Hill, Matthew N.; Kumar, Shobha Anil; Filipski, Sarah B.; Iverson, Moriah; Stuhr, Kara L.; Keith, John M.; Cravatt, Benjamin F.; Hillard, Cecilia J.; Chattarji, Sumantra; McEwen, Bruce S.
2014-01-01
Hyperactivation of the amygdala following chronic stress is believed to be one of the primary mechanisms underlying the increased propensity for anxiety-like behaviors and pathological states; however, the mechanisms by which chronic stress modulates amygdalar function are not well characterized. The aim of the current study was to determine the extent to which the endocannabinoid system, which is known to regulate emotional behavior and neuroplasticity, contributes to changes in amygdalar structure and function following chronic stress. To examine the hypothesis, we have exposed C57/Bl6 mice to chronic restraint stress which results in an increase in fatty acid amide hydrolase (FAAH) activity and a reduction in the concentration of the endocannabinoid N-arachidonylethanolamine (AEA) within the amygdala. Chronic restraint stress also increased dendritic arborization, complexity and spine density of pyramidal neurons in the basolateral nucleus of the amygdala (BLA) and increased anxiety-like behavior in wild-type mice. All of the stress-induced changes in amygdalar structure and function were absent in mice deficient in FAAH. Further, the anti-anxiety effect of FAAH deletion was recapitulated in rats treated orally with a novel pharmacological inhibitor of FAAH, JNJ5003 (50 mg/kg/day), during exposure to chronic stress. These studies suggest that FAAH is required for chronic stress to induce hyperactivity and structural remodeling of the amygdala. Collectively, these studies indicate that FAAH-mediated decreases in AEA occur following chronic stress and that this loss of AEA signaling is functionally relevant to the effects of chronic stress. These data support the hypothesis that inhibition of FAAH has therapeutic potential in the treatment of anxiety disorders, possibly by maintaining normal amygdalar function in the face of chronic stress. PMID:22776900
Negrón-Oyarzo, Ignacio; Aboitiz, Francisco; Fuentealba, Pablo
2016-01-01
Chronic stress-related psychiatric diseases, such as major depression, posttraumatic stress disorder, and schizophrenia, are characterized by a maladaptive organization of behavioral responses that strongly affect the well-being of patients. Current evidence suggests that a functional impairment of the prefrontal cortex (PFC) is implicated in the pathophysiology of these diseases. Therefore, chronic stress may impair PFC functions required for the adaptive orchestration of behavioral responses. In the present review, we integrate evidence obtained from cognitive neuroscience with neurophysiological research with animal models, to put forward a hypothesis that addresses stress-induced behavioral dysfunctions observed in stress-related neuropsychiatric disorders. We propose that chronic stress impairs mechanisms involved in neuronal functional connectivity in the PFC that are required for the formation of adaptive representations for the execution of adaptive behavioral responses. These considerations could be particularly relevant for understanding the pathophysiology of chronic stress-related neuropsychiatric disorders. PMID:26904302
Subacute stress and chronic stress interact to decrease intestinal barrier function in rats.
Lauffer, Adriana; Vanuytsel, Tim; Vanormelingen, Christophe; Vanheel, Hanne; Salim Rasoel, Shadea; Tóth, Joran; Tack, Jan; Fornari, Fernando; Farré, Ricard
2016-01-01
Psychological stress increases intestinal permeability, potentially leading to low-grade inflammation and symptoms in functional gastrointestinal disorders. We assessed the effect of subacute, chronic and combined stress on intestinal barrier function and mast cell density. Male Wistar rats were allocated to four experimental groups (n = 8/group): 1/sham; 2/subacute stress (isolation and limited movement for 24 h); 3/chronic crowding stress for 14 days and 4/combined subacute and chronic stress. Jejunum and colon were collected to measure: transepithelial electrical resistance (TEER; a measure of epithelial barrier function); gene expression of tight junction molecules; mast cell density. Plasma corticosterone concentration was increased in all three stress conditions versus sham, with highest concentrations in the combined stress condition. TEER in the jejunum was decreased in all stress conditions, but was significantly lower in the combined stress condition than in the other groups. TEER in the jejunum correlated negatively with corticosterone concentration. Increased expression of claudin 1, 5 and 8, occludin and zonula occludens 1 mRNAs was detected after subacute stress in the jejunum. In contrast, colonic TEER was decreased only after combined stress, and the expression of tight junction molecules was unaltered. Increased mast cell density was observed in the chronic and combined stress condition in the colon only. In conclusion, our data show that chronic stress sensitizes the gastrointestinal tract to the effects of subacute stress on intestinal barrier function; different underlying cellular and molecular alterations are indicated in the small intestine versus the colon.
Chronic stress and neural function: accounting for sex and age.
Luine, V N; Beck, K D; Bowman, R E; Frankfurt, M; Maclusky, N J
2007-10-01
Cognitive responses to stress follow the temporally dependent pattern originally established by Selye (1) wherein short-term stressors elicit adaptive responses whereas continued stress (chronic) results in maladaptive changes--deleterious effects on physiological systems and impaired cognition. However, this pattern for cognitive effects appears to apply to only half the population (males) and, more specifically, to young, adult males. Females show different cognitive responses to stress. In contrast to impaired cognition in males after chronic stress, female rodents show enhanced performance on the same memory tasks after the same stress. Not only cognition, but anxiety, shows sex-dependent changes following chronic stress--stress is anxiolytic in males and anxiogenic in females. Moreover, behavioral responses to chronic stress are different in developing as well as aging subjects (both sexes) as compared to adults. In aged rats, chronic stress enhances recognition memory in both sexes, does not alter spatial memory, and anxiety effects are opposite to young adults. When pregnant dams are exposed to chronic stress, at adulthood the offspring display yet different consequences of stress on anxiety and cognition, and, in contrast to adulthood when the behavioral effects of stress are reversible, prenatal stress effects appear enduring. Changing levels of estradiol in the sexes over the lifespan appear to contribute to the differences in response to stress. Thus, theories of stress dependent modulations in CNS function--developed solely in male models, focused on peripheral physiological processes and tested in adults--may require revision when applied to a more diverse population (age- and sex-wise) at least in relation to the neural functions of cognition and anxiety. Moreover, these results suggest that other stressors and neural functions should be investigated to determine whether age, sex and gonadal hormones also have an impact.
Alamo, Ines G.; Kannan, Kolenkode B.; Ramos, Harry; Loftus, Tyler J.; Efron, Philip A.; Mohr, Alicia M.
2016-01-01
Background Propranolol has been shown previously to restore bone marrow function and improve anemia after lung contusion/hemorrhagic shock. We hypothesized that daily clonidine administration would inhibit central sympathetic outflow and restore bone marrow function in our rodent model of lung contusion/hemorrhagic shock with chronic stress. Methods Male Sprague-Dawley rats underwent six days of restraint stress after lung contusion/hemorrhagic shock during which the animals received clonidine (75μg/kg) after the restraint stress. On post-injury day seven, we assessed urine norepinephrine, blood hemoglobin, plasma granulocyte colony stimulating factor (G-CSF), and peripheral blood mobilization of hematopoietic progenitor cells (HPC), as well as bone marrow cellularity and erythroid progenitor cell growth. Results The addition of clonidine to lung contusion/hemorrhagic shock with chronic restraint stress, significantly decreased urine norepinephrine levels, improved bone marrow cellularity, restored erythroid progenitor colony growth, and improved hemoglobin (14.1±0.6 vs. 10.8±0.6 g/dL). The addition of clonidine to lung contusion/hemorrhagic shock with chronic restraint stress significantly decreased HPC mobilization and restored G-CSF levels. Conclusions After lung contusion/hemorrhagic shock with chronic restraint stress, daily administration of clonidine restored bone marrow function and improved anemia. Alleviating chronic stress and decreasing norepinephrine is a key therapeutic target to improve bone marrow function after severe injury. PMID:27742030
Immune Dysregulation and Chronic Stress Among Older Adults: A Review
Gouin, Jean-Philippe; Hantsoo, Liisa; Kiecolt-Glaser, Janice K.
2009-01-01
Aging is associated with a natural dysregulation in immune functioning which may be amplified when it occurs in the context of chronic stress. Family dementia caregiving provides an excellent model to study the impact of chronic stress on immune functioning among older individuals. Empirical data suggest that the stress of caregiving dysregulate multiple components of innate and adaptive immunity. Elderly caregivers have poorer responses to vaccines, impaired control of latent viruses, exaggerated production of inflammatory mediators, and accelerated cellular aging, compared to noncaregiving older adults. The chronic stress-induced immune dysregulation observed among older caregivers appear to be of sufficient magnitude to impact health. Furthermore, evidence suggests that chronic stress lead to premature aging of the immune system. PMID:19047802
Covassin, Tracey; Bay, Esther
2012-06-01
Research is inconclusive on whether gender differences exist in cognitive function in persons who sustain a mild-to-moderate traumatic brain injury (TBI). Furthermore, it is also unclear whether there is a relationship between chronic stress and cognitive function in these persons. The purpose of this integrative review is to determine whether gender differences exist in cognitive function, neurobehavioral symptoms, and chronic stress levels after a mild-to-moderate TBI. Participants (n = 72) were recruited from eight outpatient rehabilitation centers. Participants completed the demographic questions, the Immediate Postconcussion Assessment Cognitive Testing neurocognitive test battery, the Perceived Stress Scale-14, and the Neurobehavioral Functioning Inventory (NFI). Gender differences were present on verbal memory composite scores (p = .033), with women performing worse than men. There were no other between-gender differences on cognitive tasks, neurobehavioral symptoms, or chronic stress. Higher chronic stress levels result in a decrease in verbal memory (p = .015) and motor processing speed (p = .006) and slower reaction time (p = .007) for women. As male NFI cognition scores increased, motor processing speed scores decreased (p = .012) and reaction time got slower (p = .019), whereas women exhibited decreased verbal memory (p = .017) and slower reaction time (p = .034). As NFI motor symptoms increased, men exhibited decreased verbal memory (p = .005), visual memory (p = .002), and motor processing speed (p = .002) and slower reaction time (p = .002). Overall, this study only found gender differences on verbal memory composite scores, whereas the remaining cognitive tasks, neurobehavioral symptoms, and chronic stress did not indicate gender differences. Correlations between chronic stress, neurobehavioral symptoms, and cognitive function differed in both men and women with TBI. Persons in the chronic phase of recovery from a TBI may benefit from training in compensatory strategies for verbal memory deficits and stress management.
Hamner, Taralee; Latzman, Robert D; Latzman, Natasha E; Elkin, T David; Majumdar, Suvankar
2015-07-01
Pediatric cancer is associated with a host of negative psychosocial consequences; however, outcomes vary extensively suggesting a need to better understand this variation. Empirical research suggests a positive association between time since diagnosis (TSD) and Quality of Life (QoL). In addition to TSD, family stressors have been found to be particularly important in predicting QoL among children. The current study examined parental chronic stress beyond TSD in explanation of QoL functioning among a sample of pediatric patients with cancer. Participants included 43 pediatric patients aged 5-18 years (M(age) = 10.2 ± 3.6) who were undergoing oncological treatment. Parents reported on TSD, child's QoL, and their own chronic stress. TSD was associated with greater physical functioning (r = 0.30, P < 0.05). Parental chronic stress was associated with poorer emotional (r = -0.54, P < 0.01), physical (r = -0.41, P < 0.01), and social functioning (r = -0.44, P < 0.01). Further, hierarchal linear regression analyzes indicated parental chronic stress contributed incrementally beyond TSD in the explanation of physical (β = -0.37, t = -2.58, P < 0.01), emotional (β = -0.47, t = -3.51, P < 0.00), and social functioning (β = -0.38, t = -2.67, P < 0.01). Parental chronic stress is associated with reduced levels of emotional, physical, and social functioning among pediatric patients. Future research is needed to further investigate the process by which chronic stress within the family interferes with adaptive coping among pediatric patients. In addition, clinical services may benefit from increased consideration of family factors, such as parental chronic stress, during oncological treatment. © 2015 Wiley Periodicals, Inc.
Alamo, Ines G; Kannan, Kolenkode B; Ramos, Harry; Loftus, Tyler J; Efron, Philip A; Mohr, Alicia M
2017-03-01
Propranolol has been shown previously to restore bone marrow function and improve anemia after lung contusion/hemorrhagic shock. We hypothesized that daily clonidine administration would inhibit central sympathetic outflow and restore bone marrow function in our rodent model of lung contusion/hemorrhagic shock with chronic stress. Male Sprague-Dawley rats underwent 6 days of restraint stress after lung contusion/hemorrhagic shock during which the animals received clonidine (75 μg/kg) after the restraint stress. On postinjury day 7, we assessed urine norepinephrine, blood hemoglobin, plasma granulocyte colony stimulating factor, and peripheral blood mobilization of hematopoietic progenitor cells, as well as bone marrow cellularity and erythroid progenitor cell growth. The addition of clonidine to lung contusion/hemorrhagic shock with chronic restraint stress significantly decreased urine norepinephrine levels, improved bone marrow cellularity, restored erythroid progenitor colony growth, and improved hemoglobin (14.1 ± 0.6 vs 10.8 ± 0.6 g/dL). The addition of clonidine to lung contusion/hemorrhagic shock with chronic restraint stress significantly decreased hematopoietic progenitor cells mobilization and restored granulocyte colony stimulating factor levels. After lung contusion/hemorrhagic shock with chronic restraint stress, daily administration of clonidine restored bone marrow function and improved anemia. Alleviating chronic stress and decreasing norepinephrine is a key therapeutic target to improve bone marrow function after severe injury. Copyright © 2016 Elsevier Inc. All rights reserved.
USDA-ARS?s Scientific Manuscript database
This study investigated the effects of acute and chronic stress models on the functional capacity of blood neutrophils in beef steers. Steers (N=32; 209 +/- 8 kg) were blocked by BW and assigned to 1 of 3 treatments: 1) Control (CON), no dexamethasone (DEX); 2) Chronic stress (CHR), 0.5 mg/kg BW DEX...
Chronic stress disrupts neural coherence between cortico-limbic structures.
Oliveira, João Filipe; Dias, Nuno Sérgio; Correia, Mariana; Gama-Pereira, Filipa; Sardinha, Vanessa Morais; Lima, Ana; Oliveira, Ana Filipa; Jacinto, Luís Ricardo; Ferreira, Daniela Silva; Silva, Ana Maria; Reis, Joana Santos; Cerqueira, João José; Sousa, Nuno
2013-01-01
Chronic stress impairs cognitive function, namely on tasks that rely on the integrity of cortico-limbic networks. To unravel the functional impact of progressive stress in cortico-limbic networks we measured neural activity and spectral coherences between the ventral hippocampus (vHIP) and the medial prefrontal cortex (mPFC) in rats subjected to short term stress (STS) and chronic unpredictable stress (CUS). CUS exposure consistently disrupted the spectral coherence between both areas for a wide range of frequencies, whereas STS exposure failed to trigger such effect. The chronic stress-induced coherence decrease correlated inversely with the vHIP power spectrum, but not with the mPFC power spectrum, which supports the view that hippocampal dysfunction is the primary event after stress exposure. Importantly, we additionally show that the variations in vHIP-to-mPFC coherence and power spectrum in the vHIP correlated with stress-induced behavioral deficits in a spatial reference memory task. Altogether, these findings result in an innovative readout to measure, and follow, the functional events that underlie the stress-induced reference memory impairments.
Physiological and functional consequences of caregiving for relatives with dementia
Fonareva, Irina; Oken, Barry S.
2014-01-01
Background Chronic stress negatively affects health and well-being. A growing population of informal dementia caregivers experience chronic stress associated with extraordinary demands of caring for a relative with dementia. This review summarizes physiological and functional changes due to chronic dementia caregiver stress. Methods A literature search for papers assessing effects of dementia caregiving was conducted focusing on publications evaluating differences between caregivers and non-caregivers in objective measures of health and cognition. Results The review identified 37 studies describing data from 4145 participants including 749 dementia caregivers and 3396 non-caregiver peers. Objective outcome measures affected in dementia caregivers included markers of dyscoagulation, inflammation, and cell aging as well as measures of immune function, sleep, and cognition. Though diverse in designs, samples, and study quality, the majority of the studies indicated increased vulnerability of dementia caregivers to detrimental changes in health and cognition. Demographic and personality characteristics moderating or mediating effects of chronic stress in caregivers were also reviewed. Conclusions There is accumulating evidence that chronic dementia caregiver stress increases their vulnerability to disease and diminishes their ability to provide optimal care. Clinicians and society need to appreciate the extent of deleterious effects of chronic stress on dementia caregiver health. PMID:24507463
Chronic stress effects on working memory: association with prefrontal cortical tyrosine hydroxylase.
Lee, Young-A; Goto, Yukiori
2015-06-01
Chronic stress causes deficits in cognitive function including working memory, for which transmission of such catecholamines as dopamine and noradrenaline transmission in the prefrontal cortex (PFC) are crucial. Since catecholamine synthesis depends on the rate-limiting enzyme, tyrosine hydroxylase (TH), TH is thought to play an important role in PFC function. In this study, we found that two distinct population existed in Sprague-Dawley rats in terms of working memory capacity, one with higher working memory capacity, and the other with low capacity. This distinction of working memory capacity became apparent after rats were exposed to chronic stress. In addition, such working memory capacity and alterations of working memory function by chronic stress were associated with TH expression in the PFC. Copyright © 2015 Elsevier B.V. All rights reserved.
Leuner, Benedetta; Fredericks, Peter J.; Nealer, Connor; Albin-Brooks, Christopher
2014-01-01
Postpartum depression, which affects approximately 15% of new mothers, is associated with impaired mother-infant interactions and deficits in cognitive function. Exposure to stress during pregnancy is a major risk factor for postpartum depression. However, little is known about the neural consequences of gestational stress. The medial prefrontal cortex (mPFC) is a brain region that has been linked to stress, cognition, maternal care, and mood disorders including postpartum depression. Here we examined the effects of chronic gestational stress on mPFC function and whether these effects might be linked to structural modifications in the mPFC. We found that in postpartum rats, chronic gestational stress resulted in maternal care deficits, increased depressive-like behavior, and impaired performance on an attentional set shifting task that relies on the mPFC. Furthermore, exposure to chronic stress during pregnancy reduced dendritic spine density on mPFC pyramidal neurons and altered spine morphology. Taken together, these findings suggest that pregnancy stress may contribute to postpartum mental illness and its associated symptoms by compromising structural plasticity in the mPFC. PMID:24594708
Psychoneuroimmunology-developments in stress research.
Straub, Rainer H; Cutolo, Maurizio
2018-03-01
Links between the central nervous stress system and peripheral immune cells in lymphoid organs have been detailed through 50 years of intensive research. The brain can interfere with the immune system, where chronic psychological stress inhibits many functions of the immune system. On the other hand, chronic peripheral inflammation-whether mild (during aging and psychological stress) or severe (chronic inflammatory diseases)-clearly interferes with brain function, leading to disease sequelae like fatigue but also to overt psychiatric illness. In recent years, it has been observed that psychological stress can be disease permissive, as in chronic inflammatory diseases, cancer, cardiovascular diseases, acute and chronic viral infections, sepsis, asthma, and others. We recognized that stress reactivity is programmed for a lifetime during a critical period between fetal life and early childhood, which then influences stress behavior and stress responses in adulthood. First phase II clinical studies, e.g., on cognitive behavioral therapy and mind-body therapies (e. g., mindfulness-based stress reduction), are available that show some benefits in stressful human diseases such as breast cancer and others. The field of psychoneuroimmunology has reached a firm ground and invites therapeutic approaches based on Good Clinical Practice phase III multicenter randomized controlled trials to influence stress responses and outcome in chronic illness.
Behavioral stress alters corticolimbic microglia in a sex- and brain region-specific manner.
Bollinger, Justin L; Collins, Kaitlyn E; Patel, Rushi; Wellman, Cara L
2017-01-01
Women are more susceptible to numerous stress-linked psychological disorders (e.g., depression) characterized by dysfunction of corticolimbic brain regions critical for emotion regulation and cognitive function. Although sparsely investigated, a number of studies indicate sex differences in stress effects on neuronal structure, function, and behaviors associated with these regions. We recently demonstrated a basal sex difference in- and differential effects of stress on- microglial activation in medial prefrontal cortex (mPFC). The resident immune cells of the brain, microglia are implicated in synaptic and dendritic plasticity, and cognitive-behavioral function. Here, we examined the effects of acute (3h/day, 1 day) and chronic (3h/day, 10 days) restraint stress on microglial density and morphology, as well as immune factor expression in orbitofrontal cortex (OFC), basolateral amygdala (BLA), and dorsal hippocampus (DHC) in male and female rats. Microglia were visualized, classified based on their morphology, and stereologically counted. Microglia-associated transcripts (CD40, iNOS, Arg1, CX3CL1, CX3CR1, CD200, and CD200R) were assessed in brain punches from each region. Expression of genes linked with cellular stress, neuroimmune state, and neuron-microglia communication varied between unstressed male and female rats in a region-specific manner. In OFC, chronic stress upregulated a wider variety of immune factors in females than in males. Acute stress increased microglia-associated transcripts in BLA in males, whereas chronic stress altered immune factor expression in BLA more broadly in females. In DHC, chronic stress increased immune factor expression in males but not females. Moreover, acute and chronic stress differentially affected microglial morphological activation state in male and female rats across all brain regions investigated. In males, chronic stress altered microglial activation in a pattern consistent with microglial involvement in stress-induced dendritic remodeling across OFC, BLA, and DHC. Together, these data suggest the potential for microglia-mediated sex differences in stress effects on neural structure, function, and behavior.
Behavioral stress alters corticolimbic microglia in a sex- and brain region-specific manner
Bollinger, Justin L.; Collins, Kaitlyn E.; Patel, Rushi
2017-01-01
Women are more susceptible to numerous stress-linked psychological disorders (e.g., depression) characterized by dysfunction of corticolimbic brain regions critical for emotion regulation and cognitive function. Although sparsely investigated, a number of studies indicate sex differences in stress effects on neuronal structure, function, and behaviors associated with these regions. We recently demonstrated a basal sex difference in- and differential effects of stress on- microglial activation in medial prefrontal cortex (mPFC). The resident immune cells of the brain, microglia are implicated in synaptic and dendritic plasticity, and cognitive-behavioral function. Here, we examined the effects of acute (3h/day, 1 day) and chronic (3h/day, 10 days) restraint stress on microglial density and morphology, as well as immune factor expression in orbitofrontal cortex (OFC), basolateral amygdala (BLA), and dorsal hippocampus (DHC) in male and female rats. Microglia were visualized, classified based on their morphology, and stereologically counted. Microglia-associated transcripts (CD40, iNOS, Arg1, CX3CL1, CX3CR1, CD200, and CD200R) were assessed in brain punches from each region. Expression of genes linked with cellular stress, neuroimmune state, and neuron-microglia communication varied between unstressed male and female rats in a region-specific manner. In OFC, chronic stress upregulated a wider variety of immune factors in females than in males. Acute stress increased microglia-associated transcripts in BLA in males, whereas chronic stress altered immune factor expression in BLA more broadly in females. In DHC, chronic stress increased immune factor expression in males but not females. Moreover, acute and chronic stress differentially affected microglial morphological activation state in male and female rats across all brain regions investigated. In males, chronic stress altered microglial activation in a pattern consistent with microglial involvement in stress-induced dendritic remodeling across OFC, BLA, and DHC. Together, these data suggest the potential for microglia-mediated sex differences in stress effects on neural structure, function, and behavior. PMID:29194444
Golkar, Armita; Johansson, Emilia; Kasahara, Maki; Osika, Walter; Perski, Aleksander; Savic, Ivanka
2014-01-01
Despite mounting reports about the negative effects of chronic occupational stress on cognitive and emotional functions, the underlying mechanisms are unknown. Recent findings from structural MRI raise the question whether this condition could be associated with a functional uncoupling of the limbic networks and an impaired modulation of emotional stress. To address this, 40 subjects suffering from burnout symptoms attributed to chronic occupational stress and 70 controls were investigated using resting state functional MRI. The participants' ability to up- regulate, down-regulate, and maintain emotion was evaluated by recording their acoustic startle response while viewing neutral and negatively loaded images. Functional connectivity was calculated from amygdala seed regions, using explorative linear correlation analysis. Stressed subjects were less capable of down-regulating negative emotion, but had normal acoustic startle responses when asked to up-regulate or maintain emotion and when no regulation was required. The functional connectivity between the amygdala and the anterior cingulate cortex correlated with the ability to down-regulate negative emotion. This connectivity was significantly weaker in the burnout group, as was the amygdala connectivity with the dorsolateral prefrontal cortex and the motor cortex, whereas connectivity from the amygdala to the cerebellum and the insular cortex were stronger. In subjects suffering from chronic occupational stress, the functional couplings within the emotion- and stress-processing limbic networks seem to be altered, and associated with a reduced ability to down-regulate the response to emotional stress, providing a biological substrate for a further facilitation of the stress condition. PMID:25184294
Protective effect of exercise and sildenafil on acute stress and cognitive function.
Ozbeyli, Dilek; Gokalp, Ayse Gizem; Koral, Tolga; Ocal, Onur Yuksel; Dogan, Berkay; Akakin, Dilek; Yuksel, Meral; Kasimay, Ozgur
2015-11-01
There are contradictory results about the effects of exercise and sildenafil on cognitive functions. To investigate the effects of sildenafil pretreatment and chronic exercise on anxiety and cognitive functions. Wistar rats (n=42) were divided as sedentary and exercise groups. A moderate-intensity swimming exercise was performed for 6 weeks, 5 days/week, 1h/day. Some of the rats were administered orogastrically with sildenafil (25mg/kg/day) either acutely or chronically. Exposure to cat odor was used for induction of stress. The level of anxiety was evaluated by elevated plus maze test, while object recognition test was used to determine cognitive functions. Brain tissues were removed for the measurement of myeloperoxidase (MPO), malondialdehyde (MDA), nitric oxide levels, lucigenin-enhanced chemiluminescence, and for histological analysis. Increased MPO and MDA levels in sedentary-stressed rats were decreased with sildenafil applications. Chronic exercise inhibited the increase in MPO levels. Increased nitric oxide and lucigenin chemiluminescence levels in sedentary-stressed rats, were diminished with chronic sildenafil pretreatment. The time spent in the open arms of the plus maze was declined in sedentary-stressed rats, while chronic sildenafil pretreatment increased the time back to that in non-stressed rats. Acute sildenafil application to exercised rats prolonged the time spent in open arms as compared to non-treated exercise group. The time spent with the novel object, which was decreased in sedentary-stressed rats, was increased with sildenafil pretreatment. Our results suggest that sildenafil pretreatment or exercise exerts a protective effect against acute stress and improves cognitive functions by decreasing oxidative damage. Copyright © 2015 Elsevier Inc. All rights reserved.
Family-School Strategies for Responding to the Needs of Children Experiencing Chronic Stress
ERIC Educational Resources Information Center
Swick, Kevin J.; Knopf, Herman; Williams, Reginald; Fields, M. Evelyn
2013-01-01
Children experience chronic stress in ways that can impair their brain functioning and overall development. This article articulates the unique needs of children experiencing chronic stress and discusses strategies that families and schools can use to support and strengthen children's development across the social, emotional, and cognitive domains.
Jin, Lu E
2011-12-01
Our brain is sensitive to stress. Both acute and chronic stress cause cognitive deficits and induce chronic disorders such as drug addiction. In a June 2011 conference at Yale entitled "The Science of Stress: Focus on the Brain, Breaking Bad Habits, and Chronic Disease," Drs. Amy Arnsten and Sherry Mckee discussed the roles of prefrontal cortex in the treatment of stress impairments and addiction. Medications to strengthen the prefrontal function, such as prazosin and guanfacine, may reduce the harm of stress and help overcome smoking and alcohol abuse.
Grekin, Emily R; Brennan, Patricia A; Hammen, Constance
2005-01-01
This study examines the relationship between parental alcohol use disorders (AUDs) and child violent and nonviolent delinquency. It also explores the mediating effects of executive functioning and chronic family stress on the parental AUD/child delinquency relationship. Participants were 816 families with children (414 boys and 402 girls) born between 1981 and 1984 at Mater Misericordiae Mother's Hospital in Brisbane, Australia. Parents and children completed semistructured interviews, questionnaires and neuropsychological tests that assessed parental alcohol use, family psychiatric history, chronic family stress, child delinquency and child executive functioning. Paternal (but not maternal) AUDs predicted child violent and nonviolent delinquency. Executive functioning mediated the relationship between paternal AUDs and violent delinquency, whereas family stress mediated the relationship between paternal AUDs and both violent and nonviolent delinquency. Results support a biosocial conceptualization of the paternal AUD/delinquency relationship. They suggest that paternal AUDs may be associated with child executive functioning and family stress, which may in turn lead to child delinquency.
Effects of acute and chronic psychological stress on platelet aggregation in mice.
Matsuhisa, Fumikazu; Kitamura, Nobuo; Satoh, Eiki
2014-03-01
Although psychological stress has long been known to alter cardiovascular function, there have been few studies on the effect of psychological stress on platelets, which play a pivotal role in cardiovascular disease. In the present study, we investigated the effects of acute and chronic psychological stress on the aggregation of platelets and platelet cytosolic free calcium concentration ([Ca(2+)]i). Mice were subjected to both transportation stress (exposure to novel environment, psychological stress) and restraint stress (psychological stress) for 2 h (acute stress) or 3 weeks (2 h/day) (chronic stress). In addition, adrenalectomized mice were subjected to similar chronic stress (both transportation and restraint stress for 3 weeks). The aggregation of platelets from mice and [Ca(2+)]i was determined by light transmission assay and fura-2 fluorescence assay, respectively. Although acute stress had no effect on agonist-induced platelet aggregation, chronic stress enhanced the ability of the platelet agonists thrombin and ADP to stimulate platelet aggregation. However, chronic stress failed to enhance agonist-induced increase in [Ca(2+)]i. Adrenalectomy blocked chronic stress-induced enhancement of platelet aggregation. These results suggest that chronic, but not acute, psychological stress enhances agonist-stimulated platelet aggregation independently of [Ca(2+)]i increase, and the enhancement may be mediated by stress hormones secreted from the adrenal glands.
Effects of Psychosocial Stress on Subsequent Hemorrhagic Shock and Resuscitation in Male Mice.
Langgartner, Dominik; Wachter, Ulrich; Hartmann, Clair; Gröger, Michael; Vogt, Josef; Merz, Tamara; McCook, Oscar; Fink, Marina; Kress, Sandra; Georgieff, Michael; Kunze, Julia F; Radermacher, Peter L; Reber, Stefan O; Wepler, Martin
2018-06-08
Hypoxemia and tissue ischemia during hemorrhage as well as formation of oxygen and nitrogen radicals during resuscitation promote hyperinflammation and, consequently, trigger severe multiple-organ-failure (MOF). Individuals diagnosed with stress-related disorders or reporting a life history of psychosocial stress are characterized by chronic low-grade inflammation and a reduced glucocorticoid (GC) signaling. We hypothesized that exposure to chronic psychosocial stress during adulthood prior to hemorrhagic shock increases oxidative/nitrosative stress and therefore the risk of developing MOF in mice. To induce chronic psychosocial stress linked to mild immune activation and reduced GC signaling in male mice, the chronic subordinate colony housing (CSC) paradigm was employed. Single-housed (SHC) mice were used as controls. Subsequently, CSC and SHC mice were exposed to hemorrhagic shock following resuscitation to investigate the effects of prior psychosocial stress load on survival, organ function, metabolism, oxidative/nitrosative stress, and inflammatory readouts. An increased adrenal weight in CSC mice indicates that the stress paradigm reliably worked. However, no effect of prior psychosocial stress on outcome after subsequent hemorrhage and resuscitation could be detected. Chronic psychosocial stress during adulthood is not sufficient to promote hemodynamic complications, organ dysfunction, metabolic disturbances and did not increase the risk of MOF after subsequent hemorrhage and resuscitation. Intravenous norepinephrine to keep target hemodynamics might have led to a certain level of oxidative stress in both groups and, therefore, disguised potential effects of chronic psychosocial stress on organ function after hemorrhagic shock in the present murine trauma model.
ERIC Educational Resources Information Center
Miller, Gregory E.; Chen, Edith; Zhou, Eric S.
2007-01-01
The notion that chronic stress fosters disease by activating the hypothalamic-pituitary adrenocortical (HPA) axis is featured prominently in many theories. The research linking chronic stress and HPA function is contradictory, however, with some studies reporting increased activation, and others reporting the opposite. This meta-analysis showed…
Ondrejcakova, M; Bakos, J; Garafova, A; Kovacs, L; Kvetnansky, R; Jezova, D
2010-07-01
Physiological functions of oxytocin released during stress are not well understood. We have (1) investigated the release of oxytocin during chronic stress using two long-term stress models and (2) simulated stress-induced oxytocin secretion by chronic treatment with oxytocin via osmotic minipumps. Plasma oxytocin levels were significantly elevated in rats subjected to acute immobilization stress for 120 min, to repeated immobilization for 7 days and to combined chronic cold stress exposure for 28 days with 7 days immobilization. To simulate elevation of oxytocin during chronic stress, rats were implanted with osmotic minipumps subcutaneously and treated with oxytocin (3.6 microg/100 g body weight/day) or vehicle for 2 weeks. Chronic subcutaneous oxytocin infusion led to an increase in plasma oxytocin, adrenocorticotropic hormone, corticosterone, adrenal weights and heart/body weight ratio. Oxytocin treatment had no effect on the incorporation of 5-bromo-2-deoxyuridine into DNA in the heart ventricle. Mean arterial pressure response to intravenous phenylephrine was reduced in oxytocin-treated animals. Decrease in adrenal tyrosin hydroxylase mRNA following oxytocin treatment was not statistically significant. Oxytocin treatment failed to modify food intake and slightly increased water consumption. These data provide evidence on increased concentrations of oxytocin during chronic stress. It is possible that the role of oxytocin released during stress is in modulating hypothalamic-pituitary-adrenocortical axis and selected sympathetic functions.
Kirschman, Lucas J; Crespi, Erica J; Warne, Robin W
2018-01-01
Ubiquitous environmental stressors are often thought to alter animal susceptibility to pathogens and contribute to disease emergence. However, duration of exposure to a stressor is likely critical, because while chronic stress is often immunosuppressive, acute stress can temporarily enhance immune function. Furthermore, host susceptibility to stress and disease often varies with ontogeny; increasing during critical developmental windows. How the duration and timing of exposure to stressors interact to shape critical windows and influence disease processes is not well tested. We used ranavirus and larval amphibians as a model system to investigate how physiological stress and pathogenic infection shape development and disease dynamics in vertebrates. Based on a resource allocation model, we designed experiments to test how exposure to stressors may induce resource trade-offs that shape critical windows and disease processes because the neuroendocrine stress axis coordinates developmental remodelling, immune function and energy allocation in larval amphibians. We used wood frog larvae (Lithobates sylvaticus) to investigate how chronic and acute exposure to corticosterone, the dominant amphibian glucocorticoid hormone, mediates development and immune function via splenocyte immunohistochemistry analysis in association with ranavirus infection. Corticosterone treatments affected immune function, as both chronic and acute exposure suppressed splenocyte proliferation, although viral replication rate increased only in the chronic corticosterone treatment. Time to metamorphosis and survival depended on both corticosterone treatment and infection status. In the control and chronic corticosterone treatments, ranavirus infection decreased survival and delayed metamorphosis, although chronic corticosterone exposure accelerated rate of metamorphosis in uninfected larvae. Acute corticosterone exposure accelerated metamorphosis increased survival in infected larvae. Interactions between stress exposure (via glucocorticoid actions) and infection impose resource trade-offs that shape optimal allocation between development and somatic function. As a result, critical disease windows are likely shaped by stress exposure because any conditions that induce changes in differentiation rates will alter the duration and susceptibility of organisms to stressors or disease. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.
ERIC Educational Resources Information Center
Evans, Gary W.; Fuller-Rowell, Thomas E.
2013-01-01
Prior research shows that childhood poverty as well as chronic stress can damage children's executive functioning (EF) capacities, including working memory. However, it is also clear that not all children suffer the same degree of adverse consequences from risk exposure. We show that chronic stress early in life (ages 9-13) links childhood…
Hennebelle, Marie; Champeil-Potokar, Gaëlle; Lavialle, Monique; Vancassel, Sylvie; Denis, Isabelle
2014-02-01
Chronic stress causes the release of glucocorticoids, which greatly influence cerebral function, especially glutamatergic transmission. These stress-induced changes in neurotransmission could be counteracted by increasing the dietary intake of omega-3 polyunsaturated fatty acids (n-3 PUFAs). Numerous studies have described the capacity of n-3 PUFAs to help protect glutamatergic neurotransmission from damage induced by stress and glucocorticoids, possibly preventing the development of stress-related disorders such as depression or anxiety. The hippocampus contains glucocorticoid receptors and is involved in learning and memory. This makes it particularly sensitive to stress, which alters certain aspects of hippocampal function. In this review, the various ways in which n-3 PUFAs may prevent the harmful effects of chronic stress, particularly the alteration of glutamatergic synapses in the hippocampus, are summarized. © 2014 International Life Sciences Institute.
Xue, Peng; Li, Bei; An, Ying; Sun, Jin; He, Xiaoning; Hou, Rui; Dong, Guangying; Fei, Dongdong; Jin, Fang; Wang, Qintao; Jin, Yan
2016-11-01
The association between inflammation and endoplasmic reticulum (ER) stress has been described in many diseases. However, if and how chronic inflammation governs the unfolded protein response (UPR) and promotes ER homeostasis of chronic inflammatory disease remains elusive. In this study, chronic inflammation resulted in ER stress in mesenchymal stem cells in the setting of periodontitis. Long-term proinflammatory cytokines induced prolonged ER stress and decreased the osteogenic differentiation of periodontal ligament stem cells (PDLSCs). Interestingly, we showed that chronic inflammation decreases the expression of lysine acetyltransferase 6B (KAT6B, also called MORF), a histone acetyltransferase, and causes the upregulation of a key UPR sensor, PERK, which lead to the persistent activation of the UPR in PDLSCs. Furthermore, we found that the activation of UPR mediated by MORF in chronic inflammation contributes to the PERK-related deterioration of the osteogenic differentiation of PDLSCs both in vivo and in vitro. Taken together, our results suggest that chronic inflammation compromises UPR function through MORF-mediated-PERK transcription, which is a previously unrecognized mechanism that contributes to impaired ER function, prolonged ER stress and defective osteogenic differentiation of PDLSCs in periodontitis.
[Dynamics of hormone secretion during chronic emotional stress].
Amiragova, M G; Kovalev, S V; Svirskaia, R I
1979-05-01
Study of spontaneous secretion of corticosteroids and thyroid hormones and the direct hormonal response to stress revealed the pathogenic effect of chronic combined emotional stress upon the hormonal function of adrenal glands. The hippocampus takes part in formation of the emotional tension in response to stress stimulus and of the following hormonal secretion.
Predictable chronic mild stress improves mood, hippocampal neurogenesis and memory.
Parihar, V K; Hattiangady, B; Kuruba, R; Shuai, B; Shetty, A K
2011-02-01
Maintenance of neurogenesis in adult hippocampus is important for functions such as mood and memory. As exposure to unpredictable chronic stress (UCS) results in decreased hippocampal neurogenesis, enhanced depressive- and anxiety-like behaviors, and memory dysfunction, it is believed that declined hippocampal neurogenesis mainly underlies the behavioral and cognitive abnormalities after UCS. However, the effects of predictable chronic mild stress (PCMS) such as the routine stress experienced in day-to-day life on functions such as mood, memory and hippocampal neurogenesis are unknown. Using FST and EPM tests on a prototype of adult rats, we demonstrate that PCMS (comprising 5 min of daily restraint stress for 28 days) decreases depressive- and anxiety-like behaviors for prolonged periods. Moreover, we illustrate that decreased depression and anxiety scores after PCMS are associated with ~1.8-fold increase in the production and growth of new neurons in the hippocampus. Additionally, we found that PCMS leads to enhanced memory function in WMT as well as NORT. Collectively, these findings reveal that PCMS is beneficial to adult brain function, which is exemplified by increased hippocampal neurogenesis and improved mood and cognitive function.
Generaal, Ellen; Vogelzangs, Nicole; Macfarlane, Gary J; Geenen, Rinie; Smit, Johannes H; de Geus, Eco J C N; Penninx, Brenda W J H; Dekker, Joost
2016-05-01
Dysregulated biological stress systems and adverse life events, independently and in interaction, have been hypothesised to initiate chronic pain. We examine whether (1) function of biological stress systems, (2) adverse life events, and (3) their combination predict the onset of chronic multisite musculoskeletal pain. Subjects (n=2039) of the Netherlands Study of Depression and Anxiety, free from chronic multisite musculoskeletal pain at baseline, were identified using the Chronic Pain Grade Questionnaire and followed up for the onset of chronic multisite musculoskeletal pain over 6 years. Baseline assessment of biological stress systems comprised function of the hypothalamic-pituitary-adrenal axis (1-h cortisol awakening response, evening levels, postdexamethasone levels), the immune system (basal and lipopolysaccharide-stimulated inflammation) and the autonomic nervous system (heart rate, pre-ejection period, SD of the normal-to-normal interval, respiratory sinus arrhythmia). The number of recent adverse life events was assessed at baseline using the List of Threatening Events Questionnaire. Hypothalamic-pituitary-adrenal axis, immune system and autonomic nervous system functioning was not associated with onset of chronic multisite musculoskeletal pain, either by itself or in interaction with adverse life events. Adverse life events did predict onset of chronic multisite musculoskeletal pain (HR per event=1.14, 95% CI 1.04 to 1.24, p=0.005). This longitudinal study could not confirm that dysregulated biological stress systems increase the risk of developing chronic multisite musculoskeletal pain. Adverse life events were a risk factor for the onset of chronic multisite musculoskeletal pain, suggesting that psychosocial factors play a role in triggering the development of this condition. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Stress and obesity/metabolic syndrome in childhood and adolescence.
Pervanidou, Panagiota; Chrousos, George P
2011-09-01
Chronic distress contributes to the development of obesity and comorbid states. Stress is the disturbance of the complex dynamic equilibrium that all organisms must maintain, and is associated with activation of the Stress system comprising of the hypothalamic-pituitary-adrenal axis and the arousal/sympathetic nervous systems. The stress system functions in a baseline circadian fashion and interacts with other systems of the organism to regulate a variety of behavioral, endocrine, metabolic, immune and cardiovascular functions. The experience of perceived or real uncontrollable intense and/or chronic stress (distress) may lead to several psychopathologic conditions, including anxiety, depressive and psychosomatic disorders, substance abuse, obesity and the metabolic syndrome, and osteoporosis, as well as impaired reproductive and immune functions. Developing children and adolescents are particularly vulnerable to the effects of chronic stress. Both behavioral and biological pathways are involved in the connection between chronic stress and obesity in adults and children. Emotional "comfort" eating, lack of sleep, impulsive behaviours and selection of specific foods often characterize stressed individuals. In addition to specific behaviours, dysregulation of the stress system through increased secretion of cortisol and catecholamines, especially in the evening hours, and in concert with concurrently elevated insulin concentrations, leads to development of central obesity, insulin resistance and the metabolic syndrome. In children, chronic alterations in cortisol secretion may have additional effects on cognitive and emotional development, timing of puberty and final stature. Obese children and adolescents are frequently entangled in a vicious cycle between distress, impairing self-image and distorted self-image, maintaining and worsening distress.
Generaal, Ellen; Vogelzangs, Nicole; Macfarlane, Gary J; Geenen, Rinie; Smit, Johannes H; de Geus, Eco J C N; Dekker, Joost; Penninx, Brenda W J H
2017-02-01
Dysfunction of biological stress systems and adverse life events, independently and in interaction, have been hypothesized to predict chronic pain persistence. Conversely, these factors may hamper the improvement of chronic pain. Longitudinal evidence is currently lacking. We examined whether: 1) function of biological stress systems, 2) adverse life events, and 3) their combination predict the improvement of chronic multisite musculoskeletal pain. Subjects of the Netherlands Study of Depression and Anxiety (NESDA) with chronic multisite musculoskeletal pain at baseline (N = 665) were followed-up 2, 4, and 6 years later. The Chronic Pain Grade Questionnaire was used to determine improvement (not meeting the criteria) of chronic multisite musculoskeletal pain at follow-up. Baseline assessment of biological stress systems included function of hypothalamic-pituitary-adrenal axis (1-hour cortisol awakening response, evening level, and post dexamethasone level), the immune system (basal and lipopolysaccharide-stimulated inflammatory markers), the autonomic nervous system (heart rate, pre-ejection period, SD of the normal-to-normal interval, and respiratory sinus arrhythmia). The number of adverse life events were assessed at baseline and 2-year follow-up using the List of Threatening Events Questionnaire. We showed that hypothalamic-pituitary-adrenal axis, immune system, and autonomic nervous system functioning and adverse life events were not associated with the improvement of chronic multisite musculoskeletal pain, either as a main effect or in interaction. This longitudinal study could not confirm that biological stress system dysfunction and adverse life events affect the course of chronic multisite musculoskeletal pain. Biological stress systems and adverse life events are not associated with the improvement of chronic multisite musculoskeletal pain over 6 years of follow-up. Other determinants should thus be considered in future research to identify in which persons pain symptoms will improve. Copyright © 2016 American Pain Society. Published by Elsevier Inc. All rights reserved.
Chronic stress and sexual function in women
Hamilton, Lisa Dawn; Meston, Cindy M.
2014-01-01
Introduction Chronic stress is known to have negative effects on reproduction, but little is known about how it affects the sexual response cycle. The present study examined the relationship between chronic stress and sexual arousal and the mechanisms that mediate this relationship. Aim To test the relationship between chronic stress and sexual arousal and identify mechanisms that may explain this relationship. We predicted that women experiencing high levels of chronic stress would show lower levels of genital arousal & DHEAS and higher levels of cortisol and cognitive distraction compared to women with average levels of stress. Methods Women who were categorized as high in chronic stress (high stress group, n = 15) or average in chronic stress (average stress group; n = 15) provided saliva samples and watched an erotic film while having their genital and psychological arousal measured. Main Outcome Measures Main outcome measures were vaginal pulse amplitude, psychological arousal, salivary cortisol, salivary DHEAS, and heart rate and compared them between women with high and average levels of chronic stress. Results Women in the high stress group had lower levels of genital, but not psychological arousal, had higher levels of cortisol, and reported more distraction during the erotic film than women in the average stress group. The main predictor of decreased genital sexual arousal was participants’ distraction scores. Conclusions High levels of chronic stress were related to lower levels of genital sexual arousal. Both psychological (distraction) and hormonal (increased cortisol) factors were related to the lower levels of sexual arousal seen in women high in chronic stress, but distraction was the only significant predictor when controlling for other variables. PMID:23841462
Psychological Stress and Mitochondria: A Systematic Review.
Picard, Martin; McEwen, Bruce S
Mitochondria are multifunctional life-sustaining organelles that represent a potential intersection point between psychosocial experiences and biological stress responses. This article provides a systematic review of the effects of psychological stress on mitochondrial structure and function. A systematic review of the literature investigating the effects of psychological stress on mitochondrial function was conducted. The review focused on experimentally controlled studies allowing us to draw causal inference about the effect of induced psychological stress on mitochondria. A total of 23 studies met the inclusion criteria. All studies involved male laboratory animals, and most demonstrated that acute and chronic stressors influenced specific facets of mitochondrial function, particularly within the brain. Nineteen studies showed significant adverse effects of psychological stress on mitochondria and four found increases in function or size after stress. In humans, only six observational studies were available, none with experimental designs, and most only measured biological markers that do not directly reflect mitochondrial function, such as mitochondrial DNA copy number. Overall, evidence supports the notion that acute and chronic stressors influence various aspects of mitochondrial biology, and that chronic stress exposure can lead to molecular and functional recalibrations among mitochondria. Limitations of current animal and human studies are discussed. Maladaptive mitochondrial changes that characterize this subcellular state of stress are termed mitochondrial allostatic load. Prospective studies with sensitive measures of specific mitochondrial outcomes will be needed to establish the link between psychosocial stressors, emotional states, the resulting neuroendocrine and immune processes, and mitochondrial energetics relevant to mind-body research in humans.
Lee, Hwa-Young; Kim, Seung-Wook; Lee, Geum-Hwa; Choi, Min-Kyung; Chung, Han-Wool; Lee, Yong-Chul; Kim, Hyung-Ryong; Kwon, Ho Jeong; Chae, Han-Jung
2017-07-26
For this study, we examined the effects of curcumin against acute and chronic stress, paying specific attention to ROS. We also aimed to clarify the differences between acute and chronic stress conditions. We investigated the effects of curcumin against acute stress (once/1 day CCl 4 treatment) and chronic-stress (every other day/4week CCl 4 treatment). Compared with acute stress, in which the antioxidant system functioned properly and aspartate transaminase (AST) and ROS production increased, chronic stress increased AST, alanine aminotransferase (ALT), hepatic enzymes, and ROS more significantly, and the antioxidant system became impaired. We also found that ER-originated ROS accumulated in the chronic model, another difference between the two conditions. ER stress was induced consistently, and oxidative intra-ER protein folding status, representatively PDI, was impaired, especially in chronic stress. The PDI-associated client protein hepatic apoB accumulated with the PDI-binding status in chronic stress, and curcumin recovered the altered ER folding status, regulating ER stress and the resultant hepatic dyslipidemia. Throughout this study, curcumin and curcumin-rich Curcuma longa L. extract promoted recovery from CCl 4 -induced hepatic toxicity in both stress conditions. For both stress-associated hepatic dyslipidemia, curcumin and Curcuma longa L. extract might be recommendable to recover liver activity.
Dastgerdi, Azadehalsadat Hosseini; Radahmadi, Maryam; Pourshanazari, Ali Asghar; Dastgerdi, Hajaralsadat Hosseini
2017-01-01
Background: Chronic stress adversely influences brain functions while crocin, as an effective component of saffron, exhibits positive effects on memory processes. This study investigated the effects of different doses of crocin on the improvement of learning and memory as well as corticosterone (CORT) levels in the hippocampus and frontal cortex of rats subjected to chronic stress. Materials and Methods: Forty male rats were randomly allocated to five different groups (n = 8): Control, sham; stress (6 h/day for 21 days) groups, and two groups receiving daily intraperitoneal injections of one of two doses (30 and 60 mg/kg) of crocin accompanied by 21 days of restraint stress. Latency was evaluated as a brain function using the passive avoidance test before and one-day after a foot shock. CORT levels were measured in the homogenized hippocampus and frontal cortex. Results: Results revealed that chronic stress had a significantly (P < 0.01) negative effect on memory. Crocin (30 and 60 mg/kg), however, gave increase to significantly (P < 0.01 and P < 0.05; respectively) improved memory functions in the stressed rats. Furthermore, the CORT levels in the hippocampus and frontal cortex declined significantly (P < 0.05) in the stress group compared to the control. Only a crocin dose of 30 mg/kg was observed modulate significantly (P < 0.05) the CORT levels in the hippocampus and frontal cortex in the stressed group. Conclusions: It was found that the lower crocin dose (30 mg/kg) had more beneficial effects than its higher (60 mg/kg) dose on learning and memory under chronic stress conditions. Moreover, it was speculated that different doses of crocin act on different neurotransmitters and biochemical factors in the brain. PMID:29387668
Dastgerdi, Azadehalsadat Hosseini; Radahmadi, Maryam; Pourshanazari, Ali Asghar; Dastgerdi, Hajaralsadat Hosseini
2017-01-01
Chronic stress adversely influences brain functions while crocin, as an effective component of saffron, exhibits positive effects on memory processes. This study investigated the effects of different doses of crocin on the improvement of learning and memory as well as corticosterone (CORT) levels in the hippocampus and frontal cortex of rats subjected to chronic stress. Forty male rats were randomly allocated to five different groups ( n = 8): Control, sham; stress (6 h/day for 21 days) groups, and two groups receiving daily intraperitoneal injections of one of two doses (30 and 60 mg/kg) of crocin accompanied by 21 days of restraint stress. Latency was evaluated as a brain function using the passive avoidance test before and one-day after a foot shock. CORT levels were measured in the homogenized hippocampus and frontal cortex. Results revealed that chronic stress had a significantly ( P < 0.01) negative effect on memory. Crocin (30 and 60 mg/kg), however, gave increase to significantly ( P < 0.01 and P < 0.05; respectively) improved memory functions in the stressed rats. Furthermore, the CORT levels in the hippocampus and frontal cortex declined significantly ( P < 0.05) in the stress group compared to the control. Only a crocin dose of 30 mg/kg was observed modulate significantly ( P < 0.05) the CORT levels in the hippocampus and frontal cortex in the stressed group. It was found that the lower crocin dose (30 mg/kg) had more beneficial effects than its higher (60 mg/kg) dose on learning and memory under chronic stress conditions. Moreover, it was speculated that different doses of crocin act on different neurotransmitters and biochemical factors in the brain.
Ogawa, Shino; Lee, Young-A; Yamaguchi, Yoshie; Shibata, Yuka; Goto, Yukiori
2017-02-20
Extensive studies have reported cognitive abnormalities in neurodevelopmental disorders, such as autism spectrum disorder (ASD). Another line of evidence suggests that stress also affects cognitive functions. In this study, we investigated whether there were associations between stress hormones and cognitive functions in ASD and typically developing (TD) children. Cognitive functions in ASD and TD children were evaluated with a battery of psychological tests for working memory, behavioral flexibility, and social cognition for emotional assessments of others. ASD children exhibited higher hair and salivary cortisol, which reflects chronic and acute stress hormone levels of subjects, respectively, than TD children. Autism-spectrum quotient (AQ) was positively correlated with hair cortisol and the scores of Spence Children's Anxiety Scale in ASD children. In addition, a negative correlation was present between spatial working memory performance and hair cortisol in ASD, but not in TD, children. These results suggest that chronic stress hormone elevation may have relationships with some aspects of cognitive dysfunction in ASD subjects. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Chronic stress and sexual function in women.
Hamilton, Lisa Dawn; Meston, Cindy M
2013-10-01
Chronic stress is known to have negative effects on reproduction, but little is known about how it affects the sexual response cycle. The present study examined the relationship between chronic stress and sexual arousal and the mechanisms that mediate this relationship. The aim of this study is to test the relationship between chronic stress and sexual arousal and identify mechanisms that may explain this relationship. We predicted that women experiencing high levels of chronic stress would show lower levels of genital arousal and dehydroepiandrosterone (DHEAS) and higher levels of cortisol and cognitive distraction compared with women with average levels of stress. Women who were categorized as high in chronic stress (high stress group; n=15) or average in chronic stress (average stress group; n=15) provided saliva samples and watched an erotic film while having their genital and psychological arousal measured. Main outcome measures were vaginal pulse amplitude, psychological arousal, salivary cortisol, salivary DHEAS, and heart rate and compared them between women with high and average levels of chronic stress. Women in the high stress group had lower levels of genital, but not psychological arousal, had higher levels of cortisol, and reported more distraction during the erotic film than women in the average stress group. The main predictor of decreased genital sexual arousal was participants' distraction scores. High levels of chronic stress were related to lower levels of genital sexual arousal. Both psychological (distraction) and hormonal (increased cortisol) factors were related to the lower levels of sexual arousal seen in women high in chronic stress, but distraction was the only significant predictor when controlling for other variables. © 2013 International Society for Sexual Medicine.
Chronic parenting stress and mood reactivity: The role of sleep quality.
da Estrela, Chelsea; Barker, Erin T; Lantagne, Sarah; Gouin, Jean-Philippe
2018-04-01
Sleep is a basic biological process supporting emotion regulation. The emotion regulation function of sleep may be particularly important in the context of chronic stress. To better understand how chronic stress and sleep interact to predict mood, 66 parents of children with autism completed daily diaries assessing parenting stress, negative mood, and sleep quality for 6 consecutive days. Hierarchical linear modelling revealed that daily negative mood was predicted by between-person differences in parenting stress and between-person differences in sleep efficiency. Further, between-person differences in sleep efficiency and within-person differences in sleep satisfaction moderated the impact of stress on mood. These data suggest that sleep disturbances may exacerbate the association between stress and mood in the context of chronic parenting stress. Further, high parenting stress appears to heighten the impact of transient sleep disturbances on mood. Copyright © 2017 John Wiley & Sons, Ltd.
Avishai-Eliner, S.; Gilles, E. E.; Eghbal-Ahmadi, M.; Bar-El, Y.; Baram, T. Z.
2011-01-01
Chronic stress early in postnatal life influences hormonal and behavioural responses to stress persistently, but the mechanisms and molecular cascades that are involved in this process have not been clarified. To approach these issues, a chronic stress paradigm for the neonatal rat, using limited bedding material to alter the cage environment, was devised. In 9-day-old rats subjected to this chronic stress for 1 week, significant and striking changes in the expression and release patterns of key molecules that govern the neuroendocrine stress responses were observed. The presence of sustained stress was evident from enhanced activation of peripheral elements of the neuroendocrine stress response, i.e. increased basal plasma corticosterone concentrations, high adrenal weight and decreased body weight. Central regulatory elements of the neuroendocrine stress response were perturbed, including reduced expression of hypothalamic corticotropin-releasing hormone that, surprisingly, was accompanied by reduced glucocorticoid receptor expression. Thus, the effects of chronic sustained stress in the neonatal rat on the hypothalamic-pituitary-adrenal axis included substantial changes in the expression and activity of major regulators of this axis. Importantly, the changes induced by this chronic stress differed substantially from those related to acute or recurrent stress, providing a novel model for studying the long-term effects of chronic, early life stress on neuroendocrine functions throughout life. PMID:11578530
Sheets, Erin S; Craighead, W Edward
2014-12-01
Understanding how persistent interpersonal difficulties distinctly affect the course of major depressive disorder (MDD) during emerging adulthood is critical, given that early experiences impact future coping resources and functioning. Research on stress and MDD has mostly concentrated on stressful life events, while chronic stress largely has not been explored. The present study examined interpersonal (intimate relationship, close friendships, social life, family relationships) and noninterpersonal (academic, work, financial, personal health, and family members' health) domains of chronic stress as time-varying predictors of depressive recurrence in emerging adults. Baseline assessments identified previously depressed emerging adults (N = 119), who subsequently completed 6-month, 12-month and 18-month follow-up interviews to determine chronic stress experiences and onset of new major depressive episodes. Survival analyses indicated that time-varying total chronic stress and chronic interpersonal stress predicted higher risk for depression recurrence; however, chronic noninterpersonal stress was not associated with recurrence. Intimate relationship stress, close friendship stress, family relationship stress, personal health, and family members' health independently predicted MDD recurrence, over and above well-established depression risk factors of dysfunctional cognitions and personality disorder symptoms. Evidence that interpersonal stress could have substantial impact on course of depression is consistent with theories of emerging adulthood, a time when young people are individuating from the family and experiencing significant social transition. Copyright © 2014 Elsevier Ltd. All rights reserved.
A consensus endocrine profile for chronically stressed wild animals does not exist.
Dickens, Molly J; Romero, L Michael
2013-09-15
Given the connection between chronic stress and health, there has been a growing emphasis on identifying chronically stressed wild animals, especially in relation to anthropogenic disturbances. There is considerable confusion, however, in how to identify chronically stressed wild animals, but the most common assumption is that measures of glucocorticoid (GC) function will increase. In an attempt to determine an "endocrine profile" of a chronically stressed wild animal, this review collected papers from the literature that measured baseline GC, stress-induced GC, measures of integrated GC, negative feedback, hypothalamic-pituitary-adrenal axis sensitivity, and/or body weight in chronically stressed animals. The collected studies encompassed laboratory and field studies, numerous diverse species, and multiple techniques for inducing chronic stress. Each paper was ranked according to its relevance to wild animals and scored as to whether the measured response increased, decreased, or stayed the same after exposure to chronic stress. The analyses uncovered so much variation between studies that the literature does not support a generalized endocrine profile in how wild animals respond to chronic stress. The common predictions appear to be based almost entirely on theoretical models rather than empirical data. The three most important variables affecting GC responses were the stressors used to induce chronic stress, the potential for those stressors to induce habituation, and the taxon of the focal species. The best approach for identifying a chronically stressed population appears to be documentation of changes at multiple levels of GC regulation, but the direction of the change (increase or decrease) may be relatively unimportant compared to the fact that the response changes at all. The conclusion is that a consistent, predictable, endocrine response to chronic stress, regardless of the protocol used to induce chronic stress and the species under study, does not exist. Copyright © 2013 Elsevier Inc. All rights reserved.
