissolved-oxygen concentrations were most sensitive to watertemperature boundary data due to the effect of temperature on reaction kinetics and the solubility of dissolved oxygen. Of the model coefficients, the simulated dissolved-oxygen concentration was most sensitive to the biological oxidation rate of nitrite to nitrate. To demonstrate the utility of the Branched Lagrangian Transport Model for the Catawba River, the model was used to simulate several water-quality scenarios to evaluate the effect on the 24-hour mean dissolved-oxygen concentrations at selected sites for August 24, 1996, as simulated during the model calibration period of August 23 27, 1996. The first scenario included three loading conditions of the major effluent discharges along the main stem of the Catawba River (1) current load (as sampled in August 1996); (2) no load (all point-source loads were removed from the main stem of the Catawba River; loads from the main tributaries were not removed); and (3) fully loaded (in accordance with South Carolina Department of Health and Environmental Control National Discharge Elimination System permits). Results indicate that the 24-hour mean and minimum dissolved-oxygen concentrations for August 24, 1996, changed from the no-load condition within a range of - 0.33 to 0.02 milligram per liter and - 0.48 to 0.00 milligram per liter, respectively. Fully permitted loading conditions changed the 24-hour mean and minimum dissolved-oxygen concentrations from - 0.88 to 0.04 milligram per liter and - 1.04 to 0.00 milligram per liter, respectively. A second scenario included the addition of a point-source discharge of 25 million gallons per day to the August 1996 calibration conditions. The discharge was added at S.C. Highway 5 or at a location near Culp Island (about 4 miles downstream from S.C. Highway 5) and had no significant effect on the daily mean and minimum dissolved-oxygen concentration. A third scenario evaluated the phosphorus loading into Fishing Creek Reservoir; four loading conditions of phosphorus into Catawba River were simulated. The four conditions included fully permitted and actual loading conditions, removal of all point sources from the Catawba River, and removal of all point and nonpoint sources from Sugar Creek. Removing the point-source inputs on the Catawba River and the point and nonpoint sources in Sugar Creek reduced the organic phosphorus and orthophosphate loadings to Fishing Creek Reservoir by 78 and 85 percent, respectively.
Passive radio frequency peak power multiplier
Farkas, Zoltan D.; Wilson, Perry B.
1977-01-01
Peak power multiplication of a radio frequency source by simultaneous charging of two high-Q resonant microwave cavities by applying the source output through a directional coupler to the cavities and then reversing the phase of the source power to the coupler, thereby permitting the power in the cavities to simultaneously discharge through the coupler to the load in combination with power from the source to apply a peak power to the load that is a multiplication of the source peak power.
Antibacterial Drug Releasing Materials by Post-Polymerization Surface Modification
NASA Astrophysics Data System (ADS)
Chng, Shuyun; Moloney, Mark G.; Wu, Linda Y. L.
Functional materials are available by the post-polymerization surface modification of diverse polymers in a three-step process mediated, firstly, by carbene insertion chemistry, secondly, by diazonium coupling, and thirdly by modification with a remotely tethered spiropyran unit, and these materials may be used for the reversible binding and release of Penicillin V. Surface loading densities of up to 0.19mmol/g polymer are achievable, leading to materials with higher loading densities and release behavior relative to unmodified controls, and observable antibacterial biocidal activity.
Voltage stress induced reversible diode behavior in pentacene thin films
NASA Astrophysics Data System (ADS)
Murdey, Richard; Sato, Naoki
2012-12-01
The current-voltage characteristics of a vacuum-deposited 100 nm pentacene thin film have been measured in situ under ultrahigh vacuum. Despite using bottom contact geometry with titanium for both electrodes, the I-V curves are asymmetric and the direction and degree of the diode-like behavior vary with sample and measurement history. After careful examination we have found that applying a high positive or negative bias voltage for about 24 h at elevated temperatures was sufficient to completely switch the diode forward direction. The switching action is fully reversible and the diode behavior, once switched, remains stable to repeated measurements at least over a period of several weeks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ritchie, IAltenberger, RKNalla, YSano LWagner, RO
The effect of surface treatment on the stress/life fatigue behavior of a titanium Ti-6Al-4V turbine fan blade alloy is investigated in the regime of 102 to 106 cycles to failure under fully reversed stress-controlled isothermal push-pull loading between 25? and 550?C at a frequency of 5 Hz. Specifically, the fatigue behavior was examined in specimens in the deep-rolled and laser-shock peened surface conditions, and compared to results on samples in the untreated (machined and stress annealed) condition. Although the fatigue resistance of the Ti-6Al-4V alloy declined with increasing test temperature regardless of surface condition, deep-rolling and laser-shock peening surface treatmentsmore » were found to extend the fatigue lives by factors of more than 30 and 5-10, respectively, in the high-cycle and low-cycle fatigue regimes at temperatures as high as 550?C. At these temperatures, compressive residual stresses are essentially relaxed; however, it is the presence of near-surface work hardened layers, with a nanocystalline structure in the case of deep-rolling and dense dislocation tangles in the case of laser-shock peening, which remain fairly stable even after cycling at 450?-550?C, that provide the basis for the beneficial role of mechanical surface treatments on the fatigue strength of Ti-6Al-4V at elevated temperatures.« less
NASA Technical Reports Server (NTRS)
Sawyer, J. W.; Waters, W. A., Jr.
1981-01-01
Tests were conducted at room temperature to determine the shear properties of the strain isolator pad (SIP) material used in the thermal protection system of the space shuttle. Tests were conducted on both the .23 cm and .41 cm thick SIP material in the virgin state and after fifty fully reversed shear cycles. The shear stress displacement relationships are highly nonlinear, exhibit large hysteresis effects, are dependent on material orientation, and have a large low modulus region near the zero stress level where small changes in stress can result in large displacements. The values at the higher stress levels generally increase with normal and shear force load conditioning. Normal forces applied during the shear tests reduces the low modulus region for the material. Shear test techniques which restrict the normal movement of the material give erroneous stress displacement results. However, small normal forces do not significantly effect the shear modulus for a given shear stress. Poisson's ratio values for the material are within the range of values for many common materials. The values are not constant but vary as a function of the stress level and the previous stress history of the material. Ultimate shear strengths of the .23 cm thick SIP are significantly higher than those obtained for the .41 cm thick SIP.
NASA Astrophysics Data System (ADS)
Li, Mo; Wu, Jian; Lu, Yihan; Li, Xingwen; Li, Yang; Qiu, Mengtong
2018-01-01
Tungsten wire explosion is very asymmetric when fast current rate and insulated coatings are both applied on negative discharge facility using a 24-mm-diameter cathode geometry, which is commonly used on mega-ampere facilities. It is inferred, based on an analytical treatment of the guiding center drift and COMSOL simulations, that the large negative radial electric field causes early voltage breakdown and terminates energy deposition into the wire core on the anode side of the wire. After the anode side is short circuited, the radial electric field along the wire surface on the cathode side will change its polarity and thus leading to additional energy deposition into the wire core. This change causes ˜10 times larger energy deposition and ˜14 times faster explosion velocity in the cathode side than the anode side. In order to reduce this asymmetry, a hollow cylindrical cathode geometry was used to reverse the polarity of radial electric field and was optimized to use on multi-MA facilities. In this case, fully vaporized polyimide-coated tungsten wire with great symmetry improvement was achieved with energy deposition of ˜8.8 eV/atom. The atomic and electronic density distributions for the two different load geometries were obtained by the double-wavelength measurement.
An artificial light-harvesting array constructed from multiple Bodipy dyes.
Ziessel, Raymond; Ulrich, Gilles; Haefele, Alexandre; Harriman, Anthony
2013-07-31
An artificial light-harvesting array, comprising 21 discrete chromophores arranged in a rational manner, has been synthesized and characterized fully. The design strategy follows a convergent approach that leads to a molecular-scale funnel, having an effective chromophore concentration of 0.6 M condensed into ca. 55 nm(3), able to direct the excitation energy to a focal point. A cascade of electronic energy-transfer steps occurs from the rim to the focal point, with the rate slowing down as the exciton moves toward its ultimate target. Situated midway along each branch of the V-shaped array, two chromophoric relays differ only slightly in terms of their excitation energies, and this situation facilitates reverse energy transfer. Thus, the excitation energy becomes spread around the array, a situation reminiscent of a giant holding pattern for the photon that can sample many different chromophores before being trapped by the terminal acceptor. At high photon flux under conditions of relatively slow off-load to a device, such as a solar cell, electronic energy transfer encounters one or more barriers that hinder forward progress of the exciton and thereby delays arrival of the second photon. Preliminary studies have addressed the ability of the array to function as a sensitizer for amorphous silicon solar cells.
NASA Astrophysics Data System (ADS)
Solomon, H. D.; Amzallag, C.; Vallee, A. J.; DeLair, R. E.
This is a study of the 107 cycle fatigue limit of Type 304L Stainless Steel, as measured in fully reversed (R=-1) load-controlled tests, at 150°C and 300°C, in air and PWR water. The staircase method was used to determine the fatigue limit. The tests run here utilized a cycle frequency of 1.818Hz and are compared to other tests from the literature that were run at 30Hz. The fatigue limit measured in the tests run at the high frequency was higher than that measured here. This is explained by measurements of the strain developed during cycling, using the different cycle frequencies. The tests run at the higher frequencies yielded lower strains for a given stress and, as expected, this resulted in higher fatigue limits. Using 107 cycles to define a run-out also led to a lower fatigue limit. These results are important as most previous fatigue limit measurements utilized 106 cycles or less to define a run-out, and when lives as long as 107 cycles are used the tests are generally run at high cycle frequencies, thus leading to higher fatigue limits than those measured here.
NASA Astrophysics Data System (ADS)
Inamdar, Sanket; Ukhande, Manoj; Date, Prashant; Lomate, Dattaprasad; Takale, Shyam; Singh, RKP
2017-05-01
L6 Steel is used as die material in closed die hot forging process. This material is having some unique properties. These properties are due to its composition. Strain softening is the noticeable property of this material. Due to this in spite of cracking at high stress this material gets plastically deformed and encounters loss in time as well as money. Studies of these properties are necessary to nurture this material at fullest extent. In this paper, numerous experiments have been carried on L6 material to evaluate cyclic Stress - strain behavior as swell as strain-life behavior of the material. Low cycle fatigue test is carried out on MTS fatigue test machine at fully reverse loading condition R=-1. Also strain softening effect on forging metal forming process is explained in detail. The failed samples during low cycle fatigue test further investigated metallurgically on scanning electron microscopy. Based on this study, life estimation of hot forging die is carried out and it’s correlation with actual shop floor data is found out. This work also concludes about effect of pre-treatments like nitro-carburizing and surface coating on L6 steel material, to enhance its fatigue life to certain extent.
In Respect to the Cognitive Load Theory: Adjusting Instructional Guidance with Student Expertise.
Schilling, Jim
2017-01-01
The amount of guidance supplied by educators to students in allied health programs is a factor in student learning. According to the cognitive load theory of learning, without adequate instructional support, novice learners will be overwhelmed and unable to store information, while unnecessary guidance supplied to advanced students will cause extraneous cognitive load on the working memory system. Adjusting instructional guidance for students according to their level of expertise to minimize extraneous cognitive load and optimize working memory storage capacity will enhance learning effectiveness. Novice students presented with complex subject matter require significant guidance during the initial stages, using strategies such as worked examples. As students comprehend information, instructional guidance needs to gradually fade to avoid elevated extraneous cognitive load from the expertise reversal effect. An instructional strategy that utilizes a systemic (fixed) or adjustable (adaptive) tapering of guidance to students in allied health programs depending on their expertise will optimize learning capability.
Nonlinear behavior of shells of revolution under cyclic loading
NASA Technical Reports Server (NTRS)
Levine, H. S.; Armen, H., Jr.; Winter, R.; Pifko, A.
1972-01-01
A large deflection elastic-plastic analysis is presented, applicable to orthotropic axisymmetric plates and shells of revolution subjected to monotonic and cyclic loading conditions. The analysis is based on the finite-element method. It employs a new higher order, fully compatible, doubly curved orthotropic shell-of-revolution element using cubic Hermitian expansions for both meridional and normal displacements. Both perfectly plastic and strain hardening behavior are considered. Strain hardening is incorporated through use of the Prager-Ziegler kinematic hardening theory, which predicts an ideal Bauschinger effect. Numerous sample problems involving monotonic and cyclic loading conditions are analyzed. The monotonic results are compared with other theoretical solutions.
Storage peak gas-turbine power unit
NASA Technical Reports Server (NTRS)
Tsinkotski, B.
1980-01-01
A storage gas-turbine power plant using a two-cylinder compressor with intermediate cooling is studied. On the basis of measured characteristics of a .25 Mw compressor computer calculations of the parameters of the loading process of a constant capacity storage unit (05.3 million cu m) were carried out. The required compressor power as a function of time with and without final cooling was computed. Parameters of maximum loading and discharging of the storage unit were calculated, and it was found that for the complete loading of a fully unloaded storage unit, a capacity of 1 to 1.5 million cubic meters is required, depending on the final cooling.
Suspension restraint - Induced hypokinesia and antiorthostasis as a simulation of weightlessness
NASA Technical Reports Server (NTRS)
Musacchia, X. J.; Steffen, J. M.; Deavers, D. R.
1982-01-01
Muscle, renal, fluid and electrolyte responses were measured in suspended rats; the hind limbs are non-load bearing and the front limbs can be used for feeding and grooming. Hind limb hypokinesia reverses after removal from the suspension harness. This suspension system is adjustable for a head-down tilt to produce antiorthostatic responses which are also reversible. Responses to hypokinesia or antiorthostatic hypokinesia for up to 14 days were measured, e.g., muscle atrophy: soleus greater than gastrocnemius equals plantaris greater than extensor digitorum longus, kaliuresis, and increased excretion of urea, NH3, and 3 methylhistidine. Muscle protein loss, a response to a reduction in RNA, is also reversible. A head-down tilt for 7-14 days results in diuresis and natriuresis. These changes are reversed within 24 hours after removal from the restraint harness. Physiological effects of suspension restraint can be used to simulate and predict responses to microgravity exposure.
Choe, Leila H; Lee, Kelvin H
2003-10-01
We investigate one approach to assess the quantitative variability in two-dimensional gel electrophoresis (2-DE) separations based on gel-to-gel variability, sample preparation variability, sample load differences, and the effect of automation on image analysis. We observe that 95% of spots present in three out of four replicate gels exhibit less than a 0.52 coefficient of variation (CV) in fluorescent stain intensity (% volume) for a single sample run on multiple gels. When four parallel sample preparations are performed, this value increases to 0.57. We do not observe any significant change in quantitative value for an increase or decrease in sample load of 30% when using appropriate image analysis variables. Increasing use of automation, while necessary in modern 2-DE experiments, does change the observed level of quantitative and qualitative variability among replicate gels. The number of spots that change qualitatively for a single sample run in parallel varies from a CV = 0.03 for fully manual analysis to CV = 0.20 for a fully automated analysis. We present a systematic method by which a single laboratory can measure gel-to-gel variability using only three gel runs.
Computational reverse shoulder prosthesis model: Experimental data and verification.
