Precambrian Lunar Volcanic Protolife
Green, Jack
2009-01-01
Five representative terrestrial analogs of lunar craters are detailed relevant to Precambrian fumarolic activity. Fumarolic fluids contain the ingredients for protolife. Energy sources to derive formaldehyde, amino acids and related compounds could be by flow charging, charge separation and volcanic shock. With no photodecomposition in shadow, most fumarolic fluids at 40 K would persist over geologically long time periods. Relatively abundant tungsten would permit creation of critical enzymes, Fischer-Tropsch reactions could form polycyclic aromatic hydrocarbons and soluble volcanic polyphosphates would enable assembly of nucleic acids. Fumarolic stimuli factors are described. Orbital and lander sensors specific to protolife exploration including combined Raman/laser-induced breakdown spectrocsopy are evaluated. PMID:19582224
Geochemical processes governing the compositional features of the crater fumarolic field at Mt. Etna
NASA Astrophysics Data System (ADS)
Liotta, Marcello; Paonita, Antonio; Caracausi, Antonio; Martelli, Mauro; Rizzo, Andrea; Favara, Rocco
2010-05-01
Mt Etna is one of the most-active volcanoes in the world. It is characterized by major eruptions, frequent Strombolian activity, and ash emissions. The volcano summit consists of the central crater of Voragine surrounded by the three active cones of the North-East Crater, Bocca Nuova, and the South-East Crater. They are characterized by very fractured and unstable edges. Under these conditions most of the fractures represent preferential degassing pathways for volcanic fluids, so that the main fumarolic fields develop in such fractured areas. The geochemistry of the fumaroles at the summit area of Mt. Etna was investigated. Fumarolic samples were collected between June 2008 and August 2009. Gas samples were usually collected as 'dry gas' and analyzed for the concentrations of He, H2, O2, N2, CO, CH4, and CO2. Fumarolic gases were also sampled a few times using the classical Giggenbach bottles and Giggenbach-type bottles filled with ammonia and silver nitrate in order to determine the SO2/H2S ratio. In addition a novel method was employed in order to sample fumaroles characterized by high content of atmospheric gases. Two types of fumaroles were identified: low-temperature fumaroles, which are dominated by CO2 with minor amounts of SO2 and H2S, and negligible halogen contents, and high-temperature fumaroles, which are strongly air-contaminated and characterized by appreciable amounts of volcanogenic carbon, sulfur, and chlorine. Our data clearly indicate that secondary processes modify the composition of the fluids once they leave the magma body. A model based on thermodynamic data is proposed to explore such postmagmatic processes. We computed the equilibrium composition of magmatic gases that cool starting from magmatic temperatures under several pressure conditions. The model, which uses Etnean plume geochemistry as starting composition of fluids exsolved from magma, shows that SO2 and H2S control the redox conditions of the gas mixture during the cooling, until the reactions involving CO/CO2 and H2/H2O ratios are fully quenched. The scrubbing processes occurring subsequent to condensation and gas-liquid water interaction allow total removal of HCl and partial removal of sulfur species. During the ascent toward the surface, the concentration of CH4 increases in all fumaroles due to a modest contribution from hydrothermal fluid. A geochemical model for the interaction of pristine magmatic fluids with shallower systems is proposed. The model explains geochemical changes at the crater fumaroles in terms of variable hydrothermal and magmatic contributions, and modified thermodynamic conditions.
Anatomy of a fumarolic system inferred from a multiphysics approach.
Gresse, Marceau; Vandemeulebrouck, Jean; Byrdina, Svetlana; Chiodini, Giovanni; Roux, Philippe; Rinaldi, Antonio Pio; Wathelet, Marc; Ricci, Tullio; Letort, Jean; Petrillo, Zaccaria; Tuccimei, Paola; Lucchetti, Carlo; Sciarra, Alessandra
2018-05-15
Fumaroles are a common manifestation of volcanic activity that are associated with large emissions of gases into the atmosphere. These gases originate from the magma, and they can provide indirect and unique insights into magmatic processes. Therefore, they are extensively used to monitor and forecast eruptive activity. During their ascent, the magmatic gases interact with the rock and hydrothermal fluids, which modify their geochemical compositions. These interactions can complicate our understanding of the real volcanic dynamics and remain poorly considered. Here, we present the first complete imagery of a fumarolic plumbing system using three-dimensional electrical resistivity tomography and new acoustic noise localization. We delineate a gas reservoir that feeds the fumaroles through distinct channels. Based on this geometry, a thermodynamic model reveals that near-surface mixing between gas and condensed steam explains the distinct geochemical compositions of fumaroles that originate from the same source. Such modeling of fluid interactions will allow for the simulation of dynamic processes of magmatic degassing, which is crucial to the monitoring of volcanic unrest.
NASA Astrophysics Data System (ADS)
Tassi, Franco; Aguilera, Felipe; Benavente, Oscar; Paonita, Antonio; Chiodini, Giovanni; Caliro, Stefano; Agusto, Mariano; Gutierrez, Francisco; Capaccioni, Bruno; Vaselli, Orlando; Caselli, Alberto
2016-04-01
This study presents the first geochemical data of gas discharges collected during five sampling campaigns (February 2010 to March 2015), from the NNE-oriented Planchón-Peteroa-Azufre Volcanic Complex (PPAVC), located in the Transitional Southern Volcanic Zone (TSVZ) at the border between Argentina and Chile. In 2012, the acidic gas species of the low temperature (up to 102 °C) fumaroles from the Peteroa summit showed a huge increase (SO2>CO2) with respect to the 2010-2011 period, whereas the typical hydrothermal compounds (CH4 and light hydrocarbons) decreased. Such a dramatic compositional change was apparently indicating a pulse of magmatic fluids. By contrast, the temporal evolution of the δ18O-H2O, δD-H2O, R/Ra and 13C-CO2 values suggested an enhanced fluid contribution from a shallow source. In 2014-2015, the dominant hydrothermal signature characterizing the 2010-2011 fumaroles was almost completely restored. The temporary decoupling of the chemical and isotopic parameters can only be reconciled by admitting the occurrence of a double source of magmatic fluids: a basaltic batch, controlling the fumarolic chemistry in 2010-2011 and 2014-2015, and a small, shallower dacitic batch, likely affected by a significant crustal contamination, whose contribution to the fumarolic fluid emissions achieved its maximum in 2012. It cannot be ruled out that the phreatic to phreatomagmatic eruptions (VEI ≤2) that have affected Peteroa volcano from January 2010 to July 2011 have played a significant role for the modification of the deep feeding source of the fumarolic gases. The disturbance created by the volcanic events and the related seismic activity (MW<3), possibly related to the devastating Maule earthquake occurred on February 27 2010, could have activated a silent dacitic magma batch that in 2012 imposed over that of basaltic composition. Although this scenario provides a reliable explanation for the peculiar compositional changes that affected the Peteroa fumaroles in 2010-2015 and is consistent with the volcanic products of PPAVC, such an intriguing hypothesis is expected to be supported by geophysical investigations aimed to locate the two magma sources invoked to construct the proposed degassing model.
NASA Astrophysics Data System (ADS)
Braddock, Mathilde; Biggs, Juliet; Watson, Iain M.; Hutchison, William; Pyle, David M.; Mather, Tamsin A.
2017-07-01
Fumaroles are the surface manifestation of hydrothermal circulation and can be influenced by magmatic, hydrothermal, hydrological and tectonic processes. This study investigates the temporal changes in fumarole temperatures and spatial extent on Aluto, a restless volcano in the Main Ethiopian Rift (MER), in order to better understand the controls on fluid circulation and the interaction between the magmatic and hydrothermal systems. Thermal infrared (TIR) satellite images, acquired by the Advanced Spaceborne Thermal Emission and Reflection radiometer (ASTER) over the period of 2004 to 2016, are used to generate time series of the fumarole temperatures and areas. The thermal anomalies identified in the ASTER images coincide with known fumaroles with temperatures > 80 °C and are located on or close to fault structures, which provide a pathway for the rising fluids. Most of the fumaroles, including those along the major zone of hydrothermal upwelling, the Artu Jawe Fault Zone, have pixel-integrated temperature variations of only 2 ± 1.5 °C. The exception are the Bobesa fumaroles located on a hypothesised caldera ring fault which show pixel-integrated temperature changes of up to 9 °C consistent with a delayed response of the hydrothermal system to precipitation. We conclude that fumaroles along major faults are strongly coupled to the magmatic-hydrothermal system and are relatively stable with time, whereas those along shallower structures close to the rift flank are more strongly influenced by seasonal variations in groundwater flow. The use of remote sensing data to monitor the thermal activity of Aluto provides an important contribution towards understanding the behaviour of this actively deforming volcano. This method could be used at other volcanoes around the world for monitoring and geothermal exploration.
Protolife on the Moon--A Neglected Mission
NASA Astrophysics Data System (ADS)
Green, J.
Fumaroles contain the ingredients for protolife on the earth and on the moon. Early Precambrian lunar fumaroles in shadow probably produced H_2O, HCHO, CO_2, CO, C_2N_2, HC_3N, NH3, COS, CH_4, HCN, S-bearing fluids and other compounds. Fumarolic water could have been more abundant in the early Precambrian on the moon based in part on fugacity data for the Apollo fire fountain beads. Formaldehyde formed "in the spark" on the moon in shadow would not be decomposed. Volcanism by flow charging and/or freezing by charge separation of some fumarolic fluids can readily provide the "spark". Only nanocurrents need be invoked. In shadow on the moon, most fumarolic fluids could be preserved as ices for up to billions of years at 40 Kelvin. Realistically, these ices would be discontinuously interlaminated or admixed with ejecta. Early formed amphiphilic compounds (lipids) probably formed double membraned vesicles. Miller-type reactions could possibly provide hydroxy amino acids, sugars, purines and pyrimidines. Cooling of ammonium cyanide compounds with formaldehyde in lunar shadow is presumed to have created hydrogen cyanide and adenine. Fischer-Tropsch reactions in fumaroles could result in aromatic and basic amino acids and on clay produce ribose. Ribose and adenine react to form adenosine which in turn could combine with soluble polyphosphates found in fumaroles to yield adenosine triphosphate. RNA evolving through intermediate compounds can polymerize even in an ice matrix (Monnard, 2002) as would be expected in lunar shadow. In the laboratory, RNA attached to montmorillonite template particles can be encapsulated within enlarged lipid vesicles or protocells (Hanczyc et al, 2003). Clay associated with RNA enhances the enzymatic activity of RNA (Marco, 1999). On earth, the evolution of the Archaea was dependent on tungsto-enzymes; fumaroles on earth are enriched in tungsten. Fumaroles within a distance of meters, exhibit a wide range of temperatures, pH, Eh, periods of desiccation, condensing agents, clay types, and hydrolytic reactivity. In addition, thermodynamically viable reactions involving hydrogen sulfide and troilite can produce biofilms. If methyl thiols are involved, resulting products include the prebiotic agents of formic and acetic acids. All of these parameters would be enhanced by lunar conditions of (1) lower lunar gravity and (2) surface vacuum. Lower lunar gravity would result in a deeper nucleation of bubbles in a fumarolic system with a slower bubble rise rate enhancing probabilities of reactivities of metabolites. Surface vacuum would result in lower boiling points of prebiotic agents such as formic acid producing temperatures more favorable for the formation of protolife. Assuming volcanism, targets for the search for protolife are discussed.
Fossil and active fumaroles in the 1912 eruptive deposits, Valley of ten thousand smokes, Alaska
Keith, T.E.C.
1991-01-01
Fumaroles in the ash-flow sheet emplaced during the 1912 eruption of Novarupta were intensely active throughout the Valley of Ten Thousand Smokes (VTTS) when first studied in 1917. Fumarole temperatures recorded in 1919 were as hot as 645??C. Influx of surface waters into the hot ash-flow sheet provided the fluid flow to sustain the fumaroles but also enhanced cooling so that by the mid-1930's vigorous activity survived only in the vent region. Configuration and distribution of high-temperature fissure fumaroles tens of meters long, that are prevalent in the middle and upper VTTS, were controlled largely by sintering and degree of welding, which in turn controlled fracturing and permeability of the ash-flow tuff. One fracture type developed parallel to the enclosing valley walls during compaction of the ash-flow sheet. Another type extends across the VTTS nearly perpendicular to the flow direction. A third type of randomly oriented fractures developed as cooling contraction cracks during vapor-phase devitrification. In distal parts of the ash-flow sheet where the tuff is nonwelded, prominent fumaroles have irregular funnel-shaped morphologies. Fumarole distribution in the nonwelded part of the ash-flow sheet is concentrated above pre-emplacement river channels. The hottest, longest-lived fumaroles occurred in the upper VTTS near the 1912 vent where the ash-flow sheet is thicker, more indurated, and on average more mafic (richer in dacite and andesite) in contrast to the thinner, nonwelded rhyolitic tuff in the distal part of the sheet. Fumarolic activity was less intense in the distal part of the tuff because of lower emplacement temperatures, more diffuse fumarole conduits in the nonwelded tuff, and the thinness of the ash-flow sheet. Chemical leaching of ash-flow tuff by hot rising fluids took place adjacent to fumarolic conduits in deep parts of the fumaroles. Deposition of incrustation minerals, the components of which were carried upward by fumarolic gases, took place in the upper part of the ejecta, mostly in the fallout layers. The permeability difference between the ash-flow tuff and the overlying coarse dacite fallout was a critical factor in promoting the abrupt gradients in temperature, pressure, and fO2 that resulted in deposition of minerals from the fumarolic gases. The permeability difference between nonwelded ash-flow tuff and overlying fine-grained fall layers in the lower VTTS is less pronounced. The total mass of fumarolically deposited minerals appears large at first glance owing to the conspicuous coloration by Fe minerals; the mass is appreciably less than is apparent, however, because most incrustations are composed largely of ejecta coated or cemented by fine-grained fumarolic minerals. A large mass of unstable incrustation minerals, mainly chlorides and sulfates, reported during the 1917-1919 studies have since been removed by dissolution and weathering. In the vent region, argillic alteration that followed high-temperature degassing is localized along arcuate subsidence fractures in fallback ejecta. At widely scattered residual orifices, fumarolic gases presently are near-neutral steam, and temperatures are as hot as 90??C. ?? 1991.
NASA Astrophysics Data System (ADS)
Mandarano, Michela; Paonita, Antonio; Martelli, Mauro; Viccaro, Marco; Nicotra, Eugenio; Millar, Ian L.
2016-04-01
With the aim to constrain the nature of magma currently feeding the fumarolic field of Vulcano, we measured the elemental and isotopic compositions of noble gases (He, Ne, and Ar) in olivine- and clinopyroxene-hosted fluid inclusions in high-K calcalcaline-shoshonitic and shoshonitic-potassic series so as to cover the entire volcanological history of Vulcano Island (Italy). The major and trace-element concentrations and the Sr- and Pb-isotope compositions for whole rocks were integrated with data obtained from the fluid inclusions. 3He/4He in fluid inclusions is within the range of 3.30 and 5.94 R/Ra, being lower than the value for the deep magmatic source expected for Vulcano Island (6.0-6.2 R/Ra). 3He/4He of the magmatic source is almost constant throughout the volcanic record of Vulcano. Integration of the He- and Sr-isotope systematics leads to the conclusion that a decrease in the He-isotope ratio of the rocks is mainly due to the assimilation of 10-25% of a crustal component similar to the Calabrian basement. 3He/4He shows a negative correlation with Sr isotopes except for the last-emitted Vulcanello latites (Punta del Roveto), which have high He- and Sr-isotope ratios. This anomaly has been attributed to a flushing process by fluids coming from the deepest reservoirs. Indeed, an input of deep magmatic volatiles with high 3He/4He values increases the He-isotope ratio without changing 87Sr/86Sr. A comparison of the He isotope ratios between fluid inclusions and fumarolic gases showed that only the basalts of La Sommata and the latites of Vulcanello have comparable values. Taking into account that the latites of Vulcanello relate to one of the most-recent eruptions at Vulcano (in the 17th century), we infer that that the most probable magma which actually feeds the fumarolic emissions is a latitic body ponding at about 3-3.5 km of depth and flushed by fluids coming from a deeper and basic magma.
The ring-shaped thermal field of Stefanos crater, Nisyros Island: a conceptual model
NASA Astrophysics Data System (ADS)
Pantaleo, M.; Walter, T. R.
2014-04-01
Fumarole fields related to hydrothermal processes release the heat of the underground through permeable pathways. Thermal changes, therefore, are likely to depend also on the size and permeability variation of these pathways. There may be different explanations for the observed permeability changes, such as fault control, lithology, weathering/alteration, heterogeneous sediment accumulation/erosion and physical changes of the fluids (e.g., temperature and viscosity). A common difficulty, however, in surface temperature field studies at active volcanoes is that the parameters controlling the ascending routes of fluids are poorly constrained in general. Here we analyze the crater of Stefanos, Nisyros (Greece), and highlight complexities in the spatial pattern of the fumarole field related to permeability conditions. We combine high-resolution infrared mosaics and grain-size analysis of soils, aiming to elaborate parameters controlling the appearance of the fumarole field. We find a ring-shaped thermal field located within the explosion crater, which we interpret to reflect near-surface contrasts of the soil granulometry and volcanotectonic history at depth. We develop a conceptual model of how the ring-shaped thermal field formed at the Stefanos crater and similarly at other volcanic edifices, highlighting the importance of local permeability contrast that may increase or decrease the thermal fluid flux.
NASA Astrophysics Data System (ADS)
Tassi, F.; Agusto, M.; Lamberti, C.; Caselli, A. T.; Pecoraino, G.; Caponi, C.; Szentiványi, J.; Venturi, S.; Vaselli, O.
2017-10-01
This study presents the chemical and isotopic compositions of hydrothermal gases from fumaroles discharging around Copahue volcano (Argentina). Gas samples, including those from two fumaroles at the active summit crater, were collected during 13 surveys carried out by different research teams from 1976 to February 2016. The time-series of H2, CO and light hydrocarbons showed episodic increases related to the main events of the last eruptive cycle that started on 19 July 2012. Concentration peaks were likely caused by enhanced input of hot magmatic fluids affecting the hydrothermal reservoir. These data contrast with the temporal variations shown by Rc/ Ra and δ13C-CO2 values in 2012-2014, which indicated an increasing input from a crustal fluid source. In 2015-2016, however, these isotopic parameters showed opposite trends; their composition became closer to that of the two summit fumaroles, which possibly corresponds to that of the deep magmatic-related end-member. The delayed and reduced compositional changes in the peripheral hydrothermal fluid discharge in response to the 2012-2016 eruptive events suggest that geochemical surveys of these emissions are unlikely to provide premonitory signals of volcanic unrest if the volcanic activity remains centered in the main crater. Instead, an instrument which is able to provide measurements of volcanic gases in the air (e.g. MultiGAS) may be used to detect changes at the summit crater. Otherwise, monitoring of seismic activity and ground deformation, as well as the periodic measurement of the chemistry of the water in the Rio Agrio, which is fed by thermal discharge from the summit crater, seem to represent the most reliable means of monitoring at Copahue. However, the relative compositional stability of the hydrothermal reservoir is a great advantage in terms of geothermal resource exploitation and could encourage new investments in the Copahue geothermal project which was abandoned in the 1990s.
Analysis of gas jetting and fumarole acoustics at Aso Volcano, Japan
McKee, Kathleen; Fee, David; Yokoo, Akihiko; ...
2017-03-30
The gas-thrust region of a large volcanic eruption column is predominately a momentum-driven, fluid flow process that perturbs the atmosphere and produces sound akin to noise from jet and rocket engines, termed “jet noise”. In this paper, we aim to enhance understanding of large-scale volcanic jets by studying an accessible, less hazardous fumarolic jet. We characterize the acoustic signature of ~ 2.5-meter wide vigorously jetting fumarole at Aso Volcano, Japan using a 5-element infrasound array located on the nearby crater. The fumarole opened on 13 July 2015 on the southwest flank of the partially collapsed pyroclastic cone within Aso Volcano'smore » Naka-dake crater and had persistent gas jetting, which produced significant audible jet noise. The array was ~ 220 m from the fumarole and 57.6° from the vertical jet axis, a recording angle not typically feasible in volcanic environments. Array processing is performed to distinguish fumarolic jet noise from wind. Highly correlated periods are characterized by sustained, low-amplitude signal with a 7–10 Hz spectral peak. Finite difference time domain method numerical modeling suggests the influence of topography near the vent and along the propagation path significantly affects the spectral content, complicating comparisons with laboratory jet noise. The fumarolic jet has a low estimated Mach number (0.3 to 0.4) and measured temperature of ~ 260 °C. The Strouhal number for infrasound from volcanic jet flows and geysers is not known; thus we assume a peak Strouhal number of 0.19 based on pure-air laboratory jet experiments. This assumption leads to an estimated exit velocity of the fumarole of ~ 79 to 132 m/s. Finally, using published gas composition data from 2003 to 2009, the fumarolic vent area estimated from thermal infrared images, and estimated jet velocity, we estimate total volatile flux at ~ 160–270 kg/s (14,000–23,000 t/d).« less
Analysis of gas jetting and fumarole acoustics at Aso Volcano, Japan
DOE Office of Scientific and Technical Information (OSTI.GOV)
McKee, Kathleen; Fee, David; Yokoo, Akihiko
The gas-thrust region of a large volcanic eruption column is predominately a momentum-driven, fluid flow process that perturbs the atmosphere and produces sound akin to noise from jet and rocket engines, termed “jet noise”. In this paper, we aim to enhance understanding of large-scale volcanic jets by studying an accessible, less hazardous fumarolic jet. We characterize the acoustic signature of ~ 2.5-meter wide vigorously jetting fumarole at Aso Volcano, Japan using a 5-element infrasound array located on the nearby crater. The fumarole opened on 13 July 2015 on the southwest flank of the partially collapsed pyroclastic cone within Aso Volcano'smore » Naka-dake crater and had persistent gas jetting, which produced significant audible jet noise. The array was ~ 220 m from the fumarole and 57.6° from the vertical jet axis, a recording angle not typically feasible in volcanic environments. Array processing is performed to distinguish fumarolic jet noise from wind. Highly correlated periods are characterized by sustained, low-amplitude signal with a 7–10 Hz spectral peak. Finite difference time domain method numerical modeling suggests the influence of topography near the vent and along the propagation path significantly affects the spectral content, complicating comparisons with laboratory jet noise. The fumarolic jet has a low estimated Mach number (0.3 to 0.4) and measured temperature of ~ 260 °C. The Strouhal number for infrasound from volcanic jet flows and geysers is not known; thus we assume a peak Strouhal number of 0.19 based on pure-air laboratory jet experiments. This assumption leads to an estimated exit velocity of the fumarole of ~ 79 to 132 m/s. Finally, using published gas composition data from 2003 to 2009, the fumarolic vent area estimated from thermal infrared images, and estimated jet velocity, we estimate total volatile flux at ~ 160–270 kg/s (14,000–23,000 t/d).« less
STABLE ISOTOPE GEOCHEMISTRY OF THERMAL FLUIDS FROM LASSEN VOLCANIC NATIONAL PARK, CALIFORNIA.
Janik, Cathy J.; Nehring, Nancy L.; Truesdell, Alfred H.
1983-01-01
In the Lassen vapor-dominated geothermal system, surface manifestations of thermal fluids at high elevations (1800-2500 m) include superheated and drowned fumaroles, steam-heated acid-sulfate hot springs, and low-chloride bicarbonate springs. Neutral high-chloride hot water discharges at lower elevations. Deuterium and oxygen-18 data establish genetic connections between these fluids and with local meteoric waters. Steam from the highest temperature fumarole at Bumpass Hell and water from the highest chloride hot spring have isotopic compositions corresponding to vapor-liquid equilibrium at 235 degree C. Carbon and sulfur isotope data suggest that the CO//2 and H//2S in the system did not entirely originate from magmatic sources, but probably include contributions from thermal metamorphism of marine sedimentary rocks. Observations suggest that carbon and sulfur isotope variations are useful indicators of gas reactions and flow paths in geothermal systems. Refs.
NASA Astrophysics Data System (ADS)
Tassi, Franco; Capaccioni, Bruno; Vaselli, Orlando
2014-05-01
The November 2002 submarine gas blast at Panarea Island (Sicily, southern Italy) was an unexpected reactivation event able to locally affect this hydrothermal-magmatic system whose the youngest eruptive products were dated at 20,000 ± 2000 years BP. The presence of magmatic gases (SO2 and HF) in the fumarolic gas discharges after the violent exhalative event was indicative of a magmatic input that temporary displaced the hydrothermal system. A few months later these acidic gases were indeed not detected in any of the studied fumaroles. Nevertheless, new geochemical data obtained by periodical sampling up to June 2013 suggest that the chemical-physical conditions of the hydrothermal-magmatic system at Panarea were not completely restored with respect to the geochemical data obtained in the early nineties. Thus, the 2002 gas burst has unequivocally caused a permanent modification to the fluid circulation system feeding the submarine fumaroles. In addition, strong compositional differences were observed by the 46 gases collected in 2012-2013 from submarine fumaroles located in different sites of the studied area, allowing to distinguish three different groups of fumaroles: A) H2- and CO-rich gases, which also show relatively low Ar concentrations, B) H2S-rich gases, having variable CO/CH4 ratios, and C) Ar-rich gases, having relatively low H2 concentrations. Gases from group A are distributed along NW- and NE-trending fault systems, whereas those of groups B and C discharge at increasing distance from the intersection of the two fault systems, indicating a spatial and compositional control by the local tectonic setting. The H2/CO ratios of groups A and B gases are significantly lower than those measured prior to 2012. This would imply an increase of gas pressure at depth, possibly caused by continuous addition of gas and energy from the magmatic source to the hydrothermal reservoir. Continuation of this process may lead to the occurrence of gas burst events in the next future, a hypothesis that is supported by the strong ongoing degassing activity at the surface notwithstanding a decrease of temperatures at depth. A geochemical, seismological and ground deformation monitoring of the Panarea submarine fumarolic field is highly recommended to obtain precursory signals of new strong degassing phenomena.
Gas chemistry of Icelandic thermal fluids
NASA Astrophysics Data System (ADS)
Stefánsson, Andri
2017-10-01
The chemistry of gases in thermal fluids from Iceland was studied in order to evaluate the sources and processes affecting volatile concentrations in volcanic geothermal systems at divergent plate boundaries. The fluids included vapor fumaroles and two-phase well discharges with temperatures of 100-340 °C. The vapor was dominated by H2O accounting for 62-100 mol% and generally for > 99 mol%, with CO2, H2S and H2 being the dominant gases followed by N2, CH4, and Ar. Overall mineral-gas and gas-gas equilibria were not observed for the major gases, including CO2, H2S, H2 and CH4 within the geothermal reservoirs. Instead the system proved to be controlled by source(s) and their ratios and various metastable equilibria along a fluid-rock reaction progress with gas concentrations controlled by such metastable equilibria varying at particular temperatures as a functional extent of reaction. The concentrations of H2S and H2 closely reflect mineral-fluid metastable equilibria, whereas CO2 concentrations are controlled by the input of magma gas corresponding to > 0.1 to < 5% mass input. With fluid ascent to the surface, boiling and condensation may occur, further changing the gas concentrations and hence surface fumaroles may not reflect the reservoir fluid characteristics but rather secondary processes.
Bergfeld, D.; Goff, F.; Janik, C.J.
2001-01-01
In the later part of the 1990s, a large die-off of desert shrubs occurred over an approximately 1 km2 area in the northwestern section of the Dixie Valley (DV) geothermal field. This paper reports results from accumulation-chamber measurements of soil CO2 flux from locations in the dead zone and stable isotope and chemical data on fluids from fumaroles, shallow wells, and geothermal production wells within and adjacent to the dead zone. A cumulative probability plot shows three types of flux sites within the dead zone: Locations with a normal background CO2 flux (7 g m-2 day-1); moderate flux sites displaying "excess" geothermal flux; and high flux sites near young vents and fumaroles. A maximum CO2 flux of 570 g m-2 day-1 was measured at a location adjacent to a fumarole. Using statistical methods appropriate for lognormally distributed populations of data, estimates of the geothermal flux range from 7.5 t day-1 from a 0.14-km2 site near the Stillwater Fault to 0.1 t day-1 from a 0.01 -km2 location of steaming ground on the valley floor. Anomalous CO2 flux is positively correlated with shallow temperature anomalies. The anomalous flux associated with the entire dead zone area declined about 35% over a 6-month period. The decline was most notable at a hot zone located on an alluvial fan and in the SG located on the valley floor. Gas geochemistry indicates that older established fumaroles along the Stillwater Fault and a 2-year-old vent in the lower section of the dead zone discharge a mixture of geothermal gases and air or gases from air-saturated meteoric water (ASMW). Stable isotope data indicate that steam from the smaller fumaroles is produced by ??? 100??C boiling of these mixed fluids and reservoir fluid. Steam from the Senator fumarole (SF) and from shallow wells penetrating the dead zone are probably derived by 140??C to 160??C boiling of reservoir fluid. Carbon-13 isotope data suggest that the reservoir CO2 is produced mainly by thermal decarbonation of hydrothermal calcite in veins that cut reservoir rocks. Formation of the dead zone is linked to the reservoir pressure decline caused by continuous reservoir drawdown from 1986 to present. These reservoir changes have restricted flow and induced boiling in a subsurface hydrothermal outflow plume extending from the Stillwater Fault southeast toward the DV floor. We estimate that maximum CO2 flux in the upflow zone along the Stillwater Fault in 1998 was roughly seven to eight times greater than the pre-production flux in 1986. The eventual decline in CO2 flux reflects the drying out of the outflow plume. Published by Elsevier Science B.V.
NASA Astrophysics Data System (ADS)
Bolós, X.; Cifuentes-Nava, G.; Macias, J. L.; Sosa-Ceballos, G.; García-Tenorio, F.; Albor, M., III; Juarez, M.; Gamez, V.
2017-12-01
Hydrothermal activity in volcanic calderas is the consequence of energy transfer between deep magmatic chambers and subsurface layers saturated in water. This hydrothermal system is generated by convection of the groundwater supplied by meteoric water recharged and the ascent of hot volcanic gasses exsolved from deep magma reservoirs. Calderas are heterogeneous geological structures that due to their formation and evolution produced a complex stratigraphy. All of these heterogeneities can be affected by deformation and also by the presence of fractures and faults which constitute the main pathways whereby hydrothermal fluids can move easily through the surface as spring discharges and fumarolic activity. Geophysical methods have been used in the last decades to investigate the relationship between structural geology and hydrothermal systems in different volcanic areas around the world. In this work, we have focused on the role of subsurface structures to understand and localize the pathways of fluids related to the hydrothermal system of the Cerritos Colorados geothermal field. We focused in the central area of the caldera (P12 well and Cerritos Colorados graben), where active hydrothermal activity is evidenced by fumaroles, thermal anomalies, CO2 diffuse emission, and sulfur precipitation. We have applied a self-potential method (SP) that combined with temperature measurements that allowed to identify the main infiltration and ascending fluid zones in the area, and their specific surface temperature coinciding with fumarolic activity. From this data we an applied Electrical Resistivity Tomography (ERT) survey in two selected places. One ERT profile (1.2 km in length) was located in the P12 well area. A 3D resistivity model used with the equatorial method was carried out on the Cerritos Colorados graben area. Combining the results of the SP, TºC, and ERT data with a detailed structural map we identified the main degassing zones (i.e. fumaroles) that correspond to higher permeability zones located along normal and strike-slip faults. In conclusion, a strong structural control of the surface manifestation of these hydrothermal systems is deduced from our new data. Then, our results emphasize the importance of old structural boundaries that are controlled by intra-caldera tectonic structures.
The ring-shaped thermal field of Stefanos crater, Nisyros Island: a conceptual model
NASA Astrophysics Data System (ADS)
Pantaleo, M.; Walter, T. R.
2013-11-01
Fumarole fields related to hydrothermal processes release the heat of the underground through permeable pathways. Thermal changes, therefore, are likely to depend also on the variation of these pathways. As these paths may affect or even control the temperature field at the surface, their understanding is relevant to applied and basic science alike. A common difficulty, however, in surface temperature field studies at active volcanoes is that the parameters controlling the ascending routes of fluids are poorly constrained in general. Here we analyze the crater of Stefanos, Nisyros (Greece), and highlight complexities in the spatial pattern of the fumarole field related to permeability conditions. There may be different explanations for the observed permeability changes, such as structural control, lithology, weathering, and heterogeneous sediment accumulation and erosion. We combine high resolution infrared mosaics and grain-size analysis of soils, aiming to elaborate parameters controlling the appearance of the fumarole field. We find a ring-shaped thermal field located within the explosion crater, which is dependent on contrasts of the soil granulometry and volcanotectonic history. We develop a conceptual model of how the ring-shaped thermal field has formed at the Stefanos crater and similarly at other volcanic edifices, highlighting the importance of local permeability contrast that may increase or decrease the thermal fluid flux.
Volatiles and energy released by Puracé volcano
NASA Astrophysics Data System (ADS)
Maldonado, Luisa Fernanda Meza; Inguaggiato, Salvatore; Jaramillo, Marco Tulio; Valencia, Gustavo Garzón; Mazot, Agnes
2017-12-01
Total CO2 output of Puracé volcano (Colombia) was estimated on the basis of fluids discharged by fumaroles, soil gases, and dissolved carbon species in the aquifer. The soil CO2 emission was computed from a field survey of 512 points of CO2 soil flux measurements at the main degassing areas of Puracé volcano. The CO2 flux from Puracé's plume was estimated using an indirect method, that used the SO2 plume flux and CO2/SO2 ratio of the main high temperature fumarole. The total output of CO2 was estimated at ≅ 1500 t/day. The main contribution of CO2 comes from the plume (summit degassing) and from soil degassing that emit 673 and 812 t/day, respectively. The contributions of summit and soil degassing areas are comparable, indicating an intermediate degassing style partitioned between closed and open conduit systems. The estimated water vapor discharge (as derived from the chemical composition of the fumaroles, the H2O/CO2 ratio, and the SO2 plume flux) allowed calculation of the total thermal energy (fumarolic, soil degassing, and aquifer) released from the Puracé volcanic system. This was 360 MW.
NASA Astrophysics Data System (ADS)
Mandarano, Michela; Paonita, Antonio; Martelli, Mauro; Viccaro, Marco; Nicotra, Eugenio; Millar, Ian L.
2016-04-01
The elemental and isotopic compositions of noble gases (He, Ne, and Ar) in olivine- and clinopyroxene-hosted fluid inclusions have been measured for rocks at various degrees of evolution and belonging to high-K calcalkaline-shoshonitic and shoshonitic-potassic series in order to cover the entire volcanological history of Vulcano Island (Italy). The major- and trace-element concentrations and the Sr- and Pb-isotope compositions for whole rocks were integrated with data obtained from the fluid inclusions. 3He/4He in fluid inclusions is within the range of 3.30 and 5.94 R/Ra, being lower than the theoretical value for the deep magmatic source expected for Vulcano Island (6.0-6.2 R/Ra). 3He/4He of the magmatic source is almost constant throughout the volcanic history of Vulcano. Integration of the He- and Sr-isotope systematics leads to the conclusion that a decrease in the He-isotope ratio of the rocks is mainly due to the assimilation of 10-25% of a crustal component similar to the Calabrian basement. 3He/4He shows a negative correlation with Sr isotopes except for the last-erupted Vulcanello latites (Punta del Roveto), which have anomalously high He isotope ratios. This anomaly has been attributed to a flushing process by fluids coming from the deepest reservoirs, since an input of deep magmatic volatiles with high 3He/4He values increases the He-isotope ratio without changing 87Sr/86Sr. A comparison of the He-isotope ratios between fluid inclusions and fumarolic gases shows that only the basalts of La Sommata and the latites of Vulcanello have comparable values. Taking into account that the latites of Vulcanello relate to one of the most-recent eruptions at Vulcano (in the 17th century), we infer that the most probable magma which actually feeds the fumarolic emissions is a latitic body that ponded at about 3-3.5 km of depth and is flushed by fluids coming from a deeper and basic magma.
NASA Astrophysics Data System (ADS)
Tassi, F.; Capecchiacci, F.; Montegrossi, G.; Caliro, S.; Chiodini, G.; Vaselli, O.
2008-12-01
The origin of non-methane volatile organic compounds (VOCs) in hydrothermal fluids is related to two distinct mechanisms regulated by different thermodynamic conditions (e.g. Des Marais et al., 1981; Mango, 2000; Capaccioni and Mangani, 2001): i) thermogenic reactions, such as catalytic reforming and/or thermal cracking, which proceed within the main reservoir at medium-to-high temperature (150-350°C) and reduced conditions; ii) biodegradation processes, occurring at relatively shallow depth, where uprising fluids have <150°C and suffer oxidizing conditions. According to these considerations, the main aim of the present investigation is to discriminate the different fluid sources feeding the hydrothermal system on the basis of the C2-C15 organic compounds in fumarolic discharges and soil gases collected at the Yellowstone National Park (USA). A total of 64 and 66 different species were identified in the gas discharges and in the soil gas samples, respectively. The composition of the organic gas fraction in the fumarolic fluids is relatively homogeneous, being dominated by C2-C6 alkanes (81 %) and showing relatively high concentrations of alkenes (13 %), aromatics (3.7 %) and cyclics (1.4 %). Differently, the relative percentages of alkanes and alkenes in the soil gas, where VOC abundances are about two orders of magnitude less abundant than those in the gas discharges, are significantly lower (64 and 6.8 %, respectively) and cyclics are absent. On the other hand, oxygenated species (17.8 %), aromatics (5.6 %) and Cl-bearing compounds (4.5 %) results to be enriched with respect to those measured in the gas vents. Such compositional differences are likely to be due to the bacterial activity in the soil that causes the production of ketones, esters, alcohols, aldehydes and organic acids from the C-H species (hydrocarbons sensu strictu). Organic acids, mainly constituted by ossalic acid and traces of tartaric, malonic citric and succinic ones, were also determined in the fumarolic condensates. This seems to indicate that biodegradation likely occurs even within the hydrothermal systems, since the production of low molecular mass organic acids is to be related to bacterial activity (Arnetoli et al., 2008 and references therein). S-bearing compounds are strongly controlled by the fS values and this would explain the relatively high concentrations of these species in the H2S-rich fumarolic discharges. As far as it concerns the relatively high abundance of halogenated compounds in the soil gases, it can be suggested that the origin of these species is likely to be related to atmospheric contribution. Actually, formation of Cl- bearing species from reactions between VOCs and Cl-rich fluids, such as those of the deep hydrothermal reservoir, is still matter of debate. Therefore, we may speculate that these compounds, characterized by chemical inertness, are added to the hydrothermal fluids from meteoric water recharging the system. References: Arnetoli, M., Montegrossi, G., Buccianti, A., Gonnelli, C., 2008. J. Agricol. Food Chem., 56, 789- 795. Capaccioni, B., Mangani, F., 2001. Earth Planet. Sci. Lett., 188, 543-555. Des Marais, D.J., Donchin, J.H., Truesdell, A.H., Nehring, N.L., 1981. Nature, 292, 826-828. Mango, F.D., 2000. Geochim. Cosmochim. Acta, 64, 1265-1277.
Using fumarolic inert gas composition to investigate magma dynamics at Campi Flegrei (Italy)
NASA Astrophysics Data System (ADS)
Chiodini, G.; Caliro, S.; Paonita, A.; Cardellini, C.
2013-12-01
Since 2000 the Campi Flegrei caldera sited in Neapolitan area (Italy), has showed signs of reactivation, marked by ground uplift, seismic activity, compositional variations of fumarolic effluents from La Solfatara, an increase of the fumarolic activity as well as of soil CO2 fluxes. Comparing long time series of geochemical signals with ground deformation and seismicity, we show that these changes are at least partially caused by repeated injections of magmatic fluid into the hydrothermal system. The frequency of these degassing episodes has increased in the last years, causing pulsed uplift episodes and swarms of low magnitude earthquakes. We focus here in the inert gas species (CO2-He-Ar-N2) of Solfatara fumaroles which displayed in the time spectacular and persistent variation trends affecting all the monitored vents. The observed variations, which include a continuous decrease of both N2/He and N2/CO2 ratios since 1985, paralleled by an increase of He/CO2, can not be explained neither with changes in processes of boiling-condensation in the local hydrothermal system nor with changes in the mixing proportions between a magmatic vapour and hydrothermal fluids. Consequently we investigated the possibility that the trends of inert gas species are governed by changes in the conditions controlling magma degassing at depth. We applied a magma degassing model, with the most recent updates for inert gas solubilities, after to have included petrologic constraints from the ranges of melt composition and reservoir pressure at Campi Flegrei. The model simulations for mafic melts (trachybasalt and shoshonite) show a surprising agreement with the measured data. Both decompressive degassing of an ascending magma and mixing between magmatic fluids exsolved at various levels along the ascent path can explain the long-time geochemical changes. Our work highlights that, in caldera systems where the presence of hydrothermal aquifers commonly masks the magmatic signature of reactive volatiles, inert gases are the preferred species to achieve information on the dynamics and structure of the magma plumbing systems.
Chiodini, Giovanni; Caliro, Stefano; Lowenstern, Jacob B.; Evans, William C.; Bergfeld, D.; Tassi, Franco; Tedesco, Dario
2012-01-01
The chemistry of Yellowstone fumarole gases shows the existence of two component waters, type MC, influenced by the addition of deep mantle fluid, and type CC, influenced by crustal interactions (CC). MC is high in 3He/4He (22 Ra) and low in 4He/40Ar (~1), reflecting input of deep mantle components. The other water is characterized by 4He concentrations 3-4 orders of magnitude higher than air-saturated meteoric water (ASW). These high He concentrations originate through circulation in Pleistocene volcanic rocks, as well as outgassing of Tertiary and older (including Archean) basement, some of which could be particularly rich in uranium, a major 4He source. Consideration of CO2-CH4-CO-H2O-H2 gas equilibrium reactions indicates equilibration temperatures from 170 °C to 310 °C. The estimated temperatures highly correlate with noble-gas variations, suggesting that the two waters differ in temperature. Type CC is ~170 °C whereas the MC is hotter, at 340 °C. This result is similar to models proposed by previous studies of thermal water chemistry. However, instead of mixing the deep hot component simply with cold, meteoric waters we argue that addition of a 4He-rich component, equilibrated at temperatures around 170 °C, is necessary to explain the range in fumarole gas chemistry.
Stable isotope geochemistry of fumaroles: an insight into volcanic surveillance
NASA Astrophysics Data System (ADS)
Panichi, C.; La Ruffa, G.
2001-12-01
In active volcanic environments magmatic water may accumulate in the volcanic-hosted geothermal systems, or, more rarely may reach the surface along deep fractures inside the volcano crater. Knowledge of magmatic contribution to emerging fluids in volcanic active areas is critical to understanding the chemical evolution of the magma, the conditions in which it exists in the crust, and the mechanisms by which it erupts in the crust. The source of volatiles (especially water) is also of interest when eruptions are driven by the expansion of hydrothermal fluids against atmospheric pressure, without the involvement of fresh magma ('hydrothermal' or 'phreatomagmatic' eruptions). In both cases the occurrence of volcanic and/or phreatic activities is likely to be preceded by substantial isotopic and chemical changes in the crater fumarolic systems. H and O isotopic composition of condensed water from crater fumaroles appear to be able to give strong evidence for the existence of magmatic waters in the high-temperature manifestations of the volcanic systems. Isotopic data and specific hydrological models from seven different volcanic systems (Galeras Volcano, Colombia, Kilauea Volcano, Hawaii, Kudryvy Volcano, Kuril volcanic arc, Mt St Helens, USA; Guagua Pichincha, Ecuador; Vulcano island, Italy; the Aegean Volcanic Arc, Greece) are discussed in order to highlight the possibility to use those isotopic parameters in the assessment of the environmental risks of an active volcanic area.
NASA Astrophysics Data System (ADS)
Gresse, Marceau; Vandemeulebrouck, Jean; Byrdina, Svetlana; Chiodini, Giovanni; Rinaldi, Antonio Pio; Johnson, Timothy C.; Ricci, Tullio; Petrillo, Zaccaria; Vilardo, Giuseppe; Lebourg, Thomas; Mangiacapra, Annarita
2017-04-01
Solfatara crater, located inside the Phlegrean Fields caldera, is showing a significant unrest activity since 10 years with a increase of ground deformation, degassing and heating. Electrical Resistivity Imaging was performed between 2012 and 2016 with the purpose of improving our knowledge of the shallow hydrothermal system. The complete dataset includes 43,432 D-C measurements inverted using the E4D code. This 3-D inversion was compared with the mappings of surface temperature, diffuse soil CO2 flux and self-potential in order to better constrain the interpretation of the observed resistivity structure in terms of lithological contrasts and hydrothermal signatures. For the first time, we highlighted in 3-D the main geological units: Monte Olibano lava dome and Solfatara crypto-dome appear as two relatively resistive bodies (50-100 Ω.m). Furthermore, the resistivity model clearly revealed the contrasting geometry of the hydrothermal circulation in the Solfatara crater. A channel-like conductive structure (7 Ω.m) represents the condensate that flows from the main fumarolic area down to the liquid-dominated Fangaia mud pool. This interpretation is consistent with the negative Self-Potential anomaly and with the surface observations. We imaged at a metric-resolution the two main fumaroles, Bocca Grande and Bocca Nuova, that have the following geochemical characteristics. Bocca Grande vent: 162°C, ˜150 t of CO2 released per day with a mass ratio CO2/H20 = 0.4 and Bocca Nuova vent: 148°C, ˜50 t of CO2 released per day with a mass ratio CO2/H20 = 0.45. The differences between these geochemical characteristics could lead one to believe that they are fed by two distinct sources at depth. On the contrary, our resistivity model shows that the two fumarolic vents are directly connected to a common resistive body (30-50 Ω.m) at a depth of 50 meters. This structure likely represents a single gas reservoir feeding the two fumaroles. Its depth corresponds indeed to a steam source at a pressure of 6 bar and at a temperature of least 165 °C. The geophysical images combined with the geochemical data allowed us to build up a multiphase fluid flow model of the Bocca Grande and and Bocca Nuova fumaroles using the TOUGH 2 code. Our results show that the distinct resistivity structure, temperature, and water content of the both fumaroles are due to the particular geometry of the condensate flow that intersects and contaminates the Bocca Nuova but not the Bocca Grande fumarole. These results indicate the necessity to combine geophysical and geochemical approaches in order to better apprehend the structure complexity and the dynamics of fumaroles and hydrothermal systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grigsby, C.O.; Goff, F.; Trujillo, P.E. Jr.
Samples of the geothermal fluids in the Miravalles, Costa Rica, geothermal system were collected from production wellbores using downhole fluid samplers, from flowing wellheads using miniseparators, and from hot springs that discharge in the area. The reservoir fluid at Miravalles is a neutral-chloride-type water, but fumaroles and acid-sulfate springs are present within the main thermal area, and there are bicarbonate-rich hot springs that are clearly related to the neutral-chloride reservoir fluids. Dissolved gases are primarily a mixture of CO{sub 2} with air, but samples collected in the fumarolic areas also contain H{sub 2}S. Water-stable isotope analyses suggest local meteoric recharge,more » and the reservoir fluid shows oxygen isotopic shifts of about 2.5% due to high-temperature oxygen exchange between water and rock. Chemical geothermometer temperatures are consistent with the measured downhole temperature of 220{degrees} to 255{degrees}C. This pattern of neutral-chloride reservoir fluids with acid-sulfate springs near the source region and bicarbonate-rich chloride hot springs at the periphery of the system suggests a lateral outflow type of hydrothermal system. In addition to the geochemical evidence, temperature profiles from several of the wells show temperature reversals that are characteristic of lateral outflow plumes. We find no evidence for the underlying, higher temperature (300{degrees}C) system, which has been suggested by other investigators. 24 refs., 14 figs., 6 tabs.« less
Academic aspects of lunar water resources and their relevance to lunar protolife.
Green, Jack
2011-01-01
Water ice has been discovered on the moon by radar backscatter at the North Pole and by spectrometry at the South Pole in the Cabeus crater with an extrapolated volume for both poles of conservatively 10(9) metric tons. Various exogenic and endogenic sources of this water have been proposed. This paper focuses on endogenic water sources by fumaroles and hot springs in shadowed polar craters. A survey of theoretical and morphological details supports a volcanic model. Release of water and other constituents by defluidization over geological time was intensified in the Hadean Eon (c.a. 4600 to 4000 My). Intensification factors include higher heat flow by now-extinct radionuclides, tidal flexing and higher core temperatures. Lesser gravity would promote deeper bubble nucleation in lunar magmas, slower rise rates of gases and enhanced subsidence of lunar caldera floors. Hadean volcanism would likely have been more intense and regional in nature as opposed to suture-controlled location of calderas in Phanerozoic Benioff-style subduction environments. Seventy-seven morphological, remote sensing and return sample features were categorized into five categories ranging from a volcano-tectonic origin only to impact origin only. Scores for the most logical scenario were 69 to eight in favor of lunar volcanism. Ingredients in the Cabeus plume analysis showed many volcanic fluids and their derivatives plus a large amount of mercury. Mercury-rich fumaroles are well documented on Earth and are virtually absent in cometary gases and solids. There are no mercury anomalies in terrestrial impact craters. Volcanic fluids and their derivatives in lunar shadow can theoretically evolve into protolife. Energy for this evolution can be provided by vent flow charging intensified in the lunar Hadean and by charge separation on freezing fumarolic fluids in shadow. Fischer-Tropsch reactions on hydrothermal clays can yield lipids, polycyclic aromatic hydrocarbons and amino acids. Soluble polyphosphates are available in volcanic fluids as well as vital catalysts such as tungsten. We conclude that the high volume of polar water resources supports the likelihood of lunar volcanism and that lunar volcanism supports the likelihood of protolife.
Academic Aspects of Lunar Water Resources and Their Relevance to Lunar Protolife
Green, Jack
2011-01-01
Water ice has been discovered on the moon by radar backscatter at the North Pole and by spectrometry at the South Pole in the Cabeus crater with an extrapolated volume for both poles of conservatively 109 metric tons. Various exogenic and endogenic sources of this water have been proposed. This paper focuses on endogenic water sources by fumaroles and hot springs in shadowed polar craters. A survey of theoretical and morphological details supports a volcanic model. Release of water and other constituents by defluidization over geological time was intensified in the Hadean Eon (c.a. 4600 to 4000 My). Intensification factors include higher heat flow by now-extinct radionuclides, tidal flexing and higher core temperatures. Lesser gravity would promote deeper bubble nucleation in lunar magmas, slower rise rates of gases and enhanced subsidence of lunar caldera floors. Hadean volcanism would likely have been more intense and regional in nature as opposed to suture-controlled location of calderas in Phanerozoic Benioff-style subduction environments. Seventy-seven morphological, remote sensing and return sample features were categorized into five categories ranging from a volcano-tectonic origin only to impact origin only. Scores for the most logical scenario were 69 to eight in favor of lunar volcanism. Ingredients in the Cabeus plume analysis showed many volcanic fluids and their derivatives plus a large amount of mercury. Mercury-rich fumaroles are well documented on Earth and are virtually absent in cometary gases and solids. There are no mercury anomalies in terrestrial impact craters. Volcanic fluids and their derivatives in lunar shadow can theoretically evolve into protolife. Energy for this evolution can be provided by vent flow charging intensified in the lunar Hadean and by charge separation on freezing fumarolic fluids in shadow. Fischer-Tropsch reactions on hydrothermal clays can yield lipids, polycyclic aromatic hydrocarbons and amino acids. Soluble polyphosphates are available in volcanic fluids as well as vital catalysts such as tungsten. We conclude that the high volume of polar water resources supports the likelihood of lunar volcanism and that lunar volcanism supports the likelihood of protolife. PMID:22016644
NASA Astrophysics Data System (ADS)
Janik, Cathy J.; McLaren, Marcia K.
2010-01-01
Seismic analysis and geochemical interpretations provide evidence that two separate hydrothermal cells circulate within the greater Lassen hydrothermal system. One cell originates south to SW of Lassen Peak and within the Brokeoff Volcano depression where it forms a reservoir of hot fluid (235-270 °C) that boils to feed steam to the high-temperature fumarolic areas, and has a plume of degassed reservoir liquid that flows southward to emerge at Growler and Morgan Hot Springs. The second cell originates SSE to SE of Lassen Peak and flows southeastward along inferred faults of the Walker Lane belt (WLB) where it forms a reservoir of hot fluid (220-240 °C) that boils beneath Devils Kitchen and Boiling Springs Lake, and has an outflow plume of degassed liquid that boils again beneath Terminal Geyser. Three distinct seismogenic zones (identified as the West, Middle, and East seismic clusters) occur at shallow depths (< 6 km) in Lassen Volcanic National Park, SW to SSE of Lassen Peak and adjacent to areas of high-temperature (≤ 161 °C) fumarolic activity (Sulphur Works, Pilot Pinnacle, Little Hot Springs Valley, and Bumpass Hell) and an area of cold, weak gas emissions (Cold Boiling Lake). The three zones are located within the inferred Rockland caldera in response to interactions between deeply circulating meteoric water and hot brittle rock that overlies residual magma associated with the Lassen Volcanic Center. Earthquake focal mechanisms and stress inversions indicate primarily N-S oriented normal faulting and E-W extension, with some oblique faulting and right lateral shear in the East cluster. The different focal mechanisms as well as spatial and temporal earthquake patterns for the East cluster indicate a greater influence by regional tectonics and inferred faults within the WLB. A fourth, deeper (5-10 km) seismogenic zone (the Devils Kitchen seismic cluster) occurs SE of the East cluster and trends NNW from Sifford Mountain toward the Devils Kitchen thermal area where fumarolic temperatures are ≤ 123 °C. Lassen fumaroles discharge geothermal gases that indicate mixing between a N 2-rich, arc-type component and gases derived from air-saturated meteoric recharge water. Most gases have relatively weak isotopic indicators of upper mantle or volcanic components, except for gas from Sulphur Works where δ13C-CO 2, δ34S-H 2S, and δ15N-N 2 values indicate a contribution from the mantle and a subducted sediment source in an arc volcanic setting.
Janik, Cathy J.; McLaren, Marcia K.
2010-01-01
Seismic analysis and geochemical interpretations provide evidence that two separate hydrothermal cells circulate within the greater Lassen hydrothermal system. One cell originates south to SW of Lassen Peak and within the Brokeoff Volcano depression where it forms a reservoir of hot fluid (235–270°C) that boils to feed steam to the high-temperature fumarolic areas, and has a plume of degassed reservoir liquid that flows southward to emerge at Growler and Morgan Hot Springs. The second cell originates SSE to SE of Lassen Peak and flows southeastward along inferred faults of the Walker Lane belt (WLB) where it forms a reservoir of hot fluid (220–240°C) that boils beneath Devils Kitchen and Boiling Springs Lake, and has an outflow plume of degassed liquid that boils again beneath Terminal Geyser. Three distinct seismogenic zones (identified as the West, Middle, and East seismic clusters) occur at shallow depths (<6 km) in Lassen Volcanic National Park, SW to SSE of Lassen Peak and adjacent to areas of high-temperature (≤161°C) fumarolic activity (Sulphur Works, Pilot Pinnacle, Little Hot Springs Valley, and Bumpass Hell) and an area of cold, weak gas emissions (Cold Boiling Lake). The three zones are located within the inferred Rockland caldera in response to interactions between deeply circulating meteoric water and hot brittle rock that overlies residual magma associated with the Lassen Volcanic Center. Earthquake focal mechanisms and stress inversions indicate primarily N–S oriented normal faulting and E–W extension, with some oblique faulting and right lateral shear in the East cluster. The different focal mechanisms as well as spatial and temporal earthquake patterns for the East cluster indicate a greater influence by regional tectonics and inferred faults within the WLB. A fourth, deeper (5–10 km) seismogenic zone (the Devils Kitchen seismic cluster) occurs SE of the East cluster and trends NNW from Sifford Mountain toward the Devils Kitchen thermal area where fumarolic temperatures are ≤123°C. Lassen fumaroles discharge geothermal gases that indicate mixing between a N2-rich, arc-type component and gases derived from air-saturated meteoric recharge water. Most gases have relatively weak isotopic indicators of upper mantle or volcanic components, except for gas from Sulphur Works where δ13C–CO2, δ34S–H2S, and δ15N–N2 values indicate a contribution from the mantle and a subducted sediment source in an arc volcanic setting.
Along-arc distribution of 3He/4He and 87Sr/86Sr in thermal fluids of the Kuril Island arc (Russia)
NASA Astrophysics Data System (ADS)
Taran, Y.; Kalacheva, E.; Bujakajte, M.; Inguaggiato, S.
2017-12-01
The Kuril Island arc in the NW Pacific extends for 1200 km from the Kamchatka Peninsula to Hokkaido Islandand separates the margin Sea of Okhotsk from the Pacific Ocean. Among 40 active volcanoes at least 7 are characterized by strong and high-temperature fumarolic activity, 1 to 3 volcanoes are erupting right now, and many of active and dormant volcanoes host hydrothermal systems. We report our data on hydrochemistry and isotopic composition of He and Sr from fumarolic and hydrothermal discharges sampled along the arc, from Ebeko volcano on Paramushir Island to Golovnin volcano on Kunashir Island. The data were obtained during the field campaign in 2015-2017. Most of hydrothermal systems of Kuril Islands discharge acid-to-ultra acid SO4-Cl and Cl-SO4 waters and steam-heated SO4 waters. On some islands, like Shiashkotan, northern Kurils, coastal hot springs can be found issuing Na-Cl waters mixed with seawater. Mature Na-Cl waters are known only on southern big islands Iturup and Kunashir. The distribution of 3He/4He in hydrothermal and fumarolic gases along the arc is very uniform with 3He/4He values close to the MORB value of 8Ra where Ra is atmospheric ratio (1.4 x 10-6). The northernmost Ebeko volcano discharges fumaroles with 3He/4He up to 7.9Ra, and bubbling gas in the nearest hot springs up to 7.6Ra. Such high 3He/4He values with a maximum of 8.3Ra in fumaroles of the Pallas Peak in the middle of the arc were measured in all thermal manifestations of the arc (fumaroles, hydrothermal steam vents and bubbling gases) up to the southernmost Kunashir Island, where volcanic and hydrothermal gases are characterized by significantly lower values of 5.5Ra at Mendeleev volcano and 3.5Ra at Golovnin volcano. Isotopic ratio of the dissolved Sr as a rule corresponds to the 87Sr/86Sr values of the host rocks and only in the coastal hot springs demonstrates partial mixing with seawater. There is also a general consistence of 87Sr/86Sr in springs and 3He/4He in gases. This study was supported by the Russian Science Foundation grant # 15-17-20011.
Crater lake and post-eruption hydrothermal activity, El Chichón Volcano, Mexico
Casadevall, Thomas J.; De la Cruz-Reyna, Servando; Rose, William I.; Bagley, Susan; Finnegan, David L.; Zoller, William H.
1984-01-01
Explosive eruptions of Volcán El Chichón in Chiapas, Mexico on March 28 and April 3–4, 1982 removed 0.2 km3 of rock to form a 1-km-wide 300-m-deep summit crater. By late April 1982 a lake had begun to form on the crater floor, and by November 1982 it attained a maximum surface area of 1.4 × 105 m2 and a volume of 5 × 106 m3. Accumulation of 4–5 m of rainfall between July and October 1982 largely formed the lake. In January 1983, temperatures of fumaroles on the crater floor and lower crater walls ranged from 98 to 115°C; by October 1983 the maximum temperature of fumarole emissions was 99°C. In January 1983 fumarole gas emissions were greater than 99 vol. % H2O with traces of CO2, SO2, and H2S. The water of the lake was a hot (T = 52–58°C), acidic (pH = 0.5), dilute solution (34,046 mg L−1 dissolved solids; Cl/S = 20.5). Sediment from the lake contains the same silicate minerals as the rocks of the 1982 pyroclastic deposits, together with less than 1% of elemental sulfur. The composition and temperature of the lake water is attributed to: (1) solution of fumarole emissions; (2) reaction of lake water with hot rocks beneath the lake level; (3) sediments washed into the lake from the crater walls; (4) hydrothermal fluids leaching sediments and formational waters in sedimentary rocks of the basement; (5) evaporation; and (6) precipitation.
NASA Astrophysics Data System (ADS)
Allard, Patrick; Aiuppa, Alessandro; Beauducel, François; Calabrese, Sergio; Di Napoli, Rossella; Crispi, Olivier; Gaudin, Damien; Parello, Franceso; Hammouya, Gilbert; Tamburello, Giancarlo
2015-04-01
Since its last magmatic eruption in 1530 AD, La Soufrière andesitic volcano in Guadeloupe has displayed intense hydrothermal activity and six phreatic eruptive crises (the last of which, in 1976-1977, with 73000 evacuees). Here we report on the first direct quantification of gas plume emissions from La Soufrière summit vents, which gradually intensified during the past 20 years. Gas fluxes were determined in 2006 then 2012 [1] by measuring the horizontal and vertical distribution of volcanic gas concentrations in the air-diluted plume, the composition of the hot fumarolic fluid at exit (108°C), and scaling to the speed of plume transport (in situ measurements and FLIR imaging). We first demonstrate that all fumarolic vents of La Soufrière are fed by a common H2O-rich (97-98 mol %) fluid end-member, emitted almost unmodified at the most active South Crater while affected by secondary alterations (steam condensation, sulphur scrubbing) at other vents. Daily fluxes in 2012 (200 tons of H2O, 15 tons of CO2, ~4 tons of H2S and 1 ton of HCl) were augmented by a factor ~3 compared to 2006, in agreement with increasing activity. Summit fumarolic degassing contributes most of the bulk volatile and heat budget (8 MW) of the volcano. Isotopic evidences demonstrate that La Soufrière hydrothermal emissions are sustained by continuous heat and gas supply from an andesitic magma reservoir confined at 6-7 km depth. This magmatic supply mixes with abundant groundwater of tropical meteoric origin in the hydrothermal system. Based on petro-geochemical data for the erupted magma(s), we assess that the volcanic gas fluxes in 2012 can be accounted for by the release of free magmatic gas derived from about 1000 m3 per day of the basaltic melt replenishing the reservoir at depth. In terms of mass budget, the current degassing unrest is compatible with enhanced free gas release from that reservoir, without requiring any (actually undetected) magma intrusion. We recommend a regular survey of the fumarolic gas flux from La Soufrière in order to anticipate the evolution of the magma reservoir. [1] P. Allard et al., Chemical Geology 384, 76-93, 2014.
Extremophilic Eukaryote Life in Hawaiian Fumaroles
NASA Astrophysics Data System (ADS)
Ackerman, C.; Anderson, S.; Anderson, C.
2008-12-01
Extremophilic microorganisms exist in all three domains of life (Eukarya, Archaea, Bacteria), but are less known in eukaryotes. Fumaroles provide heat and moisture characteristic of an environment suitable for these organisms. On the Island of Hawaii, fumaroles are scattered across the southeastern portion of the island as a result of the volcanic activity from Kilauea Crater and Pu'u' O'o vent with all forming within geochemically similar basalt substrates. We used metagenomics to detect 18S rDNA from eukaryotic extremophilic microorganisms indicating their presence in Hawaiian fumaroles. To determine the effects of environmental gradients (temperature and pH) on microbial diversity within and among fumaroles, 11 samples from 3 fumaroles were collected over a three-day period in February of 2007. Temperatures of the different fumaroles range from 31.0oC to 62.7oC, with pH values that vary from 2.55 to 6.93 allowing for 8 different microenvironments. Fifty sequences per sample were analyzed with eighteen different organisms identified, the majority belonging to the family Cercozoa. The most diverse fumarole consisted of 8 different genera residing in a temperature of 34.1oC and a pH of 3.0. Unclassified mosses were identified in the fumarole with the highest temperature and Phaeoceros (hornworts) were identified at the most acidic fumarole. Both of these groups have been previously identified in geothermal areas.
Hydrogen isotope geochemistry and heat balance of a fumarolic system: Kudriavy volcano, Kuriles
NASA Astrophysics Data System (ADS)
Botcharnikov, Roman E.; Shmulovich, Kirill I.; Tkachenko, Sergey I.; Korzhinsky, Mikhail A.; Rybin, Alexander V.
2003-05-01
The temperature and hydrogen isotope composition of the fumarolic gases have been studied at Kudriavy volcano, Kurile Islands, which is unique for investigating the processes of magma degassing because of the occurrence of numerous easily accessible fumaroles with a temperature range of 100-940°C. There are several local fumarolic fields with a total surface area of about 2600 m 2 within the flattened crater of 200×600 m. Each fumarolic field is characterized by the occurrence of high- and low-temperature fumaroles with high gas discharges and steaming areas with lower temperatures. We have studied the thermal budget of the Kudriavy fumarolic system on the basis of the quantitative dependences of the hydrogen isotope ratio (D/H) and tritium concentration on the temperature of fumarolic gases and compared them with the calculated heat balance of mixing between hot magmatic gas and cold meteoric water. Hydrogen isotope composition (δD and 3H) shows a well expressed correlation with the gas temperature. Since D/H ratio and 3H are good indicators of water sources in volcanic areas, it suggests that the thermal budget of the fumarolic system is mostly controlled by the admixing of meteoric waters to magmatic gases. The convective mechanism of heat transfer in the hydrothermal system governs the maximum temperatures of local fumaroles and fumarolic fields. Low-temperature fumaroles at Kudriavy are thermally buffered by the boiling processes of meteoric waters in the mixing zone at pressures of 3-12 bar. These values may correspond to the hydrostatic pressure of water columns about 30-120 m in height in the volcanic edifice and hence to the depth of a mixing/boiling zone. Conductive heat transfer is governed by conductive heat exchange between gases and country rocks and appears to be responsible for the temperature distribution around a local fumarolic vent. The temperature and pressure of shallow degassing magma are estimated to be 1050°C and 2-3 bar, respectively. The length of the 'main' fumarolic gas conduit is estimated to be about 80 m from the linear correlation between maximal temperatures of fumarolic fields and distances to the highest-temperature 'F-940' fumarole. This value may correspond to the depth of an apical part of the magmatic chamber. The geometry of the crater zone at the Kudriavy summit and the model of convective gas cooling suggest different hydrostatic pressures in the hydrothermal system at the base of high- and low-temperature gas conduits. The depths of gas sources for low-temperature fumaroles are evaluated to be about 200 m at the periphery of the magma chamber.
Hausrath, Elisabeth M; Tschauner, Oliver
2013-11-01
Fumaroles represent a very important potential habitat on Mars because they contain water and nutrients. Global deposition of volcanic sulfate aerosols may also have been an important soil-forming process affecting large areas of Mars. Here we identify alteration from the Senator fumarole, northwest Nevada, USA, and in low-temperature environments near the fumarole to help interpret fumarolic and acid vapor alteration of rocks and soils on Mars. We analyzed soil samples and fluorapatite, olivine, and basaltic glass placed at and near the fumarole in in situ mineral alteration experiments designed to measure weathering under natural field conditions. Using synchrotron X-ray diffraction, we clearly observe hydroxyl-carbonate-bearing fluorapatite as a fumarolic alteration product of the original material, fluorapatite. The composition of apatites as well as secondary phosphates has been previously used to infer magmatic conditions as well as fumarolic conditions on Mars. To our knowledge, the observations reported here represent the first documented instance of formation of hydroxyl-carbonate-bearing apatite from fluorapatite in a field experiment. Retreat of olivine surfaces, as well as abundant NH4-containing minerals, was also characteristic of fumarolic alteration. In contrast, alteration in the nearby low-temperature environment resulted in formation of large pits on olivine surfaces, which were clearly distinguishable from the fumarolic alteration. Raman signatures of some fumarolically impacted surfaces are consistent with detection of the biological molecules chlorophyll and scytenomin, potentially useful biosignatures. Observations of altered minerals on Mars may therefore help identify the environment of formation and understand the aqueous history and potential habitability of that planet.
Tschauner, Oliver
2013-01-01
Abstract Fumaroles represent a very important potential habitat on Mars because they contain water and nutrients. Global deposition of volcanic sulfate aerosols may also have been an important soil-forming process affecting large areas of Mars. Here we identify alteration from the Senator fumarole, northwest Nevada, USA, and in low-temperature environments near the fumarole to help interpret fumarolic and acid vapor alteration of rocks and soils on Mars. We analyzed soil samples and fluorapatite, olivine, and basaltic glass placed at and near the fumarole in in situ mineral alteration experiments designed to measure weathering under natural field conditions. Using synchrotron X-ray diffraction, we clearly observe hydroxyl-carbonate-bearing fluorapatite as a fumarolic alteration product of the original material, fluorapatite. The composition of apatites as well as secondary phosphates has been previously used to infer magmatic conditions as well as fumarolic conditions on Mars. To our knowledge, the observations reported here represent the first documented instance of formation of hydroxyl-carbonate-bearing apatite from fluorapatite in a field experiment. Retreat of olivine surfaces, as well as abundant NH4-containing minerals, was also characteristic of fumarolic alteration. In contrast, alteration in the nearby low-temperature environment resulted in formation of large pits on olivine surfaces, which were clearly distinguishable from the fumarolic alteration. Raman signatures of some fumarolically impacted surfaces are consistent with detection of the biological molecules chlorophyll and scytenomin, potentially useful biosignatures. Observations of altered minerals on Mars may therefore help identify the environment of formation and understand the aqueous history and potential habitability of that planet. Key Words: Fumaroles—Mars—Olivine—Acidophile—Geothermal—Search for life (biosignatures)—Synchrotron X-ray diffraction. Astrobiology 13, 1049–1064. PMID:24283927
NASA Astrophysics Data System (ADS)
Vogel, M. B.; Des Marais, D. J.; Jahnke, L. L.; Kubo, M.
2009-12-01
We report on the mineralogy, organic preservation potential and habitability of sulfate deposits in acid sulfate volcanic settings at Valles Caldera, New Mexico. Fumaroles and acidic springs are potential analogs for aqueous environments on Mars and may offer insights into habitability of sulfate deposits such as those at Meridiani Planum. Sulfates recently detected on Mars are posited to have formed from fluids derived from basaltic weathering and igneous volatile input, ultimately precipitating from acidic brines subjected to desiccation and freeze-thaw cycles (McClennan and Grotzinger, 2008). Key issues concerning martian sulfate deposits are their relationship to aqueous clay deposits, and whether or not specific sulfates deposits represent former habitable environments (see Soderblum and Bell, 2008; Tosca et al., 2008). Modern terrestrial volcanic fumaroles and hot springs precipitate various Ca-, Mg- and Fe- sulfates along with clays, and can help clarify whether certain acid sulfate mineral assemblages reflect habitable environments. Valles caldera is a resurgent caldera last active in the Pleistocene (1.4 - 1.0 Ma) that hosts several active fumaroles and over 40 geothermal exploration wells (see Goff, 2009). Fumaroles and associated mudpots and springs at Valles range from pH < 1 to 3, and affect argillic alteration upon rhylolitic tuffs and sedimentary deposits (Charles et al., 1986). We identified assemblages containing gypsum, quartz, Al-sulfates, elemental sulfur, clays and other minerals using XRD and SEM-EDS. Our previous research has shown that sulfates from different marine depositional environments display textural and morphological traits that are indicative of biological influence, or specific conditions in the depositional environments (Vogel et al., 2009). Gypsum crystals that develop in the presence of microbial biofilms in marine environments may have distorted crystal morphologies, biofilm - associated dissolution features, and accessory carbonate minerals. Gypsum from Valles Caldera fumaroles develops in the absence of microbial biofilms and differs from biologically influenced marine gypsum in terms of is highly prismatic morphology, lack of texture, and association with clays, and other sulfates. Studies of Valles gypsum crystals therefore support the uniqueness of the putative morphological biosignatures in marine gypsum. We also assayed organic matter from fumarole encrustations to understand how low pH and sulfate content may discriminate against or enhance preservation of specific classes of organic compounds in acid sulfate environments. Similar to gypsiferous marine environments, organics are characterized by abundant organosulfur complexes. Long chain alkanes (> nC22) are abundant from acid sulfate environments. As with hypersaline marine depositional environments, sulfidation appears to be a major diagenetic pathway for organic matter in acid sulfate environments.
Evolution of fluid geochemistry at the Turrialba volcano (Costa Rica) from 1998 to 2008
NASA Astrophysics Data System (ADS)
Vaselli, O.; Tassi, Franco; Duarte, E.; Fernandez, E.; Poreda, R. J.; Huertas, A. Delgado
2010-05-01
Turrialba (10°02'N, 83°45'W) is a 3,349-m high stratovolcano belonging to the Holocene “Cordillera Central” volcanic belt of Costa Rica. The summit consists of three EW-oriented craters (East, Central, and West). Since its last eruptive phase (1864-1866), the Central and West craters have displayed modest fumarolic activity, with outlet temperatures clustering around 90°C. In 2001, seismic swarms, ground deformation, and increasing fumarolic activity occurred. From 2005 to 2008, new fumarolic vents opened between and within the Central and West craters, and along the western and southwestern outer flanks of the volcanic edifice. These physical changes were accompanied by a drastic modification in the gas chemistry that can be divided in three stages: (1) hydrothermal (from 1998 to autumn 2001), characterized by the presence of H2O, CO2, H2S, and, to a very minor extent, HCl and HF; (2) hydrothermal/magmatic (autumn 2001-2007), with the appearance of SO2 and a significant increase of HCl and HF; and (3) magmatic-dominated (2007-2008), characterized by increased SO2 content, SO2/H2S > 100, and temperatures up to 282°C. Accordingly, gas equilibrium in the CO2-CH4-H2 system suggests a progressive evolution of the deep fluid reservoir toward higher temperatures and more oxidizing conditions. The chemical-physical modifications of Turrialba in the last decade can be interpreted as part of a cyclic mechanism controlling the balance between the hydrothermal and the magmatic systems. Nevertheless, the risk of rejuvenation of the volcanic activity cannot be excluded, and an appropriate seismic, ground deformation, and geochemical monitoring program is highly recommended. Turrialba lies at a distance of 35 and 15 km from San José and Cartago, respectively, the two largest cities in Costa Rica.
Isotopic study of the origin of sulfur and carbon in Solfatara fumaroles, Campi Flegrei caldera
NASA Astrophysics Data System (ADS)
Allard, P.; Maiorani, A.; Tedesco, D.; Cortecci, G.; Turi, B.
1991-08-01
Isotopic study of the origin of sulfur and carbon in the hottest (Solfatara) fumaroles of Campi Flegrei caldera, Southern Italy, was carried out on gas samples collected between 1983 and 1988, i.e. during and after the 1982-1984 seismo-volcanic crisis. The results for sulfur (H 2S), the first ever reported on these gases, indicate a mean ∂ 34S of -0.3±0.3‰ (range: -0.7 to +0.1‰ ) versus Canyon Diablo Troilite standard, consistent with an igneous derivation of this element, from either active magma degassing or/and leaching of reduced sulfur-bearing minerals in the volcanic layers. The lack of peculiar ∂ 34S variation during and after the crisis suggests that the chemical variation of H 2S and S/C ratio in the fumaroles (increase and then decrease by a factor 3) were not due to a changing origin of sulfur. The mean ∂ 13C of carbon (CO 2) over the period of survey, -1.6±0.2‰ (range: -1.9 to -1.3‰) versus PDB standard, is similar to the values obtained before the crisis (since 1970). Such an isotopic constancy requires a large and stable source of carbon feeding the fumaroles. The measured ∂ 13C values are much higher than those typical of primary mantle-magmatic carbon ( -6±2‰) and plot within the ∂13C range for marine carbonates ( 0±2‰). Such high values may reflect either (a) 13C-fractionation during degassing of CO 2 from the underlying (⩽5 km depth) magma chamber or (b) the contribution of heavy CO 2 of sedimentary origin, derived from either thermometamorphism of Mesozoic limestone series embedding the magma chamber or, possibly, past contamination of the local mantle by subducted sediments. Various arguments, among which volcanological evidence of an isolated and cooling magma reservoir (which would have been extensively degassed and, so, depleted in 13C along with time), the low 3He/ 4He ratios and the broad 13C-enrichment of volcanic fluids in the region, and geochemical evidence of crust-magma fluid interactions, suggest that a considerable fraction (⩾60%) of CO 2 in Solfatara fumaroles derives from carbonate sediments in the basement. The contribution of magma-derived CO 2 may be higher within the central part of the caldera (including Solfatara crater) than toward its western margin, where fumarolic and geothermal well gases exhibit lower 3He/ 4He ratios and still higher ∂13C values. Such a geochemical pattern is consistent with the central distribution of ground deformation and seismicity during the 1982-1984 crisis and with the idea of a residual magma body, confined beneath the central part of the structure. Alternatively, higher ∂13C and lower 3He/ 4He ratios toward the western margin may result from dilution of Solfatara-type gas during progressively deeper water boiling. Finally, accepting that Solfatara CO 2 derives from simple crustal mixing between magmatic and sedimentary carbon, its constant isotopic composition (together with the constant He isotope ratio) would restrict the possibility of magma intrusion and/or higher magmatic gas input as mechanisms responsible for the 1982-1984 events. However, this conclusion would no more hold true if the magma itself, or even its mantle source, were previously contaminated by crustal carbon.
Biodiversity hot spot on a hot spot: novel extremophile diversity in Hawaiian fumaroles.
Wall, Kate; Cornell, Jennifer; Bizzoco, Richard W; Kelley, Scott T
2015-01-06
Fumaroles (steam vents) are the most common, yet least understood, microbial habitat in terrestrial geothermal settings. Long believed too extreme for life, recent advances in sample collection and DNA extraction methods have found that fumarole deposits and subsurface waters harbor a considerable diversity of viable microbes. In this study, we applied culture-independent molecular methods to explore fumarole deposit microbial assemblages in 15 different fumaroles in four geographic locations on the Big Island of Hawai'i. Just over half of the vents yielded sufficient high-quality DNA for the construction of 16S ribosomal RNA gene sequence clone libraries. The bacterial clone libraries contained sequences belonging to 11 recognized bacterial divisions and seven other division-level phylogenetic groups. Archaeal sequences were less numerous, but similarly diverse. The taxonomic composition among fumarole deposits was highly heterogeneous. Phylogenetic analysis found cloned fumarole sequences were related to microbes identified from a broad array of globally distributed ecotypes, including hot springs, terrestrial soils, and industrial waste sites. Our results suggest that fumarole deposits function as an "extremophile collector" and may be a hot spot of novel extremophile biodiversity. © 2015 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.
Biodiversity hot spot on a hot spot: novel extremophile diversity in Hawaiian fumaroles
Wall, Kate; Cornell, Jennifer; Bizzoco, Richard W; Kelley, Scott T
2015-01-01
Fumaroles (steam vents) are the most common, yet least understood, microbial habitat in terrestrial geothermal settings. Long believed too extreme for life, recent advances in sample collection and DNA extraction methods have found that fumarole deposits and subsurface waters harbor a considerable diversity of viable microbes. In this study, we applied culture-independent molecular methods to explore fumarole deposit microbial assemblages in 15 different fumaroles in four geographic locations on the Big Island of Hawai'i. Just over half of the vents yielded sufficient high-quality DNA for the construction of 16S ribosomal RNA gene sequence clone libraries. The bacterial clone libraries contained sequences belonging to 11 recognized bacterial divisions and seven other division-level phylogenetic groups. Archaeal sequences were less numerous, but similarly diverse. The taxonomic composition among fumarole deposits was highly heterogeneous. Phylogenetic analysis found cloned fumarole sequences were related to microbes identified from a broad array of globally distributed ecotypes, including hot springs, terrestrial soils, and industrial waste sites. Our results suggest that fumarole deposits function as an “extremophile collector” and may be a hot spot of novel extremophile biodiversity. PMID:25565172
A reconnaissance geochemical study of La Primavera geothermal area, Jalisco, Mexico
Mahood, G.A.; Truesdell, A.H.; Templos, M.L.A.
1983-01-01
The Sierra La Primavera, a late Pleistocene rhyolitic caldera complex in Jalisco, Me??xico, contains fumaroles and large-discharge 65??C hot springs that are associated with faults related to caldera collapse and to later magma insurgence. The nearly-neutral, sodium bicarbonate, hot springs occur at low elevations at the margins of the complex, whereas the water-rich fumaroles are high and central. The Comisio??n Federal de Electricidad de Me??xico (CFE) has recently drilled two deep holes at the center of the Sierra (PR-1 and Pr-2) and one deep hole at the western margin. Temperatures as high as 285??C were encountered at 1160 m in PR-1, which produced fluids with 820 to 865 mg/kg chloride after flashing to one atmosphere. Nearby, PR-2 encountered temperatures to 307??C at 2000 m and yielded fluids with chloride contents fluctuating between 1100 and 1560 mg/kg after flashing. Neither of the high-temperature wells produced steam in commercial quantities. The well at the western margin of the Sierra produced fluids similar to those from the hot springs. The temperature reached a maximum of 100??C near the surface and decreased to 80??C at 2000 m. Various geothermometers (quartz conductive, Na/K, Na-K-Ca, ??18O(SO4-H2O) and D/H (steam-water) all yield temperatures of 170 ?? 20??C when applied to the hot spring waters, suggesting that these spring waters flow from a large shallow reservoir at this temperature. Because the hot springs are much less saline than the fluids recovered in PR-1 and PR-2, the mixed fluid in the shallow reservoir can contain no more than 10-20% deep fluid. This requires that most of the heat is transferred by steam. There is probably a thin vapor-dominated zone in the central part of the Sierra, through which steam and gases are transferred to the overlying shallow reservoir. Fluids from this reservoir cool from ???170??C to 65??C by conduction during the 5-7 km of lateral flow to the hot springs. ?? 1983.
Mixing of Magmatic Volatiles With Meteoric Groundwater in the Summit of Kilauea Volcano, Hawaii
NASA Astrophysics Data System (ADS)
Hurwitz, S.; Goff, F.; Janik, C. J.; Evans, W. C.; Counce, D. A.; Sorey, M. L.; Ingebritsen, S. E.
2001-12-01
Water samples were collected from the only deep well (Keller Well-NSF Well) on the summit of Kilauea volcano, Hawaii. The well was drilled in 1973 to a depth of 1262 m, but sat idle until 1998 when a drilling rig was used to remove mud and renew access to the hydrothermal system at a location very close to summit fumarolic activity. The chemistry and isotopic composition of fluid samples collected in 1998-2001 differ significantly from those of samples collected before 1998 and reported in previous studies. The water from the well is rich in sulfate and has a near-neutral pH. The major element chemistry differs significantly from seawater composition and from that of hydrothermal fluids from Kilauea's east rift zone. The well water has a low chloride concentration relative to typical magmatic-hydrothermal fluids and a high sulfate to bicarbonate ratio (approximately 4:1). Based on the S/Cl mass ratio and on carbon and helium isotopes in the well fluids, summit fumaroles and the parental Kilauea magma, we conclude that the hydrothermal fluids sampled from the well formed by condensation of magmatic volatiles into shallow, mainly meteoric groundwater. The oxygen and deuterium isotopic composition indicate that the meteoric component was recharged on the eastern margin of the caldera. Steam condensation and gas dissolution beneath the crater formed an acidic fluid that dissolved the host basalt at high temperatures. The hydrothermal fluid was then modified by cooling and precipitation of secondary minerals along a flow path away from the crater towards the well. Geochemical modeling based on fluid chemistry and geothermometry suggests that the well fluids equilibrated with an assemblage of secondary minerals at temperatures between 90 and 140oC. The C/S ratios in the well water, the parental magma, and the gas plume emanating from the caldera indicate that most of the sulfur degassed from the magma is scrubbed by groundwaters beneath the summit. However, based on the mean sulfate concentration in the well water and on the estimated mean annual water recharge in the caldera region, we conclude that the sulfate concentration in groundwater beneath Kilauea's summit must be an order of magnitude higher than that found in the well water.
NASA Astrophysics Data System (ADS)
Chiodini, Giovanni; Cardellini, Carlo; Lamberti, María Clara; Agusto, Mariano; Caselli, Alberto; Liccioli, Caterina; Tamburello, Giancarlo; Tassi, Franco; Vaselli, Orlando; Caliro, Stefano
2015-10-01
The north-western sector of Caviahue caldera (Argentina), close to the active volcanic system of Copahue, is characterized by the presence of several hydrothermal sites that host numerous fumarolic emissions, anomalous soil diffuse degassing of CO2 and hot soils. In March 2014, measurements of soil CO2 fluxes in 5 of these sites (namely, Las Máquinas, Las Maquinitas I, Las Maquinitas II, Anfiteatro, and Termas de Copahue) allowed an estimation that 165 t of deeply derived CO2 is daily released. The gas source is likely related to a relatively shallow geothermal reservoir containing a single vapor phase as also suggested by both the geochemical data from the 3 deep wells drilled in the 1980s and gas geoindicators applied to the fumarolic discharges. Gas equilibria within the H-C-O gas system indicate the presence of a large, probably unique, single phase vapor zone at 200-210 °C feeding the hydrothermal manifestations of Las Máquinas, Las Maquinitas I and II and Termas de Copahue. A natural thermal release of 107 MW was computed by using CO2 as a tracer of the original vapor phase. The magmatic signature of the incondensable fumarolic gases, the wide expanse of the hydrothermal areas and the remarkable high amount of gas and heat released by fluid expulsion seem to be compatible with an active magmatic intrusion beneath this portion of the Caviahue caldera.
Hydrogen and oxygen isotopic compositions of waters from fumaroles at Kilauea summit, Hawaii
Hinkley, T.K.; Quick, J.E.; Gregory, R.T.; Gerlach, T.M.
1995-01-01
Condensate samples were collected in 1992 from a high-temperature (300?? C) fumarole on the floor of the Halemaumau Pit Crater at Kilauea. The emergence about two years earlier of such a hot fumarole was unprecedented at such a central location at Kilauea. The condensates have hydrogen and oxygen isotopic compositions which indicate that the waters emitted by the fumarole are composed largely of meteoric water, that any magmatic water component must be minor, and that the precipitation that was the original source to the fumarole fell on a recharge area on the slopes of Mauna Loa Volcano to the west. However, the fumarole has no tritium, indicating that it taps a source of water that has been isolated from atmospheric water for at least 40 years. It is noteworthy, considering the unstable tectonic environment and abundant local rainfall of the Kilauea and Mauna Loa regions, that waters which are sources to the hot fumarole remain uncontaminated from atmospheric sources over such long times and long transport distances. As for the common, boiling point fumaroles of the Kilauea summit region, their 18O, D and tritium concentrations indicate that they are dominated by recycling of present day meteoric water. Though the waters of both hot and boiling point fumaroles have dominantly meteoric sources, they seem to be from separate hydrological regimes. Large concentrations of halogens and sulfur species in the condensates, together with the location at the center of the Kilauea summit region and the high temperature, initially suggested that much of the total mass of the emissions of the hot fumarole, including the H2O, might have come directly from a magma body. The results of the present study indicate that it is unreliable to infer a magmatic origin of volcanic waters based solely on halogen or sulfur contents, or other aspects of chemical composition of total condensates. ?? 1995 Springer-Verlag.
Kodosky, L.G.; Keith, T.E.C.
1993-01-01
Factor and canonical correlation analysis of geochemical data from eight fossil fumaroles suggest that six major factors controlled the formation and evolution of fumarolic encrustations on the 1912 ash-flow sheet in the Valley of Ten Thousand Smokes (VTTS). The six-factor solution model explains a large proportion (low of 74% for Ni to high of 99% for Si) of the individual element data variance. Although the primary fumarolic deposits have been degraded by secondary alteration reactions and up to 75 years of weathering, the relict encrustations still preserve a signature of vapor-phase element transport. This vapor-phase transport probably occurred as halide or oxyhalide species and was significant for As, Sb and Br. At least three, and possibly four, varied temperature leaching events affected the fumarolic deposits. High-temperature gases/liquids heavily altered the ejecta glass and mineral phases adjacent to the fumarolic conduit. As the fumaroles cooled. Fe-rich acidic condensate leached the ejecta and primary fumarolic deposits and resulted in the subsequent precipitation of Fe-hydroxides and/or Fe-oxides. Low- to ambient-temperature leaching and hydration reactions generated abundant hydrated amorphous phases. Up to 87% of the individual element data variance is apparently controlled by the chemistry of the ejecta on which the relict encrustations are found. This matrix chemistry factor illustrates that the primary fumarolic minerals surrounding the active VTTS vents observed by earlier workers have been effectively removed by the dissolution reactions. Element enrichment factors calculated for the VTTS relict encrustations support the statistical factor interpretations. On the average, the relict encrustations are enriched, relative to visibly unaltered matrix protolith, in As, Br, Cr, Sb, Cu, Ni, Pb, Fe, and LOI (an indirect measure of sample H2O content). ?? 1993.
Sheppard, D.S.; Janik, C.J.; Keith, T.E.C.
1992-01-01
Fumarolic gas samples collected in 1978 and 1979 from the stratovolcanoes Mount Griggs, Mount Mageik, and the 1953-68 SW Trident cone in Katmai National Park, Alaska, have been analysed and the results presented here. Comparison with recalculated analyses of samples collected from the Valley of Ten Thousand Smokes (VTTS) in 1917 and 1919 demonstrates differences between gases from the short-lived VTTS fumaroles, which were not directly magma related, and the fumaroles on the volcanic peaks. Fumarolic gases of Mount Griggs have an elevated total He content, suggesting a more direct deep crustal or mantle source for these gases than those from the other volcanoes. ?? 1992.
NASA Astrophysics Data System (ADS)
Inguaggiato, Salvatore; Mazzini, Adriano; Vita, Fabio; Sciarra, Alessandra
2016-04-01
The Java Island is characterized by an intense volcanic activity with more then 100 active volcanoes. Moreover, this island is also known by the presence of many mud volcanoes and hydrothermal springs. In particular, in the 2006 several sudden hot mud eruptions, with fluids around 100° C, occurred in the NE side of the island resulting in a prominent eruption named Lusi (contraction of Lumpur Sidoarjo) located along the major Watukosek strike-slip fault zone. The Watukosek fault system, strikes from the Arjuno-Welirang volcanic complex, intersects Lusi and extends towards the NE of the Java island. Conversely of the normal mud eruptions (cold fluids emitted in a short time period of few days), the Lusi eruption was characterized by a persistent effusive hot fluids emissions for a long-time period of, so far, nearly a decade. Moreover, the isotopic composition of emitted gases like Helium showed a clear magmatic origin. For this reasons we decided to investigate the near Arjuno-Welirang complex located on the same strike-slip fault. Arjuno-Welirang is a twin strato-volcano system located in the East of Java along the Watukosek fault, at about 25 km SW respect to the Lusi volcano system. It features two main peaks: Arjuno (3339 masl) and Welirang (3156 masl). The last recorded eruptive activity took place in August 1950 from the flanks of Kawah Plupuh and in October 1950 from the NW part of the Gunung Welirang. This strato-volcano is characterized by a S-rich area, with high T-vent fumarole at least up to 220° C (and likely higher), located mainly in the Welirang crater. In addition, several hot springs vent from the flanks of the volcano, indicate the presence of a large hydrothermal system. During July 2015, in the framework of the Lusi Lab project (ERC grant n° 308126), we carried out a geochemical field campaign on the Arjuno-Welirang volcano hydrothermal system area, sampling water and dissolved gases from the thermal and cold springs located on the flanks of the volcano and from two high-T fumaroles located on the summit area of Welirang. Hydrothermal springs reveal temperatures up to 53° C and pH between 6.2 and 8.2. The hydrothermal springs show a volatile content (mainly CO2 and He) that is several order of magnitude higher than the Air Saturated Waters values (ASW) indicating a strong gas/water interaction processes between waters of meteoric origin and deep volatiles of volcanic origin. The hydrothermal springs have dissolved helium isotopic values with clear magmatic signature (R/Ra around 7) that is remarkably close to the helium isotope values from the fumaroles (R/Ra= 7.30). The isotopic composition of helium measured in the fluids emitted from the Lusi mud-volcano around 6.5R/Ra is very similar to the Welirang volcanic fluids indicating the presence of magmatic gases in the Lusi emitted fluids. While the isotopic composition of waters in the Welirang and Lusi fluids are markedly different suggesting a different origin and/or recharge areas for these two hydrothermal systems. These data support the hypothesis that the presence of volcanic gases could have triggered and conveyed the hot and persistent mud fluids emissions of Lusi volcano.
NASA Astrophysics Data System (ADS)
Lowenstern, J. B.; Bergfeld, D.; Evans, W. C.; Hurwitz, S.
2012-01-01
We sampled fumaroles and hot springs from the Heart Lake Geyser Basin (HLGB), measured water and gas discharge, and estimated heat and mass flux from this geothermal area in 2009. The combined data set reveals that diverse fluids share an origin by mixing of deep solute-rich parent water with dilute heated meteoric water, accompanied by subsequent boiling. A variety of chemical and isotopic geothermometers are consistent with a parent water that equilibrates with rocks at 205°C ± 10°C and then undergoes 21% ± 2% adiabatic boiling. Measured diffuse CO2 flux and fumarole compositions are consistent with an initial dissolved CO2 concentration of 21 ± 7 mmol upon arrival at the caldera boundary and prior to southeast flow, boiling, and discharge along the Witch Creek drainage. The calculated advective flow from the basin is 78 ± 16 L s-1of parent thermal water, corresponding to 68 ± 14 MW, or ˜1% of the estimated thermal flux from Yellowstone. Helium and carbon isotopes reveal minor addition of locally derived crustal, biogenic, and meteoric gases as this fluid boils and degasses, reducing the He isotope ratio (Rc/Ra) from 2.91 to 1.09. The HLGB is one of the few thermal areas at Yellowstone that approaches a closed system, where a series of progressively boiled waters can be sampled along with related steam and noncondensable gas. At other Yellowstone locations, steam and gas are found without associated neutral Cl waters (e.g., Hot Spring Basin) or Cl-rich waters emerge without significant associated steam and gas (Upper Geyser Basin).
Lowenstern, J. B.; Bergfeld, D.; Evans, William C.; Hurwitz, S.
2012-01-01
We sampled fumaroles and hot springs from the Heart Lake Geyser Basin (HLGB), measured water and gas discharge, and estimated heat and mass flux from this geothermal area in 2009. The combined data set reveals that diverse fluids share an origin by mixing of deep solute-rich parent water with dilute heated meteoric water, accompanied by subsequent boiling. A variety of chemical and isotopic geothermometers are consistent with a parent water that equilibrates with rocks at 205°C ± 10°C and then undergoes 21% ± 2% adiabatic boiling. Measured diffuse CO2 flux and fumarole compositions are consistent with an initial dissolved CO2 concentration of 21 ± 7 mmol upon arrival at the caldera boundary and prior to southeast flow, boiling, and discharge along the Witch Creek drainage. The calculated advective flow from the basin is 78 ± 16 L s−1 of parent thermal water, corresponding to 68 ± 14 MW, or –1% of the estimated thermal flux from Yellowstone. Helium and carbon isotopes reveal minor addition of locally derived crustal, biogenic, and meteoric gases as this fluid boils and degasses, reducing the He isotope ratio (Rc/Ra) from 2.91 to 1.09. The HLGB is one of the few thermal areas at Yellowstone that approaches a closed system, where a series of progressively boiled waters can be sampled along with related steam and noncondensable gas. At other Yellowstone locations, steam and gas are found without associated neutral Cl waters (e.g., Hot Spring Basin) or Cl-rich waters emerge without significant associated steam and gas (Upper Geyser Basin).
Geophysical Images of the Shallow Hydrothermal Degassing at Solfatara (Phlegrean Fields, Italy)
NASA Astrophysics Data System (ADS)
Byrdina, S.; Vandemeulebrouck, J.; Cardellini, C.; Chiodini, G.; Legaz, A.; Camerlynck, C.; Lebourg, T.
2014-12-01
We present the results of an electric resistivity tomography (ERT) survey, combined with mappings of diffuse carbon dioxide flux, ground temperature and self-potential (SP) at Solfatara, the most active crater of Phlegrean Fields. Solfatara is characterized by an intense carbon dioxide degassing, fumarole activity, and ground deformation. This ensemble of methods is applied to image the hydrothermal system of Solfatara, to understand the geometry of the fluid circulation, and to define the extension of the hydrothermal plume at a high enough resolution for a quantitative modeling. ERT inversion results show Solfatara as a globally conductive structure, with resistivity in the range 1-200 Ohmm. Broad negative anomaly of self-potential in the inner part of Solfatara with a minimum in the area of Bocca Grande suggests a significant downward flow of condensing liquid water. Comparison between spatial variations of resistivity and gas flux indicates that resistivity changes at depth are related to gas saturation and fluid temperature. These variations delineate two plume structures: a liquid-dominated conductive plume below Fangaia mud-pool and a gas-dominated plume below Bocca Grande fumarole. The geometry of the Fangaia liquid-saturated plume is also imaged by a high resolution 3-D resistivity model. In order to estimate the permeability, we propose a 2-D axis-symmetric numerical model coupling Richards's equation for fluid flow in conditions of partial saturation with the resistivity calculation as function of saturation only. Alternatively, we apply the Dupuit equation to estimate the permeability of the shallow layer. Using these two approaches, we obtain the permeability of the shallow layer below Fangaia which ranges between (2 - 4) 10-14 m 2.
Total (fumarolic + diffuse soil) CO2 output from Furnas volcano.
Pedone, M; Viveiros, F; Aiuppa, A; Giudice, G; Grassa, F; Gagliano, A L; Francofonte, V; Ferreira, T
Furnas volcano, in São Miguel island (Azores), being the surface expression of rising hydrothermal steam, is the site of intense carbon dioxide (CO 2 ) release by diffuse degassing and fumaroles. While the diffusive CO 2 output has long (since the early 1990s) been characterized by soil CO 2 surveys, no information is presently available on the fumarolic CO 2 output. Here, we performed (in August 2014) a study in which soil CO 2 degassing survey was combined for the first time with the measurement of the fumarolic CO 2 flux. The results were achieved by using a GasFinder 2.0 tunable diode laser. Our measurements were performed in two degassing sites at Furnas volcano (Furnas Lake and Furnas Village), with the aim of quantifying the total (fumarolic + soil diffuse) CO 2 output. We show that, within the main degassing (fumarolic) areas, the soil CO 2 flux contribution (9.2 t day -1 ) represents a minor (~15 %) fraction of the total CO 2 output (59 t day -1 ), which is dominated by the fumaroles (~50 t day -1 ). The same fumaroles contribute to ~0.25 t day -1 of H 2 S, based on a fumarole CO 2 /H 2 S ratio of 150 to 353 (measured with a portable Multi-GAS). However, we also find that the soil CO 2 contribution from a more distal wider degassing structure dominates the total Furnas volcano CO 2 budget, which we evaluate (summing up the CO 2 flux contributions for degassing soils, fumarolic emissions and springs) at ~1030 t day -1 .
NASA Astrophysics Data System (ADS)
Benhamou, G.; Allard, P.; Sabroux, J. C.; Vitter, G.; Dajlevic, D.; Creusot, A.
1988-12-01
The oxygen fugacity (fO2) and the fO2 versus T°C relationship of high-temperature (600°-860°C) gas emissions from Momotombo volcano, Nicaragua, was determined from both field electrochemical measurements (electrolytic cell assembly) and thermodynamic computations on gas samples collected between 1978 and 1985. It was then compared with the intrinsic fO2 of fresh and altered lavas from the last eruption (1905), as measured between 500° and 1100°C in laboratory. The electrochemical results show that the oxygen fugacity of Momotombo fumaroles, at equivalent temperature, is much higher than that of the fresh 1905 lava (˜FMQ buffer) and closer to that of their altered wall rocks (˜FMQ buffer). The equilibrium O2 fugacities calculated from the chemistry of gas samples confirm this pattern. However, they suggest that the gas mixtures preserve the (variable) memory of a higher thermal equilibrium achieved at depth, under temperature and fO2 conditions of up to 1050°C and 10-9.0 atm, respectively, which correspond to the cross over between the fO2-T gas and lava trends. These data thus support the idea that Momotombo volcanic gases, released in a period of increasing activity, escape from a shallow magma body before suffering a variable oxidation during their ascent through both unbuffered cooling and reactions with environmental fluids and rocks. This late oxidation is weaker at central fumaroles than at peripherical ones. While between 1978 and 1985 the temperature of the hottest fumarole increased from 750° to 865°-900°C, the equilibrium fO2 of the gas decreased by nearly one order of magnitude (at comparable equilibrium temperature). Such an evolution presumably reflects an increasing connection between the surface exhalations and the magma degassing at depth along with time. This work underlines the possibility of monitoring the processes of magma ascent and gas-magma separation within a volcano before an eruption by continuously recording the changes of both oxygen fugacity and temperature in hot fumaroles.
NASA Astrophysics Data System (ADS)
Mayhew, L. E.; Childers, S. E.; Geist, D.
2005-12-01
The extreme physiochemical conditions, insularity, and wide range in ages of fumaroles of the Galapagos Islands provide an excellent opportunity to explore for novel microorganisms and to study life in extreme environments. This is the first study that measures microbial diversity of Galapagos fumaroles. Forty-seven samples were collected from six distinct fumarole fields on Sierra Negra and Alcedo volcanoes. Vulcan Chico, on Sierra Negra, was activated during the last eruption in 1979. Two of the other fumarole fields on Sierra Negra are associated with a long-lived fault system on the caldera floor and are therefore likely to be significantly older. The fault-associated fumaroles have widespread alteration haloes (up to 100 m in diameter) and thick deposits of native sulfur. The most vigorous of the fumarole fields on Alcedo activated in late 1993 to early 1994. The second fumarole field on Alcedo is associated with a recently extinct geyser and the third is located on a rhyolite vent. A diversity of colors was observed in the substrates at all of the fumarole fields and some may be the result of microbial activity. Collection sites were chosen on the basis of temperature and the variations in the substrate in order to obtain samples from a variety of environments. Temperatures at sample sites range from 25.0 to 178.5° C, and pH from 0 to 6. The material collected varies between sites and includes crystalline sulfur deposits, clay, sandy and rocky soils, and microbial mats. Substrate material is characterized by powder x-ray diffractometry and scanning electron microscopy and gases collected from five of the fumarole fields are being analyzed to test for chemical controls on the microbial populations. Genomic DNA is being extracted from all of the samples. Primers for Bacteria and Archaea are used for PCR amplification of the 16S rRNA gene. To date, 22 of 37 processed samples have amplifiable DNA. Microbial diversity of samples possessing amplifiable DNA is being assessed by denaturing gradient gel electrophoresis (DGGE). These results may reveal the presence of novel organisms and will provide insights into how vent age, insularity, temperature, pH, and geochemistry influence the microbial populations in extreme environments in the Galapagos Islands.
Zimbelman, D.R.; Rye, R.O.; Landis, G.P.
2000-01-01
The edifice of Mount Rainier, an active stratovolcano, has episodically collapsed leading to major debris flows. The largest debris flows are related to argillically altered rock which leave areas of the edifice prone to failure. The argillic alteration results from the neutralization of acidic magmatic gases that condense in a meteoric water hydrothermal system fed by the melting of a thick mantle of glacial ice. Two craters atop a 2000-year-old cone on the summit of the volcano contain the world's largest volcanic ice-cave system. In the spring of 1997 two active fumaroles (T=62°C) in the caves were sampled for stable isotopic, gas, and geochemical studies. Stable isotope data on fumarole condensates show significant excess deuterium with calculated δD and δ18O values (−234 and −33.2‰, respectively) for the vapor that are consistent with an origin as secondary steam from a shallow water table which has been heated by underlying magmatic–hydrothermal steam. Between 1982 and 1997, δD of the fumarole vapor may have decreased by 30‰. The compositions of fumarole gases vary in time and space but typically consist of air components slightly modified by their solubilities in water and additions of CO2 and CH4. The elevated CO2 contents δ13CCO2 = -11.8±0.7‰, with spikes of over 10,000 ppm, require the episodic addition of magmatic components into the underlying hydrothermal system. Although only traces of H2S were detected in the fumaroles, most notably in a sample which had an air δ13CCO2 signature (−8.8‰), incrustations around a dormant vent containing small amounts of acid sulfate minerals (natroalunite, minamiite, and woodhouseite) indicate higher H2S (or possibly SO2) concentrations in past fumarolic gases. Condensate samples from fumaroles are very dilute, slightly acidic, and enriched in elements observed in the much higher temperature fumaroles at Mount St. Helens (K and Na up to the ppm level; metals such as Al, Pb, Zn Fe and Mn up to the ppb level and volatiles such as Cl, S, and F up to the ppb level). The data indicate that the hydrothermal system in the edifice at Mount Rainier consists of meteoric water reservoirs, which receive gas and steam from an underlying magmatic system. At present the magmatic system is largely flooded by the meteoric water system. However, magmatic components have episodically vented at the surface as witnessed by the mineralogy of incrustations around inactive vents and gas compositions in the active fumaroles. The composition of fumarole gases during magmatic degassing is distinct and, if sustained, could be lethal. The extent to which hydrothermal alteration is currently occurring at depth, and its possible influence on future edifice collapse, may be determined with the aid of on site analyses of fumarole gases and seismic monitoring in the ice caves.
Gerlach, T.M.; Casadevall, T.J.
1986-01-01
This study is an investigation of the chemical changes in the Mount St. Helens fumarole gases up to October 1981, the sources of the fumarole gases, and the stability of gas species in the shallow magma system. These problems are investigated by calculations of element compositions, thermodynamic equilibria, and magmatic volatile-hydrothermal steam mixing models. The fumarole gases are treated as mixtures of magmatic volatiles and hydrothermal steam formed by magma degassing and boiling of local waters in a dryout zone near conduit and dome magma. The magmatic volatile fraction is significant in fumaroles with temperatures in excess of the magma cracking-temperature (??? 700??C) - i.e., the temperature below which cracking is induced by thermal stresses during cooling and solidification. Linear composition changes of the fumarole gases over time appear to be the result of a steady decline in the magmatic volatile mixing fraction, which may be due to the tapping of progressively volatile-depleted magma. The maximum proportion of hydrothermal steam in the fumaroles rose from about 25-35% in September 1980 to around 50-70% by October 1981. Fractional degassing of magmatic CO2 and sulfur also contributed to the chemical changes in the fumarole gases. The steady chemical changes indicate that replenishment of the magma system with undegassed magma was not significant between September 1980 and September 1981. Extrapolations of chemical trends suggest that fumarole gases emitted at the time of formation of the first dome in mid-June 1980 were more enriched in a magmatic volatile fraction and contained a minimum of 9% CO2. Calculations show H2S is the predominant sulfur species in Mount St. Helens magma below depths of 200 m. Rapid release of gases from magma below this depth is a plausible mechanism for producing the high H2S/SO2 observed in Mount St. Helens plumes during explosive eruptions. This study suggests that dacite-andesite volcanos may emit gases richer in CO2 during the earlier episodes of an eruptive cycle and burden the atmosphere with much more H2S than SO2 during explosive eruptions. ?? 1986.
NASA Astrophysics Data System (ADS)
Richon, P.; Salaun, A.; Boudon, G.; Villemant, B.; Crispi, O.; Sabroux, J.