Bhagya, Venkanna Rao; Srikumar, Bettadapura N; Veena, Jayagopalan; Shankaranarayana Rao, Byrathnahalli S
2017-08-01
Exposure to prolonged stress results in structural and functional alterations in the hippocampus including reduced long-term potentiation (LTP), neurogenesis, spatial learning and working memory impairments, and enhanced anxiety-like behavior. On the other hand, enriched environment (EE) has beneficial effects on hippocampal structure and function, such as improved memory, increased hippocampal neurogenesis, and progressive synaptic plasticity. It is unclear whether exposure to short-term EE for 10 days can overcome restraint stress-induced cognitive deficits and impaired hippocampal plasticity. Consequently, the present study explored the beneficial effects of short-term EE on chronic stress-induced impaired LTP, working memory, and anxiety-like behavior. Male Wistar rats were subjected to chronic restraint stress (6 hr/day) over a period of 21 days, and then they were exposed to EE (6 hr/day) for 10 days. Restraint stress reduced hippocampal CA1-LTP, increased anxiety-like symptoms in elevated plus maze, and impaired working memory in T-maze task. Remarkably, EE facilitated hippocampal LTP, improved working memory performance, and completely overcame the effect of chronic stress on anxiety behavior. In conclusion, exposure to EE can bring out positive effects on synaptic plasticity in the hippocampus and thereby elicit its beneficial effects on cognitive functions. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Life after the Shock! The Impact on Families of Caring for Young Children with Chronic Illness
ERIC Educational Resources Information Center
Ashton, Jean
2004-01-01
The stresses experienced by most families include limitations on time, conditions of employment, financial burdens and sibling rivalry. For the families of a child with a chronic illness, these stresses are often compounded, making family functioning problematic. Chronic illness is marked by permanency and the need for ongoing vigilance with…
Shpagina, L A; Ermakova, M A; Volkova, E A; Iakovleva, S A
2008-01-01
Peculiarities of military occupational activities are repeated stress and high degree of psychoemotional strain. The article deals with results of momentary study covering a select from military men cohort, with thyroid tests, renal functional tests, diurnal monitoring of blood pressure and psychologic state assessment. Course of arterial hypertension in military men subjected to chronic stress presents prevailing systolic-diastolic and diastolic variants with excessive decrease of blood pressure at night, with high values of albuminuria. Psychologic state of the military men examined, whe were subjects to chronic stress, was mostly mixed reactivity type with general overstrain and somatization of inner conflict (psychosomatic variant of dysadaptation). The authors demonstrated close correlation between intrinsic emotional strain degree with arterial hypertension type according to "hyper-dipper" variant and free T3 level.
Adapting to stress - chaperome networks in cancer.
Joshi, Suhasini; Wang, Tai; Araujo, Thaís L S; Sharma, Sahil; Brodsky, Jeffrey L; Chiosis, Gabriela
2018-05-23
In this Opinion article, we aim to address how cells adapt to stress and the repercussions chronic stress has on cellular function. We consider acute and chronic stress-induced changes at the cellular level, with a focus on a regulator of cellular stress, the chaperome, which is a protein assembly that encompasses molecular chaperones, co-chaperones and other co-factors. We discuss how the chaperome takes on distinct functions under conditions of stress that are executed in ways that differ from the one-on-one cyclic, dynamic functions exhibited by distinct molecular chaperones. We argue that through the formation of multimeric stable chaperome complexes, a state of chaperome hyperconnectivity, or networking, is gained. The role of these chaperome networks is to act as multimolecular scaffolds, a particularly important function in cancer, where they increase the efficacy and functional diversity of several cellular processes. We predict that these concepts will change how we develop and implement drugs targeting the chaperome to treat cancer.
Izadpanah, Kaywan; Winterer, Jan; Vicari, Marco; Jaeger, Martin; Maier, Dirk; Eisebraun, Leonie; Ute Will, Jutta; Kotter, Elmar; Langer, Mathias; Südkamp, Norbert P; Hennig, Jürgen; Weigel, Mathias
2013-06-01
To show the feasibility of a stress magnetic resonance imaging (MRI) as a new method for simultaneous evaluation of the morphology and the functional integrity of the acromioclavicular joint (ACJ) ligamentous stabilizers. MRI of four volunteers, 10 patients with acute, and six with chronic ACJ injuries was performed using a 0.25 T open MRI scanner. A 2D-proton-density and a 3D-gradient-echo sequence at rest and under 6.5 kg shoulder traction were performed. Comparative measurements of the coracoclavicular and the acromioclavicular distance were performed. Additionally, the conoid and trapezoid ligament lengths were measured with multiplanar reconstructions. MRI at rest correctly identified tears of the coracoclavicular and the acromioclavicular ligaments in eight patients suffering acute ACJ injuries. Stress application helped to distinguish between partial and complete coracoclavicular ligament tears in two cases. Insufficiency of the ACJ ligaments was present in all acute and chronic ACJ injuries. Stress application in chronic ACJ ligaments revealed isolated insufficiency of the conoid ligament in three cases and of the trapezoid ligament in one case. Combined insufficiency was present in two cases. Stress MRI facilitates simultaneous acquisition of morphologic and functional information of the ACJ stabilizers. In acute ACJ injuries it helps to distinguish between partial and complete ligament tears. In chronic ACJ injuries it provides functional information of the ligament regrinds. Copyright © 2012 Wiley Periodicals, Inc.
Protracted effects of chronic stress on serotonin-dependent thermoregulation.
Natarajan, Reka; Northrop, Nicole A; Yamamoto, Bryan K
2015-01-01
Chronic stress is known to affect serotonin (5HT) neurotransmission in the brain and to alter body temperature. The body temperature is controlled in part, by the medial preoptic area (mPOA) of the hypothalamus. To investigate the effect of chronic stress on 5HT and how it affects body temperature regulation, we examined whether exposure to a chronic unpredictable stress (CUS) paradigm produces long-term alterations in thermoregulatory function of the mPOA through decreased 5HT neurotransmission. Adult male Sprague-Dawley rats underwent 21 d of CUS. Four days after the last stress exposure, basal body temperature in the home cage and body temperature in a cold room maintained at 10 °C were recorded. The CUS rats had significantly higher subcutaneous basal body temperature at 13:00 h compared to unstressed (NoStress) rats. Whereas the NoStress rats were able to significantly elevate body temperature from basal levels at 30 and 60 min of exposure to the cold room, the CUS rats showed a hypothermic response to the cold. Treatment during CUS with metyrapone, a corticosterone synthesis inhibitor, blocked stress-induced decrease in body temperature in response to the cold challenge. CUS also decreased 5HT transporter protein immunoreactivity in the mPOA and 5HT2A/C agonist injection into the mPOA after CUS exposure caused stressed rats to exhibit a sensitized hyperthermic response to cold. These results indicate that the CUS induced changes to the 5HTergic system alter mPOA function in thermoregulation. These findings help us to explain the mechanisms underlying chronic stress-induced disorders such as chronic fatigue syndrome wherein long lasting thermoregulatory deficits are observed.
Protracted effects of chronic stress on serotonin dependent thermoregulation
Natarajan, Reka; Northrop, Nicole A.; Yamamoto, Bryan K.
2016-01-01
Chronic stress is known to affect serotonin (5HT) neurotransmission in the brain and to alter body temperature. Body temperature is controlled in part, by the medial preoptic area of the hypothalamus (mPOA). To investigate the effect of chronic stress on 5HT and how it affects body temperature regulation, we examined whether exposure to a chronic unpredictable stress paradigm (CUS) produces long-term alterations in thermoregulatory function of the mPOA through decreased 5HT neurotransmission. Adult male Sprague-Dawley rats underwent 21 days of CUS. Four days after last stress exposure, basal body temperature in the home cage and body temperature in a cold room maintained at 10°C were recorded. CUS rats had significantly higher subcutaneous basal body temperature at 13:00 h compared to unstressed (NoStress) rats. Whereas the NoStress rats were able to significantly elevate body temperature from basal levels at 30 and 60 min of exposure to the cold room, the CUS rats showed a hypothermic response to the cold. Treatment during CUS with metyrapone, a corticosterone synthesis inhibitor, blocked stress-induced decrease in body temperature in response to the cold challenge. CUS also decreased 5HT transporter protein immunoreactivity in the mPOA and 5HT2A/C agonist injection into the mPOA after CUS exposure caused stressed rats to exhibit a sensitized hyperthermic response to cold. These results indicate that CUS induced changes to the 5HTergic system alters mPOA function in thermoregulation. These findings help explain mechanisms underlying chronic stress induced disorders such as chronic fatigue syndrome wherein long lasting thermoregulatory deficits are observed. PMID:26414686
Kallarackal, Angy J; Kvarta, Mark D; Cammarata, Erin; Jaberi, Leelah; Cai, Xiang; Bailey, Aileen M; Thompson, Scott M
2013-10-02
Chronic stress promotes depression, but how it disrupts cognition and mood remains unknown. Chronic stress causes atrophy of pyramidal cell dendrites in the hippocampus and cortex in human and animal models, and a depressive-like behavioral state. We now test the hypothesis that excitatory temporoammonic (TA) synapses in the distal dendrites of CA1 pyramidal cells in rats are altered by chronic unpredictable stress (CUS) and restored by chronic antidepressant treatment, in conjunction with the behavioral consequences of CUS. We observed a decrease in AMPAR-mediated excitation at TA-CA1 synapses, but not Schaffer collateral-CA1 synapses, after CUS, with a corresponding layer-specific decrease in GluA1 expression. Both changes were reversed by chronic fluoxetine. CUS also disrupted long-term memory consolidation in the Morris water maze, a function of TA-CA1 synapses. The decreases in TA-CA1 AMPAR-mediated excitation and performance in the consolidation test were correlated positively with decreases in sucrose preference, a measure of anhedonia. We conclude that chronic stress selectively decreases AMPAR number and function at specific synapses and suggest that this underlies various depressive endophenotypes. Our findings provide evidence that glutamatergic dysfunction is an underlying cause of depression and that current first-line antidepressant drugs act by restoring excitatory synaptic strength. Our findings suggest novel therapeutic targets for this debilitating disease.
Metabolic consequences of stress during childhood and adolescence.
Pervanidou, Panagiota; Chrousos, George P
2012-05-01
Stress, that is, the state of threatened or perceived as threatened homeostasis, is associated with activation of the stress system, mainly comprised by the hypothalamic-pituitary-adrenal axis and the arousal/sympathetic nervous systems. The stress system normally functions in a circadian manner and interacts with other systems to regulate a variety of behavioral, endocrine, metabolic, immune, and cardiovascular functions. However, the experience of acute intense physical or emotional stress, as well as of chronic stress, may lead to the development of or may exacerbate several psychologic and somatic conditions, including anxiety disorders, depression, obesity, and the metabolic syndrome. In chronically stressed individuals, both behavioral and neuroendocrine mechanisms promote obesity and metabolic abnormalities: unhealthy lifestyles in conjunction with dysregulation of the stress system and increased secretion of cortisol, catecholamines, and interleukin-6, with concurrently elevated insulin concentrations, lead to development of central obesity, insulin resistance, and the metabolic syndrome. Fetal life, childhood, and adolescence are particularly vulnerable periods of life to the effects of intense acute or chronic stress. Similarly, these life stages are crucial for the later development of behavioral, metabolic, and immune abnormalities. Developing brain structures and functions related to stress regulation, such as the amygdala, the hippocampus, and the mesocorticolimbic system, are more vulnerable to the effects of stress compared with mature structures in adults. Moreover, chronic alterations in cortisol secretion in children may affect the timing of puberty, final stature, and body composition, as well as cause early-onset obesity, metabolic syndrome, and type 2 diabetes mellitus. The understanding of stress mechanisms leading to metabolic abnormalities in early life may lead to more effective prevention and intervention strategies of obesity-related health problems. Copyright © 2012 Elsevier Inc. All rights reserved.
Radahmadi, M; Hosseini, N; Nasimi, A
2014-11-07
Stress dramatically affects synaptic plasticity of the hippocampus, disrupts paired-pulse facilitation and impairs long-term potentiation (LTP). This study was performed to find the effects of chronic restraint stress and recovery period on excitability, paired-pulse response, LTP and to find probable adaptation to very long stress in the dentate gyrus. Thirty-eight male Wistar rats were randomly divided into four groups of Control, Rest-Stress (21 days stress), Stress-Rest (recovery) and Stress-Stress (42 days stress: adaptation). Chronic restraint stress was applied 6-h/day. Input-output functions, paired-pulse responses and LTP were recorded from the dentate gyrus while stimulating the perforant pathway. We found that chronic stress attenuated the responsiveness, paired-pulse response and LTP in the dentate gyrus. A 21-day recovery period, after the stress, improved all the three responses toward normal, indicating reversibility of these stress-related hippocampal changes. There was no significant adaptation to very long stress, probably due to severity of stress. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.
The Dichotomous Effect of Chronic Stress on Obesity.
Razzoli, Maria; Bartolomucci, Alessandro
2016-07-01
Obesity and metabolic diseases are linked to chronic stress and low socioeconomic status. The mechanistic link between stress and obesity has not been clarified, partly due to the inherent complexity exemplified by the bidirectional effect of stress on eating and body weight. Recent studies focusing on adaptive thermogenesis and brown adipose tissue (BAT) function support a dichotomous relation to explain the impact of stress on obesity: stress promotes obesity in the presence of hyperphagia and unchanged BAT function; stress results in weight loss and/or obesity resistance in the presence of hypophagia, or when hyperphagia is associated with BAT recruitment and enhanced thermogenesis. Mechanistically dissecting the bidirectional effects of stress on metabolic outcomes might open new avenues for innovative pharmacotherapies for the treatment of obesity-associated diseases. Copyright © 2016 Elsevier Ltd. All rights reserved.
The dichotomous effect of chronic stress on obesity
Razzoli, Maria; Bartolomucci, Alessandro
2016-01-01
Obesity and metabolic diseases are linked to chronic stress and low socio-economic status. The mechanistic link between stress and obesity has not been clarified, partly due to the inherent complexity exemplified by the bidirectional effect of stress on eating and body weight. Recent studies focusing on adaptive-thermogenesis and brown adipose tissue (BAT) function support a dichotomous relationship to explain the impact of stress on obesity: stress promotes obesity in the presence of hyperphagia and unchanged BAT function; stress results in weight-loss/obesity-resistance in the presence of hypophagia, or when hyperphagia is associated with BAT recruitment and enhanced thermogenesis. Mechanistically dissecting the bidirectional effects of stress on metabolic outcomes might open new avenues for innovative pharmacotherapies for the treatment of obesity-associated diseases. PMID:27162125
Alzoubi, K H; Abdul-Razzak, K K; Khabour, O F; Al-Tuweiq, G M; Alzubi, M A; Alkadhi, K A
2009-12-01
The combined effects of high fat diet (HFD) and chronic stress on the hippocampus-dependent spatial learning and memory were studied in rats using the radial arm water maze (RAWM). Chronic psychosocial stress and/or HFD were simultaneously administered for 3 months to young adult male Wister rats. In the RAWM, rats were subjected to 12 learning trials as well as short-term and long-term memory tests. This procedure was applied on a daily basis until the animal reaches days to criterion (DTC) in the 12th learning trial and in memory tests. DTC is the number of days that the animal takes to make zero error in two consecutive days. Groups were compared based on the number of errors per trial or test as well as on the DTC. Chronic stress, HFD and chronic stress/HFD animal groups showed impaired learning as indicated by committing significantly (P<0.05) more errors than untreated control group in trials 6 through 9 of day 4. In memory tests, chronic stress, HFD and chronic stress/HFD groups showed significantly impaired performance compared to control group. Additionally, the stress/HFD was the only group that showed significantly impaired performance in memory tests on the 5th training day, suggesting more severe memory impairment in that group. Furthermore, DTC value for above groups indicated that chronic stress or HFD, alone, resulted in a mild impairment of spatial memory, but the combination of chronic stress and HFD resulted in a more severe and long-lasting memory impairment. The data indicated that the combination of stress and HFD produced more deleterious effects on hippocampal cognitive function than either chronic stress or HFD alone.
Gray, Wendy N; Graef, Danielle M; Schuman, Shana S; Janicke, David M; Hommel, Kevin A
2013-05-01
Parenting stress in pediatric inflammatory bowel disease (IBD) has been under-examined. Data validating use of the Pediatric Inventory for Parents (PIP), a measure of parenting stress associated with caring for a chronically ill child, in chronic diseases with intermittent, unpredictable disease courses, such as IBD, are needed. This study presents validity data in support of the PIP in pediatric IBD and examines relations between parenting stress and important psychosocial and medical outcomes. Adolescents (N = 130) with IBD and their caregivers across 3 sites completed measures of parenting stress, family functioning, and emotional/behavioral functioning. Disease severity was also assessed for each participant. The PIP demonstrates excellent internal consistency. Parenting stress was significantly higher among those with unhealthy general family functioning and those with children with borderline or clinically elevated internalizing symptoms. Caregiving stress was greater among parents of youth with more active Crohn's disease. Results supported the reliability and validity of the PIP for assessing caregiving stress in pediatric IBD. Routine assessment of parenting stress is recommended, particularly among parents reporting unhealthy family functioning and parents of youth with borderline or clinically elevated internalizing symptoms and more active disease.
The Human BNST: Functional Role in Anxiety and Addiction
Avery, S N; Clauss, J A; Blackford, J U
2016-01-01
The consequences of chronic stress on brain structure and function are far reaching. Whereas stress can produce short-term adaptive changes in the brain, chronic stress leads to long-term maladaptive changes that increase vulnerability to psychiatric disorders, such as anxiety and addiction. These two disorders are the most prevalent psychiatric disorders in the United States, and are typically chronic, disabling, and highly comorbid. Emerging evidence implicates a tiny brain region—the bed nucleus of the stria terminalis (BNST)—in the body's stress response and in anxiety and addiction. Rodent studies provide compelling evidence that the BNST plays a central role in sustained threat monitoring, a form of adaptive anxiety, and in the withdrawal and relapse stages of addiction; however, little is known about the role of BNST in humans. Here, we review current evidence for BNST function in humans, including evidence for a role in the production of both adaptive and maladaptive anxiety. We also review preliminary evidence of the role of BNST in addiction in humans. Together, these studies provide a foundation of knowledge about the role of BNST in adaptive anxiety and stress-related disorders. Although the field is in its infancy, future investigations of human BNST function have tremendous potential to illuminate mechanisms underlying stress-related disorders and identify novel neural targets for treatment. PMID:26105138
The Human BNST: Functional Role in Anxiety and Addiction.
Avery, S N; Clauss, J A; Blackford, J U
2016-01-01
The consequences of chronic stress on brain structure and function are far reaching. Whereas stress can produce short-term adaptive changes in the brain, chronic stress leads to long-term maladaptive changes that increase vulnerability to psychiatric disorders, such as anxiety and addiction. These two disorders are the most prevalent psychiatric disorders in the United States, and are typically chronic, disabling, and highly comorbid. Emerging evidence implicates a tiny brain region-the bed nucleus of the stria terminalis (BNST)-in the body's stress response and in anxiety and addiction. Rodent studies provide compelling evidence that the BNST plays a central role in sustained threat monitoring, a form of adaptive anxiety, and in the withdrawal and relapse stages of addiction; however, little is known about the role of BNST in humans. Here, we review current evidence for BNST function in humans, including evidence for a role in the production of both adaptive and maladaptive anxiety. We also review preliminary evidence of the role of BNST in addiction in humans. Together, these studies provide a foundation of knowledge about the role of BNST in adaptive anxiety and stress-related disorders. Although the field is in its infancy, future investigations of human BNST function have tremendous potential to illuminate mechanisms underlying stress-related disorders and identify novel neural targets for treatment.
Karagiannides, Iordanes; Golovatscka, Viktoriya; Bakirtzi, Kyriaki; Sideri, Aristea; Salas, Martha; Stavrakis, Dimitris; Polytarchou, Christos; Iliopoulos, Dimitrios; Pothoulakis, Charalabos; Bradesi, Sylvie
2014-01-01
Abstract Chronic psychological stress is a prominent risk factor involved in the pathogenesis of many complex diseases, including major depression, obesity, and type II diabetes. Visceral adipose tissue is a key endocrine organ involved in the regulation of insulin action and an important component in the development of insulin resistance. Here, we examined for the first time the changes on visceral adipose tissue physiology and on adipocyte‐associated insulin sensitivity and function after chronic unpredictable stress in rats. Male rats were subjected to chronic unpredictable stress for 35 days. Total body and visceral fat was measured. Cytokines and activated intracellular kinase levels were determined using high‐throughput multiplex assays. Adipocyte function was assessed via tritiated glucose uptake assay. Stressed rats showed no weight gain, and their fat/lean mass ratio increased dramatically compared to control animals. Stressed rats had significantly higher mesenteric fat content and epididymal fat pad weight and demonstrated reduced serum glucose clearing capacity following glucose challenge. Alterations in fat depot size were mainly due to changes in adipocyte numbers and not size. High‐throughput molecular screening in adipocytes isolated from stressed rats revealed activation of intracellular inflammatory, glucose metabolism, and MAPK networks compared to controls, as well as significantly reduced glucose uptake capacity in response to insulin stimulation. Our study identifies the adipocyte as a key regulator of the effects of chronic stress on insulin resistance, and glucose metabolism, with important ramifications in the pathophysiology of several stress‐related disease states. PMID:24819750
Cumulative stress pathophysiology in schizophrenia as indexed by allostatic load.
Nugent, Katie L; Chiappelli, Joshua; Rowland, Laura M; Hong, L Elliot
2015-10-01
The etiopathophysiology of schizophrenia has long been linked to stress and the influence of stress is important in all stages of the illness. Previous examinations of perceived stress and acute stress responses may not capture this longitudinal stress pathophysiology. We hypothesized that the cumulative negative effects of stress, indexed by allostatic load (AL), would be elevated in schizophrenia, and that the AL paradigm would be relevant to our understanding of pathophysiology in schizophrenia. We assessed allostatic load in 30 patients with schizophrenia (SZ; mean age = 33; 17 males) and 20 healthy controls (HC; mean age = 35; 12 males) using 13 cardiovascular, metabolic, neuroendocrine and immune biomarkers. Participants' perceived stress over the past month, functional capacity and psychiatric symptoms were also measured. Controlling for age, SZ had significantly higher AL as compared to HC (p = 0.007). Greater AL was present in both early course and chronic SZ, and was associated with reduced functional capacity (p = 0.006) and more psychotic symptoms (p = 0.048) in SZ. Current level of perceived stress was not significantly elevated in SZ or associated with AL in either group. The higher AL found in SZ may reflect increased bodily "wear and tear", possibly caused by more chronic stress exposure or maladaptive responses to stress over time, although additional research is required to differentiate these causes. The higher AL is similarly present in early and chronic SZ, suggesting primary maladaptive stress physiology rather than secondary effects from medications or chronic illness. Copyright © 2015 Elsevier Ltd. All rights reserved.
Effect of chronic restraint stress on inhibitory gating in the auditory cortex of rats.
Ma, Lanlan; Li, Wai; Li, Sibin; Wang, Xuejiao; Qin, Ling
2017-05-01
A fundamental adaptive mechanism of auditory function is inhibitory gating (IG), which refers to the attenuation of neural responses to repeated sound stimuli. IG is drastically impaired in individuals with emotional and cognitive impairments (i.e. posttraumatic stress disorder). The objective of this study was to test whether chronic stress impairs the IG of the auditory cortex (AC). We used the standard two-tone stimulus paradigm and examined the parametric qualities of IG in the AC of rats by recording the electrophysiological signals of a single-unit and local field potential (LFP) simultaneously. The main results of this study were that most of the AC neurons showed a weaker response to the second tone than to the first tone, reflecting an IG of the repeated input. A fast negative wave of LFP showed consistent IG across the sampled AC sites, whereas a slow positive wave of LFP had less IG effect. IG was diminished following chronic restraint stress at both, the single-unit and LFP level, due to the increase in response to the second tone. This study provided new evidence that chronic stress disrupts the physiological function of the AC. Lay Summary The effects of chronic stress on IG were investigated by recording both, single-unit spike and LFP activities, in the AC of rats. In normal rats, most of the single-unit and N25 LFP activities in the AC showed an IG effect. IG was diminished following chronic restraint stress at both, the single-unit and LFP level.
Zanca, Roseanna M.; Braren, Stephen H.; Maloney, Brigid; Schrott, Lisa M.; Luine, Victoria N.; Serrano, Peter A.
2015-01-01
Environmental enrichment (EE) housing paradigms have long been shown beneficial for brain function involving neural growth and activity, learning and memory capacity, and for developing stress resiliency. The expression of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunit GluA2, which is important for synaptic plasticity and memory, is increased with corticosterone (CORT), undermining synaptic plasticity and memory. Thus, we determined the effect of EE and stress on modulating GluA2 expression in Sprague-Dawley male rats. Several markers were evaluated which include: plasma CORT, the glucocorticoid receptor (GR), GluA2, and the atypical protein kinase M zeta (PKMζ). For 1 week standard-(ST) or EE-housed animals were treated with one of the following four conditions: (1) no stress; (2) acute stress (forced swim test, FST; on day 7); (3) chronic restraint stress (6 h/day for 7 days); and (4) chronic + acute stress (restraint stress 6 h/day for 7 days + FST on day 7). Hippocampi were collected on day 7. Our results show that EE animals had reduced time immobile on the FST across all conditions. After chronic + acute stress EE animals showed increased GR levels with no change in synaptic GluA2/PKMζ. ST-housed animals showed the reverse pattern with decreased GR levels and a significant increase in synaptic GluA2/PKMζ. These results suggest that EE produces an adaptive response to chronic stress allowing for increased GR levels, which lowers neuronal excitability reducing GluA2/PKMζ trafficking. We discuss this EE adaptive response to stress as a potential underlying mechanism that is protective for retaining synaptic plasticity and memory function. PMID:26617502
Chronic stress from adolescence to aging in the prefrontal cortex: A neuroimmune perspective.
Macht, Victoria A; Reagan, Lawrence P
2018-04-01
The development of the organism is a critical variable which influences the magnitude, duration, and reversibility of the effects of chronic stress. Such factors are relevant to the prefrontal cortex (PFC), as this brain region is the last to mature, the first to decline, and is highly stress-sensitive. Therefore, this review will examine the intersection between the nervous system and immune system at glutamatergic synapses in the PFC across three developmental periods: adolescence, adulthood, and aging. Glutamatergic synapses are tightly juxtaposed with microglia and astrocytes, and each of these cell types exhibits their own developmental trajectory. Not only does chronic stress differentially impact each of these cell types across development, but chronic stress also alters intercellular communication within this quad-partite synapse. These observations suggest that developmental shifts in both neural and immune function across neurons, microglia, and astrocytes mediate shifting effects of chronic stress on glutamatergic transmission. Copyright © 2018 Elsevier Inc. All rights reserved.
Wilson, Marlene A.; Grillo, Claudia A.; Fadel, Jim R.; Reagan, Lawrence P.
2015-01-01
Neuroplasticity may be defined as the ability of the central nervous system (CNS) to respond to changes in the internal and external environment and it is well established that some stimuli have the ability to facilitate or impair neuroplasticity depending on the pre-existing milieu. A classic example of a stimulus that can both facilitate and impair neuroplasticity is stress. Indeed, the ability of CNS to respond to acute stress is often dependent upon the prior stress history of the individual. While responses to acute stress are often viewed as adaptive in nature, stress reactivity in subjects with prior chronic stress experiences are often linked to neuropsychiatric disorders, including major depressive disorder, post-traumatic stress disorder (PTSD) and anxiety. In rodent studies, chronic stress exposure produces structural and functional alterations in the hippocampus and medial prefrontal cortex that are consistent across different types of stress paradigms. Conversely, the amygdala appears to exhibit differential structural and functional responses to stress that are dependent on a variety of factors, including the type of stressor performed and the duration of the stress paradigm. This is most evident in output measures including morphological analysis of amygdala neurons, measurement of glutamatergic tone in amygdalar subdivisions and the analysis of amygdala-centric behaviors. Accordingly, this review will provide an overview of the effects of stress on the structural and functional plasticity of the rodent amygdala, especially in relation to the differential effects of repeated or chronic stress paradigms on dendritic architecture, neurochemistry of the glutamatergic system and behavior. PMID:26844236
Abstract Background: Greater exposure to urban green spaces has been linked to reduced risks of depression, cardiovascular disease, diabetes and premature death. Alleviation of chronic stress is a hypothesized pathway to improved health. Previous studies linked chronic stress wit...
Trofimiuk, Emil; Braszko, Jan J
2015-04-15
Despite the development of neuroscience and spectacular discoveries, the clear functions and the role of histamine are still not fully understood, especially in the context of the negative impact of prolonged stress exposure on the cognition. The purpose of this study was to evaluate the participation of hypercortisolemia in the detrimental effect of stress on cognitive function and their preclusion by affecting the histaminergic system with ciproxifan. Specifically, we attempted to characterize the preventive action of a single dose of ciproxifan (3mg/kg, i.p.) against an impairment caused by chronic restraint stress as well as parallel exogenous corticosterone (equivalent to that seen in chronically stressed rats), and show differences in the interaction on reference and working memories tested in both aversive (Morris water maze - MWM) and appetitive (Barnes maze-BM) incentives. We found that administration of ciproxifan potently prevented equally deleterious effects of chronic restraint stress (p<0.01) as well as prolonged administration of corticosterone (p<0.01), especially in the tests, which themselves generate high levels of stress. As it turns out, test provided in the less stressful conditions (BM) showed that administration of the H3 receptor antagonist to naïve rats resulted in even memory impairment (p<0.01, in some aspects of reference memory). These data support the idea that modulation of H3 receptors represents a novel and viable therapeutic strategy in the treatment but rather not for prevention of stress-evoked cognitive impairments. Even a single dose abolishes the effect of prolonged exposure to stress or steroids. Copyright © 2015 Elsevier B.V. All rights reserved.
Sex differences in chronic stress effects on cognition in rodents
Luine, Victoria; Gomez, Juan; Beck, Kevin; Bowman, Rachel
2016-01-01
Chronic stress causes deleterious changes in physiological function in systems ranging from neural cells in culture to laboratory rodents, sub-human primates and humans. It is notable, however, that the vast majority of research in this area has been conducted in males. In this review, we provide information about chronic stress effects on cognition in female rodents and contrast it with responses in male rodents. In general, females show cognitive resilience to chronic stressors which impair male cognitive function using spatial tasks including the radial arm maze, radial arm water maze, Morris water maze, Y-maze and object placement. Moreover, stress often enhances female performance in some of these cognitive tasks. Memory in females is not affected by stress in non-spatial memory tasks like recognition memory and temporal order recognition memory while males show impaired memory following stress. We discuss possible bases for these sex-dependent differences including the use of different strategies by the sexes to solve cognitive tasks. Whether the sex differences result from changes in non-mnemonic factors is also considered. Sex-dependent differences in alcohol and drug influences on stress responses are also described. Finally, the role of neurally derived estradiol in driving sex differences and providing resilience to stress in females is shown. The importance of determining the nature and extent of sex differences in stress responses is that such differences may provide vital information for understanding why some stress related diseases have different incidence rates between the sexes and for developing novel therapeutic treatments. PMID:27566290
Life Stress and Dimensions of Functioning in Old Age.
ERIC Educational Resources Information Center
Leon, Gloria Rakita; And Others
1981-01-01
Most men had made a satisfactory social and emotional adjustment over time, but a significant number were troubled by chronic illness. The most common stress factor reported was death of a friend. Past personality patterns coupled with current life stress factors were not predictive of present personality functioning. (JAC)
Resilience to Meet the Challenge of Addiction
Alim, Tanja N.; Lawson, William B.; Feder, Adriana; Iacoviello, Brian M.; Saxena, Shireen; Bailey, Christopher R.; Greene, Allison M.; Neumeister, Alexander
2012-01-01
Acute and chronic stress–related mechanisms play an important role in the development of addiction and its chronic, relapsing nature. Multisystem adaptations in brain, body, behavioral, and social function may contribute to a dysregulated physiological state that is maintained beyond the homeostatic range. In addition, chronic abuse of substances leads to an altered set point across multiple systems. Resilience can be defined as the absence of psychopathology despite exposure to high stress and reflects a person’s ability to cope successfully in the face of adversity, demonstrating adaptive psychological and physiological stress responses. The study of resilience can be approached by examining interindividual stress responsibility at multiple phenotypic levels, ranging from psychological differences in the way people cope with stress to differences in neurochemical or neural circuitry function. The ultimate goal of such research is the development of strategies and interventions to enhance resilience and coping in the face of stress and prevent the onset of addiction problems or relapse. PMID:23584116
Glucoregulatory responses of adult and aged rats after exposure to chronic stress.
Odio, M R; Brodish, A
1990-01-01
Stress has been implicated as an environmental factor that may accelerate the process of biological aging. However, this proposal has remained largely anecdotal due to relatively few studies that directly tested this hypothesis. In the present experiments groups of 6-month-old and 20-month-old male F-344 rats were chronically stressed for a six-month period. After the last stress session, when the animals were 12 months of age (adult) and 26 months of age (old), control and chronically stressed rats were tested for their ability to: (a) elicit glucose and insulin responses to an acute, novel stressor; (b) remove a circulatory glucose load elicited either by acute stress exposure or by injection of d-glucose; and (c) raise insulin levels after a glucose challenge. In control rats, we observed a deficit in each of these parameters in old compared to adult rats. Exposure to chronic stress did not exacerbate deterioration of these response mechanisms in either adult or old rats. In fact, the data showed a modest improvement in glucose tolerance in chronically stressed compared to age-matched control rats. We conclude that chronic stress did not exacerbate age-dependent decline of glucoregulatory capacity. From these results and from our earlier work, we speculate that the decline during aging of the functional integrity of systems involved in the response to stress may be sustained by periodic challenges from the organism's external environment.
Radahmadi, Maryam; Alaei, Hojjatallah; Sharifi, Mohammad-Reza; Hosseini, Nasrin
2013-03-01
Impairment of learning and memory processes has been demonstrated by many studies using different stressors. Other reports suggested that exercise has a powerful behavioral intervention to improve cognitive function and brain health. In this research, we investigated protective effects of treadmill running on chronic stress-induced memory deficit in rats. Fifty male Wistar rats were randomly divided into five groups (n=10) as follows: Control (Co), Sham (Sh), Stress (St), Exercise (Ex) and Stress and Exercise (St & Ex) groups. Chronic restraint stress was applied by 6h/day/21days and also treadmill running at a speed 20-21m/min for 1h/day/21days. Memory function was evaluated by the passive avoidance test in different intervals (1, 7 and 21 days) after foot shock. OUR RESULTS SHOWED THAT: 1) Although exercise alone showed beneficial effects especially on short and mid-term memory (P<0.05) in comparison with control group, but synchronized exercise with stress had not significantly improved short, mid and long-term memory deficit in stressed rats. 2) Short and mid-term memory deficit was significantly (P<0.05) observed in synchronized exercise with stress and stress groups with respect to normal rats. 3) Memory deficit in synchronized exercise with stress group was nearly similar to stressed rats. 4) Helpful effects of exercise were less than harmful effects of stress when they were associated together. The data correspond to the possibility that although treadmill running alone has helpful effects on learning and memory consolidation, but when it is synchronized with stress there is no significant benefit and protective effects in improvement of memory deficit induced by chronic stress. However, it is has a better effect than no training on memory deficit in stressed rats.
ERIC Educational Resources Information Center
Chen, Cliff Yung-Chi
2017-01-01
A good number of children grow up in households where a parent has been diagnosed with medical chronic illness. Parental chronic illness is stressful for children and adolescents and may have some potential impact on children's adjustment and functioning. Some emerging research conducted in the fields of medicine, nursing, and family studies has…
Unique genetic loci identified for emotional behavior in control and chronic stress conditions.
Carhuatanta, Kimberly A K; Shea, Chloe J A; Herman, James P; Jankord, Ryan
2014-01-01
An individual's genetic background affects their emotional behavior and response to stress. Although studies have been conducted to identify genetic predictors for emotional behavior or stress response, it remains unknown how prior stress history alters the interaction between an individual's genome and their emotional behavior. Therefore, the purpose of this study is to identify chromosomal regions that affect emotional behavior and are sensitive to stress exposure. We utilized the BXD behavioral genetics mouse model to identify chromosomal regions that predict fear learning and emotional behavior following exposure to a control or chronic stress environment. 62 BXD recombinant inbred strains and C57BL/6 and DBA/2 parental strains underwent behavioral testing including a classical fear conditioning paradigm and the elevated plus maze. Distinct quantitative trait loci (QTLs) were identified for emotional learning, anxiety and locomotion in control and chronic stress populations. Candidate genes, including those with already known functions in learning and stress were found to reside within the identified QTLs. Our data suggest that chronic stress history reveals novel genetic predictors of emotional behavior.
Unique genetic loci identified for emotional behavior in control and chronic stress conditions
Carhuatanta, Kimberly A. K.; Shea, Chloe J. A.; Herman, James P.; Jankord, Ryan
2014-01-01
An individual's genetic background affects their emotional behavior and response to stress. Although studies have been conducted to identify genetic predictors for emotional behavior or stress response, it remains unknown how prior stress history alters the interaction between an individual's genome and their emotional behavior. Therefore, the purpose of this study is to identify chromosomal regions that affect emotional behavior and are sensitive to stress exposure. We utilized the BXD behavioral genetics mouse model to identify chromosomal regions that predict fear learning and emotional behavior following exposure to a control or chronic stress environment. 62 BXD recombinant inbred strains and C57BL/6 and DBA/2 parental strains underwent behavioral testing including a classical fear conditioning paradigm and the elevated plus maze. Distinct quantitative trait loci (QTLs) were identified for emotional learning, anxiety and locomotion in control and chronic stress populations. Candidate genes, including those with already known functions in learning and stress were found to reside within the identified QTLs. Our data suggest that chronic stress history reveals novel genetic predictors of emotional behavior. PMID:25374516
Li, Yihang; Song, Zehe; Kerr, Katelyn A.; Moeser, Adam J.
2017-01-01
Psychosocial stress is a major factor driving gastrointestinal (GI) pathophysiology and disease susceptibility in humans and animals. The mechanisms governing susceptibility to stress-induced GI disease remain poorly understood. In the present study, we investigated the influence of chronic social stress (CSS) in pigs, induced by 7 d of chronic mixing/crowding stress, on intestinal barrier and nutrient transport function, corticotropin releasing factor (CRF) signaling and immunological responses. Results from this study showed that CSS resulted in a significant impairment of ileal and colonic barrier function indicated by reduced transepithelial electrical resistance (TER) in the ileum and increased FD4 flux in the ileum (by 0.8 fold) and colon (by 0.7 fold). Ileal sodium glucose linked transporter 1 (SGLT-1) function, measured as glucose-induced changes in short-circuit current (Isc), was diminished (by 52%) in CSS pigs, associated with reduced body weight gain and feed efficiency. Although reductions in SGLT-1 function were observed in CSS pigs, mRNA expression for SGLT-1, villus heights were increased in CSS pigs. Corticotropin releasing factor (CRF) mRNA was upregulated (by 0.9 fold) in the ileum of CSS pigs but not in the colon. Urocortin 2 (Ucn2) mRNA was upregulated (by 1.5 fold) in the colon of CSS pigs, but not in the ileum. In CSS pigs, a downregulation of pro-inflammatory cytokines mRNA (IL1B, TNFA, IL8, and IL6) was observed in both ileum and colon, compared with controls. In contrast CSS induced a marked upregulation of mRNA for IL10 and mast cell chymase gene (CMA1) in the ileum and colon. Together, these data demonstrate that chronic stress in pigs results in significant alterations in intestinal barrier and nutrient transport function and neuro-immune mediator and receptor expression. PMID:28170426
Pollano, Antonella; Zalosnik, María I; Durando, Patricia E; Suárez, Marta M
2016-11-01
Early maternal separation (MS) may produce lasting effects in the dorsal hippocampus (DH) that can change its response to chronic stress in adulthood. Chronic stress affects DH morphology and function, but tianeptine (an anti-depressant) can reverse the stress-induced morphological impairments. Morphologic alterations of hippocampus can affect contextual memory. Therefore, we evaluated the effect of tianeptine in MS and chronically stressed rats on: 1) volume of the DH and its areas using stereology and 2) hippocampal-dependent memory using a fear conditioning test. Male Wistar rats were subjected to daily MS for 4.5 h between postnatal days (PND) 1-21, or to animal facility rearing (AFR). Between (PND) days 50 and 74, rats were exposed to chronic unpredictable stress and were treated daily with tianeptine (10 mg/kg) or vehicle, providing eight groups: AFR-unstressed/vehicle (n = 5 for stereology, n = 18 for fear conditioning test); AFR unstressed/tianeptine (n = 6 and n = 10); AFR-chronic stress/vehicle (n = 6 and n = 14); AFR-chronic stress/tianeptine (n = 6 and n = 10), MS-unstressed/vehicle (n = 5 and n = 19), MS-unstressed/tianeptine (n = 6 and n = 10), MS-chronic stress/vehicle (n = 6 and n = 18), and MS-chronic stress/tianeptine (n = 6 and n = 10). MS-chronic stress/tianeptine rats showed a diminished CA1 area than the corresponding MS-unstressed/tianeptine rats. The combination of stressors produced a freezing response similar to those of the control group during postconditioning. During retrieval, MS led to a diminished freezing response compared to the AFR-unstressed groups. Tianeptine had no effect on freezing behavior. Our results show that tianeptine can affect the CA1 area volume differently depending on the nature and quantity of stressors but cannot alter freezing to context.
Effects of stress on immune function: the good, the bad, and the beautiful.
Dhabhar, Firdaus S
2014-05-01
Although the concept of stress has earned a bad reputation, it is important to recognize that the adaptive purpose of a physiological stress response is to promote survival during fight or flight. While long-term stress is generally harmful, short-term stress can be protective as it prepares the organism to deal with challenges. This review discusses the immune effects of biological stress responses that can be induced by psychological, physiological, or physical (including exercise) stressors. We have proposed that short-term stress is one of the nature's fundamental but under-appreciated survival mechanisms that could be clinically harnessed to enhance immunoprotection. Short-term (i.e., lasting for minutes to hours) stress experienced during immune activation enhances innate/primary and adaptive/secondary immune responses. Mechanisms of immuno-enhancement include changes in dendritic cell, neutrophil, macrophage, and lymphocyte trafficking, maturation, and function as well as local and systemic production of cytokines. In contrast, long-term stress suppresses or dysregulates innate and adaptive immune responses by altering the Type 1-Type 2 cytokine balance, inducing low-grade chronic inflammation, and suppressing numbers, trafficking, and function of immunoprotective cells. Chronic stress may also increase susceptibility to some types of cancer by suppressing Type 1 cytokines and protective T cells and increasing regulatory/suppressor T cell function. Here, we classify immune responses as being protective, pathological, or regulatory, and discuss "good" versus "bad" effects of stress on health. Thus, short-term stress can enhance the acquisition and/or expression of immunoprotective (wound healing, vaccination, anti-infectious agent, anti-tumor) or immuno-pathological (pro-inflammatory, autoimmune) responses. In contrast, chronic stress can suppress protective immune responses and/or exacerbate pathological immune responses. Studies such as the ones discussed here could provide mechanistic targets and conceptual frameworks for pharmacological and/or biobehavioral interventions designed to enhance the effects of "good" stress, minimize the effects of "bad" stress, and maximally promote health and healing.
Acute and "chronic" phase reaction-a mother of disease.
Bengmark, Stig
2004-12-01
The world is increasingly threatened by a global epidemic of chronic diseases. Almost half of the global morbidity and almost two thirds of global mortality is due to these diseases-approximately 35 million die each year from chronic diseases. And they continue to increase. Increasing evidence suggest that these diseases are associated with lifestyle, stress, lack of physical exercise, over-consumption of calorie-condensed foods rich in saturated fat, sugar and starch, but also under-consumption of antioxidant-rich fruits and vegetables. As a result the function of the innate immune system is severe impaired. This review discusses the changes induced in response to mental and physical stress and their association with the subsequent development of metabolic syndrome, and its association with various chronic diseases. The endothelial cells and their function appears to be of great importance, and the function of their cellular membranes of special importance to the function of the underlying cells; their ability to obtain nutrients and antioxidants and to eliminate waste products. The abdominal adipocytes seen to play a key role, as they have the ability to in stressful situations release much of proinflammatory cytokines, PAI-1 and free fatty acids compared to elsewhere in the body. The load on the liver of these various substances in often of greater magnitude than the liver can handle. Some of the most common chronic diseases and their potential association with acute and "chronic" phase response, and with metabolic syndrome are discussed separately. The need for studies with lifestyle modifications is especially emphasized.
Tryon, Matthew S; Carter, Cameron S; Decant, Rashel; Laugero, Kevin D
2013-08-15
Exaggerated reactivity to food cues involving calorically-dense foods may significantly contribute to food consumption beyond caloric need. Chronic stress, which can induce palatable "comfort" food consumption, may trigger or reinforce neural pathways leading to stronger reactions to highly rewarding foods. We implemented functional magnetic resonance imaging (fMRI) to assess whether chronic stress influences activation in reward, motivation and executive brain regions in response to pictures of high calorie and low calorie foods in thirty women. On separate lab visits, we also assessed food intake from a snack food buffet and circulating cortisol. In women reporting higher chronic stress (HCS), pictures of high calorie foods elicited exaggerated activity in regions of the brain involving reward, motivation, and habitual decision-making. In response to pictures of high calorie food, higher chronic stress was also associated with significant deactivation in frontal regions (BA10; BA46) linked to strategic planning and emotional control. In functional connectivity analysis, HCS strengthened connectivity between amygdala and the putamen, while LCS enhanced connectivity between amygdala and the anterior cingulate and anterior prefrontal cortex (BA10). A hypocortisolemic signature and more consumption of high calorie foods from the snack buffet were observed in the HCS group. These results suggest that persistent stress exposure may alter the brain's response to food in ways that predispose individuals to poor eating habits which, if sustained, may increase risk for obesity. © 2013.
Sex differences in chronic stress effects on cognition in rodents.
Luine, Victoria; Gomez, Juan; Beck, Kevin; Bowman, Rachel
2017-01-01
Chronic stress causes deleterious changes in physiological function in systems ranging from neural cells in culture to laboratory rodents, sub-human primates and humans. It is notable, however, that the vast majority of research in this area has been conducted in males. In this review, we provide information about chronic stress effects on cognition in female rodents and contrast it with responses in male rodents. In general, females show cognitive resilience to chronic stressors which impair male cognitive function using spatial tasks including the radial arm maze, radial arm water maze, Morris water maze, Y-maze and object placement. Moreover, stress often enhances female performance in some of these cognitive tasks. Memory in females is not affected by stress in non-spatial memory tasks like recognition memory and temporal order recognition memory while males show impaired memory following stress. We discuss possible bases for these sex-dependent differences including the use of different strategies by the sexes to solve cognitive tasks. Whether the sex differences result from changes in non-mnemonic factors is also considered. Sex-dependent differences in alcohol and drug influences on stress responses are also described. Finally, the role of neurally derived estradiol in driving sex differences and providing resilience to stress in females is shown. The importance of determining the nature and extent of sex differences in stress responses is that such differences may provide vital information for understanding why some stress related diseases have different incidence rates between the sexes and for developing novel therapeutic treatments. Copyright © 2016 Elsevier Inc. All rights reserved.
Palm-Fischbacher, Simona; Ehlert, Ulrike
2014-06-01
Menstrual-cycle irregularity may have an important influence on the subsequent development of chronic diseases. Several risk factors for irregular menstrual cycles have been detected, including stress. Our aim was to extend research on the link between chronic stress and menstrual-cycle irregularity and to assess potential protective factors, such as dispositional resilience, which we hypothesize to be associated with the maintenance or promotion of a healthy menstrual cycle. For this cross-sectional study, data on 696 healthy women aged 20-40 years were obtained. The women completed measures of chronic stress, dispositional resilience and menstrual-cycle irregularity. Furthermore, potential confounds were assessed. Of the participants, 383 (55%) reported no current use of hormonal contraceptives; 313 (45%) reported current use hormonal contraception and were included as a control group. The results suggest that in women not using hormonal contraception, chronic stress (OR = 1.05, 95%CI = 1.02-1.08, p = 0.001) and dispositional resilience (OR = 0.43, 95%CI = 0.31-0.59, p < 0.001) have a main effect on menstrual cycle regularity. In addition, women with greater dispositional resilience have reduced risk for irregular menstrual cycles in the face of low to moderate chronic stress; however, this association is changed at the highest level of chronic stress. These findings suggest that dispositional resilience may be a protective psychological trait that modulates reproductive functioning.
Cumulative stress and autonomic dysregulation in a community sample.
Lampert, Rachel; Tuit, Keri; Hong, Kwang-Ik; Donovan, Theresa; Lee, Forrester; Sinha, Rajita
2016-05-01
Whether cumulative stress, including both chronic stress and adverse life events, is associated with decreased heart rate variability (HRV), a non-invasive measure of autonomic status which predicts poor cardiovascular outcomes, is unknown. Healthy community dwelling volunteers (N = 157, mean age 29 years) participated in the Cumulative Stress/Adversity Interview (CAI), a 140-item event interview measuring cumulative adversity including major life events, life trauma, recent life events and chronic stressors, and underwent 24-h ambulatory ECG monitoring. HRV was analyzed in the frequency domain and standard deviation of NN intervals (SDNN) calculated. Initial simple regression analyses revealed that total cumulative stress score, chronic stressors and cumulative adverse life events (CALE) were all inversely associated with ultra low-frequency (ULF), very low-frequency (VLF) and low-frequency (LF) power and SDNN (all p < 0.05). In hierarchical regression analyses, total cumulative stress and chronic stress each was significantly associated with SDNN and ULF even after the highly significant contributions of age and sex, with no other covariates accounting for additional appreciable variance. For VLF and LF, both total cumulative stress and chronic stress significantly contributed to the variance alone but were not longer significant after adjusting for race and health behaviors. In summary, total cumulative stress, and its components of adverse life events and chronic stress were associated with decreased cardiac autonomic function as measured by HRV. Findings suggest one potential mechanism by which stress may exert adverse effects on mortality in healthy individuals. Primary preventive strategies including stress management may prove beneficial.
Cumulative stress and autonomic dysregulation in a community sample
Lampert, Rachel; Tuit, Keri; Hong, Kwang-ik; Donovan, Theresa; Lee, Forrester; Sinha, Rajita
2016-01-01
Whether cumulative stress, including both chronic stress and adverse life events, is associated with decreased heart rate variability (HRV), a non-invasive measure of autonomic status which predicts poor cardiovascular outcomes, is unknown. Healthy community dwelling volunteers, (N= 157, mean age 29 years) participated in the Cumulative Stress/Adversity Interview, (CAI) a 140-item event interview measuring cumulative adversity including major life events, life trauma, recent life events and chronic stressors, and underwent 24 hour ambulatory ECG monitoring. HRV was analyzed in the frequency domain and standard deviation of NN intervals (SDNN) calculated. Initial simple regression analyses revealed that total cumulative stress score, chronic stressors, and cumulative adverse life events (CALE) were all inversely associated with ultra low frequency (ULF), very low frequency (VLF), and low frequency (LF) power and SDNN (all p<0.05). In hierarchical regression analyses, total cumulative stress and chronic stress each was significantly associated with SDNN and ULF even after the high significant contribution of age and sex, with no other covariates accounting for additional appreciable variance. For VLF and LF, both total cumulative stress and chronic stress significantly contributed to the variance were no longer significant after adjusting for race and health behaviors. (p’s<.05). In summary, total cumulative stress, and its components of adverse life events and chronic stress were associated with decreased cardiac autonomic function as measured by HRV. Findings suggest one potential mechanism by which stress may exert adverse effects on mortality in healthy individuals. Primary preventive strategies including stress management may prove beneficial. PMID:27112063
Zhang, Min; Brewer, Alison C.; Schröder, Katrin; Santos, Celio X. C.; Grieve, David J.; Wang, Minshu; Anilkumar, Narayana; Yu, Bin; Dong, Xuebin; Walker, Simon J.; Brandes, Ralf P.; Shah, Ajay M.
2010-01-01
Cardiac failure occurs when the heart fails to adapt to chronic stresses. Reactive oxygen species (ROS)-dependent signaling is implicated in cardiac stress responses, but the role of different ROS sources remains unclear. Here we report that NADPH oxidase-4 (Nox4) facilitates cardiac adaptation to chronic stress. Unlike other Nox proteins, Nox4 activity is regulated mainly by its expression level, which increases in cardiomyocytes under stresses such as pressure overload or hypoxia. To investigate the functional role of Nox4 during the cardiac response to stress, we generated mice with a genetic deletion of Nox4 or a cardiomyocyte-targeted overexpression of Nox4. Basal cardiac function was normal in both models, but Nox4-null animals developed exaggerated contractile dysfunction, hypertrophy, and cardiac dilatation during exposure to chronic overload whereas Nox4-transgenic mice were protected. Investigation of mechanisms underlying this protective effect revealed a significant Nox4-dependent preservation of myocardial capillary density after pressure overload. Nox4 enhanced stress-induced activation of cardiomyocyte hypoxia inducible factor 1 and the release of vascular endothelial growth factor, resulting in increased paracrine angiogenic activity. These data indicate that cardiomyocyte Nox4 is a unique inducible regulator of myocardial angiogenesis, a key determinant of cardiac adaptation to overload stress. Our results also have wider relevance to the use of nonspecific antioxidant approaches in cardiac disease and may provide an explanation for the failure of such strategies in many settings. PMID:20921387
Waladkhani, A R; Hellhammer, J
2008-01-01
Stress is associated with both psychological and biological adaptation. Chronic stress, however, impairs adaptation, and may finally lead to illness, in part through unhealthy changes in nutritional behavior. This chapter shows how physiological and psychological stress responses are affected by different food ingredients, and how stress affects health behavior, for example food choice. It becomes obvious that nutrition is closely linked to food choice and that food ingredients affect a broad range of neuroendocrine and related psychological processes, which regulate adaptation to chronic stress. Thus, dietary modification may become a valuable tool to modify the susceptibility to stress and stress-related disorders.
Chronic illness burden and quality of life in an aging HIV population
Balderson, Benjamin H.; Grothaus, Lou; Harrison, Robert G.; McCoy, Katryna; Mahoney, Christine; Catz, Sheryl
2012-01-01
The population of persons living with HIV (PLWH) is growing older and more prone to developing other chronic health conditions. Disease progression has been shown to be related to quality of life (QoL). However, descriptions of chronic comorbid illnesses and the unique QoL challenges of older adults living with HIV are not well understood and have not been examined in multiple geographic locations. About 452 PLWH aged 50 years or older were recruited from AIDS Service Organizations in nine states. Participants completed a telephone survey that included measures of other chronic health conditions, perceived stress, depression, and health-related quality of life. As much as 94% of the sample reported a chronic health condition in addition to HIV (mode = 2). The highest reported conditions were hypertension, chronic pain, hepatitis, and arthritis. Despite relatively high rates of depression, overall QoL was moderately high for the sample. Physical functioning was most impacted by the addition of other chronic health problems. Social functioning, mental health functioning, stress, and depression were also strongly associated with chronic disease burden. Additional chronic health problems are the norm for PLWH aged 50 years and older. QoL is significantly related to the addition of chronic health problems. As increasing numbers of PLWH reach older age, this raises challenges for providing comprehensive healthcare to older PLWH with multiple chronic conditions. PMID:22894702
Distelberg, Brian; Williams-Reade, Jackie; Tapanes, Daniel; Montgomery, Susanne; Pandit, Mayuri
2014-06-01
Family systems play a crucial, albeit complex, role in pediatric chronic illness. Unfortunately, very few psychosocial interventions are available to help these stressed families navigate the developmental steps of chronic illness. A new intervention (MEND) addresses the needs of these families and applies to a broad range of chronic illnesses. This article presents this family systems intervention as well as includes preliminary program evaluation data on 22 families that graduated from the program. Results show consistently strong effects across an array of psychosocial measures. Conclusions from this preliminary study suggest that families entering MEND present with high levels of stress due to the child's chronic illness, but after MEND, the level of stress and other functioning measures are comparable to those seen in healthy families, suggesting that the program offers a significant benefit to families with pediatric chronic illness. © 2014 FPI, Inc.
Distelberg, Brian; Williams-Reade, Jackie; Tapanes, Daniel; Montgomery, Susanne; Pandit, Mayuri
2015-01-01
Family systems play a crucial, albeit complex, role in pediatric chronic illness. Unfortunately, very few psychosocial interventions are available to help these stressed families navigate the developmental steps of chronic illness. A new intervention (MEND) addresses the needs of these families and applies to a broad range of chronic illnesses. This article presents this family systems intervention as well as includes preliminary program evaluation data on 22 families that graduated from the program. Results show consistently strong effects across an array of psychosocial measures. Conclusions from this preliminary study suggest that families entering MEND present with high levels of stress due to the child's chronic illness, but after MEND, the level of stress and other functioning measures are comparable to those seen in healthy families, suggesting that the program offers a significant benefit to families with pediatric chronic illness. PMID:24635346
Xu, Dabo; Gao, Jun; Gillilland, Merritt; Wu, Xiaoyin; Song, Il; Kao, John Y.; Owyang, Chung
2014-01-01
Background & Aims Rifaximin is used to treat patients with functional gastrointestinal disorders, but little is known about its therapeutic mechanism. We propose that rifaximin modulates the ileal bacterial community, reduces subclinical inflammation of the intestinal mucosa, and improves gut barrier function to reduce visceral hypersensitivity. Methods We induced visceral hyperalgesia in rats, via chronic water avoidance or repeat restraint stressors, and investigated whether rifaximin altered the gut microbiota, prevented intestinal inflammation, and improved gut barrier function. Quantitative polymerase chain reaction and 454 pyrosequencing were used to analyze bacterial 16S rRNA in ileal contents from the rats. Reverse transcription, immunoblot, and histologic analyses were used to evaluate levels of cytokines, the tight junction protein occludin, and mucosal inflammation, respectively. Intestinal permeability and rectal sensitivity were measured. Results Water avoidance and repeat restraint stress each led to visceral hyperalgesia, accompanied by mucosal inflammation and impaired mucosal barrier function. Oral rifaximin altered the composition of bacterial communities in the ileum (Lactobacillus species became the most abundant) and prevented mucosal inflammation, impairment to intestinal barrier function, and visceral hyperalgesia in response to chronic stress. Neomycin also changed the composition of the ileal bacterial community (Proteobacteria became the most abundant species). Neomycin did not prevent intestinal inflammation or induction of visceral hyperalgesia induced by water avoidance stress. Conclusions Rifaximin alters the bacterial population in the ileum of rats, leading to a relative abundance of Lactobacillus. These changes prevent intestinal abnormalities and visceral hyperalgesia in response to chronic psychological stress. PMID:24161699
Karkhanis, Anushree; Holleran, Katherine M; Jones, Sara R
2017-01-01
The dynorphin/kappa opioid receptor (KOR) system is implicated in the "dark side" of addiction, in which stress exacerbates maladaptive responses to drug and alcohol exposure. For example, acute stress and acute ethanol exposure result in an elevation in dynorphin, the KOR endogenous ligand. Activation of KORs results in modulation of several neurotransmitters; however, this chapter will focus on its regulatory effects on dopamine in mesolimbic areas. Specifically, KOR activation has an inhibitory effect on dopamine release, thereby influencing reward processing. Repeated stimulation of KORs, for example, via chronic drug and/or stress exposure, results in increased function of the dynorphin/KOR system. This augmentation in KOR function shifts the homeostatic balance in favor of an overall reduction in dopamine signaling via either by reducing dopamine release or by increasing dopamine transporter function. This chapter examines the effects of chronic ethanol exposure on KOR function and the downstream effects on dopamine transmission. Additionally, the impact of chronic cocaine exposure and its effects on KOR function will be explored. Further, KORs may also be involved in driving excessive consumption of food, contributing to the risk of developing obesity. While some studies have shown that KOR agonists reduce drug intake, other studies have shown that antagonists reduce addiction-like behaviors, demonstrating therapeutic potential. For example, KOR inhibition reduces ethanol intake in dependent animals, motivation to self-administer cocaine in chronic stress-exposed animals, and food consumption in obese animals. This chapter will delve into the mechanisms by which modulation of the dynorphin/KOR system may be therapeutic. © 2017 Elsevier Inc. All rights reserved.
Askovic, Mirjana; Watters, Anna J; Aroche, Jorge; Harris, Anthony W F
2017-08-01
The objective of this study was to describe the use of neurofeedback for refugee-related chronic posttraumatic stress disorder (PTSD) in two case studies. We describe the assessment and application of neurofeedback integrated into the treatment of two clients with chronic PTSD. We include details of our treatment schedule, symptoms and quantitative electrophysiological data for each case. Results All clients achieved significant reduction in symptoms of PTSD and improvement in daily functioning post-neurofeedback therapy. Quantitative electroencephalogric (EEG) measures indicate a normalisation of EEG markers relating to trauma, including overarousal at rest and working memory function. Conclusions Neurofeedback as an adjunct to trauma-informed therapy may help to remediate chronic PTSD relating to refugee experiences. If replicated then improvements demonstrated in this population would be generalisable to all chronic PTSD.
Effects of stress on heart rate complexity—A comparison between short-term and chronic stress
Schubert, C.; Lambertz, M.; Nelesen, R.A.; Bardwell, W.; Choi, J.-B.; Dimsdale, J.E.
2009-01-01
This study examined chronic and short-term stress effects on heart rate variability (HRV), comparing time, frequency and phase domain (complexity) measures in 50 healthy adults. The hassles frequency subscale of the combined hassles and uplifts scale (CHUS) was used to measure chronic stress. Short-term stressor reactivity was assessed with a speech task. HRV measures were determined via surface electrocardiogram (ECG). Because respiration rate decreased during the speech task (p < .001), this study assessed the influence of respiration rate changes on the effects of interest. A series of repeated-measures analyses of covariance (ANCOVA) with Bonferroni adjustment revealed that short-term stress decreased HR D2 (calculated via the pointwise correlation dimension PD2) (p < .001), but increased HR mean (p < .001), standard deviation of R–R (SDRR) intervals (p < .001), low (LF) (p < .001) and high frequency band power (HF) (p = .009). Respiratory sinus arrhythmia (RSA) and LF/HF ratio did not change under short-term stress. Partial correlation adjusting for respiration rate showed that HR D2 was associated with chronic stress (r = −.35, p = .019). Differential effects of chronic and short-term stress were observed on several HRV measures. HR D2 decreased under both stress conditions reflecting lowered functionality of the cardiac pacemaker. The results confirm the importance of complexity metrics in modern stress research on HRV. PMID:19100813
Effects of stress on heart rate complexity--a comparison between short-term and chronic stress.