Martins, A; Quental, C; Folgado, J; Ambrósio, J; Monteiro, J; Sarmento, M
2015-09-18
The reverse shoulder prosthesis aims to restore the stability and function of pathological shoulders, but the biomechanical aspects of the geometrical changes induced by the implant are yet to be fully understood. Considering a large-scale musculoskeletal model of the upper limb, the aim of this study is to evaluate how the Delta reverse shoulder prosthesis influences the biomechanical behavior of the shoulder joint. In this study, the kinematic data of an unloaded abduction in the frontal plane and an unloaded forward flexion in the sagittal plane were experimentally acquired through video-imaging for a control group, composed of 10 healthy shoulders, and a reverse shoulder group, composed of 3 reverse shoulders. Synchronously, the EMG data of 7 superficial muscles were also collected. The muscle force sharing problem was solved through the minimization of the metabolic energy consumption. The evaluation of the shoulder kinematics shows an increase in the lateral rotation of the scapula in the reverse shoulder group, and an increase in the contribution of the scapulothoracic joint to the shoulder joint. Regarding the muscle force sharing problem, the musculoskeletal model estimates an increased activity of the deltoid, teres minor, clavicular fibers of the pectoralis major, and coracobrachialis muscles in the reverse shoulder group. The comparison between the muscle forces predicted and the EMG data acquired revealed a good correlation, which provides further confidence in the model. Overall, the shoulder joint reaction force was lower in the reverse shoulder group than in the control group. Copyright © 2015 Elsevier Ltd. All rights reserved.
Methylmercury-induced alterations in astrocyte functions are attenuated by ebselen.
Yin, Zhaobao; Lee, Eunsook; Ni, Mingwei; Jiang, Haiyan; Milatovic, Dejan; Rongzhu, Lu; Farina, Marcelo; Rocha, Joao B T; Aschner, Michael
2011-06-01
Methylmercury (MeHg) preferentially accumulates in glia of the central nervous system (CNS), but its toxic mechanisms have yet to be fully recognized. In the present study, we tested the hypothesis that MeHg induces neurotoxicity via oxidative stress mechanisms, and that these effects are attenuated by the antioxidant, ebselen. Rat neonatal primary cortical astrocytes were pretreated with or without 10 μM ebselen for 2h followed by MeHg (0, 1, 5, and 10 μM) treatments. MeHg-induced changes in astrocytic [(3)H]-glutamine uptake were assessed along with changes in mitochondrial membrane potential (ΔΨ(m)), using the potentiometric dye tetramethylrhodamine ethyl ester (TMRE). Western blot analysis was used to detect MeHg-induced ERK (extracellular-signal related kinase) phosphorylation and caspase-3 activation. MeHg treatment significantly decreased (p<0.05) astrocytic [(3)H]-glutamine uptake at all time points and concentrations. Ebselen fully reversed MeHg's (1 μM) effect on [(3)H]-glutamine uptake at 1 min. At higher MeHg concentrations, ebselen partially reversed the MeHg-induced astrocytic inhibition of [(3)H]-glutamine uptake [at 1 min (5 and 10 μM) (p<0.05); 5 min (1, 5 and 10 μM) (p<0.05)]. MeHg treatment (1h) significantly (p<0.05) dissipated the ΔΨ(m) in astrocytes as evidenced by a decrease in mitochondrial TMRE fluorescence. Ebselen fully reversed the effect of 1 μM MeHg treatment for 1h on astrocytic ΔΨ(m) and partially reversed the effect of 5 and 10 μM MeHg treatments for 1h on ΔΨ(m). In addition, ebselen inhibited MeHg-induced phosphorylation of ERK (p<0.05) and blocked MeHg-induced activation of caspase-3 (p<0.05-0.01). These results are consistent with the hypothesis that MeHg exerts its toxic effects via oxidative stress and that the phosphorylation of ERK and the dissipation of the astrocytic mitochondrial membrane potential are involved in MeHg toxicity. In addition, the protective effects elicited by ebselen reinforce the idea that organic selenocompounds represent promising strategies to counteract MeHg-induced neurotoxicity. Copyright © 2011 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Burton, A. R.; Lynch, J. P.; Kurata, M.; Law, K. H.
2017-09-01
Multifunctional thin film materials have opened many opportunities for novel sensing strategies for structural health monitoring. While past work has established methods of optimizing multifunctional materials to exhibit sensing properties, comparatively less work has focused on their integration into fully functional sensing systems capable of being deployed in the field. This study focuses on the advancement of a scalable fabrication process for the integration of multifunctional thin films into a fully integrated sensing system. This is achieved through the development of an optimized fabrication process that can create a broad range of sensing systems using multifunctional materials. A layer-by-layer deposited multifunctional composite consisting of single walled carbon nanotubes (SWNT) in a polyvinyl alcohol and polysodium-4-styrene sulfonate matrix are incorporated with a lithography process to produce a fully integrated sensing system deposited on a flexible substrate. To illustrate the process, a strain sensing platform consisting of a patterned SWNT-composite thin film as a strain-sensitive element within an amplified Wheatstone bridge sensing circuit is presented. Strain sensing is selected because it presents many of the design and processing challenges that are core to patterning multifunctional thin film materials into sensing systems. Strain sensors fabricated on a flexible polyimide substrate are experimentally tested under cyclic loading using standard four-point bending coupons and a partial-scale steel frame assembly under lateral loading. The study reveals the material process is highly repeatable to produce fully integrated strain sensors with linearity and sensitivity exceeding 0.99 and 5 {{V}}/{ε }, respectively. The thin film strain sensors are robust and are capable of high strain measurements beyond 3000 μ {ε }.
Gale, Catharine R; Booth, Tom; Starr, John M; Deary, Ian J
2016-06-01
Information on childhood determinants of frailty or allostatic load in later life is sparse. We investigated whether lower intelligence and greater socioeconomic disadvantage in childhood increased the risk of frailty and higher allostatic load, and explored the mediating roles of adult socioeconomic position, educational attainment and health behaviours. Participants were 876 members of the Lothian Birth Cohort 1936 whose intelligence was assessed at age 11. At age 70, frailty was assessed using the Fried criteria. Measurements were made of fibrinogen, triglyceride, total and high-density lipoprotein cholesterol, albumin, glycated haemoglobin, C reactive protein, body mass index and blood pressure, from which an allostatic load score was calculated. In sex-adjusted analyses, lower intelligence and lower social class in childhood were associated with an increased risk of frailty: relative risks (95% CIs) were 1.57 (1.21 to 2.03) for a SD decrease in intelligence and 1.48 (1.12 to 1.96) for a category decrease in social class. In the fully adjusted model, both associations ceased to be significant: relative risks were 1.13 (0.83 to 1.54) and 1.19 (0.86 to 1.61), respectively. Educational attainment had a significant mediating effect. Lower childhood intelligence in childhood, but not social class, was associated with higher allostatic load. The sex-adjusted coefficient for allostatic load for a SD decrease in intelligence was 0.10 (0.07 to 0.14). In the fully adjusted model, this association was attenuated but remained significant (0.05 (0.01 to 0.09)). Further research will need to investigate the mechanisms whereby lower childhood intelligence is linked to higher allostatic load in later life. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
NASA Astrophysics Data System (ADS)
Averin, Dmitri V.; Pekola, Jukka P.
2017-03-01
According to Landauer's principle, erasure of information is the only part of a computation process that unavoidably involves energy dissipation. If done reversibly, such an erasure generates the minimal heat of $k_BT\\ln 2$ per erased bit of information. The goal of this work is to discuss the actual reversal of the optimal erasure which can serve as the basis for the Maxwell's demon operating with ultimate thermodynamic efficiency as dictated by the second law of thermodynamics. The demon extracts $k_BT\\ln 2$ of heat from an equilibrium reservoir at temperature $T$ per one bit of information obtained about the measured system used by the demon. We have analyzed this Maxwell's demon in the situation when it uses a general quantum system with a discrete spectrum of energy levels as its working body. In the case of the effectively two-level system, which has been realized experimentally based on tunneling of individual electron in a single-electron box [J.V. Koski et al., PNAS 111, 13786 (2014)], we also studied and minimized corrections to the ideal reversible operation of the demon. These corrections include, in particular, the non-adiabatic terms which are described by a version of the classical fluctuation-dissipation theorem. The overall reversibility of the Maxwell's demon requires, beside the reversibility of the intrinsic working body dynamics, the reversibility of the measurement and feedback processes. The single-electron demon can, in principle, be made fully reversible by developing a thermodynamically reversible single-electron charge detector for measurements of the individual charge states of the single-electron box.
NASA Technical Reports Server (NTRS)
Morris, Brian G.; Bozeman, Richard J., Jr.
1994-01-01
Poppet in proposed check valve restored to closed condition by magnetic attraction instead of spring force. Oscillations suppressed, with consequent reduction of wear. Stationary magnetic disk mounted just upstream of poppet, also containing magnet. Valve body nonmagnetic. Forward pressure or flow would push poppet away from stationary magnetic disk so fluid flows easily around poppet. Stop in valve body prevents poppet from being swept away. When flow stopped or started to reverse, magnetic attraction draws poppet back to disk. Poppet then engages floating O-ring, thereby closing valve and preventing reverse flow. Floating O-ring facilitates sealing at low loads.
1991-09-01
CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) FIELD GROUP SUB-GROUP De Broglie Velocity Detonation Particle...Velocity Shock Induced Reaction I Lead Azide 19. ABSTRACT (Continue on reverse if necessary and identify by biock number) Availabl e experimental shock...induced reactive pressure levels for dextrinated and single crystal lead azide are compared to predicted Pv1 magnitudes. PV1 = P. CL V1 where V, = h
Observations of Intrinsic Rotation Reversal Hysteresis in Alcator C-Mod Plasmas
NASA Astrophysics Data System (ADS)
Cao, Norman; Rice, John; White, Anne; Baek, Seung; Chilenski, Mark; Creely, Alexander; Ennever, Paul; Hubbard, Amanda; Hughes, Jerry; Irby, Jim; Rodriguez-Fernandez, Pablo; Reinke, Matthew; Diamond, Patrick; Alcator C-Mod Team
2016-10-01
Intrinsic core toroidal rotation in Alcator C-Mod L-mode plasmas has been observed to spontaneously reverse direction when the normalized collisionality ν*, evaluated at the profile minimum, passes through a critical value around 0.4. In Ohmic plasmas, the low density linear Ohmic confinement regime exhibits co-current toroidal rotation, and the higher density saturated Ohmic confinement regime exhibits counter-current rotation. The reversal manifests a hysteresis loop in ν*, where the critical collisionalities for the forward and reverse transitions differ by 10-15%. There appears to be memory associated with the rotation state, since reversals which do not begin from fully saturated rotation states do not manifest this hysteresis. In addition, high-k PCI fluctuation ``wings'' (kθρs up to 1) at low density and high current appear only in the co-current rotation state, while density peaking and ``non-local'' heat transport behavior do not appear to change significantly with the rotation state. Results from fluctuation measurements and preliminary transport and stability analyses will also be presented. This work is supported by the US DOE under Grant DE-FC02-99ER54512 (C-Mod).
NASA Technical Reports Server (NTRS)
Klimas, Alex J.; Valdivia, J. A.; Vassiliadis, D.; Baker, D. N.; Hesse, M.; Takalo, J.
1999-01-01
Evidence is presented that suggests there is a significant self-organized criticality (SOC) component in the dynamics of substorms in the magnetosphere. Observations of BBFs, fast flows, localized dipolarizations, plasma turbulence, etc. are taken to show that multiple localized reconnection sites provide the basic avalanche phenomenon in the establishment of SOC in the plasma sheet. First results are presented from a continuing plasma physical study of this avalanche process. A one-dimensional resistive MHD model of a magnetic field reversal is discussed. Resistivity, in this model, is self-consistently generated in response to the excitation of an idealized current-driven instability. When forced by convection of magnetic flux into the field reversal region, the model yields rapid magnetic field annihilation through a dynamic behavior that is shown to exhibit many of the characteristics of SOC. Over a large range of forcing strengths, the annihilation rate is shown to self-adjust to balance the rate at which flux is convected into the reversal region. Several analogies to magnetotail dynamics are discussed: (1) It is shown that the presence of a localized criticality in the model produces a remarkable stability in the global configuration of the field reversal while simultaneously exciting extraordinarily dynamic internal evolution. (2) Under steady forcing, it is shown that a loading-unloading cycle may arise that, as a consequence of the global stability, is quasi-periodic and, therefore, predictable despite the presence of internal turbulence in the field distribution. Indeed, it is shown that the global loading-unloading cycle is a consequence of the internal turbulence. (3) It is shown that, under steady, strong forcing the loading-unloading cycle vanishes. Instead, a recovery from a single unloading persists indefinitely. The field reversal is globally very steady while internally it is very dynamic as field annihilation goes on at the rate necessary to match the strong forcing. From this result we speculate that steady magnetospheric convection events result when the plasma sheet has been driven close to criticality over an extended spatial domain. During these events, we would expect to find localized reconnection sites distributed over the spatial domain of near criticality and we would expect to find plasma sheet transport in that domain to be closely related to that of BBF and fast flow events.
NASA Technical Reports Server (NTRS)
Datta, Anubhav; Yeo, Hyeonsoo; Norman, Thomas R.
2011-01-01
This paper describes and analyzes the measurements from a full-scale, slowed RPM, UH-60A rotor tested at the National Full-Scale Aerodynamics Complex 40- by 80- ft wind tunnel up to an advance ratio of 1.0. A comprehensive set of measurements, that includes performance, blade loads, hub loads and pressures/airloads makes this data set unique. The measurements reveal new and rich aeromechanical phenomena that are special to this exotic regime. These include reverse chord dynamic stall, retreating side impulse in pitch-link load, large inboard-outboard elastic twist differential, supersonic flow at low subsonic advancing tip Mach numbers, diminishing rotor forces yet dramatic build up of blade loads, and dramatic blade loads yet benign levels of vibratory hub loads. The objective of this research is the fundamental understanding of these unique aeromechanical phenomena. The intent is to provide useful knowledge for the design of high speed, high efficiency, slowed RPM rotors of the future and a challenging database for advanced analyses validation.
Many commercial and environmental chemicals lack toxicity data necessary for users and risk assessors to make fully informed decisions about potential health effects. Generating these data using high throughput in vitro cell- or biochemical-based tests would be faster and less e...
USDA-ARS?s Scientific Manuscript database
Excessive adiposity induced by a high-fat diet is detrimental to bone structure and strength in various animal models. This study investigated whether exercise or anti-oxidant supplementation with vitamin C and E during exercise counteracts bone structure deterioration at different skeletal sites an...
Lymphatic vasculature mediates macrophage reverse cholesterol transport in mice.
Martel, Catherine; Li, Wenjun; Fulp, Brian; Platt, Andrew M; Gautier, Emmanuel L; Westerterp, Marit; Bittman, Robert; Tall, Alan R; Chen, Shu-Hsia; Thomas, Michael J; Kreisel, Daniel; Swartz, Melody A; Sorci-Thomas, Mary G; Randolph, Gwendalyn J
2013-04-01
Reverse cholesterol transport (RCT) refers to the mobilization of cholesterol on HDL particles (HDL-C) from extravascular tissues to plasma, ultimately for fecal excretion. Little is known about how HDL-C leaves peripheral tissues to reach plasma. We first used 2 models of disrupted lymphatic drainage from skin--1 surgical and the other genetic--to quantitatively track RCT following injection of [3H]-cholesterol-loaded macrophages upstream of blocked or absent lymphatic vessels. Macrophage RCT was markedly impaired in both models, even at sites with a leaky vasculature. Inhibited RCT was downstream of cholesterol efflux from macrophages, since macrophage efflux of a fluorescent cholesterol analog (BODIPY-cholesterol) was not altered by impaired lymphatic drainage. We next addressed whether RCT was mediated by lymphatic vessels from the aortic wall by loading the aortae of donor atherosclerotic Apoe-deficient mice with [2H]6-labeled cholesterol and surgically transplanting these aortae into recipient Apoe-deficient mice that were treated with anti-VEGFR3 antibody to block lymphatic regrowth or with control antibody to allow such regrowth. [2H]-Cholesterol was retained in aortae of anti-VEGFR3-treated mice. Thus, the lymphatic vessel route is critical for RCT from multiple tissues, including the aortic wall. These results suggest that supporting lymphatic transport function may facilitate cholesterol clearance in therapies aimed at reversing atherosclerosis.