2010-12-01
We propose two conceptual models for the dynamics of fumarolic gases, during their ascent through the volcano plumbing, based on radon-222 and temperature data collected on fumaroles of La Soufrière volcano (Guadeloupe,FWI) together with local barometric pressure, and on a new interpretation of older data collected on Merapi volcano (1), Indonesia. All these in-situ measurements prove that the diurnal (24h, S1 barometric wave) and semidiurnal (12h, S2 barometric wave) variations in radon concentration are clearly observable, and positively or negatively correlated with barometric pressure variation. Two models are used to interpret this correlation. The first model, called “Accumulation mode”, is characterized by an initial and negligible deep radon-222 source and by a major contribution of radon-222 from conduit walls and connected fractures (emanation and exhalation mechanisms) during the gas ascent through the fumarolic system. This model is substantiated by a positive correlation between radon and pressure in the Merapi fumaroles. The second model, or “Decay mode”, is exemplified by a negative correlation between radon and pressure as measured in fumaroles at La Soufrière volcano. It is characterized by radioactive decay of a strong initial radon-222 source generated by a deeper reservoir (hydrothermal system or magmatic chamber) whereas contribution by conduit walls and connected fractures to the total radon-222 activity in the fumarole is comparatively minor during the transit time of the gas. In these two modes, it is possible to infer that, for transit times longer than ca. 21 days, the barometric pressure does not modulate the radon signal. Thus, the simultaneous monitoring of radon-222, temperature and barometric pressure provides a precise fumarole flowmeter. In addition, it is a tool to decipher shallow versus deep feeding of volcanic fumaroles that should prove useful for volcano monitoring. (1)Zimmer, M. & Erzinger, J. Continuous H2O, CO2, 222Rn and temperature measurements on Merapi Volcano, Indonesia. J. Volcanol. Geoth. Res. 125, 25-38 (2003).
NASA Astrophysics Data System (ADS)
Diliberto, Iole; Cappuzzo, Santo; Inguaggiato, Salvatore; Cosenza, Paolo
2014-05-01
We present an instrumental system to measure and to map the space variation of the surface temperature in volcanic fields. The system is called Pirogips, its essential components are a Pyrometer and a Global Position System but also other devices useful to obtain a good performance of the operating system have been included. In the framework of investigation to define and interpret volcanic scenarios, the long-term monitoring of gas geochemistry can improve the resolution of the scientific approaches by other specific disciplines. Indeed the fluid phase is released on a continuous mode from any natural system which produces energy in excess respect to its geological boundaries. This is the case of seismic or magmatic active areas where the long-term geochemical monitoring is able to highlight, and to follow in real time, changes in the rate of energy release and/or in the feeding sources of fluids, thus contributing to define the actual behaviour of the investigated systems (e.g. Paonita el al., 2013; 2002; Taran, 2011; Zettwood and Tazieff, 1973). The demand of pirogips starts from the personal experience in long term monitoring of gas geochemistry (e.g. Diliberto I.S, 2013; 2011; et al., 2002; Inguaggiato et al.,2012a, 2012b). Both space and time variation of surface temperature highlight change of energy and mass release from the deep active system, they reveal the upraise of deep and hot fluid and can be easily detected. Moreover a detailed map of surface temperature can be very useful for establishing a network of sampling points or installing a new site for geochemical monitoring. Water is commonly the main component of magmatic or hydrothermal fluid release and it can reach the ground surface in the form of steam, as in the high and low temperature fumaroles fields, or it can even condense just below the ground surface. In this second case the water disperses in pores or circulates in the permeable layers while the un-condensable gases reach the surface (e.g. in mofettes and diffuse degassing areas). The occurrence of thermal anomalies at the surface often reveals that a process of steam condensation is occurring below the ground and that CO2 fluxes are being released on the surface. A thermal map of steam heated grounds therefore highlights boundaries of underground steam advection and also the more suitable sites for geochemical monitoring. Pirogips has been assembled for the quick acquisition of surface parameters related to the exhaling activity of volcanic systems. It has been formerly tested in a controlled environment, after in the well known fumaroles areas of Vulcano island, and then in the volcanic system El Machin (Colombia) for the field survey preliminary to the installation of new monitoring stations. The preliminary test and the first field experiences confirmed that pirogips acquires the surface temperatures quickly and with good detail. The combination of sensors supplies the advantage of in situ methods (i.e. accuracy of the direct measurement by thermocouple) and those of ground-based remote sensing techniques (i.e. quickness of measurement process), at the same time reducing the main disadvantages of each method. A home-made data-logger combines the acquired parameters and returns a data-string allowing an easy visualization of acquired data on geo-referenced maps. The string of data returns the position of acquisition (lat, long, WGS84), surface temperature (either derived by the pyrometer and by thermocouple), ambient temperature, barometric pressure and air moisture. -References -Diliberto I.S., Gurrieri S., Valenza M. (2002) Relationships between diffuse CO2 emissions and volcanic activity on the island of Vulcano (Aeolian Islands, Italy) during the period 1984-1994 Bulletin of Volcanology vol 64: 219-228. -Diliberto I.S., (2013) Time series analysis of high temperature fumaroles monitored on the island of Vulcano (Aeolian Archipelago, italy). Journal of Volcanology and Geothermal Research Manuscript Number: doi: 10.1016/j.jvolgeores.2013.08.003. Inguaggiato, S., Mazot, A., Diliberto, I.S., Inguaggiato, C., Madonia, P., Rouwet, D., Vita, F., (2012a) Total CO2 output from Vulcano island (Aeolian Islands, Italy). Geochem. Geophys. Geosyst., 13, 2 ', Q02012, DOI 10.1029/2011GC003920. -Inguaggiato, S., Calderone, L., Inguaggiato, C., Mazot, A., Morici, S., Vita F. (2012b) Long time variation of soil CO2 fluxes at the summit crater of Vulcano (Italy). Bull Volcanol, 74:1859-1863, DOI 10.1007/s00445-012-0637-6. -Paonita, A., Favara, R., Nuccio, P. M., Sortino, F. (2002). Genesis of fumarolic emissions as inferred by isotope mass balances: CO2 and water at Vulcano Island, Italy. Geochim. Cosmochim. Acta, 66, 759-772, doi:10.1016/S0016-7037(01)00814-6. -Paonita A., C. Federico, P. Bonfanti, G. Capasso, S. Inguaggiato, F. Italiano, P. Madonia, G. Pecoraino, F. Sortino (2013) The episodic and abrupt geochemical changes at La Fossa fumaroles (Vulcano Island, Italy) and related constraints on the dynamics, structure, and compositions of the magmatic system. Geochimica et Cosmochimica Acta 120, 158-178. Taran Y. A. (2011). N2, Ar, and He as a tool for discriminating sources of volcanic fluids with application to Vulcano, Italy. Bulletin of volcanology, 73, 395-408, doi: 10.1007/s00445- 011-0448-1. -Zettwood, P., Tazieff, H. (1973). Instrumentation for measuring and recording mass and energy transfer from volcanoes to the atmosphere. Bulletin of Volcanology 36, 1-19.
NASA Astrophysics Data System (ADS)
Gresse, Marceau; Vandemeulebrouck, Jean; Byrdina, Svetlana; Chiodini, Giovanni; Revil, André; Johnson, Timothy C.; Ricci, Tullio; Vilardo, Giuseppe; Mangiacapra, Annarita; Lebourg, Thomas; Grangeon, Jacques; Bascou, Pascale; Metral, Laurent
2017-11-01
The Solfatara volcano is the main degassing area of the Campi Flegrei caldera, characterized by 60 years of unrest. Assessing such renewal activity is a challenging task because hydrothermal interactions with magmatic gases remain poorly understood. In this study, we decipher the complex structure of the shallow Solfatara hydrothermal system by performing the first 3-D, high-resolution, electrical resistivity tomography of the volcano. The 3-D resistivity model was obtained from the inversion of 43,432 resistance measurements performed on an area of 0.68 km2. The proposed interpretation of the multiphase hydrothermal structures is based on the resistivity model, a high-resolution infrared surface temperature image, and 1,136 soil CO2 flux measurements. In addition, we realized 27 soil cation exchange capacity and pH measurements demonstrating a negligible contribution of surface conductivity to the shallow bulk electrical conductivity. Hence, we show that the resistivity changes are mainly controlled by fluid content and temperature. The high-resolution tomograms identify for the first time the structure of the gas-dominated reservoir at 60 m depth that feeds the Bocca Grande fumarole through a 10 m thick channel. In addition, the resistivity model reveals a channel-like conductive structure where the liquid produced by steam condensation around the main fumaroles flows down to the Fangaia area within a buried fault. The model delineates the emplacement of the main geological structures: Mount Olibano, Solfatara cryptodome, and tephra deposits. It also reveals the anatomy of the hydrothermal system, especially two liquid-dominated plumes, the Fangaia mud pool and the Pisciarelli fumarole, respectively.
Microbial diversity in nonsulfur, sulfur and iron geothermal steam vents.
Benson, Courtney A; Bizzoco, Richard W; Lipson, David A; Kelley, Scott T
2011-04-01
Fumaroles, commonly called steam vents, are ubiquitous features of geothermal habitats. Recent studies have discovered microorganisms in condensed fumarole steam, but fumarole deposits have proven refractory to DNA isolation. In this study, we report the development of novel DNA isolation approaches for fumarole deposit microbial community analysis. Deposit samples were collected from steam vents and caves in Hawaii Volcanoes National Park, Yellowstone National Park and Lassen Volcanic National Park. Samples were analyzed by X-ray microanalysis and classified as nonsulfur, sulfur or iron-dominated steam deposits. We experienced considerable difficulty in obtaining high-yield, high-quality DNA for cloning: only half of all the samples ultimately yielded sequences. Analysis of archaeal 16S rRNA gene sequences showed that sulfur steam deposits were dominated by Sulfolobus and Acidianus, while nonsulfur deposits contained mainly unknown Crenarchaeota. Several of these novel Crenarchaeota lineages were related to chemoautotrophic ammonia oxidizers, indicating that fumaroles represent a putative habitat for ammonia-oxidizing Archaea. We also generated archaeal and bacterial enrichment cultures from the majority of the deposits and isolated members of the Sulfolobales. Our results provide the first evidence of Archaea in geothermal steam deposits and show that fumaroles harbor diverse and novel microbial lineages. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Moretti, Roberto; De Natale, Giuseppe; Troise, Claudia
2017-04-01
Volcanic unrest at calderas involve complex interaction between magma, hydrothermal fluids and crustal stress and strain. Campi Flegrei caldera (CFc), located in the Naples (Italy) area and characterised by the highest volcanic risk on Earth for the extreme urbanisation, undergoes unrest phenomena involving several meters of uplift and intense shallow micro-seismicity since several decades. Despite unrest episodes display in the last decade only moderate ground deformation and seismicity, current interpretations of geochemical data point to a highly pressurized hydrothermal system. We show that at CFc, the usual assumption of vapour-liquid coexistence in the fumarole plumes leads to largely overestimated hydrothermal pressures and, accordingly, interpretations of elevated unrest. By relaxing unconstrained geochemical assumptions, we infer an alternative model yielding better agreement between geophysical and geochemical observations. The model reconciles discrepancies between what observed 1) for two decades since the 1982-84 large unrest, when shallow magma was supplying heat and fluids to the hydrothermal system, and 2) in the last decade. Compared to the 1980's unrest, the post-2005 phenomena are characterized by much lower aquifers overpressure and magmatic involvement, as indicated by geophysical data and despite large changes in geochemical indicators. Our interpretation points out a model in which shallow sills, intruded during 1969-1984, have completely cooled, so that fumarole emissions are affected now by deeper, CO2-richer, magmatic gases producing a relatively modest heating and overpressure of the hydrothermal system. Our results do have important implications on the short-term eruption hazard assessment and on the best strategies for monitoring and interpreting geochemical data.
Geochemistry of volcanic gas from Avachinsky volcano (Kamchatka, Russia)
NASA Astrophysics Data System (ADS)
Chaplygin, Ilya; Taran, Yuri; Lavrushin, Vasily; Inguaggiato, Salvatore
2015-04-01
Among 29 active volcanoes on Kamchatka Avachinsky volcano (2741 m) attracts more attention that others due to its proximity (25 km) to Petropavlovsk-Kamchatsky, the biggest city on Kamchatka. The last eruption at Avacha occurred in summit crater in January 1991. It produced small lava flow and left lava plug, which cracked in 2001. Gas emissions from the crack and fumarolic sites at Avachinsky has been monitored from 1994 (Malik, Zelensky, 2014). Previous data show that gas temperature increase (T°C): 473 (09.94), 416 (08.97), 400 (08.99), 500 (10.01), 626 (09.13). We present chemical and isotopic data on gas and condensate samples taken from the hottest fumarole at Avacha (630°C) in July 2014 (mol.%): H2O 96.46, CO2 1.55, SO2 1.32, HCl 0.27, HF 0.02, H2 0.28; δ18O 2.28‰, δD -48.8‰. According to data available gas from Avacha is close to magmatic fluid of subduction zone volcanoes. ICP data on condensate collected allow to intercompare metal-bearing capacity of high-temperature gases from Avacha, Gorely, Tolbachik and Kudriavy volcanoes. The study is supported by RFBR, grant 14-05-00874.
Mantle source beneath Turrialba volcano (Costa Rica): a geochemical investigation
NASA Astrophysics Data System (ADS)
Di Piazza, A.; Rizzo, A. L.; Barberi, F.; Carapezza, M. L.; Sortino, F.; De Astis, G.; Romano, C.
2014-12-01
In this study we analysed rocks and noble gas composition of fluid inclusions (FIs) hosted in olivine crystals contained in a suite of eruptive products of the last 10ka of activity of Turrialba volcano, Cordillera Central, Costa Rica. The suite of analyzed rocks display a calc-alkaline affinity, ranging in composition from basaltic-andesite to dacite. Trace element patterns indicate a typical behavior of subduction-related magmas and also the clear contribution of an OIB-like signature at source. A group of andesites displays also adakite-like geochemical features, as evidenced by their constant depletion in HFSE elements. Sr isotope (0.703593 - 0.703678) and Nd isotope ratios (0.512960 - 0.512968) suggest that Turrialba magmas belong to one of the less contaminated mantle source of Central America. The 3He/4He ratio of fluid inclusions from the most mafic eruptive products (basaltic-andesites) varies from 7.86 to 8.07 Ra, while that from andesite lavas varies from 7.03 to 7.18 Ra. In order to understand the mantle source feeding Turrialba volcano, we performed a geochemical investigation on fumarolic gases of summit craters. The He isotope composition of dry gases of Turrialba volcano is characterized by extremely high R/Ra values (7.08-7.96 Ra). The highest 3He/4He ratios were measured at both West and Central Craters (7.93-7.96 Ra and 7.78-7.88 Ra, respectively), and are the highest values of the entire Central America. Despite the observed variability, the 3He/4He ratio of fumarolic gases and FIs from Turrialba volcano is well in the range of arc related volcanism (~7-8 Ra; Hilton et al., 2002), and represents the signature of a mantle wedge in which the contamination by crustal fluids is small to negligible. In addition the occurrence of recent adakite-like magmatism suggests the presence of an abnormal heating of the subducting lithosphere under Turrialba volcano, allowing even old or cold oceanic crust to melt.
Dark Oligotrophic Volcanic Ecosystems (DOVEs) in Fumarolic Ice Caves of Mt. Erebus Volcano
NASA Astrophysics Data System (ADS)
Staudigel, H.; Anitori, R.; Davis, R.; Connell, L.; Tebo, B. M.
2011-12-01
Dark Oligotrophic Volcanic Ecosystems (DOVEs) in the earth's crust may host substantial biomass sustained by chemolithoautotrophic metabolic reactions. It may serve as the base of the foodweb at the surface via hydrothermal circulation, venting pore fluids, cold seeps or gases, and offer a means for primary carbon fixation. When compared to other crustal oligotrophic environments, DOVEs are particularly relevant due to their considerable reductive potential, high permeability and the substantial chemical exchange facilitated by their hydrothermal systems. We studied terrestrial DOVEs in fumarolic ice caves on the summit plateau of Mt Erebus, an active volcano on Ross Island, Antarctica (http://erebuscaves.nmt.edu/). Most of the ice caves on Mt Erebus are relatively shallow and illuminated by natural light, but some are deep enough to afford complete darkness. Fumarole gases forming these caves are mostly atmospheric, enriched with water vapor and CO2. The fumaroles were studied in three caves, Warren, Warren West and Harry's Dream; these displayed, respectively, temperatures of 18°C, 2°C and 11°C at our sampling sites. Both Warren caves were completely dark, while Harry's Dream received continuous indirect light during the Austral summer, and offered a control to the two dark caves. The composition of the resident microbial communities was assessed using 16S rRNA and ITS libraries, while metabolic and functional characteristics were analyzed by culturing. The latter results are presented by Anitori et al. (this session). The three cave soils displayed very low (Warren, Warren West) or moderate division-level diversity, with distinct communities in each environment. Acidobacteria was the only phylum detected in all three caves, and was a major component of each library. The phototroph-containing phyla Cyanobacteria, Chloroflexi, and Chlorophyta (latter eukaryotic) were only seen in Harry's Dream. A number of phyla whose members are known to oxidize Mn(II) or Fe(II) were also identified in the caves. The overall phylum and class-level composition of the cave libraries displayed certain similarities to other cave communities, with a notable exception being the dominance of Ktedonobacteria (63% of the Warren cave 16S rDNA library), a recently described, filamentous bacterial lineage. A large fraction of the database matches for the cave libraries were to uncultured or cultured bacteria from environments with one or more similarities to the Mt. Erebus ice caves, i.e, associated with volcanic rocks and soils, alpine soil types, glaciers, caves and other cold environments. A functional analysis of microbes from these caves (Anitori et al., this session) shows good evidence for chemolithotrophic metabolisms, autotrophic carbon fixation as well as nitrogen fixation. These studies validate fumarolic ice caves at Mt Erebus as viable experimental study sites for chemolithotrophic microbial communities in DOVEs.
Scrubbing masks magmatic degassing during repose at Cascade-Range and Aleutian-Arc volcanoes
Symonds, Robert B.; Janik, C.J.; Evans, William C.; Ritchie, B.E.; Counce, Dale; Poreda, R.J.; Iven, Mark
2003-01-01
Between 1992 and 1998, we sampled gas discharges from ≤173°C fumaroles and springs at 12 quiescent but potentially restless volcanoes in the Cascade Range and Aleutian Arc (CRAA) including Mount Shasta, Mount Hood, Mount St. Helens, Mount Rainier, Mount Baker, Augustine Volcano, Mount Griggs, Trident, Mount Mageik, Aniakchak Crater, Akutan, and Makushin. For each site, we collected and analyzed samples to characterize the chemical (H2O, CO2, H2S, N2, CH4, H2, HCl, HF, NH3, Ar, O2, He) and isotopic (δ13C of CO2, 3He/4He, 40Ar/36Ar, δ34S, δ13C of CH4, δ15N, and δD and δ18O of water) compositions of the gas discharges, and to create baseline data for comparison during future unrest. The chemical and isotopic data show that these gases contain a magmatic component that is heavily modified from scrubbing by deep hydrothermal (150° - 350°C) water (primary scrubbing) and shallow meteoric water (secondary scrubbing). The impact of scrubbing is most pronounced in gas discharges from bubbling springs; gases from boiling-point fumaroles and superheated vents show progressively less impact from scrubbing. The most effective strategies for detecting gas precursors to future CRAA eruptions are to measure periodically the emission rates of CO2 and SO2, which have low and high respective solubilities in water, and to monitor continuously CO2 concentrations in soils around volcanic vents. Timely resampling of fumaroles can augment the geochemical surveillance program by watching for chemical changes associated with drying of fumarolic pathways (all CRAA sites), increases in gas geothermometry temperatures (Mount Mageik, Trident, Mount Baker, Mount Shasta), changes in δ13C of CO2 affiliated with magma movement (all CRAA site), and increases in 3He/4He coupled with intrusion of new magma (Mount Rainier, Augustine Volcano, Makushin, Mount Shasta). Repose magmatic degassing may discharge substantial amounts of S and Cl into the edifices of Mount Baker and several other CRAA volcanoes that is trapped by primary and secondary scrubbing. The consequent acidic fluids produce ongoing alteration in the 0.2- to 3-km-deep hydrothermal systems and in fields of boiling-point fumaroles near the surface. Such alteration may influence edifice stability and contribute to the formation of more-hazardous cohesive debris flows. In particular, we recommend further investigation of the volume, extent, and hazards of hydrothermal alteration at Mount Baker. Other potential hazards associated with the CRAA volcano hydrothermal systems include hydrothermal eruptions and, for deeper systems intruded by magma, deep-seated edifice collapse.
The role of magmas in the formation of hydrothermal ore deposits
Hedenquist, Jeffrey W.; Lowenstern, Jacob B.
1994-01-01
Magmatic fluids, both vapour and hypersaline liquid, are a primary source of many components in hydrothermal ore deposits formed in volcanic arcs. These components, including metals and their ligands, become concentrated in magmas in various ways from various sources, including subducted oceanic crust. Leaching of rocks also contributes components to the hydrothermal fluid—a process enhanced where acid magmatic vapours are absorbed by deeply circulating meteoric waters. Advances in understanding the hydrothermal systems that formed these ore deposits have come from the study of their active equivalents, represented at the surface by hot springs and volcanic fumaroles.
Mercury emissions and stable isotopic compositions at Vulcano Island (Italy)
NASA Astrophysics Data System (ADS)
Zambardi, T.; Sonke, J. E.; Toutain, J. P.; Sortino, F.; Shinohara, H.
2009-01-01
Sampling and analyses methods for determining the stable isotopic compositions of Hg in an active volcanic system were tested and optimized at the volcanic complex of Vulcano (Aeolian Islands, Italy). Condensed gaseous fumarole Hg (fum)T, plume gaseous elemental Hg (g)0 and plume particulate Hg (p)II were obtained at fumaroles F0, F5, F11, and FA. The average total Hg emissions, based on Hg T/SO 2 in condensed fumarolic gases and plumes, range from 2.5 to 10.1 kg y - 1 , in agreement with published values [Ferrara, R., Mazzolai, B., Lanzillotta, E., Nucaro, E., Pirrone, N., 2000. Volcanoes as emission sources of atmospheric mercury in the Mediterranean Basin. Sci. Total Environ. 259(1-3), 115-121; Aiuppa, A., Bagnato, E., Witt, M.L.I., Mather, T.A., Parello, F., Pyle, D.M., Martin, R.S., 2007. Real-time simultaneous detection of volcanic Hg and SO 2 at La Fossa Crater, Vulcano (Aeolian Islands, Sicily). Geophys. Res. Lett. 34(L21307).]. Plume Hg (p)II increases with distance from the fumarole vent, at the expense of Hg (g)0 and indicates significant in-plume oxidation and condensation of fumarole Hg (fum)T. Relative to the NIST SRM 3133 Hg standard, the stable isotopic compositions of Hg are δ 202Hg (fum)T = - 0.74‰ ± 0.18 (2SD, n = 4) for condensed gaseous fumarole Hg (fum)T, δ 202Hg (g)0 = - 1.74‰ ± 0.36 (2SD, n = 1) for plume gaseous elemental Hg (g)0 at the F0 fumarole, and δ 202Hg (p)II = - 0.11‰ ± 0.18 (2SD, n = 4) for plume particulate Hg (p)II. The enrichment of Hg (p)II in the heavy isotopes and Hg (g)0 in the light isotopes relative to the total condensed fumarolic Hg (fum)T gas complements the speciation data and demonstrates a gas-particle fractionation occurring after the gas expulsion in ambient T° atmosphere. A first order Rayleigh equilibrium condensation isotope fractionation model yields a fractionation factor α cond-gas of 1.00135 ± 0.00058.
NASA Astrophysics Data System (ADS)
John, D. A.; Breit, G. N.; Sisson, T. W.; Vallance, J. W.; Rye, R. O.
2005-12-01
Mount Rainier is the result of episodic stages of edifice growth during periods of high eruptive activity and edifice destruction during periods of relative magmatic quiescence over the past 500 kyr. Edifice destruction occurred both by slow erosion and by catastrophic collapses, some of which were strongly influenced by hydrothermal alteration. Several large-volume Holocene debris-flow deposits contain abundant clasts of hydrothermally altered rocks, most notably the 4-km3 clay-rich Osceola Mudflow which formed by collapse of the northeast side and upper 1000+ m of the edifice about 5600 ya and flowed >120 km downstream into Puget Sound. Mineral assemblages and stable isotope data of hydrothermal alteration products in Holocene debris-flow deposits indicate formation in distinct hydrothermal environments, including magmatic-hydrothermal, steam-heated (including a large fumarolic component), magmatic steam (including a possible fumarolic component), and supergene. The Osceola Mudflow and phreatic components of coeval tephras contain the highest-temperature and inferred most deeply formed alteration minerals; assemblages include magmatic-hydrothermal quartz-alunite, quartz-topaz, quartz-pyrophyllite and quartz-illite (all +pyrite), in addition to steam-heated opal-alunite-kaolinite and abundant smectite-pyrite. In contrast, the Paradise lahar, which formed by a collapse of the surficial upper south side of the edifice, contains only steam-heated assemblages including those formed largely above the water table from condensation of fumarolic vapor (opal-alunite-jarosite). Younger debris-flow deposits on the west side of the volcano (Round Pass lahar and Electron Mudflow) contain only smectite-pyrite alteration, whereas an early 20th century rock avalanche on Tahoma Glacier also contains magmatic-hydrothermal alteration that is exposed in the avalanche headwall of Sunset Amphitheater. Mineralogy and isotopic composition of the alteration phases, geologic and geophysical data, as well as analog fossil hydrothermal systems in volcanoes elsewhere, constrain hydrothermal alteration geometry on the pre-Osceola-collapse edifice of Mount Rainier. Relatively narrow zones of acid magmatic-hydrothermal alteration in the central core of the volcano grade to more widely distributed smectite-pyrite alteration farther out on the upper flanks, capped by steam-heated alteration with a large component of alteration resulting from condensation of fumarolic vapor above the water table. Alteration was polygenetic in zones formed episodically, and was strongly controlled by fluxes of heat and magmatic fluid and by local permeability.
Halophilic Archaea determined from geothermal steam vent aerosols.
Ellis, Dean G; Bizzoco, Richard W; Kelley, Scott T
2008-06-01
Hydrothermal vents, known as 'fumaroles', are ubiquitous features of geothermal areas. Although their geology has been extensively characterized, little is known about the subsurface microbial ecology of fumaroles largely because of the difficulty in collecting sufficient numbers of cells from boiling steam water for DNA extraction and culture isolation. Here we describe the first collection, molecular analysis and isolation of microbes from fumarole steam waters in Russia (Kamchatka) and the USA (Hawaii, New Mexico, California and Wyoming). Surprisingly, the steam vent waters from all the fumaroles contained halophilic Archaea closely related to the Haloarcula spp. found in non-geothermal salt mats, saline soils, brine pools and salt lakes around the world. Microscopic cell counting estimated the cell dispersal rate at approximately 1.6 x 10(9) cells year(-1) from a single fumarole. We also managed to enrich microbes in high-salt media from every vent sample, and to isolate Haloarcula from a Yellowstone vent in a 20% salt medium after a month-long incubation, demonstrating both salt tolerance and viability of cells collected from high-temperature steam. Laboratory tests determined that microbes enriched in salt media survived temperatures greater than 75 degrees C for between 5 and 30 min during the collection process. Hawaiian fumaroles proved to contain the greatest diversity of halophilic Archaea with four new lineages that may belong to uncultured haloarchaeal genera. This high diversity may have resulted from the leaching of salts and minerals through the highly porous volcanic rock, creating a chemically complex saline subsurface.
Thermal areas on Kilauea and Mauna Loa Volcanoes, Hawaii
Casadevall, Thomas J.; Hazlett, Richard W.
1983-01-01
Active thermal areas are concentrated in three areas on Mauna Loa and three areas on Kilauea. High-temperature fumaroles (115-362°C) on Mauna Loa are restricted to the summit caldera, whereas high-temperature fumaroles on Kilauea are found in the upper East Rift Zone (Mauna Ulu summit fumaroles, 562°C), middle East Rift Zone (1977 eruptive fissure fumaroles), and in the summit caldera. Solfataric activity that has continued for several decades occurs along border faults of Kilauea caldera and at Sulphur Cone on the southwest rift zone of Mauna Loa. Solfataras that are only a few years old occur along recently active eruptive fissures in the summit caldera and along the rift zones of Kilauea. Steam vents and hot-air cracks also occur at the edges of cooling lava ponds, on the summits of lava shields, along faults and graben fractures, and in diffuse patches that may reflect shallow magmatic intrusions.
Henley, R.W.; Berger, Byron R.
2012-01-01
The mineralized fracture system that underlay paleo-fumarole field at Chinkuashih, Taiwan has been exposed by copper–gold mining to depths of about 550 m below the paleo-surface. Its mineralogy and systematic variations in metal and semimetal (Fe, Cu, As, Sb, Bi, Hg, Cd, Sn, Zn, Pb, Se, Te, Au, Ag) concentrations provide insights into the chemical responses of a magmatic-vapor phase as it expands through fracture arrays to the surface and discharges as fumaroles associated with more extensive solfatara. At Chinkuashih, following initial sealing of the fractures by silica-alunite alteration, brittle failure reestablished discharge from an underlying reservoir of magmatic vapor. Crystalline pyrite was deposited first in the fractures and was succeeded and replaced by ‘enargite’ (Cu3(As,Sb)S4) as sulfosalt encrustations (‘sublimate’) on fracture surfaces and in extensional cracks. Subsequent recrystallization resulted in complex exsolution intergrowths with antimony fractionation to the evolving crystal–vapor interface. Heavy metal fractionation between sulfosalt and vapor enriched the vapor phase in heavy metals that subsequently precipitated as complex Bi–Hg–Sn sulfosalts in discrete areas (paleo-fumaroles) close to the paleo-surface in a manner analogous to modern-day fumaroles on active volcanoes such as Vulcano, Italy. As in similar paleo-fumaroles (e.g., El Indio, Chile and Lepanto, Philippines), the most characteristic reaction sequence is the partial replacement of the early pyrite by enargite and Fe-tennantite. It is proposed that this reaction tracks the decrease in the pressure of the underlying magmatic-vapor reservoir because of the sustained discharge of vapor to the surface.
Sulfate mineralogy of fumaroles in the Salton Sea Geothermal Field, Imperial County, California
NASA Astrophysics Data System (ADS)
Adams, Paul M.; Lynch, David K.; Buckland, Kerry N.; Johnson, Patrick D.; Tratt, David M.
2017-11-01
The Salton Trough lies in the transition between the San Andreas Fault and oblique spreading centers and transform faults in the Gulf of California. The Salton Sea Geothermal Field is the northernmost expression of those spreading centers. In 2007 two ammonia-emitting fumarole fields that had been submerged beneath the Salton Sea were exposed for the first time in nearly 50 years. As the sea level continued to drop these fields have developed a number of boiling pools, mud pots, gryphons and a unique suite of ammonium sulfate minerals. These have been studied over time with long-wave infrared remote sensing coupled with ground truth surveys backed by laboratory analyses of the minerals. Many vents lie at the center of concentric rings of mineralization with systematic occurrence of different minerals from center to edge. Three semi-concentric zones (fumarole, transition and evaporite) have been defined with respect to ammonia-emitting vents and bubbling pools. The scale of these zones range from several meters, localized around individual vents, to that of the fumarole fields as a whole. The fumarole zone is closest to the vents and locally contains cavernous sulfur crystals and significant deposits of gypsum, mascagnite, boussingaultite and other ammonium sulfates. The transition zone comprises a dark brown surficial band of inconspicuous sodium nitrate underlain by anhydrite/bassanite that is thought to have formed by ammonia-oxidizing microbes interacting with the ammonium sulfates of the outer fumarole zone. The evaporite zone is the outermost and contains blödite, thenardite and glauberite, which are typical of the sulfates associated with the shoreline of the Salton Sea. Remote sensing has shown that the mineral zones have remained relatively stable from 2013 to 2017, with minor variations depending on rainfall, temperature and levels of agricultural runoff.
NASA Astrophysics Data System (ADS)
Hurwitz, Shaul; Goff, Fraser; Janik, Cathy J.; Evans, William C.; Counce, Dale A.; Sorey, Michael L.; Ingebritsen, Steven E.
2003-01-01
We interpret new chemical and isotopic data from samples collected between October 1998 and March 2002 from the NSF well (also called the Keller well), the only deep well on the summit of Kilauea Volcano, Hawaii. Sample collection followed cleaning of the well, which renewed access to the hydrothermal system very close to the loci of magmatic and fumarolic activity. The chemical and isotopic compositions of the new samples differ remarkably from data published previously. On the basis of the S/Cl ratio and carbon and helium isotopes we conclude that the thermal fluids formed by condensation of magmatic gas into shallow meteoric groundwater. Gas condensation was followed by a complex pattern of basalt dissolution accompanied by an increase of fluid pH and precipitation of secondary minerals. Geochemical modeling and geothermometry imply that the fluids equilibrated with an assemblage of secondary minerals at temperatures between 90 and 140°C. The significantly different chemical composition of the NSF well fluids from that of springs along the southern coast of the island indicates that mass transport from the summit region toward the lower flanks of the volcano is limited.
NASA Astrophysics Data System (ADS)
Salzer, Jacqueline T.; Milillo, Pietro; Varley, Nick; Perissin, Daniele; Pantaleo, Michele; Walter, Thomas R.
2017-12-01
Dome building activity is common at many volcanoes and due to the gravitational instability, a dome represents one of the most hazardous volcanic phenomena. Shallow volcanic processes as well as rheological and structural changes of the dome affecting the fluid transport have been linked to transitions in eruptive activity. Also, hydrothermal alteration may affect the structural integrity of the dome, increasing the potential for collapse. However, mapping the deformation and details of fluid escape at the summit of steep sloped volcanoes and integrating these with other types of data is challenging due to difficult access and poor coverage. Here we present for the first time the near-vertical and near-horizontal surface deformation field of a quiescent summit dome and the relationships with degassing and topographic patterns. Our results are derived from high resolution satellite radar interferometry (InSAR) time series based on a year of TerraSAR-X SpotLight acquisitions and Structure from Motion (SfM) processing of overflight infrared data at Volcán de Colima, Mexico. The identified deformation is dominated by localized heterogeneous subsidence of the summit dome exceeding rates of 15 cm/yr, and strongly decreasing over the year 2012, up to the renewal of explosive and extrusive activity in early 2013. We tentatively attribute the deformation to the degassing, cooling and contraction of the dome and shallow conduit material. We also find that the results strongly differ depending on the chosen InSAR time series method, which potentially overprints the true physical complexities of small scale, shallow deformation processes. The combined interpretation of the deformation and infrared data reveals a complex spatial relationship between the degassing pathways and the deformation. While we observe no deformation across the crater rim fumaroles, discontinuities in the deformation field are more commonly observed around the dome rim fumaroles and occasionally on the dome upper surface. We propose that the deformation pattern is also linked to processes controlling the fumarole formation and distribution (topography, permeability and volcanic activity), and the lack of direct relationships may be explained by how the influence of these processes varies across the volcanic summit. The presented work provides a new approach for safely monitoring the activity and stability of internal dome structures, as well as for constraining and validating models of dome degassing pathways and densification processes.
Evaluation of gas data from high-temperature fumaroles at Mount St. Helens, 1980-1982
Gerlach, T.M.; Casadevall, T.J.
1986-01-01
The Mount St. Helens fumarole gases show linear composition trends during periods of noneruptive degassing between September 1980 and October 1981. The trends are characterized by increasing H2O and decreasing CO2 and sulfur. Maximum fumarole temperatures also show a linear decrease during this period. High-temperature fumarole gases collected from the crater and dome between September 1980 and July 1982 are all H2O-rich (> 90%) with 1-10% CO2 and small amounts of H2S, SO2, H2, CO, HC, and HF. Trace amounts of COS and S2 are present, and occasional observations of minor CH4 appear to result from contamination or low-temperature reactions in sample vessels. The O2 fugacities of the gases remain near Ni-NiO during cooling. The low sulfur content of the gases obviates the need for extensive gas-rock oxygen exchange to maintain fO2's near Ni-NiO. A detailed thermodynamic analysis of 50 gas samples collected between September 1980 and December 1981 led to improved compositions for 22 samples. The gases were initially in a state of equilibrium, but disequilibrium modifications from atmospheric oxidation of H2 and, to a lesser extent, CO occurred within the upper portions of the fumarole vents. The last temperatures of equilibrium for the fumarole gases range from 800??C to 650??C and are nearly always higher than the collection temperatures. No evidence was found of disequilibrium admixture of surface waters; if such modifications of the fumarole gases occurred, the water must have been added at depth and have reequilibrated with the other gas species at magmatic or near-magmatic temperatures. The highest quality analytical data are obtained by field gas chromatograph measurements and from caustic soda bottle samples. Samples collected in evacuated bottles or by pumping through double stopcock tubes tend to be severely deficient in sulfur due to post-collection reactions between H2S and SO2. It is also necessary to infer the water content of the latter samples. ?? 1986.
Diffuse He degassing from Furnas Volcano, Sao Miguel, Azores
NASA Astrophysics Data System (ADS)
Hernández, I.; Melian, G.; Nolasco, D.; Dionis, S.; Hernández, P.; Perez, N.; Noehn, D.; Nobrega, D.; Gonzalez, P.; Forjaz, V. H.; França, Z.
2012-04-01
Furnas is the easternmost of the three active central volcanoes on the island of Sâo Miguel in Azores archipielago. Unlike the other two main volcanoes, Sete Cidades and Fogo, Furnas does not have a well-developed edifice, but consists of a steep-sided caldera complex 8 x 5 km across. It is built on the outer flanks of the Povoaçao - Nordeste lava complex that forms the eastern end of Sao Miguel. The caldera margins of Furnas reflect the regional-local tectonic pattern which has also controlled the distribution of vents within the caldera and areas of thermal springs. Helium is considered as an ideal geochemical tracer due to its properties: chemically inert, physically stable and practically insoluble in water under normal conditions. These properties together with its high mobility on the crust, make the presence of helium anomalies on the surface environment of a volcanic system to be related to deep fluid migration controlled by volcano-tectonic features of the area and provide valuable information about the location and characteristics of the gas source and the fracturing of the crust. On the summer of 2011, a diffuse helium emission survey was carried out on the surface environment of Furnas volcano, covering an area of 15.4 km2 with a total of 276 sampling site observations. To collect soil gases at each sampling point, a stainless steel probe was inserted 40 cm depth in the soil. Helium concentration was measured within 24 hours by means of a quadrupole mass spectrometer Pfeiffer Omnistar 422. DeltaHe (DeltaHe= Hesoil atmosphere - Heair) distribution map was constructed following Sequential Gaussian Simulation. DeltaHe distribution map shows that most of the study area presents values similar to those of air (Heair = 5,240 ppb). Soil gas helium enrichment was mainly observed at the areas affected by the discharge of hydrothermal fluids: the fumarole area on the north part of Furnas Lake (DeltaHe> 10,000 ppb) and the fumarole area on Furnas Village (DeltaHe> 5,000 ppb). No other significant enrichment DeltaHe were found which indicate the presence of a vertical permeability area for the migration of deep fluid to the surface.
Fumarolic activity in marie byrd land, antarctica.
Lemasurier, W E; Wade, F A
1968-10-18
Ice towers, probably formed by recent fumarolic activity, have been found around the summit calderas of two volcanoes in Marie Byrd Land. These active (?) volcanoes lie within a broad belt of Mesozoic intrusion and late Cenozoic extrusion that appears to be part of the circum-Pacific orogenic province.
Apacheta, a new geothermal prospect in Northern Chile
DOE Office of Scientific and Technical Information (OSTI.GOV)
Urzua, Luis; Powell, Tom; Cumming, William B.
2002-05-24
The discovery of two high-temperature fumaroles, with gas geochemistry compatible with an economic geothermal system, established Apacheta as one of the most attractive geothermal exploration prospects in northern Chile. These remote fumaroles at 5,150 m elevation were first sampled in 1999 by ENAP and its partners, following up on the reports of a CODELCO water exploration well that flowed small amounts of dry steam at 4,540 m elevation in the valley 4.5 km east of the fumaroles. The prospect is associated with a Plio-Pleistocene volcanic complex located within a NW-trending graben along the axis of the high Andes. The regionalmore » water table is 4,200 masl. There are no hot springs, just the 88 degrees C steam well and the 109 degrees and 118 degrees C fumaroles with gas compositions that indicate reservoir temperatures of greater than or equal to 250 degrees C, using a variety of gas geothermometers. An MT-TDEM survey was completed in 2001-2002 by Geotermica del Norte (SDN), an ENAP-C ODELCO partnership, to explore the Apacheta geothermal concession. The survey results indicated that base of the low resistivity clay cap has a structural apex just west of the fumaroles, a pattern typically associated with shallow permeability within a high temperature geothermal resource. SGN plans to drill at least one exploration well in 2002-03 to characterize a possible economic resource at Apacheta.« less
Water-rock interaction in the magmatic-hydrothermal system of Nisyros Island (Greece)
NASA Astrophysics Data System (ADS)
Ambrosio, Michele; Doveri, Marco; Fagioli, Maria Teresa; Marini, Luigi; Principe, Claudia; Raco, Brunella
2010-04-01
In this work, we investigated the water-rock interaction processes taking place in the hydrothermal reservoir of Nisyros through both: (1) a review of the hydrothermal mineralogy encountered in the deep geothermal borehole Nisyros-2; and (2) a comparison of the analytically-derived redox potentials and acidities of fumarolic-related liquids, with those controlled by redox buffers and pH buffers, involving hydrothermal mineral phases. The propylitic zone met in the deep geothermal borehole Nisyros-2, from 950 to 1547 m (total depth), is characterised by abundant, well crystallised epidote, adularia, albite, quartz, pyrite, chlorite, and sericite-muscovite, accompanied by less abundant anhydrite, stilpnomelane, wairakite, garnet, tremolite and pyroxene. These hydrothermal minerals were produced in a comparatively wide temperature range, from 230 to 300 °C, approximately. Hydrothermal assemblages are well developed from 950 to 1360 m, whereas they are less developed below this depth, probably due to low permeability. Based on the RH values calculated for fumarolic gases and for the deep geothermal fluids of Nisyros-1 and Nisyros-2 wells, redox equilibrium with the (FeO)/(FeO 1.5) rock buffer appears to be closely attained throughout the hydrothermal reservoir of Nisyros. This conclusion may be easily reconciled with the nearly ubiquitous occurrence of anhydrite and pyrite, since RH values controlled by coexistence of anhydrite and pyrite can be achieved by gas separation. The pH of the liquids feeding the fumarolic vents of Stephanos and Polybote Micros craters was computed, by means of the EQ3 code, based on the Cl- δD relationship which is constrained by the seawater-magmatic water mixing occurring at depth in the hydrothermal-magmatic system of Nisyros. The temperature dependence of analytically-derived pH values for the reservoir liquids feeding the fumarolic vents of Stephanos and Polybote Micros craters suggests that some unspecified pH buffer fixes the acidity of these reservoir liquids at values of 4.72-4.85 and 4.88-5.23, respectively. Many of these pH values are lower than those expected for the full-equilibrium condition, although they are close to those of the reservoir liquids of Nisyros-1, 5.16, and Nisyros-2, 4.87. It is likely that this excess of acidity-producing species, chiefly CO 2, promotes release of Fe(II) and Fe(III) to the reservoir liquids through rock dissolution, permitting the attainment of redox equilibrium with the (FeO)/(FeO 1.5) rock buffer, as already suggested by the late Werner Giggenbach.
Diffuse degassing at Longonot volcano, Kenya: Implications for CO2 flux in continental rifts
NASA Astrophysics Data System (ADS)
Robertson, Elspeth; Biggs, Juliet; Edmonds, Marie; Clor, Laura; Fischer, Tobias P.; Vye-Brown, Charlotte; Kianji, Gladys; Koros, Wesley; Kandie, Risper
2016-11-01
Magma movement, fault structures and hydrothermal systems influence volatile emissions at rift volcanoes. Longonot is a Quaternary caldera volcano located in the southern Kenyan Rift, where regional extension controls recent shallow magma ascent. Here we report the results of a soil carbon dioxide (CO2) survey in the vicinity of Longonot volcano, as well as fumarolic gas compositions and carbon isotope data. The total non-biogenic CO2 degassing is estimated at < 300 kg d- 1, and is largely controlled by crater faults and fractures close to the summit. Thus, recent volcanic structures, rather than regional tectonics, control fluid pathways and degassing. Fumarolic gases are characterised by a narrow range in carbon isotope ratios (δ13C), from - 4.7‰ to - 6.4‰ (vs. PDB) suggesting a magmatic origin with minor contributions from biogenic CO2. Comparison with other degassing measurements in the East African Rift shows that records of historical eruptions or unrest do not correspond directly to the magnitude of CO2 flux from volcanic centres, which may instead reflect the current size and characteristics of the subsurface magma reservoir. Interestingly, the integrated CO2 flux from faulted rift basins is reported to be an order of magnitude higher than that from any of the volcanic centres for which CO2 surveys have so far been reported.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goff, F.; Aams, A.I.; McMurtry, G.M.
This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory. Detailed geochemical sampling of high-temperature fumaroles, background water, and fresh magmatic products from 14 active volcanoes reveal that they do not produce measurable amounts of tritium ({sup 3}H) of deep origin (<0.1 T.U. or <0.32 pCi/kg H{sub 2}O). On the other hand, all volcanoes produce mixtures of meteoric and magmatic fluids that contain measurable {sup 3}H from the meteoric end-member. The results show that cold fusion is probably not a significant deep earth process but the samples and data havemore » wide application to a host of other volcanological topics.« less
NASA Astrophysics Data System (ADS)
Pedone, Maria; Granieri, Domenico; Moretti, Roberto; Fedele, Alessandro; Troise, Claudia; Somma, Renato; De Natale, Giuseppe
2017-12-01
This study investigates fumarolic CO2 emissions at Campi Flegrei (Southern Italy) and their dispersion in the lowest atmospheric boundary layer. We innovatively utilize a Lagrangian Stochastic dispersion model (WindTrax) combined with an Eulerian model (DISGAS) to diagnose the dispersion of diluted gas plumes over large and complex topographic domains. New measurements of CO2 concentrations acquired in February and October 2014 in the area of Pisciarelli and Solfatara, the two major fumarolic fields of Campi Flegrei caldera, and simultaneous measurements of meteorological parameters are used to: 1) test the ability of WindTrax to calculate the fumarolic CO2 flux from the investigated sources, and 2) perform predictive numerical simulations to resolve the mutual interference between the CO2 emissions of the two adjacent areas. This novel approach allows us to a) better quantify the CO2 emission of the fumarolic source, b) discriminate ;true; CO2 contributions for each source, and c) understand the potential impact of the composite CO2 plume (Pisciarelli ;plus; Solfatara) on the highly populated areas inside the Campi Flegrei caldera.
Mass and heat flux balance of La Soufrière volcano (Guadeloupe) from aerial infrared thermal imaging
NASA Astrophysics Data System (ADS)
Gaudin, Damien; Beauducel, François; Coutant, Olivier; Delacourt, Christophe; Richon, Patrick; de Chabalier, Jean-Bernard; Hammouya, Gilbert
2016-06-01
La Soufrière of Guadeloupe is an active volcano of Lesser Antilles that is closely monitored due to a high eruptive hazard potential. Since 1992 it exhibits a medium-level but sustained background hydrothermal activity with low-energy and shallow seismicity, hot springs temperature increase and high flux acidic gas fumaroles at the summit. The problem of estimating the heat balance and quantifying the evolution of hydrothermal activity has become a key challenge for surveillance. This work is the first attempt of a global mapping and quantification of La Soufrière thermal activity performed in February 2010 using aerial thermal infrared imagery. After instrument calibration and data processing, we present a global map of thermal anomalies allowing to spot the main active sites: the summit area (including the fumaroles of Tarissan Pit and South Crater), the Ty Fault fumarolic zone, and the hot springs located at the vicinity of the dome. In a second step, we deduce the mass and the energy fluxes released by the volcano. In particular, we propose a simple model of energy balance to estimate the mass flux of the summit fumaroles from their brightness temperature and size. In February 2010, Tarissan Pit had a 22.8 ± 8.1 kg s -1 flux (1970 ± 704 tons day -1), while South Crater vents had a total of 19.5 ± 4.0 kg s -1 (1687 ± 348 tons day -1). Once converted into energy flux, summit fumaroles represent 98% of the 106 ± 30 MW released by the volcano, the 2% remaining being split between the hot springs and the thermal anomalies at the summit and at the Ty Fault fumarolic zone. These values are in the high range of the previous estimations, highlighting the short-term variability of the expelled fluxes. Such a heat flux requires the cooling of 1500 m 3 of magma per day, in good agreement with previous geochemical studies.
NASA Astrophysics Data System (ADS)
Gaudin, Damien; Finizola, Anthony; Delcher, Eric; Beauducel, François; Allemand, Pascal; Delacourt, Christophe; Brothelande, Elodie; Peltier, Aline; Di Gangi, Fabio
2015-09-01
Fumarolic zones are permeable areas where both steam and heat are expelled to the atmosphere. Surface fluxes and flows, which are representative of the intensity of the hydrothermal circulation in depth, can be monitored by thermometers, thermal infrared cameras, spectrometers, or condensers. However, the superficial activity of fumarolic zones can be modified by the meteorological conditions, in particular the rainfalls, which might result in erroneous estimations. From this perspective, we developed a set of physical equations to quantify the effects of rainfalls on the thermal behavior of fumarolic zones. Results were faced to continuous measurements achieved at the Ty fault fumarolic zone (La Soufrière volcano, Guadeloupe, Lesser Antilles) during six months in 2010, using six vertical series of thermometers measuring the heat transfer in the ground and one condenser measuring the rising steam flux. Results demonstrate that in the absence of rainfalls, heat and steam flux reach an equilibrium that is representative of the geothermal flux in depth. Conversely, after the rainfalls, the cooling of the ground provokes a deepening of the condensation level. The related soil temperature drop can be estimated by computing the heat required to warm the infiltrated water up to boiling temperature while the recovery rate is directly linked to the geothermal flux. Our observations allow defining in which conditions flux are at steady state, but also to build a first-order numerical model allowing estimating both the physical parameters of the ground (thermal conductivity, precipitation efficiency coefficient and surface flux constant) and the long-term thermal behavior of the hydrothermal system. In particular, our results predict that the hydrothermal activity must vanish on the zones where the geothermal flux drops under a certain threshold (60 W/m2 at La Soufrière). The existence of this limit may have strong implications for the precipitation rate of minerals and the possible reactivation of the fumarolic zones during volcanic crises.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mas, Graciela R.; Mas, Luis C.; Bengochea, Leandro
In the area of the Copahue Geothermal Field, there are five active geothermal manifestations, which mainly consist of fumaroles, hot springs and mud pots. Four of these manifestations are located in Argentina: Las Máquinas, Termas de Copahue, Las Maquinitas and El Anfiteatro, and the fifth on the Chilean side: Chancho Co. All of them present a strong acid sulfate country rock alteration, characterized by the assemblage alunite + kaolinite + quartz + cristobalite + pyrite + sulfur + jarosite, as the result of the base leaching by fluids concentrated in H 2SO 4 by atmospheric oxidation at the water tablemore » in a steam heated environment of H 2S released by deeper boiling fluids. Another alteration zone in this area, called COP-2, is a fossil geothermal manifestation which shows characteristics of neutral to alkaline alteration represented mainly by the siliceous sinter superimposed over the acid alteration. The mineralogy and zoning of these alteration zones, and their relation with the hidrothermal solutions and the major structures of the area are analized.« less
NASA Astrophysics Data System (ADS)
Lopez, T.; Tassi, F.; Aiuppa, A.; Galle, B.; Rizzo, A. L.; Fiebig, J.; Capecchiacci, F.; Giudice, G.; Caliro, S.; Tamburello, G.
2017-11-01
We use the chemical and isotopic composition of volcanic gases and steam condensate, in situ measurements of plume composition and remote measurements of SO2 flux to constrain volatile sources and characterize subvolcanic conditions at three persistently degassing and seismically active volcanoes within the Katmai Volcanic Cluster (KVC), Alaska: Mount Martin, Mount Mageik and Trident. In situ plume measurements of gas composition were collected at all three volcanoes using MultiGAS instruments to calculate gas ratios (e.g. CO2/H2S, SO2/H2S and H2O/H2S), and remote measurements of SO2 column density were collected from Mount Martin and Mount Mageik by ultraviolet spectrometer systems to calculate SO2 fluxes. Fumaroles were directly sampled for chemical and isotopic composition from Mount Mageik and Trident. Mid Ocean Ridge Basalt (MORB)-like 3He/4He ratios ( 7.2-7.6 Rc/RA) within Mount Mageik and Trident's fumarole emissions and a moderate SO2 flux ( 75 t/d) from Mount Martin, combined with gas compositions dominated by H2O, CO2 and H2S from all three volcanoes, indicate magma degassing and active hydrothermal systems in the subsurface of these volcanoes. Mount Martin's gas emissions have the lowest CO2/H2S ratio ( 2-4) and highest SO2 flux compared to the other KVC volcanoes, indicative of shallow magma degassing. Geothermometry techniques applied to Mount Mageik and Trident's fumarolic gas compositions suggest that their hydrothermal reservoirs are located at depths of 0.2 and 4 km below the surface, respectively. Observations of an unusually reducing gas composition at Trident and organic material in the near-surface soils suggest that thermal decomposition of sediments may be influencing gas composition. When the measured gas compositions from Mount Mageik and Trident are compared with previous samples collected in the late 1990's, relatively stable magmatic-hydrothermal conditions are inferred for Mount Mageik, while gradual degassing of residual magma and contamination by shallow crustal fluids is inferred for Trident. The isotopic composition of volcanic gases emitted from Mount Mageik and Trident reflect mixing of subducted slab, mantle and crustal volatile sources, with organic sediment and carbonate being the predominant sources. Considering the close proximity of the target volcanoes in comparison with the depth to the subducted slab we speculate that Aleutian Arc volatiles are fed by a relatively homogeneous subducted fluid and that much of the apparent variability in volatile provenance can be explained by shallow crustal volatile sources and/or processes.
NASA Astrophysics Data System (ADS)
Pawlowsky-Glahn, Vera; Buccianti, Antonella
In the investigation of fluid samples of a volcanic system, collected during a given period of time, one of the main goals is to discover cause-effect relationships that allow us to explain changes in the chemical composition. They might be caused by physicochemical factors, such as temperature, pressure, or non-conservative behavior of some chemical constituents (addition or subtraction of material), among others. The presence of subgroups of observations showing different behavior is evidence of unusually complex situations, which might render even more difficult the analysis and interpretation of observed phenomena. These cases require appropriate statistical techniques as well as sound a priori hypothesis concerning underlying geological processes. The purpose of this article is to present the state of the art in the methodology for a better visualization of compositional data, as well as for detecting statistically significant sub-populations. The scheme of this article is to present first the application, and then the underlying methodology, with the aim of the first motivating the second. Thus, the first part has the goal to illustrate how to understand and interpret results, whereas the second is devoted to expose how to perform a study of this kind. The case study is related to the chemical composition of a fumarole of Vulcano Island (southern Italy), called F14. The volcanic activity at Vulcano Island is subject to a continuous program of geochemical surveillance from 1978 up to now and the large data set of observations contains the main chemical composition of volcanic gases as well as trace element concentrations in the condensates of fumarolic gases. Out of the complete set of measured components, the variables H2S, HF and As, determined in samples collected from 1978 to 1993 (As is not available in recent samples) are used to characterize two groups in the original population, which proved to be statistically distinct. The choice of the variables is motivated by the importance of investigating the behavior of well-known toxicity elements, which show, like As, a significant mobility under hydrothermal conditions. The statistical methodology used for this study is based on models devised for compositional data. They include (1) the perturbation approach for a better visualization; (2) cluster analysis to detect groups; (3) confidence regions for the center of the groups to obtain graphical evidence of differences between groups; and (4) tests of hypothesis about centers and covariance structures to obtain statistical evidence about differences between groups. The fact that only three components are used allows us to illustrate the results using ternary diagrams.
NASA Astrophysics Data System (ADS)
Sheik, C.; Giovannelli, D.; Cox, A. D.; Hummer, D. R.; Pratt, K.; Thomas, D.; Viveiros, M. F.
2016-12-01
Has a reviewer ever asked you, "Why didn't you measure x, y, and z for this manuscript"? After venting your frustration to anyone who'll listen, you start to think maybe they're right and the study would benefit from a few extra measurements. Modern science demands multidisciplinary projects, data integration, and a holistic understanding of complex biogeochemical systems. With this in mind, we integrating field sampling into an early career scientist workshop. We asked, "Can we assemble early career scientists from disparate geoscience fields and effectively characterize carbon reservoirs and fluxes at a geologically active site?" Here, we present the results of an integrated, multidisciplinary, and co-located sampling effort carried out during the Second Deep Carbon Observatory Early Career Science Workshop 2015 in the Azores, Portugal. At the fumarole site, sediments lithology indicate a recent lacustrine deposition. All sediments show a degree of hydrothermal alteration, especially with depth. Carbonates were observed throughout the site as well as sulfur minerals jarosite and alunite. Temperatures of ejected waters quickly cooled from near boiling, to ambient 30 oC within an 35 m flow channel. Sediment surface gases (H2S, CO2 and CH4) were highly elevated at the site indicating a strong degassing influence. Analysis of noble gas isotopes unequivocally confirm the existence of mantle-derived fluids in the fumarole gases. Waters and sediments taken from mid-point within the channel were elevated in concentrations of all elements measured, especially elemental sulfur and copper. The organic matter content of sediments was typically low in the channel. Microbial analyses also show a strong temperature-dependent relationship, with Archaea dominating at higher temperatures and Bacteria at lower temperatures. Evidence of sulfur utilizing archaea were present in both ribosomal and metagenome libraries. Together, our interdisciplinary approach demonstrates, unsurprisingly, that collesing a diverse group of geoscientists to characterize a natural system is highly advantageous and productive. However, this approach also highlights the ever present problem of how to fund such highly interdisciplinary, field oriented, research.
Hydrogeochemical exploration of geothermal prospects in the Tecuamburro Volcano region, Guatemala
Janik, C.J.; Goff, F.; Fahlquist, L.; Adams, A.I.; Alfredo, Roldan M.; Chipera, S.J.; Trujillo, P.E.; Counce, D.
1992-01-01
Chemical and isotopic analyses of thermal and nonthermal waters and of gases from springs and fumaroles are used to evaluate the geothermal potential of the Tecuamburro Volcano region, Guatemala. Chemically distinct geothermal surface manifestations generally occur in separate hydrogeologic areas within this 400 km2 region: low-pressure fumaroles with temperatures near local boiling occur at 1470 m elevation in a sulfur mine near the summit of Tecuamburro Volcano; non-boiling acid-sulfate hot springs and mud pots are restricted to the Laguna Ixpaco area, about 5 km NNW of the sulfur mine and 350-400 m lower in elevation; steam-heated and thermal-meteoric waters are found on the flanks of Tecuamburro Volcano and several kilometers to the north in the andesitic highland, where the Infernitos fumarole (97??C at 1180 m) is the primary feature; neutral-chloride hot springs discharge along Rio Los Esclavos, principally near Colmenares at 490 m elevation, about 8-10 km SE of Infernitos. Maximum geothermometer temperatures calculated from Colmenares neutral-chloride spring compositions are ???180??C, whereas maximum subsurface temperatures based on Laguna Ixpaco gas compositions are ???310??C. An exploration core hole drilled to a depth of 808 m about 0.3 km south of Laguna Ixpaco had a bottom-hole temperature of 238??C but did not produce sufficient fluids to confirm or chemically characterize a geothermal reservoir. Hydrogeochemical data combined with regional geologic interpretations indicate that there are probably two hydrothermal-convection systems, which are separated by a major NW-trending structural boundary, the Ixpaco fault. One system with reservoir temperatures near 300??C lies beneath Tecuamburro Volcano and consists of a large vapor zone that feeds steam to the Laguna Ixpaco area, with underlying hot water that flows laterally to feed a small group of warm, chloriderich springs SE of Tecuamburro Volcano. The other system is located beneath the Infernitos area in the andesitic highland and consists of a lower-temperature (150-190??C) reservoir with a large natural discharge that feeds the Colmenares hot springs. ?? 1992.
Geochemistry of the acid Kawah Putih lake, Patuha Volcano, West Java, Indonesia
NASA Astrophysics Data System (ADS)
Sriwana, T.; van Bergen, M. J.; Varekamp, J. C.; Sumarti, S.; Takano, B.; van Os, B. J. H.; Leng, M. J.
2000-04-01
Kawah Putih is a summit crater of Patuha volcano, West Java, Indonesia, which contains a shallow, ∼300 m-wide lake with strongly mineralized acid-sulfate-chloride water. The lake water has a temperature of 26-34°C, pH=<0.5-1.3, Stot=2500-4600 ppm and Cl=5300-12 600 ppm, and floating sulfur globules with sulfide inclusions are common. Sulfur oxyanion concentrations are unusually high, with S4O62-+S5O62-+S6O62-=2400 - 4200 ppm. Subaerial fumaroles (<93°C) on the lake shore have low molar SO2/H2S ratios (<2), which is a favorable condition to produce the observed distribution of sulfur oxyanion species. Sulfur isotope data of dissolved sulfate and native sulfur show a significant 34S fractionation (ΔSO4-Se of ⩾20‰), probably the result of SO2 disproportionation in or below the lake. The lake waters show strong enrichments in 18O and D relative to local meteoric waters, a result of the combined effects of mixing between isotopically heavy fluids of deep origin and meteoric water, and evaporation-induced fractionation at the lake surface. The stable-isotope systematics combined with energy-balance considerations support very rapid fluid cycling through the lake system. Lake levels and element concentrations show strong seasonal fluctuations, indicative of a short water residence time in the lake as well. Thermodynamic modeling of the lake fluids indicates that the lake water is saturated with silica phases, barite, pyrite and various Pb, Sb, Cu, As, Bi-bearing sulfides when sulfur saturation is assumed. Precipitating phases predicted by the model calculations are consistent with the bulk chemistry of the sulfur-rich bottom sediments and their identified mineral phases. Much of the lake water chemistry can be explained by congruent rock dissolution in combination with preferential enrichments from entering fumarolic gases or brines and element removal by precipitating mineral phases, as indicated by a comparison of the fluids, volcanic rocks and lake bed sediment. Flank springs on the mountain at different elevations vary in composition, and are consistent with local rock dissolution as a dominant factor and pH-dependent element mobility. Discharges of warm sulfate- and chloride-rich water at the highest elevation and a near-neutral spring at lower level may contain a small contribution of crater-lake water. The acid fluid-induced processes at Patuha have led to the accumulation of elements that are commonly associated with volcano-hosted epithermal ore deposits. The dispersal of heavy metals and other potentially toxic elements from the volcano via the local drainage system is a matter of serious environmental concern.
Barite aerosol particles from volcanic plumes and fumaroles - FESEM/EDS analysis
NASA Astrophysics Data System (ADS)
Obenholzner, J. H.; Schroettner, H.; Delgado, H.
2003-04-01
Studies of aerosol particles (AP) contained in volcanic plumes has been enormously benefited by the use of field emission scanning electron microscope (FESEM/EDS; responsability by H. Schroettner) permitting morphological, mineralogical and chemical detailed observations and opening new scientific questions. This work shows the ubiquitous presence of Ba in volcanic emissions. We sampled e.g. a volcanic plume (Popocatepetl v.; 1997, 2002) revealing Ba-S-O particles, interpreteted as barite (BaSO4) and Sr-bearing barite with Fe-rich rim (w=1µm). The ca. 500 nm - 4 µm long crystals are +/- euhedral, anhedral and/or partially etched. The µm-sized crystals had been collected on a Teflon fiber filter (1997), the nm-sized on borosilicate fiber filter (BFF, 2002); one set of crystals (ca. l=500-800 nm) is scattered on Fe-hydr/oxide(?). APs collected from the degassing lava flow of Etna (2001) revealed barite (l= ca. 100 nm) on a rounded NaCl (d= 500 nm) and on Fe-hydr/oxides (?). BFF exposed to the F0 fumarole at Vulcano (2001) showed incrustations of barite (l=ca.200 nm) on fibers indicating barite formation during 5 min sampling. At Solfatra we observed almost euhedral barite particles (l=ca.300 nm) of unusual pseudo-trigonal shape. APs from Alpine air masses (A) did not reveal barite. Sources for barite could be vesicle fillings of lavas (known from continental-crust settings), vapor-phase crystallization of ignimbrites (Bandelier Tuff, USA), Ba-rich fumarolic incrustations, rock coatings in the vicinity of fumaroles (Vulcano, I.), sinter of hot springs (Akita-Yaka-Yama v., J.), barite veins (Milos, Gr.), contact-metamorphosed sedimentary xenoliths (Kloech, A.) or lithics associated with hydrovolcanic eruptions (Alban Hills v., I.). Barite has been observed in many Si-tube experiments. Stratospheric APs (1985) of the El Chichon eruption (1982) revealed barite. Ba is known as a trace element in fumarole gases of Vulcano (F11) and TOF mass spectrometry studies detected 138Ba++ in the upper troposphere over Mexico (1998). Barite APs being the product of fragmented rocks would be very rare. The incrustations on fibrous filters at Vulcano indicate that Ba species exist in fumarolic gases. Can barite be used as a proxy for volcanic signals in ice cores or other environments? Do Ba species exist in all volcanic gases or are there speciations according to plate tectonic settings? What the effects might be of Ba in fumaroles, plumes interacting with the atmosphere? Ba-rich particles are known as natural ice-forming nuclei.
Helium/Carbon dioxide ratios as premonitors of volcanic activity.
Thomas, D M; Naughton, J J
1979-06-15
The composition of the gaseous emissions of two fumaroles at the summit of Kilauea Volcano was monitored for môre than 2 years. Magma was released from the summit reservoir on three occasions during this period; prior to or during each event the ratios of helium to carbon dioxide in the fumarole gases decreased substantially from that observed during periods of quiescence.
Lowenstern, J. B.; Janik, C.J.; Fournier, R.O.; Tesfai, T.; Duffield, W.A.; Clynne, M.A.; Smith, James G.; Woldegiorgis, L.; Weldemariam, K.; Kahsai, G.
1999-01-01
Geological and geochemical studies indicate that a high-temperature geothermal system underlies the Alid volcanic center in the northern Danakil depression of Eritrea. Alid is a very late-Pleistocene structural dome formed by shallow intrusion of rhyolitic magma, some of which vented as lavas and pyroclastic flows. Fumaroles and boiling pools distributed widely over an area of ~10 km2 on the northern half of Alid suggest that an active hydrothermal system underlies much of that part of the mountain. Geothermometers indicate that the fumarolic gases are derived from a geothermal system with temperatures >225??C. The isotopic composition of condensed fumarolic steam is consistent with these temperatures and implies that the source water is derived primarily from either lowland meteoric waters or fossil Red Sea water, or both. Some gases vented from the system (CO2, H2S and He) are largely magmatic in origin. Permeability beneath the volcanic center may be high, given the amount of intrusion-related deformation and the active normal faulting within the Danakil depression.Geological and geochemical studies indicate that a high-temperature geothermal system underlies the Alid volcanic center in the northern Danakil depression of Eritrea. Alid is a very late-Pleistocene structural dome formed by shallow intrusion of rhyolitic magma, some of which vented as lavas and pyroclastic flows. Fumaroles and boiling pools distributed widely over an area of approx. 10 km2 on the northern half of Alid suggest that an active hydrothermal system underlies much of that part of the mountain. Geothermometers indicate that the fumarolic gases are derived from a geothermal system with temperatures >225??C. The isotopic composition of condensed fumarolic steam is consistent with these temperatures and implies that the source water is derived primarily from either lowland meteoric waters or fossil Red Sea water, or both. Some gases vented from the system (CO2, H2S and He) are largely magmatic in origin. Permeability beneath the volcanic center may be high, given the amount of intrusion-related deformation and the active normal faulting within the Danakil depression.
NASA Astrophysics Data System (ADS)
Crescentini, Luca; Amoruso, Antonella; Luongo, Annamaria
2015-04-01
The Campi Flegrei (CF) caldera is located in a densely populated area close to Naples (Southern Italy). It is renowned as a site of continual slow vertical movements. After the last eruption in 1538, the caldera generally subsided until 1969 when minor uplift occurred. In the early 1970s this uplift became significant (~1.5 m max). A further large uplift episode occurred from 1982 to 1984 (~1.8 m max), and subsequently smaller uplift episodes have occurred since then. Amoruso et al. (2014a,b) have recently shown that the CF surface deformation field from 1980 to 2013 can be decomposed into two stationary parts. Large-scale deformation can be explained by a quasi-horizontal source, oriented NW to SE and mathematically represented by a pressurized finite triaxial ellipsoid (PTE) ~4 km deep, possibly related to the injection of magma and/or magmatic fluids from a deeper magma chamber into a sill, or pressurization of interconnected (micro)cavities. Residual deformation not accounted for by PTE is confined to the Solfatara fumarolic area and can be mathematically explained by a small (point) pressurized oblate spheroid (PS) ~2 km below the Solfatara fumarolic field, that has been equated with a poroelastic response of the substratum to pore pressure increases near the injection point of hot magmatic fluids into the hydrothermal system. A satisfying feature of this double source model is that the geometric source parameters of each are constant over the period 1980-2013 with the exception of volume changes (potencies). Several papers have ascribed CF deformation to the injection of magmatic fluids at the base of the hydrothermal system. All models predict complex spatial and temporal evolution of the deformation pattern and consequently contrast with the observed deformation pattern stationarity. Also recently proposed dynamic models of sill intrusion in a shallow volcanic environment do not satisfy the observed CF deformation pattern stationarity. We have developed an analytical dynamic model of intrusion of magma or injection of supercritical fluids in the PTE. Propagation is governed by a Navier-Stokes equation for magma intrusion and modelled as creeping flow in porous media (Darcy's law) for supercritical fluids injection. In both cases the ground deformation pattern is constant over time. Using Finite Element Modeling, we also show that the presence of a viscoelastic shell surrounding the PTE amplifies ground deformation, with no appreciable effect on the ground deformation pattern. Thus, our model satisfies the observed CF deformation pattern stationarity both using a purely elastic medium or allowing for stress relaxation close to the PTE, caused by the rock temperature. Amoruso et al. (2014a), J. Geophys. Res., 119 (2), 858-879 Amoruso et al. (2014b), Geophys. Res. Lett., 41 (9), 3081-3088
Implications of a Caldera Origin of the Lunar Crater Copernicus
NASA Astrophysics Data System (ADS)
Green, J.
2007-12-01
The forthcoming renaissance in lunar exploration will focus on many objectives such as Copernicus. Copernicus appears to be a caldera for at least 8 reasons. If a caldera we see (1) transient activity (2) no overturned impact flap at the crater margins (3) internal sinuous leveed lava flow channels (4) a lava covered floor (5) terraces of different ages (6) multiple central volcanoes, one showing a directed volcanic blast (7) olivine-rich komatiitic lavas on central volcanoes and (8) magmatic inflation/deflation on caldera flanks localizing craterlets and extinct fumaroles in "loop" patterns. Regarding (6), directed volcanic blasts can remove a segment of the volcano wall as evidenced in terrestrial analogs at Mt. St. Helens and Bezymianny. Impact mechanisms to produce this feature in Copernicus are contrived. For (7) Clementine spectral data show a high olivine content of the central mountains on Copernicus which I interpret as forsteritic spinifex mineralization in komatiitic lavas and not as impact rebound of olivine-rich deep seated rocks. (8) MacDonald (1956) documented loop patterns on the flank of Halemaumau in Hawaii defining arcuate fractures localizing fumaroles and craterlets. Inflation/deflation of subjacent magma bodies are interpreted as the cause for these loops. Inflation/deflation mechanisms on caldera flanks are common around terrestrial calderas. "Loop" patterns on the flank of Copernicus localizing "gouge" craterlets have been interpreted as ballistic features resulting from the meteorite impact of this crater. Questioned is the logic of a linear N26E trending array of fragments within Copernicus to serve as a source of ballistic projectiles to form the loops localizing conjugate craterlets. The fused craterlet axes on the lunar loops do not point back to a presumed impact center in Copernicus. The axes are oriented parallel to a regional northwest (N35-60W) fracture zone. Implications for an endogenic origin of Copernicus would involve revisions of lunar stratigraphy. The origin of major rayed craters would also require review. The breached central volcano would offer a unique exploration objective. Hydrothermal alteration on the interior walls of the volcano should be accessible. Permanently shadowed zones at 40 K and near surface layers within the volcano could retain pockets of Precambrian fumarolic ices such as carbon and sulfur-bearing fluids, chlorine, methane, formaldehyde, nitrogen, ammonia, ammonium cyanide and water. A major implication would be possibility of biomarkers of Precambrian protolife. Energies for the creation of protolife would be electrical potentials created by flow charging or, on freezing, by charge separation. Well documented progressions from racemic amino acids formed "in the spark" (and stabilized by volcanic ammonium borate) reacting with adenine (formed in part by cooling ammonium cyanide) yield adenosine. The latter in turn can react with water-soluble volcanic polyphosphates to form adenosine triphosphate. Trace amounts of fumarolic tungsten could create tungstoenzymes as catalysts. Fischer-Tropsch catalysis could also generate lipid micelles and polycyclic amino acids. A critical prebiotic compound, formic acid, can be formed from troilite (a relatively common lunar iron sulfide) in an aqueous solution with hydrogen sulfide and carbon dioxide. The reaction is thermodynamically viable with a free energy of -11.9 kj/mole. Special physical attributes of fumaroles, such as spatter, involve wet/dry cycles and a version of a polymerase chain reaction creating an exponential replication of nucleotides. Copernicus as a caldera offers a significant role in both robotic and human exploration.
Lessons from geothermal gases at Yellowstone
NASA Astrophysics Data System (ADS)
Lowenstern, J. B.; Bergfeld, D.; Evans, W.; Hurwitz, S.
2015-12-01
The magma-hydrothermal system of the Yellowstone Plateau Volcanic Field encompasses over ten thousand individual springs, seeps, and fumaroles spread out over >9000 square kilometers, and produces a range of acid, neutral and alkaline waters. A prominent model (Fournier, 1989 and related papers) concludes that many neutral and alkaline fluids found in hot springs and geysers are derived from a uniform, high-enthalpy parent fluid through processes such as deep boiling and mixing with dilute meteoric groundwater. Acid waters are generally condensates of gas-bearing steam that boils off of subsurface geothermal waters. Our recent studies of gases at Yellowstone (Lowenstern et al., 2015 and references therein) are compatible with such a model, but also reveal that gases are largely decoupled from thermal waters due to open-system addition of abundant deep gas to (comparatively) shallow circulating thermal waters. Fumarole emissions at Yellowstone range from gas-rich (up to 15 mol%) composed of deeply derived CO2, He and CH4, to steam-rich emissions (<0.01% gas) dominated by N2 and Ar. The clear implication is that deep gas is diluted with atmospheric gas boiled off of geothermal liquids. The general trend is antithetical to that predicted by progressive boiling of a parent fluid (Rayleigh or batch degassing), where decreasing gas content should correlate with increasing proportions of soluble gas (i.e., CO2). Deep gas at Yellowstone fits into two general categories: 1) mantle-derived CO2 with a hotspot He isotope signature (>16 RA) and low CH4 and He concentrations and 2) mantle-derived CO2 with much higher CH4 and/or He concentrations and abundant radiogenic He picked up from crustal degassing. Individual thermal areas have distinct CH4/He. It remains unclear whether some gas ratios mainly reflect subsurface geothermal temperatures. Instead, they may simply reflect signatures imparted by local rock types and mixing on timescales too fast for reequilibration. Overall, the gas chemistry reflects a broader view of mantle-crust dynamics than can be appreciated by studies of only dissolved solutes in the neutral and alkaline waters from Yellowstone geysers. Fournier (1989) Ann. Rev. Earth Planet. Sci. v. 17, p. 13-53. Lowenstern et al. (2015) JVGR, v. 302, 87-101.
NASA Astrophysics Data System (ADS)
Taran, Y. A.; Bernard, A.; Gavilanes, J.-C.; Lunezheva, E.; Cortés, A.; Armienta, M. A.
2001-08-01
Gases, condensates and silica tube precipitates were collected from 400°C (Z2) and 800°C (Z3) fumaroles at Colima volcano, Mexico, in 1996-1998. Volcanic gases at Colima were very oxidized and contain up to 98% air due to mixing with air inside the dome interior, close to the hot magmatic body. An alkaline trap method was used to collect gas samples, therefore only acidic species were analysed. Colima volcanic gases are water-rich (95-98 mol%) and have typical S/C/Cl/F ratios for a subduction type volcano. δD-values for the high-temperature Z3 fumarolic vapour vary from -26 to -57‰. A negative δD-Cl correlation for the Z3 high-temperature fumarole may result from magma degassing: enrichment in D and decrease in the Cl concentration in condensates are likely a consequence of input of ;fresh; batches of magma and an increasing of volcanic activity, respectively. The trace element composition of Colima condensates generally does not differ from that of other volcanoes (e.g. Merapi, Kudryavy) except for some enrichment in V, Cu and Zn. Variations in chemical composition of precipitates along the silica tube from the high-temperature fumarole (Colima 1, fumarole Z3), in contrast to other volcanoes, are characterized by high concentrations of Ca and V, low concentration of Mo and a lack of Cd. Mineralogy of precipitates differs significantly from that described for silica tube experiments at other volcanoes with reduced volcanic gas. Thermochemical modelling was used to explain why very oxidized gas at Colima does not precipitate halite, sylvite, and Mo- and Cd-minerals, but does precipitate V-minerals and native gold, which have not been observed before in mineral precipitates from reduced volcanic gases.
Fumarole/plume and diffuse CO2 emission from Sierra Negra caldera, Galapagos archipelago
NASA Astrophysics Data System (ADS)
Padrón, Eleazar; Hernández, Pedro A.; Pérez, Nemesio M.; Toulkeridis, Theofilos; Melián, Gladys; Barrancos, José; Virgili, Giorgio; Sumino, Hirochika; Notsu, Kenji
2012-08-01
Measurements of visible and diffuse gas emission were conducted in 2006 at the summit of Sierra Negra volcano, Galapagos, with the aim to better characterize degassing after the 2005 eruption. A total SO2 emission of 11 ± 2 t day-1 was derived from miniature differential optical absorption spectrometer (mini-DOAS) ground-based measurements of the plume emanating from the Mini Azufral fumarolic area, the most important site of visible degassing at Sierra Negra volcano. Using a portable multigas system, the H2S/SO2, CO2/SO2, and H2O/SO2 molar ratios in the Mina Azufral plume emissions were found to be 0.41, 52.2, and 867.9, respectively. The corresponding H2O, CO2, and H2S emission rates were 562, 394, and 3 t day-1, respectively. The total output of diffuse CO2 emissions from the summit of Sierra Negra volcano was 990 ± 85 t day-1, with 605 t day-1 being released by a deep source. The diffuse-to-plume CO2 emission ratio was about 1.5. Mina Azufral fumaroles released gasses containing 73.6 mol% of H2O; the main noncondensable components amounted to 97.4 mol% CO2, 1.5 mol% SO2, 0.6 mol% H2S, and 0.35 mol% N2. The higher H2S/SO2 ratio values found in 2006 as compared to those reported before the 2005 eruption reveal a significant hydrothermal contribution to the fumarolic emissions. 3He/4He ratios measured at Mina Azufral fumarolic discharges showed values of 17.88 ± 0.25 R A , indicating a mid-ocean ridge basalts (MORB) and a Galapagos plume contribution of 53 and 47 %, respectively.
Helium Flux from the Earth's Mantle as Estimated from Hawaiian Fumarolic Degassing.
Naughton, J J; Lee, J H; Keeling, D; Finlayson, J B; Dority, G
1973-04-06
Averaged helium to carbon dioxide ratios measured from systematic collections of gases from Sulphur Bank fumarole. Kilauea, Hawaii, when coupled with estimates of carbon in the earth's crust, give a helium flux of 1 x 105 atoms per square centimeter per second. This is within the lower range of other estimates, and may represent the flux from deep-seated sources in the upper mantle.
NASA Technical Reports Server (NTRS)
Sutter, Brad; Ming, Douglas W.
2010-01-01
The Columbia Hills soils have been exposed to aqueous alteration in alkaline [1] as well as acid conditions [2,3]. The Paso Robles class soils are bright soils that possess the highest S concentration of any soil measured on Mars [2]. Ferric-sulfate detection by Moessbauer analysis indicated that acid solutions were involved in forming these soils [4]. These soils are proposed to have formed by alteration of nearby rock by volcanic hydrothermal or fumarolic activity. The Paso Robles soils consist of the original Paso Robles-disturbed-Pasadena (PR-dist), Paso Robles- PasoLight (PR-PL), Arad-Samra, Arad-Hula, Tyrone- Berker Island1 and Tyrone-MountDarwin [2 ,3. ]Chemical characteristics indicate that the PR-dist and PR-PL soils could be derived from acid weathering of local Wishstone rocks while the Samra and Hula soils are likely derived from local Algonquin-Iroquet rock [3]. The Paso Robles soils were exposed to acidic sulfur bearing fluids; however, little else is known about the chemistry of the alteration fluid and its effects on the alteration of the proposed parent materials. The objectives of this work are to conduct titanium normalized mass-balance analysis to1) assess elemental gains and losses from the parent materials in the formation of the Paso Robles soils and 2) utilize this information to indicate the chemical nature of the alteration fluids.
Carbon dioxide degassing and thermal energy release at Vesuvio (Italy)
NASA Astrophysics Data System (ADS)
Frondini, F.; Chiodini, G.; Caliro, S.; Cardellini, C.; Granieri, D.
2003-04-01
At Vesuvio, basing on the data of the CO2 flux surveys carried out in April and May 2000, are discharged about 130 t d-1 of CO2 through soil diffuse degassing. In the crater area the distribution of the soil temperatures show a general correspondence between the CO2 flux anomalies and the high temperatures, suggesting that the heating of the soil is mainly due to the condensation of the rising volcanic-hydrothermal fluids. Considering that the original H2O/CO2 ratio of hydrothermal fluids is recorded by fumarolic effluents, the steam associated to the CO2 output has been computed and amount to is 475 t d-1. The energy produced by the steam condensation and cooling of the liquid phase is 1.26 1012 J d-1 (14.6 MW). The amounts of gas and energy released by Vesuvio are comparable to those released by other volcanic degassing areas of the world and their estimates, through periodical CO2 flux surveys, can constitute a powerful tool to monitor the activity of the volcano.
Hydrothermal circulation at Mount St. Helens determined by self-potential measurements
Bedrosian, P.A.; Unsworth, M.J.; Johnston, M.J.S.
2007-01-01
The distribution of hydrothermal circulation within active volcanoes is of importance in identifying regions of hydrothermal alteration which may in turn control explosivity, slope stability and sector collapse. Self-potential measurements, indicative of fluid circulation, were made within the crater of Mount St. Helens in 2000 and 2001. A strong dipolar anomaly in the self-potential field was detected on the north face of the 1980-86 lava dome. This anomaly reaches a value of negative one volt on the lower flanks of the dome and reverses sign toward the dome summit. The anomaly pattern is believed to result from a combination of thermoelectric, electrokinetic, and fluid disruption effects within and surrounding the dome. Heat supplied from a cooling dacite magma very likely drives a shallow hydrothermal convection cell within the dome. The temporal stability of the SP field, low surface recharge rate, and magmatic component to fumarole condensates and thermal waters suggest the hydrothermal system is maintained by water vapor exsolved from the magma and modulated on short time scales by surface recharge. ?? 2006 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Mouyen, Maxime; Chao, Benjamin Fong; Hwang, Cheinway; Hsieh, Wen-Chi
2016-12-01
The Tatun Volcano Group (TVG), located on the northern coast of Taiwan adjacent to the city of Taipei, experiences active hydrothermalism but has no historical record of volcanic eruption. Yet recent studies suggest that TVG is dormant-active rather than extinct. To monitor mass transfers and to gain further understanding of this volcanic area, gravity variations have been recorded continuously since 2012 using a superconducting gravimeter, and once every few months since 2005 using absolute gravimeters. We analyze the continuous gravity time series and propose a model that best explains the gravity variations due to local groundwater redistribution. By correcting these variations, we identify gravity changes as large as 35 μGal that occurred concomitantly to fluid pressure-induced earthquakes and changes in the gas composition at Dayoukeng, one of TVG's fumaroles, over 2005-2007. We examine several fluid movements that can match the gravity observations, yet too few additional constraints exist to favor any of them. In particular, no significant ground displacements are observed when these gravity variations occurred. On the other hand, the model of gravity changes due to local groundwater redistribution can be routinely computed and removed from the ongoing time gravity measurements in order to quickly identify any unusual mass transfer occurring beneath TVG.
NASA Astrophysics Data System (ADS)
Mouyen, Maxime; Chao, Benjamin; Hwang, Cheinway; Hsieh, Wen-Chi
2017-04-01
The Tatun Volcano Group (TVG), located on the northern coast of Taiwan adjacent to the city of Taipei, experiences active hydrothermalism but has no historical record of volcanic eruption. Yet recent studies suggest that TVG is dormant-active rather than extinct. To monitor mass transfers and to gain further understanding of this volcanic area, gravity variations have been recorded continuously since 2012 using a superconducting gravimeter, and once every few months since 2005 using absolute gravimeters. We analyze the continuous gravity time series and propose a model that best explain the gravity variations due to local groundwater redistribution. By correcting these variations, we identify gravity changes as large as 35 µGal that occurred concomitantly to fluid pressure-induced earthquakes and changes in the gas composition at Dayoukeng, one of TVG's fumaroles, over 2005-2007. We examine several fluid movements that can match the gravity observations, yet too few additional constraints exist to favor any of them. In particular, no significant ground displacements are observed when these gravity variations occurred. On the other hand, the model of gravity changes due to local groundwater redistribution can be routinely computed and removed from the ongoing time gravity measurements in order to quickly identify any unusual mass transfer occurring beneath TVG.
NASA Astrophysics Data System (ADS)
Renaut, Robin W.; Owen, R. Bernhart; Ego, John K.
2017-05-01
Lake Bogoria, a saline alkaline closed-lake in a drainage basin of Neogene volcanic rocks in the central Kenya Rift, is fed partly by ∼200 hot alkaline springs located in three groups along its margins. Hot springs along the midwest shoreline (Loburu, Chemurkeu) and their travertine deposits have been studied, but little is known about the geothermal activity at southern Lake Bogoria. Observations, field measurements and analyses (geochemical and mineralogical) of the spring waters and deposits, spanning three decades, show that the southern spring waters are more saline, the hydrothermal alteration there is more intense, and that most hot spring deposits are siliceous. Geothermal activity at southern Lake Bogoria (Ng'wasis, Koibobei, Losaramat) includes littoral boiling springs and geysers, with fumaroles at slightly higher elevations. Modern spring deposits are ephemeral sodium carbonates, opal-A crusts and silica gels. Local fossil spring deposits include diatomaceous silica-cemented conglomerates that formed subaqueously when the lake was then dilute and higher than today, and outlying calcite tufa deposits. In contrast, mineral deposits around neighbouring fumarole vents and sites of hydrothermal alteration include clays (kaolinite), sulfate minerals (jarosite, alunite), and Fe-oxyhydroxides linked to rising acidic fluids. When lake level falls, the zone of acidity moves downwards and may overprint older alkaline spring deposits. In contrast, rising lake level leads to lake water dilution and vents in the lower parts of the acidic zone may become dilute alkaline springs. The new evidence at Lake Bogoria shows the potential for using the mineralogy of geothermal sediments to indicate former changes in lake level.
Symonds, R.B.; Rose, William I.; Reed, M.H.; Lichte, F.E.; Finnegan, David L.
1987-01-01
Condensates, silica tube sublimates and incrustations were sampled from 500-800??C fumaroles and lava samples were collected at Merapi Volcano, Indonesia in Jan.-Feb., 1984. With respect to the magma, Merapi gases are enriched by factors greater than 105 in Se, Re, Bi and Cd; 104-105 in Au, Br, In, Pb and W; 103-104 in Mo, Cl, Cs, S, Sn and Ag; 102-103 in As, Zn, F and Rb; and 1-102 in Cu, K, Na, Sb, Ni, Ga, V, Fe, Mn and Li. The fumaroles are transporting more than 106 grams/day ( g d) of S, Cl and F; 104-106 g/d of Al, Br, Zn, Fe, K and Mg; 103-104 g d of Pb, As, Mo, Mn, V, W and Sr; and less than 103 g d of Ni, Cu, Cr, Ga, Sb, Bi, Cd, Li, Co and U. With decreasing temperature (800-500??C) there were five sublimate zones found in silica tubes: 1) cristobalite and magnetite (first deposition of Si, Fe and Al); 2) K-Ca sulfate, acmite, halite, sylvite and pyrite (maximum deposition of Cl, Na, K, Si, S, Fe, Mo, Br, Al, Rb, Cs, Mn, W, P, Ca, Re, Ag, Au and Co); 3) aphthitalite (K-Na sulfate), sphalerite, galena and Cs-K. sulfate (maximum deposition of Zn, Bi, Cd, Se and In; higher deposition of Pb and Sn); 4) Pb-K chloride and Na-K-Fe sulfate (maximum deposition of Pb, Sn and Cu); and 5) Zn, Cu and K-Pb sulfates (maximum deposition of Pb, Sn, Ti, As and Sb). The incrustations surrounding the fumaroles are also chemically zoned. Bi, Cd, Pb, W, Mo, Zn, Cu, K, Na, V, Fe and Mn are concentrated most in or very close to the vent as expected with cooling, atmospheric contamination and dispersion. The highly volatile elements Br, Cl, As and Sb are transported primarily away from high temperature vents. Ba, Si, P, Al, Ca and Cr are derived from wall rock reactions. Incomplete degassing of shallow magma at 915??C is the origin of most of the elements in the Merapi volcanic gas, although it is partly contaminated by particles or wall rock reactions. The metals are transported predominantly as chloride species. As the gas cools in the fumarolic environment, it becomes saturated with sublimate phases that fractionate from the gas in the order of their equilibrium saturation temperatures. Devolatilization of a cooling batholith could transport enough acids and metals to a hydrothermal system to play a significant role in forming an ore deposit. However, sublimation from a high temperature, high velocity carrier gas is not efficient enough to form a large ore deposit. Re, Se, Cd and Bi could be used as supporting evidence for magmatic fluid transport in an ore deposit. ?? 1987.
Gas hazard assessment in the touristic area of Levante Beach (Vulcano island, Italy)
NASA Astrophysics Data System (ADS)
Carapezza, Maria Luisa; Di Piazza, Andrea; Gattuso, Alessandro; Ranaldi, Massimo; Sortino, Francesco; Tarchini, Luca
2016-04-01
Since the last eruption occurred at "La Fossa" in 1888-1890, Vulcano remained in a quiescence state characterized by an intense fumarolic activity. The main degassing manifestations are concentrated in La Fossa crater area (high temperature fumaroles) and in the area of Vulcano Porto, between Levante Beach and Faraglioni (medium-low temperature fumaroles). In addition the entire volcanic edifice of La Fossa, its base and the area of Vulcano Porto are characterized by en extensive soil CO2 diffuse degassing. In the last century episodic "crises" have occurred with increase of temperature, gas output and compositional changes of the crater fumaroles indicating an increase of the magmatic component in the discharged fluids. These episodic crises occurred in 1916-1924, in 1988-1993, in 1996 and in 2004-2006. During the period 1988-1990, the accumulation of CO2 in morphological depressions or excavation provoked the death for asphyxiation of two children in the area of Vulcano Porto and of some small animals at the base of the crater area. In April 2015, a child lost his senses while playing at Levante Beach; he was rescued by an air ambulance to the hospital of Lipari. According to the national chronicle (La Repubblica, 22 June 2015), doctors attributed the malaise to a high CO2 air concentration. Soon after this event the Major of Lipari installed at Levante Beach some panels informing tourists on gas hazard. In summer 2015 we performed a geochemical survey of the Levante Beach sector (onshore and offshore) and of the mud pool, estimating the diffuse and viscous gas flux and the air gas concentration in order to evaluate the degassing level. The total gas flux in the Levante Beach area, from 0.3 km2, has been estimated in 1 t/day of CO2 and 16,1 kg/day of H2S; values comparable with those of the 2009 and 2011 campaigns. In addition, a soil CO2 flux survey of the target area at La Fossa crater was performed, ascertaining that the degassing rate was within the range of the inter-crisis period (CO2 = 200 t/day). In the mud pool area, continuous measurements of CO2 and H2S air concentration were also carried out for a period of a week. The CO2 concentration was almost always higher than in the normal unpolluted air. Concentration of H2S displayed high values (maximum of 43 ppm), with the TWA (10 ppm) and STEL (15 ppm) H2S thresholds frequently exceeded. Offshore, gas concentration in atmosphere over the submarine vents of the Levante Beach, displayed extremely high concentrations of H2S (values up to 1000 ppm) and CO2 (8.6 vol.%). these values may cause serious adverse health consequences on the exposed people even in periods when the volcanic activity is not considered high or anomalous.
NASA Astrophysics Data System (ADS)
Gaudin, Damien; Ricci, Tullio; Finizola, Anthony; Delcher, Eric; Alparone, Salvatore; Barde-Cabusson, Stéphanie; Brothelande, Elodie; Di Gangi, Fabio; Gambino, Salvatore; Inguaggiato, Salvatore; Milluzzo, Vincenzo; Peltier, Aline; Vita, Fabio
2017-09-01
Although it is relatively easy to set-up, the monitoring of soil temperature in sub-fumarolic areas is quite rarely used to monitor the evolution of hydrothermal systems. Indeed, measurements are highly sensitive to environmental conditions, in particular daily and seasonal variations of atmospheric temperatures and rainfalls, which can be only partially filtered by the established statistical analysis. In this paper, we develop two innovative processing methods, both based on the computation of the heat flux in the soil. The upward heat flux method (UHF), designed for dry environments, consists in computing both the conductive and convective components of the heat flux between two thermocouples placed vertically. In the cases of wet environments, the excess of total heat method (ETH) allows the integration of rain gauges data in order to correct the heat balance from the superficial cooling effect of the precipitations. The performances of both processing techniques are faced to established methods (temperature gradient and coefficient of determination) on soil temperature time series from two test volcanoes. At La Fossa di Vulcano (Italy), the UHF method undoubtedly detects three thermal crises between 2009 and 2012, enabling to quantify not only the intensity but also the precise timing of the heat flux increase with respect to corresponding geochemical and seismic crises. At La Soufrière de Guadeloupe (French Lesser Antilles), despite large rainfalls dramatically influencing the thermal behavior of the soil, a constant geothermal heat flux is retrieved by the ETH method, confirming the absence of fumarolic crisis during the observation period (February-August 2010). Being quantitative, robust, and usable in almost any context of sub-fumarolic zones, our two heat flux-based methods increase the potential of soil temperature for the monitoring, but also the general interpretation of fumarolic crises together with geochemical and seismological observations. A spreadsheet allowing direct computation of UHF and ETH is provided as supplemental material.
NASA Astrophysics Data System (ADS)
Gammaldi, S.; Amoroso, O.; D'Auria, L.; Zollo, A.
2017-12-01
Campi Flegrei is an active caldera characterized by secular, periodic episodes of spatially extended, low-rate ground deformation (bradyseism) accompanied by an intense seismic and geothermal activity. Its inner crater Solfatara is characterized by diffuse surface degassing and continuous fumarole activity. This points out the relevance of fluid and heat transport from depth and prompts for further research to improve the understanding of the hydrothermal system feeding processes and fluid migration to the surface. The experiment Repeated Induced Earthquake and Noise (RICEN) (EU Project MEDSUV), was carried out between September 2013 and November 2014 to investigate the space and time varying properties of the subsoil beneath the crater. The processed dataset consists of records from two 1D orthogonal seismic arrays deployed along WNW-ESE and NNE-SSW directions crossing the 400 m crater surface. To highlight the first P-wave arrivals a bandpass filter and an AGC were applied which allowed the detection of 17894 manually picked arrival times. Starting from a 1D velocity model, we performed a 2D non-linear Bayesian estimation. The method consists in retrieving the velocity model searching for the maximum of the "a posteriori" probability density function. The optimization is performed by the sequential use of the Genetic Algorithm and the Simplex methods. The retrieved images provide evidence for a very low P-velocity layer (Vp<500 m/s) associated with quaternary deposits, a low velocity (Vp=500-1500 m/s) water saturated deep layer at West, contrasted by a high velocity (Vp=2000-3200 m/s) layer correlated with a consolidated tephra deposit. The transition velocity range (from 1500 to 2000 m/s) suggests the possible presence of a gas-rich, accumulation volume. Based on the surface evidence of the gas released by the Bocca Grande and Bocca Nuova fumaroles at the Eastern border of Solfatara and the presence of the central deeper plume, we infer a detailed image for the gas migration via. The multi-2D tomographic images provide the evidence for a fault zone situated in the central part of the crater which seems to represent the main buried conduit for the degassing.
NASA Astrophysics Data System (ADS)
Ruff, S. W.; Farmer, J. D.; Milliken, R.; Niles, P. B.; Alfano, F.; Clarke, A. B.; Kraft, M. D.; Hardgrove, C. J.
2014-12-01
The Spirit rover was sent to Gusev crater because of evidence that it contained an ancient lake. Lacustrine sediments were not identified, but aqueous activity was. Spirit encountered widespread meter-scale eroded outcrops and regolith composed of opaline silica in a setting associated with small-scale explosive volcanism. This combination was interpreted as evidence for a hydrothermal system, with silica produced by either fumarolic acid-sulfate leaching of host rocks or precipitation from silica-rich hot spring or geyser waters [1]. Evidence for the latter is stronger based on stratigraphic and textural arguments [2]. Our ongoing lab and field studies of terrestrial opaline silica occurrences demonstrate that fumarolic alteration leads to greater mineral diversity and less SiO2 enrichment than observed in the Gusev case, pointing to a hot spring or geyser origin. Terrestrial hot springs support microbial communities and can preserve that evidence over geologic timescales [3], making outcrops of opaline silica ideal targets in a search for biosignatures with instruments on the Mars 2020 rover. Spirit also discovered outcrops with 16-34 wt% Mg-Fe carbonate. Dubbed Comanche, the carbonate was thought to result from dissolution by hydrothermal fluids of pre-existing carbonates elsewhere in Gusev followed by transport and re-precipitation [4]. A reanalysis found evidence that the alteration is consistent with evaporative precipitation of low-temperature, near-surface solutions derived from limited water-rock interaction in rocks equivalent to nearby "Algonquin" outcrops [5]. Water-limited leaching of formerly widespread Algonquin-like tephra deposits by ephemeral waters, followed by transport and evaporative precipitation of the fluids into the Comanche outcrops, can explain their chemical, mineralogical, and textural characteristics. The habitability potential of this setting is unclear, but detrital materials carried by floodwaters and preserved in carbonate cements may be of astrobiological interest. [1] Squyres, S. W., et al. (2008), Science, 320, 1063-1067. [2] Ruff, S. W., et al. (2011), J. Geophys. Res., 116, E00F2. [3] Walter, M. R., et al. (1996), Palaios, 11, 497-518. [4] Morris, R. V., et al. (2010), Science, 329, 421-424. [5] Ruff, S. W., et al. (2014), Geology, 42, 4, 359-362.
Fumarole/plume and diffuse CO2 emission from Sierra Negra volcano, Galapagos archipelago
NASA Astrophysics Data System (ADS)
Padron, E.; Hernandez Perez, P. A.; Perez, N.; Theofilos, T.; Melian, G.; Barrancos, J.; Virgil, G.; Sumino, H.; Notsu, K.
2009-12-01
The active shield-volcano Sierra Negra is part of the Galapagos hotspot. Sierra Negra is the largest shield volcano of Isabela Island, hosting a 10 km diameter caldera. Ten historic eruptions have occurred and some involved a frequently visited east caldera rim fissure zone called Volcan Chico. The last volcanic event occurred in October 2005 and lasted for about a week, covering approximately twenty percent of the eastern caldera floor. Sierra Negra volcano has experienced some significant changes in the chemical composition of its volcanic gas discharges after the 2005 eruption. This volcanic event produced an important SO2 degassing that depleted the magmatic content of this gas. Not significant changes in the MORB and plume-type helium contribution were observed after the 2005 eruption, with a 65.5 % of MORB and 35.5 % of plume contribution. In 2006 a visible and diffuse gas emission study was performed at the summit of Sierra Negra volcano, Galapagos, to evaluate degassing rate from this volcanic system. Diffuse degassing at Sierra Negra was mainly confined in three different DDS: Volcan Chico, the southern inner margin of the caldera, and Mina Azufral. These areas showed also visible degassing, which indicates highly fractured areas where volcano-hydrothermal fluids migrate towards surface. A total fumarole/plume SO2 emission of 11 ± 2 td-1 was calculated by mini-DOAS ground-based measurements at Mina Azufral fumarolic area. Molar ratios of major volcanic gas components were also measured in-situ at Mina Azufral with a portable multisensor. The results showed H2S/SO2, CO2/SO2 and H2O/SO2 molar ratios of 0.41, 52.2 and 867.9, respectively. Multiplying the observed SO2 emission rate times the observed (gas)i/SO2 mass ratio we have estimated other volatiles emission rates. The results showed that H2O, CO2 and H2S emission rates from Sierra Negra are 562, 394, and 2.4 t d-1, respectively. The estimated total output of diffuse CO2 emission from the summit of Sierra Negra was 989 ± 85 t d-1. Estimated diffuse/plume CO2 emission ratio was 2.5.
NASA Astrophysics Data System (ADS)
Chiodini, Giovanni; Marini, Luigi; Russo, Massimo
2001-07-01
A high-temperature hydrothermal system is present underneath the crater area of Vesuvio volcano. It is suggested that NaCl brines reside in the high-temperature reservoir and influence the chemical composition of the gases discharged by the fumaroles of the crater bottom (vents FC1, FC2, and FC5). These have typical hydrothermal compositions, with H 2O and CO 2 as major components, followed by H 2, H 2S, N 2, CH 4, and CO (in order of decreasing contents) and undetectable SO 2, HCl, and HF. Fumarolic H 2O is either meteoric water enriched in 18O through high-temperature water-rock oxygen isotope exchange or a mixture of meteoric and arc-type magmatic water. Fumarolic CO 2 is mainly generated by decarbonation reactions of marine carbonates, but the addition of small amounts of magmatic CO 2 is also possible. All investigated gas species (H 2O, CO 2, CO, CH 4, H 2, H 2S, N 2, and NH 3) equilibrate, probably in a saturated vapor phase, at temperatures of 360 to 370°C for vent FC1 and 430 to 445°C for vents FC2 and FC5. These temperatures are confirmed by the H 2-Ar geoindicator. The minimum salt content of the liquid phase coexisting with the vapor phase is ˜14.9 wt.% NaCl, whereas its maximum salinity corresponds to halite saturation (49.2-52.5 wt.% NaCl). These poorly constrained salinities of NaCl brines reflect in large uncertainties in total fluid pressures, which are estimated to be 260 to 480 bar for vents FC2 and FC5 and 130 to 220 bar for vent FC1. Pressurization in some parts of the hydrothermal system, and its subsequent discharge through hydrofracturing, could explain the relatively frequent seismic crises recorded in the Vesuvio area after the last eruption. An important heat source responsible for hydrothermal circulation is represented by the hot rocks of the eruptive conduits, which have been active from 1631 to 1944. Geochemical evidence suggests that no input of fresh magma at shallow depths took place after the end of the last eruptive period.
Moran, S.C.; Zimbelman, D.R.; Malone, S.D.
2000-01-01
Mount Rainier is one of the most seismically active volcanoes in the Cascade Range, with an average of one to two high-frequency volcano-tectonic (or VT) earthquakes occurring directly beneath the summit in a given month. Despite this level of seismicity, little is known about its cause. The VT earthquakes occur at a steady rate in several clusters below the inferred base of the Quaternary volcanic edifice. More than half of 18 focal mechanisms determined for these events are normal, and most stress axes deviate significantly from the regional stress field. We argue that these characteristics are most consistent with earthquakes in response to processes associated with circulation of fluids and magmatic gases within and below the base of the edifice. Circulation of these fluids and gases has weakened rock and reduced effective stress to the point that gravity-induced brittle fracture, due to the weight of the overlying edifice, can occur. Results from seismic tomography and rock, water, and gas geochemistry studies support this interpretation. We combine constraints from these studies into a model for the magmatic system that includes a large volume of hot rock (temperatures greater than the brittle-ductile transition) with small pockets of melt and/or hot fluids at depths of 8-18 km below the summit. We infer that fluids and heat from this volume reach the edifice via a narrow conduit, resulting in fumarolic activity at the summit, hydrothermal alteration of the edifice, and seismicity.
Beneficial effects of groundwater entry into liquid-dominated geothermal systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lippmann, M.J.; Truesdell, A.H.
In all active liquid-dominated geothermal systems there is continuous circulation of mass and transfer of heat, otherwise they would slowly cool and fade away. In the natural state these systems are in dynamic equilibrium with the surrounding colder groundwater aquifers. The ascending geothermal fluids cool conductively, boil, or mix with groundwaters, and ultimately may discharge at the surface as fumaroles or hot springs. With the start of fluid production and the lowering of reservoir pressure, the natural equilibrium is disrupted and cooler groundwater tends to enter the reservoir. Improperly constructed or damaged wells, and wells located near the margins ofmore » the geothermal system, exhibit temperature reductions (and possibly scaling from mixing of chemically distinct fluids) as the cooler-water moves into the reservoir. These negative effects, especially in peripheral wells are, however, compensated by the maintenance of reservoir pressure and a reduction in reservoir boiling that might result in mineral precipitation in the formation pores and fractures. The positive effect of cold groundwater entry on the behavior of liquid-dominated system is illustrated by using simple reservoir models. The simulation results show that even though groundwater influx into the reservoir causes cooling of fluids produced from wells located near the cold-water recharge area, it also reduces pressure drawdown and boiling in the exploited zone, and sweeps the heat stored in the reservoir rocks toward production wells, thus increasing the productive life of the wells and field. 9 refs.« less
Fatal fall into a volcanic fumarole.
Cantrell, Lee; Young, Michael
2009-01-01
Fatalities secondary to inhalation of volcanic gases in the United States have rarely been reported. We report the deaths of 3 ski patrol members at a popular California ski resort. After a snowstorm, ski patrol members were fencing off a well-known volcanic fumarole when the snow around the vent collapsed. Two members slid into the deep hole and rapidly lost consciousness. A third member carrying oxygen descended into the hole and also lost consciousness. A fourth member affixed an oxygen mask, but still lost consciousness upon descent. The 3 initial victims expired at the scene, while the fourth victim survived. Autopsy results for all 3 were consistent with a suffocation/asphyxiation death. In the case described, the involved fumarole is a well-known source of toxic gases. Atmospheric sampling data dating back decades demonstrate that carbon dioxide levels typically range from 97% to 99%, nitrogen gas from 1% to 3%, and hydrogen sulfide from .004% to .07%. Other gases in smaller concentrations include oxygen, hydrogen, and carbon monoxide. Given the rapidity with which our victims lost consciousness and the historical data available on the Mammoth Mountain Fumarole (MMF), it is plausible that our patients suffered from acute asphyxiation, although the contribution of the directly toxic effects of the gases involved cannot be ruled out. During winter months, snow can build up and disguise volcanic vents and potentially trap toxic fumes to form dangerous, gas-filled pits. Recognition of such potential hazards is essential when working in or venturing into volcanically active areas during the winter.