Schubert, C; Lambertz, M; Nelesen, R A; Bardwell, W; Choi, J-B; Dimsdale, J E
2009-03-01
This study examined chronic and short-term stress effects on heart rate variability (HRV), comparing time, frequency and phase domain (complexity) measures in 50 healthy adults. The hassles frequency subscale of the combined hassles and uplifts scale (CHUS) was used to measure chronic stress. Short-term stressor reactivity was assessed with a speech task. HRV measures were determined via surface electrocardiogram (ECG). Because respiration rate decreased during the speech task (p<.001), this study assessed the influence of respiration rate changes on the effects of interest. A series of repeated-measures analyses of covariance (ANCOVA) with Bonferroni adjustment revealed that short-term stress decreased HR D2 (calculated via the pointwise correlation dimension PD2) (p<.001), but increased HR mean (p<.001), standard deviation of R-R (SDRR) intervals (p<.001), low (LF) (p<.001) and high frequency band power (HF) (p=.009). Respiratory sinus arrhythmia (RSA) and LF/HF ratio did not change under short-term stress. Partial correlation adjusting for respiration rate showed that HR D2 was associated with chronic stress (r=-.35, p=.019). Differential effects of chronic and short-term stress were observed on several HRV measures. HR D2 decreased under both stress conditions reflecting lowered functionality of the cardiac pacemaker. The results confirm the importance of complexity metrics in modern stress research on HRV.
Brooks, Steven; Brnayan, Kayla W; DeVallance, Evan; Skinner, Roy; Lemaster, Kent; Sheets, J Whitney; Pitzer, Christopher R; Asano, Shinichi; Bryner, Randall W; Olfert, I Mark; Frisbee, Jefferson C; Chantler, Paul D
2018-05-01
What is the central question of this study? How does chronic stress impact cerebrovascular function and does metabolic syndrome accelerate the cerebrovascular adaptations to stress? What role does exercise training have in preventing cerebrovascular changes to stress and metabolic syndrome? What is the main finding and its importance? Stressful conditions lead to pathological adaptations of the cerebrovasculature via an oxidative nitric oxide pathway, and the presence of metabolic syndrome produces a greater susceptibility to stress-induced cerebrovascular dysfunction. The results also provide insight into the mechanisms that may contribute to the influence of stress and the role of exercise in preventing the negative actions of stress on cerebrovascular function and structure. Chronic unresolvable stress leads to the development of depression and cardiovascular disease. There is a high prevalence of depression with the metabolic syndrome (MetS), but to what extent the MetS concurrent with psychological stress affects cerebrovascular function is unknown. We investigated the differential effect of MetS on cerebrovascular structure/function in rats (16-17 weeks old) following 8 weeks of unpredictable chronic mild stress (UCMS) and whether exercise training could limit any cerebrovascular dysfunction. In healthy lean Zucker rats (LZR), UCMS decreased (28%, P < 0.05) ex vivo middle cerebral artery (MCA) endothelium-dependent dilatation (EDD), but changes in MCA remodelling and stiffness were not evident, though cerebral microvessel density (MVD) decreased (30%, P < 0.05). The presence of UCMS and MetS (obese Zucker rats; OZR) decreased MCA EDD (35%, P < 0.05) and dilatation to sodium nitroprusside (20%, P < 0.05), while MCA stiffness increased and cerebral MVD decreased (31%, P < 0.05), which were linked to reduced nitric oxide and increased oxidative levels. Aerobic exercise prevented UCMS impairments in MCA function and MVD in LZR, and partly restored MCA function, stiffness and MVD in OZR. Our data suggest that the benefits of exercise with UCMS were due to a reduction in oxidative stress and increased production of nitric oxide in the cerebral vessels. In conclusion, UCMS significantly impaired MCA structure and function, but the effects of UCMS were more substantial in OZR vs. LZR. Importantly, aerobic exercise when combined with UCMS prevented the MCA dysfunction through subtle shifts in nitric oxide and oxidative stress in the cerebral microvasculature. © 2018 The Authors. Experimental Physiology © 2018 The Physiological Society.
Acute Stress-Induced Epigenetic Modulations and Their Potential Protective Role Toward Depression.
Rusconi, Francesco; Battaglioli, Elena
2018-01-01
Psychiatric disorders entail maladaptive processes impairing individuals' ability to appropriately interface with environment. Among them, depression is characterized by diverse debilitating symptoms including hopelessness and anhedonia, dramatically impacting the propensity to live a social and active life and seriously affecting working capability. Relevantly, besides genetic predisposition, foremost risk factors are stress-related, such as experiencing chronic psychosocial stress-including bullying, mobbing and abuse-, and undergoing economic crisis or chronic illnesses. In the last few years the field of epigenetics promised to understand core mechanisms of gene-environment crosstalk, contributing to get into pathogenic processes of many disorders highly influenced by stressful life conditions. However, still very little is known about mechanisms that tune gene expression to adapt to the external milieu. In this Perspective article, we discuss a set of protective, functionally convergent epigenetic processes induced by acute stress in the rodent hippocampus and devoted to the negative modulation of stress-induced immediate early genes (IEGs) transcription, hindering stress-driven morphostructural modifications of corticolimbic circuitry. We also suggest that chronic stress damaging protective epigenetic mechanisms, could bias the functional trajectory of stress-induced neuronal morphostructural modification from adaptive to maladaptive, contributing to the onset of depression in vulnerable individuals. A better understanding of the epigenetic response to stress will be pivotal to new avenues of therapeutic intervention to treat depression, especially in light of limited efficacy of available antidepressant drugs.
Role of Prefrontal Cortex Glucocorticoid Receptors in Stress and Emotion
McKlveen, Jessica M.; Myers, Brent; Flak, Jonathan N.; Bundzikova, Jana; Solomon, Matia B.; Seroogy, Kim B.; Herman, James P.
2013-01-01
Background Stress-related disorders (e.g., depression) are associated with hypothalamic-pituitary-adrenocortical axis dysregulation and prefrontal cortex (PFC) dysfunction, suggesting a functional link between aberrant prefrontal corticosteroid signaling and mood regulation. Methods We used a virally mediated knockdown strategy (short hairpin RNA targeting the glucocorticoid receptor [GR]) to attenuate PFC GR signaling in the rat PFC. Adult male rats received bilateral microinjections of vector control or short hairpin RNA targeting the GR into the prelimbic (n = 44) or infralimbic (n = 52) cortices. Half of the animals from each injection group underwent chronic variable stress, and all were subjected to novel restraint. The first 2 days of chronic variable stress were used to assess depression- and anxiety-like behavior in the forced swim test and open field. Results The GR knockdown confined to the infralimbic PFC caused acute stress hyper-responsiveness, sensitization of stress responses after chronic variable stress, and induced depression-like behavior (increased immobility in the forced swim test). Knockdown of GR in the neighboring prelimbic PFC increased hypothalamic-pituitary-adrenocortical axis responses to acute stress and caused hyper-locomotion in the open field, but did not affect stress sensitization or helplessness behavior. Conclusions The data indicate a marked functional heterogeneity of glucocorticoid action in the PFC and highlight a prominent role for the infralimbic GR in appropriate stress adaptation, emotional control, and mood regulation. PMID:23683655
Radahmadi, Maryam; Alaei, Hojjatallah; Sharifi, Mohammad Reza; Hosseini, Nasrin
2015-04-01
Previous results indicated that stress impairs learning and memory. In this research, the effects of preventive, therapeutic and regular continually running activity on chronic stress-induced memory deficit in rats were investigated. 70 male rats were randomly divided into seven groups as follows: Control, Sham, Stress-Rest, Rest-Stress, Stress-Exercise, Exercise-Stress and Exercise-Stress & Exercise groups. Chronic restraint stress was applied 6 h/day for 21days and treadmill running 1 h/day. Memory function was evaluated by the passive avoidance test. The results revealed that running activities had therapeutic effect on mid and long-term memory deficit and preventive effects on short and mid-term memory deficit in stressed rats. Regular continually running activity improved mid and long-term memory compared to Exercise-Stress group. The beneficial effects of exercise were time-dependent in stress conditions. Finally, data corresponded to the possibility that treadmill running had a more important role on treatment rather than on prevention on memory impairment induced by stress. Copyright © 2014 Elsevier Ltd. All rights reserved.
5 Things You Should Know: The Science of Chronic Pain and Complementary Health Practices
... some evidence that mindfulness-based stress reduction and cognitive-behavioral therapy improves pain and functional limitation compared to usual ... pain found that mindfulness-based stress reduction and cognitive-behavioral therapy resulted in greater improvement in pain and functional ...
Pillai, Vivek; Roth, Thomas; Mullins, Heather M.; Drake, Christopher L.
2014-01-01
Study Objectives: To assess moderators, such as stressor chronicity, and mediators, including stress response in the form of cognitive intrusion and coping behavior, of the prospective association between naturalistic stress and incident insomnia. Design: Longitudinal. Setting: Epidemiological. Participants: A community-based sample of good sleepers (n = 2,892) with no lifetime history of insomnia. Interventions: None. Measurements and Results: Participants reported the number of stressful events they had encountered at baseline, as well as the perceived severity and chronicity of each event. Similarly, volitional stress responses such as coping, as well as more involuntary responses such as cognitive intrusion were assayed for each stressor. Follow-up assessment 1 y hence revealed an insomnia incidence rate of 9.1%. Stress exposure was a significant predictor of insomnia onset, such that the odds of developing insomnia increased by 19% for every additional stressor. Chronicity significantly moderated this relationship, such that the likelihood of developing insomnia as a result of stress exposure increased as a function of chronicity. Cognitive intrusion significantly mediated the association between stress exposure and insomnia. Finally, three specific coping behaviors also acted as mediators: behavioral disengagement, distraction, and substance use. Conclusions: Most studies characterize the relationship between stress exposure and insomnia as a simple dose-response phenomenon. However, our data suggest that certain stressor characteristics significantly moderate this association. Stress response in the form of cognitive intrusion and specific maladaptive coping behaviors mediate the effects of stress exposure. These findings highlight the need for a multidimensional approach to stress assessment in future research and clinical practice. Citation: Pillai V, Roth T, Mullins HM, Drake CL. Moderators and mediators of the relationship between stress and insomnia: stressor chronicity, cognitive intrusion, and coping. SLEEP 2014;37(7):1199-1208. PMID:25061248
Pillai, Vivek; Roth, Thomas; Mullins, Heather M; Drake, Christopher L
2014-07-01
To assess moderators, such as stressor chronicity, and mediators, including stress response in the form of cognitive intrusion and coping behavior, of the prospective association between naturalistic stress and incident insomnia. Longitudinal. Epidemiological. A community-based sample of good sleepers (n = 2,892) with no lifetime history of insomnia. None. Participants reported the number of stressful events they had encountered at baseline, as well as the perceived severity and chronicity of each event. Similarly, volitional stress responses such as coping, as well as more involuntary responses such as cognitive intrusion were assayed for each stressor. Follow-up assessment 1 y hence revealed an insomnia incidence rate of 9.1%. Stress exposure was a significant predictor of insomnia onset, such that the odds of developing insomnia increased by 19% for every additional stressor. Chronicity significantly moderated this relationship, such that the likelihood of developing insomnia as a result of stress exposure increased as a function of chronicity. Cognitive intrusion significantly mediated the association between stress exposure and insomnia. Finally, three specific coping behaviors also acted as mediators: behavioral disengagement, distraction, and substance use. Most studies characterize the relationship between stress exposure and insomnia as a simple dose-response phenomenon. However, our data suggest that certain stressor characteristics significantly moderate this association. Stress response in the form of cognitive intrusion and specific maladaptive coping behaviors mediate the effects of stress exposure. These findings highlight the need for a multidimensional approach to stress assessment in future research and clinical practice. Pillai V, Roth T, Mullins HM, Drake CL. Moderators and mediators of the relationship between stress and insomnia: stressor chronicity, cognitive intrusion, and coping.
Ortiz, J Bryce; Taylor, Sara B; Hoffman, Ann N; Campbell, Alyssa N; Lucas, Louis R; Conrad, Cheryl D
2015-04-01
Chronic restraint stress alters hippocampal-dependent spatial learning and memory in a sex-dependent manner, impairing spatial performance in male rats and leaving intact or facilitating performance in female rats. Moreover, these stress-induced spatial memory deficits improve following post-stress recovery in males. The current study examined whether restraint administered in an unpredictable manner would eliminate these sex differences and impact a post-stress period on spatial ability and limbic glutamic acid decarboxylase (GAD65) expression. Male (n=30) and female (n=30) adult Sprague-Dawley rats were assigned to non-stressed control (Con), chronic stress (Str-Imm), or chronic stress given a post-stress recovery period (Str-Rec). Stressed rats were unpredictably restrained for 21 days using daily non-repeated combinations of physical context, duration, and time of day. Then, all rats were tested on the radial arm water maze (RAWM) for 2 days and given one retention trial on the third day, with brains removed 30min later to assess GAD65 mRNA. In Str-Imm males, deficits occurred on day 1 of RAWM acquisition, an impairment that was not evident in the Str-Rec group. In contrast, females did not show significant outcomes following chronic stress or post-stress recovery. In males, amygdalar GAD65 expression negatively correlated with RAWM performance on day 1. In females, hippocampal CA1 GAD65 positively correlated with RAWM performance on day 1. These results demonstrate that GABAergic function may contribute to the sex differences observed following chronic stress. Furthermore, unpredictable restraint and a recovery period failed to eliminate the sex differences on spatial learning and memory. Copyright © 2014 Elsevier B.V. All rights reserved.
Ortiz, J. Bryce; Taylor, Sara B.; Hoffman, Ann N.; Campbell, Alyssa N.; Lucas, Louis R.; Conrad, Cheryl D.
2015-01-01
Chronic restraint stress alters hippocampal-dependent spatial learning and memory in a sex-dependent manner, impairing spatial performance in male rats and leaving intact or facilitating performance in female rats. Moreover, these stress-induced spatial memory deficits improve following post-stress recovery in males. The current study examined whether restraint administered in an unpredictable manner would eliminate these sex differences and impact a post-stress period on spatial ability and limbic glutamic acid decarboxylase (GAD65) expression. Male (n=30) and female (n=30) adult Sprague-Dawley rats were assigned to non-stressed control (Con), chronic stress (Str-Imm), or chronic stress given a post-stress recovery period (Str-Rec). Stressed rats were unpredictably restrained for 21 days using daily non-repeated combinations of physical context, duration, and time of day. Then, all rats were tested on the radial arm water maze (RAWM) for two days and given one retention trial on the third day, with brains removed 30 minutes later to assess GAD65 mRNA. In Str-Imm males, deficits occurred on day 1 of RAWM acquisition, an impairment that was not evident in the Str-Rec group. In contrast, females did not show significant outcomes following chronic stress or post-stress recovery. In males, amygdalar GAD65 expression negatively correlated with RAWM performance on day 1. In females, hippocampal CA1 GAD65 positively correlated with RAWM performance on day 1. These results demonstrate that GABAergic function may contribute to the sex differences observed following chronic stress. Furthermore, unpredictable restraint and a recovery period failed to eliminate the sex differences on spatial learning and memory. PMID:25591480
Chronic Stress Alters Striosome-Circuit Dynamics, Leading to Aberrant Decision-Making.
Friedman, Alexander; Homma, Daigo; Bloem, Bernard; Gibb, Leif G; Amemori, Ken-Ichi; Hu, Dan; Delcasso, Sebastien; Truong, Timothy F; Yang, Joyce; Hood, Adam S; Mikofalvy, Katrina A; Beck, Dirk W; Nguyen, Norah; Nelson, Erik D; Toro Arana, Sebastian E; Vorder Bruegge, Ruth H; Goosens, Ki A; Graybiel, Ann M
2017-11-16
Effective evaluation of costs and benefits is a core survival capacity that in humans is considered as optimal, "rational" decision-making. This capacity is vulnerable in neuropsychiatric disorders and in the aftermath of chronic stress, in which aberrant choices and high-risk behaviors occur. We report that chronic stress exposure in rodents produces abnormal evaluation of costs and benefits resembling non-optimal decision-making in which choices of high-cost/high-reward options are sharply increased. Concomitantly, alterations in the task-related spike activity of medial prefrontal neurons correspond with increased activity of their striosome-predominant striatal projection neuron targets and with decreased and delayed striatal fast-firing interneuron activity. These effects of chronic stress on prefronto-striatal circuit dynamics could be blocked or be mimicked by selective optogenetic manipulation of these circuits. We suggest that altered excitation-inhibition dynamics of striosome-based circuit function could be an underlying mechanism by which chronic stress contributes to disorders characterized by aberrant decision-making under conflict. VIDEO ABSTRACT. Copyright © 2017 Elsevier Inc. All rights reserved.
Bay, Esther; Kalpakjian, Claire; Giordani, Bruno
2012-01-01
This study sought to determine to what extent chronic stress, depression and neurobehavioural consequences explained post-TBI subjective memory complaints (SMC). An observational, cross-sectional design was used. One hundred and fifty-nine persons who were 1-36 months post-injury provided data using interviews, chart reviews and surveys. Predictor variables included the Center for Epidemiological Studies-Depression Scale (CES-D), Perceived Stress Scale (PSS-14) and sub-scales of the NFI. SMC, according to the Neurobehavioural Functioning Inventory (NFI), was the main outcome variable. SMC could best be explained by increased age, months-since-injury, chronic situational stress and the frequency of somatic and communication difficulties, not depression (R(2)= 0.780, F = 97.39, [8, 152], p < 0.001). These findings suggest that, for persons in the chronic phase of recovery from their TBI, specific determinants other than general adjustment issues may apply. These include: increased chronic stress, age, somatic symptoms and communication difficulties. Self-reported chronic situational stress is positively associated with self-reported memory complaints, as well as somatic and communication difficulties. The causal ordering of these relationships would be best understood with prospective designs using biological correlates of chronic stress to advance understanding of post-TBI depression in older adults.
Diandong, Hou; Feng, Gu; Zaifu, Liang; Helland, Timothy; Weixin, Fu; Liping, Cai
2016-03-01
Chronic stress can suppress natural killer (NK) cell activity; this may also be related to the effect of stress on the neuroendocrine-immune network. Sea buckthorn (SBT) (Hippophae rhamnoides L.) is a thorny nitrogen fixing deciduous shrub, native to both Europe and Asia. It has been used as a medicinal plant in Tibetan and Mongolian traditional medicines. SBT has multifarious medical properties, including anti-fatigue as well as immunoregulatory effects. This study reports the effects of SBT oil with regard to the cytotoxicity and quantity of NK cells in the blood of a chronic-stress rat model, in addition to its mechanisms on the neuroendocrine-immune network. These results show that SBT oil, given by gavage to rats with chronic stress, could increase the following: body weight, NK cell quantities, and cytotoxicity, as well as the expression of perforin and granzyme B. The results also show that SBT oil in rats with chronic stress could suppress cortisol, ACTH, IL-1β and TNF-α levels, in addition to increasing 5-HT and IFN-γ serum levels. This leads to suggest that SBT oil, in rats with chronic stress, can increase NK cell cytotoxicity by upregulating the expression of perforin and granzyme B, thus causing associated effects of SBT oil on the neuroendocrine-immune network. © The Author(s) 2015.
Diandong, Hou; Feng, Gu; Zaifu, Liang; Helland, Timothy; Weixin, Fu; Liping, Cai
2015-01-01
Chronic stress can suppress natural killer (NK) cell activity; this may also be related to the effect of stress on the neuroendocrine–immune network. Sea buckthorn (SBT) (Hippophae rhamnoides L.) is a thorny nitrogen fixing deciduous shrub, native to both Europe and Asia. It has been used as a medicinal plant in Tibetan and Mongolian traditional medicines. SBT has multifarious medical properties, including anti-fatigue as well as immunoregulatory effects. This study reports the effects of SBT oil with regard to the cytotoxicity and quantity of NK cells in the blood of a chronic-stress rat model, in addition to its mechanisms on the neuroendocrine–immune network. These results show that SBT oil, given by gavage to rats with chronic stress, could increase the following: body weight, NK cell quantities, and cytotoxicity, as well as the expression of perforin and granzyme B. The results also show that SBT oil in rats with chronic stress could suppress cortisol, ACTH, IL-1β and TNF-α levels, in addition to increasing 5-HT and IFN-γ serum levels. This leads to suggest that SBT oil, in rats with chronic stress, can increase NK cell cytotoxicity by upregulating the expression of perforin and granzyme B, thus causing associated effects of SBT oil on the neuroendocrine–immune network. PMID:26684638
Acute Stress-Induced Epigenetic Modulations and Their Potential Protective Role Toward Depression
Rusconi, Francesco; Battaglioli, Elena
2018-01-01
Psychiatric disorders entail maladaptive processes impairing individuals’ ability to appropriately interface with environment. Among them, depression is characterized by diverse debilitating symptoms including hopelessness and anhedonia, dramatically impacting the propensity to live a social and active life and seriously affecting working capability. Relevantly, besides genetic predisposition, foremost risk factors are stress-related, such as experiencing chronic psychosocial stress—including bullying, mobbing and abuse—, and undergoing economic crisis or chronic illnesses. In the last few years the field of epigenetics promised to understand core mechanisms of gene-environment crosstalk, contributing to get into pathogenic processes of many disorders highly influenced by stressful life conditions. However, still very little is known about mechanisms that tune gene expression to adapt to the external milieu. In this Perspective article, we discuss a set of protective, functionally convergent epigenetic processes induced by acute stress in the rodent hippocampus and devoted to the negative modulation of stress-induced immediate early genes (IEGs) transcription, hindering stress-driven morphostructural modifications of corticolimbic circuitry. We also suggest that chronic stress damaging protective epigenetic mechanisms, could bias the functional trajectory of stress-induced neuronal morphostructural modification from adaptive to maladaptive, contributing to the onset of depression in vulnerable individuals. A better understanding of the epigenetic response to stress will be pivotal to new avenues of therapeutic intervention to treat depression, especially in light of limited efficacy of available antidepressant drugs. PMID:29904343
Harro, Jaanus; Kanarik, Margus; Kaart, Tanel; Matrov, Denis; Kõiv, Kadri; Mällo, Tanel; Del Río, Joaquin; Tordera, Rosa M; Ramirez, Maria J
2014-07-01
The large variety of available animal models has revealed much on the neurobiology of depression, but each model appears as specific to a significant extent, and distinction between stress response, pathogenesis of depression and underlying vulnerability is difficult to make. Evidence from epidemiological studies suggests that depression occurs in biologically predisposed subjects under impact of adverse life events. We applied the diathesis-stress concept to reveal brain regions and functional networks that mediate vulnerability to depression and response to chronic stress by collapsing data on cerebral long term neuronal activity as measured by cytochrome c oxidase histochemistry in distinct animal models. Rats were rendered vulnerable to depression either by partial serotonergic lesion or by maternal deprivation, or selected for a vulnerable phenotype (low positive affect, low novelty-related activity or high hedonic response). Environmental adversity was brought about by applying chronic variable stress or chronic social defeat. Several brain regions, most significantly median raphe, habenula, retrosplenial cortex and reticular thalamus, were universally implicated in long-term metabolic stress response, vulnerability to depression, or both. Vulnerability was associated with higher oxidative metabolism levels as compared to resilience to chronic stress. Chronic stress, in contrast, had three distinct patterns of effect on oxidative metabolism in vulnerable vs. resilient animals. In general, associations between regional activities in several brain circuits were strongest in vulnerable animals, and chronic stress disrupted this interrelatedness. These findings highlight networks that underlie resilience to stress, and the distinct response to stress that occurs in vulnerable subjects. Copyright © 2014 Elsevier B.V. All rights reserved.
Altered attentional control strategies but spared executive functioning in chronic cannabis users.
Nusbaum, Amy T; Whitney, Paul; Cuttler, Carrie; Spradlin, Alexander; Hinson, John M; McLaughlin, Ryan J
2017-12-01
Cannabis use has increased rapidly in recent decades. The increase in cannabis use makes it important to understand the potential influence of chronic use on attentional control and other executive functions (EFs). Because cannabis is often used to reduce stress, and because stress can constrain attentional control and EFs, the primary goal of this study was to determine the joint effect of acute stress and chronic cannabis use on specific EFs. Thirty-nine cannabis users and 40 non-users were assigned to either a stress or no stress version of the Maastricht Acute Stress Test. Participants then completed two cognitive tasks that involve EFs: (1) task switching, and (2) a novel Flexible Attentional Control Task. These two tasks provided assessments of vigilant attention, inhibitory control, top-down attentional control, and cognitive flexibility. Salivary cortisol was assessed throughout the study. Reaction time indices showed an interaction between stress and cannabis use on top-down attentional control (p=0.036, n p 2 =0.059). Follow-up tests showed that cannabis users relied less on top-down attentional control than did non-users in the no stress version. Despite not relying on top-down control, the cannabis users showed no overall performance deficits on the tasks. Chronic cannabis users performed cognitive tasks involving EFs as well as non-users while not employing cognitive control processes that are typical for such tasks. These results indicate alterations in cognitive processing in cannabis users, but such alterations do not necessarily lead to global performance deficits. Copyright © 2017 Elsevier B.V. All rights reserved.
Hoffman, Ann N.; Parga, Alejandro; Paode, Pooja; Watterson, Lucas R.; Nikulina, Ella M.; Hammer, Ronald P.; Conrad, Cheryl D.
2015-01-01
The chronically stressed brain may present a vulnerability to develop maladaptive fear-related behaviors in response to a traumatic event. In rodents, chronic stress leads to amygdala hyperresponsivity and dendritic hypertrophy and produces a post traumatic stress disorder (PTSD)-like phenotype that includes exaggerated fear learning following Pavlovian fear conditioning and resistance to extinction. It is unknown whether chronic stress-induced enhanced fear memories are vulnerable to disruption via reconsolidation blockade, as a novel therapeutic approach for attenuating exaggerated fear memories. We used a chronic stress procedure in a rat model (wire mesh restraint for 6h/d/21d) to create a vulnerable brain that leads to a PTSD-like phenotype. We then examined freezing behavior during acquisition, reactivation and after post-reactivation rapamycin administration (i.p., 40 mg/kg) in a Pavlovian fear conditioning paradigm to determine its effects on reconsolidation as well as the subsequent functional activation of limbic structures using zif268 mRNA. Chronic stress increased amygdala zif268 mRNA during fear memory retrieval at reactivation. Moreover, these enhanced fear memories were unaffected by post reactivation rapamycin to disrupt long-term fear memory. Also, post-reactivation long term memory processing was also associated with increased amygdala (LA and BA), and decreased hippocampal CA1 zif268 mRNA expression. These results suggest potential challenges for reconsolidation blockade as an effective approach in treating exaggerated fear memories, as in PTSD. Our findings also support chronic stress manipulations combined with fear conditioning as a useful preclinical approach to study a PTSD-like phenotype. PMID:25732249
Chronic grouped social restriction triggers long-lasting immune system adaptations.
Tian, Rui; Hou, Gonglin; Song, Liuwei; Zhang, Jianming; Yuan, Ti-Fei
2017-05-16
Chronic stress triggers rigorous psychological and physiological changes, including immunological system adaptations. However, the effects of long-term social restriction on human immune system have not been investigated. The present study is to investigate the effect of chronic stress on immune changes in human blood, with the stress stimuli controlled.10 male volunteers were group isolated from the modern society in a 50-meter-square room for 150 days, with enriched nutrition and good living conditions provided. Serum examination of immune system markers demonstrated numerous changes in different aspects of the immune functions. The changes were observed as early as 30 days and could last for another 150 days after the termination of the restriction period (300 days' time point). The results strongly argued for the adaptation of immunological system under chronic social restriction stress in adult human, preceding a clear change in psychological conditions. The changes of these immune system factors could as well act as the serum biomarkers in clinical early-diagnosis of stress-related disorders.
Stress plays provoking role in hypertension-related stroke: injuries of blood-brain barrier function
NASA Astrophysics Data System (ADS)
Semyachkina-Glushkovskaya, O.; Shirokov, A.; Gekalyuk, A.; Abakumov, M.; Navolokin, N.; Abdurashitov, A.; Pavlov, A.; Ulanova, M.; Fedorova, V.; Razubaeva, V.; Saranceva, E.; Li, P.; Huang, Q.; Zhu, D.; Luo, Q.; Tuchin, V.; Kurths, J.
2017-02-01
Chronic hypertension itself does not cause stroke but significantly decreases the resistant to stroke induced by stress due to exhausting of adaptive capacity of cerebral endothelium and decrease resistance of blood-brain barrier to stress.
Hammack, Sayamwong E.; Cheung, Joseph; Rhodes, Kimberly M.; Schutz, Kristin C.; Falls, William A.; Braas, Karen M.; May, Victor
2009-01-01
Exposure to chronic stress has been argued to produce maladaptive anxiety-like behavioral states, and many of the brain regions associated with stressor responding also mediate anxiety-like behavior. Pituitary adenylate cyclase activating polypeptide (PACAP) and its specific G protein-coupled PAC1 receptor have been associated with many of these stress- and anxiety-associated brain regions, and signaling via this peptidergic system may facilitate the neuroplasticity associated with pathological affective states. Here we investigated whether chronic stress increased transcript expression for PACAP, PAC1 receptor, brain-derived neurotrophic factor (BDNF), and tyrosine receptor kinase B (TrkB) in several nuclei. In rats exposed to a 7 day chronic variate stress paradigm, chronic stress enhanced baseline startle responding induced by handling and exposure to bright lights. Following chronic stress, quantitative transcript assessments of brain regions demonstrated dramatic increases in PACAP and PAC1 receptor, BDNF, and TrkB receptor mRNA expression selectively in the dorsal aspect of the anterolateral bed nucleus of the stria terminalis (dBNST). Related vasoactive intestinal peptide (VIP) and VPAC receptor, and other stress peptide transcript levels were not altered compared to controls. Moreover, acute PACAP38 infusion into the dBNST resulted in a robust dose-dependent anxiogenic response on baseline startle responding that persisted for 7 days. PACAP/PAC1 receptor signaling has established trophic functions and its coordinate effects with chronic stress-induced dBNST BDNF and TrkB transcript expression may underlie the maladaptive BNST remodeling and plasticity associated with anxiety-like behavior. PMID:19181454
Nakajima, Sanae; Ohsawa, Ikuroh; Ohta, Shigeo; Ohno, Makoto; Mikami, Toshio
2010-08-25
Chronic stress impairs cognitive function and hippocampal neurogenesis. This impairment is attributed to increases in oxidative stress, which result in the accumulation of lipid peroxide. On the other hand, voluntary exercise enhances cognitive function, hippocampal neurogenesis, and antioxidant capacity in normal animals. However, the effects of voluntary exercise on cognitive function, neurogenesis, and antioxidants in stressed mice are unclear. This study was designed to investigate whether voluntary exercise cures stress-induced impairment of cognitive function accompanied by improvement of hippocampal neurogenesis and increases in antioxidant capacity. Stressed mice were exposed to chronic restraint stress (CRS), which consisted of 12h immobilization daily and feeding in a small cage, for 8 weeks. Exercised mice were allowed free access to a running wheel during their exposure to CRS. At the 6th week, cognitive function was examined using the Morris water maze (MWM) test. Daily voluntary exercise restored stress-induced impairment of cognitive function and the hippocampal cell proliferation of newborn cells but not cell survival. Voluntary exercise increased insulin-like growth factor 1 (IGF-1) protein and mRNA expression in the cerebral cortex and liver, respectively. In addition, CRS resulted in a significant increase in the number of 4-hydrosynonenal (4-HNE)-positive cells in the hippocampal dentate gyrus; whereas, voluntary exercise inhibited it and enhanced glutathione s-transferases (GST) activity in the brain. These findings suggest that voluntary exercise attenuated the stress-induced impairment of cognitive function accompanied by improvement of cell proliferation in the dentate gyrus. This exercise-induced improvement was attributed to exercise-induced enhancement of IGF-1 protein and GST activity in the brain. Copyright 2010 Elsevier B.V. All rights reserved.
Xu, Dabo; Gao, Jun; Gillilland, Merritt; Wu, Xiaoyin; Song, Il; Kao, John Y; Owyang, Chung
2014-02-01
Rifaximin is used to treat patients with functional gastrointestinal disorders, but little is known about its therapeutic mechanism. We propose that rifaximin modulates the ileal bacterial community, reduces subclinical inflammation of the intestinal mucosa, and improves gut barrier function to reduce visceral hypersensitivity. We induced visceral hyperalgesia in rats, via chronic water avoidance or repeat restraint stressors, and investigated whether rifaximin altered the gut microbiota, prevented intestinal inflammation, and improved gut barrier function. Quantitative polymerase chain reaction (PCR) and 454 pyrosequencing were used to analyze bacterial 16S ribosomal RNA in ileal contents from the rats. Reverse transcription, immunoblot, and histologic analyses were used to evaluate levels of cytokines, the tight junction protein occludin, and mucosal inflammation, respectively. Intestinal permeability and rectal sensitivity were measured. Water avoidance and repeat restraint stress each led to visceral hyperalgesia, accompanied by mucosal inflammation and impaired mucosal barrier function. Oral rifaximin altered the composition of bacterial communities in the ileum (Lactobacillus species became the most abundant) and prevented mucosal inflammation, impairment to intestinal barrier function, and visceral hyperalgesia in response to chronic stress. Neomycin also changed the composition of the ileal bacterial community (Proteobacteria became the most abundant species). Neomycin did not prevent intestinal inflammation or induction of visceral hyperalgesia induced by water avoidance stress. Rifaximin alters the bacterial population in the ileum of rats, leading to a relative abundance of Lactobacillus. These changes prevent intestinal abnormalities and visceral hyperalgesia in response to chronic psychological stress. Copyright © 2014 AGA Institute. Published by Elsevier Inc. All rights reserved.
Lee, Vallent; MacKenzie, Georgina; Hooper, Andrew; Maguire, Jamie
2016-10-01
It is well established that stress impacts the underlying processes of learning and memory. The effects of stress on memory are thought to involve, at least in part, effects on the hippocampus, which is particularly vulnerable to stress. Chronic stress induces hippocampal alterations, including but not limited to dendritic atrophy and decreased neurogenesis, which are thought to contribute to chronic stress-induced hippocampal dysfunction and deficits in learning and memory. Changes in synaptic transmission, including changes in GABAergic inhibition, have been documented following chronic stress. Recently, our laboratory demonstrated shifts in EGABA in CA1 pyramidal neurons following chronic stress, compromising GABAergic transmission and increasing excitability of these neurons. Interestingly, here we demonstrate that these alterations are unique to CA1 pyramidal neurons, since we do not observe shifts in EGABA following chronic stress in dentate gyrus granule cells. Following chronic stress, there is a decrease in the expression of the GABAA receptor (GABAA R) δ subunit and tonic GABAergic inhibition in dentate gyrus granule cells, whereas there is an increase in the phasic component of GABAergic inhibition, evident by an increase in the peak amplitude of spontaneous inhibitory postsynaptic currents (sIPSCs). Given the numerous changes observed in the hippocampus following stress, it is difficult to pinpoint the pertinent contributing pathophysiological factors. Here we directly assess the impact of a reduction in tonic GABAergic inhibition of dentate gyrus granule cells on learning and memory using a mouse model with a decrease in GABAA R δ subunit expression specifically in dentate gyrus granule cells (Gabrd/Pomc mice). Reduced GABAA R δ subunit expression and function in dentate gyrus granule cells is sufficient to induce deficits in learning and memory. Collectively, these findings suggest that the reduction in GABAA R δ subunit-mediated tonic inhibition in dentate gyrus granule cells contributes, at least in part, to deficits in learning and memory associated with chronic stress. These findings have significant implications regarding the pathophysiological mechanisms underlying impairments in learning and memory associated with stress and suggest a role for GABAA R δ subunit containing receptors in dentate gyrus granule cells. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Jett, Julianne D; Morilak, David A
2013-03-01
Cognitive impairments associated with dysfunction of the medial prefrontal cortex (mPFC) are prominent in stress-related psychiatric disorders. We have shown that enhancing noradrenergic tone acutely in the rat mPFC facilitated extra-dimensional (ED) set-shifting on the attentional set-shifting test (AST), whereas chronic unpredictable stress (CUS) impaired ED. In this study, we tested the hypothesis that the acute facilitatory effect of norepinephrine (NE) in mPFC becomes detrimental when activated repeatedly during CUS. Using microdialysis, we showed that the release of NE evoked in mPFC by acute stress was unchanged at the end of CUS treatment. Thus, to then determine if repeated elicitation of this NE activity in mPFC during CUS may have contributed to the ED deficit, we infused a cocktail of α(1)-, β(1)-, and β(2)-adrenergic receptor antagonists into the mPFC prior to each CUS session, then tested animals drug free on the AST. Antagonist treatment prevented the CUS-induced ED deficit, suggesting that NE signaling during CUS compromised mPFC function. We confirmed that this was not attributable to sensitization of adrenergic receptor function following chronic antagonist treatment, by administering an additional microinjection into the mPFC immediately prior to ED testing. Acute antagonist treatment did not reverse the beneficial effects of chronic drug treatment during CUS, nor have any effect on baseline ED performance in chronic vehicle controls. Thus, we conclude that blockade of noradrenergic receptors in mPFC protected against the detrimental cognitive effects of CUS, and that repeated elicitation of noradrenergic facilitatory activity is one mechanism by which chronic stress may promote mPFC cognitive dysfunction.
Role of insular cortex in visceral hypersensitivity model in rats subjected to chronic stress.
Yi, LiSha; Sun, HuiHui; Ge, Chao; Chen, Ying; Peng, HaiXia; Jiang, YuanXi; Wu, Ping; Tang, YinHan; Meng, QingWei; Xu, ShuChang
2014-12-30
Abnormal processing of visceral sensation at the level of the central nervous system has been proven to be important in the pathophysiologic mechanisms of stress related functional gastrointestinal disorders. However, the specific mechanism is still not clear. The insular cortex (IC) was considered as one important visceral sensory area. Moreover, the IC has been shown to be involved in various neuropsychiatric diseases such as panic disorders and post-traumatic stress disorder. However, whether the IC is important in psychological stress related visceral hypersensitivity has not been studied yet. In our study, through destruction of the bilateral IC, we explored whether the IC played a critical role in the formation of visceral hypersensitivity induced by chronic stress on rats. Chronic partial restraint stress was used to establish viscerally hypersensitive rat model. Bilateral IC lesions were generated by N-methyl-D-day (door) aspartate. After a recovery period of 7 days, 14-day consecutive restraint stress was performed. The visceromotor response to colorectal distension was monitored by recording electromyogram to measure rats׳ visceral sensitivity. We found that bilateral insular cortex lesion could markedly inhibit the formation of visceral hypersensitivity induced by chronic stress. The insular cortex plays a critical role in the pathophysiology of stress-related visceral hypersensitivity.
Posttraumatic stress disorder symptoms in youth with vs without chronic pain.
Noel, Melanie; Wilson, Anna C; Holley, Amy Lewandowski; Durkin, Lindsay; Patton, Michaela; Palermo, Tonya M
2016-10-01
Chronic pain and posttraumatic stress disorder (PTSD) symptoms have been found to co-occur in adults; however, research has not examined this co-occurrence in adolescence, when pediatric chronic pain often first emerges. The aims of this study were to compare the frequency and intensity of PTSD symptoms and stressful life events in cohorts of youth with (n = 95) and without (n = 100) chronic pain and their parents and to determine the association between PTSD symptoms, health-related quality of life, and pain symptoms within the chronic pain sample. All participants completed questionnaire measures through an online survey. Findings revealed that youth with chronic pain and their parents had significantly higher levels of PTSD symptoms as compared with pain-free peers. More youth with chronic pain (32%) and their parents (20%) reported clinically significant elevations in PTSD symptoms than youth without chronic pain (8%) and their parents (1%). Youth with chronic pain also reported a greater number of stressful life events than those without chronic pain, and this was associated with higher PTSD symptoms. Among the chronic pain cohort, higher levels of PTSD symptoms were predictive of worse health-related quality of life and were associated with higher pain intensity, unpleasantness, and interference. Results suggest that elevated PTSD symptoms are common and linked to reduced functioning among youth with chronic pain. Future research is needed to examine PTSD at the diagnostic level and the underlying mechanisms that may explain why this co-occurrence exists.
Singh, Yogesh; Sharma, Ratna
2012-07-01
Stressful life events and daily life stresses have both deleterious and cumulative effects on human body. In several studies, stress has been shown to affect various parameter of higher mental function like attention, concentration, learning and memory. Present study was designed to explore the relationship among GI level, EI level, psychological stress levels and acute stress reactivity in young normal healthy subjects. The study was conducted on thirty four healthy male student volunteers to study a) acute stress reactivity in subjects with varying levels of General Intelligence (GI) and Emotional Intelligence (EI) and b) correlation between GI, EI, acute stress and perceived stress. Baseline GI and EI and acute stress and perceived stress scores were measured by standard assessment scales. Using median value of GI and EI scores as cutoff values, subjects were categorized into four groups. Among different GI-EI groups, acute stress reactivity was similar but salivary Cortisol (especially post stressor level) and perceived stress level was a differentiating factor. High level of EI was associated inversely with acute and chronic perceived stress level. Significant correlation was found between acute and chronic perceived stress levels. Level of general intelligence showed no relation to acute or chronic stress levels as well as acute stress reactivity. The differences in various groups of GI and EI had no effect on the baseline and post stress performance on Sternberg memory test and all the three conditions of Stroop test. In conclusion emotional intelligence as an attribute is better suited to handle day to day acute stress and chronic perceived stress.
Teixeira, Ana Maria; Ferreira, José Pedro; Hogervorst, Eef; Braga, Margarida Ferreira; Bandelow, Stephan; Rama, Luís; Figueiredo, António; Campos, Maria João; Furtado, Guilherme Eustáquio; Chupel, Matheus Uba; Pedrosa, Filipa Martins
2016-01-01
Physical activity (PA) in elders has been shown to have positive effects on a plethora of chronic diseases and to improve immunity, mental health, and cognition. Chronic stress has also been shown to have immuno-suppressive effects and to accelerate immunosenescence. Exercise could be a significant factor in ameliorating the deleterious effects of chronic stress, but variables such as the type, intensity, and frequency of exercise that should be performed in order to effectively reduce the stress burden need to be defined clearly. PRO-HMECSI will allow us to investigate which hormonal and immunological parameters are able to mediate the effects of exercise on mucosal immunity, psychological/biological stress, and cognitive functioning in older people. Phase I consists of an observational cross-sectional study that compares elders groups (n = 223, >65 years) by functional fitness levels aiming to identify biomarkers involved in maintaining immune and mental health. Neuroendocrine and immune biomarkers of stress, psychological well-being related to mental health, neurocognitive function, functional fitness, and daily PA will be evaluated. Phase II consists of a 28-week intervention in elders with mild cognitive impairment (MCI) profile (n = 149, >65 years, divided in three groups of exercise and one control group), aiming to investigate whether the positive effect of three different types of chair-based exercise programs on physical and psychological health is mediated by an optimal endocrine environment. Primary outcomes are measures of cognitive function and global health. Secondary outcomes include the evaluation the other dimensions such as immune function, psychological health, and depression. Few studies addressed the effects of different types of exercise interventions in older population samples with MCI. We will also be able to determine which type of exercise is more effective in the immune and hormonal function of this population. PMID:27446898
The power of exercise: buffering the effect of chronic stress on telomere length.
Puterman, Eli; Lin, Jue; Blackburn, Elizabeth; O'Donovan, Aoife; Adler, Nancy; Epel, Elissa
2010-05-26
Chronic psychological stress is associated with detrimental effects on physical health, and may operate in part through accelerated cell aging, as indexed by shorter telomeres at the ends of chromosomes. However, not all people under stress have distinctly short telomeres, and we examined whether exercise can serve a stress-buffering function. We predicted that chronic stress would be related to short telomere length (TL) in sedentary individuals, whereas in those who exercise, stress would not have measurable effects on telomere shortening. 63 healthy post-menopausal women underwent a fasting morning blood draw for whole blood TL analysis by a quantitative polymerase chain reaction method. Participants completed the Perceived Stress Scale (Cohen et al., 1983), and for three successive days reported daily minutes of vigorous activity. Participants were categorized into two groups-sedentary and active (those getting Centers for Disease Control-recommended daily amount of activity). The likelihood of having short versus long telomeres was calculated as a function of stress and exercise group, covarying age, BMI and education. Logistic regression analyses revealed a significant moderating effect of exercise. As predicted, among non-exercisers a one unit increase in the Perceived Stress Scale was related to a 15-fold increase in the odds of having short telomeres (p<.05), whereas in exercisers, perceived stress appears to be unrelated to TL (B = -.59, SE = .78, p = .45). Vigorous physical activity appears to protect those experiencing high stress by buffering its relationship with TL. We propose pathways through which physical activity acts to buffer stress effects.
Perceived stress and change in cognitive function among adults 65 years and older.
Aggarwal, Neelum T; Wilson, Robert S; Beck, Todd L; Rajan, Kumar B; Mendes de Leon, Carlos F; Evans, Denis A; Everson-Rose, Susan A
2014-01-01
Exposure to acute and chronic stress can affect learning and memory, but most evidence comes from animal studies or clinical observations. Almost no population-based studies have investigated the relation of stress to cognition or changes in cognition over time. We examined whether higher levels of perceived stress were associated with accelerated decline in cognitive function in older blacks and whites from a community-based population sample. Participants included 6207 black and white adults (65.7% black, 63.3% women) from the Chicago Health and Aging Project. Two to five in-home assessments were completed over an average of 6.8 years of follow-up and included sociodemographics, health behaviors, psychosocial measures, cognitive function tests, and health history. Perceived stress was measured by a six-item scale, and a composite measure of four tests of cognition was used to determine cognitive function at each assessment. Mixed-effects regression models showed that increasing levels of perceived stress were related to lower initial cognitive scores (B = -0.0379, standard error = 0.0025, p < .001) and a faster rate of cognitive decline (stress × time interaction: B = -0.0015, standard error = 0.0004, p < .001). Results were similar after adjusting for demographic variables, smoking, systolic blood pressure, body mass index, chronic medical conditions, and psychosocial factors and did not vary by race, sex, age, or education. Increasing levels of stress are independently associated with accelerated declines in cognitive function in black and white adults 65 years and older.
[Correlations of central nervous system and thyroid function under chronic emotional stress].
Amiragova, M G; Arkhangel'skaia, M I
1982-06-01
Experiments on cats exposed to chronic emotional stress induced during one week by 4-hour immobilization of the animals in conjunction with aperiodic electrocutaneous stimulation were made to study correlations of the time course of changes in the EEG of the cortical and subcortical structures and the content of thyroxin in the peripheral blood at varying time of the experiments. It was demonstrated that in the course of stress, the EEG manifests the cycles of "burst" activity of slow waves, which are first recorded in the posterior hypothalamus and then get generalized. This is accompanied by a significantly high thyroxin secretion. As the stress exposures are repeated, the EEG changes become dominant, also corresponding with high thyroxin secretion. After the experiments are over, the cycles of "burst" activity accompanied by enhanced thyroid function are still recordable over several days.
Wang, Bin; Zhou, Jian; Zhuang, Yan-Yan; Wang, Liang-Liang; Pu, Jin-Xian; Huang, Yu-Hua; Xia, Fei; Lv, Jin-Xing
2017-11-01
To determine the effects of SSR149415 on testis and spermatogenesis in male mice subjected to chronic social defeat stress, C57BL/6 male mice were divided into two groups: Control and Stress. Then Stress group was subdivided into four subgroups administered water, SSR149415 (1 mg/kg/day), SSR149415 (10 mg/kg/day), SSR149415 (30 mg/kg/day), respectively. The behavioral alterations revealed by social interaction test and open field test were measured. The physical indices, including body weight and gonad weight (testis and epididymis) as well as testis/body weight and cauda epididymis/body weight were detected. Serum hormones, including testosterone, luteinizing hormone (LH), and follicle-stimulating hormone (FSH) were determined. Sperm count and abnormality as well as testicular histology structure were assessed. The germ cells apoptosis were also evaluated. Chronic social defeat stress-induced behavioral abnormality, as well as gonad atrophy (testis and epididymis) was significantly alleviated in stressed male mice exposed to SSR149415. Regressed serum testosterone levels and elevated serum FSH and LH levels exhibited by stressed male mice were observably reversed following SSR149415 administration. Chronic social defeat stress-induced damage in testicular histology structure and semen quality were also improved after SSR149415 administration. In addition, SSR149415 significantly reversed chronic social defeat stress-induced germ cells apoptosis. Overall, we provide clear evidence indicating the amelioration of chronic social defeat stress-induced behavioral abnormality and testicular dysfunction via SSR149415, promoting the development of drug-directed therapy against this disease. J. Cell. Biochem. 118: 3891-3898, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Rath, Eva; Haller, Dirk
2011-06-01
Multiple cellular stress responses have been implicated in chronic diseases such as obesity, diabetes, cardiovascular, and inflammatory bowel diseases. Even though phenotypically different, chronic diseases share cellular stress signaling pathways, in particular endoplasmic reticulum (ER) unfolded protein response (UPR). The purpose of the ER UPR is to restore ER homeostasis after challenges of the ER function. Among the triggers of ER UPR are changes in the redox status, elevated protein synthesis, accumulation of unfolded or misfolded proteins, energy deficiency and glucose deprivation, cholesterol depletion, and microbial signals. Numerous mouse models have been used to characterize the contribution of ER UPR to several pathologies, and ER UPR-associated signaling has also been demonstrated to be relevant in humans. Additionally, recent evidence suggests that the ER UPR is interrelated with metabolic and inflammatory pathways, autophagy, apoptosis, and mitochondrial stress signaling. Furthermore, microbial as well as nutrient sensing is integrated into the ER-associated signaling network. The data discussed in the present review highlight the interaction of ER UPR with inflammatory pathways, metabolic processes and mitochondrial function, and their interrelation in the context of chronic diseases.
70. Cortisol Response to Psychosocial Stress and Working Memory Performance in Schizophrenia
Reed, Alexandra; Lake, Jessica; Hamilton, Holly; Bachman, Peter; Clayson, Peter; Miller, Gregory; Subotnik, Kenneth; Nuechterlein, Keith; Yee, Cindy
2017-01-01
Abstract Background: Working memory (WM) deficits are part of the constellation of cognitive impairments associated with schizophrenia (SZ). Although WM efficiency may be especially important for patients functioning within academic and employment settings, much of the research on WM in SZ neglects the social context of cognitive performance and fails to consider the extent to which stress may contribute to cognitive dysfunction. This is a crucial oversight considering growing evidence that high levels of cortisol disrupt WM in healthy individuals. Stress may be especially detrimental to cognitive functions in patients who often demonstrate HPA dysregulation including high basal cortisol and attenuated cortisol responses to acute stressors. Methods: The present study examined effects of a laboratory psychosocial stress task, the Trier Social Stress Test (TSST), on WM performance in patients with SZ (n = 87) and healthy comparison subjects (HCs; n = 68). Each participant completed an n-back task before and after the TSST. Salivary cortisol samples collected at baseline, post-TSST, and recovery were available from participants with chronic SZ (n = 23, mean illness duration = 11.21, SD = 6.79 years), first-episode SZ (n = 43, mean illness duration = 0.78, SD = 0.85 years), and HCs (n = 51). Results: As predicted, the TSST disrupted performance accuracy during the WM task, but only in SZ. Post-TSST cortisol levels were positively correlated with sensitivity to detect match trials and overall accuracy on n-back performance in chronic patients but not in first episode patients or in healthy participants. Total cortisol response in chronic patients, summarized as area under the curve, accounted for approximately 26% of the variance in WM accuracy after stress. Conclusion: Results replicate findings of blunted cortisol reactivity in SZ and extend prior work by connecting cortisol stress response to specific changes in WM performance in a chronic sample. Findings are consistent with the hypothesis that flexible HPA functioning may moderate WM dysfunction in chronic SZ.
Jansen, Petra; Dahmen-Zimmer, Katharina; Kudielka, Brigitte M; Schulz, Anja
2017-12-01
In a randomized controlled trial, we investigated the effects of karate versus a mindfulness-based stress reduction (MBSR) intervention on well-being and cognitive functioning in older adults. Fifty-five adults (52-81 years old) participated in twice-weekly karate versus MBSR sessions or no training for 8 weeks. In pre- and postassessments, subjective well-being, health, cognitive functioning, and chronic stress were measured. Preassessment hair cortisol served as physiological stress marker. The results showed an improvement for the karate group, but not the MBSR and control group, in subjective mental health and anxiety as well as cognitive processing speed. The MBSR group showed by trend as a decrease in stress. No significant correlation between preassessment hair cortisol and postassessment outcomes could be established. But the higher the level of baseline self-reported perceived stress, the higher the increase in depression, anxiety, and chronic stress. Generally, it can be assumed that karate and MBSR showed only small training effects concerning the assessed emotional and cognitive parameters.
Dooley, Larissa N.; Slavich, George M.; Moreno, Patricia I.; Bower, Julienne E.
2017-01-01
Stress research typically emphasizes the toxic effects of stress, but recent evidence has suggested that stress exposure, in moderation, can facilitate resilience. To test whether moderate stress exposure promotes psychological resilience to cancer, we examined the relationship between lifetime stress exposure prior to cancer diagnosis and postdiagnosis psychological functioning among 122 breast cancer survivors. Lifetime acute and chronic stress was assessed using an interview-based measure, and psychological functioning was assessed using measures of cancer-related intrusive thoughts and positive and negative affect. Results indicated that acute stress exposure was associated with cancer-related intrusive thoughts in a quadratic fashion (p = .016), such that participants with moderate acute stress reported fewer intrusive thoughts compared to those with low or high acute stress. Similarly, a quadratic relationship emerged between acute stress exposure and positive affect (p = .009), such that individuals with moderate acute stress reported the highest levels of positive affect. In contrast, acute and chronic stress were related to negative affect in a positive, linear fashion (ps < .05). In conclusion, moderate stress exposure was associated with indicators of psychological resilience among breast cancer survivors, supporting stress exposure as a key factor influencing adjustment to breast cancer and providing evidence for stress-induced resilience in a novel population. PMID:28052491
Signs of chronic stress in women with recurrent candida vulvovaginitis.
Ehrström, Sophia M; Kornfeld, Dan; Thuresson, Jessica; Rylander, Eva
2005-10-01
The purpose of this study was to determine whether there is an association between recurrent vulvovaginal candida and chronic stress. Chronic stress affects the hypothalamus-pituitary-adrenal axis, which influences the immune function. Recurrent candida vulvovaginitis is increasing. Women with recurrent vulvovaginal candida (n = 35) and age-matched healthy control subjects (n = 35) collected saliva for the analysis of cortisol. Hormone analyses of blood samples and vulvovaginal examinations were performed. A questionnaire was completed. Morning rise cortisol level was significantly blunted among patients compared with control subjects (P < .002). Mean levels of salivary cortisol were lower the first 45 minutes after awakening in women with recurrent vulvovaginal candida, compared with control subjects. More patients than control subjects reported a history of condyloma, bacterial vaginosis, and herpes genitalis. No differences were seen between patients and control subjects regarding sexual hormone binding globulin, dihydroepiandrosterone, testosterone or Hemoglobin A1c. Morning rise salivary cortisol level is blunted in women with recurrent vulvovaginal candida, which indicates signs of chronic stress. The higher incidence of vulvovaginal infections in these women compared with control subjects may reflect impaired immunity, which may be due to chronic stress.
Jung, Seung H.; Brownlow, Milene L.; Pellegrini, Matteo; Jankord, Ryan
2017-01-01
Individual susceptibility determines the magnitude of stress effects on cognitive function. The hippocampus, a brain region of memory consolidation, is vulnerable to stressful environments, and the impact of stress on hippocampus may determine individual variability in cognitive performance. Therefore, the purpose of this study was to define the relationship between the divergence in spatial memory performance under chronically unpredictable stress and an associated transcriptomic alternation in hippocampus, the brain region of spatial memory consolidation. Multiple strains of BXD (B6 × D2) recombinant inbred mice went through a 4-week chronic variable stress (CVS) paradigm, and the Morris water maze (MWM) test was conducted during the last week of CVS to assess hippocampal-dependent spatial memory performance and grouped animals into low and high performing groups based on the cognitive performance. Using hippocampal whole transcriptome RNA-sequencing data, differential expression, PANTHER analysis, WGCNA, Ingenuity's upstream regulator analysis in the Ingenuity Pathway Analysis® and phenotype association analysis were conducted. Our data identified multiple genes and pathways that were significantly associated with chronic stress-associated cognitive modification and the divergence in hippocampal dependent memory performance under chronic stress. Biological pathways associated with memory performance following chronic stress included metabolism, neurotransmitter and receptor regulation, immune response and cellular process. The Ingenuity's upstream regulator analysis identified 247 upstream transcriptional regulators from 16 different molecule types. Transcripts predictive of cognitive performance under high stress included genes that are associated with a high occurrence of Alzheimer's and cognitive impairments (e.g., Ncl, Eno1, Scn9a, Slc19a3, Ncstn, Fos, Eif4h, Copa, etc.). Our results show that the variable effects of chronic stress on the hippocampal transcriptome are related to the ability to complete the MWM task and that the modulations of specific pathways are indicative of hippocampal dependent memory performance. Thus, the divergence in spatial memory performance following chronic stress is related to the unique pattern of gene expression within the hippocampus. PMID:28912681
Sesti-Costa, R; Ignacchiti, M D C; Chedraoui-Silva, S; Marchi, L F; Mantovani, B
2012-01-01
Susceptibility to infections, autoimmune disorders and tumor progression is strongly influenced by the activity of the endocrine and nervous systems in response to a stressful stimulus. When the adaptive system is switched on and off efficiently, the body is able to recover from the stress imposed. However, when the system is activated repeatedly or the activity is sustained, as during chronic or excessive stress, an allostatic load is generated, which can lead to disease over long periods of time. We investigated the effects of chronic cold stress in BALB/c mice (4°C/4 h daily for 7 days) on functions of macrophages. We found that chronic cold stress induced a regulatory phenotype in macrophages, characterized by diminished phagocytic ability, decreased TNF-α and IL-6 and increased IL-10 production. In addition, resting macrophages from mice exposed to cold stress stimulated spleen cells to produce regulatory cytokines, and an immunosuppressive state that impaired stressed mice to control Trypanosoma cruzi proliferation. These regulatory effects correlated with an increase in macrophage expression of 11β-hydroxysteroid dehydrogenase, an enzyme that converts inactive glucocorticoid into its active form. As stress is a common aspect of modern life and plays a role in the etiology of many diseases, the results of this study are important for improving knowledge regarding the neuro-immune-endocrine interactions that occur during stress and to highlight the role of macrophages in the immunosuppression induced by chronic stress. Copyright © 2011 Elsevier Inc. All rights reserved.
The relationship between parental depressive symptoms, family type, and adolescent functioning.
Sieh, Dominik Sebastian; Sieh, Dominik Sebstian; Visser-Meily, Johanna Maria Augusta; Meijer, Anne Marie
2013-01-01
It is evident that parental depressive symptoms negatively influence adolescent behavior and various psychosocial outcomes. Certain family types like families with a chronically ill parent and single parent families are more vulnerable to parental depressive symptoms. However, the relationship between these symptoms, family type, and adolescent functioning remains largely unclear. This study examined relations between self-report of parental depressive symptoms and adolescent functioning in 86 two-parent families including a parent with a chronic medical condition, 94 families with healthy single parents, and 69 families with 2 healthy parents (comparison group). Parents completed the Beck Depression Inventory. Adolescents filled in the Youth Self-Report measuring problem behavior, and other instruments measuring psychosocial outcomes (stress, grade point average, school problems, and self-esteem). Multilevel analyses were used to examine the effects of family type, parental depressive symptoms, adolescents' gender and age, and interaction effects on adolescent functioning. The results indicated that adolescents with chronically ill and single parents had a lower grade point average (p<.01) than the comparison group. Adolescents of single parents reported more internalizing problems (p<.01) and externalizing problems (p<.05) than children from the other family types. Parental depressive symptoms were strongly related to child report of stress (p<.001). Adolescents of depressed chronically ill parents were particularly vulnerable to internalizing problems (interaction effect, p<.05). Older children and girls, and especially older girls, displayed more internalizing problems and stress. It can be concluded that growing up with a chronically ill parent in a family with 2 parents may have less impact on adolescent problem behavior than growing up in a single parent family. Health practitioners are encouraged to be attentive to the unique and combined influence of family type and parental depressive symptoms on adolescent functioning. Older and female adolescents deserve particular attention.
An aberrant parasympathetic response: a new perspective linking chronic stress and itch.
Kim, Hei Sung; Yosipovitch, Gil
2013-04-01
Perceived stress has long been known to alter the dynamic equilibrium established between the nervous, endocrine and immune system and is widely recognised to trigger or enhance pruritus. However, the exact mechanism of how the major stress response systems, such as the hypothalamus-pituitary adrenal (HPA) axis and the autonomic nervous system induce or aggravate chronic itch, has not been elucidated. The limbic regions of the brain such as the prefrontal cortex and hippocampus are deeply involved in the regulation of the stress response and intersect with circuits that are responsible for memory and reward. According to the 'Polyvagal Theory', certain limbic structures that serve as a 'higher brain equivalent of the parasympathetic nervous system' play a foremost role in maintaining body homoeostasis by functioning as an active vagal brake. In addition, the limbic system has been postulated to regulate two distinct, yet related aspects of itch: (i) the sensory-discriminative aspect; and (ii) the affective-cognitive aspect. Chronic stress-induced itch is hypothesised to be caused by stress-related changes in limbic structure with subsequent rewiring of both the peripheral and central pruriceptive circuits. Herein, we review data suggesting that a dysfunctional parasympathetic nervous system associated with chronic stress may play a critical role in the regulatory control of key candidate molecules, receptors and brain structures involved in chronic itch. © 2012 John Wiley & Sons A/S.