Koydemir, Selda; Demir, Ayhan
2007-06-01
The purpose of the study was to report initial data on the psychometric properties of the Brief Fear of Negative Evaluation Scale. The scale was applied to a nonclinical sample of 250 (137 women, 113 men) Turkish undergraduate students selected randomly from Middle East Technical University. Their mean age was 20.4 yr. (SD= 1.9). The factor structure of the Turkish version, its criterion validity, and internal reliability coefficients were assessed. Although maximum likelihood factor analysis initially indicated that the scale had only one factor, a forced two-factor solution accounted for more variance (61%) in scale scores than a single factor. The straightforward items loaded on the first factor, and the reverse-coded items loaded on the second factor. The total score was significantly positively correlated with scores on the Revised Cheek and Buss Shyness Scale and significantly negatively correlated with scores on the Rosenberg Self-Esteem Scale. Factor 1 (straightforward items) correlated more highly with both Shyness and Self-esteem than Factor 2 (reverse-coded items). Internal consistency estimate was .94 for the Total scores, .91 for the Factor 1 (straightforward items), and .87 for the Factor 2 (reverse-coded items). No sex differences were evident for Fear of Negative Evaluation.
3D Printed Reversible Shape Changing Components with Stimuli Responsive Materials
Mao, Yiqi; Ding, Zhen; Yuan, Chao; Ai, Shigang; Isakov, Michael; Wu, Jiangtao; Wang, Tiejun; Dunn, Martin L.; Qi, H. Jerry
2016-01-01
The creation of reversibly-actuating components that alter their shapes in a controllable manner in response to environmental stimuli is a grand challenge in active materials, structures, and robotics. Here we demonstrate a new reversible shape-changing component design concept enabled by 3D printing two stimuli responsive polymers—shape memory polymers and hydrogels—in prescribed 3D architectures. This approach uses the swelling of a hydrogel as the driving force for the shape change, and the temperature-dependent modulus of a shape memory polymer to regulate the time of such shape change. Controlling the temperature and aqueous environment allows switching between two stable configurations – the structures are relatively stiff and can carry load in each – without any mechanical loading and unloading. Specific shape changing scenarios, e.g., based on bending, or twisting in prescribed directions, are enabled via the controlled interplay between the active materials and the 3D printed architectures. The physical phenomena are complex and nonintuitive, and so to help understand the interplay of geometric, material, and environmental stimuli parameters we develop 3D nonlinear finite element models. Finally, we create several 2D and 3D shape changing components that demonstrate the role of key parameters and illustrate the broad application potential of the proposed approach. PMID:27109063
3D Printed Reversible Shape Changing Components with Stimuli Responsive Materials
NASA Astrophysics Data System (ADS)
Mao, Yiqi; Ding, Zhen; Yuan, Chao; Ai, Shigang; Isakov, Michael; Wu, Jiangtao; Wang, Tiejun; Dunn, Martin L.; Qi, H. Jerry
2016-04-01
The creation of reversibly-actuating components that alter their shapes in a controllable manner in response to environmental stimuli is a grand challenge in active materials, structures, and robotics. Here we demonstrate a new reversible shape-changing component design concept enabled by 3D printing two stimuli responsive polymers—shape memory polymers and hydrogels—in prescribed 3D architectures. This approach uses the swelling of a hydrogel as the driving force for the shape change, and the temperature-dependent modulus of a shape memory polymer to regulate the time of such shape change. Controlling the temperature and aqueous environment allows switching between two stable configurations - the structures are relatively stiff and can carry load in each - without any mechanical loading and unloading. Specific shape changing scenarios, e.g., based on bending, or twisting in prescribed directions, are enabled via the controlled interplay between the active materials and the 3D printed architectures. The physical phenomena are complex and nonintuitive, and so to help understand the interplay of geometric, material, and environmental stimuli parameters we develop 3D nonlinear finite element models. Finally, we create several 2D and 3D shape changing components that demonstrate the role of key parameters and illustrate the broad application potential of the proposed approach.
Dynamic Failure Processes Under Confining Stress in AlON, a Transparent Polycrystalline Ceramic
2009-09-01
in a prismatic specimen along one of the three specimen axes, the dynamic loading is imposed (using MKB) along the second specimen axis and the third ...AlON are generally comparable to those of α-Al2O3. Owing to its optically isotropic cubic crystal structure, fully dense, polycrystalline bodies can...illustrated in indentation experiments on Al2O3 [46]) or under tribological loading conditions. During indentation, the region beneath the indenter is
Robust synchronization of spin-torque oscillators with an LCR load.
Pikovsky, Arkady
2013-09-01
We study dynamics of a serial array of spin-torque oscillators with a parallel inductor-capacitor-resistor (LCR) load. In a large range of parameters the fully synchronous regime, where all the oscillators have the same state and the output field is maximal, is shown to be stable. However, not always such a robust complete synchronization develops from a random initial state; in many cases nontrivial clustering is observed, with a partial synchronization resulting in a quasiperiodic or chaotic mean-field dynamics.
Gray, John R.; Laronne, Jonathan B.; Marr, Jeffrey D.G.
2007-01-01
The International Bedload-Surrogate Monitoring Workshop (http://www.nced.umn.edu/BRIC_2007.html), organized by the Bedload Research International Cooperative (BRIC; www.bedloadresearch.org), was held to assess and abet progress in continuous, semiautomated, or fully automated (surrogate) technologies for monitoring bed load discharge in gravel-, sand-, and mixed gravel-sand-bedded rivers. Direct bed load measurements, particularly at medium and high flows, during which most bed load occurs, tend to be time-consuming, expensive, and potentially hazardous. Surrogate technologies developed largely over the past decade and used at a number of research sites around the world show considerable promise toward providing relatively dense, robust, and quantifiably reliable bed load data sets. However, information on the efficacy of selected technologies for use in monitoring programs is needed, as is identification of the ways and means for bringing the most promising and practical of the technologies to fruition.
Role of membrane stresses in the support of planetary topography
NASA Technical Reports Server (NTRS)
Turcotte, D. L.; Willemann, R. J.; Haxby, W. F.; Norberry, J.
1981-01-01
The role of membrane stresses and bending stresses in supporting topographic loads on planetary elastic lithospheres is examined. A dimensionless parameter is introduced in order to determine the ability of a spherical shell to support loads through membrane stresses. It is determined that when this parameter is large, membrane stresses can fully support topographic loads with flexure, and when it is small the influence of the membrane stresses can be neglected. Equations governing the behavior of a spherical shell are solved for a topographic load expressed in terms of spherical harmonics, and spherical harmonic expansions of the measured gravity and topography for Mars and the moon are compared with the theory. It is concluded that membrane stresses play an important role in the support of topographic loads on the moon and Mars. The correlation of observed gravitational potential anomalies with the topography on Mars is explained by membrane stresses in the elastic lithosphere.
Mechanics of load-drag-unload contact cleaning of gecko-inspired fibrillar adhesives.
Abusomwan, Uyiosa A; Sitti, Metin
2014-10-14
Contact self-cleaning of gecko-inspired synthetic adhesives with mushroom-shaped tips has been demonstrated recently using load-drag-unload cleaning procedures similar to that of the natural animal. However, the underlying mechanics of contact cleaning has yet to be fully understood. In this work, we present a detailed experiment of contact self-cleaning that shows that rolling is the dominant mechanism of cleaning for spherical microparticle contaminants, during the load-drag-unload procedure. We also study the effect of dragging rate and normal load on the particle rolling friction. A model of spherical particle rolling on an elastomer fibrillar adhesive interface is developed and agrees well with the experimental results. This study takes us closer to determining design parameters for achieving self-cleaning fibrillar adhesives.
Modeling Aircraft Wing Loads from Flight Data Using Neural Networks
NASA Technical Reports Server (NTRS)
Allen, Michael J.; Dibley, Ryan P.
2003-01-01
Neural networks were used to model wing bending-moment loads, torsion loads, and control surface hinge-moments of the Active Aeroelastic Wing (AAW) aircraft. Accurate loads models are required for the development of control laws designed to increase roll performance through wing twist while not exceeding load limits. Inputs to the model include aircraft rates, accelerations, and control surface positions. Neural networks were chosen to model aircraft loads because they can account for uncharacterized nonlinear effects while retaining the capability to generalize. The accuracy of the neural network models was improved by first developing linear loads models to use as starting points for network training. Neural networks were then trained with flight data for rolls, loaded reversals, wind-up-turns, and individual control surface doublets for load excitation. Generalization was improved by using gain weighting and early stopping. Results are presented for neural network loads models of four wing loads and four control surface hinge moments at Mach 0.90 and an altitude of 15,000 ft. An average model prediction error reduction of 18.6 percent was calculated for the neural network models when compared to the linear models. This paper documents the input data conditioning, input parameter selection, structure, training, and validation of the neural network models.
A more productive, but different, ocean after mitigation
NASA Astrophysics Data System (ADS)
John, Jasmin G.; Stock, Charles A.; Dunne, John P.
2015-11-01
Reversibility studies suggest a lagged recovery of global mean sea surface temperatures after mitigation, raising the question of whether a similar lag is likely for marine net primary production (NPP). Here we assess NPP reversibility with a mitigation scenario in which projected Representative Concentration Pathway (RCP) 8.5 forcings are applied out to 2100 and then reversed over the course of the following century in a fully coupled carbon-climate Earth System Model. In contrast to the temperature lag, we find a rapid increase in global mean NPP, including an overshoot to values above contemporary means. The enhanced NPP arises from a transient imbalance between the cooling surface ocean and continued warming in subsurface waters, which weakens upper ocean density gradients, resulting in deeper mixing and enhanced surface nitrate. We also find a marine ecosystem regime shift as persistent silicate depletion results in increased prevalence of large, non-diatom phytoplankton.
Structure of a group II intron in complex with its reverse transcriptase.
Qu, Guosheng; Kaushal, Prem Singh; Wang, Jia; Shigematsu, Hideki; Piazza, Carol Lyn; Agrawal, Rajendra Kumar; Belfort, Marlene; Wang, Hong-Wei
2016-06-01
Bacterial group II introns are large catalytic RNAs related to nuclear spliceosomal introns and eukaryotic retrotransposons. They self-splice, yielding mature RNA, and integrate into DNA as retroelements. A fully active group II intron forms a ribonucleoprotein complex comprising the intron ribozyme and an intron-encoded protein that performs multiple activities including reverse transcription, in which intron RNA is copied into the DNA target. Here we report cryo-EM structures of an endogenously spliced Lactococcus lactis group IIA intron in its ribonucleoprotein complex form at 3.8-Å resolution and in its protein-depleted form at 4.5-Å resolution, revealing functional coordination of the intron RNA with the protein. Remarkably, the protein structure reveals a close relationship between the reverse transcriptase catalytic domain and telomerase, whereas the active splicing center resembles the spliceosomal Prp8 protein. These extraordinary similarities hint at intricate ancestral relationships and provide new insights into splicing and retromobility.
High-Performance of Gas Hydrates in Confined Nanospace for Reversible CH4 /CO2 Storage.
Casco, Mirian E; Jordá, José L; Rey, Fernando; Fauth, François; Martinez-Escandell, Manuel; Rodríguez-Reinoso, Francisco; Ramos-Fernández, Enrique V; Silvestre-Albero, Joaquín
2016-07-11
The molecular exchange of CH4 for CO2 in gas hydrates grown in confined nanospace has been evaluated for the first time using activated carbons as a host structure. The nano-confinement effects taking place inside the carbon cavities and the exceptional physicochemical properties of the carbon structure allows us to accelerate the formation and decomposition process of the gas hydrates from the conventional timescale of hours/days in artificial bulk systems to minutes in confined nanospace. The CH4 /CO2 exchange process is fully reversible with high efficiency at practical temperature and pressure conditions. Furthermore, these activated carbons can be envisaged as promising materials for long-distance natural gas and CO2 transportation because of the combination of a high storage capacity, a high reversibility, and most important, with extremely fast kinetics for gas hydrate formation and release. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOT National Transportation Integrated Search
2015-08-01
When infrastructure is subjected to temperature changes, structural members that are either partially or fully : restrained against motion can develop internal stresses. The phenomenon of temperature-induced internal stress development : in superstru...
Fracture Behavior under Impact.
1982-07-01
effects .,w’ on the loading condition before, at, and after crack instability can re- .-oo .. .. ,..*, lea.’./,’ ... *. w . . ;) "~ l .. I...’.. I. - S ...34. --- "- op sult. Further information is necessary to fully understand the dynamic processes associated with the fast
Postma, Dirkje S; Anzueto, Antonio R; Jenkins, Christine; Make, Barry J; Similowski, Thomas; Östlund, Ollie; Eriksson, Göran S; Calverley, Peter M
2013-12-01
The clinical and demographic variables defining the heterogeneity of chronic obstructive pulmonary disease (COPD) are unclear. A post-hoc analysis of five randomised studies in patients with a history of previous exacerbations examined the clinical and demographic characteristics describing moderate-to-very-severe COPD. Factor analysis was performed on all continuous baseline demographic and clinical data, without variable selection. Analyses were based on the full cohort and on stratifications by pack-years smoked, smoking status, gender, and comorbidities; patient exacerbation history was analysed in two of the five studies. 6162 COPD patients were evaluated (70% male; 40% current smokers; mean pre-bronchodilator forced expiratory volume in 1 s [FEV1] 35.2% predicted). Baseline clinical and demographic variables loaded differentially on six factors with minimal overlap, explaining 60.4% of the heterogeneity: 1) symptoms (cough, dyspnoea, sleep disturbance), health status, reliever use; 2) pre-bronchodilator FEV1, FEV1/forced vital capacity, morning peak expiratory flow (PEF), body mass index (BMI); 3) blood pressure; 4) age, months since first COPD symptoms; 5) PEF variability; 6) pulse, FEV1 reversibility. Most factors loaded similarly in stratified and exacerbation analyses. BMI loaded with reversibility in females, and with age and months since first COPD symptoms in ex-smokers. Exacerbations loaded to factor 6. Readily available data can explain ≈ 60% of COPD heterogeneity in a large dataset of predominantly severe COPD patients. Factors were robust over determinants of disease outcome; gender, smoking status, pack-years smoked, and comorbidities. The main factors were largely unchanged by adding exacerbations. Only BMI loaded to other factors. Copyright © 2013. Published by Elsevier Ltd.
Yuan, Qing-Bin; Guo, Mei-Ting; Yang, Jian
2015-01-01
Wastewater treatment plants are considered as hot reservoirs of antimicrobial resistance. However, the fates of antibiotic-resistant bacteria during biological treatment processes and relevant influencing factors have not been fully understood. This study evaluated the effects of the sludge loading rate on the growth and release of six kinds of antibiotic-resistant bacteria in an activated sludge system. The results indicated that higher sludge loading rates amplified the growth of all six types of antibiotic resistant bacteria. The release of most antibiotic-resistant bacteria through both the effluent and biosolids was amplified with increased sludge loading rate. Biosolids were the main pattern for all antibiotic-resistant bacteria release in an activated sludge system, which was determined primarily by their growth in the activated sludge. A higher sludge loading rate reactor tended to retain more antibiotic resistance. An activated sludge system with lower sludge loading rates was considered more conducive to the control of antibiotic resistance.