NASA Astrophysics Data System (ADS)
Fontaine, F.; Peltier, A.; Kowalski, P.; Di Muro, A.; Villeneuve, N.; Ferrazzini, V.; Staudacher, T.
2017-12-01
Piton de la Fournaise, located on La Réunion Island in the South East Indian Ocean, is one of the most active basaltic volcanoes (hotspot) of the world with a mean eruption frequency <6 months over the last 20 years. The central dome of the shield is thought to host an active hydrothermal system evidenced by self-potential techniques early in the 90's and mining heat from a magmatic source located about 2-2.5 km below the summit. Surface manifestations of this activity such as fumeroles or hot grounds have however never been observed before 2007 when deep magma withdrawal from the magmatic horizon during the "eruption of the century" (>100×106 m3) on the island, led to the formation of a 400-m-deep, 1000-m-large, funnel-shaped summit caldera. Since then, the floor and inner flanks of this summit depression hosting hot grounds and active fumaroles, are monitored using an infra-red camera device permanently installed on the caldera rim.This thermal dataset constitutes the first opportunity to understand the structure and dynamics of the hydrothermal system and its ability to relay deep-seated heat and mass perturbations. We present in this communication an overview of this thermal datasets focusing on ground/fumaroles temperature evolution during volcanic crisis and rest periods and analyzing correlations with the other permanently acquired data such as the temporal evolution of gas geochemistry (CO2, SO2, H2S), ground deformation and micro-seismic activity. We finally propose a conceptual model of fluid flow architecture within the edifice which paves the way for future quantitative models of hydrothermal heat and mass transfers.
Volatile emissions from the crater and flank of Oldoinyo Lengai volcano, Tanzania
Koepenick, K.W.; Brantley, S.L.; Thompson, J.M.; Rowe, G.L.; Nyblade, A.A.; Moshy, C.
1996-01-01
As a comparison to airborne infrared (IR) flux measurements, ground-based sampling of fumarole and soil gases was used to characterize the quiescent degassing of CO2 from Oldoinyo Lengai volcano. Aerial and ground-based measurements are in good agreement: ???75% of the aerially measured CO2 flux at Lengai (0.05-0.06 ?? 1012 mol yr-1 or 6000-7200 tonnes CO2 d-1) can be attributed to seven large crater vents. In contrast to Etna and Vulcano Island, where 15-50% of the total CO2 flux emanates diffusely through the volcanic flanks, diffuse emissions were measured only within 500 m of the crater rim at Lengai, contributing < 2% of the total flux. The lack of extensive flank emissions may reflect the dimensions of the magma chamber and/or the lack of a shallow fluid flow system. Thermodynamic restoration of fumarole analyses shows that gases are the most CO2-rich and H2O-poor reported for any volcano, containing 64-74% CO2, 24-34% H2O, 0.88-1.0% H2, 0.1-0.4% CO and < 0.1% H2S, HCl, HF, and CH4. Volatile emissions of S, Cl, and F at Oldoiyno Lengai are estimated as 4.5, 1.5, and 1.0 ?? 107 mol yr-1, respectively. Accuracy of the airborne technique was also assessed by measuring the C emission rate from a coal-burning power plant. CO2 fluxes were measured within ??10% near the plant; however, poor resolution at increased distances caused an underestimation of the flux by a factor of 2. The relatively large CO2 fluxes measured for alkaline volcanoes such as Oldoinyo Lengai or Etna may indicate that midplate volcanoes represent a large, yet relatively unknown, natural source of CO2.
NASA Astrophysics Data System (ADS)
Prabumukti, Grano; Purwanto; Widodo, Wahyu
2018-02-01
Indonesia posses 40% of the world's geothermal energy sources. The existence of hydrothermal sources is usually characterized by their surface manifestations such as hot springs, geysers and fumarole. Hot spring has a potential to be used as a heat source to generate electricity especially in a rural and isolated area. Hot springs can be converted into electricity by binary thermodynamic cycles such as Kalina cycle and ORC. The aim of this study is to obtain the best performances of cycle configuration and the potential power capacity. Simulation is conducted using UNISIM software with working fluid and its operating condition as the decision variables. The simulation result shows that R1234yf and propene with simple ORC as desired working fluid and cycle configuration. It reaches a maximum thermal efficiency up to 9.6% with a specific turbine inlet pressure. Higher temperature heat source will result a higher thermal efficiency‥ Cycle thermal efficiency varies from 4.7% to 9.6% depends on source of hot spring temperature. Power capacity that can be generated using Indonesia's hot spring is ranged from 2 kWe to 61.2 kWe. The highest capacity located in Kawah Sirung and the least located in Kaendi.
Ground magnetometer survey in the Valley of Ten Thousand Smokes, Alaska. M.S. Thesis
NASA Technical Reports Server (NTRS)
Trible, M. C.
1972-01-01
A reconnaissance magnetometer survey was conducted with both total- and vertical-field magnetometers. The large, sharp, narrow total magnetic anomalies observed over a zone of relict fumaroles in Broken Mountain Valley showed spectacular agreement with the surficial geology. Such a correlation is a strong indication that accumulations of magnetic minerals have been preserved along these fissure vents at shallow depths. Since large magnetic anomalies were measured near fumarolic markings along all of the traverses, it is proposed that the retention of sublimates along fumarolic vents is common throughout the Valley. The generally concentric contours of the vertical magnetic anomaly at the head of the Valley suggest that the dome of Novarupta is merely the surficial expression of a very massive conical-shaped intrusive centered just northeast of the dome. The magnetometer survey indicates that the pyroclastics in the Valley may be over 150 meters thick. Such an estimate is compatible with the volume of eruptive material needed to compensate for the subsidence surrounding Novarupta as well as a sizable amount of other regional subsidence.
Lewicki, Jennifer L.; Hilley, George E.; Shelly, David R.; King, John C.; McGeehin, John P.; Mangan, Margaret T.; Evans, William C.
2014-01-01
Unrest at Mammoth Mountain over the past several decades, manifest by seismicity, ground deformation, diffuse CO2 emissions, and elevated 3He/4He ratios in fumarolic gases has been driven by the release of CO2-rich fluids from basaltic intrusions in the middle to lower crust. Recent unrest included the occurrence of three lower-crustal (32–19 km depth) seismic swarms beneath Mammoth Mountain in 2006, 2008 and 2009 that were consistently followed by peaks in the occurrence rate of shallow (≤10 km depth) earthquakes. We measured 14C in the growth rings (1998–2012) of a tree growing in the largest (∼0.3 km2) area of diffuse CO2 emissions on Mammoth Mountain (the Horseshoe Lake tree kill; HLTK) and applied atmospheric CO2 concentration source area modeling to confirm that the tree was a reliable integrator of magmatic CO2 emissions over most of this area. The tree-ring 14C record implied that magmatic CO2 emissions from the HLTK were relatively stable from 1998 to 2009, nearly doubled from 2009 to 2011, and then declined by the 2012 growing season. The initial increase in CO2 emissions was detected during the growing season that immediately followed the largest (February 2010) peak in the occurrence rate of shallow earthquakes. Migration of CO2-rich magmatic fluids may have driven observed patterns of elevated deep, then shallow seismicity, while the relationship between pore fluid pressures within a shallow (upper 3 km of crust) fluid reservoir and permeability structure of the reservoir cap rock may have controlled the temporal pattern of surface CO2 emissions.
Heat flux from magmatic hydrothermal systems related to availability of fluid recharge
Harvey, M. C.; Rowland, J.V.; Chiodini, G.; Rissmann, C.F.; Bloomberg, S.; Hernandez, P.A.; Mazot, A.; Viveiros, F.; Werner, Cynthia A.
2015-01-01
Magmatic hydrothermal systems are of increasing interest as a renewable energy source. Surface heat flux indicates system resource potential, and can be inferred from soil CO2 flux measurements and fumarole gas chemistry. Here we compile and reanalyze results from previous CO2 flux surveys worldwide to compare heat flux from a variety of magma-hydrothermal areas. We infer that availability of water to recharge magmatic hydrothermal systems is correlated with heat flux. Recharge availability is in turn governed by permeability, structure, lithology, rainfall, topography, and perhaps unsurprisingly, proximity to a large supply of water such as the ocean. The relationship between recharge and heat flux interpreted by this study is consistent with recent numerical modeling that relates hydrothermal system heat output to rainfall catchment area. This result highlights the importance of recharge as a consideration when evaluating hydrothermal systems for electricity generation, and the utility of CO2 flux as a resource evaluation tool.
Clues on the origin of post-2000 earthquakes at Campi Flegrei caldera (Italy).
Chiodini, G; Selva, J; Del Pezzo, E; Marsan, D; De Siena, L; D'Auria, L; Bianco, F; Caliro, S; De Martino, P; Ricciolino, P; Petrillo, Z
2017-06-30
The inter-arrival times of the post 2000 seismicity at Campi Flegrei caldera are statistically distributed into different populations. The low inter-arrival times population represents swarm events, while the high inter-arrival times population marks background seismicity. Here, we show that the background seismicity is increasing at the same rate of (1) the ground uplift and (2) the concentration of the fumarolic gas specie more sensitive to temperature. The seismic temporal increase is strongly correlated with the results of recent simulations, modelling injection of magmatic fluids in the Campi Flegrei hydrothermal system. These concurrent variations point to a unique process of temperature-pressure increase of the hydrothermal system controlling geophysical and geochemical signals at the caldera. Our results thus show that the occurrence of background seismicity is an excellent parameter to monitor the current unrest of the caldera.
NASA Astrophysics Data System (ADS)
Moretti, R.; Civetta, L.; Orsi, G.; Arienzo, I.; D'Antonio, M.; Di Renzo, V.
2013-12-01
The definition of the structure and evolution of the magmatic system of Campi Flegrei caldera (CFc), Southern Italy, has been a fundamental tool for the assessment of the short-term volcanic hazard. The ensemble of geophysical and petrologic data show that the CFc magmatic system has been -and still is- characterized by two major reservoirs at different depths. From the deep one (around 8 km), less evolved magmas crystallize and degas, supplying fluids and magmas to the shallow (3-4 km) reservoirs. A thorough reconstruction of processes occurring in magma chamber/s prior and/or during the CFc eruptions has shown that magmas entering shallow reservoirs mixed with resident and crystallized batches. Also the 1982-85 unrest episode has been related to a magma intrusion of 2.1 x 10^7 m^3 at 3-4 km depth, on the basis of geophysical data (ground deformation, gravimetry, seismic imaging) and their interpretation. Thermodynamic evaluation of magma properties, at the time of emplacement, suggests for such an intrusion a bulk density of 2.000 kg/m^3 . Such a value testifies the high amount of exsolved volatiles within the system. The available record of geochemical and isotopic data on surface fumaroles, coupled with melt inclusion data, has already shown that dual (deep and shallow) magma degassing from such two reservoirs, as well as their interaction with the hydrothermal system, allows explaining the relevant fluctuations observed at crater fumaroles after the 1982-85 magma intrusion. An important role was played by the rapid crystallization (around 30 years) of the shallow magma, such that in the recent years gas discharges should be fuelled mostly by the deep magma. Such a process is well recorded in the fumarolic gas composition of the last ~10 years, but has to be reconciled with the unrest dynamics which took place after year 2000, characterized by a slow but continuous ground uplift. All geochemical indicators (major species and noble gases) point to three possible scenarios: 1) only deep gases enter the hydrothermal system, because the shallow magmatic body is now fully crystallized and degassed. 2) The shallow magmatic body, invested by the arrival of deep gases, starts remelting and releasing gases into the hydrothermal system. 3) Magma from the deep reservoir slowly rises to shallow depths, well below the ductile-fragile transition for this area. These three scenarios carry contrasting implications for the volcanic hazard assessment, and demand a comprehensive treatment of geochemical and geophysical data in a way coherent with the knowledge that we have of the 1982-85 unrest
NASA Astrophysics Data System (ADS)
Lewicki, J. L.; Kelly, P. J.; Bergfeld, D.; Vaughan, R. G.; Lowenstern, J. B.
2017-11-01
We quantified gas and heat emissions in an acid-sulfate, vapor-dominated area (0.04-km2) of Norris Geyser Basin, located just north of the 0.63 Ma Yellowstone Caldera and near an area of anomalous uplift. From 14 May to 3 October 2016, an eddy covariance system measured half-hourly CO2, H2O and sensible (H) and latent (LE) heat fluxes and a Multi-GAS instrument measured (1 Hz frequency) atmospheric H2O, CO2 and H2S volumetric mixing ratios. We also measured soil CO2 fluxes using the accumulation chamber method and temperature profiles on a grid and collected fumarole gas samples for geochemical analysis. Eddy covariance CO2 fluxes ranged from - 56 to 885 g m- 2 d- 1. Using wavelet analysis, average daily eddy covariance CO2 fluxes were locally correlated with average daily environmental parameters on several-day to monthly time scales. Estimates of CO2 emission rate from the study area ranged from 8.6 t d- 1 based on eddy covariance measurements to 9.8 t d- 1 based on accumulation chamber measurements. Eddy covariance water vapor fluxes ranged from 1178 to 24,600 g m- 2 d- 1. Nighttime H and LE were considered representative of hydrothermal heat fluxes and ranged from 4 to 183 and 38 to 504 W m- 2, respectively. The total hydrothermal heat emission rate (H + LE + radiant) estimated for the study area was 11.6 MW and LE contributed 69% of the output. The mean ± standard deviation of H2O, CO2 and H2S mixing ratios measured by the Multi-GAS system were 9.3 ± 3.1 parts per thousand, 467 ± 61 ppmv, and 0.5 ± 0.6 ppmv, respectively, and variations in the gas compositions were strongly correlated with diurnal variations in environmental parameters (wind speed and direction, atmospheric temperature). After removing ambient H2O and CO2, the observed variations in the Multi-GAS data could be explained by the mixing of relatively H2O-CO2-H2S-rich fumarole gases with CO2-rich and H2O-H2S-poor soil gases. The fumarole H2O/CO2 and CO2/H2S end member ratios (101.7 and 27.1, respectively, on average) were invariant during the measurement period and fell within the range of values measured in direct fumarole gas samples. The soil gas H2O/CO2 end member ratios ( 15-30) were variable and low relative to the fumarole end member, likely resulting from water vapor loss during cooling and condensation in the shallow subsurface, whereas the CO2/H2S end member ratio was high ( 160), presumably related to transport of CO2-dominated soil gas emissions mixed with trace fumarolic emissions to the Multi-GAS station. Nighttime eddy covariance ratios of H2O to CO2 flux were typically between the soil gas and fumarole end member H2O/CO2 ratios defined by Multi-GAS measurements. Overall, the combined eddy covariance and Multi-GAS approach provides a powerful tool for quasi-continuous measurements of gas and heat emissions for improved volcano-hydrothermal monitoring.
Solon, Adam J; Vimercati, Lara; Darcy, J L; Arán, Pablo; Porazinska, Dorota; Dorador, C; Farías, M E; Schmidt, S K
2018-01-05
The aim of this study was to understand the spatial distribution of microbial communities (18S and 16S rRNA genes) across one of the harshest terrestrial landscapes on Earth. We carried out Illumina sequencing using samples from two expeditions to the high slopes (up to 6050 m.a.s.l.) of Volcán Socompa and Llullaillaco to describe the microbial communities associated with the extremely dry tephra compared to areas that receive water from fumaroles and ice fields made up of nieves penitentes. There were strong spatial patterns relative to these landscape features with the most diverse (alpha diversity) communities being associated with fumaroles. Penitentes did not significantly increase alpha diversity compared to dry tephra at the same elevation (5825 m.a.s.l.) on Volcán Socompa, but the structure of the 18S community (beta diversity) was significantly affected by the presence of penitentes on both Socompa and Llullaillaco. In addition, the 18S community was significantly different in tephra wetted by penitentes versus dry tephra sites across many elevations on Llullaillaco. Traditional phototrophs (algae and cyanobacteria) were abundant in wetter tephra associated with fumaroles, and algae (but not cyanobacteria) were common in tephra associated with penitentes. Dry tephra had neither algae nor cyanobacteria but did host potential phototrophs in the Rhodospirillales on Volcán Llullaillaco, but not on Socompa. These results provide new insights into the distribution of microbes across one of the most extreme terrestrial environments on Earth and provide the first ever glimpse of life associated with nieves penitentes, spire-shaped ice structures that are widespread across the mostly unexplored high-elevation Andean Central Volcanic Zone.
NASA Astrophysics Data System (ADS)
Krivovichev, V. G.; Charykova, M. V.
2017-12-01
The number of mineral species in which a certain chemical element is species-defining (according to statistical data up to 2015) has been specified. Seventy chemical elements are species-defining for 5044 minerals. The following chemical elements lead in the composition of minerals (number of mineral species in parentheses): oxygen (4115), hydrogen (2800), silicon (1471), calcium (1167), sulfur (1056), aluminium (985), sodium (949), iron (945), copper (636), phosphorus (597), arsenic (594), and magnesium (571). The distribution of mineral species by various systems in the products of contemporary fumarole activity at two volcanoes, Tolbachik in Kamchatka, Russia, and Vulcano in Sicily, Italy, has been compared. These locations were also compared for the distribution of species-defining elements. Thus, it has been determined that in fumaroles of both volcanoes, Tl, S, Cl, F and Na are "excessive," present in minerals in elevated amounts, whereas H, Ca, Fe, and Mn are "deficient." The abundance of Cu, Se, V, Mg, Zn, As, and F in minerals at Tolbachik is higher than the global mean values of these elements in the Earth's crust, whereas the abundance is significantly lower at Vulcano. Sn, I, Br, K, Pb, Al, Fe, and Bi demonstrate the opposite behavior. Comparison of the Yadovitaya and Arsenatnaya fumaroles at the Tolbachik volcano showed that the products of the former are richer in H, Cl, Cu, S, K, O, Al, Fe, and Pb, and poorer in As, Ca, Mg, and Na as species-defining elements. In addition, V-and Mo-bearing minerals are found only at Yadovitaya, whereas minerals containing F, Ti, B, Te, and Zn are known only at Arsenatnaya.
NASA Astrophysics Data System (ADS)
Nakamichi, H.; Hamaguchi, H.; Ukawa, M.; Tanaka, S.; Ueki, S.; Nishimura, T.
2008-12-01
I review deep low-frequency earthquake (DLF) activities during the failed magmatic eruptions of Mts. Iwate and Fuji, Japan. Volcanic unrests at Mts. Iwate and Fuji were observed in 1998-1999 and 2000-2001, respectively. Several hundred DLFs occurred during the unrest at Mt. Iwate; the number of DLFs in a normal year is less than or equal to 10. The DLF activity at Mt. Fuji increased sharply during the period from September 2000 to May 2001. The frequency of DLFs at Mt. Fuji during the DLF swarm was 20 times higher than that during normal activity. The DLFs of Mts. Iwate and Fuji show non-DC source mechanisms and suggest fluid motion at the focal regions. The DLF hypocenters of Mt. Fuji defined an ellipsoid with a diameter of 5 km; their focal depths are 11-16 km. The ellipsoid was centered 3 km northeast of the summit, and its major axis was directed in the northwest-southeast direction. The center of the ellipsoid gradually migrated upward, and 2-3 km in the northwest direction during 1998-2001. The migration of the DLFs reflects the volcanic fluid migration associated with a northwest-southeast-oriented dike beneath Mt. Fuji. The DLFs of Mt. Iwate were located at intermediate depths (5-12 km) beneath the summit and at deep depths (31-37 km) in the regions located 10 km south and 10 km northeast of the summit. In April 1998, the frequency of DLFs increased five days before an increase in the occurrence of shallow volcanic earthquakes at Mt. Iwate. Hypocenter migration of the DLFs at intermediate depths was observed from April 1998 to September 1998. New fumarole activity in the western region of Mt. Iwate commenced in 1999. These observations indicate that DLFs at Mts. Fuji and Iwate have common features in their activities and source mechanisms. But, shallow volcanic activities at these two volcanoes were much different: strong shallow seismic activity and volcano inflations as well as a new formation of fumarolic area were observed at Mt. Iwate, while such shallow activities were not detected at Mt. Fuji. Although it is still unknown what mechanisms control their magma supply systems, we may say that activation of DLF beneath active volcanoes does not always accompany magma intrusions in the shallow volcano edifice.
NASA Astrophysics Data System (ADS)
Agusto, M.; Tassi, F.; Caselli, A. T.; Vaselli, O.; Rouwet, D.; Capaccioni, B.; Caliro, S.; Chiodini, G.; Darrah, T.
2013-05-01
Copahue volcano is part of the Caviahue-Copahue Volcanic Complex (CCVC), which is located in the southwestern sector of the Caviahue volcano-tectonic depression (Argentina-Chile). This depression is a pull-apart basin accommodating stresses between the southern Liquiñe-Ofqui strike slip and the northern Copahue-Antiñir compressive fault systems, in a back-arc setting with respect to the Southern Andean Volcanic Zone. In this study, we present chemical (inorganic and organic) and isotope compositions (δ13C-CO2, δ15N, 3He/4He, 40Ar/36Ar, δ13C-CH4, δD-CH4, and δD-H2O and δ18O-H2O) of fumaroles and bubbling gases of thermal springs located at the foot of Copahue volcano sampled in 2006, 2007 and 2012. Helium isotope ratios, the highest observed for a Southern American volcano (R/Ra up to 7.94), indicate a non-classic arc-like setting, but rather an extensional regime subdued to asthenospheric thinning. δ13C-CO2 values (from - 8.8‰ to - 6.8‰ vs. V-PDB), δ15N values (+ 5.3‰ to + 5.5‰ vs. Air) and CO2/3He ratios (from 1.4 to 8.8 × 109) suggest that the magmatic source is significantly affected by contamination of subducted sediments. Gases discharged from the northern sector of the CCVC show contribution of 3He-poor fluids likely permeating through local fault systems. Despite the clear mantle isotope signature in the CCVC gases, the acidic gas species have suffered scrubbing processes by a hydrothermal system mainly recharged by meteoric water. Gas geothermometry in the H2O-CO2-CH4-CO-H2 system suggests that CO and H2 re-equilibrate in a separated vapor phase at 200°-220 °C. On the contrary, rock-fluid interactions controlling CO2, CH4 production from Sabatier reaction and C3H8 dehydrogenation seem to occur within the hydrothermal reservoir at temperatures ranging from 250° to 300 °C. Fumarole gases sampled in 2006-2007 show relatively low N2/He and N2/Ar ratios and high R/Ra values with respect to those measured in 2012. Such compositional and isotope variations were likely related to injection of mafic magma that likely triggered the 2000 eruption. Therefore, changes affecting the magmatic system had a delayed effect on the chemistry of the CCVC gases due to the presence of the hydrothermal reservoir. However, geochemical monitoring activities mainly focused on the behavior of inert gas compounds (N2 and He), should be increased to investigate the mechanism at the origin of the unrest started in 2011.
NASA Astrophysics Data System (ADS)
Rizzo, Andrea Luca; Jost, Hans-Jürg; Caracausi, Antonio; Paonita, Antonio; Liotta, Marcello; Martelli, Mauro
2014-04-01
We present unprecedented data of real-time measurements of the concentration and isotope composition of CO2 in air and in fumarole-plume gases collected in 2013 during two campaigns at Mount Etna volcano, which were made using a laser-based isotope ratio infrared spectrometer. We performed approximately 360 measurements/h, which allowed calculation of the δ13C values of volcanic CO2. The fumarole gases of Torre del Filosofo (2900 m above sea level) range from -3.24 ± 0.06‰ to -3.71 ± 0.09‰, comparable to isotope ratio mass spectrometry (IRMS) measurements of discrete samples collected on the same dates. Plume gases sampled more than 1 km from the craters show a δ13C = -2.2 ± 0.4‰, in agreement with the crater fumarole gases analyzed by IRMS. Measurements performed along ~17 km driving track from Catania to Mount Etna show more negative δ13C values when passing through populated centers due to anthropogenic-derived CO2 inputs (e.g., car exhaust). The reported results demonstrate that this technique may represent an important advancement for volcanic and environmental monitoring.
Geochemical investigation of the hydrothermal system on Akutan Island, Alaska, July 2012
Bergfeld, D.; Lewicki, Jennifer L.; Evans, William C.; Hunt, Andrew G.; Revesz, Kinga; Huebner, Mark
2014-01-01
We have studied the geochemistry of the hot springs on Akutan Island in detail for the first time since the early 1980s. Springs in four discrete groups (A-D) along Hot Springs Creek showed generally higher temperatures and substantially higher Na, Ca, and Cl concentrations than previously reported, and total hot-spring discharge has also increased markedly. The springs now account for a heat output of ~29 MW, about an order of magnitude more than in 1981. Gas samples from the hot springs and from a fumarolic area on the flank of Akutan Volcano show high 3He/4He ratios (>6.4 RA) after correction for air contamination and reveal a common magmatic heat source. Hot-spring gases are unusually rich in N2, Ar, and CH4, suggesting that the water has boiled and lost CO2 during upflow beneath the flank fumarole field. Gas geothermometry calculations applied to the flank fumarole field implies temperatures of 200–240 °C for the reservoir, and Na-K-Ca geothermometry implies temperatures near 180 °C for the outflow waters that feed the hot springs. The results of our study confirm the existence of a substantial geothermal resource on the island.
Temperature profiles from Pos Crater Lake
NASA Astrophysics Data System (ADS)
Neshyba, Steve; Fernandez, Walter; Diaz-Andrade, José
In 1984, we took part in an expedition to measure the temperature field and bathymetry of the acid lake (Figure 1) that has formed in the crater of Poás volcano, Costa Rica, since its last eruption in 1953. Obtaining these data was the first step in a long-range study planned by researchers at the Center for Geophysical Research, University of Costa Rica (San Jose, Costa Rica), and the College of Oceanography, Oregon State University (Corvallis). The study will eventually consider all aspects of fluid behavior in a volcanic lake that is heated or otherwise convectively driven by energy injected at the lake bottom.Evidence of convection is clearly visible on the surface of the Poás lake most of the time. Fumarole activity has been continuous since 1953. Phreatic explosions are quite frequent, varying from weak to strong, and the height of the ejected column varies from 1 to more than 500 m. One immediately useful result of the research would be an estimate of the heat transfer from sources within the conduit to the overlying water column. As far as geophysical fluid behavior goes, we are interested in the turbulent and diffusive processes by which heat and chemical species are transferred. We are especially interested in the impact on the density stratification of the density changes that occur as particulates settle downward through the fluid column. The stratification would otherwise be controlled by the turbulent and diffusive processes driven by thermochemical factors.
Hydrothermal disturbances at the Norris Geyser Basin, Yellowstone National Park (USA) in 2003
NASA Astrophysics Data System (ADS)
Lowenstern, J. B.; Heasler, H.; Smith, R. B.
2003-12-01
The Norris Geyser Basin in north-central Yellowstone National Park (YNP) experienced a series of notable changes during 2003, including formation of new hot springs and fumaroles, renewed activity of dormant geysers and elevated ground temperatures. This abstract provides a short synopsis of the new hydrothermal activity. In 2000, Yellowstone's tallest geyser, Steamboat, erupted after a dormant period of nearly 9 years. It erupted twice in 2002 and then again on 26 March and 27 April 2003. Surges in flux of thermal water preceding the eruptions (preplay) were recorded by a couplet of temperature data loggers placed in the outlet stream. The data indicated pulses of water flow with 1 and ~3 day intervals. On 10 July 2003, a new thermal feature was reported just west of Nymph Lake, ~ 3.5 km northwest of the Norris Museum. A linear series of vigorous fumaroles, about 75 m long had formed in a forested area, ~ 200 m up a hill on the lake's west shore. Fine particles of rock and mineral fragments coated nearby vegetation. Fumarole temperatures were around the local boiling temperature of water (92° C). After two months, somewhat reduced steam emission was accompanied by discharge of ~ 3-10 gallons per minute of near-neutral thermal water. Trees within 4 meters of the lineament were dead and were being slowly combusted. Porkchop Geyser in Norris' Back Basin had been dormant since it exploded in 1989, littering the nearby area with boulders up to over 1 m in diameter. Since that time, its water had remained well below the boiling temperature of water. From 1 April through 1 July `03, the temperature of waters in Porkchop's vent increased continuously from 67° to 88° C. Each Summer, Norris' Back Basin experiences an "annual disturbance" where individual hot springs and geysers typically show anomalous boiling, and have measurable increases in turbidity, acidity and SO4/Cl ratios. The disturbance has been linked to depressurization of the hydrothermal system as the hydrostatic pressure of the snowmelt-fed groundwater table wanes each summer. This year, the "Norris disturbance" is estimated to have begun on 11 July 2003,when pronounced changes were noted, including thermal pools that were boiled to dryness (e.g., Pearl Geyser), creating fumaroles. Porkchop Geyser erupted for the first time since 1989 on 16 July. New mud pots formed along the Back Basin Trail and increased ground temperatures were noted over an 500 x 300 m area. Park staff noted temperatures up to 94° C at 1 cm beneath the ground surface in areas that were previously cool. Vegetation in the area immediately died and began to break down due to the high temperatures. Yellowstone National Park closed the Back Basin Trail to all visitor travel on 22 July 2003. During the first week of August 2003, the Yellowstone Volcano Observatory installed a temporary monitoring network in the Norris Geyser Basin. University of Utah staff, with equipment and personnel made available by IRIS, UNAVCO, USGS and YNP, installed seven broadband seismometers and five continuous GPS receivers. In addition, YNP deployed a series of temperature data-loggers to record changes in flow from thermal features within the Norris Back Basin. The network is intended to identify ground motions associated with fluid flow within the geyser basin that may accompany eruptions of geysers, boiling episodes or events precursory to hydrothermal explosions. The monitoring network will remain operational for between four and twelve weeks.
Diffuse volcanic emissions of carbon dioxide from Vulcano Island, Italy.
Baubron, J C; Allard, P; Toutain, J P
1990-03-01
RECENT investigations on Mount Etna (Sicily)(1-3) have revealed that volcanoes may release abundant carbon dioxide not only from their active craters, but also from their flanks, as diffuse soil emanations. Here we present analyses of soil gases and air in water wells on Vulcano Island which provide further evidence of such lateral degassing. Nearly pure carbon dioxide, enriched in helium and radon, escapes from the slopes of the Fossa active cone, adding a total output of 30 tonnes per day to the fumarolic crater discharge ( 180 tonnes CO(2) per day). This emanation has similar He/CO(2) and (13)C/(12)C ratios to those of the crater fumaroles (300%ndash;500 degrees C) and therefore a similar volcanic origin. Gases rich in carbon dioxide also escape at sea level along the isthmus between the Fossa and Vulcanello volcanic cones, but their depletion in both He and (13)C suggests a distinct source. Diffuse volcanic gas emanations, once their genetic link with central fumarole degassing has been demonstrated, can be used for continuous volcano monitoring, at safe distances from active craters. Such monitoring has been initiated at Vulcano, where soil and well emanations of nearly pure CO(2) themselves represent a threat to the local population.
NASA Astrophysics Data System (ADS)
Laiolo, M.; Coppola, D.; Barahona, F.; Benítez, J. E.; Cigolini, C.; Escobar, D.; Funes, R.; Gutierrez, E.; Henriquez, B.; Hernandez, A.; Montalvo, F.; Olmos, R.; Ripepe, M.; Finizola, A.
2017-06-01
On October 1st, 2005, Santa Ana volcano (El Salvador) underwent a VEI 3 phreatomagmatic eruption after approximately one century of rest. Casualties and damages to some of the local infrastructures and surrounding plantations were followed by the evacuation of the nearby communities. The analysis of MODIS (Moderate Resolution Imaging Spectroradiometer) infrared data reveals that the main explosion was preceded by a one-year-long thermal unrest, associated to the development of a fumaroles field, located at the western rim of the summit crater lake. By combining space-based thermal flux and ground-based measurements (seismicity, sulfur emissions and lake temperatures), we suggest that the activity observed at Santa Ana between 2004 and 2005 was driven by the gradual intrusion of an undegassed magma body at a very shallow depth. Magma injection induced thermal anomalies associated with sustained degassing from the fumaroles field and promoted the interaction between the magmatic-hydrothermal system and the overlying water table. This process culminated into the VEI 3 phreatomagmatic eruption of October 2005 that strongly modified the shallow structure of the crater area. The subsequent three-years-long activity resulted from self-sealing of the fracture system and by the opening of a new fracture network directly connecting the deeper hydrothermal system with the crater lake. Our results show that satellite-based thermal data allow us to detect the expansion of the high-temperature fumarolic field. This may precede an explosive eruption and/or a lava dome extrusion. In particular, we show that thermal records can be analyzed with other geochemical (i.e. SO2 emissions) and geophysical (seismicity) data to track a shallow magmatic intrusion interacting with the surrounding hydrothermal system. This provides a remarkable support for volcano monitoring and eruption forecasting, particularly in remote areas where permanent ground data acquisition is hazardous, expensive and difficult.
NASA Astrophysics Data System (ADS)
Rogers, K. L.; McCollom, T. M.; Hynek, B. M.
2014-12-01
Microbial habitability in extreme environments on Earth is described by microscale geochemical conditions that constrain metabolic niches in concert with long-term habitat stability that is governed by dynamic geologic processes. Using terrestrial analogs to identify habitable martian environments requires correlating microscale geochemical constraints with reconstructions of past martian environments that are based on global-scale observations. While past martian environments can be characterized by primary parameters (e.g. pH, redox, mineralogy, thermal history), microbial habitability on Earth is a complex function of both primary and derived parameters (e.g. metabolic reaction energetics, chemical & thermal gradients, flow dynamics). In recent years we have been investigating acid-sulfate fumaroles at the Mars analog site, Cerro Negro Volcano, Nicaragua, where habitability is constrained by steep thermal gradients, spatially- and temporally-variable vent dynamics, and limited water and nutrient availability. The most common niche identified thus far is found in fumaroles that host mixed photosynthetic and chemosynthetic endolithic microbial communities. One such endolith is dominated by acidic red algae (Cyanidiales), aerobic bacterial heterotrophs (Ktedonobacteria), and archaeal thermoacidophiles (Hyperthermus, Caldisphaera, and Thermofilum). An analysis of the metabolic structure suggests that primary production by the red algae supports the growth of heterotrophic thermoacidophiles. Diversification among the chemoheterotrophs with respect to temperature and oxygen tolerance suggests community adaptation to environmental gradients or variable venting dynamics. Furthermore, individual cells within the endolith are silica-encrusted, providing the possibility for biosignature formation and preservation. Putative hydrothermal environments on early Mars with similar conditions could have supported endolithic communities with comparable metabolic strategies. Even on a generally cold and dry Mars, volcanic craters likely provided long-lived warm and wet conditions that could have supported diverse assemblages of thermoacidophilic organisms with various metabolic strategies adapted to environmental conditions of acid-sulfate fumaroles.
Life at extreme elevations on Atacama volcanoes: the closest thing to Mars on Earth?
Schmidt, S K; Gendron, E M S; Vincent, K; Solon, A J; Sommers, P; Schubert, Z R; Vimercati, L; Porazinska, D L; Darcy, J L; Sowell, P
2018-03-20
Here we describe recent breakthroughs in our understanding of microbial life in dry volcanic tephra ("soil") that covers much of the surface area of the highest elevation volcanoes on Earth. Dry tephra above 6000 m.a.s.l. is perhaps the best Earth analog for the surface of Mars because these "soils" are acidic, extremely oligotrophic, exposed to a thin atmosphere, high UV fluxes, and extreme temperature fluctuations across the freezing point. The simple microbial communities found in these extreme sites have among the lowest alpha diversity of any known earthly ecosystem and contain bacteria and eukaryotes that are uniquely adapted to these extreme conditions. The most abundant eukaryotic organism across the highest elevation sites is a Naganishia species that is metabolically versatile, can withstand high levels of UV radiation and can grow at sub-zero temperatures, and during extreme diurnal freeze-thaw cycles (e.g. - 10 to + 30 °C). The most abundant bacterial phylotype at the highest dry sites sampled (6330 m.a.s.l. on Volcán Llullaillaco) belongs to the enigmatic B12-WMSP1 clade which is related to the Ktedonobacter/Thermosporothrix clade that includes versatile organisms with the largest known bacterial genomes. Close relatives of B12-WMSP1 are also found in fumarolic soils on Volcán Socompa and in oligotrophic, fumarolic caves on Mt. Erebus in Antarctica. In contrast to the extremely low diversity of dry tephra, fumaroles found at over 6000 m.a.s.l. on Volcán Socompa support very diverse microbial communities with alpha diversity levels rivalling those of low elevation temperate soils. Overall, the high-elevation biome of the Atacama region provides perhaps the best "natural experiment" in which to study microbial life in both its most extreme setting (dry tephra) and in one of its least extreme settings (fumarolic soils).
Abuhani, W A; Dasgupta-Schubert, N; Villaseñor, L M; García Avila, D; Suárez, L; Johnston, C; Borjas, S E; Alexander, S A; Landsberger, S; Suárez, M C
2015-01-01
The Los Azufres geothermal complex of central Mexico is characterized by fumaroles and boiling hot-springs. The fumaroles form habitats for extremophilic mosses and ferns. Physico-chemical measurements of two relatively pristine fumarolic microcosms point to their resemblance with the paleo-environment of earth during the Ordovician and Devonian periods. These geothermal habitats were analysed for the distribution of elemental mass fractions in the rhizospheric soil (RS), the native volcanic substrate (VS) and the sediments (S), using the new high-sensitivity technique of polarized x-ray energy dispersive fluorescence spectrometry (PEDXRF) as well as instrumental neutron activation analysis (INAA) for selected elements. This work presents the results for the naturally occurring heavy radioactive elements (NOHRE) Bi, Th and U but principally the latter two. For the RS, the density was found to be the least and the total organic matter content the most. Bi was found to be negligibly present in all substrate types. The average Th and U mass fractions in the RS were higher than in the VS and about equal to their average mass fractions in the S. The VS mass fraction of Th was higher, and of U lower, than the mass fractions in the earth's crust. In fact for the fumaroles of one site, the average RS mass fractions of these elements were higher than the averaged values for S (without considering the statistical dispersion). The immobilization of the NOHRE in the RS is brought about by the bio-geochemical processes specific to these extremophiles. Its effectiveness is such that despite the small masses of these plants, it compares with, or may sometimes exceed, the immobilization of the NOHRE in the S by the abiotic and aggressive chemical action of the hot-springs. These results indicate that the fumarolic plants are able to transform the volcanic substrate to soil and to affect the NOHRE mass fractions even though these elements are not plant nutrients. Mirrored back to the paleo times when such plant types were ubiquitous, it would mean that the first plants contributed significantly to pedogenesis and the biogeochemical recycling of even the heaviest and radioactive elements. Such plants may potentially be useful for the phytostabilisation of soil moderately contaminated by the NOHRE. Furthermore where applicable, geochronology may require taking into account the influence of the early plants on the NOHRE distributions. Copyright © 2014 Elsevier Ltd. All rights reserved.
Evaluation of the Giggenbach bottle method using artificial fumarolic gases
NASA Astrophysics Data System (ADS)
Lee, S.; Jeong, H. Y.
2013-12-01
Volcanic eruption is one of the most dangerous natural disasters. Mt. Baekdu, located on the border between North Korea and China, has been recently showing multiple signs of its eruption. The magmatic activity of a volcano strongly affects the composition of volcanic gases, which can provide a useful tool for predicting the eruption. Among various volcanic gas monitoring methods, the Giggenbach bottle method involves the on-site sampling of volcanic gases and the subsequent laboratory analysis, thus making it possible to detect a range of volcanic gases at low levels. In this study, we aim to evaluate the effectiveness of the Giggenbach bottle method and develop the associated analytical tools using artificial fumarolic gases with known compositions. The artificial fumarolic gases are generated by mixing CO2, CO, H2S, SO2, Ar, and H2 gas streams with a N2 stream sparged through an acidic medium containing HCl and HF. The target compositions of the fumarolic gases are selected to cover those reported for various volcanoes under different tectonic environments as follows: CO2 (2-12 mol %), CO (0.3-1 mol %), H2S (0.7-2 mol %), SO2 (0.6-4 mol %), Ar (0.3-0.7 mol %), H2 (0.3-0.7 mol %), HCl (0.2-1 mol %), and HF (< 0.015 mol %). The artificial fumarolic gases are collected into an evacuated bottle partially filled with 4 M NaOH solution containing 0.5 mM Cd(CH3COO)2. While non-condensable components such as CO, Ar, H2, and N2 accumulate in the headspace of the bottle, acidic components including CO2, SO2, HCl, and HF dissolve into the alkaline solution. In case of H2S, it reacts with dissolved Cd2+ to precipitate as CdS(s). The gas accumulated in the headspace can be analyzed for CO, Ar, H2, and N2 on a gas chromatography. The alkaline solution is first separated from yellowish CdS precipitates by filtration, and then pretreated with hydrogen peroxide to oxidize dissolved SO2 (H2SO3) to SO42-. The resultant solution can be analyzed for SO2 as SO42-, HCl as Cl-, and HF as F- on an ion chromatography and CO2 on an ionic carbon analyzer. Also, the amount of H2S can be determined by measuring the remaining dissolved Cd2+ on an inductively coupled plasma-mass spectrometry.
NASA Astrophysics Data System (ADS)
Woith, Heiko; Chiodini, Giovanni; Mangiacapra, Annarita; Wang, Rongjiang
2016-04-01
The hydrothermal system beneath Campi Flegrei is strongly affected by sub-surface processes as manifested by a geothermal "plume" below Solfatara, associated with the formation of mud-pools (Fangaia), fumaroles (Bocca Grande, Pisciarelli), and thermal springs (Agnano). Within the frame of MED-SUV (The MED-SUV project has received funding from the European Union Seventh Framework Programme FP7 under Grant agreement no 308665), pressure transients in the hydrothermal system of Campi Flegrei are being continuously monitored at fumaroles, mudpools, hot springs, and geothermal wells. In total, waterlevel and temperature is recorded at 8 sites across the hydrothermal plume along a profile aligned between Agnano Termal in the East and Fangaia in the West. Autonomous devices are used to record the water level and water temperature at 10 minute intervals. At Fangaia mudpool water level and water temperature are dominantly controlled by rain water. Thus, the pool is refilled episodically. Contrary, the water level at a well producing hot water (82°C) for the Pisciarelli tennis club drops and recovers at nearly regular intervals. The induced water level changes are of the order of 1-2m and 3-4m in case of the mudpool and the hot-water-well, respectively. At first glance, both monitoring sites might seem to be fully useless to access natural changes in the Campi Flegrei fluid system. At a second thought, both timeseries provide a unique opportunity to monitor potential permeability changes in the aquifer system. A similar approach had been proposed to deduce earthquake-related permeability changes from Earth tide variations. Contrary to the indirect Earth tide approach, we have the chance to estimate the hydraulic aquifer properties from our monitoring data directly, since each time series contains a sequence of discrete hydraulic tests - namely drawdown tests and refill experiments. Although our Cooper-Jacob approach is really crude, we obtained reasonable permeability estimates for both sites. Preliminary permeability timeseries are presented.
NASA Astrophysics Data System (ADS)
Chen, C.
2013-12-01
Previous earthquakes analysis indicated existing seismicity anomaly beneath Tatun volcano, Taiwan, possibly caused by the fluid activity of the volcano. Helium isotope studies also indicated that over 60% of the fumarolic gases and vapors originated from deep mantle in the Tatun volcano area. The chemistry of the fumarolic gases and vapors and seismicity anomaly are important issues in view of possible magma chamber in the Tatun volcano, where is in the vicinity of metropolitan Taipei, only 15 km north of the capital city. In this study magnetotelluric (MT) soundings and monitoring were deployed to understand the geoelectric structures in the Tatun volcano as Electromagnetic methods are sensitive to conductivity contrasts and can be used as a supplementary tool to delineate reservoir boundaries. An anticline extending more than 10 km beneath the Chih-Shin-Shan and Da-You-Kan areas was recognized. Low resistivity at a shallow and highly porous layer 500m thick might indicate circulation of heated water. However, a high resistivity layer at depth between 2 and 6 km was detected. This layer could be associated with high micro-earthquakes zone. The characteristics of this layer produced by either the magma chamber or other geothermal activity were similar to that of some other active volcanic areas in the world. At 6 km underground was a dome structure of medium resistivity. This structure could be interpreted as a magma chamber in which the magma is possibly cooling down, as judged by its relatively high resistivity. The exact attributes of the magma chamber were not precisely determined from the limited MT soundings. At present, a joint monitors including seismic activity, ground deformation, volcanic gases, and changes in water levels and chemistry are conducted by universities and government agencies. When unusual activity is detected, a response team may do more ground surveys to better determine if an eruption is likely.
Bergfeld, D.; Vaughan, R. Greg; Evans, William C.; Olsen, Eric
2015-01-01
The Long Valley hydrothermal system supports geothermal power production from 3 binary plants (Casa Diablo) near the town of Mammoth Lakes, California. Development and growth of thermal ground at sites west of Casa Diablo have created concerns over planned expansion of a new well field and the associated increases in geothermal fluid production. To ensure that all areas of ground heating are identified prior to new geothermal development, we obtained high-resolution aerial thermal infrared imagery across the region. The imagery covers the existing and proposed well fields and part of the town of Mammoth Lakes. Imagery results from a predawn flight on Oct. 9, 2014 readily identified the Shady Rest thermal area (SRST), one of two large areas of ground heating west of Casa Diablo, as well as other known thermal areas smaller in size. Maximum surface temperatures at 3 thermal areas were 26–28 °C. Numerous small areas with ground temperatures >16 °C were also identified and slated for field investigations in summer 2015. Some thermal anomalies in the town of Mammoth Lakes clearly reflect human activity.Previously established projects to monitor impacts from geothermal power production include yearly surveys of soil temperatures and diffuse CO2 emissions at SRST, and less regular surveys to collect samples from fumaroles and gas vents across the region. Soil temperatures at 20 cm depth at SRST are well correlated with diffuse CO2 flux, and both parameters show little variation during the 2011–14 field surveys. Maximum temperatures were between 55–67 °C and associated CO2 discharge was around 12–18 tonnes per day. The carbon isotope composition of CO2 is fairly uniform across the area ranging between –3.7 to –4.4 ‰. The gas composition of the Shady Rest fumarole however has varied with time, and H2S concentrations in the gas have been increasing since 2009.
Copahue Volcano: A Modern Terrestrial Analog for the Opportunity Landing Site?
NASA Astrophysics Data System (ADS)
Varekamp, Johan C.
2004-10-01
The Opportunity Rover on Mars encountered an environment that contained grey hematite (specularite) and jarosite, with structures indicative of flowing water. Less firm evidence suggests the presence of gypsum as well, and the environment is overall rich in S, Cl, and Br (NASA news releases, 2004). Such a suite of minerals may form from an iron- and sulfate-rich brine, either through evaporation, cooling or changes in redox conditions (see Hynek et al. [2002] and Christensen et al. [2001], for a discussion of the extent and possible origins of the Mars hematite deposits). On Earth, such an association of minerals is not very common, but is found in alteration zones with fumarolic activity in some volcanic craters. The condensation or dissolution in meteoric waters of S-rich volcanic gases creates acid fluids in the surficial environment that leach rock-forming elements (RFEs) from the surrounding rocks, forming large, bleached areas of mineralizations of hematite, cristobalite, and gypsum, occasionally with zones rich in alunite or jarosite.
De Angelis, Silvio
2006-01-01
A swarm of six long-period (LP) events with slowly decaying coda wave amplitudes and durations up to 120 s, was recorded by seismic stations located in the proximity of Mt. Griggs, a fumarolically active volcano in the Katmai National Park, Alaska, during December 8–21, 2004. Spectral analyses reveal the quasi-monochromatic character of the waveforms, dominated by a 2.5 Hz mode frequently accompanied by a weaker high-frequency onset (6.0–9.0 Hz). Particle motion azimuths and inclination angles show a dominant WNW-ESE direction of polarization for all the signals, and suggest that seismic energy is radiated by a stable source at shallow depth. Damping coefficients between 0.0014 and 0.0063 are estimated by fitting an exponential decay model to the signal's coda; corresponding quality factors range from 78 to 351. The source of the waveforms is modelled as a resonant cavity filled with a fluid/gas mixture.
Silica deposits on Mars with features resembling hot spring biosignatures at El Tatio in Chile
Ruff, Steven W.; Farmer, Jack D.
2016-01-01
The Mars rover Spirit encountered outcrops and regolith composed of opaline silica (amorphous SiO2·nH2O) in an ancient volcanic hydrothermal setting in Gusev crater. An origin via either fumarole-related acid-sulfate leaching or precipitation from hot spring fluids was suggested previously. However, the potential significance of the characteristic nodular and mm-scale digitate opaline silica structures was not recognized. Here we report remarkably similar features within active hot spring/geyser discharge channels at El Tatio in northern Chile, where halite-encrusted silica yields infrared spectra that are the best match yet to spectra from Spirit. Furthermore, we show that the nodular and digitate silica structures at El Tatio that most closely resemble those on Mars include complex sedimentary structures produced by a combination of biotic and abiotic processes. Although fully abiotic processes are not ruled out for the Martian silica structures, they satisfy an a priori definition of potential biosignatures. PMID:27853166
Lewicki, Jennifer L.; Kelly, Peter; Bergfeld, Deborah; Vaughan, R. Greg; Lowenstern, Jacob B.
2017-01-01
We quantified gas and heat emissions in an acid-sulfate, vapor-dominated area (0.04-km2) of Norris Geyser Basin, located just north of the 0.63 Ma Yellowstone Caldera and near an area of anomalous uplift. From 14 May to 3 October 2016, an eddy covariance system measured half-hourly CO2, H2O and sensible (H) and latent (LE) heat fluxes and a Multi-GAS instrument measured (1 Hz frequency) atmospheric H2O, CO2 and H2S volumetric mixing ratios. We also measured soil CO2 fluxes using the accumulation chamber method and temperature profiles on a grid and collected fumarole gas samples for geochemical analysis. Eddy covariance CO2 fluxes ranged from − 56 to 885 g m− 2 d− 1. Using wavelet analysis, average daily eddy covariance CO2 fluxes were locally correlated with average daily environmental parameters on several-day to monthly time scales. Estimates of CO2emission rate from the study area ranged from 8.6 t d− 1 based on eddy covariance measurements to 9.8 t d− 1 based on accumulation chamber measurements. Eddy covariance water vapor fluxes ranged from 1178 to 24,600 g m− 2 d− 1. Nighttime H and LEwere considered representative of hydrothermal heat fluxes and ranged from 4 to 183 and 38 to 504 W m− 2, respectively. The total hydrothermal heat emission rate (H + LE + radiant) estimated for the study area was 11.6 MW and LE contributed 69% of the output. The mean ± standard deviation of H2O, CO2 and H2S mixing ratios measured by the Multi-GAS system were 9.3 ± 3.1 parts per thousand, 467 ± 61 ppmv, and 0.5 ± 0.6 ppmv, respectively, and variations in the gas compositions were strongly correlated with diurnal variations in environmental parameters (wind speed and direction, atmospheric temperature). After removing ambient H2O and CO2, the observed variations in the Multi-GAS data could be explained by the mixing of relatively H2O-CO2-H2S-rich fumarole gases with CO2-rich and H2O-H2S-poor soil gases. The fumarole H2O/CO2 and CO2/H2S end member ratios (101.7 and 27.1, respectively, on average) were invariant during the measurement period and fell within the range of values measured in direct fumarole gas samples. The soil gas H2O/CO2end member ratios (~ 15–30) were variable and low relative to the fumarole end member, likely resulting from water vapor loss during cooling and condensation in the shallow subsurface, whereas the CO2/H2S end member ratio was high (~ 160), presumably related to transport of CO2-dominated soil gas emissions mixed with trace fumarolic emissions to the Multi-GAS station. Nighttime eddy covariance ratios of H2O to CO2 flux were typically between the soil gas and fumarole end member H2O/CO2 ratios defined by Multi-GAS measurements. Overall, the combined eddy covariance and Multi-GAS approach provides a powerful tool for quasi-continuous measurements of gas and heat emissions for improved volcano-hydrothermal monitoring.
De Landro, Grazia; Serlenga, Vincenzo; Russo, Guido; Amoroso, Ortensia; Festa, Gaetano; Bruno, Pier Paolo; Gresse, Marceau; Vandemeulebrouck, Jean; Zollo, Aldo
2017-06-13
Seismic tomography can be used to image the spatial variation of rock properties within complex geological media such as volcanoes. Solfatara is a volcano located within the Campi Flegrei, a still active caldera, so it is of major importance to characterize its level of activity and potential danger. In this light, a 3D tomographic high-resolution P-wave velocity image of the shallow central part of Solfatara crater is obtained using first arrival times and a multiscale approach. The retrieved images, integrated with the resistivity section and temperature and the CO 2 flux measurements, define the following characteristics: 1. A depth-dependent P-wave velocity layer down to 14 m, with V p < 700 m/s typical of poorly-consolidated tephra and affected by CO 2 degassing; 2. An intermediate layer, deepening towards the mineralized liquid-saturated area (Fangaia), interpreted as permeable deposits saturated with condensed water; 3. A deep, confined high velocity anomaly associated with a CO 2 reservoir. These features are expression of an area located between the Fangaia, water saturated and replenished from deep aquifers, and the main fumaroles, superficial relief of the deep rising CO 2 flux. Therefore, the changes in the outgassing rate greatly affect the shallow hydrothermal system, which can be used as a "mirror" of fluid migration processes occurring at depth.
Magmatic unrest beneath Mammoth Mountain, California
Hill, D.P.; Prejean, S.
2005-01-01
Mammoth Mountain, which stands on the southwest rim of Long Valley caldera in eastern California, last erupted ???57,000 years BP. Episodic volcanic unrest detected beneath the mountain since late 1979, however, emphasizes that the underlying volcanic system is still active and capable of producing future volcanic eruptions. The unrest symptoms include swarms of small (M ??? 3) earthquakes, spasmodic bursts (rapid-fire sequences of brittle-failure earthquakes with overlapping coda), long-period (LP) and very-long-period (VLP) volcanic earthquakes, ground deformation, diffuse emission of magmatic CO2, and fumarole gases with elevated 3He/4He ratios. Spatial-temporal relations defined by the multi-parameter monitoring data together with earthquake source mechanisms suggest that this Mammoth Mountain unrest is driven by the episodic release of a volume of CO2-rich hydrous magmatic fluid derived from the upper reaches of a plexus of basaltic dikes and sills at mid-crustal depths (10-20 km). As the mobilized fluid ascends through the brittle-plastic transition zone and into overlying brittle crust, it triggers earthquake swarm activity and, in the case of the prolonged, 11-month-long earthquake swarm of 1989, crustal deformation and the onset of diffuse CO2 emissions. Future volcanic activity from this system would most likely involve steam explosions or small-volume, basaltic, strombolian or Hawaiaan style eruptions. The impact of such an event would depend critically on vent location and season.
NASA Astrophysics Data System (ADS)
Roulleau, Emilie; Bravo, Francisco; Barde-Cabusson, Stephanie; Pizarro, Marcela; Muños, Carlos; Sanchez, Juan; Tardani, Daniele; Sano, Yuji; Takahata, Naoto; de Cal, Federico; Esteban, Carlos
2016-04-01
Geothermal systems represent natural heat transfer engines in a confined volume of rock which are strongly influenced by the regional volcano-tectonic setting controlling the formation of shallow magmatic reservoirs, and by the local faults/fracture network, that permits the development of hydrothermal circulation cells and promote the vertical migration of fluids and heat. In the Southern Volcanic Zone of Chile-Argentina, geothermal resources occur in close spatial relationship with active volcanism along the Cordillera which is primarily controlled by the 1000 km long, NNE Liquiñe-Ofqui Fault Zone (LOFZ), an intra-arc dextral strike-slip fault system, associated with second-order intra-arc anisotropy of overall NE-SW (extensional) and NW-SE orientation (compressional). However there is still a lack of information on how fault network (NE and WNW strinking faults) and lithology control the fluid circulation. In this study, we propose new data of dense self-potential (SP), soil CO2 emanation and temperature (T) measurements within the geothermal area from Caviahue-Copahue Volcanic Complex (CCVC), coupled with helium isotopes ratios measured in fumaroles and thermal springs. We observe that inside the geothermal system the NE-striking faults, characterized by a combination of SP-CO2 and T maxima with high 3He/4He ratios (7.86Ra), promote the formation of high vertical permeability pathways for fluid circulation. Whereas, the WNW-striking faults represent low permeability pathways for hydrothermal fluids ascent associated with moderate 3He/4He ratios (5.34Ra), promoting the infiltration of meteoric water at shallow depth. These active zones are interspersed by SP-CO2- T minima, which represent self-sealed zones (e.g. impermeable altered rocks) at depth, creating a barrier inhibiting fluids rise. The NE-striking faults seem to be associated with the upflow zones of the geothermal system, where the boiling process produces a high vapor-dominated zone close to the surface. The WNW-striking faults seems to limit to the south the Copahue geothermal area.
NASA Astrophysics Data System (ADS)
Guo, Haihao; Audétat, Andreas
2017-02-01
In order to determine the behavior of metals and volatiles during intrusion of mafic magma into the base of silicic, upper crustal magma chambers, fluid-rock partition coefficients (Dfluid/rock) of Li, B, Na, S, Cl, K, Mn, Fe, Rb, Sr, Ba, Ce, Cu, Zn, Ag, Cd, Mo, As, Se, Sb, Te, W, Tl, Pb and Bi were determined experimentally at 2 kbar and 850 °C close to the solidus of mafic magma. In a first step, volatile-bearing mafic glasses were prepared by melting a natural basaltic trachyandesite in the presence of volatile-bearing fluids at 1200 °C/10 kbar in piston cylinder presses. The hydrous glasses were then equilibrated in subsequent experiments at 850 °C/2 kbar in cold-seal pressure vessels, which caused 80-90% of the melt to crystallize. After 0.5-2.0 days of equilibration, the exsolved fluid was trapped by means of in-situ fracturing in the form of synthetic fluid inclusions in quartz. Both the mafic rock residue and the fluid inclusions were subsequently analyzed by laser-ablation ICP-MS for major and trace elements. Reverse experiments were conducted by equilibrating metal-bearing aqueous solutions with rock powder and then trapping the fluid. In two additional experiments, information on relative element mobilities were obtained by reacting fluids that exsolved from crystallizing mafic magma with overlying silicic melts. The combined results suggest that under the studied conditions S, Cl, Cu, Se, Br, Cd and Te are most volatile (Dfluid/rock >10), followed by Li, B, Zn, As, Ag, Sb, Cs, W, Tl, Pb and Bi (Dfluid/rock = 1-10). Less volatile are Na, Mg, K, Ca, Mn, Fe, Rb, Sr, Mo and Rb (Dfluid/rock 0.1-1), and the least fluid-mobile elements are Al, Si, Ti, Zr, Ba and Ce (Dfluid/rock <0.1). This trend is broadly consistent with relative element volatilities determined on natural high-temperature fumarole gases, although some differences exist. Based on the volatility data and measured mineral-melt and sulfide-melt partition coefficients, volatile fluxing in felsic natural samples may be identified by Cu, Se, Te and Cd-enrichment in magmatic sulfides, and by As, Se, Cd and Bi-enrichment in magmatic apatite.
Volcano monitoring using short wavelength infrared data from satellites
NASA Technical Reports Server (NTRS)
Rothery, D. A.; Francis, P. W.; Wood, C. A.
1988-01-01
It is shown that Landsat TM and MSS data provide useful and sometimes unique information on magmatic and fumarolic events at poorly monitored active volcanoes. The digital number data recorded in each spectral band by TM and MSS can be converted into spectral radiance, measured in W/sq m per micron per sr, using calibration data such as those provided by Markham and Barker (1986) and can provide temperature information on the lava fountain, lava lakes, pahoehoe flows, blocky lava, pyroclastic flow, and fumarole. The examples of Landsat data documenting otherwise unobserved precursors and/or activity include the September 1986 eruption of Lascar volcano, Chile; the continued presence of lava lakes at Erta 'Ale, Ethiopia (in the absence of any ground-based observations); and minor eruptions at Mount Erebus, Antarctica.
Symonds, R.B.; Rose, William I.; Gerlach, T.M.; Briggs, P.H.; Harmon, R.S.
1990-01-01
After the March-April 1986 explosive eruption a comprehensive gas study at Augustine was undertaken in the summers of 1986 and 1987. Airborne COSPEC measurements indicate that passive SO2 emission rates declined exponentially during this period from 380??45 metric tons/day (T/D) on 7/24/86 to 27??6 T/D on 8/24/87. These data are consistent with the hypothesis that the Augustine magma reservoir has become more degassed as volcanic activity decreased after the spring 1986 eruption. Gas samples collected in 1987 from an 870??C fumarole on the andesitic lava dome show various degrees of disequilibrium due to oxidation of reduced gas species and condensation (and loss) of H2O in the intake tube of the sampling apparatus. Thermochemical restoration of the data permits removal of these effects to infer an equilibrium composition of the gases. Although not conclusive, this restoration is consistent with the idea that the gases were in equilibrium at 870??C with an oxygen fugacity near the Ni-NiO buffer. These restored gas compositions show that, relative to other convergent plate volcanoes, the Augustine gases are very HCl rich (5.3-6.0 mol% HCl), S rich (7.1 mol% total S), and H2O poor (83.9-84.8 mol% H2O). Values of ??D and ??18O suggest that the H2O in the dome gases is a mixture of primary magmatic water (PMW) and local seawater. Part of the Cl in the Augustine volcanic gases probably comes from this shallow seawater source. Additional Cl may come from subducted oceanic crust because data by Johnston (1978) show that Cl-rich glass inclusions in olivine crystals contain hornblende, which is evidence for a deep source (>25km) for part of the Cl. Gas samples collected in 1986 from 390??-642??C fumaroles on a ramp surrounding the inner summit crater have been oxidized so severely that restoration to an equilibrium composition is not possible. H and O isotope data suggest that these gases are variable mixtures of seawater, FMW, and meteoric steam. These samples are much more H2O-rich (92%-97% H2O) than the dome gases, possibly due to a larger meteoric steam component. The 1986 samples also have higher Cl/S, S/C, and F/Cl ratios, which imply that the magmatic component in these gases is from the more degassed 1976 magma. Thus, the 1987 samples from the lava dome are better indicators than the 1986 samples of degassing within the Augustine magma reservoir, even though they were collected a year later and contain a significant seawater component. Future gas studies at Augustine should emphasize fumaroles on active lava domes. Condensates collected from the same lava-dome fumarole have enrichments ot 107-102 in Cl, Br, F, B, Cd, As, S, Bi, Pb, Sb, Mo, Zn, Cu, K, Li, Na, Si, and Ni. Lower-temperature (200??-650??C) fumaroles around the volcano are generally less enriched in highly volatile elements. However, these lower-termperature fumaroles have higher concentration of rock-forming elements, probably derived from the wall rock. ?? 1990 Springer-Verlag.
NASA Astrophysics Data System (ADS)
Symonds, Robert B.; Rose, William I.; Gerlach, Terrence M.; Briggs, Paul H.; Harmon, Russell S.
1990-05-01
After the March April 1986 explosive eruption a comprehensive gas study at Augustine was undertaken in the summers of 1986 and 1987. Airborne COSPEC measurements indicate that passive SO2 emission rates declined exponentially during this period from 380±45 metric tons/day (T/D) on 7/24/86 to 27±6 T/D on 8/24/87. These data are consistent with the hypothesis that the Augustine magma reservoir has become more degassed as volcanic activity decreased after the spring 1986 eruption. Gas samples collected in 1987 from an 870°C fumarole on the andesitic lava dome show various degrees of disequilibrium due to oxidation of reduced gas species and condensation (and loss) of H2O in the intake tube of the sampling apparatus. Thermochemical restoration of the data permits removal of these effects to infer an equilibrium composition of the gases. Although not conclusive, this restoration is consistent with the idea that the gases were in equilibrium at 870°C with an oxygen fugacity near the Ni-NiO buffer. These restored gas compositions show that, relative to other convergent plate volcanoes, the Augustine gases are very HCl rich (5.3 6.0 mol% HCl), S rich (7.1 mol% total S), and H2O poor (83.9 84.8 mol% H2O). Values of δD and δ18O suggest that the H2O in the dome gases is a mixture of primary magmatic water (PMW) and local seawater. Part of the Cl in the Augustine volcanic gases probably comes from this shallow seawater source. Additional Cl may come from subducted oceanic crust because data by Johnston (1978) show that Cl-rich glass inclusions in olivine crystals contain hornblende, which is evidence for a deep source (>25km) for part of the Cl. Gas samples collected in 1986 from 390° 642°C fumaroles on a ramp surrounding the inner summit crater have been oxidized so severely that restoration to an equilibrium composition is not possible. H and O isotope data suggest that these gases are variable mixtures of seawater, FMW, and meteoric steam. These samples are much more H2O-rich (92% 97% H2O) than the dome gases, possibly due to a larger meteoric steam component. The 1986 samples also have higher Cl/S, S/C, and F/Cl ratios, which imply that the magmatic component in these gases is from the more degassed 1976 magma. Thus, the 1987 samples from the lava dome are better indicators than the 1986 samples of degassing within the Augustine magma reservoir, even though they were collected a year later and contain a significant seawater component. Future gas studies at Augustine should emphasize fumaroles on active lava domes. Condensates collected from the same lava-dome fumarole have enrichments ot 107 102 in Cl, Br, F, B, Cd, As, S, Bi, Pb, Sb, Mo, Zn, Cu, K, Li, Na, Si, and Ni. Lower-temperature (200° 650°C) fumaroles around the volcano are generally less enriched in highly volatile elements. However, these lower-termperature fumaroles have higher concentration of rock-forming elements, probably derived from the wall rock.
NASA Astrophysics Data System (ADS)
Rouwet, Dmitri; Inguaggiato, Salvatore; Taran, Yuri; Varley, Nicholas; Santiago S., José A.
2009-04-01
This study presents baseline data for future geochemical monitoring of the active Tacaná volcano-hydrothermal system (Mexico-Guatemala). Seven groups of thermal springs, related to a NW/SE-oriented fault scarp cutting the summit area (4,100m a.s.l.), discharge at the northwest foot of the volcano (1,500-2,000m a.s.l.); another one on the southern ends of Tacaná (La Calera). The near-neutral (pH from 5.8 to 6.9) thermal ( T from 25.7°C to 63.0°C) HCO3-SO4 waters are thought to have formed by the absorption of a H2S/SO2-CO2-enriched steam into a Cl-rich geothermal aquifer, afterwards mixed by Na/HCO3-enriched meteoric waters originating from the higher elevations of the volcano as stated by the isotopic composition (δD and δ18O) of meteoric and spring waters. Boiling temperature fumaroles (89°C at ~3,600m a.s.l. NW of the summit), formed after the May 1986 phreatic explosion, emit isotopically light vapour (δD and δ18O as low as -128 and -19.9‰, respectively) resulting from steam separation from the summit aquifer. Fumarolic as well as bubbling gases at five springs are CO2-dominated. The δ13CCO2 for all gases show typical magmatic values of -3.6 ± 1.3‰ vs V-PDB. The large range in 3He/4He ratios for bubbling, dissolved and fumarolic gases [from 1.3 to 6.9 atmospheric 3He/4He ratio ( R A)] is ascribed to a different degree of near-surface boiling processes inside a heterogeneous aquifer at the contact between the volcanic edifice and the crystalline basement (4He source). Tacaná volcano offers a unique opportunity to give insight into shallow hydrothermal and deep magmatic processes affecting the CO2/3He ratio of gases: bubbling springs with lower gas/water ratios show higher 3He/4He ratios and consequently lower CO2/3He ratios (e.g. Zarco spring). Typical Central American CO2/3He and 3He/4He ratios are found for the fumarolic Agua Caliente and Zarco gases (3.1 ± 1.6 × 1010 and 6.0 ± 0.9 R A, respectively). The L/ S (5.9 ± 0.5) and ( L + S)/ M ratios (9.2 ± 0.7) for the same gases are almost identical to the ones calculated for gases in El Salvador, suggesting an enhanced slab contribution as far as the northern extreme of the Central American Volcanic Arc, Tacaná.
Origin, distribution, and rapid removal of hydrothermally formed clay at Mount Baker, Washington
Frank, David
1983-01-01
Clay minerals are locally abundant in two hydrothermal areas at Mount Baker-Sherman Crater and the Dorr Fumarole Field. The silt- and clay-size fractions of volcanic debris that is undergoing alteration at and near the ground surface around areas of current fumarolic activity in Sherman Crater are largely dominated by alunite and a silica phase, either opal or cristobalite, but contain some kaolinite and smectite. Correspondingly, the chemistry of solutions at the surface of the crater, as represented by the crater lake, favors the formation of alunite over kaolinite. In contrast, vent-filling debris that was ejected to the surface from fumaroles in 1975 contains more than 20 percent clay-size material in which kaolinite and smectite are dominant. The youngest eruptive deposit (probably 19th century) on the crater rim was also altered prior to ejection and contains as much as 27 percent clay-size material in which kaolinite, smectite, pyrophyllite, and mixed-layer illitesmectite are abundant. The hydrothermal products, kaolinite and alunite, are present in significant amounts in five large Holocene mudflows that originated at the upper cone of Mount Baker. The distribution of kaolinite in crater and valley deposits indicates that, with the passage of time, increasingly greater amounts of this clay mineral have been incorporated into large mass movements from the upper cone. Either erosion has cut into more kaolinitic parts of the core of Sherman Crater, or the amount of kaolinite has increased through time in Sherman Crater.
Rapid response of a hydrologic system to volcanic activity: Masaya volcano, Nicaragua
Pearson, S.C.P.; Connor, C.B.; Sanford, W.E.
2008-01-01
Hydrologic systems change in response to volcanic activity, and in turn may be sensitive indicators of volcanic activity. Here we investigate the coupled nature of magmatic and hydrologic systems using continuous multichannel time series of soil temperature collected on the flanks of Masaya volcano, Nicaragua, one of the most active volcanoes in Central America. The soil temperatures were measured in a low-temperature fumarole field located 3.5 km down the flanks of the volcano. Analysis of these time series reveals that they respond extremely rapidly, on a time scale of minutes, to changes in volcanic activity also manifested at the summit vent. These rapid temperature changes are caused by increased flow of water vapor through flank fumaroles during volcanism. The soil temperature response, ~5 °C, is repetitive and complex, with as many as 13 pulses during a single volcanic episode. Analysis of the frequency spectrum of these temperature time series shows that these anomalies are characterized by broad frequency content during volcanic activity. They are thus easily distinguished from seasonal trends, diurnal variations, or individual rainfall events, which triggered rapid transient increases in temperature during 5% of events. We suggest that the mechanism responsible for the distinctive temperature signals is rapid change in pore pressure in response to magmatism, a response that can be enhanced by meteoric water infiltration. Monitoring of distal fumaroles can therefore provide insight into coupled volcanic-hydrologic-meteorologic systems, and has potential as an inexpensive monitoring tool.
De Rosa, Maurizio; Gagliardi, Gianluca; Rocco, Alessandra; Somma, Renato; De Natale, Paolo; De Natale, Giuseppe
2007-04-20
We report on a continuous-measurement campaign carried out in Vulcano (Aeolian islands, Sicily), devoted to the simultaneous monitoring of CO2 and H2O concentrations. The measurements were performed with an absorption spectrometer based on a semiconductor laser source emitting around a 2-microm wavelength. The emitted radiation was selectively absorbed by two molecular ro-vibrational transitions specific of the investigated species. Data for CO2 and H2O concentrations, and CO2 soil diffusive flux using an accumulation chamber configuration, were collected at several interesting sampling points on the island (Porto Levante beach- PLB, Fossa Grande Crater - FOG- and Valley of Palizzi, PAL). CO2/H2O values, measured on the ground, are very similar (around 0.019 (+/- 0.006)) and comparable to the previous discrete detected values of 0.213 (Fumarole F5-La Fossa crater rim) and 0.012 (Fumarole VFS - Baia Levante beach) obtaid during the 1977-1993 heating phase of the crater fumaroles. In this work much more homogeneous values are found in different points of the three sites investigated. The field work, although carried out in a limited time window (25th-28th August 2004), pointed out the new apparatus is suitable for continuous gas monitoring of the two species and their ratios, which are important geochemical indicators of volcanic activity, for which other reliable continuous monitoring systems are not yet available.
Structural and heat-flow implications of infrared anomalies at Mt. Hood, Oregon
Friedman, Jules D.; Frank, David
1977-01-01
Surface thermal features occur in an area of 9700 m2 at Mt. Hood, on the basis of an aerial line-scan survey made April 26, 1973. The distribution of the thermal areas below the summit of Mt. Hood, shown on planimetrically corrected maps at 1:12,000, suggests structural control by a fracture system and brecciated zone peripheral to a hornblende-dacite plug dome (Crater Rock), and by a concentric fracture system that may have been associated with development of the present crater. The extent and inferred temperature of the thermal areas permits a preliminary estimate of a heat discharge of 10 megawatts, by analogy with similar fumarole and thermal fields of Mt. Baker, Washington. This figure includes a heat loss of 4 megawatts (MW) via conduction, diffusion, evaporation, and radiation to the atmosphere, and a somewhat less certain loss of 6MW via fumarolic mass transfer of vapor and advective heat loss from runoff and ice melt. The first part of the estimate is based on two-point models for differential radiant exitance and differential flux via conduction, diffusion, evaporation, and radiation from heat balance of the ground surface. Alternate methods for estimating volcanogenic geothermal flux that assume a quasi-steady state heat flow also yield estimates in the 5-11 MW range. Heat loss equivalent to cooling of the dacite plug dome is judged to be insufficient to account for the heat flux at the fumarole fields.
NASA Astrophysics Data System (ADS)
Koshlyakova, Natalia; Pekov, Igor; Yapaskurt, Vasily; Shchipalkina, Nadezhda; Sidorov, Evgeny
2017-04-01
Potassium feldspar is abundant in products of active fumaroles at the Second scoria cone of the Northern Breakthrough of the Great Tolbachik Fissure Eruption (1975-1976), Tolbachik volcano, Kamchatka, Russia. The most intriguing fact is that the mineral here strongly differs chemically from potassium feldspar of all other geological formations. It demonstrates wide compositional variations and is typically enriched with As5+ and sometimes contains significant amounts of P, Zn, Cu, Fe and S. Filatovite K[(Al,Zn)_2(As,Si)_2O_8], the arsenate analogue of orthoclase, was discovered here (Vergasova et al., 2004). Samples from the Arsenatnaya fumarole located at the summit of the Second scoria cone (Pekov et al., 2014) contain, as our data show, complete solid-solution series between As-free potassium feldspar and filatovite. Potassium feldspar crystallizes in the Tolbachik fumaroles as a result of two processes: direct deposition from fumarolic gas and interaction of this gas with basalt scoria at temperatures not lower than 500°C. Exhalation feldspar occurs as incrustations sometimes consisting of well-formed prismatic crystals up to 1 mm long. Potassium feldspar produced by gas-rock interaction process replaces basalt and volcanic scoria. Cases of selective replacement of plagioclase in basalt for As-bearing potassium feldspar were observed. Potassium feldspar from the Arsenatnaya fumarole contains (our electron microprobe data, wt.{%}): SiO2 19.4-65.2 (corresponds to 1.05-3.01 atoms per formula unit = apfu; formulae are calculated on the basis of 8 O apfu), Al_2O3 14.3-30.6 (0.80 -1.95 apfu), As_2O5 0.00-34.2 (0.00-0.97 apfu), P_2O5 0.00-2.5 (0.00-0.10 apfu), SO3 0.00-3.2 (0.00-0.11 apfu), Fe_2O3 0.00-3.1 (0.00-0.11 apfu), ZnO 0.00-0.81 (0.00-0.03 apfu), CuO 0.00-2.1 (0.00-0.08 apfu). In feldspar structure all these constituents occupy tetrahedrally coordinated sites in the AlSi-framework (Filatov et al., 2004). Chemical variations of extra-framework cations in potassium feldspar from Arsenatnaya are significantly less (wt.{%}): Na_2O 0.03-1.18 (0.00-0.11 apfu), CaO 0.00-1.79 (0.00-0.09 apfu). A continuous solid-solution series belonging to potassic feldspar itself (i.e. with Si>As in atom proportions) demonstrates the following compositional range (our data for samples from Arsenatnaya): (K0.95Na0.02)Σ{0.97[Si2.94Al1.01Cu0.06P0.01]Σ{4.03O8 - K1.02[Al1.95Si1.05As0.97P0.01S0.01Zn0.01]Σ 3.99O_8. All intermediate members of this series show stable feldspar-type stoichiometry caused by major substitution scheme 2Si4+ \\leftrightarrow Al3+ + As5+. In its generalized form, this scheme can be written as 2Si4+ \\leftrightarrow (Al,Fe)3+ + (As,P)5+. This study was supported by the Russian Science Foundation, grant 14-17-00048. References: Filatov S.K., Krivovichev S.V., Burns P.C., Vergasova L.P. (2004): Crystal structure of filatovite, K[(Al,Zn)_2(As,Si)_2O_8], the first arsenate of the feldspar group. Eur. J. Mineral., 16, 537-543. Pekov I.V., Zubkova N.V., Yapaskurt V.O., Belakovskiy D.I., Lykova I.S., Vigasina M.F., Sidorov E.G., Pushcharovsky D.Yu. (2014): New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. I. Yurmarinite, Na_7(Fe3+,Mg,Cu)_4(AsO_4)_6. Mineral. Mag., 78(4), 905-918. Vergasova L.P., Krivovichev S.K., Britvin S.N., Burns P.C., Ananiev V.V. (2004): Filatovite, K[(Al,Zn)_2(As,Si)_2O_8], a new mineral species from the Tolbachik volcano, Kamchatka peninsula, Russia. Eur. J. Mineral. 16, 533-536.
NASA Astrophysics Data System (ADS)
Miller, Craig A.; Currenti, Gilda; Hamling, Ian; Williams-Jones, Glyn
2018-05-01
Fluid transfer and ground deformation at hydrothermal systems occur both as a precursor to, or as a result of, an eruption. Typically studies focus on pre-eruption changes to understand the likelihood of unrest leading to eruption; however, monitoring post-eruption changes is important for tracking the return of the system towards background activity. Here we describe processes occurring in a hydrothermal system following the 2012 eruption of Upper Te Maari crater on Mt Tongariro, New Zealand, from observations of microgravity change and deformation. Our aim is to assess the post-eruption recovery of the system, to provide a baseline for long-term monitoring. Residual microgravity anomalies of up to 92 ± 11 μGal per year are accompanied by up to 0.037 ± 0.01 m subsidence. We model microgravity changes using analytic solutions to determine the most likely geometry and source location. A multiobjective inversion tests whether the gravity change models are consistent with the observed deformation. We conclude that the source of subsidence is separate from the location of mass addition. From this unusual combination of observations, we develop a conceptual model of fluid transfer within a condensate layer, occurring in response to eruption-driven pressure changes. We find that depressurisation drives the evacuation of pore fluid, either exiting the system completely as vapour through newly created vents and fumaroles, or migrating to shallower levels where it accumulates in empty pore space, resulting in positive gravity changes. Evacuated pores then collapse, causing subsidence. In addition we find that significant mass addition occurs from influx of meteoric fluids through the fractured hydrothermal seal. Long-term combined microgravity and deformation monitoring will allow us to track the resealing and re-pressurisation of the hydrothermal system and assess what hazard it presents to thousands of hikers who annually traverse the volcano, within 2 km of the eruption site.
NASA Astrophysics Data System (ADS)
Dickey, K.; Holbrook, W. S.; Finn, C.; Auken, E.; Carr, B.; Sims, K. W. W.; Bedrosian, P.; Lowenstern, J. B.; Hurwitz, S.; Pedersen, J. B. B.
2017-12-01
Yellowstone National Park hosts over 10,000 thermal features (e.g. geysers, fumaroles, mud pots, and hot springs), yet little is known about the circulation depth of meteoric water feeding these features, nor the lithological and structural bounds on the pathways that guide deep, hot fluids to the surface. Previous near-surface geophysical studies have been effective in imaging shallow hydrothermal pathways in some areas of the park, but these methods are difficult to conduct over the large areas needed to characterize entire hydrothermal systems. Transient electromagnetic (TEM) soundings and 2D direct current (DC) resistivity profiles show that hydrothermal fluids at active sites have a higher electrical conductivity than the surrounding hydrothermally inactive areas. For that reason, airborne TEM is an effective method to characterize large areas and identify hydrothermally active and inactive zones using electrical conductivity. Aeromagnetic data have been useful in mapping faults that localize hot springs, making the integration of aeromagnetic and EM data effective for structurally characterizing fluid pathways. Here we present the preliminary results from an airborne transient electromagnetic (TEM) and magnetic survey acquired jointly by the U.S. Geological Survey (USGS) and the University of Wyoming (UW) in November 2016. We integrate the EM and magnetic data for the purpose of edge detection of rhyolite flow boundaries as well as source depth of hydrothermal features. The maximum horizontal gradient technique applied on magnetic data is a useful tool that used to estimate source depth as well as indicate faults and fractures. The integration of EM with magnetics allows us to distinguish hydrothermally altered fault systems that guide fluids in the subsurface. We have used preliminary 2D inversions of EM from Aarhus Workbench to delineate rhyolite flow edges in the upper 300-600 meters and cross-checked those boundaries with the aeromagnetic map.
NASA Astrophysics Data System (ADS)
Roulleau, Emilie; Bravo, Francisco; Pinti, Daniele L.; Barde-Cabusson, Stéphanie; Pizarro, Marcela; Tardani, Daniele; Muñoz, Carlos; Sanchez, Juan; Sano, Yuji; Takahata, Naoto; de la Cal, Federico; Esteban, Carlos; Morata, Diego
2017-07-01
Natural geothermal systems are limited areas characterized by anomalously high heat flow caused by recent tectonic or magmatic activity. The heat source at depth is the result of the emplacement of magma bodies, controlled by the regional volcano-tectonic setting. In contrast, at a local scale a well-developed fault-fracture network favors the development of hydrothermal cells, and promotes the vertical advection of fluids and heat. The Southern Volcanic Zone (SVZ), straddling Chile and Argentina, has an important, yet unexplored and undeveloped geothermal potential. Studies on the lithological and tectonic controls of the hydrothermal circulation are therefore important for a correct assessment of the geothermal potential of the region. Here, new and dense self-potential (SP), soil CO2 and temperature (T) measurements, and helium isotope data measured in fumaroles and thermal springs from the geothermal area located in the north-eastern flank of the Copahue volcanic edifice, within the Caviahue Caldera (the Caviahue-Copahue Volcanic Complex - CCVC) are presented. Our results allowed to the constraint of the structural origin of the active thermal areas and the understanding of the evolution of the geothermal system. NE-striking faults in the area, characterized by a combination of SP, CO2, and T maxima and high 3He/4He ratios (up to 8.16 ± 0.21Ra, whereas atmospheric Ra is 1.382 × 10- 6), promote the formation of vertical permeability preferential pathways for fluid circulation. WNW-striking faults represent low-permeability pathways for hydrothermal fluid ascent, but promote infiltration of meteoric water at shallow depths, which dilute the hydrothermal input. The region is scattered with SP, CO2, and T minima, representing self-sealed zones characterized by impermeable altered rocks at depth, which create local barriers for fluid ascent. The NE-striking faults seem to be associated with the upflowing zones of the geothermal system, where the boiling process produces a high vapor-dominated zone close to the surface, whereas the WNW-striking faults could act as a boundary of the Copahue geothermal area to the south.
NASA Astrophysics Data System (ADS)
Symonds, Robert B.; Reed, Mark H.; Rose, William I.
1992-02-01
Thermochemical modeling predicts that trace elements in the Augustine gas are transported from near-surface magma as simple chloride (NaCl, KCl, FeCl 2, ZnCl 2, PbCl 2, CuCl, SbCl 3, LiCl, MnCl 2, NiCl 2, BiCl, SrCl 2), oxychloride (MoO 2Cl 2), sulfide (AsS), and elemental (Cd) gas species. However, Si, Ca, Al, Mg, Ti, V, and Cr are actually more concentrated in solids, beta-quartz (SiO 2), wollastonite (CaSiO 3), anorthite (CaAl 2Si 2O 8), diopside (CaMgSi 2O 6), sphene (CaTiSiO 5), V 2O 3(c), and Cr 2O 3(c), respectively, than in their most abundant gaseous species, SiF 4, CaCl 2, AlF 2O, MgCl 2 TiCl 4, VOCl 3, and CrO 2Cl 2. These computed solids are not degassing products, but reflect contaminants in our gas condensates or possible problems with our modeling due to "missing" gas species in the thermochemical data base. Using the calculated distribution of gas species and the COSPEC SO 2 fluxes, we have estimated the emission rates for many species (e.g., COS, NaCl, KCl, HBr, AsS, CuCl). Such forecasts could be useful to evaluate the effects of these trace species on atmospheric chemistry. Because of the high volatility of metal chlorides (e.g., FeCl 2, NaCl, KCl, MnCl 2, CuCl), the extremely HCl-rich Augustine volcanic gases are favorable for transporting metals from magma. Thermochemical modeling shows that equilibrium degassing of magma near 870°C can account for the concentrations of Fe, Na, K, Mn, Cu, Ni and part of the Mg in the gases escaping from the dome fumaroles on the 1986 lava dome. These calculations also explain why gases escaping from the lower temperature but highly oxidized moat vents on the 1976 lava dome should transport less Fe, Na, K, Mn and Ni, but more Cu; oxidation may also account for the larger concentrations of Zn and Mo in the moat gases. Nonvolatile elements (e.g., Al, Ca, Ti, Si) in the gas condensates came from eroded rock particles that dissolved in our samples or, for Si, from contamination from the silica sampling tube. Only a very small amount of rock contamination occurred (water/rock ratios between 10 4 and 10 6). Erosion is more prevalent in the pyroclastic flow fumaroles than in the summit vents, reflecting physical differences in the fumarole walls: ash vs. lava. Trace element contents of volcanic gases show enormous variability because of differences in the intensive parameters of degassing magma and variable amounts of wall rock erosion in volcanic fumaroles.
John, D.A.; Sisson, T.W.; Breit, G.N.; Rye, R.O.; Vallance, J.W.
2008-01-01
Hydrothermal alteration at Mount Rainier waxed and waned over the 500,000-year episodic growth of the edifice. Hydrothermal minerals and their stable-isotope compositions in samples collected from outcrop and as clasts from Holocene debris-flow deposits identify three distinct hypogene argillic/advanced argillic hydrothermal environments: magmatic-hydrothermal, steam-heated, and magmatic steam (fumarolic), with minor superimposed supergene alteration. The 3.8??km3 Osceola Mudflow (5600??y BP) and coeval phreatomagmatic F tephra contain the highest temperature and most deeply formed hydrothermal minerals. Relatively deeply formed magmatic-hydrothermal alteration minerals and associations in clasts include quartz (residual silica), quartz-alunite, quartz-topaz, quartz-pyrophyllite, quartz-dickite/kaolinite, and quartz-illite (all with pyrite). Clasts of smectite-pyrite and steam-heated opal-alunite-kaolinite are also common in the Osceola Mudflow. In contrast, the Paradise lahar, formed by collapse of the summit or near-summit of the edifice at about the same time, contains only smectite-pyrite and near-surface steam-heated and fumarolic alteration minerals. Younger debris-flow deposits on the west side of the volcano (Round Pass and distal Electron Mudflows) contain only low-temperature smectite-pyrite assemblages, whereas the proximal Electron Mudflow and a < 100??y BP rock avalanche on Tahoma Glacier also contain magmatic-hydrothermal alteration minerals that are exposed in the avalanche headwall of Sunset Amphitheater, reflecting progressive incision into deeper near-conduit alteration products that formed at higher temperatures. The pre-Osceola Mudflow alteration geometry is inferred to have consisted of a narrow feeder zone of intense magmatic-hydrothermal alteration limited to near the conduit of the volcano, which graded outward to more widely distributed, but weak, smectite-pyrite alteration within 1??km of the edifice axis, developed chiefly in porous breccias. The edifice was capped by a steam-heated alteration zone, most of which resulted from condensation of fumarolic vapor and oxidation of H2S in the unsaturated zone above the water table. Weakly developed smectite-pyrite alteration extended into the west and east flanks of the edifice, spatially associated with dikes that are localized in those sectors; other edifice flanks lack dikes and associated alteration. The Osceola collapse removed most of the altered core and upper east flank of the volcano, but intensely altered rocks remain on the uppermost west flank. Major conclusions of this study are that: (1) Hydrothermal-mineral assemblages and distributions at Mount Rainier can be understood in the framework of hydrothermal processes and environments developed from studies of ore deposits formed in analogous settings. (2) Frequent eruptions supplied sufficient hot magmatic fluid to alter the upper interior of the volcano hydrothermally, despite the consistently deep (??? 8??km) magma reservoir which may have precluded formation of economic mineral deposits within or at shallow depths beneath Mount Rainier. The absence of indicator equilibrium alteration-mineral assemblages in the debris flows that effectively expose the volcano to a depth of 1-1.5??km also suggests a low potential for significant high-sulfidation epithermal or porphyry-type mineral deposits at depth. (3) Despite the long and complex history of the volcano, intensely altered collapse-prone rocks were spatially restricted to near the volcano's conduit system and summit, and short distances onto the upper east and west flanks, due to the necessary supply of reactive components carried by ascending magmatic fluids. (4) Intensely altered rocks were removed from the summit, east flank, and edifice interior by the Osceola collapse, but remain on the upper west flank in the Sunset Amphitheater area and present a continuing collapse hazard. (5) Visually conspicuous rocks on the lower east and mid-to-lower
Structural controls of the Tuscarora geothermal field, Elko County, Nevada
NASA Astrophysics Data System (ADS)
Dering, G.; Faulds, J. E.
2012-12-01
Tuscarora is an amagmatic geothermal system located ~90 km northwest of Elko, Nevada, in the northern part of the Basin and Range province ~15 km southeast of the Snake River Plain. Detailed geologic mapping, structural analysis, and well data have been integrated to identify the structural controls of the Tuscarora geothermal system. The structural framework of the geothermal field is defined by NNW- to NNE-striking normal faults that are approximately orthogonal to the present extension direction. Boiling springs, fumaroles, and siliceous sinter emanate from a single NNE-striking, west-dipping normal fault. Normal faults west of these hydrothermal features mostly dip steeply east, whereas normal faults east of the springs primarily dip west. Thus, the springs, fumaroles, and sinter straddle a zone of interaction between fault sets that dip toward each other, classified as a strike-parallel anticlinal accommodation zone. Faults within the geothermal area are mostly discontinuous along strike with offsets of tens to hundreds of meters, whereas the adjacent range-bounding fault systems of the Bull Run and Independence Mountains accommodate several kilometers of displacement. The geothermal field lies within a broad step over between the southward terminating west-dipping Bull Run fault zone and the northward terminating west-dipping Independence Mountains fault zone. Neither of these major fault zones is known to host high temperature geothermal systems. The accommodation zone lies within the broad step over and contains both east-dipping antithetic and west-dipping synthetic faults. Accommodation zones are relatively common structural components of extended terranes that transfer strain between oppositely dipping fault sets via a network of subsidiary normal faults. This study has identified the hinge zone of an anticlinal accommodation zone as the site most conducive to fluid up-flow. The recognition of this specific portion of an accommodation zone as a favorable structural setting for geothermal activity may be a useful exploration tool for development of drilling targets in extensional terranes, as well as for developing geologic models of known geothermal fields. This type of information may ultimately help to reduce the risks of targeting successful geothermal wells in such settings.
Gas geochemistry of Sierra Negra volcano, Galapagos hot spot
NASA Astrophysics Data System (ADS)
Taran, Y.; Christenson, B.; Sumino, H.; Kennedy, B.
2010-12-01
We report chemical and isotopic compositions of gases from the Mina Azufral fumarolic field of Sierra Negra volcano, Isabela Island, Galápagos, collected in 2004 and compare our data with the data by Giggenbach (unpublished) collected in 1990 and Goff et al. (2000) collected in 1995. New results include the noble gas elemental and isotope abundances and nitrogen isotope ratios for the discharges. Maximum fumarole temperatures and ratios of major components (C/S/Cl/N) changed very little between 1995 and 2004, but the water fraction varied significantly over this period (39 mol% in 1990; 77% in 1995 and 52% in 2004). Carbon and helium isotopic compositions were stable (-3 to -4‰ and 16-18Ra, respectively), and water isotopic composition showed a notable negative oxygen shift from the local meteoric water value depending on the relative water content and thus controlled by the H2O-CO2 oxygen isotope fractionation. In terms of the noble gas abundances and isotopic ratios, heavy noble gases (Kr and Xe) are mainly of the atmospheric origin. Ne isotopic ratios also show strong meteoric signatures, but fall along the 20Ne/22Ne - 21Ne/22Ne air-deep mantle mixing trend for Fernandina glasses (Kurz et al., 2009). 40Ar/36Ar ratios up to 400 show a notable contribution of radiogenic Ar, and 40Ar*/4He ~ 0.3 ratios are consistent with un-degassed upper mantle values. Despite the high He/Ne ratios in gases collected in 2004, and only trace air contamination attributable to sampling, the nitrogen isotope ratios (~ -1 ‰) show a high fraction of the air-saturated water in the volcanic vapor. The chemical composition of the parent magmatic gas is difficult to characterise due to significant interaction between magmatic and hydrothermal system fluids beneath the Sierra Negra caldera. Never-the-less, some important indicators can be estimated: CO2/3He ≈ 3.5x10^9; N2/He <30; CO2/N2 >500. The last value is much higher than the accepted value of ~ 100 for the upper mantle.
Volatile emissions and gas geochemistry of Hot Spring Basin, Yellowstone National Park, USA
Werner, C.; Hurwitz, S.; Evans, William C.; Lowenstern, J. B.; Bergfeld, D.; Heasler, H.; Jaworowski, C.; Hunt, A.
2008-01-01
We characterize and quantify volatile emissions at Hot Spring Basin (HSB), a large acid-sulfate region that lies just outside the northeastern edge of the 640??ka Yellowstone Caldera. Relative to other thermal areas in Yellowstone, HSB gases are rich in He and H2, and mildly enriched in CH4 and H2S. Gas compositions are consistent with boiling directly off a deep geothermal liquid at depth as it migrates toward the surface. This fluid, and the gases evolved from it, carries geochemical signatures of magmatic volatiles and water-rock reactions with multiple crustal sources, including limestones or quartz-rich sediments with low K/U (or 40*Ar/4*He). Variations in gas chemistry across the region reflect reservoir heterogeneity and variable degrees of boiling. Gas-geothermometer temperatures approach 300????C and suggest that the reservoir feeding HSB is one of the hottest at Yellowstone. Diffuse CO2 flux in the western basin of HSB, as measured by accumulation-chamber methods, is similar in magnitude to other acid-sulfate areas of Yellowstone and is well correlated to shallow soil temperatures. The extrapolation of diffuse CO2 fluxes across all the thermal/altered area suggests that 410 ?? 140??t d- 1 CO2 are emitted at HSB (vent emissions not included). Diffuse fluxes of H2S were measured in Yellowstone for the first time and likely exceed 2.4??t d- 1 at HSB. Comparing estimates of the total estimated diffuse H2S emission to the amount of sulfur as SO42- in streams indicates ~ 50% of the original H2S in the gas emission is lost into shallow groundwater, precipitated as native sulfur, or vented through fumaroles. We estimate the heat output of HSB as ~ 140-370??MW using CO2 as a tracer for steam condensate, but not including the contribution from fumaroles and hydrothermal vents. Overall, the diffuse heat and volatile fluxes of HSB are as great as some active volcanoes, but they are a small fraction (1-3% for CO2, 2-8% for heat) of that estimated for the entire Yellowstone system.
The Lepanto Cu–Au deposit, Philippines: A fossil hyperacidic volcanic lake complex
Berger, Byron R.; Henley, Richard W.; Lowers, Heather; Pribil, Michael
2014-01-01
Hyperacidic lakes and associated solfatara in active volcanoes are the expression of magmatic gas expansion from source to surface. Here we show for the first time, that the vein system that comprises the ~ 2 Ma high-sulfidation, Lepanto copper–gold deposit in the Mankayan district (Philippines) was associated with a contemporary hyperacidic volcanic lake complex—possibly the first such lake recognized in the geological record. A 15–20‰ difference in sulfur isotopic composition between barite and sulfides and sulfosalts in the vent fumarole encrustations supports the interpretation that SO2-rich volcanic gas vented into the base of the lake and marginal to it and ties the mineralization directly to magmatic gas expansion, fracture propagation, and mineralization that occurred through a series of decompression steps within the feeder fracture network. These data confirm that crater lake environments such as Kawah Ijen (Java, Indonesia) provide modern day analogs of the Lepanto and other high sulfidation Cu–Au depositing environments.We also provide extensive analysis of sulfosalt–sulfide reactions during vein formation within the hyperacidic lake complex. Pyrite ± silica deposited first at high temperature followed by enargite that preserves the vapor–solid diffusion of, for example, antimony, tin, and tellurium into the vapor from the crystallizing solid. Subsolidus, intra-crystalline diffusion continued as temperature declined. Pyrite and enargite are replaced by Fe-tennantite in the lodes which initially has low Sb/(Sb + As) atomic ratios around 13.5% close to the ideal tennantite formula, but evolves to higher ratios as crystallization proceeds. Fumarole encrustation clasts and sulfosalts in the lake sediment are more highly evolved with a larger range of trace element substitutions, including antimony. Substitution of especially Zn, Te, Ag, and Sn into tennantite records metal and semi-metal fractionation between the expanding magmatic gas and deposited sulfide sublimates provides a rare insight into the fate of metals and semi-metals in the shallower parts of fracture arrays that feed modern hyperacidic lakes.These data support a growing understanding of the formation of high-sulfidation gold deposits as the consequence of single-phase expansion of gas from magmatic-gas reservoirs beneath the surface of active volcanoes without the intervention of a later aqueous fluid including groundwater. Aggressive sulfide–sulfosalt reactions, including pitting and the almost complete dissolution of earlier minerals, are persistent characteristics of the vein assemblages and precious metals typically occur late in pits or along brittle fractures. These characteristics support a hypothesis of mineral deposition at temperatures of the order of 600 °C in contrast to available fluid inclusion data from enargite that record temperatures following phase transitions in the sulfosalt during the retrograde devolution of the deposit in the presence of groundwater.
De Rosa, Maurizio; Gagliardi, Gianluca; Rocco, Alessandra; Somma, Renato; De Natale, Paolo; De Natale, Giuseppe
2007-01-01
We report on a continuous-measurement campaign carried out in Vulcano (Aeolian islands, Sicily), devoted to the simultaneous monitoring of CO2 and H2O concentrations. The measurements were performed with an absorption spectrometer based on a semiconductor laser source emitting around a 2-μm wavelength. The emitted radiation was selectively absorbed by two molecular ro-vibrational transitions specific of the investigated species. Data for CO2 and H2O concentrations, and CO2 soil diffusive flux using an accumulation chamber configuration, were collected at several interesting sampling points on the island (Porto Levante beach- PLB, Fossa Grande Crater – FOG- and Valley of Palizzi, PAL). CO2/H2O values, measured on the ground, are very similar (around 0.019 (± 0.006)) and comparable to the previous discrete detected values of 0.213 (Fumarole F5-La Fossa crater rim) and 0.012 (Fumarole VFS – Baia Levante beach) obtaid during the 1977–1993 heating phase of the crater fumaroles. In this work much more homogeneous values are found in different points of the three sites investigated. The field work, although carried out in a limited time window (25th–28th August 2004), pointed out the new apparatus is suitable for continuous gas monitoring of the two species and their ratios, which are important geochemical indicators of volcanic activity, for which other reliable continuous monitoring systems are not yet available. PMID:17448243
Geochemistry and solute fluxes of volcano-hydrothermal systems of Shiashkotan, Kuril Islands
NASA Astrophysics Data System (ADS)
Kalacheva, Elena; Taran, Yuri; Kotenko, Tatiana
2015-04-01
Shiashkotan Island belongs to the Northern Kuril island arc and consists of two joined volcanoes, Sinarka and Kuntomintar, with about 18 km of distance between the summits. Both volcanoes are active, with historic eruptions, and both emit fumarolic gases. Sinarka volcano is degassing through the extrusive dome with inaccessible strong and hot (> 400 °C) fumaroles. A large fumarolic field of the Kuntomintar volcano situated in a wide eroded caldera-like crater hosts many fumarolic vents with temperatures from boiling point to 480 °C. Both volcanoes are characterized by intense hydrothermal activity discharging acid SO4-Cl waters, which are drained to the Sea of Okhotsk by streams. At least 4 groups of near-neutral Na-Mg-Ca-Cl-SO4 springs with temperatures in the range of 50-80 °C are located at the sea level, within tide zones and discharge slightly altered diluted seawater. Volcanic gas of Kuntomintar as well as all types of hydrothermal manifestations of both volcanoes were collected and analyzed for major and trace elements and water isotopes. Volcanic gases are typical for arc volcanoes with 3He/4He corrected for air contamination up to 6.4 Ra (Ra = 1.4 × 10- 6, the air ratio) and δ13C (CO2) within - 10‰ to - 8 ‰ VPDB. Using a saturation indices approach it is shown that acid volcanic waters are formed at a shallow level, whereas waters of the coastal springs are partially equilibrated with rocks at ~ 180 °C. Trace element distribution and concentrations and the total REE depend on the water type, acidity and Al + Fe concentration. The REE pattern for acidic waters is unusual but similar to that found in some acidic crater lake waters. The total hydrothermal discharge of Cl and S from the island associated with volcanic activity is estimated at ca. 20 t/d and 40 t/d, respectively, based on the measurements of flow rates of the draining streams and their chemistry. The chemical erosion of the island by surface and thermal waters is estimated at 27 and 140 ton/km2/year, respectively, which is 2-3 times lower than chemical erosion of tropical volcanic islands.
NASA Astrophysics Data System (ADS)
Arpa, M.; Hernandez Perez, P. A.; Reniva, P.; Bariso, E.; Padilla, G.; Melian Rodriguez, G.; Barrancos, J.; Calvo, D.; Nolasco, D.; Padron, E.; Garduque, R.; Villacorte, E.; Fajiculay, E.; Perez, N.; Solidum, R.
2012-12-01
Taal is an active volcano located in southwest Luzon, Philippines. It consists of mainly tuff cones which have formed an island at the center of a 30 km wide Taal Caldera. Most historical eruptions, since 1572 on Taal Volcano Island, have been characterized as hydromagmatic eruptions. Taal Main Crater, produced during the 1911 eruption, is the largest crater in the island currently filled by a 1.2 km wide, 85 m deep acidic lake. The latest historical eruption occurred in 1965-1977. Monitoring of CO2 emissions from the Main Crater Lake (MCL) and fumarolic areas within the Main Crater started in 2008 with a collaborative project between ITER and PHIVOLCS. Measurements were done by accumulation chamber method using a Westsystem portable diffuse fluxmeter. Baseline total diffuse CO2 emissions of less than 1000 t/d were established for the MCL from 3 campaign-type surveys between April, 2008 to March, 2010 when seismicity was within background levels. In May, 2010, anomalous seismic activity from the volcano started and the total CO2 emission from the MCL increased to 2716±54 t/d as measured in August, 2010. The CO2 emission from the lake was highest last March, 2011 at 4670±159 t/d when the volcano was still showing signs of unrest. Because CO2 emissions increased significantly (more than 3 times the baseline value) at this time, this activity may be interpreted as magmatic and not purely hydrothermal. Most likely deep magma intrusions occurred but did not progress further to shallower depths and no eruption occurred. No large increase in lake water temperature near the surface (average for the whole lake area) during the period when CO2 was above background, it remained at 30-34°C and a few degrees lower than average ambient temperature. Total CO2 emissions from the MCL have decreased to within baseline values since October, 2011. Concentrations of CO2, SO2 and H2S in air in the fumarolic area within the Main Crater also increased in March, 2011. The measurements were made using a multigas sensor. In terms of volcanic gas hazard, CO2 in air near a fumarole vent can be as high as 25,000 ppm, while the highest H2S recorded was at 14 ppm (March, 2011). Without a multigas sensor, we measured the concentrations of only CO2 and H2S in air near the fumaroles using the Westsystem fluxmeter. During the latest survey last July 2012, the highest measured CO2 in air was 13,000 ppm and for H2S it was 28 ppm to above detection limit. The campaign-type CO2 efflux surveys in the MCL and measurements of the fumaroles are done at least once or twice a year with increased frequency of surveys when signs of unrest are detected. These measurements are important because Taal Volcano Island, although designated as a permanent danger zone, is permanently inhabited.
NASA Astrophysics Data System (ADS)
Miller, H. A.; Lopez, T. M.; Fischer, T. P.; Schrenk, M. O.
2017-11-01
Promising contemporary analogs of habitable environments are fumaroles associated with active volcanism. Experimental studies linking sediments, microbes, and volatile outgassing may lead to new bio- or geosignatures of habitability.
NASA Astrophysics Data System (ADS)
Fiebig, Jens; Chiodini, Giovanni; Caliro, Stefano; Rizzo, Andrea; Spangenberg, Jorge; Hunziker, Johannes C.
2004-05-01
The chemical and isotopic composition of fumarolic gases emitted from Nisyros Volcano, Greece, and of a single gas sample from Vesuvio, Italy, was investigated in order to determine the origin of methane (CH 4) within two subduction-related magmatic-hydrothermal environments. Apparent temperatures derived from carbon isotope partitioning between CH 4 and CO 2 of around 340°C for Nisyros and 470°C for Vesuvio correlate well with aquifer temperatures as measured directly and/or inferred from compositional data using the H 2O-H 2-CO 2-CO-CH 4 geothermometer. Thermodynamic modeling reveals chemical equilibrium between CH 4, CO 2 and H 2O implying that carbon isotope partitioning between CO 2 and CH 4 in both systems is controlled by aquifer temperature. N 2/ 3He and CH 4/ 3He ratios of Nisyros fumarolic gases are unusually low for subduction zone gases and correspond to those of midoceanic ridge environments. Accordingly, CH 4 may have been primarily generated through the reduction of CO 2 by H 2 in the absence of any organic matter following a Fischer-Tropsch-type reaction. However, primary occurrence of minor amounts of thermogenic CH 4 and subsequent re-equilibration with co-existing CO 2 cannot be ruled out entirely. CO 2/ 3He ratios and δ 13C CO 2 values imply that the evolved CO 2 either derives from a metasomatized mantle or is a mixture between two components, one outgassing from an unaltered mantle and the other released by thermal breakdown of marine carbonates. The latter may contain traces of organic matter possibly decomposing to CH 4 during thermometamorphism.
Atmospheric dispersion of natural carbon dioxide emissions on Vulcano Island, Italy
NASA Astrophysics Data System (ADS)
Granieri, D.; Carapezza, M. L.; Barberi, F.; Ranaldi, M.; Ricci, T.; Tarchini, L.