Kokolus, Kathleen M.; Spangler, Haley M.; Povinelli, Benjamin J.; Farren, Matthew R.; Lee, Kelvin P.; Repasky, Elizabeth A.
2013-01-01
The ability of dendritic cells (DCs) to stimulate and regulate T cells is critical to effective anti-tumor immunity. Therefore, it is important to fully recognize any inherent factors which may influence DC function under experimental conditions, especially in laboratory mice since they are used so heavily to model immune responses. The goals of this report are to 1) briefly summarize previous work revealing how DCs respond to various forms of physiological stress and 2) to present new data highlighting the potential for chronic mild cold stress inherent to mice housed at the required standard ambient temperatures to influence baseline DCs properties in naïve and tumor-bearing mice. As recent data from our group shows that CD8+ T cell function is significantly altered by chronic mild cold stress and since DC function is crucial for CD8+ T cell activation, we wondered whether housing temperature may also be influencing DC function. Here we report that there are several significant phenotypical and functional differences among DC subsets in naïve and tumor-bearing mice housed at either standard housing temperature or at a thermoneutral ambient temperature, which significantly reduces the extent of cold stress. The new data presented here strongly suggests that, by itself, the housing temperature of mice can affect fundamental properties and functions of DCs. Therefore differences in basal levels of stress due to housing should be taken into consideration when interpreting experiments designed to evaluate the impact of additional variables, including other stressors on DC function. PMID:24575090
Kokolus, Kathleen M; Spangler, Haley M; Povinelli, Benjamin J; Farren, Matthew R; Lee, Kelvin P; Repasky, Elizabeth A
2014-01-01
The ability of dendritic cells (DCs) to stimulate and regulate T cells is critical to effective anti-tumor immunity. Therefore, it is important to fully recognize any inherent factors which may influence DC function under experimental conditions, especially in laboratory mice since they are used so heavily to model immune responses. The goals of this report are to 1) briefly summarize previous work revealing how DCs respond to various forms of physiological stress and 2) to present new data highlighting the potential for chronic mild cold stress inherent to mice housed at the required standard ambient temperatures to influence baseline DCs properties in naïve and tumor-bearing mice. As recent data from our group shows that CD8(+) T cell function is significantly altered by chronic mild cold stress and since DC function is crucial for CD8(+) T cell activation, we wondered whether housing temperature may also be influencing DC function. Here we report that there are several significant phenotypical and functional differences among DC subsets in naïve and tumor-bearing mice housed at either standard housing temperature or at a thermoneutral ambient temperature, which significantly reduces the extent of cold stress. The new data presented here strongly suggests that, by itself, the housing temperature of mice can affect fundamental properties and functions of DCs. Therefore differences in basal levels of stress due to housing should be taken into consideration when interpreting experiments designed to evaluate the impact of additional variables, including other stressors on DC function.
Mind-Body Approaches and Chronic Illness: Status of Research
ERIC Educational Resources Information Center
Riccio, Cynthia A.; Pliego, Jessica; Rae, William A.
2016-01-01
An increasing number of children experience chronic health issues that affect their academic and behavioral functioning, as well as psychological well-being. At the same time, psychological stress can exacerbate the chronic illness. The first line of treatment most often is medical (e.g., pharmacology, surgery, radiation). Even when the medical…
Starr, Lisa R; Hammen, Constance
2016-05-01
Studies support a link between adolescent romantic involvement and depression. Adolescent romantic relationships may increase depression risk by introducing chronic stress, and genetic vulnerability to stress reactivity/emotion dysregulation may moderate these associations. We tested genetic moderation of longitudinal associations between adolescent romantic involvement and later depressive symptoms by a polymorphism in the serotonin transporter linked polymorphic region gene (5-HTTLPR) and examined contributory roles of chronic stress and family discord. Three hundred eighty-one youth participated at ages 15 and 20. The results indicated that 5-HTTLPR moderated the association between age 15 romantic involvement and age 20 depressive symptoms, with strongest effects for short homozygotes. Conditional process analysis revealed that chronic stress functioned as a moderated mediator of this association, fully accounting for the romantic involvement-depression link among short/short genotypes. Also, romantic involvement predicted later depressive symptoms most strongly among short-allele carriers with high family discord. The results have important implications for understanding the romantic involvement-depression link and the behavioral and emotional correlates of the 5-HTTLPR genotype.
Starr, Lisa R.; Hammen, Constance
2017-01-01
Studies support a link between adolescent romantic involvement and depression. Adolescent romantic relationships may increase depression risk by introducing chronic stress, and genetic vulnerability to stress reactivity/emotion dysregulation may moderate these associations. We tested genetic moderation of longitudinal associations between adolescent romantic involvement and later depressive symptoms by a polymorphism in the serotonin transporter linked polymorphic region gene (5-HTTLPR), and examined contributory roles of chronic stress and family discord. Three hundred eighty-one youth participated at ages 15 and 20. The results indicated that 5-HTTLPR moderated the association between age 15 romantic involvement and age 20 depressive symptoms, with strongest effects for short homozygotes. Conditional process analysis revealed that chronic stress functioned as a moderated mediator of this association, fully accounting for the romantic involvement-depression link among short/short genotypes. Also, romantic involvement predicted later depressive symptoms most strongly among short-allele carriers with high family discord. Results have important implications for understanding the romantic involvement-depression link and the behavioral and emotional Correlates of the 5-HTTLPR genotype. PMID:26037034
Nabeebaccus, Adam A.; Zoccarato, Anna; Hafstad, Anne D.; Santos, Celio X.C.; Brewer, Alison C.; Zhang, Min; Beretta, Matteo; West, James A.; Eykyn, Thomas R.; Shah, Ajay M.
2017-01-01
Cardiac hypertrophic remodeling during chronic hemodynamic stress is associated with a switch in preferred energy substrate from fatty acids to glucose, usually considered to be energetically favorable. The mechanistic interrelationship between altered energy metabolism, remodeling, and function remains unclear. The ROS-generating NADPH oxidase-4 (Nox4) is upregulated in the overloaded heart, where it ameliorates adverse remodeling. Here, we show that Nox4 redirects glucose metabolism away from oxidation but increases fatty acid oxidation, thereby maintaining cardiac energetics during acute or chronic stresses. The changes in glucose and fatty acid metabolism are interlinked via a Nox4-ATF4–dependent increase in the hexosamine biosynthetic pathway, which mediates the attachment of O-linked N-acetylglucosamine (O-GlcNAcylation) to the fatty acid transporter CD36 and enhances fatty acid utilization. These data uncover a potentially novel redox pathway that regulates protein O-GlcNAcylation and reprograms cardiac substrate metabolism to favorably modify adaptation to chronic stress. Our results also suggest that increased fatty acid oxidation in the chronically stressed heart may be beneficial. PMID:29263294
Psychological stress and fibromyalgia: a review of the evidence suggesting a neuroendocrine link
Gupta, Anindya; Silman, Alan J
2004-01-01
The present review attempts to reconcile the dichotomy that exists in the literature in relation to fibromyalgia, in that it is considered either a somatic response to psychological stress or a distinct organically based syndrome. Specifically, the hypothesis explored is that the link between chronic stress and the subsequent development of fibromyalgia can be explained by one or more abnormalities in neuroendocrine function. There are several such abnormalities recognised that both occur as a result of chronic stress and are observed in fibromyalgia. Whether such abnormalities have an aetiologic role remains uncertain but should be testable by well-designed prospective studies. PMID:15142258
The Effect of Acute and Chronic Social Stress on the Hippocampal Transcriptome in Mice.
Stankiewicz, Adrian M; Goscik, Joanna; Majewska, Alicja; Swiergiel, Artur H; Juszczak, Grzegorz R
2015-01-01
Psychogenic stress contributes to the formation of brain pathology. Using gene expression microarrays, we analyzed the hippocampal transcriptome of mice subjected to acute and chronic social stress of different duration. The longest period of social stress altered the expression of the highest number of genes and most of the stress-induced changes in transcription were reversible after 5 days of rest. Chronic stress affected genes involved in the functioning of the vascular system (Alas2, Hbb-b1, Hba-a2, Hba-a1), injury response (Vwf, Mgp, Cfh, Fbln5, Col3a1, Ctgf) and inflammation (S100a8, S100a9, Ctla2a, Ctla2b, Lcn2, Lrg1, Rsad2, Isg20). The results suggest that stress may affect brain functions through the stress-induced dysfunction of the vascular system. An important issue raised in our work is also the risk of the contamination of brain tissue samples with choroid plexus. Such contamination would result in a consistent up- or down-regulation of genes, such as Ttr, Igf2, Igfbp2, Prlr, Enpp2, Sostdc1, 1500015O10RIK (Ecrg4), Kl, Clic6, Kcne2, F5, Slc4a5, and Aqp1. Our study suggests that some of the previously reported, supposedly specific changes in hippocampal gene expression, may be a result of the inclusion of choroid plexus in the hippocampal samples.
[Chronic fatigue and strategies of coping with occupational stress in police officers].
Stepka, Ewa; Basińska, Małgorzata Anna
2014-01-01
Work as one of the most important activities in human life is related to stressful and difficult situations. Police officers make one of the many occupational groups that are particularly threatened by contact with a number of stressors. Therefore, their strategies of coping with stress are particularly important, because they play an important role in their functioning at work. The nature of the service as well as shift work and psychological costs incurred by police officers contribute to the emergence of chronic fatigue. The aim of this study was to evaluate the level of chronic fatigue in police officers and its relationship with the strategies of coping with occupational stress. A group of 61 police officers was examined. The following research methods were used: 1) Latack Coping Scale examining stress coping strategies at work (positive thinking, direct action, avoidance/resignation, seeking help, alcohol or stimulants use); 2) Mood Assessment Questionnaire CIS-20R examining the level of chronic fatigue and its components (subjective feeling of fatigue, impaired attention and concentration, reduced motivation, reduced activity); 3) Personal questionnaire providing socio-demographic data. It was found that the level of chronic fatigue in the group of the examined police officers was high (sten 8th). The most often used strategies of coping with stress were direct action and positive thinking, and the least often used strategy was the use of alcohol and stimulants. A significant negative correlation between the general level of chronic fatigue and the avoidance/resignation strategy was found. The results indicate that chronic fatigue is a problem affecting police officers and it is related to the stress coping strategies used.
Bath, Kevin G; Russo, Scott J; Pleil, Kristen E; Wohleb, Eric S; Duman, Ronald S; Radley, Jason J
2017-12-01
The current review is meant to synthesize research presented as part of a symposium at the 2016 Neurobiology of Stress workshop in Irvine California. The focus of the symposium was "Stress and the Synapse: New Concepts and Methods" and featured the work of several junior investigators. The presentations focused on the impact of various forms of stress (altered maternal care, binge alcohol drinking, chronic social defeat, and chronic unpredictable stress) on synaptic function, neurodevelopment, and behavioral outcomes. One of the goals of the symposium was to highlight the mechanisms accounting for how the nervous system responds to stress and their impact on outcome measures with converging effects on the development of pathological behavior. Dr. Kevin Bath's presentation focused on the impact of disruptions in early maternal care and its impact on the timing of hippocampus maturation in mice, finding that this form of stress drove accelerated synaptic and behavioral maturation, and contributed to the later emergence of risk for cognitive and emotional disturbance. Dr. Scott Russo highlighted the impact of chronic social defeat stress in adolescent mice on the development and plasticity of reward circuity, with a focus on glutamatergic development in the nucleus accumbens and mesolimbic dopamine system, and the implications of these changes for disruptions in social and hedonic response, key processes disturbed in depressive pathology. Dr. Kristen Pleil described synaptic changes in the bed nuclei of the stria terminalis that underlie the behavioral consequences of allostatic load produced by repeated cycles of alcohol binge drinking and withdrawal. Dr. Eric Wohleb and Dr. Ron Duman provided new data associating decreased mammalian target of rapamycin (mTOR) signaling and neurobiological changes in the synapses in response to chronic unpredictable stress, and highlighted the potential for the novel antidepressant ketamine to rescue synaptic and behavioral effects. In aggregate, these presentations showcased how divergent perspectives provide new insights into the ways in which stress impacts circuit development and function, with implications for understanding emergence of affective pathology.
Le, D. Elizabeth; Pascotto, Marco; Leong-Poi, Howard; Sari, Ibrahim; Micari, Antonio; Kaul, Sanjiv
2013-01-01
There is controversy regarding the superiority of carvedilol (C) over metoprolol (M) in congestive heart failure. We hypothesized that C is superior to M in chronic ischemic cardiomyopathy because of its better anti-inflammatory and pro-angiogenic effects. In order to test our hypothesis we used a chronic canine model of multivessel ischemic cardiomyopathy where myocardial microcatheters were placed from which interstitial fluid was collected over time to measure leukocyte count and cytokine levels. After development of left ventricular dysfunction, the animals were randomized into four groups: sham (n = 7), placebo (n = 8), M (n = 11), and C (n = 10), and followed for 3 months after treatment initiation. Tissue was examined for immunohistochemistry, oxidative stress, and capillary density. At 3 months both rest and stress wall thickening were better in C compared to the other groups. At the end of 3 months of treatment endsystolic wall stress also decreased the most in C. Similarly resting myocardial blood flow (MBF) improved the most in C as did the stress endocardial/epicardial MBF. Myocardial interstitial fluid showed greater attenuation of leukocytosis with C compared to M, which was associated with less fibrosis and oxidative stress. C also had higher IL-10 level and capillary density. In conclusion, in a chronic canine model of multivessel ischemic cardiomyopathy we found 3 months of C treatment resulted in better resting global and regional function as well as better regional function at stress compared to M. These changes were associated with higher myocardial levels of the anti-inflammatory cytokine IL-10 and less myocardial oxidative stress, leukocytosis, and fibrosis. Capillary density and MBF were almost normalized. Thus in the doses used in this study, C appears to be superior to M in a chronic canine model of ischemic cardiomyopathy from beneficial effects on inflammation and angiogenesis. Further studies are required for comparing additional doses of these drugs. PMID:24072434
Life satisfaction and its correlates in older women with osteoarthritis.
Tak, Sunghee H; Laffrey, Shirley C
2003-01-01
To identify the relationships among functional disability, chronic daily stress, coping strategies, beliefs about personal control, social support, and life satisfaction in older women with osteoarthritis. A descriptive, correlational design was used. The study participants were 107 women aged 60 years or older. Study participants completed six survey questionnaires and a demographic form. Bivariate correlational analyses showed that older women with poorer functional ability experienced greater chronic daily stress, reported more frequent use of emotion-focused coping strategies, and had a higher chance health locus of control. A hierarchic regression analysis revealed that the perceived social support and internal health locus of control significantly contributed to the prediction of life satisfaction after demographic, illness-related, and stress-related variables were controlled. Stress management strategies matched to the participants' style of coping process can increase their sense of control over their health and enhance their social networks and activities.
Angulo, Javier; El Assar, Mariam; Rodríguez-Mañas, Leocadio
2016-08-01
Frailty is a functional status that precedes disability and is characterized by decreased functional reserve and increased vulnerability. In addition to disability, the frailty phenotype predicts falls, institutionalization, hospitalization and mortality. Frailty is the consequence of the interaction between the aging process and some chronic diseases and conditions that compromise functional systems and finally produce sarcopenia. Many of the clinical manifestations of frailty are explained by sarcopenia which is closely related to poor physical performance. Reduced regenerative capacity, malperfusion, oxidative stress, mitochondrial dysfunction and inflammation compose the sarcopenic skeletal muscle alterations associated to the frailty phenotype. Inflammation appears as a common determinant for chronic diseases, sarcopenia and frailty. The strategies to prevent the frailty phenotype include an adequate amount of physical activity and exercise as well as pharmacological interventions such as myostatin inhibitors and specific androgen receptor modulators. Cell response to stress pathways such as Nrf2, sirtuins and klotho could be considered as future therapeutic interventions for the management of frailty phenotype and aging-related chronic diseases. Copyright © 2016 Elsevier Ltd. All rights reserved.
[Evaluation of a chronic fatigue in patients with moderate-to-severe chronic heart failure].
Jasiukeviciene, Lina; Vasiliauskas, Donatas; Kavoliūniene, Ausra; Marcinkeviciene, Jolanta; Grybauskiene, Regina; Grizas, Vytautas; Tumyniene, Vida
2008-01-01
To evaluate the chronic fatigue and its relation to the function of hypothalamus-pituitary-adrenal axis in patients with New York Heart Association (NYHA) functional class III-IV chronic heart failure. A total of 170 patients with NYHA functional class III-IV chronic heart failure completed MFI-20L, DUFS, and DEFS questionnaires assessing chronic fatigue and underwent echocardiography. Blood cortisol concentration was assessed at 8:00 am and 3:00 pm, and plasma N-terminal brain natriuretic pro-peptide (NT-proBNP) concentration was measured at 8:00 am. Neurohumoral investigations were repeated before cardiopulmonary exercise test and after it. The results of all questionnaires showed that 100% of patients with NYHA functional class III-IV heart failure complained of chronic fatigue. The level of overall fatigue was 54.5+/-31.5 points; physical fatigue - 56.8+/-24.6 points. Blood cortisol concentration at 8:00 am was normal (410.1+/-175.1 mmol/L) in majority of patients. Decreased concentration was only in four patients (122.4+/-15.5 mmol/L); one of these patients underwent heart transplantation. In the afternoon, blood cortisol concentration was insufficiently decreased (355.6+/-160.3 mmol/L); reaction to a physical stress was attenuated (Delta 92.9 mmol/L). Plasma NT-proBNP concentration was 2188.9+/-1852.2 pg/L; reaction to a physical stress was diminished (Delta 490.3 pg/L). All patients with NYHA class III-IV heart failure complained of daily chronic fatigue. Insufficiently decreased blood cortisol concentration in the afternoon showed that in the presence of chronic fatigue in long-term cardiovascular organic disease, disorder of a hypothalamus-pituitary-adrenal axis is involved.
Ivy, Autumn S.; Rex, Christopher S.; Chen, Yuncai; Dubé, Céline; Maras, Pamela M.; Grigoriadis, Dimitri E.; Gall, Christine M.; Lynch, Gary; Baram, Tallie Z.
2010-01-01
Chronic stress impairs learning and memory in humans and rodents and disrupts long-term potentiation (LTP) in animal models. These effects are associated with structural changes in hippocampal neurons, including reduced dendritic arborization. Unlike the generally reversible effects of chronic stress on adult rat hippocampus, we have previously found that the effects of early-life stress endure and worsen during adulthood, yet the mechanisms for these clinically important sequelae are poorly understood. Stress promotes secretion of the neuropeptide corticotropin-releasing hormone (CRH) from hippocampal interneurons, activating receptors (CRF1) located on pyramidal cell dendrites. Additionally, chronic CRF1 occupancy negatively affects dendritic arborization in mouse organotypic slice cultures, similar to the pattern observed in middle-aged, early-stressed (CES) rats. Here we found that CRH-expression is augmented in hippocampus of middle-aged CES rats, and then tested if the morphological defects and poor memory performance in these animals involve excessive activation of CRF1 receptors. Central or peripheral administration of a CRF1 blocker following the stress period improved memory performance of CES rats in novel object recognition tests and in the Morris water maze. Consonant with these effects, the antagonist also prevented dendritic atrophy and LTP attenuation in CA1 Schaffer collateral synapses. Together, these data suggest that persistently elevated hippocampal CRH-CRF1 interaction contributes importantly to the structural and cognitive impairments associated with early-life stress. Reducing CRF1 occupancy post-hoc normalized hippocampal function during middle-age, thus offering potential mechanism-based therapeutic interventions for children affected by chronic stress. PMID:20881118
Oxytocin in corticosterone-induced chronic stress model: Focus on adrenal gland function.
Stanić, Dušanka; Plećaš-Solarović, Bosiljka; Mirković, Duško; Jovanović, Predrag; Dronjak, Slađana; Marković, Bojan; Đorđević, Tea; Ignjatović, Svetlana; Pešić, Vesna
2017-06-01
Chronic stress conditions can lead to considerable and extensible changes in physiological and psychological performances, and in emergence of risk for various somatic diseases. On the other hand, the neuropeptide oxytocin is reported to increase the resistance of the organism to stress and modulate activity of autonomic nervous system. Chronic corticosterone administration is used as a rat model for a state observed in terms of chronic stress exposure, when negative feedback mechanism of hypothalamus-pituitary-adrenal axis activity is disrupted. In our study, we aimed to investigate whether chronic administration of oxytocin (10 IU/400μL/day for 14days, s.c.) influenced adrenal gland morphology and activity in adult male Wistar rats during long-term corticosterone administration via drinking water (100mg/L for 21days). We examined the influence of treatments on the levels of adrenal gland hormones, corticosterone, adrenaline and noradrenaline, as well as their response to an acute stress challenge evoked by 15-min forced swimming. In addition, the expression of two main monoamine transporters, the noradrenaline transporter (NAT) and vesicular monoamine transporter 2 (VMAT2) in adrenal medulla was measured in the rats exposed to acute stress. Our results showed that oxytocin treatment prevented corticosterone-induced decrease in body weight gain, attenuated adrenal gland atrophy by increasing glandular weight, and the area of the zona fasciculate and reticularis. Chronic corticosterone intake blunted the response of all measured hormones to acute stress, whereas concomitant oxytocin treatment reversed adrenaline and noradrenaline response to acute stress. Furthermore, in adrenal medulla, oxytocin produced significant vasodilatation and stimulated expression of both catecholamine transporters detected both on mRNA and protein level. Our data suggest that oxytocin, by reducing atrophy of adrenal gland, and by increasing catecholamine storage capacity, may be beneficial in conditions accompanied with high glucocorticoid levels, such as chronic stress exposure. Copyright © 2017 Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Some housing can result in long-term chronic pain. Acute pain on immunity has been explored, but chronic pain influence on immune responses is poorly understood. Therefore the objective of this research was to determine chronic effects on immune responses and production of flooring in free-stall h...
Regulation of the Adrenal Cortex Function During Stress
NASA Technical Reports Server (NTRS)
Soliman, K. F. A.
1978-01-01
A proposal to study the function of the adrenal gland in the rat during stress is presented. In the proposed project, three different phases of experimentation will be undertaken. The first phase includes establishment of the circadian rhythm of both brain amines and glucocoticoids, under normal conditions and under chronic and acute stressful conditions. The second phase includes the study of the pharmacokinetics of glucocorticoid binding under normal and stress conditions. The third phase includes brain uptake and binding under different experimental conditions. In the outlined experiments brain biogenic amines will be evaluated, adrenal functions will be measured and stress effect on those parameters will be studied. It is hoped that this investigation can explain some of the complex relationships between the brain neurotransmitter and adrenal function.
Maunder, Robert G; Lancee, William J; Nolan, Robert P; Hunter, Jonathan J; Tannenbaum, David W
2006-03-01
The purpose of this study was to test predicted relationships between adult attachment and stress using subjective and physiological measures. Sixty-seven healthy adults completed measures of adult attachment and perceived chronic stress. Subjective stress and the high-frequency (HF) and low-frequency (LF) spectral bandwidths of heart rate variability (HRV) were measured during a standardized stress protocol. Attachment anxiety is associated with between-subject differences in chronic perceived stress (P=.001) and subjective acute stress (P=.01). There is a main effect of attachment avoidance on between-subject differences in HF HRV (P=.004). Attachment avoidance is inversely associated with HF HRV, independent of age and variability in respiration. Attachment anxiety is associated with self-reported distress. Attachment avoidance is inversely associated with HF HRV, a marker of vagal influence on cardiac activity, but is not associated with subjective stress.
Breese, George R.; Knapp, Darin J.
2016-01-01
This review updates the conceptual basis for the association of alcohol abuse with an insidious adaptation that facilitates negative affect during withdrawal from chronic intermittent alcohol (CIA) exposure – a change that later supports sensitization of stress-induced anxiety following alcohol abstinence. The finding that a CRF1-receptor antagonist (CRF1RA) minimized CIA withdrawal-induced negative affect supported an association of alcohol withdrawal with a stress mechanism. The finding that repeated stresses or multiple CRF injections into selected brain sites prior to a single 5-day chronic alcohol (CA) exposure induced anxiety during withdrawal provided critical support for a linkage of CIA withdrawal with stress. The determination that CRF1RA injection into positive CRF-sensitive brain sites prevented CIA withdrawal-induced anxiety provided support that neural path integration maintains the persistent CIA adaptation. Based upon reports that stress increases neuroimmune function, an effort was undertaken to test whether cytokines would support the adaptation induced by stress/CA exposure. Twenty-four hours after withdrawal from CIA, cytokine mRNAs were found to be increased in cortex as well as other sites in brain. Further, repeated cytokine injections into previously identified brain sites substituted for stress and CRF induction of anxiety during CA withdrawal. Discovery that a CRF1RA prevented the brain cytokine mRNA increase induced by CA withdrawal provided critical evidence for CRF involvement in this neuroimmune induction after CA withdrawal. However, the CRF1RA did not block the stress increase in cytokine mRNA increases in controls. The latter data supported the hypothesis that distinct mechanisms linked to stress and CA withdrawal can support common neuroimmune functions within a brain site. As evidence evolves concerning neural involvement in brain neuroimmune function, a better understanding of the progressive adaptation associated with CIA exposure will advance new knowledge that could possibly lead to strategies to combat alcohol abuse. PMID:27139233
Dooley, Larissa N; Slavich, George M; Moreno, Patricia I; Bower, Julienne E
2017-12-01
Stress research typically emphasizes the toxic effects of stress, but recent evidence has suggested that stress exposure, in moderation, can facilitate resilience. To test whether moderate stress exposure promotes psychological resilience to cancer, we examined the relationship between lifetime stress exposure prior to cancer diagnosis and postdiagnosis psychological functioning among 122 breast cancer survivors. Lifetime acute and chronic stress was assessed using an interview-based measure, and psychological functioning was assessed using measures of cancer-related intrusive thoughts and positive and negative affect. Results indicated that acute stress exposure was associated with cancer-related intrusive thoughts in a quadratic fashion (p = .016), such that participants with moderate acute stress reported fewer intrusive thoughts compared to those with low or high acute stress. Similarly, a quadratic relationship emerged between acute stress exposure and positive affect (p = .009), such that individuals with moderate acute stress reported the highest levels of positive affect. In contrast, acute and chronic stress were related to negative affect in a positive, linear fashion (ps < .05). In conclusion, moderate stress exposure was associated with indicators of psychological resilience among breast cancer survivors, supporting stress exposure as a key factor influencing adjustment to breast cancer and providing evidence for stress-induced resilience in a novel population. Copyright © 2017 John Wiley & Sons, Ltd.
Yang, Ping; Xiao, Yayun; Luo, Xuan; Zhao, Yunfei; Zhao, Lei; Wang, Yan; Wu, Tingting; Wei, Li; Chen, Yaxi
2017-07-01
Ectopic fat located in the kidney has emerged as a novel cause of obesity-related chronic kidney disease (CKD). In this study, we aimed to investigate whether inflammatory stress promotes ectopic lipid deposition in the kidney and causes renal injury in obese mice and whether the pathological process is mediated by the fatty acid translocase, CD36. High-fat diet (HFD) feeding alone resulted in obesity, hyperlipidemia, and slight renal lipid accumulation in mice, which nevertheless had normal kidney function. HFD-fed mice with chronic inflammation had severe renal steatosis and obvious glomerular and tubular damage, which was accompanied by increased CD36 expression. Interestingly, CD36 deficiency in HFD-fed mice eliminated renal lipid accumulation and pathological changes induced by chronic inflammation. In both human mesangial cells (HMCs) and human kidney 2 (HK2) cells, inflammatory stress increased the efficiency of CD36 protein incorporation into membrane lipid rafts, promoting FFA uptake and intracellular lipid accumulation. Silencing of CD36 in vitro markedly attenuated FFA uptake, lipid accumulation, and cellular stress induced by inflammatory stress. We conclude that inflammatory stress aggravates renal injury by activation of the CD36 pathway, suggesting that this mechanism may operate in obese individuals with chronic inflammation, making them prone to CKD. Copyright © 2017 by the American Society for Biochemistry and Molecular Biology, Inc.
Contrasting dynamic responses in vivo of the Bcl-xL and Bim erythropoietic survival pathways
Koulnis, Miroslav; Porpiglia, Ermelinda; Porpiglia, P. Alberto; Liu, Ying; Hallstrom, Kelly; Hidalgo, Daniel
2012-01-01
Survival signaling by the erythropoietin (Epo) receptor (EpoR) is essential for erythropoiesis and for its acceleration in hypoxic stress. Several apparently redundant EpoR survival pathways were identified in vitro, raising the possibility of their functional specialization in vivo. Here we used mouse models of acute and chronic stress, including a hypoxic environment and β-thalassemia, to identify two markedly different response dynamics for two erythroblast survival pathways in vivo. Induction of the antiapoptotic protein Bcl-xL is rapid but transient, while suppression of the proapoptotic protein Bim is slower but persistent. Similar to sensory adaptation, however, the Bcl-xL pathway “resets,” allowing it to respond afresh to acute stress superimposed on a chronic stress stimulus. Using “knock-in” mouse models expressing mutant EpoRs, we found that adaptation in the Bcl-xL response occurs because of adaptation of its upstream regulator Stat5, both requiring the EpoR distal cytoplasmic domain. We conclude that survival pathways show previously unsuspected functional specialization for the acute and chronic phases of the stress response. Bcl-xL induction provides a “stop-gap” in acute stress, until slower but permanent pathways are activated. Furthermore, pathologic elevation of Bcl-xL may be the result of impaired adaptation, with implications for myeloproliferative disease mechanisms. PMID:22086418
Xu, Aiping; Cui, Shan
2016-01-01
Background: Major depressive disorder is characterized as persistent low mood. A chronically stressful life in genetically susceptible individuals is presumably the major etiology that leads to dysfunctions of monoamine and hypothalamus-pituitary-adrenal axis. These pathogenic factors cause neuron atrophy in the limbic system for major depressive disorder. Cell-specific pathophysiology is unclear, so we investigated prelimbic cortical GABAergic neurons and their interaction with glutamatergic neurons in depression-like mice. Methods: Mice were treated with chronic unpredictable mild stress for 3 weeks until they expressed depression-like behaviors confirmed by sucrose preference, Y-maze, and forced swimming tests. The structures and functions of GABAergic and glutamatergic units in prelimbic cortices were studied by cell imaging and electrophysiology in chronic unpredictable mild stress-induced depression mice vs controls. Results: In depression-like mice, prelimbic cortical GABAergic neurons show incoordination among the subcellular compartments, such as decreased excitability and synaptic outputs as well as increased reception from excitatory inputs. GABAergic synapses on glutamatergic cells demonstrate decreased presynaptic innervation and increased postsynaptic responsiveness. Conclusions: Chronic unpredictable mild stress-induced incoordination in prelimbic cortical GABAergic and glutamatergic neurons dysregulates their target neurons, which may be the pathological basis for depressive mood. The rebalance of compatibility among subcellular compartments would be an ideal strategy to treat neural disorders. PMID:26506857
Chronically stressed or stress-preconditioned neurons fail to maintain stress granule assembly.
Shelkovnikova, Tatyana A; Dimasi, Pasquale; Kukharsky, Michail S; An, Haiyan; Quintiero, Annamaria; Schirmer, Claire; Buée, Luc; Galas, Marie-Christine; Buchman, Vladimir L
2017-05-11
Dysregulation of stress granules (SGs) and their resident proteins contributes to pathogenesis of a number of (neuro)degenerative diseases. Phosphorylation of eIF2α is an event integrating different types of cellular stress and it is required for SG assembly. Phosphorylated eIF2α (p-eIF2α) is upregulated in the nervous system in some neurodegenerative conditions. We found that increasing p-eIF2α level by proteasomal inhibition in cultured cells, including mouse and human neurons, before a SG-inducing stress ('stress preconditioning'), limits their ability to maintain SG assembly. This is due to upregulation of PP1 phosphatase regulatory subunits GADD34 and/or CReP in preconditioned cells and early decline of p-eIF2α levels during subsequent acute stress. In two model systems with constitutively upregulated p-eIF2α, mouse embryonic fibroblasts lacking CReP and brain neurons of tau transgenic mice, SG formation was also impaired. Thus, neurons enduring chronic stress or primed by a transient mild stress fail to maintain p-eIF2α levels following subsequent acute stress, which would compromise protective function of SGs. Our findings provide experimental evidence on possible loss of function for SGs in certain neurodegenerative diseases.
Distelberg, Brian; Tapanes, Daniel; Emerson, Natacha D; Brown, Whitney N; Vaswani, Deepti; Williams-Reade, Jackie; Anspikian, Ara M; Montgomery, Susanne
2018-03-01
Psychosocial interventions for pediatric chronic illness (CI) have been shown to support health management. Interventions that include a family systems approach offer potentially stronger and more sustainable improvements. This study explores the biopsychosocial benefits of a novel family systems psychosocial intervention (MEND: Mastering Each New Direction). Forty-five families participated in a 21-session intensive outpatient family systems-based program for pediatric CI. Within this single arm design, families were measured on five domains of Health-Related Quality of Life (HRQL) self-report measures; Stress, Cognitive Functioning, Mental Health, Child HRQL, Family Functioning. Both survey and biological measures (stress: catecholamine) were used in the study. Results from multivariate general linear models showed positive pre-, post-, and 3-month posteffects in all five domains. The program effects ranged from small to moderate (η 2 = .07-.64). The largest program effects were seen in the domains of cognitive functioning (η 2 = .64) and stress (η 2 = .27). Also, between disease groups, differences are noted and future implications for research and clinical practice are discussed. Conclusions suggest that the MEND program may be useful in helping families manage pediatric chronic illnesses. Study results also add to the growing body of literature suggesting that psychosocial interventions for pediatric chronic illness benefit from a family systems level of intervention. © 2017 Family Process Institute.
Mehta, Vineet; Singh, Tiratha Raj; Udayabanu, Malairaman
2017-12-01
Chronic stress is associated with impaired neurogenesis, neurodegeneration and behavioral dysfunction, whereas the mechanism underlying stress-mediated neurological complications is still not clear. In the present study, we aimed to investigate whether chronic unpredicted stress (CUS) mediated neurological alterations are associated with impaired hippocampal insulin signaling or not, and studied the effect of quercetin in this scenario. Male Swiss albino mice were subjected to 21day CUS, during which 30mg/kg quercetin treatment was given orally. After 21days, behavioral functions were evaluated in terms of locomotor activity (Actophotometer), muscle coordination (Rota-rod), depression (Tail Suspension Test (TST), Forced Swim Test (FST)) and memory performance (Passive-avoidance step-down task (PASD)). Further, hippocampal insulin signaling was evaluated in terms of protein expression of insulin, insulin receptor (IR) and glucose transporter 4 (GLUT-4) and neurogenesis was evaluated in terms of doublecortin (DCX) expression. 21day CUS significantly impaired locomotion and had no effect on muscle coordination. Stressed animals were depressed and showed markedly impaired memory functions. Quercetin treatment significantly improvement stress-mediated behavior dysfunction as indicated by improved locomotion, lesser immobility time and greater frequency of upward turning in TST and FST and increased transfer latency on the day 2 (short-term memory) and day 5 (long-term memory) in PASD test. We observed significantly higher IR expression and significantly lower GLUT-4 expression in the hippocampus of stressed animals, despite of nonsignificant difference in insulin levels. Further, chronic stress impaired hippocampal neurogenesis, as indicated by the significantly reduced levels of hippocampal DCX expression. Quercetin treatment significantly lowered insulin and IR expression and significantly enhanced GLUT-4 and DCX expression in the hippocampus, when compared to CUS. In conclusion, quercetin treatment efficiently alleviated stress mediated behavioral dysfunction by modulating hippocampal insulin signaling and neurogenesis. Copyright © 2017 Elsevier Inc. All rights reserved.
Markus, C Rob; Verschoor, E; Firk, C; Kloek, J; Gerhardt, C C
2010-10-01
Reduced brain serotonin function is involved in stress-related disturbances and may particularly occur under chronic stress. Although serotonin production directly depends on the availability of its plasma dietary amino acid precursor tryptophan (TRP), previously described effects of tryptophan-rich food sources on stress-related behavior are rather modest. Recently, an egg protein hydrolysate (EPH) was developed that showed a much greater effect on brain TRP availability than pure TRP and other TRP-food sources and therefore may be more effective for performance under stress. The aim of the present study was to investigate the effects of EPH compared to placebo protein on plasma amino acids, stress coping and performance in subjects with high and low chronic stress vulnerabilities. In a placebo-controlled, double-blind, crossover study, 17 participants with high and 18 participants with low chronic stress vulnerabilities were monitored for mood and performance under acute stress exposure either following intake of EPH or placebo. EPH significantly increased plasma TRP availability for uptake into the brain, decreased depressive mood in all subjects and improved perceptual-motor and vigilance performance only in low chronic stress-vulnerable subjects. The acute use of a TRP-rich egg protein hydrolysate (EPH) is an adequate method to increase plasma TRP for uptake into the brain and may be beneficial for perceptual-motor and vigilance performance in healthy volunteers. Copyright © 2010 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.
Acute and chronic stress and the inflammatory response in hyperprolactinemic rats.
Ochoa-Amaya, J E; Malucelli, B E; Cruz-Casallas, P E; Nasello, A G; Felicio, L F; Carvalho-Freitas, M I R
2010-01-01
Prolactin (PRL), a hormone produced by the pituitary gland, has multiple physiological functions, including immunoregulation. PRL can also be secreted in response to stressful stimuli. During stress, PRL has been suggested to oppose the immunosuppressive effects of inflammatory mediators. Therefore, the aim of the present study was to analyze the effects of short- and long-term hyperprolactinemia on the inflammatory response in rats subjected to acute or chronic cold stress. Inflammatory edema was induced by carrageenan in male rats, and hyperprolactinemia was induced by injections of the dopamine receptor antagonist domperidone. The volume of inflammatory edema was measured by plethysmography after carrageenan injection. Additionally, the effects of hyperprolactinemia on body weight and serum corticosterone levels were evaluated. Five days of domperidone-induced hyperprolactinemia increased the volume of inflammatory edema. No differences in serum corticosterone levels were observed between groups. No significant differences were found among 30 days domperidone-induced hyperprolactinemic animals subjected to acute stress and the inflammatory response observed in chronic hyperprolactinemic animals subjected to chronic stress. The results suggest that short-term hyperprolactinemia has pro-inflammatory effects. Because such an effect was not observed in long-term hyperprolactinemic animals, PRL-induced tolerance seems likely. We suggest that short-term hyperprolactinemia may act as a protective factor in rats subjected to acute stress. These data suggest that hyperprolactinemia and stress interact differentially according to the time period. Copyright 2010 S. Karger AG, Basel.
Gu, Qi; Wang, Bing; Zhang, Xiao-Feng; Ma, Yan-Ping; Liu, Jian-Dong; Wang, Xiao-Ze
2014-08-01
Aging leads to large vessel arterial stiffening and endothelial dysfunction, which are important determinants of cardiovascular risk. The aim of present work was to assess the effects of chronic aerobic exercise training on aortic stiffening and endothelial dysfunction in aged rats and investigate the underlying mechanism about mitochondrial function. Chronic aerobic exercise training attenuated aortic stiffening with age marked by reduced collagen concentration, increased elastin concentration and reduced pulse wave velocity (PWV), and prevented aging-related endothelial dysfunction marked by improved endothelium-mediated vascular relaxation of aortas in response to acetylcholine. Chronic aerobic exercise training abated oxidative stress and nitrosative stress in aortas of aged rats. More importantly, we found that chronic aerobic exercise training in old rats preserved aortic mitochondrial function marked by reduced reactive oxygen species (ROS) formation and mitochondrial swelling, increased ATP formation and mitochondrial DNA content, and restored activities of complexes I and III and electron-coupling capacity between complexes I and III and between complexes II and III. In addition, it was found that chronic aerobic exercise training in old rats enhanced protein expression of uncoupling protein 2 (UCP-2), peroxisome proliferator-activated receptor γ co-activator 1α (PGC-1α), manganese superoxide dismutase (Mn-SOD), aldehyde dehydrogenase 2 (ALDH-2), prohibitin (PHB) and AMP-activated kinase (AMPK) phosphorylation in aortas. In conclusion, chronic aerobic exercise training preserved mitochondrial function in aortas, which, at least in part, explained the aorta-protecting effects of exercise training in aging. Copyright © 2014 Elsevier Inc. All rights reserved.
Allopurinol improves endothelial dysfunction in chronic heart failure.
Farquharson, Colin A J; Butler, Robert; Hill, Alexander; Belch, Jill J F; Struthers, Allan D
2002-07-09
Increased oxidative stress in chronic heart failure is thought to contribute to endothelial dysfunction. Xanthine oxidase produces oxidative stress and therefore we examined whether allopurinol improved endothelial dysfunction in chronic heart failure. We performed a randomized, placebo-controlled, double-blind crossover study on 11 patients with New York Heart Association class II-III chronic heart failure, comparing 300 mg allopurinol daily (1 month) versus placebo. Endothelial function was assessed by standard forearm venous occlusion plethysmography with acetylcholine, nitroprusside, and verapamil. Plasma malondialdehyde levels were also compared to assess significant changes in oxidative stress. Allopurinol significantly increased the forearm blood flow response to acetylcholine (percentage change in forearm blood flow [mean+/-SEM]: 181+/-19% versus 120+/-22% allopurinol versus placebo; P=0.003). There were no significant differences in the forearm blood flow changes between the placebo and allopurinol treatment arms with regard to sodium nitroprusside or verapamil. Plasma malondialdehyde was significantly reduced with allopurinol treatment (346+/-128 nmol/L versus 461+/-101 nmol/L, allopurinol versus placebo; P=0.03), consistent with reduced oxidative stress with allopurinol therapy. We have shown that allopurinol improves endothelial dysfunction in chronic heart failure. This raises the distinct possibility that allopurinol might reduce cardiovascular events and even improve exercise capacity in chronic heart failure.
Early-Life Stress: From Neuroendocrine Mechanisms to Stress-Related Disorders.
Pervanidou, Panagiota; Chrousos, George P
2018-06-08
Stress exposure is highly prevalent in the general population; however, the experience of stress during vulnerable periods of development has substantial and permanent effects on brain structure and function and physical health in adulthood. Stress, the state of threatened homeostasis, is generally associated with a time-limited activation of the stress system, i.e., the hypothalamic-pituitary-adrenal axis and the arousal/sympathetic nervous system, tailored to the stressful stimulus also known as the stressor. On the other hand, chronic stress may be associated with lingering hyper- or hyposecretion of mediators of the stress system. This chronic condition is called dyshomeostasis, allostasis, or cacostasis and is associated with increased mental and physical morbidity in the long term. Stressful or traumatic experiences during fetal life, early childhood, and adolescence have been related to persistent neuroendocrine and epigenetic changes. Further, brain structures involved in the stress response, such as those of the stress system, the hippocampus, and the amygdala, may be programmed early on for a life of adversity. © 2018 S. Karger AG, Basel.
Csabai, Dávid; Wiborg, Ove; Czéh, Boldizsár
2018-01-01
Stressful experiences can induce structural changes in neurons of the limbic system. These cellular changes contribute to the development of stress-induced psychopathologies like depressive disorders. In the prefrontal cortex of chronically stressed animals, reduced dendritic length and spine loss have been reported. This loss of dendritic material should consequently result in synapse loss as well, because of the reduced dendritic surface. But so far, no one studied synapse numbers in the prefrontal cortex of chronically stressed animals. Here, we examined synaptic contacts in rats subjected to an animal model for depression, where animals are exposed to a chronic stress protocol. Our hypothesis was that long term stress should reduce the number of axo-spinous synapses in the medial prefrontal cortex. Adult male rats were exposed to daily stress for 9 weeks and afterward we did a post mortem quantitative electron microscopic analysis to quantify the number and morphology of synapses in the infralimbic cortex. We analyzed asymmetric (Type I) and symmetric (Type II) synapses in all cortical layers in control and stressed rats. We also quantified axon numbers and measured the volume of the infralimbic cortex. In our systematic unbiased analysis, we examined 21,000 axon terminals in total. We found the following numbers in the infralimbic cortex of control rats: 1.15 × 109 asymmetric synapses, 1.06 × 108 symmetric synapses and 1.00 × 108 myelinated axons. The density of asymmetric synapses was 5.5/μm3 and the density of symmetric synapses was 0.5/μm3. Average synapse membrane length was 207 nm and the average axon terminal membrane length was 489 nm. Stress reduced the number of synapses and myelinated axons in the deeper cortical layers, while synapse membrane lengths were increased. These stress-induced ultrastructural changes indicate that neurons of the infralimbic cortex have reduced cortical network connectivity. Such reduced network connectivity is likely to form the anatomical basis for the impaired functioning of this brain area. Indeed, impaired functioning of the prefrontal cortex, such as cognitive deficits are common in stressed individuals as well as in depressed patients. PMID:29440995
Akdeniz, Ceren; Tost, Heike; Streit, Fabian; Haddad, Leila; Wüst, Stefan; Schäfer, Axel; Schneider, Michael; Rietschel, Marcella; Kirsch, Peter; Meyer-Lindenberg, Andreas
2014-06-01
Relative risk for the brain disorder schizophrenia is more than doubled in ethnic minorities, an effect that is evident across countries and linked to socially relevant cues such as skin color, making ethnic minority status a well-established social environmental risk factor. Pathoepidemiological models propose a role for chronic social stress and perceived discrimination for mental health risk in ethnic minorities, but the neurobiology is unexplored. To study neural social stress processing, using functional magnetic resonance imaging, and associations with perceived discrimination in ethnic minority individuals. Cross-sectional design in a university setting using 3 validated paradigms to challenge neural social stress processing and, to probe for specificity, emotional and cognitive brain functions. Healthy participants included those with German lineage (n = 40) and those of ethnic minority (n = 40) from different ethnic backgrounds matched for sociodemographic, psychological, and task performance characteristics. Control comparisons examined stress processing with matched ethnic background of investigators (23 Turkish vs 23 German participants) and basic emotional and cognitive tasks (24 Turkish vs 24 German participants). Blood oxygenation level-dependent response, functional connectivity, and psychological and physiological measures. There were significant increases in heart rate (P < .001), subjective emotional response (self-related emotions, P < .001; subjective anxiety, P = .006), and salivary cortisol level (P = .004) during functional magnetic resonance imaging stress induction. Ethnic minority individuals had significantly higher perceived chronic stress levels (P = .02) as well as increased activation (family-wise error-corrected [FWE] P = .005, region of interest corrected) and increased functional connectivity (PFWE = .01, region of interest corrected) of perigenual anterior cingulate cortex (ACC). The effects were specific to stress and not explained by a social distance effect. Ethnic minority individuals had significant correlations between perceived group discrimination and activation in perigenual ACC (PFWE = .001, region of interest corrected) and ventral striatum (PFWE = .02, whole brain corrected) and mediation of the relationship between perceived discrimination and perigenual ACC-dorsal ACC connectivity by chronic stress (P < .05). Epidemiologists proposed a causal role of social-evaluative stress, but the neural processes that could mediate this susceptibility effect were unknown. Our data demonstrate the potential of investigating associations from epidemiology with neuroimaging, suggest brain effects of social marginalization, and highlight a neural system in which environmental and genetic risk factors for mental illness may converge.
Schoutens, Antonius M C; Frings-Dresen, Monique H W; Sluiter, Judith K
2016-07-19
Work-related chronic stress is a common problem among workers. The core complaint is that the employee feels exhausted, which has an effect on the well-being and functioning of the employee, and an impact on the employer and society. The employee's absence is costly due to lost productivity and medical expenses. The usual form of care for work-related chronic stress is coaching, using a cognitive-behavioural approach whose primary aim is to reduce symptoms and improve functioning. Light therapy and pulsed electromagnetic field therapy are used for the treatment of several mental and physical disorders. The objective of this study is to determine whether coaching combined with light therapy plus pulsed electromagnetic field therapy is an effective treatment for reducing absenteeism, fatigue and stress, and improving quality of life compared to coaching alone. The randomized placebo-controlled trial consists of three arms. The population consists of 90 participants with work-related chronic stress complaints. The research groups are: (i) intervention group; (ii) placebo group; and (iii) control group. Participants in the intervention group will be treated with light therapy/pulsed electromagnetic field therapy for 12 weeks, twice a week for 40 min, and coaching (once a fortnight for 50 min). The placebo group receives the same treatment but with the light and pulsed electromagnetic field switched to placebo settings. The control group receives only coaching for 12 weeks, a course of six sessions, once a fortnight for 50 min. The primary outcome is the level of return to work. Secondary outcomes are fatigue, stress and quality of life. Outcomes will be measured at baseline, 6 weeks, 12 and 24 weeks after start of treatment. This study will provide information about the effectiveness of coaching and light therapy plus pulsed electromagnetic field therapy on return to work, and secondly on fatigue, stress and quality of life in people with work-related chronic stress. NTR4794 , registration date 18-sept-2014.
Yang, Yu; Babygirija, Reji; Zheng, Jun; Shi, Bei; Sun, Weinan; Zheng, Xiaojiao; Zhang, Fan; Cao, Yu
2018-02-07
Exposure to continuous life stress often causes gastrointestinal (GI) symptoms. Studies have shown that neuropeptide Y (NPY) counteracts the biological actions of corticotrophin-releasing factor (CRF), and is involved in the termination of the stress response. However, in chronic repeated restraint stress (CRS) conditions, the actions of NPY on GI motility remain controversial. To evaluate the role of NPY in mediation of the adaptation mechanism and GI motility in CRS conditions, a CRS rat model was set up. Central CRF and NPY expression levels were analyzed, serum corticosterone and NPY concentrations were measured, and GI motor function was evaluated. The NPY Y1 receptor antagonist BIBP-3226 was centrally administered before stress loading, and on days, 1-5, of repeated stress, the central CRF and the serum corticosterone concentrations were measured. In addition, gastric and colonic motor functions were evaluated. The elevated central CRF expression and corticosterone concentration caused by acute stress began to fall after 3 days of stress loading, while central NPY expression and serum NPY began to increase. GI dysmotility also returned to a normal level. Pretreatment with BIBP-3226 abolished the adaptation mechanism, and significantly increased CRF expression and the corticosterone concentration, which resulted in delayed gastric emptying and accelerated fecal pellet output. Inhibited gastric motility and enhanced distal colonic motility were also recorded. CRS-produced adaptation, over-expressed central CRF, and GI dysmotility observed in acute restraint stress were restored to normal levels. Central NPY via the Y1 receptor plays an important role in mediating the adaptation mechanism against chronic stress. Copyright © 2018 Endocrine Society.
Mitigation of stress: new treatment alternatives.
Subhani, Ahmad Rauf; Kamel, Nidal; Mohamad Saad, Mohamad Naufal; Nandagopal, Nanda; Kang, Kenneth; Malik, Aamir Saeed
2018-02-01
Complaints of stress are common in modern life. Psychological stress is a major cause of lifestyle-related issues, contributing to poor quality of life. Chronic stress impedes brain function, causing impairment of many executive functions, including working memory, decision making and attentional control. The current study sought to describe newly developed stress mitigation techniques, and their influence on autonomic and endocrine functions. The literature search revealed that the most frequently studied technique for stress mitigation was biofeedback (BFB). However, evidence suggests that neurofeedback (NFB) and noninvasive brain stimulation (NIBS) could potentially provide appropriate approaches. We found that recent studies of BFB methods have typically used measures of heart rate variability, respiration and skin conductance. In contrast, studies of NFB methods have typically utilized neurocomputation techniques employing electroencephalography, functional magnetic resonance imaging and near infrared spectroscopy. NIBS studies have typically utilized transcranial direct current stimulation methods. Mitigation of stress is a challenging but important research target for improving quality of life.
Hoffman, Ann N; Lorson, Nickolaus G; Sanabria, Federico; Foster Olive, M; Conrad, Cheryl D
2014-07-01
Chronic stress may impose a vulnerability to develop maladaptive fear-related behaviors after a traumatic event. Whereas previous work found that chronic stress impairs the acquisition and recall of extinguished fear, it is unknown how chronic stress impacts nonassociative fear, such as in the absence of the conditioned stimulus (CS) or in a novel context. Male rats were subjected to chronic stress (STR; wire mesh restraint 6 h/d/21d) or undisturbed (CON), then tested on fear acquisition (3 tone-footshock pairings), and two extinction sessions (15 tones/session) within the same context. Then each group was tested (6 tones) in the same context (SAME) or a novel context (NOVEL), and brains were processed for functional activation using Fos immunohistochemistry. Compared to CON, STR showed facilitated fear acquisition, resistance to CS extinction on the first extinction day, and robust recovery of fear responses on the second extinction day. STR also showed robust freezing to the context alone during the first extinction day compared to CON. When tested in the same or a novel context, STR exhibited higher freezing to context than did CON, suggesting that STR-induced fear was independent of context. In support of this, STR showed increased Fos-like expression in the basolateral amygdala and CA1 region of the hippocampus in both the SAME and NOVEL contexts. Increased Fos-like expression was also observed in the central amygdala in STR-NOVEL vs. CON-NOVEL. These data demonstrate that chronic stress enhances fear learning and impairs extinction, and affects nonassociative processes as demonstrated by enhanced fear in a novel context. Copyright © 2014 Elsevier Inc. All rights reserved.
Fida, Tekle Tafese; Breugelmans, Philip; Lavigne, Rob; Coronado, Edith; Johnson, David R.; van der Meer, Jan Roelof; Mayer, Antonia P.; Heipieper, Hermann J.; Hofkens, Johan
2012-01-01
Members of the genus Sphingomonas are important catalysts for removal of polycyclic aromatic hydrocarbons (PAHs) in soil, but their activity can be affected by various stress factors. This study examines the physiological and genome-wide transcription response of the phenanthrene-degrading Sphingomonas sp. strain LH128 in biofilms to solute stress (invoked by 450 mM NaCl solution), either as an acute (4-h) or a chronic (3-day) exposure. The degree of membrane fatty acid saturation was increased as a response to chronic stress. Oxygen consumption in the biofilms and phenanthrene mineralization activities of biofilm cells were, however, not significantly affected after imposing either acute or chronic stress. This finding was in agreement with the transcriptomic data, since genes involved in PAH degradation were not differentially expressed in stressed conditions compared to nonstressed conditions. The transcriptomic data suggest that LH128 adapts to NaCl stress by (i) increasing the expression of genes coping with osmolytic and ionic stress such as biosynthesis of compatible solutes and regulation of ion homeostasis, (ii) increasing the expression of genes involved in general stress response, (iii) changing the expression of general and specific regulatory functions, and (iv) decreasing the expression of protein synthesis such as proteins involved in motility. Differences in gene expression between cells under acute and chronic stress suggest that LH128 goes through changes in genome-wide expression to fully adapt to NaCl stress, without significantly changing phenanthrene degrading activity. PMID:23001650
Sleep and protein synthesis-dependent synaptic plasticity: impacts of sleep loss and stress
Grønli, Janne; Soulé, Jonathan; Bramham, Clive R.
2014-01-01
Sleep has been ascribed a critical role in cognitive functioning. Several lines of evidence implicate sleep in the consolidation of synaptic plasticity and long-term memory. Stress disrupts sleep while impairing synaptic plasticity and cognitive performance. Here, we discuss evidence linking sleep to mechanisms of protein synthesis-dependent synaptic plasticity and synaptic scaling. We then consider how disruption of sleep by acute and chronic stress may impair these mechanisms and degrade sleep function. PMID:24478645
Personality, Coping, and Well-Being for People Living with Chronic Hepatitis C.
Cellar, Douglas F; Voster, Devon; Fetters, Rachel; Twitchell, Emily; Harper, Gary W; Scott, Cotler
2016-04-01
The present study examined the relationships between personality, coping strategies, and health ratings to extend past research to people living with chronic hepatitis C (HCV). Participants were 35 people (11 men, 24 women; M age = 49.6 yr., SD = 10.6) living with chronic hepatitis C for an average of 9.0 yr. (SD = 6.0) since diagnosis. Participants provided descriptions of stressful situations and responded to a personality inventory, Ways of Coping Questionnaire scales (planful problem solving and escape-avoidance) and SF36 Health Survey scales measuring physical functioning and mental health. The stressful situations were judgmentally clustered into seven dimensions (diagnosis/mortality, disclosure, stigma, social and work role functioning, compounding problems, and no stress). Correlational analyses indicated strong negative relationships between escape-avoidance coping and health measures. Emotional Stability and Extraversion were positively related to both health variables, and Extraversion was negatively related to escape-avoidance coping. The results suggest that research from other contexts that has examined these relationships tended to generalize to people living with HCV. © The Author(s) 2016.
The Relationship between Parental Depressive Symptoms, Family Type, and Adolescent Functioning
Sieh, Dominik Sebstian; Visser-Meily, Johanna Maria Augusta; Meijer, Anne Marie
2013-01-01
It is evident that parental depressive symptoms negatively influence adolescent behavior and various psychosocial outcomes. Certain family types like families with a chronically ill parent and single parent families are more vulnerable to parental depressive symptoms. However, the relationship between these symptoms, family type, and adolescent functioning remains largely unclear. This study examined relations between self-report of parental depressive symptoms and adolescent functioning in 86 two-parent families including a parent with a chronic medical condition, 94 families with healthy single parents, and 69 families with 2 healthy parents (comparison group). Parents completed the Beck Depression Inventory. Adolescents filled in the Youth Self-Report measuring problem behavior, and other instruments measuring psychosocial outcomes (stress, grade point average, school problems, and self-esteem). Multilevel analyses were used to examine the effects of family type, parental depressive symptoms, adolescents' gender and age, and interaction effects on adolescent functioning. The results indicated that adolescents with chronically ill and single parents had a lower grade point average (p<.01) than the comparison group. Adolescents of single parents reported more internalizing problems (p<.01) and externalizing problems (p<.05) than children from the other family types. Parental depressive symptoms were strongly related to child report of stress (p<.001). Adolescents of depressed chronically ill parents were particularly vulnerable to internalizing problems (interaction effect, p<.05). Older children and girls, and especially older girls, displayed more internalizing problems and stress. It can be concluded that growing up with a chronically ill parent in a family with 2 parents may have less impact on adolescent problem behavior than growing up in a single parent family. Health practitioners are encouraged to be attentive to the unique and combined influence of family type and parental depressive symptoms on adolescent functioning. Older and female adolescents deserve particular attention. PMID:24260457
Knab, Amy M; Nieman, David C; Gillitt, Nicholas D; Shanely, R Andrew; Cialdella-Kam, Lynn; Henson, Dru A; Sha, Wei
2013-04-01
The effects of a flavonoid-rich fresh fruit and vegetable juice (JUICE) on chronic resting and postexercise inflammation, oxidative stress, immune function, and metabolic profiles (metabolomics analysis, gas-chromatography mass-spectrometry platform) in elite sprint and middle-distance swimmers were studied. In a randomized, crossover design with a 3-wk washout period, swimmers (n = 9) completed 10-d training with or without 16 fl oz of JUICE (230 mg flavonoids) ingested pre- and postworkout. Blood samples were taken presupplementation, post-10-d supplementation, and immediately postexercise, with data analyzed using a 2 × 3 repeated-measures ANOVA. Prestudy blood samples were also acquired from nonathletic controls (n = 7, age- and weight-matched) and revealed higher levels of oxidative stress in the swimmers, no differences in inflammation or immune function, and a distinct separation in global metabolic scores (R2Y [cum] = .971). Swim workouts consisted of high-intensity intervals (1:1, 1:2 swim-to-rest ratio) and induced little inflammation, oxidative stress, or immune changes. A distinct separation in global metabolic scores was found pre- to postexercise (R2Y [cum] = .976), with shifts detected in a small number of metabolites related to substrate utilization. No effect of 10-d JUICE was found on chronic resting levels or postexercise inflammation, oxidative stress, immune function, and shifts in metabolites. In conclusion, sprint and middle-distance swimmers had a slight chronic elevation in oxidative stress compared with nonathletic controls, experienced a low magnitude of postworkout perturbations in the biomarkers included in this study, and received no apparent benefit other than added nutrient intake from ingesting JUICE pre- and postworkout for 10 days.
Touyarot, K; Venero, C; Sandi, C
2004-02-01
Although chronic stress has been reported to induce deleterious effects on hippocampal structure and function, the possible existence of individual differences in the vulnerability to develop stress-induced cognitive alterations was hypothesized. This study was designed to evaluate (i) whether individual variability in behavioural reactivity to novelty could be related to a differential vulnerability to show spatial learning deficits after chronic stress in young adult rats, and (ii) to what extent, could individual differences in stress-induced cognitive alterations be related to alterations in specific neurobiological substrates. Four month-old Wistar male rats were classified according to their locomotor reactivity to a novel environment, as either low (LR) or highly (HR) reactive, and then either submitted to psychosocial stress for 21-days (consisting of the daily cohabitation of each young adult rat with a new middle-aged rat) or left undisturbed. The results showed that psychosocial stress induced a marked deficit in spatial learning in the water maze in HR, but not in LR, rats. Then, a second experiment investigated the possible differential expression of corticosteroid receptors (MR and GR) and cell adhesion molecules (NCAM and L1) in the hippocampus of HR and LR rats, both under basal conditions and after exposure to chronic social stress. Although chronic stress induced a reduction on the hippocampal expression of MRs and the NCAM-140 isoform, the levels of these molecules did not differ between stressed rats with and without spatial learning impairments; i.e., between HR- and LR-stressed rats, respectively. Nevertheless, it should be noted that the reduction of the hippocampal expression of NCAM-140 induced by psychosocial stress was particularly marked in HR stressed rats. However, the expression of GRs, NCAM-120 and NCAM-180 isoforms, and L1, was not affected by stress, regardless of the reactivity of the animals. Therefore, although we failed to find a neurobiological substrate that specifically correlated with the differential cognitive vulnerability to chronic stress shown by animals with a different novelty reactivity, this study confirms the hypothesis that rats differ in their susceptibility to display stress-induced impairments in hippocampus-dependent spatial learning tasks. In addition, it provides a model to further search for the neurobiological substrate(s) involved in the differential susceptibility to develop stress-induced cognitive impairments.