Life Predicted in a Probabilistic Design Space for Brittle Materials With Transient Loads
NASA Technical Reports Server (NTRS)
Nemeth, Noel N.; Palfi, Tamas; Reh, Stefan
2005-01-01
Analytical techniques have progressively become more sophisticated, and now we can consider the probabilistic nature of the entire space of random input variables on the lifetime reliability of brittle structures. This was demonstrated with NASA s CARES/Life (Ceramic Analysis and Reliability Evaluation of Structures/Life) code combined with the commercially available ANSYS/Probabilistic Design System (ANSYS/PDS), a probabilistic analysis tool that is an integral part of the ANSYS finite-element analysis program. ANSYS/PDS allows probabilistic loads, component geometry, and material properties to be considered in the finite-element analysis. CARES/Life predicts the time dependent probability of failure of brittle material structures under generalized thermomechanical loading--such as that found in a turbine engine hot-section. Glenn researchers coupled ANSYS/PDS with CARES/Life to assess the effects of the stochastic variables of component geometry, loading, and material properties on the predicted life of the component for fully transient thermomechanical loading and cyclic loading.
Asymmetric Spatial Processing Under Cognitive Load
Naert, Lien; Bonato, Mario; Fias, Wim
2018-01-01
Spatial attention allows us to selectively process information within a certain location in space. Despite the vast literature on spatial attention, the effect of cognitive load on spatial processing is still not fully understood. In this study we added cognitive load to a spatial processing task, so as to see whether it would differentially impact upon the processing of visual information in the left versus the right hemispace. The main paradigm consisted of a detection task that was performed during the maintenance interval of a verbal working memory task. We found that increasing cognitive working memory load had a more negative impact on detecting targets presented on the left side compared to those on the right side. The strength of the load effect correlated with the strength of the interaction on an individual level. The implications of an asymmetric attentional bias with a relative disadvantage for the left (vs the right) hemispace under high verbal working memory (WM) load are discussed. PMID:29740371
Elastohydrodynamic lubrication of point contacts. Ph.D. Thesis - Leeds Univ.
NASA Technical Reports Server (NTRS)
Hamrock, B. J.
1976-01-01
A procedure for the numerical solution of the complete, isothermal, elastohydrodynamic lubrication problem for point contacts is given. This procedure calls for the simultaneous solution of the elasticity and Reynolds equations. By using this theory the influence of the ellipticity parameter and the dimensionless speed, load, and material parameters on the minimum and central film thicknesses was investigated. Thirty-four different cases were used in obtaining the fully flooded minimum- and central-film-thickness formulas. Lubricant starvation was also studied. From the results it was possible to express the minimum film thickness for a starved condition in terms of the minimum film thickness for a fully flooded condition, the speed parameter, and the inlet distance. Fifteen additional cases plus three fully flooded cases were used in obtaining this formula. Contour plots of pressure and film thickness in and around the contact have been presented for both fully flooded and starved lubrication conditions.
NASA Astrophysics Data System (ADS)
Saito, Tetsuro; Onari, Seiichiro; Kontani, Hiroshi
2011-04-01
We study the superconducting state in recently discovered high-Tc superconductor KxFe2Se2 based on the ten-orbital Hubbard-Holstein model without hole pockets. When the Coulomb interaction is large, a spin-fluctuation-mediated d-wave state appears due to the nesting between electron pockets. Interestingly, the symmetry of the body-centered tetragonal structure in KxFe2Se2 requires the existence of nodes in the d-wave gap, although a fully gapped d-wave state is realized in the case of a simple tetragonal structure. In the presence of moderate electron-phonon interaction due to Fe-ion optical modes, however, orbital fluctuations give rise to the fully gapped s++-wave state without sign reversal. Therefore, both superconducting states are distinguishable by careful measurements of the gap structure or the impurity effect on Tc.
Replication fork reversal triggers fork degradation in BRCA2-defective cells.
Mijic, Sofija; Zellweger, Ralph; Chappidi, Nagaraja; Berti, Matteo; Jacobs, Kurt; Mutreja, Karun; Ursich, Sebastian; Ray Chaudhuri, Arnab; Nussenzweig, Andre; Janscak, Pavel; Lopes, Massimo
2017-10-16
Besides its role in homologous recombination, the tumor suppressor BRCA2 protects stalled replication forks from nucleolytic degradation. Defective fork stability contributes to chemotherapeutic sensitivity of BRCA2-defective tumors by yet-elusive mechanisms. Using DNA fiber spreading and direct visualization of replication intermediates, we report that reversed replication forks are entry points for fork degradation in BRCA2-defective cells. Besides MRE11 and PTIP, we show that RAD52 promotes stalled fork degradation and chromosomal breakage in BRCA2-defective cells. Inactivation of these factors restores reversed fork frequency and chromosome integrity in BRCA2-defective cells. Conversely, impairing fork reversal prevents fork degradation, but increases chromosomal breakage, uncoupling fork protection, and chromosome stability. We propose that BRCA2 is dispensable for RAD51-mediated fork reversal, but assembles stable RAD51 nucleofilaments on regressed arms, to protect them from degradation. Our data uncover the physiopathological relevance of fork reversal and illuminate a complex interplay of homologous recombination factors in fork remodeling and stability.BRCA2 is involved in both homologous recombination (HR) and the protection of stalled replication forks from degradation. Here the authors reveal how HR factors cooperate in fork remodeling, showing that BRCA2 supports RAD51 loading on the regressed arms of reversed replication forks to protect them from degradation.
EVALUATING VARIOUS ADSORBENTS AND MEMBRANES FOR REMOVING RADIUM FROM GROUNDWATER
Field studies were conducted in Lemont, Ill., to evaluate specific adsorbents and reverse osmosis (RO) membranes for removing radium from groundwater. A radium-selective complexer and barium-sulfate-loaded alumina appeared to have the best potential for low-cost adsorption of ra...
A hybrid regenerative water recovery system for lunar/Mars life support applications
NASA Technical Reports Server (NTRS)
Verostko, Charles E.; Edeen, Marybeth A.; Packham, Nigel J. C.
1992-01-01
Long-duration manned space missions will require integrated biological and physicochemical processes for recovery of resources from wastes. This paper discusses a hybrid regenerative biological and physicochemical water recovery system designed and built at NASA's Crew and Thermal Systems Division at Johnson Space Center. The system is sized for a four-person crew and consists of a two-stage, aerobic, trickling filter bioreactor; a reverse osmosis system; and a photocatalytic oxidation system. The system was designed to accommodate high organic and inorganic loadings and a low hydraulic loading. The bioreactor was designed to oxidize organics to carbon dioxide and water; the reverse osmosis system reduces inorganic content to potable quality; and the photocatalytic oxidation unit removes residual organic impurities (part per million range) and provides in situ disinfection. The design and performance of the hybrid system for producing potable/hygiene water is described. Aspects of the system such as closure, automation and integration are discussed and preliminary results presented.
Square and rectangular concrete columns confined by CFRP: Experimental and numerical investigation
NASA Astrophysics Data System (ADS)
Monti, G.; Nistico, N.
2008-05-01
The results of an experimental and theoretical investigation into the deformation behavior of CFRP-confined square and rectangular concrete columns under axial loads are presented. Three types of columns are considered: unwrapped; fully wrapped; and fully wrapped, with L-slaped steel angles placed at the corners. A mechanical deformation model for them is proposed, which is based on a nonuniform distribution of the stresses caused by the confining device. The results given by the model are in a good agreement with the experimental results obtained.
Zhang, Dongdong; Huang, Yaxin; Zhao, Qilin; Li, Fei; Gao, Yifeng
2014-01-01
A novel hybrid FRP-aluminum truss system has been employed in a two-rut modular bridge superstructure composed of twin inverted triangular trusses. The actual flexural behavior of a one-rut truss has been previously investigated under the on-axis loading test; however, the structural performance of the one-rut truss subjected to an off-axis load is still not fully understood. In this paper, a geometrical linear finite element model is introduced and validated by the on-axis loading test; the structural performance of the one-rut truss subjected to off-axis load was numerically obtained; the dissimilarities of the structural performance between the two different loading cases are investigated in detail. The results indicated that (1) the structural behavior of the off-axis load differs from that of the on-axis load, and the off-axis load is the critical loading condition controlling the structural performance of the triangular truss; (2) under the off-axis load, the FRP trussed members and connectors bear certain out-of-plane bending moments and are subjected to a complicated stress state; and (3) the stress state of these members does not match that of the initial design, and optimization for the redesign of these members is needed, especially for the pretightened teeth connectors. PMID:25254254
Hydro pumped storage, international experience: An overview of ASCE task committee report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makarechian, A.H.; Rummel, G.
1995-12-31
This paper presents an overview of a report that is being prepared by ASCE Task Committee on Pumped Storage, International Experience. The reader is referred to the committee report that will be available in 1996. Many pumped storage projects in Europe, but particularly in Japan are becoming an indispensable resource in management of loads and resources on the electrical system. They serve to enhance reliability of the system and to provide for efficient utilization of thermal resources. Pumped storage is increasingly being used as a system management tool. To serve such purposes and to function in this key role, pumpedmore » storage projects are designed for very fast loading and unloading, for very fast mode reversals from pumping to generating and visa versa, for synchronous generation, and more importantly for load ramping during the pumping mode. This is achieved by use of variable-speed pump turbine units. The use of variable-speed units has proven so successful in Japan that many older projects are retrofitted with this new feature. Other interesting equipment applications are discussed including utilization of multi-stage unregulated pump turbines for very high heads (up to 1,250 m), and continued extension of the experience for high head reversible Francis unit, currently in excess of 750 m.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghorbanpour, Saeede; Zecevic, Milovan; Kumar, Anil
An elasto-plastic polycrystal plasticity model is developed and applied to an Inconel 718 (IN718) superalloy that was produced by additive manufacturing (AM). The model takes into account the contributions of solid solution, precipitates shearing, and grain size and shape effects into the initial slip resistance. Non-Schmid effects and backstress are also included in the crystal plasticity model for activating slip. The hardening law for the critical resolved shear stress is based on the evolution of dislocation density. In using the same set of material and physical parameters, the model is compared against a suite of compression, tension, and large-strain cyclicmore » mechanical test data applied in different AM build directions. We demonstrate that the model is capable of predicting the particularities of both monotonic and cyclic deformation to large strains of the alloy, including decreasing hardening rate during monotonic loading, the non-linear unloading upon the load reversal, the Bauschinger effect, the hardening rate change during loading in the reverse direction as well as plastic anisotropy and the concomitant microstructure evolution. It is anticipated that the general model developed here can be applied to other multiphase alloys containing precipitates.« less
Ghorbanpour, Saeede; Zecevic, Milovan; Kumar, Anil; ...
2017-09-14
An elasto-plastic polycrystal plasticity model is developed and applied to an Inconel 718 (IN718) superalloy that was produced by additive manufacturing (AM). The model takes into account the contributions of solid solution, precipitates shearing, and grain size and shape effects into the initial slip resistance. Non-Schmid effects and backstress are also included in the crystal plasticity model for activating slip. The hardening law for the critical resolved shear stress is based on the evolution of dislocation density. In using the same set of material and physical parameters, the model is compared against a suite of compression, tension, and large-strain cyclicmore » mechanical test data applied in different AM build directions. We demonstrate that the model is capable of predicting the particularities of both monotonic and cyclic deformation to large strains of the alloy, including decreasing hardening rate during monotonic loading, the non-linear unloading upon the load reversal, the Bauschinger effect, the hardening rate change during loading in the reverse direction as well as plastic anisotropy and the concomitant microstructure evolution. It is anticipated that the general model developed here can be applied to other multiphase alloys containing precipitates.« less
Breaking time reversal in a simple smooth chaotic system.
Tomsovic, Steven; Ullmo, Denis; Nagano, Tatsuro
2003-06-01
Within random matrix theory, the statistics of the eigensolutions depend fundamentally on the presence (or absence) of time reversal symmetry. Accepting the Bohigas-Giannoni-Schmit conjecture, this statement extends to quantum systems with chaotic classical analogs. For practical reasons, much of the supporting numerical studies of symmetry breaking have been done with billiards or maps, and little with simple, smooth systems. There are two main difficulties in attempting to break time reversal invariance in a continuous time system with a smooth potential. The first is avoiding false time reversal breaking. The second is locating a parameter regime in which the symmetry breaking is strong enough to transform the fluctuation properties fully to the broken symmetry case, and yet remain weak enough so as not to regularize the dynamics sufficiently that the system is no longer chaotic. We give an example of a system of two coupled quartic oscillators whose energy level statistics closely match with those of the Gaussian unitary ensemble, and which possesses only a minor proportion of regular motion in its phase space.
Reversal learning and resurgence of operant behavior in zebrafish (Danio rerio).
Kuroda, Toshikazu; Mizutani, Yuto; Cançado, Carlos R X; Podlesnik, Christopher A
2017-09-01
Zebrafish are used extensively as vertebrate animal models in biomedical research for having such features as a fully sequenced genome and transparent embryo. Yet, operant-conditioning studies with this species are scarce. The present study investigated reversal learning and resurgence of operant behavior in zebrafish. A target response (approaching a sensor) was reinforced in Phase 1. In Phase 2, the target response was extinguished while reinforcing an alternative response (approaching a different sensor). In Phase 3, extinction was in effect for the target and alternative responses. Reversal learning was demonstrated when responding tracked contingency changes between Phases 1 and 2. Moreover, resurgence occurred in 10 of 13 fish in Phase 3: Target response rates increased transiently and exceeded rates of an unreinforced control response. The present study provides the first evidence with zebrafish supporting reversal learning between discrete operant responses and a laboratory model of relapse. These findings open the possibility to assessing genetic influences of operant behavior generally and in models of relapse (e.g., resurgence, renewal, reinstatement). Copyright © 2017 Elsevier B.V. All rights reserved.
Xu, Yuxia; Zhang, Peng; Wang, Chu; Shan, Ye; Wang, Dandan; Qian, Fenglei; Sun, Mengwei; Zhu, Cuiqing
2013-10-28
Ginsenoside Rg3 has shown multiple pharmacological activities and been considered as one of the most promising approaches for fatigue treatment. However, little is known about the cellular and molecular mechanisms of Rg3 on anti-fatigue and the effect of Rg3 on dopaminergic system has not been reported yet. The major aim of this study is to investigate the effect of Rg3 on TH expression and the related biochemical parameters, such as PKAα, ERK1/2, Akt and α-synuclein in brain of fatigue rats. Weight-loaded forced swimming was performed to establish an animal model of fatigue. Rg3 (10mg/kg, 50mg/kg and 100mg/kg) was intragastrically administrated before swimming. The effect of Rg3 on the expression and phosphorylation of TH and TH-related proteins in fatigue rats or in SH-SY5Y cells was assessed with western blotting. HPLC was used to examine the level of DA and DOPAC in the fatigue rats tissues. TH and phosphorylated TH were decreased in different brain regions of which ventral midbrain were less affected in weight-loaded forced swimming rats. Pretreatment with Rg3 significantly suppressed fatigue-induced decrease expression of TH and TH phosphorylation. Also treatment with Rg3 reversed the decrease expression of PKAα as well as the phosphorylation of ERK1/2 and Akt which were induced by weight-loaded forced swimming. Moreover, weight-loaded swimming could induce the increase expression of α-synuclein in hippocampus and midbrain, while suppressed α-synuclein expression in striatum and prefrontal cortex. Furthermore, Rg3 could induce the increase of TH expression and phosphorylation which was accompanied with elevated expression and phosphorylation of related kinase proteins in vitro, while the inhibitors of kinase proteins could suppress these effects of Rg3. In addition, HPLC results showed that Rg3 could reverse the weight-loaded swimming-induced increase of DOPAC/DA ratio. Our data suggest that fatigue can induce the decrease of DA which might partially result from the change of TH expression and phosphorylation, and Rg3 can reverse these fatigue-induced changes. The underling mechanisms may include the activity changes of PKAα, ERK1/2, Akt and α-synuclein. © 2013 Published by Elsevier Ireland Ltd.