2014-07-01
La Fossa quiescent volcano and its surrounding area on the Island of Vulcano (Italy) are characterized by intensive, persistent degassing through both fumaroles and diffuse soil emissions. Periodic degassing crises occur, with marked increase in temperature and steam and gas output (mostly CO2) from crater fumaroles and in CO2 soil diffuse emission from the crater area as well as from the volcano flanks and base. The gas hazard of the most inhabited part of the island, Vulcano Porto, was investigated by simulating the CO2 dispersion in the atmosphere under different wind conditions. The DISGAS (DISpersion of GAS) code, an Eulerian model based on advection-diffusion equations, was used together with the mass-consistent Diagnostic Wind Model. Numerical simulations were validated by measurements of air CO2 concentration inside the village and along the crater's rim by means of a Soil CO2 Automatic Station and a Tunable Diode Laser device. The results show that in the village of Vulcano Porto, the CO2 air concentration is mostly due to local soil degassing, while the contribution from the crater gas emission is negligible at the breathing height for humans and always remains well below the lowest indoor CO2 concentration threshold recommended by the health authorities (1000 ppm). Outdoor excess CO2 maxima up to 200 ppm above local background CO2 air concentration are estimated in the center of the village and up to 100 ppm in other zones. However, in some ground excavations or in basements the health code threshold can be exceeded. In the crater area, because of the combined effect of fumaroles and diffuse soil emissions, CO2 air concentrations can reach 5000-7000 ppm in low-wind conditions and pose a health hazard for visitors.
An aeromagnetic survey in the Valley of Ten Thousand Smokes, Alaska. M.S. Thesis
NASA Technical Reports Server (NTRS)
Anma, K.
1971-01-01
Geologic and magnetic studies of the Katmai area have further demonstrated the close relationship between the Katmai Caldera, Novarupta plug, and the pyroclastic flows in the Valley of Ten Thousand Smokes. The magnetic fields observed appear to be associated with the thickness of the pyroclastic flow and the different rock units within it for lower flight levels, and also the contrast between the valley fill and the rock units at the Valley margins. Consistent magnetic anomalies are associated with the larger fumarole lines, which were presumably sites of large scale activity, while the smaller fumaroles are not usually seen in the aeromagnetic map. A possible correlation between low positive anomalies and nuee ardente deposits was revealed by the aeromagnetic survey, but was not strong. A ground survey was also carried out in several parts of the Valley with a view to detailed delineation of the magnetic signatures of the pyroclastic flow, as an aid to interpreting the aeromagnetic date.
2003-03-31
KENNEDY SPACE CENTER, FLA. - Dr. Richard Arkin records data as the hazardous gas detection system AVEMS is used to analyze the toxic gases produced by active vents, called fumaroles, in the Turrialba volcano in Costa Rica. He is using the Aircraft-based Volcanic Emission Mass Spectrometer (AVEMS) that determines the presence and concentration of various chemicals. The AVEMS system has been developed for use in the Space Shuttle program, to detect toxic gas leaks and emissions in the Shuttle’s aft compartment and the crew compartment.
Increasing CO2 flux at Pisciarelli, Campi Flegrei, Italy
NASA Astrophysics Data System (ADS)
Queißer, Manuel; Granieri, Domenico; Burton, Mike; Arzilli, Fabio; Avino, Rosario; Carandente, Antonio
2017-09-01
The Campi Flegrei caldera is located in the metropolitan area of Naples (Italy) and has been undergoing different stages of unrest since 1950, evidenced by episodes of significant ground uplift followed by minor subsidence, increasing and fluctuating emission strengths of water vapor and CO2 from fumaroles, and periodic seismic crises. We deployed a scanning laser remote-sensing spectrometer (LARSS) that measured path-integrated CO2 concentrations in the Pisciarelli area in May 2017. The resulting mean CO2 flux is 578 ± 246 t d-1. Our data suggest a significant increase in CO2 flux at this site since 2015. Together with recent geophysical observations, this suggests a greater contribution of the magmatic source to the degassing and/or an increase in permeability at shallow levels. Thanks to the integrated path soundings, LARSS may help to give representative measurements from large regions containing different CO2 sources, including fumaroles, low-temperature vents, and degassing soils, helping to constrain the contribution of deep gases and their migration mechanisms towards the surface.
Diffuse CO2 degassing at Vesuvio, Italy
NASA Astrophysics Data System (ADS)
Frondini, Francesco; Chiodini, Giovanni; Caliro, Stefano; Cardellini, Carlo; Granieri, Domenico; Ventura, Guido
2004-10-01
At Vesuvio, a significant fraction of the rising hydrothermal-volcanic fluids is subjected to a condensation and separation process producing a CO2-rich gas phase, mainly expulsed through soil diffuse degassing from well defined areas called diffuse degassing structures (DDS), and a liquid phase that flows towards the outer part of the volcanic cone. A large amount of thermal energy is associated with the steam condensation process and subsequent cooling of the liquid phase. The total amount of volcanic-hydrothermal CO2 discharged through diffuse degassing has been computed through a sequential Gaussian simulation (sGs) approach based on several hundred accumulation chamber measurements and, at the time of the survey, amounted to 151 t d-1. The steam associated with the CO2 output, computed assuming that the original H2O/CO2 ratio of hydrothermal fluids is preserved in fumarolic effluents, is 553 t d-1, and the energy produced by the steam condensation and cooling of the liquid phase is 1.47×1012 J d-1 (17 MW). The location of the CO2 and temperature anomalies show that most of the gas is discharged from the inner part of the crater and suggests that crater morphology and local stratigraphy exert strong control on CO2 degassing and subsurface steam condensation. The amounts of gas and energy released by Vesuvio are comparable to those released by other volcanic degassing areas of the world and their estimates, through periodic surveys of soil CO2 flux, can constitute a useful tool to monitor volcanic activity.
New ground-based lidar enables volcanic CO2 flux measurements.
Aiuppa, Alessandro; Fiorani, Luca; Santoro, Simone; Parracino, Stefano; Nuvoli, Marcello; Chiodini, Giovanni; Minopoli, Carmine; Tamburello, Giancarlo
2015-09-01
There have been substantial advances in the ability to monitor the activity of hazardous volcanoes in recent decades. However, obtaining early warning of eruptions remains challenging, because the patterns and consequences of volcanic unrests are both complex and nonlinear. Measuring volcanic gases has long been a key aspect of volcano monitoring since these mobile fluids should reach the surface long before the magma. There has been considerable progress in methods for remote and in-situ gas sensing, but measuring the flux of volcanic CO2-the most reliable gas precursor to an eruption-has remained a challenge. Here we report on the first direct quantitative measurements of the volcanic CO2 flux using a newly designed differential absorption lidar (DIAL), which were performed at the restless Campi Flegrei volcano. We show that DIAL makes it possible to remotely obtain volcanic CO2 flux time series with a high temporal resolution (tens of minutes) and accuracy (<30%). The ability of this lidar to remotely sense volcanic CO2 represents a major step forward in volcano monitoring, and will contribute improved volcanic CO2 flux inventories. Our results also demonstrate the unusually strong degassing behavior of Campi Flegrei fumaroles in the current ongoing state of unrest.
Deformation of the Aniakchak Caldera, Alaska, mapped by InSAR
Kwoun, Oh-Ig; Lu, Z.
2004-01-01
The deformation of Aniakchak volcano is investigated using 19 ERS-1 / 2 interferometric synthetic aperture radar (InSAR) data from 1992 through 2002. InSAR images from the different time intervals reveal that the10-km-wide caldera has been subsiding during the time of investigation. The pattern of subsidence does not following the pyroclastic flows from the last eruption of the caldera in 1931. The maximum subsidence is near the center of the caldera, with a rate of up to 13 mm/yr. Deformation outside the caldera is insignificant. Least squares inversion of the multi-temporal deformation maps indicates that the subsidence rate has been relatively constant. Field observations have identified numerous fumaroles inside the caldera. In 1973, temperatures of 80??C were measured at a depth of 15 cm in loose volcanic rubble adjacent to the small cinder cone (about 1.5 km northeast of the vent of the 1931 eruption), whereas springs near a caldera lake had a temperature of 25??C in July 1993. Therefore, we suggest the observed subsidence at Aniakchak caldera is most likely caused by the reduction of pore fluid pressure of a hydrothermal system located a few kilometers beneath the caldera.
NASA Astrophysics Data System (ADS)
Christenson, B. W.; White, S.; Britten, K.; Scott, B. J.
2017-10-01
White Island has a long and varied history of acid spring discharge and shallow ephemeral lake formation on its main crater floor. In the 12 months prior to the onset of the 1976-2000 eruptive episode, mass discharge from the spring system increased ca. 10-fold, pointing to a strong coupling of the hydrothermal environment to the evolving magmatic system. Between 1976 and 1978, the formation of numerous eruption vents to 200 m depth in the Western Sub-crater abruptly changed the hydraulic gradients in the volcano, resulting in the reversal of groundwater flow in the massif towards the newly-formed crater(s). This affected not only the style of volcanic activity (leading to phreatic-phreatomagmatic-magmatic eruption cycles), but also led to the demise of the spring system, with discharge from the main crater declining by a factor > 100 by 1979. Eruptive activity ended shortly after a moderate Strombolian eruption in mid-2000, after which ephemeral lakes started to form in the eruption crater complex. Between 2003 and 2015 there were three complete lake filling and evaporative cycles, reflecting varying heat flow through the conduit system beneath the lake. Over these cycles, lake water concentrations of Cl and SO4 varied between ca. 35-150 and 5-45 g/L respectively, with pH values temporally ranging from + 1.5 to - 1. Springs appeared on the Main Crater floor in 2004, and their discharges varied with lake level, pointing to the lake level being a primary control over the piezometric surface in the crater area. Springs closest to the crater complex show direct evidence of crater lake water infiltration into the crater floor aquifer, whereas distal spring discharges show compositional variations reflecting vertical displacement of the interface between shallow, dilute condensate and underlying acidic brine fluids. Source components for the spring fluids include magmatic vapour, dissolved andesitic host rocks, seawater and meteoric water. Lake waters, on the other hand, consist predominantly of magmatic vapour, meteoric water and solutes derived from host andesites and their altered derivatives. δ2H and δ18O signatures of the enclosing acid brine fluids, indicate they are predominantly seawater which have been affected by both vapour loss, but also mixing with arc-type vapour. An interesting finding of this study is that crater floor deformation correlates directly to both lake level and volatile emissions, in an apparent poroelastic response to the establishment of a hydrostatic water column in the eruption crater complex, and a net decrease in permeability owing to hydrothermal mineralization in the conduit (predominantly elemental sulfur and sulfate minerals). The hydrostatic pressurization of the vent environment also leads to increased gas pressures and flows through fumarolic channels, and consequent expansion of fumarolic areas on the main crater floor. A period of unrest, which commenced in August 2012 and lasted until October 2013, included the extrusion of a small dome into the eruption crater complex. This activity, and related high heat flow, led once again to evaporation of the lake, and ongoing phreatic eruption activity which has provided interesting insights into the role which elemental sulfur, associated hydrothermal alteration minerals and of course water play in regulating pressures in the magmatic-hydrothermal environment.
NASA Astrophysics Data System (ADS)
Peltier, Aline; Beauducel, François; Villeneuve, Nicolas; Ferrazzini, Valérie; Di Muro, Andrea; Aiuppa, Alessandro; Derrien, Allan; Jourde, Kevin; Taisne, Benoit
2016-07-01
Identifying the onset of volcano unrest and providing an unequivocal identification of volcano reawakening remain challenging problems in volcanology. At Piton de la Fournaise, renewal of eruptive activity in 2014-2015, after 41 months of quiescence and deflation, was associated with long-term continuous edifice inflation measured by GNSS. Inflation started on June 9, 2014, and its rate progressively increased through 2015. Inflation onset was rapidly followed by an eruption on June 20-21, 2014, showing that volcano reactivation can be extremely fast, even after long non-eruptive phases. This short-lived eruption involved a shallow source (1.3-1.9 km depth below the summit). The inflation that followed, and eruptions in 2015, involved a larger depth range of fluid accumulation, constrained by inverse modeling at ca. 3.9 to 1.2-1.7 km depth. This time evolution reveals that volcano reawakening was associated with continuous pressurization of the shallowest parts of its plumbing system, triggered by progressive upwards transfer of magma from greater depth. A deep magma pulse occurred in mid-April 2015 and was associated with deep seismicity (3 to 9.5 km depth) and CO2 enrichment in fluids emitted by summit fumaroles. From this date, ground deformation accelerated and the output rates of eruptions increased, culminating in the long-lasting, large-volume, August-October eruption ( 36 Mm3). This evolution suggests that deep magma/fluid transfer through an open conduit system first provoked the expulsion of the top of the plumbing system in June 2014, and then induced the progressive vertical transfer of the entire plumbing system down to 9 km (four eruptions in 2015). The new sustained feeding of the volcano was also at the origin of the hydrothermal system perturbation and the acceleration of the eastern flank motion, which favor lateral dike propagation and the occurrence of frequent and increasingly large eruptions. Our results highlight the fast and progressive way in which basaltic magmatic systems can wake up.
NASA Astrophysics Data System (ADS)
Cigolini, Corrado; Coppola, Diego; Yokoo, Akihiko; Laiolo, Marco
2018-04-01
The thermal signature of Aso Volcano (Nakadake) during unrest episodes has been analyzed by combining the MODIS-MIROVA data set (2000-2017) with high-resolution images (LANDSAT 8 OLI and Sentinel 2) and ground-based thermal observations (2013-2017). The site of major activity (crater 1) is located at the summit of the volcano and is composed by a fumarole field (located in the South Area) and an acidic lake (replaced by a Central Pit during Strombolian phases). The volcanic radiative power (VRP) obtained by nighttime satellite data during the reference period was mainly below 3 MW. This thermal threshold marks the transition from high fumarole activity (HFA) to Strombolian eruptions (SE). However, periods characterized by sporadic phreatic eruptions (PE, eventually bearing phreatomagmatic episodes), which is the prevalent phase during unrest episodes, exhibit very low VRP values, being around 0.5 MW, or below. The statistical analysis of satellite data shows that the transition from HFA to Strombolian activity (which started on August 2014 and ceased in May 2015) occurs when VRP values are above the cited 3 MW threshold. In particular during marked Strombolian phases (November-December 2014), the radiative power was higher than 4 MW, reaching peak values up to 15.6 MW (on December 7, 2014, i.e., 10 days after the major Strombolian explosion of November 27). Conversely, ground-based measurements show that heat fluxes recorded by FLIR T440 Thermo-camera on the fumarole field of the South Area has been relatively stable around 2 MW until February 2015. Their apparent temperatures were fluctuating around 490-575 °C before the major Strombolian explosive event, whereas those recorded at the active vent, named Central Pit, reached their maxima slightly above 600 °C; then both exhibited a decreasing trend in the following days. During the Strombolian activity, the crater lake dried out and was then replenished by early July, 2016. Then, volcanic activity shifted back to phreatic-phreatomagmatic and the eruptive cycle was completed. During this period, the MIROVA system detected very few thermal alerts and the ground-based measurements were fluctuating around 1 MW. The most violent explosion occurred on October 8, 2016, and within the following weeks measured VRP were moderately above 2 MW. This is coeval with a thermal increase at the fumarole field of the South Area, with temperatures well above 300 °C. Thermal monitoring at Aso Volcano is an additional tool in volcano surveillance that may contribute to near-real-time hazard assessment.[Figure not available: see fulltext.
NASA Astrophysics Data System (ADS)
Kading, T.; Varekamp, J. C.; Andersson, M.; Balcom, P.; Mason, R. P.
2010-12-01
The behavior of mercury in volcanic acid springs and acidified rivers is poorly known, despite the potential impact this vector of contamination has on local surface and ground water quality. Mercury was measured in a volcanically acidified river system (pH<1 - 3), the Rio Agrio in the Neuquen province of Argentina, which discharges into a large glacial lake (Lake Caviahue, pH 2.2-3.0). The Hg concentration ranged from 2 - 600 pM throughout the fluvial system. Mercury in the hot, hyperacidic source fluids was dominated by dissolved ionic species, with only 2% of total mercury as dissolved elemental mercury, and 11% being particulate bound. The Hg flux from the volcano, determined from river water flux measurements and Hg concentrations, was modest and varied between the 3/2008 and 3/2009 sampling campaigns resp. from 0.7 to 1.1 moles/year. The Hg:S ratio of the acid fluids was ~10-8, several orders of magnitude lower than that typically found in volcanic plumes and fumaroles. The small Hg flux and low Hg:S values suggest that the system is either inherently Hg-poor or has lost Hg through vapor loss deeper in the hydrothermal system. Support for the latter comes from high Hg concentrations in geothermal vents and mudpots on the flank of the mountain (24 - 55 ppm Hg). Mercury concentrations decreased conservatively downstream in the river as based on Hg/Cl and Hg/SO4. Non-conservative depletion occurs in the less acidic Lake Caviahue, suggesting that mercury is removed from the water column by sorption to organic matter or other phases. Mercury analyses of a short lake sediment core confirm this (Hg = 0.01 to 0.70 ppm). No evidence was found for preferential uptake of mercury by jarosite, schwertmannite, or goethite, although the latter two phases precipitate in the most distal and Hg-depleted section of the fluvial system.
NASA Astrophysics Data System (ADS)
Ucciani, G.; Beauducel, F.; Bouin, M. P.; Nercessian, A.
2015-12-01
La Soufrière is one of the many hazardous volcanoes in the inner arc of Lesser Antilles. Located South of Basse-Terre island, it is the only active volcano of the Guadeloupe archipelago. Since the last significant magmatic eruption in 1535 AD, the activity has been exculsively phreatic. Since 1992 and the abrupt renewal of seismic and fumarollic activities, the Guadeloupe Volcanological and Seismological Observatory (OVSG-IPGP) has recorded a progressive increasing of seismicity and degassing that led scientists and authorities to set the alert level ``Vigilance'' and hold it until today. According to the recent geophysical, geochemical and geological studies, the current volcanic activity of la Soufrière volcano seems to be exclusively associated to the hydrothermal system, while the link with seismic activity is still poorly studied. In this context of possible pre-eruptive unrest, we investigated the spatial and temporal variations of the seismicity recorded between 1981 and 2013. From a consistent seismological framework coupling spectral, statistical, signal processing, clustering, and inverse problems methods, we demonstrate that this seismicity is largely generated by shallow hydrothermal fluid sources located in a complex plumbing system. Spatial variations of Vp/Vs ratio and B-value in seismogenic structures allow us to document three main seismic zones associated to : (1) migration of magmatic gas, (2) the storage and mixing of underground water and gas and (3) the shallow migration of hydrothermal fluids in high fractured and heterogeneous system. Waveform analysis revealed a low number of significant families consistent with fracturing process, and the temporal evolution of multiplet activities highlighted several variations associated with surface manifestations and brutal dynamic changes after major local tectonic earthquakes of Les Saintes (21 November 2004, Mw=6.3), its main aftershock (14 February 2005, Mw=5.7) and the last major earthquake of la Martinique (29 November 2007, Mw=7.4).
Superficial alteration mineralogy in active volcanic systems: An example of Poás volcano, Costa Rica
NASA Astrophysics Data System (ADS)
Rodríguez, Alejandro; van Bergen, Manfred J.
2017-10-01
The alteration mineralogy in the crater area of Poás volcano (Costa Rica) has been studied to constrain acid fluid-rock interaction processes and conditions relevant for the formation of sulphate-bearing mineral assemblages found on the surface of Mars. Individual sub-environments, which include the hyperacid lake (Laguna Caliente), ephemeral hot springs, fumarole vents and areas affected by acid rain and/or spray from the lake, are marked by distinct secondary mineral associations, with sulphates commonly as prevailing component. The sulphates occur in a wide mineralogical diversity comprising gypsum/anhydrite, various polyhydrated Al-sulphates, alunite-jarosite group minerals, halotrichite-, voltaite- and copiapite-group minerals, epsomite and römerite. Depending on the sub-environment, they are variably associated with clay minerals (kaolinite-group and smectite-group), zeolites, SiO2-polymorphs, Fe-(hydro)oxides, Ti-oxides, native sulphur, sulphides, chlorides, fluorides, phosphates and carbonates. Geochemical modelling was performed to identify mechanisms responsible for the formation of the secondary minerals found in the field, and to predict their possible stability under conditions not seen at the surface. The results indicate that the appearance of amorphous silica, hematite, anhydrite/gypsum, pyrite, anatase and kaolinite is relatively insensitive to the degree of acidity of the local aqueous system. On the other hand, alunite-jarosite group minerals, elemental sulphur and Al(OH)SO4 only form under acidic conditions (pH < 4). The presence of polyhydrated Mg- and Fe2 +-sulphates is restricted to olivine-bearing rocks exposed to acid rain or brine spray. Modelling suggests that their formation required a repetitive sequence of olivine dissolution and evaporation in an open system involving limited amounts of fluid. The mineral variety in the crater of Poás is remarkably similar to sulphate-bearing assemblages considered to be the product of acid-sulphate alteration on Mars. The analogy suggests that comparable fluid-rock interaction controls operated in Martian volcanic environments.
The Lusi eruption site: insights from surface and subsurface investigations
NASA Astrophysics Data System (ADS)
Mazzini, A.
2017-12-01
The Indonesian Lusi eruption has been spewing boiling water, gas, and sediments since the 29th of May 2006. Initially, numerous aligned eruptions sites appeared along the Watukosek fault system (WFS) that was reactivated after the Yogyakarta earthquake occurring the 27th of May in the Java Island. Within weeks several villages were submerged by boiling mud. The most prominent eruption site was named Lusi. To date Lusi is still active and an area of 7 km2is covered by mud. Since its birth Lusi erupted with a pulsating behaviour. In the framework of the ERC grant "Lusi Lab" we conducted several years of monitoring and regional investigations coupling surface sampling and subsurface imaging in the region around Lusi. Ambient noise tomography studies, obtained with a local network of 31 stations, revealed for the first time subsurface images of the Lusi region and the adjacent Arjuno-Welirang (AW) volcanic complex. Results show that below the AW volcanic complex are present 5km deep magma chambers that are connected, through a defined corridor, with the roots of the Lusi eruption site. The Lusi subsurface shows the presence of a defined vertical hydrothermal plume that extends to at least 5km. Chemical analyses of the seeping fluids sampled from 1) the Lusi plume (using a specifically designed drone), 2) the region around Lusi, and 3) the fumaroles and the hydro thermal springs of AW, revealed striking similarities. More specifically a mantellic signature of the Lusi fluids confirms the scenario that Lusi represents a magmatic-driven hydrothermal system hosted in sedimentary basin. Seismic profiles interpretation, surface mapping, and fluid sampling show that the WFS, connecting AW and extending towards the NE of Java, acted as a preferential pathway for the igneous intrusion and fluids migration towards the subsurface. Petrography and dating of the clasts erupted at Lusi record high temperatures and indicate that the roots of the active conduit extend to at least 5km at depth, matching the observations and images obtained with geophysical investigations. Converging results support a scenario where igneous intrusions and hydrothermal fluid migrating from the AW complex moved towards the NE of Java. The triggered metamorphic reaction resulted in high overpressures that initiated the Lusi eruption site.
NASA Astrophysics Data System (ADS)
Maryanto, Sukir
2017-11-01
Arjuno Welirang Volcano Geothermal (AWVG) is located around Arjuno-Welirang Volcano in Malang, East Java, about 100 km southwest of Surabaya, the capital city of East Java province, and is still an undeveloped area of the geothermal field. The occurrence of solfatara and fumaroles with magmatic gasses indicated the existence of a volcanic geothermal system in the subsurface. A few hot springs are found in the Arjuno-Welirang volcanic complex, such as Padusan hot spring, Songgoriti hot spring, Kasinan hot spring, and Cangar hot spring. Multi geophysical observations in AWVG complex was carried out in order to explore the subsurface structure in supporting the plan of Geo Techno Park at the location. Gravity, Magnetic, Microearthquake, and Electrical Resistivity Tomography (ERT) methods were used to investigate the major and minor active faulting zones whether hot springs circulation occurs in these zones. The gravity methods allowed us to locate the subsurface structure and to evaluate their geometrical relationship base on density anomaly. Magnetic methods allow us to discriminate conductive areas which could correspond to an increase in thermal fluid circulation in the investigated sites. Micro-earthquakes using particle motion analysis to locate the focal depth related with hydrothermal activity and electrical resistivity tomography survey offers methods to locate more detail subsurface structure and geothermal fluids near the surface by identifying areas affected by the geothermal fluid. The magnetic and gravity anomaly indicates the subsurface structure of AWVG is composed of basalt rock, sulfide minerals, sandstone, and volcanic rock with high minor active fault structure as a medium for fluid circulation. While using micro-earthquake data in AWVG shown shallow focal depth range approximate 60 meters which indicates shallow hydrothermal circulation in AWVG. The geothermal fluid circulation zones along the fault structure resulted in some hot springs in a central and north-western part of AWVG detected by the Electrical Resistivity Tomography, appear to be well correlated with corresponding features derived from the gravity, magnetic, and micro-earthquake survey. We just ongoing process to develop Arjuno Welirang Volcano & Geothermal Research Center (AWVGRC) located at Universitas Brawijaya Agro Techno Park, Cangar in the flank of Arjuno Welirang volcano complex. Due to our initial observations, AWVG has a great potential for a pilot project of an educational geo technopark development area.
NASA Astrophysics Data System (ADS)
Moretti, Roberto; De Natale, Giuseppe; Troise, Claudia
2017-03-01
Volcanic unrest at calderas involves complex interaction between magma, hydrothermal fluids, and crustal stress and strain. Campi Flegrei caldera (CFc), located in the Naples (Italy) area and characterized by the highest volcanic risk on Earth for the extreme urbanization, undergoes unrest phenomena involving several meters of uplift and intense shallow microseismicity since several decades. Despite unrest episodes display in the last decade only moderate ground deformation and seismicity, current interpretations of geochemical data point to a highly pressurized hydrothermal system. We show that at CFc, the usual assumption of vapor-liquid coexistence in the fumarole plumes leads to largely overestimated hydrothermal pressures and, accordingly, interpretations of elevated unrest. By relaxing unconstrained geochemical assumptions, we infer an alternative model yielding better agreement between geophysical and geochemical observations. The model reconciles discrepancies between what observed (1) for two decades since the 1982-1984 large unrest, when shallow magma was supplying heat and fluids to the hydrothermal system, and (2) in the last decade. Compared to the 1980's unrest, the post-2005 phenomena are characterized by much lower aquifers overpressure and magmatic involvement, as indicated by geophysical data and despite large changes in geochemical indicators. Our interpretation points out a model in which shallow sills, intruded during 1969-1984, have completely cooled, so that fumarole emissions are affected now by deeper, CO2-richer, magmatic gases producing the modest heating and overpressure of the hydrothermal system. Our results have important implications on the short-term eruption hazard assessment and on the best strategies for monitoring and interpreting geochemical data.
Origin of secondary sulfate minerals on active andesitic stratovolcanoes
Zimbelman, D.R.; Rye, R.O.; Breit, G.N.
2005-01-01
Sulfate minerals in altered rocks on the upper flanks and summits of active andesitic stratovolcanoes result from multiple processes. The origin of these sulfates at five active volcanoes, Citlalte??petl (Mexico), and Mount Adams, Hood, Rainier, and Shasta (Cascade Range, USA), was investigated using field observations, petrography, mineralogy, chemical modeling, and stable-isotope data. The four general groups of sulfate minerals identified are: (1) alunite group, (2) jarosite group, (3) readily soluble Fe- and Al-hydroxysulfates, and (4) simple alkaline-earth sulfates such as anhydrite, gypsum, and barite. Generalized assemblages of spatially associated secondary minerals were recognized: (1) alunite+silica??pyrite??kaolinite?? gypsum??sulfur, (2) jarosite+alunite+silica; (3) jarosite+smectite+silica??pyrite, (4) Fe- and Al-hydroxysulfates+silica, and (5) simple sulfates+silica??Al-hydroxysulfates??alunite. Isotopic data verify that all sulfate and sulfide minerals and their associated alteration assemblages result largely from the introduction of sulfur-bearing magmatic gases into meteoric water in the upper levels of the volcanoes. The sulfur and oxygen isotopic data for all minerals indicate the general mixing of aqueous sulfate derived from deep (largely disproportionation of SO2 in magmatic vapor) and shallow (oxidation of pyrite or H2S) sources. The hydrogen and oxygen isotopic data of alunite indicate the mixing of magmatic and meteoric fluids. Some alunite-group minerals, along with kaolinite, formed from sulfuric acid created by the disproportionation of SO2 in a condensing magmatic vapor. Such alunite, observed only in those volcanoes whose interiors are exposed by erosion or edifice collapse, may have ??34S values that reflect equilibrium (350??50 ??C) between aqueous sulfate and H2S. Alunite with ??34S values indicating disequilibrium between parent aqueous sulfate and H2S may form from aqueous sulfate created in higher level low-temperature environments in which SO2 is scrubbed out by groundwater or where H2S is oxidized. Jarosite-group minerals associated with smectite in only slightly altered volcanic rock are formed largely from aqueous sulfate derived from supergene oxidation of hydrothermal pyrite above the water table. Soluble Al- and Fehydroxysulfates form in low-pH surface environments, especially around fumaroles, and from the oxidation of hydrothermal pyrite. Anhydrite/gypsum, often associated with native sulfur and occasionally with small amounts of barite, also commonly form around fumaroles. Some occurrences of anhydrite/gypsum may be secondary, derived from the dissolution and reprecipitation of soluble sulfate. Edifice collapse may also reveal deep veins of anhydrite/gypsum??barite that formed from the mixing of saline fluids with magmatic sulfate and dilute meteoric water. Alteration along structures associated with both hydrothermal and supergene sulfates, as well as the position of paleo-water tables, may be important factors in edifice collapse and resulting debris flows at some volcanoes. ?? 2004 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Dress, Abby
2005-01-01
Within this huge national park (over two million acres spread across Wyoming, Montana, and Idaho) are steaming geysers, hot springs, bubbling mudpots, and fumaroles, or steam vents. Drives on the main roads of Yellowstone take tourists through the major hot attractions, which also include Norris Geyser Basin, Upper and Lower Geyser Basin, West…
NASA Astrophysics Data System (ADS)
John, David A.; Sisson, Thomas W.; Breit, George N.; Rye, Robert O.; Vallance, James W.
2008-08-01
Hydrothermal alteration at Mount Rainier waxed and waned over the 500,000-year episodic growth of the edifice. Hydrothermal minerals and their stable-isotope compositions in samples collected from outcrop and as clasts from Holocene debris-flow deposits identify three distinct hypogene argillic/advanced argillic hydrothermal environments: magmatic-hydrothermal, steam-heated, and magmatic steam (fumarolic), with minor superimposed supergene alteration. The 3.8 km 3 Osceola Mudflow (5600 y BP) and coeval phreatomagmatic F tephra contain the highest temperature and most deeply formed hydrothermal minerals. Relatively deeply formed magmatic-hydrothermal alteration minerals and associations in clasts include quartz (residual silica), quartz-alunite, quartz-topaz, quartz-pyrophyllite, quartz-dickite/kaolinite, and quartz-illite (all with pyrite). Clasts of smectite-pyrite and steam-heated opal-alunite-kaolinite are also common in the Osceola Mudflow. In contrast, the Paradise lahar, formed by collapse of the summit or near-summit of the edifice at about the same time, contains only smectite-pyrite and near-surface steam-heated and fumarolic alteration minerals. Younger debris-flow deposits on the west side of the volcano (Round Pass and distal Electron Mudflows) contain only low-temperature smectite-pyrite assemblages, whereas the proximal Electron Mudflow and a < 100 y BP rock avalanche on Tahoma Glacier also contain magmatic-hydrothermal alteration minerals that are exposed in the avalanche headwall of Sunset Amphitheater, reflecting progressive incision into deeper near-conduit alteration products that formed at higher temperatures. The pre-Osceola Mudflow alteration geometry is inferred to have consisted of a narrow feeder zone of intense magmatic-hydrothermal alteration limited to near the conduit of the volcano, which graded outward to more widely distributed, but weak, smectite-pyrite alteration within 1 km of the edifice axis, developed chiefly in porous breccias. The edifice was capped by a steam-heated alteration zone, most of which resulted from condensation of fumarolic vapor and oxidation of H 2S in the unsaturated zone above the water table. Weakly developed smectite-pyrite alteration extended into the west and east flanks of the edifice, spatially associated with dikes that are localized in those sectors; other edifice flanks lack dikes and associated alteration. The Osceola collapse removed most of the altered core and upper east flank of the volcano, but intensely altered rocks remain on the uppermost west flank. Major conclusions of this study are that: (1) Hydrothermal-mineral assemblages and distributions at Mount Rainier can be understood in the framework of hydrothermal processes and environments developed from studies of ore deposits formed in analogous settings. (2) Frequent eruptions supplied sufficient hot magmatic fluid to alter the upper interior of the volcano hydrothermally, despite the consistently deep (≥ 8 km) magma reservoir which may have precluded formation of economic mineral deposits within or at shallow depths beneath Mount Rainier. The absence of indicator equilibrium alteration-mineral assemblages in the debris flows that effectively expose the volcano to a depth of 1-1.5 km also suggests a low potential for significant high-sulfidation epithermal or porphyry-type mineral deposits at depth. (3) Despite the long and complex history of the volcano, intensely altered collapse-prone rocks were spatially restricted to near the volcano's conduit system and summit, and short distances onto the upper east and west flanks, due to the necessary supply of reactive components carried by ascending magmatic fluids. (4) Intensely altered rocks were removed from the summit, east flank, and edifice interior by the Osceola collapse, but remain on the upper west flank in the Sunset Amphitheater area and present a continuing collapse hazard. (5) Visually conspicuous rocks on the lower east and mid-to-lower west flanks are not intensely altered and probably have not significantly weakened the rock, and thus do not present significant collapse hazards. (6) Alteration developed most intensely within breccia units, because of their high permeability and porosity. Volcanoes with abundant near-conduit upper-edifice breccias are prone to alteration increasing the possibility of collapse, whereas those that are breccia-poor (e.g., massive domes) are less prone to alteration.
NASA Astrophysics Data System (ADS)
Pedone, Maria; Aiuppa, Alessandro; Giudice, Gaetano; Grassa, Fausto; Chiodini, Giovanni; Valenza, Mariano
2014-05-01
Near-infrared room-temperature Tunable Diode Lasers (TDL) have recently found increased usage in atmospheric chemistry and air monitoring research, but applications in Volcanology are still limited to a few examples. Here, we explored the potentiality of a commercial infrared laser unit (GasFinder 2.0 from Boreal Laser Ltd) to measurement of volcanic CO2 flux emissions. Our field tests were conducted at Campi Flegrei (near Pozzuoli, Southern Italy), where the GasFinder was used (during three campaigns in October 2012, January 2013 and May 2013) to repeatedly measure the path-integrated concentrations of CO2 along cross-sections of the atmospheric plumes of the two main fumarolic fields in the area (Solfatara and Pisciarelli). By using ad-hoc designed field-set-up and a tomographic post-processing routine, we resolved, for each of the 2 manifestations, the contour maps of CO2 concentrations in their atmospheric plumes, from the integration of which (and after multiplication by the plumes' transport speeds) the CO2 fluxes were finally obtained [1]. The so-calculated fluxes average of 490 tons/day, which agrees well with independent evaluations of Aiuppa et al. (2013) [2] (460 tons/day on average), and support a significant contribution of fumaroles to the total CO2 budget. The cumulative (fumarole [this study] +soil [2]) CO2 output from Campi Flegrei is finally evaluated at 1600 tons/day. The application of lasers to volcanic gas studies is still an emerging (though intriguing) research field, and requires more testing and validation experiments. We conclude that TDL technique may valuably assist CO2 flux quantification at a number of volcanic targets worldwide. [1] Pedone M. et al. (2013) Gold2013:abs:5563, Goldschmidt Conference, session 11a. [2] Aiuppa A. et al. (2013) Geochemistry Geophysics Geosystems. doi: 10.1002/ggge.20261. [3] Chiodini G. et al. (2010) Journal of Geophysical Research, Volume 115, B03205. doi:10.1029/2008JB006258.
NASA Astrophysics Data System (ADS)
Miller, H.; Lopez, T. M.; Fischer, T. P.; Schrenk, M. O.
2016-12-01
Subduction-related processes, including the movement and alteration of carbon compounds, are an important component of global geochemical cycles. Actively degassing volcanoes of the Aleutian Island arc offer interesting opportunities to not only characterize the composition and abundance of volatiles, but also to identify the origin of the discharging gases (e.g. mantle, organic matter, or carbonates). Taking this approach a step further, microbial activities in and around volcanic fumarole areas may impact the composition and flux of reduced volcanic gases, either through their modification or their assimilation into fixed biomass. Microbiological studies of these systems can be used to develop predictive models to complement those based upon geochemical data while providing greater understanding of the causal relationships between microbial populations and their environment, and ultimately refine estimates of volcanic outgassing. Coupled fumarole soil and gas samples were collected from several Aleutian Island volcanoes in 2015 (Gareloi, Kanaga, Kiska, Little Sitkin) and 2016 (Okmok, Resheschnoi). DNA was extracted from the soil and used to describe microbial community composition, while gas samples were analyzed through chromatography and mass spectrometry. Preliminary data suggests a relationship between the abundance of specific groups of prokaryotes known to metabolize reduced gases, such as sulfur-oxidizers and methanotrophs, and the abundances of the degassing volatiles, including sulfur dioxide and methane. Ongoing studies aimed at investigating the relationship between the genomic composition of the fumarolic microbial community and the physical and chemical properties of the soil (i.e. mineralogy, bulk geochemistry, nutrient concentration, gas flux, and environmental measurements) are underway. These data will be used to evaluate the potential for microbial communities to remove volcanic carbon and store it as biomass, or to modify the volatile carbon flux through metabolic activities. When holistically considered, these data will help to refine estimates of volatile flux and outgassing from the Aleutian Arc, particularly those involving carbon compounds, and potentially provide a novel predictive tool that can be applied in high throughput to volcanoes worldwide.
NASA Astrophysics Data System (ADS)
Nikkhoo, Mehdi; Walter, Thomas R.; Lundgren, Paul; Spica, Zack; Legrand, Denis
2016-04-01
The Azufre-Lastarria volcanic complex in the central Andes has been recognized as a major region of magma intrusion. Both deep and shallow inflating reservoirs inferred through InSAR time series inversions, are the main sources of a multi-scale deformation accompanied by pronounced fumarolic activity. The possible interactions between these reservoirs, as well as the path of propagating fluids and the development of their pathways, however, have not been investigated. Results from recent seismic noise tomography in the area show localized zones of shear wave velocity anomalies, with a low shear wave velocity region at 1 km depth and another one at 4 km depth beneath Lastarria. Although the inferred shallow zone is in a good agreement with the location of the shallow deformation source, the deep zone does not correspond to any deformation source in the area. Here, using the boundary element method (BEM), we have performed an in-depth continuum mechanical investigation of the available ascending and descending InSAR data. We modelled the deep source, taking into account the effect of topography and complex source geometry on the inversion. After calculating the stress field induced by this source, we apply Paul's criterion (a variation on Mohr-Coulomb failure) to recognize locations that are liable for failure. We show that the locations of tensile and shear failure almost perfectly coincide with the shallow and deep anomalies as identified by shear wave velocity, respectively. Based on the stress-change models we conjecture that the deep reservoir controls the development of shallower hydrothermal fluids; a hypothesis that can be tested and applied to other volcanoes.
NASA Astrophysics Data System (ADS)
Yen, A. S.; Ming, D. W.; Gellert, R.; Mittlefehldt, D. W.; Vaniman, D. T.; Thompson, L. M.; Morris, R. V.; Clark, B. C.; Arvidson, R. E.
2016-12-01
In-situ identification of sulfates at the martian surface by the Mars Exploration Rovers and the Mars Science Laboratory have included calcium sulfates with various states of hydration (gypsum, bassanite, anhydrite), iron sulfates of likely fumarolic origin, massive deposits of iron hydroxysulfates indicative of an acidic history, and minor occurrences of magnesium sulfates. Recent measurements by the Opportunity and Curiosity Alpha Particle X-ray Spectrometers (APXS) have indicated the presence of Ni-substituted Mg-sulfates at the Meridiani Planum and Gale Crater landing sites. The Opportunity rover has traversed nearly 43 km and is currently exploring the impact breccias of the rim of Endeavour crater, near a location where signatures of aqueous alteration have been established from orbit. APXS analyses of subsurface materials excavated by a rover wheel show clear evidence for a Mg(Ni)-sulfate with Mg:Ni 100:1 (molar). On the other side of the planet, Curiosity is continuing its climb up Mount Sharp after driving 13 km since landing. Over the last 4 km of the traverse, there have been multiple chemical analyses of erosionally-resistant nodules and dendritic features in a finely laminated mudstone unit which also indicate Mg(Ni)-sulfate (Mg:Ni 30:1, molar). The geologic settings for the Endeavour rim and the Mount Sharp mudstones are clearly different, but similar formation conditions for these sulfates may be possible. Ni(2+) readily substitutes for Mg(2+) in a variety of geochemical processes due to their comparable ionic radii. The availability of soluble Ni at the time of Mg-sulfate precipitation suggests acidic solutions. The fluids responsible for alteration in the Endeavour rim and for the formation of nodules in Gale mudstones may have had similar chemical characteristics at the time the Mg-sulfates were formed.
Updating of the geological and geothermal research on Milos island
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fytikas, M.
1989-01-01
The oldest geologic formations outcropping in Milos are an Alpine age crystalline basement and a transgressive marine Neogene sequence. The island is mainly volcanic. It belongs to the Aegean Active Arc, within which the Milos archipelago shows the most important volcanism in terms of quantity, variety of products and duration of activity (3.5-0.8 M.a.). There are no large central volcanic edifices but different, frequently coeval eruption centres. The initial and intermediate phases of activity were mainly pyroclastic and submarine, whereas the last one (0.1 M.a.) was subaerial and formed tuff rings, surge deposits and lava flows, all of homogenous rhyoliticmore » composition. Recent detailed studies have addressed the mechanism of feeding and the type of magmatic chambers beneath Milos. Distention tectonics have two main phases: an earlier one (Pliocene) with NE-SW direction and a much more intense recent (Quaternary) one, trending NW-SE. The geological, tectonic and magmatic activity favoured the formation of a high enthalpy geothermal field. Many fossil and active thermal manifestations exist: hot springs, fumaroles, hot grounds, phreatic explosion craters. The hydrothermal alteration of the volcanites produced, by self sealing, a perfect cover for the geothermal fluids. Geothermometry of the surface fluids indicated high values for the source temperatures and very high geothermal gradients in central and eastern Milos. Geothermally anomalous zones, defined by two different methods, together with superficial geological and tectonic information, permitted the location of sites for deep drilling. Five exploratory wells 1000-1400m deep gave satisfactory results of flow rate (40-120 t/h), temperature (300-320{sup 0}C) and enthalpy.« less
NASA Astrophysics Data System (ADS)
Kobayashi, Tomokazu
2018-05-01
Although it is difficult to monitor the spatial extent and temporal evolution of local and small-magnitude ground inflation, this information is vital to assess the potential for phreatic eruption. Herein, we demonstrate the detection of locally distributed ground deformation preceding the enhancement of geothermal activity in the Midagahara volcano, Japan, through the application of single-look-based interferometric synthetic aperture radar analysis. In the Jigoku-dani geothermal area, the ground deformation proceeded at a low speed of 4 cm/year at most with a spatial extent of 500 m in the east-west direction and 250 m in the north-south direction. The deformation can be recognized to progress from 2007, at the latest, to 2010, after which the geothermal activity increased, with the collapse of sulfur towers and the appearance of active fumaroles and boiling water on the ground surface. The most deformed area corresponds to the geothermal area with the highest activity observed on the ground surface. Assuming a sill opening model, the deformation source is estimated to be located at a depth of 50 m from the surface with a speed of 7 cm/year at most, which is consistent with the depth of the highly conductive medium inferred from magnetotelluric analyses. This may suggest that volcanic fluid and/or heat was injected into the fluid-rich medium from depth and caused the ground inflation. Our results demonstrate that high-spatial-resolution deformation data can be an effective tool to monitor subsurface pressure conditions with pinpoint spatial accuracy during the build-up to phreatic eruptions.
NASA Astrophysics Data System (ADS)
Silvestri, Malvina; Musacchio, Massimo; Fabrizia Buongiorno, Maria; Doumaz, Fawzi; Andres Diaz, Jorge
2017-04-01
Monitoring natural hazards such as active volcanoes requires specific instruments to measure many parameters (gas emissions, surface temperatures, surface deformation etc.) to determine the activity level of a volcano. Volcanoes in most cases present difficult and dangerous environment for scientists who need to take in situ measurements. Remote Sensing systems on board of satellite permit to measure a large number of parameters especially during the eruptive events but still show large limits to monitor volcanic precursors and phenomena at local scale (gas species emitted by fumarole or summit craters degassing plumes and surface thermal changes of few degrees) for their specific risk. For such reason unmanned aircraft systems (UAS) mounting a variety of multigas sensors instruments (such as miniature mass spectrometer) or single specie sensors (such as electrochemical and IR sensors) allow a safe monitoring of volcanic activities. With this technology, it is possible to perform monitoring measurements of volcanic activity without risking the lives of scientists and personnel performing analysis during the field campaigns in areas of high volcanic activity and supporting the calibration and validation of satellite data measurements. These systems allowed the acquisition of real-time information such as temperature, pressure, relative humidity, SO2, H2S, CO2 contained in degassing plume and fumaroles, with GPS geolocation. The acquired data are both stored in the sensor and transmitted to a computer for real time viewing information. Information in the form of 3D concentration maps can be returned. The equipment used during the campaigns at Solfatara Volcano (in 2014, 2015 and 2016) was miniaturized instruments allowed measurements conducted either by flying drones over the fumarolic sites and by hand carrying into the fumaroles. We present the results of the field campaign held in different years at the Solfatara of Pozzuoli, near Naples, concerning measurements of CO2, H2S and SO2. The campaigns were carried out in collaboration with the University of Costa Rica and Jet Propulsion Laboratory of the California Institute of Technology (Pasadena, California) and has allowed the acquisition of a number of measures through scientific miniaturized multi-gas, thermal cameras and spectro-radiometer. The acquired measurements have also permitted the calibration and validation of satellite data as ASTER and LANDSAT8 (in collaboration with USGS). We believe that the rapid increasing of technology developments will permit the use UAS to integrate geophysical measurements and contribute to the necessary calibration and validation of current and future satellite missions dedicated to the measurements of surface temperatures and gas emissions in volcanic areas.
Janik, C.J.; Goff, F.; Sorey, M.L.; Rytuba, J.J.; Counce, D.; Colvard, E.M.; Huebner, M.; White, L.D.; Foster, A.
1999-01-01
Anderson Springs is located about 90 miles (145 kilometers) north of San Francisco, California, in the southwestern part of Lake County. The area was first developed in the late 1800s as a health resort, which was active until the 1930s. In the rugged hills to the south of the resort were four small mercury mines of the eastern Mayacmas quicksilver district. About 1,260 flasks of mercury were produced from these mines between 1909 and 1943. In the 1970s, the high-elevation areas surrounding Anderson Springs became part of The Geysers geothermal field. Today, several electric powerplants are located on the ridges above Anderson Springs, utilizing steam produced from a 240°C vapor-dominated reservoir. The primary purpose of this report is to provide physical, chemical, and isotopic data on samples collected in the Anderson Springs area during 1998 and 1999, in response to a Freedom of Information Act request. In July 1998, drainage from the Schwartz adit of the abandoned Anderson mercury mine increased substantially over a 2-day period, transporting a slurry of water and precipitates down a tributary and into Anderson Creek. In August 1998, J.J. Rytuba and coworkers sampled the Schwartz adit drainage and water from the Anderson Springs Hot Spring for base metal and methylmercury analysis. They measured a maximum temperature (Tm) of 85°C in the Hot Spring. Published records show that the temperature of the Anderson Springs Hot Spring (main spring) was 63°C in 1889, 42–52°C from 1974 through 1991, and 77°C in March 1995. To investigate possible changes in thermal spring activity and to collect additional samples for geochemical analysis, C.J. Janik and coworkers returned to the area in September and December 1998. They determined that a cluster of springs adjacent to the main spring had Tm=98°C, and they observed that a new area of boiling vents and small fumaroles (Tm=99.3°C) had formed in an adjacent gully about 20 meters to the north of the main spring. During August–October 1999, several field trips were conducted in the vicinity of Anderson Springs to continue monitoring and sampling the thermal manifestations. The new fumarolic area had increased in temperature and in discharge intensity since 1998, and a zone of dead trees had developed on the steep bank directly west of the fumaroles. Ground temperatures and diffuse flow of CO2 flow through soils were measured in the area surrounding the main spring and new fumaroles and in the zone of tree-kill.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanchez, D.R.
1996-12-31
The dissolved CO{sub 2}, H{sub 2}S, and H{sub 2} gases in Mahanagdong aquifer fluids are controlled by specific gas-mineral equilibria. At temperature range of 250 to 310 {degrees}C, CO{sub 2} is buffered by clinozoisite + K-feldspar + calcite + muscovite (illite) + quartz mineral assemblage. For H{sub 2}S and H{sub 2} dissolved gases, they are more likely buffered by pyrrhotite + pyrite + magnetite mineral assemblage at similar temperature range. Calibration of five Mahanagdong (MG) gas geothermometers is presented, three of which used CO{sub 2}, H{sub 2}S, and H{sub 2} concentration in steam. The remaining two use CO{sub 2}/H{sub 2}more » and H{sub 2}S/H{sub 2} ratios. The calibration is based on the relation between gas content of drillhole discharges and measured aquifer temperatures. After establishing the gas content in the aquifer, gas concentrations were computed in steam after adiabatic boiling to atmospheric condition (100 {degrees}C), to obtain gas geothermometry functions. These functions could also be used in evaluating fraction of steam condensation and temperature of phase separation. A demonstration given the Mahanagdong fumarole data, indicates that there is generally a fair relation between computed temperatures using Mahanagdong gas geothermometers and the actual field trend`s temperatures.« less
Chemical and isotopic characteristics of geothermal fluids from Sulphur Springs, Saint Lucia
NASA Astrophysics Data System (ADS)
Joseph, Erouscilla P.; Fournier, Nicolas; Lindsay, Jan M.; Robertson, Richard; Beckles, Denise M.
2013-03-01
Sulphur Springs is a vigorous, geothermal field associated with the active Soufrière Volcanic Centre in southern Saint Lucia, Lesser Antilles island arc. The 'Sulphur Springs Park' is an important tourist attraction (touted as the 'world's only drive-through volcano') with some of the hot pools being developed into recreational pools. Some 200,000 people visit the park each year. Since 2001, the hydrothermal fluids of Sulphur Springs have been sampled as part of an integrated volcanic monitoring programme for the island. Gas and water samples were analysed to characterise the geochemistry of the hydrothermal system, and to assess the equilibrium state and subsurface temperatures of the reservoir. This has also enabled us, for the first time, to establish baseline data for future geochemical monitoring. The gases are of typical arc-type composition, with N2 excess and low He and Ar content. The dry gas composition is dominated by CO2 (ranging from 601-993 mmol/mol), with deeper magmatic sourced H2S-rich vapour undergoing boiling and redox changes in the geothermal reservoir to emerge with a hydrothermal signature in the fumarolic gases. Fluid contributions from magmatic degassing are also evident, mainly from the moderate to high contents of HCl and deeply-sourced H2S gas, respectively. Sulphur Springs hydrothermal waters have acid-sulphate type compositions (SO4 = 78-4008 mg/L; pH = 3-7), and are of primarily meteoric origin which have been affected by evaporation processes based on the enrichment in both δ18O and δD (δ18O = - 1 to 15‰ and δD = - 9 to 14‰ respectively) in relation to the global meteoric water line (GMWL). These waters are steam-heated water typically formed by absorption of H2S-rich gases in the near surface oxygenated groundwaters. Reservoir temperatures calculated from the evaluation of gas equilibria in the CO2-CH4-H2 system reveal higher temperatures (190 to 300 °C) than those derived from quartz geothermometry (95 to 169 °C), which appeared to be affected by dilution with meteoric waters. Generally, no significant variations in fluid geochemistry of the hydrothermal system were observed between 2001 and 2006, and we propose that there were no changes in the state of volcanic activity during this period.
Recent Results from the Spirit Rover at Home Plate and "Silica Valley"
NASA Astrophysics Data System (ADS)
Squyres, S. W.
2007-12-01
The Mars Exploration Rover Spirit has spent more than 500 sols exploring Home Plate in the inner basin of the Columbia Hills, and adjacent materials. Home Plate is a plateau of layered rocks 80-90 meters in diameter and ~2 meters high. The rocks are clastic and of moderately altered alkali basalt composition, enriched in some volatile elements. A coarse-grained lower unit is overlain by a finer-grained upper unit. Textural observations, including a prominent bomb sag, indicate that the lower strata were emplaced in an explosive event. Geochemical similarities to nearby volcanic rocks and the enrichment in volatile elements favor an explosive volcanic origin. Along the northern portion of Home Plate, the upper unit is very well sorted and composed of well rounded sand sized grains, pointing to textural maturity and suggesting an eolian origin. Along the southeastern portion, however, the upper unit contains some coarser granules too large to be transported by saltation. While their size is comparable to other clasts on Mars that have moved by saltation-induced creep, the observed textures clearly are consistent with emplacement as a pyroclastic surge. The upper and lower units are effectively identical in composition, so the upper unit probably represents a finer-grained fraction of pyroclastic materials that may have undergone some local reworking by wind. Rocks along the margins of Home Plate show a consistent dip toward the center of the plateau. We interpret Home Plate to be the eroded remnants of a formerly more extensive sheet of pyroclastic materials, perhaps produced in a phreatomagmatic eruption. The inward dips may have arisen when pyroclastic materials overrode and partially buried a pre-existing bowl-shaped depression such as an impact crater, draping the topography. Immediately to the east of Home Plate is a narrow valley bounded on one side by Home Plate and on the other by Mitcheltree Ridge. While operating within this valley, Spirit's inoperative right front wheel excavated a small patch of high albedo soil. Mini-TES spectra of this soil were well fit by amorphous silica, and subsequent investigation with the APXS showed a composition that was more than 90% SiO2. The deposits are also enriched in Ti. Mini-TES spectra of nearby rocks also show a strong signature of amorphous silica, and APXS spectra of these rocks also confirm a high silica content. We consider two hypotheses for the formation of these silica-rich deposits. One is that they developed via precipitation from hydrothermal fluids. Siliceous sinter deposits are common in terrestrial hydrothermal environments where fluids dissolve Si from host rocks at high temperatures and then reprecipitate silica at lower temperatures. Alternatively, the Si-rich materials may represent the remnants of formerly basaltic materials that have been extensively leached in a fumarolic environment under acid sulfate conditions. In either case, the proximity to Home Plate is consistent with formation via the interaction of basaltic volcanism with groundwater. The astrobiological implications of these Si-rich deposits may be significant. Both hydrothermal systems and fumaroles are capable of supporting microbial ecosystems on Earth, and precipitated silica deposits in both environments can preserve strong textural evidence of microbial life.
NASA Astrophysics Data System (ADS)
Venturi, Stefania; Tassi, Franco; Fazi, Stefano; Vaselli, Orlando; Crognale, Simona; Rossetti, Simona; Cabassi, Jacopo; Capecchiacci, Francesco
2017-04-01
Soils in volcanic and hydrothermal areas are affected by anomalously high concentrations of gases released from the deep reservoirs, which consists of both inorganic (mainly CO2 and H2S) and organic (volatile organic compounds; VOCs) species. VOCs in volcanic and hydrothermal fluids are mainly composed of saturated and unsaturated hydrocarbons (alkanes, aromatics, alkenes, and cyclics), with variable concentrations of O- and S-bearing compounds and halocarbons, depending on the physicochemical conditions at depth. VOCs in interstitial soil gases and fumarolic emissions from four volcanic and hydrothermal systems in the Mediterranean area (Solfatara Crater, Poggio dell'Olivo and Cava dei Selci, in Italy, and Nisyros Island, in Greece) evidenced clear compositional differences, suggesting that their behavior is strongly affected by secondary processes occurring at shallow depths and likely controlled by microbial activity. Long-chain saturated hydrocarbons were significantly depleted in interstitial soil gases with respect to those from fumarolic discharges, whereas enrichments in O-bearing compounds (e.g. aldehydes, ketones), DMSO2 and cyclics were commonly observed. Benzene was recalcitrant to degradation processes, whereas methylated aromatics were relatively instable. The chemical and isotopic (δ13C in CO2 and CH4) composition of soil gases collected along vertical profiles down to 50 cm depth at both Solfatara Crater and Poggio dell'Olivo (Italy) showed evidences of relevant oxidation processes in the soil, confirming that microbial activity likely plays a major role in modifying the composition of deep-derived VOCs. Despite their harsh conditions, being typically characterized by high temperatures, low pH, and high toxic gases and metal contents, the variety of habitats characterizing volcanic and hydrothermal environments offers ideal biomes to extremophilic microbes, whose metabolic activity can consume and/or produce VOCs. In the Solfatara Crater, microbial diversity was assessed by new generation sequencing (NGS) of 16S rDNA. Microbiological analyses of samples collected from selected vertical profiles in the soil, where temperatures were up to 60 °C, revealed total prokaryotic abundances ranging from 7.23×106 to 439×106 cell/g WW. The highest abundances were recorded in sites affected by the highest and the lowest CO2 (3,350 and 110 gm-2day-1, respectively) and CH4 (0.059 and 0.00021 gm-2day-1, respectively) soil fluxes, and H2S concentrations ranging from 0.05 to 1.9 mmol/mol. The composition of both archaeal and bacterial communities showed remarkable changes depending on the sampling site, the most abundant phyla being represented by Proteobacteria, Firmicutes, Actinobacteria and Euryarchaeota at the highest inputs of hydrothermal fluids, corresponding to VOCs concentrations up to 898 nmol/mol (mainly alkanes and aromatics). Conversely, Proteobacteria, Acidobacteria, Firmicutes, Chloroflexi and Thaumarchaeota dominated in those sites where low gas fluxes and VOCs contents (≤300 nmol/mol; mainly alkanes and O-bearing species) were recognized. The intimate relation between microbial distribution and hydrothermal gas concentrations and gas fluxes demonstrated the critical interplay between soil gases and microorganisms, remarking the potential biodegradation efficiency at extremely high VOCs concentrations in the soil.
Summit firn caves, mount rainier, washington.
Kiver, E P; Mumma, M D
1971-07-23
Heat and steam from the crater fumaroles have melted over 5700 feet (1737 meters) of cave passage in the ice-filled east crater of Mount Rainier. The caves are in approximate balance with the present geothermal heat release. Future changes in the thermal activity of the summit cone will cause corresponding changes in cave passage dimensions, location, and ceiling and wall ablation features.
Bacterial diversity in fumarole environments of the Paricutín volcano, Michoacán (Mexico).
Medrano-Santillana, Miguel; Souza-Brito, Elcia Margaret; Duran, Robert; Gutierrez-Corona, Felix; Reyna-López, Georgina Elena
2017-05-01
Active volcanoes are among the most extreme environments on Earth. The extreme temperatures, presence of toxic heavy metals and low nutrient bioavailability favor the development of extremophiles. We characterized the physical-chemical parameters of and bacterial communities (T-RFLP and 16S rRNA gene libraries) inhabiting fumarole niches of the Paricutín volcano located in Michoacán (Mexico). This volcano, which surged in 1943, is one of the youngest volcanoes on Earth and the microbial diversity in this area is yet to be characterized. The sampling stations were characterized in a pH range from 5.34 to 7.89 and showed different temperatures (soil, 27-87 °C; air, 13.6-56 °C) with high concentrations of metals such as iron and arsenic. The most abundant bacterial populations, confirmed by T-RFLP and 16S rRNA gene libraries, were related to members of Firmicutes and Proteobacteria phyla including sequences associated with thermophiles and sulfate reducing bacteria. Overall, the Paricutín volcano showed low bacterial diversity and its prokaryotic diversity was characterized by the impossibility of amplifying Archaea-related sequences.
A model of diffuse degassing at three subduction-related volcanoes
NASA Astrophysics Data System (ADS)
Williams-Jones, Glyn; Stix, John; Heiligmann, Martin; Charland, Anne; Sherwood Lollar, Barbara; Arner, N.; Garzón, Gustavo V.; Barquero, Jorge; Fernandez, Erik
Radon, CO2 and δ13C in soil gas were measured at three active subduction-related stratovolcanoes (Arenal and Poás, Costa Rica; Galeras, Colombia). In general, Rn, CO2 and δ13C values are higher on the lower flanks of the volcanoes, except near fumaroles in the active craters. The upper flanks of these volcanoes have low Rn concentrations and light δ13C values. These observations suggest that diffuse degassing of magmatic gas on the upper flanks of these volcanoes is negligible and that more magmatic degassing occurs on the lower flanks where major faults and greater fracturing in the older lavas can channel magmatic gases to the surface. These results are in contrast to findings for Mount Etna where a broad halo of magmatic CO2 has been postulated to exist over much of the edifice. Differences in radon levels among the three volcanoes studied here may result from differences in age, the degree of fracturing and faulting, regional structures or the level of hydrothermal activity. Volcanoes, such as those studied here, act as plugs in the continental crust, focusing magmatic degassing towards crater fumaroles, faults and the fractured lower flanks.
NASA Astrophysics Data System (ADS)
Kelly, P. J.; Werner, C. A.; Evans, W.; Ingebritsen, S.; Tucker, D.
2012-12-01
Degassing from most Cascade Range Volcanoes, USA, is characterized by low-temperature hydrothermal emissions. It is important to monitor these emissions as part of a comprehensive monitoring strategy yet access is often difficult and most features are sampled by the USGS only once per year at best. In an effort to increase the sampling frequency of major gas species and in preparation for building permanent, autonomous units, we built a portable sensor package capable of measuring H2O, CO2, SO2, and H2S in volcanic gas plumes. Here we compare results from the portable sensor package with gas analyses from direct samples obtained using a titanium tube and evacuated glass flasks collected at the same time. The sensor package is housed in a small, rugged case, weighs 5 kg, and includes sensors for measuring H2O (0-16 parts per thousand), CO2 (0-5000 ppmv), SO2 (0-100 ppm), and H2S (0-20 ppm) gases. Additional temperature and pressure sensors, a micro air pump, datalogger, and an internal battery are also incorporated. H2O and CO2 are measured using an infrared spectrometer (Licor 840) and sulfur-containing gases are measured using electrochemical sensors equipped with filters to mitigate cross-sensitivities. Data are collected at a 1 Hz sampling rate and can be recorded and displayed in real-time using a netbook computer or can be saved to the onboard datalogger. The data display includes timeseries of H2O, CO2, SO2, and H2S mixing ratios, the four-component bulk composition of the plume, and automated calculation of gas ratios commonly used in volcanic gas monitoring, such as H2O/CO2, CO2/SO2, and CO2/H2S . In the Cascade Range, the sensor package has been tested at Mt. Baker, Mt. St. Helens, Mt. Hood, and in Lassen Volcanic National Park. In each case, the instrument was placed 5 to 30 meters from the fumarole or fumarole field and emissions were sampled for 5 to 30 minutes. No SO2 was detected at any location. At Mt. Hood the sensor package yielded average CO2/H2S ratios from 10 to 16 in fumarole plumes versus flask CO2/H2S ratios (n = 2) of 13 and 16 on 9 July 2011, and on 28 July 2012 the sensor package yielded an average CO2/H2S ratio of 12 versus flask ratios (n = 2) of 13 (both sets of flask samples obtained in the Crater Rock area). At Mt. Baker, the sensor package yielded average CO2/H2S ratios from 19 to 22 whereas flask ratios (n = 3) were higher, from 25 to 32 (both fumarole-plume and flask samples obtained in the Sherman Crater area) on 22 July 2011. The mismatch falls slightly outside expected analytical uncertainty for the sensor package (about 20% relative for CO2/H2S ratios). However, flask samples collected in Sherman Crater in 2006 and 2007 (n = 5) yielded CO2/H2S ratios from 18 to 29, which nearly spans the range of observations in 2011. Therefore, one explanation for the small mismatch between the results of the sensor package and direct samples is that the sensor package measures bulk plume compositions that may integrate emissions from several chemically distinct fumaroles and the direct samples better represent the composition of discrete vents. Overall, the sensor package and evacuated flask data show good agreement and demonstrate that the real-time technique is a viable means for monitoring major volcanic gas species.
NASA Astrophysics Data System (ADS)
Caponi, Chiara; Tassi, Franco; Ricci, Andrea; Capecchiacci, Francesco; Venturi, Stefania; Cabassi, Jacopo; Vaselli, Orlando
2017-04-01
The main sources of SO2 and H2S in air consist of both natural fluid emissions related to active/quiescent volcanoes and hydrothermal systems, and anthropogenic activities (e.g. gas and oil refineries, steel industries, urban traffic). These gas compounds have a strong impact on air quality, since they are strong toxic and climate forcing agents. Notwithstanding, the behaviour of these S-compounds in air once they are released from the contaminant source(s) is poorly known, due to the scarce available data from thermodynamics and direct measurements. Hydrogen sulfide is considered to be relatively reactive in the atmosphere, being easily oxidized to SO2 by photochemical reactions, even though the efficiency of the H2S to SO2 conversion is significantly lowered under dark, dry and relatively cold conditions, leading to a residence time of H2S in air up to 42 days in winter. In this work, H2S and SO2 measurements in air carried out at the Levante beach (Vulcano Island, Aeolian Archipelago), where a number of hydrothermal fluid discharges consisting of fumaroles and submarine emissions occur, are presented and discussed. These volcanic fluids, characterized by an H2S-rich chemical composition, are released in a close proximity to the touristic village of Vulcano Porto. The measurements were carried out using a Thermo Scientific™ Model 450i Analyzer coupled with a Davis® Vantage Vue weather station (air humidity and temperature, wind direction and speed) in 34 fixed spots and along 8 pathways, selected according to: (i) distance from the contaminant source, (ii) wind direction and (iii) accessibility by car (where the instrument was installed). The main aim was to provide empirical insights on the behavior of these air pollutants in relation to the physical and chemical processes controlling their spatial distribution. The measured data were elaborated using a statistical approach to construct spatial distribution maps and conceptual models able to forecast the dispersion of the S-compounds at different environmental conditions to define the potential hazard to human health.
NASA Astrophysics Data System (ADS)
Doke, Ryosuke; Harada, Masatake; Mannen, Kazutaka; Itadera, Kazuhiro; Takenaka, Jun
2018-04-01
Although the 2015 Hakone Volcano eruption was a small-scale phreatic eruption with a discharged mass of only about 100 tons, interferometric synthetic aperture radar successfully detected surface deformations related to the eruption. Inversion model of the underground hydrothermal system based on measured ground displacements by ALOS-2/PALSAR-2 images showed that a crack opened at an elevation of about 530-830 m, probably at the time of the eruption. A geomorphological analysis detected several old NW-SE trending fissures, and the open crack was located just beneath one of the fissures. Thus, the crack that opened during the 2015 eruption could have been a preexisting crack that formed during a more voluminous hydrothermal eruption. In addition, the inversion model implies that a sill deflation occurred at an elevation of about 225 m, probably at the time of the eruption. The deflation of sill-like body represents a preexisting hydrothermal reservoir at an elevation of 100-400 m, which intruded fluid in the open crack prior to eruption. The volume changes of the open crack and the sill were calculated to be 1.14 × 105 m3 (inflation) and 0.49 × 105 m3 (deflation), respectively. A very local swelling (about 200 m in diameter) was also detected at the eruption center 2 months before the eruption. The local swelling, whose rate in satellite line-of-sight was 0.7-0.9 cm/day during May 2015 and declined in June, had been monitored until the time of the eruption, when its uplift halted. This was modeled as a point pressure source at an elevation of about 900 m (at a depth of about 80-90 m from the ground surface) and is considered to be a minor hydrothermal reservoir just beneath the fumarolic field. Our analysis shows that the northernmost tip of the open crack reached within 200 m of the surface. Thus, it is reasonable to assume that the hydrothermal fluid in the open crack found a way to the surface and formed the eruption.[Figure not available: see fulltext.
Geochemical evidences of magma dynamics at Campi Flegrei (Italy)
NASA Astrophysics Data System (ADS)
Caliro, S.; Chiodini, G.; Paonita, A.
2014-05-01
Campi Flegrei caldera, within the Neapolitan area of Italy, is potentially one of the most dangerous volcanoes in the world, and during the last decade it has shown clear signs of reactivation, marked by the onset of uplift and changes in the geochemistry of gas emissions. We describe a 30-year-long data set of the CO2-He-Ar-N2 compositions of fumarolic emissions from La Solfatara crater, which is located in the center of the caldera. The data display continuous decreases in both the N2/He and N2/CO2 ratios since 1985, paralleled by an increase in He/CO2. These variations cannot be explained by either processes of boiling/condensation in the local hydrothermal system or with changes in the mixing proportions between a magmatic vapor and hydrothermal fluids. We applied the magma degassing model of Nuccio and Paonita (2001, Earth Planet. Sci. Lett. 193, 467-481) using the most recent inert-gas solubilities in order to interpret these peculiar features in accordance with petrologic constraints derived from the ranges of the melt compositions and reservoir pressures at Campi Flegrei. The model simulations for mafic melts (trachybasalt and shoshonite) show a remarkably good agreement with the measured data. Both decompressive degassing of an ascending magma and mixing between magmatic fluids exsolved at various levels along the ascent path can explain the long-term geochemical changes. Recalling that (i) a sill-like reservoir of gases at a depth of 3-4 km seems to be the main source of ground inflation and (ii) there is petrologic and geophysical evidence for a reservoir of magma at about 8 km below Campi Flegrei, we suggest that the most-intense episodes of inflation occur when the gas supply to the sill-like reservoir comes from the 8 km-deep magma, although fluids exsolved by magma bodies at shallower depths also contribute to the gas budget. Our work highlights that, in caldera systems where the presence of hydrothermal aquifers commonly masks the magmatic signature of reactive volatiles, inert gases are the preferred species to use when seeking information on the melt composition, dynamics, and structure of the plumbing systems.
NASA Astrophysics Data System (ADS)
Kalacheva, E.; Taran, Y.; Voloshina, E.; Kotenko, T.; Tarasov, K.
2017-12-01
More than 30 active volcanoes with historical eruptions are known on 20 main islands composing the Kuril Arc. Eight islands - Paramushir, Shiashkotan, Rasshua, Ushishir, Ketoy, Urup, Iturup and Kunashir - are characterized by hydrothermal activity, complementary to the fumarole activity in the craters and volcano slopes. At Paramushir, Shiashkotan, Iturup and Kunashir most of thermal manifestations are acidic to ultra-acidic hot springs associated with hydrothermal aquifers inside volcano edifices. The most powerful of them is the ultra-acid hydrothermal system of Ebeko volcano (Paramushir island) with more than 80 t/day of the chloride output and pH of springs of 1.5. At the summit part of the Ebeko volcano there are 12 thermal fields with the total thermal area exceeding 1 km2. The measured temperatures of fumaroles are from 98º C to 500ºC. Another type of hydrothermal activity are the wide spread coastal hot and neutral springs situated as a rule within the tide zone. Four groups of this type of thermal manifestation were found on the western shore of Shiashkotan island. It have Na-Ca-Cl-SO4 composition with temperatures 50-80°C and TDS 7-8 g/L. Coastal neutral springs were found also on Russhua, Uturup and Kunashir islands. Ushishir volcano-hydrothermal system in the middle of the arc is formed by the absorption of magmatic gases by seawater. In the crater of the Pallas cone (Ketoy island) there is a small Glazok lake with acid SO4 water and pH=2.4, TDS=2g/L, T=12oC. Ketoy volcano on the same island hosts a high temperature hydrothermal system with unusual boiling Ca-Na-SO4 neutral springs and steam vents. Mendeleev and Golovnin volcanoes on Kunashir Island are the southernmost of the Kuril arc. Mendeleev edifice is a centre of a large thermal area with many manifestations of different types including steam vents, acid springs and neutral coastal springs. In a 4.2x4 km wide caldera of Golovnin volcano there are two lakes with acid Cl-SO4 water and numerous thermal vents around and on the bottom of the lakes and outside the caldera, along the coast of the Sea of Okhotsk. In this report we present new data on the chemical (major and trace elements) and isotopic (H, O) composition of thermal fluids and gases from thermal manifestations obtained during the field campaign in 2015-2017. This work is supported by the RSF grant #15-17-20011.
NASA Astrophysics Data System (ADS)
Troiano, Antonio; Giulia Di Giuseppe, Maria; Patella, Domenico; Troise, Claudia; De Natale, Giuseppe
2014-05-01
We describe the results from a combined CSAMT and MT survey carried out in the Solfatara-Pisciarelli area, located in the central part of the Campi Flegrei composite caldera, west of Naples, Southern Italy. The Solfatara-Pisciarelli area represents the most active zone within the CF area, in terms of hydrothermal manifestations and local seismicity. Since 1969, the caldera is experiencing ground deformation, seismicity and geochemical fluid changes, which are particularly evident in this area. A 1 km long, nearly W-E directed CSAMT-MT profile crossing the fumaroles field was carried out with the aim of deducting an EM model of the structural setting of the hydrothermal system in the first 3 km depth. An interpretation of the EM modelled section is given in this paper, taking advantage from already existing seismic, gravity and geochemical data in the same area. Three well distinct EM zones have been outlined. The first EM zone is a very shallow, electrically conductive body localized beneath the westernmost segment of the profile, which, within a short distance of about 100 m, dips westwards from near surface down to some hundred metres depth. Mostly accounting for the very low resistivity (1-10 Ωm) and the exceedingly high values of vP/vS (>4), this shallow zone has been ascribed to a water-saturated, high-pressurized geothermal reservoir. The second EM zone, which has been localized below the west-central portion of the EM transect, appears as a composite body made of a nearly vertical plumelike structure that escapes at about 2.25 km depth from the top edge of the east side of a presumably horizontal platelike body. The plumelike structure rises up to the free surface in correspondence of the fumaroles field, whereas the platelike structure deepens at least down to the 3 km of maximum EM exploration depth. The combined interpretation of resistivity, wave velocity, gravity and geochemical data indicates the plumelike portion is likely associated with a steam/gas-saturated column and the platelike portion to a high temperature (>300°C), over-pressurized, gas-saturated reservoir. Finally, the third EM zone, which has been localized beneath the eastern half of the EM transect, from about 1.2 km down to about 3 km of depth, is also characterized by the lowest resistivity values (1-10 Ωm). When jointly interpreted with seismic and gravity data, this feature can be associated to a hydrothermally mineralized, clay-rich body.
Photosynthesis within Mars' volcanic craters?: Insights from Cerro Negro Volcano, Nicaragua
NASA Astrophysics Data System (ADS)
Rogers, K. L.; Hynek, B. M.; McCollom, T. M.
2011-12-01
Discrete locales of sulfate-rich bedrocks exist on Mars and in many cases represent the products of acid-sulfate alteration of martian basalt. In some places, the products have been attributed to hydrothermal processes from local volcanism. In order to evaluate the habitability of such an environment, we are investigating the geochemical and biological composition of active fumaroles at Cerro Negro Volcano, Nicaragua, where fresh basaltic cinders similar in composition to martian basalts are altered by acidic, sulfur-bearing gases. Temperatures at active fumaroles can reach as high as 400°C and the pH of the steam ranges from <0 to 5. Adjacent to some fumaroles, silica is being precipitated from condensing steam on the crater walls and endolithic photosynthetic mats are found at 1-2 cm depth within these silica deposits. We have analyzed one of these mats, Monkey Cheek (T=65°C, pH ~4.5), for both Archaeal and Bacterial diversity. Cloning of PCR-amplified 16S rRNA genes reveals a diverse community of Bacteria, with eight phyla represented. The most common bacterial sequences belonged to the Cyanobacteria and Ktedonobacteria, however Actinobacteria, alpha-Proteobacteria and Acidobacteria were also identified. Many of the cyanobacterial sequences were similar to those of the eukaryotic Cyanidiales, red algae that inhabit acidic, geothermal environments. Many of sequences related to Ktedonobacteria and Actinobacteria have also been found in acid mine drainage environments. The Archaeal community was far less diverse, with sequences matching those of unclassified Desulfurococcales and unclassified Thermoprotei. These sequences were more distant from isolated species than the bacterial sequences. Similar bacterial and archaeal communities have been found in hot spring environments in Yellowstone National Park, Greenland, Iceland, New Zealand and Costa Rica. Some of Mars' volcanoes were active for billions of years and by analogy to Cerro Negro, may have hosted photosynthetic organisms that could have been preserved in alteration mineral assemblages. Even on a generally cold and dry Mars, volcanic craters likely provided long-lived warm and wet conditions and should be a key target for future exploration assessing habitability.
Quiescent deformation of the Aniakchak Caldera, Alaska mapped by InSAR
Kwoun, Oh-Ig; Lu, Zhong; Neal, Christina; Wicks, Charles W.
2006-01-01
The 10-km-wide caldera of the historically active Aniakchak volcano, Alaska, subsides ∼13 mm/yr, based on data from 19 European Remote Sensing Satellite (ERS-1 and ERS-2) interferometric synthetic aperture radar (InSAR) images from 1992 through 2002. The pattern of subsidence does not reflect the distribution of pyroclastic deposits from the last eruption in 1931 and therefore is not related to compaction of fragmental debris. Weighted least-squares inversion of the deformation maps indicates a relatively constant subsidence rate. Modeling the deformation with a Mogi point source locates the source of subsidence at ∼4 km below the central caldera floor, which is consistent with the inferred depth of magma storage before the 1931 eruption. Magmatic CO2 and He have been measured at a warm soda spring within the caldera, and several sub-boiling fumaroles persist elsewhere in the caldera. These observations suggest that recent subsidence can be explained by the cooling or degassing of a shallow magma body (∼4 km deep), and/or the reduction of the pore-fluid pressure of a cooling hydrothermal system. Ongoing deformation of the volcano detected by InSAR, in combination with magmatic gas output from at least one warm spring, and infrequent low-level bursts of seismicity below the caldera, indicate that the volcanic system is still active and requires close attention for the timely detection of possible hazards.
Finn, Carol A.; Deszcz-Pan, Maria
2011-01-01
High‐resolution helicopter magnetic and electromagnetic (HEM) data flown over the rugged, ice‐covered Mt. Adams, Mt. Baker and Mt. Rainier volcanoes (Washington), reveal the distribution of alteration, water and ice thickness essential to evaluating volcanic landslide hazards. These data, combined with geological mapping and rock property measurements, indicate the presence of appreciable thicknesses (>500 m) of water‐saturated hydrothermally altered rock west of the modern summit of Mount Rainier in the Sunset Amphitheater region and in the central core of Mount Adams north of the summit. Alteration at Mount Baker is restricted to thinner (<300 m) zones beneath Sherman Crater and the Dorr Fumarole Fields. The EM data identified water‐saturated rocks from the surface to the detection limit (100–200 m) in discreet zones at Mt. Rainier and Mt Adams and over the entire summit region at Mt. Baker. The best estimates for ice thickness are obtained over relatively low resistivity (<800 ohm‐m) ground for the main ice cap on Mt. Adams and over most of the summit of Mt. Baker. The modeled distribution of alteration, pore fluids and partial ice volumes on the volcanoes helps identify likely sources for future alteration‐related debris flows, including the Sunset Amphitheater region at Mt. Rainier, steep cliffs at the western edge of the central altered zone at Mount Adams and eastern flanks of Mt. Baker.
Dynamics of the Yellowstone hydrothermal system
Hurwitz, Shaul; Lowenstern, Jacob B.
2014-01-01
The Yellowstone Plateau Volcanic Field is characterized by extensive seismicity, episodes of uplift and subsidence, and a hydrothermal system that comprises more than 10,000 thermal features, including geysers, fumaroles, mud pots, thermal springs, and hydrothermal explosion craters. The diverse chemical and isotopic compositions of waters and gases derive from mantle, crustal, and meteoric sources and extensive water-gas-rock interaction at variable pressures and temperatures. The thermal features are host to all domains of life that utilize diverse inorganic sources of energy for metabolism. The unique and exceptional features of the hydrothermal system have attracted numerous researchers to Yellowstone beginning with the Washburn and Hayden expeditions in the 1870s. Since a seminal review published a quarter of a century ago, research in many fields has greatly advanced our understanding of the many coupled processes operating in and on the hydrothermal system. Specific advances include more refined geophysical images of the magmatic system, better constraints on the time scale of magmatic processes, characterization of fluid sources and water-rock interactions, quantitative estimates of heat and magmatic volatile fluxes, discovering and quantifying the role of thermophile microorganisms in the geochemical cycle, defining the chronology of hydrothermal explosions and their relation to glacial cycles, defining possible links between hydrothermal activity, deformation, and seismicity; quantifying geyser dynamics; and the discovery of extensive hydrothermal activity in Yellowstone Lake. Discussion of these many advances forms the basis of this review.
The Role of Volatiles in Volcanism at Loki and other Hotspots on Io
NASA Astrophysics Data System (ADS)
Howell, Robert R.; Allen, D. R.; Landis, C. E.; Lopes, R. M. C.
2012-10-01
To determine the role of volatiles in volcanic processes on Io we are analyzing Voyager, Galileo, and New Horizons images to obtain colors and high resolution maps near hotspots, in particular Loki. We are also producing numerical transport models for volatiles such as sulfur. As a part of this effort we have also developed Python-based software tools for updating the Voyager and Galileo NAIF pointing kernels, and for analyzing the observations themselves. At Loki, despite their relatively low abundance, volatiles clearly play a significant role. Color photometry of the small bright spots colloquially known as "sulfur bergs", which we suspect are fumarole deposits, show their reflectance is consistent with sulfur but not sulfur dioxide. Mapping of their location shows they avoid the patera margins, and may show other spatial patterns. Preliminary transport models suggest their sizes are consistent with that expected for sulfur fumarole deposits over cooled lava crust. We are currently comparing the high resolution Voyager images with the best available Galileo and New Horizons images to measure changes in the volatile locations over time, and also measure changing locations of nearby silicate flows. We are also beginning stress modeling to understand the structural features seen in island patera such as Loki and are also beginning an analysis of other hotspots such as Tupan.
Forest-killing diffuse CO2 emission at Mammoth Mountain as a sign of magmatic unrest
NASA Astrophysics Data System (ADS)
Farrar, C. D.; Sorey, M. L.; Evans, W. C.; Howle, J. F.; Kerr, B. D.; Kennedy, B. M.; King, C.-Y.; Southon, J. R.
1995-08-01
MAMMOTH Mountain, in the western United States, is a large dacitic volcano with a long history of vo lean ism that began 200 kyr ago1 and produced phreatic eruptions as recently as 500 +/- 200 yr BP (ref. 2). Seismicity, ground deformation and changes in fumarole gas composition suggested an episode of shallow dyke intrusion in 1989-90 (refs 3, 4). Areas of dying forest and incidents of near asphyxia in confined spaces, first reported in 1990, prompted us to search for diffuse flank emissions of magmatic CO2, as have been described at Mount Etna5 and Vulcano6. Here we report the results of a soil-gas survey, begun in 1994, that revealed CO2 concentrations of 30-96% in a 30-hectare region of killed trees, from which we estimate a total CO2 flux of >=1,200 tonnes per day. The forest die-off is the most conspicuous surface manifestation of magmatic processes at Mammoth Mountain, which hosts only weak fumarolic vents and no summit activity. Although the onset of tree kill coincided with the episode of shallow dyke intrusion, the magnitude and duration of the CO2 flux indicates that a larger, deeper magma source and/or a large reservoir of high-pressure gas is being tapped.
Forest-killing diffuse CO2 emission at Mammoth Mountain as a sign of magmatic unrest
Farrar, C.D.; Sorey, M.L.; Evans, William C.; Howle, J.F.; Kerr, B.D.; Kennedy, B.M.; King, C.-Y.; Southon, J.R.
1995-01-01
MAMMOTH Mountain, in the western United States, is a large dacitic volcano with a long history of volcamsm that began 200 kyr ago1 and produced phreatic eruptions as recently as 500 ?? 200 yr BP (ref. 2). Seismicity, ground deformation and changes in fumarole gas composition suggested an episode of shallow dyke intrusion in 1989-90 (refs 3, 4). Areas of dying forest and incidents of near asphyxia in confined spaces, first reported in 1990, prompted us to search for diffuse flank emissions of magmatic CO2, as have been described at Mount Etna5 and Vulcano6. Here we report the results of a soil-gas survey, begun in 1994, that revealed CO2 concentrations of 30-96% in a 30-hectare region of killed trees, from which we estimate a total CO2 flux of ???1,200 tonnes per day. The forest die-off is the most conspicuous surface manifestation of magmatic processes at Mammoth Mountam, which hosts only weak fumarolic vents and no summit activity. Although the onset of tree kill coincided with the episode of shallow dyke intrusion, the magnitude and duration of the CO2 flux indicates that a larger, deeper magma source and/or a large reservoir of high-pressure gas is being tapped.
Lowenstern, Jacob B.; Janik, Cathy J.; Fahlquist, Lynne; Johnson, Linda S.
1999-01-01
The Geysers geothermal field in northern California, with about 2000-MW electrical capacity, is the largest geothermal field in the world. Despite its importance as a resource and as an example of a vapor-dominated reservoir, very few complete geochemical analyses of the steam have been published (Allen and Day, 1927; Truesdell and others, 1987). This report presents data from 90 steam, gas, and condensate samples from wells in The Geysers geothermal field in northern California. Samples were collected between 1978 and 1991. Well attributes include sampling date, well name, location, total depth, and the wellhead temperature and pressure at which the sample was collected. Geochemical characteristics include the steam/gas ratio, composition of noncondensable gas (relative proportions of CO2, H2S, He, H2, O2, Ar, N2, CH4, and NH3), and isotopic values for deltaD and delta18O of H2O, delta13C of CO2, and delta34S of H2S. The compilation includes 81 analyses from 74 different production wells, 9 isotopic analyses of steam condensate pumped into injection wells, and 5 complete geochemical analyses on gases from surface fumaroles and bubbling pools. Most samples were collected as saturated steam and plot along the liquid-water/steam boiling curve. Steam-togas ratios are highest in the southeastern part of the geothermal field and lowest in the northwest, consistent with other studies. Wells in the Northwest Geysers are also enriched in N2/Ar, CO2 and CH4, deltaD, and delta18O. Well discharges from the Southeast Geysers are high in steam/gas and have isotopic compositions and N2/Ar ratios consistent with recharge by local meteoric waters. Samples from the Central Geysers show characteristics found in both the Southeast and Northwest Geysers. Gas and steam characteristics of well discharges from the Northwest Geysers are consistent with input of components from a high-temperature reservoir containing carbonrich gases derived from the host Franciscan rocks. Throughout the geothermal field, the carbon-isotopic composition of CO2 is consistent with derivation of carbon from Franciscan metasedimentary rocks. NH3 concentrations are high in most Geysers well fluids, and are 2-3 orders of magnitude greater than would be expected in a the gas phase exhibiting homogeneous equilibrium at normal reservoir temperatures and pressures. Evidently, NH3 is flushed from the Franciscan host rocks at a rate that exceeds the reaction rate for NH3 breakdown. Many wells show clear influence by fluids from reinjection wells where steam condensate has been pumped back into the geothermal reservoir. Six wells were resampled over the time period of this study. One of these six wells was strongly affected by a nearby injection well. Three of the six resampled wells showed some signs of decreasing liquid/ steam within the geothermal reservoir, consistent with 'drying out' of the reservoir due to steam withdrawal. However, two wells exhibited little change. Analyses of gases from five surface manifestations (fumaroles and bubbling pools) are roughly similar to the deeper geothermal samples in both chemical and isotopic composition, but are lower in soluble gases that dissolve in groundwater during transit toward the surface.
Development of a Mass Spectrometer-based Instrument for Volcanic Gas Monitoring
NASA Astrophysics Data System (ADS)
McMurtry, G. M.; Hilton, D. R.; Fischer, T.; Sutton, A. J.; Elias, T.
2007-05-01
We have developed and field tested an instrument that is capable of acquiring multiple-species gas chemistry data at active volcanoes and hydrothermal systems. The current prototype consists of a quadrupole mass spectrometer, a series of pumps, valves and control/data logging electronics housed in a corrosion-resistant container. We tested the instrument at the summit of Kilauea volcano in March, 2006, collecting time-series data from a 96°C fumarole (Sulphur Banks) at 15 minute intervals for nearly 3 days. Two temperature probes were utilized, a thermocouple placed in the gas stream and a thermistor which recorded ambient air temperatures inside the instrument housing. Of these, the thermistor produced the more reliable trace, as the thermocouple pegged near 45°C shortly after reaching the fumarole gas composition. This composition was indicated by sharp drops in the instrument response for N2, O2, Ar, and water vapor, and increases in CO2 and SO2 at about 6.5 hours elapsed time. The two most obvious gas/temperature trends in this brief time-series are: (1) sharp discontinuities caused by two of the standard "Giggenbach" bottle sampling interludes (despite some care given not to vent the gas line to atmosphere); and (2) two distinct types of thermal events. The two sampling interruptions caused decreases in temperature, and caused the responses of CO2, N2, O2, Ar and water vapor and the ratio of CO2/He to rise sharply. This appears consistent with contamination by cooler ambient air enriched in CO2 relative to normal air (solfatara air). The two types of thermal events are similar in that both generally show enrichments of SO2 and He, and decreases in CO2/He, whereas the last, much hotter event displays increases in CO2, N2, O2, Ar, and water vapor, in contrast to decreases in these gases during the two former events. The last thermal event correlates with a brief dry period on 17 March, after a previous week of almost continuous rainfall. An interesting increase in the HD/H2 ratio suggests either HD-enriched H2 gas or water vapor was introduced during the last thermal event, which is consistent with a fumarole influenced by evaporated, boiling water and atmospheric gases at depth. During our tests we have discovered several problematic issues that need to be overcome if the instrument is to be deployed for extended periods of time (months to years) in harsh and remote locations of active volcanoes. One of the main obstacles is the large amount of water vapor in fumaroles and the need for keeping that water out of the mass spectrometer. We have successfully achieved this using a series of traps and a condenser that still allow the other species to enter the instrument. Related problems are loss of some of the reactive gases within the instrument and/or traps and the precipitation of elemental sulfur in the pre-mass spec inlet system. Another issue that we are currently addressing is the relatively high power consumption of the instrument and condenser.
NASA Technical Reports Server (NTRS)
Yen, Albert S.; Ming, Douglas W.; Gellert, Ralf; Mittlefehldt, David W.; Vaniman, David T.; Thompson, Lucy M.; Morris, Richard V.; Clark, Benton C.; Arvidson, Raymond
2016-01-01
In-situ identification of sulfates at the martian surface by the Mars Exploration Rovers and the Mars Science Laboratory have included calcium sulfates with various states of hydration (gypsum, bassanite, anhydrite), iron sulfates of likely fumarolic origin, massive deposits of iron hydroxysulfates indicative of an acidic history, and minor occurrences of magnesium sulfates. Recent measurements by the Opportunity and Curiosity Alpha Particle X-ray Spectrometers (APXS) have indicated the presence of Ni-substituted Mg-sulfates at the Meridiani Planum and Gale Crater landing sites. The Opportunity rover has traversed nearly 43 km and is currently exploring the impact breccias of the rim of Endeavour crater, near a location where signatures of aqueous alteration have been established from orbit. APXS analyses of subsurface materials excavated by a rover wheel show clear evidence for a Mg(Ni)-sulfate with Mg:Ni (is) approximately 100:1 (molar). On the other side of the planet, Curiosity is continuing its climb up Mount Sharp after driving (is) approximately 13 km since landing. Over the last 4 km of the traverse, there have been multiple chemical analyses of erosionally-resistant nodules and dendritic features in a finely laminated mudstone unit which also indicate Mg(Ni)-sulfate (Mg:Ni (is) approximately 30:1, molar). The geologic settings for the Endeavour rim and the Mount Sharp mudstones are clearly different, but similar formation conditions for these sulfates may be possible. Ni(2+) readily substitutes for Mg(2+) in a variety of geochemical processes due to their comparable ionic radii. The availability of soluble Ni at the time of Mg-sulfate precipitation suggests acidic solutions. The fluids responsible for alteration in the Endeavour rim and for the formation of nodules in Gale mudstones may have had similar chemical characteristics at the time the Mg-sulfates were formed.
Geothermal exploration in Indonesia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Radja, V.T.
1984-03-01
Indonesia is blessed with geothermal resources. This fortunate aspect is directly related to the fact that the archipelago is an island arc created by a subduction zone. Evidence of geothermal activity is common throughout the Islands. Among the islands' many active volcanos are numerous geothermal phenomena. Almost half of the volcanic centers in Indonesia (88 out of 177 centers) contain fumarole and sulfatare features. A brief history of the exploration for geothermal energy in Indonesia is presented.
Poás volcano in Costa Rica as a hydrothermal analog for Mars
NASA Astrophysics Data System (ADS)
Elmaarry, M. R.; Hynek, B. M.
2017-12-01
Mars has experienced intensive volcanic and impact activity early in its history, coinciding with a similarly extensive hydrologic activity on a global scale. These activities constitute the main ingredients of hydrothermal activity. Data acquired from the study of Martian meteorites, remote sensing spectral observations, and robotic rovers has shown the surface of Mars to be mineralogically diverse including mineral assemblages that resemble those of analogous hydrothermal systems on Earth. In particular, evidence for extensive acid-sulfate weathering has been observed by the MERs at Gusev and Meridiani, as well as by MSL at Gale crater. Furthermore, there is growing evidence for silicic volcanism on Mars as indicated by the detection of silica-rich mudstone at Gale containing tridymite and cristobalite coupled with spectral observations indicative of felsic rocks in geographically disparate locations on Mars. For that, the Poás volcano in Costa Rica offers a geologic setting that can be analogous to similar environments on Mars. The Poás volcano is a basaltic andesite stratovolcano in central Costa Rica. Its caldera houses a highly acidic lake inside the caldera 130 m below the crater rim. The volcano has been active in recent historical times, and is currently displaying intensive activity since Apr 2017. Unaltered andesitic basalts collected from the 1953-1955 magmatic activity are mainly composed of plagioclase and minor amounts of orthopyroxene and olivine. We collected samples during our fieldwork in March 2017 (few weeks before its eruption) from fumaroles inside the caldera. The fumaroles were emitting gases at 92°C, and the acidic lake < 20 m away had a pH of 1.5. XRD analysis of samples taken from 4 different fumaroles shows high concentrations of elemental sulfur, gypsum, alunite, and cristobalite along with minor abundances of hematite, anatase, and amorphous silica. Most of these minerals have been observed on Mars under potentially similar settings. We plan to continue our investigation by carrying out additional analyses and compare to samples collected from earlier campaigns to gain a better understanding of how the mineralogy changes with ambient conditions and look for short-term changes, which may help constrain further the conditions in which similar assemblages may have formed on Mars.
NASA Astrophysics Data System (ADS)
Ichiki, M.; Moriyama, T.; Kaida, T.; Kanda, W.; Demachi, T.; Hirahara, S.; Miura, S.; Nakayama, T.; Ogawa, Y.; Seki, K.; Akutagawa, M.; Ushioda, M.; Kobayashi, T.; Uyeshima, M.; Yamamoto, M.; Matsu'ura, S.; Omori, S.; Ono, K.; Seki, S.
2017-12-01
Zao volcano is situated at a distance of about 40 km SW from Sendai in NE Japan. There exists the crater lake, Okama, with about 360 m diameter and about 30 m depth, in the summit area. The seismicity of the low frequency earthquakes deeper than 20 km depth beneath Zao volcano has turned active since middle of 2012. We have also observed shallow (˜5 km) volcanic earthquakes beneath Zao volcano in 2013 to 2017. In the historical records, fumaroles, degassing and phreato-magmatic eruptions occurred close to Okama in 1867 to 1943. Since 1940, fumaroles have observed in about 1 to 1.5 km NE of Okama. Subsurface hydrotherm distribution and geotherm variation are the key feature to forecast future phreatic or phreato-magmatic eruption. In this presentation, we report electrical resistivity distribution and demagnetized region beneath Zao volcano.We observed total magnetic intensity variation of a demagnetized spatial pattern between June and October in 2014. To model a demagnetized region, we carried out a global optimized inversion of grid search assuming ellipsoidal shape and 5 A/m demagnetization intensity. The estimated demagnetized body located in 800 m northeastern side of the center of Okama, and the top surface is 330 m depth. The principal axis length is 500, 425, 190 m, respectively. The demagnetized region locates at the middle points between the recent fumarole region and Okama.AMT data were acquired at 24 sites in the area of 2 km by 2 km. The observation sites do not cover over the demagnetized region described above. We obtained the AMT response of 10 kHz to 0.1 Hz and calculated a 3-D electrical conductivity model beneath around Okama. The conductor (1-30 Ohm-m) is embedded in 200-600 m depth beneath Okama and the lateral dimension is up to 400 m. The conductor is isolated and neither expands in deeper parts nor tends to elongate to the demagnetized region. We interpret the conductor as a hydrothermal alteration zone of the past volcanic activities.Acknowledge: Total magnetic intensity data were obtained by Sendai Regional Headquarters, Japan Meteorological Agency and Tohoku University. We used the parallel cluster of EIC, Earthquake Research Institute, the University of Tokyo for this study.
NASA Astrophysics Data System (ADS)
Bonforte, Alessandro; Alparone, Salvatore; Gambino, Salvatore; Guglielmino, Francesco; Obrizzo, Francesco; Velardita, Rosanna
2015-04-01
Vulcano island is a composite volcanic edifice located in the south-central sector of the Aeolian Archipelago (Tyrrhenian Sea, Italy). It is the southernmost tip of the southern branch of the Y-shaped archipelago; in particular, it is part of the bigger Lipari-Vulcano volcanic complex that comprises the two southernmost islands of the archipelago. This branch of the archipelago is NNW-SSE oriented and represent the off-shore prolongation of the Tindari-Letojanni tectonic lineament in the NE Sicily, splitting the Appennine chain on the west, from the Calabrian arc on the East. N-S compression seems to affect the western side of this NNW-SSE lineament, while extension affects the eastern one, with active volcanism and a NW dipping Benioff plane. Historic activity at Vulcano has been characterized by frequent transitions from phereatomagmatic to minor magmatic activity. The last eruption in 1888-90 was characterized by energetic explosive pulses and defines the so-called "vulcanian" type of activity. Since then, volcanic activity has taken the form of fumarolic emanations of variable intensity and temperature, mainly concentrated at "La Fossa" crater, with maximum temperatures ranging between 200° and 300° C; temperature increases and changes in the gas chemistry, were often observed. The most recent episode began in the 80's when fumarole temperature progressively increased to 690°C in May 1993. Vulcano is active and this favoured monitoring and research studies, in particular focussed on the most recent structures. In the frame of DPC-INGV "V3" project, we investigate the dynamics of the island through ca. 40 years of ground deformation and seismicity data collected by the discrete and continuous INGV monitoring networks. We considered levelling, GPS, EDM, seismic and tilt data. EDM and levelling measurements began in the middle 1970s and since the late 1990s the same EDM network has been surveyed by GPS. By combining and comparing geodetic data and seismicity we are able to distinguish three different scales of phenomena: the first one seems to be linked to the regional tectonics, with a general transpressive kinematics; the second one affects the northern half of the island and could be related to the caldera dynamics; the third one affects only the cone of La Fossa. Regional tectonic stress seems to play an important role in the transition of the volcanic system from a phase of stability to a phase of unrest, inducing the heating and the expansion of shallow hydrothermal fluids. Current local ground deformation at Vulcano may be linked to the geothermal system rather than magmatic sources.
NASA Astrophysics Data System (ADS)
Kiyan, Duygu; Hogg, Colin; Rath, Volker; Byrdina, Svetlana; Vandemeulebrouck, Jean; Revil, Andre; Silva, Catarina; Viveiros, Fatima; Ferreira, Teresa; Carmo, Rita
2017-04-01
The Furnas volcano is the eastern-most of the three active central volcanoes of Sao Miguel Island. The main caldera formed about 30 ka BP, followed by a younger eruption at 10-12 ka BP, which is responsible for the steep topography of more than 200 m in the target area. It contains several very young eruptive centers, and a shallow caldera lake. Tectonic features of varying directions have been identified in the caldera and its vicinity (Carmo et al., 2015). In the northern part of the caldera, containing the fumarole field of Caldeiras das Furnas, a detailed map of surface CO2 emissions was recently made available (Viveiros et al., 2010). Following a pilot survey of 13 AudioMagnetoTelluric soundings (AMT) and Electrical Resistivity Tomography (ERT) data collected along two profiles in the eastern part of Furnas caldera in 2015, a second campaign was completed in June 2016, yielding a total of 39 separate soundings including 15 broad-band magnetotelluric (MT) soundings to image the electrical conductivity of the subsurface. The data quality achieved by both techniques is very good, and initial results indicate a general correlation between regions of elevated conductivity at depth and the mapped surface CO2 emissions, suggesting that they may both be caused by the presence hydrothermal fluids. Dimensionality and directionality analysis using the WALDIM (Marti et al., 2009) approach in conjunction with Phase Tensor (Caldwell et al., 2004) indicate that the geo-electrical structure needs to be inverted in 3-D. Indicators of directionality derived from the analysis follow the general geological, fault dominated structural trend of NE-SW of Sao Miguel Island. A quantitative analysis of the potential influence of the Atlantic Ocean indicates that MT data up to 1 second period can be used in inversions with confidence without including the ocean. The 3-D inversions thus have been performed including only high-resolution topography and the Furnas lake bathymetry data employing the parallel version of the Modular system for ElectroMagnetic inversion code (ModEM; Egbert and Kelbert, 2012; Kelbert et al., 2014). The 3-D resistivity model shows a shallow conductive body at a depth of 90 m a.s.l. beneath the area of Furnas lake fumaroles. Deep-seated high conductivity regions have been imaged beneath the Trachytic domes of the inner caldera and the northern part of the inner caldera. This work will focus on the processing, analysis and 3-D inversion results of the MT data along with an interpretation of the geological structures found. A joint interpretation of the MT results together with the ERT data covering the shallow regime with much higher resolution will also be presented.
NASA Astrophysics Data System (ADS)
Rose, Timothy P.; Criss, Robert E.; Mughannam, Andrew J.; Clynne, Michael A.
1994-11-01
Brokeoff volcano, a Quaternary stratocone located in the Lassen volcanic center in northern California, has been deeply eroded, exposing a 10-sq km meteoric hydrothermal alteration zone at the core of the volcano. Portions of the former volcanic edifice are sufficiently well preserved that an unusual opportunity exists wherein the alteration pattern can be correlated with the position of the volcanic cone. The delta(O-18) analyses of more than 100 whole rock samples, consisting primarily of andesitic lavas, vary from +9.8 to +0.6 per mil. The highest delta(O-18) values occur in bleached, solfatarically altered rocks that have interacted with low-pH, fumarolic hot springs associated with the present-day hydrothermal system. Low delta(O-18) values are found in propylitically altered rocks that underwent isotopic exchange with meteoric hydrothermal fluids at elevated temperatures, mostly during the stratovolcanic stage (650-400 ka) of the hydrothermal system, but probably continuing today at depth. Electron microprobe analyses of secondary layer silicate minerals in strongly propylitized samples (delta(O-18) is less than +5.0) revealed the presence of discrete chlorite, suggesting that temperatures up to 200 to 250 C were attained in the shallow levels of the system. Two zones of pervasive meteoric hydrothermal alteration, defined by concentric O-18 contours that are probably interconnected at depth, are located within the original topographic edifice of the volcano. The most intensely altered rocks within these equant zones of alteration define NNW trends that coincide with stream valleys and with regional structural patterns. A comparison of the characteristics of the O-18-depleted zone at Brokeoff with those of more deeply eroded volcanic centers, such as the Comstock Lode mining district (Criss and Champion, 1991), permits the construction of composite O-18 cross sections through a hypothetical intact stratovolcano. At both Brokeoff and Comstock, hydrothermal fluids were strongly focused into plumelike zones of intense O-18 depletion. At Comstock, these low-O-18 plumes are associated with faults. Although major fault displacements are not observed at Brokeoff, the topographic and alteration patterns are consistent with the presence of a linear array of faults that acted as conduits for fluid flow up into the shallow levels of the volcano.
NASA Astrophysics Data System (ADS)
Finn, Carol A.; Deszcz-Pan, Maryla; Ball, Jessica L.; Bloss, Benjamin J.; Minsley, Burke J.
2018-05-01
Water-saturated hydrothermal alteration reduces the strength of volcanic edifices, increasing the potential for catastrophic sector collapses that can lead to far traveled and destructive debris flows. Intense hydrothermal alteration significantly lowers the resistivity and magnetization of volcanic rock and therefore hydrothermally altered rocks can be identified with helicopter electromagnetic and magnetic measurements. Geophysical models constrained by rock properties and geologic mapping show that intensely altered rock is restricted to two small (500 m diameter), >150 m thick regions around Sherman Crater and Dorr Fumarole Field at Mount Baker, Washington. This distribution of alteration contrasts with much thicker and widespread alteration encompassing the summits of Mounts Adams and Rainier prior to the 5600 year old Osceola collapse, which is most likely due to extreme erosion and the limited duration of summit magmatism at Mount Baker. In addition, the models suggest that the upper 300 m of rock contains water which could help to lubricate potential debris flows. Slope stability modeling incorporating the geophysically modeled distribution of alteration and water indicates that the most likely and largest ( 0.1 km3) collapses are from the east side of Sherman Crater. Alteration at Dorr Fumarole Field raises the collapse hazard there, but not significantly because of its lower slope angles. Geochemistry and analogs from other volcanoes suggest a model for the edifice hydrothermal system.
Lack of Microbial Diversity in an Extreme Mars Analog Setting: Poás Volcano, Costa Rica.
Hynek, Brian M; Rogers, Karyn L; Antunovich, Monique; Avard, Geoffroy; Alvarado, Guillermo E
2018-04-24
The Poás volcano in Costa Rica has been studied as a Mars geochemical analog environment, since both the style of hydrothermal alteration present and the alteration mineralogy are consistent with Mars' relict hydrothermal systems. The site hosts an active volcano, with high-temperature fumaroles (up to 980°C) and an ultra-acidic lake. This lake, Laguna Caliente, is one of the most dynamic environments on Earth, with frequent phreatic eruptions, temperatures ranging from near-ambient to almost boiling, a pH range of -1 to 1.5, and a wide range of chemistries and redox potential. Martian acid-sulfate hydrothermal systems were likely similarly dynamic and equally challenging to life. The microbiology existing within Laguna Caliente was characterized for the first time, with sampling taking place in November, 2013. The diversity of the microbial community was surveyed via extraction of environmental DNA from fluid and sediment samples followed by Illumina sequencing of the 16S rRNA gene. The microbial diversity was limited to a single species of the bacterial genus Acidiphilium. This organism likely gets its energy from oxidation of reduced sulfur in the lake, including elemental sulfur. Given Mars' propensity for sulfur and acid-sulfate environments, this type of organism is of significant interest to the search for past or present life on the Red Planet. Key Words: Mars astrobiology-Acid-sulfate hydrothermal systems-Extremophiles-Acidic-High temperature-Acidiphilium bacteria. Astrobiology 18, xxx-xxx.
Hydrologic and geochemical monitoring in Long Valley Caldera, Mono County, California, 1982-1984
Farrar, C.D.; Sorey, M.L.; Rojstaczer, S.; Janik, C.J.; Mariner, R.H.; Winnett, T.L.; Clark, M.D.