Butler, Michael W; Leppert, Lynda L; Dufty, Alfred M
2010-01-01
Stressors encountered during avian development may affect an individual's phenotype, including immunocompetence, growth, and feather quality. We examined effects of simulated chronic low-level stress on American kestrel (Falco sparverius) nestlings. Continuous release of corticosterone, a hormone involved in the stress response, can model chronic stress in birds. We implanted 13-d-old males with either corticosterone-filled implants or shams and measured their growth, immune function, and feather coloration. We found no significant differences between groups at the end of the weeklong exposure period in morphometrics (mass, tarsus, wing length, and asymmetry), immunocompetence (cutaneous immunity, heterophil/lymphocyte ratio, and humoral immunity), or feather coloration. One week subsequent to implant removal, however, differences were detected. Sham-implanted birds had significantly longer wings and a reduced level of cutaneous immune function compared with those of birds given corticosterone-filled implants. Therefore, increases of only 2 ng/mL in basal corticosterone titer can have small but measurable effects on subsequent avian development.
Matyas, Csaba; Varga, Zoltan V.; Mukhopadhyay, Partha; Paloczi, Janos; Lajtos, Tamas; Erdelyi, Katalin; Nemeth, Balazs T.; Nan, Mintong; Hasko, Gyorgy; Gao, Bin
2016-01-01
Alcoholic cardiomyopathy in humans develops in response to chronic excessive alcohol consumption; however, good models of alcohol-induced cardiomyopathy in mice are lacking. Herein we describe mouse models of alcoholic cardiomyopathies induced by chronic and binge ethanol (EtOH) feeding and characterize detailed hemodynamic alterations, mitochondrial function, and redox signaling in these models. Mice were fed a liquid diet containing 5% EtOH for 10, 20, and 40 days (d) combined with single or multiple EtOH binges (5 g/kg body wt). Isocalorically pair-fed mice served as controls. Left ventricular (LV) function and morphology were assessed by invasive pressure-volume conductance approach and by echocardiography. Mitochondrial complex (I, II, IV) activities, 3-nitrotyrosine (3-NT) levels, gene expression of markers of oxidative stress (gp91phox, p47phox), mitochondrial biogenesis (PGC1α, peroxisome proliferator-activated receptor α), and fibrosis were examined. Cardiac steatosis and fibrosis were investigated by histological/immunohistochemical methods. Chronic and binge EtOH feeding (already in 10 days EtOH plus single binge group) was characterized by contractile dysfunction (decreased slope of end-systolic pressure-volume relationship and preload recruitable stroke work), impaired relaxation (decreased time constant of LV pressure decay and maximal slope of systolic pressure decrement), and vascular dysfunction (impaired arterial elastance and lower total peripheral resistance). This was accompanied by enhanced myocardial oxidative/nitrative stress (3-NT; gp91phox; p47phox; angiotensin II receptor, type 1a) and deterioration of mitochondrial complex I, II, IV activities and mitochondrial biogenesis, excessive cardiac steatosis, and higher mortality. Collectively, chronic plus binge EtOH feeding in mice leads to alcohol-induced cardiomyopathies (National Institute on Alcohol Abuse and Alcoholism models) characterized by increased myocardial oxidative/nitrative stress, impaired mitochondrial function and biogenesis, and enhanced cardiac steatosis. PMID:27106042
Matyas, Csaba; Varga, Zoltan V; Mukhopadhyay, Partha; Paloczi, Janos; Lajtos, Tamas; Erdelyi, Katalin; Nemeth, Balazs T; Nan, Mintong; Hasko, Gyorgy; Gao, Bin; Pacher, Pal
2016-06-01
Alcoholic cardiomyopathy in humans develops in response to chronic excessive alcohol consumption; however, good models of alcohol-induced cardiomyopathy in mice are lacking. Herein we describe mouse models of alcoholic cardiomyopathies induced by chronic and binge ethanol (EtOH) feeding and characterize detailed hemodynamic alterations, mitochondrial function, and redox signaling in these models. Mice were fed a liquid diet containing 5% EtOH for 10, 20, and 40 days (d) combined with single or multiple EtOH binges (5 g/kg body wt). Isocalorically pair-fed mice served as controls. Left ventricular (LV) function and morphology were assessed by invasive pressure-volume conductance approach and by echocardiography. Mitochondrial complex (I, II, IV) activities, 3-nitrotyrosine (3-NT) levels, gene expression of markers of oxidative stress (gp91phox, p47phox), mitochondrial biogenesis (PGC1α, peroxisome proliferator-activated receptor α), and fibrosis were examined. Cardiac steatosis and fibrosis were investigated by histological/immunohistochemical methods. Chronic and binge EtOH feeding (already in 10 days EtOH plus single binge group) was characterized by contractile dysfunction (decreased slope of end-systolic pressure-volume relationship and preload recruitable stroke work), impaired relaxation (decreased time constant of LV pressure decay and maximal slope of systolic pressure decrement), and vascular dysfunction (impaired arterial elastance and lower total peripheral resistance). This was accompanied by enhanced myocardial oxidative/nitrative stress (3-NT; gp91phox; p47phox; angiotensin II receptor, type 1a) and deterioration of mitochondrial complex I, II, IV activities and mitochondrial biogenesis, excessive cardiac steatosis, and higher mortality. Collectively, chronic plus binge EtOH feeding in mice leads to alcohol-induced cardiomyopathies (National Institute on Alcohol Abuse and Alcoholism models) characterized by increased myocardial oxidative/nitrative stress, impaired mitochondrial function and biogenesis, and enhanced cardiac steatosis. Copyright © 2016 the American Physiological Society.
Psychological distress and stressful life events in pediatric complex regional pain syndrome
Wager, Julia; Brehmer, Hannah; Hirschfeld, Gerrit; Zernikow, Boris
2015-01-01
BACKGROUND: There is little knowledge regarding the association between psychological factors and complex regional pain syndrome (CRPS) in children. Specifically, it is not known which factors precipitate CRPS and which result from the ongoing painful disease. OBJECTIVES: To examine symptoms of depression and anxiety as well as the experience of stressful life events in children with CRPS compared with children with chronic primary headaches and functional abdominal pain. METHODS: A retrospective chart study examined children with CRPS (n=37) who received intensive inpatient pain treatment between 2004 and 2010. They were compared with two control groups (chronic primary headaches and functional abdominal pain; each n=37), who also received intensive inpatient pain treatment. Control groups were matched with the CRPS group with regard to admission date, age and sex. Groups were compared on symptoms of depression and anxiety as well as stressful life events. RESULTS: Children with CRPS reported lower anxiety and depression scores compared with children with abdominal pain. A higher number of stressful life events before and after the onset of the pain condition was observed for children with CRPS. CONCLUSIONS: Children with CRPS are not particularly prone to symptoms of anxiety or depression. Importantly, children with CRPS experienced more stressful life events than children with chronic headaches or abdominal pain. Prospective long-term studies are needed to further explore the potential role of stressful life events in the etiology of CRPS. PMID:26035287
Structural changes of the brain in relation to occupational stress.
Savic, Ivanka
2015-06-01
Despite mounting reports about the negative effects of chronic occupational stress on cognitive functions, it is still uncertain whether and how this type of stress is associated with cerebral changes. This issue was addressed in the present MRI study, in which cortical thickness (Cth) and subcortical volumes were compared between 40 subjects reporting symptoms of chronic occupational stress (38 ± 6 years) and 40 matched controls (36 ± 6 years). The degree of perceived stress was measured with Maslach Burnout Inventory. In stressed subjects, there was a significant thinning of the mesial frontal cortex. When investigating the correlation between age and Cth, the thinning effect of age was more pronounced in the stressed group in the frontal cortex. Furthermore, their amygdala volumes were bilaterally increased (P = 0.020 and P = 0.003), whereas their caudate volumes were reduced (P = 0.040), and accompanied by impaired fine motor function. The perceived stress correlated positively with the amygdala volumes (r = 0.44, P = 0.04; r = 0.43, P = 04). Occupational stress was found to be associated with cortical thinning as well as with selective changes of subcortical volumes, with behavioral correlates. The findings support the hypothesis that stress-related excitotoxicity might be an underlying mechanism, and that the described condition is a stress related illness. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
The protective role of exercise on stress system dysregulation and comorbidities.
Tsatsoulis, Agathocles; Fountoulakis, Stelios
2006-11-01
The human body, when under threat, elicits a set of neuroendocrine responses, including an increased secretion of glucocorticoids (GCs) and catecholamines from the adrenal gland and the activation of the sympathetic nervous system. These hormonal secretions allow a "fight or flight" response by mobilizing endogenous substrate and inducing a state of insulin resistance in the liver and skeletal muscles. Although the stress response was essential in ancient times to survive physical aggression, this threat has disappeared in our industrialized societies. However, in today's environment, the same stress responses can be elicited by emotional stimuli or professional and social stress. Such psychological stress may be protracted and unrelated to an increased metabolic demand. Thus, the energy mobilized is not used but is stored in visceral fat depots by the combined action of hypercortisolism and hyperinsulinemia. In addition, chronic activation of the stress system causes suppression of the gonadal, growth hormone (GH), and thyroid axes. These metabolic disturbances, in concert, lead to the clinical expression of a number of comorbidities including central obesity, hypertension, dyslipidemia, and endothelial dysfunction, all components of the metabolic syndrome and cardiometabolic risk factors. Moreover, chronic stress has deleterious effects on the brain and, in particular, affects hippocampal structure and function leading to cognitive and mood disturbances. Importantly, this stress-induced clinical phenotype is likely to be exaggerated in the presence of physical inactivity, resulting in a "stress-induced/exercise deficient" phenotype. Assuming that the stress response is a neuroendocrine mechanism that occurs in anticipation of physical action, then physical activity should be the natural means to prevent the consequences of stress. Indeed, accumulating evidence documents the beneficial effects of regular exercise in preventing or ameliorating the metabolic and psychological comorbidities induced by chronic stress. These benefits are thought to derive from a central effect of exercise to reduce the sensitivity to stress and also peripheral actions influencing metabolic functions and, in particular, insulin sensitivity and the partitioning of fuels toward oxidation rather than storage. It is concluded that chronic psychosocial stress, in the presence of physical inactivity, is likely to contribute to the epidemic of cardiometabolic and emotional disease of our current society. The way to prevent and combat this burden is by regular exercise.
Chronic mitochondrial uncoupling treatment prevents acute cold-induced oxidative stress in birds.
Stier, Antoine; Massemin, Sylvie; Criscuolo, François
2014-12-01
Endotherms have evolved two major types of thermogenesis that allow them to actively produce heat in response to cold exposure, either through muscular activity (i.e. shivering thermogenesis) or through futile electro-chemical cycles (i.e. non-shivering thermogenesis). Amongst the latter, mitochondrial uncoupling is of key importance because it is suggested to drive heat production at a low cost in terms of oxidative stress. While this has been experimentally shown in mammals, the oxidative stress consequences of cold exposure and mitochondrial uncoupling are clearly less understood in the other class of endotherms, the birds. We compared metabolic and oxidative stress responses of zebra finches chronically treated with or without a chemical mitochondrial uncoupler (2,4-dinitrophenol: DNP), undergoing an acute (24 h) and a chronic (4 weeks) cold exposure (12 °C). We predicted that control birds should present at least a transient elevation of oxidative stress levels in response to cold exposure. This oxidative stress cost should be more pronounced in control birds than in DNP-treated birds, due to their lower basal uncoupling state. Despite similar increase in metabolism, control birds presented elevated levels of DNA oxidative damage in response to acute (but not chronic) cold exposure, while DNP-treated birds did not. Plasma antioxidant capacity decreased overall in response to chronic cold exposure. These results show that acute cold exposure increases oxidative stress in birds. However, uncoupling mitochondrial functioning appears as a putative compensatory mechanism preventing cold-induced oxidative stress. This result confirms previous observations in mice and underlines non-shivering thermogenesis as a putative key mechanism for endotherms in mounting a response to cold at a low oxidative cost.
Sibille, Kimberly T.; Chen, Huaihou; Bartley, Emily J.; Riley, Joseph; Glover, Toni L.; King, Christopher D.; Zhang, Hang; Cruz-Almeida, Yenisel; Goodin, Burel R.; Sotolongo, Adriana; Petrov, Megan E.; Herbert, Matthew; Bulls, Hailey W.; Edberg, Jeffrey C.; Staud, Roland; Redden, David; Bradley, Laurence A.; Fillingim, Roger B.
2017-01-01
Abstract Introduction: Individuals with osteoarthritis (OA) show increased morbidity and mortality. Telomere length, a measure of cellular aging, predicts increased morbidity and mortality. Telomeres shorten with persisting biological and psychosocial stress. Living with chronic OA pain is stressful. Previous research exploring telomere length in people with OA has produced inconsistent results. Considering pain severity may clarify the relationship between OA and telomeres. Objectives: We hypothesized that individuals with high OA chronic pain severity would have shorter telomeres than those with no or low chronic pain severity. Methods: One hundred thirty-six adults, ages 45 to 85 years old, with and without symptomatic knee OA were included in the analysis. Peripheral blood leukocyte telomere length was measured, and demographic, clinical, and functional data were collected. Participants were categorized into 5 pain severity groups based on an additive index of frequency, intensity, time or duration, and total number of pain sites (FITT). Covariates included age, sex, race or ethnicity, study site, and knee pain status. Results: The no or low chronic pain severity group had significantly longer telomeres compared with the high pain severity group, P = 0.025. A significant chronic pain severity dose response emerged for telomere length, P = 0.034. The FITT chronic pain severity index was highly correlated with the clinical and functional OA pain measures. However, individual clinical and functional measures were not associated with telomere length. Conclusion: Results demonstrate accelerated cellular aging with high knee OA chronic pain severity and provide evidence for the potential utility of the FITT chronic pain severity index in capturing the biological burden of chronic pain. PMID:29392207
Chronic inflammation potentiates kidney aging.
Mei, Changlin; Zheng, Feng
2009-11-01
Chronic inflammation, characterized by increased serum levels of tumor necrosis factor-alpha, interleukin-6, C-reactive protein, and plasminogen activator inhibitor-1, and the presence of inflammatory-related diseases, are seen commonly in aging. Both the dysregulation of immune cells and phenotypic changes in parenchymal cells may contribute to chronic inflammation in aging. Moreover, senescent cells are an important source of inflammatory factors. Oxidative stress, via activation of p38 and c-Jun N-terminal kinase and induction of cell senescence, is likely to play a critical role in inflammation. Endoplasmic reticulum stress also may be present in aging and be involved in inflammation. Advanced glycation end products also are important contributors to inflammation in aging. Because the kidney is a major site for the excretion, and perhaps the degradation, of advanced glycation end products and small inflammatory molecules, reduced renal function in aging may promote oxidative stress and inflammation. Chronic inflammation in turn may potentiate the initiation and progression of lesions in the aging kidney.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kramer, Philip A.; Duan, Jicheng; Qian, Wei-Jun
Mitochondrial oxidative stress is a common feature of skeletal myopathies across multiple conditions; however, the mechanism by which it contributes to skeletal muscle dysfunction remains controversial. Oxidative damage to proteins, lipids, and DNA has received the most attention, yet an important role for reversible redox post-translational modifications (PTMs) in pathophysiology is emerging. The possibility that these PTMs can exert dynamic control of muscle function implicates them as a mechanism contributing to skeletal muscle dysfunction in chronic disease. Herein, we discuss the significance of thiol-based redox dependent modifications to mitochondrial, myofibrillar and excitation-contraction (EC) coupling proteins with an emphasis on howmore » these changes could alter skeletal muscle performance under chronically stressed conditions. A major barrier to a better mechanistic understanding of the role of reversible redox PTMs in muscle function is the technical challenges associated with accurately measuring the changes of site-specific redox PTMs. Here we will critically review current approaches with an emphasis on sample preparation artifacts, quantitation, and specificity. Despite these challenges, the ability to accurately quantify reversible redox PTMs is critical to understanding the mechanisms by which mitochondrial oxidative stress contributes to skeletal muscle dysfunction in chronic diseases.« less
Ravingerová, T; Bernátová, I; Matejíková, J; Ledvényiová, V; Nemčeková, M; Pecháňová, O; Tribulová, N; Slezák, J
2011-01-01
Chronic hypertension may have a negative impact on the myocardial response to ischemia. On the other hand, intrinsic ischemic tolerance may persist even in the pathologically altered hearts of hypertensive animals, and may be modified by short- or long-term adaptation to different stressful conditions. The effects of long-term limitation of living space (ie, crowding stress [CS]) and brief ischemia-induced stress on cardiac response to ischemia/reperfusion (I/R) injury are not yet fully characterized in hypertensive subjects. The present study was designed to test the influence of chronic and acute stress on the myocardial response to I/R in spontaneously hypertensive rats (SHR) compared with their effects in normotensive counterparts. In both groups, chronic, eight-week CS was induced by caging five rats per cage in cages designed for two rats (200 cm(2)/rat), while controls (C) were housed four to a cage in cages designed for six animals (480 cm(2)/rat). Acute stress was evoked by one cycle of I/R (5 min each, ischemic preconditioning) before sustained I/R in isolated Langendorff-perfused hearts of normotensive and SHR rats. At baseline conditions, the effects of CS were manifested only as a further increase in blood pressure in SHR, and by marked limitation of coronary perfusion in normotensive animals, while no changes in heart mechanical function were observed in any of the groups. Postischemic recovery of contractile function, severity of ventricular arrhythmias and lethal injury (infarction size) were worsened in the hypertrophied hearts of C-SHR compared with normotensive C. However, myo-cardial stunning and reperfusion-induced ventricular arrhythmias were attenuated by CS in SHR, which was different from deterioration of I/R injury in the hearts of normotensive animals. In contrast, ischemic preconditioning conferred an effective protection against I/R in both groups, although the extent of anti-infarct and anti-arrhythmic effects was lower in SHR. Both forms of stress may improve the altered response to ischemia in hypertensive subjects. In contrast to short-term preconditioning stress, chronic psychosocial stress was associated with a higher risk of lethal arrhythmias and contractile failure in normotensive animals exposed to an acute ischemic challenge.
Stephenson, Chris P; Baguley, Ian J
2018-02-01
Functional Neurological Symptom Disorder (FND) is a relatively common neurological condition, accounting for approximately 3-6% of neurologist referrals. FND is considered a transient disorder of neuronal function, sometimes linked to physical trauma and psychological stress. Despite this, chronic disability is common, for example, around 40% of adults with motor FND have permanent disability. Building on current theoretical models, this paper proposes that microglial dysfunction could perpetuate functional changes within acute motor FND, thus providing a pathophysiological mechanism underlying the chronic stage of the motor FND phenotypes seen clinically. Core to our argument is microglia's dual role in modulating neuroimmunity and their control of synaptic plasticity, which places them at a pathophysiological nexus wherein coincident physical trauma and psychological stress could cause long-term change in neuronal networks without producing macroscopic structural abnormality. This model proposes a range of hypotheses that are testable with current technologies. Copyright © 2017. Published by Elsevier Ltd.
Neural control of chronic stress adaptation
Herman, James P.
2013-01-01
Stress initiates adaptive processes that allow the organism to physiologically cope with prolonged or intermittent exposure to real or perceived threats. A major component of this response is repeated activation of glucocorticoid secretion by the hypothalamo-pituitary-adrenocortical (HPA) axis, which promotes redistribution of energy in a wide range of organ systems, including the brain. Prolonged or cumulative increases in glucocorticoid secretion can reduce benefits afforded by enhanced stress reactivity and eventually become maladaptive. The long-term impact of stress is kept in check by the process of habituation, which reduces HPA axis responses upon repeated exposure to homotypic stressors and likely limits deleterious actions of prolonged glucocorticoid secretion. Habituation is regulated by limbic stress-regulatory sites, and is at least in part glucocorticoid feedback-dependent. Chronic stress also sensitizes reactivity to new stimuli. While sensitization may be important in maintaining response flexibility in response to new threats, it may also add to the cumulative impact of glucocorticoids on the brain and body. Finally, unpredictable or severe stress exposure may cause long-term and lasting dysregulation of the HPA axis, likely due to altered limbic control of stress effector pathways. Stress-related disorders, such as depression and PTSD, are accompanied by glucocorticoid imbalances and structural/ functional alterations in limbic circuits that resemble those seen following chronic stress, suggesting that inappropriate processing of stressful information may be part of the pathological process. PMID:23964212
Gilam, G; Lin, T; Fruchter, E; Hendler, T
2017-07-01
Angry outbursts are an important feature of various stress-related disorders, and commonly lead to aggression towards other people. Findings regarding interpersonal anger have linked the ventromedial prefrontal cortex (vmPFC) to anger regulation and the locus coeruleus (LC) to aggression. Both regions were previously associated with traumatic and chronic stress symptoms, yet it is unclear if their functionality represents a consequence of, or possibly also a cause for, stress symptoms. Here we investigated the relationship between the neural trajectory of these indicators of anger and the development and manifestation of stress symptoms. A total of 46 males (29 soldiers, 17 civilians) participated in a prospective functional magnetic resonance imaging experiment in which they played a modified interpersonal anger-provoking Ultimatum Game (UG) at two-points. Soldiers were tested at the beginning and end of combat training, while civilians were tested at the beginning and end of civil service. We assumed that combat training would induce chronic stress and result in increased stress symptoms. Soldiers showed an increase in stress symptoms following combat training while civilians showed no such change following civil service. All participants were angered by the modified UG irrespective of time point. Higher post-combat training stress symptoms were associated with lower pre-combat training vmPFC activation and with higher activation increase in the LC between pre- and post-combat training. Results suggest that during anger-provoking social interactions, flawed vmPFC functionality may serve as a causal risk factor for the development of stress symptoms, and heightened reactivity of the LC possibly reflects a consequence of stress-inducing combat training. These findings provide potential neural targets for therapeutic intervention and inoculation for stress-related psychopathological manifestations of anger.
Choy, Ker Woon; Lau, Yeh Siang; Murugan, Dharmani; Mustafa, Mohd Rais
2017-01-01
Endoplasmic reticulum (ER) stress leads to endothelial dysfunction which is commonly associated in the pathogenesis of several cardiovascular diseases. We explored the vascular protective effects of chronic treatment with paeonol (2'-hydroxy-4'-methoxyacetophenone), the major compound from the root bark of Paeonia suffruticosa on ER stress-induced endothelial dysfunction in mice. Male C57BL/6J mice were injected intraperitoneally with ER stress inducer, tunicamycin (1 mg/kg/week) for 2 weeks to induce ER stress. The animals were co-administered with or without paeonol (20 mg/kg/oral gavage), reactive oxygen species (ROS) scavenger, tempol (20 mg/kg/day) or ER stress inhibitor, tauroursodeoxycholic acid (TUDCA, 150 mg/kg/day) respectively. Blood pressure and body weight were monitored weekly and at the end of treatment, the aorta was isolated for isometric force measurement. Protein associated with ER stress (GRP78, ATF6 and p-eIF2α) and oxidative stress (NOX2 and nitrotyrosine) were evaluated using Western blotting. Nitric oxide (NO) bioavailability were determined using total nitrate/nitrite assay and western blotting (phosphorylation of eNOS protein). ROS production was assessed by en face dihydroethidium staining and lucigenin-enhanced chemiluminescence assay, respectively. Our results revealed that mice treated with tunicamycin showed an increased blood pressure, reduction in body weight and impairment of endothelium-dependent relaxations (EDRs) of aorta, which were ameliorated by co-treatment with either paeonol, TUDCA and tempol. Furthermore, paeonol reduced the ROS level in the mouse aorta and improved NO bioavailability in tunicamycin treated mice. These beneficial effects of paeonol observed were comparable to those produced by TUDCA and tempol, suggesting that the actions of paeonol may involve inhibition of ER stress-mediated oxidative stress pathway. Taken together, the present results suggest that chronic treatment with paeonol preserved endothelial function and normalized blood pressure in mice induced by tunicamycin in vivo through the inhibition of ER stress-associated ROS.
Tryon, M S; DeCant, Rashel; Laugero, K D
2013-04-10
Stress has been tied to changes in eating behavior and food choice. Previous studies in rodents have shown that chronic stress increases palatable food intake which, in turn, increases visceral fat and inhibits acute stress-induced hypothalamic-pituitary-adrenal (HPA) axis activity. The effect of chronic stress on eating behavior in humans is less understood, but it may be linked to HPA responsivity. The purpose of this study was to investigate the influence of chronic social stress and acute stress reactivity on food choice and food intake. Forty-one women (BMI=25.9±5.1 kg/m(2), age range=41 to 52 years) were subjected to the Trier Social Stress Test or a control task (nature movie) to examine HPA responses to an acute laboratory stressor and then invited to eat from a buffet containing low- and high-calorie snacks. Women were also categorized as high chronic stress or low chronic stress based on Wheaton Chronic Stress Inventory scores. Women reporting higher chronic stress and exhibiting low cortisol reactivity to the acute stress task consumed significantly more calories from chocolate cake on both stress and control visits. Chronic stress in the low cortisol reactor group was also positively related to total fat mass, body fat percentage, and stress-induced negative mood. Further, women reporting high chronic stress consumed significantly less vegetables, but only in those aged 45 years and older. Chronic stress in women within the higher age category was positively related to total calories consumed at the buffet, stress-induced negative mood and food craving. Our results suggest an increased risk for stress eating in persons with a specific chronic stress signature and imply that a habit of comfort food may link chronic social stress and acute stress-induced cortisol hyporesponsiveness. Published by Elsevier Inc.
Bondi, Corina O; Barrera, Gabriel; Lapiz, M Danet S; Bedard, Tania; Mahan, Amy; Morilak, David A
2007-03-30
We have previously shown that acute stress-induced release of norepinephrine (NE) facilitates anxiety-like behavioral responses to stress, such as reduction in open-arm exploration on the elevated-plus maze and in social behavior on the social interaction test. Since these responses represent inhibition of ongoing behavior, it is important to also address whether NE facilitates a response that represents an activation of behavior. Correspondingly, it is unknown how a chronic elevation in tonic steady-state noradrenergic (NA) neurotransmission induced by NE reuptake blockade might alter this acute modulatory function, a regulatory process that may be pertinent to the anxiolytic effects of NE reuptake blockers such as desipramine (DMI). Therefore, in this study, we investigated noradrenergic modulation of the shock-probe defensive burying response in the lateral septum (LS). In experiment 1, shock-probe exposure induced an acute 3-fold increase in NE levels measured in LS of male Sprague-Dawley rats by microdialysis. Shock-probe exposure also induced a modest rise in plasma ACTH, taken as an indicator of perceived stress, that returned to baseline more rapidly in rats that were allowed to bury the probe compared to rats prevented from burying by providing them with minimal bedding, indicating that the active defensive burying behavior is an effective coping strategy that reduces the impact of acute shock probe-induced stress. In experiment 2, blockade of either alpha(1)- or beta-adrenergic receptors in LS by local antagonist microinjection immediately before testing reduced defensive burying and increased immobility. In the next experiment, chronic DMI treatment increased basal extracellular NE levels in LS, and attenuated the acute shock probe-induced increase in NE release in LS relative to baseline. Chronic DMI treatment decreased shock-probe defensive burying behavior in a time-dependent manner, apparent only after 2 weeks or more of drug treatment. Moreover, rats treated chronically with DMI showed no significant rise of plasma ACTH in response to shock-probe exposure. Thus, acute stress-induced release of NE in LS facilitated defensive burying, an active, adaptive behavioral coping response. Chronic treatment with the NE reuptake blocker and antidepressant drug DMI attenuated acute noradrenergic facilitation of the active burying response, and also attenuated the level of perceived stress driving that response. These results suggest that long-term regulation of the acute modulatory function of NE by chronic treatment with reuptake blockers may contribute to the mechanisms by which such drugs exert their anxiolytic effects in the treatment of stress-related psychiatric conditions, including depression and anxiety.
A Mixed-Methods Pilot Study of Mindfulness-Based Stress Reduction for HIV-Associated Chronic Pain.
George, Mary Catherine; Wongmek, Arada; Kaku, Michelle; Nmashie, Alexandra; Robinson-Papp, Jessica
2017-01-01
Treatment guidelines for chronic pain recommend nonpharmacologic modalities as part of a comprehensive management plan. Chronic pain is common among people living with HIV/AIDS, but there is little data to guide the choice of nonpharmacologic therapies in this complex population. We performed a mixed-methods feasibility study of Mindfulness-Based Stress Reduction (MBSR) versus health education control with 32 inner city, HIV-infected participants. Outcome measures included: the Brief Pain Inventory, Perceived Stress Scale, HIV Symptoms Index, autonomic function testing, and audiotaped focus groups. Post-intervention, participants reported modest improvements in pain measures and perceived stress, but no effect of group assignment was observed. At 3-month follow-up, 79% of MBSR participants were still practicing, and pain intensity was improved, whereas in the control group pain intensity had worsened. Qualitative analysis revealed a strong sense of community in both groups, but only MBSR was perceived as useful for relaxation and pain relief.
Bishop, Mark D.
2014-01-01
Pain is a primary symptom driving patients to seek physical therapy, and its attenuation commonly defines a successful outcome. A large body of evidence is dedicated to elucidating the relationship between chronic stress and pain; however, stress is rarely addressed in pain rehabilitation. A physiologic stress response may be evoked by fear or perceived threat to safety, status, or well-being and elicits the secretion of sympathetic catecholamines (epinephrine and norepinepherine) and neuroendocrine hormones (cortisol) to promote survival and motivate success. Cortisol is a potent anti-inflammatory that functions to mobilize glucose reserves for energy and modulate inflammation. Cortisol also may facilitate the consolidation of fear-based memories for future survival and avoidance of danger. Although short-term stress may be adaptive, maladaptive responses (eg, magnification, rumination, helplessness) to pain or non–pain-related stressors may intensify cortisol secretion and condition a sensitized physiologic stress response that is readily recruited. Ultimately, a prolonged or exaggerated stress response may perpetuate cortisol dysfunction, widespread inflammation, and pain. Stress may be unavoidable in life, and challenges are inherent to success; however, humans have the capability to modify what they perceive as stressful and how they respond to it. Exaggerated psychological responses (eg, catastrophizing) following maladaptive cognitive appraisals of potential stressors as threatening may exacerbate cortisol secretion and facilitate the consolidation of fear-based memories of pain or non–pain-related stressors; however, coping, cognitive reappraisal, or confrontation of stressors may minimize cortisol secretion and prevent chronic, recurrent pain. Given the parallel mechanisms underlying the physiologic effects of a maladaptive response to pain and non–pain-related stressors, physical therapists should consider screening for non–pain-related stress to facilitate treatment, prevent chronic disability, and improve quality of life. PMID:25035267
Hannibal, Kara E; Bishop, Mark D
2014-12-01
Pain is a primary symptom driving patients to seek physical therapy, and its attenuation commonly defines a successful outcome. A large body of evidence is dedicated to elucidating the relationship between chronic stress and pain; however, stress is rarely addressed in pain rehabilitation. A physiologic stress response may be evoked by fear or perceived threat to safety, status, or well-being and elicits the secretion of sympathetic catecholamines (epinephrine and norepinepherine) and neuroendocrine hormones (cortisol) to promote survival and motivate success. Cortisol is a potent anti-inflammatory that functions to mobilize glucose reserves for energy and modulate inflammation. Cortisol also may facilitate the consolidation of fear-based memories for future survival and avoidance of danger. Although short-term stress may be adaptive, maladaptive responses (eg, magnification, rumination, helplessness) to pain or non-pain-related stressors may intensify cortisol secretion and condition a sensitized physiologic stress response that is readily recruited. Ultimately, a prolonged or exaggerated stress response may perpetuate cortisol dysfunction, widespread inflammation, and pain. Stress may be unavoidable in life, and challenges are inherent to success; however, humans have the capability to modify what they perceive as stressful and how they respond to it. Exaggerated psychological responses (eg, catastrophizing) following maladaptive cognitive appraisals of potential stressors as threatening may exacerbate cortisol secretion and facilitate the consolidation of fear-based memories of pain or non-pain-related stressors; however, coping, cognitive reappraisal, or confrontation of stressors may minimize cortisol secretion and prevent chronic, recurrent pain. Given the parallel mechanisms underlying the physiologic effects of a maladaptive response to pain and non-pain-related stressors, physical therapists should consider screening for non-pain-related stress to facilitate treatment, prevent chronic disability, and improve quality of life. © 2014 American Physical Therapy Association.
Use of cognitive behavior therapy for functional hypothalamic amenorrhea.
Berga, Sarah L; Loucks, Tammy L
2006-12-01
Behaviors that chronically activate the hypothalamic-pituitary-adrenal (HPA) axis and/or suppress the hypothalamic-pituitary-thyroidal (HPT) axis disrupt the hypothalamic-pituitary-gonadal axis in women and men. Individuals with functional hypothalamic hypogonadism typically engage in a combination of behaviors that concomitantly heighten psychogenic stress and increase energy demand. Although it is not widely recognized clinically, functional forms of hypothalamic hypogonadism are more than an isolated disruption of gonadotropin-releasing hormone (GnRH) drive and reproductive compromise. Indeed, women with functional hypothalamic amenorrhea display a constellation of neuroendocrine aberrations that reflect allostatic adjustments to chronic stress. Given these considerations, we have suggested that complete neuroendocrine recovery would involve more than reproductive recovery. Hormone replacement strategies have limited benefit because they do not ameliorate allostatic endocrine adjustments, particularly the activation of the adrenal and the suppression of the thyroidal axes. Indeed, the rationale for the use of sex steroid replacement is based on the erroneous assumption that functional forms of hypothalamic hypogonadism represent only or primarily an alteration in the hypothalamic-pituitary-gonadal axis. Potential health consequences of functional hypothalamic amenorrhea, often termed stress-induced anovulation, may include an increased risk of cardiovascular disease, osteoporosis, depression, other psychiatric conditions, and dementia. Although fertility can be restored with exogenous administration of gonadotropins or pulsatile GnRH, fertility management alone will not permit recovery of the adrenal and thyroidal axes. Initiating pregnancy with exogenous means without reversing the hormonal milieu induced by chronic stress may increase the likelihood of poor obstetrical, fetal, or neonatal outcomes. In contrast, behavioral and psychological interventions that address problematic behaviors and attitudes, such as cognitive behavior therapy (CBT), have the potential to permit resumption of full ovarian function along with recovery of the adrenal, thyroidal, and other neuroendocrine aberrations. Full endocrine recovery potentially offers better individual, maternal, and child health.
ROLE OF CENTRAL NERVOUS SYSTEM INSULIN RESISTANCE IN FETAL ALCOHOL SPECTRUM DISORDERS
de la Monte, Suzanne M; Wands, Jack R
2011-01-01
Fetal alcohol spectrum disorder (FASD) is the most common preventable cause of mental retardation in the USA. Ethanol impairs neuronal survival and function by two major mechanisms: 1) it inhibits insulin signaling required for viability, metabolism, synapse formation, and acetylcholine production; and 2) it functions as a neurotoxicant, causing oxidative stress, DNA damage and mitochondrial dysfunction. Ethanol inhibition of insulin signaling is mediated at the insulin receptor (IR) level and caused by both impaired receptor binding and increased activation of phosphatases that reverse IR tyrosine kinase activity. As a result, insulin activation of PI3K-Akt, which mediates neuronal survival, motility, energy metabolism, and plasticity, is impaired. The neurotoxicant effects of ethanol promote DNA damage, which could contribute to mitochondrial dysfunction and oxidative stress. Therefore, chronic in utero ethanol exposure produces a dual state of CNS insulin resistance and oxidative stress, which we postulate plays a major role in ethanol neurobehavioral teratogenesis. We propose that many of the prominent adverse effects of chronic prenatal exposure to ethanol on CNS development and function may be prevented or reduced by treatment with peroxisome-proliferated activated receptor (PPAR) agonists which enhance insulin sensitivity by increasing expression and function of insulin-responsive genes, and reducing cellular oxidative stress. PMID:21063035
Kolacz, Jacek; Porges, Stephen W.
2018-01-01
Chronic diffuse pain disorders, such as fibromyalgia, and functional gastrointestinal disorders (FGIDs), such as irritable bowel syndrome, place substantial burden on those affected and on the medical system. Despite their sizable impact, their pathophysiology is poorly understood. In contrast to an approach that focuses on the correlation between heart rate variability (HRV) and a specific organ or symptom, we propose that a bio-evolutionary threat-related autonomic response—as outlined in the Polyvagal Theory—may serve as a plausible explanation of how HRV, particularly respiratory sinus arrhythmia (RSA), would index the pathophysiology of these disorders. Evidence comes from: (1) the well-documented atypical autonomic regulation of the heart common to fibromyalgia and irritable bowel syndrome reflected in dampened RSA, (2) the neural architecture that integrates the heart, pain pathways, and the gastrointestinal tract, (3) the common physical co-morbidities shared by chronic diffuse pain and FGIDs, many of which are functionally regulated by the autonomic nervous system, (4) the elevated risk of chronic diffuse pain and FGIDs following traumatic stress or abuse, (5) and the elevated risk of chronic diffuse pain and FGIDs in individuals with anxiety and panic disorders. This novel conceptualization points to a pathogenesis rooted in changes to brain-body autonomic feedback loops in response to evolutionarily-salient threat cues, providing an integrated biopsychosocial model of chronic diffuse pain and FGIDs and suggesting new, non-pharmacological treatment strategies. PMID:29904631
Chronic daily headache: stress and impact on the quality of life.
Galego, José Carlos Busto; Moraes, Avelina Maria; Cordeiro, José Antonio; Tognola, Waldir Antonio
2007-12-01
To evaluate the stress presence and its influence in the quality of life of patients with chronic daily headache (CDH). A hundred patients with at least 18 years old, with primary headache with duration greater than 4 hours a day, and frequency of 15 or more days monthly for at least three months were studied. Lipp's Inventory of Stress Symptoms and the Medical Outcomes Study Short Form (SF-36) were used. Stress was observed in 90% of the patients; nearly half of them was in the phase almost exhaustion. Patients with stress when compared with the ones with no stress presented significantly lower scores in all the domains of SF-36; except in physical functioning. The resistance phase presented scores significantly higher than almost exhaustion; except for bodily pain. The majority of the patients presented stress with significant reduction in their quality of life. Consequently, the stress could be related with both the development and the maintenance of CDH.
Seib, Charrlotte; Whiteside, Eliza; Humphreys, Janice; Lee, Kathryn; Thomas, Patrick; Chopin, Lisa; Crisp, Gabrielle; O'Keeffe, Angela; Kimlin, Michael; Stacey, Andrew; Anderson, Debra
2014-01-08
Despite advancements in our understanding of the importance of stress reduction in achieving good health, we still only have limited insight into the impact of stress on cellular function. Recent studies have suggested that exposure to prolonged psychological stress may alter an individual's physiological responses, and contribute to morbidity and mortality. This paper presents an overview of the study protocol we are using to examine the impact of life stressors on lifestyle factors, health-related quality of life and novel and established biomarkers of stress in midlife and older Australian women.The primary aim of this study is to explore the links between chronic psychological stress on both subjective and objective health markers in midlife and older Australian women. The study examines the extent to which exposure frightening, upsetting or stressful events such as natural disasters, illness or death of a relative, miscarriage and relationship conflict is correlated with a variety of objective and subjective health markers. This study is embedded within the longitudinal Healthy Aging of Women's study which has collected data from midlife and older Australian women at 5 yearly intervals since 2001, and uses the Allostastic model of women's health by Groër and colleagues in 2010. The current study expands the focus of the HOW study and will assess the impact of life stressors on quality of life and clinical biomarkers in midlife and older Australian women to explain the impact of chronic psychological stress in women. The proposed study hypothesizes that women are at increased risk of exposure to multiple or repeated stressors, some being unique to women, and the frequency and chronicity of stressors increases women's risk of adverse health outcomes. This study aims to further our understanding of the relationships between stressful life experiences, perceived quality of life, stress biomarkers, chronic illness, and health status in women.
Chronic stress is associated with indicators of diet quality in habitual breakfast skippers
USDA-ARS?s Scientific Manuscript database
Background. Previous studies suggest that eating breakfast is associated with better diet quality, but reasons underlying this relationship are not clear. Objective. Our objective was to assess diet quality of women with established breakfast habits and determine if stress or cognitive function cont...
The Yeast Environmental Stress Response Regulates Mutagenesis Induced by Proteotoxic Stress
Shor, Erika; Fox, Catherine A.; Broach, James R.
2013-01-01
Conditions of chronic stress are associated with genetic instability in many organisms, but the roles of stress responses in mutagenesis have so far been elucidated only in bacteria. Here, we present data demonstrating that the environmental stress response (ESR) in yeast functions in mutagenesis induced by proteotoxic stress. We show that the drug canavanine causes proteotoxic stress, activates the ESR, and induces mutagenesis at several loci in an ESR-dependent manner. Canavanine-induced mutagenesis also involves translesion DNA polymerases Rev1 and Polζ and non-homologous end joining factor Ku. Furthermore, under conditions of chronic sub-lethal canavanine stress, deletions of Rev1, Polζ, and Ku-encoding genes exhibit genetic interactions with ESR mutants indicative of ESR regulating these mutagenic DNA repair processes. Analyses of mutagenesis induced by several different stresses showed that the ESR specifically modulates mutagenesis induced by proteotoxic stress. Together, these results document the first known example of an involvement of a eukaryotic stress response pathway in mutagenesis and have important implications for mechanisms of evolution, carcinogenesis, and emergence of drug-resistant pathogens and chemotherapy-resistant tumors. PMID:23935537
Adzic, Miroslav; Lukic, Iva; Mitic, Milos; Djordjevic, Jelena; Elaković, Ivana; Djordjevic, Ana; Krstic-Demonacos, Marija; Matić, Gordana; Radojcic, Marija
2013-12-01
Antidepressants affect glucocorticoid receptor (GR) functioning partly through modulation of its phosphorylation but their effects on mitochondrial GR have remained undefined. We investigated the ability of chronic fluoxetine treatment to affect chronic stress-induced changes of mitochondrial GR and its phosphoisoforms (pGRs) in the prefrontal cortex and hippocampus of female and male rats. Since mitochondrial GR regulates oxidative phosphorylation, expression of mitochondrial-encoded subunits of cytochrome (cyt) c oxidase and its activity were also investigated. Chronic stress caused accumulation of the GR in mitochondria of female prefrontal cortex, while the changes in the hippocampus were sex-specific at the levels of pGRs. Expression of mitochondrial COXs genes corresponded to chronic stress-modulated mitochondrial GR in both tissues of both genders and to cyt c oxidase activity in females. Moreover, the metabolic parameters in stressed animals were affected by fluoxetine therapy only in the hippocampus. Namely, fluoxetine effects on mitochondrial COXs and cyt c oxidase activity in the hippocampus seem to be conveyed through pGR232 in females, while in males this likely occurs through other mechanisms. In summary, sex-specific regulation of cyt c oxidase by the stress and antidepressant treatment and its differential convergence with mitochondrial GR signaling in the prefrontal cortex and hippocampus could contribute to clarification of sex-dependent vulnerability to stress-related disorders and sex-specific clinical impact of antidepressants. Copyright © 2013 Elsevier Ltd. All rights reserved.
Kumar, Poornima; Slavich, George M.; Berghorst, Lisa H.; Treadway, Michael T.; Brooks, Nancy H.; Dutra, Sunny J.; Greve, Douglas N.; O'Donovan, Aoife; Bleil, Maria E.; Maninger, Nicole; Pizzagalli, Diego A.
2015-01-01
Introduction Major depressive disorder (MDD) is often precipitated by life stress and growing evidence suggests that stress-induced alterations in reward processing may contribute to such risk. However, no human imaging studies have examined how recent life stress exposure modulates the neural systems that underlie reward processing in depressed and healthy individuals. Methods In this proof-of-concept study, 12 MDD and 10 psychiatrically healthy individuals were interviewed using the Life Events and Difficulties Schedule (LEDS) to assess their perceived levels of recent acute and chronic life stress exposure. Additionally, each participant performed a monetary incentive delay task under baseline (no-stress) and stress (social-evaluative) conditions during functional MRI. Results Across groups, medial prefrontal cortex (mPFC) activation to reward feedback was greater during acute stress versus no-stress conditions in individuals with greater perceived stressor severity. Under acute stress, depressed individuals showed a positive correlation between perceived stressor severity levels and reward-related mPFC activation (r = 0.79, p = 0.004), whereas no effect was found in healthy controls. Moreover, for depressed (but not healthy) individuals, the correlations between the stress (r = 0.79) and no-stress (r = −0.48) conditions were significantly different. Finally, relative to controls, depressed participants showed significantly reduced mPFC grey matter, but functional findings remained when accounting for structural differences. Limitation Small sample size, which warrants replication. Conclusion Depressed individuals experiencing greater recent life stress recruited the mPFC more under stress when processing rewards. Our results represent an initial step toward elucidating mechanisms underlying stress sensitization and recurrence in depression. PMID:25898329
Ruberti, Cristina; Lai, YaShiuan; Brandizzi, Federica
2018-01-01
The unfolded protein response (UPR) is an ancient signaling pathway that commits to life-or-death outcomes in response to proteotoxic stress in the endoplasmic reticulum (ER). In plants, the membrane-tethered transcription factor bZIP28 and the ribonuclease-kinase IRE1 along with its splicing target, bZIP60, govern the two cytoprotective UPR signaling pathways known to date. The conserved ER membrane-associated BAX inhibitor 1 (BI1) modulates ER stress-induced programmed cell death through yet-unknown mechanisms. Despite the significance of the UPR for cell homeostasis, in plants the regulatory circuitry underlying ER stress resolution is still largely unmapped. To gain insights into the coordination of plant UPR strategies, we analyzed the functional relationship of the UPR modulators through the analysis of single and higher order mutants of IRE1, bZIP60, bZIP28 and BI1 in experimental conditions causing either temporary or chronic ER stress. We established a functional duality of bZIP28 and bZIP60, as they exert partially independent tissue-specific roles in recovery from ER stress, but redundantly actuate survival strategies in chronic ER stress. We also discovered that BI1 attenuates the pro-survival function of bZIP28 in ER stress resolution and, differently to animal cells, it does not temper the ribonuclease activity of inositol-requiring enzyme 1 (IRE1) under temporary ER stress. Together these findings reveal a functional independence of bZIP28 and bZIP60 in plant UPR, and identify an antagonizing role of BI1 in the pro-adaptive signaling mediated by bZIP28, bringing to light the distinctive complexity of the unfolded protein response (UPR) in plants. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.
Gelkopf, Marc; Berger, Rony; Bleich, Avraham; Silver, Roxane Cohen
2012-03-01
Many communities across the world are chronically exposed to extreme violence. Responses of residents from a city and rural community in Southern Israel, both exposed to 7 years of daily mortar fire, were compared to residents from demographically, socio-economically and geographically comparable non-exposed control samples to examine protective factors and predictors of vulnerability to chronic war-related attacks. Samples from a highly exposed city (Sderot) and a highly exposed rural community region (Otef Aza), along with a demographically comparable comparison non-exposed city (Ofakim) and non-exposed rural community region (Hevel Lachish), were obtained in 2007 using Random Digit Dialing. In total, 740 individuals (81.8% participation rate) were interviewed about trauma exposure, mental health, functioning and health care utilization. In the highly exposed city of Sderot, 97.8% of residents had been in close proximity to falling rockets; in the highly exposed rural community region of Otef Aza, 95.5% were similarly exposed. Despite exposure to chronic rocket attacks, residents of Otef Aza evidenced little symptomatology: only one person (1.5%) reported symptoms consistent with probable posttraumatic stress disorder (PTSD) and functioning levels did not differ from those of non-exposed communities. In contrast, posttraumatic stress (PTS), distress, functional impairment and health care utilization were substantially higher in the highly exposed city of Sderot than the other three communities. Lack of resources was associated with increased vulnerability among city residents; predictors of PTS across all samples included being female, older, directly exposed to rockets, history of trauma, suffering economic loss, and lacking social support. Increased community solidarity, sense of belonging and confidence in authorities may have served a protective function for residents of rural communities, despite the chronic attacks to which they were exposed. Copyright © 2011 Elsevier Ltd. All rights reserved.
Janssens, Lizanne; Stoks, Robby
2014-01-01
Prey organisms evolved a multitude of plastic responses to avoid being eaten by predators. Besides the evolution of plastic morphological responses to escape predation, prey also evolved a set of physiological stress responses to avoid dying because of chronic predator stress per se due to disruption of cellular homeostasis. As physiological stress theory predicts increased energy consumption and the inhibition of essential nonemergency body functions, we tested whether chronic predation risk may increase oxidative damage thereby generating negative effects on escape performance. Specifically, we evaluated whether predation risk reduces escape swimming speed in damselfly larvae and whether this operates through stress-associated increases in oxidative damage. Counterintuitively and in contrast with many empirical studies, chronic predation risk decreased escape performance. This is however entirely consistent with the expectation of it being a long-term cost of responding to predation risk (e.g. by increasing respiration or upregulating the stress protein levels). The decreased swimming speed could be explained by an increased oxidative damage to proteins, thereby providing one of the poorly studied ecological links between oxidative damage and whole-animal performance. This likely widespread, understudied cost of chronic predation risk may provide an important pathway of non-consumptive predator effects on prey population dynamics. Moreover, it could play an evolutionary role by acting as a selective force causing prey organisms to adjust the magnitude of the physiological stress response and should be considered when evaluating life history trade-offs thought to be mediated by oxidative damage.
Janssens, Lizanne; Stoks, Robby
2014-01-01
Prey organisms evolved a multitude of plastic responses to avoid being eaten by predators. Besides the evolution of plastic morphological responses to escape predation, prey also evolved a set of physiological stress responses to avoid dying because of chronic predator stress per se due to disruption of cellular homeostasis. As physiological stress theory predicts increased energy consumption and the inhibition of essential nonemergency body functions, we tested whether chronic predation risk may increase oxidative damage thereby generating negative effects on escape performance. Specifically, we evaluated whether predation risk reduces escape swimming speed in damselfly larvae and whether this operates through stress-associated increases in oxidative damage. Counterintuitively and in contrast with many empirical studies, chronic predation risk decreased escape performance. This is however entirely consistent with the expectation of it being a long-term cost of responding to predation risk (e.g. by increasing respiration or upregulating the stress protein levels). The decreased swimming speed could be explained by an increased oxidative damage to proteins, thereby providing one of the poorly studied ecological links between oxidative damage and whole-animal performance. This likely widespread, understudied cost of chronic predation risk may provide an important pathway of non-consumptive predator effects on prey population dynamics. Moreover, it could play an evolutionary role by acting as a selective force causing prey organisms to adjust the magnitude of the physiological stress response and should be considered when evaluating life history trade-offs thought to be mediated by oxidative damage. PMID:24968142
Meng, Fan-Tao; Zhao, Jun; Fang, Hui; Liu, Ya-Jing
2015-01-01
The apolipoprotein E (ApoE) ɛ4 allele (ApoE4) is an important genetic risk factor for the pathogenesis of Alzheimer's disease (AD). In addition to genetic factors, environmental factors such as stress may play a critical role in AD pathogenesis. This study was designed to investigate the anxiety-like behavioral and cognitive changes in different human glial fibrillary acidic protein (GFAP)-ApoE transgenic adult male mice under chronic stress conditions. On the open field test, anxiety-like behavior was increased in the non-stressed GFAP-ApoE4 transgenic mice relative to the corresponding GFAP-ApoE3 (ApoE ɛ3 allele) mice. Anxiety-like behavior was increased in the stressed GFAP-ApoE3 mice relative to non-stressed GFAP-ApoE3 mice, but was unexpectedly decreased in the stressed GFAP-ApoE4 mice relative to non-stressed GFAP-ApoE4 mice. On the novel object recognition task, both GFAP-ApoE4 and GFAP-ApoE3 mice exhibited long-term non-spatial memory impairment after chronic stress. Interestingly, short-term non-spatial memory impairment (based on the novel object recognition task) was observed only in the stressed GFAP-ApoE4 male mice relative to non-stressed GFAP-ApoE4 transgenic mice. In addition, short-term spatial memory impairment was observed in the stressed GFAP-ApoE3 transgenic male mice relative to non-stressed GFAP-ApoE3 transgenic male mice; however, short-term spatial memory performance of GFAP-ApoE4 transgenic male mice was not reduced compared to non-stressed control mice based on the Y-maze task. In conclusion, our findings suggested that chronic stress affects anxiety-like behavior and spatial and non-spatial memory in GFAP-ApoE transgenic mice in an ApoE isoform-dependent manner.
Understanding psychological stress, its biological processes, and impact on primary headache.
Nash, Justin M; Thebarge, Ronald W
2006-10-01
Psychological stress is generally acknowledged to be a central contributor to primary headache. Stress results from any challenge or threat, either real or perceived, to normal functioning. The stress response is the body's activation of physiological systems, namely the hypothalamic-pituitary-adrenal axis, to protect and restore functioning. Chronic activation of the stress response can lead to wear and tear that eventually can predispose an individual to disease. There are multiple ways that stress and headache are closely related. Stress can (a) be a predisposing factor that contributes to headache disorder onset, (b) accelerate the progression of the headache disorder into a chronic condition, and (c) precipitate and exacerbate individual headache episodes. How stress impacts headache is not often understood. However, stress is assumed to affect primary headache by directly impacting pain production and modulation processes at both the peripheral and central levels. Stress can also independently worsen headache-related disability and quality of life. Finally, the headache experience itself can serve as a stressor that compromises an individual's health and well-being. With the prominent role that stress plays in headache, there are implications for the evaluation of stress and the use of stress reduction strategies at the various stages of headache disorder onset and progression. Future directions can help to develop a better empirical understanding of the pattern of the stress and headache connections and the mechanisms that explain the connections. Further research can also examine the interactive effects of stress and other factors that impact headache disorder onset, course, and adjustment.
Diabetes accelerates retinal ganglion cell dysfunction in mice lacking sigma receptor 1.
Ha, Yonju; Saul, Alan; Tawfik, Amany; Zorrilla, Eric P; Ganapathy, Vadivel; Smith, Sylvia B
2012-01-01
Sigma receptor 1 (σR1) is a non-opioid transmembrane protein that may act as a molecular chaperone at the endoplasmic reticulum-mitochondrial membrane. Ligands for σR1, such as (+)-pentazocine [(+)-PTZ], confer marked retinal neuroprotection in vivo and in vitro. Recently we analyzed the retinal phenotype of mice lacking σR1 (σR1 KO) and observed normal retinal morphology and function in young mice (5-30 weeks) but diminished negative scotopic threshold responses (nSTRs), retinal ganglion cell (RGC) loss, and disruption of optic nerve axons consistent with inner retinal dysfunction by 1 year. These data led us to test the hypothesis that σR1 may be critical in forestalling chronic retinal stress; diabetes was used as the model of chronic stress. To determine whether σR1 is required for (+)-PTZ neuroprotective effects, primary RGCs isolated from wild-type (WT) and σR1 KO mice were exposed to xanthine-xanthine oxidase (10 µM:2 mU/ml) to induce oxidative stress in the presence or absence of (+)-PTZ. Cell death was evaluated by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) analysis. To assess effects of chronic stress on RGC function, diabetes was induced in 3-week C57BL/6 (WT) and σR1 KO mice, using streptozotocin to yield four groups: WT nondiabetic (WT non-DB), WT diabetic (WT-DB), σR1 KO non-DB, and σR1 KO-DB. After 12 weeks of diabetes, when mice were 15-weeks old, intraocular pressure (IOP) was recorded, electrophysiologic testing was performed (including detection of nSTRs), and the number of RGCs was counted in retinal histological sections. In vitro studies showed that (+)-PTZ could not prevent oxidative stress-induced death of RGCs harvested from σR1 KO mice but afforded robust protection against death of RGCs harvested from WT mice. In the studies of chronic stress induced by diabetes, the IOP measured in the four mouse groups was within the normal range; however, there was a significant increase in the IOP of σR1 KO-DB mice (16 ± 0.5 mmHg) compared to the other groups tested (σR1 KO non-DB, WT non-DB, WT-DB: ~12 ± 0.6 mmHg). Regarding electrophysiologic testing, the nSTRs of σR1 KO non-DB mice were similar to WT non-DB mice at 15 weeks; however, they were significantly lower in σR1 KO-DB mice (5 ± 1 µV) compared to the other groups, including, notably, σR1 KO-nonDB (12±2 µV). As expected, the number of RGCs in σR1 KO non-DB mice was similar to WT non-DB mice at 15 weeks, but under chronic stress of diabetes there were fewer RGCs in retinas of σR1 KO-DB mice. This is the first report showing unequivocally that the neuroprotective effects of (+)-PTZ require σR1. σR1 KO mice show normal retinal structure and function at young ages; however, when subjected to the chronic stress of diabetes, there is an acceleration of retinal functional deficits in σR1 KO mice such that ganglion cell dysfunction is observed at a much earlier age than nondiabetic σR1 KO mice. The data support the hypothesis that σR1 plays a key role in modulating retinal stress and may be an important target for retinal disease.
Guan, Ling; Collet, Jean-Paul; Mazowita, Garey; Claydon, Victoria E
2018-01-01
Transient ischemic attack (TIA) and minor stroke have high risks of recurrence and deterioration into severe ischemic strokes. Risk stratification of TIA and minor stroke is essential for early effective treatment. Traditional tools have only moderate predictive value, likely due to their inclusion of the limited number of stroke risk factors. Our review follows Hans Selye's fundamental work on stress theory and the progressive shift of the autonomic nervous system (ANS) from adaptation to disease when stress becomes chronic. We will first show that traditional risk factors and acute triggers of ischemic stroke are chronic and acute stress factors or "stressors," respectively. Our first review shows solid evidence of the relationship between chronic stress and stroke occurrence. The stress response is tightly regulated by the ANS whose function can be assessed with heart rate variability (HRV). Our second review demonstrates that stress-related risk factors of ischemic stroke are correlated with ANS dysfunction and impaired HRV. Our conclusions support the idea that HRV parameters may represent the combined effects of all body stressors that are risk factors for ischemic stroke and, thus, may be of important predictive value for the risk of subsequent ischemic events after TIA or minor stroke.
Grygier, Beata; Kubera, Marta; Wrona, Danuta; Roman, Adam; Basta-Kaim, Agnieszka; Gruca, Piotr; Papp, Mariusz; Rogoz, Zofia; Leskiewicz, Monika; Budziszewska, Boguslawa; Regulska, Magdalena; Korzeniak, Barbara; Curzytek, Katarzyna; Glombik, Katarzyna; Slusarczyk, Joanna; Maes, Michael; Lason, Wladyslaw
2018-01-03
The effect of antidepressant drugs on tumor progress is very poorly recognized. The aim of the present study was to examine the effect of individual reactivity to stress and 24-day desipramine (DES) administration on the metastatic colonization of adenocarcinoma MADB 106 cells in the lungs of Wistar rats. Wistar rats were subjected to stress procedure according to the chronic mild stress (CMS) model of depression for two weeks and stress highly-sensitive (SHS) and stress non-reactive (SNR) rats were selected. SHS rats were more prone to cancer metastasis than SNR ones and chronic DES treatment further increased the number of lung metastases by 59% and 50% in comparison to vehicle-treated appropriate control rats. The increase in lung metastases was connected with DES-induced skew macrophage activity towards M2 functional phenotype in SHS and SNR rats. Moreover, during 24h after DES injection in healthy rats, the decreased number of TCD8 + and B cells in SHS and SNR rats as well as NK cell cytotoxic activity in SNR rats could be attributed to the lowered capacity to defend against cancer metastasis observed in chronic DES treated and tumor injected rats. Copyright © 2017. Published by Elsevier Inc.
Guan, Ling; Collet, Jean-Paul; Mazowita, Garey; Claydon, Victoria E.
2018-01-01
Transient ischemic attack (TIA) and minor stroke have high risks of recurrence and deterioration into severe ischemic strokes. Risk stratification of TIA and minor stroke is essential for early effective treatment. Traditional tools have only moderate predictive value, likely due to their inclusion of the limited number of stroke risk factors. Our review follows Hans Selye’s fundamental work on stress theory and the progressive shift of the autonomic nervous system (ANS) from adaptation to disease when stress becomes chronic. We will first show that traditional risk factors and acute triggers of ischemic stroke are chronic and acute stress factors or “stressors,” respectively. Our first review shows solid evidence of the relationship between chronic stress and stroke occurrence. The stress response is tightly regulated by the ANS whose function can be assessed with heart rate variability (HRV). Our second review demonstrates that stress-related risk factors of ischemic stroke are correlated with ANS dysfunction and impaired HRV. Our conclusions support the idea that HRV parameters may represent the combined effects of all body stressors that are risk factors for ischemic stroke and, thus, may be of important predictive value for the risk of subsequent ischemic events after TIA or minor stroke. PMID:29556209
Chronic Pain Syndromes in Gynaecological Practice: Endometriosis and Fibromyalgia
Siedentopf, F.