Din, Fakhar Ud; Kim, Dong Wuk; Choi, Ju Yeon; Thapa, Raj Kumar; Mustapha, Omer; Kim, Dong Shik; Oh, Yu-Kyoung; Ku, Sae Kwang; Youn, Yu Seok; Oh, Kyung Taek; Yong, Chul Soon; Kim, Jong Oh; Choi, Han-Gon
2017-05-01
Intramuscularly administered, anti-tumour drugs induce severe side effects due to their direct contact with body tissues and initial burst effect. In this study, to solve this problem, a novel double-reversible thermogel system (DRTG) for the intramuscular administration of irinotecan was developed. This irinotecan-loaded DRTG was prepared by dispersing the irinotecan-loaded thermoreversible solid lipid nanoparticles (SLNs) in the thermoreversible hydrogel. In DRTG, the former was solid at 25°C but converted to liquid at 36.5°C; in contrast, the latter existed in a liquid form but transformed to gel state in the body. The DRTG was easily administered intramuscularly. Its particle size and drug content were not noticeably changeable, resulting that it was stable at 40°C for at least 6months. Compared to the irinotecan-loaded solution and conventional hydrogel, the DRTG significantly delayed drug release, leading to a reduced burst effect. Moreover, it showed decreased C max and maintained the sustained plasma concentrations at a relatively low level for the long period of 60h in rats, resulting in ameliorated side effects of the anti-tumour drug. Furthermore, it gave significantly improved anti-tumour efficacy in tumour-bearing mice compared to the hydrogel but, unlike the conventional hydrogel, induced no body weight loss and local damage to the muscle. Thus, this DRTG with improved antitumor efficacy without initial burst effect and toxicity could provide a potential pharmaceutical system for the intramuscular administration of irinotecan. Intramuscularly administered, anti-tumour drugs induce severe side effects due to their direct contact with body tissues and initial burst effect. To solve this problem, we developed a novel double-reversible thermogel system (DRTG) for the intramuscular administration of irinotecan. Unlike the conventional hydrogel, the DRTG is a dispersion of the irinotecan-loaded thermoreversible solid lipid nanoparticles in the thermoreversible hydrogel. In DRTG, the former was solid at 25°C but converted to liquid at 36.5°C; in contrast, the latter existed in a liquid form but transformed to gel state in the body. This DRTG gave significantly improved anti-tumour efficacy in tumour-bearing mice compared to the hydrogel but, unlike the conventional hydrogel, induced no body weight loss and local damage to the muscle. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
NITROGEN EFFECTS ON COASTAL MARINE ECOSYSTEMS
In the 1960s the problem of nutrient inputs to freshwater systems, and scientific debate about it, was reaching a peak. . . Even before the freshwater decision-makers became fully focused on setting limits on phosphorus (P) loading by a seminal experiment of David Schindler (1974...
A MOLECULAR APPROACH TO UNDERSTAND HARMFUL ALGAL BLOOMS
With the upcoming release of a fully sequenced genome, we have an unprecedented opportunity to discover how a HAB organism responds to nutrient loading and the cellular mechanisms underlying those responses. This project will provide key regulation data to help identify transc...
Fully vs. Sequentially Coupled Loads Analysis of Offshore Wind Turbines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Damiani, Rick; Wendt, Fabian; Musial, Walter
The design and analysis methods for offshore wind turbines must consider the aerodynamic and hydrodynamic loads and response of the entire system (turbine, tower, substructure, and foundation) coupled to the turbine control system dynamics. Whereas a fully coupled (turbine and support structure) modeling approach is more rigorous, intellectual property concerns can preclude this approach. In fact, turbine control system algorithms and turbine properties are strictly guarded and often not shared. In many cases, a partially coupled analysis using separate tools and an exchange of reduced sets of data via sequential coupling may be necessary. In the sequentially coupled approach, themore » turbine and substructure designers will independently determine and exchange an abridged model of their respective subsystems to be used in their partners' dynamic simulations. Although the ability to achieve design optimization is sacrificed to some degree with a sequentially coupled analysis method, the central question here is whether this approach can deliver the required safety and how the differences in the results from the fully coupled method could affect the design. This work summarizes the scope and preliminary results of a study conducted for the Bureau of Safety and Environmental Enforcement aimed at quantifying differences between these approaches through aero-hydro-servo-elastic simulations of two offshore wind turbines on a monopile and jacket substructure.« less
Transient loads analysis for space flight applications
NASA Technical Reports Server (NTRS)
Thampi, S. K.; Vidyasagar, N. S.; Ganesan, N.
1992-01-01
A significant part of the flight readiness verification process involves transient analysis of the coupled Shuttle-payload system to determine the low frequency transient loads. This paper describes a methodology for transient loads analysis and its implementation for the Spacelab Life Sciences Mission. The analysis is carried out using two major software tools - NASTRAN and an external FORTRAN code called EZTRAN. This approach is adopted to overcome some of the limitations of NASTRAN's standard transient analysis capabilities. The method uses Data Recovery Matrices (DRM) to improve computational efficiency. The mode acceleration method is fully implemented in the DRM formulation to recover accurate displacements, stresses, and forces. The advantages of the method are demonstrated through a numerical example.
Aaland, K.
1983-08-09
A switching system for delivering pulses of power from a source to a load using a storage capacitor charged through a rectifier, and maintained charged to a reference voltage level by a transistor switch and voltage comparator. A thyristor is triggered to discharge the storage capacitor through a saturable reactor and fractional turn saturable transformer having a secondary to primary turn ratio N of n:l/n = n[sup 2]. The saturable reactor functions as a soaker'' while the thyristor reaches saturation, and then switches to a low impedance state. The saturable transformer functions as a switching transformer with high impedance while a load coupling capacitor charges, and then switches to a low impedance state to dump the charge of the storage capacitor into the load through the coupling capacitor. The transformer is comprised of a multilayer core having two secondary windings tightly wound and connected in parallel to add their output voltage and reduce output inductance, and a number of single turn windings connected in parallel at nodes for the primary winding, each single turn winding linking a different one of the layers of the multilayer core. The load may be comprised of a resistive beampipe for a linear particle accelerator and capacitance of a pulse forming network. To hold off discharge of the capacitance until it is fully charged, a saturable core is provided around the resistive beampipe to isolate the beampipe from the capacitance until it is fully charged. 5 figs.
Pan, Pinliang; Tao, Xiaoxia; Zhang, Qi; Xing, Wenge; Sun, Xianguang; Pei, Lijian; Jiang, Yan
2007-12-01
To investigate the correlation between three viral load assays for circulating recombinant form (CRF)_BC. Recent studies in HIV-1 molecular epidemiology, reveals that CRF_BC is the dominant subtype of HIV-1 virus in mainland China, representing over 45% of the HIV-1 infected population. The performances of nucleic acid sequence-based amplification (NASBA), branched DNA (bDNA) and reverse transcriptase polymerase chain reaction (RT-PCR) were compared for the HIV-1 viral load detection and quantitation of CRF_BC in China. Sixteen HIV-1 positive and three HIV-1 negative samples were collected. Sequencing of the positive samples in the gp41 region was conducted. The HIV-1 viral load values were determined using bDNA, RT-PCR and NASBA assays. Deming regression analysis with SPSS 12.0 (SPS Inc., Chicago, Illinois, USA) was performed for data analysis. Sequencing and phylogenetic analysis of env gene (gp41) region of the 16 HIV-1 positive clinical specimens from Guizhou Province in southwest China revealed the dominance of the subtype CRF_BC in that region. A good correlation of their viral load values was observed among three assays. Pearson's correlation between RT-PCR and bDNA is 0.969, Lg(VL)RT-PCR = 0.969 * Lg(VL)bDNA + 0.55; Pearson's correlation between RT-PCR and NASBA is 0.968, Lg(VL)RT-PCR = 0.968 * Lg(VL)NASBA + 0.937; Pearson's correlation between NASBA and bDNA is 0.980, Lg(VL)NASBA = 0.980 * Lg(VL)bDNA - 0.318. When testing with 3 different assays, RT-PCR, bDNA and NASBA, the group of 16 HIV-1 positive samples showed the viral load value was highest for RT-PCR, followed by bDNA then NASBA, which is consistent with the former results in subtype B. The three viral load assays are highly correlative for CRF_BC in China.
Plessers, Maarten; Van Herzeele, Isabelle; Hemelsoet, Dimitri; Vingerhoets, Guy; Vermassen, Frank
2016-10-01
Cognitive changes after carotid revascularization have been reported in 10-20% of patients. The etiology of cognitive impairments remains largely unknown. This study evaluates the predictive value of S-100β serum values and perioperative microembolization on cognition after carotid revascularization. Forty-six patients with significant carotid stenosis underwent carotid endarterectomy (CEA, n = 26), transfemoral carotid artery stenting with distal protection (CASdp, n = 10), or transcervical carotid stenting with dynamic flow reversal (CASfr, n = 10). Twenty-six matched vascular patients without carotid stenosis were recruited as controls. All patients underwent comprehensive cognitive testing on the day before and 1 month after carotid revascularization. S-100β analysis was performed in 31 cases pre-, peri-, and 2, 6, and 24 hr after carotid surgery, and in 25 patients transcranial Doppler monitoring was done during surgery. In the 3 treatment groups similar transient increases in S-100β values were observed. CASdp was associated with a higher embolic load than CEA and CASfr, while CEA was also associated with less microembolization than CASfr. Cognitive improvement or deterioration could not be predicted by S-100β or perioperative embolic load for any of the investigated cognitive domains. Cognitive deterioration could not be predicted using perioperative embolic load and S-100β changes. A similar inverted u-curve of the S-100β levels was observed in the 3 groups and may be caused by impairment in the blood-brain barrier during intervention, and not due to cerebral infarction. Distal protection CAS is associated with a higher embolic load than transcervical CAS using dynamic flow reversal and CEA, but the long-term impact of this higher embolic load is yet unknown. Perfusion-related measures seem promising in their ability to predict cognitive decline. Copyright © 2016 Elsevier Inc. All rights reserved.
Phosphorus and nitrogen fluxes carried by 21 Finnish agricultural rivers in 1985-2006.
Ekholm, Petri; Rankinen, Katri; Rita, Hannu; Räike, Antti; Sjöblom, Heidi; Raateland, Arjen; Vesikko, Ljudmila; Cano Bernal, José Enrique; Taskinen, Antti
2015-04-01
The Finnish Agri-Environmental Programme aims to reduce nutrient load to waters. Using national monitoring data, we estimated the agricultural load (incl. natural background) of total phosphorus (TP) and total nitrogen (TN) transported by 21 Finnish rivers to the northern Baltic Sea and analysed the flow-adjusted trends in the loads and concentrations from 1985 to 2006. We also related the loads to spatial and temporal patterns in catchment and agricultural characteristics. Agricultural load of TN increased, especially in the rivers discharging into the Bothnian Bay, while the load of TP decreased in most of the rivers, except those discharging into the Archipelago Sea. The trends may partly be related to a decrease in grassed area (TP, TN) and increased mineralisation (TN), but the available data on catchment and agricultural characteristics did not fully explain the observed pattern. Our study showed that data arising from relatively infrequent monitoring may prove useful for analysing long-term trend. The mutual correlation among the explaining variables hampered the analysis of the load generating factors.
Current limiting remote power control module
NASA Technical Reports Server (NTRS)
Hopkins, Douglas C.
1990-01-01
The power source for the Space Station Freedom will be fully utilized nearly all of the time. As such, any loads on the system will need to operate within expected limits. Should any load draw an inordinate amount of power, the bus voltage for the system may sag and disrupt the operation of other loads. To protect the bus and loads some type of power interface between the bus and each load must be provided. This interface is most crucial when load faults occur. A possible system configuration is presented. The proposed interface is the Current Limiting Remote Power Controller (CL-RPC). Such an interface should provide the following power functions: limit overloading and resulting undervoltage; prevent catastrophic failure and still provide for redundancy management within the load; minimize cable heating; and provide accurate current measurement. A functional block diagram of the power processing stage of a CL-RPC is included. There are four functions that drive the circuit design: rate control of current; current sensing; the variable conductance switch (VCS) technology; and the algorithm used for current limiting. Each function is discussed separately.
Reversible conduction block in peripheral nerve using electrical waveforms.
Bhadra, Niloy; Vrabec, Tina L; Bhadra, Narendra; Kilgore, Kevin L
2018-01-01
Electrical nerve block uses electrical waveforms to block action potential propagation. Two key features that distinguish electrical nerve block from other nonelectrical means of nerve block: block occurs instantly, typically within 1 s; and block is fully and rapidly reversible (within seconds). Approaches for achieving electrical nerve block are reviewed, including kilohertz frequency alternating current and charge-balanced polarizing current. We conclude with a discussion of the future directions of electrical nerve block. Electrical nerve block is an emerging technique that has many significant advantages over other methods of nerve block. This field is still in its infancy, but a significant expansion in the clinical application of this technique is expected in the coming years.
NASA Astrophysics Data System (ADS)
Dutta, Rohan; Ghosh, Parthasarathi; Chowdhury, Kanchan
2014-01-01
Large-scale helium refrigerators are subjected to pulsed heat load from tokamaks. As these plants are designed for constant heat loads, operation under such varying load may lead to instability in plants thereby tripping the operation of different equipment. To understand the behavior of the plant subjected to pulsed heat load, an existing plant of 120 W at 4.2 K and another large-scale plant of 18 kW at 4.2 K have been analyzed using a commercial process simulator Aspen Hysys®. A similar heat load characteristic has been applied in both quasi steady state and dynamic analysis to determine critical stages and equipment of these plants from operational point of view. It has been found that the coldest part of both the cycles consisting JT-stage and its preceding reverse Brayton stage are the most affected stages of the cycles. Further analysis of the above stages and constituting equipment revealed limits of operation with respect to variation of return stream flow rate resulted from such heat load variations. The observations on the outcome of the analysis can be used for devising techniques for steady operation of the plants subjected to pulsed heat load.
Bertsch, Stephen; Lang, Charles H; Vary, Thomas C
2011-03-01
Loss of lean body mass is a characteristic feature of the septic response, and the mechanisms responsible for this decrease and means of prevention have not been fully elucidated. The present study tested the hypothesis that in vitro treatment of skeletal muscle with lithium chloride (LiCl), a glycogen synthase kinase (GSK) 3 inhibitor, would reverse both the sepsis-induced increase in muscle protein degradation and inhibition of protein synthesis. Sepsis decreased GSK-3[beta] phosphorylation and increased GSK-3[beta] activity, under basal conditions. Sepsis increased muscle protein degradation, with a concomitant increase in atrogin 1 and MuRF1 mRNA and 26S proteosome activity. Incubation of septic muscle with LiCl completely reversed the increased GSK-3[beta] activity and decreased proteolysis to basal nonseptic values, but only partially reduced proteosome activity and did not diminish atrogene expression. Lithium chloride also did not ameliorate the sepsis-induced increase in LC3-II, a marker for activated autophagy. In contrast, LiCl increased protein synthesis only in nonseptic control muscle. The inability of septic muscle to respond to LiCl was independent of its ability to reverse the sepsis-induced increase in eukaryotic initiation factor (eIF) 2B[varepsilon] phosphorylation, decreased eIF2B activity, or the reduced phosphorylation of FOXO3, but instead was more closely associated with the continued suppression of mTOR (mammalian target of rapamycin) kinase activity (e.g., reduced phosphorylation of 4E-BP1 and S6). These data suggest that in vitro lithium treatment, which inhibited GSK-3[beta] activity, (a) effectively reversed the sepsis-induced increase in proteolysis, but only in part by a reduction in the ubiquitin-proteosome pathway and not by a reduction in autophagy; and (b) was ineffective at reversing the sepsis-induced decrease in muscle protein synthesis. This lithium-resistant state seems mediated at the level of mTOR and not eIF2/eIF2B. Hence, use of GSK-3[beta] inhibitors in the treatment of sepsis may not be expected to fully correct the imbalance in muscle protein turnover.