1985-01-01
The Long Valley caldera is a potentially active volcanic area on the eastern side of the Sierra Nevada in east-central California. Hydrologic and geochemical monitoring of surface and subsurface features began in July 1982 to determine if changes were occurring in response to processes causing earthquakes and crustal deformation. Differences since 1982 in fluid chemistry of springs has been minor except at Casa Diablo, where rapid fluctuations in chemistry result from near surface boiling and mixing. Ratios of 3-He/4-He and 13-C/12-C in hot springs and fumaroles are consistent with a magnetic source for some of the carbon and helium discharged in thermal areas, and observed changes in 3-He/4-He between 1978 and 1984 suggest changes in the magmatic component. Significant fluctuations in hot spring discharge recorded at several sites since 1982 closely followed earthquake activity. Water levels in wells have been used as strain meters to detect rock deformation associated with magmatic and tectonic activity and to construct a water table contour map. Coseismic water level fluctuations of as much as 0.6 ft have been observed but no clear evidence of deformation caused by magmatic intrusions can be seen in the well records through 1984. Temperature profiles in wells, which can be used to delineate regionally continuous zones of lateral flow of hot water across parts of the caldera, have remained constant at all but two sites. (Author 's abstract)
NASA Astrophysics Data System (ADS)
Cardellini, C.; Chiodini, G.; Frigeri, A.; Bagnato, E.; Aiuppa, A.; McCormick, B.
2013-12-01
The data on volcanic and non-volcanic gas emissions available online are, as today, incomplete and most importantly, fragmentary. Hence, there is need for common frameworks to aggregate available data, in order to characterize and quantify the phenomena at various spatial and temporal scales. Building on the Googas experience we are now extending its capability, particularly on the user side, by developing a new web environment for collecting and publishing data. We have started to create a new and detailed web database (MAGA: MApping GAs emissions) for the deep carbon degassing in the Mediterranean area. This project is part of the Deep Earth Carbon Degassing (DECADE) research initiative, lunched in 2012 by the Deep Carbon Observatory (DCO) to improve the global budget of endogenous carbon from volcanoes. MAGA database is planned to complement and integrate the work in progress within DECADE in developing CARD (Carbon Degassing) database. MAGA database will allow researchers to insert data interactively and dynamically into a spatially referred relational database management system, as well as to extract data. MAGA kicked-off with the database set up and a complete literature survey on publications on volcanic gas fluxes, by including data on active craters degassing, diffuse soil degassing and fumaroles both from dormant closed-conduit volcanoes (e.g., Vulcano, Phlegrean Fields, Santorini, Nysiros, Teide, etc.) and open-vent volcanoes (e.g., Etna, Stromboli, etc.) in the Mediterranean area and Azores. For each geo-located gas emission site, the database holds images and description of the site and of the emission type (e.g., diffuse emission, plume, fumarole, etc.), gas chemical-isotopic composition (when available), gas temperature and gases fluxes magnitude. Gas sampling, analysis and flux measurement methods are also reported together with references and contacts to researchers expert of the site. Data can be accessed on the network from a web interface or as a data-driven web service, where software clients can request data directly from the database. This way Geographical Information Systems (GIS) and Virtual Globes (e.g., Google Earth) can easily access the database, and data can be exchanged with other database. In details the database now includes: i) more than 1000 flux data about volcanic plume degassing from Etna (4 summit craters and bulk degassing) and Stromboli volcanoes, with time averaged CO2 fluxes of ~ 18000 and 766 t/d, respectively; ii) data from ~ 30 sites of diffuse soil degassing from Napoletan volcanoes, Azores, Canary, Etna, Stromboli, and Vulcano Island, with a wide range of CO2 fluxes (from les than 1 to 1500 t/d) and iii) several data on fumarolic emissions (~ 7 sites) with CO2 fluxes up to 1340 t/day (i.e., Stromboli). When available, time series of compositional data have been archived in the database (e.g., for Campi Flegrei fumaroles). We believe MAGA data-base is an important starting point to develop a large scale, expandable data-base aimed to excite, inspire, and encourage participation among researchers. In addition, the possibility to archive location and qualitative information for gas emission/sites not yet investigated, could stimulate the scientific community for future researches and will provide an indication on the current uncertainty on deep carbon fluxes global estimates.
Volcanic investigations in the Commonwealth of the Northern Mariana Islands, April to May 1994
Sako, M.K.; Trusdell, F.A.; Koyanagi, R.Y.; Kojima, George; Moore, R.B.
1995-01-01
We conclude that the low and infrequent shallow seismicity, lack of significant deformation, and low fumarole temperatures suggest that no eruption is likely soon on Agrihan and Alamagan. Anatahan's deformation pattern continues to behave in an erratic manner. Because f the lack of seismicity, it seems unlikely that an eruption of Anatahan will occur soon. The persistent volcanic tremor and significant EDM changes on Mount Pagan mean that small explosive eruptions will continue to occur.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kravtsov, A.I.
To determine the effect of geologic factors on the composition of abyssal derivates (complementing existing information on the geochemistry of volcanic gases) isotopic analysis of carbon was used to obtain physicochemical criteria of the origin of gases, independent of geologic-petrographic data. The investigations include component analysis of all the gases, particularly hydrocarbon compounds, repeatedly found in the fumarole emanations of pyroclastic streams. Volcanic carbon dioxide which is the principal component of gases of active volcanoes and hot springs in the Kuril-Kamchatka volcanic arc and of other volcanoes was investigated.
Geothermal hazards - Mercury emission
NASA Technical Reports Server (NTRS)
Siegel, S. M.; Siegel, B. Z.
1975-01-01
Enthusiasm for intensified geothermal exploration may induce many participants to overlook a long-term potential toxicity hazard possibly associated with the tapping of magmatic steam. The association of high atmospheric Hg levels with geothermal activity has been established both in Hawaii and Iceland, and it has been shown that mercury can be introduced into the atmosphere from fumaroles, hot springs, and magmatic sources. These arguments, extended to thallium, selenium, and other hazardous elements, underscore the need for environmental monitoring in conjunction with the delivery of magmatic steam to the surface.
Lunar volcanism - Age of the glass in the Apollo 17 orange soil.
NASA Technical Reports Server (NTRS)
Husain, L.; Schaeffer, O. A.
1973-01-01
Glasses on the moon can form either by impact or by volcanic processes. An age determination indicates that the glass of the orange soil formed close in time to the volcanic activity in the Sea of Serenity about 3,750 million years ago. The orange soil was certainly not formed by a recent fumarole. The young exposure age, about 32 million years, found for the glass of the orange soil is in agreement with its fresh appearance on the lunar surface.
Volcanic gas impacts on vegetation at Turrialba Volcano, Costa Rica
NASA Astrophysics Data System (ADS)
Teasdale, R.; Jenkins, M.; Pushnik, J.; Houpis, J. L.; Brown, D. L.
2010-12-01
Turrialba volcano is an active composite stratovolcano that is located approximately 40 km east of San Jose, Costa Rica. Seismic activity and degassing have increased since 2005, and gas compositions reflect further increased activity since 2007 peaking in January 2010 with a phreatic eruption. Gas fumes dispersed by trade winds toward the west, northwest, and southwest flanks of Turrialba volcano have caused significant vegetation kill zones, in areas important to local agriculture, including dairy pastures and potato fields, wildlife and human populations. In addition to extensive vegetative degradation is the potential for soil and water contamination and soil erosion. Summit fumarole temperatures have been measured over 200 degrees C and gas emissions are dominated by SO2; gas and vapor plumes reach up to 2 km (fumaroles and gases are measured regularly by OVSICORI-UNA). A recent network of passive air sampling, monitoring of water temperatures of hydrothermal systems, and soil pH measurements coupled with measurement of the physiological status of surrounding plants using gas exchange and fluorescence measurements to: (1) identify physiological correlations between leaf-level gas exchange and chlorophyll fluorescence measurements of plants under long term stress induced by the volcanic gas emissions, and (2) use measurements in tandem with remotely sensed reflectance-derived fluorescence ratio indices to track natural photo inhibition caused by volcanic gas emissions, for use in monitoring plant stress and photosynthetic function. Results may prove helpful in developing potential land management strategies to maintain the biological health of the area.
Magmatic differentiation processes at Merapi Volcano: inclusion petrology and oxygen isotopes
NASA Astrophysics Data System (ADS)
Troll, Valentin R.; Deegan, Frances M.; Jolis, Ester M.; Harris, Chris; Chadwick, Jane P.; Gertisser, Ralf; Schwarzkopf, Lothar M.; Borisova, Anastassia Y.; Bindeman, Ilya N.; Sumarti, Sri; Preece, Katie
2013-07-01
Indonesian volcano Merapi is one of the most hazardous volcanoes on the planet and is characterised by periods of active dome growth and intermittent explosive events. Merapi currently degasses continuously through high temperature fumaroles and erupts basaltic-andesite dome lavas and associated block-and-ash-flows that carry a large range of magmatic, coarsely crystalline plutonic, and meta-sedimentary inclusions. These inclusions are useful in order to evaluate magmatic processes that act within Merapi's plumbing system, and to help an assessment of which phenomena could trigger explosive eruptions. With the aid of petrological, textural, and oxygen isotope analysis we record a range of processes during crustal magma storage and transport, including mafic recharge, magma mixing, crystal fractionation, and country rock assimilation. Notably, abundant calc-silicate inclusions (true xenoliths) and elevated δ18O values in feldspar phenocrysts from 1994, 1998, 2006, and 2010 Merapi lavas suggest addition of limestone and calc-silicate materials to the Merapi magmas. Together with high δ13C values in fumarole gas, crustal additions to mantle and slab-derived magma and volatile sources are likely a steady state process at Merapi. This late crustal input could well represent an eruption trigger due to sudden over-pressurisation of the shallowest parts of the magma storage system independently of magmatic recharge and crystal fractionation. Limited seismic precursors may be associated with this type of eruption trigger, offering a potential explanation for the sometimes erratic behaviour of Merapi during volcanic crises.
Finn, Carol A.; Deszcz-Pan, Maria; Ball, Jessica L.; Bloss, Benjamin J.; Minsley, Burke J.
2018-01-01
Water-saturated hydrothermal alteration reduces the strength of volcanic edifices, increasing the potential for catastrophic sector collapses that can lead to far traveled and destructive debris flows. Intense hydrothermal alteration significantly lowers the resistivity and magnetization of volcanic rock and therefore hydrothermally altered rocks can be identified with helicopter electromagnetic and magnetic measurements. Geophysical models constrained by rock properties and geologic mapping show that intensely altered rock is restricted to two small (500 m diameter), >150 m thick regions around Sherman Crater and Dorr Fumarole Field at Mount Baker, Washington. This distribution of alteration contrasts with much thicker and widespread alteration encompassing the summits of Mounts Adams and Rainier prior to the 5600 year old Osceola collapse, which is most likely due to extreme erosion and the limited duration of summit magmatism at Mount Baker. In addition, the models suggest that the upper ~300 m of rock contains water which could help to lubricate potential debris flows. Slope stability modeling incorporating the geophysically modeled distribution of alteration and water indicates that the most likely and largest (~0.1 km3) collapses are from the east side of Sherman Crater. Alteration at Dorr Fumarole Field raises the collapse hazard there, but not significantly because of its lower slope angles. Geochemistry and analogs from other volcanoes suggest a model for the edifice hydrothermal system.
Geology and geothermal potential of the tecuamburro volcano area, Guatemala
Duffield, W.A.; Heiken, G.H.; Wohletz, K.H.; Maassen, L.W.; Dengo, G.; McKee, E.H.; Castaneda, O.
1992-01-01
Tecuamburro, an andesitic stratovolcano in southeastern Guatemala, is within the chain of active volcanoes of Central America. Though Tecuamburro has no record of historic eruptions, radiocarbon ages indicate that eruption of this and three other adjacent volcanoes occurred within the past 38,300 years. The youngest eruption produced a dacite dome. Moreover, powerful steam explosions formed a 250 m wide crater about 2900 years ago near the base of this dome. The phreatic crater contains a pH-3 thermal lake. Fumaroles are common along the lake shore, and several other fumaroles are located nearby. Neutral-chloride hot springs are at lower elevations a few kilometers away. All thermal manifestations are within an area of about 400 km2 roughly centered on Tecuamburro Volcano. Thermal implications of the volume, age, and composition of the post-38.3 ka volcanic rocks suggest that magma, or recently solidified hot plutons, or both are in the crust beneath these lavas. Chemical geothermometry carried out by other workers suggests that a hydrothermal-convection system is centered over this crustal heat source. Maximum temperatures of about 300??C are calculated for samples collected in the area of youngest volcanism, whereas samples from outlying thermal manifestations yield calculated temperatures <- 165??C. An 808 m deep drill hole completed in 1990 to partly test the geothermal model developed from surface studies attained a maximum temperature of almost 240??C. Thus, the possibility of a commercial-grade hydrothermal resource in the area seems high. ?? 1992.
Hildreth, Wes; Fierstein, Judy
1990-01-01
More than 60 Quaternary vents make up the basalt-to-rhyodacite Mount Adams volcanic field and have erupted scoriae and lavas with a total volume of >370 km3. The Mount Adams andesite-dacite stratocone itself is a compound edifice that includes the high cone above 2300 m (20-10 ka), remnants of at least two earlier andesite-dacite cones as old as 0.5 Ma, and 7 Holocene flank vents. Four other Holocene vents and tens of vents contemporaneous with Mount Adams are peripheral to the stratocone. All of these vents, including Mount Adams, lie within a N-S eruptive zone 55 km long and 5 km wide. The age of all known Mount Adams silicic products (>100 ka) and the heterogeneous mafic compositions of the summit cone and Holocene lavas make it unlikely that the stratocone is underlain by an upper-crustal reservoir. Rather, the stratocone at the focus is built up of fractionated hybrid magmas that rise from MASH zones (melting-assimilation-storage-homogenization). The pyroclastic core of breccia and scoria at Mount Adams has undergone acid-sulfate leaching and deposition of alunite, kaolinite, silica, gypsum, sulfur, and Fe-oxides and has been a constant source of avalanches and debris flows. Most heat supplied from depth to the fumarolically altered core is dispersed by the high precipitation rate and high permeability of the rubbly lava flows so that a hydrothermal convection pattern is not maintained. Summit-restricted fumaroles are weak and diffuse.
Volatile Emissions from Hot Spring Basin, Yellowstone National Park, USA
NASA Astrophysics Data System (ADS)
Werner, C.; Hurwitz, S.; Bergfeld, D.; Evans, W. C.; Lowenstern, J. B.; Jaworowski, C.; Heasler, H.
2007-12-01
The flux and composition of magmatic volatiles were characterized for Hot Spring Basin (HSB), Yellowstone National Park, in August 2006. Diffuse fluxes of CO2 (228 sites) from thermal soil were elevated, with a population distribution similar to that of other acid-sulfate areas in Yellowstone. Thus the estimated diffuse emission rate at HSB is proportionately larger than other areas due to its large area, and could be as high as 1000 td-1 CO2. The diffuse flux of H2S was only above detection limits at 20 of the 31 sites measured. The estimated diffuse H2S emission rate was ~ 4 td-1. Good correlation exists between the log of CO2 flux and shallow soil temperatures, indicating linked steam and gas upflow in the subsurface. The correlation between CO2 and H2S fluxes is weak, and the CO2 / H2S diffuse flux ratio was higher than in fumarolic ratios of CO2 to H2S. This suggests that various reactions, e.g., native sulfur deposition, act to remove H2S from the original gas stream in the diffuse low- temperature environment. Dissolved sulfate flux through Shallow Creek, which drains part of HSB, was ~ 4 td-1. Comparing dissolved sulfate flux to estimates of primary emission of H2S based on fumarolic gas geochemistry gives first order estimates of the sulfur consumed in surficial or subsurface mineral deposition. Total C and S outputs from HSB are comparable to other active volcanic systems.
Raman spectroscopy of volcanic lavas and inclusions of relevance to astrobiological exploration.
Jorge-Villar, Susana E; Edwards, Howell G M
2010-07-13
Volcanic eruptions and lava flows comprise one of the most highly stressed terrestrial environments for the survival of biological organisms; the destruction of botanical and biological colonies by molten lava, pyroclastic flows, lahars, poisonous gas emissions and the deposition of highly toxic materials from fumaroles is the normal expectation from such events. However, the role of lichens and cyanobacteria in the earlier colonization of volcanic lava outcrops has now been recognized. In this paper, we build upon earlier Raman spectroscopic studies on extremophilic colonies in old lava flows to assess the potential of finding evidence of biological colonization in more recent lava deposits that would inform, first, the new colonization of these rocks and also provide evidence for the relict presence of biological colonies that existed before the volcanism occurred and were engulfed by the lava. In this research, samples were collected from a recent expedition to the active volcano at Kilauea, Hawaii, which comprises very recent lava flows, active fumaroles and volcanic rocks that had broken through to the ocean and had engulfed a coral reef. The Raman spectra indicated that biological and geobiological signatures could be identified in the presence of geological matrices, which is encouraging for the planned exploration of Mars, where it is believed that there is evidence of an active volcanism that perhaps could have preserved traces of biological activity that once existed on the planet's surface, especially in sites near the old Martian oceans.
Ongoing hydrothermal heat loss from the 1912 ash-flow sheet, Valley of Ten Thousand Smokes, Alaska
Hogeweg, N.; Keith, T.E.C.; Colvard, E.M.; Ingebritsen, S.E.
2005-01-01
The June 1912 eruption of Novarupta filled nearby glacial valleys on the Alaska Peninsula with ash-flow tuff (ignimbrite), and post-eruption observations of thousands of steaming fumaroles led to the name 'Valley of Ten Thousand Smokes' (VTTS). By the late 1980s most fumarolic activity had ceased, but the discovery of thermal springs in mid-valley in 1987 suggested continued cooling of the ash-flow sheet. Data collected at the mid-valley springs between 1987 and 2001 show a statistically significant correlation between maximum observed chloride (Cl) concentration and temperature. These data also show a statistically significant decline in the maximum Cl concentration. The observed variation in stream chemistry across the sheet strongly implies that most solutes, including Cl, originate within the area of the VTTS occupied by the 1912 deposits. Numerous measurements of Cl flux in the Ukak River just below the ash-flow sheet suggest an ongoing heat loss of ???250 MW. This represents one of the largest hydrothermal heat discharges in North America. Other hydrothermal discharges of comparable magnitude are related to heat obtained from silicic magma bodies at depth, and are quasi-steady on a multidecadal time scale. However, the VTTS hydrothermal flux is not obviously related to a magma body and is clearly declining. Available data provide reasonable boundary and initial conditions for simple transient modeling. Both an analytical, conduction-only model and a numerical model predict large rates of heat loss from the sheet 90 years after deposition.
Spatial data analysis for exploration of regional scale geothermal resources
NASA Astrophysics Data System (ADS)
Moghaddam, Majid Kiavarz; Noorollahi, Younes; Samadzadegan, Farhad; Sharifi, Mohammad Ali; Itoi, Ryuichi
2013-10-01
Defining a comprehensive conceptual model of the resources sought is one of the most important steps in geothermal potential mapping. In this study, Fry analysis as a spatial distribution method and 5% well existence, distance distribution, weights of evidence (WofE), and evidential belief function (EBFs) methods as spatial association methods were applied comparatively to known geothermal occurrences, and to publicly-available regional-scale geoscience data in Akita and Iwate provinces within the Tohoku volcanic arc, in northern Japan. Fry analysis and rose diagrams revealed similar directional patterns of geothermal wells and volcanoes, NNW-, NNE-, NE-trending faults, hotsprings and fumaroles. Among the spatial association methods, WofE defined a conceptual model correspondent with the real world situations, approved with the aid of expert opinion. The results of the spatial association analyses quantitatively indicated that the known geothermal occurrences are strongly spatially-associated with geological features such as volcanoes, craters, NNW-, NNE-, NE-direction faults and geochemical features such as hotsprings, hydrothermal alteration zones and fumaroles. Geophysical data contains temperature gradients over 100 °C/km and heat flow over 100 mW/m2. In general, geochemical and geophysical data were better evidence layers than geological data for exploring geothermal resources. The spatial analyses of the case study area suggested that quantitative knowledge from hydrothermal geothermal resources was significantly useful for further exploration and for geothermal potential mapping in the case study region. The results can also be extended to the regions with nearly similar characteristics.
Ingebritsen, S.E.; Galloway, D.L.; Colvard, E.M.; Sorey, M.L.; Mariner, R.H.
2001-01-01
We compiled time series of hydrothermal discharge consisting of 3593 chloride- or heat-flux measurements from 24 sites in the Yellowstone region, the northern Oregon Cascades, Lassen Volcanic National Park and vicinity, and Long Valley, California. At all of these sites the hydrothermal phenomena are believed to be as yet unaffected by human activity, though much of the data collection was driven by mandates to collect environmental-baseline data in acticipation of geothermal development. The time series average 19 years in length and some of the Yellowstone sites have been monitored intermittently for over 30 years. Many sites show strong seasonality but few show clear long-term trends, and at most sites statistically significant decadal-scale trends are absent. Thus, the data provide robust estimates of advective heat flow ranging from ~130 MW in the north-central Oregon Cascades to ~6100 MW in the Yellowstone region, and also document Yellowstone hydrothermal chloride and arsenic fluxes of 1740 and 15-20 g/s, respectively. The discharge time series show little sensitivity to regional tectonic events such as earthquakes or inflation/deflation cycles. Most long-term monitoring to date has focused on high-chloride springs and low-temperature fumaroles. The relative stability of these features suggests that discharge measurements done as part of volcano-monitoring programs should focus instead on high-temperature fumaroles, which may be more immediately linked to the magmatic heat source. ?? 2001 Elsevier Science B.V. All rights reserved.
Pavlik, B M; Enberg, A
2001-08-01
The geysers panic grass [Dichanthelium lanuginosum Spellenberg var. thermale (Bol.) Spellenberg or DILA] is exclusively associated with surface geothermal manifestations in Sonoma County, California, USA (38 degrees 46'N, 122 degrees 38'W). Steam extraction by power plants could alter the subsurface distribution of heat and water to the site, potentially impacting subpopulations of this rare plant. The purpose of this study was to use demographic monitoring to determine: (1) temporal and spatial patterns of soil temperature in relation to the distribution of established DILA individuals at Little Geysers, (2) in situ response of experimental populations of DILA to spatial variations in soil temperature, and (3) habitat requirements of DILA as an indicator of its tolerance to variations in surficial geothermal features. Thermocouple transects and a datalogger provided data for characterizing the spatial and temporal patterns of soil temperature in four microhabitats (fumarole, DILA stand, Andropogon stand, and cleared). Experimental populations were established by precisely sowing and monitoring DILA seeds in these microhabitats. The results indicated that spatial and temporal variations in soil temperature had significant effects on the processes of germination, growth, survivorship, and reproduction, thus producing a readily observed metapopulation patch dynamic in relation to geothermal activity. Seasonal depressions of soil temperature near the fumaroles by cold air and prolonged rainfall events also promoted the emergence and survival of DILA seedlings in a microhabitat that was previously too hot to occupy. Over longer periods of time, DILA metapopulation dynamism reflected climatic and geothermal variation. Drought years inhibited germination for lack of water, but more importantly for the lack of requisite soil temperature depressions in the fumarole microhabitat. Wet years promoted subpopulation expansion into transition areas that were once too hot and dry. There have also been shifts in the underground distribution of steam into areas distant from known geothermal features. The demographic responses of DILA to spatial and temporal variations in soil temperature indicate that heat is an absolutely essential component of the steam resource. In its absence, germination, seeding survivorship, growth, and maturation are significantly inhibited even if soil conditions are favorable and potential competitors are controlled. Ultimately, persistence of the species depends on maintaining the ecosystem dynamic of colonization and extirpation in response to variations in surficial geothermal features over long spatial and temporal scales. This should shift management perspective from its narrow focus on individual plants to a wider focus on monitoring the essential habitat component of steam.
Lithological Influences on Occurrence of High-Fluoride Waters in The Central Kenya Rift
NASA Astrophysics Data System (ADS)
Olaka, L. A.; Musolff, A.; Mulch, A.; Olago, D.; Odada, E. O.
2013-12-01
Within the East African rift, groundwater recharge results from the complex interplay of geology, land cover, geomorphology, climate and on going volcano-tectonic processes across a broad range of spatial and temporal scales. The interrelationships between these factors create complex patterns of water availability, reliability and quality. The hydrochemical evolution of the waters is further complex due to the different climatic regimes and geothermal processes going on in this area. High fluoridic waters within the rift have been reported by few studies, while dental fluorosis is high among the inhabitants of the rift. The natural sources of fluoride in waters can be from weathering of fluorine bearing minerals in rocks, volcanic or fumarolic activities. Fluoride concentration in water depends on a number of factors including pH, temperature, time of water-rock formation contact and geochemical processes. Knowledge of the sources and dispersion of fluoride in both surface and groundwaters within the central Kenya rift and seasonal variations between wet and dry seasons is still poor. The Central Kenya rift is marked by active tectonics, volcanic activity and fumarolic activity, the rocks are majorly volcanics: rhyolites, tuffs, basalts, phonolites, ashes and agglomerates some are highly fractured. Major NW-SE faults bound the rift escarpment while the rift floor is marked by N-S striking faults We combine petrographic, hydrochemistry and structural information to determine the sources and enrichment pathways of high fluoridic waters within the Naivasha catchment. A total of 120 water samples for both the dry season (January-February2012) and after wet season (June-July 2013) from springs, rivers, lakes, hand dug wells, fumaroles and boreholes within the Naivasha catchment are collected and analysed for fluoride, physicochemical parameters and stable isotopes (δ2 H, δ18 O) in order to determine the origin and evolution of the waters. Additionally, 30 soil and rock samples were also collected and analysed for fluoride, and rock samples were subjected to petrographic investigations and X-ray diffraction. The fluoride levels in surface and groundwater for the dry season range from 0.019 - 50.14 mg/L, on average above the WHO permissible limit. The high fluoride occurs both in the lake and groundwater. Preliminary petrographic studies show considerable fluoride in micas. The study is on-going and plans to present the relative abundances of fluoride in the lithology as the sources and the fluoride enrichment pathways of the groundwater within the Central Kenya rift.
NASA Astrophysics Data System (ADS)
Holbrook, W. S.; Carr, B.; Pasquet, S.; Sims, K. W. W.; Dickey, K.
2016-12-01
Despite the prominence of Yellowstone as the world's most active hydrothermal province, relatively little is known about the plumbing systems that link deeper hydrothermal fluids to the charismatic hot springs, geysers and mud pots at the surface. We present the results of a multi-method, multi-scale geophysical investigation of the Obsidian Pool Thermal Area (OPTA) in Yellowstone National Park. OPTA hosts acid-sulfate hot springs and mud pots with relatively low pH. We present the results of seismic refraction, electrical resistivity, time-domain EM (TEM), soil conductivity meter (EMI), and GPR data acquired in July 2016. There is a strong contrast in physical properties in the upper 50 m of the subsurface between the low-lying hydrothermal area and surrounding hills: the hydrothermal area has much lower seismic velocities ( 1 km/s vs 3 km/s) and electrical resistivity ( 20 ohm-m vs 300 ohm-m). A prominent zone of very low resistivity (<10 ohm-m) exists at about 20 m depth beneath all hydrothermal features. Poisson's ratio, calculated from P-wave refraction tomography and surface wave inversions, shows low values beneath the "frying pan," where gas is emerging in small fumaroles, suggesting that Poisson's ratio is an effective "gas detector" in hydrothermal areas. Near-surface resistivity mapped from EMI shows a strong correlation with hydrothermal areas previously mapped by heat flow, with areas of high heat flow generally having low resistivity near the surface. Two exceptions are (1) the "frying pan," which shows a central area of high resistivity (corresponding to escaping gas) surrounding by a halo of low resistivity, and (2) a broad area of low resistivity connecting the hydrothermal centers to the lake, which may be clay deposits. TEM data penetrate up to 200 m in depth and suggest that a reservoir of hydrothermal fluids may underlie the entire area, including beneath the forested hills, at depths greater than 100 m, but that they rise toward the surface in a 100-m-wide area just west of the frying pan. Our results show that synoptic, multi-scale geophysical measurements can place important constraints on the subsurface pathways of hydrothermal waters and gas.
Diffuse degassing through magmatic arc crust (Invited)
NASA Astrophysics Data System (ADS)
Manning, C. E.; Ingebritsen, S.
2013-12-01
The crust of magmatic arcs plays an important role in the volatile cycle at convergent margins. The fluxes of subduction- and arc-related volatiles such as H2O, C, Cl, S are poorly known. It is commonly believed that gases emitted from volcanoes account nearly quantitatively for the volatiles that cross the Moho beneath the volcanic front. This volcanic degassing may occur during eruption, emission from summit fumaroles and hot springs, or more 'diffuse' delivery to volcano flanks. However, several observations suggest that volatiles also transit arc crust by even more diffuse pathways, which could account for significant volatile loss on long time and length scales. Active metamorphism of arc crust produces crustal-scale permeability that is sufficient to transport a large volume of subducted volatiles (Ingebritsen and Manning, 2002, PNAS, 99, 9113). Arc magmas may reach volatile saturation deeper than the maximum depths recorded by melt inclusions (e.g., Blundy et al., 2010, EPSL, 290, 289), and exhumed sections of magmatic arc crust typically record voluminous plutons reflecting magma crystallization and volatile loss at depths well below the volcanic edifice. At shallower depths, topographically driven meteoric groundwater systems can absorb magmatic volatiles and transport them laterally by tens of km (e.g., James et al., 1999, Geology, 27, 823; Evans et al., 2002, JVGR, 114, 291). Hydrothermal ore deposits formed at subvolcanic depths sequester vast amounts of volatiles, especially sulfur, that are only returned to the surface on the time scale of exhumation and/or erosion. Water-rich metamorphic fluids throughout the crust can readily carry exsolved volcanic gases because the solubilities of volatile bearing minerals such as calcite, anhydrite, and fluorite are quite high at elevated pressure and temperature (e.g., Newton and Manning, 2002, Am Min, 87, 1401; 2005, J Pet, 46, 701; Tropper and Manning, 2007, Chem Geol, 242, 299). Taken together, these considerations dictate that volatile entrainment in the metamorphic/meteoric fluid-flow system represents a highly diffuse pathway for degassing through arc crust which must be taken into account in models of volatile cycling at convergent margins.
NASA Astrophysics Data System (ADS)
Troiano, A.; Di Giuseppe, M. G.; Patella, D.; Troise, C.; De Natale, G.
2014-05-01
We describe the results from a combined controlled source audio magnetotelluric (CSAMT) and natural source magnetotelluric (MT) survey carried out in the Solfatara-Pisciarelli (S-P) area, located in the central part of the Campi Flegrei (CF) composite caldera, west of Naples, Southern Italy. The S-P area represents the most active zone within the CF caldera, in terms of hydrothermal manifestations and local seismicity. Since 1969, the CF caldera is experiencing ground deformation, seismicity and geochemical fluid changes, which are particularly evident in the S-P area. A 1 km long, nearly W-E directed CSAMT-MT profile crossing the fumarole field was carried out in the S-P area with the aim of deducting a resistivity model of the structural setting of the hydrothermal system in the first 3 km depth. An interpretation of the modelled section across the profile is given in this paper, taking advantage from already existing seismic, gravity and geochemical data in the same area. Three well distinct zones have been outlined. The first zone is a very shallow, electrically conductive body localized beneath the westernmost segment of the profile, which, within a short distance of about 100 m, dips westwards from near surface down to some hundred metres in depth. Mostly accounting for the very low resistivity (1-10 Ω m) and the exceedingly high values of vP/vS (> 4), this shallow zone has been ascribed to a water-saturated, high-pressurized geothermal reservoir. The second zone, which has been localized below the west-central portion of the CSAMT-MT transect, appears as a composite body made up of a nearly vertical plumelike structure that escapes at about 2.25 km depth from the top edge of the east side of a presumably horizontal platelike body. The plumelike structure rises up to the free surface in correspondence of the fumarole field, whereas the platelike structure deepens at least down to the 3 km of maximum exploration depth. The combined interpretation of resistivity (50-100 Ω m), body wave velocity ratio (vP/vS < 2.0), mass density contrast (Δσ < 0 g/cm3), and geochemical data indicates that the plumelike portion can likely be associated with a steam/gas-saturated column and the platelike portion with a high temperature (> 300 °C), over-pressurized, gas-saturated reservoir. Finally, the third zone, which has been localized beneath the eastern half of the transect, from about 1.2 km down to about 3 km of depth, is also characterized by very low resistivity values (1-10 Ω m). Jointly interpreted with seismic (vP/vS < 1.73) and gravity (⨂⌠ > 0 g/cm3) data, this last electrically conductive structure appears to be associated with a hydrothermally mineralized, clay-rich body.
NASA Astrophysics Data System (ADS)
Liuzzo, M.; Di Muro, A.; Giudice, G.; Michon, L.; Ferrazzini, V.; Gurrieri, S.
2015-12-01
Piton de la Fournaise (PdF) is recognized as one of the world's most active volcanoes in terms of eruptive frequency and the substantial quantity of lava produced. Yet with the sole exception of rather modest intracrateric fumarole activity, this seems to be in contrast with an apparent absence of any type of natural fluid emission during periods of quiescence. Measurement campaigns were undertaken during a long-lasting quiescent period (2012-2014) and just after a short-lived summit eruption (June 2014) in order to identify potential degassing areas in relation to the main structural features of the volcano (e.g., rift zones) with the aim of developing a broader understanding of the geometry of the plumbing and degassing system. In order to assess the possible existence of anomalous soil CO2 flux, 513 measurements were taken along transects roughly orthogonal to the known tectonic lineaments crossing PdF edifice. In addition, 53 samples of gas for C isotope analysis were taken at measurement points that showed a relatively high CO2 concentration in the soil. CO2 flux values range from 10 to 1300 g m-2 d-1 while δ13C are between -26.6 and -8‰. The results of our investigation clearly indicate that there is a strong spatial correlation between the anomalous high values of diffusive soil emissions and the main rift zones cutting the PdF massif and, moreover, that generally high soil CO2 fluxes show a δ13C signature clearly related to a magmatic origin.
NASA Astrophysics Data System (ADS)
Chiodini, G.; Vilardo, G.; Augusti, V.; Granieri, D.; Caliro, S.; Minopoli, C.; Terranova, C.
2007-12-01
A permanent automatic infrared (IR) station was installed at Solfatara crater, the most active zone of Campi Flegrei caldera. After a positive in situ calibration of the IR camera, we analyze 2175 thermal IR images of the same scene from 2004 to 2007. The scene includes a portion of the steam heated hot soils of Solfatara. The experiment was initiated to detect and quantify temperature changes of the shallow thermal structure of a quiescent volcano such as Solfatara over long periods. Ambient temperature is the main parameter affecting IR temperatures, while air humidity and rain control image quality. A geometric correction of the images was necessary to remove the effects of slow movement of the camera. After a suitable correction the images give a reliable and detailed picture of the temperature changes, over the period October 2004 to January 2007, which suggests that origin of the changes were linked to anthropogenic activity, vegetation growth, and the increase of the flux of hydrothermal fluids in the area of the hottest fumaroles. Two positive temperature anomalies were registered after the occurrence of two seismic swarms which affected the hydrothermal system of Solfatara in October 2005 and October 2006. It is worth noting that these signs were detected in a system characterized by a low level of activity with respect to systems affected by real volcanic crisis where more spectacular results will be expected. Results of the experiment show that this kind of monitoring system can be a suitable tool for volcanic surveillance.
NASA Astrophysics Data System (ADS)
Jean-Baptiste, P.; Allard, P.; Fourré, E.; Bani, P.; Calabrese, S.; Aiuppa, A.; Gauthier, P. J.; Parello, F.; Pelletier, B.; Garaebiti, E.
2016-08-01
We report the first helium isotope survey of volcanic gases, hot springs and some olivine phenocrysts along the Vanuatu island arc, from Tanna in the south to Vanua Lava in the north. Low CO2 content and low 3He/4He ratios in thermal fluids of Epi (4.0 ± 0.1 Ra), Efate (4.5 ± 0.1 Ra) and Pentecost (5.3 ± 0.5 Ra) islands coherently indicate reduced mantle gas leakage and crustal contamination by radiogenic helium on these extinct volcanic systems of the former (Pliocene) arc. Instead, presently active Vanuatu volcanoes display 3He/4He and C/3He ratios typical of subduction-related volcanic arcs: 3He/4He ratios range from 6.4 ± 0.5 Ra in southernmost Tanna and 7.23 ± 0.09 Ra in northernmost Vanua Lava to typical MORB values in the central islands of Gaua (7.68 ± 0.06 Ra), Ambrym (7.6 ± 0.8 Ra) and Ambae (7 ± 2 Ra in groundwaters, 7.9 ± 1.4 Ra in olivine phenocrysts, and 8.0 ± 0.1 Ra in summit fumaroles of Aoba volcano). On Ambrym, however, we discover that hydrothermal manifestations separated by only 10-15 km on both sides of a major E-W transverse fault zone crossing the island are fed by two distinct helium sources, with different 3He/4He signatures: while fluids in southwest Ambrym (Baiap and Sesivi areas) have typical arc ratios (7.6 ± 0.8 Ra), fluids on the northwest coast (Buama Bay area) display both higher 3He/4He ratios (9.8 ± 0.2 Ra in waters to 10.21 ± 0.08 Ra in bubbling gases) and lower C/3He ratios that evidence a hotspot influence. We thus infer that the influx of Indian MORB mantle beneath the central Vanuatu arc, from which Ambrym magmas originate, also involves a 3He-rich hotspot component, possibly linked to a westward influx of Samoan hotspot material or another yet unknown local source. This duality in magmatic He source at Ambrym fits with the bimodal composition and geochemistry of the erupted basalts, implying two distinct magma sources and feeding systems. More broadly, the wide He isotopic variations detected along the Vanuatu arc further verify the complex tectonic and magmatic framework of this intra-oceanic island arc.
Long-term geochemical surveillance of fumaroles at Showa-Shinzan dome, Usu volcano, Japan
Symonds, R.B.; Mizutani, Y.; Briggs, P.H.
1996-01-01
This study investigates 31 years of fumarole gas and condensate (trace elements) data from Showa-Shinzan, a dacitic dome-cryptodome complex that formed during the 1943-1945 eruption of Usu volcano. Forty-two gas samples were collected from the highest-temperature fumarole, named A-1, from 1954 (800??C) to 1985 (336??C), and from lower-temperature vents. Condensates were collected contemporaneously with the gas samples, and we reanalyzed ten of these samples, mostly from the A-1 vent, for 32 cations and three anions. Modeling using the thermochemical equilibrium program, SOLVGAS, shows that the gas samples are mild disequilibrium mixtures because they: (a) contain unequilibrated sedimentary CH4 and NH3; (b) have unequilibrated meteoric water; or (c) lost CO, either by air oxidation or by absorption by the sodium hydroxide sampling solution. SOLVGAS also enabled us to restore the samples by removing these disequilibrium effects, and to estimate their equilibrium oxygen fugacities and amounts of S2 and CH4. The restored compositions contain > 98% H2O with minor to trace amounts of CO2, H2, HCl, SO2, HF, H2S, CO, S2 and CH4. We used the restored gas and condensate data to test the hypotheses that these time-series compositional data from the dome's fumaroles provide: (1) sufficient major-gas data to analyze long-term degassing trends of the dome's magma-hydrothermal system without the influence of sampling or contamination effects; (2) independent oxygen fugacity-versus-temperature estimates of the Showa-Shinzan dacite; (3) the order of release of trace elements, especially metals, from magma; and (4) useful information for assessing volcanic hazards. The 1954-1985 restored A-1 gas compositions confirm the first hypothesis because they are sufficient to reveal three long-term degassing trends: (1) they became increasingly H2O-rich with time due to the progressive influx of meteoric water into the dome; (2) their C/S and S/Cl ratios decreased dramatically while their Cl/F ratios stayed roughly constant, indicating the progressive outgassing of less soluble components (F ??? Cl > S > C) from the magma reservoir; and (3) their H2O/H2, CO2/CO and H2S/SO2 ratios increased significantly in concert with equilibrium changes expected for the ??? 500??C temperature drop. When plotted against reciprocal temperature, the restored-gas log oxygen fugacities follow a tight linear trend from 800??C to NNO + 2.5 at ??? 400??C. This trend largely disproves the second hypothesis because the oxygen fugacities for the < 800??C restored gases can only be explained by mixing of hot magmatic gases with ??? 350??C steam from superheated meteoric water. But above 800??C this trend intersects the opposing linear trend for other Usu eruptive products, implying a log oxygen fugacity of -11.45 at 902??C for the Showa-Shinzan magma. The time-series trace-element data also disprove the third hypothesis because rock- and incrustation-particle contaminants in the condensates account for most of the trace-element variation. Nonetheless, highly volatile elements like B and As are relatively unaffected by this particle contamination, and they show similar time-series trends as Cl and F. Finally, except for infrequent sampling around the 1977 Usu eruption, the results generally confirm the fourth hypothesis, since the time-series trends for the major gases and selected trace elements indicate that, with time, the system cooled, degassed and was infiltrated by meteoric water, all of which are positive signs that volcanic activity declined over the 31-year history. This study also suggests that second boiling of shallow magma within and possibly beneath the cryptodome sustained magmatic degassing for at least 20 years after emplacement.
Measuring thermal budgets of active volcanoes by satellite remote sensing
NASA Technical Reports Server (NTRS)
Glaze, L.; Francis, P. W.; Rothery, D. A.
1989-01-01
Thematic Mapper measurements of the total radiant energy flux Q at Lascar volcano in north Chile for December 1984 are reported. The results are consistent with the earlier suggestion that a lava lake is the source of a reported thermal budget anomaly, and with values for 1985-1986 that are much lower, suggesting that fumarolic activity was then a more likely heat source. The results show that satellite remote sensing may be used to monitor the activity of a volcano quantitatively, in a way not possible by conventional ground studies, and may provide a method for predicting eruptions.
The danger of collapsing lava domes; lessons for Mount Hood, Oregon
Brantley, S.R.; Scott, W.E.
1993-01-01
Nestled in the crater of Oregon's majestic Mount Hood volcano is Crater Rock, a prominent feature known to thousands of skiers, climbers, and tourists who journey each year to the famous Timberline Lodge located high on the volcano's south flank. Crater Rock stands about 100m above the sloping crater floor and warm fumaroles along its base emit sulfur gases and a faint steam plume that is sometimes visible from the lodge. What most visitors do not know, however, is that Crater Rock is a volcanic lava dome only 200 years old.
Pyroclastic sulphur eruption at Poás volcano, Costa Rica
NASA Astrophysics Data System (ADS)
Francis, P. W.; Thorpe, R. S.; Brown, G. C.
1980-02-01
The recent Voyager missions to Jupiter have highlighted the role of sulphur in volcanic processes on Io1-7. Although fumarolic sulphur and SO2 gas are almost universal in terrestrial active volcanoes, and rare instances of sulphur lava flows have been reported8,9, sulphur in a pyroclastic form has only been described from Poás volcano, Costa Rica10. Here we amplify the original descriptions by Bennett and Raccichini10 and describe a recent eruption of pyroclastic sulphur scoria and ejected blocks that are characterised by miniature sulphur stalactites and stalagmites.
SO2 camera measurements at Lastarria volcano and Lascar volcano in Chile
NASA Astrophysics Data System (ADS)
Lübcke, Peter; Bobrowski, Nicole; Dinger, Florian; Klein, Angelika; Kuhn, Jonas; Platt, Ulrich
2015-04-01
The SO2 camera is a remote-sensing technique that measures volcanic SO2 emissions via the strong SO2 absorption structures in the UV using scattered solar radiation as a light source. The 2D-imagery (usually recorded with a frame rate of up to 1 Hz) allows new insights into degassing processes of volcanoes. Besides the large advantage of high frequency sampling the spatial resolution allows to investigate SO2 emissions from individual fumaroles and not only the total SO2 emission flux of a volcano, which is often dominated by the volcanic plume. Here we present SO2 camera measurements that were made during the CCVG workshop in Chile in November 2014. Measurements were performed at Lastarria volcano, a 5700 m high stratovolcano and Lascar volcano, a 5600 m high stratovolcano both in northern Chile on 21 - 22 November, 2014 and on 26 - 27 November, 2014, respectively. At both volcanoes measurements were conducted from a distance of roughly 6-7 km under close to ideal conditions (low solar zenith angle, a very dry and cloudless atmosphere and an only slightly condensed plume). However, determination of absolute SO2 emission rates proves challenging as part of the volcanic plume hovered close to the ground. The volcanic plume therefore is in front of the mountain in our camera images. An SO2 camera system consisting of a UV sensitive CCD and two UV band-pass filters (centered at 315 nm and 330 nm) was used. The two band-pass filters are installed in a rotating wheel and images are taken with both filter sequentially. The instrument used a CCD with 1024 x 1024 pixels and an imaging area of 13.3 mm x 13.3 mm. In combination with the focal length of 32 mm this results in a field-of-view of 25° x 25°. The calibration of the instrument was performed with help of a DOAS instrument that is co-aligned with the SO2 camera. We will present images and SO2 emission rates from both volcanoes. At Lastarria gases are emitted from three different fumarole fields and we will attempt to investigate the degassing behavior of the individual fumaroles. Lascar volcano only had a very weak plume originating from the active central crater with maximum SO2 column densities of only up to 5 × 1017[molecules/cm2] during our measurements. These low SO2 column densities in combination with the almost ideal measurements conditions will be used to assess the detection limit of our current SO2 camera system.
Geochemical and petrological indicators of volcanic behavior: Merapi volcano, Java, Indonesia
NASA Astrophysics Data System (ADS)
Troll, V. R.; Deegan, F. M.; Jolis, E. M.; Chadwick, J.; Blythe, L. S.; Freda, C.; Hilton, D. R.; Schwarzkopf, L. M.; Gertisser, R.; Zimmer, M.
2011-12-01
Gunung Merapi, one of Indonesia's most active volcanoes, is characterized by long periods of dome growth and intermittent explosive pyroclastic events. Merapi currently degasses continuously through high-T fumaroles (>200°C), and erupts crystal-rich basaltic-andesite that contains a large range of igneous and calc-silicate crustal inclusions. To evaluate mechanisms that trigger explosive eruptions, we sampled lavas, inclusions (xenoliths), and gas from active fumaroles. Additionally, we established a time-integrated experiment reaction series mimicking crustal assimilation at Merapi under magmatic conditions. Merapi lava contains abundant plagioclase crystals which show complex zoning and vary in anorthite (An) content between 40 and 95 mol% across resorption surfaces. A negative correlation between An mol% and other indicators of magmatic fractionation, such as MgO and FeO, has been observed. Moreover, Sr isotope analyses of discrete zones in plagioclase yields 87Sr/86Sr values that notably exceed those of the host lavas. Zones with the highest An content also tend to show the highest radiogenic Sr values, consistent with a Ca-rich, high-87Sr/86Sr crustal contaminant. Abundant metamorphosed limestone xenoliths contain compositionally identical feldspar to the high-An population in the lavas, demonstrating that magma-crust interaction is a significant process at Merapi. Carbon isotope ratios of fumarole CO2 sampled during quiescent degassing periods form a baseline of δ13C2001-2008 = -4.1%. The notable exceptions are the 2006 values, obtained immediately after the eruption and the 6.4 magnitude Yogyakarta earthquake, which show elevated δ13C values up to -2.4%. Notably, the rise in δ13C values coincided with an increase in eruptive intensity and volcano seismicity by a factor of 3 to 5 for several weeks after the earthquake. This is consistent with addition of a late-stage, crustal volatile component added to purely mantle and slab-derived volatile sources. This observation argues for extensive and ongoing magma-crust interaction beneath the volcano, especially during eruptive and/or seismic events. Our high P-T experiments show that interaction between Merapi magma and limestone can rapidly liberate crustal CO2 on a timescale of only seconds to minutes. We therefore expect vigorous CO2 bubble nucleation and growth on a scale of perhaps hours to days in nature. Late volatile input could therefore accelerate or trigger explosive eruptions independently of magmatic recharge and fractionation by sudden over-pressurization of the upper parts of the magma system. Such an event would provide shallow seismic warning signals immediately prior to an erratic, CO2-driven, eruption crisis. Thus we conclude that crust-mantle interaction processes have serious implications for eruptive behavior, volatile emission, and hazard management at Merapi and similar systems elsewhere.
MAGA, a new database of gas natural emissions: a collaborative web environment for collecting data.
NASA Astrophysics Data System (ADS)
Cardellini, Carlo; Chiodini, Giovanni; Frigeri, Alessandro; Bagnato, Emanuela; Frondini, Francesco; Aiuppa, Alessandro
2014-05-01
The data on volcanic and non-volcanic gas emissions available online are, as today, are incomplete and most importantly, fragmentary. Hence, there is need for common frameworks to aggregate available data, in order to characterize and quantify the phenomena at various scales. A new and detailed web database (MAGA: MApping GAs emissions) has been developed, and recently improved, to collect data on carbon degassing form volcanic and non-volcanic environments. MAGA database allows researchers to insert data interactively and dynamically into a spatially referred relational database management system, as well as to extract data. MAGA kicked-off with the database set up and with the ingestion in to the database of the data from: i) a literature survey on publications on volcanic gas fluxes including data on active craters degassing, diffuse soil degassing and fumaroles both from dormant closed-conduit volcanoes (e.g., Vulcano, Phlegrean Fields, Santorini, Nysiros, Teide, etc.) and open-vent volcanoes (e.g., Etna, Stromboli, etc.) in the Mediterranean area and Azores, and ii) the revision and update of Googas database on non-volcanic emission of the Italian territory (Chiodini et al., 2008), in the framework of the Deep Earth Carbon Degassing (DECADE) research initiative of the Deep Carbon Observatory (DCO). For each geo-located gas emission site, the database holds images and description of the site and of the emission type (e.g., diffuse emission, plume, fumarole, etc.), gas chemical-isotopic composition (when available), gas temperature and gases fluxes magnitude. Gas sampling, analysis and flux measurement methods are also reported together with references and contacts to researchers expert of each site. In this phase data can be accessed on the network from a web interface, and data-driven web service, where software clients can request data directly from the database, are planned to be implemented shortly. This way Geographical Information Systems (GIS) and Virtual Globes (e.g., Google Earth) could easily access the database, and data could be exchanged with other database. At the moment the database includes: i) more than 1000 flux data about volcanic plume degassing from Etna and Stromboli volcanoes, ii) data from ~ 30 sites of diffuse soil degassing from Napoletan volcanoes, Azores, Canary, Etna, Stromboli, and Vulcano Island, several data on fumarolic emissions (~ 7 sites) with CO2 fluxes; iii) data from ~ 270 non volcanic gas emission site in Italy. We believe MAGA data-base is an important starting point to develop a large scale, expandable data-base aimed to excite, inspire, and encourage participation among researchers. In addition, the possibility to archive location and qualitative information for gas emission/sites not yet investigated, could stimulate the scientific community for future researches and will provide an indication on the current uncertainty on deep carbon fluxes global estimates
NASA Astrophysics Data System (ADS)
Hill, D. P.
1984-06-01
Recent patterns of geologic unrest in long Valley caldera in east-central California emphasize that this large, silicic volcanic system and the adjacent, geologically youthful Inyo-Mono Craters volcanic chain are still active and capable of producing locally hazardous volcanic eruptions. A series of four magnitude -6 earthquakes in May 1980 called attention to this current episode of unrest, and subsequent activity has included numerous earthquake swarms in the south moat of the caldera accompanied by inflation of the resurgent dome by more than 50 cm over the last five years. The seismicity associated with this unrest is currently monitored by a network of 31 telemetered seismic stations with an automatic processing system that yelds hypocentral locations and earthquake magnitudes in near-real time. Deformation of the ground is monitored by a) a series of overlapping trilateration networks that provide coverage ranging from annual measurements of regional deformation to daily measurements of deformation local to the active, southern section of the caldera, b) a regional network of level lines surveyed annually, c) a regional network of precise gravity stations occupied annually, d) local, L-shaped level figures surveyed every few months, and e) a network of fourteen borehole tiltmeter clusters (two instruments in each cluster) and a borehole dilatometer, the telemetered signals from which provide continuous data on deformation rates. Additional telemetered data provide continuous information on fluctuations in the local magnetic field, hydrogen gas emission rates at three sites, and water level and temperatures in three wells. Continuous data on disharge rates and temperatures from hot springs and fumaroles are collected by several on-site recorders within the caldera, and samples for liquid and gas chemistry are collected several times per year from selected hot springs and fumaroles.
Intense magmatic degassing through the lake of Copahue volcano, 2013-2014
NASA Astrophysics Data System (ADS)
Tamburello, G.; Agusto, M.; Caselli, A.; Tassi, F.; Vaselli, O.; Calabrese, S.; Rouwet, D.; Capaccioni, B.; Di Napoli, R.; Cardellini, C.; Chiodini, G.; Bitetto, M.; Brusca, L.; Bellomo, S.; Aiuppa, A.
2015-09-01
Here we report on the first assessment of volatile fluxes from the hyperacid crater lake hosted within the summit crater of Copahue, a very active volcano on the Argentina-Chile border. Our observations were performed using a variety of in situ and remote sensing techniques during field campaigns in March 2013, when the crater hosted an active fumarole field, and in March 2014, when an acidic volcanic lake covered the fumarole field. In the latter campaign, we found that 566 to 1373 t d-1 of SO2 were being emitted from the lake in a plume that appeared largely invisible. This, combined with our derived bulk plume composition, was converted into flux of other volcanic species (H2O ~ 10989 t d-1, CO2 ~ 638 t d-1, HCl ~ 66 t d-1, H2 ~ 3.3 t d-1, and HBr ~ 0.05 t d-1). These levels of degassing, comparable to those seen at many open-vent degassing arc volcanoes, were surprisingly high for a volcano hosting a crater lake. Copahue's unusual degassing regime was also confirmed by the chemical composition of the plume that, although issuing from a hot (65°C) lake, preserves a close-to-magmatic signature. EQ3/6 models of gas-water-rock interaction in the lake were able to match observed compositions and demonstrated that magmatic gases emitted to the atmosphere were virtually unaffected by scrubbing of soluble (S and Cl) species. Finally, the derived large H2O flux (10,988 t d-1) suggested a mechanism in which magmatic gas stripping drove enhanced lake water evaporation, a process likely common to many degassing volcanic lakes worldwide.
Hydrothermal monitoring in a quiescent volcanic arc: Cascade Range, northwestern United States
Ingebritsen, S.E.; Randolph-Flagg, N. G.; Gelwick, K.D.; Lundstrom, E.A.; Crankshaw, I.M.; Murveit, A.M.; Schmidt, M.E.; Bergfeld, D.; Spicer, K.R.; Tucker, D.S.; Mariner, R.H.; Evans, William C.
2014-01-01
Ongoing (1996–present) volcanic unrest near South Sister, Oregon, is accompanied by a striking set of hydrothermal anomalies, including elevated temperatures, elevated major ion concentrations, and 3He/4He ratios as large as 8.6 RA in slightly thermal springs. These observations prompted the US Geological Survey to begin a systematic hydrothermal-monitoring effort encompassing 25 sites and 10 of the highest-risk volcanoes in the Cascade volcanic arc, from Mount Baker near the Canadian border to Lassen Peak in northern California. A concerted effort was made to develop hourly, multiyear records of temperature and/or hydrothermal solute flux, suitable for retrospective comparison with other continuous geophysical monitoring data. Targets included summit fumarole groups and springs/streams that show clear evidence of magmatic influence in the form of high 3He/4He ratios and/or anomalous fluxes of magmatic CO2 or heat. As of 2009–2012, summit fumarole temperatures in the Cascade Range were generally near or below the local pure water boiling point; the maximum observed superheat was 3 during periods of hourly record. Hydrothermal responses to these small seismic stimuli were generally undetectable or ambiguous. Evaluation of multiyear to multidecadal trends indicates that whereas the hydrothermal system at Mount St. Helens is still fast-evolving in response to the 1980–present eruptive cycle, there is no clear evidence of ongoing long-term trends in hydrothermal activity at other Cascade Range volcanoes that have been active or restless during the past century (Baker, South Sister, and Lassen). Experience gained during the Cascade Range hydrothermal-monitoring experiment informs ongoing efforts to capture entire unrest cycles at more active but generally less accessible volcanoes such as those in the Aleutian arc.
NASA Astrophysics Data System (ADS)
Shinohara, Hiroshi; Geshi, Nobuo; Yokoo, Akihiko; Ohkura, Takahiro; Terada, Akihiko
2018-03-01
A hot and acid crater lake is located in the Nakadake crater, Aso volcano, Japan. The volume of water in the lake decreases with increasing activity, drying out prior to the magmatic eruptions. Salt-rich materials of various shapes were observed, falling from the volcanic plume during the active periods. In May 2011, salt flakes fell from the gas plume emitted from an intense fumarole when the acid crater lake was almost dry. The chemical composition of these salt flakes was similar to those of the salts formed by the drying of the crater lake waters, suggesting that they originated from the crater lake water. The salt flakes are likely formed by the drying up of the crater lake water droplets sprayed into the plume by the fumarolic gas jet. In late 2014, the crater lake dried completely, followed by the magmatic eruptions with continuous ash eruptions and intermittent Strombolian explosions. Spherical hollow salt shells were observed on several occasions during and shortly after the weak ash eruptions. The chemical composition of the salt shells was similar to the salts formed by the drying of the crater lake water. The hollow structure of the shells suggests that they were formed by the heating of hydrothermal solution droplets suspended by a mixed stream of gas and ash in the plume. The salt shells suggest the existence of a hydrothermal system beneath the crater floor, even during the course of magmatic eruptions. Instability of the magmatic-hydrothermal interface can cause phreatomagmatic explosions, which often occur at the end of the eruptive phase of this volcano.
Hydrothermal heat discharge in the Cascade Range, northwestern United States
Ingebritsen, S.E.; Mariner, R.H.
2010-01-01
Hydrothermal heat discharge in the Cascade Range includes the heat discharged by thermal springs, by "slightly thermal" springs that are only a few degrees warmer than ambient temperature, and by fumaroles. Thermal-spring heat discharge is calculated on the basis of chloride-flux measurements and geothermometer temperatures and totals ~ 240 MW in the U.S. part of the Cascade Range, excluding the transient post-1980 discharge at Mount St. Helens (~80 MW as of 2004-5). Heat discharge from "slightly thermal" springs is based on the degree of geothermal warming (after correction for gravitational potential energy effects) and totals ~. 660. MW. Fumarolic heat discharge is calculated by a variety of indirect and direct methods and totals ~160 MW, excluding the transient mid-1970s discharge at Mount Baker (~80 MW) and transient post-1980 discharge at Mount St. Helens (>. 230. MW as of 2005). Other than the pronounced transients at Mount St. Helens and Mount Baker, hydrothermal heat discharge in the Cascade Range appears to be fairly steady over a ~25-year period of measurement. Of the total of ~. 1050. MW of "steady" hydrothermal heat discharge identified in the U.S. part of the Cascade Range, less than 50. MW occurs north of latitude 45??15' N (~0.1 MW per km arc length from 45??15' to 49??N). Much greater rates of hydrothermal heat discharge south of 45??15'N (~1.7 MW per km arc length from 40?? to 45??15'N) may reflect the influence of Basin and Range-style extensional tectonics (faulting) that impinges on the Cascades as far north as Mount Jefferson but is not evident farther north. ?? 2010.
NASA Astrophysics Data System (ADS)
Briqueu, Louis; Lancelot, Joël R.
1984-03-01
Since the Santorini Volcano (Aegean arc, eastern Mediterranean Sea) collapsed, volcanic activity has been located at the center of the flooded caldera. Over the past 800 years, five lava flows have formed one of the central islets (Nea-Kameni). Since 1951, when the last eruption occurred, a permanent fumarolic activity has remained. We present chemical analyses (major elements, trace-elements and Sr isotopic ratios) of ten samples from the five hyalodacitic lava flows, showing different stages of alteration, from a completely fresh lava up to one bearing native sulfur and other sublimates. Only the macroscopic aspect of these hyalodacites is affected by fumarolic activity. The elements that are mobile as a result of hydrothermal processes, such as the alkaline (K, Rb) or the chalcophile elements (Zn, Pb), show great homogeneity; the same can be said for the Sr isotopic compositions which range from 0.7046 to 0.7049. None of the analyzed samples has an Sr isotopic composition as high as those reported by Puchelt and Hoefs (1971) for rock samples collected in the same lava flows. If we take into account the marine surroundings of Nea-Kameni islet, these observations put severe restraints on the different hypotheses regarding the origin of the halogens (seawater or meteoric water). The contamination processes of these dacitic lavas are clearly less important than assumed by other authors according to previous Sr isotopic data. Finally, the homogeneity of the elements with low partition coefficients is sufficient to show that the magma has not undergone any perceptible evolution during the last 300 years.
NASA Astrophysics Data System (ADS)
Carapezza, M. L.; Barberi, F.; Ranaldi, M.; Ricci, T.; Tarchini, L.; Barrancos, J.; Fischer, C.; Perez, N.; Weber, K.; Di Piazza, A.; Gattuso, A.
2011-10-01
La Fossa crater on Vulcano Island is quiescent since 1890. Periodically it undergoes "crises" characterized by marked increase of temperature (T), gas output and concentration of magmatic components in the crater fumaroles (T may exceed 600 °C). During these crises, which so far did not lead to any eruptive reactivation, the diffuse CO 2 soil degassing also increases and in December 2005 an anomalous CO 2 flux of 1350 tons/day was estimated by 1588 measurements over a surface of 1.66 km 2 extending from La Fossa crater to the inhabited zone of Vulcano Porto. The crater area and two other anomalously degassing sites (Levante Beach and Palizzi) have been periodically investigated from December 2004 to August 2010 for diffuse CO 2 soil flux. They show a marked variation with time of the degassing rate, with synchronous maxima in December 2005. Carbon dioxide soil flux and environmental parameters have been also continuously monitored for over one year by an automatic station at Vulcano Porto. In order to assess the hazard of the endogenous gas emissions, CO 2 and H 2S air concentrations have been measured by Tunable Diode Laser profiles near the fumaroles of the crater rim and of the Levante Beach area, where also the viscous gas flux has been estimated. In addition, CO 2 air concentration has been measured both indoor and outdoor in an inhabited sector of Vulcano Porto. Results show that in some sites usually frequented by tourists there is a dangerous H 2S air concentration and CO 2 exceeds the hazardous thresholds in some Vulcano houses. These zones should be immediately monitored for gas hazard should a new crisis arise.
NASA Astrophysics Data System (ADS)
Rosas-Carbajal, M.; Marteau, J.; Tramontini, M.; de Bremond d Ars, J.; Le Gonidec, Y.; Carlus, B.; Ianigro, J. C.; Deroussi, S.; Komorowski, J. C.; Gibert, D.
2017-12-01
Muon imaging has recently emerged as a powerful method to complement standard geophysical tools in the study of the Earth's subsurface. Muon measurements yield a radiography of the average density along the muon path, allowing to image large volumes of a geological body from a single observation point. Long-term measurements allow to infer density changes by tracking the associated variations in the muon flux. In the context of volcanic hydrothermal systems, this approach helps to characterize zones of steam formation, condensation, water infiltration and storage. We present results of imaging the La Soufrière de Guadeloupe dome and shallow active hydrothermal system with a network of muon telescopes viewing the dome from different positions around its base. First, we jointly invert the muon radiographies of the different telescopes with gravity data to obtain a three-dimensional density model of the lava dome. The model reveals an extended low density region where the hydrothermal system is most active. We then analyze the dynamics of the hydrothermal system from long-term measurements (more than 2 years of almost non-interrupted acquisition) with 5 simultaneous muon telescopes. We identify a periodicity of 1-2 months in the density increase/decrease in the most active zones below fumaroles and acid boiling ponds. Our simultaneous-muon telescope strategy provides constraints on the three-dimensional location of the density changes and an improved quantification of the associated mass flux changes. We compare the temporal trends acquired by the different muon telescopes to time-series of rainfall on the summit recharge area as well as to ground temperature profiles in the vicinity of thermal anomalies and high-discharge summit fumaroles.
NASA Astrophysics Data System (ADS)
Gammaldi, S.; Amoroso, O.; D'Auria, L.; Zollo, A.
2018-05-01
A multi-2D imaging of the Solfatara Crater inside the Campi Flegrei Caldera, was obtained by the joint interpretation of geophysical evidences and the new active seismic dataset acquired during the RICEN experiment (EU project MEDSUV) in 2014. We used a total of 17,894 first P-wave arrival times manually picked on pre-processed waveforms, recorded along two 1D profiles criss-crossing the inner Solfatara crater, and performed a tomographic inversion based on a multi-scale strategy and a Bayesian estimation of velocity parameters. The resulting tomographic images provide evidence for a low velocity (500-1500 m/s) water saturated deeper layer at West near the outcropping evidence of the Fangaia, contrasted by a high velocity (2000-3200 m/s) layer correlated with a consolidated tephra deposit. The transition velocity range (1500-2000 m/s) layer suggests a possible presence of a gas-rich, accumulation volume. Thanks to the mutual P-wave velocity model, we infer a detailed image for the gas migration path to the Earth surface. The gasses coming from the deep hydrothermal plume accumulate in the central and most depressed area of the Solfatara being trapped by the meteoric water saturated layer. Therefore, the gasses are transmitted through the buried fault toward the east part of the crater, where the ring faults facilitate the release as confirmed by the fumaroles. Starting from the eastern surface evidence of the gas releasing in the Bocca Grande and Bocca Nuova fumaroles, and the presence of the central deeper plume we suggest a fault situated in the central part of the crater which seems to represent the main buried conduit among them plays a key role.
NASA Technical Reports Server (NTRS)
Morris, R. V.; Ming, D. W.; Gellert, R.; Yen, A.; Clark, B. C.; Gnaff, T. G.; Arvidson, R. E.; Squyres, S. W.
2008-01-01
The Alpha Particle X-ray Spectrometer (APXS) instrument on the Mars Exploration Rover (MER) Spirit measured three targets on or adjacent to Home Plate in Gusev Crater that have unusually high SiO2 concentrations (68% to 91%), unusually low FeO concentrations (1% to 7%, with total Fe as FeO), and unusually high TiO2/FeO ratios (0.2 to 1.2 by weight) [1]. Two targets (Kenosha Comets and Lefty Ganote) are located on high albedo soil (Gertrude Weise) that was exposed by the rover wheels, and one target is a float rock called Fuzzy Smith. Kenosha Comets has the highest SiO2 concentration, lowest FeO concentration, and highest TiO2/FeO ratio. Mineralogical evidence from the MER Miniature Thermal Emission Spectrometer (Mini-TES) suggests that the SiO2 is present as amorphous (noncrystalline) SiO2 at Gertrude Weise and nearby targets [2,3]. Mini-TES data were not acquired for Fuzzy Smith. Home Plate is considered to have an explosive volcanic origin, resulting when basaltic magma came into contact with ground water or ice [4]. Within 50 m to 1 km of Home Plate are sulfate rich soil deposits (Paso Robles class soils with 22-35% SO3) which are considered to be probable fumarolic and/or hydrothermal deposits associated with the volcanism [5]. We develop the model here, suggested by [5], that the high-silica materials are another manifestation of acid-sulfate processes associated with fumarolic and hydrothermal activity at Home Plate. This is done by analogy with basaltic materials altered by acid sulfate processes on the Island of Hawaii.
Volcanoes as emission sources of atmospheric mercury in the Mediterranean basin
Ferrara; Mazzolai; Lanzillotta; Nucaro; Pirrone
2000-10-02
Emissions from volcanoes, fumaroles and solfataras as well as contributions from widespread geological anomalies could represent an important source of mercury released to the atmosphere in the Mediterranean basin. Volcanoes located in this area (Etna, Stromboli and Vulcano) are the most active in Europe; therefore, it is extremely important to know their mercury contributions to the regional atmospheric budget. Two main methods are used for the evaluation of volcanic mercury flux: a direct determination of the flux (by measuring in the plume) and an indirect one derived from the determination of the Hg/SO2 (or Hg/S) ratio value, as SO2 emissions are constantly monitored by volcanologists. An attempt to estimate mercury flux from the Vulcano volcano and to establish the Hg/S ratio value has been made along three field campaigns carried out in October 1998, in February and May 1999 sampling several fumaroles. Traditional sampling methods were used to collect both total Hg and S. The average Hg/S ratio value resulted to be 1.2 x 10(-7). From the Hg/S value we derived the Hg/SO2 value, and by assuming that all the volcanoes located in this area have the same Hg/SO2 ratio, mercury emissions from Vulcano and Stromboli were estimated to be in the range 1.3-5.5 kg/year and 7.3-76.6 kg/year respectively, while for Etna mercury flux ranged from 61.8 to 536.5 kg/year. Data reported in literature appear to be overestimated (Fitzgerald WF. Mercury emission from volcanos. In: 4th International conference on mercury as a global pollutant, August 4-8 1996, Hamburg, Germany), volcanic mercury emission does not constitute the main natural source of the metal.
NASA Astrophysics Data System (ADS)
Christopher, T. E.; Blundy, J.; Cashman, K.; Cole, P.; Edmonds, M.; Smith, P. J.; Sparks, R. S. J.; Stinton, A.
2015-09-01
Activity since 1995 at Soufrière Hills Volcano (SHV), Montserrat has alternated between andesite lava extrusion and quiescence, which are well correlated with seismicity and ground deformation cycles. Large variations in SO2 flux do not correlate with these alternations, but high and low HCl/SO2 characterize lava dome extrusion and quiescent periods respectively. Since lava extrusion ceased (February 2010) steady SO2 emissions have continued at an average rate of 374 tonnes/day (± 140 t/d), and incandescent fumaroles (temperatures up to 610oC) on the dome have not changed position or cooled. Occasional short bursts (over several hours) of higher (˜ 10x) SO2 flux have been accompanied by swarms of volcano-tectonic earthquakes. Strain data from these bursts indicate activation of the magma system to depths up to 10 km. SO2 emissions since 1995 greatly exceed the amounts that could be derived from 1.1 km3 of erupted andesite, and indicating extensive partitioning of sulfur into a vapour phase, as well as efficient decoupling and outgassing of sulfur-rich gases from the magma. These observations are consistent with a vertically extensive, crustal magmatic mush beneath SHV. Three states of the magmatic system are postulated to control degassing. During dormant periods (103 to 104 years) magmatic vapour and melts separate as layers from the mush and decouple from each other. In periods of unrest (years) without eruption, melt and fluid layers become unstable, ascend and can amalgamate. Major destabilization of the mush system leads to eruption, characterized by magma mixing and release of volatiles with different ages, compositions and sources.
Goff, F.; Janik, C.J.
2002-01-01
Noncondensible gases from hot springs, fumaroles, and deep wells within the Valles caldera geothermal system (210-300??C) consist of roughly 98.5 mo1% CO2, 0.5 mol% H2S, and 1 mol% other components. 3He/4He ratios indicate a deep magmatic source (R/Ra up to 6) whereas ??13C-CO2 values (-3 to -5???) do not discriminate between a mantle/magmatic source and a source from subjacent, hydrothermally altered Paleozoic carbonate rocks. Regional gases from sites within a 50-km radius beyond Valles caldera are relatively enriched in CO2 and He, but depleted in H2S compared to Valles gases. Regional gases have R/Ra values ???1.2 due to more interaction with the crust and/or less contribution from the mantle. Carbon sources for regional CO2 are varied. During 1982-1998, repeat analyses of gases from intracaldera sites at Sulphur Springs showed relatively constant CH4, H2, and H2S contents. The only exception was gas from Footbath Spring (1987-1993), which experienced increases in these three components during drilling and testing of scientific wells VC-2a and VC-2b. Present-day Valles gases contain substantially less N2 than fluid inclusion gases trapped in deep, early-stage, post-caldera vein minerals. This suggests that the long-lived Valles hydrothermal system (ca. 1 Myr) has depleted subsurface Paleozoic sedimentary rocks of nitrogen. When compared with gases from many other geothermal systems, Valles caldera gases are relatively enriched in He but depleted in CH4, N2 and Ar. In this respect, Valles gases resemble end-member hydrothermal and magmatic gases discharged at hot spots (Galapagos, Kilauea, and Yellowstone). Published by Elsevier Science B.V.
Wang, Alian; Bell, J.F.; Li, Ron; Johnson, J. R.; Farrand, W. H.; Cloutis, E.A.; Arvidson, R. E.; Crumpler, L.; Squyres, S. W.; McLennan, S.M.; Herkenhoff, K. E.; Ruff, S.W.; Knudson, A.T.; Chen, Wei; Greenberger, R.
2008-01-01
Light-toned soils were exposed, through serendipitous excavations by Spirit Rover wheels, at eight locations in the Columbia Hills. Their occurrences were grouped into four types on the basis of geomorphic settings. At three major exposures, the light-toned soils are hydrous and sulfate-rich. The spatial distributions of distinct types of salty soils vary substantially: with centimeter-scaled heterogeneities at Paso Robles, Dead Sea, Shredded, and Champagne-Penny, a well-mixed nature for light-toned soils occurring near and at the summit of Husband Hill, and relatively homogeneous distributions in the two layers at the Tyrone site. Aeolian, fumarolic, and hydrothermal fluid processes are suggested to be responsible for the deposition, transportation, and accumulation of these light-toned soils. In addition, a change in Pancam spectra of Tyrone yellowish soils was observed after being exposed to current Martian surface conditions for 175 sols. This change is interpreted to be caused by the dehydration of ferric sulfates on the basis of laboratory simulations and suggests a relative humidity gradient beneath the surface. Si-rich nodules and soils were observed near the major exposures of S-rich soils. They possess a characteristic feature in Pancam visible near-infrared (Vis-NIR) spectra that may be diagnostic of hydrated species, and this spectral feature can be used to search for additional Si-rich species. The exposures of hydrated salty soils within various geomorphic settings imply the potential existence of hydrous minerals in similar settings over a much wider area. Hydrous sulfates represent one of the candidates that may contribute the high level of water equivalent hydrogen in equatorial regions detected by the Neutron Spectrometer on Mars Odyssey.
Liquid and Emulsified Sulfur in Submarine Solfatara Fields of two Northern Mariana Arc Volcanoes.
NASA Astrophysics Data System (ADS)
Nakamura, K.; Embley, R. W.; Chadwick, W. W.; Butterfield, D. A.; Takano, B.; Resing, J. A.; de Ronde, C. E.; Lilley, M. D.; Lupton, J. E.; Merle, S. G.; Inagaki, F.
2006-12-01
Because elemental sulfur melting point is ca 100 deg C (depend on allotropes and heating rate, S8 triple point temperature: 115 deg C), the evidence of liquid sulfur has been known for many subaerial crater lakes and small ponds in geothermal regions throughout the world. But the milky nature of water (sulfur-in- water emulsion in limited water mass) prohibited the direct observation of on-going processes at the bottom of these subaerial lakes. In the passive degassing environment at the summit craters of Daikoku and Nikko Seamounts of the northern Mariana Arc, the continuous flushing of sulfur emulsion by seawater allowed us to observe on- going submarine solfatara processes and associated chemistry through dives with ROVs during the NT05-18 cruise (JAMSTEC R/V Natsushima and ROV hyper-Dolphin) and the Submarine Ring of Fire 2006 cruise (R/V Melville and ROV JASON II). A higher viscosity for liquid elemental sulfur relative to that of seawater, as well as a limited stability of sulfur emulsion (aqueous sulfur sol) at high temperatures in electrolyte solution (seawater), ensures limited mobility of liquid sulfur in the conduits of hydrothermal vents. The subseafloor boiling depth of hydrothermal fluid limits the locus of any liquid sulfur reservoir. It was observed in an exposed liquid sulfur pond that the penetration of gas bubbles (mostly CO2) created sulfur emulsion while collapsing liquid sulfur film between seawater and gas bubbles. Liquid sulfur pits, encrusted sulfur, liquid sulfur fountain structure, sulfur stalactites and stalagmites, mini-pillow lava-like sulfur flows, accretionary sulfur lapilli and sulfur deltas were also observed at the summits of two volcanoes. Note: Solfatara: Italian. A type of fumarole, the gases of which are characteristically sulfurous. In 'Glossary of geology.'
Surface geothermal exploration in the Canary Islands by means of soil CO_{2} degassing surveys
NASA Astrophysics Data System (ADS)
García-Merino, Marta; Rodríguez, Fátima; Padrón, Eleazar; Melián, Gladys; Asensio-Ramos, María; Barrancos, José; Hernández, Pedro A.; Pérez, Nemesio M.
2017-04-01
With the exception of the Teide fumaroles, there is not any evidence of hydrothermal fluid discharges in the surficial environment of the Canary Islands, the only Spanish territory with potential high enthalpy geothermal resources. Here we show the results of several diffuse CO2 degassing surveys carried out at five mining licenses in Tenerife and Gran Canaria with the aim of sorting the possible geothermal potential of these five mining licenses. The primary objective of the study was to reduce the uncertainty inherent to the selection of the areas with highest geothermal potential for future exploration works. The yardstick used to classify the different areas was the contribution of volcano-hydrothermal CO2 in the diffuse CO2 degassing at each study area. Several hundreds of measurements of diffuse CO2 emission, soil CO2 concentration and isotopic composition were performed at each mining license. Based in three different endmembers (biogenic, atmospheric and deep-seated CO2) with different CO2 concentrations (100, 0.04 and 100%, respectively) and isotopic compositions (-24, -8 and -3 per mil vs. VPDB respectively) a mass balance to distinguish the different contribution of each endmember in the soil CO2 at each sampling site was made. The percentage of the volcano-hydrothermal contribution in the current diffuse CO2 degassing was in the range 0-19%. The Abeque mining license, that comprises part of the north-west volcanic rift of Tenerife, seemed to show the highest geothermal potential, with an average of 19% of CO2 being released from deep sources, followed by Atidama (south east of Gran Canaria) and Garehagua (southern volcanic rift of Tenerife), with 17% and 12% respectively.
Fractures, Faults, and Hydrothermal Systems of Puna, Hawaii, and Montserrat, Lesser Antilles
NASA Astrophysics Data System (ADS)
Kenedi, Catherine Lewis
The focus of this work is to use geologic and geophysical methods to better understand the faults and fracture systems at Puna, in southeastern Hawaii, and southern Montserrat, in the Lesser Antilles. The particular interest is understanding and locating the deep fracture networks that are necessary for fluid circulation in hydrothermal systems. The dissertation first presents a study in which identification of large scale faulting places Montserrat into a tectonic context. Then follow studies of Puna and Montserrat that focus on faults and fractures of the deep hydrothermal systems. The first chapter consists of the results of the SEA-CALIPSO experiment seismic reflection data, recorded on a 48 channel streamer with the active source as a 2600 in3 airgun. This chapter discusses volcaniclastic debris fans off the east coast of Montserrat and faults off the west coast. The work places Montserrat in a transtensional environment (influenced by oblique subduction) as well as in a complex local stress regime. One conclusion is that the stress regime is inconsistent with the larger arc due to the influence of local magmatism and stress. The second chapter is a seismic study of the Puna hydrothermal system (PHS) along the Kilauea Lower East Rift Zone. The PHS occurs at a left step in the rift, where a fracture network has been formed between fault segments. It is a productive geothermal field, extracting steam and reinjecting cooled, condensed fluids. A network of eight borehole seismometers recorded >6000 earthquakes. Most of the earthquakes are very small (< M.2), and shallow (1-3 km depth), likely the result of hydrothermal fluid reinjection. Deeper earthquakes occur along the rift as well as along the south-dipping fault plane that originates from the rift zone. Seismic methods applied to the PHS data set, after the initial recording, picking, and locating earthquakes, include a tomographic inversion of the P-wave first arrival data. This model indicates a high seismic velocity under the field that is thought to be an intrusion and the heat source of the hydrothermal system. A shear wave splitting study suggested the PHS fracture system is largely oriented rift-parallel with some orthogonal fractures. Shear wave splitting data also were used in a tomographic inversion for fracture density. The fracture density is high in the PHS, which indicates high permeability and potential for extensive fluid circulation. This has been confirmed by high fluid flow and energy generation. The high fracture density is consistent with the interpretation of a transfer zone between the rift segments where a fracture mesh would be expected. In Puna the transfer zone is a relay ramp. The results from the PHS are used as an example to examine the proposed hydrothermal system at St. George's Hill, Montserrat. In southern Montserrat, hot springs and fumaroles suggest a deep hydrothermal system heated by local magmatism. A magnetotelluric study obtained resistivity data that suggest focused alteration under southeastern Montserrat that is likely to be along fault segments. Several faults intersect under SGH, making it the probable center of the hydrothermal system. At Puna, and also Krafla, Iceland, where faults interact is an area of increased permeability, acting as a model to be applied to southern Montserrat. The conclusion is that in both Puna and Montserrat large faults interact to produce local areas of stress transfer that lead to fracturing and permeable networks; these networks allow for high-temperature hydrothermal circulation.
Hildreth, Wes; Fierstein, Judy; Lanphere, Marvin A.; Siems, David F.
2000-01-01
Mount Mageik is an ice-clad 2,165-m andesite-dacite stratovolcano in the Katmai volcanic cluster at the head of the Valley of Ten Thousand Smokes. New K-Ar ages indicate that the volcano is as old as 93±8 ka. It has a present-day volume of 20 km3 but an eruptive volume of about 30 km3, implying a longterm average volumetric eruption rate of about 0.33 km3 per 1,000 years. Mount Mageik consists of four overlapping edi- fices, each with its own central summit vent, lava-flow apron, and independent eruptive history. Three of them have small fragmental summit cones with ice-filled craters, but the fourth and highest is topped by a dacite dome. Lava flows predominate on each edifice; many flows have levees and ice-contact features, and many thicken downslope into piedmont lava lobes 50–200 m thick. Active lifetimes of two (or three) of the component edifices may have been brief, like that of their morphological and compositional analog just across Katmai Pass, the Southwest (New) Trident edifice of 1953–74. The North Summit edi- fice of Mageik may have been constructed very late in the Pleistocene and the East Summit edifice (along with nearby Mount Martin) largely or entirely in the Holocene. Substantial Holocene debris avalanches have broken loose from three sites on the south side of Mount Mageik, the youngest during the Novarupta fallout of 6 June 1912. The oldest one was especially mobile, being rich in hydrothermal clay, and is preserved for 16 km downvalley, probably having run out to the sea. Mageik's fumarolically active crater, which now contains a hot acid lake, was never a magmatic vent but was reamed by phreatic explosions through the edge of the dacite summit dome. There is no credible evidence of historical eruptions of Mount Mageik, but the historically persistent fumarolic plumes of Mageik and Martin have animated many spurious eruption reports. Lavas and ejecta of all four component edifices of Mageik are plagioclaserich, pyroxene-dacites and andesites (57–68 weight percent SiO2) that form a calcic, medium-K, typically low-Ti arc suite. The Southwest Summit edifice is larger, longer lived, and compositionally more complex than its companions. Compared to other centers in the Katmai cluster, products of Mount Mageik are readily distinguishable chemically from those of Mount Griggs, Falling Mountain, Mount Cerberus, and all prehistoric components of the Trident group, but some are similar to the products of Mount Martin, Southwest Trident, and Novarupta. The crater lake, vigorous superheated fumaroles, persistent seismicity, steep ice blanket, and numerous Holocene dacites warrant monitoring Mount Mageik as a potential source of explosive eruptions and derivative debris flows.
NASA Astrophysics Data System (ADS)
De Landro, Grazia; Gammaldi, Sergio; Serlenga, Vincenzo; Amoroso, Ortensia; Russo, Guido; Festa, Gaetano; D'Auria, Luca; Bruno, Pier Paolo; Gresse, Marceau; Vandemeulebrouck, Jean; Zollo, Aldo
2017-04-01
Seismic tomography can be used to image the spatial variation of rock properties within complex geological media such as volcanoes. Solfatara is a volcano located within the Campi Flegrei still active caldera, characterized by periodic episodes of extended, low-rate ground subsidence and uplift called bradyseism accompanied by intense seismic and geochemical activities. In particular, Solfatara is characterized by an impressive magnitude diffuse degassing, which underlines the relevance of fluid and heat transport at the crater and prompted further research to improve the understanding of the hydrothermal system feeding the surface phenomenon. In this line, an active seismic experiment, Repeated Induced Earthquake and Noise (RICEN) (EU Project MEDSUV), was carried out between September 2013 and November 2014 to provide time-varying high-resolution images of the structure of Solfatara. In this study we used the datasets provided by two different acquisition geometries: a) A 2D array cover an area of 90 x 115 m ^ 2 sampled by a regular grid of 240 vertical sensors deployed at the crater surface; b) two 1D orthogonal seismic arrays deployed along NE-SW and NW-SE directions crossing the 400 m crater surface. The arrays are sampled with a regular line of 240 receiver and 116 shots. We present 2D and 3D tomographic high-resolution P-wave velocity images obtained using two different tomographic methods adopting a multiscale strategy. The 3D image of the shallow (30-35 m) central part of Solfatara crater is performed through the iterative, linearized, tomographic inversion of the P-wave first arrival times. 2D P-wave velocity sections (60-70 m) are obtained using a non-linear travel-time tomography method based on the evaluation of a posteriori probability density with a Bayesian approach. The 3D retrieved images integrated with resistivity section and temperature and CO2 flux measurements , define the following characteristics: 1. A depth dependent P-wave velocity layer down to 14 m, with Vp<700m/s typical of poorly-consolidated tephra and affected by CO2 degassing; 2. An intermediate layer, deepening towards the mineralized liquid-saturated area (Fangaia), interpreted as permeable deposits saturated with condensed water; 3. A deep, confined high velocity anomaly associated with a CO2 reservoir. With the 2D profiles we can image up to around 70 m depth: the first 30 m are characterized by features and velocities comparable to those of the 3D profiles, deeper, between 40-60 m depth, were found two low velocity anomalies, that probably indicate a preferential via for fluid degassing. These features are expression of an area located between the Fangaia, which is water saturated and replenished from deep aquifers, and the main fumaroles that are the superficial relief of deep rising CO2 flux. So, the changes in the outgassing rate greatly affects the shallow hydrothermal system, which can be used as a near-surface "mirror" of fluid migration processes occurring at greater depths.
Acoustic Oscillations in Volcanoes
NASA Astrophysics Data System (ADS)
Garces, M.; Marchetti, E.; Ripepe, M.
2004-12-01
The intensity of infrasonic waves produced by volcanic activity ranges from very low amplitude pressure signals (mPa) to violent shock waves produced during explosive eruptions (MPa). Recorded waveforms vary from simple single pulses to complicated, long lasting signals where echoes and/or multiple pulses may be present. Whether echoes occur, are sustained, and are recorded depends on the elasticity of the surrounding walls, the attenuation of the fluid, the depth of the source, and the relative position of the sensor. A shallow explosion would release most of its energy to the atmosphere. In this case, echoes would be primarily associated with reflections from crater walls or nearby mountains. A deep explosion in a vesiculated magma column may not be multiply reflected (and thus maintain resonance) in a conduit if it has to propagate through a heavily attenuating magma-gas mixture. Yet highly vesiculated foams, with their low sound speeds and their sensitive dependence of gas exsolution and viscosity on ambient pressure, are extremely unstable under any fluid flow conditions. Due to the decrease in density and sound speed with increased vesiculation, an acoustic pulse arriving from some depth in a moving magma column would encounter an increase in Mach number as it approaches a highly vesiculated region. When this pulse reaches the foam, the pressure perturbation and its associated streaming may induce rapid exsolution and trigger a fragmentation-enhanced explosive eruption that could lower the fragmentation void fraction threshold and enhance jet flow. Lowering of the fragmentation threshold may permit conduit reverberation. Cavitation may occur when a fluid is excessively tensed. Flow acceleration through a constriction (choked flow), or the passage of an intense sound pulse can induce cavitation and produce a bubble oscillation. The precondition of existing bubbles for cavitation lend vesiculated foams particularly vulnerable to collapse. Sound from periodic turbulent vortices induced by surface discontinuities or shear (Aeolian tones, edge tones, vortex sheets) may occur at depth in the melt or at the ground-air interface. Avalanches, landslides, and pyroclastic flows would also generate acoustically active turbulent structures, as well as a sound from impact and explosive gas release. Jet noise can be produced by fumaroles, lava tubes, and eruptions. Jet flow resonance, known as screech, may occur within a supersonic jet and be observable during vigorous eruptions. Vigorous lava fountaining events radiate discrete infrasonic pulses which may be indicative of oscillations in the pressure driving the fluid flow. Infrasound from the oscillation of a lava tube or lava lake may be produced by the movement of the magma. Sound from lava falls, as seen through skylights in Pu'u O'o, may be enhanced by ringing of the air in a lava tube. As in the ocean, standing waves in a molten lava lake may generate sound efficiently if they slam into walls or if they entrain periodic flow into confined regions. As in a furnace, pressure and thermal oscillations may be induced in a lava tube when the gas in the tube is overburned, leading to a low pressure with gas overdrawing, followed by a fiery pressure increase during subsequent overburning.
Emitted short wavelength infrared radiation for detection and monitoring of volcanic activity
NASA Technical Reports Server (NTRS)
Rothery, D. A.; Francis, P. W.; Wood, C. A.
1988-01-01
Thematic Mapper images from LANDSAT were used to monitor volcanoes. Achievements include: (1) the discovery of a magmatic precursor to the 16 Sept. 1986 eruption of Lascar, northern Chile, on images from Mar. and July 1985 and of continuing fumarolic activity after the eruption; (2) the detection of unreported major changes in the distribution of lava lakes on Erta'Ale, Ethiopia; and (3) the mapping of a halo of still-hot spatter surrounding a vent on Mount Erebus, Antarctica, on an image acquired 5 min after a minor eruption otherwise known only from seismic records. A spaceborne short wavelength infrared sensor for observing hot phenomena of volcanoes is proposed. A polar orbit is suggested.
Volatiles of Mount St. Helens and their origins
Barnes, I.
1984-01-01
Analyses have been made of gases in clouds apparently emanating from Mount St. Helens. Despite appearances, most of the water in these clouds does not issue from the volcano. Even directly above a large fumarole ??D and ?? 18O data indicate that only half the water can come from the volcano. Isotopic and chemical evidence also shows the steam in the volcano (-33.0 per mol ??D) from which a condensate of 0.2 N HCI was obtained is not a major cause of the explosions. The steam in the volcano is derived from a metamorphic brine in the underlying Tertiary meta andesite. The gas that caused the explosive eruptions is carbon dioxide. ?? 1984.
Lopez, Taryn; Ushakov, Sergey; Izbekov, Pavel; Tassi, Franco; Cahill, Cathy; Neill, Owen; Werner, Cynthia A.
2013-01-01
Direct and remote measurements of volcanic gas composition, SO2 flux, and eruptive SO2 mass from Bezymianny Volcano were acquired between July 2007 and July 2010. Chemical composition of fumarolic gases, plume SO2 flux from ground and air-based ultraviolet remote sensing (FLYSPEC), and eruptive SO2 mass from Ozone Monitoring Instrument (OMI) satellite observations were used along with eruption timing to elucidate magma processes and subsurface conditions, and to constrain total volatile flux. Bezymianny Volcano had five explosive magmatic eruptions between May 2007 and June 2010. The most complete volcanic gas datasets were acquired for the October 2007, December 2009, and May 2010 eruptions. Gas measurements collected prior to the October 2007 eruption have a relatively high ratio of H2O/CO2 (81.2), a moderate ratio of CO2/S (5.47), and a low ratio of S/HCl (0.338), along with moderate SO2 and CO2 fluxes of 280 and 980 t/d, respectively, and high H2O and HCl fluxes of ~ 45,000 and ~ 440 t/d, respectively. These results suggest degassing of shallow magma (consistent with observations of lava extrusion) along with potential minor degassing of a deeper magma source. Gas measurements collected prior to the December 2009 eruption are characterized by relatively low H2O/CO2 (4.13), moderate CO2/S (6.84), and high S/HCl (18.7) ratios, along with moderate SO2 and CO2 fluxes of ~ 220 and ~ 1000 t/d, respectively, and low H2O and HCl fluxes of ~ 1700 and ~ 7 t/d, respectively. These trends are consistent with degassing of a deeper magma source. Fumarole samples collected ~ 1.5 months following the May 2010 eruption are characterized by high H2O/CO2 (63.0), low CO2/S (0.986), and moderate S/HCl (6.09) ratios. These data are consistent with degassing of a shallow, volatile-rich magma source, likely related to the May eruption. Passive and eruptive SO2 measurements are used to calculate a total annual SO2 mass of 109 kt emitted in 2007, with passive emissions comprising ~ 87–95% of the total. Total annual volatile masses for the study period are estimated to range from 1.1 × 106 to 18 × 106 t/year. Annual CO2 masses are ~ 8 to 40 times larger than can be explained by degassing of dissolved CO2 within eruptive magma, suggesting that the eruptive magma contained a significant quantity of exsolved volatiles sourced either from the eruptive melt or unerupted magma at depth. Variable total volatile fluxes ranging from ~ 3000 t/d in 2009 to ~ 49,000 t/d in 2007 are attributed to variations in the depth of gas exsolution and separation from the melt under open-system degassing conditions. We propose that exsolved volatiles are quickly transported to the surface from ascending magma via permeable flow through a bubble and/or fracture network within the conduit and thus retain their equilibrium composition at the time of segregation from melt. The composition of surface CO2 and H2O emissions from 2007 to 2009 are compared with modeled exsolved fluid compositions for a magma body ascending from entrapment depths to estimate depth of fluid exsolution and separation from the melt. We find that at the time of sample collection magma had already begun ascent from the mid-crustal storage region and was located at maximum depths of ~ 3.7 km in August 2007, approximately 2 months prior to the next magmatic eruption, and ~ 4.6 km in July of 2009 approximately five months prior to the next magmatic eruption. These findings suggest that the exsolved gas composition at Bezymianny Volcano may be used to detect magma ascent prior to eruption.
Hill, D.P.
1984-01-01
Recent patterns of geologic unrest in long Valley caldera in east-central California emphasize that this large, silicic volcanic system and the adjacent, geologically youthful Inyo-Mono Craters volcanic chain are still active and capable of producing locally hazardous volcanic eruptions. A series of four magnitude -6 earthquakes in May 1980 called attention to this current episode of unrest, and subsequent activity has included numerous earthquake swarms in the south moat of the caldera accompanied by inflation of the resurgent dome by more than 50 cm over the last five years. The seismicity associated with this unrest is currently monitored by a network of 31 telemetered seismic stations with an automatic processing system that yelds hypocentral locations and earthquake magnitudes in near-real time. Deformation of the ground is monitored by a) a series of overlapping trilateration networks that provide coverage ranging from annual measurements of regional deformation to daily measurements of deformation local to the active, southern section of the caldera, b) a regional network of level lines surveyed annually, c) a regional network of precise gravity stations occupied annually, d) local, L-shaped level figures surveyed every few months, and e) a network of fourteen borehole tiltmeter clusters (two instruments in each cluster) and a borehole dilatometer, the telemetered signals from which provide continuous data on deformation rates. Additional telemetered data provide continuous information on fluctuations in the local magnetic field, hydrogen gas emission rates at three sites, and water level and temperatures in three wells. Continuous data on disharge rates and temperatures from hot springs and fumaroles are collected by several on-site recorders within the caldera, and samples for liquid and gas chemistry are collected several times per year from selected hot springs and fumaroles. ?? 1984 Intern. Association of Volcanology and Chemistry of the Earth's Interior.
Evaluation of techniques for sampling volatile arsenic on volcanoes
NASA Astrophysics Data System (ADS)
Arndt, Julia; Ilgen, Gunter; Planer-Friedrich, Britta
2017-02-01
Volatile arsenic (As) species, like arsine, mono-, di-, and trimethylarsine (AsH3, MeAsH2, Me2AsH, Me3As) are reported to be released from volcanoes but their determination is difficult because of low concentrations, low boiling points, and high reactivity, especially in the presence of volcanic gases like H2S and SO2. We tested needle trap devices (NTDs), cryotrapping, and Tedlar® bags for quantitative and species-preserving sampling. NTDs did not trap AsH3, MeAsH2, Me2AsH, did not release sorbed Me3As quantitatively, and lead to artifact formation of dimethylchloroarsine, which also questions the reliability of previous reports from solid phase micro extraction fibers using the same sorption materials. Cryotrapping in dry ice was insufficient to trap AsH3 and MeAsH2; Me2AsH and Me3As were only partially retained. Sampling in Tedlar® bags remained the best alternative. Stability of all four arsines was confirmed for dark storage at 5 °C for 19 days in a matrix of dry N2, 11 days in 20% O2, and 19 days in 3800 ppmv CO2 (> 80% recovery for all species), while in the presence of H2S, Me3As recovery was only 67% and in the presence of SO2, Me2AsH and Me3As recovery was 40 and 11%, respectively. Removing interfering reactive gases by a NaOH trap, we sampled natural volcanic emissions at fumaroles of Vulcano and Solfatara (Italy). Detected total arsine concentrations of 0.5-77 ng·m- 3 were 1-2 orders of magnitude higher than the calculated background. Inorganic arsine was the dominant species suggesting that secondary microbially catalyzed methylation is a process of minor importance in the fumarolic gases.
Isotopically (δ13C and δ18O) heavy volcanic plumes from Central Andean volcanoes: a field study
NASA Astrophysics Data System (ADS)
Schipper, C. Ian; Moussallam, Yves; Curtis, Aaron; Peters, Nial; Barnie, Talfan; Bani, Philipson; Jost, H. J.; Hamilton, Doug; Aiuppa, Alessandro; Tamburello, Giancarlo; Giudice, Gaetano
2017-08-01
Stable isotopes of carbon and oxygen in volcanic gases are key tracers of volatile transfer between Earth's interior and atmosphere. Although important, these data are available for few volcanoes because they have traditionally been difficult to obtain and are usually measured on gas samples collected from fumaroles. We present new field measurements of bulk plume composition and stable isotopes (δ13CCO2 and δ18OH2O+CO2) carried out at three northern Chilean volcanoes using MultiGAS and isotope ratio infrared spectroscopy. Carbon and oxygen in magmatic gas plumes of Lastarria and Isluga volcanoes have δ13C in CO2 of +0.76‰ to +0.77‰ (VPDB), similar to slab carbonate; and δ18O in the H2O + CO2 system ranging from +12.2‰ to +20.7‰ (VSMOW), suggesting significant contributions from altered slab pore water and carbonate. The hydrothermal plume at Tacora has lower δ13CCO2 of -3.2‰ and δ18OH2O+CO2 of +7.0‰, reflecting various scrubbing, kinetic fractionation, and contamination processes. We show the isotopic characterization of volcanic gases in the field to be a practical complement to traditional sampling methods, with the potential to remove sampling bias that is a risk when only a few samples from accessible fumaroles are used to characterize a given volcano's volatile output. Our results indicate that there is a previously unrecognized, relatively heavy isotopic signature to bulk volcanic gas plumes in the Central Andes, which can be attributed to a strong influence from components of the subducting slab, but may also reflect some local crustal contamination. The techniques we describe open new avenues for quantifying the roles that subduction zones and arc volcanoes play in the global carbon cycle.
NASA Astrophysics Data System (ADS)
Geshi, Nobuo
2009-04-01
Oblique development of the ring faults reflecting the structural heterogeneities inside the volcano formed many asymmetric structures of Miyakejima 2000 AD caldera. The asymmetry includes (a) offset location of the ring faults with respect to the associated shallow magma chamber, (b) unequal outward migration of the caldera wall 600 m at the southeastern rim but only 200 m at the northwestern rim, (c) development of tilted terrace only at the southeastern caldera margin, (d) eruption sites and fumaroles being confined to the southern part of the caldera. Geophysical data, including ground deformation and seismic activity, indicates the offset of the location of the magma chamber about 2 km south of the caldera center on the surface. The ring faults propagated from the deflating magma chamber obliquely about 30 degrees toward the summit. The oblique subsidence of the cylindrical block formed a wider instable zone, particularly in the southeastern side of the ring fault that enhanced the larger outward migration of the caldera rim and also caused the formation of the outer half-ring fault bordering the tilting slope at the southern part. Ascending pass of the buoyant magma along the tilted ring faults was concentrated in the southern half of the caldera and consequently the distributions of the eruption sites and fumaroles are localized in the southern-half part of the caldera. The structure of the Miyakejima 2000 caldera with complete development of the ring faults, its high roof aspect ratio and oblique subsidence is clearly distinguishable from trapdoor-type caldera. The oblique development of the ring faults can be controlled by the mechanical contrast between the solidified conduits and surrounding fragile volcanic edifice. Asymmetric development of the Miyakejima caldera shows that the collapsed calderas are potential indicators of the heterogeneous structures inside of the volcano, particularly in the case of small-size caldera.
Mariner, R.H.; Evans, William C.; Presser, T.S.; White, L.D.
2003-01-01
Anomalous N2/Ar values occur in many thermal springs and mineral springs, some volcanic fumaroles, and at least one acid-sulfate spring of the Cascade Range. Our data show that N2/Ar values are as high as 300 in gas from some of the hot springs, as high as 1650 in gas from some of the mineral springs, and as high as 2400 in gas from the acid-sulfate spring on Mt. Shasta. In contrast, gas discharging from hot springs that contain nitrogen and argon solely of atmospheric origin typically exhibits N2/Ar values of 40-80, depending on the spring temperature. If the excess nitrogen in the thermal and mineral springs is of sedimentary origin then the geothermal potential of the area must be small, but if the nitrogen is of volcanic origin then the geothermal potential must be very large. End-member excess nitrogen (??15N) is +5.3% for the thermal waters of the Oregon Cascades but is only about +1% for fumaroles on Mt. Hood and the acid-sulfate spring on Mt. Shasta. Dissolved nitrogen concentrations are highest for thermal springs associated with aquifers between 120 and 140??C. Chloride is the major anion in most of the nitrogen-rich springs of the Cascade Range, and N2/Ar values generally increase as chloride concentrations increase. Chloride and excess nitrogen in the thermal waters of the Oregon Cascades probably originate in an early Tertiary marine formation that has been buried by the late Tertiary and Quaternary lava flows of the High Cascades. The widespread distribution of excess nitrogen that has been generated in low to moderate-temperature sedimentary environments is further proof of the restricted geothermal potential of the Cascade Range. ?? 2002 Elsevier Science B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Mariner, R. H.; Evans, W. C.; Presser, T. S.; White, L. D.
2003-02-01
Anomalous N 2/Ar values occur in many thermal springs and mineral springs, some volcanic fumaroles, and at least one acid-sulfate spring of the Cascade Range. Our data show that N 2/Ar values are as high as 300 in gas from some of the hot springs, as high as 1650 in gas from some of the mineral springs, and as high as 2400 in gas from the acid-sulfate spring on Mt. Shasta. In contrast, gas discharging from hot springs that contain nitrogen and argon solely of atmospheric origin typically exhibits N 2/Ar values of 40-80, depending on the spring temperature. If the excess nitrogen in the thermal and mineral springs is of sedimentary origin then the geothermal potential of the area must be small, but if the nitrogen is of volcanic origin then the geothermal potential must be very large. End-member excess nitrogen (δ 15N) is +5.3‰ for the thermal waters of the Oregon Cascades but is only about +1‰ for fumaroles on Mt. Hood and the acid-sulfate spring on Mt. Shasta. Dissolved nitrogen concentrations are highest for thermal springs associated with aquifers between 120 and 140°C. Chloride is the major anion in most of the nitrogen-rich springs of the Cascade Range, and N 2/Ar values generally increase as chloride concentrations increase. Chloride and excess nitrogen in the thermal waters of the Oregon Cascades probably originate in an early Tertiary marine formation that has been buried by the late Tertiary and Quaternary lava flows of the High Cascades. The widespread distribution of excess nitrogen that has been generated in low to moderate-temperature sedimentary environments is further proof of the restricted geothermal potential of the Cascade Range.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yusa, Y.; Ohsawa, S.; Kitaoka, K.
The central part of Kyushu Island, southwest Japan, is located at the junction of the Southwest Japan Arc and the Ryukyu Arc, where a graben (Beppu-Shimabara Graben) has been formed by the rifting tectonic movement. There are many Quaternary volcanoes and active geo- and hydro-thermal fields within the Graben. The Beppu hydrothermal system extends around the Tsurumi-Garandake volcanoes at the eastern end of the Graben. This report will deal with the hydrothermal system beneath the volcanoes specially focusing on Garandake. Modest or violent fumarolic activities are visible near the summit of Garandake (1045 m in height). The total water(steam) outputmore » is 1.4 kg/s and its heat output 3.8 MW, while the heat output from the ground surface of 5.5 x 10{sup 4} m{sup 2} is 19.5 MW estimated by a heat balance analysis based on infrared radiation measurements (Yuhara et al., 1987). Thus the main process of heat discharge from Garandake, totally 23.3 MW, is the radiation from the ground surface. The geothermal gradient observed in a well drilled near the summit indicates that the large heat output is caused by some special process different from conduction because the heat flow by conduction is estimated to be 0.03 MW, which is very small compared with the observed output. Allis and Yusa (1989) suggested that a two-phase flow system is developed in Garandake. The two-phase flow, steam rising and water failing, acts as a heat pipe, by which a large quantity of (latent) heat can be transported upwards. Applying the theory of two-phase flow (Yusa and Oishi, 1989) to the Garandake system, the upflow rate of steam is estimated to be 10.3 kg/s at 100{degrees}C; the temperature near the ground surface, A part of rising steam (1.4 kg/s) flows out through fumaroles, and the remnant condenses to flow downwards. If the system is vapor-dominated, the intrinsic permeability at the shallow part should be about 1 darcy.« less
Cerro Negro, Nicaragua: A key Mars Analog Environment for Acid-Sulfate Weathering
NASA Astrophysics Data System (ADS)
Hynek, B. M.; Rogers, K. L.; McCollom, T. M.
2008-12-01
Sulfate-rich bedrock has been discovered in many locations on Mars and has been studied by both orbiting spacecraft and landers. It appears that in most cases these minerals are produced by acid-sulfate weathering of igneous rocks, which may have been a widespread process for the first billion years of Mars' history. The origin of life on Earth may have occurred in iron-sulfur hydrothermal settings and it is conceivable that early Mars had similar environmental conditions. An excellent terrestrial analog for acid- sulfate weathering of Mars-like basalts exists at Cerro Negro (CN), Nicaragua, where sulfur-bearing gases interact with recently erupted basaltic ash in numerous fumaroles. To date, we have made two expeditions to CN to assess the chemical, mineralogical, and biological conditions. At the fumaroles pH ranges from <1 to 5 and temperatures range from 40 to 400° C. Basalts with a chemical composition very similar to those on Mars are being chemically altered in the solfatara setting. In a few years, freshly erupted basalt can be converted into predominately Ca-, Mg-, and Fe-sulfates, Fe-hydroxides (including jarosite), clays, and free silica. Altered rocks have up to 30 wt% SO3 equivalent, which is similar to the Meridiani Planum bedrocks and inferred in other sulfate-bearing bedrock on Mars. Moreover, heavily weathered rocks have silica contents up to 80 wt%, similar to silica-rich soils at Gusev Crater that possibly formed in hydrothermal environments. Samples were collected for biological analysis including enrichment and isolation of novel thermophiles as well as molecular characterization of thermophile diversity. The low water and nutrient levels found in solfatara environments lead to less biomass when compared to hot springs with similar geochemical conditions. Nonetheless, microbes are thriving in these hot, acidic vent environments. At Cerro Negro solfatara, we are characterizing the metabolic and phylogenetic diversity of resident microbial communities in order to yield clues to the habitability of similar environments on early Mars.
Hydrothermal Solute Flux from Ebeko Volcanic Center, Paramushir, Kuril Islands
NASA Astrophysics Data System (ADS)
Taran, Y.; Kalacheva, E.; Kotenko, T.; Chaplygin, I.