2012-01-01
As gynaecologists frequently function as “general practitioners” for women, gynaecologists are frequently confronted with questions which initially appear to have only a tenuous connection to their field. Chronic pain syndromes represent a particular challenge, especially as pain syndromes are often associated with severe psychosocial stress for the affected woman. This article discusses some of the psychometric aspects of chronic pain in endometriosis and fibromyalgia together with practical therapeutic approaches. PMID:26640283
Young, Joanna M; Shand, Brett I; McGregor, Patrice M; Scott, Russell S; Frampton, Christopher M
2006-01-01
Chronic smoking is associated with endothelial dysfunction and inflammation, with oxidative stress contributing to both these processes. In this study, we investigated the effect of combined antioxidant treatment with Enzogenol, a flavonoid extract from the bark of Pinus radiata and vitamin C, over and above vitamin C alone, on endothelial function, plasma markers of inflammation and oxidative stress, blood pressure (BP) and anthropometrics. Forty-four chronic smokers without established cardiovascular disease were assigned randomly to receive either 480 mg Enzogenol and 60 mg vitamin C, or 60 mg vitamin C alone daily for 12 weeks. Endothelial function in the brachial artery was assessed by flow-mediated vasodilation (FMD). FMD improved in both treatment groups (p < 0.001), with no significant difference between the two groups (p = 0.84). In the group receiving Enzogenol and vitamin C, protein carbonyl levels were significantly reduced compared to the group taking vitamin C alone (p = 0.03). Enzogenol and vitamin C resulted in a significant reduction in fibrinogen levels in heavy smokers compared with vitamin C alone (p < 0.009). These findings demonstrated that co-supplementation with Enzogenol and vitamin C in smokers conferred no additional beneficial effect on macrovascular endothelial function over and above that seen in the vitamin C alone group. However, Enzogenol did demonstrate additional favourable effects on protein oxidative damage and fibrinogen levels.
painACTION-back pain: a self-management website for people with chronic back pain.
Chiauzzi, Emil; Pujol, Lynette A; Wood, Mollie; Bond, Kathleen; Black, Ryan; Yiu, Elizabeth; Zacharoff, Kevin
2010-07-01
To determine whether an interactive self-management Website for people with chronic back pain would significantly improve emotional management, coping, self-efficacy to manage pain, pain levels, and physical functioning compared with standard text-based materials. The study utilized a pretest-posttest randomized controlled design comparing Website (painACTION-Back Pain) and control (text-based material) conditions at baseline and at 1-, 3, and 6-month follow-ups. Two hundred and nine people with chronic back pain were recruited through dissemination of study information online and at a pain treatment clinic. The 6-month follow-up rates for the Website and control groups were 73% and 84%, respectively. Measures were based on the recommendations of the Initiative on Methods, Measurement, and Pain Assessment in Clinical Trials and included measures of pain intensity, physical functioning, emotional functioning, coping, self-efficacy, fear-avoidance, perceived improvement with treatment, self-efficacy, and catastrophizing. Compared with controls, painACTION-Back Pain participants reported significantly: 1) lower stress; 2) increased coping self-statements; and 3) greater use of social support. Comparisons between groups suggested clinically significant differences in current pain intensity, depression, anxiety, stress, and global ratings of improvement. Among participants recruited online, those using the Website reported significantly: 1) lower "worst" pain; 2) lower "average" pain; and 3) increased coping self-statements, compared with controls. Participants recruited through the pain clinic evidenced no such differences. An online self-management program for people with chronic back pain can lead to improvements in stress, coping, and social support, and produce clinically significant differences in pain, depression, anxiety, and global rates of improvement.
Xu, Lin-Hao; Xie, Hui; Shi, Zhi-Hui; Du, Li-Da; Wing, Yun-Kwok; Li, Albert M.
2015-01-01
Abstract Aims: This study examined the role of endoplasmic reticulum (ER) stress in mediating chronic intermittent hypoxia (IH)-induced neurocognitive deficits. We designed experiments to demonstrate that ER stress is initiated in the hippocampus under chronic IH and determined its role in apoptotic cell death, impaired synaptic structure and plasticity, and memory deficits. Results: Two weeks of IH disrupted ER fine structure and upregulated ER stress markers, glucose-regulated protein 78, caspase-12, and C/EBP homologous protein, in the hippocampus, which could be suppressed by ER stress inhibitors, tauroursodeoxycholic acid (TUDCA) and 4-phenylbutyric acid. Meanwhile, ER stress induced apoptosis via decreased Bcl-2, promoted reactive oxygen species production, and increased malondialdehyde formation and protein carbonyl, as well as suppressed mitochondrial function. These effects were largely prevented by ER stress inhibitors. On the other hand, suppression of oxidative stress could reduce ER stress. In addition, the length of the synaptic active zone and number of mature spines were reduced by IH. Long-term recognition memory and spatial memory were also impaired, which was accompanied by reduced long-term potentiation in the Schaffer collateral pathway. These effects were prevented by coadministration of the TUDCA. Innovation and Conclusion: These results show that ER stress plays a critical role in underlying memory deficits in obstructive sleep apnea (OSA)-associated IH. Attenuators of ER stress may serve as novel adjunct therapeutic agents for ameliorating OSA-induced neurocognitive impairment. Antioxid. Redox Signal. 23, 695–710. PMID:25843188
Excess copper induced proteomic changes in the marine brown algae Sargassum fusiforme.
Zou, Hui-Xi; Pang, Qiu-Ying; Zhang, Ai-Qin; Lin, Li-Dong; Li, Nan; Yan, Xiu-Feng
2015-01-01
Copper (Cu) is an essential micronutrient for algal growth and development; however, it is also generally considered to be one of the most toxic metals when present at higher levels. Seaweeds are often exposed to low concentrations of metals, including Cu, for long time periods. In cases of ocean outfall, they may even be abruptly exposed to high levels of metals. The physiological processes that are active under Cu stress are largely unknown. In this study, the brown macroalga Sargassum fusiforme was cultured in fresh seawater at final Cu concentrations of 0, 4, 8, 24 and 47 μM. The Cu(2+) concentration and chlorophyll autofluorescence were measured to establish the toxic effects of Cu on this economically important seaweed. The accumulation of Cu by S. fusiforme was also dependent upon the external Cu concentration. Algal growth displayed a general decline with increasing media Cu concentrations, indicating that S. fusiforme was able to tolerate Cu stress at low concentrations, while it was negatively impacted at high concentrations. The term "acute stress" was employed to indicate exposure to high Cu concentrations for 1 day in this study. On the other hand, "chronic stress" was defined as exposure to lower sub-lethal Cu concentrations for 7 days. Proteins were extracted from control and Cu-treated S. fusiforme samples and separated by two-dimensional gel electrophoresis. Distinct patterns of protein expression in the acute and chronic stress conditions were observed. Proteins related to energy metabolism and photosynthesis were reduced significantly, whereas those related to carbohydrate metabolism, protein destination, RNA degradation and signaling regulation were induced in S. fusiforme in response to acute copper stress. Energy metabolism-related proteins were significantly induced by chronic Cu stress. Proteins from other functional groups, such as those related to membranes and transport, were present in minor quantities. These results suggest that S. fusiforme is sensitive to excess Cu, regardless of the presence of acute or chronic stress. We discuss the possible function of these identified proteins, taking into consideration the information available from other plant models. Copyright © 2014 Elsevier Inc. All rights reserved.
Krause, Steven J; Stillman, Mark J; Tepper, Deborah E; Zajac, Deborah
2017-03-01
To evaluate the efficacy of an intensive outpatient program designed to improve functioning and reduce psychological impairment in chronic headache patients. Chronic headaches, occurring 15 or more days per month, for three or more months, may arise from multiple International Classification of Headache Disorders diagnoses: Chronic Migraine, Chronic Tension Type Headache, New Daily Persistent Headache, Chronic Post Traumatic Headaches, and Medication Overuse Headache. Several interdisciplinary programs that treat patients with chronic headaches have reported decreases in headache frequency. This study sought to evaluate the effect of a 3 week interdisciplinary treatment program for patients with chronic headache disorders on headache severity, functional status, and psychological impairment. Subjects were 379 patients admitted to an outpatient chronic headache treatment program. Assessments of headache severity, psychological status, and functional impairment were completed by 371 (97.8%) of these at the time of admission. At discharge, 340 subjects (89.7%) provided assessment data, and 152 (40.1%) provided data at 1-year follow-up. Subjects' mean ratings on a 0-10 scale for their headache pain in the prior week declined, and these improvements were maintained at follow-up. (Estimated marginal means on a 0-10 scale for Average pain: admission 6.1, discharge 3.5, follow-up 3.3; for Least pain: admission 3.2; discharge 1.5; follow-up 1.3; for Worst pain: admission 8.2; discharge 6.4; follow-up 5.7), and similar results were found for current pain (admission 4.7; discharge 2.8; follow-up 2.4): Measures of functional impairment also improved following treatment, and these gains were maintained at 12 month follow up (Estimated marginal mean Headache Impact Test-6 score: admission 66.1, discharge 55.4, follow-up 51.9; Estimated marginal mean Pain Disability Index score: admission 36.2, discharge 14.1, follow-up 11.6). As measured by the Depression, Anxiety and Stress Scale, anxiety and reactivity to stress decreased following treatment, and remained improved at follow-up (Estimated marginal mean score for Anxiety: admission 8.7, discharge 5.2, follow-up 4.4; Estimated marginal mean score for stress: admission 14.9, discharge 7.2, follow-up 7.6). Depression decreased with treatment, but while 1-year follow-up depression scores remained significantly lower than at admission, they were also significantly higher than at discharge (Estimated marginal means: admission 13.3, discharge 4.1, follow-up 6.6). The study supports the efficacy of the treatment model. Limitations of the study and suggestions for future research are also discussed. © 2017 American Headache Society.
ERIC Educational Resources Information Center
Vachon-Presseau, Etienne; Roy, Mathieu; Martel, Marc-Olivier; Caron, Etienne; Marin, Marie-France; Chen, Jeni; Albouy, Genevieve; Plante, Isabelle; Sullivan, Michael J.; Lupien, Sonia J.; Rainville, Pierre
2013-01-01
Recent theories have suggested that chronic pain could be partly maintained by maladaptive physiological responses of the organism facing a recurrent stressor. The present study examined the associations between basal levels of cortisol collected over seven consecutive days, the hippocampal volumes and brain activation to thermal stimulations…
Tsuchiya, T; Horii, I
1995-01-01
Time-course variations in plasma testosterone levels after various periods of immobilization stress (10 min, 30 min, 2 h, 6 h) were examined in male Syrian hamsters. The immobilization stress consisted of placing the animals in a prone position and wrapping them with flexible steel wire gauze. This was done at room temperature. Testosterone levels were determined in blood samples taken after the hamsters were decapitated. Chronic (2 h, 6 h) immobilization stress produced a drastic and enduring fall in plasma testosterone levels. Reduction of plasma testosterone following the 6-h immobilization stress was observed even 18 h after the stress had been relieved. However, acute (10 min, 30 min) immobilization stress did not influence plasma testosterone. These findings indicated that the effect of immobilization stress on plasma testosterone in hamsters was not biphasic, which it is in rats. Further, these results suggest that immobilization stress in hamsters would be a valuable technique with which to investigate the effects of physiological ranges of testosterone on physiological and psychological functions.
McGirr, Alexander; LeDue, Jeffrey; Chan, Allen W; Xie, Yicheng; Murphy, Timothy H
2017-08-01
See Huang and Liston (doi:10.1093/awx166) for a scientific commentary on this article.Human depression is associated with glutamatergic dysfunction and alterations in resting state network activity. However, the indirect nature of human in vivo glutamate and activity assessments obscures mechanistic details. Using the chronic social defeat mouse model of depression, we determine how mesoscale glutamatergic networks are altered after chronic stress, and in response to the rapid acting antidepressant, ketamine. Transgenic mice (Ai85) expressing iGluSnFR (a recombinant protein sensor) permitted real-time in vivo selective characterization of extracellular glutamate and longitudinal imaging of mesoscale cortical glutamatergic functional circuits. Mice underwent chronic social defeat or a control condition, while spontaneous cortical activity was longitudinally sampled. After chronic social defeat, we observed network-wide glutamate functional hyperconnectivity in defeated animals, which was confirmed with voltage sensitive dye imaging in an independent cohort. Subanaesthetic ketamine has unique effects in defeated animals. Acutely, subanaesthetic ketamine induces large global cortical glutamate transients in defeated animals, and an elevated subanaesthetic dose resulted in sustained global increase in cortical glutamate. Local cortical inhibition of glutamate transporters in naïve mice given ketamine produced a similar extracellular glutamate phenotype, with both glutamate transients and a dose-dependent accumulation of glutamate. Twenty-four hours after ketamine, normalization of depressive-like behaviour in defeated animals was accompanied by reduced glutamate functional connectivity strength. Altered glutamate functional connectivity in this animal model confirms the central role of glutamate dynamics as well as network-wide changes after chronic stress and in response to ketamine. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Meng, Shanshan; Quan, Wuxing; Qi, Xu; Su, Zhiqiang; Yang, Shanshan
2014-01-01
A stress-induced increase in excitability can result from a reduction in inhibitory neurotransmission. Modulation of gamma-aminobutyric acid (GABA)ergic transmission is an effective treatment for drug seeking and relapse. This study investigated whether baclofen, a GABA(B) receptor agonist, had an impact on morphine-induced conditioned place preference (CPP), extinction, and stress-induced relapse in chronically stressed mice. Chronic stress was induced by restraining mice for 2 h for seven consecutive days. We first investigated whether chronic stress influenced morphine-induced CPP, extinction, and stress-induced relapse in the stressed mice. Next, we investigated whether three different doses of baclofen influenced chronic stress as measured by the expression of morphine-induced CPP. We chose the most effective dose for subsequent extinction and reinstatement experiments. Reinstatement of morphine-induced CPP was induced by a 6-min forced swim stress. Locomotor activity was also measured for each test. Chronic stress facilitated the expression of morphine-induced CPP and prolonged extinction time. Forced swim stress primed the reinstatement of morphine-induced CPP in mice. Baclofen treatment affected the impact of chronic stress on different phases of morphine-induced CPP. Our results showed that baclofen antagonized the effects of chronic stress on morphine-induced CPP. These findings suggest the potential clinical utility of GABA(B) receptor-positive modulators as an anti-addiction agent in people suffering from chronic stress.
Richards, Jessica; Stipelman, Brooke A.; Bornovalova, Marina A.; Daughters, Stacey; Sinha, Rajita; Lejuez, C.W.
2011-01-01
Theories of addiction implicate stress as a crucial mechanism underlying initiation, maintenance, and relapse to cigarette smoking. Examinations of the biological stress systems, including functioning of the hypothalamic-pituitary-adrenal (HPA) axis and the autonomic nervous system (ANS), have provided additional insights into the relationship between stress and smoking. To date, convergent data suggests that chronic cigarette smoking is associated with alterations in HPA and ANS functioning; however, less is known about the role of HPA and ANS functioning in smoking initiation and relapse following cessation. In order to organize existing findings and stimulate future research, the current paper summarizes the available literature on the roles of HPA axis and ANS functioning in the relationship between stress and cigarette smoking, highlights limitations within the existing literature, and suggests directions for future research to address unanswered questions in the extant literature on the biological mechanisms underlying the relationship between stress and smoking. PMID:21741435
Effects of Active Mastication on Chronic Stress-Induced Bone Loss in Mice
Azuma, Kagaku; Furuzawa, Manabu; Fujiwara, Shu; Yamada, Kumiko; Kubo, Kin-ya
2015-01-01
Chronic psychologic stress increases corticosterone levels, which decreases bone density. Active mastication or chewing attenuates stress-induced increases in corticosterone. We evaluated whether active mastication attenuates chronic stress-induced bone loss in mice. Male C57BL/6 (B6) mice were randomly divided into control, stress, and stress/chewing groups. Stress was induced by placing mice in a ventilated restraint tube (60 min, 2x/day, 4 weeks). The stress/chewing group was given a wooden stick to chew during the experimental period. Quantitative micro-computed tomography, histologic analysis, and biochemical markers were used to evaluate the bone response. The stress/chewing group exhibited significantly attenuated stress-induced increases in serum corticosterone levels, suppressed bone formation, enhanced bone resorption, and decreased trabecular bone mass in the vertebrae and distal femurs, compared with mice in the stress group. Active mastication during exposure to chronic stress alleviated chronic stress-induced bone density loss in B6 mice. Active mastication during chronic psychologic stress may thus be an effective strategy to prevent and/or treat chronic stress-related osteopenia. PMID:26664256
Effects of Active Mastication on Chronic Stress-Induced Bone Loss in Mice.
Azuma, Kagaku; Furuzawa, Manabu; Fujiwara, Shu; Yamada, Kumiko; Kubo, Kin-ya
2015-01-01
Chronic psychologic stress increases corticosterone levels, which decreases bone density. Active mastication or chewing attenuates stress-induced increases in corticosterone. We evaluated whether active mastication attenuates chronic stress-induced bone loss in mice. Male C57BL/6 (B6) mice were randomly divided into control, stress, and stress/chewing groups. Stress was induced by placing mice in a ventilated restraint tube (60 min, 2x/day, 4 weeks). The stress/chewing group was given a wooden stick to chew during the experimental period. Quantitative micro-computed tomography, histologic analysis, and biochemical markers were used to evaluate the bone response. The stress/chewing group exhibited significantly attenuated stress-induced increases in serum corticosterone levels, suppressed bone formation, enhanced bone resorption, and decreased trabecular bone mass in the vertebrae and distal femurs, compared with mice in the stress group. Active mastication during exposure to chronic stress alleviated chronic stress-induced bone density loss in B6 mice. Active mastication during chronic psychologic stress may thus be an effective strategy to prevent and/or treat chronic stress-related osteopenia.
Pirnia, Bijan; Givi, Fatemeh; Roshan, Rasool; Pirnia, Kambiz; Soleimani, Ali Akbar
2016-01-01
Stimulants addition and abuse can cause some functional and morphological changes in the normal function of glands and hormones. Methamphetamine as an addictive stimulant drug affects the Hypothalamic- pituitary-adrenal (HPA) axis and consequently makes some changes in the psychological state of the drug users. The present study aims to examine the relationship between plasma levels of cortisol with depression, stress and anxiety symptoms in chronic methamphetamine-dependent patients and normal individuals who have undergone the inguinal hernia surgery. To meet the purpose of the study, 35 chronic methamphetamine-dependent patients in the active phase of drug abuse and 35 non-users (N=70) who were homogenized regarding the demographic features were purposefully selected from among the patients referred to undergo inguinal hernia surgery since March 15 to June 9, 2015. The participants were then divided into the control and experiment group. The changes in cortisol levels in plasma were measured using Radioimmunoassay (RIA) in three-time series including 0 (upon the induction of anesthesia), 12 and 24 hours after the surgery. Further, three behavioral indices of depression, anxiety and stress were measured using the Depression Anxiety Stress Scale 21 (DASS-21) and then the data were analyzed using t-test and Pearson Correlation coefficient. The plasma level of cortisol in the chronic methamphetamine-dependent patients (experiment group) had a significant increase in 24 hours after surgery (p<0.05). This study showed that cortisol levels in chronic methamphetamine-dependent patients were significantly higher than non-dependent patients in response to alarming events such as inguinal surgery. Changes in cortisol levels were intensified due to a confrontation with the phenomenon of pain and anxiety. In addition, depression index was higher in the chronic methamphetaminedependent patients than that in the non-dependent patients. However, there was no significant relationship between the cortisol level and depression index (p=0.001). The Hypothalamic-pituitary-adrenal (HPA) axis is considered as a key structure in the addiction to simulants, the reason which can explain the faster response of the chronic methamphetamine-dependent patients to the stressors such as surgery.
Snyder, Hannah R; Young, Jami F; Hankin, Benjamin L
2017-05-25
Psychopathology is posited to be transdiagnostically linked to chronic stress. Yet efforts to understand the specificity and directionality of these links have been sparse, and the ubiquitous comorbidity of psychopathology has made the seemingly nonspecific links between psychological disorders and chronic stress difficult to interpret. The current study used a latent dimensional bifactor model of psychopathology to account for comorbidity and a multiwave prospective design to disentangle temporal associations between psychopathology and chronic stress longitudinally during the critical adolescent period for psychopathology risk and stress reactivity. A community sample of 567 youth (55.5% female, age M = 11.8 at baseline, M = 15.1 at end of study) were followed prospectively for 3 years, with chronic stress assessed with the Youth Life Stress Interview and psychopathology symptoms assessed via both self and parent report. Exposure to chronic stress predicted what is common across forms of psychopathology (the p factor), which in turn predicted generation of chronic stress over time. After accounting for comorbidity via the p factor, externalizing behaviors also had specific transactional links to chronic stress, whereas links between internalizing psychopathology and chronic stress were completely accounted for by common psychopathology. The results provide the first direct evidence that chronic stress is transdiagnostically and reciprocally linked to psychopathology, during a critical youth period for psychopathology onset and stress reactivity.
Chronic ankle instability: Current perspectives
Al-Mohrej, Omar A.; Al-Kenani, Nader S.
2016-01-01
Ankle sprain is reported to be among the most common recurrent injuries. About 20% of acute ankle sprain patients develop chronic ankle instability. The failure of functional rehabilitation after acute ankle sprain leads to the development of chronic ankle instability. Differentiation between functional and anatomical ankle instability is very essential to guide the proper treatment. Stability testing by varus stress test and anterior drawer test should be carried out. Subtalar instability is an important pathology that is commonly by passed during the assessment of chronic ankle instability. Unlike acute ankle sprain, chronic ankle instability might require surgical intervention. The surgical and conservative management options can be very much developed by in-depth knowledge of the ankle anatomy, biomechanics, and pathology. Anatomical repair, augmentation by tendon, or both are the basic methods of surgical intervention. Arthroscopy is becoming more popular in the management of chronic ankle instability. PMID:27843798
2006-12-15
of Schools of Public Health SYNOPSIS Objectives. Posttraumatic stress disorder ( PTSD ) results from experiencing or witnessing traumatic , life...124 Posttraumatic stress disorder ( PTSD ) is a psychiatric condition resulting from experiencing or witnessing traumatic events such as military...Kang HK, Natelson BH, Mahan CM, Lee KY, Murphy FM. Post - traumatic stress disorder and chronic fatigue syndrome-like illness among Gulf War veterans
Solving medical mysteries: hidden stresses and unexplained symptoms.
Clarke, David D
2016-09-01
Medically unexplained symptoms and chronic functional syndromes are common but few healthcare professionals have had formal training about their connection to psychosocial issues. A systematic approach to diagnosis and treatment based on experience with over 7000 of these patients is described. Outcomes improve with assessment for and treatment of current life stresses, the prolonged impact of adversity in childhood and somatic presentations of depression, post-traumatic stress, and anxiety disorders.
Social strain and cortisol regulation in midlife in the US.
Friedman, Esther M; Karlamangla, Arun S; Almeida, David M; Seeman, Teresa E
2012-02-01
Chronic stress has been implicated in a variety of adverse health outcomes, from compromised immunity to cardiovascular disease to cognitive decline. The hypothalamic pituitary adrenal (HPA) axis has been postulated to play the primary biological role in translating chronic stress into ill health. Stressful stimuli activate the HPA-axis and cause an increase in circulating levels of cortisol. Frequent and long-lasting activation of the HPA-axis, as occurs in recurrently stressful environments, can in the long run compromise HPA-axis functioning and ultimately affect health. Negative social interactions with family and friends may be a significant source of stress in daily life, constituting the type of recurrently stressful environment that could lead to compromised HPA functioning and altered diurnal cortisol rhythms. We use data from two waves (1995 and 2004-2005) of the Midlife in the U.S. (MIDUS) study and from the National Study of Daily Experiences (NSDE) and piecewise growth curve models to investigate relationships between histories of social strain and patterns of diurnal cortisol rhythms. We find that reported levels of social strain were significantly associated with their diurnal cortisol rhythm. These effects were more pronounced for individuals with a history of greater reported strain across a ten-year period. Copyright © 2011 Elsevier Ltd. All rights reserved.
Capello, Aimée E M; Markus, C Rob
2014-07-01
Stress or negative effect often increases preference for, and intake of, palatable snack foods and this may be influenced by cognitive and genetic factors related to stress and 5-HT vulnerability. The short (S) compared to the long (L) allele of the 5-HT transporter linked polymorphic region (5-HTTLPR) has been associated (i) with decreased 5-HT transporter function and availability and hence, with 5-HT vulnerability, and (ii) with greater stress-responsiveness. Stress-proneness is furthermore promoted by cognitive stress-vulnerability, a key feature of trait neuroticism. Brain 5-HT function can be manipulated by dietary administration of its amino acid precursor tryptophan (Trp), and the beneficial effects of dietary Trp on stress experience and emotional eating may be greatest following repeated administration in both stress- and 5-HT-vulnerable subjects. The aim was to examine the influence of repeated Trp administration on stress responsiveness and emotional eating in homozygous 5-HTTLPR S-allele (N=60) and L-allele (N=58) carriers with high and low neuroticism. Following seven days of Trp or PLC intake, mood, cortisol and appetite were assessed before and after exposure to acute stress and snack intake and preference were measured post-stress. It was hypothesized that Trp would reduce stress experience and emotional eating particularly in S-allele carriers with high neuroticism. Results revealed Trp treatment caused a clear reduction in stress-induced cortisol levels in S/S-allele carriers exclusively, and prevented a stress-induced increase in appetite only in S/S-allele carriers with high trait neuroticism. The findings reveal an advantageous effect of sub chronic Trp treatment on stress experience and appetite depending on stress and (genetic) serotonergic vulnerability. Copyright © 2014 Elsevier Ltd. All rights reserved.
Mitic, Milos; Brkic, Zeljka; Lukic, Iva; Adzic, Miroslav
2017-08-30
Accumulating evidence strongly suggest that impaired glucocorticoid receptor (GR) signaling is involved in stress-related mood disorders, and nominate GR as a potential target for antidepressants (ADs). It is known that different classes of ADs affects the GR action via modifying its phosphorylation, while the mechanism through which ADs alter GR phosphorylation targeted by GSK3β, a kinase modulated via serotonin neurotransmission, are unclear. On this basis, we investigated whether GSK3β-GR signaling could be a convergence point of fluoxetine action on brain function and behavior, by examining its effect on GSK3β targeted-GR phosphorylation on threonine 171 (pGR171), and expression of GR-regulated genes in the hippocampus of female and male rats exposed to chronic isolation stress. Stress induced sex-specific GSK3β-targeted phosphorylation of pGR171 in the nucleus of the hippocampus of stressed animals. Namely, while in females stress triggered coupled action of GSK3β-pGR171 signaling, in males changes in pGR171 levels did not correspond to GSK3β activity. On the other hand, fluoxetine managed to up-regulate this pathway in sex-unbiased manner. Furthermore, fluoxetine reverted stress-induced changes in most of the analyzed genes in males, CRH, 5-HT1a and p11, while in females its effect was limited to CRH. These data further suggest that pGR171 signaling affects cellular localization of GR in response to chronic stress and fluoxetine in both sexes. Collectively, our results describe a novel convergence point between GR signaling and GSK3β pathway in rat hippocampus in response to stress and fluoxetine in both sexes and its involvement in fluoxetine-regulated brain function in males. Copyright © 2017 Elsevier B.V. All rights reserved.
Hou, Yanpeng; Yang, Huai'an; Cui, Zeshi; Tai, Xuhui; Chu, Yanling; Guo, Xing
2017-09-01
Obstructive sleep apnea that characterized by chronic intermittent hypoxia (CIH) has been reported to associate with chronic liver injury. Tauroursodeoxycholic acid (TUDCA) exerts liver-protective effects in various liver diseases. The purpose of this study was to test the hypothesis that TUDCA could protect liver against CIH injury. C57BL/6 mice were subjected to intermittent hypoxia for eight weeks and applied with TUDCA by intraperitoneal injection. The effect of TUDCA on liver histological changes, liver function, oxidative stress, inflammatory response, hepatocyte apoptosis and endoplasmic reticulum (ER) stress were investigated. The results showed that administration of TUDCA attenuated liver pathological changes, reduced serum alanine aminotransferase and aspartate aminotransferase level, suppressed reactive oxygen species activity, decreased tumor necrosis factor-α and interleukin-1β level and inhibited hepatocyte apoptosis induced by CIH. TUDCA also inhibited CIH-induced ER stress in liver as evidenced by decreased expression of ER chaperone 78 kDa glucose-related protein, unfolded protein response transducers and ER proapoptotic proteins. Altogether, the present study described a liver-protective effect of TUDCA in CIH mice model, and this effect seems at least partly through the inhibition of ER stress.
Costa-Ferreira, Willian; Vieira, Jonas O; Almeida, Jeferson; Gomes-de-Souza, Lucas; Crestani, Carlos C
2016-01-01
Consistent evidence has shown an important role of emotional stress in pathogenesis of cardiovascular diseases. Additionally, studies in animal models have demonstrated that daily exposure to different stressor (heterotypic stressor) evokes more severe changes than those resulting from repeated exposure to the same aversive stimulus (homotypic stressor), possibly due to the habituation process upon repeated exposure to the same stressor. Despite these pieces of evidence, the mechanisms involved in the stress-evoked cardiovascular dysfunction are poorly understood. Therefore, the present study investigated the involvement of angiotensin II (Ang II) acting on the type 1 Ang II receptor (AT1) in the cardiovascular dysfunctions evoked by both homotypic and heterotypic chronic emotional stresses in rats. For this purpose, we compared the effect of the chronic treatment with the AT1 receptor antagonist losartan (30 mg/kg/day, p.o.) on the cardiovascular and autonomic changes evoked by the heterotypic stressor chronic variable stress (CVS) and the homotypic stressor repeated restraint stress (RRS). RRS increased the sympathetic tone to the heart and decreased the cardiac parasympathetic activity, whereas CVS decreased the cardiac parasympathetic activity. Additionally, both stressors impaired the baroreflex function. Alterations in the autonomic activity and the baroreflex impairment were inhibited by losartan treatment. Additionally, CVS reduced the body weight and increased the circulating corticosterone; however, these effects were not affected by losartan. In conclusion, these findings indicate the involvement of angiotensin II/AT1 receptors in the autonomic changes evoked by both homotypic and heterotypic chronic stressors. Moreover, the present results provide evidence that the increase in the circulating corticosterone and body weight reduction evoked by heterotypic stressors are independent of AT1 receptors.
Fibromyalgia: a stress disorder? Piecing the biopsychosocial puzzle together.
Van Houdenhove, Boudewijn; Egle, Ulrich T
2004-01-01
Fibromyalgia (FM) is a controversial syndrome, characterised by persistent widespread pain, abnormal pain sensitivity and additional symptoms such as fatigue and sleep disturbance. The syndrome largely overlaps with other functional somatic disorders, particularly chronic fatigue syndrome (CFS). Although the exact aetiology and pathogenesis of FM are still unknown, it has been suggested that stress may play a key role in the syndrome. This article first reviews the function of the stress response system, placing special emphasis on the relationships between adverse life experiences, stress regulation and pain-processing mechanisms, and summarising the evidence for a possible aetiopathogenetic role of stress in FM. Finally, an integrative biopsychosocial model that conceptualizes FM as a stress disorder is proposed, and the clinical and research implications of the model are discussed.
Frerker, Nadine; Raber, Kerstin; Bode, Felix; Skripuletz, Thomas; Nave, Heike; Klemann, Christian; Pabst, Reinhard; Stephan, Michael; Schade, Jutta; Brabant, Georg; Wedekind, Dirk; Jacobs, Roland; Jörns, Anne; Forssmann, Ulf; Straub, Rainer H; Johannes, Sigrid; Hoffmann, Torsten; Wagner, Leona; Demuth, Hans-Ulrich; von Hörsten, Stephan
2009-01-01
Treatment of diabetes type 2 using chronic pharmacological inhibition of dipeptidyl peptidase 4 (DP4) still requires an in-depth analysis of models for chronic DP4 deficiency, because adverse reactions induced by some DP4 inhibitors have been described. In the present study, a novel congenic rat model of DP4 deficiency on a "DP4-high" DA rat genetic background was generated (DA.F344-Dpp4(m)/ SvH rats) and comprehensively phenotyped. Similar to chronic pharmacological inhibition of DP4, DP4 deficient rats exhibited a phenotype involving reduced diet-induced body weight gain and improved glucose tolerance associated with increased levels of glucagon-like peptide-1 (GLP-1) and bound leptin as well as decreased aminotransferases and triglycerides. Additionally, DA.F344-Dpp4(m)/SvH rats showed anxiolytic-like and reduced stress-like responses, a phenomenon presently not targeted by DP4 inhibitors. However, several immune alterations, such as differential leukocyte subset composition at baseline, blunted natural killer cell and T-cell functions, and altered cytokine levels were observed. While this animal model confirms a critical role of DP4 in GLP-1-dependent glucose regulation, genetically induced chronic DP4 deficiency apparently also affects stress-regulatory and immuneregulatory systems, indicating that the use of chronic DP4 inhibitors might have the potential to interfere with central nervous system and immune functions in vivo.
Northrop, Nicole A.
2013-01-01
Studies of methamphetamine (Meth)-induced neurotoxicity have traditionally focused on monoaminergic terminal damage while more recent studies have found that stress exacerbates these damaging effects of Meth. Similarities that exist between the mechanisms that cause monoaminergic terminal damage in response to stress and Meth and those capable of producing a disruption of the blood-brain barrier (BBB) suggest that the well-known high comorbidity of stress and Meth could produce long-lasting structural and functional BBB disruption. The current studies examined the role of neuroinflammation in mediating the effects of exposure to chronic stress and/or Meth on BBB structure and function. Rats were pre-exposed to chronic unpredictable stress (CUS) and/or challenged with Meth. Twenty-four hours after the treatment of Meth in rats pre-exposed to CUS, occludin and claudin-5 immunoreactivity were decreased while truncation of β-dystroglycan, as well as FITC-dextran and water extravasation was increased. All changes other than β-dystroglycan and edema persisted 7 days later, occurred with increases in GFAP and COX-2, and were blocked by ketoprofen after Meth treatment. In addition, persistent increases in FITC-dextran extravasation were prevented by treatment with an EP1 receptor antagonist after Meth exposure. The results indicate that CUS and Meth synergize to produce long-lasting structural and functional BBB disruptions that are mediated by cyclooxygenase and protracted increases in inflammation. These results suggest that stress and Meth can synergize to produce a long-lasting vulnerability of the brain to subsequent environmental insults resulting from the persistent breach of the BBB. PMID:22833424
Sundar, Isaac K; Yao, Hongwei; Huang, Yadi; Lyda, Elizabeth; Sime, Patricia J; Sellix, Michael T; Rahman, Irfan
2014-01-01
The circadian timing system controls daily rhythms of physiology and behavior, and disruption of clock function can trigger stressful life events. Daily exposure to cigarette smoke (CS) can lead to alteration in diverse biological and physiological processes. Smoking is associated with mood disorders, including depression and anxiety. Patients with chronic obstructive pulmonary disease (COPD) have abnormal circadian rhythms, reflected by daily changes in respiratory symptoms and lung function. Corticosterone (CORT) is an adrenal steroid that plays a considerable role in stress and anti-inflammatory responses. Serotonin (5-hydroxytryptamine; 5HT) is a neurohormone, which plays a role in sleep/wake regulation and affective disorders. Secretion of stress hormones (CORT and 5HT) is under the control of the circadian clock in the suprachiasmatic nucleus. Since smoking is a contributing factor in the development of COPD, we hypothesize that CS can affect circadian rhythms of CORT and 5HT secretion leading to sleep and mood disorders in smokers and patients with COPD. We measured the daily rhythms of plasma CORT and 5HT in mice following acute (3 d), sub-chronic (10 d) or chronic (6 mo) CS exposure and in plasma from non-smokers, smokers and patients with COPD. Acute and chronic CS exposure affected both the timing (peak phase) and amplitude of the daily rhythm of plasma CORT and 5HT in mice. Acute CS appeared to have subtle time-dependent effects on CORT levels but more pronounced effects on 5HT. As compared with CORT, plasma 5HT was slightly elevated in smokers but was reduced in patients with COPD. Thus, the effects of CS on plasma 5HT were consistent between mice and patients with COPD. Together, these data reveal a significant impact of CS exposure on rhythms of stress hormone secretion and subsequent detrimental effects on cognitive function, depression-like behavior, mood/anxiety and sleep quality in smokers and patients with COPD.
The Role of Stress Exposure and Family Functioning in Internalizing Outcomes of Urban Families
Henry, David B.; Tolan, Patrick H.; Strachan, Martha K.
2013-01-01
Although research suggests that stress exposure and family functioning are associated with internalizing problems in adolescents and caregivers, surprisingly few studies have investigated the mechanisms that underlie this association. To determine whether family functioning buffers the development of internalizing problems in stress-exposed families, we assessed the relation between stress exposure, family functioning, and internalizing symptoms among a large sample of inner-city male youth and their caregivers living in poverty across five waves of data collection. We hypothesized that stress exposure and family functioning would predict development of subsequent youth and caregiver internalizing problems and that family functioning would moderate this relation, with higher functioning families demonstrating greater resiliency to stress exposure. We used a longitudinal, prospective design to evaluate whether family functioning (assessed at waves one through four) activated or buffered the effects of stress exposure (assessed at wave one) on subsequent internalizing symptoms (assessed at waves four and five). Stress from Developmental Transitions and family functioning were significant predictors of depressive symptoms and anxiety in youth; however, family functioning did not moderate the relation. Family functioning mediated the relation between stress from Daily Hassles and internalizing outcomes suggesting that poor parenting practices, low structure, and low emotional cohesion activate depression and anxiety in youth exposed to chronic and frequent everyday stressors. Surprisingly, only family functioning predicted depressive symptoms in caregivers. Results validate the use of a comprehensive, multi-informant assessment of stress when investigating internalizing outcomes in youth and support using family-based interventions in the treatment and prevention of internalizing. PMID:25601821
The Role of Stress Exposure and Family Functioning in Internalizing Outcomes of Urban Families.
Sheidow, Ashli J; Henry, David B; Tolan, Patrick H; Strachan, Martha K
2014-11-01
Although research suggests that stress exposure and family functioning are associated with internalizing problems in adolescents and caregivers, surprisingly few studies have investigated the mechanisms that underlie this association. To determine whether family functioning buffers the development of internalizing problems in stress-exposed families, we assessed the relation between stress exposure, family functioning, and internalizing symptoms among a large sample of inner-city male youth and their caregivers living in poverty across five waves of data collection. We hypothesized that stress exposure and family functioning would predict development of subsequent youth and caregiver internalizing problems and that family functioning would moderate this relation, with higher functioning families demonstrating greater resiliency to stress exposure. We used a longitudinal, prospective design to evaluate whether family functioning (assessed at waves one through four) activated or buffered the effects of stress exposure (assessed at wave one) on subsequent internalizing symptoms (assessed at waves four and five). Stress from Developmental Transitions and family functioning were significant predictors of depressive symptoms and anxiety in youth; however, family functioning did not moderate the relation. Family functioning mediated the relation between stress from Daily Hassles and internalizing outcomes suggesting that poor parenting practices, low structure, and low emotional cohesion activate depression and anxiety in youth exposed to chronic and frequent everyday stressors. Surprisingly, only family functioning predicted depressive symptoms in caregivers. Results validate the use of a comprehensive, multi-informant assessment of stress when investigating internalizing outcomes in youth and support using family-based interventions in the treatment and prevention of internalizing.
Strahler, Jana; Skoluda, Nadine; Rohleder, Nicolas; Nater, Urs M
2016-09-01
Chronic stress and its subsequent effects on biological stress systems have long been recognized as predisposing and perpetuating factors in chronic fatigue, although the exact mechanisms are far from being completely understood. In this review, we propose that sensitivity of immune cells to glucocorticoids (GCs) and catecholamines (CATs) may be the missing link in elucidating how stress turns into chronic fatigue. We searched for in vitro studies investigating the impact of GCs or CATs on mitogen-stimulated immune cells in chronically stressed or fatigued populations, with 34 original studies fulfilling our inclusion criteria. Besides mixed cross-sectional findings for stress- and fatigue-related changes of GC sensitivity under basal conditions or acute stress, longitudinal studies indicate a decrease with ongoing stress. Research on CATs is still scarce, but initial findings point towards a reduction of CAT sensitivity under chronic stress. In the long run, resistance of immune cells to stress signals under conditions of chronic stress might translate into self-maintaining inflammation and inflammatory disinhibition under acute stress, which in turn lead to fatigue. Copyright © 2016 Elsevier Ltd. All rights reserved.
Li, Ming-Jia; Liu, Ling-Yu; Chen, Lin; Cai, Jie; Wan, You; Xing, Guo-Gang
2017-04-01
Exacerbation of pain by chronic stress and comorbidity of pain with stress-related psychiatric disorders, including anxiety and depression, represent significant clinical challenges. However, the underlying mechanisms still remain unclear. Here, we investigated whether chronic forced swim stress (CFSS)-induced exacerbation of neuropathic pain is mediated by the integration of stress-affect-related information with nociceptive information in the central nucleus of the amygdala (CeA). We first demonstrated that CFSS indeed produces both depressive-like behaviors and exacerbation of spared nerve injury (SNI)-induced mechanical allodynia in rats. Moreover, we revealed that CFSS induces both sensitization of basolateral amygdala (BLA) neurons and augmentation of long-term potentiation (LTP) at the BLA-CeA synapse and meanwhile, exaggerates both SNI-induced sensitization of CeA neurons and LTP at the parabrachial (PB)-CeA synapse. In addition, we discovered that CFSS elevates SNI-induced functional up-regulation of GluN2B-containing NMDA (GluN2B-NMDA) receptors in the CeA, which is proved to be necessary for CFSS-induced augmentation of LTP at the PB-CeA synapse and exacerbation of pain hypersensitivity in SNI rats. Suppression of CFSS-elicited depressive-like behaviors by antidepressants imipramine or ifenprodil inhibits the CFSS-induced exacerbation of neuropathic pain. Collectively, our findings suggest that CFSS potentiates synaptic efficiency of the BLA-CeA pathway, leading to the activation of GluN2B-NMDA receptors and sensitization of CeA neurons, which subsequently facilitate pain-related synaptic plasticity of the PB-CeA pathway, thereby exacerbating SNI-induced neuropathic pain. We conclude that chronic stress exacerbates neuropathic pain via the integration of stress-affect-related information with nociceptive information in the CeA.
Finn, Erica; Morrison, Todd G; McGuire, Brian E
2018-05-01
The aims of the study were to 1) examine the prevalence of sexual functioning difficulties in a chronic pain sample; 2) identify correlates of sexual functioning and relationship satisfaction utilizing pain variables (pain severity and pain interference) and psychological variables (mood, pain-related cognitions, self-efficacy, self-esteem, body-image); and 3) investigate possible sex differences in the correlates of sexual functioning and relationship satisfaction. Two hundred sixty-nine participants were recruited online from chronic pain organizations, websites, social media sites, and discussion forums. Those who met criteria for inclusion were presented with a variety of measures related to pain, sexual functioning, and relationship satisfaction (for those in a relationship), as well as cognitive and affective variables. Participant mean age was 37 years, and the majority were female, heterosexual, and currently in a relationship. High levels of pain severity and interference from pain, fatigue, depression, anxiety, stress, and body image concerns were reported, along with low levels of self-esteem and pain self-efficacy. In addition, substantial proportions of male (43%) and female (48%) respondents had scores indicative of sexual problems. Exploratory hierarchical regression analyses revealed that, for women, age and relationship satisfaction (which were both treated as covariates) as well as depression emerged as statistically significant correlates of sexual functioning (i.e., women who were older and reported greater levels of depression and less satisfaction with their current relationship indicated poorer sexual functioning). When relationship satisfaction was the criterion measure, age and sexual functioning (again, treated as covariates) and perceived stress emerged as significant (i.e., women who were older, reported poorer sexual functioning, and reported greater perceived stress also indicated being less satisfied with their current relationship). For male participants, age emerged as the only statistically significant correlate of sexual functioning (i.e., older men reported poorer functioning). In terms of relationship satisfaction, self-esteem was the lone significant correlate variable (men who reported lower self-esteem also were less satisfied with their current relationship). Some sex differences were evident in the variables that predict sexual difficulties and relationship satisfaction among those suffering from chronic pain. Of note is that when psychological variables were considered, pain-specific physical variables (e.g., pain severity and activity limitations) accounted for very little additional variance.
Cortisol Reactivity in Two-Year-Old Children Prenatally Exposed to Methamphetamine
Kirlic, Namik; Newman, Elana; LaGasse, Linda L.; Derauf, Chris; Shah, Rizwan; Smith, Lynne M.; Arria, Amelia M.; Huestis, Marilyn A.; Haning, William; Strauss, Arthur; Dellagrotta, Sheri; Dansereau, Lynne M.; Abar, Beau; Neal, Charles R.; Lester, Barry M.
2013-01-01
Objective: Until now, the functioning of the hypothalamic–pituitary–adrenal (HPA) axis in children with prenatal methamphetamine exposure (PME) had been unexamined. Previous research indicates that prenatal exposure to stimulant drugs is associated with dose-response alterations in neural growth and connectivity and consequent neurobehavioral deficits. In addition, children of drug-using parents are at an increased risk for exposure to chronic postnatal stress. In this preliminary study, we examined the associations of PME and postnatal environmental stress with cortisol stress reactivity in children with PME. Method: Participants were 2-year-old children (N = 123; 55.3% male) with PME from a multicenter longitudinal Infant, Development, Environment, and Lifestyle Study. Saliva samples were obtained before and after a stress-inducing separation task. Hierarchical multiple regression analyses examined prenatal drug exposure, methodological and postnatal stress covariates, and interactions between levels of PME and postnatal stress. Results: Mild to moderate potential for child physical abuse moderated increased cortisol reactivity in high exposed children with PME. Blunted cortisol reactivity was associated with caregiver’s postnatal alcohol use, child’s behavioral dysregulation, and the interaction between higher levels of PME and caregiver’s psychopathology. Conclusions: Consistent with the known effects of stimulant drugs and chronically stressful environments on the HPA axis and, thus, the toxic stress and allostatic load phenomena, our results imply that elevated PME may be associated with alterations in the programming of the HPA axis reflecting hyperactivity, which under significant and chronic environmental stress then may become hypoactive. PMID:23490574
Advances in Translational Medical Research
2011-01-25
Once-Daily Extended-Release Tramadol for the Treatment of PTSD Novel Functional and Structural Biomarkers of Neuroinflammation and White Matter...Therapy for Combat-Related PTSD Treatment of Chronic Stress Reaction and Chronic Pain after Traumatic Orthopedic Injury: A Randomized Clinical... Pain Neuroimaging Studies of PTSD and PTSD Treatment among Combat Veterans Who gets better and why? Predicting Outcome Trajectories in STRONG STAR
Taylor, Sara B; Taylor, Adam R; Koenig, James I
2012-01-01
The incidence of anxiety, mood, substance abuse disorders and schizophrenia increases during adolescence. Epidemiological evidence confirms that exposure to stress during sensitive periods of development can create vulnerabilities that put genetically predisposed individuals at increased risk for psychiatric disorders. Neuregulin 1 (NRG1) is a frequently identified schizophrenia susceptibility gene that has also been associated with the psychotic features of bipolar disorder. Previously, we established that Type II NRG1 is expressed in the hypothalamic-pituitary-adrenal (HPA) axis neurocircuitry. We also found, using a line of Nrg1 hypomorphic rats (Nrg1Tn), that genetic disruption of Type II NRG1 results in altered HPA axis function and environmental reactivity. The present studies used the Nrg1Tn rats to test whether Type II NRG1 gene disruption and chronic stress exposure during adolescence interact to alter adult anxiety- and fear-related behaviors. Male and female Nrg1Tn and wild type rats were exposed to chronic variable stress (CVS) during mid-adolescence and then tested for anxiety-like behavior, cued fear conditioning and basal corticosterone secretion in adulthood. The disruption of Type II NRG1 alone significantly impacts rat anxiety-related behavior by reversing normal sex-related differences and impairs the ability to acquire cued fear conditioning. Sex-specific interactions between genotype and adolescent stress also were identified such that CVS-treated wild type females exhibited a slight reduction in anxiety-like behavior and basal corticosterone, while CVS-treated Nrg1Tn females exhibited a significant increase in cued fear extinction. These studies confirm the importance of Type II NRG1 in anxiety and fear behaviors and point to adolescence as a time when stressful experiences can shape adult behavior and HPA axis function. PMID:23022220
Hatherall, Lauren; Sánchez, Connie; Morilak, David A
2017-04-01
Stress is a risk factor for depression and anxiety disorders, disrupting neuronal processes leading to exaggerated fear and compromised coping behaviors. Current antidepressants are only partially effective. Vortioxetine, a novel multimodal antidepressant, is a serotonin transporter inhibitor; 5-HT3, 5-HT7, and 5-HT1D receptor antagonist; 5-HT1B partial agonist; and 5-HT1A agonist. We have shown that chronic dietary vortioxetine administration reversed stress-induced deficits in cognitive flexibility. In the present studies, we investigated the generality of vortioxetine's effects on other stress-related behavioral changes after different types of chronic stress. In experiment 1, rats were fear-conditioned by pairing a tone with footshock, then exposed to chronic plus acute prolonged stress. In experiment 2, rats were exposed to chronic unpredictable stress. In both experiments, beginning on day 4 of chronic stress, vortioxetine was given in the diet (24 mg/kg/d). In experiment 1, effects of vortioxetine were tested on stress-induced changes in retention and extinction of cue-conditioned fear, and in experiment 2, on coping behavior on the shock probe defensive burying test after chronic stress. Chronic stress exaggerated the expression of conditioned fear memory. Vortioxetine restored fear memory to control levels and rendered extinction in stressed rats comparable with that in controls. In experiment 2, chronic unpredictable stress caused a shift from active to passive coping behavior, and vortioxetine restored active coping. Vortioxetine reduced exaggerated expression of conditioned fear and restored adaptive coping behavior following 2 different types of chronic stress, adding to the evidence of its therapeutic potential in the management of depression and anxiety disorders. © The Author 2016. Published by Oxford University Press on behalf of CINP.
Role of chronic exercise on pelvic floor support and function
Shaw, Janet M.; Nygaard, Ingrid E.
2017-01-01
Purpose of review To summarize recent literature about the potential role of chronic exercise on pelvic floor support and function. Recent findings Stress urinary incontinence is common during physical activity. Scant evidence suggests a dose-response association between higher volumes of exercise and urinary incontinence. Athletes do not appear to have greater pelvic floor muscle strength or worse pelvic floor support compared to non-athletes. Pelvic floor muscle electromyographic activity increases substantially as running speeds increase. Summary Based on the current literature, no strong conclusions can be drawn about whether chronic exercise exerts a positive or negative influence on pelvic floor support and function. Adopting longitudinal research methodology that prospectively monitors exercise exposure and subsequent changes in pelvic floor support and function would help to reduce selection bias associated with cross sectional studies on groups of athletes. PMID:28212118
Farm Crisis Response: Extension and Research Activities in the North Central Region.
ERIC Educational Resources Information Center
Lasley, Paul, Comp.; And Others
The 12 states comprising the North Central Region have been affected in similar ways by the farm crisis of the 1980s. Statewide surveys show sizeable proportions of farm operations that are experiencing moderately high levels of financial stress. The problems caused by chronic stress on family structure and functioning, the loss of mainstreet…
Carroll, J A; Burdick Sanchez, N C
2014-12-01
Acknowledgment that modern livestock production systems impose stress on animals has been accepted by the scientific community and producers. As the economic burden has increased for livestock producers, expectations for animal performance have increased, thus placing more strain on the entire production system. Whether or not periodic exposure to stress within the production system jeopardizes the well-being of animals continues to be an area of debate largely because of the inability to accurately quantify the magnitude and severity of the stress response on other biological systems. Adding to the confusion is the fact that activation of the stress axis can be both beneficial and detrimental to the body depending on the duration of the stress response and the frequency at which an animal is exposed to stressful stimuli. Few would argue that continuous long-term stress inhibits livestock productivity and overall well-being. Less clear is whether or not occasional exposure to acute stress jeopardizes the productivity and well-being of livestock. To fully appreciate the complexity associated with activation of the stress axis and the overall biological impact on the body, one must delve deep into the scientific literature and examine the science in an unbiased manner. It is imperative to appreciate and understand that activation of the stress axis is an essential survival mechanism necessary to maintain homeostasis during biologically challenging times. Acute activation of the stress axis leads to repartitioning of energy to organs and tissues essential for coping with stress, redirection of blood flow from the peripheral to large muscle groups, decreased digestive function, and priming of the immune system to prepare for subsequent infections. Conversely, chronic activation of the stress axis disrupts digestive function, causes catabolism of muscle and adipose tissue, and suppresses overall immune function, thus making an animal more susceptible to disease. But what parameters are needed to distinguish periods of acute stress from those of chronic stress, and what biological markers are the best indicators of "stress" in an animal? Although there are a plethora of physiological responses and endocrine biomarkers that can be quantified, an integrative tool that has been readily embraced by scientists and producers as an effective and efficient indicator of the duration and magnitude of stress that an animal is experiencing has yet to be identified.
Stepanichev, Mikhail Yu; Tishkina, Anna O; Novikova, Margarita R; Levshina, Irina P; Freiman, Sofiya V; Onufriev, Mikhail V; Levchenko, Olga A; Lazareva, Natalia A; Gulyaeva, Natalia V
2016-01-01
Depression is the most common form of mental disability in the world. Depressive episodes may be precipitated by severe acute stressful events or by mild chronic stressors. Studies on the mechanisms of depression require both appropriate experimental models (most of them based on the exposure of animals to chronic stressors), and appropriate tests for assessment of depressive states. In this study male Wistar rats were exposed to two different chronic stress paradigms: an eight-week chronic unpredictable mild stress or a two-week combined chronic stress. The behavioral effects of stress were evaluated using sucrose preference, forced swim and open field tests. After the exposure to chronic unpredictable mild stress, anhedonia was developed, activity in the open field increased, while no changes in the duration of passive floating could be detected. After chronic combined stress, anhedonia was also evident, whereas behavior in the open field and forced swim test did not change. The levels of corticosterone in the blood and brain structures involved in stress-response did not differ from control in both experiments. The absence of significant changes in corticosterone levels and passive floating may be indicative of the adaptation of animals to chronic stress. Anhedonia appears to be a more sensitive indicator of depressive-like behavioral effects of chronic stress as compared to behavior in the forced swim or open field tests.
Veena, J; Srikumar, B N; Mahati, K; Raju, T R; Shankaranarayana Rao, B S
2011-09-01
Chronic stress results in cognitive impairment, affects hippocampal neurogenesis and is known to precipitate affective disorders such as depression. In addition to stress, neurotransmitters such as acetylcholine (ACh) modulate adult neurogenesis. Earlier, we have shown that oxotremorine, a cholinergic muscarinic agonist, ameliorates stress-induced cognitive impairment and restores cholinergic function. In the current study, we have looked into the possible involvement of adult neurogenesis in cognitive restoration by oxotremorine. Further, we have assessed the effect of oxotremorine treatment on depression-like behaviour and hippocampal volumes in stressed animals. Chronic restraint stressed rats were treated with either vehicle or oxotremorine. For neurogenesis studies, proliferation, survival and differentiation of the progenitor cells in the hippocampus were examined using 5'-bromo-2-deoxyuridine immunohistochemistry. Depression-like behaviour was evaluated using forced swim test (FST) and sucrose consumption test (SCT). Volumes were estimated using Cavalieri's estimator. Hippocampal neurogenesis was severely decreased in stressed rats. Ten days of oxotremorine treatment to stressed animals partially restored proliferation and survival, while it completely restored the differentiation of the newly formed cells. Stressed rats showed increased immobility and decreased sucrose preference in the FST and SCT, respectively, and oxotremorine ameliorated this depression-like behaviour. In addition, oxotremorine treatment recovered the stress-induced decrease in hippocampal volume. These results indicate that the restoration of impaired neurogenesis and hippocampal volume could be associated with the behavioural recovery by oxotremorine. Our results imply the muscarinic regulation of adult neurogenesis and incite the potential utility of cholinomimetics in ameliorating cognitive dysfunction in stress-related disorders.
Romeo, Russell D
2017-01-01
Adolescent development is associated with major changes in emotional and cognitive functions, as well as a rise in stress-related psychological disorders such as anxiety and depression. It is also a time of significant maturation of the brain, marked by structural alterations in many limbic and cortical regions. Though many elegant human neuroimaging studies have described the adolescent-related changes in these regions, relatively little is known about these changes in non-human animals. Moreover, both human and non-human data are lacking on how exposure to chronic stress may disrupt this structural maturation. Given the fundamental structure-function relationship in the nervous system, it will be important to understand how these normative and stress-induced structural alterations during adolescence influence psychological function, which in turn can modify future neural development. The purpose of this brief review is to describe the impact of stress on the structure of brain regions that continue to show structural maturation during adolescence and are highly sensitive to the effects of chronic stress exposure. Specifically, this review will focus on the amygdala, hippocampal formation, and prefrontal cortex, particularly from a morphological perspective. As many unanswered questions remain in this area of investigation, potential future lines of research are also discussed. A deeper appreciation of how stress affects adolescent brain development will be needed if we are to gain a better understanding of the mechanisms that mediate the increase in stress-related psychological dysfunctions often observed during this stage of development. This article is part of a Special Issue entitled SI: Adolescent plasticity. Copyright © 2016 Elsevier B.V. All rights reserved.
Ruggiero, Christine; Ehrenshaft, Marilyn; Cleland, Ellen
2011-01-01
Obesity and metabolic syndrome are associated with an increased risk for several diabetic complications, including diabetic nephropathy and chronic kidney diseases. Oxidative stress and mitochondrial dysfunction are often proposed mechanisms in various organs in obesity models, but limited data are available on the kidney. Here, we fed a lard-based high-fat diet to mice to investigate structural changes, cellular and subcellular oxidative stress and redox status, and mitochondrial biogenesis and function in the kidney. The diet induced characteristic changes, including glomerular hypertrophy, fibrosis, and interstitial scarring, which were accompanied by a proinflammatory transition. We demonstrate evidence for oxidative stress in the kidney through 3-nitrotyrosine and protein radical formation on high-fat diet with a contribution from iNOS and NOX-4 as well as increased generation of mitochondrial oxidants on carbohydrate- and lipid-based substrates. The increased H2O2 emission in the mitochondria suggests altered redox balance and mitochondrial ROS generation, contributing to the overall oxidative stress. No major derailments were observed in respiratory function or biogenesis, indicating preserved and initially improved bioenergetic parameters and energy production. We suggest that, regardless of the oxidative stress events, the kidney developed an adaptation to maintain normal respiratory function as a possible response to an increased lipid overload. These findings provide new insights into the complex role of oxidative stress and mitochondrial redox status in the pathogenesis of the kidney in obesity and indicate that early oxidative stress-related changes, but not mitochondrial bioenergetic dysfunction, may contribute to the pathogenesis and development of obesity-linked chronic kidney diseases. PMID:21386058
Romero-Martínez, Ángel; Moya-Albiol, Luis
2017-07-01
Caring for offspring diagnosed with eating disorders (EDs) puts caregivers under high levels of chronic stress, which have negative consequences for their health. Unfortunately, caregivers have received little attention from mental health professionals. Chronic stress experienced by informal caregivers has been associated with the alteration of body homeostasis, and therefore, the functioning of various physiological systems. This could be the basis of health problems in informal caregivers of people with EDs. The main objective of this study was to analyze physiological response, in terms of heart rate (HR) and heart rate variability (HRV), to an acute laboratory stressor in a sample of informal caregivers of individuals with anorexia nervosa (n = 24) compared to a sample of noncaregivers (n = 26). In addition, the relationship between depressive mood and the aforementioned cardiovascular response parameters was analyzed in the group of caregivers. Caregivers had higher high-frequency (HF) power HRV, and lower HR, low-frequency (LF) power HRV and LF/HF ratio values than noncaregivers, which suggests lower cardiovascular reactivity to the acute stressor than noncaregivers. Moreover, a blunted HR response to stress was associated with high depressive mood scores in caregivers. Hence, it seems that the worse the mood the lower the cardiovascular reactivity to stressful events in this population. Developing and implementing psychotherapeutic interventions focused on stress management would help caregivers to reduce their stress levels and cope more effectively with stressors.
Ramírez-Vélez, Robinson; Romero, Miryam; Echeverri, Isabella; Ortega, José Guillermo; Mosquera, Mildrey; Salazar, Blanca; Girón, Sandra Lorena; Saldarriaga, Wilmar; Aguilar de Plata, Ana Cecilia; Mateus, Julio Cesar
2011-02-28
Many studies have suggested a relationship between metabolic abnormalities and impaired fetal growth with the development of non-transmissible chronic diseases in the adulthood. Moreover, it has been proposed that maternal factors such as endothelial function and oxidative stress are key mechanisms of both fetal metabolic alterations and subsequent development of non-transmissible chronic diseases. The objective of this project is to evaluate the effect of micronutrient supplementation and regular aerobic exercise on endothelium-dependent vasodilation maternal and stress oxidative of the newborn. 320 pregnant women attending to usual prenatal care in Cali, Colombia will be included in a factorial randomized controlled trial. Women will be assigned to the following intervention groups: 1. usual prenatal care (PC) and placebo (maltodextrine). 2. Exercise group: PC, placebo and aerobic physical exercise. 3. Micronutrients group: PC and a micronutrients capsule consisting of zinc (30 mg), selenium (70 μg), vitamin A (400 μg), alphatocopherol (30 mg), vitamin C (200 mg), and niacin (100 mg). 4. Combined interventions Group: PC, supplementation of micronutrients, and aerobic physical exercise. Anthropometric measures will be taken at the start and at the end of the interventions. Since in previous studies has been showed that the maternal endothelial function and oxidative stress are related to oxidative stress of the newborn, this study proposes that complementation with micronutrients during pregnancy and/or regular physical exercise can be an early and innovative alternative to strengthen the prevention of chronic diseases in the population. NCT00872365.