1984-06-25
the weight mean particle sizes were:ammonium picrate (285um), TNT (325pm), RDX (200um) and tetryl (470 and 160m). The carnauba wax (125pm) and the...WORDS (enti.e n reverse side if noceemdy and bnt, ock ,by br) PBXN103 ’"mber) Gas loading RDX Expl D PBXW-108 Sensitivity 91/9 ROX/ wax Cast H-6 PBXN...porous HE for their susceptibility to undergoing DDT. Granuiar explosives studied were RDX, waxed RDX, tetryl, TNT, and Explosive D; cast HE, TNT based
Thermal storage for electric utilities
NASA Technical Reports Server (NTRS)
Swet, C. J.; Masica, W. J.
1977-01-01
Applications of the thermal energy storage (TES) principle (storage of sensible heat or latent heat, or heat storage in reversible chemical reactions) in power systems are evaluated. Load leveling behind the meter, load following at conventional thermal power plants, solar thermal power generation, and waste heat utilization are the principal TES applications considered. Specific TES examples discussed include: storage heaters for electric-resistance space heating, air conditioning TES in the form of chilled water or eutectic salt baths, hot water TES, and trans-seasonal storage in heated water in confined aquifers.
Tunable Amorphous Photonic Materials with Pigmentary Colloidal Nanostructures
Han, Jinkyu; Lee, Elaine; Dudoff, Jessica K.; ...
2017-01-31
Amorphous photonic structures using pigmentary α-Fe 2O 3/SiO 2 core–shell nanoparticles are succesfully fabricated. The resulting non-iridicent brilliant colors can be manipulated by shell thickness, particle concentration, and external electrical stimuli using electrophoretic deposition process. In conclusion, fully reversible and instantaneous color changes as well as noticeable difference between transmitted and reflected colors is observed.
Triggering the volume phase transition of core-shell Au nanorod-microgel nanocomposites with light
NASA Astrophysics Data System (ADS)
Rodríguez-Fernández, Jessica; Fedoruk, Michael; Hrelescu, Calin; Lutich, Andrey A.; Feldmann, Jochen
2011-06-01
We have coated gold nanorods (NRs) with thermoresponsive microgel shells based on poly(N-isopropylacrylamide) (pNIPAM). We demonstrate by simultaneous laser-heating and optical extinction measurements that the Au NR cores can be simultaneously used as fast optothermal manipulators (switchers) and sensitive optical reporters of the microgel state in a fully externally controlled and reversible manner. We support our results with optical modeling based on the boundary element method and 3D numerical analysis on the temperature distribution. Briefly, we show that due to the sharp increase in refractive index resulting from the optothermally triggered microgel collapse, the longitudinal plasmon band of the coated Au NRs is significantly red-shifted. The optothermal control over the pNIPAM shell, and thereby over the optical response of the nanocomposite, is fully reversible and can be simply controlled by switching on and off a NIR heating laser. In contrast to bulk solution heating, we demonstrate that light-triggering does not compromise colloidal stability, which is of primary importance for the ultimate utilization of these types of nanocomposites as remotely controlled optomechanical actuators, for applications spanning from drug delivery to photonic crystals and nanoscale motion.
Testing and Modeling of a 3-MW Wind Turbine Using Fully Coupled Simulation Codes (Poster)
DOE Office of Scientific and Technical Information (OSTI.GOV)
LaCava, W.; Guo, Y.; Van Dam, J.
This poster describes the NREL/Alstom Wind testing and model verification of the Alstom 3-MW wind turbine located at NREL's National Wind Technology Center. NREL,in collaboration with ALSTOM Wind, is studying a 3-MW wind turbine installed at the National Wind Technology Center(NWTC). The project analyzes the turbine design using a state-of-the-art simulation code validated with detailed test data. This poster describes the testing and the model validation effort, and provides conclusions about the performance of the unique drive train configuration used in this wind turbine. The 3-MW machine has been operating at the NWTC since March 2011, and drive train measurementsmore » will be collected through the spring of 2012. The NWTC testing site has particularly turbulent wind patterns that allow for the measurement of large transient loads and the resulting turbine response. This poster describes the 3-MW turbine test project, the instrumentation installed, and the load cases captured. The design of a reliable wind turbine drive train increasingly relies on the use of advanced simulation to predict structural responses in a varying wind field. This poster presents a fully coupled, aero-elastic and dynamic model of the wind turbine. It also shows the methodology used to validate the model, including the use of measured tower modes, model-to-model comparisons of the power curve, and mainshaft bending predictions for various load cases. The drivetrain is designed to only transmit torque to the gearbox, eliminating non-torque moments that are known to cause gear misalignment. Preliminary results show that the drivetrain is able to divert bending loads in extreme loading cases, and that a significantly smaller bending moment is induced on the mainshaft compared to a three-point mounting design.« less
Automatic recognition of falls in gait-slip training: Harness load cell based criteria.
Yang, Feng; Pai, Yi-Chung
2011-08-11
Over-head-harness systems, equipped with load cell sensors, are essential to the participants' safety and to the outcome assessment in perturbation training. The purpose of this study was to first develop an automatic outcome recognition criterion among young adults for gait-slip training and then verify such criterion among older adults. Each of 39 young and 71 older subjects, all protected by safety harness, experienced 8 unannounced, repeated slips, while walking on a 7m walkway. Each trial was monitored with a motion capture system, bilateral ground reaction force (GRF), harness force, and video recording. The fall trials were first unambiguously indentified with careful visual inspection of all video records. The recoveries without balance loss (in which subjects' trailing foot landed anteriorly to the slipping foot) were also first fully recognized from motion and GRF analyses. These analyses then set the gold standard for the outcome recognition with load cell measurements. Logistic regression analyses based on young subjects' data revealed that the peak load cell force was the best predictor of falls (with 100% accuracy) at the threshold of 30% body weight. On the other hand, the peak moving average force of load cell across 1s period, was the best predictor (with 100% accuracy) separating recoveries with backward balance loss (in which the recovery step landed posterior to slipping foot) from harness assistance at the threshold of 4.5% body weight. These threshold values were fully verified using the data from older adults (100% accuracy in recognizing falls). Because of the increasing popularity in the perturbation training coupling with the protective over-head-harness system, this new criterion could have far reaching implications in automatic outcome recognition during the movement therapy. Copyright © 2011 Elsevier Ltd. All rights reserved.
AUTOMATIC RECOGNITION OF FALLS IN GAIT-SLIP: A HARNESS LOAD CELL BASED CRITERION
Yang, Feng; Pai, Yi-Chung
2012-01-01
Over-head-harness systems, equipped with load cell sensors, are essential to the participants’ safety and to the outcome assessment in perturbation training. The purpose of this study was to first develop an automatic outcome recognition criterion among young adults for gait-slip training and then verify such criterion among older adults. Each of 39 young and 71 older subjects, all protected by safety harness, experienced 8 unannounced, repeated slips, while walking on a 7-m walkway. Each trial was monitored with a motion capture system, bilateral ground reaction force (GRF), harness force and video recording. The fall trials were first unambiguously indentified with careful visual inspection of all video records. The recoveries without balance loss (in which subjects’ trailing foot landed anteriorly to the slipping foot) were also first fully recognized from motion and GRF analyses. These analyses then set the gold standard for the outcome recognition with load cell measurements. Logistic regression analyses based on young subjects’ data revealed that peak load cell force was the best predictor of falls (with 100% accuracy) at the threshold of 30% body weight. On the other hand, the peak moving average force of load cell across 1-s period, was the best predictor (with 100% accuracy) separating recoveries with backward balance loss (in which the recovery step landed posterior to slipping foot) from harness assistance at the threshold of 4.5% body weight. These threshold values were fully verified using the data from older adults (100% accuracy in recognizing falls). Because of the increasing popularity in the perturbation training coupling with the protective over-head-harness system, this new criterion could have far reaching implications in automatic outcome recognition during the movement therapy. PMID:21696744
zu Knyphausen, Fabia; Scheufele, Ramona; Kücherer, Claudia; Jansen, Klaus; Somogyi, Sybille; Dupke, Stephan; Jessen, Heiko; Schürmann, Dirk; Hamouda, Osamah; Meixenberger, Karolin; Bartmeyer, Barbara
2014-01-01
Background Transmission of drug-resistant HIV-1 (TDR) can impair the virologic response to antiretroviral combination therapy. Aim of the study was to assess the impact of TDR on treatment success of resistance test-guided first-line therapy in the German HIV-1 Seroconverter Cohort for patients infected with HIV between 1996 and 2010. An update of the prevalence of TDR and trend over time was performed. Methods Data of 1,667 HIV-infected individuals who seroconverted between 1996 and 2010 were analysed. The WHO drug resistance mutations list was used to identify resistance-associated HIV mutations in drug-naïve patients for epidemiological analysis. For treatment success analysis the Stanford algorithm was used to classify a subset of 323 drug-naïve genotyped patients who received a first-line cART into three resistance groups: patients without TDR, patients with TDR and fully active cART and patients with TDR and non-fully active cART. The frequency of virologic failure 5 to 12 months after treatment initiation was determined. Results Prevalence of TDR was stable at a high mean level of 11.9% (198/1,667) in the HIV-1 Seroconverter Cohort without significant trend over time. Nucleotide reverse transcriptase inhibitor resistance was predominant (6.0%) and decreased significantly over time (OR = 0.92, CI = 0.87–0.98, p = 0.01). Non-nucleoside reverse transcriptase inhibitor (2.4%; OR = 1.00, CI = 0.92–1.09, p = 0.96) and protease inhibitor resistance (2.0%; OR = 0.94, CI = 0.861.03, p = 0.17) remained stable. Virologic failure was observed in 6.5% of patients with TDR receiving fully active cART, 5,6% of patients with TDR receiving non-fully active cART and 3.2% of patients without TDR. The difference between the three groups was not significant (p = 0.41). Conclusion Overall prevalence of TDR remained stable at a rather high level. No significant differences in the frequency of virologic failure were identified during first-line cART between patients with TDR and fully-active cART, patients with TDR and non-fully active cART and patients without TDR. PMID:24788613
NASA Technical Reports Server (NTRS)
Basiulis, A.
1986-01-01
Thermal diode sandwich panel transfers heat in one direction, but when heat load reversed, switches off and acts as thermal insulator. Proposed to control temperature in spacecraft and in supersonic missiles to protect internal electronics. In combination with conventional heat pipes, used in solar panels and other heat-sensitive systems.
Code of Federal Regulations, 2011 CFR
2011-01-01
... limit maneuvering load factor must not be exceeded; (ii) No control forces or characteristic encountered... reversal of control effect and without exceeding the temporary control forces specified by § 23.143(c); and... spin. (4) There must be no characteristics during the spin (such as excessive rates of rotation or...
Code of Federal Regulations, 2010 CFR
2010-01-01
... limit maneuvering load factor must not be exceeded; (ii) No control forces or characteristic encountered... reversal of control effect and without exceeding the temporary control forces specified by § 23.143(c); and... spin. (4) There must be no characteristics during the spin (such as excessive rates of rotation or...
Code of Federal Regulations, 2012 CFR
2012-01-01
... limit maneuvering load factor must not be exceeded; (ii) No control forces or characteristic encountered... reversal of control effect and without exceeding the temporary control forces specified by § 23.143(c); and... spin. (4) There must be no characteristics during the spin (such as excessive rates of rotation or...
Code of Federal Regulations, 2014 CFR
2014-01-01
... limit maneuvering load factor must not be exceeded; (ii) No control forces or characteristic encountered... reversal of control effect and without exceeding the temporary control forces specified by § 23.143(c); and... spin. (4) There must be no characteristics during the spin (such as excessive rates of rotation or...
Code of Federal Regulations, 2013 CFR
2013-01-01
... limit maneuvering load factor must not be exceeded; (ii) No control forces or characteristic encountered... reversal of control effect and without exceeding the temporary control forces specified by § 23.143(c); and... spin. (4) There must be no characteristics during the spin (such as excessive rates of rotation or...
NASA Technical Reports Server (NTRS)
Pawlik, Ralph; Krause, David; Bremenour, Frank
2011-01-01
The Force Limit System (FLS) was developed to protect test specimens from inadvertent overload. The load limit value is fully adjustable by the operator and works independently of the test system control as a mechanical (non-electrical) device. When a test specimen is loaded via an electromechanical or hydraulic test system, a chance of an overload condition exists. An overload applied to a specimen could result in irreparable damage to the specimen and/or fixturing. The FLS restricts the maximum load that an actuator can apply to a test specimen. When testing limited-run test articles or using very expensive fixtures, the use of such a device is highly recommended. Test setups typically use electronic peak protection, which can be the source of overload due to malfunctioning components or the inability to react quickly enough to load spikes. The FLS works independently of the electronic overload protection.
Large Deformation Behavior of Long Shallow Cylindrical Composite Panels
NASA Technical Reports Server (NTRS)
Carper, Douglas M.; Hyer, Michael W.; Johnson, Eric R.
1991-01-01
An exact solution is presented for the large deformation response of a simply supported orthotropic cylindrical panel subjected to a uniform line load along a cylinder generator. The cross section of the cylinder is circular and deformations up to the fully snapped through position are investigated. The orthotropic axes are parallel to the generator and circumferential directions. The governing equations are derived using laminated plate theory, nonlinear strain-displacement relations, and applying variational principles. The response is investigated for the case of a panel loaded exactly at midspan and for a panel with the load offset from midspan. The mathematical formulation is one dimensional in the circumferential coordinate. Solutions are obtained in closed-form. An experimental apparatus was designed to load the panels. Experimental results of displacement controlled tests performed on graphite-epoxy curved panels are compared with analytical predictions.
Effects of Cognitive Load on Trusting Behavior – An Experiment Using the Trust Game
2015-01-01
Last decades have witnessed a progressing decline of social trust, which has been predominantly linked to worsening economic conditions and increasing social inequality. In the present research we propose a different type of explanation for the observed decline – cognitive load related to technological development and the accelerating pace of modern life. In an experimental study participants played the trust game while performing one of two different secondary tasks – listening to a disturbing noise or memorizing a sequence of characters – or with no additional task in the control condition. Results show that in both cognitive load conditions participants expressed significantly less trust in the trust game than in case of no cognitive load. Additionally, when cognitive resources were limited, participants’ behavior was more impulsive than when their resources were fully available. PMID:26010489
A study on contraction of pneumatic artificial muscle (PAM) for load-lifting
NASA Astrophysics Data System (ADS)
Najmuddin, W. S. W. A.; Mustaffa, M. T.
2017-10-01
Pneumatic Artificial Muscles (PAMs) have been known for its wide application in various aspects of industrial automation and robotic equipments. Many advantages in terms of high power-to-volume ratio, high power-to-weight ratio, stick-slip-free operation and high degree of safety offer by PAM compare to traditional actuators. However, behind this benefits lie a limitation of significant compatibility of PAM mechanism which have to be considered so as to fully understand how the PAM works during load-lifting. In this study, the mesh suitability experiment and the effect of force load on PAM contraction experiment have been carried out. PAM is constructed and compatibility of bladder and the braided mesh to produce uniform expansion is investigated. Moreover, the first experimental result of finding compatibility is used to verify the contraction value under various loads.