2014-12-01
Ebeko volcano on the northern part of Paramushir Island, Northern Kurils, is characterized by frequent phreatic eruptions, a strong low-temperature fumarolic activity at the summit and was the object of comprehensive volcanological and geochemical studies during the last half a century. The volcanic center is composed of several Pleistocene volcanic structures aadjacent to Ebeko and hosts a hydrothermal system with a high outflow rate of hot SO4-Cl acidic water (Upper Yurieva springs) with the current maximum temperature of ~85oC, pH 1.3 and TDS ~ 10 g/L. All discharging thermal waters are drained by the Yurieva River to the Sea of Okhotsk. The hot springs have been changing in time, generally decreasing their activity from near boiling in 1960s, with TDS ~ 20 g/L and the presence of a small steaming field at the upper part of the ~ 700 m long discharging area, to a much lower discharge rate of main vents, lower temperature and the absence of the steaming ground. The spring chemistry did not react to the Ebeko volcanic activity (14 strong phreato-magmatic events during the last 60 years).The total measured outputs of chloride and sulfur from the system last time (2006-2010) were estimated on average as 730 g/s and 980 g/s, respectively, which corresponds to the equivalent fluxes of 64 t/d of HCl and 169 t/d of SO2. These values are higher than the fumarolic volatile output from Ebeko. The estimated discharge rate of hot (85oC) water from the system with ~ 3500 ppm of chloride is about 0.3 m3/s which is much higher than the thermal water discharge from El Chichon or Copahue volcano-hydrothermal systems and among the highest hot water natural outputs ever measured for a volcano-hydrothermal system. We also report the chemical composition (major and ~ 60 trace elements including REE) of water from the main hot spring vents and the Yurieva river mouth.
Investigating the Origin of Silica Occurrences on Mars through Laboratory Observations
NASA Astrophysics Data System (ADS)
Ruff, S. W.; Milliken, R. E.; Farmer, J. D.; Mills, V. W.; Robertson, K.
2012-12-01
Natural amorphous "opaline" silica is a non-crystalline, typically hydrated phase of nearly pure SiO2 that is a common product of aqueous alteration of basaltic materials [e.g., 1]. It has been identified on Mars with orbital spectral data [2] and in situ measurements from the Spirit rover [3]. On Earth, opaline silica is produced over a range of temperature, pH, and water-to-rock ratio conditions that occur in hot springs, fumaroles, volcanic exhalations, low temperature weathering, and diagenesis [e.g., 4 and references therein]. The mere identification of silica on Mars therefore does not indicate a unique geologic environment or setting. However, various attributes of a given silica occurrence can be used to narrow or perhaps uniquely define the conditions in which it formed. Field relationships, microtexture, bulk and trace element chemistry, and spectral characteristics provide clues to the geologic environment in which the silica formed. Here we focus on the opaline silica in outcrops and soil at the Home Plate feature in Gusev crater where there is good evidence for past hydrothermal processes [3]. Unresolved is whether fumaroles, hot springs, geysers, or some combination of these features were present and responsible for the emplacement of opaline silica there. Knowing the answer has implications for understanding ancient climate and habitability of Mars. We have begun an investigation involving a range of laboratory measurements on natural silica-rich samples collected from various settings in Yellowstone and Hawaii Volcanoes National Parks. Visible and near infrared (VNIR) and thermal infrared (TIR) spectral measurements are supplemented with X-ray powder diffraction, scanning electron microscopy, petrographic microscopy, and ultimately with bulk and trace element measurements. Among our emerging results: 1) both VNIR and TIR spectra can detect the presence of <2 μm silica coatings on altered basalts; 2) VNIR spectra of silica from different environments exhibit only subtle differences, likely controlled primarily by variations in water content; and 3) fumarolic silica appears to have TIR spectral characteristics distinct from hot spring silica. This last result applies to samples of basaltic rocks enriched in silica by acid-sulfate leaching from Sulfur Banks, HI, which has been suggested as an analog for the Home Plate silica [3]. TIR spectra of four samples display only a weak feature near 8 μm related to high emission angle compared to that observed in hot spring silica sinter from Yellowstone. This spectral behavior may arise from microtextural or contaminant differences between the two kinds of silica. TIR spectra of Home Plate silica display a strong 8-μm feature like those of hot spring silica. If this preliminary result survives subsequent scrutiny, it may provide additional insight into the nature of the Home Plate hydrothermal system, the first to be investigated in situ on Mars. [1] McLennan, S. M. (2003), Geology, 31, 4, 315-318, [2] Milliken, R. E., et al. (2008), Geology, 36, 11, 847-850, 10.1130/G24967A.1. [3] Squyres, S. W., et al. (2008), Science, 320, 1063-1067, [4] Ruff, S. W., et al. (2011), J. Geophys. Res., 116, E00F23, 10.1029/2010JE003767.
NASA Astrophysics Data System (ADS)
Serlenga, Vincenzo; de Lorenzo, Salvatore; Russo, Guido; Amoroso, Ortensia; Virieux, Jean; Garambois, Stephane; Zollo, Aldo
2017-04-01
We build a three-dimensional attenuation image of the shallowest subsurface of Campi Flegrei caldera, a resurgent caldera located 15 km west of Naples, southern Italy. Extracting tstar (t*) measurements from an active seismic dataset can be achieved by a spectral ratio method which has been intensively used for earthquakes. The applicability of such measurement has to be validated for active seismic datasets which have a narrower frequency band compared to frequency band of quakes. The validation, as well as the robustness, of such extraction for narrow Ricker source wavelet has been checked through many synthetic and realistic tests. These tests allow us to conclude that this measurement is valid as long as 1) short signal time window are chosen to perform the spectral analysis; 2) the effects caused by heterogeneities of the sampled medium on the seismic spectra have to be taken into account in the description of elastic Green's function. Through such a deconvolution strategy, contributions of the fine velocity structure on signal amplitudes have been significantly removed: in case of suspicious behavior of the spectrum ratio, the measurement is disregarded. This procedure, a kind of deconvolution of the phase propagation imprint, is expected to leave nearly untouched the attenuation signature of seismic traces we are interested in. Such refined measurement approach based on the spectral ratio method has been applied to the real active seismic SERAPIS database providing us a reasonable dataset of 11,873 differential t* measurements (dt*). These data are used for imaging anelastic properties of Campi Flegrei caldera through a linearized, iterative, damped attenuation tomography. Based on configuration of sources and receivers, an attenuating volume as large as 13 x 13 x 1.5 km3 has been imaged. The tomography, with a resolution of 1 km in the horizontal directions and 0.5 km in the vertical direction, allowed to image important features whose reliability has been assessed by means of a proper resolution study. Mainly, the off-shore part of Campi Flegrei caldera turns out to be characterized by an average QP about 70, interpreted as water-saturated volcanic and marine sediments. An arc-like, low-QP structure at 0.5-1 km depths well matches the buried rim of Campi Flegrei caldera, already imaged by previous geophysical investigation studies. The retrieved anelastic properties lead to interpret the rim of caldera as a densely fractured, fluid-saturated rock volume. Several high-QP bodies, overlapping submerged volcanic edifices as Miseno Bank and Pentapalummo Bank, are interpreted as the combination of consolidated volcanic materials and magma-cooled material. Finally, the spatial, heterogeneous distribution of high- and low-QP bodies in the inner caldera is correlated with low-VP values and may reflect either differences in the percentage of fluid saturation of sediments or the presence of vapor state fluids beneath fumarole manifestations.
NASA Astrophysics Data System (ADS)
Jung, Na-Hyun
This study investigated a natural analogue for CO2 leakage near Green River, Utah, aiming to understand the influence of various factors on CO2 leakage and to reliably predict underground CO2 behavior after injection for geologic CO2 sequestration. Advective, diffusive, and eruptive characteristics of CO2 leakage were assessed via a soil CO2 flux survey and numerical modeling. The field results show anomalous CO2 fluxes (> 10 g m-2 d-1 ) along the faults, particularly adjacent to CO2-driven cold springs and geysers (e.g., 36,259 g m-2 d-1 at Crystal Geyser), ancient travertines (e.g., 5,917 g m-2 d-1), joint zones in sandstone (e.g., 120 g m-2 d-1), and brine discharge zones (e.g., 5,515 g m-2 d-1). Combined with similar isotopic ratios of gas and progressive evolution of brine chemistry at springs and geysers, a gradual decrease of soil CO2 flux from the Little Grand Wash (LGW; ~36,259 g m -2 d-1) to Salt Wash (SW; ~1,428 g m-2 d-1) fault zones reveals the same CO2 origin and potential southward transport of CO2 over 10-20 km. The numerical simulations exhibit lateral transport of free CO2 and CO2-rich brine from the LGW to SW fault zones through the regional aquifers (e.g., Entrada, Navajo, Kayenta, Wingate, White Rim). CO2 travels predominantly as an aqueous phase (XCO2=~0.045) as previously suggested, giving rise to the convective instability that further accelerates CO2 dissolution. While the buoyant free CO2 always tends to ascend, a fraction of dense CO2-rich brine flows laterally into the aquifer and mixes with the formation fluids during upward migration along the fault. The fault always enhances advective CO2 transport regardless of its permeability (k). However, only low-k fault prevents unconditional upright migration of CO2 and induces fault-parallel movement, feeding the northern aquifers with more CO2. Low-k fault also impedes lateral southward fluid flow from the northern aquifers, developing anticlinal CO2 traps at shallow depths (<300 m). The regional k of the LGW fault in which CO2 flux coincides with the field spatial variation is estimated between 0.01.kh<0.1 md and 0.5.k v<1 md. The anticlinal trap serves as an essential fluid source and conducive environment for intensifying eruption at Crystal Geyser. Geyser-like discharge in the simulations sensitively responds to varying well permeability and radius, and CO2 recharge rate. Indeed, the cycling behavior of wellbore CO2 leakage turns into a constant discharge with time, indicating the potential switch of Crystal Geyser to a CO2-driven cold-water spring or even fumarole.
James Faulds
2015-10-28
This project focused on defining geothermal play fairways and development of a detailed geothermal potential map of a large transect across the Great Basin region (96,000 km2), with the primary objective of facilitating discovery of commercial-grade, blind geothermal fields (i.e. systems with no surface hot springs or fumaroles) and thereby accelerating geothermal development in this promising region. Data included in this submission consists of: structural settings (target areas, recency of faulting, slip and dilation potential, slip rates, quality), regional-scale strain rates, earthquake density and magnitude, gravity data, temperature at 3 km depth, permeability models, favorability models, degree of exploration and exploration opportunities, data from springs and wells, transmission lines and wilderness areas, and published maps and theses for the Nevada Play Fairway area.
Volcanoes and atmospheres; catastrophic influences on the planets
Kieffer, S.W.
1986-01-01
For a rare and brief instant in geologic time, we can imagine that the sulfurous, chromatic surface of Io (one of the satellites of Jupiter) lies quiet. Perhaps stars glisten brilliantly through the tenuous nigh sky. Here and there, thick icy fogs enshroud fumaroles where sulfur dioxide leaks from the underworld. Suddenly, a fissure splits the surface and billowing clouds of sulfurous gases and ice hurl orange and black ash into the atmosphere. Minute by minute, the intensity of the eruption builds; stars begin disappearing from the night sky. The rising plume inhales the nearby atmosphere, mixing it with the exhalations from the volcano. Particles of sulfur, sulfur dioxide snow and ash rise to 300 kilometers, later raining down across the planet a thousand kilometers away.
NASA Astrophysics Data System (ADS)
Lee, H.; Fischer, T. P.; Ranka, L. S.; Onguso, B.; Kanda, I.; Opiyo-Akech, N.; Sharp, Z. D.; Hilton, D. R.; Kattenhorn, S. A.; Muirhead, J.
2013-12-01
The East African Rift (EAR) is an active continental rift and ideal to investigate the processes of rift initiation and the breaking apart of continental lithosphere. Mantle and crust-derived fluids may play a pivotal role in both magmatism and faulting in the EAR. For instance, large quantities of mantle-derived volatiles are emitted at Oldoinyo Lengai volcano [1, 2]. Throughout the EAR, CO2-dominated volatile fluxes are prevalent [3, 4] and often associated with faults (i.e. Rungwe area, Tanzania, [5, 6]). The purpose of this study is to examine the relationship between volcanism, faulting and the volatile compositions, focusing on the central and southern Kenyan and northern Tanzanian section of the EAR. We report our analysis results for samples obtained during a 2013 field season in Kenya. Gases were sampled at fumaroles and geothermal plants in caldera volcanoes (T=83.1-120.2°C) and springs (T=40-79.6°C and pH 8.5-10) located near volcanoes, intra-rift faults, and a transverse fault (the Kordjya fault, a key fluid source in the Magadi rift) by 4N-NaOH solution-filled and empty Giggenbach bottles. Headspace gases were analyzed by a Gas Chromatograph and a Quadrupole Mass Spectrometer at the University of New Mexico. Both N2/Ar and N2/He ratios of all gases (35.38-205.31 and 142.92-564,272, respectively) range between air saturated water (ASW, 40 and ≥150,000) and MORB (100-200 and 40-50). In addition, an N2-Ar-He ternary diagram supports that the gases are produced by two component (mantle and air) mixing. Gases in the empty bottles from volcanoes and springs have N2 (90.88-895.99 mmom/mol), CO2 (2.47-681.21 mmom/mol), CH4 (0-214.78 mmom/mol), O2 (4.47-131.12 mmom/mol), H2 (0-35.78 mmom/mol), Ar (0.15-10.65 mmom/mol), He (0-2.21 mmom/mol), and CO (0-0.08 mmom/mol). Although some of the samples show an atmospheric component, CO2 is a major component in most samples, indicating both volcanoes and springs are emitting CO2. Gases from volcanoes are enriched in CH4 and H2, denoting their sources are reduced (oxygen-poor) magma chambers or hydrothermal systems. 40Ar/36Ar ratios (average of all samples=299.15) are similar to our air standard value (299.65×4.05), however, some volcanoes (~308.75) and springs (~321.96) have slightly higher ratios. The springs with elevated 40Ar imply that both the intra-rift (Lake Bogoria) and transverse (Lake Magadi) faults are possibly pathways to carry volatiles from deep sources to the surface. In future work, we will carry out wet chemistry and ion chromatography analyses of the NaOH solutions, measure 3He/4He ratios and complete C, N, and S isotope analyses to further constrain fluid sources and migration processes. [1] Fischer et al., 2009, Nature 459. [2] de Moor et al., 2013, EPSL 361. [3] Sawyer et al., 2008, G-cubed 9. [4] Tassi et al., 2009, G-cubed 10. [5] Barry et al., 2013, Chem Geol 339. [6] de Moor et al., 2013, Chem Geol 339.
NASA Astrophysics Data System (ADS)
Seki, Kaori; Kanda, Wataru; Tanbo, Toshiya; Ohba, Takeshi; Ogawa, Yasuo; Takakura, Shinichi; Nogami, Kenji; Ushioda, Masashi; Suzuki, Atsushi; Saito, Zenshiro; Matsunaga, Yasuo
2016-10-01
This study clarifies the hydrothermal system of Jigokudani Valley near Mt. Tateyama volcano in Japan by using a combination of audio-frequency magnetotelluric (AMT) survey and hot-spring water analysis in order to assess the potential of future phreatic eruptions in the area. Repeated phreatic eruptions in the area about 40,000 years ago produced the current valley morphology, which is now an active solfatara field dotted with hot springs and fumaroles indicative of a well-developed hydrothermal system. The three-dimensional (3D) resistivity structure of the hydrothermal system was modeled by using the results of an AMT survey conducted at 25 locations across the valley in 2013-2014. The model suggests the presence of a near-surface highly conductive layer of < 50 m in thickness across the entire valley, which is interpreted as a cap rock layer. Immediately below the cap rock is a relatively resistive body interpreted as a gas reservoir. Field measurements of temperature, pH, and electrical conductivity (EC) were taken at various hot springs across the valley, and 12 samples of hot-spring waters were analyzed for major ion chemistry and H2O isotopic ratios. All hot-spring waters had low pH and could be categorized into three types on the basis of the Cl-/SO 42 - concentration ratio, with all falling largely on a mixing line between magmatic fluids and local meteoric water (LMW). The geochemical analysis suggests that the hydrothermal system includes a two-phase zone of vapor-liquid. A comparison of the resistivity structure and the geochemically inferred structure suggests that a hydrothermal reservoir is present at a depth of approximately 500 m, from which hot-spring water differentiates into the three observed types. The two-phase zone appears to be located immediately beneath the cap rock structure. These findings suggest that the hydrothermal system of Jigokudani Valley exhibits a number of factors that could trigger a future phreatic eruption.
Temporal and spectral characteristics of seismicity observed at Popocatepetl volcano, central Mexico
Arciniega-Ceballos, A.; Valdes-Gonzalez, C.; Dawson, P.
2000-01-01
Popocatepetl volcano entered an eruptive phase from December 21, 1994 to March 30, 1995, which was characterized by ash and fumarolic emissions. During this eruptive episode, the observed seismicity consisted of volcano-tectonic (VT) events, long-period (LP) events and sustained tremor. Before the initial eruption on December 21, VT seismicity exhibited no increase in number until a swarm of VT earthquakes was observed at 01:31 hours local time. Visual observations of the eruption occurred at dawn the next morning. LP activity increased from an average of 7 events a day in October 1994 to 22 events per day in December 1994. At the onset of the eruption, LP activity peaked at 49 events per day. LP activity declined until mid-January 1995 when no events were observed. Tremor was first observed about one day after the initial eruption and averaged 10 h per episode. By late February 1995, tremor episodes became more intermittent, lasting less than 5 min, and the number of LP events returned to pre-eruption levels (7 events per day). Using a spectral ratio technique, low-frequency oceanic microseismic noise with a predominant peak around 7 s was removed from the broadband seismic signal of tremor and LP events. Stacks of corrected tremor episodes and LP events show that both tremor and LP events contain similar frequency features with major peaks around 1.4 Hz. Frequency analyses of LP events and tremor suggest a shallow extended source with similar radiation pattern characteristics. The distribution of VT events (between 2.5 and 10 km) also points to a shallow source of the tremor and LP events located in the first 2500 m beneath the crater. Under the assumption that the frequency characteristics of the signals are representative of an oscillator we used a fluid-filled-crack model to infer the length of the resonator.
Lu, Z.; Wicks, C.; Power, J.A.; Dzurisin, D.
2000-01-01
In March 1996 an intense swarm of volcano-tectonic earthquakes (???3000 felt by local residents, Mmax = 5.1, cumulative moment of 2.7 ??1018 N m) beneath Akutan Island in the Aleutian volcanic arc, Alaska, produced extensive ground cracks but no eruption of Akutan volcano. Synthetic aperture radar interferograms that span the time of the swarm reveal complex island-wide deformation: the western part of the island including Akutan volcano moved upward, while the eastern part moved downward. The axis of the deformation approximately aligns with new ground cracks on the western part of the island and with Holocene normal faults that were reactivated during the swarm on the eastern part of the island. The axis is also roughly parallel to the direction of greatest compressional stress in the region. No ground movements greater than 2.83 cm were observed outside the volcano's summit caldera for periods of 4 years before or 2 years after the swarm. We modeled the deformation primarily as the emplacement of a shallow, east-west trending, north dipping dike plus inflation of a deep, Mogi-type magma body beneath the volcano. The pattern of subsidence on the eastern part of the island is poorly constrained. It might have been produced by extensional tectonic strain that both reactivated preexisting faults on the eastern part of the island and facilitated magma movement beneath the western part. Alternatively, magma intrusion beneath the volcano might have been the cause of extension and subsidence in the eastern part of the island. We attribute localized subsidence in an area of active fumaroles within the Akutan caldera, by as much as 10 cm during 1992-1993 and 1996-1998, to fluid withdrawal or depressurization of the shallow hydrothermal system. Copyright 2000 by the American Geophysical Union.
Structural control on the CO2 release west of Mt. Epomeo resurgent block (Ischia, Italy)
NASA Astrophysics Data System (ADS)
de Vita, S.; Marotta, E.; Ventura, G.; Chiodini, G.
2003-04-01
Volcanism at Ischia started more than 150 ka B.P. and continued until the last eruption occurred in 1302 A.D. Ischia is dominated by the caldera forming eruption of Mt. Epomeo Green Tuff (55 ka), which was followed by block resurgence inside the caldera from 33 ka B.P. Resurgence influenced the volcanic activity determining the conditions for magma ascent mainly along the eastern edge of the resurgent block. The resurgent area has a poligonal shape resulting from reactivation of regional faults and by activation of faults related to volcanotectonism. The western sector is bordered by inward dipping, high angle strike-slip/reverse faults testifying a compressional stress regime in this area. These features are cut by late outward dipping normal faults due to gravitational stress. The activity of the volcanic system is testified by seismicity and thermal manifestations. Fumarolic activity concentrates along the faults that borders westward the Mt. Epomeo resurgent block, where the Green Tuff overlies fractured lavas. The structural data show that, outside the most active degassing zone, fractures show a NNW-SSE strike and dip toward Mt. Epomeo. These fractures delimit the northern sector of Mt. Epomeo and show strike and dip consistent with the inward dipping reverse faults. Inside the degassing area fractures show a NW-SE strike and dip outward Mt. Epomeo. These gravity-related faults cut the lavas where the hydrothermal circulation is active. The dip direction of the NW-SE striking fractures within the degassing zone is not consistent with that of the strike-slip/reverse faults (i.e. towards NE) but agrees well with that of the gravity-induced faults (dip direction towards SW). Inside the degassing zone, NW-SE striking faults with lengths not exceeding the hydrothermalized extension occur. This arrangement indicate that the syn-resurgence faults act as permeability barriers, whereas the youngest faults act as the main fluid pathway.
NASA Astrophysics Data System (ADS)
Finn, C.; Bedrosian, P.; Wisniewski, M.; Deszcz-Pan, M.
2015-12-01
Groundwater position, abundance, and flow rates within a volcano affect the transmission of fluid pressure, transport of mass and heat and formation of mechanically weak hydrothermal alteration influencing the stability of volcanoes. In addition, eruptions can shatter volcanic rocks, weakening the edifice. Helicopter magnetic and electromagnetic (HEM) data collected over Mt. Baker and Mt. St. Helens volcanoes reveal the distribution of water, shattered volcanic rocks and hydrothermal alteration essential to evaluating volcanic landslide hazards. These data, combined with geological mapping and rock property measurements, indicate the presence of localized <100 m thick zones of water-saturated hydrothermally altered rock beneath Sherman Crater and the Dorr Fumarole Fields at Mt. Baker. Nuclear magnetic resonance data indicate that the hydrothermal clays contain ~50% bound water with no evidence for free water ponded beneath the ice. The HEM data suggest water-saturated fresh volcanic rocks from the surface to the detection limit (~100 m) over the entire summit of Mt. Baker (below the ice). A 50-100 m thick high resistivity layer (>1500 ohm-m) corresponding to domes, debris avalanche, volcanic rocks and glaciers mantles the crater at Mt. St. Helens. Shallow low resistivity layers corresponding to fresh, cold water and hot brines are observed below the high resistivity surface in EM data. Shallow ground water mainly concentrates in shattered dome material in the crater of Mt. St. Helens. Aeromagnetic data indicate the location of basalts sandwiched between debris avalanche deposits and shattered dome material. The combination of the EM and magnetic data help map the location of the shattered dome material that is considered to be the failure surface for the 1980 debris avalanche. The EM data image the regional groundwater table near the base of the volcano. The geophysical identification of groundwater and weak layers constrain landslide hazards assessments.
NASA Astrophysics Data System (ADS)
Samrock, F.; Grayver, A.; Eysteinsson, H.; Saar, M. O.
2017-12-01
In search for geothermal resources, especially in exploration for high-enthalpy systems found in regions with active volcanism, the magnetotelluric (MT) method has proven to be an efficient tool. Electrical conductivity of the subsurface, imaged by MT, is used for detecting layers of electrically highly conductive clays which form around the surrounding strata of hot circulating fluids and for delineating magmatic heat sources such as zones with partial melting. We present a case study using a novel 3-D inverse solver, based on adaptive local mesh refinement techniques, applied to decoupled forward and inverse mesh parameterizations. The flexible meshing allows accurate representation of surface topography, while keeping computational costs at a reasonable level. The MT data set we analyze was measured at 112 sites, covering an area of 18 by 11 km at a geothermal prospect in the Main Ethiopian Rift. For inverse modelling, we tested a series of different settings to ensure that the recovered structures are supported by the data. Specifically, we tested different starting models, regularization functionals, sets of transfer functions, with and without inclusion of topography. Several robust subsurface structures were revealed. These are prominent features of a high-enthalpy geothermal system: A highly conductive shallow clay cap occurs in an area with high fumarolic activity, and is underlain by a more resistive zone, which is commonly interpreted as a propylitic reservoir and is the main geothermal target for drilling. An interesting discovery is the existence of a channel-like conductor connecting the geothermal field at the surface with an off-rift conductive zone, whose existence was proposed earlier as being related to an off-rift volcanic belt along the western shoulder of the Main Ethiopian Rift. The electrical conductivity model is interpreted together with results from other geoscientific studies and outcomes from satellite remote sensing techniques.
Monitoring Colima Volcano, Mexico, using satellite data
NASA Technical Reports Server (NTRS)
Abrams, Michael; Glaze, Lori; Sheridan, Michael
1991-01-01
The Colima Volcanic Complex at the western end of the Mexican Volcanic Belt is the most active andesitic volcano in Mexico. Short-wavelength infrared data from the Landsat Thematic Mapper satellite were used to determine the temperature and fractional area of radiant picture elements for two January data acquisitions in 1985 and 1986. The 1986 data showed four 28.5 m by 28.5 m pixels (picture elements) whose hot subpixel components had temperatures ranging from 511-774 C and areas of 1.8-13 sq m. The 1985 data had no radiating areas above background temperatures. Ground observations and measurements in November 1985 and February 1986 reported the presence of hot fumaroles at the summit with temperatures of 135-895 C. This study demonstrates the utility of satellite data for monitoring volcanic activity.
First field determination of the 13C/12C isotope ratio in volcanic CO2 by diode-laser.
Castrillo, A; Casa, G; van Burgel, M; Tedesco, D; Gianfrani, L
2004-12-27
Carbon isotope ratio analysis using a laser-based technique has been performed in the field, on the gaseous emissions from an active volcano. We here describe that 13CO2/12CO2 determinations can be carried out in a quasi-continuous regime using a compact, selective and sensitive diode laser spectrometer at a wavelength of 2 mum. Within the Solfatara crater (near Naples, Italy), in a very harsh environment, we were able to determine relative 13CO2/12CO2 values, on the highest flux fumarole, with an accuracy of 0.5 per thousand. Regular and frequent observations of the carbon isotopes in volcanic gases, which become possible with our methodology, are of the utmost importance for geochemical surveillance of volcanoes.
Thermal surveillance of active volcanoes
NASA Technical Reports Server (NTRS)
Friedman, J. D. (Principal Investigator)
1973-01-01
The author has identified the following significant results. There are three significant scientific results of the discovery of 48 pinpoint anomalies on the upper flanks of Mt. Rainier: (1) Many of these points may actually be the location of fumarolic vapor emission or warm ground considerably below the summit crater. (2) Discovery of these small anomalies required specific V/H scanner settings for precise elevation on Mt. Rainier's flank, to avoid smearing the anomalies to the point of nonrecognition. Several past missions flown to map the thermal anomalies of the summit area did not/detect the flank anomalies. (3) This illustrates the value of the aerial IR scanner as a geophysical tool suited to specific problem-oriented missions, in contrast to its more general value in a regional or reconnaissance anomaly-mapping role.
NASA Astrophysics Data System (ADS)
di Martino, R. M. R.; Camarda, M.; Gurrieri, S.; Valenza, M.
2009-04-01
Hydrogen solubility and diffusion have a great relevance to change the redox state of magmas, usually expressed by oxygen fugacity. This influences many chemical and physical properties, such as oxidation state of multivalent elements, kind and abundance of minerals and gas species. These processes change the phase ratios into the volcanic system and so the magma movement capability toward the earth surface and the eruptive dynamics. In past studies several authors (Carapezza et al., 1980; Sato et al., 1982; Sato and McGee, 1985; Wakita et al., 1980) proposed the application of the fuel cells in order to measure reducing capacity of volcanic gases. Their found some clear correlations between variation peaks and volcanic activity but a few reducing capacity changes showed no correlation with it. In this study we characterize a fuel cell device designed to measure hydrogen concentration in a gas mixture. We present test results obtained in laboratory and in field trip, carried out to verify the major interferences of others reducing gas species, commonly present in volcanic emissions, in the measurement carried out with a hydrogen fuel cell sensor. Tests were performed at controlled temperature ad pressure conditions and at air saturated pressure vapour in the cell cathode. A new device to measure simultaneously hydrogen (H2) and carbon dioxide (CO2) concentrations in soil and in low temperature fumaroles in volcanic areas was proposed. The H2-detector is a hydrogen fuel cell, whereas CO2 is measured using an I.R. spectrometer. To build a continuous monitoring station of volcanic activity both sensors were put in a case together with a data logger. Our device has 0.2 mV ppm-1 sensitivity, accuracy of ± 5 ppm and about 10 ppm resolution whit respect to the hydrogen concentration. These instrumental characteristics were obtained applying a 500 ohm resistor to the external circuit that represents the best compromise between sensitivity, resolution, instrumental response time, and linearity of signal. We determine the CO2 concentration in the gas mixture with an I.R. spectrometer that has a measuring range of 0-100% with accuracy of ± 2% of the range and response time of 10 seconds. The laboratory results confirm our hypothesis of interference between H2, H2S and CO in the full concentration range of contaminant species. Therefore, according to our studies, the assignment of the fuel cell signal output variations only to H2 variation of concentration as in past studies, without physical separation of different reducing species may be misleading. Continuous measurements and periodical measurement field trip were performed at Torre Del Filosofo site on the upper part of the Etna volcano from the end of July to the middle October 2008. In field applications, H2S was removed with a Pb(COOH)2 trap whereas CO interference was neglected because H2/CO ratios in volcanic gases are typically high. Field time-series measurements of H2 and CO2 in gases emitted by low temperature fumaroles at Torre del Filosofo site showed a close positive correlation between explosion activity and the major peaks in the hydrogen concentration.
Integrated geophysical imaging of the Aluto-Langano geothermal field (Ethiopia).
NASA Astrophysics Data System (ADS)
Rizzello, Daniele; Armadillo, Egidio; Verdoya, Massimo; Pasqua, Claudio; Kebede, Solomon; Mengiste, Andarge; Hailegiorgis, Getenesh; Abera, Fitsum; Mengesha, Kebede; Meqbel, Naser
2017-04-01
The Aluto-Langano geothermal system is located in the central part of the Main Ethiopian Rift, one of the world's most tectonically active areas, where continental rifting has been occurring since several Ma and has yielded widespread volcanism and enhanced geothermal gradient. The geothermal system is associated to the Mt Aluto Volcanic Complex, located along the eastern margin of the rift and related to the Wonji Fault Belt, constituted by Quaternary NNE-SSW en-echelon faults. These structures are younger than the NE-SW border faults of the central Main Ethiopian Rift and were originated by a stress field oblique to the rift direction. This peculiar tectonism yielded local intense rock fracturing that may favour the development of geothermal reservoirs. In this paper, we present the results of an integrated geophysical survey carried out in 2015 over an area of about 200 km2 covering the Mt Aluto Volcanic Complex. The geophysical campaign included 162 coincident magnetotelluric and time domain electromagnetic soundings, and 207 gravity stations, partially located in the sedimentary plain surrounding the volcanic complex. Three-dimensional inversion of the full MT static-corrected tensor and geomagnetic tipper was performed in the 338-0.001 Hz band. Gravity data processing comprised digital enhancement of the residual Bouguer anomaly and 2D-3D inverse modelling. The geophysical results were compared to direct observations of stratigraphy, rock alteration and temperature available from the several deep wells drilled in the area. The magnetotelluric results imaged a low-resistivity layer which appears well correlated with the mixed alteration layer found in the wells and can be interpreted as a low-temperature clay cap. The clay-cap bottom depth is well corresponds to a change of thermal gradient. The clay cap is discontinuous, and in the central area of the volcanic complex is characterised by a dome-shape structure likely related to isotherm rising. The propilitic alteration layer, pinpointed as the 80-Ohm-m isosurface, shows two dome-shape highs. The first is NNE-trending, and may be interpreted as an upflow zone along a fault of the Wonji belt. Two productive wells are located along the borders of this area, as well as the alignements of fumaroles and altered grounds. The second is linked to a wide resistive area, located at shallow depth, where no clay cap was detected. It could be interpreted as a fossil high-temperature alteration zone reaching shallow depths, and it is associated to several fumaroles. Modeling of 2D/3D gravity data shows that the anomalies are due to shallow density variations likely related to lithology. The deep lateral variations due to structural lineaments inferred from well stratigraphy have no detectable signature. However, the trend analysis performed on the residual Bouguer anomaly (via horizontal and tilt derivative computations), allowed to identify five lineaments. Three of them exhibit NNE-SSW strike, corresponding to the Wonji Fault Belt Trend, whereas two have NNW-SSE strike, corresponding to the Red Sea Rift trend, which in this area is of minor evidence. The signature of shallow structures is then indicative of major regional structures. One of the lineaments marks the presence of a major fumarolic zone.
NASA Astrophysics Data System (ADS)
Iwata, M.; Mogi, T.; Okuma, S.; Nakatsuka, T.
2016-12-01
Tokachidake Volcano, central Hokkaido, Japan erupted in 1926, 1962 and 1988-1989 in the 20th century from the central part. In recent years, expansions of the edifice of the volcano at shallow depth and increases of the volcanic smoke in the Taisho crater were observed (Meteorological Agency of Japan, 2014). Magnetic changes were observed at the 62-2 crater by repeated magnetic measurements in 2008-2009, implying a demagnetization beneath the crater (Hashimoto at al., 2010). Moreover, a very low resistivity part was found right under the 62-2 crater from an AMT survey (Yamaya et al., 2010). However, since the station numbers of the survey are limited, the area coverage is not sufficient. In this study, we have re-analyzed high-resolution aeromagnetic data to delineate the three-dimensional magnetic structure of the volcano to understand the nature of other craters.A low altitude airborne magnetic survey was conducted in 2014 mainly over the active areas of the volcano by the Ministry of Land, Infrastructure, Transport and Tourism to manage land slide risk in the volcano. The survey was flown at an altitude of 60 m above ground by a helicopter with a Cesium magnetometer in the towed-bird 30m below the helicopter. The low altitude survey enables us to delineate the detailed magnetic structure. We calculated magnetic anomaly distribution on a smooth surface assuming equivalent anomalies below the observation surface. Then the 3D magnetic imaging method (Nakatsuka and Okuma, 2014) was applied to the magnetic anomalies to reveal the three-dimensional magnetic structure.As a result, magnetization highs were seen beneath the Ground crater, Suribachi crater and Kitamuki crater. This implies that magmatic activity occurred in the past at these craters. These magma should have already solidified and acquired strong remanent magnetization. Relative magnetization lows were seen beneath the 62-2 crater and the Taisho crater where fumarolic activity is active. However a magnetization high was seen beneath the Nukkakushi crater where fumarolic activity and hydrothermal alteration had been observed on the ground. Further studies on this interesting distribution is necessary.
Health hazards and disaster potential of ground gas emissions at Furnas volcano, São Miguel, Azores
NASA Astrophysics Data System (ADS)
Baxter, Peter J.; Baubron, Jean-Claude; Coutinho, Rui
1999-09-01
A health hazard assessment of exposure to soil gases (carbon dioxide and radon) was undertaken in the village of Furnas, located in the caldera of an active volcano. A soil survey to map the area of soil gas flow was undertaken, gas emissions were monitored at fumaroles and in eight houses, and a preliminary radon survey of 23 houses in the main anomaly area was performed. Potential volcanic sources of toxic contamination of air, food, and water were also investigated, and ambient air quality was evaluated. About one-third (41 ha) of the houses were located in areas of elevated carbon dioxide soil degassing. Unventilated, confined spaces in some houses contained levels of carbon dioxide which could cause asphyxiation. Mean indoor radon levels exceeded UK and US action levels in the winter months. A tenfold increase in radon levels in one house over 2 h indicated that large and potentially lethal surges of carbon dioxide could occur without warning. Toxic exposures from the gaseous emissions and from contamination of soil and water were minimal, but sulphur dioxide levels were mildly elevated close to fumaroles. In contrast, evidence of dental fluorosis was manifested in the population of the nearby fishing village of Ribeira Quente where drinking water in the past had contained elevated levels of fluoride. The disaster potential of volcanic carbon dioxide in the area could also be associated with the hydrothermal system storing dissolved carbon dioxide beneath the village. Felt, or unfelt, seismic activity, or magma unrest, especially with a reawakening of explosive volcanic activity (30% probability in the next 100 years) could result in an increase in gas flow or even a gas burst from the hydrothermal system. A survey of all houses in Furnas is advised as structural measures to prevent the ingress of soil gases, including radon, were needed in some of the study houses. Evaluations of the human hazards of volcanic gases should be undertaken in all settlements in volcanic and hydrothermal areas associated with soil gas emissions.
NASA Astrophysics Data System (ADS)
Rivera, Marco; Thouret, Jean-Claude; Samaniego, Pablo; Le Pennec, Jean-Luc
2014-01-01
Following a fumarolic episode that started six months earlier, the most recent eruptive activity of the Ubinas volcano (south Peru) began on 27 March 2006, intensified between April and October 2006 and slowly declined until December 2009. The chronology of the explosive episode and the extent and composition of the erupted material are documented with an emphasis on ballistic ejecta. A petrological study of the juvenile products allows us to infer the magmatic processes related to the 2006-2009 eruptions of the andesitic Ubinas volcano. The juvenile magma erupted during the 2006 activity shows a homogeneous bulk-rock andesitic composition (56.7-57.6 wt.% SiO2), which belongs to a medium- to high-K calc-alkaline series. The mineral assemblage of the ballistic blocks and tephra consists of plagioclase > two-pyroxenes > Fe-Ti oxide and rare olivine and amphibole set in a groundmass of the same minerals with a dacitic composition (66-67 wt.% SiO2). Thermo-barometric data, based on two-pyroxene and amphibole stability, records a magma temperature of 998 ± 14 °C and a pressure of 476 ± 36 MPa. Widespread mineralogical and textural features point to a disequilibrium process in the erupted andesite magma. These features include inversely zoned "sieve textures" in plagioclase, inversely zoned clinopyroxene, and olivine crystals with reaction and thin overgrowth rims. They indicate that the pre-eruptive magmatic processes were dominated by recharge of a hotter mafic magma into a shallow reservoir, where magma mingling occurred and triggered the eruption. Prior to 2006, a probable recharge of a mafic magma produced strong convection and partial homogenization in the reservoir, as well as a pressure increase and higher magma ascent rate after four years of fumarolic activity. Mafic magmas do not prevail in the Ubinas pre-historical lavas and tephras. However, mafic andesites have been erupted during historical times (e.g. AD 1667 and 2006-2009 vulcanian eruptions). Hence, the most recent episode indicates that a resupply of mafic magmas has probably occurred at depth under Ubinas.
Ball, Jessica L.; Calder, Eliza S.; Hubbard, Bernard E.; Bernstein, Marc L.
2013-01-01
A combination of field mapping, geochemistry, and remote sensing methods has been employed to determine the extent of hydrothermal alteration and assess the potential for failure at the Santiaguito lava dome complex, Guatemala. The 90-year-old complex of four lava domes has only experienced relatively small and infrequent dome collapses in the past, which were associated with lava extrusion. However, existing evidence of an active hydrothermal system coupled with intense seasonal precipitation also presents ideal conditions for instability related to weakened clay-rich edifice rocks. Mapping of the Santiaguito dome complex identified structural features related to dome growth dynamics, potential areas of weakness related to erosion, and locations of fumarole fields. X-ray diffraction and backscattered electron images taken with scanning electron microscopy of dacite and ash samples collected from around fumaroles revealed only minor clay films, and little evidence of alteration. Mineral mapping using ASTER and Hyperion satellite images, however, suggest low-temperature (<150 °C) silicic alteration on erosional surfaces of the domes, but not the type of pervasive acid-sulfate alteration implicated in collapses of other altered edifices. To evaluate the possibility of internal alteration, we re-examined existing aqueous geochemical data from dome-fed hot springs. The data indicate significant water–rock interaction, but the Na–Mg–K geoindicator suggests only a short water residence time, and δ18O/δD ratios show only minor shifts from the meteoric water line with little precipitation of secondary (alteration) minerals. Based on available data, hydrothermal alteration on the dome complex appears to be restricted to surficial deposits of hydrous silica, but the study has highlighted, importantly, that the 1902 eruption crater headwall of Santa María does show more advanced argillic alteration. We also cannot rule out the possibility of advanced alteration within the dome complex interior that is not accessible to the methods used here. It may therefore be prudent to employ geophysical methods to make further assessments in the future.
NASA Astrophysics Data System (ADS)
Mormone, Angela; Piochi, Monica; Balassone, Giuseppina; Strauss, Harald; Troise, Claudia; De Natale, Giuseppe
2015-04-01
The Campi Flegrei caldera is a site of persistent hydrothermal circulation and gaseous emissions inside the Pozzuoli town and nearby the city of Napoli (Italy). The solfataric phenomena are associated with episodes of low-magnitude seismicity and vertical ground displacement since Roman times, evolving to the Monte Nuovo eruption in the 1538 AD. Pronounced geochemical anomalies, uplift rates up to 1 m/y and up to ten thousands microearthquakes per year also characterized the four most recent decades of unrest. The degassing phenomena are concentrated within the Solfatara crater, although, since 2006, the hydrothermal activity strongly increased in the Pisciarelli district, i.e. on the north-east slope of the tuff. We investigated sulfur-bearing mineral precipitates sampled from the active fumaroles both within the Solfatara and along the Pisciarelli slope. Mineral assemblage, texture and chemistry were determined for the efflorescence precipitated nearby the fumaroles and along the mud pool by x-ray diffraction, back-scattered electron microscope and electron diffuse microanalysis. δ34S compositions were also determined on separated sulfur-minerals. The new data have been compared with scattered literature data, including few existing for the previous '70 and '80 unrest episodes. Native sulfur and alunite are the main mineral phases that associate with alunogene, and, locally, pickeringite and potassium alum. Sporadically mereiterite, amarillite, and pyrite have been found as neogenesis mineralization along the outcropping rocks. The mud pool is rich in gypsum, potassium alum and pyrite. δ34S values range from -5.48 to 0.0‰, being slightly lower than previous data. The obtained results suggest that the Pisciarelli area is characterized by magmatic-hydrothermal, magmatic-steam and steam-heated environments, developed on a argillitic hydrothermal facies that thickens in correspondence of the degassing area. These environments develop and continuously evolve in relation to fracturing conditions that determine the ability of i) gases to rise from deeper levels and ii) meteoric water to filter from the surface to depth.
RIS4E at Kilauea's December 1974 (D1974) Flow: Establishing the D1974 Flow as an Ideal Mars Analog
NASA Astrophysics Data System (ADS)
Young, K. E.; Bleacher, J. E.; Rogers, D.; McAdam, A.; Garry, W. B.; Scheidt, S. P.; Carter, L. M.; Glotch, T. D.
2015-12-01
The Kīlauea December 1974 (D1974) flow was emplaced from a series of en echelon fissures southwest of Kīlauea Caldera. In 6.5 hours the D1974 flow was emplaced over the Keanakāko`i ash member as a rapidly emplaced sheet flow. This flow has previously been used as a location for radar roughness studies due to the exposure of abrupt changes in surface texture ranging between smooth pāhoehoe, rubbly and slabby lavas and ´áā lava. When viewed in visible remote sensing images, this flow field displays dark and light toned areas that reveal sinuous patterns, streamlined islands, and rafted lava slabs and plates. The flow is an ideal location to study lava textures, textural relationships and the formation of non-traditional channels and associated features as analogs to characterizing the formation of channel networks on the flanks of martian volcanoes or rilles in the lunar mare. The D1974 flow is also positioned downwind from Kīlauea Caldera along the volcano's SW rift zone. D1974 lavas flowed across older, active fumaroles and have since been exposed to acid fog, rain, and other plume related processes. In 2008 the Kīlauea Caldera experienced an explosive event along the wall of Halemáumáu and has since displayed an active lava lake, thereby elevating the flow's exposure to processes related to volcanic gasses. Alteration products have therefore formed both in and around the older fumaroles (at the solfatara site) as well as being deposited as thin coatings over the entire length of the flow. These products are reminiscent of sulfate-rich materials that have been identified on Mars by several groups. Though these martian deposits have been identified and analyzed, their formation mechanism remains somewhat ambiguous. The D1974 flow represents an ideal analog with which to test various formation scenarios using a variety of field portable technologies, designed to analyze the alteration products in situ (thereby preserving their initial structures and textures).
NASA Astrophysics Data System (ADS)
Montanaro, Cristian; Mayer, Klaus; Isaia, Roberto; Gresse, Marceau; Scheu, Bettina; Yilmaz, Tim I.; Vandemeulebrouck, Jean; Ricci, Tullio; Dingwell, Donald B.
2017-12-01
The Solfatara area and its fumaroles are the main surface expression of the vigorous hydrothermal activity within the active Campi Flegrei caldera system. At depth, a range of volcanic and structural processes dictate the actual state of the hydrothermal system below the crater. The presence of a large variety of volcanic products at shallow depth (including pyroclastic fallout ash beds, pyroclastic density current deposits, breccias, and lavas), and the existence of a maar-related fault system appears to exert major controls on the degassing and alteration behavior. Adding further to the complexity of this environment, variations in permeability and porosity, due to subsoil lithology and alteration effects, may further influence fluid flow towards the surface. Here, we report results from a field campaign conducted in July 2015 that was designed to characterize the in situ physical (temperature, humidity) and mechanical (permeability, strength, stiffness) properties of the Solfatara crater subsoil. The survey also included a mapping of the surficial hydrothermal features and their distributions. Finally, laboratory measurements (porosity, granulometry) of selected samples were performed. Our results enable the discrimination of four main subsoils around the crater: (1) the Fangaia domain located in a topographic low in the southwestern sector, (2) the silica flat domain on the western altered side, (3) the new crust domain in the central area, and (4) the crusted hummocks domain that dominates the north, east, and south parts. These domains are surrounded by encrusted areas, reworked material, and vegetated soil. The distribution of these heterogeneous subsoils suggests that their formation is mostly related to (i) the presence of the Fangaia domain within the crater and (ii) a system of ring faults bordering it. The subsoils show an alternation between very high and very low permeabilities, a fact which seems to affect both the temperature distribution and surficial degassing. A large range of surface temperatures (from 25 up to 95 °C) has been measured across these surfaces, with the hottest spot corresponding to the mud pools, the area of new crust formation, and the crusted hummocks. In the subsoil, the distribution of temperature is more complex and controlled by the presence of coarser, and more permeable, sandy/pebbly levels. These act as preferential pathways for hot hydrothermal fluid circulation. In contrast, low permeability, fine-grained levels act as thermal insulators that remain relatively cold and hinder fluid escape to the surface. Hot gases reach the surface predominantly along (vertical) fractures. When this occurs, mound-like structures can be formed by a cracking and healing process associated with significant degassing. It is anticipated that the results presented here may contribute to an improved understanding of the hazard potential associated with the ongoing hydrothermal activity within the Solfatara crater. At this site the permeability of the near-surface environment and its changes in space and time can affect the spatial and temporal distribution of gas and heat emission. Particularly, in areas where reduction in permeability occurs, it can produce pore pressure augmentation that may result in explosive events.
Rover's Wheel Churns Up Bright Martian Soil
NASA Technical Reports Server (NTRS)
2009-01-01
NASA's Mars Exploration Rover Spirit acquired this mosaic on the mission's 1,202nd Martian day, or sol (May 21, 2007), while investigating the area east of the elevated plateau known as 'Home Plate' in the 'Columbia Hills.' The mosaic shows an area of disturbed soil, nicknamed 'Gertrude Weise' by scientists, made by Spirit's stuck right front wheel. The trench exposed a patch of nearly pure silica, with the composition of opal. It could have come from either a hot-spring environment or an environment called a fumarole, in which acidic, volcanic steam rises through cracks. Either way, its formation involved water, and on Earth, both of these types of settings teem with microbial life. Spirit acquired this mosaic with the panoramic camera's 753-nanometer, 535-nanometer, and 432-nanometer filters. The view presented here is an approximately true-color rendering.Rover's Wheel Churns Up Bright Martian Soil (Vertical)
NASA Technical Reports Server (NTRS)
2009-01-01
NASA's Mars Exploration Rover Spirit acquired this mosaic on the mission's 1,202nd Martian day, or sol (May 21, 2007), while investigating the area east of the elevated plateau known as 'Home Plate' in the 'Columbia Hills.' The mosaic shows an area of disturbed soil, nicknamed 'Gertrude Weise' by scientists, made by Spirit's stuck right front wheel. The trench exposed a patch of nearly pure silica, with the composition of opal. It could have come from either a hot-spring environment or an environment called a fumarole, in which acidic, volcanic steam rises through cracks. Either way, its formation involved water, and on Earth, both of these types of settings teem with microbial life. The image is presented here as a vertical projection, as if looking straight down, and in false color, which brings out subtle color differences.Rover's Wheel Churns Up Bright Martian Soil (False Color)
NASA Technical Reports Server (NTRS)
2009-01-01
NASA's Mars Exploration Rover Spirit acquired this mosaic on the mission's 1,202nd Martian day, or sol (May 21, 2007), while investigating the area east of the elevated plateau known as 'Home Plate' in the 'Columbia Hills.' The mosaic shows an area of disturbed soil, nicknamed 'Gertrude Weise' by scientists, made by Spirit's stuck right front wheel. The trench exposed a patch of nearly pure silica, with the composition of opal. It could have come from either a hot-spring environment or an environment called a fumarole, in which acidic, volcanic steam rises through cracks. Either way, its formation involved water, and on Earth, both of these types of settings teem with microbial life. The image is presented here in false color that is used to bring out subtle differences in color.Long Valley Caldera 2003 through 2014: overview of low level unrest in the past decade
Wilkinson, Stuart K.; Hill, David P.; Langbein, John O.; Lisowski, Michael; Mangan, Margaret T.
2014-01-01
Long Valley Caldera is located in California along the eastern escarpment of the Sierra Nevada Range. The caldera formed about 760,000 years ago as the eruption of 600 km3 of rhyolite magma (Bishop Tuff) resulted in collapse of the partially evacuated magma chamber. Resurgent doming in the central part of the caldera occurred shortly afterwards, and the most recent eruptions inside the caldera occurred about 50,000 years ago. The caldera remains thermally active, with many hot springs and fumaroles, and has had significant deformation and seismicity since at least 1978. Periods of intense unrest in the 1980s to early 2000s are well documented in the literature (Hill and others, 2002; Ewert and others, 2010). In this poster, we extend the timeline forward, documenting seismicity and deformation over the past decade.
Geophysics of Volcanic Landslide Hazards: The Inside Story
NASA Astrophysics Data System (ADS)
Finn, C.; Deszcz-Pan, M.; Bedrosian, P. A.
2013-05-01
Flank collapses of volcanoes pose significant potential hazards, including triggering lahars, eruptions, and tsunamis. Significant controls on the stability of volcanoes are the distribution of hydrothermal alteration and the location of groundwater. Groundwater position, abundance, and flow rates within a volcano affect the transmission of fluid pressure and the transport of mass and heat. Interaction of groundwater with acid magmatic gases can lead to hydrothermal alteration that mechanically weakens rocks and makes them prone to failure and flank collapse. Therefore, detecting the presence and volume of hydrothermally altered rocks and shallow ground water is critical for evaluating landslide hazards. High-resolution helicopter magnetic and electromagnetic (HEM) data collected over the rugged, ice-covered Mount Adams, Mount Baker, Mount Rainier, Mount St. Helens (Washington) and Mount Iliamna (Alaska) volcanoes, reveal the distribution of alteration, water and ice thickness essential to evaluating volcanic landslide hazards. These data, combined with geological mapping, other geophysical data and rock property measurements, indicate the presence of appreciable thicknesses (>500 m) of water-saturated hydrothermally altered rock west of the modern summit of Mount Rainier in the Sunset Amphitheater region and in the central core of Mount Adams north of the summit. Water-saturated alteration at Mount Baker is restricted to thinner (<200 m) zones beneath Sherman Crater and the Dorr Fumarole Fields. The HEM data can be used to identify water-saturated fresh volcanic rocks from the surface to the detection limit (~100-200 m) in discreet zones on the summits of Mount Rainier and Mt Adams, in shattered fresh dome rocks under the crater of Mount St. Helens and in the entire summit region at Mount Baker. A 50-100 m thick water saturated layer is imaged within or beneath parts of glaciers on Mount Iliamna. Removal of ice and snow during eruptions and landslide can result in lahars and floods. Ice thickness measurements critical for flood and mudflow hazards studies are very sparse on most volcanoes. The HEM data are used to estimate ice thickness over portions of Mount Baker and Mount Adams volcanoes. The best estimates for ice thickness are obtained over relatively low resistivity (<600 ohm-m) ground for the main ice cap on Mount Adams and over most of the summit of Mount Baker. The modeled distribution of alteration, pore fluids and partial ice volumes on the volcanoes helps identify likely sources for future alteration-related debris flows, including the Sunset Amphitheater region at Mount Rainier, steep cliffs at the western edge of the central altered zone at Mount Adams, south and north flanks of Mount Baker, and central Mount Iliamna. The water saturated shattered fresh dome material in the crater of Mount St. Helens may have served as part of the slip surface for the 1980 debris avalanche.
Audiomagnetotellurics-Magnetotelluric (AMT-MT) survey of the Campi Flegrei inner caldera
NASA Astrophysics Data System (ADS)
Siniscalchi, Agata; Tripaldi, Simona; Romano, Gerardo; D'Auria, Luca; Improta, Luigi; Petrillo, Zaccaria
2017-04-01
In the framework of the EU project MED-SUV, an audiomagnetotellurics-magnetotelluric (AMT-MT) survey in the frequency band 0.1-100kHz was performed in the eastern border of the Campi Flegrei inner caldera comprising the area where seismicity is concentred in the last decade. This survey was aimed to provide new insights on the electrical resistivity structure of the subsoil. Among all the collected MT soundings, twenty-two, on a total of forty-three, were selected along a WSW-ENE alignment that crosses the main fumarole emissions (Solfatara, Pisciarelli and Agnano) and used for 2D regularized inversion. The obtained model is characterized by a quite narrow resistivity range that well matches typical range of enhanced geothermal environment as largely documented in the international literature. In particular focusing on the Solfatara and Pisciarelli districts the resistivity distribution clearly calls to mind the behavior of a high temperature geothermal system with a very conductive cap in the shallower part. Here the presence of gaps in this conductor just in correspondence of the main superficial emissions describes the inflow and outflow pathway of the shallow fluids circulation. A high resistive reservoir appearing at a depth of about 500 m b.s.l.. WithinWithin this region we selected a vertical resistivity profile just in correspondence of a Vp/Vs profile versus depth coming from a passive seismic tomography (Vanorio et al., 2005). The comparison of the two behaviors shows a clear anti-correlation between the two physical parameters (high resistivity and low Vp/Vs) in the depth range 500-1000 m supporting the interpretation that an over-pressurized gas bearing rocks under supercritical conditions constituting the reservoir of the enhanced geothermal system. On the eastern side of this resistive plume up to 2.5 km of depth is present a local relative conductive unit underneath the Pisciarelli area. In the same volume most of the recent (from 2005 up to date) micro-earthquake hypocenters are confined suggesting that in this volume geothermal fluid, pushed by the reservoir pressure and mixed with the powerful aquifer (testified in the well CF23), propagates in widespread pores and cracks triggering microseismicity. The present resistivity model is limited to 3 km of depth due to the adopted frequency range, thus does not investigate the magma feeding system of the Plegrean Field caldera that seismic imaging suggest to be a large magmatic sill within the basement formations at about 7.5 km of depth (Zollo et al., 2008). On the contrary it well image for the first time with higher resolution than in the past the geothermal system underneath Solfatara-Pisciarelli districts giving insights of the whole hydro-geothermal circulation.
The most destructive effusive eruption in modern history: Nyiragongo (RD. Congo), January 2002.
NASA Astrophysics Data System (ADS)
Allard, P.; Baxter, P.; Halbwachs, M.; Kasareka, M.; Komorowski, J. C.; Joron, J. L.
2003-04-01
Nyiragongo volcano (3470 m a.s.l.), built on the western branch of the East African Rift, has long contained in its summit crater a highly fluid, actively degassing lava lake of nephelinite composition that was studied on several occasions since the mid XXth century [1]. In 1977, for the first time in recent history, this lava lake suddenly drained out through flank fractures, causing some 60 casualties [2]. A new lava lake gradually refilled the crater from 1982 to 1994 [3] but, subsequently, its surface solidification evidenced a drop in the magma supply rate. On 17 January 2002, after several months of increased seismicity and fumarolic activity, a second drainage of the lava lake occurred through a 18 km long N-S fracture system that propagated in a few hours from 2800 m down to 1550 m elevation along the southern volcano flank. Voluminous flows of fluid pahoehoe and aa lavas ran across villages, banana fields and crops and, finally, through the city of Goma from which 350,000 inhabitants fled in a hurry. About 15% of the city, including its main centre and the housing of 120,000 people, were engulfed by flows which ultimately poured into the nearby gas-charged Lake Kivu, raising concern about a possible Nyos-type lethal gas burst [4]. Despite its limited death toll (about 45), this eruption had the most destructive impact ever recorded in history for an effusive eruption. Understanding its triggering mechanism is fundamental since a new lava lake may reform soon in Nyiragongo crater, further threatening the Goma region. Different field observations and measurements carried out soon after the eruption allowed us [4] and UN-OCHA colleagues [5] to recognize that the 2002 eruption had likely been triggered by tectonic spreading of the Kivu Rift, manifested in the occurrence of intense post-eruptive seismicity, regional ground subsidence, fracturing and minor CO2-CH4-rich gas explosions, rather than by simple magma overpressure and intrusion. This interpretation is supported i) by the similarity in the volumes of erupted flows (ca. 30-40x106 m3) and of summit crater collapse, and ii) by the identical major and trace element chemistry of the 2002 and 1977 lavas, as will be discussed. Monitoring tectonic movements in the Kivu rift thus reveals extremely important for anticipating future volcanic risks from Nyiragongo. [1] Tazieff H. et al., Bull. Volcanol., 23, 69-71, 1960; [2] Tazieff H., Bull. Volcanol., 40, 189-200, 1977; [3] Global Volc. Bull. Reports; [4] Allard P. et al., French-UK Concorde Report, 38 pp., 8 March 2002; [5] Tedesco D. et al., UN-OCHA Report, 52 pp., 30 March 2002.
Detection, Source Location, and Analysis of Volcano Infrasound
NASA Astrophysics Data System (ADS)
McKee, Kathleen F.
The study of volcano infrasound focuses on low frequency sound from volcanoes, how volcanic processes produce it, and the path it travels from the source to our receivers. In this dissertation we focus on detecting, locating, and analyzing infrasound from a number of different volcanoes using a variety of analysis techniques. These works will help inform future volcano monitoring using infrasound with respect to infrasonic source location, signal characterization, volatile flux estimation, and back-azimuth to source determination. Source location is an important component of the study of volcano infrasound and in its application to volcano monitoring. Semblance is a forward grid search technique and common source location method in infrasound studies as well as seismology. We evaluated the effectiveness of semblance in the presence of significant topographic features for explosions of Sakurajima Volcano, Japan, while taking into account temperature and wind variations. We show that topographic obstacles at Sakurajima cause a semblance source location offset of 360-420 m to the northeast of the actual source location. In addition, we found despite the consistent offset in source location semblance can still be a useful tool for determining periods of volcanic activity. Infrasonic signal characterization follows signal detection and source location in volcano monitoring in that it informs us of the type of volcanic activity detected. In large volcanic eruptions the lowermost portion of the eruption column is momentum-driven and termed the volcanic jet or gas-thrust zone. This turbulent fluid-flow perturbs the atmosphere and produces a sound similar to that of jet and rocket engines, known as jet noise. We deployed an array of infrasound sensors near an accessible, less hazardous, fumarolic jet at Aso Volcano, Japan as an analogue to large, violent volcanic eruption jets. We recorded volcanic jet noise at 57.6° from vertical, a recording angle not normally feasible in volcanic environments. The fumarolic jet noise was found to have a sustained, low amplitude signal with a spectral peak between 7-10 Hz. From thermal imagery we measure the jet temperature ( 260 °C) and estimate the jet diameter ( 2.5 m). From the estimated jet diameter, an assumed Strouhal number of 0.19, and the jet noise peak frequency, we estimated the jet velocity to be 79 - 132 m/s. We used published gas data to then estimate the volatile flux at 160 - 270 kg/s (14,000 - 23,000 t/d). These estimates are typically difficult to obtain in volcanic environments, but provide valuable information on the eruption. At regional and global length scales we use infrasound arrays to detect signals and determine their source back-azimuths. A ground coupled airwave (GCA) occurs when an incident acoustic pressure wave encounters the Earth's surface and part of the energy of the wave is transferred to the ground. GCAs are commonly observed from sources such as volcanic eruptions, bolides, meteors, and explosions. They have been observed to have retrograde particle motion. When recorded on collocated seismo-acoustic sensors, the phase between the infrasound and seismic signals is 90°. If the sensors are separated wind noise is usually incoherent and an additional phase is added due to the sensor separation. We utilized the additional phase and the characteristic particle motion to determine a unique back-azimuth solution to an acoustic source. The additional phase will be different depending on the direction from which a wave arrives. Our technique was tested using synthetic seismo-acoustic data from a coupled Earth-atmosphere 3D finite difference code and then applied to two well-constrained datasets: Mount St. Helens, USA, and Mount Pagan, Commonwealth of the Northern Mariana Islands Volcanoes. The results from our method are within <1° - 5° of the actual and traditional infrasound array processing determined back-azimuths. Ours is a new method to detect and determine the back-azimuth to infrasonic signals, which will be useful when financial and spatial resources are limited.
Rover's Wheel Churns Up Bright Martian Soil (Stereo)
NASA Technical Reports Server (NTRS)
2009-01-01
NASA's Mars Exploration Rover Spirit acquired this mosaic on the mission's 1,202nd Martian day, or sol (May 21, 2007), while investigating the area east of the elevated plateau known as 'Home Plate' in the 'Columbia Hills.' The mosaic shows an area of disturbed soil, nicknamed 'Gertrude Weise' by scientists, made by Spirit's stuck right front wheel. The trench exposed a patch of nearly pure silica, with the composition of opal. It could have come from either a hot-spring environment or an environment called a fumarole, in which acidic, volcanic steam rises through cracks. Either way, its formation involved water, and on Earth, both of these types of settings teem with microbial life. Multiple images taken with Spirit's panoramic camera are combined here into a stereo view that appears three-dimensional when seen through red-blue glasses, with the red lens on the left.Abedini, Atosa A.; Hurwitz, S.; Evans, William C.
2006-01-01
The database (Version 1.0) is a MS-Excel file that contains close to 5,000 entries of published information on noble gas concentrations and isotopic ratios from volcanic systems in Mid-Ocean ridges, ocean islands, seamounts, and oceanic and continental arcs (location map). Where they were available we also included the isotopic ratios of strontium, neodymium, and carbon. The database is sub-divided both into material sampled (e.g., volcanic glass, different minerals, fumarole, spring), and into different tectonic settings (MOR, ocean islands, volcanic arcs). Included is also a reference list in MS-Word and pdf from which the data was derived. The database extends previous compilations by Ozima (1994), Farley and Neroda (1998), and Graham (2002). The extended database allows scientists to test competing hypotheses, and it provides a framework for analysis of noble gas data during periods of volcanic unrest.
NASA Technical Reports Server (NTRS)
Friedman, J. D. (Principal Investigator)
1973-01-01
The author has identified the following significant results. Significant results of the thermal surveillance of volcanoes experiment during 1972 included the design, construction, emplacement, and successful operation at volcanic sites in the Cascade Range, North America and on Surtsey, Iceland, of automated thermistor arrays which transmit ground and fumarole temperatures via the ERTS-1 data communication system to Goddard Space Flight Center. Temperature, radiance, and anomalous heat flow variations are being plotted by a U.S. Geological Survey IBM 360/65 computer program to show daily fluctuations at each of the sites. Results are being compiled in conjunction with NASA and USGS aircraft infrared survey data to provide thermal energy yield estimates during the current repose period of several Cascade Range volcanic systems. ERTS-1 MSS images have provided new information on the extent of structural elements controlling thermal emission at Lassen Volcanic National Park.
Thermophiles in the genomic era: Biodiversity, science, and applications.
Urbieta, M Sofía; Donati, Edgardo R; Chan, Kok-Gan; Shahar, Saleha; Sin, Lee Li; Goh, Kian Mau
2015-11-01
Thermophiles and hyperthermophiles are present in various regions of the Earth, including volcanic environments, hot springs, mud pots, fumaroles, geysers, coastal thermal springs, and even deep-sea hydrothermal vents. They are also found in man-made environments, such as heated compost facilities, reactors, and spray dryers. Thermophiles, hyperthermophiles, and their bioproducts facilitate various industrial, agricultural, and medicinal applications and offer potential solutions to environmental damages and the demand for biofuels. Intensified efforts to sequence the entire genome of hyperthermophiles and thermophiles are increasing rapidly, as evidenced by the fact that over 120 complete genome sequences of the hyperthermophiles Aquificae, Thermotogae, Crenarchaeota, and Euryarchaeota are now available. In this review, we summarise the major current applications of thermophiles and thermozymes. In addition, emphasis is placed on recent progress in understanding the biodiversity, genomes, transcriptomes, metagenomes, and single-cell sequencing of thermophiles in the genomic era. Copyright © 2015 Elsevier Inc. All rights reserved.
El Chichón's "surprise" eruption in 1982: lessons for reducing volcano risk
Tilling, R.I.
2009-01-01
Unfortunately, the eruptions came as an almost total surprise for scientists and government authorities, effectively precluding opportunities to implement timely mitigative countermeasures. During the months before eruption onset, fumarolic activity increased and inhabitants living close to the volcano felt occasional earthquakes, prompting the Chiapas government to request help from the Federal government. Both the Chiapas and Federal governmental actions were slow, and the requested assistance came after the volcano erupted. Perhaps the most important lesson learned from the disastrous outcome at El Chichón is that its decreased activity (29 March–2 April) should not have been assumed by the senior scientist on site—and the military authorities acting on his advice—to signal the end of eruption. While the 1982 eruptions caused a national tragedy, they also fostered multidisciplinary studies of eruptive phenomena, not only at El Chichón but also other explosive volcanoes in the world.
Tourmaline in Appalachian - Caledonian massive sulphide deposits and its exploration significance.
Slack, J.F.
1982-01-01
Tourmaline is a common gangue mineral in several types of stratabound mineral deposits, including some massive base-metal sulphide ores of the Appalachian - Caledonian orogen. It is most abundant (sometimes forming massive foliated tourmalinite) in sediment-hosted deposits, such as those at the Elizabeth Cu mine and the Ore Knob Cu mine (North Carolina, USA). Trace amounts of tourmaline occur associated with volcanic-hosted deposits in the Piedmont and New England and also in the Trondheim district. Tourmaline associated with the massive sulphide deposits are Mg- rich dravites with major- and trace-element compositions significantly different from schorl. It is suggested that the necessary B was produced by submarine exhalative processes as a part of the same hydrothermal system that deposited the ores. An abundance of dravite in non-evaporitic terrains is believed to indicate proximity to former subaqueous fumarolic centres.-R.A.H.
Scanning electron microscope observations of sublimates from Merapi Volcano, Indonesia
Symonds, R.
1993-01-01
Sublimates were sampled from high-temperature (up to 800??C) fumaroles at Merapi volcano in January 1984. Sampling is accomplished by inserting silica tubes into high-temperature vents. Volcanic glass flows through the tubes and sublimates precipitate on the inner walls in response to the temperature gradient. With decreasing temperature (800-500??C) in the tubes, there are five sublimate zones. Texturally, the sublimate phases grade from large, well-formed crystals at their highest-temperature occurrence to more numerous, smaller crystals that are less perfect at lower temperatures. These changes imply that the crystal nucleation and growth rates increase and decrease, respectively, as temperature decreases. Overall, the textural data suggest that the gas is saturated or slightly super-saturated with the phases at their hottest occurrence, but that the gas becomes increasingly super-saturated with the phases at lower temperatures. -from Author
Mariner, R.H.; Venezky, D.Y.; Hurwitz, S.
2006-01-01
Chemical and isotope data accumulated by two USGS Projects (led by I. Barnes and R. Mariner) over a time period of about 40 years can now be found using a basic web search or through an image search (left). The data are primarily chemical and isotopic analyses of waters (thermal, mineral, or fresh) and associated gas (free and/or dissolved) collected from hot springs, mineral springs, cold springs, geothermal wells, fumaroles, and gas seeps. Additional information is available about the collection methods and analysis procedures.The chemical and isotope data are stored in a MySQL database and accessed using PHP from a basic search form below. Data can also be accessed using an Open Source GIS called WorldKit by clicking on the image to the left. Additional information is available about WorldKit including the files used to set up the site.
Gusev Crater on Mars: Wet and Dry
NASA Technical Reports Server (NTRS)
Yen, Albert; Gellert, Ralf; Morris, Richard
2008-01-01
The Mars Exploration Rover Spirit has traversed over 7.5 km in 1470 sols of operations at the Gusev Crater landing site. Chemical and mineralogical evidence from approximately 200 in-situ samples indicate various degrees of exposure to liquid water, from wet and saturated to dry and unaltered. (1) Six samples with concentrations of amorphous silica between 60 and 95 wt% were discovered in a small valley less than 50 meters in length. Associated enrichments in titanium oxide, relatively insoluble at low pH, suggest that these silica deposits formed as a result of acidic leaching processes. Liquid water interactions with these surface materials were necessary to remove cations solubilized in the low pH environment or to concentrate silica in solution prior to precipitation. (2) Hydrated ferric sulfates are found in subsurface deposits which have the unmistakable chemical signatures of nearby rocks. The movement of hydrothermal fluids and/or fumarolic vapors through local rocks prior to precipitation of these materials is suggested by these observations. (3) Goethite (alpha-FeOOH), a mineral phase which requires water to form, represents 20% to 35% of the iron in numerous rock samples (Clovis Class) on the West Spur of the Columbia Hills. Alteration of iron under aqueous conditions is clearly indicated by this presence of goethite. (4) Nearly isochemical signatures are found in elemental analyses of over ten distinct samples (Wishstone/Watchtower class rocks), yet the ratio of ferric iron to total iron varies from 0.4 to 0.95. Small quantities of water, insufficient to flush cations from the samples, were likely responsible for this weathering. (5) Bromine, a trace element readily mobilized by water, is found in high concentrations in certain rock interiors and is enhanced in subsurface soils, consistent with transport to localized cold traps by water thin-films. (6) Also relevant to the characterizing the role of liquid water is the discovery of an areally extensive ultramafic sequence of rocks where over 70% of the iron is in unaltered olivine and the ferric to total iron ratio is 0.1. This result indicates that certain materials at the martian surface have been protected from aqueous alteration.
NASA Astrophysics Data System (ADS)
Perez, N. M.; Melián, G.; Asensio-Ramos, M.; Padrón, E.; Alonso Cótchico, M.; Hernández, P. A.; Rodríguez, F.; D'Auria, L.; García-Merino, M.; Padilla, G. D.; Burns, F.; Amonte, C.; García, E.; García-Hernández, R.; Barrancos, J.; Morales-Ocaña, C.; Calvo, D.; Vela, V.; Pérez, A.
2017-12-01
Tenerife (2034 km2) is the largest of the Canary Islands and hosts a central volcanic complex, Las Cañadas, which is characterized by the eruption of differentiated magmas. Laying inside Las Cañadas a twin stratovolcanoes system Pico Viejo and Teide, has been developed. Although Teide volcano shows weak fumarolic system, volcanic gas emissions observed in the summit area are mainly controlled by high rates of diffuse CO2 degassing. Soil CO2 efflux surveys have been performed at the summit crater of Teide volcano since 1999 according to the accumulation chamber method to monitor changes of volcanic activity. Soil CO2 efflux and soil temperature have been measured in sites homogeneously distributed within an area of about 6,972 m2 inside the summit crater. Historical seismic activity in Tenerife has been mainly characterized by low- to moderate-magnitude events (M <2.5), and most of epicenters clustered in an offshore area SE of Tenerife. Very few earthquakes have occurred in other areas, including Teide volcano. Since November 2016 more than 100 small magnitude earthquakes, with typical features of the microseismicity of hydrothermal systems, at depths usually ranging between 5 and 15 km located beneath Teide volcano have been recorded. On January 6th 2017 a M=2.5 earthquake was recorded in the area, being one of the strongest events recorded since 2004. Between October 11 and December 13, 2016, a continuous increase on the diffuse CO2 emission was registered preceding the occurrence of the 2.5 seismic event, from 21.3±2.0 to 101.7±20.7 t d-1. In Febraury 2017, the diffuse CO2 emission rate showed a maximum value (176±35 t/d) and has remained at relatively high values in the range 67-176 t/d. The observed increase on the diffuse CO2 emission, likely due to the increase of fluid pressure in the hydrothermal-magmatic system of Tenerife, might be a geochemical evidence of a future volcanic unrest at Tenerife Island.
Geochemical Investigations In Soils And Waters Of Ischia Island (southern Italy)
NASA Astrophysics Data System (ADS)
Avino, R.; Capaldi, G.; Di Matteo, V.; Pece, R.
The island of Ischia is localized in the Gulf of Naples and is a volcanic field belonging to the volcanic district of the Phlegraean Fields. It covers an area of about 42 Km2 and is characterized by a complex system of faults and fractures of tectonic and volcano- tectonic origin. The highest peak of the island is Mt Epomeo (787 m), situated in the central part of Ischia. The last eruption on this island took place in 1302 (Arso) and from that time the volcanic activity has reduced only to hydrothermal manifestations (fumaroles and thermal springs) localized especially along the faults that border Mt Epomeo. So the area around the Epomeo is an area of great interest for geochemical investigations, and in fact in this place high concentration of mercury, carbon dioxide and radon have been measured. In this work are presented the data of a study on the concentration of CO2 and mercury and of the activity of radon in the soils and in the waters of the island of Ischia. For these investigations 184 samples of soils have been collected and analyzed in laboratory to calculate the concentration of mercury using the Jerome 511 Mercury Vapor Analyzer. In the same sampling sites measurements of CO2 and of the activity of radon-222 in the soils have also been made using the Track- etch@ method. As regards the waters, a sampling of 50 wells localized all around the coast of the island has been carried out. In these waters measures of mercury and of the activity of some radioactive elements have been done. The measures of radioactivity has been carried out by gamma spectrometry with a HPE Ge detector. All the investigations (in soils and in waters) allow to have preliminary information about the concentrations of these investigated elements and will be a starting-point for a more detailed sampling in those place where anomalies have been found. This set of data can also help to better understand the degassing process of these elements through the principal structures of the island giving information on the nature of the deep fluids.
NASA Astrophysics Data System (ADS)
Byrdina, Svetlana; Vandemeulebrouck, Jean; Rath, Volker; Silva, Catarina; Hogg, Colin; Kiyan, Duygu; Viveiros, Fatima; Eleuterio, Joana; Gresse, Marceau
2016-04-01
The Furnas volcanic complex is located in the eastern part of the São Miguel Island and comprises a 5 km × 8 km summit depression filled by two nested calderas with several craters and a lake. Present-day volcanic activity of Furnas volcano is mostly located in the northern part of the caldera, within the Furnas village and north to Furnas Lake, where hydrothermal manifestations are mainly fumarolic fields, steam vents, thermal springs, and intense soil diffuse degassing. Considering the Furnas volcano as a whole, the total integrated CO2 efflux is extremely high, with a total amount of CO2 close to 1000 ton per day (Viveiros et al., 2009). We present the first results of an electrical resistivity tomography (ERT), combined with audio-magneto-telluric (AMT) measurements aligned along two profiles inside the caldera. The purpose of this survey is to delimit the extent, the geometry, and the depth of the hydrothermal system and to correlate the deep resistivity structure with high resolution cartography of diffuse CO2 flux (Viveiros et al, 2015). The ERT and AMT methods are complementary in terms of resolution and penetration depth: ERT can image the structural details of shallow hydrothermal system (down to 100 m in our study) while AMT can image at lower resolution deeper structures at the roots of a volcano (down to 4 km in our study). Our first independent 2D inversions of the ERT-AMT data show a good agreement between the surficial and deeper features. Below the main fumarole area we observe a low resistivity body (less than 1 Ohmm) which corresponds well to the high CO2 flux at the surface and is associated with an extended conductive body at larger depth. These results strongly suggest the presence of hydrothermal waters at depth or/and the presence of altered clay-rich material. On a larger scale however, the geometry of the conducting zones differs slightly from what was expected from earlier surface studies, and may not be directly related to fault zones mapped at the surface. These slight, but measurable discrepancies might have different origins but they stress the necessity of 3D modelling and the importance of the joint inversion of the data which we consider as a next step in our work.
Eruption and degassing dynamics of the major August 2015 Piton de la Fournaise eruption
NASA Astrophysics Data System (ADS)
Di Muro, Andrea; Arellano, Santiago; Aiuppa, Alessandro; Bachelery, Patrick; Boudoire, Guillaume; Coppola, Diego; Ferrazzini, Valerie; Galle, Bo; Giudice, Gaetano; Gurioli, Lucia; Harris, Andy; Liuzzo, Marco; Metrich, Nicole; Moune, Severine; Peltier, Aline; Villeneuve, Nicolas; Vlastelic, Ivan
2016-04-01
Piton de la Fournaise (PdF) shield volcano is one of the most active basaltic volcanoes in the World with one eruption every nine months, on average. This frequent volcanic activity is broadly bimodal, with frequent small volume, short lived eruptions (< 30 Mm3, most being < 10 Mm3) and less frequent relatively large (50-210 Mm3) and long lasting (months) eruptions. After the major caldera forming event of 2007, the volcano produced several short lived small volume summit to proximal eruptions of relatively evolved cotectic magmas and relatively long repose periods (up to 3.5 years between 2010 and 2014). The August 2015 eruption was the first large (45±15 Mm3) and long lasting (2 months) eruption since 2007 and the only event to be fully monitored by the new gas geochemical network of Piton de la Fournaise volcanological observatory (DOAS, MultiGaS, diffuse CO2 soil emissions). Regular lava and tephra sampling was also performed for geochemical and petrological analysis. The eruption was preceded by a significant increase in CO2 soil emissions at distal soil stations (ca. 15 km from the summit), with CO2 enrichment also being recorded at summit low temperature fumaroles. Eruptive products were spectacularly zoned, with plagioclase and pyroxene being abundant in the early erupted products and olivine being the main phase in the late-erupted lavas. Total gas emissions at the eruptive vent underwent a decrease during the first half of the eruption and then an increase, mirroring the time evolution of magma discharge rate (from 5-10 m3/s in September to 15-30 m3/s in late-October) and the progressive change in magma composition. In spite of significant evolution in magma and gas output, CO2/SO2 ratios in high temperature gases remained quite low (< 0.3) and with little temporal change. Geochemical data indicated that this relatively long-lived eruption corresponded to the progressive drainage of most of the shallow part of PdF plumbing system, triggered by a new pulse of deep magma. While erupted magma and high temperature gases were mostly provided by the shallow part of the system, distal sites and summit low temperature fumaroles recorded a deeper triggering mechanism.
Measuring H2O and CO2 Emissions in the Mud Volcano region of Yellowstone using Open Path FTIR
NASA Astrophysics Data System (ADS)
Moyer, D. K.; Sealing, C. R.; Carn, S. A.; Vanderkluysen, L.
2017-12-01
Magma degassing is an important factor in many aspects of monitoring active volcanic zones and mitigating associated hazards. The monitoring of these emissions in concentration, flux, and species ratios is important for detecting signs of unrest as well as understanding the natural cycle and budget of volatile species. However, standard gas measurement methods suffer from either low temporal resolution (e.g., direct sampling of fumaroles) or are limited to measuring a small range of species (e.g., MiniDOAS, MultiGAS). In order to establish a carbon budget of active gas sources at a volcano with a dynamic hydrothermal system, we carried out a survey of mud pots and fumaroles at Yellowstone National Park using Open-Path Fourier Transform Infrared Spectroscopy, or OP-FTIR, which allows for a temporal resolution as low as one measurement every 10 seconds. We placed an active infrared (IR) source behind the target gas plume and identified gas species from the presence of their absorption feature in measured spectra in the 2.5 to 25 µm range. From these, we derived pathlength concentrations for a wide range of gases, including: water vapor, carbon dioxide, and methane. During our September 2016 campaign in the Mud Volcano thermal area, we measured CO2 concentrations of 400 ppm in emissions from the Churning Cauldron acid-sulfate mud pot, with an H2O/CO2 ratio of 8; at Sulphur Cauldron and One Hundred Springs Plain, CO2 concentrations reached 200 ppm above background atmospheric values. We derived a CO2 flux of 8.15 T/d, 0.43 T/d and .00025 T/d, respectively, at these three acid-sulfate sources, within range of gas channeling-based estimates from the late 1990s. Previous accumulation chamber studies estimate the CO2 soil diffuse degassing in the Mud Volcano thermal region at 283.15 T/d, indicating that mud pots are minor contributors of CO2 emissions in this area, representing 3% of diffuse emissions. Due to the high acquisition rate and the abundance of water droplets in the plume, spectra were too noisy to reliably detect methane at these locations. Future work will focus on the measurement of trace gases at these same locations by increasing the acquisition time.
Nature's refineries — Metals and metalloids in arc volcanoes
Henley, R.W.; Berger, Byron R.
2013-01-01
Chemical data for fumaroles and for atmospheric gas and ash plumes from active arc volcanoes provide glimpses of the rates of release of metal and metalloids, such as Tl and Cd, from shallow and mid-crust magmas. Data from copper deposits formed in ancient volcanoes at depths of up to about 1500 m in the fractures below paleo-fumaroles, and at around 2000–4000 m in association with sub-volcanic intrusions (porphyry copper deposits) provide evidence of sub-surface deposition of Cu–Au–Ag–Mo and a range of other minor elements including Te, Se, As and Sb. These deposits, or ‘sinks’, of metals consistently record sustained histories of magmatic gas streaming through volcanic systems interspersed by continuing intrusive and eruptive activity. Here we integrate data from ancient and modern volcanic systems and show that the fluxes of metals and metalloids are controlled by a) the maintenance of fracture permeability in the stressed crust below volcanoes and b) the chemical processes that are triggered as magmatic gas, initially undersaturated with metals and metalloids, expands from lithostatic to very low pressure conditions through fracture arrays. The recognition of gas streaming may also account for the phenomenon of ‘excess degassing’, and defines an integral, but generally understated, component of active volcanic systems – a volcanic gas core – that is likely to be integral to the progression of eruptions to Plinean state.Destabilization of solvated molecular metal and metalloid species in magmatic gas mixtures and changes in their redox state are triggered, as it expands to the surface by abrupt pressure drops, or throttles' in the fracture array that guides expansion to the surface. The electronically harder, low electronegativity metals, such as copper and iron, deposit rapidly in response to expansion followed more slowly by arsenic with antimony as sulfosalts. Heavy, large radius, softer elements such as bismuth, lead, and thallium along with cadmium are strongly fractionated along the way, eventually venting their excess along with SO2, CO2, and other components of the carrier gas, into the atmosphere. These elements, many of which are toxic, may also be dispersed by mixing with groundwater in the permeable crust below volcanoes and generate potential health risks due to Hg, As, and Se contamination of drinking water resources.
Hydrothermal Alteration in an Acid-Sulphate Geothermal Field: Sulphur Springs, Saint Lucia
NASA Astrophysics Data System (ADS)
Joseph, E. P.; Barrett, T. J.
2017-12-01
Sulphur Springs is a vigorous geothermal field associated with the Soufrière Volcanic Centre in southern Saint Lucia. Bubbling hydrothermal pools are rich in sodium-calcium sulphate, with pHs of 3-7 and temperatures of 41-97ºC. Fumaroles have temperatures up to, and at times above, 100°C. Gases from bubbling pools and fumaroles have high contents of CO2 (601-993 mmol/mol) and H2S (3-190 mmol/mol). To investigate the nature and extent of hydrothermal alteration, detailed chemical analysis was carried out on 25 altered rocks, 10 sediments from pools and creeks in the main discharge area, and 15 little-altered rocks up to 2 km away from geothermal field. Eight altered samples were also analysed for stable isotope compositions, with mineralogy determined by X-ray diffraction and mineral liberation analysis. Least-altered host rocks comprise calc-alkaline feldspar-quartz-porphyritic dacites of near-uniform composition that form massive domes and volcaniclastic units. These rocks were emplaced 10-30 Ka ago (Lindsay et al. 2013). Within the geothermal field, the dacites have been highly altered to kaolinite, quartz, cristobalite, alunite, natroalunite, smectite, native sulphur, jarosite, gypsum and amorphous compounds. Muds from grey to blackish hydrothermal pools additionally contain iron sulphides, mainly pyrite. Despite intense alteration of the original dacites, Zr and Ti have remained essentially immobile, allowing the calculation of mass changes. Major depletions of Fe, Mg, Ca, Na and commonly Si occur over an area of at least 200 x 400 m. The most altered rocks also show losses of Al, light REE and Y, implying leaching by highly acidic waters. A few altered rocks have, however, gained Al together with Si and P. Also present are m-scale zones of silica + native sulphur, wherein the silica appears to represent a residue from the leaching of dacite, rather than a hydrothermal addition. Delta-34S values of samples containing mixtures of sulphates, native sulphur and iron sulphides are all notably negative (-5 to -16 ‰), consistent with derivation of sulphur from acidic magmatic gases that reacted with oxidized groundwater. Despite the strongly acidic alteration of the host rocks, most hydrothermal pools are neutral or only mildly acidic, suggesting that they contain a notable component of meteoric water.
NASA Astrophysics Data System (ADS)
Pizarro, M.; Cannatelli, C.; Morata, D.
2017-12-01
Melt inclusions Assemblages (MIAs) are considered the best tool available to provide insights into the pre-eruptive volatile contents in the magma and define the pattern of degassing at depth. Lastarria volcano is located in northern Chile, in the Central Volcanic Zone (CVZ). Lastarria's fumarolic activity is currently the most important source of gases of the CVZ and the volcano also exhibits constant deformation. The study of volatile contents in MIAs, allows us to determine the magmatic processes beneath Lastarria volcano, and there for, understand the current status of the volcanic system (deformation and fumarolic activity). We determined the pre-eruptive volatile content (H2O, CO2, F, S, Cl) in the magma by analyzing MIs hosted in feldspars and pyroxenes from 7 samples of lava and pyroclastic rocks, belonging to different eruptive periods of the volcano. All the samples are andesitic in composition. Lava samples contain phenocrysts of plagioclase and pyroxene (up to 45%) and a vitreous groundmass with microlites of plagioclase, pyroxenes, opaque minerals, and limited biotites. Pyroclastic samples contain phenocrysts of plagioclase and pyroxene (up to 30%), and a vitreous matrix with microlites of plagioclase and pyroxene. At least 3 MIAs have been described in feldspars from the lava samples: MIA1, completely homogenized, MIA2 composed of homogeneous glass and one bubble, and MIA3 composed of homogeneous glass and multiple bubbles. All MIAs display sizes between 3 and 200 um. In the pyroxenes, we have observed a wide range of MIAs, showing different sizes and various degrees of recrystallization, from completely homogenized to totally recrystallized. The petrographic study in the feldespars from the pyroclastic rocks shows two types of MIAs: MIA1, containing homogeneous glass associated with a single bubble, and MIA2, showing homogeneous glass with multiple bubbles. Few MIs appear to be slightly recrystallized. The size of this MIAs varies between 3 and 150 um. Pyroxene-hosted MIs are almost all recrystallized, with sizes varying between 3 and 60 um. Preliminary observations show that MIAs hosted in pyroclastic rocks contain a greater amount of bubbles than MIAs hosted in the lava, possibly indicating that a greater degree of volatile saturation can be linked with the explosive phase of Lastarria volcano.
A Stochastic-entropic Approach to Detect Persistent Low-temperature Volcanogenic Thermal Anomalies
NASA Astrophysics Data System (ADS)
Pieri, D. C.; Baxter, S.
2011-12-01
Eruption prediction is a chancy idiosyncratic affair, as volcanoes often manifest waxing and/or waning pre-eruption emission, geodetic, and seismic behavior that is unsystematic. Thus, fundamental to increased prediction accuracy and precision are good and frequent assessments of the time-series behavior of relevant precursor geophysical, geochemical, and geological phenomena, especially when volcanoes become restless. The Advanced Spaceborne Thermal Emission and Reflection radiometer (ASTER), in orbit since 1999 on the NASA Terra Earth Observing System satellite is an important capability for detection of thermal eruption precursors (even subtle ones) and increased passive gas emissions. The unique combination of ASTER high spatial resolution multi-spectral thermal IR imaging data (90m/pixel; 5 bands in the 8-12um region), combined with simultaneous visible and near-IR imaging data, and stereo-photogrammetric capabilities make it a useful, especially thermal, precursor detection tool. The JPL ASTER Volcano Archive consisting of 80,000+ASTER volcano images allows systematic analysis of (a) baseline thermal emissions for 1550+ volcanoes, (b) important aspects of the time-dependent thermal variability, and (c) the limits of detection of temporal dynamics of eruption precursors. We are analyzing a catalog of the magnitude, frequency, and distribution of ASTER-documented volcano thermal signatures, compiled from 2000 onward, at 90m/pixel. Low contrast thermal anomalies of relatively low apparent absolute temperature (e.g., summit lakes, fumarolically altered areas, geysers, very small sub-pixel hotspots), for which the signal-to-noise ratio may be marginal (e.g., scene confusion due to clouds, water and water vapor, fumarolic emissions, variegated ground emissivity, and their combinations), are particularly important to discern and monitor. We have developed a technique to detect persistent hotspots that takes into account in-scene observed pixel joint frequency distributions over time, temperature contrast, and Shannon entropy. Preliminary analyses of Fogo Volcano and Yellowstone hotspots, among others, indicate that this is a very sensitive technique with good potential to be applied over the entire ASTER global night-time archive. We will discuss our progress in creating the global thermal anomaly catalog as well as algorithm approach and results. This work was carried out at the Jet Propulsion Laboratory of the California Institute of Technology under contract to NASA.
NASA Astrophysics Data System (ADS)
Frigeri, A.; Cardellini, C.; Chiodini, G.; Frondini, F.; Bagnato, E.; Aiuppa, A.; Fischer, T. P.; Lehnert, K. A.
2014-12-01
The study of the main pathways of carbon flux from the deep Earth requires the analysis of a large quantity and variety of data on volcanic and non-volcanic gas emissions. Hence, there is need for common frameworks to aggregate available data and insert new observations. Since 2010 we have been developing the Mapping Gas emissions (MaGa) web-based database to collect data on carbon degassing form volcanic and non-volcanic environments. MaGa uses an Object-relational model, translating the experience of field surveyors into the database schema. The current web interface of MaGa allows users to browse the data in tabular format or by browsing an interactive web-map. Enabled users can insert information as measurement methods, instrument details as well as the actual values collected in the field. Measurements found in the literature can be inserted as well as direct field observations made by human-operated instruments. Currently the database includes fluxes and gas compositions from active craters degassing, diffuse soil degassing and fumaroles both from dormant volcanoes and open-vent volcanoes from literature survey and data about non-volcanic emission of the Italian territory. Currently, MaGa holds more than 1000 volcanic plume degassing fluxes, data from 30 sites of diffuse soil degassing from italian volcanoes, and about 60 measurements from fumarolic and non volcanic emission sites. For each gas emission site, the MaGa holds data, pictures, descriptions on gas sampling, analysis and measurement methods, together with bibliographic references and contacts to researchers having experience on each site. From 2012, MaGa developments started to be focused towards the framework of the Deep Earth Carbon Degassing research initiative of the Deep Carbon Observatory. Whithin the DECADE initiative, there are others data systems, as EarthChem and the Smithsonian Institution's Global Volcanism Program. An interoperable interaction between the DECADE data systems is being planned. MaGa is showing good potentials to improve the knowledge on Earth degassing firstly by making data more accessible and encouraging participation among researchers, and secondly by allowing to observe and explore, for the first time, a gas emission dataset with spatial and temporal extents never analyzed before.
NASA Astrophysics Data System (ADS)
Domínguez Cerdeña, Itahiza; Villasante-Marcos, Victor; Meletlidis, Stavros; Sainz-Maza, Sergio; Abella, Rafael; Torres, Pedro A.; Sánchez, Nieves; Luengo-Oroz, Natividad; José Blanco, María; García-Cañada, Laura; Pereda de Pablo, Jorge; Lamolda, Héctor; Moure, David; Del Fresno, Carmen; Finizola, Anthony; Felepto, Alicia
2017-04-01
Teide-Pico Viejo complex stands for one of the major natural volcanic hazards in the Canary Islands, due to the expected types of eruptions in the area and the high number of inhabitants in Tenerife Island. Therefore, it is necessary to have a volcanic alert system able to afford a precise assessment of the current state of the complex. For this purpose, the knowledge of the expected signals at each volcanic activity level is required. Moreover, the external effects that can affect the measurements shall be distinguished, external influences as the atmosphere are qualitatively known but have not been quantified yet. The objective of the project is to collect, analyze and jointly and continuously evaluate over time geophysical, geodetic, geochemical and meteorological data from the Teide-Pico Viejo complex and its surroundings. A continuous multiparametric network have been deployed in the area, which, together with the data provided by the Volcano Monitoring Network of the Instituto Geográfico Nacional (IGN) and data from other institutions will provide a comprehensive set of data with high resolution in both space and time. This multiparametric network includes a seismic array, two self-potential lines for continuous measurements, five magnetometers and two weather stations. The network will be complemented with 8 CGPS stations, one tiltmeter, 10 seismic stations, and four thermometric stations on the fumaroles of Teide volcano that IGN already manage in Tenerife. The data will be completed with the results from different repeated surveys of self potential, soil temperature and CO2 diffuse flux in several pre-established areas on top of Teide throughout the entire duration of project. During the project, new computation tools will be developed to study the correlation between the different parameters analyzed. The results obtained will characterize the possible seasonal fluctuations of each parameter and the variations related to meteorological phenomena. In addition, they will allow identifying the response of all the analyzed parameters to specific events that are traditionally studied with a single technique, such as short episodes of tremor (sporadically registered in Teide-Pico Viejo surroundings) or changes in activity of the hydrothermal system of the volcanic complex. We present here the first multiparametric results obtained from the project, including locations with the seismic array, CO2 and temperature maps of Teide fumaroles zones and magnetometric measurements.
May 2011 eruption of Telica Volcano, Nicaragua: Multidisciplinary observations
NASA Astrophysics Data System (ADS)
Witter, M. R.; Geirsson, H.; La Femina, P. C.; Roman, D. C.; Rodgers, M.; Muñoz, A.; Morales, A.; Tenorio, V.; Chavarria, D.; Feineman, M. D.; Furman, T.; Longley, A.
2011-12-01
Telica volcano, an andesitic stratovolcano in north-western Nicaragua, erupted in May 2011. The eruption, produced ash but no lava and required the evacuation of over 500 people; no injuries were reported. We present the first detailed report of the eruption, using information from the TElica Seismic ANd Deformation (TESAND) network, that provides real-time data, along with visual observations, ash leachate analysis, and fumarole temperature measurements. Telica is located in the Maribios mountain range. It is one of the most active volcanoes in Nicaragua and has frequent small explosions and rare large (VEI 4) eruptions, with the most recent sizable eruptions (VEI 2) occurring in 1946 and 1999. The 2011 eruption is the most explosive since 1999. The eruption consisted of a series of ash explosions, with the first observations from May 8, 2011 when local residents reported ash fall NE of the active crater. Popping sounds could be heard coming from the crater on May 10. On May 13, the activity intensified and continued with some explosions every day for about 2 weeks. The well-defined plumes originated from the northern part of the crater. Ash fall was reported 4 km north of the active crater on May 14. The largest explosion at 2:54 pm (local time) on May 21 threw rocks from the crater and generated a column 2 km in height. Fresh ash samples were collected on May 16, 18, and 21 and preliminary inspection shows that the majority of the material is fragmented rock and crystalline material, i.e. not juvenile. Ash leachates (ash:water = 1:25) contain a few ppb As, Se, and Cd; tens of ppb Co and Ni; and up to a few hundred ppb Cu and Zn. Telica typically has hundreds of small seismic events every day, even when the volcano is not erupting. The TESAND network detected an increase in the rate and magnitude of seismic activity, with a maximum magnitude of 3.3. Elevated fumarole temperatures at locations near the active vent were also observed throughout the May 2011 eruption. Temperature measurements taken on May 26 recorded a maximum of 539°C. Ten continuous GPS stations running on and close to the volcano showed little deformation, suggesting that substantial quantities of new magma were not displaced beneath the volcanic edifice.
NASA Astrophysics Data System (ADS)
Olmos, R.; Barahona, F.; Cartagena, R.; Soriano, T.; Salazar, J.; Hernandez, P.; Perez, N.; Notsu, K.; Lopez, D.
2001-12-01
Santa Ana volcanic complex (0.22 Ma), located 40 Km west of San Salvador, comprises Santa Ana, Izalco, and Cerro Verde stratovolcanoes, the Coatepeque collapse caldera, as well as several cinder cones and explosion craters. Most recent activity has occurred at Izalco (1966) and Santa Ana which shows a permanent acidic crater lake with an intense fumarolic activity. In addition, Santa Ana exhibits a SO2-rich rising plume though no local seismicity has been reported. Weak fumarolic activity is also present at two locations within the Santa Ana volcanic complex: the summit crater of Izalco and Cerro Pacho at Coatepeque caldera. Other important structural features of this volcanic complex are two fault/fissure systems running NNW-SSE that can be identified by the alignment of the stratovolcanoes and numerous cinder cones and explosion craters. In January 2001, a 7.6 magnitude earthquake occurred about 150 Km SE of Santa Ana volcano. A soil gas and CO2 efflux survey was performed to evaluate the impact of this seismic event upon the diffuse degassing rates in Santa Ana volcanic complex in March 2001. A total of 450 soil gas and diffuse CO2 efflux measurements were carried out covering an area of 209.5 Km2. CO2 efflux ranged from non-detectable values to 293 gm-2d-1, with a median of 8.9 gm-2d-1 and an upper quartile of 5.2 gm-2d-1. The CO2 efflux spatial distribution reveals the existence of areas with CO2 efflux higher than 60 gm-2d-1 associated to the fault/fissure systems of NNW-SSE orientation. One of these areas, Cerro Pacho, was selected for the continuous monitoring of diffuse CO2 efflux in late May 2001. Secular variations of diffuse CO2 efflux ranged from 27.4 to 329 gm-2d-1 with a median of 130 gm-2d-1 and a quartile range of 59.3 gm-2d-1. An increasing trend of 43 gm-2d-1 was observed between May and August 2001 overlapped to high-frequency minor fluctuations related to meteorological variables' changes. However, a larger observation time-span is needed to understand the influence of the rainy-season and meteorological parameters in the observed CO2 efflux time series.
NASA Astrophysics Data System (ADS)
Koike, Katsuaki; Yoshinaga, Tohru; Asaue, Hisafumi
2014-04-01
The purpose of this study is to characterize in detail the temporal changes in Rn (radon-222) concentration in soil gases near fumaroles and clarify its correlation with volcanic earthquakes and temperatures in two geothermal reservoirs. Mt. Aso crater in southwest Japan, which has two reservoirs on its western side estimated by magnetotelluric survey to be at about 2 km in depth, was selected for this study. For the long-term survey, the α scintillation counter method was used weekly for 12.5 years at the three hot springs within a 2-km range. Rn concentrations were calculated using the CRAS method, a calculation method that considers radioactive equilibrium or nonequilibrium state of the soil gas. Rn concentrations generally showed similar fluctuation patterns among the sites. CRAS was used as a new indicator for evaluating the age of the soil gas. This age corresponds to the elapsed time determined from the generation of Rn based on the measurement of the numbers of atoms of Rn and its daughter 218Po at the start of measurement. In comparing the Rn data with the history of earthquakes in the Aso caldera, volcanic seismicity was identified as a major controlling factor in the sudden increase and decrease in Rn concentration as a function of age. For more precise detections of change, Rn concentrations were measured continuously at one site by pumping soil gas from a borehole and using an ionization chamber over 2.5 years. Five chemical components (He, H2, N2, CH4, and CO2) were then measured by gas chromatography at 1-week intervals. Because Rn concentrations are affected strongly by atmospheric temperatures, the residual components were obtained by subtracting the trend of the components from the original data. Chemical component data were used to estimate the temperature and pressure in the reservoir at the site; temperatures ranged from 229 to 280 °C, (average 265 °C, average pressure 80 MPa). Residual Rn concentrations showed a clear correlation with temporal changes in estimated temperature and, to a degree, with pressure. Considering the migration mechanism of Rn by molecular diffusion and advection under rapid gas upflow conditions, change in the diffusion coefficient is regarded as a possible factor to have induced temporal changes in Rn concentrations in conjunction with the temperature changes in the reservoirs. In addition, the increase of the amount of degassed Rn from the advective-convective hydrothermal fluids, which is associated with wall-rock fracturing, is another important factor. Earthquakes likely enhance the permeability of a reservoir by generating fractures, which in turn can cause an increase in the reservoir temperature, upflow fluid velocity, and gas flux. This provides one possible interpretation for the significant correlation of Rn concentrations with earthquakes.
Marinamoeba thermophila, a new marine heterolobosean amoeba growing at 50 degrees C.
De Jonckheere, Johan F; Baumgartner, Manuela; Opperdoes, Fred R; Stetter, Karl O
2009-08-01
Two amoeba strains were isolated from marine sediment taken at the same place with 18 months interval from a region of the sea floor heated by extended submarine hot springs and fumaroles. These thermophilic amoebae grow at temperatures up to 50 degrees C. Sequences of the internal transcribed spacer demonstrated that the two strains belong to the same species and are different from any genus for which sequences are known. Phylogeny using small subunit ribosomal RNA places the amoeba in the Heterolobosea. Their closest relatives are the hypersaline flagellate Pleurostomum flabellatum and the hypersaline amoeba Tulamoeba peronaphora. The freshwater amoeboflagellate genera Naegleria and Willaertia belong to the same phylogenetic clade in the Vahlkampfiidae. The new marine species does not transform into flagellates. It forms cysts, which are round to ellipsoidal with few pores. Because of their unique place in the molecular phylogenetic tree, and because there is no morphologically identical species found in the literature, these isolates are considered to be a new species and a new genus, Marinamoeba thermophila.
Travertine Hot Springs, Mono County, California
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chesterman, C.W.; Kleinhampl, F.J.
1991-08-01
This article is an abridgement of Special Report 172, Travertine Hot Springs at Bridgeport, Mono County, California, in preparation at the California Division of Mines and Geology. The Travertine Hot Springs area is on the northern edge of what many consider to be one of the most tectonically active areas in the United States. There is abundant geothermal and seismic activity. The landscape is dotted with volcanic features- cones, craters, domes, flows, fumaroles and hot springs-indicators of unrest in the present as well as reminders of activity in the past. Travertine, also known as calcareous sinter, is limestone formed bymore » chemical precipitation of calcium carbonate (CaCO{sub 3}) from ground or surface waters. It forms stalactites and stalagmites in caves, fills some veins and spring conduits and can also be found at the mouths of springs, especially hot springs. The less compact variety is called tufa and the dense, banded variety is known as Mexican onyx, or onyx marble. True onyx, however, is a banded silicate.« less
DIAPHANE: muon tomography applied to volcanoes, civil engineering, archaelogy
NASA Astrophysics Data System (ADS)
Marteau, J.; de Bremond d'Ars, J.; Gibert, D.; Jourde, K.; Ianigro, J.-C.; Carlus, B.
2017-02-01
Muography techniques applied to geological structures greatly improved in the past ten years. Recent applications demonstrate the interest of the method not only to perform structural imaging but also to monitor the dynamics of inner movements like magma ascent inside volcanoes or density variations in hydrothermal systems. Muography time-resolution has been studied thanks to dedicated experiments, e.g. in a water tower tank. This paper presents the activities of the DIAPHANE collaboration between particle- and geo-physicists and the most recent results obtained in the field of volcanology, with a focus on the main target, the Soufrière of Guadeloupe active volcano. Special emphasis is given on the monitoring of the dome's inner volumes opacity variations, that could be ascribed to the hydrothermal system dynamics (vaporization of inner liquid water in coincidence with the appearance of new fumaroles at the summit). I also briefly present results obtained in the fields of civil engineering (study of urban underground tunnels) and archaelogy (greek tumulus scanning).
NASA Technical Reports Server (NTRS)
Realmuto, Vincent J.; Hon, Ken; Kahle, Anne B.; Abbott, Elsa A.; Pieri, David C.
1992-01-01
Multispectral thermal infrared radiance measurements of the Kupaianaha flow field were acquired with the NASA airborne Thermal Infrared Multispectral Scanner (TIMS) on the morning of 1 October 1988. The TIMS data were used to map both the temperature and emissivity of the surface of the flow field. The temperature map depicted the underground storage and transport of lava. The presence of molten lava in a tube or tumulus resulted in surface temperatures that were at least 10 C above ambient. The temperature map also clearly defined the boundaries of hydrothermal plumes which resulted from the entry of lava into the ocean. The emissivity map revealed the boundaries between individual flow units within the Kupaianaha field. Distinct spectral anomalies, indicative of silica-rich surface materials, were mapped near fumaroles and ocean entry sites. This apparent enrichment in silica may have resulted from an acid-induced leaching of cations from the surfaces of glassy flows.
Wynn, J.C.; Luce, R.W.
1984-01-01
The Haile mine is the largest gold producer in the eastern USA. It is postulated to be a strata-bound gold deposit formed by a fumarolic or hot-spring system in felsic tuffs of Cambrian(?) age. Two mineralized zones occur, each composed of a sericitic part overlain by a siliceous part. Au is concentrated in especially silicified horizons and in pyrite horizons in the siliceous part of each mineralized zone. The tuffs are metamorphosed to greenschist facies and intruded by diabase and other mafic dykes. Weathering is deep and the mineralized tuffs are partly covered by coastal-plain sediments. It is suggested that certain geophysical methods may be useful in mapping and exploring Haile-type deposits in the Carolina slate belt. Very low frequency electromagnetic resistivity surveys help define alteration and silicified zones. A magnetic survey found sharp highs that correlate with unexposed mafic and ultramafic dykes. Induced polarization proved useful in giving a two-dimensional view of the structure.-G.J.N.
NASA Astrophysics Data System (ADS)
Pekov, I. V.; Yapaskurt, V. O.; Britvin, S. N.; Vigasina, M. F.; Lykova, I. S.; Zubkova, N. V.; Krivovichev, S. V.; Sidorov, E. G.