Kaplon, Rachelle E.; Gioscia-Ryan, Rachel A.; LaRocca, Thomas J.
2014-01-01
Endothelial dysfunction develops with age and increases the risk of age-associated vascular disorders. Nitric oxide insufficiency, oxidative stress, and chronic low-grade inflammation, induced by upregulation of adverse cellular signaling processes and imbalances in stress resistance pathways, mediate endothelial dysfunction with aging. Healthy lifestyle behaviors preserve endothelial function with aging by inhibiting these mechanisms, and novel nutraceutical compounds that favorably modulate these pathways hold promise as a complementary approach for preserving endothelial health. PMID:24985329
Chronic stress experience in young physicians: impact of person- and workplace-related factors.
Buddeberg-Fischer, Barbara; Stamm, Martina; Buddeberg, Claus; Klaghofer, Richard
2010-04-01
The objectives of the present study are to investigate and compare the relative impact of workplace-related factors and personal characteristics on chronic psychosocial stress experience in young physicians. In a prospective study, a cohort of Swiss medical school graduates was followed up, beginning in 2001. In their fourth and eighth year after graduation, 443 physicians assessed their workplace conditions, the experienced effort-reward imbalance, the received professional and emotional support as well as their personal characteristics. The chronic stress experience was measured by the Trier Inventory for the Assessment of Chronic Stress-Screening Subscale of Chronic Stress (TICS-SCSS), 7 years after graduation. The model of influencing factors on chronic stress experience was tested with a hierarchical regression analysis. The mean in chronic stress (TICS-SCSS) in our study sample is significantly higher (p < 0.001) compared to an age-matched population representative sample. In the prediction of chronic stress, the workplace-related factor effort-reward imbalance as well as the personal characteristic overcommitment turned out to be the most important risk factors. Stress protective are high satisfaction with career support, sense of coherence and occupational self-efficacy. The whole set of variables used in the regression model explains 51% of the variance of chronic stress experience. In the prediction of chronic stress, gender has no significant moderator effect. It is a matter of concern that young physicians report to feel chronically stressed early in their professional career. Actions have to be taken to reduce the stress level mainly in regard to re-establish reciprocity between perceived effort invested and rewards received, in the form of esteem, monetary gain and career opportunities including job security.
Juárez-Rojas, Adriana Lizbeth; García-Lorenzana, Mario; Aragón-Martínez, Andrés; Gómez-Quiroz, Luis Enrique; Retana-Márquez, María del Socorro
2015-01-01
Testicular apoptosis is activated by stress, but it is not clear which signaling pathway is activated in response to stress. The aim of this study was to investigate whether intrinsic, extrinsic, or both apoptotic signaling pathways are activated by acute and chronic stress. Adult male rats were subjected to cold water immersion-induced stress for 1, 20, 40, and 50 consecutive days. The seminiferous tubules:apoptotic cell ratio was assayed on acute (1 day) and chronic (20, 40, 50 days) stress. Apoptotic markers, including cleaved-caspase 3 and 8, the pro-apoptotic Bax and anti-apoptotic Bcl-2 proteins were also determined after acute and chronic stress induction. Additionally, epididymal sperm quality was evaluated, as well as corticosterone and testosterone levels. An increase in tubule apoptotic cell count percentage after an hour of acute stress and during chronic stress induction was observed. The apoptotic cells rate per tubule increment was only detected one hour after acute stress, but not with chronic stress. Accordingly, there was an increase in Bax, cleaved caspase-8 and caspase-3 pro-apoptotic proteins with a decrease of anti-apoptotic Bcl-2 in both acutely and chronically stressed male testes. In addition, sperm count, viability, as well as total and progressive motility were low in chronically stressed males. Finally, the levels of corticosterone increased whereas testosterone levels decreased in chronically stressed males. Activation of the extrinsic apoptotic pathway was shown by cleaved caspase-8 increase whereas the intrinsic apoptotic pathway activation was determined by the increase of Bax, along with Bcl-2 decrease, making evident a cross-talk between these two pathways with the activation of caspase-3. These results suggest that both acute and chronic stress can potentially activate the intrinsic/extrinsic apoptosis pathways in testes. Chronic stress also reduces the quality of epididymal spermatozoa, possibly due to a decrease in testosterone.
Shepard, Ryan; Page, Chloe E; Coutellier, Laurence
2016-09-22
Stress-induced modifications of the prefrontal cortex (PFC) are believed to contribute to the onset of mood disorders, such as depression and anxiety, which are more prevalent in women. In depression, the PFC is hypoactive; however the origin of this hypoactivity remains unclear. Possibly, stress could impact the prefrontal GABAergic inhibitory system that, as a result, impairs the functioning of downstream limbic structures controlling emotions. Preclinical evidence indicates that the female PFC is more sensitive to the effects of stress. These findings suggest that exposure to stress could lead to sex-specific alterations in prefrontal GABAergic signaling, which contribute to sex-specific abnormal functioning of limbic regions. These limbic changes could promote the onset of depressive and anxiety behaviors in a sex-specific manner, providing a possible mechanism mediating sex differences in the clinical presentation of stress-related mood disorders. We addressed this hypothesis using a mouse model of stress-induced depressive-like behaviors: the unpredictable chronic mild stress (UCMS) paradigm. We observed changes in prefrontal GABAergic signaling after exposure to UCMS most predominantly in females. Increased parvalbumin (PV) expression and decreased prefrontal neuronal activity were correlated in females with severe emotionality deficit following UCMS, and with altered activity of the amygdala. In males, small changes in emotionality following UCMS were associated with minor changes in prefrontal PV expression, and with hypoactivity of the nucleus accumbens. Our data suggest that prefrontal hypoactivity observed in stress-related mood disorders could result from stress-induced increases in PV expression, particularly in females. This increased vulnerability of the female prefrontal PV system to stress could underlie sex differences in the prevalence and symptomatology of stress-related mood disorders. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.
Chronic Stress and Posttraumatic Stress Disorders.
ERIC Educational Resources Information Center
Davidson, Laura M.; Baum, Andrew
1986-01-01
Examined the relationship between chronic stress and symptoms of posttraumatic stress syndrome in people living within five miles of the Three Mile Island (TMI) nuclear power station. Results provided evidence of substantive links between chronic stress and development of mild symptoms of posttraumatic stress disorder. (Author/BL)
Chronic stress, leukocyte subpopulations, and humoral response to latent viruses
DOE Office of Scientific and Technical Information (OSTI.GOV)
McKinnon, W.; Weisse, C.S.; Reynolds, C.P.
1989-01-01
Psychological stress has been shown to affect immune system status and function, but most studies of this relationship have focused on acute stress and/or laboratory situations. The present study compared total numbers of leukocytes and lymphocyte subpopulations (determined by flow cytometry) and antibody titers to latent and nonlatent viruses among a group of chronically stressed individuals living near the damaged Three Mile Island (TMI) nuclear power plant with those of a demographically comparable control group. Urinary catecholamine and cortisol levels were also examined. Residents of the TMI area exhibited greater numbers of neutrophils, which were positively correlated with epinephrine levels.more » The TMI group also exhibited fewer B lymphocytes, T-suppressor/cytotoxic lymphocytes, and natural killer cells. Antibody titers to herpes simplex were significantly different across groups as well, whereas titers to nonlatent rubella virus as well as IgG and IgM levels were comparable.« less
Food cravings mediate the relationship between chronic stress and body mass index.
Chao, Ariana; Grilo, Carlos M; White, Marney A; Sinha, Rajita
2015-06-01
This study examined the relationships between chronic stress, food cravings, and body mass index. A community-based sample of adults (N = 619) completed a comprehensive assessment battery and heights and weights were measured. Chronic stress had a significant direct effect on food cravings, and food cravings had a significant direct effect on body mass index. The total effect of chronic stress on body mass index was significant. Food cravings partially mediated the relationship between chronic stress and body mass index. These findings are consistent with research that chronic stress may potentiate motivation for rewarding substances and behaviors and indicate that high food cravings may contribute to stress-related weight gain. © The Author(s) 2015.
Age-related inflammation and insulin resistance: a review of their intricate interdependency.
Park, Min Hi; Kim, Dae Hyun; Lee, Eun Kyeong; Kim, Nam Deuk; Im, Dong Soon; Lee, Jaewon; Yu, Byung Pal; Chung, Hae Young
2014-12-01
Chronic inflammation is a major risk factor underlying aging and the associated diseases of aging; of particular interest is insulin resistance during aging. Chronic inflammation impairs normal lipid accumulation, adipose tissue function, mitochondrial function, and causes endoplasmic reticulum (ER) stress, which lead to insulin resistance. However, some studies show that insulin resistance itself amplifies chronic inflammation. The activity of the insulin-dependent Akt signaling pathway is highlighted because of its decrease in insulin-sensitive organs, like liver and muscle, which may underlie insulin resistance and hyperinsulinemia, and its increased levels in non-metabolic organs, such as kidney and aorta. In that the prevalence of obesity has increased substantially for all age groups in recent years, our review summarizes the data showing the involvement of chronic inflammation in obesity-induced insulin resistance, which perpetuates reciprocal interactions between the chronic inflammatory process and increased adiposity, thereby accelerating the aging process.
Hasan, Shirin; Fatima, Naureen; Bilal, Nayeem; Suhail, Nida; Fatima, Sabiha; Morgan, Enas N; Aldebasy, Yousef; Alzohairy, Mohammad A; Banu, Naheed
2013-06-01
Dietary restriction (DR) lowers steady-state levels of oxidative stress and alters behavioral, physiological and biochemical responses in mammals. However, various factors effect its application in humans like socio-cultural, appetite and the daily life stress. Physiological and psychological stress owing to fast-paced lifestyles, translates into oxidative stress. In this work, the role of chronic unpredictable stress (CUS) on the effects of short term DR in mice in terms of biochemical and oxidative stress parameters was investigated. Further, the modulatory role of multivitamin-mineral supplement (MVM) on CUS and DR induced biochemical changes was studied to delineate the role of micronutrient supplementation. DR treatment increased the antioxidant status in the circulation and liver of mice but in the presence of chronic stressors there was a significant shift towards the pro-oxidant state. A decrease was found in the activities of antioxidant enzymes superoxide dismutase, catalase, and glutathione-S-transferase and glutathione reductase in the rats exposed to CUS with DR (CUS+DR), with an increased malondialdehyde and a decreased glutathione (GSH) levels as compared to the controls. Liver function enzymes-glutamate oxaloacetate transaminase and glutamate pyruvate transaminase were increased and a significant DNA damage was observed. Oral MVM supplement significantly improved this oxidative deterioration. Hence, MVM supplementation appears to potentially offer an effective intervention in the DR regimen to combat daily life physical and mental stress. Copyright © 2013 Elsevier Ltd. All rights reserved.
Simas, Bruna B; Nunes, Everson A; Crestani, Carlos C; Speretta, Guilherme F
2018-05-01
Obesity and chronic stress are considered independent risk factors for the development of cardiovascular diseases and changes in autonomic system activity. However, the cardiovascular consequences induced by the association between high-fat diet (HFD) and chronic stress are not fully understood. We hypothesized that the association between HFD and exposure to a chronic variable stress (CVS) protocol for four weeks might exacerbate the cardiovascular and metabolic disturbances in rats when compared to these factors singly. To test this hypothesis, male Wistar rats were divided into four groups: control-standard chow diet (SD; n = 8); control-HFD (n = 8); CVS-SD (n = 8); and CVS-HFD (n = 8). The CVS consisted of repeated exposure of the rats to different inescapable and unpredictable stressors (restraint tress; damp sawdust, cold, swim stress and light cycle inversion). We evaluated cardiovascular function, autonomic activity, dietary intake, adiposity and metabolism. The HFD increased body weight, adiposity and blood glucose concentration (∼15%) in both control and CVS rats. The CVS-HFD rats showed decreased insulin sensitivity (25%) compared to CVS-SD rats. The control-HFD and CVS-HFD rats presented increased intrinsic heart rate (HR) values (∼8%). CVS increased cardiac sympathetic activity (∼65%) in both SD- and HFD-fed rats. The HFD increased basal HR (∼10%). Blood pressure and baroreflex analyzes showed no differences among the experimental groups. In conclusion, the present data indicate absence of interaction on autonomic imbalance evoked by either CVS or HFD. Additionally, HFD increased HR and evoked metabolic disruptions which are independent of stress exposure.
Complex interaction of sensory and motor signs and symptoms in chronic CRPS.
Huge, Volker; Lauchart, Meike; Magerl, Walter; Beyer, Antje; Moehnle, Patrick; Kaufhold, Wibke; Schelling, Gustav; Azad, Shahnaz Christina
2011-04-29
Spontaneous pain, hyperalgesia as well as sensory abnormalities, autonomic, trophic, and motor disturbances are key features of Complex Regional Pain Syndrome (CRPS). This study was conceived to comprehensively characterize the interaction of these symptoms in 118 patients with chronic upper limb CRPS (duration of disease: 43±23 months). Disease-related stress, depression, and the degree of accompanying motor disability were likewise assessed. Stress and depression were measured by Posttraumatic Stress Symptoms Score and Center for Epidemiological Studies Depression Test. Motor disability of the affected hand was determined by Sequential Occupational Dexterity Assessment and Michigan Hand Questionnaire. Sensory changes were assessed by Quantitative Sensory Testing according to the standards of the German Research Network on Neuropathic Pain. Almost two-thirds of all patients exhibited spontaneous pain at rest. Hand force as well as hand motor function were found to be substantially impaired. Results of Quantitative Sensory Testing revealed a distinct pattern of generalized bilateral sensory loss and hyperalgesia, most prominently to blunt pressure. Patients reported substantial motor complaints confirmed by the objective motor disability testings. Interestingly, patients displayed clinically relevant levels of stress and depression. We conclude that chronic CRPS is characterized by a combination of ongoing pain, pain-related disability, stress and depression, potentially triggered by peripheral nerve/tissue damage and ensuing sensory loss. In order to consolidate the different dimensions of disturbances in chronic CRPS, we developed a model based on interaction analysis suggesting a complex hierarchical interaction of peripheral (injury/sensory loss) and central factors (pain/disability/stress/depression) predicting motor dysfunction and hyperalgesia.
Complex Interaction of Sensory and Motor Signs and Symptoms in Chronic CRPS
Huge, Volker; Lauchart, Meike; Magerl, Walter; Beyer, Antje; Moehnle, Patrick; Kaufhold, Wibke; Schelling, Gustav; Azad, Shahnaz Christina
2011-01-01
Spontaneous pain, hyperalgesia as well as sensory abnormalities, autonomic, trophic, and motor disturbances are key features of Complex Regional Pain Syndrome (CRPS). This study was conceived to comprehensively characterize the interaction of these symptoms in 118 patients with chronic upper limb CRPS (duration of disease: 43±23 months). Disease-related stress, depression, and the degree of accompanying motor disability were likewise assessed. Stress and depression were measured by Posttraumatic Stress Symptoms Score and Center for Epidemiological Studies Depression Test. Motor disability of the affected hand was determined by Sequential Occupational Dexterity Assessment and Michigan Hand Questionnaire. Sensory changes were assessed by Quantitative Sensory Testing according to the standards of the German Research Network on Neuropathic Pain. Almost two-thirds of all patients exhibited spontaneous pain at rest. Hand force as well as hand motor function were found to be substantially impaired. Results of Quantitative Sensory Testing revealed a distinct pattern of generalized bilateral sensory loss and hyperalgesia, most prominently to blunt pressure. Patients reported substantial motor complaints confirmed by the objective motor disability testings. Interestingly, patients displayed clinically relevant levels of stress and depression. We conclude that chronic CRPS is characterized by a combination of ongoing pain, pain-related disability, stress and depression, potentially triggered by peripheral nerve/tissue damage and ensuing sensory loss. In order to consolidate the different dimensions of disturbances in chronic CRPS, we developed a model based on interaction analysis suggesting a complex hierarchical interaction of peripheral (injury/sensory loss) and central factors (pain/disability/stress/depression) predicting motor dysfunction and hyperalgesia. PMID:21559525
Pérez-Valenzuela, Catherine; Gárate-Pérez, Macarena F.; Sotomayor-Zárate, Ramón; Delano, Paul H.; Dagnino-Subiabre, Alexies
2016-01-01
Chronic stress impairs auditory attention in rats and monoamines regulate neurotransmission in the primary auditory cortex (A1), a brain area that modulates auditory attention. In this context, we hypothesized that norepinephrine (NE) levels in A1 correlate with the auditory attention performance of chronically stressed rats. The first objective of this research was to evaluate whether chronic stress affects monoamines levels in A1. Male Sprague–Dawley rats were subjected to chronic stress (restraint stress) and monoamines levels were measured by high performance liquid chromatographer (HPLC)-electrochemical detection. Chronically stressed rats had lower levels of NE in A1 than did controls, while chronic stress did not affect serotonin (5-HT) and dopamine (DA) levels. The second aim was to determine the effects of reboxetine (a selective inhibitor of NE reuptake) on auditory attention and NE levels in A1. Rats were trained to discriminate between two tones of different frequencies in a two-alternative choice task (2-ACT), a behavioral paradigm to study auditory attention in rats. Trained animals that reached a performance of ≥80% correct trials in the 2-ACT were randomly assigned to control and stress experimental groups. To analyze the effects of chronic stress on the auditory task, trained rats of both groups were subjected to 50 2-ACT trials 1 day before and 1 day after of the chronic stress period. A difference score (DS) was determined by subtracting the number of correct trials after the chronic stress protocol from those before. An unexpected result was that vehicle-treated control rats and vehicle-treated chronically stressed rats had similar performances in the attentional task, suggesting that repeated injections with vehicle were stressful for control animals and deteriorated their auditory attention. In this regard, both auditory attention and NE levels in A1 were higher in chronically stressed rats treated with reboxetine than in vehicle-treated animals. These results indicate that NE has a key role in A1 and attention of stressed rats during tone discrimination. PMID:28082872
Chiba, Shuichi; Numakawa, Tadahiro; Ninomiya, Midori; Richards, Misty C; Wakabayashi, Chisato; Kunugi, Hiroshi
2012-10-01
Stress and the resulting increase in glucocorticoid levels have been implicated in the pathophysiology of depressive disorders. We investigated the effects of chronic restraint stress (CRS: 6 hours × 28 days) on anxiety- and depression-like behaviors in rats and on the possible changes in glucocorticoid receptor (GR) expression as well as brain-derived neurotrophic factor (BDNF)-dependent neural function in the prefrontal cortex (PFC). We observed significant reductions in body weight gain, food intake and sucrose preference from 1 week after the onset of CRS. In the 5th week of CRS, we conducted open-field (OFT), elevated plus-maze (EPM) and forced swim tests (FST). We observed a decrease in the number of entries into open arms during the EPM (anxiety-like behavior) and increased immobility during the FST (depression-like behavior). When the PFC was removed after CRS and subject to western blot analysis, the GR expression reduced compared with control, while the levels of BDNF and its receptors remained unchanged. Basal glutamate concentrations in PFC acute slice which were measured by high performance liquid chromatography were not influenced by CRS. However, BDNF-induced glutamate release was attenuated after CRS. These results suggest that reduced GR expression and altered BDNF function may be involved in chronic stress-induced anxiety--and depression-like behaviors. Copyright © 2012 Elsevier Inc. All rights reserved.
Somatic experiencing: using interoception and proprioception as core elements of trauma therapy
Payne, Peter; Levine, Peter A.; Crane-Godreau, Mardi A.
2015-01-01
Here we present a theory of human trauma and chronic stress, based on the practice of Somatic Experiencing® (SE), a form of trauma therapy that emphasizes guiding the client's attention to interoceptive, kinesthetic, and proprioceptive experience. SE™ claims that this style of inner attention, in addition to the use of kinesthetic and interoceptive imagery, can lead to the resolution of symptoms resulting from chronic and traumatic stress. This is accomplished through the completion of thwarted, biologically based, self-protective and defensive responses, and the discharge and regulation of excess autonomic arousal. We present this theory through a composite case study of SE treatment; based on this example, we offer a possible neurophysiological rationale for the mechanisms involved, including a theory of trauma and chronic stress as a functional dysregulation of the complex dynamical system formed by the subcortical autonomic, limbic, motor and arousal systems, which we term the core response network (CRN). We demonstrate how the methods of SE help restore functionality to the CRN, and we emphasize the importance of taking into account the instinctive, bodily based protective reactions when dealing with stress and trauma, as well as the effectiveness of using attention to interoceptive, proprioceptive and kinesthetic sensation as a therapeutic tool. Finally, we point out that SE and similar somatic approaches offer a supplement to cognitive and exposure therapies, and that mechanisms similar to those discussed in the paper may also be involved in the benefits of meditation and other somatic practices. PMID:25699005
Hypercaloric diet modulates effects of chronic stress: a behavioral and biometric study on rats.
Oliveira, Carla de; Oliveira, Cleverson Moraes de; de Macedo, Isabel Cristina; Quevedo, Alexandre S; Filho, Paulo Ricardo Marques; Silva, Fernanda Ribeiro da; Vercelino, Rafael; de Souza, Izabel C Custodio; Caumo, Wolnei; Torres, Iraci L S
2015-01-01
Obesity is a chronic disease that has been associated with chronic stress and hypercaloric diet (HD) consumption. Increased ingestion of food containing sugar and fat ingredients (comfort food) is proposed to "compensate" chronic stress effects. However, this eating habit may increase body fat depositions leading to obesity. This study evaluated behavioral/physiological parameters seeking to establish whether there is an association between the effects of HD intake and stress, and to test the hypothesis that the development of anxious behavior and obesity during chronic stress periods depends on the type of diet. Sixty-day-old male Wistar rats (n = 100) were divided into four groups: standard chow, hypercaloric diet, chronic stress/standard chow and chronic stress/hypercaloric diet. Chronic stress was induced by restraint stress exposure for 1 h/day, for 80 d. At the end of this period, rat behavior was evaluated using open-field and plus-maze tests. The results showed that HD alone increased weight gain and adipose deposition in subcutaneous and mesenteric areas. However, stress reduced weight gain and adipose tissue in these areas. HD also increased naso-anal length and concurrent stress prevented this. Behavioral data indicated that stress increased anxiety-like behaviors and comfort food reduced these anxiogenic effects; locomotor activity increased in rats fed with HD. Furthermore, HD decreased corticosterone levels and stress increased adrenal weight. The data indicate that when rats are given HD and experience chronic stress this association reduces the pro-obesogenic effects of HD, and decreases adrenocortical activity.
Posttraumatic stress disorder (PTSD) and the dermatology patient.
Gupta, Madhulika A; Jarosz, Patricia; Gupta, Aditya K
Dermatologic symptoms can be associated with posttraumatic stress disorder (PTSD) in several situations: (1) as features of some core PTSD symptoms, such as intrusion symptoms manifesting as cutaneous sensory flashbacks, as autonomic arousal manifesting as night sweats and idiopathic urticaria, and as dissociation manifesting as numbness and dermatitis artefacta; (2) the cutaneous psychosomatic effects of emotional and physical neglect and sexual abuse (eg, infantile eczema, cutaneous self-injury, and body-focused repetitive behaviors such as trichotillomania and skin picking disorder) and eating disorders, which can have dermatologic effects; (3) the direct effect of physical or sexual abuse or catastrophic life events (eg, earthquakes) on the skin; and (4) as a result of significant alterations in hypothalamic-pituitary-adrenal and sympatho-adrenal medullary axes, which can affect neuroendocrine and immune functions, and can lead to exacerbations of stress-reactive inflammatory dermatoses such as psoriasis, chronic urticaria, and atopic dermatitis. Elevated levels of inflammatory biomarkers and impaired epidermal barrier function have been reported in situations involving sustained psychologic stress and sleep deprivation. Some PTSD patients show hypothalamic-pituitary-adrenal axis hyporesponsiveness and higher circulating T lymphocytes, which can exacerbate immune-mediated dermatologic disorders. PTSD should be considered an underlying factor in the chronic, recurrent, or treatment-resistant stress-reactive dermatoses and in patients with self-induced dermatoses. Copyright © 2017 Elsevier Inc. All rights reserved.
Chen, Guotao; Yang, Baibing; Chen, Jianhuai; Zhu, Leilei; Jiang, Hesong; Yu, Wen; Zang, Fengchao; Chen, Yun; Dai, Yutian
2018-02-01
Non-organic erectile dysfunction (noED) at functional imaging has been related to abnormal brain activity and requires animal models for further research on the associated molecular mechanisms. To develop a noED animal model based on chronic mild stress and investigate brain activity changes. We used 6 weeks of chronic mild stress to induce depression. The sucrose consumption test was used to assess the hedonic state. The apomorphine test and sexual behavior test were used to select male rats with ED. Rats with depression and ED were considered to have noED. Blood oxygen level-dependent-based resting-state functional magnetic resonance imaging (fMRI) studies were conducted on these rats, and the amplitude of low-frequency fluctuations and functional connectivity were analyzed to determine brain activity changes. The sexual behavior test and resting-state fMRI were used for outcome measures. The induction of depression was confirmed by the sucrose consumption test. A low intromission ratio and increased mount and intromission latencies were observed in male rats with depression. No erection was observed in male rats with depression during the apomorphine test. Male rats with depression and ED were considered to have noED. The possible central pathologic mechanism shown by fMRI involved the amygdaloid body, dorsal thalamus, hypothalamus, caudate-putamen, cingulate gyrus, insular cortex, visual cortex, sensory cortex, motor cortex, and cerebellum. Similar findings have been found in humans. The present study provided a novel noED rat model for further research on the central mechanism of noED. The present study developed a novel noED rat model and analyzed brain activity changes based at fMRI. The observed brain activity alterations might not extend to humans. The present study developed a novel noED rat model with brain activity alterations related to sexual arousal and erection, which will be helpful for further research involving the central mechanism of noED. Chen G, Yang B, Chen J, et al. Changes in Male Rat Sexual Behavior and Brain Activity Revealed by Functional Magnetic Resonance Imaging in Response to Chronic Mild Stress. J Sex Med 2018;15:136-147. Copyright © 2017 International Society for Sexual Medicine. Published by Elsevier Inc. All rights reserved.
Liu, Zibing; Geng, Wenye; Jiang, Chuanwei; Zhao, Shujun; Liu, Yong; Zhang, Ying; Qin, Shucun; Li, Chenxu; Zhang, Xinfang; Si, Yanhong
2017-09-01
Chronic obstructive pulmonary disease induced by tobacco smoke has been regarded as a great health problem worldwide. The purpose of this study is to evaluate the protective effect of hydrogen-rich saline, a novel antioxidant, on chronic obstructive pulmonary disease and explore the underlying mechanism. Sprague-Dawley rats were made chronic obstructive pulmonary disease models via tobacco smoke exposure for 12 weeks and the rats were treated with 10 ml/kg hydrogen-rich saline intraperitoneally during the last 4 weeks. Lung function testing indicated hydrogen-rich saline decreased lung airway resistance and increased lung compliance and the ratio of forced expiratory volume in 0.1 s/forced vital capacity in chronic obstructive pulmonary disease rats. Histological analysis revealed that hydrogen-rich saline alleviated morphological impairments of lung in tobacco smoke-induced chronic obstructive pulmonary disease rats. ELISA assay showed hydrogen-rich saline lowered the levels of pro-inflammatory cytokines (IL-8 and IL-6) and anti-inflammatory cytokine IL-10 in bronchoalveolar lavage fluid and serum of chronic obstructive pulmonary disease rats. The content of malondialdehyde in lung tissue and serum was also determined and the data indicated hydrogen-rich saline suppressed oxidative stress reaction. The protein expressions of mucin MUC5C and aquaporin 5 involved in mucus hypersecretion were analyzed by Western blot and ELISA and the data revealed that hydrogen-rich saline down-regulated MUC5AC level in bronchoalveolar lavage fluid and lung tissue and up-regulated aquaporin 5 level in lung tissue of chronic obstructive pulmonary disease rats. In conclusion, these results suggest that administration of hydrogen-rich saline exhibits significant protective effect on chronic obstructive pulmonary disease through alleviating inflammation, reducing oxidative stress and lessening mucus hypersecretion in tobacco smoke-induced chronic obstructive pulmonary disease rats. Impact statement This study was designed to evaluate protective effect of hydrogen-rich saline, a novel antioxidant, on tobacco smoke (TS)-induced chronic obstructive pulmonary disease (COPD) in rats and explore the underlying mechanism. Our results suggest that administration of hydrogen-rich saline improves lung function and alleviates morphological impairments of lung through alleviating inflammation, reducing oxidative stress and lessening mucus hypersecretion in TS-induced COPD rats.
McCormick, Gail L; Langkilde, Tracy
2014-08-01
Prolonged elevations of glucocorticoids due to long-duration (chronic) stress can suppress immune function. It is unclear, however, how natural stressors that result in repeated short-duration (acute) stress, such as frequent agonistic social encounters or predator attacks, fit into our current understanding of the immune consequences of stress. Since these types of stressors may activate the immune system due to increased risk of injury, immune suppression may be reduced at sites where individuals are repeatedly exposed to potentially damaging stressors. We tested whether repeated acute elevation of corticosterone (CORT, a glucocorticoid) suppresses immune function in eastern fence lizards (Sceloporus undulatus), and whether this effect varies between lizards from high-stress (high baseline CORT, invaded by predatory fire ants) and low-stress (low baseline CORT, uninvaded) sites. Lizards treated daily with exogenous CORT showed higher hemagglutination of novel proteins by their plasma (a test of constitutive humoral immunity) than control lizards, a pattern that was consistent across sites. There was no significant effect of CORT treatment on bacterial killing ability of plasma. These results suggest that repeated elevations of CORT, which are common in nature, produce immune effects more typical of those expected at the acute end of the acute-chronic spectrum and provide no evidence of modulated consequences of elevated CORT in animals from high-stress sites. Copyright © 2014 Elsevier Inc. All rights reserved.
Synergistic impacts of global warming on the resilience of coral reefs
Bozec, Yves-Marie; Mumby, Peter J.
2015-01-01
Recent epizootics have removed important functional species from Caribbean coral reefs and left communities vulnerable to alternative attractors. Global warming will impact reefs further through two mechanisms. A chronic mechanism reduces coral calcification, which can result in depressed somatic growth. An acute mechanism, coral bleaching, causes extreme mortality when sea temperatures become anomalously high. We ask how these two mechanisms interact in driving future reef state (coral cover) and resilience (the probability of a reef remaining within a coral attractor). We find that acute mechanisms have the greatest impact overall, but the nature of the interaction with chronic stress depends on the metric considered. Chronic and acute stress act additively on reef state but form a strong synergy when influencing resilience by intensifying a regime shift. Chronic stress increases the size of the algal basin of attraction (at the expense of the coral basin), whereas coral bleaching pushes the system closer to the algal attractor. Resilience can change faster—and earlier—than a change in reef state. Therefore, we caution against basing management solely on measures of reef state because a loss of resilience can go unnoticed for many years and then become disproportionately more difficult to restore.
Vrshek-Schallhorn, Suzanne; Stroud, Catherine B.; Mineka, Susan; Hammen, Constance; Zinbarg, Richard; Wolitzky-Taylor, Kate; Craske, Michelle G.
2016-01-01
Few studies comprehensively evaluate which types of life stress are most strongly associated with depressive episode onsets, over and above other forms of stress, and comparisons between acute and chronic stress are particularly lacking. Past research implicates major (moderate to severe) stressful life events (SLEs), and to a lesser extent, interpersonal forms of stress; research conflicts on whether dependent or independent SLEs are more potent, but theory favors dependent SLEs. The present study used five years of annual diagnostic and life stress interviews of chronic stress and SLEs from two separate samples (Sample 1 N = 432; Sample 2 N = 146) transitioning into emerging adulthood; one sample also collected early adversity interviews. Multivariate analyses simultaneously examined multiple forms of life stress to test hypotheses that all major SLEs, then particularly interpersonal forms of stress, and then dependent SLEs would contribute unique variance to major depressive episode (MDE) onsets. Person-month survival analysis consistently implicated chronic interpersonal stress and major interpersonal SLEs as statistically unique predictors of risk for MDE onset. In addition, follow-up analyses demonstrated temporal precedence for chronic stress; tested differences by gender; showed that recent chronic stress mediates the relationship between adolescent adversity and later MDE onsets; and revealed interactions of several forms of stress with socioeconomic status (SES). Specifically, as SES declined, there was an increasing role for non-interpersonal chronic stress and non-interpersonal major SLEs, coupled with a decreasing role for interpersonal chronic stress. Implications for future etiological research were discussed. PMID:26301973
Corrêa, M S; Vedovelli, K; Giacobbo, B L; de Souza, C E B; Ferrari, P; de Lima Argimon, I I; Walz, J C; Kapczinski, F; Bromberg, E
2015-02-12
The progressive loss of memory and autonomy of Alzheimer's Disease (AD) patients, together with their characteristic behavioral and psychological symptoms, subjects their family caregivers to chronic stress. Several studies indicate that these caregivers are predisposed to cognitive impairments, but the physiological correlates of these alterations remain to be elucidated. Analyze the effects of chronic stress of family caregivers of AD patients on cognition, cortisol/DHEA ratios and BDNF levels and investigate the relation between these variables. Seventeen family caregivers (64.83 ± 3.64 years) of patients with AD and eighteen non-caregivers (58.29 ± 3.16 years) completed stress, depression and anxiety inventories. Exclusion criteria were current neurological disorders, major unstable medical illnesses, use of medications that could interfere with cognitive or HPA axis function and dementia. Attention, working memory and executive function were assessed with Digit Span and Trail Making tests, and declarative memory was analyzed with the Logical Memory test. Saliva was collected at 8 AM and 10 PM and its cortisol and DHEA levels determined by radioimmunoassay. Serum BDNF levels were measured by sandwich-ELISA. Results were analyzed with independent samples t test, covariance analysis and linear regressions. The statistical significance was set at p<0.05 and all p values were adjusted with Holm's Method. Caregivers showed more stress, depression and anxiety symptoms than non-caregivers, as well as significantly worse performances on attention, working memory and executive function tests. Caregivers also had higher cortisol/DHEA ratios and lower BDNF levels than non-caregivers. Cortisol/DHEA ratios, especially at 10 PM, were negatively related with all cognitive tasks in which caregivers showed impaired performance. On the other hand, the only cognitive task that related with the BDNF level was digit span. This study showed that caregivers' cognitive impairment is related with alterations on cortisol/DHEA ratios, and that chronic stress experienced by these subjects has the potential to alter their BDNF levels. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.
Brown, Timothy A.; Rosellini, Anthony J.
2011-01-01
The direct and interactive effects of neuroticism and stressful life events (chronic and episodic stressors) on the severity and temporal course of depression symptoms were examined in 826 outpatients with mood and anxiety disorders, assessed on three occasions over a one-year period (intake, 6- and 12-month follow-ups). Neuroticism, chronic stress, and episodic stress were uniquely associated with intake depression symptom severity. A significant interaction effect indicated that the strength of the effect of neuroticism on initial depression severity increased as chronic stress increased. Although neuroticism did not have a significant direct effect on the temporal course of depression symptoms, chronic stress significantly moderated this relationship such that neuroticism had an increasingly deleterious effect on depression symptom improvement as the level of chronic stress over follow-up increased. In addition, chronic stress over follow-up (but not episodic stress) was uniquely predictive of less depression symptom improvement. Consistent with a stress generation framework, however, initial depression symptom severity was positively associated with chronic stress during follow-up. The results are discussed in regard to diathesis-stress conceptual models of emotional disorders and the various roles of stressful life events in the onset, severity, and maintenance of depressive psychopathology. PMID:21381799
Chronic variable stress improves glucose tolerance in rats with sucrose-induced prediabetes
Packard, Amy E. B.; Ghosal, Sriparna; Herman, James P.; Woods, Stephen C.; Ulrich-Lai, Yvonne M.
2014-01-01
The incidence of type-2 diabetes (T2D) and the burden it places on individuals, as well as society as a whole, compels research into the causes, factors and progression of this disease. Epidemiological studies suggest that chronic stress exposure may contribute to the development and progression of T2D in human patients. To address the interaction between chronic stress and the progression of T2D, we developed a dietary model of the prediabetic state in rats utilizing unlimited access to 30% sucrose solution (in addition to unlimited access to normal chow and water), which led to impaired glucose tolerance despite elevated insulin levels. We then investigated the effects of a chronic variable stress paradigm (CVS; twice daily exposure to an unpredictable stressor for 2 weeks) on metabolic outcomes in this prediabetic model. Chronic stress improved glucose tolerance in prediabetic rats following a glucose challenge. Importantly, pair-fed control groups revealed that the beneficial effect of chronic stress did not result from the decreased food intake or body weight gain that occurred during chronic stress. The present work suggests that chronic stress in rodents can ameliorate the progression of diet-induced prediabetic disease independent of chronic stress-induced decreases in food intake and body weight. PMID:25001967
Oxidative stress and hepatic Nox proteins in chronic hepatitis C and hepatocellular carcinoma
Choi, Jinah; Corder, Nicole L. B.; Koduru, Bhargav; Wang, Yiyan
2014-01-01
Hepatocellular carcinoma (HCC) is the most common liver cancer and a leading cause of cancer-related mortality in the world. Hepatitis C virus (HCV) is a major etiologic agent of HCC. A majority of HCV infections lead to chronic infection that can progress to cirrhosis and eventually, HCC and liver failure. A common pathogenic feature present in HCV infection, and other conditions leading to HCC, is oxidative stress. HCV directly increases superoxide and H2O2 formation in hepatocytes by elevating Nox protein expression and sensitizing mitochondria to reactive oxygen species generation while decreasing glutathione. Nitric oxide synthesis and hepatic iron are also elevated. Furthermore, activation of phagocytic NADPH oxidase 2 (Nox2) of host immune cells is likely to exacerbate oxidative stress in HCV-infected patients. Key mechanisms of HCC include: genome instability, epigenetic regulation, inflammation with chronic tissue injury and sustained cell proliferation, and modulation of cell growth and death. Oxidative stress, or Nox proteins, plays various roles in these mechanisms. Nox proteins also function in hepatic fibrosis, which commonly precedes HCC, and Nox4 elevation by HCV was mediated by transforming growth factor beta. This review summarizes mechanisms of oncogenesis by HCV, highlighting the role of oxidative stress and hepatic Nox enzymes in HCC. PMID:24816297
Tartter, Margaret; Hammen, Constance; Bower, Julienne E.; Brennan, Patricia A.; Cole, Steven
2015-01-01
Aims Close to one third of patients with major depression show increases in pro-inflammatory cytokines, which are in turn associated with risk for inflammatory disease. Genetic variants that enhance immune reactivity may thus enhance inflammatory and depressive reactions to stress. The aim of the present study was to investigate a trio of functional SNPs in the promoter regions of IL6 (-174G>C, rs1800795), IL1β (-511C>T, rs16944), and TNF (-308G>A, rs1800629) as moderators of the relationship between chronic stress exposure and elevations in depressive symptoms. Methods Participants were 444 Australian youth (mean age = 20.12) whose exposure to chronic stress in the past 6 months was assessed using the semi-structured UCLA Life Stress Interview, and who completed the Beck Depression Inventory II at ages 15 and 20. Between ages 22 and 25, all participants in the selected sample provided blood samples for genotyping. Results In line with a hypothesized moderation effect, -174G allele carriers at IL6 had fewer depressive symptoms following interpersonal stress, relative to C/C homozygotes with equal interpersonal stress exposure. However, IL6 genotype did not moderate the effects of non-interpersonal stress exposure (i.e., financial, work and health-related difficulties) on depression. Also in line with hypotheses, the -511C allele in IL1β, previously associated with higher IL-1β expression, was associated with more severe depression following chronic interpersonal stress exposure, relative to T/T homozygotes. Again, the moderating effect was specific to interpersonal stressors and did not generalize to non-interpersonal stress. TNF was not a moderator of the effects of either interpersonal or non-interpersonal stress on later depression outcomes. Conclusion Findings were consistent with the hypothesis that pro-inflammatory genetic variation increases the risk of stress-induced depression. The present results provide evidence of a genetic mechanism contributing to individual differences in depressive symptomatology following interpersonal stress exposure. PMID:25596176
Kittel-Schneider, S; Spiegel, S; Renner, T; Romanos, M; Reif, A; Reichert, S; Heupel, J; Schnetzler, L; Stopper, H; Jacob, C
2016-07-01
Methylphenidate (MPH) is widely used to treat childhood and adult attention-deficit/hyperactivity disorder (ADHD). However, there are still safety concerns about side effects in long-term treatment. The aim of this study was to assess cytogenetic effects of chronic MPH treatment in adult ADHD and to find out if chronic social stress is attenuated by medication and to investigate whether chronic psychosocial stress leads to mutagenic effects by itself. Lymphocytes for micronucleus assay and saliva samples for cortisol measurement were collected from adult ADHD patients and healthy controls. Stress exposure of the last 3 months was assessed by TICS (Trier Inventory for Chronic Stress). We could not detect an influence of MPH treatment on cytogenetic markers. ADHD patients displayed significantly higher chronic stress levels measured by TICS compared to healthy controls which were influenced by duration of MPH treatment. ADHD patients also showed significantly lower basal cortisol levels. We could corroborate that there are neither cytogenetic effects of chronic stress nor of chronic MPH intake even after several years of treatment. © Georg Thieme Verlag KG Stuttgart · New York.
Taylor, S.B.; Anglin, J.M.; Paode, P.R.; Riggert, A.G.; Olive, M.F.; Conrad, C.D.
2014-01-01
Chronic stress is an established risk factor in the development of addiction. Addiction is characterized by a progressive transition from casual drug use to habitual and compulsive drug use. The ability of chronic stress to facilitate the transition to addiction may be mediated by increased engagement of the neurocircuitries underlying habitual behavior and addiction. In the present study, striatal morphology was evaluated after two weeks of chronic variable stress in male Sprague-Dawley rats. Dendritic complexity of medium spiny neurons was visualized and quantified with Golgi staining in the dorsolateral and dorsomedial striatum, as well as in the nucleus accumbens core and shell. In separate cohorts, the effects of chronic stress on habitual behavior and the acute locomotor response to methamphetamine were also assessed. Chronic stress resulted in increased dendritic complexity in the dorsolateral striatum and nucleus accumbens core, regions implicated in habitual behavior and addiction, while decreased complexity was found in the nucleus accumbens shell, a region critical for the initial rewarding effects of drugs of abuse. Chronic stress did not affect dendritic complexity in the dorsomedial striatum. A parallel shift toward habitual learning strategies following chronic stress was also identified. There was an initial reduction in acute locomotor response to methamphetamine, but no lasting effect as a result of chronic stress exposure. These findings suggest that chronic stress may facilitate the recruitment of habit- and addiction-related neurocircuitries through neuronal restructuring in the striatum. PMID:25242641
The Neuropeptide Tac2 Controls a Distributed Brain State Induced by Chronic Social Isolation Stress.
Zelikowsky, Moriel; Hui, May; Karigo, Tomomi; Choe, Andrea; Yang, Bin; Blanco, Mario R; Beadle, Keith; Gradinaru, Viviana; Deverman, Benjamin E; Anderson, David J
2018-05-17
Chronic social isolation causes severe psychological effects in humans, but their neural bases remain poorly understood. 2 weeks (but not 24 hr) of social isolation stress (SIS) caused multiple behavioral changes in mice and induced brain-wide upregulation of the neuropeptide tachykinin 2 (Tac2)/neurokinin B (NkB). Systemic administration of an Nk3R antagonist prevented virtually all of the behavioral effects of chronic SIS. Conversely, enhancing NkB expression and release phenocopied SIS in group-housed mice, promoting aggression and converting stimulus-locked defensive behaviors to persistent responses. Multiplexed analysis of Tac2/NkB function in multiple brain areas revealed dissociable, region-specific requirements for both the peptide and its receptor in different SIS-induced behavioral changes. Thus, Tac2 coordinates a pleiotropic brain state caused by SIS via a distributed mode of action. These data reveal the profound effects of prolonged social isolation on brain chemistry and function and suggest potential new therapeutic applications for Nk3R antagonists. Copyright © 2018 Elsevier Inc. All rights reserved.
Trauma and posttraumatic stress disorder in women with chronic pelvic pain.
Meltzer-Brody, Samantha; Leserman, Jane; Zolnoun, Denniz; Steege, John; Green, Emily; Teich, Alice
2007-04-01
To examine the effect of abuse history, other major trauma, and posttraumatic stress disorder (PTSD) on medical symptoms and health-related daily functioning in women with chronic pelvic pain. We administered a questionnaire to 713 consecutive women seen in a referral-based pelvic pain clinic. We found that 46.8% reported having either a sexual or physical abuse history. A total of 31.3% had a positive screen for PTSD. Using regression and path analysis, controlling for demographic variables, we found that a trauma history was associated with worse daily physical functioning due to poor health (P<.001), more medical symptoms (P<.001), more lifetime surgeries (P<.001), more days spent in bed (P<.001), and more dysfunction due to pain (P<.001). Furthermore, a positive screen for PTSD was highly related to most measures of poor health status (P<.001) and somewhat explained the trauma-related poor health status. The association of trauma with poor health may be due in part to the development of PTSD resulting from trauma. These findings demonstrate the importance of screening for trauma and PTSD in women with chronic pelvic pain. II.
Palić, Dusan; Andreasen, Claire B; Herolt, Dawn M; Menzel, Bruce W; Roth, James A
2006-01-01
Stimulatory effects of yeast beta-1,3-1,6-glucans on neutrophils have long been recognized, but effects of glucans on degranulation of primary granules in fish neutrophils have not been previously reported. Neutrophil function was monitored during in vitro and in vivo application of glucans to non- (NS), acute- (AS) and chronically stressed (CS) fish. beta-Glucan proved to be a strong and quick (80%, 2 min) stimulant of degranulation. Dietary glucan increased degranulation in NS fish, and prevented a decrease in AS fish. Degranulation in CS fish returned to NS levels 3 days after the glucan diet was fed. Fathead minnows appear to be a useful model to investigate neutrophil degranulation in fish exposed to different environmental conditions and immunomodulators. Use of beta-glucans in fish diets prior to AS and during chronic stress can enhance neutrophil function, potentially increasing disease resistance and survival rates after transportation or exposure to poor water quality.
Ongoing Oxidative Stress Causes Subclinical Neuronal Dysfunction in the Recovery Phase of EAE
Radbruch, Helena; Bremer, Daniel; Guenther, Robert; Cseresnyes, Zoltan; Lindquist, Randall; Hauser, Anja E.; Niesner, Raluca
2016-01-01
Most multiple sclerosis (MS) patients develop over time a secondary progressive disease course, characterized histologically by axonal loss and atrophy. In early phases of the disease, focal inflammatory demyelination leads to functional impairment, but the mechanism of chronic progression in MS is still under debate. Reactive oxygen species generated by invading and resident central nervous system (CNS) macrophages have been implicated in mediating demyelination and axonal damage, but demyelination and neurodegeneration proceed even in the absence of obvious immune cell infiltration, during clinical recovery in chronic MS. Here, we employ intravital NAD(P)H fluorescence lifetime imaging to detect functional NADPH oxidases (NOX1–4, DUOX1, 2) and, thus, to identify the cellular source of oxidative stress in the CNS of mice affected by experimental autoimmune encephalomyelitis (EAE) in the remission phase of the disease. This directly affects neuronal function in vivo, as monitored by cellular calcium levels using intravital FRET–FLIM, providing a possible mechanism of disease progression in MS. PMID:27014271
Chronic stress impacts the cardiovascular system: animal models and clinical outcomes.
Golbidi, Saeid; Frisbee, Jefferson C; Laher, Ismail
2015-06-15
Psychological stresses are associated with cardiovascular diseases to the extent that cardiovascular diseases are among the most important group of psychosomatic diseases. The longstanding association between stress and cardiovascular disease exists despite a large ambiguity about the underlying mechanisms. An array of possibilities have been proposed including overactivity of the autonomic nervous system and humoral changes, which then converge on endothelial dysfunction that initiates unwanted cardiovascular consequences. We review some of the features of the two most important stress-activated systems, i.e., the humoral and nervous systems, and focus on alterations in endothelial function that could ensue as a result of these changes. Cardiac and hematologic consequences of stress are also addressed briefly. It is likely that activation of the inflammatory cascade in association with oxidative imbalance represents key pathophysiological components of stress-induced cardiovascular changes. We also review some of the commonly used animal models of stress and discuss the cardiovascular outcomes reported in these models of stress. The unique ability of animals for adaptation under stressful conditions lessens the extrapolation of laboratory findings to conditions of human stress. An animal model of unpredictable chronic stress, which applies various stress modules in a random fashion, might be a useful solution to this predicament. The use of stress markers as indicators of stress intensity is also discussed in various models of animal stress and in clinical studies. Copyright © 2015 the American Physiological Society.
Influence of Chronic Social Defeat Stress on Digestive System Functioning in Rats.
Toyoda, Atsushi; Iio, Wataru; Matsukawa, Noriko; Tsukahara, Takamitsu
2015-01-01
Mental disorders are caused by chronic psychosocial stress, and can cause various symptoms related to the digestive system. We focused on the conjugation of intestinal absorptive and enzymatic mechanisms between chronic social defeat stress (CSDS) model rats and healthy controls to obtain general biochemical data about the intestine of the model in this study. The small intestine was divided into three regions: proximal (PI), middle (MI), and distal (DI); mRNA expression associated with a nutrient absorption, glucose absorption activity, and activities of the digestive enzymes such as maltase, sucrase and lactase was measured. Expression of both sodium-dependent glucose transporter 1 (Sglt1) and glucose transporter 2 gene tended to be higher in the stress group compared to the control group in PI. Glucose absorption was also higher in PI of the CSDS group. Sglt1 and peptide transporter 1 gene expressions in the CSDS group were significantly higher than those in the control group in DI. Furthermore, in PI, expression of the aquaporin 1 gene was significantly higher in the CSDS group compared to the control group. Thus, absorption of some nutrients might be higher in the small intestine of the CSDS rat.
Increased Risk Taking in Relation to Chronic Stress in Adults
Ceccato, Smarandita; Kudielka, Brigitte M.; Schwieren, Christiane
2016-01-01
Chronic stress is a public health problem that affects a significant part of the population. While the physiological damage it causes is under ongoing scrutiny, its behavioral effects have been overlooked. This is one of the first studies to examine the relation between chronic stress and decision-making, using a standard lottery paradigm. We measured risk taking in the gain domain through binary choices between financially incentivized lotteries. We then measured self-reported chronic stress with the Trier Inventory for the Assessment of Chronic Stress (TICS). We additionally collected hair samples in a subsample of volunteers, in order to quantify accumulation of the stress hormone cortisol. We discovered a significant positive, though modest, correlation between self-reported chronic stress and risk taking that is stronger for women than for men. This confirms part of the findings in acute stress research that show a connection between higher stress and increased risk taking. However, unlike the biologically-based results from acute stress research, we did not identify a significant relation between hair cortisol and behavior. In line with previous literature, we found a clear gender difference in risk taking and self-reports: women generally take less risk and report slightly higher stress levels than men. We conclude that perceived chronic stress can impact behavior in risky situations. PMID:26858663
Stress-induced hyperlocomotion as a confounding factor in anxiety and depression models in mice.
Strekalova, T; Spanagel, R; Dolgov, O; Bartsch, D
2005-05-01
Chronic stress is broadly used to model anxiety and depression. However, in chronic stress models, anxiety- and depression-like behaviors might be masked by unspecific effects of stress. We tested whether chronic stress in mice can induce unspecific changes in locomotion, and whether these changes interfere with the measurement of anxiety and forced-swimming behaviors. Also, we studied these latter behaviors in relation to the duration of stress, the lighting conditions during testing, and after the injection of diazepam. We employed a 4-week chronic stress paradigm, adopted from a model of stress-induced anhedonia and a 1-week subchronic stress, both consisting of rat exposure, restraint stress and tail suspension. Chronically stressed mice, tested under bright and moderate illumination, exhibited 'anxiolytic-like' behavior along with prolonged swimming and hyperactivity. These behaviors were not detectable under weak illumination or after the injection of diazepam (0.25 mg/kg). Instead, normal locomotion, increased anxiety and inhibited swimming were revealed under these conditions. Thus, chronic stress can induce hyperlocomotion in mice, which is triggered by acute stressors such as light, and interferes with the evaluation of anxiety and forced swimming. One week of stress did not change locomotion and forced swimming, and increased anxiety irrespective of illumination applied during testing. Our data can possibly explain previously reported contradictions in the behavioral testing of mice with chronic stress models of anxiety and depression.
Mouton, Alan J; Ninh, Van K; El Hajj, Elia C; El Hajj, Milad C; Gilpin, Nicholas W; Gardner, Jason D
2016-08-01
Chronic alcohol abuse is one of the leading causes of dilated cardiomyopathy (DCM) in the United States. Volume overload (VO) also produces DCM characterized by left ventricular (LV) dilatation and reduced systolic and diastolic function, eventually progressing to congestive heart failure. For this study, we hypothesized that chronic alcohol exposure would exacerbate cardiac dysfunction and remodeling due to VO. Aortocaval fistula surgery was used to induce VO, and compensatory cardiac remodeling was allowed to progress for either 3days (acute) or 8weeks (chronic). Alcohol was administered via chronic intermittent ethanol vapor (EtOH) for 2weeks before the acute study and for the duration of the 8week chronic study. Temporal alterations in LV function were assessed by echocardiography. At the 8week end point, pressure-volume loop analysis was performed by LV catheterization and cardiac tissue collected. EtOH did not exacerbate LV dilatation (end-systolic and diastolic diameter) or systolic dysfunction (fractional shortening, ejection fraction) due to VO. The combined stress of EtOH and VO decreased the eccentric index (posterior wall thickness to end-diastolic diameter ratio), increased end-diastolic pressure (EDP), and elevated diastolic wall stress. VO also led to increases in posterior wall thickness, which was not observed in the VO+EtOH group, and wall thickness significantly correlated with LV BNP expression. VO alone led to increases in interstitial collagen staining (picrosirius red), which while not statistically significant, tended to be decreased by EtOH. VO increased LV collagen I protein expression, whereas in rats with VO+EtOH, LV collagen I was not elevated relative to Sham. The combination of VO and EtOH also led to increases in LV collagen III expression relative to Sham. Rats with VO+EtOH had significantly lower collagen I/III ratio than rats with VO alone. During the acute remodeling phase of VO (3days), VO significantly increased collagen III expression, whereas this effect was not observed in rats with VO+EtOH. In conclusion, chronic EtOH accelerates the development of elevated wall stress and promotes early eccentric remodeling in rats with VO. Our data indicate that these effects may be due to disruptions in compensatory hypertrophy and extracellular matrix remodeling in response to volume overload. Copyright © 2016 Elsevier Ltd. All rights reserved.
Diabetes accelerates retinal ganglion cell dysfunction in mice lacking sigma receptor 1
Ha, Yonju; Saul, Alan; Tawfik, Amany; Zorrilla, Eric P.; Ganapathy, Vadivel
2012-01-01
Purpose Sigma receptor 1 (σR1) is a non-opioid transmembrane protein that may act as a molecular chaperone at the endoplasmic reticulum–mitochondrial membrane. Ligands for σR1, such as (+)-pentazocine [(+)-PTZ], confer marked retinal neuroprotection in vivo and in vitro. Recently we analyzed the retinal phenotype of mice lacking σR1 (σR1 KO) and observed normal retinal morphology and function in young mice (5–30 weeks) but diminished negative scotopic threshold responses (nSTRs), retinal ganglion cell (RGC) loss, and disruption of optic nerve axons consistent with inner retinal dysfunction by 1 year. These data led us to test the hypothesis that σR1 may be critical in forestalling chronic retinal stress; diabetes was used as the model of chronic stress. Methods To determine whether σR1 is required for (+)-PTZ neuroprotective effects, primary RGCs isolated from wild-type (WT) and σR1 KO mice were exposed to xanthine–xanthine oxidase (10 µM:2 mU/ml) to induce oxidative stress in the presence or absence of (+)-PTZ. Cell death was evaluated by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) analysis. To assess effects of chronic stress on RGC function, diabetes was induced in 3-week C57BL/6 (WT) and σR1 KO mice, using streptozotocin to yield four groups: WT nondiabetic (WT non-DB), WT diabetic (WT-DB), σR1 KO non-DB, and σR1 KO-DB. After 12 weeks of diabetes, when mice were 15-weeks old, intraocular pressure (IOP) was recorded, electrophysiologic testing was performed (including detection of nSTRs), and the number of RGCs was counted in retinal histological sections. Results In vitro studies showed that (+)-PTZ could not prevent oxidative stress-induced death of RGCs harvested from σR1 KO mice but afforded robust protection against death of RGCs harvested from WT mice. In the studies of chronic stress induced by diabetes, the IOP measured in the four mouse groups was within the normal range; however, there was a significant increase in the IOP of σR1 KO-DB mice (16±0.5 mmHg) compared to the other groups tested (σR1 KO non-DB, WT non-DB, WT-DB: ~12±0.6 mmHg). Regarding electrophysiologic testing, the nSTRs of σR1 KO non-DB mice were similar to WT non-DB mice at 15 weeks; however, they were significantly lower in σR1 KO-DB mice (5±1 µV) compared to the other groups, including, notably, σR1 KO-nonDB (12±2 µV). As expected, the number of RGCs in σR1 KO non-DB mice was similar to WT non-DB mice at 15 weeks, but under chronic stress of diabetes there were fewer RGCs in retinas of σR1 KO-DB mice. Conclusions This is the first report showing unequivocally that the neuroprotective effects of (+)-PTZ require σR1. σR1 KO mice show normal retinal structure and function at young ages; however, when subjected to the chronic stress of diabetes, there is an acceleration of retinal functional deficits in σR1 KO mice such that ganglion cell dysfunction is observed at a much earlier age than nondiabetic σR1 KO mice. The data support the hypothesis that σR1 plays a key role in modulating retinal stress and may be an important target for retinal disease. PMID:23233788
Stress-induced changes in human decision-making are reversible.
Soares, J M; Sampaio, A; Ferreira, L M; Santos, N C; Marques, F; Palha, J A; Cerqueira, J J; Sousa, N
2012-07-03
Appropriate decision-making relies on the ability to shift between different behavioral strategies according to the context in which decisions are made. A cohort of subjects exposed to prolonged stress, and respective gender- and age-matched controls, performed an instrumental behavioral task to assess their decision-making strategies. The stressed cohort was reevaluated after a 6-week stress-free period. The behavioral analysis was complemented by a functional magnetic resonance imaging (fMRI) study to detect the patterns of activation in corticostriatal networks ruling goal-directed and habitual actions. Using structural MRI, the volumes of the main cortical and subcortical regions implicated in instrumental behavior were determined. Here we show that chronic stress biases decision-making strategies in humans toward habits, as choices of stressed subjects become insensitive to changes in outcome value. Using functional imaging techniques, we demonstrate that prolonged exposure to stress in humans causes an imbalanced activation of the networks that govern decision processes, shifting activation from the associative to the sensorimotor circuits. These functional changes are paralleled by atrophy of the medial prefrontal cortex and the caudate, and by an increase in the volume of the putamina. Importantly, a longitudinal assessment of the stressed individuals showed that both the structural and functional changes triggered by stress are reversible and that decisions become again goal-directed.
Li, Haifeng; Ding, Fei; Xiao, Lingyun; Shi, Ruona; Wang, Hongyu; Han, Wenjing
2017-01-01
Oxidative stress is known to impair architecture and function of cells, which may lead to various chronic diseases, and therefore therapeutic and nutritional interventions to reduce oxidative damages represent a viable strategy in the amelioration of oxidative stress-related disorders, including neurodegenerative diseases. Over the past decade, a variety of natural polysaccharides from functional and medicinal foods have attracted great interest due to their antioxidant functions such as scavenging free radicals and reducing oxidative damages. Interestingly, these antioxidant polysaccharides are also found to attenuate neuronal damages and alleviate cognitive and motor decline in a range of neurodegenerative models. It has recently been established that the neuroprotective mechanisms of polysaccharides are related to oxidative stress-related pathways, including mitochondrial function, antioxidant defense system and pathogenic protein aggregation. Here, we first summarize the current status of antioxidant function of food-derived polysaccharides and then attempt to appraise their anti-neurodegeneration activities. PMID:28753972
Sripada, Rebecca K; Swain, James E; Evans, Gary W; Welsh, Robert C; Liberzon, Israel
2014-08-01
Convergent research suggests that childhood poverty is associated with perturbation in the stress response system. This might extend to aberrations in the connectivity of large-scale brain networks, which subserve key cognitive and emotional functions. Resting-state brain activity was measured in adults with a documented history of childhood poverty (n=26) and matched controls from middle-income families (n=26). Participants also underwent a standard laboratory social stress test and provided saliva samples for cortisol assay. Childhood poverty was associated with reduced default mode network (DMN) connectivity. This, in turn, was associated with higher cortisol levels in anticipation of social stress. These results suggest a possible brain basis for exaggerated stress sensitivity in low-income individuals. Alterations in DMN may be associated with less efficient cognitive processing or greater risk for development of stress-related psychopathology among individuals who experienced the adversity of chronic childhood poverty.