NASA Technical Reports Server (NTRS)
Mitchell, William S.; Throckmorton, David (Technical Monitor)
2002-01-01
The purpose of this research was to further the understanding of a crack initiation problem in a highly strained pressure containment housing. Finite Element Analysis methods were used to model the behavior of shot peened materials undergoing plastic deformation. Analytical results are in agreement with laboratory tensile tests that simulated the actual housing load conditions. These results further validate the original investigation finding that the shot peened residual stress had reversed, changing from compressive to tensile, and demonstrate that analytical finite element methods can be used to predict this behavior.
Preload-Release Mechanism For Mounting Electronics Boxes
NASA Technical Reports Server (NTRS)
Generoli, Robert M.; Young, Harry J.
1995-01-01
Proposed mechanism applies spring preload to electrical connector only while needed during insertion of electronics box into supporting frame. Once connector fully mated, mechanism relieves preload. As result, supporting structure sized to handle only individual load applied briefly by each connector on box during insertion.
Three dimensional modeling of rigid pavement : executive summary, February 1995.
DOT National Transportation Integrated Search
1995-02-17
A finite-element program has been developed to model the response of rigid pavement to both static loads and temperature changes. The program is fully three-dimensional and incorporates not only the common twenty-node brick element but also a thin in...
Three-dimensional modeling of rigid pavement : final report, September 1995.
DOT National Transportation Integrated Search
1995-02-17
A finite-element program has been developed to model the response of rigid pavement to both static loads and temperature changes. The program is fully three-dimensional and incorporates not only the common twenty-node brick element but also a thin in...
Liu, Yanhui; Zhu, Guoqing; Yang, Huazhe; Wang, Conger; Zhang, Peihua; Han, Guangting
2018-01-01
This paper presents a study of the bending flexibility of fully covered biodegradable polydioxanone biliary stents (FCBPBs) developed for human body. To investigate the relationship between the bending load and structure parameter (monofilament diameter and braid-pin number), biodegradable polydioxanone biliary stents derived from braiding method were covered with membrane prepared via electrospinning method, and nine FCBPBSs were then obtained for bending test to evaluate the bending flexibility. In addition, by the finite element method, nine numerical models based on actual biliary stent were established and the bending load was calculated through the finite element method. Results demonstrate that the simulation and experimental results are in good agreement with each other, indicating that the simulation results can be provided a useful reference to the investigation of biliary stents. Furthermore, the stress distribution on FCBPBSs was studied, and the plastic dissipation analysis and plastic strain of FCBPBSs were obtained via the bending simulation. Copyright © 2017 Elsevier Ltd. All rights reserved.
An efficient model for coupling structural vibrations with acoustic radiation
NASA Technical Reports Server (NTRS)
Frendi, Abdelkader; Maestrello, Lucio; Ting, LU
1993-01-01
The scattering of an incident wave by a flexible panel is studied. The panel vibration is governed by the nonlinear plate equations while the loading on the panel, which is the pressure difference across the panel, depends on the reflected and transmitted waves. Two models are used to calculate this structural-acoustic interaction problem. One solves the three dimensional nonlinear Euler equations for the flow-field coupled with the plate equations (the fully coupled model). The second uses the linear wave equation for the acoustic field and expresses the load as a double integral involving the panel oscillation (the decoupled model). The panel oscillation governed by a system of integro-differential equations is solved numerically and the acoustic field is then defined by an explicit formula. Numerical results are obtained using the two models for linear and nonlinear panel vibrations. The predictions given by these two models are in good agreement but the computational time needed for the 'fully coupled model' is 60 times longer than that for 'the decoupled model'.
A miniature high-efficiency fully digital adaptive voltage scaling buck converter
NASA Astrophysics Data System (ADS)
Li, Hangbiao; Zhang, Bo; Luo, Ping; Zhen, Shaowei; Liao, Pengfei; He, Yajuan; Li, Zhaoji
2015-09-01
A miniature high-efficiency fully digital adaptive voltage scaling (AVS) buck converter is proposed in this paper. The pulse skip modulation with flexible duty cycle (FD-PSM) is used in the AVS controller, which simplifies the circuit architecture (<170 gates) and greatly saves the die area and the power consumption. The converter is implemented in a 0.13-μm one-poly-eight-metal (1P8 M) complementary metal oxide semiconductor process and the active on-chip area of the controller is only 0.003 mm2, which is much smaller. The measurement results show that when the operating frequency of the digital load scales dynamically from 25.6 MHz to 112.6 MHz, the supply voltage of which can be scaled adaptively from 0.84 V to 1.95 V. The controller dissipates only 17.2 μW, while the supply voltage of the load is 1 V and the operating frequency is 40 MHz.
Study for prediction of rotor/wake/fuselage interference. Part 2: Program users guide
NASA Technical Reports Server (NTRS)
Clark, D. R.; Maskew, B.
1985-01-01
A method was developed which permits the fully coupled calculation of fuselage and rotor airloads for typical helicopter configurations in forward flight. To do this, an iterative solution is carried out based on a conventional panel representation of the fuselage and a blade element representation of the rotor where fuselage and rotor singularity strengths are determined simultaneously at each step and the rotor wake is allowed to relax (deform) in response to changes in rotor wake loading and fuselage presence. On completion of the iteration, rotor loading and inflow, fuselage singularity strength (and, hence, pressure and velocity distributions) and rotor wake are all consistent. The results of a fully coupled calculation of the flow around representative helicopter configurations are presented. The effect of fuselage components on the rotor flow field and the overall wake structure is discussed as well as the aerodynamic interference between the different parts of the aircraft. Details of the computer program are given.
Shock induced damage in copper: A before and after, three-dimensional study
NASA Astrophysics Data System (ADS)
Menasche, David B.; Lind, Jonathan; Li, Shiu Fai; Kenesei, Peter; Bingert, John F.; Lienert, Ulrich; Suter, Robert M.
2016-04-01
We report on the microstructural features associated with the formation of incipient spall and damage in a fully recrystallized, high purity copper sample. Before and after ballistic shock loading, approximately 0.8 mm3 of the sample's crystal lattice orientation field is mapped using non-destructive near-field High Energy Diffraction Microscopy. Absorption contrast tomography is used to image voids after loading. This non-destructive interrogation of damage initiation allows for novel characterization of spall points vis-a-vis microstructural features and a fully 3D examination of microstructural topology and its influence on incipient damage. The spalled region is registered with and mapped back onto the pre-shock orientation field. As expected, the great majority of voids occur at grain boundaries and higher order microstructural features; however, we find no statistical preference for particular grain boundary types. The damaged region contains a large volume of Σ-3 (60 °<111 >) connected domains with a large area fraction of incoherent Σ-3 boundaries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michael A. Pope; R. Sonat Sen; Brian Boer
2011-09-01
The current focus of the Deep Burn Project is on once-through burning of transuranics (TRU) in light-water reactors (LWRs). The fuel form is called Fully-Ceramic Micro-encapsulated (FCM) fuel, a concept that borrows the tri-isotropic (TRISO) fuel particle design from high-temperature reactor technology. In the Deep Burn LWR (DB-LWR) concept, these fuel particles are pressed into compacts using SiC matrix material and loaded into fuel pins for use in conventional LWRs. The TRU loading comes from the spent fuel of a conventional LWR after 5 years of cooling. Unit cell and assembly calculations have been performed using the DRAGON-4 code tomore » assess the physics attributes of TRU-only FCM fuel in an LWR lattice. Depletion calculations assuming an infinite lattice condition were performed with calculations of various reactivity coefficients performed at each step. Unit cells and assemblies containing typical UO2 and mixed oxide (MOX) fuel were analyzed in the same way to provide a baseline against which to compare the TRU-only FCM fuel. Then, assembly calculations were performed evaluating the performance of heterogeneous arrangements of TRU-only FCM fuel pins along with UO2 pins.« less
NASA Astrophysics Data System (ADS)
Jelani, Mohsan; Li, Zewen; Shen, Zhonghua; Sardar, Maryam; Tabassum, Aasma
2017-05-01
The present work reports the investigation of the thermal and mechanical behaviour of aluminium alloys under the combined action of tensile loading and laser irradiations. The two types of aluminium alloys (Al-1060 and Al-6061) are used for the experiments. The continuous wave Ytterbium fibre laser (wavelength 1080 nm) was employed as irradiation source, while tensile loading was provided by tensile testing machine. The effects of various pre-loading and laser power densities on the failure time, temperature distribution and on deformation behaviour of aluminium alloys are analysed. The experimental results represents the significant reduction in failure time and temperature for higher laser powers and for high load values, which implies that preloading may contribute a significant role in the failure of the material at elevated temperature. The reason and characterization of material failure by tensile and laser loading are explored in detail. A comparative behaviour of under tested materials is also investigated. This work suggests that, studies considering only combined loading are not enough to fully understand the mechanical behaviour of under tested materials. For complete characterization, one must consider the effect of heating as well as loading rate.
Reed, Jessica L; Gallagher, Natalie M; Sullivan, Marie; Callicott, Joseph H; Green, Adam E
2017-04-01
Working memory (WM) supports a broad range of intelligent cognition and has been the subject of rich cognitive and neural characterization. However, the highest ranges of WM have not been fully characterized, especially for verbal information. Tasks developed to test multiple levels of WM demand (load) currently predominate brain-based WM research. These tasks are typically used at loads that allow most healthy participants to perform well, which facilitates neuroimaging data collection. Critically, however, high performance at lower loads may obscure differences that emerge at higher loads. A key question not yet addressed at high loads concerns the effect of sex. Thoroughgoing investigation of high-load verbal WM is thus timely to test for potential hidden effects, and to provide behavioral context for effects of sex observed in WM-related brain structure and function. We tested 111 young adults, matched on genotype for the WM-associated COMT-Val 108/158 Met polymorphism, on three classic WM tasks using verbal information. Each task was tested at four WM loads, including higher loads than those used in previous studies of sex differences. All tasks loaded on a single factor, enabling comparison of verbal WM ability at a construct level. Results indicated sex effects at high loads across tasks and within each task, such that males had higher accuracy, even among groups that were matched for performance at lower loads. Published by Elsevier Inc.
Progressive Damage and Failure Analysis of Composite Laminates
NASA Astrophysics Data System (ADS)
Joseph, Ashith P. K.
Composite materials are widely used in various industries for making structural parts due to higher strength to weight ratio, better fatigue life, corrosion resistance and material property tailorability. To fully exploit the capability of composites, it is required to know the load carrying capacity of the parts made of them. Unlike metals, composites are orthotropic in nature and fails in a complex manner under various loading conditions which makes it a hard problem to analyze. Lack of reliable and efficient failure analysis tools for composites have led industries to rely more on coupon and component level testing to estimate the design space. Due to the complex failure mechanisms, composite materials require a very large number of coupon level tests to fully characterize the behavior. This makes the entire testing process very time consuming and costly. The alternative is to use virtual testing tools which can predict the complex failure mechanisms accurately. This reduces the cost only to it's associated computational expenses making significant savings. Some of the most desired features in a virtual testing tool are - (1) Accurate representation of failure mechanism: Failure progression predicted by the virtual tool must be same as those observed in experiments. A tool has to be assessed based on the mechanisms it can capture. (2) Computational efficiency: The greatest advantages of a virtual tools are the savings in time and money and hence computational efficiency is one of the most needed features. (3) Applicability to a wide range of problems: Structural parts are subjected to a variety of loading conditions including static, dynamic and fatigue conditions. A good virtual testing tool should be able to make good predictions for all these different loading conditions. The aim of this PhD thesis is to develop a computational tool which can model the progressive failure of composite laminates under different quasi-static loading conditions. The analysis tool is validated by comparing the simulations against experiments for a selected number of quasi-static loading cases.
Arndt, J; Greenberg, J; Solomon, S; Pyszczynski, T; Simon, L
1997-07-01
Previous research has shown that after a mortality-salience (MS) treatment, death thought accessibility and worldview defense are initially low and then increase after a delay, suggesting that a person's initial response to conscious thoughts of mortality is to actively suppress death thoughts. If so, then high cognitive load, by disrupting suppression efforts, should lead to immediate increases in death thought accessibility and cultural worldview defense. Studies 1 and 2 supported this reasoning. Specifically, Study 1 replicated the delayed increase in death accessibility after MS among low cognitive load participants but showed a reversed pattern among participants under high cognitive load. Study 2 showed that, unlike low cognitive load participants, high cognitive load participants exhibited immediate increase in pro-American bias after MS. Study 3 demonstrated that worldview defense in response to MS reduces the delayed increase in death accessibility. Implications of these findings for understanding both terror management processes and psychological defense in general are discussed.
NASA Astrophysics Data System (ADS)
Kasperska, Kamila; Wieczorowski, Michał; Krolczyk, Jolanta B.
2017-10-01
Three-dimensional scanning is used in many fields: medicine, architecture, industry, reverse engineering. The aim of the article was to analyze the changes in the shape of the limbs under the influence of a mechanical external load using the method of three-dimensional scanner uses white light technology. The paper presents a system of human movement, passive part - skeleton and active part - the muscles, and principles of their interaction, which results in a change of the position of the body. Furthermore, by using the 3D scan, the differences in appearance of the arm and leg depending on the size of the external load in different positions have been presented. The paper shows that with increasing load, which muscles must prevent, increases the volume of certain parts of the legs, while another parts of them will be reduced. Results of the research using three-dimensional scanner allow determining what impact on changing the legs shape has an external mechanical load.
NASA Astrophysics Data System (ADS)
Nui Pham, Xuan; Phuoc Nguyen, Tan; Nhung Pham, Tuyet; Thuy Nga Tran, Thi; Van Thi Tran, Thi
2016-12-01
In this work anti-cancer drug curcumin-loaded superparamagnetic iron oxide (Fe3O4) nanoparticles was modified by chitosan (CS). The magnetic iron oxide nanoparticles were synthesized by using reverse micro-emulsion (water-in-oil) method. The magnetic nanoparticles without loaded drug and drug-loaded magnetic nanoparticles were characterized by XRD, FTIR, TG-DTA, SEM, TEM, and VSM techniques. These nanoparticles have almost spherical shape and their diameter varies from 8 nm to 17 nm. Measurement of VSM at room temperature showed that iron oxide nanoparticles have superparamagnetic properties. In vitro drug loading and release behavior of curcumin drug-loaded CS-Fe3O4 nanoparticles were studied by using UV-spectrophotometer. In addition, the cytotoxicity of the modified nanoparticles has shown anticancer activity against A549 cell with IC50 value of 73.03 μg/ml. Therefore, the modified magnetic nanoparticles can be used as drug delivery carriers on target in the treatment of cancer cells.
A design procedure for the phase-controlled parallel-loaded resonant inverter
NASA Technical Reports Server (NTRS)
King, Roger J.
1989-01-01
High-frequency-link power conversion and distribution based on a resonant inverter (RI) has been recently proposed. The design of several topologies is reviewed, and a simple approximate design procedure is developed for the phase-controlled parallel-loaded RI. This design procedure seeks to ensure the benefits of resonant conversion and is verified by data from a laboratory 2.5 kVA, 20-kHz converter. A simple phasor analysis is introduced as a useful approximation for design purposes. The load is considered to be a linear impedance (or an ac current sink). The design procedure is verified using a 2.5-kVA 20-kHz RI. Also obtained are predictable worst-case ratings for each component of the resonant tank circuit and the inverter switches. For a given load VA requirement, below-resonance operation is found to result in a significantly lower tank VA requirement. Under transient conditions such as load short-circuit, a reversal of the expected commutation sequence is possible.