2017-12-01
A new mineral romanorlovite has been found in the upper, moderately hot zones of two fumaroles, Glavnaya Tenoritovaya (Major Tenorite) and Arsenatnaya (Arsenate), located at the second scoria cone of the Northern Breakthrough of the Great Tolbachik Fissure Eruption, Tolbachik volcano, Kamchatka, Russia. It is associated with avdoninite in both fumaroles, and in Glavnaya Tenoritovaya, it is also associated with belloite, sylvite, carnallite, mitscherlichite, sanguite, chlorothionite, eriochalcite, chrysothallite, and mellizinkalite. Romanorlovite occurs as prismatic, equant, or tabular tetragonal crystals up to 0.1 mm in size, crystal clusters up to 0.5 mm, and crusts up to 2 × 2 mm in area. The mineral is transparent with vitreous luster. Its color varies from yellow-brown to dark brown, and tiny crystals are honey- or golden-yellow. Cleavage is not observed. Romanorlovite is brittle. The Mohs hardness is ca 3. The calculated density varies from 2.72 to 2.79 g/cm3 depending on the content of admixed Pb. The mineral is optically uniaxial (-), ω = 1.727(3), ɛ = 1.694(2). The Raman spectrum has been reported. The chemical composition of the holotype sample (wt %; electron microprobe data, contents of O and H calculated by stoichiometry) is as follows: 21.52 K, 0.89 Pb, 28.79 Cu, 0.02 Zn, 44.74 Cl, 4.85 Ocalc, 0.41 Hcalc, total 101.22. Its empirical formula calculated based on Cl25 with (OH)4(H2O)2 is K10.90Pb0.09Cu8.97Zn0.01Cl25(OH)4 · 2H2O. The simplified formula is K11Cu9Cl25(OH)4 · 2H2O ( Z = 4). Romanorlovite is tetragonal, space group[ I4/ mmm. The unit cell parameters are (1) holotype: a = 17.5804(7), c = 15.9075(6) Å, V = 4916.5(3) Å3; (2) the sample enriched in Pb on which the crystal structure was refined: a = 17.5538(19), c = 15.8620(17) Å, V= 4887.7(9) Å3. The strongest reflections of the powder XRD pattern ( d, Å- I[ hkl]) are 12.48-56[110], 11.74-36[101], 8.80-100[200], 7.97-34[002], 6.71-40[112], 3.165-32[512], 2.933-80[215, 433], 2.607-38[514]. The mineral is named in honor of Roman Yu. Orlov (1929-2005), Russian mineralogist and physicist, who worked in the Department of Mineralogy, Moscow State University.
Preliminary volcano-hazard assessment for Great Sitkin Volcano, Alaska
Waythomas, Christopher F.; Miller, Thomas P.; Nye, Christopher J.
2003-01-01
Great Sitkin Volcano is a composite andesitic stratovolcano on Great Sitkin Island (51°05’ N latitude, 176°25’ W longitude), a small (14 x 16 km), circular volcanic island in the western Aleutian Islands of Alaska. Great Sitkin Island is located about 35 kilometers northeast of the community of Adak on Adak Island and 130 kilometers west of the community of Atka on Atka Island. Great Sitkin Volcano is an active volcano and has erupted at least eight times in the past 250 years (Miller and others, 1998). The most recent eruption in 1974 caused minor ash fall on the flanks of the volcano and resulted in the emplacement of a lava dome in the summit crater. The summit of the composite cone of Great Sitkin Volcano is 1,740 meters above sea level. The active crater is somewhat lower than the summit, and the highest point along its rim is about 1,460 meters above sea level. The crater is about 1,000 meters in diameter and is almost entirely filled by a lava dome emplaced in 1974. An area of active fumaroles, hot springs, and bubbling hot mud is present on the south flank of the volcano at the head of Big Fox Creek (see the map), and smaller ephemeral fumaroles and steam vents are present in the crater and around the crater rim. The flanking slopes of the volcano are gradual to steep and consist of variously weathered and vegetated blocky lava flows that formed during Pleistocene and Holocene eruptions. The modern edifice occupies a caldera structure that truncates an older sequence of lava flows and minor pyroclastic rocks on the east side of the volcano. The eastern sector of the volcano includes the remains of an ancestral volcano that was partially destroyed by a northwest-directed flank collapse. In winter, Great Sitkin Volcano is typically completely snow covered. Should explosive pyroclastic eruptions occur at this time, the snow would be a source of water for volcanic mudflows or lahars. In summer, much of the snowpack melts, leaving only a patchy distribution of snow on the volcano. Glacier ice is no longer present on the volcano or on other parts of Great Sitkin Island as previously reported by Simons and Mathewson (1955). Great Sitkin Island is presently uninhabited and is part of the Alaska Maritime National Wildlife Refuge, managed by the U.S. Fish and Wildlife Service.
Detection of Low Temperature Volcanogenic Thermal Anomalies with ASTER
NASA Astrophysics Data System (ADS)
Pieri, D. C.; Baxter, S.
2009-12-01
Predicting volcanic eruptions is a thorny problem, as volcanoes typically exhibit idiosyncratic waxing and/or waning pre-eruption emission, geodetic, and seismic behavior. It is no surprise that increasing our accuracy and precision in eruption prediction depends on assessing the time-progressions of all relevant precursor geophysical, geochemical, and geological phenomena, and on more frequently observing volcanoes when they become restless. The ASTER instrument on the NASA Terra Earth Observing System satellite in low earth orbit provides important capabilities in the area of detection of volcanogenic anomalies such as thermal precursors and increased passive gas emissions. Its unique high spatial resolution multi-spectral thermal IR imaging data (90m/pixel; 5 bands in the 8-12um region), bore-sighted with visible and near-IR imaging data, and combined with off-nadir pointing and stereo-photogrammetric capabilities make ASTER a potentially important volcanic precursor detection tool. We are utilizing the JPL ASTER Volcano Archive (http://ava.jpl.nasa.gov) to systematically examine 80,000+ ASTER volcano images to analyze (a) thermal emission baseline behavior for over 1500 volcanoes worldwide, (b) the form and magnitude of time-dependent thermal emission variability for these volcanoes, and (c) the spatio-temporal limits of detection of pre-eruption temporal changes in thermal emission in the context of eruption precursor behavior. We are creating and analyzing a catalog of the magnitude, frequency, and distribution of volcano thermal signatures worldwide as observed from ASTER since 2000 at 90m/pixel. Of particular interest as eruption precursors are small low contrast thermal anomalies of low apparent absolute temperature (e.g., melt-water lakes, fumaroles, geysers, grossly sub-pixel hotspots), for which the signal-to-noise ratio may be marginal (e.g., scene confusion due to clouds, water and water vapor, fumarolic emissions, variegated ground emissivity, and their combinations). To systematically detect such intrinsically difficult anomalies within our large archive, we are exploring a four step approach: (a) the recursive application of a GPU-accelerated, edge-preserving bilateral filter prepares a thermal image by removing noise and fine detail; (b) the resulting stylized filtered image is segmented by a path-independent region-growing algorithm, (c) the resulting segments are fused based on thermal affinity, and (d) fused segments are subjected to thermal and geographical tests for hotspot detection and classification, to eliminate false alarms or non-volcanogenic anomalies. We will discuss our progress in creating the general thermal anomaly catalog as well as algorithm approach and results. This work was carried out at the Jet Propulsion Laboratory of the California Institute of Technology under contract to NASA.
NASA Astrophysics Data System (ADS)
Sansivero, Fabio; Vilardo, Giuseppe; Caputo, Teresa
2017-04-01
The permanent thermal infrared surveillance network of Osservatorio Vesuviano (INGV) is composed of 6 stations which acquire IR frames of fumarole fields in the Campi Flegrei caldera and inside the Vesuvius crater (Italy). The IR frames are uploaded to a dedicated server in the Surveillance Center of Osservatorio Vesuviano in order to process the infrared data and to excerpt all the information contained. In a first phase the infrared data are processed by an automated system (A.S.I.R.A. Acq- Automated System of IR Analysis and Acquisition) developed in Matlab environment and with a user-friendly graphic user interface (GUI). ASIRA daily generates time-series of residual temperature values of the maximum temperatures observed in the IR scenes after the removal of seasonal effects. These time-series are displayed in the Surveillance Room of Osservatorio Vesuviano and provide information about the evolution of shallow temperatures field of the observed areas. In particular the features of ASIRA Acq include: a) efficient quality selection of IR scenes, b) IR images co-registration in respect of a reference frame, c) seasonal correction by using a background-removal methodology, a) filing of IR matrices and of the processed data in shared archives accessible to interrogation. The daily archived records can be also processed by ASIRA Plot (Matlab code with GUI) to visualize IR data time-series and to help in evaluating inputs parameters for further data processing and analysis. Additional processing features are accomplished in a second phase by ASIRA Tools which is Matlab code with GUI developed to extract further information from the dataset in automated way. The main functions of ASIRA Tools are: a) the analysis of temperature variations of each pixel of the IR frame in a given time interval, b) the removal of seasonal effects from temperature of every pixel in the IR frames by using an analytic approach (removal of sinusoidal long term seasonal component by using a polynomial fit Matlab function - LTFC_SCOREF), c) the export of data in different raster formats (i.e. Surfer grd). An interesting example of elaborations of the data produced by ASIRA Tools is the map of the temperature changing rate, which provide remarkable information about the potential migration of fumarole activity. The high efficiency of Matlab in processing matrix data from IR scenes and the flexibility of this code-developing tool proved to be very useful to produce applications to use in volcanic surveillance aimed to monitor the evolution of surface temperatures field in diffuse degassing volcanic areas.
NASA Astrophysics Data System (ADS)
Joseph, Erouscilla P.; Beckles, Denise M.; Cox, Leonette; Jackson, Viveka B.; Alexander, Dominic
2015-10-01
Sulphur Springs Park in Saint Lucia is a site of energetic geothermal activity associated with the potentially active Soufrière Volcanic Centre. The Park is one of Saint Lucia's most important tourist attractions, and is marketed as the 'world's only drive-in volcano'. It has an on-site staff of tour guides and vendors, as well as over 200,000 visitors annually. There are also a number of residents living in the areas bordering the Park. Recreational use is made of the geothermal waters for bathing, application of mud masques, and in some cases drinking. As part of the University of the West Indies, Seismic Research Centre's (UWI-SRC's) overall volcano monitoring programme for Saint Lucia, the volcanic emissions at Sulphur Springs (hot springs, mud pools and fumaroles) have been regularly monitored since 2001. In recent years, visitors, staff, and management at the Park have expressed concern about the health effects of exposure to volcanic emissions from the hydrothermal system. In response to this, SRC has expanded its regular geothermal monitoring programme to include a preliminary evaluation of ambient sulphur dioxide (SO2) concentrations in and around the Park, to assess the possible implications for human health. Passive diffusion tubes were used to measure the atmospheric SO2 concentrations at various sites in Sulphur Springs Park (SSP), in the town of Soufrière and in the capital of Castries. Measurements of average monthly ambient SO2 with the passive samplers indicated that during the dry season period of April to July 2014 concentration at sites closest to the main vents at SSP (Group 1), which are routinely used by staff and visitors, frequently exceeded the WHO 10-minute AQG for SO2 of 500 μg/m3. However, for sites that were more distal to the main venting area (Groups 2 and 3), the average monthly ambient SO2 did not exceed the WHO 10-minute AQG for SO2 of 500 μg/m3 during the entire monitoring period. The measured concentrations and dispersion patterns of ambient SO2 at SSP appear to be influenced by rainfall, proximity to the fumarolic vents, altitude (local topography), local atmospheric circulation and plume dispersion, and anthropogenic sources. Brochures and posters were prepared, for public distribution and display, on possible gas hazards that may be encountered at SSP and precautionary measures that may be taken by visitors to help minimise potential risk from elevated exposure to volcanic gases.
NASA Astrophysics Data System (ADS)
Ruff, S. W.; Farmer, J. D.
2016-12-01
Hydrothermal spring deposits of silica (sinter) have long been targets in the search for fossil life on Mars and early Earth because of their ability to capture and preserve biosignatures. In 2007, the Spirit rover observed exposures of opaline silica (amorphous SiO2-*nH2O) adjacent to "Home Plate" in the inner basin of the Columbia Hills of Gusev crater. The presence of opaline silica in the context of a succession of volcanic rocks is interpreted as evidence of past volcanic hydrothermal activity. The silica occurs most commonly in nodular masses that have a rubbly appearance but are considered outcrops because of their stratiform expression and resistance to deformation by the rover wheels. An origin via either fumarole-related acid-sulfate leaching or precipitation from hot spring fluids was suggested previously. However, the potential significance of the characteristic nodular and mm-scale digitate opaline silica structures was not recognized. Our new observations of silica sinter deposits from the active volcanic hydrothermal system at El Tatio in northern Chile provide a basis for scale-integrated comparisons to the silica features at Home Plate, including geologic context, mesoscale structures in outcrops, mm-scale textures, and spectral signatures. The physical environment of El Tatio presents a rare combination of high elevation ( 4300 m), low precipitation rate (<100 mm/yr), high mean annual evaporation rate (132 mm), common diurnal freeze-thaw, and extremely high UV irradiance. Such conditions provide a better environmental analog for Mars than those of Yellowstone National Park (USA) and other well-known geothermal sites on Earth. Our results demonstrate that the more Mars-like conditions of El Tatio produce unique deposits with characteristics that compare favorably with the Home Plate silica outcrops. Halite (NaCl) encrusts the silica at El Tatio yielding thermal infrared spectra that are the best match yet to spectra from Spirit. Furthermore, the nodular and digitate silica structures at El Tatio that most closely resemble those on Mars include complex sedimentary structures produced by a combination of biotic and abiotic processes. Although fully abiotic processes are not ruled out for the Martian silica structures, they satisfy an a priori definition of potential biosignatures.
University of New Mexico-Los Alamos National Laboratory Program in Volcanology
NASA Astrophysics Data System (ADS)
Goff, F.; Fischer, T.; Baldridge, W.; Wohletz, K.; Smith, G.; Heiken, G.; Valentine, G.; Elston, W.
2002-05-01
The UNM-LANL Program in Volcanology was a vision of Wolf Elston in the late 1980s. Finally established in mid-1992, the program takes advantage of the extensive volcanic record preserved in northern New Mexico, and of the unique expertise and exceptional research facilities existing at the two institutions. Courses are directed toward upper division and graduate level students. The Los Alamos participants are adjunct professors and they take an active role in creating courses, advising thesis candidates, and providing research support. The curriculum is flexible but has a core upper division class in Physical Volcanology. Other classes offered in various years have included Volcanology and Human Affairs; Magmatic and Geothermal Systems; Tectonics and Magma Generation; Volcanoes of North America; Instrumentation for Volcanology; and Advanced Igneous Petrology. Perhaps the most renowned class in the program is the Volcanology Summer Field Course offered in even numbered years. This 3.5-week class is based in the Jemez Mountains volcanic field, which contains the famous Valles caldera (1.2 Ma to 50 ka). All types of calc-alkaline to alkalic domes, flows, tuffs, and intrusions, plus derivative sediments, mineralized zones, and thermal fluids are available for instructional purposes. Students are required to complete nine rigorous field exercises starting with basic instruction in pyroclastic fall, flow, and surge, then progressing towards hydrothermally altered, intracaldera resurgent dome and moat deposits in an active hot spring and fumarole system. The class is open to graduate students, advanced undergraduates, and private sector employees with special needs. Enrollment is competitive with limited financial support and limited space for 17 students. Evening lectures, study time, lodging, and meals are provided at the UNM-owned Young's Ranch built in the 1920s, nestled in a canyon flanked by orange cliffs of Bandelier Tuff. About 120 students from 12 countries have taken this class. Former students have pursued advanced degrees in the Geosciences and taken jobs with academia, research laboratories, volcanology observatories and/or the private sector. Although a degree in Volcanology is not granted, the program has supported and/or contributed to the degrees and theses of many UNM and non-UNM students. In some circumstances, thesis research can be conducted at Los Alamos while enrolled at UNM. For more information contact any of the co-authors listed above.
Monitoring diffuse volcanic degassing during volcanic unrests: the case of Campi Flegrei (Italy)
NASA Astrophysics Data System (ADS)
Cardellini, Carlo; Chiodini, Giovanni; Avino, Rosario; Bagnato, Emanuela; Caliro, Stefano; Frondini, Francesco; Lelli, Matteo; Rosiello, Angelo
2017-04-01
Hydrothermal activity at Solfatara of Pozzuoli (Campi Flegrei caldera, Italy) results on a large area of hot soils, diffuse CO2 degassing and numerous fumaroles, releasing at the surface large amounts of gasses and thermal energy. Solfatara is one of the first sites of the world where the techniques for measuring and interpreting soil CO2 diffuse degassing were developed during 1990's and, more recently, it has become a sort of natural laboratory for testing new types of measurements of the CO2 fluxes from hydrothermal sites. The results of 30 diffuse CO2 flux surveys performed at Solfatara from 1998 to 2016 are presented and discussed. CO2 soil fluxes were measured over an area of about 1.2 1.2 km including the Solfatara crater and the hydrothermal site of Pisciarelli using the accumulation chamber technique. Each survey consisted in a number of CO2 flux measurements varying from 372 to 583 resulting in a total of 13158 measurements. This data set is one of the largest dataset ever made in the world on a single degassing volcanic-hydrothermal system. It is particularly relevant in the frame of volcanological sciences because it was acquired during a long period of unrest at Campi Flegrei caldera and because Solfatara release an amount of CO2 comparable to that released by medium-large volcanic plumes. Statistical and geostatistical elaborations of CO2 flux data allowed to characterise the sources of soil diffuse degassing, to define the extent of the area interested by the release of hydrothermal CO2 (Solfatara DDS) and to quantify the total amount of released CO2. During the last eighteen years relevant variations affected Solfatara degassing, and in particular the "background" CO2 emission , the extent of DDS and the total CO2 output, that may reflect variations in the subterraneous gas plume feeding the Solfatara and Pisciarelli emissions. In fact, the most relevant variations in Solfatara diffuse degassing well correlates with steam condensation and temperature increase affecting the Solfatara system resulting from repeated inputs of magmatic fluids into the hydrothermal systems as suggested by Chiodini et al., (2015; 2016; 2017) and show a long-term increase on the amount of released CO2 that accompanies the ongoing unrest of Campi Flegrei caldera.
NASA Astrophysics Data System (ADS)
Delmelle, Pierre; Bernard, Alain
1994-06-01
The Kawah Ijen volcano—with a record of phreatic eruptions—has its 1000 m wide crater filled with a lake that has existed for at least one century. At present, the lake waters are hot ( T ≈ 37° C), strongly mineralized (TDS = 105 g/L) and extremely acidic ( pH ≈ 0.4). By its volume, the Javanese lake is probably the largest accumulation in the world of such acidic waters. Mineralogy of the suspended solids within the lake waters suggests that concentrations of Si, Ca, Ti, and Ba are controlled by precipitation of silica, gypsum, anatase, and barite. Lake sediment is composed of chemical precipitates with composition similar to the suspended solids. Thermodynamic calculations predict that the lake waters have reached equilibrium with respect to α-cristobalite, barite, gypsum, anglesite, celestite, and amorphous silica, in agreement with the analytical observations. Significant concentrations of ferric iron suggest that the current lake waters are fairly oxidized. Sulfides are absent in the water column but are always present in the native S spherules that form porous aggregates which float on the lake. The presence of native S provides direct evidence of more reduced conditions at the lake floor where H 2S is probably being injected into the lake. With progressive addition of H 2S to the acid waters, native S, pyrite, and enargite are theoretically predicted to be saturated. Reactions between upward streaming H 2S-bearing gases discharged by subaqueous fumaroles, and metals dissolved in the acidic waters could initiate precipitation of these sulfides. A model of direct absorption of hot magmatic gases into cool water accounts for the extreme acidity of the crater lake. Results show that strongly acidic, sulfate-rich solutions are formed under oxidizing conditions at high gas/water ratios. Reactions between the acidic fluids and the Ijen andesite were modeled to account for elevated cation concentrations in lake water. Current concentrations of conservative rockforming elements are produced by dissolution of approximately 60 g of andesite per kg of acid solution. Complete neutralization of the acid lake waters by reaction with the wallrock produces a theoretical alteration assemblage equivalent to that observed in volcano-hosted, acid-sulfate epithermal ore deposits.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pritchett, John W.
2015-04-15
There are several well-known obstacles to the successful deployment of EGS projects on a commercial scale, of course. EGS projects are expected to be deeper, on the average, than conventional “natural” geothermal reservoirs, and drilling costs are already a formidable barrier to conventional geothermal projects. Unlike conventional resources (which frequently announce their presence with natural manifestations such as geysers, hot springs and fumaroles), EGS prospects are likely to appear fairly undistinguished from the earth surface. And, of course, the probable necessity of fabricating a subterranean fluid circulation network to mine the heat from the rock (instead of simply relying onmore » natural, pre-existing permeable fractures) adds a significant degree of uncertainty to the prospects for success. Accordingly, the basic motivation for the work presented herein was to try to develop a new set of tools that would be more suitable for this purpose. Several years ago, the Department of Energy’s Geothermal Technologies Office recognized this need and funded a cost-shared grant to our company (then SAIC, now Leidos) to partner with Geowatt AG of Zurich, Switzerland and undertake the development of a new reservoir simulator that would be more suitable for EGS forecasting than the existing tools. That project has now been completed and a new numerical geothermal reservoir simulator has been developed. It is named “HeatEx” (for “Heat Extraction”) and is almost completely new, although its methodology owes a great deal to other previous geothermal software development efforts, including Geowatt’s “HEX-S” code, the STAR and SPFRAC simulators developed here at SAIC/Leidos, the MINC approach originally developed at LBNL, and tracer analysis software originally formulated at INEL. Furthermore, the development effort was led by engineers with many years of experience in using reservoir simulation software to make meaningful forecasts for real geothermal projects, not just software designers. It is hoped that, as a result, HeatEx will prove useful during the early stages of the development of EGS technology. The basic objective was to design a tool that could use field data that are likely to become available during the early phases of an EGS project (that is, during initial reconnaissance and fracture stimulation operations) to guide forecasts of the longer-term behavior of the system during production and heat-mining.« less
Development of Genetic Occurrence Models for Geothermal Prospecting
NASA Astrophysics Data System (ADS)
Walker, J. D.; Sabin, A.; Unruh, J.; Monastero, F. C.; Combs, J.
2007-12-01
Exploration for utility-grade geothermal resources has mostly relied on identifying obvious surface manifestations of possible geothermal activity, e.g., locating and working near steaming ground or hot springs. This approach has lead to the development of over 130 resources worldwide, but geothermal exploration done in this manner is akin to locating hydrocarbon plays by searching for oil seeps. Confining exploration to areas with such features will clearly not discover a blind resource, that is, one that does not have surface expression. Blind resources, however, constitute the vast majority of hydrocarbon plays; this may be the case for geothermal resources as well. We propose a geothermal exploration strategy for finding blind systems that is based on an understanding of the geologic processes that transfer heat from the mantle to the upper crust and foster the conditions for hydrothermal circulation or enhanced geothermal exploration. The strategy employs a genetically based screening protocol to assess potential geothermal sites. The approach starts at the plate boundary scale and progressively focuses in on the scale of a producing electrical-grade field. Any active margin or hot spot is a potential location for geothermal resources. Although Quaternary igneous activity provides a clear indication of active advection of hot material into the upper crust, it is not sufficient to guarantee a potential utility-grade resource. Active faulting and/or evidence of high strain rates appear to be the critical features associated with areas of utility-grade geothermal potential. This is because deformation on its own can advect sufficient heat into the upper crust to create conditions favorable for geothermal exploitation. In addition, active deformation is required to demonstrate that open pathways for circulation of geothermal fluids are present and/or can be maintained. The last step in the screening protocol is to identify any evidence of geothermal activity, including high heat flow, anomalous temperature water wells, high-temperature indications from aqueous geothermometry and geochemistry, Pliocene or younger ages from low-temperature thermochronometers, as well as more obvious factors such as geysers and fumaroles (which by definition will be missing for blind resources). Our occurrence-model strategy inverts the current approach that relies first on obvious evidence of geothermal activity. We evaluated our approach by retrospectively applying the protocol to the characteristics of producing geothermal fields, and in all cases, known resource areas fit the parameters identified from a genetic perspective.
Origins of geothermal gases at Yellowstone
Lowenstern, Jacob B.; Bergfeld, Deborah; Evans, William C.; Hunt, Andrew G.
2015-01-01
Gas emissions at the Yellowstone Plateau Volcanic Field (YPVF) reflect open-system mixing of gas species originating from diverse rock types, magmas, and crustal fluids, all combined in varying proportions at different thermal areas. Gases are not necessarily in chemical equilibrium with the waters through which they vent, especially in acid sulfate terrain where bubbles stream through stagnant acid water. Gases in adjacent thermal areas often can be differentiated by isotopic and gas ratios, and cannot be tied to one another solely by shallow processes such as boiling-induced fractionation of a parent liquid. Instead, they inherit unique gas ratios (e.g., CH4/He) from the dominant rock reservoirs where they originate, some of which underlie the Quaternary volcanic rocks. Steam/gas ratios (essentially H2O/CO2) of Yellowstone fumaroles correlate with Ar/He and N2/CO2, strongly suggesting that H2O/CO2 is controlled by addition of steam boiled from water rich in atmospheric gases. Moreover, H2O/CO2 varies systematically with geographic location, such that boiling is more enhanced in some areas than others. The δ13C and 3He/CO2 of gases reflect a dominant mantle origin for CO2 in Yellowstone gas. The mantle signature is most evident at Mud Volcano, which hosts gases with the lowest H2O/CO2, lowest CH4 concentrations and highest He isotope ratios (~16Ra), consistent with either a young subsurface intrusion or less input of crustal and meteoric gas than any other location at Yellowstone. Across the YPVF, He isotope ratios (3He/4He) inversely vary with He concentrations, and reflect varied amounts of long- stored, radiogenic He added to the magmatic endmember within the crust. Similarly, addition of CH4 from organic-rich sediments is common in the eastern thermal areas at Yellowstone. Overall, Yellowstone gases reflect addition of deep, high-temperature magmatic gas (CO2-rich), lower-temperatures crustal gases (4He- and CH4-bearing), and those gases (N2, Ne, Ar) added principally through boiling of the meteoric-water-derived geothermal liquid found in the upper few kilometers. We also briefly explore the pathways by which Cl, F, and S, move through the crust.
Aqueous Alteration of Tridymite: Implications for its Discovery at Gale Crater, Mars
NASA Astrophysics Data System (ADS)
Rampe, E. B.; Morris, R. V.; Ming, D. W.; Graff, T. G.; Downs, R. T.; Peretyazhko, T.
2016-12-01
Tridymite is a high-temperature, low-pressure polymorph of SiO2. It is relatively uncommon on Earth and can form by vapor phase alteration of silicic tuffs [e.g., 1], in silicic volcanic fumaroles [e.g., 2], and from contact metamorphism of opaline silica [e.g., 3]. The martian crust is generally mafic, and minerals that form in silicic volcanic environments are rarely observed from orbit [e.g., 4]. The Mars Science Laboratory Curiosity has been investigating an ancient fluviolacustrine sequence in Gale crater since its landing in August 2012. Monoclinic tridymite was recently discovered with X-ray diffraction data measured by the CheMin instrument in a target called Buckskin drilled from the Murray formation in the Marias Pass area [5,6]. The Murray fm is dominated by finely horizontally laminated mudstone, suggesting subaqueous sediment deposition in a lake. Buckskin contains substantial amounts of tridymite (13.6 wt.% of the bulk sample) and abundant X-ray amorphous materials (60 wt.%), primarily made up of high-silica phases (opal-A, opal-CT, obsidian) [5]. Other samples drilled from the Murray fm contain minerals consistent with diagenesis by acid-sulfate solutions (e.g., jarosite, hematite) [7], and geochemical trends in the Marias Pass and Pahrump Hills sections suggest these sediments were altered by acidic fluids in an open system [7]. The stability and alteration products of tridymite in acid-sulfate alteration environments are not well characterized. To investigate the behavior of tridymite in these environments, we performed a series of laboratory experiments in which we exposed synthetic tridymite (monoclinic) to 0.5 and 2 M solutions of H2SO4 for up to three weeks at 25 °C and 150 °C. Our experiments show that tridymite is stable in these environments, suggesting that tridymite in the lacustrine sediments found in Marias Pass would have survived diagenesis in acidic solutions. Future experiments will include alteration under neutral and alkaline conditions to further explore the stability of tridymite in aqueous environments. [1] Broxton et al. (1995) LANL Lab Rept. LA-12934-MS. [2] Hamasaki (2002) Earth Planet Sp, 54. [3] Del Moro et al. (2011) J. Petrol., 52. [4] Smith and Bandfield (2012) JGR, 117. [5] Morris et al. (2016) PNAS, 113. [6] Morris et al., this meeting. [7] Rampe et al. (2016) LPS XLVII.
Magma at depth: A retrospective analysis of the 1975 unrest at Mount Baker, Washington, USA
Crider, Juliet G.; Frank, David; Malone, Stephen D.; Poland, Michael P.; Werner, Cynthia; Caplan-Auerbach, Jacqueline
2011-01-01
Mount Baker volcano displayed a short interval of seismically-quiescent thermal unrest in 1975, with high emissions of magmatic gas that slowly waned during the following three decades. The area of snow-free ground in the active crater has not returned to pre-unrest levels, and fumarole gas geochemistry shows a decreasing magmatic signature over that same interval. A relative microgravity survey revealed a substantial gravity increase in the ~30 years since the unrest, while deformation measurements suggest slight deflation of the edifice between 1981-83 and 2006-07. The volcano remains seismically quiet with regard to impulsive volcano-tectonic events, but experiences shallow (10 km) long-period earthquakes. Reviewing the observations from the 1975 unrest in combination with geophysical and geochemical data collected in the decades that followed, we infer that elevated gas and thermal emissions at Mount Baker in 1975 resulted from magmatic activity beneath the volcano: either the emplacement of magma at mid-crustal levels, or opening of a conduit to a deep existing source of magmatic volatiles. Decadal-timescale, multi-parameter observations were essential to this assessment of magmatic activity.
Lane-Smith, Derek; Sims, Kenneth
2013-06-09
In some volcanic systems, thoron and radon activity and CO 2 flux, in soil and fumaroles, show a relationship between ( 220Rn/ 222Rn) and CO 2 efflux. It is theorized that deep, magmatic sources of gas are characterized by high 222Rn activity and high CO 2 efflux, whereas shallow sources are indicated by high 220Rn activity and relatively low CO 2 efflux. In this paper we evaluate whether the observed inverse relationship is a true geochemical signal, or potentially an analytical artifact of high CO 2 concentrations. We report results from a laboratory experiment using the RAD7 radon detector, knownmore » 222Rn (radon) and 220Rn (thorn), and a controllable percentage of CO 2 in the carrier gas. Our results show that for every percentage of CO 2, the 220Rn reading should be multiplied by 1.019, the 222Rn radon should be multiplied by 1.003 and the 220Rn/ 222Rn ratio should be multiplied by 1.016 to correct for the presence of the CO 2.« less
Washington Play Fairway Analysis Geothermal GIS Data
Corina Forson
2015-12-15
This file contains file geodatabases of the Mount St. Helens seismic zone (MSHSZ), Wind River valley (WRV) and Mount Baker (MB) geothermal play-fairway sites in the Washington Cascades. The geodatabases include input data (feature classes) and output rasters (generated from modeling and interpolation) from the geothermal play-fairway in Washington State, USA. These data were gathered and modeled to provide an estimate of the heat and permeability potential within the play-fairways based on: mapped volcanic vents, hot springs and fumaroles, geothermometry, intrusive rocks, temperature-gradient wells, slip tendency, dilation tendency, displacement, displacement gradient, max coulomb shear stress, sigma 3, maximum shear strain rate, and dilational strain rate at 200m and 3 km depth. In addition this file contains layer files for each of the output rasters. For details on the areas of interest please see the 'WA_State_Play_Fairway_Phase_1_Technical_Report' in the download package. This submission also includes a file with the geothermal favorability of the Washington Cascade Range based off of an earlier statewide assessment. Additionally, within this file there are the maximum shear and dilational strain rate rasters for all of Washington State.
Caldera unrest detected with seawater temperature anomalies at Deception Island, Antarctic Peninsula
NASA Astrophysics Data System (ADS)
Berrocoso, M.; Prates, G.; Fernández-Ros, A.; Peci, L. M.; de Gil, A.; Rosado, B.; Páez, R.; Jigena, B.
2018-04-01
Increased thermal activity was detected to coincide with the onset of volcano inflation in the seawater-filled caldera at Deception Island. This thermal activity was manifested in pulses of high water temperature that coincided with ocean tide cycles. The seawater temperature anomalies were detected by a thermometric sensor attached to the tide gauge (bottom pressure sensor). This was installed where the seawater circulation and the locations of known thermal anomalies, fumaroles and thermal springs, together favor the detection of water warmed within the caldera. Detection of the increased thermal activity was also possible because sea ice, which covers the entire caldera during the austral winter months, insulates the water and thus reduces temperature exchange between seawater and atmosphere. In these conditions, the water temperature data has been shown to provide significant information about Deception volcano activity. The detected seawater temperature increase, also observed in soil temperature readings, suggests rapid and near-simultaneous increase in geothermal activity with onset of caldera inflation and an increased number of seismic events observed in the following austral summer.
NASA Astrophysics Data System (ADS)
Neumann-Redlin, Christian; Huaranca Olivera, Rodolfo
2018-03-01
An area of 2000 km2 in the arid western cordillera of Bolivia was geologically and hydro-geologically surveyed for the purpose of determining locations for borehole drilling in the framework of groundwater reconnaissance. Vertical geoelectrical resistivity soundings were applied to identify areas at depth in which aquifers with a sufficient thickness of fresh groundwater can be expected. A chemical and isotopic inventory of the regionally occurring groundwater revealed the presence of meteorically-recharged fresh and thermal waters as well as highly mineralized waters from fumaroles and a deep reservoir. Due to their chemical and isotopic composition, the latter group shows influences of juvenile water. Carbon fourteen dating performed on the fresh and thermal waters indicates that they were recharged during the last pluvial phase, about 10,500 years ago. The occurrence of these fossil waters explains the discharge of up to 200 l/s from some springs in a now-arid climate with mean precipitation of 100 mm/y and essentially no groundwater recharge. Extremely low contents of tritium of about 0.1 TU confirm the 14C age determinations.
Thermal surveillance of volcanoes
NASA Technical Reports Server (NTRS)
Friedman, J. D. (Principal Investigator)
1972-01-01
The author has identified the following significant results. A systematic aircraft program to monitor changes in the thermal emission from volcanoes of the Cascade Range has been initiated and is being carried out in conjunction with ERTS-1 thermal surveillance experiments. Night overflights by aircraft equipped with thermal infrared scanners sensitive to terrestrial emission in the 4-5.5 and 8-14 micron bands are currently being carried out at intervals of a few months. Preliminary results confirm that Mount Rainier, Mount Baker, Mount Saint Helens, Mount Shasta, and the Lassen area continue to be thermally active, although with the exception of Lassen which erupted between 1914 and 1917, and Mount Saint Helens which had a series of eruptions between 1831 and 1834, there has been no recent eruptive activity. Excellent quality infrared images recorded over Mount Rainier, as recently as April, 1972, show similar thermal patterns to those reported in 1964-1966. Infrared images of Mount Baker recorded in November 1970 and again in April 1972 revealed a distinct array of anomalies 1000 feet below the crater rim and associated with fumaroles or structures permitting convective heat transfer to the surface.
Vargas, Carlos A; Koulakov, Ivan; Jaupart, Claude; Gladkov, Valery; Gomez, Eliana; El Khrepy, Sami; Al-Arifi, Nassir
2017-04-10
Nevado del Ruiz volcano (NRV), Columbia, is one of the most dangerous volcanoes in the world and caused the death of 25,000 people in 1985. Using a new algorithm for repeated tomography, we have found a prominent seismic anomaly with high values of the Vp/Vs ratio at depths of 2-5 km below the surface, which is associated with a shallow magma reservoir. The amplitude and shape of this anomaly changed during the current phase of unrest which began in 2010. We interpret these changes as due to the ascent of gas bubbles through magma and to degassing of the reservoir. In 2011-2014, most of this gas escaped through permeable roof rocks, feeding surface fumarole activity and leading to a gradual decrease of the Vp/Vs ratio in the reservoir. This trend was reversed in 2015-2016 due to replenishment of the reservoir by a new batch of volatile-rich magma likely to sustain further volcanic activity. It is argued that the recurring "breathing" of the shallow reservoir is the main cause of current eruptions at NRV.
Aszalós, Júlia Margit; Krett, Gergely; Anda, Dóra; Márialigeti, Károly; Nagy, Balázs; Borsodi, Andrea K
2016-09-01
Ojos del Salado, the highest volcano on Earth is surrounded by a special mountain desert with extreme aridity, great daily temperature range, intense solar radiation, and permafrost from 5000 meters above sea level. Several saline lakes and permafrost derived high-altitude lakes can be found in this area, often surrounded by fumaroles and hot springs. The aim of this study was to gain information about the bacterial communities inhabiting the sediment of high-altitude lakes of the Ojos del Salado region located between 3770 and 6500 m. Altogether 11 sediment samples from 4 different altitudes were examined with 16S rRNA gene based denaturing gradient gel electrophoresis and clone libraries. Members of 17 phyla or candidate divisions were detected with the dominance of Proteobacteria, Acidobacteria, Actinobacteria and Bacteroidetes. The bacterial community composition was determined mainly by the altitude of the sampling sites; nevertheless, the extreme aridity and the active volcanism had a strong influence on it. Most of the sequences showed the highest relation to bacterial species or uncultured clones from similar extreme environments.
Extremophile Diatoms: Implications to the Drake Equation
NASA Technical Reports Server (NTRS)
Sterrenburg, Frithjof A. S.; Hoover, Richard B.
2011-01-01
Diatoms are unicellular Eukaryotes that (as a group and phylogenetically) are not strictly regarded as extremophiles , since the vast majority of diatoms are mesophilic photoautotrophs. However, among the terrestrial Eukaryotes, diatoms are by far the single group of organisms with the ability to inhabit the greatest range of hostile environments on Earth. They are the dominant eukaryotes in the polar regions; in fumaroles, hot springs and geysers; and in hypersaline and hyperalkaline lakes and pools. Cryophilic species such as Fragilaria sublinearis and Chaetoceras fragilis are able to carry out respiration at extremely low rates at low temperatures in darkness. The Drake Equation refers to the likelihood of there being intelligent life at the technological level of electromagnetic communication. However, consideration of the range of conditions suitable for the habitability of eukaryotic diatoms and prokaryotic extremophiles, the likelihood that life exists elsewhere in the cosmos becomes many orders of magnitude greater than that predicted by the classical Drake Equation. In this paper we review the characteristics of diatoms as eukaryotic extremophiles and consider the implications to adjustments needed to the Drake Equation to assess the possibility that life exists elsewhere in the Universe.
NASA Astrophysics Data System (ADS)
Vargas, Carlos. A.; Koulakov, Ivan; Jaupart, Claude; Gladkov, Valery; Gomez, Eliana; El Khrepy, Sami; Al-Arifi, Nassir
2017-04-01
Nevado del Ruiz volcano (NRV), Columbia, is one of the most dangerous volcanoes in the world and caused the death of 25,000 people in 1985. Using a new algorithm for repeated tomography, we have found a prominent seismic anomaly with high values of the Vp/Vs ratio at depths of 2-5 km below the surface, which is associated with a shallow magma reservoir. The amplitude and shape of this anomaly changed during the current phase of unrest which began in 2010. We interpret these changes as due to the ascent of gas bubbles through magma and to degassing of the reservoir. In 2011-2014, most of this gas escaped through permeable roof rocks, feeding surface fumarole activity and leading to a gradual decrease of the Vp/Vs ratio in the reservoir. This trend was reversed in 2015-2016 due to replenishment of the reservoir by a new batch of volatile-rich magma likely to sustain further volcanic activity. It is argued that the recurring “breathing” of the shallow reservoir is the main cause of current eruptions at NRV.
Seismic experiments on Showa-Shinzan lava dome using firework shots
NASA Astrophysics Data System (ADS)
Miyamachi, Hiroki; Watanabe, Hidefumi; Moriya, Takeo; Okada, Hiromu
1987-11-01
Seismic experiments were conducted on Showa-Shinzan, a parasitic lava dome of volcano Usu, Hokkaido, which was formed during 1943 1945 activity. Since we found that firework shots fired on the ground can effectively produce seismic waves, we placed many seismometers on and around the dome during the summer festivals in 1984 and 1985. The internal structure had been previously studied using a prospecting technique employing dynamite blasts in 1954. The measured interval velocity across the dome in 1984 ranges 1.8 2.2 km/s drastically low compared to the results (3.0 4.0 km/s) in 1954; in addition, the velocity is 0.3 0.5 km/s higher than that in the surrounding area. The variation of the observed first arrival amplitudes can be explained by geometrical spreading in the high velocity lava dome. These observations show a marked change in the internal physical state of the dome corresponding to a drop in the measured highest temperature at fumaroles on the dome from 800°C in 1947 to 310°C in 1986.
Tilt networks of Mount Shasta and Lassen Peak, California
Dzurisin, Daniel; Johnson, Daniel J.; Murray, T.L.; Myers, Barbara
1982-01-01
In response to recent eruptions at Mount St. Helens and with support from the USGS Volcanic Hazards Program, the Cascades Volcano Observatory (CVO) has initiated a program to monitor all potentially-active volcanoes of the Cascade Range. As part of that effort, we installed tilt networks and obtained baseline measurements at Mount Shasta and Lassen Peak, California during July 1981. At the same time, baseline electronic distance measurements (EDM) were made and fumarole surveys were conducted by other crews from CVO. Annual surveys are planned initially, with subsequent visits as conditions warrant. These geodetic and geochemical measurements supplement a program of continuous seismic monitoring of Cascade volcanoes by the USGS Office of Earthquake Studies in cooperation with local universities. Other tilt networks were established at Mount Baker in 1975 and at Mount St. Helens in 1981. EDM networks were established at Mount Baker in 1975, Mount St. Helens in 1980, and Crater Lake in 1981. Additional tilt and/or EDM networks are planned for Mount Rainier, Mount Hood, Glacier Peak, Three Sisters, and Crater Lake as funds permit.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lane-Smith, Derek; Sims, Kenneth
In some volcanic systems, thoron and radon activity and CO 2 flux, in soil and fumaroles, show a relationship between ( 220Rn/ 222Rn) and CO 2 efflux. It is theorized that deep, magmatic sources of gas are characterized by high 222Rn activity and high CO 2 efflux, whereas shallow sources are indicated by high 220Rn activity and relatively low CO 2 efflux. In this paper we evaluate whether the observed inverse relationship is a true geochemical signal, or potentially an analytical artifact of high CO 2 concentrations. We report results from a laboratory experiment using the RAD7 radon detector, knownmore » 222Rn (radon) and 220Rn (thorn), and a controllable percentage of CO 2 in the carrier gas. Our results show that for every percentage of CO 2, the 220Rn reading should be multiplied by 1.019, the 222Rn radon should be multiplied by 1.003 and the 220Rn/ 222Rn ratio should be multiplied by 1.016 to correct for the presence of the CO 2.« less
A volcanic environment for bedrock diagenesis at Meridiani Planum on Mars.
McCollom, Thomas M; Hynek, Brian M
2005-12-22
Exposed bedrocks at Meridiani Planum on Mars display chemical and mineralogical evidence suggesting interaction with liquid water. On the basis of morphological observations as well as high abundances of haematite and sulphate minerals, the rocks have been interpreted as sediments that were deposited in a shallow body of briny water with subsequent evaporation leaving behind the sulphate minerals. The iron-sulphur mineralization at Meridiani has also been inferred to be analogous to that produced during oxidative weathering of metal sulphide minerals, such as occurs at acid mine drainage sites. Neither of these interpretations, however, is consistent with the chemical composition of the rocks. Here we propose an alternative model for diagenesis of Meridiani bedrock that involves deposition of volcanic ash followed by reaction with condensed sulphur dioxide- and water-bearing vapours emitted from fumaroles. This scenario does not require prolonged interaction with a standing body of surface water and may have occurred at high temperatures. Consequently, the model invokes an environment considerably less favourable for biological activity on Mars than previously proposed interpretations.
NASA Astrophysics Data System (ADS)
Isaia, Roberto; Carapezza, Maria Luisa; Conti, Eric; Giulia Di Giuseppe, Maria; Lucchetti, Carlo; Prinzi, Ernesto; Ranaldi, Massimo; Tarchini, Luca; Tramparulo, Francesco; Troiano, Antonio; Vitale, Stefano; Cascella, Enrico; Castello, Nicola; Cicatiello, Alessandro; Maiolino, Marco; Puzio, Domenico; Tazza, Lucia; Villani, Roberto
2017-04-01
Recent volcanism at Campi Flegrei caldera produced more than 70 eruptions in the last 15 ka formed different volcanic edifices. The vent distribution was related to the main volcano-tectonic structure active in the caldera along which also concentrated part of the present hydrothermal and fumarolic activity, such as in the Solfatara area. In order to define the role of major faults in the Campi Flegrei Caldera, we analyzed some volcanic craters (Fondi di Baia and Astroni) and the Agnano caldera, by means of different geochemical and geophysical technics including CO2 flux, electrical resistivity (ERT), self-potential and permeability surveys. We provided some ERT profiles and different maps of geochemical and geophysical features. Major fault planes were identified comparing ERT imaging with alignments of anomalies in maps. The results can improve the knowledge on the present state of these volcanoes actually not fully monitored though included in the area with high probability of future vent opening within the Campi Flegrei caldera.
Preliminary Reconnaissance of West Astringent Creek Thermal Area, Yellowstone National Park
NASA Astrophysics Data System (ADS)
Fairley, J. P., Jr.; Villegas, G.; Aunan, M. M.; Lindsey, C.; Sorensen, A.; Larson, P. B.
2016-12-01
The West Astringent Creek Thermal Area (WACTA) is one of the newest thermal areas in Yellowstone National Park (YNP). Thermal activity in the headwaters region of Astringent Creek, on the southeast edge of Sour Creek Dome, was rst noted in 1985; subsequent developments included the appearance of a high-temperature (104C) hydrothermal fumarole (which later metamorphosed into a mud volcano) and an area of tree-kill due to rising ground temperatures [Hutchinson, 1996]. We conducted a preliminary exploration of the hydrothermal area through visual evaluation of the spatial extent, location of the features, and nature of the hydrothermal area. 16 features were chosen based upon the following criteria: 1) initial appearance, 2) location in the thermal area, 3) location with respect to each other, and 4) accessibility. From these features we collected in-situ temperature and pH, as well as aqueous samples for geochemical analysis of cations, and deuterium and oxygen isotopes. With the information collected we will make a brief description of the thermal area and present a basis to conduct future research to obtain an amplified characterization of the WACTA.
NASA Astrophysics Data System (ADS)
Anitori, R.; Davis, R.; Connell, L.; Kelley, M.; Staudigel, H.; Tebo, B. M.
2011-12-01
Terrestrial and aquatic volcanic oligotrophic environments can host microorganisms that obtain their energy from reduced inorganic chemicals present in volcanic rocks and soils. We sampled basaltic rock from terrestrial Dark Oligotrophic Volcanic Ecosystems (DOVEs) located in two fumarole ice caves, Warren and Warren West, located near the summit of Mt. Erebus, Antarctica. For reference, we sampled a similar cave, Harry's Dream, which receives continuous light during the Austral summer. We report here culturing data for bacterial and eukaryotic microbes from rocky soils in these caves when targeting lithotrophic organisms using media containing reduced inorganic compounds (Mn2+, Fe2+, NH4+). In addition, to test for the possible presence of inorganic carbon fixation, we screened samples for the ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) gene. Culturing of soil samples on media targeting both autotrophs and heterotrophs yielded a diverse collection of generally slow-growing colonies of bacteria (majority), fungi and non-fungal eukaryotes. Manganese(II)-oxidizing colonies were identified in Warren and Harry's Dream, and these exhibited two colony morphotypes upon subculturing. Sequencing of the PCR amplified 16S rRNA gene identified a bacterium distantly related to Pseudonocardia sp., a genus with known manganese oxidizers. Other bacteria enriched included members of the Actinobacteria, Alphaproteobacteria and Betaproteobacteria. There was a low diversity in cultured eukaryotes representing several potential undescribed species (Geomyces sp., Penicillium sp.) and isolates that may represent alternate, previously undescribed habitats and forms (Psilolechia leprosa, Alternaria alternata). One Warren isolate was a 99% 16S rRNA match to the N2 fixer Bradyrhizobium sp.; when inoculated into liquid medium specific for N2 fixers, growth was maintained upon subculture. Putative iron oxidizers were also enriched from the two DOVE caves, using slush agar iron and O2 gradient tubes. Some of the original soil isolates grown on agar without organic C grew upon subculturing into liquid medium, providing evidence for the successful enrichment of cave autotrophs. Further evidence for autotrophy was the identification of genes for the RuBisCO large subunit gene, suggesting the existence of carbon fixation via the Calvin-Benson cycle. PCR amplification was observed for the type I (cbbL) gene, but not using primers specific for the type II (cbbM) RuBisCO gene. Phylogenetic trees placed the amplified sequences in a monophyletic group deeply rooted in the 'red-like' clade within the cbbL group. Our culture-based exploration of the Mt. Erebus ice caves provides evidence for the presence of litho/autotrophic microorganisms that may be utilizing inorganic energy sources in the volcanic rocks. These results provide a novel view of life in the dark biosphere in deep volcanic settings, and augment studies of seafloor or terrestrial microbial communities in similar extreme volcanic environments.
Volcanic soil gas 4He/CO2 ratio: a useful geochemical tool for eruption forecasting
NASA Astrophysics Data System (ADS)
Asensio-Ramos, M.; Perez, N. M.; Padron, E.; Melián, G.; Hernandez Perez, P. A.; Padilla, G.; Barrancos, J.; Rodríguez, F.; Sumino, H.; Calvo, D.
2016-12-01
Magmatic gases that percolate through volcano's porous flanks in a non-visible (diffuse) way disturb the chemical composition of soil gases at the surface environment of the volcano, generating enrichments of CO2, He and other gases. Two of the gases which have attracted attention in soil degassing studies are He and CO2 because both species have similar low solubility in silicate melts. However, once they are exsolved from the melts, their movement through the crust towards the surface is very different: CO2, which is a reactive gas, is affected by the occurrence of interfering processes, while interaction of He during its ascent is minimum. Their geochemical differences yield higher relative He/CO2 ratios in the fumarole gases than is actually present in the magma, but it decreases when the magma reservoir reaches enough pressure to generate incipient fracture systems approaching the eruption. In this work, we present quasi daily estimations of diffusive He through the whole surface of El Hierro, the youngest island of the Canarian archipelago, considering He emission data reported in the literature (Padrón et al., 2013. Geology, 41, 539-542), using the same procedure as for diffuse CO2 emission time series (Melián et al., 2014. J. Geophys. Res., 119, 6976-6991). After the occurrence of more than 11,000 seismic events, a shallow submarine eruption about 2 km off the south coast in the southernmost part of El Hierro, started in October 12, 2011 and lasted for 5 month. The herein presented methodology enables the calculation of the diffuse He/CO2 emission ratio of the entire island during the volcanic unrest. Two different emission peaks for both He and CO2, with approximately the same delay between them ( 23 days), were observed. The combination of both time series resulted in a drastic increase in the He/CO2 emission ratio of the island (up to 1.1×10-3) two weeks before the eruption onset. Additionally, a second significant He/CO2 emission peak (up to 5.5×10-4) was observed between 3 and 4 November, some days before the highest lava emission period. The detailed time series of He/CO2 emission ratio during El Hierro 2011-2012 submarine eruption presented here demonstrate the importance of its continuous monitoring in active volcanic regions, mainly in areas without visible manifestations of volcanic fluid discharges.
NASA Astrophysics Data System (ADS)
Onyeali, M. M. C.; Joseph, E. P.; Frey, H. M.
2017-12-01
Dominica has an abundance of volcanic activity, with nine potentially active volcanoes, many of which have highly active volcanic-hydrothermal systems. The waters are predominantly acid-sulphate in character (SO4=100-4200 mg/L, pH≤4), and likely formed because of dilution of acidic gases in near surface oxygenated groundwater. The waters are of primarily meteoric origin, but are likely affected by evaporation effects at/near the surface, with δ18O ranging from -1.75 to 10.67‰, and δD from -6.1 to 14.5‰. With updated water chemistry and isotopic data from five hydrothermal areas (Boiling Lake, Valley of Desolation, Sulphur Springs, Wotten Waven, Cold Soufriere) for the period 2014 to 2017, we will re-evaluate the characteristics of these systems, which were last reported in 2011. We will present updated reservoir temperatures using a variety of geothermometers and provide insight into water-rock interactions taking place in the reservoirs. Recent changes in chemistry of the waters have indicated that while the origin of the hydrothermal systems are still dominantly meteoric (δ18O = -3 to 8‰ and δD = -5 to 18‰), surface evaporation effects and variable amounts of mixing with shallow ground waters play an important role. Fumaroles appear to reflect a deeper source contribution as compared to thermal waters with differences in acidity, temperature, TDS, δ18O, and δD observed. The general composition of the waters for most of the hydrothermal systems studied indicate no significant changes, with the exception of the Boiling Lake, which experienced a draining event in November 2016 which lasted for 6 weeks. Decreases in temperature, pH, Na, K, and Cl were seen post draining, while SO4 remained relatively low (66 ppm), but showed a small increase. The chemistry of the Boiling Lake appears to show significant changes in response to changes in the groundwater system. Changes in the groundwater system at the lake observed during the 2004/2005 draining, which lasted for 6 months, were attributed to strain release from a nearby regional seismic event. Based on the changes observed during the recent draining events, there are likely other factors affecting the ground water system at the Boiling Lake. Of particular note is the drastic change in SO4 concentrations in the Boiling Lake, which went from 1830 ppm in 2003 to <100 ppm presently.
NASA Astrophysics Data System (ADS)
Scarpa, Roberto; Capuano, Paolo; Tammaro, Umberto; Bilham, Roger
2014-05-01
The Campi Flegrei caldera, located in the Campanian Plain, Southern Italy, 15 km west of the city of Naples, is a nested, resurgent, and restless structure in the densely inhabited Neapolitan area. The main caldera at Campi Flegrei is 12 - 15 km across and its rim is thought to have been formed during the catastrophic eruption, occurred 39 ky ago ca., which produced a deposit referred to as the Campanian Ignimbrite. The volcanic hazards posed by this caldera and the related risk are extremely high, because of its explosive character and the about 1.5 million people living within the caldera. Campi Flegrei area periodically experiences significant unrest episodes which include ground deformations, the so-called 'bradisismo'. Following the last eruption (Monte Nuovo, 1538) a general subsidence has been interrupted by episodes of uplift, the most recent of which occurred in 1970-72 and 1982-84. Since 1950 the caldera is showing signs of unrest with ground uplift, seismicity, and composition variation of fumarole fluids. In particular, subsidence has been replaced by intermittent episodes of inflation with short time duration and various maximum amplitude. They occurred in 1989, 1994, 2000, 2005-06, 2008-09 and 2011-2014 with duration of few months and maximum amplitude ranging between 3 and 18 cm., approximately. In the last years an array of water-pipe tiltmeters with lengths between 28 m and 278 m in tunnels on the flanks of the region of maximum inflation has been installed to avoid problems common to the traditional tiltmeters. The tiltmeters record inflation episodes upon which are superimposed local load tides and the effects of the seiches in the Bay of Naples and in the Tyrrhenian sea. We use data recorded by three tide gauges in the Bay of Pozzuoli (Pozzuoli, Miseno, Nisida) to compare water pipe data with sea level to extract astronomical tidal components (diurnal and semidiurnal) and seiches periods (particularly between 20 minutes and 56 minutes) that could constitute local loading frequencies recorded clearly by tide gauges and tiltmeters. We perform an analysis of the amplitude stability of seiches amplitudes. After the removal of the tides and seiches component we compare tilt residual and sea level trend for the same periods of time. The comparison between these two kind of data enables a more sensitive definition of the low level uplift with an accuracy of 1% for nanoradiant tilts in the period range 10 minutes to 10 hours with a long term tilt stability of approximately 0.1 microradiant/yr.
Evolution of Morphology and Crystallinity of Silica Minerals Under Hydrothermal Conditions
NASA Astrophysics Data System (ADS)
Isobe, H.
2011-12-01
Silica minerals are quite common mineral species in surface environment of the terrestrial planets. They are good indicator of terrestrial processes including hydrothermal alteration, diagenesis and soil formation. Hydrothermal quartz, metastable low temperature cristobalite and amorphous silica show characteristic morphology and crystallinity depending on their formation processes and kinetics under wide range of temperature, pressure, acidity and thermal history. In this study, silica minerals produced by acidic hydrothermal alteration related to volcanic activities and hydrothermal crystallization experiments from diatom sediment are examined with crystallographic analysis and morphologic observations. Low temperature form of cistobalite is a metastable phase and a common alteration product occured in highly acidic hydrothermal environment around fumaroles in geothermal / volcanic areas. XRD analysis revealed that the alteration degree of whole rock is represented by abundance of cristobalite. Detailed powder XRD analysis show that the primary diffraction peak of cristobalite composed with two or three phases with different d-spacing and FWHM by peak profile fitting analysis. Shorter d-spacing and narrower FWHM cristobalite crystallize from precursor materials with less-crystallized, longer d-spacing and wider FWHM cristobalite. Textures of hydrothermal cristobalite in altered rock shows remnant of porphylitic texture of the host rock, pyroxene-amphibole andesite. Diatom has amorphous silica shell and makes diatomite sediment. Diatomite found in less diagenetic Quarternary formation keeps amorphous silica diatom shells. Hydrothermal alteration experiments of amorphous silica diatomite sediment are carried out from 300 °C to 550 °C. Mineral composition of run products shows crystallization of cristobalite and quartz progress depending on temperature and run durations. Initial crystallization product, cristobalite grains occur as characteristic lepispheres and granules with various surface structures. At the very initial stage of cristobalite crystallization within 2 days run duration, cristobalite shows lepispheres a few micron meters in diameter with irregular, submicron scale ridges and grooves on the surface. With the run duration up to 7 days, lepispheres change to granules with smooth surface remaining a few micron meters in diameter. Crystallinity of cristobalite lepispheres and granules corresponds to opal-CT. Euhedral quartz crystals grow with dissolution of cristobalite grains. Growth rate of cristobalite and quartz is controlled by crystallization kinetics with induction period strongly depending on temperature. Induction period of cristobalite crystallization from amorphous silica may exceed several million years at temperature below 100 °C. Crystallinity, morphology and growth rate of silica minerals occurred in various terrestrial and planetary processes are controlled by temperature and acidity of hydrothermal fluid and nucleation and growth kinetics of silica minerals.
Phreatic activity and hydrothermal alteration in the Valley of Desolation, Dominica, Lesser Antilles
NASA Astrophysics Data System (ADS)
Mayer, Klaus; Scheu, Bettina; Yilmaz, Tim I.; Montanaro, Cristian; Albert Gilg, H.; Rott, Stefanie; Joseph, Erouscilla P.; Dingwell, Donald B.
2017-12-01
Phreatic eruptions are possibly the most dramatic surface expressions of hydrothermal activity, and they remain poorly understood. The near absence of precursory signals makes phreatic eruptions unpredictable with respect to both time and magnitude. The Valley of Desolation (VoD), Dominica, located close to the Boiling Lake, the second largest high-temperature volcanic crater lake in the world, hosts vigorous hydrothermal activity with hot springs, mud pools, fumaroles, and steaming ground. A phreatic or phreatomagmatic eruption from this site is considered to be the most likely scenario for future volcanic activity on Dominica. Yet there is little information regarding the trigger mechanisms and eruption processes of explosive events at this active hydrothermal center, and only a very small number of studies have investigated hydrothermal activity in the VoD. We therefore conducted two field campaigns in the VoD to map hydrothermal activity and its surficial phenomena. We also investigated alteration processes and their effects on degassing and phreatic eruption processes. We collected in situ petrophysical properties of clay-rich unconsolidated samples, and together with consolidated rock samples, we investigated the range of supergene and hydrothermal alteration in the laboratory. In addition, we performed rapid decompression experiments on unconsolidated soil samples. Our results show that alteration leads to an increasing abundance of clay minerals and a decrease in both strength and permeability of the rocks. In the immediate vicinity of degassing acid-sulfate fluids, advanced argillic alteration yields a mineral zoning which is influenced by meteoric water. The water-saturated basal zone is dominated by kaolinite run 0whereas alunite formation is favored at and above the groundwater table where atmospheric oxidation of H2S to H2SO4 occurs (e.g., steam-heated alteration). Alteration effects may in turn inhibit degassing at the surface, increasing the potential for pressurization in the subsurface and thus lead to phreatic eruptions. Rapid decompression experiments, together with ballistic trajectory calculations, constrain estimates of the conditions prior to the 1997 small-scale phreatic event in the VoD. The results presented here may serve as a contribution to the understanding of the hazard potential of ongoing hydrothermal activity within the VoD. On a broader perspective, our results will help evaluate hydrothermal activity in similar areas worldwide which might also have the potential for phreatic eruptions, for instance Poas (Costa Rica) or Tongariro and Waimangu (New Zealand).
NASA Astrophysics Data System (ADS)
Salazar, J.; Hernandez, P.; Perez, N.; Barahona, F.; Olmos, R.; Cartagena, R.; Soriano, T.; Notsu, K.; Lopez, D.
2001-12-01
San Vicente or Chichontepeque (2,180 m a.s.l.) is a composite andesitic volcano located 50 Km east of San Salvador. Its paired edifice rises from the so-called Central Graben, an extensional structure parallel to the Pacific coast, and has been inactive for the last 3000 yrs. Fumaroles (98.2°C ) and hot spring waters are present along radial faults at two localities on the northern slope of the volcano (Aguas Agrias and El Infiernillo). CO2 is the most abundant component in the dry gas (>90%) and its mean isotopic composition (δ 13C(CO2)=-2.11 ‰ and 3He/4He of 6.9 Ra) suggests a magmatic origin for the CO2. These manifestations are supposed to be linked to a 1,200 m depth 250°C reservoir with a CO2 partial pressure of 14 bar extended beneath the volcano (Aiuppa et al., 1997). In February 13, 2001, a 6.6 magnitude earthquake with epicenter about 20 Km W of San Vicente damaged and destroyed many towns and villages in the north area of the volcano causing some deceases. In addition, two seismic swarms were recorded beneath the northeastern flank of the volcano in April and May 2001. Searching for any link between the actual seismic activity and changes in the diffuse CO2 degassing at San Vicente, an NDIR instrument for continuos monitoring of the diffuse CO2 degassing was set up at Aguas Agrias in March 2001. Soil CO2 efflux and several meteorological and soil physical variables were measured in an hourly basis. Very significative pre-seismic and post-seismic relationships have been found in the observed diffuse CO2 efflux temporal variations related to the May 2001 seismic swarms. A sustained 50% increase on the average diffuse CO2 efflux was observed 8 days before the May 8, 5.1 magnitude earthquake. This pre-seismic behaviour may be considered a precursor of the May 2001 seismic swarm at San Vicente volcano. However, about a three-fold increase in the diffuse CO2 efflux was also observed after the intense seismicity recorded on May 8-9. These preliminary results suggest that changes in the fluid pore-pressure within faults/fractures associated to the volcanic roots may be triggering, enhancing and responding (aperture and closure of fractures) to the local seismicity in the area of San Vicente volcano.
NASA Astrophysics Data System (ADS)
de Leeuw, G. A. M.; Hilton, D. R.; Fischer, T. P.; Walker, J. A.
2007-06-01
We report helium and carbon isotope and relative abundance data of fumaroles, hot springs, water springs, mud-pots and geothermal wells from El Salvador and Honduras to investigate both along and across-arc controls on the release of CO 2 from the subducted slab. El Salvador localities show typical volcanic front volcanic gas signatures, with 3He/ 4He ratios of 5.2-7.6 RA, δ13C values of - 3.6‰ to - 1.3‰ and CO 2/ 3He ratios of 8-25 × 10 9. In Honduras, we find similar values only for volatiles collected in the Sula Graben region located ˜ 200 km behind the volcanic front. All other areas in Honduras show significantly lower 3He/ 4He ratios (0.7-3.5 RA), lower δ13C values (< - 7.3‰) and more variable CO 2/ 3He ratios (6.2 × 10 7-2.0 × 10 11): characteristics consistent with degassing-induced fractionation of CO 2 and He and/or interaction with crustal rocks. The provenance of CO 2 released along the volcanic front is dominated by subducted marine carbonates (L = 76 ± 4%) and organic sediments (S = 14 ± 3%), with the mantle wedge (M) contributing 10 ± 3% to the total carbon flux. The L/S ratio of the El Salvador volatiles (average = 5.6) is comparable to volcanic front localities in Costa Rica and Nicaragua [A.M. Shaw, D.R. Hilton, T.P. Fischer, L.A. Walker, G.E. Alvarado, Contrasting He-C relationships in Nicaragua and Costa Rica: insights into C cycling through subduction zones. Earth Planet. Sci. Lett. 214 (2003) 499-513] but is approximately one-half the input value of sediments at the trench (L. Li, G.E. Bebout, Carbon and nitrogen geochemistry of sediments in the Central American convergent margin: Insights regarding subduction input fluxes, diagenesis, and paleoproductivity, J. Geophys. Res. 110 (2005), doi: 10.1029/2004JB003276). We use the L/S ratio of El Salvador geothermal fluids, together with estimates of the CO 2 output flux from the arc, to constrain the amount and composition of subducted sediments involved in the supply of CO 2 to the arc. For the El Salvador segment of the volcanic front, a ˜ 180 m continuous section of the incoming sedimentary pile — with the uppermost ˜ 42 m removed by under-plating, is required. Significantly, there is no need for oceanic basaltic basement to supply CO 2 to El Salvador — or any other part of the volcanic front. This new approach, combining provenance characteristics of CO 2 from the slab (L/S ratio) and CO 2 flux estimates of the volcanic output, allows a more realistic estimate of the recycling efficiency of slab-derived sedimentary CO 2 through the Central American Volcanic Arc to the atmosphere. Furthermore, the low L/S ratio (4.8) of Sula Graben samples from behind the front in Honduras is inconsistent with continued supply of slab-derived sedimentary CO 2 following volatile loss at sub-arc depths, thereby pointing to ancient enrichment and/or lateral entrainment processes controlling CO 2 in the mantle wedge below Honduras.
Vargas, Carlos. A.; Koulakov, Ivan; Jaupart, Claude; Gladkov, Valery; Gomez, Eliana; El Khrepy, Sami; Al-Arifi, Nassir
2017-01-01
Nevado del Ruiz volcano (NRV), Columbia, is one of the most dangerous volcanoes in the world and caused the death of 25,000 people in 1985. Using a new algorithm for repeated tomography, we have found a prominent seismic anomaly with high values of the Vp/Vs ratio at depths of 2–5 km below the surface, which is associated with a shallow magma reservoir. The amplitude and shape of this anomaly changed during the current phase of unrest which began in 2010. We interpret these changes as due to the ascent of gas bubbles through magma and to degassing of the reservoir. In 2011–2014, most of this gas escaped through permeable roof rocks, feeding surface fumarole activity and leading to a gradual decrease of the Vp/Vs ratio in the reservoir. This trend was reversed in 2015–2016 due to replenishment of the reservoir by a new batch of volatile-rich magma likely to sustain further volcanic activity. It is argued that the recurring “breathing” of the shallow reservoir is the main cause of current eruptions at NRV. PMID:28393851
McGee Mountain Shallow (2m) Temperature Survey, Humboldt County, Nevada 2009
Richard Zehner
2009-01-01
This shapefile contains location and attribute data for a shallow (2 meter) temperature survey conducted by Geothermal Technical Partners, Inc. during late 2008 and early 2009. Temperatures at 2m depth were measured at 192 separate points as outlined by Coolbaugh et al., 2007. The purpose of the survey was to try and detect a shallow thermal anomaly associated with the McGee Mountain geothermal area as discovered by Phillips Petroleum and Earth Power Resources in the late 1970’s. Drilling identified ~120oC temperatures at ~100m depth. This 2-meter survey delineated what was interpreted as a steam-heated fault zone centered along a range front fault in the vicinity of the drilled holes and fumaroles. Coolbaugh, M.F., Sladek, C., Faulds, J.E., Zehner, R.E., and Oppliger, G.L., 2007, Use of rapid temperature measurements at a 2-meter depth to augment deeper temperature gradient drilling: Proceedings, 32nd Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, CA, Jan. 22-24, 2007, p. 109-116. Zehner, R., Tullar, K., and Rutledge, E., 2012, Effectiveness of 2-Meter and geoprobe shallow temperature surveys in early stage geothermal exploration: Geothermal Resources Council Transactions, v. 36, in press.
Integrated Spectroscopic Studies of Anhydrous Sulfate Minerals
NASA Technical Reports Server (NTRS)
Lane, M. D.; Bishop, J. L.; Dyar, M. D.; Cloutis, E.; Forray, F. L.; Hiroi, T.
2005-01-01
Sulfates have been identified in Martian soils and bedrock and are emerging as an important indicator for aqueous activity on Mars. Sulfate minerals can form in a variety of low-temperature (evaporitic; chemical-weathering) and high-temperature (volcanic/fumarolic; hydrothermal) environments and their formational environments can range from alkaline to acidic. Although sulfates generally form in the presence of water, not all sulfates are hydrous or contain water in their structures. Many of these anhydrous sulfates (Dana group 28; Strunz class 67A) are minerals that form as accompanying phases to the main minerals in ore deposits or as replacement deposits in sedimentary rocks. However, some form from thermal decomposition of OH or H2O-bearing sulfates, such as from the reaction [1]: jarosite = yavapaiite + Fe2O3 + H2O. Where known, the stability fields of these minerals all suggest that they would be stable under martian surface conditions [2]. Thus, anhydrous sulfate minerals may contribute to martian surface mineralogy, so they must be well-represented in spectral libraries used for interpretation of the Martian surface. We present here the preliminary results of an integrated study of emittance, reflectance, and Mossbauer spectroscopy of a suite of wel-lcharacterized anhydrous sulfates.
Crustal CO2 liberation during the 2006 eruption and earthquake events at Merapi volcano, Indonesia
NASA Astrophysics Data System (ADS)
Troll, Valentin R.; Hilton, David R.; Jolis, Ester M.; Chadwick, Jane P.; Blythe, Lara S.; Deegan, Frances M.; Schwarzkopf, Lothar M.; Zimmer, Martin
2012-06-01
High-temperature volcanic gas is widely considered to originate from ascending, mantle-derived magma. In volcanic arc systems, crustal inputs to magmatic gases mainly occur via subducted sediments in the mantle source region. Our data from Merapi volcano, Indonesia imply, however, that during the April-October 2006 eruption significant quantities of CO2 were added from shallow crustal sources. We show that prior to the 2006 events, summit fumarole gas δ13C(CO2) is virtually constant (δ13C1994-2005 = -4.1 ± 0.3‰), but during the 2006 eruption and after the shallow Yogyakarta earthquake of late May, 2006 (M6.4; hypocentres at 10-15 km depth), carbon isotope ratios increased to -2.4 ± 0.2‰. This rise in δ13C is consistent with considerable addition of crustal CO2 and coincided with an increase in eruptive intensity by a factor of ˜3 to 5. We postulate that this shallow crustal volatile input supplemented the mantle-derived volatile flux at Merapi, intensifying and sustaining the 2006 eruption. Late-stage volatile additions from crustal contamination may thus provide a trigger for explosive eruptions independently of conventional magmatic processes.
Lunar material resources: An overview
NASA Technical Reports Server (NTRS)
Carter, James L.
1992-01-01
The analysis of returned lunar samples and a comparison of the physical and chemical processes operating on the Moon and on the Earth provide a basis for predicting both the possible types of material resources (especially minerals and rocks) and the physical characteristics of ore deposits potentially available on the Moon. The lack of free water on the Moon eliminates the classes of ore deposits that are most exploitable on Earth; namely, (1) hydrothermal, (2) secondary mobilization and enrichment, (3) precipitation from a body of water, and (4) placer. The types of lunar materials available for exploitation are whole rocks and their contained minerals, regolith, fumarolic and vapor deposits, and nonlunar materials, including solar wind implantations. Early exploitation of lunar material resources will be primarily the use of regolith materials for bulk shielding; the extraction from regolith fines of igneous minerals such as plagioclase feldspars and ilmenite for the production of oxygen, structural metals, and water; and possibly the separation from regolith fines of solar-wind-implanted volatiles. The only element, compound, or mineral, that by itself has been identified as having the economic potential for mining, processing, and return to Earth is helium-3.
Astrobiological Significance of Chemolithoautotrophic Acidophiles
NASA Technical Reports Server (NTRS)
Pikuta, Elena V.; Hoover, Richard B.
2003-01-01
For more than a century (since Winogradsky discovered lithoautotrophic bacteria) a dilemma in microbiology has concerned life that first inhabited the Earth. Which types of life forms first appeared in the primordial oceans during the earliest geological period on Earth as the primary ancestors of modem biological diversity? How did a metabolism of ancestors evolve: from lithoautotrophic to lithohetherotrophic and organoheterotrophic or from organoheterotrophic to organoautotrophic and lithomixotrophic types? At the present time, it is known that chemolithoheterotrophic and chemolithoautotrophic metabolizing bacteria are wide spread in different ecosystems. On Earth the acidic ecosystems are associated with geysers, volcanic fumaroles, hot springs, deep sea hydrothermal vents, caves, acid mine drainage and other technogenic ecosystems. Bioleaching played a significant role on a global geological scale during the Earth's formation. This important feature of bacteria has been successfully applied in industry. The lithoautotrophs include Bacteria and Archaea belonging to diverse genera containing thermophilic and mesophilic species. In this paper we discuss the lithotrophic microbial acidophiles and present some data with a description of new acidophilic iron- and sulfur- oxidizing bacterium isolated from the Chena Hot Springs in Alaska. We also consider the possible relevance of microbial acidophiles to Venus, Io, and acidic inclusions in glaciers and icy moons.
An estimate of gas emissions and magmatic gas content from Kilauea volcano
Greenland, L.P.; Rose, William I.; Stokes, J.B.
1985-01-01
Emission rates of CO2 have been measured at Kilauea volcano, Hawaii, in the east-rift eruptive plume and CO2 and SO2 have been measured in the plume from the noneruptive fumaroles in the summit caldera. These data yield an estimate of the loading of Kilauean eruptive gases to the atmosphere and suggest that such estimates may be inferred directly from measured lava volumes. These data, combined with other chemical and geologic data, suggest that magma arrives at the shallow summit reservoir containing (wt.%) 0.32% H2O, 0.32% CO2 and 0.09% S. Magma is rapidly degassed of most of its CO2 in the shallow reservoir before transport to the eruption site. Because this summit degassing yields a magma saturated and in equilibrium with volatile species and because transport of the magma to the eruption site occurs in a zone no shallower than the summit reservoir, we suggest that eruptive gases from Kilauea characteristically should be one of two types: a 'primary' gas from fresh magma derived directly from the mantle and a carbon-depleted gas from magma stored in the summit reservoir. ?? 1995.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jordan, A.; Harnisch, J.; Borchers, R.
Previous investigations reported on the volcanic production of halocarbons including chlorofluorocarbons (CFCs). It has been suggested that this natural source could account for a significant atmospheric CFC background concentration, but no quantitative assessment of its source strength has yet been presented. The synthetic mechanism for their volcanic formation has neither been clarified. Fumarole and lava gas samples from four volcanoes (Kuju, Satsuma Iwojima, Mt. Etna, Vulcano) have been studied using gas chromatography/ion trap-mass spectrometry. More than 300 organic substances were detected, among which 5 fluorinated, 100 chlorinated, 25 brominated, and 4 iodinated compounds have been identified. The most abundant organohalogenmore » species were chlorinated methanes, unsaturated C{sub 2}-chlorohydrocarbons, and chlorobenzene, suggesting a synthetic course that includes the thermolytic formation of acetylene from hydrothermal methane, condensation reactions, and synchronous catalytic halogenation in the presence of highly activated surfaces of cooling magma or juvenile ash. The only CFC compound found was CFCl{sub 3} (CFC-11), which was detected in some samples at concentrations of up to 1 ppbv. A conservative estimate of the upper limit of global CFC emissions by volcanoes clearly shows that this source is negligible as compared to the atmospheric burden by anthropogenic activities.« less
Hildreth, Wes; Fierstein, Judy
2012-01-01
The explosive outburst at Novarupta (Alaska) in June 1912 was the 20th century's most voluminous volcanic eruption. Marking its centennial, we illustrate and document the complex eruptive sequence, which was long misattributed to nearby Mount Katmai, and how its deposits have provided key insights about volcanic and magmatic processes. It was one of the few historical eruptions to produce a collapsed caldera, voluminous high-silica rhyolite, wide compositional zonation (51-78 percent SiO2), banded pumice, welded tuff, and an aerosol/dust veil that depressed global temperature measurably. It emplaced a series of ash flows that filled what became the Valley of Ten Thousand Smokes, sustaining high-temperature metal-transporting fumaroles for a decade. Three explosive episodes spanned ~60 hours, depositing ~17 km3 of fallout and 11±2 km3 of ignimbrite, together representing ~13.5 km3 of zoned magma. No observers were nearby and no aircraft were in Alaska, and so the eruption narrative was assembled from scattered villages and ship reports. Because volcanology was in its infancy and the early investigations (1915-23) were conducted under arduous expeditionary conditions, many provocative misapprehensions attended reports based on those studies. Fieldwork at Katmai was not resumed until 1953, but, since then, global advances in physical volcanology and chemical petrology have gone hand in hand with studies of the 1912 deposits, clarifying the sequence of events and processes and turning the eruption into one of the best studied in the world. To provide perspective on this century-long evolution, we describe the geologic and geographic setting of the eruption - in a remote, sparsely inhabited wilderness; we review the cultural and scientific contexts at the time of the eruption and early expeditions; and we compile a chronology of the many Katmai investigations since 1912. Products of the eruption are described in detail, including eight layers of regionwide fallout, nine packages of ash flows, and three lava domes that followed the explosive pyroclastic episodes. Changes in the proportions of coerupting rhyolite, dacite, and andesite pumice documented for the fallout and ash-flow successions, which are locally interbedded, permit close correlation of those synchronously emplaced sequences and their varied facies. Petrological correlation of the sequence of deposits near Novarupta with ash layers at Kodiak village, 170 km downwind, where three episodes of ashfall were recorded (to the hour), provides key constraints on timing of the eruptive events. Syneruptive collapse of a kilometer-deep caldera took place atop Mount Katmai, a stratovolcano centered 10 km east of the eruption site at Novarupta, owing to drainage of magma from beneath the Katmai edifice. Correlation of ~50 earthquakes recorded at distant seismic stations (including 14 shocks of magnitude 6.0 to 7.0) to fitful caldera collapse provides further constraints on eruption timing, because layers of nonjuvenile breccia and mud ejected from Mount Katmai during collapse pulses are intercalated with the pumice-fall layers from Novarupta. Structure of the Novarupta vent, a 2-km-wide depression backfilled by welded tuff and inferred to be funnel-shaped at depth, is described in detail, as is the 4-km-wide caldera at Mount Katmai. Discussions are also provided concerning: (1) the impact on global climate of the great mass of sulfur-poor but halogen-rich aerosol ejected into the atmosphere by the rhyolite-dominated eruption; (2) chemical and mineralogical effects of the fumarolic acid gases; and (3) the timing of several syneruptive landslide deposits sandwiched within the pumice-fall sequence. Secondary posteruption phenomena characterized include impounded lakes, ash-rich debris flows, phreatic craters on the ignimbrite sheet, responses of glaciers to the fallout blanket and to beheading by caldera collapse, growth of new glaciers inside the caldera, and gradual filling of the caldera lake. Structure, composition, and ages of the several andesite-dacite stratovolcanoes, closely clustered near Novarupta, all of which remain fumarolically and seismically active, are summarized. But among them only Mount Katmai extends compositionally to include basalt and rhyolite. The petrological affinities of 1912 magmas erupted at Novarupta with pre-1912 Katmai lavas are outlined, and various chemical, mineralogical, isotopic, and experimental data are assembled to construct a model of preeruptive magma storage beneath Mount Katmai. The monograph concludes by comparing the 1912 eruption with several other well-studied large explosive eruptions, 14 of them historical and 9 prehistoric. Finally, we retrospectively review the historical difficulties in understanding what had actually taken place at Katmai in 1912 and the century of progress in volcano science that has allowed most of it to be figured out.
Multi-component gas emission measurements of the active lava lake of Nyiragongo, DR Congo
NASA Astrophysics Data System (ADS)
Bobrowski, N.; Giuffrida, G. B.; Yalire, M.; Lübcke, P.; Arellano, S.; Balagizi, C.; Calabrese, S.; Galle, B.; Tedesco, D.
2017-10-01
Between 2007 and 2011 four measurement campaigns (June 2007, July 2010, June 2011, and December 2011) were carried out at the crater rim of Nyiragongo volcano, DR Congo. Nyiragongo is one of the most active volcanoes in Africa. The ground-based remote sensing technique Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS), which uses scattered sunlight, the in-situ Multi-Component Gas Analyzer System (Multi-GAS) and alkaline impregnated filter were simultaneously applied during all field trips. The bromine monoxide to sulfur dioxide (BrO/SO2) and carbon dioxide to sulfur dioxide (CO2/SO2) molar ratios were determined, among other ratios. During the different field trips variations of the level of the lava lake up to several tens of meters were observed during intervals of the order of minutes up to days and also between the years. The measured gas ratios presented covariations with the lava lake level changes. BrO/SO2 ratios and CO2/SO2 ratios showed similar behavior. Annual CO2/SO2 and BrO/SO2 average values are generally positively correlated. In June 2011 increased BrO/SO2 as well as increased CO2/SO2 ratios have been observed before a sudden decrease of the lava lake. Overall the Cl/S ratio, determined by filter-pack sampling, shows an increasing trend with time, which is accompanied by a decreasing sulfur dioxide flux, the later measured nearly continuously by automated MAX-DOAS instruments since 2004. Mean gas emission fluxes of CO2, Cl and 'minimum-BrO' fluxes are calculated using their ratio to SO2. The first two show an increase with time, in contrast to the SO2 fluxes. A simple conceptual model is proposed which can explain in particular the June 2011 data, but as well our entire data set. The proposed model takes up the idea of convective magma cells inside the conduit and the possible temporary interruption of part of the cycling. We propose than two alternatives to explain the observed gas emission variation: 1. It is assumed that the diffuse and fumarolic degassing could have significant influence on measured gas composition. The measured gas composition might rather represent a gas mixture of plume, diffuse and fumarolic degassing than only representing the volcanic plume. 2. It is proposed that the interruption of the convection has taken place in the upper part of the conduit and deep degassing of CO2 and bromine initially continues while mixing already with gas emissions from an ageing source, which is characterized by an already diminishing sulfur content. These complex process but as well as the gas mixing of different sources, could explain general features of our dataset, but can unfortunately neither be confirmed nor disproven by the data available today.
Seismic and Gas Analyses Imply Magmatic Intrusion at Iliamna Volcano, Alaska in 2012
NASA Astrophysics Data System (ADS)
Prejean, S. G.; Werner, C. A.; Buurman, H.; Doukas, M. P.; Kelly, P. J.; Kern, C.; Ketner, D.; Stihler, S.; Thurber, C. H.; West, M. E.
2012-12-01
In early 2012, Iliamna Volcano, an ice-covered andesitic stratovolcano located in the Cook Inlet region of Alaska, had a vigorous earthquake swarm that included both brittle-failure earthquakes (M<=3.0) and smaller repeating low-frequency events. The swarm peaked in late February and early March with a maximum rate of roughly 1 event per minute. Initial earthquake locations were poor, as the normally sparse network (6 stations) was further compromised by outages. In an attempt to improve earthquake locations we linked differential travel times from this swarm to previous high-quality earthquake relocations (Statz-Boyer, et al., 2009, J. Volc. Geotherm. Res., v. 184, p. 323-332) using TomoDD. This analysis can be done quickly during unrest episodes if the optimal parameterization for the inversion and differential travel times for historical earthquakes have been determined previously. Relocated hypocenters shifted significantly westward from initial catalog locations, aligning on a ~N-S trending structure south of the volcano's edifice at 0-4 km depth. This crustal volume has otherwise been seismically quiet except during a possible magmatic intrusion at Iliamna in 1996, when it sustained a similar swarm (Roman et al., 2004, J. Volc. Geotherm. Res., v. 130, p. 265-284). Analysis of the relative amplitudes between the small low-frequency and located brittle failure events indicates that their sources are geographically separate, with the low-frequency events sourced closer to the fumarolically active summit region, ~4 km north of the brittle failure events. Airborne gas-emission measurements on March 17 revealed emission rates of up to 2000 and 580 tonnes per day (t/d) of CO2 and SO2, respectively, and a molar C/S ratio of 5. Visual observations from the flight revealed unusually vigorous fumarole activity near the summit. Subsequent measurements on June 20 and 22 showed continued high emissions of up to 1190 and 440 t/d of CO2 and SO2, respectively, with a C/S ratio of 4. These emission measurements are similar to those measured during the height of the 1996 unrest episode and are significantly above background measurements between 1998 and August 2011, which were typically below 100 and 60 t/d of CO2 and SO2. Taken together, gas and seismic data suggest that the earthquake swarm was driven by magmatic intrusion. Gas flux rates are consistent with those measured for degassing andesitic magmas in the shallow crust at other Cook Inlet volcanoes. Increased heat and degassing likely caused small low-frequency events in the shallow hydrothermal system near the volcano's summit, and/or may have destabilized the glacier, triggering shallow low-frequency glacial events. This unrest episode demonstrates how magmatic intrusions can cause spatially disparate earthquake swarms in hydrothermal systems and on pre-existing crustal structures.
The effects of volcanoes on health: preparedness in Mexico.
Zeballos, J L; Meli, R; Vilchis, A; Barrios, L
1996-01-01
The article reviews the most important aspects of volcanic eruptions and presents a summary of the harmful materials they emit. The main health effects can be classified as either physical (trauma, respiratory diseases, etc.) or psychological (depression, anxiety, nightmares, neurosis, etc.). Popocatépetl, the most famous active volcano in Mexico, lies on the borders of the States of Mexico, Puebla and Morelos. In 1993, seismic activity intensified, as did as the emission of fumaroles, followed in December 1994 by moderate tremors and strong emissions of gases and ash. In 1996, a number of seismic events led to an unexpected explosion. A daily emission of 8,000 to 15,000 tonnes of sulfur dioxide has been measured. Popocatépetl is located in a densely populated region of Mexico. A complex network to monitor the volcano using sophisticated equipment has been set up, including visual surveillance, seismic, geochemical and geodesic monitoring. An early warning system (SINAPROC/CENAPRED) has been developed to keep the population permanently informed. The warning system uses colour codes: green for normal, yellow for alert, and red for warning and evacuation. An emergency plan has been prepared, including evacuation and preparation for medical centres and hospitals in the region, as well as intense public information campaigns.
Pinatubo Lake Chemistry and Degassing 1991-2010
NASA Astrophysics Data System (ADS)
Schwandner, F. M.; Newhall, C. G.; Christenson, B. W.; Apfelbeck, C. A.; Arpa, M. C. B.; Vaquilar, R.; Bariso, E.
2016-12-01
We review the history of degassing, bathymetry and water chemistry of the crater lake of Mt. Pinatubo (Philippines) using data obtained during 1991-2001, and 2010. In late 1992, the initial small lake had a significant acid-sulfate component from a volcanic degassing through a hydrothermal system and the lake, and anhydrite dissolution. Subsequently, this component was "drowned" by rainfall (2-4 m/y), meteoric groundwater draining from the crater walls into the lake, and a few neutral chloride crater wall springs. Conductivity-Temperature-Depth (CTD) measurements in August 2000 found a strong inverted thermal gradient below 20m depth, reaching over 70°C at 50-60 m depth. By January 2001 the lake had homogenized and was much cooler (27°C at all depths), and it was again well-mixed and still cool when re-surveyed in June 2001 and November 2010. By 2010, the lake was well mixed, at neutral pH, with no significant vertical or horizontal structure. Bubbling of a predominantly carbon dioxide (CO2) gas phase persists throughout the lake's history, some from 1991-92 magma and some from degassing of the long-standing (pre-1991) hydrothermal system fed from a deeper magmatic or mantle source. Crater wall fumaroles emit boiling-point hydrothermal gases dominated by water, air, and CO2.
Springs, streams, and gas vent on and near Mount Adams volcano, Washington
Nathenson, Manuel; Mariner, Robert H.
2013-01-01
Springs and some streams on Mount Adams volcano have been sampled for chemistry and light stable isotopes of water. Spring temperatures are generally cooler than air temperatures from weather stations at the same elevation. Spring chemistry generally reflects weathering of volcanic rock from dissolved carbon dioxide. Water in some springs and streams has either dissolved hydrothermal minerals or has reacted with them to add sulfate to the water. Some samples appear to have obtained their sulfate from dissolution of gypsum while some probably involve reaction with sulfide minerals such as pyrite. Light stable isotope data for water from springs follow a local meteoric water line, and the variation of isotopes with elevation indicate that some springs have very local recharge and others have water from elevations a few hundred meters higher. No evidence was found for thermal or slightly thermal springs on Mount Adams. A sample from a seeping gas vent on Mount Adams was at ambient temperature, but the gas is similar to that found on other Cascade volcanoes. Helium isotopes are 4.4 times the value in air, indicating that there is a significant component of mantle helium. The lack of fumaroles on Mount Adams and the ambient temperature of the gas indicates that the gas is from a hydrothermal system that is no longer active.
NASA Astrophysics Data System (ADS)
Wulandari, Asri; Asti Anggari, Ega; Dwiasih, Novi; Suyanto, Imam
2018-03-01
Very Low Frequency (VLF) measurement has been done at Pagerkandang Volcanic, Dieng Volcanic Complex (DVC) to examine the possible existence of conductive zones that related with geothermal manifestation. VLF – EM survey used tilt mode with T-VLF BRGM Iris Instrument operated with two frequencies, they are 22200 Hz from Japan (JJI) and 19800 Hz from Australia (NWC). There are five lines with distance between lines is 50 m, and distance between measure points is 20 m. The parameters measured from VLF method are tilt angle (%) and elliptisity (%). Data processed by tilt angle value with fraser and Karous – Hjelt filter used WinVLF program. Karous – Hjelt filter resulted current density contour to estimate lateral location from conductive and resistive zones. The conductive zone is interpreted as the area which have high current density value. This area located at eastern dan western of Pagerkandang Volcanic. The conductive zone related to geothermal manifestation as like as fumarol that appeared because presenced of normal fault. Whereas the resistive zone is interpreted as the area which have low current density value. This area spread almost in the middle of the Pagerkandang Volcanic. The resistive zone was caused by the high weathering in claystone.
Realmuto, V.J.; Hon, K.; Kahle, A.B.; Abbott, E.A.; Pieri, D.C.
1992-01-01
Multispectral thermal infrared radiance measurements of the Kupaianaha flow field were acquired with the NASA airborne Thermal Infrared Multispectral Scanner (TIMS) on the morning of 1 October 1988. The TIMS data were used to map both the temperature and emissivity of the surface of the flow field. The temperature map depicted the underground storage and transport of lava. The presence of molten lava in a tube or tumulus resulted in surface temperatures that were at least 10?? C above ambient. The temperature map also clearly defined the boundaries of hydrothermal plumes which resulted from the entry of lava into the ocean. The emissivity map revealed the boundaries between individual flow units within the Kupaianaha field. In general, the emissivity of the flows varied systematically with age but the relationship between age and emissivity was not unique. Distinct spectral anomalies, indicative of silica-rich surface materials, were mapped near fumaroles and ocean entry sites. This apparent enrichment in silica may have resulted from an acid-induced leaching of cations from the surfaces of glassy flows. Such incipient alteration may have been the cause for virtually all of the emissivity variations observed on the flow field, the spectral anomalies representing areas where the acid attack was most intense. ?? 1992 Springer-Verlag.
Ruff, S.W.; Farmer, J.D.; Calvin, W.M.; Herkenhoff, K. E.; Johnson, J. R.; Morris, R.V.; Rice, M.S.; Arvidson, R. E.; Bell, J.F.; Christensen, P.R.; Squyres, S. W.
2011-01-01
The presence of outcrops and soil (regolith) rich in opaline silica (???65-92 wt % SiO2) in association with volcanic materials adjacent to the "Home Plate" feature in Gusev crater is evidence for hydrothermal conditions. The Spirit rover has supplied a diverse set of observations that are used here to better understand the formation of silica and the activity, abundance, and fate of water in the first hydrothermal system to be explored in situ on Mars. We apply spectral, chemical, morphological, textural, and stratigraphic observations to assess whether the silica was produced by acid sulfate leaching of precursor rocks, by precipitation from silica-rich solutions, or by some combination. The apparent lack of S enrichment and the relatively low oxidation state of the Home Plate silica-rich materials appear inconsistent with the originally proposed Hawaiian analog for fumarolic acid sulfate leaching. The stratiform distribution of the silica-rich outcrops and their porous and brecciated microtextures are consistent with sinter produced by silica precipitation. There is no evidence for crystalline quartz phases among the silica occurrences, an indication of the lack of diagenetic maturation following the production of the amorphous opaline phase. Copyright ?? 2011 by the American Geophysical Union.
Dynamic triggering of volcano drumbeat-like seismicity at the Tatun volcano group in Taiwan
NASA Astrophysics Data System (ADS)
Lin, Cheng-Horng
2017-07-01
Periodical seismicity during eruptions has been observed at several volcanoes, such as Mount St. Helens and Soufrière Hills. Movement of magma is often considered one of the most important factors in its generation. Without any magma movement, drumbeat-like (or heartbeat-like) periodical seismicity was detected twice beneath one of the strongest fumarole sites (Dayoukeng) among the Tatun volcano group in northern Taiwan in 2015. Both incidences of drumbeat-like seismicity were respectively started after felt earthquakes in Taiwan, and then persisted for 1-2 d afterward with repetition intervals of ∼18 min between any two adjacent events. The phenomena suggest both drumbeat-like (heartbeat-like) seismicity sequences were likely triggered by dynamic waves generated by the two felt earthquakes. Thus, rather than any involvement of magma, a simplified pumping system within a degassing conduit is proposed to explain the generation of drumbeat-like seismicity. The collapsed rocks within the conduit act as a piston, which was repeatedly lifted up by ascending gas from a deeper reservoir and dropped down when the ascending gas was escaping later. These phenomena show that the degassing process is still very strong in the Tatun volcano group in Taiwan, even though it has been dormant for about several thousand years.
Characterization of As and trace metals embedded in PM10 particles in Puebla City, México.
Morales-García, S S; Rodríguez-Espinosa, P F; Jonathan, M P; Navarrete-López, M; Herrera-García, M A; Muñoz-Sevilla, N P
2014-01-01
Forty-eight air-filter samples (PM10) were analysed to identify the concentration level of partially leached metals (PLMs; As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and V) from Puebla City, México. Samples were collected during 2008 from four monitoring sites: (1) Tecnológico (TEC), (2) Ninfas (NIN), (3) Hermanos Serdán (HS) and (4) Agua Santa (AS). The results indicate that in TEC, As (avg. 424 ng m(-3)), V (avg. 19.2 ng m(-3)), Fe (avg. 1,202 ng m(-3)), Cu (avg. 86.6 ng m(-3)), Cr (41.9 ng m(-3)) and Ni (18.6 ng m(-3)) are on the higher side than other populated regions around the world. The enrichment of PLMs is due to the industrial complexes generating huge dust particles involving various operations. The results are supported by the correlation of metals (Mn, Cd and Co) with Fe indicating its anthropogenic origin and likewise, As with Cd, Co, Fe, Mn, Pb and V. The separate cluster of As, Fe and Mn clearly signifies that it is due to continuous eruption of fumaroles from the active volcano Popocatépetl in the region.
Glacier-volcano interactions in the north crater of Mt. Wrangell, Alaska
Abston, Carl; Motyka, Roman J.; McNutt, Stephen; Luthi, Martin; Truffer, Martin
2007-01-01
Glaciological and related observations from 1961 to 2005 at the summit of Mt Wrangell (62.008 N, 144.028W; 4317 m a.s.l.), a massive glacier-covered shield volcano in south-central Alaska, show marked changes that appear to have been initiated by the Great Alaska Earthquake (MW = 9.2) of 27 March 1964. The 4 x 6 km diameter, ice-filled Summit Caldera with several post-caldera craters on its rim, comprises the summit region where annual snow accumulation is 1–2 m of water equivalent and the mean annual temperature, measured 10 m below the snow surface, is –20°C. Precision surveying, aerial photogrammetry and measurements of temperature and snow accumulation were used to measure the loss of glacier ice equivalent to about 0.03 km3 of water from the North Crater in a decade. Glacier calorimetry was used to calculate the associated heat flux, which varied within the range 20–140W m–2; total heat flow was in the range 20–100 MW. Seismicity data from the crater’s rim show two distinct responses to large earthquakes at time scales from minutes to months. Chemistry of water and gas from fumaroles indicates a shallow magma heat source and seismicity data are consistent with this interpretation.
NASA Astrophysics Data System (ADS)
Parker, L.; Fratta, D.; Zeng, X.; Lord, N. E.; Wang, H. F.; Thurber, C. H.; Lin, F. C.; Feigl, K. L.; Team, P.
2016-12-01
During March 2016, the PoroTomo research team deployed more than 8700 m of DAS and DTS cable in horizontal and vertical sensing arrays, 244 three-component surface geophones, inSAR images, pressure transducers, and a vibroseis truck to actively and passively image the response of a geothermal field in Brady Hot Springs, Nevada. During the imaging period the geothermal field was manipulated to change the pore pressure in the formation. The objective of the study is to invert for poroelastic parameters within a 1500 m by 500 m by 400 m volume using tomographic techniques. Among the different imaging techniques, the research team is using passive horizontal-to-vertical spectral ratio data captured with the three-component geophones to estimate the thickness of the sedimentary deposits across the PoroTomo site. The interpretation of the inverted data is complicated due the heterogeneity in the near surface deposits at the site. These deposits include diatomaceous earth, sandy/silty layers, and hardened silica associated with the presence of fumaroles. In spite of the challenges associated with deposits of very different stiffness, the mapping of sediment thickness across the Natural Laboratory helps constrain the inversion of Multiple Channel Analysis of Surface Waves to improve the quality of the solution images.
NASA Technical Reports Server (NTRS)
Meier, M. F. (Principal Investigator)
1974-01-01
The author has identified the following significant results. Snowlines on a small drainage basin were accurately identified on bulk ERTS-1 images without use of digital processing, and results checked with high altitude and ground-based photography. The area and approximate shape of snow patches as small as 20,000 sq m could be correctly identified with a magnifying scanning densitometer. The resolution of ERTS is more than ample for most snow mapping needs. Mount Baker, Washington, has a large crater south of the summit and an area north of the summit which emit considerable geothermal heat in the form of fumaroles and hot ground. Temperatures are being monitored using an ERTS DCS. Debris flows are occassionally released from the crater due to water saturation at the base of a heavy snowpack lying on hydrothermally altered hot ground. These debris flows present a possible hazard to life and property, as they are discharged down the Boulder Glacier toward Baker Lake, the upper of two major hydroelectric power reservoirs which are situated above the populated Skagit River Valley. ERTS-1 images show that the most recent debris flow (20-21 August 1973) can be clearly discerned and mapped. ERTS images provide another important tool for monitoring this potential hazard.
Precursory seismicity associated with frequent, large ice avalanches on Iliamna Volcano, Alaska, USA
Caplan-Auerbach, Jacqueline; Huggel, C.
2007-01-01
Since 1994, at least six major (volume>106 m3) ice and rock avalanches have occurred on Iliamna volcano, Alaska, USA. Each of the avalanches was preceded by up to 2 hours of seismicity believed to represent the initial stages of failure. Each seismic sequence begins with a series of repeating earthquakes thought to represent slip on an ice-rock interface, or between layers of ice. This stage is followed by a prolonged period of continuous ground-shaking that reflects constant slip accommodated by deformation at the glacier base. Finally the glacier fails in a large avalanche. Some of the events appear to have entrained large amounts of rock, while others comprise mostly snow and ice. Several avalanches initiated from the same source region, suggesting that this part of the volcano is particularly susceptible to failure, possibly due to the presence of nearby fumaroles. Although thermal conditions at the time of failure are not well constrained, it is likely that geothermal energy causes melting at the glacier base, promoting slip and culminating in failure. The frequent nature and predictable failure sequence of Iliamna avalanches makes the volcano an excellent laboratory for the study of ice avalanches. The prolonged nature of the seismic signal suggests that warning may one day be given for similar events occurring in populated regions.
The Southern Andes of South America as seen from STS-60
1994-02-09
STS060-85-000AH (3-11 Feb 1994) --- This view is centered at about 44 degrees south along the Chilean continental margin of South America. The dark-colored coastal region is heavily forested by dense old-growth forests that are now being cut, but east of the mountains in Argentina the dry climate supports very little vegetation. This desert region known as Patagonia appears as light brown colors. The coastline is especially dramatic because it is shaped by the tortuous channels carved by glaciers which have left fjords. These fjords have effectively cut across the continental divide, and are bordered by active volcanoes which reach elevations between 2, 000 - 3,000 meters. The prominent volcanic peak in the center of the frame is Mt. Melimoya. To the north is a long, snow-covered volcanic ridge called Cerro Yantales. Cerro Yantales recently reported greatly increased fumarolic activity, including the emission of yellow gases near the summit. Russian and American scientists will use this photography to look for further evidence of increased activity like snow melt around the peak. Other Russian and American scientists are particularly interested in mapping the summertime snowline and firm (permanent snow field) elevations as early indications of any potential climatic variation in the making.
A spaceborne inventory of volcanic activity in Antarctica and southern oceans, 2000-10
Patrick, Matthew R.; Smellie, John L.
2015-01-01
Of the more than twenty historically active volcanoes in Antarctica and the sub-Antarctic region only two, to our knowledge, host any ground-based monitoring instruments. Moreover, because of their remoteness, most of the volcanoes are seldom visited, thus relegating the monitoring of volcanism in this region almost entirely to satellites. In this study, high temporal resolution satellite data from the Hawaii Institute of Geophysics and Planetology's MODVOLC system using MODIS (Moderate Resolution Imaging Spectroradiometer) are complemented with high spatial resolution data (ASTER, or Advanced Spaceborne Thermal Emission and Reflection Radiometer, and similar sensors) to document volcanic activity throughout the region during the period 2000–10. Five volcanoes were observed in eruption (Mount Erebus, Mount Belinda, Mount Michael, Heard Island and McDonald Island), which were predominantly low-level and effusive in nature. Mount Belinda produced tephra, building a cinder cone in addition to an extensive lava field. Five volcanoes exhibited detectable thermal, and presumed fumarolic, activity (Deception, Zavodovski, Candlemas, Bristol, and Bellingshausen islands). A minor eruption reported at Marion Island was not detected in our survey due to its small size. This study also discovered a new active vent on Mount Michael, tracked dramatic vent enlargement on Heard Island, and provides an improved picture of the morphology of some of the volcanoes.
Volcano-earthquake interaction at Mauna Loa volcano, Hawaii
NASA Astrophysics Data System (ADS)
Walter, Thomas R.; Amelung, Falk
2006-05-01
The activity at Mauna Loa volcano, Hawaii, is characterized by eruptive fissures that propagate into the Southwest Rift Zone (SWRZ) or into the Northeast Rift Zone (NERZ) and by large earthquakes at the basal decollement fault. In this paper we examine the historic eruption and earthquake catalogues, and we test the hypothesis that the events are interconnected in time and space. Earthquakes in the Kaoiki area occur in sequence with eruptions from the NERZ, and earthquakes in the Kona and Hilea areas occur in sequence with eruptions from the SWRZ. Using three-dimensional numerical models, we demonstrate that elastic stress transfer can explain the observed volcano-earthquake interaction. We examine stress changes due to typical intrusions and earthquakes. We find that intrusions change the Coulomb failure stress along the decollement fault so that NERZ intrusions encourage Kaoiki earthquakes and SWRZ intrusions encourage Kona and Hilea earthquakes. On the other hand, earthquakes decompress the magma chamber and unclamp part of the Mauna Loa rift zone, i.e., Kaoiki earthquakes encourage NERZ intrusions, whereas Kona and Hilea earthquakes encourage SWRZ intrusions. We discuss how changes of the static stress field affect the occurrence of earthquakes as well as the occurrence, location, and volume of dikes and of associated eruptions and also the lava composition and fumarolic activity.
NASA Astrophysics Data System (ADS)
Cousins, C.; Bowden, R.; Fogel, M.; Cockell, C.; Crawford, I.; Gunn, M.; Karlsson, M. T.; Thorsteinsson, T.
2012-12-01
Hydrothermal environments that arise through the interaction between volcanogenic heat and glacial ice are ideal sites for understanding microbial biogeochemical processes on Earth, and also potentially on Mars where similar volcano-cryosphere interactions are thought to have occurred in the past. The Kverkfjöll subglacial basaltic volcano in central Iceland is geographically isolated, with little influence from flora, fauna, and human activity. Major environmental inputs include geothermal heat, meltwater from ice and snow, and outgassing of CO2, H2S, and SO2. Large physiochemical gradients exist, from steaming fumaroles and boiling hydrothermal pools, to frozen geothermal ground and glacial ice. Stable isotope measurements of total organic carbon, total sulphur, and total nitrogen were coupled with metagenomic analysis of the residing microbial communities, with the aim to identify biogeochemical relationships and processes operating within the Kverkfjöll geothermal environment, and also to identify any isotopic biosignatures that could be preserved within geothermal sediments. This study focused on a variety of samples taken along a hot spring stream that fed into a large ice-confined geothermal lake. Samples analysed range from unconsolidated hot spring sediments, well-developed microbial mats, and dissolved sulphate from hot spring fluids. From the anoxic spring source, the stream water increases in dissolved oxygen, decreases in temperature, yet maintains a pH of ~4. The spring environment is dominated by dissolved sulphate (~2.3 mM), with lower levels of nitrate (~50 μM), phosphorus (~5μM), and ammonium (~1.5 μM). Stable S isotope analysis reveals a fractionation of ~3.2 ‰ between sediment sulphide (as pyrite; δ34S ~0‰), and dissolved water sulphate (δ34S ~3.2 ‰) consistently along the hot spring stream, indicating the presence of an active sulphur cycle, although not one dominated by sulphate reduction (e.g. very negative sulphide δ34S). This fractionation trend was absent within lake sediments, possibly due to a number of mixed sources feeding into the lake, in addition to the spring stream. δ13C in sediments becomes increasingly more negative going downstream, along with increasing removal of TOC. Microbial mats were largely similar with very positive C isotope ratios (δ13C -9.4 to -12.6 ‰) typical of sulphur oxidizing microbes. Bulk genomic DNA was extracted from sediments and mats in order to identify firstly the community composition via 454-pyrosequencing, and secondly the functional diversity within these physiochemically varied environments. This metagenomic data will be combined with stable isotope patterns to elucidate the metabolic potential of hydrothermal environments at Kverkfjöll, which can be used to infer potential biogeochemical pathways of signatures of such pathways on Mars in similar, past environments.
NASA Astrophysics Data System (ADS)
Jay, J.; Pritchard, M. E.; Aron, F.; Delgado, F.; Macedo, O.; Aguilar, V.