Fuhrman, Susan I; Karg, Patricia; Bertocci, Gina
2010-04-01
This study characterizes pediatric wheelchair kinematic responses and wheelchair tiedown and occupant restraint system (WTORS) loading during rear impact. It also examines the kinematic and loading effects of wheelchair headrest inclusion in rear impact. In two separate rear-impact test scenarios, identical WC19-compliant manual pediatric wheelchairs were tested using a seated Hybrid III 6-year-old anthropomorphic test device (ATD) to evaluate wheelchair kinematics and WTORS loading. Three wheelchairs included no headrests, and three were equipped with slightly modified wheelchair-mounted headrests. Surrogate WTORS properly secured the wheelchairs; three-point occupant restraints properly restrained the ATD. All tests used a 26km/h, 11g rear-impact test pulse. Headrest presence affected wheelchair kinematics and WTORS loading; headrest-equipped wheelchairs had greater mean seatback deflections, mean peak front and rear tiedown loads and decreased mean lap belt loads. Rear-impact tiedown loads differed from previously measured loads in frontal impact, with comparable tiedown load levels reversed in frontal and rear impacts. The front tiedowns in rear impact had the highest mean peak loads despite lower rear-impact severity. These outcomes have implications for wheelchair and tiedown design, highlighting the need for all four tiedowns to have an equally robust design, and have implications in the development of rear-impact wheelchair transportation safety standards. Copyright 2009 IPEM. Published by Elsevier Ltd. All rights reserved.
Hyttinen, Mika M; Holopainen, Jaakko; René van Weeren, P; Firth, Elwyn C; Helminen, Heikki J; Brama, Pieter A J
2009-01-01
The aim of this study was to record growth-related changes in collagen network organization and proteoglycan distribution in intermittently peak-loaded and continuously lower-level-loaded articular cartilage. Cartilage from the proximal phalangeal bone of the equine metacarpophalangeal joint at birth, at 5, 11 and 18 months, and at 6–10 years of age was collected from two sites. Site 1, at the joint margin, is unloaded at slow gaits but is subjected to high-intensity loading during athletic activity; site 2 is a continuously but less intensively loaded site in the centre of the joint. The degree of collagen parallelism was determined with quantitative polarized light microscopy and the parallelism index for collagen fibrils was computed from the cartilage surface to the osteochondral junction. Concurrent changes in the proteoglycan distribution were quantified with digital densitometry. We found that the parallelism index increased significantly with age (up to 90%). At birth, site 2 exhibited a more organized collagen network than site 1. In adult horses this situation was reversed. The superficial and intermediate zones exhibited the greatest reorganization of collagen. Site 1 had a higher proteoglycan content than site 2 at birth but here too the situation was reversed in adult horses. We conclude that large changes in joint loading during growth and maturation in the period from birth to adulthood profoundly affect the architecture of the collagen network in equine cartilage. In addition, the distribution and content of proteoglycans are modified significantly by altered joint use. Intermittent peak-loading with shear seems to induce higher collagen parallelism and a lower proteoglycan content in cartilage than more constant weight-bearing. Therefore, we hypothesize that the formation of mature articular cartilage with a highly parallel collagen network and relatively low proteoglycan content in the peak-loaded area of a joint is needed to withstand intermittent stress and shear, whereas a constantly weight-bearing joint area benefits from lower collagen parallelism and a higher proteoglycan content. PMID:19732210
LAL (Lysosomal Acid Lipase) Promotes Reverse Cholesterol Transport In Vitro and In Vivo.
Bowden, Kristin L; Dubland, Joshua A; Chan, Teddy; Xu, You-Hai; Grabowski, Gregory A; Du, Hong; Francis, Gordon A
2018-05-01
To explore the role of LAL (lysosomal acid lipase) in macrophage cholesterol efflux and whole-body reverse cholesterol transport. Immortalized peritoneal macrophages from lal -/- mice showed reduced expression of ABCA1 (ATP-binding cassette transporter A1) and ABCG1 (ATP-binding cassette transporter G1), reduced production of the regulatory oxysterol 27-hydroxycholesterol, and impaired suppression of cholesterol synthesis on exposure to acetylated low-density lipoprotein when compared with lal +/+ macrophages. LAL-deficient mice also showed reduced hepatic ABCG5 (ATP-binding cassette transporter G5) and ABCG8 (ATP-binding cassette transporter G8) expression compared with lal +/+ mice. LAL-deficient macrophages loaded with [ 3 H]-cholesteryl oleate-labeled acetylated low-density lipoprotein showed impaired efflux of released [ 3 H]-cholesterol to apoA-I (apolipoprotein A-I), with normalization of [ 3 H]-cholesteryl ester levels and partial correction of ABCA1 expression and cholesterol efflux to apoA-I when treated with exogenous rhLAL (recombinant human LAL protein). LAL-deficient mice injected intraperitoneally with lal -/- macrophages cholesterol loaded and labeled in the same way exhibited only 1.55±0.35% total injected [ 3 H]-cholesterol counts appearing in the feces for 48 h (n=30), compared with 5.38±0.92% in lal +/+ mice injected with labeled lal +/+ macrophages (n=27), P <0.001. To mimic the therapeutic condition of delivery of supplemental LAL in vivo, injection of labeled lal -/- macrophages into lal +/+ mice resulted in a significant increase in reverse cholesterol transport (2.60±0.46% of 3 H-cholesterol counts in feces at 48 hours [n=19]; P <0.001 when compared with injection into lal -/- mice). These results indicate a critical role for LAL in promoting both macrophage and whole-body reverse cholesterol transport and the ability of supplemental LAL to be taken up and correct reverse cholesterol transport in vivo. © 2018 American Heart Association, Inc.
Evidence for Mitotic Recombination in W(ei)/+ Heterozygous Mice
Panthier, J. J.; Guenet, J. L.; Condamine, H.; Jacob, F.
1990-01-01
A number of alleles at coat color loci of the house mouse give rise to areas of wild-type pigmentation on the coats of otherwise mutant animals. Such unstable alleles include both recessive and dominant mutations. Among the latter are several alleles at the W locus. In this report, phenotypic reversions of the W(ei) allele at the W locus were studied Mice heterozygous in repulsion for both W(ei) and buff (bf) [i.e. W(ei)+/+bf] were examined for the occurrence of phenotypic reversion events. Buff (bf) is a recessive mutation, which lies 21 cM from W on the telomeric side of chromosome 5 and is responsible for the khaki colored coat of nonagouti buff homozygotes (a/a; bf/bf). Two kinds of fully pigmented reversion spots were recovered on the coats of a/a; W(ei)+/+bf mice: either solid black or khaki colored. Furthermore phenotypic reversions of W(ei)/+ were enhanced significantly following X-irradiation of 9.25-day-old W(ei)/+ embryos (P < 0.04). These observations are consistent with the suggestion of a role for mitotic recombination in the origin of these phenotypic reversions. In addition these results rise the intriguing possibility that some W mutations may enhance mitotic recombination in the house mouse. PMID:2341029
Reverse logistics system and recycling potential at a landfill: A case study from Kampala City.
Kinobe, J R; Gebresenbet, G; Niwagaba, C B; Vinnerås, B
2015-08-01
The rapid growing population and high urbanisation rates in Sub-Saharan Africa has caused enormous pressure on collection services of the generated waste in the urban areas. This has put a burden on landfilling, which is the major waste disposal method. Waste reduction, re-use and recycling opportunities exist but are not fully utilized. The common items that are re-used and re-cycled are plastics, paper, aluminum, glass, steel, cardboard, and yard waste. This paper develops an overview of reverse logistics at Kiteezi landfill, the only officially recognised waste disposal facility for Kampala City. The paper analyses, in details the collection, re-processing, re-distribution and final markets of these products into a reversed supply chain network. Only 14% of the products at Kiteezi landfill are channeled into the reverse chain while 63% could be included in the distribution chain but are left out and disposed of while the remaining 23% is buried. This is because of the low processing power available, lack of market value, lack of knowledge and limited value addition activities to the products. This paper proposes possible strategies of efficient and effective reverse logistics development, applicable to Kampala City and other similar cities. Copyright © 2015 Elsevier Ltd. All rights reserved.
Characterization of Rare Reverse Flow Events in Adverse Pressure Gradient Turbulent Boundary Layers
NASA Astrophysics Data System (ADS)
Kaehler, Christian J.; Bross, Matthew; Fuchs, Thomas
2017-11-01
Time-resolved tomographic flow fields measured in the viscous sublayer region of a turbulent boundary layer subjected to an adverse pressure gradient (APG) are examined with the aim to resolve and characterize reverse flow events at Reτ = 5000. The fields were measured using a novel high resolution tomographic particle tracking technique. It is shown that this technique is able to fully resolve mean and time dependent features of the complex three-dimensional flow with high accuracy down to very near-wall distances ( 10 μm). From time resolved Lagrangian particle trajectories, statistical information as well as instantaneous topological features of near-wall flow events are deduced. Similar to the zero pressure gradient case (ZPG), it was found that individual events with reverse flow components still occur relatively rarely under the action of the pressure gradient investigated here. However, reverse flow events comprised of many individual events, are shown to appear in relatively organized groupings in both spanwise and streamise directions. Furthermore, instantaneous measurements of reverse flow events show that these events are associated with the motion of low-momentum streaks in the near-wall region. This work is supported by the Priority Programme SPP 1881 Turbulent Superstructures and the individual project Grant KA1808/8-2 of the Deutsche Forschungsgemeinschaft.
Vosko, Milan R; Bocksrucker, Christof; Drwiła, Rafał; Dulíček, Petr; Hauer, Tomas; Mutzenbach, Johannes; Schlimp, Christoph J; Špinler, David; Wolf, Thomas; Zugwitz, Daša
2017-04-01
Non-vitamin K antagonist oral anticoagulants (NOACs) have a favorable benefit-risk profile compared with vitamin K antagonists. However, the lack of specific reversal agents has made the management of some patients receiving long-term treatment with NOACs problematic in emergency situations such as major bleeding events or urgent procedures. Idarucizumab, a fully humanized Fab antibody fragment that binds specifically and with high affinity to dabigatran, was recently approved for use in adult patients treated with dabigatran when rapid reversal of its anticoagulant effect is required. Clinical experience with idarucizumab is currently limited. We report 11 real-life clinical cases in which idarucizumab was used after multidisciplinary consultation in a variety of emergency situations including severe postoperative bleeding, emergency high-bleeding-risk surgery (hip/spine surgery and neurosurgery), invasive diagnostic testing (lumbar puncture), intracranial bleeding (pre-pontine subarachnoid hemorrhage and lobar intracerebral hemorrhage) and thrombolysis with recombinant tissue plasminogen activator for acute ischemic stroke. This case series illustrates the role of idarucizumab in improving patient safety in rare emergency situations requiring rapid reversal of the anticoagulant effect of dabigatran, while highlighting the importance of information and education about the availability and appropriate use of this recently approved specific reversal agent.
Reversibility between glass and melting transitions of poly(oxyethylene)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qui, Wulin; Pyda, Marek; Nowak-Pyda, Elisabieta
2005-01-01
The heat capacities, C{sub p}, of poly(oxyethylene), POE, with molar masses from 1500 to 900,000 Da, were analyzed by differential scanning calorimetry (DSC), quasi-isothermal, temperature-modulated DSC (TMDSC), and wide-angle X-ray diffraction (WAXD). There is no change in crystal structure before melting, but the lattice parameters increase rapidly in the melting region. Perfected extended-chain and once- or twice-folded crystals of the oligomers with a molar mass above 1100 Da melt practically fully irreversibly and permit direct measurement of the thermodynamic C{sub p}. The folded-chain crystals of high molar mass show some locally reversible melting. The reversing, apparent C{sub p} depends onmore » molar mass and amplitude and frequency of modulation. After separation from the latent heat effects, the reversible, thermodynamic C{sub p} depends on the melting temperature for low molar masses and increases beyond the vibrational C{sub p} due to conformational motion. Molar masses of 8000-20,000 have almost the same C{sub p}. These observations permit a quantitative discussion of the thermodynamic C{sub p} and the locally reversible melting of the globally metastable POE in the melting range. The increase in C{sub p} between 250 K and the melting temperature is interpreted as a glass transition within the crystal.« less
Wang, Ling; Dong, Hao; Li, Yannian; Xue, Chenming; Sun, Ling-Dong; Yan, Chun-Hua; Li, Quan
2014-03-26
Adding external, dynamic control to self-organized superstructures with desired functionalities is an important leap necessary in leveraging the fascinating molecular systems for applications. Here, the new light-driven chiral molecular switch and upconversion nanoparticles, doped in a liquid crystal media, were able to self-organize into an optically tunable helical superstructure. The resulting nanoparticle impregnated helical superstructure was found to exhibit unprecedented reversible near-infrared (NIR) light-guided tunable behavior only by modulating the excitation power density of a continuous-wave NIR laser (980 nm). Upon irradiation by the NIR laser at the high power density, the reflection wavelength of the photonic superstructure red-shifted, whereas its reverse process occurred upon irradiation by the same laser but with the lower power density. Furthermore, reversible dynamic NIR-light-driven red, green, and blue reflections in a single thin film, achieved only by varying the power density of the NIR light, were for the first time demonstrated.
Rheology of welding: experimental constraints
NASA Astrophysics Data System (ADS)
Quane, S. L.; Russell, J. K.; Kennedy, L. A.
2003-04-01
The rheological behavior of pyroclastic deposits during welding is incompletely understood and is based on a surprisingly small number of experimental studies. Previous pioneering experimental studies were done on small (1 cm thick) samples of ash/crystal mixtures under constant load. They established minimum welding temperatures between 600 and 700^oC under loads of 0.7 MPa (˜40 m of ignimbrite) to 3.6 MPa (˜250 m depth of ignimbrite). However, these data are neither sufficiently comprehensive nor coherent enough to fully describe the rheology of pyroclastic mixtures. In addition, previous studies did not examine the microstructural and geometric changes associated with welding compaction. Our goal is to provide accurate and comprehensive constitutive relationships between material properties, temperature, load and strain rate for pyroclastic material undergoing welding. Here we present results from a newly designed experimental apparatus. The experimental apparatus consists of a LoadTrac II fully automated uniaxial compression load frame manufactured by Geocomp Corporation. The load frame has a built in displacement transducer and can run both constant strain rate (10-6 to 0.25 cm/s) and constant load (up to 1150 kg) tests to a maximum displacement of 7.5 cm. The sample assembly comprises 5 cm diameter cylindrical upper and lower pistons (insulating ceramic with steel conductive ends) housed in a copper jacket. Samples are 5 cm diameter cores and can vary in length from 1 to 15 cm depending on experimental needs. A fiber insulated tube furnace capable of reaching temperatures ≈1000^oC surrounds the sample assembly. Temperature is measured using a thermocouple located inside the sample through the bottom piston; the furnace controller is capable of maintaining temperature fluctuations to <5^oC. Deformation experiments are performed on pre-fabricated cylinders of soda-lime glass beads and rhyolitic volcanic ash, as well as, cores of pumiceous rhyodacite. Experimental runs use strain rates of 10-4 and 10-5 cm/s and loads of ˜0 to 4.5 MPa. Experiments are run at temperatures between 400 and 850^oC corresponding to below and above the calorimetric glass transition temperatures of the respective materials. Data deriving from constant load and constant strain rate experiments are being used to constrain rheological models for welding of pyroclastic material.