2013-12-01
An InSAR survey of all 13 Holocene volcanoes in the Andean Central Volcanic Zone of Peru reveals previously undocumented surface deformation that is occasionally accompanied by seismic activity. Our survey utilizes SAR data spanning from 1992 to the present from the ERS-1, ERS-2, and Envisat satellites, as well as selected data from the TerraSAR-X satellite. We find that the recent unrest at Sabancaya volcano (heightened seismicity since 22 February 2013 and increased fumarolic output) has been accompanied by surface deformation. We also find two distinct deformation episodes near Sabancaya that are likely associated with an earthquake swarm in February 2013 and a M6 normal fault earthquake that occurred on 17 July 2013. Preliminary modeling suggests that faulting from the observed seismic moment can account for nearly all of the observed deformation and thus we have not yet found clear evidence for recent magma intrusion. We also document an earlier episode of deformation that occurred between December 2002 and September 2003 which may be associated with a M5.3 earthquake that occurred on 13 December 2002 on the Solarpampa fault, a large EW-striking normal fault located about 25 km northwest of Sabancaya volcano. All of the deformation episodes between 2002 and 2013 are spatially distinct from the inflation seen near Sabancaya from 1992 to 1997. In addition to the activity at Sabancaya, we also observe deformation near Coropuna volcano, in the Andagua Valley, and in the region between Ticsani and Tutupaca volcanoes. InSAR images reveal surface deformation that is possibly related to an earthquake swarm near Coropuna and Sabancaya volcanoes in December 2001. We also find persistent deformation in the scoria cone and lava field along the Andagua Valley, located 40 km east of Corpuna. An earthquake swarm near Ticsani volcano in 2005 produced surface deformation centered northwest of the volcano and was accompanied by a north-south elongated subsidence signal to the southeast. We investigate a possible relationship between the seismicity and the subsidence and find that the swarm generates a stress field which may encourage the opening of fractures oriented parallel to both the elongation of the subsidence signal and the trend of regional faults. Thus, we hypothesize that the Ticsani swarm triggered the subsidence to the southeast by allowing migration of hydrothermal fluids through cracks, similar to the volcanic subsidence observed in southern Chile following the 2010 Maule earthquake and in Japan following the 2011 Tohoku earthquake, though other explanations for the subsidence cannot be ruled out. A noteworthy null result of our InSAR survey is the lack of deformation at Ubinas volcano, one of the most active volcanoes in Peru, even spanning its 2006 eruption.
Magma-derived gas influx and water-rock interactions in the volcanic aquifer of Mt. Vesuvius, Italy
NASA Astrophysics Data System (ADS)
Federico, C.; Aiuppa, A.; Allard, P.; Bellomo, S.; Jean-Baptiste, P.; Parello, F.; Valenza, M.
2002-03-01
We report in this paper a systematic investigation of the chemical and isotopic composition of groundwaters flowing in the volcanic aquifer of Mt. Vesuvius during its current phase of dormancy, including the first data on dissolved helium isotope composition and tritium content. The relevant results on dissolved He and C presented in this paper reveal that an extensive interaction between rising magmatic volatiles and groundwaters currently takes place at Vesuvius. Vesuvius groundwaters are dilute (mean TDS ˜ 2800 mg/L) hypothermal fluids ( mean T = 17.7°C) with a prevalent alkaline-bicarbonate composition. Calcium-bicarbonate groundwaters normally occur on the surrounding Campanian Plain, likely recharged from the Apennines. δD and δ 18O data evidence an essentially meteoric origin of Vesuvius groundwaters, the contribution from either Tyrrhenian seawater or 18O-enriched thermal water appearing to be small or negligible. However, the dissolution of CO 2-rich gases at depth promotes acid alteration and isochemical leaching of the permeable volcanic rocks, which explains the generally low pH and high total carbon content of waters. Attainment of chemical equilibrium between the rock and the weathering solutions is prevented by commonly low temperature (10 to 28°C) and acid-reducing conditions. The chemical and isotope (C and He) composition of dissolved gases highlights the magmatic origin of the gas phase feeding the aquifer. We show that although the pristine magmatic composition may vary upon gas ascent because of either dilution by a soil-atmospheric component or fractionation processes during interaction with the aquifer, both 13C/ 12C and 3He/ 4He measurements indicate the contribution of a magmatic component with a δ 13C ˜ 0‰ and R/R a of ˜2.7, which is consistent with data from Vesuvius fumaroles and phenocryst melt inclusions in olivine phenocrysts. A main control of tectonics on gas ascent is revealed by data presented in this paper. For example, two areas of high CO 2 release and enhanced rock leaching are recognized on the western (Torre del Greco) and southwestern (Torre Annunziata-Pompeii) flanks of Vesuvius, where important NE-SW and NW-SE tectonic structures are recognized. In contrast, waters flowing through the northern sector of the volcano are generally colder, less saline, and CO 2 depleted, despite in some cases containing significant concentrations of magma-derived helium. The remarkable differences among the various sectors of the volcano are reconciled in a geochemical interpretative model, which is consistent with recent structural and geophysical evidences on the structure of Somma-Vesuvius volcanic complex.
Thermodynamic Aspects of the Formation of Sulfate Minerals from Hot Gaseous Phase
NASA Astrophysics Data System (ADS)
Giere, R.; Majzlan, J.
2006-12-01
Minerals may form by solid-state reactions or by dissolution and precipitation from a fluid phase, be it magma, aqueous medium, or gas. The latter phase was traditionally not considered as important as the other ones, although it may be essential in some geological environments. Components of minerals (e.g., sulfur) are commonly transported by hot gases in volcanoes. Others may form in burning coal dumps or by burning fossil fuels for energy production. We have identified a number of minerals which precipitated from the hot gases escaping into the atmosphere from the smoke stack of a coal-fired power plant. This power plant uses coal or a mixture of coal and used tires to produce electricity. The phases identified by TEM are anglesite (PbSO4), gunningite (ZnSO4?H2O), anhydrite (CaSO4), and yavapaiite (KFe(SO4)2). In addition to these crystalline phases, amorphous sulfate materials and soot have been identified. All these materials were captured by filtering the escaping gases beyond the last filters intended to remove any particles from the gas stream. Therefore, they must have formed by precipitation from the hot gas and may present a significant pollution load in the vicinity of power plants. Verhulst et al. (1996) have shown that several metals are most likely transported as chloride complexes in the gas phase. Their assumption correlates well with the finding that the chloride-richer coal+tire mixture increases considerably amounts of emitted metals. Using thermodynamic data for these and other sulfate minerals, we are trying to understand and model the precipitation process of these minerals from hot gases at ambient pressures. In this contribution, we focus on the mineral mikasaite (trigonal Fe2(SO4)3). This mineral has been reported only from burning coal dumps (Miura et al. 1994). Using acid-solution calorimetry, we have determined the enthalpy of formation of mikasaite from elements at T = 298.15 K. We have further estimated the standard entropy of this mineral. Using the measured and estimated thermodynamic data for mikasaite and the published data for Fe-Cl complexes, we will present equilibrium diagrams for the Fe2O3-H2O-SO2-HCl system. In future, we are aiming at developing a thermodynamic database for the minerals found to precipitate from hot gases at burning coal dumps, power plants, and volcanic fumaroles. Verhulst, D., Buekens, A., Spencer, P., Eriksson, G., 1996: Thermodynamic behavior of metal chlorides and sulfates under the conditions of incineration furnaces. Environmental Science and Technology 30, 50-56. Miura H, Niida K, Hirama T, 1994: Mikasaite, (Fe3+, Al)2(SO4)3, a new ferric sulfate mineral from Mikasa City, Hokkaido, Japan. Mineralogical Magazine 58, 649-653.
Gazis, C.; Taylor, H.P.; Hon, K.; Tsvetkov, A.
1996-01-01
Within the 2.8 Ma Chegem ash-flow caldera (11 ?? 15 km), a single cooling unit of rhyolitic to dacitic welded tuff more than 2 km thick is exposed in deep valleys incised during recent rapid uplift of the Caucasus Mountains. The intracaldera tuff is mineralogically fresh and unaltered, and is overlain by andesite lavas and cut by a resurgent granodiorite intrusion. Major- and trace-element compositions for a 1405-m stratigraphic section of intracaldera tuff display trends of upwardly increasing Na2O, CaO, Al2O3, total Fe, MgO, TiO2, Sr and Zr and decreasing SiO2, K2O and Rb. This mafic-upward zoning (from 76.1 to 69.9% SiO2) reflects an inverted view of the upper part of the source magma chamber. Oxygen isotope studies of 35 samples from this 1405-m section define a striking profile with "normal" igneous ??18O values (+7.0 to +8.5) in the lower 600 m of tuff, much lower ??18O values (-4.0 to +4.3) in a 700-m zone above that and a shift to high ??18O values (+4.4 to -10.9) in the upper 100 m of caldera-fill exposure. Data from two other partial stratigraphic sections indicate that these oxygen isotope systematics are probably a caldera-wide phenomenon. Quartz and feldspar phenocrysts everywhere have "normal" igneous ??18O values of about +8.5 and +7.5, respectively, whereas groundmass and glass ??18O values range from -7.7 to +12.3. Consequently, the ??18O values of coexisting feldspar, groundmass and glass form a steep array in a plot of ??feldspar vs. ??groundmass/glass. Such pronounced disequilibrium between coexisting feldspar and groundmass or glass has never before been observed on this scale. It requires a hydrothermal event involving large amounts of low-18O H2O at sufficiently high temperatures and short enough time (tens of years or less) that glass exchanges thoroughly but feldspar does not. The most likely process responsible for the O depletions at Chegem is a very high temperature (500-600??C), short-lived, vigorous meteoric-hydrothermal event that was focused within the upper 750 m of intracaldera tuff. Mass balance calculations indicate fluid fluxes of = 6 ?? 10-6 mol cm-2 s-1. We believe that the closest historical analogue to this Chegem hydrothermal event is the situation observed in the Valley of Ten Thousand Smokes (Alaska, USA), where hundreds of steam fumaroles with measured temperatures as high as 645??C persisted for 10 to 15 years in the much smaller welded ash-flow tuff sheet (??? 200 m thick) produced by the 1912 Katmai eruption.
NASA Astrophysics Data System (ADS)
Hogg, Colin; Kiyan, Duygu; Rath, Volker; Byrdina, Svetlana; Vandemeulebrouck, Jean; Silva, Catarina; Viveiros, Maria FB; Ferreira, Teresa
2016-04-01
The Furnas volcano is the eastern-most of the three active central volcanoes of Sao Miguel Island. The main caldera formed about 30 ka BP, followed by a younger eruption at 10-12 ka BP, which forms the steep topography of more than 200 m in the measuring area. It contains several very young eruptive centers, and a shallow caldera lake. Tectonic features of varying directions have been identified in the Caldera and its vicinity. In the northern part of the caldera, containing the fumarole field of Caldeiras das Furnas, a detailed map of surface CO2 emissions was recently made available. In 2015, a pilot survey of 13 AudioMagnetoTelluric soundings (AMT) and Electrical Resistivity Tomography (ERT) data were collected along two profiles in the eastern part of Furnas caldera in order to image the electrical conductivity of the subsurface. The data quality achieved by both techniques is extraordinary and first results indicate a general correlation between regions of elevated conductivity and the mapped surface CO2 emissions, suggesting that they may both be caused by the presence hydrothermal fluids. Tensor decomposition analysis using the Groom-Bailey approach produce a generalised geo-electric strike direction, 72deg East of North, for the AMT data compared to the surface geological strike derived from the major mapped fault crossing the profiles of 105deg. An analysis of the real induction arrows at certain frequencies (at depths greater than 350 m) infer that an extended conductor at depth does not exactly correspond to the degassing structures at the surface and extends outside the area of investigation. The geometry of the most conductive regions with electrical conductivities less then1 Ώm found at various depths differ from what was expected from earlier geologic and tectonic studies and possibly may not be directly related to the mapped fault systems at the surface. On the eastern profile, which seemed to be more appropriate for 2-D modelling with 72deg strike angle, a deep structure starting north of the major mapped fault crossing this profile can be found. It extends far to the south, with a top of approximately 150 m below the surface at the northern limit. A deeper conductive structure (top at about 300 m) is emerging at the southern end of the profile, though not fully resolved by the existing data. This work will focus on the processing, analysis and preliminary modelling results of the AMT data. A joint interpretation of the AMT results together with the ERT data covering the shallow regime with much higher resolution will be presented.
Gas discharges in fumarolic ice caves of Erebus volcano, Antarctica
NASA Astrophysics Data System (ADS)
Fischer, T. P.; Curtis, A. G.; Kyle, P. R.; Sano, Y.
2013-12-01
Fumarolic ice caves and towers on Erebus are the surface expression of flank degassing on the world's southernmost active volcano. The caves are formed by warm gases and steam escaping from small vents on the lava flow floors that melts the overlying ice and snow. Extremophiles in the caves may be analogues for extraterrestrial environments. Over the past four Austral summers, mapping, gas and thermal monitoring conducted under the Erebus Caves Project has provided insights into the ice cave formation processes and the relationships between cave structures, magmatic processes, and weather. Gas samples were collected during the 2012 - 2013 field season in 4 ice caves (Warren, Harry's Dream, Sauna, Haggis Hole) as well as the thermal ground at Tramway Ridge. The vents at all of these sites are characterized by diffuse degassing through loose lava or cracks in the lava flow floor. Vent temperatures ranged from 5 to 17°C in most caves and at Tramway Ridge. In Sauna cave the temperature was 40°C. Gases were sampled by inserting a perforated 1 m long, 5 mm diameter stainless steel tube, into the vents or hot ground. Giggenbach bottles, copper tubes and lead glass bottles were connected in series. The gases were pumped at a slow rate (about 20 ml per minute) using a battery pump for 12-24 hours to flush the system. After flushing samples were collected for later analyses. All samples are dominated by atmospheric components, however, carbon dioxide (0.1 to 1.9%), methane (0.005 to 0.01%), hydrogen (0.002 to 0.07%), and helium (0.0009 to 0.002 %) are above air background. Nitrogen (average 74%) and oxygen (23.5%) are slightly below and above air values, respectively. Helium isotopes show minor input of mantle derived helium-3 with 3He4He ratios ranging from 1.03 to 1.18 RA (where RA is the ratio of air). This represents the first detection of hydrogen and helium in the caves. Methane could be produced by anaerobic respiration of subsurface microbes or hydrothermal reactions. We are confident that the atmospheric component is not the result of sampling procedure but intrinsic to the ice cave system. In addition to carbon dioxide, magmatic gases emitted from Erebus lava lake contain significant amounts of SO2, HCl, HF, CO and H2 [1,2]. The acid magmatic gases (SO2, HCl, HF) and a significant amount of the CO2 are likely absorbed by the subsurface ice/water system. The atmospheric components (Ar, nitrogen, oxygen) likely enter the system at shallow levels. The relative abundances of these components reflect degassing fractionation of these volatiles from liquid water at low temperatures, suggesting the presence of liquid water in the subsurface. [1] Oppenheimer, C., Kyle, P.R., 2008. Probing the magma plumbing of Erebus volcano, Antarctica, by open-path FTIR spectroscopy of gas emissions. J. Vol. Geoth. Res. 177, 743-754. [2] Moussallam, Y., Oppenheimer, C., et al., 2012. Hydrogen emission from Erebus volcano, Antarctica. Bull. Volcan 74, 2109-2120.
NASA Astrophysics Data System (ADS)
Kargel, Jeffrey
2013-04-01
MESSENGER has acquired stunning images of pitted, light-toned and variegated light/dark terrains located primarily on the floors—probably impact-melt sheets—of many of Mercury's large craters. Termed "hollows", the pitted terrains are geomorphologically similar to some on Mars formed by sublimation of ice-rich permafrost and to lowland thermokarst on Earth formed by permafrost thaw; to "swiss cheese" terrain forming by sublimation of frozen CO2 at the Martian South Pole; and to suspected hydrocarbon thermokarst at Titan's poles. I shall briefly review some analogs on these other worlds. The most plausible explanation for Mercury's hollows is terrain degradation involving melting or sublimation of heterogeneous chalcogenide and sulfosalt mineral assemblages. I refer to these Mercurian features as pyrothermokarst; the etymological redundancy distinguishes the conditions and mineral agents from the ice-related features on Earth and Mars, though some of the physical processes may be similar. Whereas ice and sulfur have long been suspected and ice recently was discovered in permanently shadowed craters of Mercury's polar regions, the hollows occur down to the equator, where neither ice nor sulfur is plausible. The responsible volatiles must be only slightly volatile on the surface and/or in the upper crust of Mercury's low to middle latitudes at 400-800 K, but they must be capable of either melting or sublimating on geologically long time scales. Under prevailing upper crustal and surface temperatures, chalcophile-rich "permafrost" can undergo either desulfidation or melting reactions that could cause migration or volume changes of the permafrost, and hence lead to collapse and pitting. I propose the initial emplacement of crater-hosted chalcogenides, sulfosalts and related chalcophile materials such as pnictides, in impact-melt pools (involving solid-liquid and silicate-sulfide fractionation) and further differentiation by associated dry or humid fumaroles (solid-vapor and liquid-vapor fractionation and recondensation). Key phase transitions can occur in the temperature range of Mercury's surface and upper crust. Vapor-solid, vapor-liquid, and solid-liquid transitions of the heated materials resulted in migration and loss of volatiles and anatectic liquids, causing collapse pits to form. Seasonal heating near perihelion may work together with geothermal flux or early impact heating to drive off volatiles and produce the pits. In some cases, local recondensation of moderately volatile materials may have occurred on the rims of the pits; some volatiles may have been transported to the polar regions or lost by exospheric escape. Impacts by comets may have caused local oxidation and formation of oxygenated salts and other minerals, whose local recondensation from fumarole gases can explain the light-toned layers and light-toned rims of many pits. Plating of native volatile metals and semi-metals may also account for some light-toned deposits. Large contrasts in thermal conductivity as well as local topographic shading and latitude controls may result in large differences in element mobility and mineral assemblages. Pyrothermokarst on Mercury may be more chemically heterogeneous and complex in its development than any other thermokarst in the Solar System. Validation of this model would require a future mission with high-resolution multispectral imaging and neutral/ion detection.
Eruption precursors: Manifestations and strategies for detection
NASA Astrophysics Data System (ADS)
Poland, Michael; Pritchard, Matthew
2017-04-01
The past several decades have seen a rapid increase in volcano monitoring and modeling capabilities. Diverse arrays of instrument networks can detect a variety of pre-, co-, and post-eruptive phenomena, and remote sensing observations are available across a range of spatial, temporal, and spectral resolutions. A growing class of models, based on the physics of magmatic systems, are making use of these expanding datastreams, providing probabilistic assessments of such parameters as magma supply, volatile content, and eruption duration. To what extent, however, do these developments heighten our ability to identify eruption precursors? The advent of better data and new models provides an opportunity to reexamine our understanding of pre-eruption unrest, as well as our ability to detect and recognize it as such. An idealized model of the buildup to a volcanic eruption might include magma ascent from a deep source region and accumulation in the mid- to upper crust in the preceding months to years. The process might be manifested by surface inflation and deep long-period earthquakes, and accompanied by an increase in CO2 emissions. As magma continues to accumulate, distal volcano-tectonic earthquakes may result as stress builds on nearby faults, H2S emissions may increase as sulfur in a shallow reservoir is hydrolyzed by groundwater, and fumarole and spring temperatures may increase and show changes in chemistry. In the days to hours before an eruption, sudden changes in the rate and style of earthquakes (including repeating earthquakes and tremor) and deformation may occur as the magma reservoir ruptures and magma moves laterally or vertically. Phreatic eruptions might result as ascending magma comes into contact with groundwater, and SO2 emissions might increase as the path between the magma and surface dries out. How often does such a sequence actually occur? Relatively few volcanoes are comprehensively monitored prior to obvious expressions of unrest, so this is not an easy question to answer. From the limited record, it appears that at least a few volcanoes follow the model. For example, deep inflation, long-period earthquakes, and CO2 emissions were detected months before the 2009 eruption of Redoubt (Alaska). In the weeks to days before the eruption onset, fumarole temperatures and SO2 emissions increased, tremor was noted, and phreatic explosions presaged the extrusion of magma at the surface. Other volcanoes buck this idealized trend. Calbuco (Chile), for instance, showed no indication of inflation or seismicity in the days to years prior to the sudden onset of a magmatic eruption in 2015, despite InSAR and seismic monitoring that should have detected such unrest. Most volcanoes seem to fall between these two extremes, providing some indication of their eruptive potential via gas, thermal, seismic, or geodetic anomalies over timescales ranging from hours to years. Given limited resources and the challenges in terrestrial monitoring of all potential long- and intermediate-term eruption precursors, strategies for exploiting the wealth of remote sensing data and integrating derived insights into models of volcanic unrest are an important investment. Short-term eruption precursors, however, are best detected by ground-based monitoring—especially seismic and geodetic instruments.
NASA Astrophysics Data System (ADS)
Giuffrida, Giovanni; Calabrese, Sergio; Bobrowski, Nicole; Finkenzeller, Henning; Pecoraino, Giovannella; Scaglione, Sarah
2015-04-01
The CO2/SO2 ratio in volcanic plumes of open conduit volcanoes can provide useful information about the magma depth inside a conduit and the possible occurrence of an eruptive event. Moreover, the same CO2 measurement when combined with a SO2 flux measurement, commonly carried out at many volcanoes nowadays, is used to contribute to an improved estimate of global volcanic CO2 budget. Today worldwide at 13 volcanoes automated in-situ instruments (known as Multi-GAS stations) are applied to continuously determine CO2/SO2 ratios and to use this signal as additional parameter for volcanic monitoring. Usually these instruments carry out measurements of half an hour 4 - 6 times/day and thus provide continuous CO2/SO2 values and their variability. The stations are located at crater rims in a position that according to the prevailing winds is invested by the plume. Obviously, although the stations are carefully positioned, it is inevitable that other sources than the plume itself, e.g. soil degassing and surrounding fumaroles, contribute and will be measured as well, covering the 'real' values. Between July and September 2014 experiments were carried out on the North East crater (NEC) of Mount Etna, installing a self-made cable car that crossed the crater from one side to the other. The basket, called "Arcadia", was equipped with an automated standard Multi-GAS station and a GPS, which acquired at high frequency (0.5 Hz) the following parameters : CO2, SO2, H2S, Rh, T, P and geo-coordinates. The choice of NEC of the volcano Etna was based on its accessibility, the relative small diameter (about 230 m) and the presence of a relatively constant and rather concentrated plume. Actually, NEC belongs also to the monitoring network EtnaPlume (managed by the INGV of Palermo). The aim of these experiments was to observe variations of each parameter, in particular the fluctuation of the CO2/SO2 ratio within the plume, moving from the edge to the center of the crater. The gained results give a first possibility to understand if common measurements carried out at the edge of a crater are subject to over- or underestimation and about the order of derivations caused by other sources than the plume. A preliminary analysis results in a lower CO2/SO2 ratio in the central part of the crater versus the more peripheral one. The deviation between the average CO2/SO2 ratio and the center of the plume ranges from a minimum of 58% up to a maximum of 74%. An increased CO2/SO2 emission could be caused by the influence of soil and/or fumarolic degassing at the crater rim. This interpretation leads us to the conclusion that measurements by fixed installed stations might overestimate the CO2/SO2 ratio compared to values originating from the "pure" plume. Further on, it means that variations of up to 74 % (in our experiment) don't necessarily correlate with volcanic activity changes.
NASA Technical Reports Server (NTRS)
Sturdza, Peter (Inventor); Martins-Rivas, Herve (Inventor); Suzuki, Yoshifumi (Inventor)
2014-01-01
A fluid-flow simulation over a computer-generated surface is generated using a quasi-simultaneous technique. The simulation includes a fluid-flow mesh of inviscid and boundary-layer fluid cells. An initial fluid property for an inviscid fluid cell is determined using an inviscid fluid simulation that does not simulate fluid viscous effects. An initial boundary-layer fluid property a boundary-layer fluid cell is determined using the initial fluid property and a viscous fluid simulation that simulates fluid viscous effects. An updated boundary-layer fluid property is determined for the boundary-layer fluid cell using the initial fluid property, initial boundary-layer fluid property, and an interaction law. The interaction law approximates the inviscid fluid simulation using a matrix of aerodynamic influence coefficients computed using a two-dimensional surface panel technique and a fluid-property vector. An updated fluid property is determined for the inviscid fluid cell using the updated boundary-layer fluid property.
NASA Technical Reports Server (NTRS)
Rodriguez, David L. (Inventor); Sturdza, Peter (Inventor)
2013-01-01
Fluid-flow simulation over a computer-generated aircraft surface is generated using inviscid and viscous simulations. A fluid-flow mesh of fluid cells is obtained. At least one inviscid fluid property for the fluid cells is determined using an inviscid fluid simulation that does not simulate fluid viscous effects. A set of intersecting fluid cells that intersects the aircraft surface are identified. One surface mesh polygon of the surface mesh is identified for each intersecting fluid cell. A boundary-layer prediction point for each identified surface mesh polygon is determined. At least one boundary-layer fluid property for each boundary-layer prediction point is determined using the at least one inviscid fluid property of the corresponding intersecting fluid cell and a boundary-layer simulation that simulates fluid viscous effects. At least one updated fluid property for at least one fluid cell is determined using the at least one boundary-layer fluid property and the inviscid fluid simulation.
Brady, B A; Tucker, C M; Alfino, P A; Tarrant, D G; Finlayson, G C
1997-01-01
This research tested the hypothesis that fluid adherence (i.e. mean weekend interdialysis fluid weight gain) among adult chronic hemodialysis patients would have significant associations with fluid adherence efficacy expectation, fluid adherence outcome expectation, and fluid adherence motivation. The association of these variables with patients' medical characteristics was also examined. Results provide partial support for the hypothesis. Fluid adherence efficacy expectation was found to be a significant predictor of mean weekend interdialysis fluid weight gain (fluid adherence). Patients with higher fluid adherence efficacy expectations had lower mean weekend interdialysis fluid weight gains. However, fluid adherence outcome expectation and fluid adherence motivation were not found to be significant predictors of fluid adherence. Results also revealed that certain of the investigated medical characteristics were significantly associated with mean weekend interdialysis fluid weight gain and fluid adherence efficacy expectation. Implications for studying and modifying fluid adherence among hemodialysis patients are discussed.
... up in the body. This is called fluid overload (volume overload). This can lead to edema (excess fluid in ... Water imbalance; Fluid imbalance - dehydration; Fluid buildup; Fluid overload; Volume overload; Loss of fluids; Edema - fluid imbalance; ...
Multiple source/multiple target fluid transfer apparatus
Turner, Terry D.
1997-01-01
A fluid transfer apparatus includes: a) a plurality of orifices for connection with fluid sources; b) a plurality of orifices for connection with fluid targets; c) a set of fluid source conduits and fluid target conduits associated with the orifices; d) a pump fluidically interposed between the source and target conduits to transfer fluid therebetween; e) a purge gas conduit in fluid communication with the fluid source conduits, fluid target conduits and pump to receive and pass a purge gas under pressure; f) a solvent conduit in fluid communication with the fluid source conduits, fluid target conduits and pump to receive and pass solvent, the solvent conduit including a solvent valve; g) pump control means for controlling operation of the pump; h) purge gas valve control means for controlling operation of the purge gas valve to selectively impart flow of purge gas to the fluid source conduits, fluid target conduits and pump; i) solvent valve control means for controlling operation of the solvent valve to selectively impart flow of solvent to the fluid source conduits, fluid target conduits and pump; and j) source and target valve control means for controlling operation of the fluid source conduit valves and the fluid target conduit valves to selectively impart passage of fluid between a selected one of the fluid source conduits and a selected one of the fluid target conduits through the pump and to enable passage of solvent or purge gas through selected fluid source conduits and selected fluid target conduits.
Multiple source/multiple target fluid transfer apparatus
Turner, T.D.
1997-08-26
A fluid transfer apparatus includes: (a) a plurality of orifices for connection with fluid sources; (b) a plurality of orifices for connection with fluid targets; (c) a set of fluid source conduits and fluid target conduits associated with the orifices; (d) a pump fluidically interposed between the source and target conduits to transfer fluid there between; (e) a purge gas conduit in fluid communication with the fluid source conduits, fluid target conduits and pump to receive and pass a purge gas under pressure; (f) a solvent conduit in fluid communication with the fluid source conduits, fluid target conduits and pump to receive and pass solvent, the solvent conduit including a solvent valve; (g) pump control means for controlling operation of the pump; (h) purge gas valve control means for controlling operation of the purge gas valve to selectively impart flow of purge gas to the fluid source conduits, fluid target conduits and pump; (i) solvent valve control means for controlling operation of the solvent valve to selectively impart flow of solvent to the fluid source conduits, fluid target conduits and pump; and (j) source and target valve control means for controlling operation of the fluid source conduit valves and the fluid target conduit valves to selectively impart passage of fluid between a selected one of the fluid source conduits and a selected one of the fluid target conduits through the pump and to enable passage of solvent or purge gas through selected fluid source conduits and selected fluid target conduits. 6 figs.
Sys-BodyFluid: a systematical database for human body fluid proteome research
Li, Su-Jun; Peng, Mao; Li, Hong; Liu, Bo-Shu; Wang, Chuan; Wu, Jia-Rui; Li, Yi-Xue; Zeng, Rong
2009-01-01
Recently, body fluids have widely become an important target for proteomic research and proteomic study has produced more and more body fluid related protein data. A database is needed to collect and analyze these proteome data. Thus, we developed this web-based body fluid proteome database Sys-BodyFluid. It contains eleven kinds of body fluid proteomes, including plasma/serum, urine, cerebrospinal fluid, saliva, bronchoalveolar lavage fluid, synovial fluid, nipple aspirate fluid, tear fluid, seminal fluid, human milk and amniotic fluid. Over 10 000 proteins are presented in the Sys-BodyFluid. Sys-BodyFluid provides the detailed protein annotations, including protein description, Gene Ontology, domain information, protein sequence and involved pathways. These proteome data can be retrieved by using protein name, protein accession number and sequence similarity. In addition, users can query between these different body fluids to get the different proteins identification information. Sys-BodyFluid database can facilitate the body fluid proteomics and disease proteomics research as a reference database. It is available at http://www.biosino.org/bodyfluid/. PMID:18978022
Sys-BodyFluid: a systematical database for human body fluid proteome research.
Li, Su-Jun; Peng, Mao; Li, Hong; Liu, Bo-Shu; Wang, Chuan; Wu, Jia-Rui; Li, Yi-Xue; Zeng, Rong
2009-01-01
Recently, body fluids have widely become an important target for proteomic research and proteomic study has produced more and more body fluid related protein data. A database is needed to collect and analyze these proteome data. Thus, we developed this web-based body fluid proteome database Sys-BodyFluid. It contains eleven kinds of body fluid proteomes, including plasma/serum, urine, cerebrospinal fluid, saliva, bronchoalveolar lavage fluid, synovial fluid, nipple aspirate fluid, tear fluid, seminal fluid, human milk and amniotic fluid. Over 10,000 proteins are presented in the Sys-BodyFluid. Sys-BodyFluid provides the detailed protein annotations, including protein description, Gene Ontology, domain information, protein sequence and involved pathways. These proteome data can be retrieved by using protein name, protein accession number and sequence similarity. In addition, users can query between these different body fluids to get the different proteins identification information. Sys-BodyFluid database can facilitate the body fluid proteomics and disease proteomics research as a reference database. It is available at http://www.biosino.org/bodyfluid/.
NASA Technical Reports Server (NTRS)
Davis, Donald Y. (Inventor); Hitch, Bradley D. (Inventor)
1994-01-01
A fluid channeling system includes a fluid ejector, a heat exchanger, and a fluid pump disposed in series flow communication The ejector includes a primary inlet for receiving a primary fluid, and a secondary inlet for receiving a secondary fluid which is mixed with the primary fluid and discharged therefrom as ejector discharge. Heat is removed from the ejector discharge in the heat exchanger, and the heat exchanger discharge is compressed in the fluid pump and channeled to the ejector secondary inlet as the secondary fluid In an exemplary embodiment, the temperature of the primary fluid is greater than the maximum operating temperature of a fluid motor powering the fluid pump using a portion of the ejector discharge, with the secondary fluid being mixed with the primary fluid so that the ejector discharge temperature is equal to about the maximum operating temperature of the fluid motor.
Systems and methods for separating particles and/or substances from a sample fluid
Mariella, Jr., Raymond P.; Dougherty, George M.; Dzenitis, John M.; Miles, Robin R.; Clague, David S.
2016-11-01
Systems and methods for separating particles and/or toxins from a sample fluid. A method according to one embodiment comprises simultaneously passing a sample fluid and a buffer fluid through a chamber such that a fluidic interface is formed between the sample fluid and the buffer fluid as the fluids pass through the chamber, the sample fluid having particles of interest therein; applying a force to the fluids for urging the particles of interest to pass through the interface into the buffer fluid; and substantially separating the buffer fluid from the sample fluid.
Trampling impacts on thermotolerant vegetation of geothermal areas in New Zealand.
Burns, Bruce R; Ward, Jonet; Downs, Theresa M
2013-12-01
Geothermal features such as geysers, mud pools, sinter terraces, fumaroles, hot springs, and steaming ground are natural attractions often visited by tourists. Visitation rates for such areas in the Taupo Volcanic Zone of New Zealand are in the order of hundreds of thousands annually. These areas are also habitat for rare and specialized plant and microbial communities that live in the steam-heated soils of unusual chemical composition. We evaluated historical and current trampling impacts of tourists on the thermotolerant vegetation of the Waimangu and Waiotapu geothermal areas near Rotorua, and compared the results to experimental trampling at a third site (Taheke) not used by tourists. Historical tourism has removed vegetation and soil from around key features, and remaining subsoil is compacted into an impervious pavement on which vegetation recolonization is unlikely in the short term. Social tracks made by tourists were present at both tourist sites often leading them onto hotter soils than constructed tracks. Vegetation height and cover were lower on and adjacent to social tracks than further from them. Thermotolerant vegetation showed extremely low resistance to experimental trampling. This confirms and extends previous research that also shows that thallophytes and woody shrubs, life forms that dominate in thermotolerant vegetation, are vulnerable to trampling damage. Preservation of these vulnerable ecosystems must ensure that tourist traffic is confined to existing tracks or boardwalks, and active restoration of impacted sites may be warranted.
A primer on sulfur for the planetary geologist
NASA Technical Reports Server (NTRS)
Theilig, E.
1982-01-01
Sulfur has been proposed as the dominant composition for the volcanic material on Io. Sulfur is a complex element which forms many intramolecular and intermolecular allotropes exhibiting a variety of physical properties. Cyclo-S8 sulfur is the most abundant and stable molecular form. The important molecular species within liquid sulfur change in concentration with temperature. Concentrations of the allotropes control the physical properties of the melt. Discontinuities in density, viscosity, and thermal properties reflect the polymerization process within liquid sulfur. Variations in the melting point are related to autodissociation of the liquid. Many solids forms of sulfur have been identified but only orthorhombic alpha and monoclinic beta sulfur, both composed of cyclo-S8 sulfur, are stable under terrestrial conditions. Physical properties of solid sulfur are dependent on the allotrope and, in some cases, the thermal history. Three natural terrestrial sulfur flows are described: (1) Siretoko-Iosan, Japan; (2) Volcan Azufre, Galapagos Islands; and (3) Mauna Loa, Hawaii. All of the flows are associated with fumarolic areas and are considered to have formed by the melting and mobilization of sulfur deposits. Surface textures of the flows indicate a behavior of molten sulfur similar to that of silicate lava. Channels, rivulets, and lobate edges were described for the flows. The solidification of man-made sulfur flows formed as part of the Frasch mining process by which sulfur is removed from the subsurface in a liquid state is described.
Koch, Richard D.; Ramsey, David W.; Christiansen, Robert L.
2011-01-01
The superlative hot springs, geysers, and fumarole fields of Yellowstone National Park are vivid reminders of a recent volcanic past. Volcanism on an immense scale largely shaped the unique landscape of central and western Yellowstone Park, and intimately related tectonism and seismicity continue even now. Furthermore, the volcanism that gave rise to Yellowstone's hydrothermal displays was only part of a long history of late Cenozoic eruptions in southern and eastern Idaho, northwestern Wyoming, and southwestern Montana. The late Cenozoic volcanism of Yellowstone National Park, although long believed to have occurred in late Tertiary time, is now known to have been of latest Pliocene and Pleistocene age. The eruptions formed a complex plateau of voluminous rhyolitic ash-flow tuffs and lavas, but basaltic lavas too have erupted intermittently around the margins of the rhyolite plateau. Volcanism almost certainly will recur in the Yellowstone National Park region. This digital release contains all the information used to produce the geologic maps published as plates in U.S. Geological Survey Professional Paper 729-G (Christiansen, 2001). The main component of this digital release is a geologic map database prepared using geographic information systems (GIS) applications. This release also contains files to view or print the geologic maps and main report text from Professional Paper 729-G.
Pavlik, B M
2001-08-01
Measurements of xylem water potential, leaf conductance, and leaf pressure-volume characteristics on the geothermal endemic Dichanthelium lanuginosum var. thermale (DILA) were used to delineate operational ranges during wet and dry years and among several microsites at Little Geysers, Sonoma County, California, USA. Plants seldom experienced water potentials more negative that -1.5 MPa. Other nongeothermal, widespread species experienced the lower water potentials typical of chaparral and woodland plants. DILA was able to effectively utilize geothermal water while the widespread species could not and was able to keep stomata open during most of the year. There was evidence to suggest that DILA had some ability to acclimate with significant shifts in Pio and psio during the dry 1994 summer, especially in the upland microhabitat. Nevertheless, minimum leaf turgor values in the upland came very close to, or dropped below, the 0.2-0.3 MPa threshold thought necessary to maintain stomatal opening and photosynthesis. DILA thus depends upon the unique water status of fumarole soils in the vicinity of the Little Geysers to persist in an otherwise lethal regional mosaic of climate, soil, and vegetation. The physiological data were used to derive reference ranges for subsequent monitoring of DILA at Little Geysers. Such ranges are required to determine the future impact, if any, of geothermal development on the persistence of this rare grass and its complex ecosystem.
NASA Astrophysics Data System (ADS)
de Silva, Shanaka L.; Bailey, John E.
2017-08-01
Observations of terrestrial analogs are critical to aiding planetary mappers in interpreting surface lithologies on other planets. For instance, the presence of ignimbrites on Mars has been debated for over three decades and is supported by analogy with deposits on Earth. Critical evidence includes the geomorphic and surface expression of the deposits, and those in the Central Andes of South America are amongst the most-cited analogs. Herein we describe some prominent surface textures and patterns seen in ignimbrites on the scale of high-resolution remotely sensed data (10-1 m per pixel). These include pervasive joints and fractures that contribute to yardang form and development as well as prominent mounds, fissures, and fracture networks ("spiders", "bugs", "boxworks") on ignimbrite surfaces. While all these features are related to intrinsic cooling and degassing processes, the involvement of external water buried by hot pyroclastic flows enhances fumarolic activity, advective cooling, and joint development. Observations of these geomorphic expressions using remote sensing are only possible with the highest resolution data and limited surface erosion. For Mars, where similarly high resolution datasets are available (for example, the High Resolution Imaging Sensor Experiment or HiRISE) extensive dust cover may limit the recognition of similar features there. However significant relief on some of these features on Earth indicate they might still be detectable on Mars.
NASA Astrophysics Data System (ADS)
Jourde, Kevin; Gibert, Dominique; Marteau, Jacques; de Bremond D'Ars, Jean; Komorowski, Jean-Christophe
2016-09-01
Imaging geological structures through cosmic muon radiography is a newly developed technique which shows a great potential in volcanology. Here we demonstrate that muon radiography permits to detect and characterize mass movements in shallow hydrothermal systems of low-energy active volcanoes like the La Soufrière lava dome. We present an experiment conducted on this volcano during the Summer 2014 and bring evidence that very important density changes occurred in three domains of the lava dome. Depending on their position and on the medium porosity the volumes of these domains vary from 1 × 106 m3 to 7 × 106 m3. However, the total mass budget remains approximately constant : two domains show a mass loss (Δm∈ [-0.8-0.4] × 109 kg) and the third one a mass gain (Δm∈ [1.5; 2.5] × 109 kg). We attribute the negative mass changes to the formation of steam in shallow hydrothermal reservoir previously partly filled with liquid water. This coincides with the emergence of new fumaroles on top of the volcano. The positive mass change is synchronized with the negative mass changes indicating that liquid water probably flowed from the two reservoirs invaded by steam toward the third reservoir.
Multi-year high-frequency hydrothermal monitoring of selected high-threat Cascade Range volcanoes
NASA Astrophysics Data System (ADS)
Crankshaw, I. M.; Archfield, S. A.; Newman, A. C.; Bergfeld, D.; Clor, L. E.; Spicer, K. R.; Kelly, P. J.; Evans, W. C.; Ingebritsen, S. E.
2018-05-01
From 2009 to 2015 the U.S. Geological Survey (USGS) systematically monitored hydrothermal behavior at selected Cascade Range volcanoes in order to define baseline hydrothermal and geochemical conditions. Gas and water data were collected regularly at 25 sites on 10 of the highest-risk volcanoes in the Cascade Range. These sites include near-summit fumarole groups and springs/streams that show clear evidence of magmatic influence (high 3He/4He ratios and/or large fluxes of magmatic CO2 or heat). Site records consist mainly of hourly temperature and hydrothermal-flux data. Having established baseline conditions during a multiyear quiescent period, the USGS reduced monitoring frequency from 2015 to present. The archived monitoring data are housed at (doi:10.5066/F72N5088). These data (1) are suitable for retrospective comparison with other continuous geophysical monitoring data and (2) will provide context during future episodes of volcanic unrest, such that unrest-related variations at these thoroughly characterized sites will be more clearly recognizable. Relatively high-frequency year-round data are essential to achieve these objectives, because many of the time series reveal significant diurnal, seasonal, and inter-annual variability that would tend to mask unrest signals in the absence of baseline data. Here we characterize normal variability for each site, suggest strategies to detect future volcanic unrest, and explore deviations from background associated with recent unrest.
Recent Seismicity in the Ceboruco Volcano, Western Mexico
NASA Astrophysics Data System (ADS)
Nunez, D.; Chávez-Méndez, M. I.; Nuñez-Cornu, F. J.; Sandoval, J. M.; Rodriguez-Ayala, N. A.; Trejo-Gomez, E.
2017-12-01
The Ceboruco volcano is the largest (2280 m.a.s.l) of several volcanoes along the Tepic-Zacoalco rift zone in Nayarit state (Mexico). During the last 1000 years, this volcano had effusive-explosive episodes with eight eruptions providing an average of one eruption each 125 years. Since the last eruption occurred in 1870, 147 years ago, a new eruption likelihood is really high and dangerous due to nearby population centers, important roads and lifelines that traverse the volcano's slopes. This hazards indicates the importance of monitoring the seismicity associated with the Ceboruco volcano whose ongoing activity is evidenced by fumaroles and earthquakes. During 2003 and 2008, this region was registered by just one Lennartz Marslite seismograph featuring a Lennartz Le3D sensor (1 Hz) [Rodríguez Uribe et al. (2013)] where they observed that seismicity rates and stresses appear to be increasing indicating higher levels of activity within the volcano. Until July 2017, a semi-permanent network with three Taurus (Nanometrics) and one Q330 Quanterra (Kinemetrics) digitizers with Lennartz 3Dlite sensors of 1 Hz natural frequency was registering in the area. In this study, we present the most recent seismicity obtained by the semi-permanent network and a temporary network of 21 Obsidians 4X and 8X (Kinemetrics) covering an area of 16 km x 16 km with one station every 2.5-3 km recording from November 2016 to July 2017.
Jourde, Kevin; Gibert, Dominique; Marteau, Jacques; de Bremond d’Ars, Jean; Komorowski, Jean-Christophe
2016-01-01
Imaging geological structures through cosmic muon radiography is a newly developed technique which shows a great potential in volcanology. Here we demonstrate that muon radiography permits to detect and characterize mass movements in shallow hydrothermal systems of low-energy active volcanoes like the La Soufrière lava dome. We present an experiment conducted on this volcano during the Summer 2014 and bring evidence that very important density changes occurred in three domains of the lava dome. Depending on their position and on the medium porosity the volumes of these domains vary from 1 × 106 m3 to 7 × 106 m3. However, the total mass budget remains approximately constant : two domains show a mass loss (Δm∈ [−0.8;−0.4] × 109 kg) and the third one a mass gain (Δm∈ [1.5; 2.5] × 109 kg). We attribute the negative mass changes to the formation of steam in shallow hydrothermal reservoir previously partly filled with liquid water. This coincides with the emergence of new fumaroles on top of the volcano. The positive mass change is synchronized with the negative mass changes indicating that liquid water probably flowed from the two reservoirs invaded by steam toward the third reservoir. PMID:27629497
Bendia, Amanda G; Signori, Camila N; Franco, Diego C; Duarte, Rubens T D; Bohannan, Brendan J M; Pellizari, Vivian H
2018-01-01
Active volcanoes in Antarctica contrast with their predominantly cold surroundings, resulting in environmental conditions capable of selecting for versatile and extremely diverse microbial communities. This is especially true on Deception Island, where geothermal, marine, and polar environments combine to create an extraordinary range of environmental conditions. Our main goal in this study was to understand how microbial community structure is shaped by gradients of temperature, salinity, and geochemistry in polar marine volcanoes. Thereby, we collected surface sediment samples associated with fumaroles and glaciers at two sites on Deception, with temperatures ranging from 0 to 98°C. Sequencing of the 16S rRNA gene was performed to assess the composition and diversity of Bacteria and Archaea. Our results revealed that Deception harbors a combination of taxonomic groups commonly found both in cold and geothermal environments of continental Antarctica, and also groups normally identified at deep and shallow-sea hydrothermal vents, such as hyperthermophilic archaea. We observed a clear separation in microbial community structure across environmental gradients, suggesting that microbial community structure is strongly niche driven on Deception. Bacterial community structure was significantly associated with temperature, pH, salinity, and chemical composition; in contrast, archaeal community structure was strongly associated only with temperature. Our work suggests that Deception represents a peculiar "open-air" laboratory to elucidate central questions regarding molecular adaptability, microbial evolution, and biogeography of extremophiles in polar regions.
Jourde, Kevin; Gibert, Dominique; Marteau, Jacques; de Bremond d'Ars, Jean; Komorowski, Jean-Christophe
2016-09-15
Imaging geological structures through cosmic muon radiography is a newly developed technique which shows a great potential in volcanology. Here we demonstrate that muon radiography permits to detect and characterize mass movements in shallow hydrothermal systems of low-energy active volcanoes like the La Soufrière lava dome. We present an experiment conducted on this volcano during the Summer 2014 and bring evidence that very important density changes occurred in three domains of the lava dome. Depending on their position and on the medium porosity the volumes of these domains vary from 1 × 10(6) m(3) to 7 × 10(6) m(3). However, the total mass budget remains approximately constant : two domains show a mass loss (Δm∈ [-0.8;-0.4] × 10(9) kg) and the third one a mass gain (Δm∈ [1.5; 2.5] × 10(9) kg). We attribute the negative mass changes to the formation of steam in shallow hydrothermal reservoir previously partly filled with liquid water. This coincides with the emergence of new fumaroles on top of the volcano. The positive mass change is synchronized with the negative mass changes indicating that liquid water probably flowed from the two reservoirs invaded by steam toward the third reservoir.
NASA Astrophysics Data System (ADS)
Taran, Y.; Jácome Paz, M. P.; Inguaggiato, S.; Collard, N.
2015-12-01
During 2013-2015, four CO2 flux surveys were performed in the El Chichon crater both, from the lake surface and from the soil of the crater. The chemistry of the lake water, as well as its physical parameters (surface area, depth, temperature) were also determined. The CO2 flux in 2014-2015 compared to the 2007-2008 data (Mazot et al., 2011, BV, 73: 423-441) increased almost one order of magnitude (from ~ 140 ton d-1 in 2008 to ~ 840 ton d-1 in 2014). During the last two years the lake became the largest for the whole time of observations with the maximum surface area more than 18 ha covering completely the NE fumarolic field and all thermal springs feeding the lake with mineralized water. Despite the maximum volume of the lake it was characterized in 2015 by the highest since 2007 chloride content (~2500 ppm) and temperature (34°C). A large degassing spot in the middle of the lake for the first time was observed in April 2015 with more than 10,000 g m-2 d-1 of the CO2 flux. These observations evidence that the volcano-hydrothermal system of El Chichon volcano came into a new stage of activity associated most probably with changes in the magmatic activity at depth.
Trampling Impacts on Thermotolerant Vegetation of Geothermal Areas in New Zealand
NASA Astrophysics Data System (ADS)
Burns, Bruce R.; Ward, Jonet; Downs, Theresa M.
2013-12-01
Geothermal features such as geysers, mud pools, sinter terraces, fumaroles, hot springs, and steaming ground are natural attractions often visited by tourists. Visitation rates for such areas in the Taupo Volcanic Zone of New Zealand are in the order of hundreds of thousands annually. These areas are also habitat for rare and specialized plant and microbial communities that live in the steam-heated soils of unusual chemical composition. We evaluated historical and current trampling impacts of tourists on the thermotolerant vegetation of the Waimangu and Waiotapu geothermal areas near Rotorua, and compared the results to experimental trampling at a third site (Taheke) not used by tourists. Historical tourism has removed vegetation and soil from around key features, and remaining subsoil is compacted into an impervious pavement on which vegetation recolonization is unlikely in the short term. Social tracks made by tourists were present at both tourist sites often leading them onto hotter soils than constructed tracks. Vegetation height and cover were lower on and adjacent to social tracks than further from them. Thermotolerant vegetation showed extremely low resistance to experimental trampling. This confirms and extends previous research that also shows that thallophytes and woody shrubs, life forms that dominate in thermotolerant vegetation, are vulnerable to trampling damage. Preservation of these vulnerable ecosystems must ensure that tourist traffic is confined to existing tracks or boardwalks, and active restoration of impacted sites may be warranted.
Lewis, Aaron; George Hilley,; Lewicki, Jennifer L.
2015-01-01
This work presents a method to create high-resolution (cm-scale) orthorectified and georeferenced maps of apparent surface temperature and radiant hydrothermal heat flux and estimate the radiant hydrothermal heat emission rate from a study area. A ground-based thermal infrared (TIR) camera was used to collect (1) a set of overlapping and offset visible imagery around the study area during the daytime and (2) time series of co-located visible and TIR imagery at one or more sites within the study area from pre-dawn to daytime. Daytime visible imagery was processed using the Structure-from-Motion photogrammetric method to create a digital elevation model onto which pre-dawn TIR imagery was orthorectified and georeferenced. Three-dimensional maps of apparent surface temperature and radiant hydrothermal heat flux were then visualized and analyzed from various computer platforms (e.g., Google Earth, ArcGIS). We demonstrate this method at the Mammoth Mountain fumarole area on Mammoth Mountain, CA. Time-averaged apparent surface temperatures and radiant hydrothermal heat fluxes were observed up to 73.7 oC and 450 W m-2, respectively, while the estimated radiant hydrothermal heat emission rate from the area was 1.54 kW. Results should provide a basis for monitoring potential volcanic unrest and mitigating hydrothermal heat-related hazards on the volcano.
NASA Astrophysics Data System (ADS)
Byrdina, Svetlana; Revil, André; Gunawan, Hendra; Saing, Ugan B.; Grandis, Hendra
2017-07-01
Papandayan volcano in West Java, Indonesia, is characterized by intense hydrothermal activities manifested by numerous fumaroles at three craters or kawah, i.e. Mas, Manuk and Baru. The latter was created after November 2002 phreatic eruption. Since 2011, numerous volcano-tectonic B events are encountered and the volcano was set on alert status on several occasions. The purpose of the present study is to delineate the structure of the summital hydrothermal system from Self-Potential (SP), soil temperature and gas concentrations in the soil (CO2, SO2 and H2S) data. This combination of geophysical and geochemical methods allows identification of the weak permeable zones serving as preferential pathways for hydrothermal circulation and potential candidates to future landslides or flank collapses. This study is an on-going collaborative research project and we plan to conduct electrical resistivity tomography (ERT) and also Induced-Polarization (IP) surveys. Additional data would allow the 3D imaging of the studied area. The IP parameters will be used to characterise and to quantify the degree of alteration of the volcanic rocks as has been shown very recently in the laboratory studies. There are also rocks and soil samples that will undergo laboratory analyses at ISTerre for IP and complex resistivity parameters at the sample scale that will help to interpret the survey results.
Magmatic gas percolation through the old lava dome of El Misti volcano
NASA Astrophysics Data System (ADS)
Moussallam, Yves; Peters, Nial; Masias, Pablo; Apaza, Fredy; Barnie, Talfan; Ian Schipper, C.; Curtis, Aaron; Tamburello, Giancarlo; Aiuppa, Alessandro; Bani, Philipson; Giudice, Gaetano; Pieri, David; Davies, Ashley Gerard; Oppenheimer, Clive
2017-06-01
The proximity of the major city of Arequipa to El Misti has focused attention on the hazards posed by the active volcano. Since its last major eruption in the fifteenth century, El Misti has experienced a series of modest phreatic eruptions and fluctuating fumarolic activity. Here, we present the first measurements of the compositions of gas emitted from the lava dome in the summit crater. The gas composition is found to be fairly dry with a H2O/SO2 molar ratio of 32 ± 3, a CO2/SO2 molar ratio of 2.7 ± 0.2, a H2S/SO2 molar ratio of 0.23 ± 0.02 and a H2/SO2 molar ratio of 0.012 ± 0.002. This magmatic gas signature with minimal evidence of hydrothermal or wall rock interaction points to a shallow magma source that is efficiently outgassing through a permeable conduit and lava dome. Field and satellite observations show no evolution of the lava dome over the last decade, indicating sustained outgassing through an established fracture network. This stability could be disrupted if dome permeability were to be reduced by annealing or occlusion of outgassing pathways. Continued monitoring of gas composition and flux at El Misti will be essential to determine the evolution of hazard potential at this dangerous volcano.
Sullivan, Scott C; Fansler, Douglas
2014-10-14
A vehicle having multiple isolated fluid circuits configured to be filled through a common fill port includes a first fluid circuit disposed within the vehicle, the first fluid circuit having a first fill port, a second fluid circuit disposed within the vehicle, and a conduit defining a fluid passageway between the first fluid circuit and second fluid circuit, the conduit including a valve. The valve is configured such that the first and second fluid circuits are fluidly coupled via the passageway when the valve is open, and are fluidly isolated when the valve is closed.
Acoustic concentration of particles in fluid flow
Ward, Michael D.; Kaduchak, Gregory
2010-11-23
An apparatus for acoustic concentration of particles in a fluid flow includes a substantially acoustically transparent membrane and a vibration generator that define a fluid flow path therebetween. The fluid flow path is in fluid communication with a fluid source and a fluid outlet and the vibration generator is disposed adjacent the fluid flow path and is capable of producing an acoustic field in the fluid flow path. The acoustic field produces at least one pressure minima in the fluid flow path at a predetermined location within the fluid flow path and forces predetermined particles in the fluid flow path to the at least one pressure minima.
NASA Astrophysics Data System (ADS)
Hsu, S. Y.; Chen, H.; Huang, Q. Z.; Lee, T. Y.; Chiu, Y.; Chang, L. C.; Lamorski, K.; Sławiński, C.; Tsao, C. W.
2017-12-01
The interplay between resident ("old") fluid already in the vadose zone and infiltrating ("new") fluid was examined with micromodel experiments. The geometric patterns of the micromodels are based on a pore doublet and a 2D pore geometry of a sand-packing soil scanned by Micro X-Ray CT. We studied the old and new fluid interaction during imbibition process subject to different evaporation times (different the initial old fluid saturations). The results found that, in the pore-doublet micromodel experiment, the old fluid was mixed and displaced by the new fluid, and an increase in the initial old fluid saturation led to a decrease in the amount of old fluid displaced by the new fluid. On the other hand, the most of the old fluid in the micromodel of 2D sand-packing pore geometry was displaced by and mixed with the new fluid. However, a small amount of the initial old fluid that occupied pore throats remained untouched by the new fluid due to the air blockage. The amount of untouched old fluid increased as the initial old fluid saturation decreased. Our finding reveals the effect of pore geometry and inital old fluid distribution on the interaction between resident and infiltrating fluids.
Deepika, Chenna; Murugesan, Mohandoss; Shastry, Shamee
2018-02-01
Fluid shifts from interstitial to intravascular space during blood donation helps in compensating the lost blood volume. We aimed to determine the volume of fluid shift following donation in donors with and without pre-donation fluid intake. We studied the fluid shift in 325 blood donors prospectively. Donors were divided in groups- with no fluid intake (GI) and either water (GII) or oral rehydrating fluids (GIII) before donation. Fluid shift following donation was calculated based on the difference between the pre and post donation blood volume. The influence of oral fluid intake, age, gender and body mass index (BMI) on volume of fluid shift was analyzed. The fluid shift was significant between donors without fluids (GI: 127 ± 81 ml) and donors with fluid intake (GII & III: 96 ± 45 ml) (p < 0.05). The difference was not significant between donors with water intake (GII: 106 ± 52 ml) and oral rehydrating fluid intake (GIII: 87 ± 41 ml). The shifted fluid volume increased with increasing BMI and decreased with increasing age in females. The fluid shift increased in females than in males. The age, gender, BMI and VVR did not significantly contribute to the volume of fluid shift following donation. As per our observation, the oral fluids before donation might not contribute to increase in fluid shift in blood donors after donation. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Linhares, Diana; Garcia, Patricia; Silva, Catarina; Ferreira, Teresa; Barroso, Joana; Camarinho, Ricardo; Rodrigues, Armindo
2015-04-01
Many studies in volcanic air pollution only have in consideration the acute toxic effects of gas or ash releases however the impact of chronic exposure to ground gas emissions in human health is yet poorly known. In the Azores archipelago (Portugal), São Miguel island has one of the most active and dangerous volcanoes: Furnas Volcano. Highly active fumarolic fields, hot springs and soil diffuse degassing phenomena are the main secondary volcanic phenomena that can be seen at the volcano surroundings. One of the main gases released in these diffuse degassing areas is radon (222Rn), which decay results in solid particles that readily settle within the airways. These decay particles emit alpha radiation that is capable of causing severe DNA damage that cumulatively can eventually cause cancer. Previous studies have established that chronic exposure to chromosome-damaging agents can lead to the formation of nuclear anomalies, such as micronuclei that is used for monitoring DNA damage in human populations. The present study was designed to evaluate whether chronic exposure to volcanic air pollution, associated to 222Rn, might result in DNA damage in human oral epithelial cells. A cross sectional study was performed in a study group of 142 individuals inhabiting an area where volcanic activity is marked by active fumarolic fields and soil degassing (hydrothermal area), and a reference group of 368 individuals inhabiting an area without these secondary manifestations of volcanism (non-hydrothermal area). For each individual, 1000 buccal epithelial cells were analyzed for the frequency of micronucleated cells (MNc) and the frequency of cells with other nuclear anomalies (ONA: pyknosis, karyolysis and karyorrhexis), by using the micronucleus assay. Information on lifestyle factors and an informed consent were obtained from each participant. Assessment of indoor radon was performed with the use of radon detectors. Data were analyzed with logistic regression models, adjusted for confounding factors (age, gender, smoking and drinking status, and number of cigarettes smoked per day). Results demonstrated that levels of radon in the environment were significantly different in study and reference groups (115 Bq/m3 vs. 47 Bq/m3, respectively; p<0.001); in winter, radon measurements reached the highest values both in the study and the reference groups (809 Bq/m3 vs. 56 Bq/m3, respectively). The frequency of MNc in the study group was significantly higher than in the reference group (2.93‰ vs. 2.58‰, respectively; p=0.002). The OR for formation of MNc in the hydrothermal area was 1.5 (95% CI 1.07-2.02). A moderate and positive correlation was found between the frequency of MNc and 222Rn (rs = 0.459, p<0.001). To our knowledge this is the first study that clearly associates the exposure of volcanogenic indoor radon in inhabitants of hydrothermal areas and the DNA damage in human oral epithelial cells, evidencing that volcanic air pollution is a risk factor of carcinogenesis. Although the present findings require confirmation in larger studies, bio-monitoring for DNA damage is recommended for inhabitants of localities with active volcanism and mitigation measures such as restriction of building in certain areas should be taken into consideration in these volcanically active areas.
Van Regenmortel, Niels; Verbrugghe, Walter; Roelant, Ella; Van den Wyngaert, Tim; Jorens, Philippe G
2018-04-01
Research on intravenous fluid therapy and its side effects, volume, sodium, and chloride overload, has focused almost exclusively on the resuscitation setting. We aimed to quantify all fluid sources in the ICU and assess fluid creep, the hidden and unintentional volume administered as a vehicle for medication or electrolytes. We precisely recorded the volume, sodium, and chloride burdens imposed by every fluid source administered to 14,654 patients during the cumulative 103,098 days they resided in our 45-bed tertiary ICU and simulated the impact of important strategic fluid choices on patients' chloride burdens. In septic patients, we assessed the impact of the different fluid sources on cumulative fluid balance, an established marker of morbidity. Maintenance and replacement fluids accounted for 24.7% of the mean daily total fluid volume, thereby far exceeding resuscitation fluids (6.5%) and were the most important sources of sodium and chloride. Fluid creep represented a striking 32.6% of the mean daily total fluid volume [median 645 mL (IQR 308-1039 mL)]. Chloride levels can be more effectively reduced by adopting a hypotonic maintenance strategy [a daily difference in chloride burden of 30.8 mmol (95% CI 30.5-31.1)] than a balanced resuscitation strategy [daily difference 3.0 mmol (95% CI 2.9-3.1)]. In septic patients, non-resuscitation fluids had a larger absolute impact on cumulative fluid balance than did resuscitation fluids. Inadvertent daily volume, sodium, and chloride loading should be avoided when prescribing maintenance fluids in view of the vast amounts of fluid creep. This is especially important when adopting an isotonic maintenance strategy.
CT findings of a unicameral calcaneal bone cyst containing a fluid-fluid level.
Gallagher, Thomas A; Lim-Dunham, Jennifer E; Vade, Aruna
2007-03-01
Calcaneal unicameral bone cysts often contain fluid, but rarely contain fluid-fluid levels. We present a case focusing on the CT findings of a large calcaneal bone cyst with a fluid-fluid level and a review of the literature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baldwin, Darryl Dean; Willi, Martin Leo; Fiveland, Scott Byron
2010-12-14
A segmented heat exchanger system for transferring heat energy from an exhaust fluid to a working fluid. The heat exchanger system may include a first heat exchanger for receiving incoming working fluid and the exhaust fluid. The working fluid and exhaust fluid may travel through at least a portion of the first heat exchanger in a parallel flow configuration. In addition, the heat exchanger system may include a second heat exchanger for receiving working fluid from the first heat exchanger and exhaust fluid from a third heat exchanger. The working fluid and exhaust fluid may travel through at least amore » portion of the second heat exchanger in a counter flow configuration. Furthermore, the heat exchanger system may include a third heat exchanger for receiving working fluid from the second heat exchanger and exhaust fluid from the first heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the third heat exchanger in a parallel flow configuration.« less
Pre-mixing apparatus for a turbine engine
Lacy, Benjamin Paul [Greer, SC; Varatharajan, Balachandar [Cincinnati, OH; Ziminsky, Willy Steve [Simpsonville, SC; Kraemer, Gilbert Otto [Greer, SC; Yilmaz, Ertan [Albany, NY; Melton, Patrick Benedict [Horse Shoe, NC; Zuo, Baifang [Simpsonville, SC; Stevenson, Christian Xavier [Inman, SC; Felling, David Kenton [Greenville, SC; Uhm, Jong Ho [Simpsonville, SC
2012-04-03
A pre-mixing apparatus for a turbine engine includes a main body having an inlet portion, an outlet portion and an exterior wall that collectively establish at least one fluid delivery plenum, and a plurality of fluid delivery tubes extending through at least a portion of the at least one fluid delivery plenum. Each of the plurality of fluid delivery tubes includes at least one fluid delivery opening fluidly connected to the at least one fluid delivery plenum. With this arrangement, a first fluid is selectively delivered to the at least one fluid delivery plenum, passed through the at least one fluid delivery opening and mixed with a second fluid flowing through the plurality of fluid delivery tubes prior to being combusted in a combustion chamber of a turbine engine.
Insertable fluid flow passage bridgepiece and method
Jones, Daniel O.
2000-01-01
A fluid flow passage bridgepiece for insertion into an open-face fluid flow channel of a fluid flow plate is provided. The bridgepiece provides a sealed passage from a columnar fluid flow manifold to the flow channel, thereby preventing undesirable leakage into and out of the columnar fluid flow manifold. When deployed in the various fluid flow plates that are used in a Proton Exchange Membrane (PEM) fuel cell, bridgepieces of this invention prevent mixing of reactant gases, leakage of coolant or humidification water, and occlusion of the fluid flow channel by gasket material. The invention also provides a fluid flow plate assembly including an insertable bridgepiece, a fluid flow plate adapted for use with an insertable bridgepiece, and a method of manufacturing a fluid flow plate with an insertable fluid flow passage bridgepiece.
Acoustic concentration of particles in fluid flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ward, Michael W.; Kaduchak, Gregory
Disclosed herein is a acoustic concentration of particles in a fluid flow that includes a substantially acoustically transparent membrane and a vibration generator that define a fluid flow path therebetween. The fluid flow path is in fluid communication with a fluid source and a fluid outlet and the vibration generator is disposed adjacent the fluid flow path and is capable of producing an acoustic field in the fluid flow path. The acoustic field produces at least one pressure minima in the fluid flow path at a predetermined location within the fluid flow path and forces predetermined particles in the fluidmore » flow path to the at least one pressure minima.« less
Heating production fluids in a wellbore
Orrego, Yamila; Jankowski, Todd A.
2016-07-12
A method for heating a production fluid in a wellbore. The method can include heating, using a packer fluid, a working fluid flowing through a first medium disposed in a first section of the wellbore, where the first medium transfers heat from the packer fluid to the working fluid. The method can also include circulating the working fluid into a second section of the wellbore through a second medium, where the second medium transfers heat from the working fluid to the production fluid. The method can further include returning the working fluid to the first section of the wellbore through the first medium.
Method and apparatus for providing a precise amount of gas at a precise humidity
Hallman, Jr., Russell L.; Truett, James C.
2001-02-06
A fluid transfer system includes a permeable fluid carrier, a constant temperature source of a first fluid, and a constant pressure source of a second fluid. The fluid carrier has a length, an inlet end, and an outlet end. The constant pressure source connects to the inlet end and communicates the second fluid into the fluid carrier, and the constant temperature source surrounds a least of portion of the length. A mixture of the first fluid and the second fluid exits via the outlet end A method of making a mixture of two fluids is also disclosed.
Kim, Sun Min; Romero, Roberto; Lee, JoonHo; Chaemsaithong, Piya; Docheva, Nikolina; Yoon, Bo Hyun
2017-01-01
Objective Early neonatal sepsis is often due to intra-amniotic infection. The stomach of the neonate contains fluid swallowed before and during delivery. The presence of bacteria as well as neutrophils detected by culture or Gram stain in the gastric fluid during the first day of life is suggestive of exposure to bacteria or inflammation. We undertook this study to determine the relationship between gastric fluid analysis and amniotic fluid obtained by transabdominal amniocentesis in the detection of Ureaplasma species, the most frequent microorganisms responsible for intra-amniotic infection. Materials and Methods The study population consisted of 100 singleton pregnant women who delivered preterm neonates (<35weeks) within 7 days of amniocentesis. Gastric fluid of newborns was obtained by nasogastric intubation on the day of birth. Amniotic fluid and gastric fluid were cultured for genital Mycoplasmas and polymerase chain reaction (PCR) for Ureaplasma species was performed. Intra-amniotic inflammation was defined as an elevated amniotic fluid matrix metalloproteinase-8 concentration (> 23ng/mL). Results 1) Ureaplasma species were detected by culture or PCR in 18% (18/100) of amniotic fluid samples and in 5% (5/100) of gastric fluid samples; 2) among the amniotic fluid cases positive for Ureaplasma species, these microorganisms were identified in 27.8% (5/18) of gastric fluid samples; 3) none of the cases negative for Ureaplasma species in the amniotic fluid were found to be positive for these microorganisms in the gastric fluid; 4) patients with amniotic fluid positive for Ureaplasma species but with gastric fluid negative for these microorganisms had a significantly higher rate of intra-amniotic inflammation, acute histologic chorioamnionitis, and neonatal death than those with both amniotic fluid and gastric fluid negative for Ureaplasma species; and 5) no significant differences were observed in the rate of intra-amniotic inflammation, acute histologic chorioamnionitis, and neonatal death between patients with amniotic fluid positive for Ureaplasma species but with gastric fluid negative for these microorganisms and those with both amniotic fluid and gastric fluid positive for Ureaplasma species. Conclusions Gastric fluid analysis has 100% specificity in the identification of intra-amniotic infection with Ureaplasma species. However the detection of Ureaplasma species by culture or PCR in the gastric fluid of neonates at birth did not identify these microorganisms in two-thirds of cases with microbial invasion of the amniotic cavity. Thus, amniotic fluid analysis is superior to that of gastric fluid in the identification of intra-amniotic infection. PMID:26631980
Kim, Sun Min; Romero, Roberto; Lee, JoonHo; Chaemsaithong, Piya; Docheva, Nikolina; Yoon, Bo Hyun
2016-01-01
Early neonatal sepsis is often due to intra-amniotic infection. The stomach of the neonate contains fluid swallowed before and during delivery. The presence of bacteria as well as neutrophils detected by culture or Gram stain of the gastric fluid during the first day of life is suggestive of exposure to bacteria or inflammation. We undertook this study to determine the relationship between gastric fluid analysis and amniotic fluid obtained by transabdominal amniocentesis in the detection of Ureaplasma species, the most frequent microorganisms responsible for intra-amniotic infection. The study population consisted of 100 singleton pregnant women who delivered preterm neonates (<35 weeks) within 7 days of amniocentesis. Gastric fluid of newborns was obtained by nasogastric intubation on the day of birth. Amniotic fluid and gastric fluid were cultured for genital Mycoplasmas, and polymerase chain reaction (PCR) for Ureaplasma species was performed. Intra-amniotic inflammation was defined as an elevated amniotic fluid matrix metalloproteinase-8 concentration (>23 ng/mL). (1) Ureaplasma species were detected by culture or PCR in 18% (18/100) of amniotic fluid samples and in 5% (5/100) of gastric fluid samples; (2) among the amniotic fluid cases positive for Ureaplasma species, these microorganisms were identified in 27.8% (5/18) of gastric fluid samples; (3) none of the cases negative for Ureaplasma species in the amniotic fluid were found to be positive for these microorganisms in the gastric fluid; (4) patients with amniotic fluid positive for Ureaplasma species but with gastric fluid negative for these microorganisms had a significantly higher rate of intra-amniotic inflammation, acute histologic chorioamnionitis, and neonatal death than those with both amniotic fluid and gastric fluid negative for Ureaplasma species; and (5) no significant differences were observed in the rate of intra-amniotic inflammation, acute histologic chorioamnionitis, and neonatal death between patients with amniotic fluid positive for Ureaplasma species but with gastric fluid negative for these microorganisms and those with both amniotic fluid and gastric fluid positive for Ureaplasma species. Gastric fluid analysis has 100% specificity in the identification of intra-amniotic infection with Ureaplasma species. However, the detection of Ureaplasma species by culture or PCR in the gastric fluid of neonates at birth did not identify these microorganisms in two-thirds of cases with microbial invasion of the amniotic cavity. Thus, amniotic fluid analysis is superior to that of gastric fluid in the identification of intra-amniotic infection.
Hydrostatic bearings for a turbine fluid flow metering device
Fincke, J.R.
1980-05-02
A rotor assembly fluid metering device has been improved by development of a hydrostatic bearing fluid system which provides bearing fluid at a common pressure to rotor assembly bearing surfaces. The bearing fluid distribution system produces a uniform film of fluid distribution system produces a uniform film of fluid between bearing surfaces and allows rapid replacement of bearing fluid between bearing surfaces, thereby minimizing bearing wear and corrosion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aines, Roger D.; Bourcier, William L.; Duoss, Eric B.
2018-01-30
A capsule for carrying a proppant for emplaced in a formation containing formation fluid by a hydraulic fracture operation using a fracturing fluid. The capsule includes a capsule body. The capsule body includes a proppant. There is a surface layer on the capsule body that is permeable to the formation fluid or the fracturing fluid or is permeable to both the formation fluid and the fracturing fluid. The proppant material is dry cement that interacts with the formation fluid or the fracturing fluid or both the formation fluid and the fracturing fluid that migrate through the surface layer and ismore » taken up by the dry cement causing the dry cement to harden.« less
Aines, Roger D.; Bourcier, William L.; Duoss, Eric B.; Roberts, Jeffery James; Spadaccini, Christopher M.; Stolaroff, Joshuah K.
2018-01-09
A capsule for carrying a proppant for emplaced in a formation containing formation fluid by a hydraulic fracture operation using a fracturing fluid. The capsule includes a capsule body. The capsule body includes a proppant. There is a surface layer on the capsule body that is permeable to the formation fluid or the fracturing fluid or is permeable to both the formation fluid and the fracturing fluid. The proppant material is dry cement that interacts with the formation fluid or the fracturing fluid or both the formation fluid and the fracturing fluid that migrate through the surface layer and is taken up by the dry cement causing the dry cement to harden.
Nanoscale wicking methods and devices
NASA Technical Reports Server (NTRS)
Zhou, Jijie (Inventor); Bronikowski, Michael (Inventor); Noca, Flavio (Inventor); Sansom, Elijah B. (Inventor)
2011-01-01
A fluid transport method and fluid transport device are disclosed. Nanoscale fibers disposed in a patterned configuration allow transport of a fluid in absence of an external power source. The device may include two or more fluid transport components having different fluid transport efficiencies. The components may be separated by additional fluid transport components, to control fluid flow.
Variable flexure-based fluid filter
Brown, Steve B.; Colston, Jr., Billy W.; Marshall, Graham; Wolcott, Duane
2007-03-13
An apparatus and method for filtering particles from a fluid comprises a fluid inlet, a fluid outlet, a variable size passage between the fluid inlet and the fluid outlet, and means for adjusting the size of the variable size passage for filtering the particles from the fluid. An inlet fluid flow stream is introduced to a fixture with a variable size passage. The size of the variable size passage is set so that the fluid passes through the variable size passage but the particles do not pass through the variable size passage.
Reequilibration of fluid inclusions in low-temperature calcium-carbonate cement
NASA Astrophysics Data System (ADS)
Goldstein, Robert H.
1986-09-01
Calcium-carbonate cements precipitated in low-temperature, near-surface, vadose environments contain fluid inclusions of variable vapor-to-liquid ratios that yield variable homogenization temperatures. Cements precipitated in low-temperature, phreatic environments contain one-phase, all-liquid fluid inclusions. Neomorphism of unstable calcium-carbonate phases may cause reequilibration of fluid inclusions. Stable calcium-carbonate cements of low-temperature origin, which have been deeply buried, contain fluid inclusions of variable homogenization temperature and variable salt composition. Most inclusion fluids are not representative of the fluids present during cement growth and are more indicative of burial pore fluids. Therefore, low-temperature fluid inclusions probably reequilibrate with burial fluids during progressive burial. Reequilibration is likely caused by high internal pressures in inclusions which result in hydrofracturing. The resulting fluid-inclusion population could contain a nearly complete record of burial fluids in which a particular rock has been bathed. *Present address: Department of Geology, University of Kansas, Lawrence, Kansas 66045
NASA Astrophysics Data System (ADS)
Pérez, Nemesio M.; Melián, Gladys; González-Santana, Judit; Barrancos, José; Padilla, Germán; Rodríguez, Fátima; Padrón, Eleazar; Hernández, Pedro A.
2016-04-01
The occurrence of interfering processes affecting reactive gases as CO2 during its ascent from magmatic bodies or hydrothermal systems toward the surface environment hinders the interpretation of their enrichments in the soil atmosphere and fluxes for volcano monitoring purposes (Marini and Gambardella, 2005). These processes include gas scrubbing by ground-waters and interaction with rocks, decarbonatation processes, biogenic production, etc. Within the rest of the soil gases, particularly interest has been addressed to light and highly mobile gases. They offer important advantages for the detection of vertical permeability structures, because their interaction with the surrounding rocks or fluids during the ascent toward the surface is minimum. H2 is one of the most abundant trace species in volcano-hydrothermal systems and is a key participant in many redox reactions occurring in the hydrothermal reservoir gas (Giggenbach, 1987). Although H2 can be produced in soils by N2-fixing and fertilizing bacteria, soils are considered nowadays as sinks of molecular hydrogen (Smith-Downey et al., 2006). Because of its chemical and physical characteristics, H2 generated within the crust moves rapidly and escapes to the atmosphere. These characteristics make H2 one of the best geochemical indicators of magmatic and geothermal activity at depth. El Hierro is the youngest and the SW-most of the Canary Islands and the scenario of the last volcanic eruption of the archipelago, a submarine eruption that took place 2 km off the southern coast of the island from October 2011 to March 2012. Since at El Hierro Island there are not any surface geothermal manifestations (fumaroles, etc), we have focused our studies on soil degassing surveys. Here we show the results of soil H2 emission surveys that have been carried out regularly since mid-2012. Soil gas samples were collected in ˜600 sites selected based on their accessibility and geological criteria. Soil gases were sampled at ˜40 cm depth using a metallic probe with a 60 cc hypodermic syringes and stored in 10 cc glass vials for later laboratory analysis by a VARIAN CP4900 micro-gas chromatograph. Soil H2 concentration data were used to estimate the H2 emission assuming a pure diffusive mechanism. The emission ranged between 12 and 25 kg d-1, showing a good relationship with the seismic energy release during the period of study. However, spatial distribution of H2 emission values did not show a clear relationship with main volcano-structures of El Hierro Island. H2 emission studies are a promising volcano monitoring technique that might help to detect early warning signals of volcanic unrest in oceanic volcanic islands. References Marini and Gambardella, 2005. Ann Geophys 48, 739-753. Giggenbach, 1987. Appl Geochem 2, 143-161. Smith-Downey et al., 2006. Geophys Res Lett 33, L14813.
Monitoring quiescent volcanoes by diffuse He degassing: case study Teide volcano
NASA Astrophysics Data System (ADS)
Pérez, Nemesio M.; Melián, Gladys; Asensio-Ramos, María; Padrón, Eleazar; Hernández, Pedro A.; Barrancos, José; Padilla, Germán; Rodríguez, Fátima; Calvo, David; Alonso, Mar
2016-04-01
Tenerife (2,034 km2), the largest of the Canary Islands, is the only island that has developed a central volcanic complex (Teide-Pico Viejo stratovolcanoes), characterized by the eruption of differentiated magmas. This central volcanic complex has been built in the intersection of the three major volcanic rift-zones of Tenerife, where most of the historical volcanic activity has taken place. The existence of a volcanic-hydrothermal system beneath Teide volcano is suggested by the occurrence of a weak fumarolic system, steamy ground and high rates of diffuse CO2 degassing all around the summit cone of Teide (Pérez et al., 2013). Diffuse emission studies of non-reactive and/or highly mobile gases such as helium have recently provided promising results to detect changes in the magmatic gas component at surface related to volcanic unrest episodes (Padrón et al., 2013). The geochemical properties of He minimize the interaction of this noble gas on its movement toward the earth's surface, and its isotopic composition is not affected by subsequent chemical reactions. It is highly mobile, chemically inert, physically stable, non-biogenic, sparingly soluble in water under ambient conditions, almost non-adsorbable, and highly diffusive with a diffusion coefficient ˜10 times that of CO2. As part of the geochemical monitoring program for the volcanic surveillance of Teide volcano, yearly surveys of diffuse He emission through the surface of the summit cone of Teide volcano have been performed since 2006. Soil He emission rate was measured yearly at ˜130 sampling sites selected in the surface environment of the summit cone of Teide volcano (Tenerife, Canary Islands), covering an area of ˜0.5 km2, assuming that He emission is governed by convection and diffusion. The distribution of the sampling sites was carefully chosen to homogeneously cover the target area, allowing the computation of the total He emission by sequential Gaussian simulation (sGs). Nine surveys have been carried out since 2006, showing an average emission rate of 8.0 kg/d. This value showed an anomalous increase up to 29 kg/d in the summer of 2010. The number of seismic events registered in and around Tenerife Island by the National Geographic Institute (IGN) reached also the highest value (1,176) in 2010. This excellent agreement between both times series suggest that the anomalous seismicity registered in 2010 was likely due to strain/stress changes caused by input of magmatic fluids beneath the central volcanic system of the island. These results suggest that monitoring of He degassing rates in oceanic volcanic islands is an excellent early warning geochemical precursory signal for volcanic unrest. References Padrón et al., 2013. Geology, DOI: 10.1130/G34027.1. Pérez et al., 2013. J. Geol. Soc., DOI: 10.1144/jgs2012-125.
Rye, Robert O.; Breit, George N.; Zimbelman, David R.
2003-01-01
About 5600 years ago part of Mount Rainier?s edifice collapsed with the resultant Osceola Mudflow traveling more than 120 km and covering an area of at least 505 km2. Mineralogic and stable isotope studies were conducted on altered rocks from outcrops near the summit and east flank of the volcano and samples of clasts and matrix from the Osceola Mudflow. Results of these analyses are used to constrain processes responsible for pre-collapse alteration and provide insight into the role of alteration in edifice instability prior to the Osceola collapse event. Jarosite, pyrite, alunite, and kaolinite occur in hydrothermally altered rock exposed in summit scarps formed by edifice collapse events and in altered rock within the east-west structural zone (EWSZ) of the volcano?s east flank. Deposits of the Osceola Mudflow contain clasts of variably altered and unaltered andesite within a clay-rich matrix. Minerals detected in samples from the edifice are also present in many of the clasts. The matrix includes abundant smectite, kaolinite and variably abundant jarosite. Hydrothermal fluid compositions calculated from hydrogen and oxygen isotope data of alunite, and smectite on Mount Rainier reflect mixing of magmatic and meteoric waters. The range in the dD values of modern meteoric water on the volcano (-85 to 155?) reflect the influence of elevation on the dD of precipitation. The d34S and d18OSO4 values of alunite, gypsum and jarosite are distinct but together range from 1.7 to 17.6? and -12.3 to 15.0?, respectively; both parameters increase from jarosite to gypsum to alunite. The variations in sulfur isotope composition are attributed to the varying contributions of disproportionation of magmatic SO2, the supergene oxidation of hydrothermal pyrite and possible oxidation of H2S to the parent aqueous sulfate. The 18OSO4 values of jarosite are the lowest recorded for the mineral, consistent with a supergene origin. The mineralogy and isotope composition of alteration minerals define two and possibly three environments of alteration. At deeper levels magmatic vapor, H2S, SO2 and other gases from venting magmas migrated upward and condensed into the meteoric water. Disproportionation of SO2 into aqueous sulfate and H2S resulted in acid-sulfate (alunite + kaolinite + pyrite) and related argillic and propylitic alteration envelopes in a magmatic hydrothermal environment. At shallow levels H2S reacted with andesite to form pyrite that is associated with smectite along fractures on both the flanks and upper edifice. It is not clear to what extent H2S was oxidized by atmospheric O2 to form aqueous sulfate in a steam-heated environment. Near the ground surface, pyrite is oxidized by atmospheric oxygen resulting in soluble iron-and aluminum-hydroxysulfates. These supergene hydroxysulfates, which may also form around fumaroles from the oxidation of H2S, are subject to continuous solution and redeposition.
Experimental and analytical study on fluid whirl and fluid whip modes
NASA Technical Reports Server (NTRS)
Muszynska, Agnes
1994-01-01
Fluid whirl and fluid whip are rotor self-excited, lateral vibrations which occur due to rotor interactions with the surrounding fluid. There exist various modes of fluid whirl and fluid whip. These modes are close to rotor modes corresponding to free vibrations (based on the linear model). Small differences are due to nonlinearities in the system. This paper presents experimental and analytical results on the lowest modes of fluid whirls and fluid whip. Examples of rotors supported in fluid lubricated bearings show the variations of rotor deflection amplitudes and phases in the whirl and whip modes with changes of rotative speeds and/or changes in lumped mass locations along the shaft.
Detection of contamination of municipal water distribution systems
Cooper, John F [Oakland, CA
2012-01-17
A system for the detection of contaminates of a fluid in a conduit. The conduit is part of a fluid distribution system. A chemical or biological sensor array is connected to the conduit. The sensor array produces an acoustic signal burst in the fluid upon detection of contaminates in the fluid. A supervisory control system connected to the fluid and operatively connected to the fluid distribution system signals the fluid distribution system upon detection of contaminates in the fluid.
Space Station fluid management logistics
NASA Technical Reports Server (NTRS)
Dominick, Sam M.
1990-01-01
Viewgraphs and discussion on space station fluid management logistics are presented. Topics covered include: fluid management logistics - issues for Space Station Freedom evolution; current fluid logistics approach; evolution of Space Station Freedom fluid resupply; launch vehicle evolution; ELV logistics system approach; logistics carrier configuration; expendable fluid/propellant carrier description; fluid carrier design concept; logistics carrier orbital operations; carrier operations at space station; summary/status of orbital fluid transfer techniques; Soviet progress tanker system; and Soviet propellant resupply system observations.
Malbrain, Manu L N G; Van Regenmortel, Niels; Saugel, Bernd; De Tavernier, Brecht; Van Gaal, Pieter-Jan; Joannes-Boyau, Olivier; Teboul, Jean-Louis; Rice, Todd W; Mythen, Monty; Monnet, Xavier
2018-05-22
In patients with septic shock, the administration of fluids during initial hemodynamic resuscitation remains a major therapeutic challenge. We are faced with many open questions regarding the type, dose and timing of intravenous fluid administration. There are only four major indications for intravenous fluid administration: aside from resuscitation, intravenous fluids have many other uses including maintenance and replacement of total body water and electrolytes, as carriers for medications and for parenteral nutrition. In this paradigm-shifting review, we discuss different fluid management strategies including early adequate goal-directed fluid management, late conservative fluid management and late goal-directed fluid removal. In addition, we expand on the concept of the "four D's" of fluid therapy, namely drug, dosing, duration and de-escalation. During the treatment of patients with septic shock, four phases of fluid therapy should be considered in order to provide answers to four basic questions. These four phases are the resuscitation phase, the optimization phase, the stabilization phase and the evacuation phase. The four questions are "When to start intravenous fluids?", "When to stop intravenous fluids?", "When to start de-resuscitation or active fluid removal?" and finally "When to stop de-resuscitation?" In analogy to the way we handle antibiotics in critically ill patients, it is time for fluid stewardship.
Fluids and sepsis: changing the paradigm of fluid therapy: a case report.
Hariyanto, Hori; Yahya, Corry Quando; Widiastuti, Monika; Wibowo, Primartanto; Tampubolon, Oloan Eduard
2017-02-04
Over the past 16 years, sepsis management has been guided by large-volume fluid administration to achieve certain hemodynamic optimization as advocated in the Rivers protocol. However, the safety of such practice has been questioned because large-volume fluid administration is associated with fluid overload and carries the worst outcome in patients with sepsis. Researchers in multiple studies have declared that using less fluid leads to increased survival, but they did not describe how to administer fluids in a timely and appropriate manner. An 86-year-old previously healthy Sundanese man was admitted to the intensive care unit at our institution with septic shock, acute kidney injury, and respiratory distress. Standard care was implemented during his initial care in the high-care unit; nevertheless, his condition worsened, and he was transferred to the intensive care unit. We describe the timing of fluid administration and elaborate on the amount of fluids needed using a conservative fluid regimen in a continuum of resuscitated sepsis. Because fluid depletion in septic shock is caused by capillary leak and pathologic vasoplegia, continuation of fluid administration will drive intravascular fluid into the interstitial space, thereby producing marked tissue edema and disrupting vital oxygenation. Thus, fluids have the power to heal or kill. Therefore, management of patients with sepsis should entail early vasopressors with adequate fluid resuscitation followed by a conservative fluid regimen.
Errors in fluid therapy in medical wards.
Mousavi, Maryam; Khalili, Hossein; Dashti-Khavidaki, Simin
2012-04-01
Intravenous fluid therapy remains an essential part of patients' care during hospitalization. There are only few studies that focused on fluid therapy in the hospitalized patients, and there is not any consensus statement about fluid therapy in patients who are hospitalized in medical wards. The aim of the present study was to assess intravenous fluid therapy status and related errors in the patients during the course of hospitalization in the infectious diseases wards of a referral teaching hospital. This study was conducted in the infectious diseases wards of Imam Khomeini Complex Hospital, Tehran, Iran. During a retrospective study, data related to intravenous fluid therapy were collected by two clinical pharmacists of infectious diseases from 2008 to 2010. Intravenous fluid therapy information including indication, type, volume and rate of fluid administration was recorded for each patient. An internal protocol for intravenous fluid therapy was designed based on literature review and available recommendations. The data related to patients' fluid therapy were compared with this protocol. The fluid therapy was considered appropriate if it was compatible with the protocol regarding indication of intravenous fluid therapy, type, electrolyte content and rate of fluid administration. Any mistake in the selection of fluid type, content, volume and rate of administration was considered as intravenous fluid therapy errors. Five hundred and ninety-six of medication errors were detected during the study period in the patients. Overall rate of fluid therapy errors was 1.3 numbers per patient during hospitalization. Errors in the rate of fluid administration (29.8%), incorrect fluid volume calculation (26.5%) and incorrect type of fluid selection (24.6%) were the most common types of errors. The patients' male sex, old age, baseline renal diseases, diabetes co-morbidity, and hospitalization due to endocarditis, HIV infection and sepsis are predisposing factors for the occurrence of fluid therapy errors in the patients. Our result showed that intravenous fluid therapy errors occurred commonly in the hospitalized patients especially in the medical wards. Improvement in knowledge and attention of health-care workers about these errors are essential for preventing of medication errors in aspect of fluid therapy.
Hydrostatic bearings for a turbine fluid flow metering device
Fincke, James R.
1982-01-01
A rotor assembly fluid metering device has been improved by development of a hydrostatic bearing fluid system which provides bearing fluid at a common pressure to rotor assembly bearing surfaces. The bearing fluid distribution system produces a uniform film of fluid between bearing surfaces and allows rapid replacement of bearing fluid between bearing surfaces, thereby minimizing bearing wear and corrosion.
Hydrostatic bearings for a turbine fluid flow metering device
Fincke, J.R.
1982-05-04
A rotor assembly fluid metering device has been improved by development of a hydrostatic bearing fluid system which provides bearing fluid at a common pressure to rotor assembly bearing surfaces. The bearing fluid distribution system produces a uniform film of fluid between bearing surfaces and allows rapid replacement of bearing fluid between bearing surfaces, thereby minimizing bearing wear and corrosion. 3 figs.
Effect of seven different additives on the properties of MR fluids
NASA Astrophysics Data System (ADS)
Zhang, J. Q.; Zhang, J.; Jing, Q.
2009-02-01
Magnetorheological (MR) fluids have been developed for application in semi-active magnetorheological fluid dampers and other magnetorheological fluid devices. In order to prepare special MR fluids to satisfy the demands of tracked vehicle, two different carrier fluids were chose to prepare MR fluids. Preparation of MR fluids, which are based on carriers such as special shock absorption fluid and 45# transformer oil, was finished. And characteristics of these samples were tested and analyzed. Results indicate, Tween-80 and Span-80 can improve sedimentary stability. Using 45# transformer oil instead of special shock absorption fluid as a carrier, the shear yield stress remains nearly invariable but the viscosity and the sedimentary stability are reduced. MR fluids with diameter of 2.73μm show better sedimentary stability than that of the MR fluids with diameter of 2.3μm, or 4.02μm. Stearic acid obviously improves sedimentary stability and off-state viscosity, but don't perform an obvious function on shear yield stress. In magnetic field of 237KA/m, the shear yield stress of MR fluid based on special shock absorption fluid and 45# transformer oil is 18.34KPa, 14.26KPa, respectively.
Battiste, Richard L.
2007-12-25
Methods and apparatus are described for characterizing the temporal-spatial properties of a dynamic fluid front within a mold space while the mold space is being filled with fluid. A method includes providing a mold defining a mold space and having one or more openings into the mold space; heating a plurality of temperature sensors that extend into the mold space; injecting a fluid into the mold space through the openings, the fluid experiencing a dynamic fluid front while filling the mold space with the fluid; and characterizing temporal-spatial properties of the dynamic fluid front by monitoring a temperature of each of the plurality of heated temperature sensors while the mold space is being filled with the fluid. An apparatus includes a mold defining a mold space; one or more openings for introducing a fluid into the mold space and filling the mold space with the fluid, the fluid experiencing a dynamic fluid front while filling the mold space; a plurality of heated temperature sensors extending into the mold space; and a computer coupled to the plurality of heated temperature sensors for characterizing the temporal-spatial properties of the dynamic fluid front.
Battiste, Richard L
2013-12-31
Methods and apparatus are described for characterizing the temporal-spatial properties of a dynamic fluid front within a mold space while the mold space is being filled with fluid. A method includes providing a mold defining a mold space and having one or more openings into the mold space; heating a plurality of temperature sensors that extend into the mold space; injecting a fluid into th emold space through the openings, the fluid experiencing a dynamic fluid front while filling the mold space with a fluid; and characterizing temporal-spatial properties of the dynamic fluid front by monitoring a termperature of each of the plurality of heated temperature sensors while the mold space is being filled with the fluid. An apparatus includes a mold defining a mold space; one or more openings for introducing a fluid into th emold space and filling the mold space with the fluid, the fluid experiencing a dynamic fluid front while filling the mold space; a plurality of heated temperature sensors extending into the mold space; and a computer coupled to the plurality of heated temperature sensors for characterizing the temporal-spatial properties of the dynamic fluid front.
Hydraulic engine valve actuation system including independent feedback control
Marriott, Craig D
2013-06-04
A hydraulic valve actuation assembly may include a housing, a piston, a supply control valve, a closing control valve, and an opening control valve. The housing may define a first fluid chamber, a second fluid chamber, and a third fluid chamber. The piston may be axially secured to an engine valve and located within the first, second and third fluid chambers. The supply control valve may control a hydraulic fluid supply to the piston. The closing control valve may be located between the supply control valve and the second fluid chamber and may control fluid flow from the second fluid chamber to the supply control valve. The opening control valve may be located between the supply control valve and the second fluid chamber and may control fluid flow from the supply control valve to the second fluid chamber.
NASA Technical Reports Server (NTRS)
Lurie, Boris J. (Inventor); Schier, J. Alan (Inventor); Iskenderian, Theodore C. (Inventor)
1991-01-01
An improved fluid actuating system for imparting motion to a body such as a spacecraft is disclosed. The fluid actuating system consists of a fluid mass that may be controllably accelerated through at least one fluid path whereby an opposite acceleration is experienced by the spacecraft. For full control of the spacecraft's orientation, the system would include a plurality of fluid paths. The fluid paths may be circular or irregular, and the fluid paths may be located on the interior or exterior of the spacecraft.
Fluorescent fluid interface position sensor
Weiss, Jonathan D.
2004-02-17
A new fluid interface position sensor has been developed, which is capable of optically determining the location of an interface between an upper fluid and a lower fluid, the upper fluid having a larger refractive index than a lower fluid. The sensor functions by measurement, of fluorescence excited by an optical pump beam which is confined within a fluorescent waveguide where that waveguide is in optical contact with the lower fluid, but escapes from the fluorescent waveguide where that waveguide is in optical contact with the upper fluid.
Liang, George
2010-10-26
A blade is provided for a gas turbine. The blade comprises a main body comprising a cooling fluid entrance channel; a cooling fluid collector in communication with the cooling fluid entrance channel; a plurality of side channels extending through an outer wall of the main body and communicating with the cooling fluid collector and a cooling fluid cavity; a cooling fluid exit channel communicating with the cooling fluid cavity; and a plurality of exit bores extending from the cooling fluid exit channel through the main body outer wall.
Thermal energy recycling fuel cell arrangement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanrahan, Paul R.
An example fuel cell arrangement includes a fuel cell stack configured to receive a supply fluid and to provide an exhaust fluid that has more thermal energy than the supply fluid. The arrangement also includes an ejector and a heat exchanger. The ejector is configured to direct at least some of the exhaust fluid into the supply fluid. The heat exchanger is configured to increase thermal energy in the supply fluid using at least some of the exhaust fluid that was not directed into the supply fluid.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winter, B.L.; Johnson, C.M.; Simo, J.A.
1995-04-03
The isotope (Sr and O) and elemental (Mg, Ca, Mn, Fe, and Sr) compositions of the various dolomites in the Middle Ordovician St. Peter Sandstone in the Michigan Basin are determined and the variations are modeled in terms of fluid-rock interaction or as mixing relations. These geochemical models, combined with the paragenetic sequence of the dolomites and late anhydrite cement, suggest the existence of at least four distinct diagenetic fluids in the St. Peter Sandstone during the paleozoic. Fluid 1 has a composition consistent with a modified older (pre-Middle Ordovician) seawater origin, which indicates that the flow path for thismore » fluid had a major upward component. This fluid resulted in the first and volumetrically most important burial dolomitization event, producing dolomite in both carbonate and quartz sandstone lithofacies in the St. Peter Sandstone. Fluid 2 has a composition consistent with a modified Middle to early Late Ordovician seawater origin, suggesting a major downward component for fluid flow. Fluid 2 produced dolomite cement in the carbonate lithofacies that postdates Fluid 1 dolomite. The composition of Fluid 3 is best interpreted to reflect a heated, deep basinal brine that had previously interacted with the K-feldspar-rich rocks near the Cambrian-Precambrian unconformity in the Michigan Basin, indicating a major upward component for fluid flow. Fluid 3 produced dolomite cement in quartz sandstone lithofacies that postdates Fluid 1 dolomite. Fluid 4 resulted in precipitation of late anhydrite in fractures. The {sup 87}Sr/{sup 86}Sr ratio of the anhydrite is consistent with Fluid 4 originating as a dilute fluid that interacted extensively with Silurian gypsum in the Michigan Basin; this indicates that the flow path of Fluid 4 had a major downward component.« less
NASA Astrophysics Data System (ADS)
Li, Zi; Galindo-Torres, Sergio; Yan, Guanxi; Scheuermann, Alexander; Li, Ling
2018-06-01
Simulations of simultaneous steady-state two-phase flow in the capillary force-dominated regime were conducted using the state-of-the-art Shan-Chen multi-component lattice Boltzmann model (SCMC-LBM) based on two-dimensional porous media. We focused on analyzing the fluid distribution (i.e., WP fluid-solid, NP fluid-solid and fluid-fluid interfacial areas) as well as the capillary pressure versus saturation curve which was affected by fluid and geometrical properties (i.e., wettability, adhesive strength, pore size distribution and specific surface area). How these properties influenced the relative permeability versus saturation relation through apparent effective permeability and threshold pressure gradient was also explored. The SCMC-LBM simulations showed that, a thin WP fluid film formed around the solid surface due to the adhesive fluid-solid interaction, resulting in discrete WP fluid distributions and reduction of the WP fluid mobility. Also, the adhesive interaction provided another source of capillary pressure in addition to capillary force, which, however, did not affect the mobility of the NP fluid. The film fluid effect could be enhanced by large adhesive strength and fine pores in heterogeneous porous media. In the steady-state infiltration, not only the NP fluid but also the WP fluid were subjected to the capillary resistance. The capillary pressure effect could be alleviated by decreased wettability, large average pore radius and improved fluid connectivity in heterogeneous porous media. The present work based on the SCMC-LBM investigations elucidated the role of film fluid as well as capillary pressure in the two-phase flow system. The findings have implications for ways to improve the macroscopic flow equation based on balance of force for the steady-state infiltration.
Kawamoto, Tatsuhiko; Kanzaki, Masami; Mibe, Kenji; Matsukage, Kyoko N; Ono, Shigeaki
2012-11-13
Subduction-zone magmatism is triggered by the addition of H(2)O-rich slab-derived components: aqueous fluid, hydrous partial melts, or supercritical fluids from the subducting slab. Geochemical analyses of island arc basalts suggest two slab-derived signatures of a melt and a fluid. These two liquids unite to a supercritical fluid under pressure and temperature conditions beyond a critical endpoint. We ascertain critical endpoints between aqueous fluids and sediment or high-Mg andesite (HMA) melts located, respectively, at 83-km and 92-km depths by using an in situ observation technique. These depths are within the mantle wedge underlying volcanic fronts, which are formed 90 to 200 km above subducting slabs. These data suggest that sediment-derived supercritical fluids, which are fed to the mantle wedge from the subducting slab, react with mantle peridotite to form HMA supercritical fluids. Such HMA supercritical fluids separate into aqueous fluids and HMA melts at 92 km depth during ascent. The aqueous fluids are fluxed into the asthenospheric mantle to form arc basalts, which are locally associated with HMAs in hot subduction zones. The separated HMA melts retain their composition in limited equilibrium with the surrounding mantle. Alternatively, they equilibrate with the surrounding mantle and change the major element chemistry to basaltic composition. However, trace element signatures of sediment-derived supercritical fluids remain more in the melt-derived magma than in the fluid-induced magma, which inherits only fluid-mobile elements from the sediment-derived supercritical fluids. Separation of slab-derived supercritical fluids into melts and aqueous fluids can elucidate the two slab-derived components observed in subduction zone magma chemistry.
Kawamoto, Tatsuhiko; Kanzaki, Masami; Mibe, Kenji; Ono, Shigeaki
2012-01-01
Subduction-zone magmatism is triggered by the addition of H2O-rich slab-derived components: aqueous fluid, hydrous partial melts, or supercritical fluids from the subducting slab. Geochemical analyses of island arc basalts suggest two slab-derived signatures of a melt and a fluid. These two liquids unite to a supercritical fluid under pressure and temperature conditions beyond a critical endpoint. We ascertain critical endpoints between aqueous fluids and sediment or high-Mg andesite (HMA) melts located, respectively, at 83-km and 92-km depths by using an in situ observation technique. These depths are within the mantle wedge underlying volcanic fronts, which are formed 90 to 200 km above subducting slabs. These data suggest that sediment-derived supercritical fluids, which are fed to the mantle wedge from the subducting slab, react with mantle peridotite to form HMA supercritical fluids. Such HMA supercritical fluids separate into aqueous fluids and HMA melts at 92 km depth during ascent. The aqueous fluids are fluxed into the asthenospheric mantle to form arc basalts, which are locally associated with HMAs in hot subduction zones. The separated HMA melts retain their composition in limited equilibrium with the surrounding mantle. Alternatively, they equilibrate with the surrounding mantle and change the major element chemistry to basaltic composition. However, trace element signatures of sediment-derived supercritical fluids remain more in the melt-derived magma than in the fluid-induced magma, which inherits only fluid-mobile elements from the sediment-derived supercritical fluids. Separation of slab-derived supercritical fluids into melts and aqueous fluids can elucidate the two slab-derived components observed in subduction zone magma chemistry. PMID:23112158
The partitioning of Fe, Ni, Cu, Pt, and Au between sulfide, metal, and fluid phases: A pilot study
NASA Astrophysics Data System (ADS)
Ballhaus, C.; Ryan, C. G.; Mernagh, T. P.; Green, D. H.
1994-01-01
This paper describes new experimental and analytical techniques to study element partitioning behavior between crystalline material and a late- to post-magmatic fluid phase. Samples of the fluid phase are isolated at experimental run conditions as synthetic fluid in quartz. Individual fluid inclusions are later analyzed for dissolved metals using Proton Induced X-ray Emission (PIXE). Back reactions between fluid and solid phases during quenching are prevented because the fluid is isolated at the experimental pressure, temperature ( P, T) conditions before quenching occurs. The technique is applied to study the partitioning of chalcophile elements (Fe, Ni, Cu, Pt and Au) between sulfide phases, metal alloys and supercritical SiO 2-NaCl-saturated H2O ± CH4- CO2- H2S fluids. Synthetic Ni-Cu-rich monosulfide solid solution (mss) doped with PtS or Au is packed in a quartz capsule and, together with a hydrogen buffer capsule and compounds to generate a fluid phase, welded shut in an outer Pt or Au metal capsule. The fluid phase is generated by combustion and reaction of various C-H-O fluid components during heating. Depending on capsule material and sample composition, the run products consist of platiniferous or auriferous mss, Pt-Fe, or ( Au, Cu) alloy phases, PtS, Fe 3O 4, sometimes a Cu-rich sulfide melt, and a fluid phase. Samples of the fluid are trapped in the walls of the quartz sample capsule as polyphase fluid inclusions. All phases are now available for analysis: fluid speciation is analyzed by piercing the outer metal capsule under vacuum and feeding the released fluid into a mass spectrometer. Phases and components within fluid inclusions are identified with Raman spectroscopy. Platinum and gold in solid solution in mss are determined with a CAMECA SX50 electron microanalyser. Metal contents trapped in selected fluid inclusions are determined quantitatively by in situ analysis with a proton microprobe using PIXE and a correction procedure specifically developed for quantitative fluid inclusion analysis. Initial results of metal solubilities in the fluid are as follows. Iron decreases from above 6,000 ppm under reduced conditions in the presence of H 2S in the fluid, to less than 1,000 ppm if hematite is stable in the crystalline run product. Copper and gold concentrations in the fluid range from about 600 to over 1200 and from 150 to about 270 ppm, respectively. The solubilities of these two metals in NaCl-saturated fluids are apparently independent of fluid speciations covered here. Nickel is mostly below detection limit (<10 ppm) and apparently poorly soluble in high-temperature fluid phases. Platinum concentrations in fluid inclusions are highly variable even among fluid inclusions of single runs, possibly because Pt tends to form multi-atom complexes in fluid phases.
Human body fluid proteome analysis
Hu, Shen; Loo, Joseph A.; Wong, David T.
2010-01-01
The focus of this article is to review the recent advances in proteome analysis of human body fluids, including plasma/serum, urine, cerebrospinal fluid, saliva, bronchoalveolar lavage fluid, synovial fluid, nipple aspirate fluid, tear fluid, and amniotic fluid, as well as its applications to human disease biomarker discovery. We aim to summarize the proteomics technologies currently used for global identification and quantification of body fluid proteins, and elaborate the putative biomarkers discovered for a variety of human diseases through human body fluid proteome (HBFP) analysis. Some critical concerns and perspectives in this emerging field are also discussed. With the advances made in proteomics technologies, the impact of HBFP analysis in the search for clinically relevant disease biomarkers would be realized in the future. PMID:17083142
Human body fluid proteome analysis.
Hu, Shen; Loo, Joseph A; Wong, David T
2006-12-01
The focus of this article is to review the recent advances in proteome analysis of human body fluids, including plasma/serum, urine, cerebrospinal fluid, saliva, bronchoalveolar lavage fluid, synovial fluid, nipple aspirate fluid, tear fluid, and amniotic fluid, as well as its applications to human disease biomarker discovery. We aim to summarize the proteomics technologies currently used for global identification and quantification of body fluid proteins, and elaborate the putative biomarkers discovered for a variety of human diseases through human body fluid proteome (HBFP) analysis. Some critical concerns and perspectives in this emerging field are also discussed. With the advances made in proteomics technologies, the impact of HBFP analysis in the search for clinically relevant disease biomarkers would be realized in the future.