A Role for Brain Stress Systems in Addiction
Koob, George F.
2009-01-01
Drug addiction is a chronically relapsing disorder characterized by compulsion to seek and take drugs and has been linked to dysregulation of brain regions that mediate reward and stress. Activation of brain stress systems is hypothesized to be key to the negative emotional state produced by dependence that drives drug seeking through negative reinforcement mechanisms. This review explores the role of brain stress systems (corticotropin-releasing factor, norepinephrine, orexin [hypocretin], vasopressin, dynorphin) and brain antistress systems (neuropeptide Y, nociceptin [orphanin FQ]) in drug dependence, with emphasis on the neuropharmacological function of extrahypothalamic systems in the extended amygdala. The brain stress and antistress systems may play a key role in the transition to and maintenance of drug dependence once initiated. Understanding the role of brain stress and antistress systems in addiction provides novel targets for treatment and prevention of addiction and insights into the organization and function of basic brain emotional circuitry. PMID:18614026
Comparison of the effects of acute and chronic psychological stress on metabolic features in rats*
Rostamkhani, Fatemeh; Zardooz, Homeira; Zahediasl, Saleh; Farrokhi, Babak
2012-01-01
This study was aimed to compare the effects of acute and chronic psychological stress on metabolic factors. Forty-two male Wistar rats were divided into control and stressed groups. Stress was applied by a communication box acutely (1 d) and chronically (15 and 30 d). Blood sampling was carried out by retro-orbital-puncture method. The plasma levels of glucose, cholesterol, triglyceride, insulin, and corticosterone were measured. In addition, feed and water intake, latency to eat and drink, adrenal and body weights were determined. Acute and chronic psychological stress did not significantly change basal plasma corticosterone levels. However, immediately (1 min) after acute exposure to stress, plasma corticosterone level increased compared to that before stress exposure. Acute stress increased plasma insulin levels significantly. Fifteen days of stress exposure resulted in plasma glucose increase. Chronic stress significantly increased feed intake, latency to eat, and adrenal weight compared to acute stress. The body weights of both control and stressed groups increased markedly during the experiment. Homeostasis model assessment of insulin resistance (HOMA-IR) index did not change significantly in the stressed group. In conclusion, application of acute and chronic psychological stress leads to different metabolic and/or behavioral changes but the metabolic changes resulting from acute exposure to stress seem to be more pronounced. PMID:23125083
Lisowski, Pawel; Juszczak, Grzegorz R; Goscik, Joanna; Wieczorek, Marek; Zwierzchowski, Lech; Swiergiel, Artur H
2011-01-01
There is increasing evidence that mood disorders may derive from the impact of environmental pressure on genetically susceptible individuals. Stress-induced hippocampal plasticity has been implicated in depression. We studied hippocampal transcriptomes in strains of mice that display high (HA) and low (LA) swim stress-induced analgesia and that differ in emotional behaviors and responses to different classes of antidepressants. Chronic mild stress (CMS) affected expression of a number of genes common for both strains. CMS also produced strain specific changes in expression suggesting that hippocampal responses to stress depend on genotype. Considerably larger number of genes, biological processes, molecular functions, biochemical pathways, and gene networks were affected by CMS in LA than in HA mice. The results suggest that potential drug targets against detrimental effects of stress include glutamate transporters, and cholinergic, cholecystokinin (CCK), glucocorticoids, and thyroid hormones receptors. Furthermore, some biological processes evoked by stress and different between the strains, such as apoptosis, neurogenesis and chromatin modifications, may be responsible for the long-term, irreversible effects of stress and suggest a role for epigenetic regulation of mood related stress responses. Copyright © 2010 Elsevier B.V. and ECNP. All rights reserved.
Cui, Shan; Wang, Jin-Hui
2017-01-01
Background Major depression, persistent low mood, is one of common psychiatric diseases. Chronic stressful life is believed to be a major risk factor that leads to dysfunctions of the limbic system. However, a large number of the individuals with experiencing chronic stress do not suffer from major depression, called as resilience. Endogenous mechanisms underlying neuronal invulnerability to chronic stress versus major depression are largely unknown. As GABAergic neurons are vulnerable to chronic stress and their impairments is associated with major depression, we have examined whether the invulnerability of GABAergic neurons in the limbic system is involved in resilience. Results GABAergic neurons in the nucleus accumbens from depression-like mice induced by chronic unpredictable mild stress appear the decreases in their GABA release, spiking capability and excitatory input reception, compared with those in resilience mice. The levels of decarboxylase and vesicular GABA transporters decrease in depression-like mice, but not resilience. Materials and Methods Mice were treated by chronic unpredictable mild stress for three weeks. Depression-like behaviors or resilience was confirmed by seeing whether their behaviors change significantly in sucrose preference, Y-maze and forced swimming tests. Mice from controls as well as depression and resilience in response to chronic unpredictable mild stress were studied in terms of GABAergic neuron activity in the nucleus accumbens by cell electrophysiology and protein chemistry. Conclusions The impairment of GABAergic neurons in the nucleus accumbens is associated with major depression. The invulnerability of GABAergic neurons to chronic stress may be one of cellular mechanisms for the resilience to chronic stress. PMID:28415589
Taylor, S B; Anglin, J M; Paode, P R; Riggert, A G; Olive, M F; Conrad, C D
2014-11-07
Chronic stress is an established risk factor in the development of addiction. Addiction is characterized by a progressive transition from casual drug use to habitual and compulsive drug use. The ability of chronic stress to facilitate the transition to addiction may be mediated by increased engagement of the neurocircuitries underlying habitual behavior and addiction. In the present study, striatal morphology was evaluated after 2 weeks of chronic variable stress in male Sprague-Dawley rats. Dendritic complexity of medium spiny neurons was visualized and quantified with Golgi staining in the dorsolateral and dorsomedial striatum, as well as in the nucleus accumbens core and shell. In separate cohorts, the effects of chronic stress on habitual behavior and the acute locomotor response to methamphetamine were also assessed. Chronic stress resulted in increased dendritic complexity in the dorsolateral striatum and nucleus accumbens core, regions implicated in habitual behavior and addiction, while decreased complexity was found in the nucleus accumbens shell, a region critical for the initial rewarding effects of drugs of abuse. Chronic stress did not affect dendritic complexity in the dorsomedial striatum. A parallel shift toward habitual learning strategies following chronic stress was also identified. There was an initial reduction in acute locomotor response to methamphetamine, but no lasting effect as a result of chronic stress exposure. These findings suggest that chronic stress may facilitate the recruitment of habit- and addiction-related neurocircuitries through neuronal restructuring in the striatum. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.
Association between Mastication, the Hippocampus, and the HPA Axis: A Comprehensive Review.
Azuma, Kagaku; Zhou, Qian; Niwa, Masami; Kubo, Kin-Ya
2017-08-03
Mastication is mainly involved in food intake and nutrient digestion with the aid of teeth. Mastication is also important for preserving and promoting general health, including hippocampus-dependent cognition. Both animal and human studies indicate that mastication influences hippocampal functions through the end product of the hypothalamic-pituitary-adrenal (HPA) axis, glucocorticoid (GC). Epidemiologic studies suggest that masticatory dysfunction in aged individuals, such as that resulting from tooth loss and periodontitis, acting as a source of chronic stress, activates the HPA axis, leading to increases in circulating GCs and eventually inducing various physical and psychological diseases, such as cognitive impairment, cardiovascular disorders, and osteoporosis. Recent studies demonstrated that masticatory stimulation or chewing during stressful conditions suppresses the hyperactivity of the HPA axis via GCs and GC receptors within the hippocampus, and ameliorates chronic stress-induced hippocampus-dependent cognitive deficits. Here, we provide a comprehensive overview of current research regarding the association between mastication, the hippocampus, and HPA axis activity. We also discuss several potential molecular mechanisms involved in the interactions between mastication, hippocampal function, and HPA axis activity.
Association between Mastication, the Hippocampus, and the HPA Axis: A Comprehensive Review
Azuma, Kagaku; Zhou, Qian; Niwa, Masami; Kubo, Kin-ya
2017-01-01
Mastication is mainly involved in food intake and nutrient digestion with the aid of teeth. Mastication is also important for preserving and promoting general health, including hippocampus-dependent cognition. Both animal and human studies indicate that mastication influences hippocampal functions through the end product of the hypothalamic-pituitary-adrenal (HPA) axis, glucocorticoid (GC). Epidemiologic studies suggest that masticatory dysfunction in aged individuals, such as that resulting from tooth loss and periodontitis, acting as a source of chronic stress, activates the HPA axis, leading to increases in circulating GCs and eventually inducing various physical and psychological diseases, such as cognitive impairment, cardiovascular disorders, and osteoporosis. Recent studies demonstrated that masticatory stimulation or chewing during stressful conditions suppresses the hyperactivity of the HPA axis via GCs and GC receptors within the hippocampus, and ameliorates chronic stress-induced hippocampus-dependent cognitive deficits. Here, we provide a comprehensive overview of current research regarding the association between mastication, the hippocampus, and HPA axis activity. We also discuss several potential molecular mechanisms involved in the interactions between mastication, hippocampal function, and HPA axis activity. PMID:28771175
Zhang, Yingmei; Xia, Zhi; La Cour, Karissa H; Ren, Jun
2011-11-01
The present study was designed to examine the impact of chronic Akt activation on endoplasmic reticulum (ER) stress-induced cardiac mechanical anomalies, if any, and the underlying mechanism involved. Wild-type and transgenic mice with cardiac-specific overexpression of the active mutant of Akt (Myr-Akt) were subjected to the ER stress inducer tunicamycin (1 or 3 mg/kg). ER stress led to compromised echocardiographic (elevated left ventricular end-systolic diameter and reduced fractional shortening) and cardiomyocyte contractile function, intracellular Ca(2+) mishandling, and cell survival in wild-type mice associated with mitochondrial damage. In vitro ER stress induction in murine cardiomyocytes upregulated the ER stress proteins Gadd153, GRP78, and phospho-eIF2α, and promoted reactive oxygen species production, carbonyl formation, apoptosis, mitochondrial membrane potential loss, and mitochondrial permeation pore (mPTP) opening associated with overtly impaired cardiomyocyte contractile and intracellular Ca(2+) properties. Interestingly, these anomalies were mitigated by chronic Akt activation or the ER chaperon tauroursodeoxycholic acid (TUDCA). Treatment with tunicamycin also dephosphorylated Akt and its downstream signal glycogen synthase kinase 3β (GSK3β) (leading to activation of GSK3β), the effect of which was abrogated by Akt activation and TUDCA. The ER stress-induced cardiomyocyte contractile and mitochondrial anomalies were obliterated by the mPTP inhibitor cyclosporin A, GSK3β inhibitor SB216763, and ER stress inhibitor TUDCA. This research reported the direct relationship between ER stress and cardiomyocyte contractile and mitochondrial anomalies for the first time. Taken together, these data suggest that ER stress may compromise cardiac contractile and intracellular Ca(2+) properties, possibly through the Akt/GSK3β-dependent impairment of mitochondrial integrity.
Chronic Pain and Chronic Stress: Two Sides of the Same Coin?
Abdallah, Chadi G; Geha, Paul
2017-02-01
Pain and stress share significant conceptual and physiological overlaps. Both phenomena challenge the body's homeostasis and necessitate decision-making to help animals adapt to their environment. In addition, chronic stress and chronic pain share a common behavioral model of failure to extinguish negative memories. Yet, they also have discrepancies such that the final brain endophenotype of posttraumatic stress disorder, depression, and chronic pain appears to be different among the three conditions, and the role of the hypothalamic-pituitary-adrenal axis remains unclear in the physiology of pain. Persistence of either stress or pain is maladaptive and could lead to compromised well-being. In this brief review, we highlight the commonalities and differences between chronic stress and chronic pain, while focusing particularly on the central role of the limbic brain. We assess the current attempts in the field to conceptualize and understand chronic pain, within the context of knowledge gained from the stress literature. The limbic brain-including hippocampus, amygdala, and ventromedial pre-frontal cortex-plays a critical role in learning. These brain areas integrate incoming nociceptive or stress signals with internal state, and generate learning signals necessary for decision-making. Therefore, the physiological and structural remodeling of this learning circuitry is observed in conditions such as chronic pain, depression, and posttraumatic stress disorder, and is also linked to the risk of onset of these conditions.
Nassau, Jack H.; Tien, Karen; Fritz, Gregory K.
2012-01-01
Objective Provide an orientation to psychoneuroimmunology, a rationale for including assessments of immune function in intervention studies of pediatric chronic illness, review the current literature, and provide recommendations for future research. Methods Using electronic searches and previous reviews, selected and reviewed published studies in which immunological changes related to psychological interventions were assessed in pediatric samples. Results Eight studies were identified and included in the review. These utilized a range of interventions (e.g., disclosure and hypnosis) and included a variety of pediatric samples (e.g., those with asthma, HIV infection, or lupus). Conclusions Results suggest that psychological intervention can influence immune function in pediatric samples. Recommendations for advancing our knowledge by studying populations for whom the immune system plays an active role in disease pathophysiology, measuring disease-relevant immune mediators, studying pediatric patients under times of stress, and focusing on interventions aimed at altering the stress system are provided. PMID:17848391
Shang, Xueliang; Shang, Yingchun; Fu, Jingxuan; Zhang, Tao
2017-08-01
The aim of this study was to examine if nicotine was able to improve cognition deficits in a mouse model of chronic mild stress. Twenty-four male C57BL/6 mice were divided into three groups: control, stress, and stress with nicotine treatment. The animal model was established by combining chronic unpredictable mild stress (CUMS) and isolated feeding. Mice were exposed to CUMS continued for 28 days, while nicotine (0.2 mg/kg) was also administrated for 28 days. Weight and sucrose consumption were measured during model establishing period. The anxiety and behavioral despair were analyzed using the forced swim test (FST) and open-field test (OFT). Spatial cognition was evaluated using Morris water maze (MWM) test. Following behavioral assessment, both long-term potentiation (LTP) and depotentiation (DEP) were recorded in the hippocampal dentate gyrus (DG) region. Both synaptic and Notch1 proteins were measured by Western. Nicotine increased stressed mouse's sucrose consumption. The MWM test showed that spatial learning and reversal learning in stressed animals were remarkably affected relative to controls, whereas nicotine partially rescued cognitive functions. Additionally, nicotine considerably alleviated the level of anxiety and the degree of behavioral despair in stressed mice. It effectively mitigated the depression-induced impairment of hippocampal synaptic plasticity, in which both the LTP and DEP were significantly inhibited in stressed mice. Moreover, nicotine enhanced the expression of synaptic and Notch1 proteins in stressed animals. The results suggest that nicotine ameliorates the depression-like symptoms and improves the hippocampal synaptic plasticity closely associated with activating transmembrane ion channel receptors and Notch signaling components. Graphical Abstract ᅟ.
Maluach, Alfred M; Misquitta, Keith A; Prevot, Thomas D; Fee, Corey; Sibille, Etienne; Banasr, Mounira; Andreazza, Ana C
2017-01-01
Chronic stress is implicated in the development of various psychiatric illnesses including major depressive disorder. Previous reports suggest that patients with major depressive disorder have increased levels of oxidative stress, including higher levels of DNA/RNA oxidation found in postmortem studies, especially within brain regions responsible for the cognitive and emotional processes disrupted in the disorder. Here, we aimed to investigate whether unpredictable chronic mild stress in mice induces neuronal DNA/RNA oxidation in the prelimbic, infralimbic, and cingulate cortices of the frontal cortex and the basolateral amygdala and to explore potential associations with depressive-like behaviors. We expected that animals subjected to unpredictable chronic mild stress will present higher levels of DNA/RNA oxidation, which will be associated with anxiety-/depressive-like behaviors. C57BL/6J mice were assigned to unpredictable chronic mild stress or nonstress conditions (n = 10/group, 50% females). Following five weeks of unpredictable chronic mild stress exposure, mice were tested in a series of behavioral tests measuring anxiety- and depressive-like behaviors. Frontal cortex and amygdala sections were then immunolabeled for neuronal nuclei, a marker of post-mitotic neurons and anti-8-hydroxy-2-deoxyguanosine/8-oxo-7,8-dihydroguanosine, which reflects both DNA and RNA oxidation. Levels of neuronal DNA/RNA oxidation were increased in the frontal cortex of mice subjected to unpredictable chronic mild stress ( p = 0.0207). Levels of neuronal DNA/RNA oxidation in the frontal cortex were positively correlated with z-emotionality scores for latency to feed in the novelty-suppressed feeding test ( p = 0.0031). Statistically significant differences were not detected in basolateral amygdala levels of neuronal DNA/RNA oxidation between nonstress- and unpredictable chronic mild stress-exposed mice, nor were correlations found with behavioral performances for this region. Our results demonstrate that unpredictable chronic mild stress induces a significant increase in neuronal DNA/RNA oxidation in the frontal cortex that correlate with behavioral readouts of the stress response. A lack of DNA/RNA oxidation alterations in the basolateral amygdala suggests greater vulnerability of frontal cortex neurons to DNA/RNA oxidation in response to unpredictable chronic mild stress. These findings add support to the hypothesis that chronic stress-induced damage to DNA/RNA may be an additional molecular mechanism underlying cellular dysfunctions associated with chronic stress and present in stress-related disorders.
Ivanov, A V; Bobyntsev, I I; Shepeleva, O M; Kryukov, A A; Andreeva, L A; Myasoedov, N F
2017-05-01
We studied the effect of intraperitoneal administration of peptide ACTG 4-7 -PGP to male Wistar rats in doses of 5, 50, 150, and 450 μg/kg on the morphofunctional state of hepatocytes in chronic emotional and painful stress. A dose-dependent stress-limiting effect of the peptide was observed: it normalized the protein synthesis function of the liver and serum activity of ALT. The anticytolytic effect of the peptide increased with increasing its dose against the background of the increase in the relative number of multinucleated and multinucleolated cells and deceleration of the recovery of serum protein concentration. The decrease of hepatocyte cytolysis against the background of more intense morphological signs of protein synthesis processes attests to activation of reparative processes in the liver parenchyma via enhanced constitutional synthesis of protein.
A molecular web: endoplasmic reticulum stress, inflammation, and oxidative stress.
Chaudhari, Namrata; Talwar, Priti; Parimisetty, Avinash; Lefebvre d'Hellencourt, Christian; Ravanan, Palaniyandi
2014-01-01
Execution of fundamental cellular functions demands regulated protein folding homeostasis. Endoplasmic reticulum (ER) is an active organelle existing to implement this function by folding and modifying secretory and membrane proteins. Loss of protein folding homeostasis is central to various diseases and budding evidences suggest ER stress as being a major contributor in the development or pathology of a diseased state besides other cellular stresses. The trigger for diseases may be diverse but, inflammation and/or ER stress may be basic mechanisms increasing the severity or complicating the condition of the disease. Chronic ER stress and activation of the unfolded-protein response (UPR) through endogenous or exogenous insults may result in impaired calcium and redox homeostasis, oxidative stress via protein overload thereby also influencing vital mitochondrial functions. Calcium released from the ER augments the production of mitochondrial Reactive Oxygen Species (ROS). Toxic accumulation of ROS within ER and mitochondria disturbs fundamental organelle functions. Sustained ER stress is known to potentially elicit inflammatory responses via UPR pathways. Additionally, ROS generated through inflammation or mitochondrial dysfunction could accelerate ER malfunction. Dysfunctional UPR pathways have been associated with a wide range of diseases including several neurodegenerative diseases, stroke, metabolic disorders, cancer, inflammatory disease, diabetes mellitus, cardiovascular disease, and others. In this review, we have discussed the UPR signaling pathways, and networking between ER stress-induced inflammatory pathways, oxidative stress, and mitochondrial signaling events, which further induce or exacerbate ER stress.
Redox mechanisms in hepatic chronic wound healing and fibrogenesis
Novo, Erica; Parola, Maurizio
2008-01-01
Reactive oxygen species (ROS) generated within cells or, more generally, in a tissue environment, may easily turn into a source of cell and tissue injury. Aerobic organisms have developed evolutionarily conserved mechanisms and strategies to carefully control the generation of ROS and other oxidative stress-related radical or non-radical reactive intermediates (that is, to maintain redox homeostasis), as well as to 'make use' of these molecules under physiological conditions as tools to modulate signal transduction, gene expression and cellular functional responses (that is, redox signalling). However, a derangement in redox homeostasis, resulting in sustained levels of oxidative stress and related mediators, can play a significant role in the pathogenesis of major human diseases characterized by chronic inflammation, chronic activation of wound healing and tissue fibrogenesis. This review has been designed to first offer a critical introduction to current knowledge in the field of redox research in order to introduce readers to the complexity of redox signalling and redox homeostasis. This will include ready-to-use key information and concepts on ROS, free radicals and oxidative stress-related reactive intermediates and reactions, sources of ROS in mammalian cells and tissues, antioxidant defences, redox sensors and, more generally, the major principles of redox signalling and redox-dependent transcriptional regulation of mammalian cells. This information will serve as a basis of knowledge to introduce the role of ROS and other oxidative stress-related intermediates in contributing to essential events, such as the induction of cell death, the perpetuation of chronic inflammatory responses, fibrogenesis and much more, with a major focus on hepatic chronic wound healing and liver fibrogenesis. PMID:19014652
Chronic Stress Impairs Prefrontal Cortex-Dependent Response Inhibition and Spatial Working Memory
Mika, Agnieszka; Mazur, Gabriel J.; Hoffman, Ann N.; Talboom, Joshua S.; Bimonte-Nelson, Heather A.; Sanabria, Federico; Conrad, Cheryl D.
2012-01-01
Chronic stress leads to neurochemical and structural alterations in the prefrontal cortex (PFC) that correspond to deficits in PFC-mediated behaviors. The present study examined the effects of chronic restraint stress on response inhibition (using a response-withholding task, fixed-minimum interval schedule of reinforcement, or FMI), and working memory (using a radial arm water maze, RAWM). Adult male Sprague Dawley rats were first trained on the RAWM and subsequently trained on FMI. Following acquisition of FMI, rats were assigned to a restraint stress (6h/d/28d in wire mesh restrainers) or control condition. Immediately after chronic stress, rats were tested on FMI and subsequently on RAWM. FMI results suggest that chronic stress reduces response inhibition capacity and motivation to initiate the task on selective conditions when food reward was not obtained on the preceding trial. RAWM results suggest that chronic stress produces transient deficits in working memory without altering previously consolidated reference memory. Behavioral measures from FMI failed to correlate with metrics from RAWM except for one in which changes in FMI timing precision negatively correlated with changes in RAWM working memory errors for the controls, a finding that was not observed following chronic stress. Fisher’s r to z transformation revealed no significant differences between control and stress with correlation coefficients. These findings are the first to show that chronic stress impairs both response inhibition and working memory, two behaviors that have never been direct compared within the same animals following chronic stress, using FMI, an appetitive task, and RAWM, a non-appetitive task. PMID:22905921
Louch, Gemma; O'Hara, Jane; Gardner, Peter; O'Connor, Daryl B
2017-12-01
Stress is a significant concern for individuals and organisations. Few studies have explored stress, burnout and patient safety in hospital nursing on a daily basis at the individual level. This study aimed to examine the effects of chronic stress and daily hassles on safety perceptions, the effect of chronic stress on daily hassles experienced and chronic stress as a potential moderator. Utilising a daily diary design, 83 UK hospital nurses completed three end-of-shift diaries, yielding 324 person days. Hassles, safety perceptions and workplace cognitive failure were measured daily, and a baseline questionnaire included a measure of chronic stress. Hierarchical multivariate linear modelling was used to analyse the data. Higher chronic stress was associated with more daily hassles, poorer perceptions of safety and being less able to practise safely, but not more workplace cognitive failure. Reporting more daily hassles was associated with poorer perceptions of safety, being less able to practise safely and more workplace cognitive failure. Chronic stress did not moderate daily associations. The hassles reported illustrate the wide-ranging hassles nurses experienced. The findings demonstrate, in addition to chronic stress, the importance of daily hassles for nurses' perceptions of safety and the hassles experienced by hospital nurses on a daily basis. Nurses perceive chronic stress and daily hassles to contribute to their perceptions of safety. Measuring the number of daily hassles experienced could proactively highlight when patient safety threats may arise, and as a result, interventions could usefully focus on the management of daily hassles.
Chronic psychological stress activates BMP4-dependent extramedullary erythropoiesis
Vignjević, Sanja; Budeč, Mirela; Marković, Dragana; Đikić, Dragoslava; Mitrović, Olivera; Mojsilović, Slavko; Đurić, Sanja Vranješ; Koko, Vesna; Čokić, Bojana Beleslin; Čokić, Vladan; Jovčić, Gordana
2014-01-01
Psychological stress affects different physiological processes including haematopoiesis. However, erythropoietic effects of chronic psychological stress remain largely unknown. The adult spleen contains a distinct microenvironment favourable for rapid expansion of erythroid progenitors in response to stressful stimuli, and emerging evidence suggests that inappropriate activation of stress erythropoiesis may predispose to leukaemic transformation. We used a mouse model to study the influence of chronic psychological stress on erythropoiesis in the spleen and to investigate potential mediators of observed effects. Adult mice were subjected to 2 hrs daily restraint stress for 7 or 14 consecutive days. Our results showed that chronic exposure to restraint stress decreased the concentration of haemoglobin in the blood, elevated circulating levels of erythropoietin and corticosterone, and resulted in markedly increased number of erythroid progenitors and precursors in the spleen. Western blot analysis revealed significantly decreased expression of both erythropoietin receptor and glucocorticoid receptor in the spleen of restrained mice. Furthermore, chronic stress enhanced the expression of stem cell factor receptor in the red pulp. Moreover, chronically stressed animals exhibited significantly increased expression of bone morphogenetic protein 4 (BMP4) in the red pulp as well as substantially enhanced mRNA expression levels of its receptors in the spleen. These findings demonstrate for the first time that chronic psychological stress activates BMP4-dependent extramedullary erythropoiesis and leads to the prolonged activation of stress erythropoiesis pathways. Prolonged activation of these pathways along with an excessive production of immature erythroid cells may predispose chronically stressed subjects to a higher risk of leukaemic transformation. PMID:24283209
Oxidative stress adaptation with acute, chronic, and repeated stress.
Pickering, Andrew M; Vojtovich, Lesya; Tower, John; A Davies, Kelvin J
2013-02-01
Oxidative stress adaptation, or hormesis, is an important mechanism by which cells and organisms respond to, and cope with, environmental and physiological shifts in the level of oxidative stress. Most studies of oxidative stress adaption have been limited to adaptation induced by acute stress. In contrast, many if not most environmental and physiological stresses are either repeated or chronic. In this study we find that both cultured mammalian cells and the fruit fly Drosophila melanogaster are capable of adapting to chronic or repeated stress by upregulating protective systems, such as their proteasomal proteolytic capacity to remove oxidized proteins. Repeated stress adaptation resulted in significant extension of adaptive responses. Repeated stresses must occur at sufficiently long intervals, however (12-h or more for MEF cells and 7 days or more for flies), for adaptation to be successful, and the levels of both repeated and chronic stress must be lower than is optimal for adaptation to acute stress. Regrettably, regimens of adaptation to both repeated and chronic stress that were successful for short-term survival in Drosophila nevertheless also caused significant reductions in life span for the flies. Thus, although both repeated and chronic stress can be tolerated, they may result in a shorter life. Copyright © 2012 Elsevier Inc. All rights reserved.
Aschbacher, Kirstin; Kornfeld, Sarah; Picard, Martin; Puterman, Eli; Havel, Peter J; Stanhope, Kimber; Lustig, Robert H; Epel, Elissa
2014-08-01
In preclinical studies, the combination of chronic stress and a high sugar/fat diet is a more potent driver of visceral adiposity than diet alone, a process mediated by peripheral neuropeptide Y (NPY). In a human model of chronic stress, we investigated whether the synergistic combination of highly palatable foods (HPF; high sugar/fat) and stress was associated with elevated metabolic risk. Using a case-control design, we compared 33 post-menopausal caregivers (the chronic stress group) to 28 age-matched low-stress control women on reported HPF consumption (modified Block Food Frequency Questionnaire), waistline circumference, truncal fat ultrasound, and insulin sensitivity using a 3-h oral glucose tolerance test. A fasting blood draw was assayed for plasma NPY and oxidative stress markers (8-hydroxyguanosine and F2-Isoprostanes). Among chronically stressed women only, greater HPF consumption was associated with greater abdominal adiposity, oxidative stress, and insulin resistance at baseline (all p's≤.01). Furthermore, plasma NPY was significantly elevated in chronically stressed women (p<.01), and the association of HPF with abdominal adiposity was stronger among women with high versus low NPY. There were no significant predictions of change over 1-year, likely due to high stability (little change) in the primary outcomes over this period. Chronic stress is associated with enhanced vulnerability to diet-related metabolic risk (abdominal adiposity, insulin resistance, and oxidative stress). Stress-induced peripheral NPY may play a mechanistic role. Copyright © 2014. Published by Elsevier Ltd.
Helms, Christa M.; Messaoudi, Ilhem; Jeng, Sophia; Freeman, Willard M.; Vrana, Kent E.; Grant, Kathleen A.
2011-01-01
Background Alcoholics have alterations in endocrine and immune function and increased susceptibility to stress-related disorders. A longitudinal analysis of chronic ethanol intake on homeostatic mechanisms is, however, incompletely characterized in primates. Methods Plasma proteins (n = 60; Luminex) and hormones (adrenocorticotropic hormone, ACTH; cortisol) were repeatedly measured in adult male cynomolgus monkeys (Macaca fascicularis, n = 10) during a 32-month experimental protocol at baseline, during induction of water and ethanol (4% w/v in water) self-administration, after 4 months and after 12 months of 22-h daily concurrent access to ethanol and water. Results Significant changes were observed in ACTH, cortisol and 45/60 plasma proteins: a majority (28/45) were suppressed as a function of ethanol self-administration, eight proteins were elevated and nine showed biphasic changes. Cortisol and ACTH were greatest during induction, and correlations between these hormones and plasma proteins varied across the experiment. Pathway analyses implicated nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) and Janus kinase (JAK)/signal transducer and activator of transcription (STAT) as possible mediators of ethanol-induced effects on immune-related proteins in primates. Conclusion Chronic ethanol consumption in primates leads to an allostatic state of physiological compromise with respect to circulating immune- and stress-related proteins in NF-κB- and STAT/JAK-related pathways in correlation with altered endocrine activity. PMID:22141444
Satoh, Eiki; Tada, Yuichi; Matsuhisa, Fumikazu
2011-11-01
Our previous study showed that acute restraint stress enhances depolarization-induced increases in intrasynaptosomal free calcium (Ca(2+)) concentration ([Ca(2+)](i)) and Ca(2+)-dependent glutamate release in mouse cerebrocortical nerve terminals (synaptosomes). In the present study, we investigated the effects of chronic stress on [Ca(2+)](i) and glutamate release in cerebrocortical synaptosomes from mice. Male ddY strain mice were randomly assigned to one of two experimental groups: control group and chronic stressed group. Mice in the chronic stressed group were subjected to immobilization stress for 2 hours daily for a period of 21 days. [Ca(2+)](i) and glutamate release in cerebrocortical synaptosomes isolated from the mice were determined by fura-2 fluorescence assay and enzyme-linked fluorometric assay, respectively. Chronic stress caused a significant increase in resting [Ca(2+)](i) and significantly enhanced the ability of the depolarizing agents K(+) and 4-aminopyridine (4-AP) to increase [Ca(2+)](i). It also brought about a significant increase in spontaneous (unstimulated) glutamate release and significantly enhanced K(+)- and 4-AP-evoked Ca(2+)-dependent glutamate release. Synaptosomes were more sensitive to the depolarizing agents at lower concentrations following chronic stress than after acute stress. The pretreatment of synaptosomes with a combination of omega-agatoxin IVA (a P-type Ca(2+) channel blocker) and omega-conotoxin GVIA (an N-type Ca(2+) channel blocker) completely suppressed the enhancements of [Ca(2+)](i) and Ca(2+)-dependent glutamate release in chronic stressed mice. These results indicate that chronic stress enhances depolarization-evoked glutamate release by increasing [Ca(2+)](i) via stimulation of Ca(2+) entry through P- and N-type Ca(2+) channels, and that chronic stress increases the sensitivity to depolarizing agents.
Cruz, Fábio C; Duarte, Josiane O; Leão, Rodrigo M; Hummel, Luiz F V; Planeta, Cleopatra S; Crestani, Carlos C
2016-01-01
It has been demonstrated that disruption of social bonds and perceived isolation (loneliness) are associated with an increased risk of cardiovascular morbidity and mortality. Adolescence is proposed as a period of vulnerability to stress. Nevertheless, the impact of chronic social stress during this ontogenic period in cardiovascular function is poorly understood. Therefore, the purpose of this study was to compare the impact in cardiovascular function of social isolation for 3 weeks in adolescent and adult male rats. Also, the long-term effects of social isolation during adolescence were investigated longitudinally. Social isolation reduced body weight in adolescent, but not in adult animals. Disruption of social bonds during adolescence increased arterial pressure without affecting heart rate and pulse pressure (PP). Nevertheless, social isolation in adulthood reduced systolic arterial pressure and increased diastolic arterial pressure, which in turn decreased PP without affecting mean arterial pressure. Cardiovascular changes in adolescents, but not adults, were followed by facilitation of both baroreflex sensitivity and vascular reactivity to the vasodilator agent acetylcholine. Vascular responsiveness to either the vasodilator agent sodium nitroprusside or the vasoconstrictor agent phenylephrine was not affected by social isolation. Except for the changes in body weight and baroreflex sensitivity, all alterations evoked by social isolation during adolescence were reversed in adulthood after moving animals from isolated to collective housing. These findings suggest a vulnerability of adolescents to the effects of chronic social isolation in cardiovascular function. However, results indicate minimal cardiovascular consequences in adulthood of disruption of social bonds during adolescence. © 2015 Wiley Periodicals, Inc.
Moreira, Pedro Silva; Almeida, Pedro R; Leite-Almeida, Hugo; Sousa, Nuno; Costa, Patrício
2016-01-01
The idea that maladaptive stress impairs cognitive function has been a cornerstone of decades in basic and clinical research. However, disparate findings have reinforced the need to aggregate results from multiple sources in order to confirm the validity of such statement. In this work, a systematic review and meta-analyses were performed to aggregate results from rodent studies investigating the impact of chronic stress on learning and memory. Results obtained from the included studies revealed a significant effect of stress on global cognitive performance. In addition, stressed rodents presented worse consolidation of learned memories, although no significantly differences between groups at the acquisition phase were found. Despite the methodological heterogeneity across studies, these effects were independent of the type of stress, animals’ strains or age. However, our findings suggest that stress yields a more detrimental effect on spatial navigation tests’ performance. Surprisingly, the vast majority of the selected studies in this field did not report appropriate statistics and were excluded from the quantitative analysis. We have therefore purposed a set of guidelines termed PROBE (Preferred Reporting Orientations for Behavioral Experiments) to promote an adequate reporting of behavioral experiments. PMID:27662580
Severe occupational hand eczema, job stress and cumulative sickness absence.
Böhm, D; Stock Gissendanner, S; Finkeldey, F; John, S M; Werfel, T; Diepgen, T L; Breuer, K
2014-10-01
Stress is known to activate or exacerbate dermatoses, but the relationships between chronic stress, job-related stress and sickness absence among occupational hand eczema (OHE) patients are inadequately understood. To see whether chronic stress or burnout symptoms were associated with cumulative sickness absence in patients with OHE and to determine which factors predicted sickness absence in a model including measures of job-related and chronic stress. We investigated correlations of these factors in employed adult inpatients with a history of sickness absence due to OHE in a retrospective cross-sectional explorative study, which assessed chronic stress (Trier Inventory for the Assessment of Chronic Stress), burnout (Shirom Melamed Burnout Measure), clinical symptom severity (Osnabrück Hand Eczema Severity Index), perceived symptom severity, demographic characteristics and cumulative days of sickness absence. The study group consisted of 122 patients. OHE symptoms were not more severe among patients experiencing greater stress and burnout. Women reported higher levels of chronic stress on some measures. Cumulative days of sickness absence correlated with individual dimensions of job-related stress and, in multiple regression analysis, with an overall measure of chronic stress. Chronic stress is an additional factor predicting cumulative sickness absence among severely affected OHE patients. Other relevant factors for this study sample included the 'cognitive weariness' subscale of the Shirom Melamed Burnout Measure and the physical component summary score of the SF-36, a measure of health-related life quality. Prevention and rehabilitation should take job stress into consideration in multidisciplinary treatment strategies for severely affected OHE patients. © The Author 2014. Published by Oxford University Press on behalf of the Society of Occupational Medicine. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Chromogranin A: Novel biomarker between periodontal disease and psychosocial stress
Reshma, Arunima Padmakumar; Arunachalam, Rajeev; Pillai, Jayakumar Kochu; Kurra, Sarath Babu; Varkey, Vini K.; Prince, Mohanraj J.
2013-01-01
Context: The psychosocial stress has long been regarded as a significant pre-disposing factor for periodontal disease. The association between the periodontal disease and the neuroendocrine hormones has been observed. Chromogranin A (CgA) is supposed to link the activity of the neuroendocrine system to local and systemic immune functions and to be related to periodontitis. Aims: The aim of this study was to determine the CgA levels in saliva and plasma in periodontal health and disease and to assess their potential relationship to periodontitis. Settings and Designs: In this case-control study, the association between periodontal disease and stress marker has been assessed. Materials and Methods: Sixty subjects were chosen for this study: With case group comprising of 30 subjects with chronic periodontitis and control group comprising of 30 healthy subjects. Salivary and plasma CgA levels were determined by ELISA technique. Clinical parameters included were plaque index, papillary bleeding index and clinical attachment loss and probing depth. Correlation analysis was calculated by independent sample t-test. Results: Significantly higher CgA levels were found in saliva and plasma of patients with chronic periodontitis compared with healthy individuals (P < 0.05). No significant difference were observed between salivary and plasma CgA levels. Conclusions: The elevated level CgA in the plasma and saliva of subjects with stress induced chronic periodontitis has yielded insights into biological plausible association between the psychosocial stress and chronic periodontitis. Thus, our results suggest that CgA is a useful biomarker for evaluating at least in part the etiopathogenesis of periodontitis. PMID:23869129
Early and Later Life Stress Alter Brain Activity and Sleep in Rats
Mrdalj, Jelena; Pallesen, Ståle; Milde, Anne Marita; Jellestad, Finn Konow; Murison, Robert; Ursin, Reidun; Bjorvatn, Bjørn; Grønli, Janne
2013-01-01
Exposure to early life stress may profoundly influence the developing brain in lasting ways. Neuropsychiatric disorders associated with early life adversity may involve neural changes reflected in EEG power as a measure of brain activity and disturbed sleep. The main aim of the present study was for the first time to characterize possible changes in adult EEG power after postnatal maternal separation in rats. Furthermore, in the same animals, we investigated how EEG power and sleep architecture were affected after exposure to a chronic mild stress protocol. During postnatal day 2–14 male rats were exposed to either long maternal separation (180 min) or brief maternal separation (10 min). Long maternally separated offspring showed a sleep-wake nonspecific reduction in adult EEG power at the frontal EEG derivation compared to the brief maternally separated group. The quality of slow wave sleep differed as the long maternally separated group showed lower delta power in the frontal-frontal EEG and a slower reduction of the sleep pressure. Exposure to chronic mild stress led to a lower EEG power in both groups. Chronic exposure to mild stressors affected sleep differently in the two groups of maternal separation. Long maternally separated offspring showed more total sleep time, more episodes of rapid eye movement sleep and higher percentage of non-rapid eye movement episodes ending in rapid eye movement sleep compared to brief maternal separation. Chronic stress affected similarly other sleep parameters and flattened the sleep homeostasis curves in all offspring. The results confirm that early environmental conditions modulate the brain functioning in a long-lasting way. PMID:23922857
Salanova, Michele; Schiffl, Gudrun; Gutsmann, Martina; Felsenberg, Dieter; Furlan, Sandra; Volpe, Pompeo; Clarke, Andrew; Blottner, Dieter
2013-01-01
Activity-induced nitric oxide (NO) imbalance and "nitrosative stress" are proposed mechanisms of disrupted Ca(2+) homeostasis in atrophic skeletal muscle. We thus mapped S-nitrosylated (SNO) functional muscle proteins in healthy male subjects in a long-term bed rest study (BBR2-2 Study) without and with exercise as countermeasure in order to assess (i) the negative effects of chronic muscle disuse by nitrosative stress, (ii) to test for possible attenuation by exercise countermeasure in bed rest and (iii) to identify new NO target proteins. Muscle biopsies from calf soleus and hip vastus lateralis were harvested at start (Pre) and at end (End) from a bed rest disuse control group (CTR, n=9) and two bed rest resistive exercise groups either without (RE, n=7) or with superimposed vibration stimuli (RVE, n=7). At subcellular compartments, strong anti-SNO-Cys immunofluorescence patterns in control muscle fibers after bed rest returned to baseline following vibration exercise. Total SNO-protein levels, Nrf-2 gene expression and nucleocytoplasmic shuttling were changed to varying degrees in all groups. Excess SNO-protein levels of specific calcium release/uptake proteins (SNO-RyR1, -SERCA1 and -PMCA) and of contractile myosin heavy chains seen in biopsy samples of chronically disused skeletal muscle were largely reduced by vibration exercise. We also identified NOS1 as a novel NO target in human skeletal muscle controlled by activity driven auto-nitrosylation mechanisms. Our findings suggest that aberrant levels of functional SNO-proteins represent signatures of uncontrolled nitrosative stress management in disused human skeletal muscle that can be offset by exercise as countermeasure.
Tanner Stapleton, Lynlee R; Dunkel Schetter, Christine; Dooley, Larissa N; Guardino, Christine M; Huynh, Jan; Paek, Cynthia; Clark-Kauffman, Elizabeth; Schafer, Peter; Woolard, Richard; Lanzi, Robin Gaines
2016-07-01
Chronic stress is implicated in many theories as a contributor to a wide range of physical and mental health problems. The current study describes the development of a chronic stress measure that was based on the UCLA Life Stress Interview (LSI) and adapted in collaboration with community partners for use in a large community health study of low-income, ethnically diverse parents of infants in the USA (Community Child Health Network [CCHN]). We describe the instrument, its purpose and adaptations, implementation, and results of a reliability study in a subsample of the larger study cohort. Interviews with 272 mothers were included in the present study. Chronic stress was assessed using the CCHN LSI, an instrument designed for administration by trained community interviewers to assess four domains of chronic stress, each rated by interviewers. Significant correlations ranging from small to moderate in size between chronic stress scores on this measure, other measures of stress, biomarkers of allostatic load, and mental health provide initial evidence of construct and concurrent validity. Reliability data for interviewer ratings are also provided. This relatively brief interview (15 minutes) is available for use and may be a valuable tool for researchers seeking to measure chronic stress reliably and validly in future studies with time constraints.
Yang, Wei; Wang, Huanlin
2018-02-01
The current study was aimed to investigate the role of 5,7-dimethoxycoumarin in the prevention of chronic mild stress induced depression in rats. The chronic mild stress rat model was prepared using the known protocols. The results from open-field test showed that rats in the chronic mild stress group scored very low in terms of crossings and rearings than those of the normal rats. However, pre-treatment of the rats with 10 mg/kg doses of 5,7-dimethoxycoumarin prevented decline in the locomotor activity by chronic mild stress. The level of monoamine oxidase-A in the chronic mild stress rat hippocampus was markedly higher. Chronic mild stress induced increase in the monoamine oxidase-A level was inhibited by pre-treatment with 10 mg/kg doses of 5,7-dimethoxycoumarin in the rats. Chronic mild stress caused a marked increase in the level of caspase-3 mRNA and proteins in rat hippocampus tissues. The increased level of caspase-3 mRNA and protein level was inhibited by treatment of rats with 5,7-dimethoxycoumarin (10 mg/kg). 5,7-Dimethoxycoumarin administration into the rats caused a marked increase in the levels of heat shock protein-70 mRNA and protein. The levels of heat shock protein-70 were markedly lower both in normal and chronic mild stress groups of rats compared to the 5,7-dimethoxycoumarin treated groups. Thus 5,7-dimethoxycoumarin prevented the chronic mild stress induced depression in rats through an increase in the expression of heat shock protein-70 and inhibition of monoamine oxidase-A levels.
Good Stress, Bad Stress and Oxidative Stress: Insights from Anticipatory Cortisol Reactivity
Aschbacher, Kirstin; O'Donovan, Aoife; Wolkowitz, Owen M.; Dhabhar, Firdaus S.; Su, Yali; Epel, Elissa
2014-01-01
Chronic psychological stress appears to accelerate biological aging, and oxidative damage is an important potential mediator of this process. However, the mechanisms by which psychological stress promotes oxidative damage are poorly understood. This study investigates the theory that cortisol increases in response to an acutely stressful event have the potential to either enhance or undermine psychobiological resilience to oxidative damage, depending on the body's prior exposure to chronic psychological stress. In order to achieve a range of chronic stress exposure, forty-eight post-menopausal women were recruited in a case-control design that matched women caring for spouses with dementia (a chronic stress model) with similarly aged control women whose spouses were healthy. Participants completed a questionnaire assessing perceived stress over the previous month and provided fasting blood. Three markers of oxidative damage were assessed: 8-iso-prostaglandin F2α (IsoP), lipid peroxidation, 8-hydroxyguanosine (8-OxoG) and 8-hydroxy-2′-deoxyguanosine (8-OHdG), reflecting oxidative damage to RNA/DNA respectively. Within approximately one week, participants completed a standardized acute laboratory stress task while salivary cortisol responses were measured. The increase from 0 to 30 min was defined as “peak” cortisol reactivity, while the increase from 0 to 15 min was defined as “anticipatory” cortisol reactivity, representing a cortisol response that began while preparing for the stress task. Women under chronic stress had higher 8-oxoG, oxidative damage to RNA (p<.01). A moderated mediation model was tested, in which it was hypothesized that heightened anticipatory cortisol reactivity would mediate the relationship between perceived stress and elevated oxidative stress damage, but only among women under chronic stress. Consistent with this model, bootstrapped path analysis found significant indirect paths from perceived stress to 8-OxoG and IsoP (but not 8-OHdG) via anticipatory cortisol reactivity, showing the expected relations among chronically stressed participants (p≤.01.) Intriguingly, among those with low chronic stress exposure, moderate (compared to low) levels of perceived stress were associated with reduced levels of oxidative damage. Hence, this study supports the emerging model that chronic stress exposure promotes oxidative damage through frequent and sustained activation of the Hypothalamic-Pituitary-Adrenal axis. It also supports the less studied model of ‘eustress’ - that manageable levels of life stress may enhance psychobiological resilience to oxidative damage. PMID:23490070
Good stress, bad stress and oxidative stress: insights from anticipatory cortisol reactivity.
Aschbacher, Kirstin; O'Donovan, Aoife; Wolkowitz, Owen M; Dhabhar, Firdaus S; Su, Yali; Epel, Elissa
2013-09-01
Chronic psychological stress appears to accelerate biological aging, and oxidative damage is an important potential mediator of this process. However, the mechanisms by which psychological stress promotes oxidative damage are poorly understood. This study investigates the theory that cortisol increases in response to an acutely stressful event have the potential to either enhance or undermine psychobiological resilience to oxidative damage, depending on the body's prior exposure to chronic psychological stress. In order to achieve a range of chronic stress exposure, forty-eight post-menopausal women were recruited in a case-control design that matched women caring for spouses with dementia (a chronic stress model) with similarly aged control women whose spouses were healthy. Participants completed a questionnaire assessing perceived stress over the previous month and provided fasting blood. Three markers of oxidative damage were assessed: 8-iso-prostaglandin F(2α) (IsoP), lipid peroxidation, 8-hydroxyguanosine (8-oxoG) and 8-hydroxy-2'-deoxyguanosine (8-OHdG), reflecting oxidative damage to RNA/DNA respectively. Within approximately one week, participants completed a standardized acute laboratory stress task while salivary cortisol responses were measured. The increase from 0 to 30 min was defined as "peak" cortisol reactivity, while the increase from 0 to 15 min was defined as "anticipatory" cortisol reactivity, representing a cortisol response that began while preparing for the stress task. Women under chronic stress had higher 8-oxoG, oxidative damage to RNA (p<.01). A moderated mediation model was tested, in which it was hypothesized that heightened anticipatory cortisol reactivity would mediate the relationship between perceived stress and elevated oxidative stress damage, but only among women under chronic stress. Consistent with this model, bootstrapped path analysis found significant indirect paths from perceived stress to 8-oxoG and IsoP (but not 8-OHdG) via anticipatory cortisol reactivity, showing the expected relations among chronically stressed participants (p≤.01) Intriguingly, among those with low chronic stress exposure, moderate (compared to low) levels of perceived stress were associated with reduced levels of oxidative damage. Hence, this study supports the emerging model that chronic stress exposure promotes oxidative damage through frequent and sustained activation of the hypothalamic-pituitary-adrenal axis. It also supports the less studied model of 'eustress' - that manageable levels of life stress may enhance psychobiological resilience to oxidative damage. Copyright © 2013 Elsevier Ltd. All rights reserved.
Chronic and episodic stress predict physical symptom bother following breast cancer diagnosis.
Harris, Lauren N; Bauer, Margaret R; Wiley, Joshua F; Hammen, Constance; Krull, Jennifer L; Crespi, Catherine M; Weihs, Karen L; Stanton, Annette L
2017-12-01
Breast cancer patients often experience adverse physical side effects of medical treatments. According to the biobehavioral model of cancer stress and disease, life stress during diagnosis and treatment may negatively influence the trajectory of women's physical health-related adjustment to breast cancer. This longitudinal study examined chronic and episodic stress as predictors of bothersome physical symptoms during the year after breast cancer diagnosis. Women diagnosed with breast cancer in the previous 4 months (N = 460) completed a life stress interview for contextual assessment of chronic and episodic stress severity at study entry and 9 months later. Physical symptom bother (e.g., pain, fatigue) was measured at study entry, every 6 weeks through 6 months, and at nine and 12 months. In multilevel structural equation modeling (MSEM) analyses, both chronic stress and episodic stress occurring shortly after diagnosis predicted greater physical symptom bother over the study period. Episodic stress reported to have occurred prior to diagnosis did not predict symptom bother in MSEM analyses, and the interaction between chronic and episodic stress on symptom bother was not significant. Results suggest that ongoing chronic stress and episodic stress occurring shortly after breast cancer diagnosis are important predictors of bothersome symptoms during and after cancer treatment. Screening for chronic stress and recent stressful life events in the months following diagnosis may help to identify breast cancer patients at risk for persistent and bothersome physical symptoms. Interventions to prevent or ameliorate treatment-related physical symptoms may confer added benefit by addressing ongoing non-cancer-related stress in women's lives.
Chronic and episodic stress predict physical symptom bother following breast cancer diagnosis
Bauer, Margaret R.; Wiley, Joshua F.; Hammen, Constance; Krull, Jennifer L.; Crespi, Catherine M.; Weihs, Karen L.; Stanton, Annette L.
2017-01-01
Breast cancer patients often experience adverse physical side effects of medical treatments. According to the biobehavioral model of cancer stress and disease, life stress during diagnosis and treatment may negatively influence the trajectory of women’s physical health-related adjustment to breast cancer. This longitudinal study examined chronic and episodic stress as predictors of bothersome physical symptoms during the year after breast cancer diagnosis. Women diagnosed with breast cancer in the previous 4 months (N = 460) completed a life stress interview for contextual assessment of chronic and episodic stress severity at study entry and 9 months later. Physical symptom bother (e.g., pain, fatigue) was measured at study entry, every 6 weeks through 6 months, and at nine and 12 months. In multilevel structural equation modeling (MSEM) analyses, both chronic stress and episodic stress occurring shortly after diagnosis predicted greater physical symptom bother over the study period. Episodic stress reported to have occurred prior to diagnosis did not predict symptom bother in MSEM analyses, and the interaction between chronic and episodic stress on symptom bother was not significant. Results suggest that ongoing chronic stress and episodic stress occurring shortly after breast cancer diagnosis are important predictors of bothersome symptoms during and after cancer treatment. Screening for chronic stress and recent stressful life events in the months following diagnosis may help to identify breast cancer patients at risk for persistent and bothersome physical symptoms. Interventions to prevent or ameliorate treatment-related physical symptoms may confer added benefit by addressing ongoing non-cancer-related stress in women’s lives. PMID:28528393
Markus, C Rob; Olivier, Berend; de Haan, Edward H F
2002-06-01
Cognitive performance often declines under chronic stress exposure. The negative effect of chronic stress on performance may be mediated by reduced brain serotonin function. The uptake of the serotonin precursor tryptophan into the brain depends on nutrients that influence the availability of tryptophan by changing the ratio of plasma tryptophan to the sum of the other large neutral amino acids (Trp-LNAA ratio). In addition, a diet-induced increase in tryptophan may increase brain serotonergic activity levels and improve cognitive performance, particularly in high stress-vulnerable subjects. We tested whether alpha-lactalbumin, a whey protein with a high tryptophan content, would increase the plasma Trp-LNAA ratio and improve cognitive performance in high stress- vulnerable subjects. Twenty-three high stress-vulnerable subjects and 29 low stress-vulnerable subjects participated in a double-blind, placebo-controlled, crossover study. All subjects conducted a memory-scanning task after the intake of a diet enriched with either alpha-lactalbumin (alpha-lactalbumin diet) or sodium caseinate (control diet). Blood samples were taken to measure the effect of dietary manipulation on the plasma Trp-LNAA ratio. A significantly greater increase in the plasma Trp-LNAA ratio after consumption of the alpha-lactalbumin diet than after the control diet (P = 0.0001) was observed; memory scanning improved significantly only in the high stress-vulnerable subjects (P = 0.019). Because an increase in the plasma Trp-LNAA ratio is considered to be an indirect indication of increased brain serotonin function, the results suggest that dietary protein rich in alpha-lactalbumin improves cognitive performance in stress-vulnerable subjects via increased brain tryptophan and serotonin activities.
Stressful life events and acute kidney injury in intensive and semi-intensive care unities.
Diniz, Denise Para; Marques, Daniella Aparecida; Blay, Sérgio Luis; Schor, Nestor
2012-03-01
Several studies point out that pathophysiological changes related to stress may influence renal function and are associated with disease onset and evolution. However, we have not found any studies about the influence of stress on renal function and acute kidney injury. To evaluate the association between stressful life events and acute kidney injury diagnosis, specifying the most stressful classes of events for these patients in the past 12 months. Case-control study. The study was carried out at Hospital São Paulo, in Universidade Federal de São Paulo and at Hospital dos Servidores do Estado de São Paulo, in Brazil. Patients with acute kidney injury and no chronic disease, admitted to the intensive or semi-intensive care units were included. Controls included patients in the same intensive care units with other acute diseases, except for the acute kidney injury, and also with no chronic disease. Out of the 579 patients initially identified, 475 answered to the Social Readjustment Rating Scale (SRRS) questionnaire and 398 were paired by age and gender (199 cases and 199 controls). The rate of stressful life events was statistically similar between cases and controls. The logistic regression analysis to detect associated effects of the independent variables to the stressful events showed that: increasing age and economic classes A and B in one of the hospitals (Hospital São Paulo - UNIFESP) increased the chance of a stressful life event (SLE). This study did not show association between the Acute Kidney Injury Group with a higher frequency of stressful life events, but that old age, higher income, and type of clinical center were associated.
Schneider, G; Stumpf, A; Burgmer, M; Broecker, P; Volmering, L; Ständer, S
2018-05-10
Previous research suggests associations between stress and pruritus in population samples and in patients with atopic dermatitis (AD) but research is lacking for patients with chronic pruritus (CP) of other origin. We therefore investigated acute and chronic stress levels and physiological stress measures (i.e. heart rate variability HRV) of CP and HC. We expected higher levels of chronic stress and of acute stress in a standardized experimental stress test in CP, which should be also reflected by differences in the stress sensitive HRV parameters. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
CHRONIC PERIPHERAL NERVE COMPRESSION DISRUPTS PARANODAL AXOGLIAL JUNCTIONS
Otani, Yoshinori; Yermakov, Leonid M.; Dupree, Jeffrey L.; Susuki, Keiichiro
2016-01-01
Introduction Peripheral nerves are often exposed to mechanical stress leading to compression neuropathies. The pathophysiology underlying nerve dysfunction by chronic compression is largely unknown. Methods We analyzed molecular organization and fine structures at and near nodes of Ranvier in a compression neuropathy model in which a silastic tube was placed around the mouse sciatic nerve. Results Immunofluorescence study showed that clusters of cell adhesion complex forming paranodal axoglial junctions were dispersed with frequent overlap with juxtaparanodal components. These paranodal changes occurred without internodal myelin damage. The distribution and pattern of paranodal disruption suggests that these changes are the direct result of mechanical stress. Electron microscopy confirmed loss of paranodal axoglial junctions. Discussion Our data show that chronic nerve compression disrupts paranodal junctions and axonal domains required for proper peripheral nerve function. These results provide important clues toward better understanding of the pathophysiology underlying nerve dysfunction in compression neuropathies. PMID:27463510
Influence of Omega-3 Fatty Acid Status on the Way Rats Adapt to Chronic Restraint Stress
Hennebelle, Marie; Balasse, Laure; Latour, Alizée; Champeil-Potokar, Gaelle; Denis, Stéphanie; Lavialle, Monique; Gisquet-Verrier, Pascale; Denis, Isabelle; Vancassel, Sylvie
2012-01-01
Omega-3 fatty acids are important for several neuronal and cognitive functions. Altered omega-3 fatty acid status has been implicated in reduced resistance to stress and mood disorders. We therefore evaluated the effects of repeated restraint stress (6 h/day for 21 days) on adult rats fed omega-3 deficient, control or omega-3 enriched diets from conception. We measured body weight, plasma corticosterone and hippocampus glucocorticoid receptors and correlated these data with emotional and depression-like behaviour assessed by their open-field (OF) activity, anxiety in the elevated-plus maze (EPM), the sucrose preference test and the startle response. We also determined their plasma and brain membrane lipid profiles by gas chromatography. Repeated restraint stress caused rats fed a control diet to lose weight. Their plasma corticosterone increased and they showed moderate behavioural changes, with increases only in grooming (OF test) and entries into the open arms (EPM). Rats fed the omega-3 enriched diet had a lower stress-induced weight loss and plasma corticosterone peak, and reduced grooming. Rats chronically lacking omega-3 fatty acid exhibited an increased startle response, a stress-induced decrease in locomotor activity and exaggerated grooming. The brain omega-3 fatty acids increased as the dietary omega-3 fatty acids increased; diets containing preformed long-chain omega-3 fatty acid were better than diets containing the precursor alpha-linolenic acid. However, the restraint stress reduced the amounts of omega-3 incorporated. These data showed that the response to chronic restraint stress was modulated by the omega-3 fatty acid supply, a dietary deficiency was deleterious while enrichment protecting against stress. PMID:22860066
Rincón-Cortés, Millie; Grace, Anthony A
2017-10-01
Stress constitutes a risk factor across several psychiatric disorders. Moreover, females are more susceptible to stress-related disorders, such as depression, than males. Although dopamine system underactivation is implicated in the pathophysiology of depression, little is known about the female dopamine system at baseline and post-stress. The effects of chronic mild stress were examined on ventral tegmental area dopamine neuron activity and forced swim test immobility by comparing male and female rats. The impact of a single dose of the rapid antidepressant ketamine (10 mg/kg, i.p.) on forced swim test immobility and ventral tegmental area function was then tested. Baseline ventral tegmental area dopamine activity was comparable in both sexes. At baseline, females exhibited roughly double the forced swim test immobility duration than males, which corresponded to ~50% decrease in ventral tegmental area dopamine population activity compared with similarly treated (i.e., post-forced swim test) males. Following chronic mild stress, there was greater immobility duration in both sexes and reduced ventral tegmental area dopamine neuron activity by approximately 50% in males and nearly 75% in females. Ketamine restored behavior and post-forced swim test ventral tegmental area dopamine activity for up to 7 days in females as well as in both male and female chronic mild stress-exposed rats. These data suggest increased female susceptibility to depression-like phenotypes (i.e., greater immobility, ventral tegmental area hypofunction) is associated with higher dopamine system sensitivity to both acute and repeated stress relative to males. Understanding the neural underpinnings of sex differences in stress vulnerability will provide insight into mechanisms of disease and optimizing therapeutic approaches in both sexes. © The Author 2017. Published by Oxford University Press on behalf of CINP.
Chronic stress impairs prefrontal cortex-dependent response inhibition and spatial working memory.
Mika, Agnieszka; Mazur, Gabriel J; Hoffman, Ann N; Talboom, Joshua S; Bimonte-Nelson, Heather A; Sanabria, Federico; Conrad, Cheryl D
2012-10-01
Chronic stress leads to neurochemical and structural alterations in the prefrontal cortex (PFC) that correspond to deficits in PFC-mediated behaviors. The present study examined the effects of chronic restraint stress on response inhibition (using a response-withholding task, the fixed-minimum interval schedule of reinforcement, or FMI), and working memory (using a radial arm water maze, RAWM). Adult male Sprague-Dawley rats were first trained on the RAWM and subsequently trained on FMI. After acquisition of FMI, rats were assigned to a restraint stress (6h/d/28d in wire mesh restrainers) or control condition. Immediately after chronic stress, rats were tested on FMI and subsequently on RAWM. FMI results suggest that chronic stress reduces response inhibition capacity and motivation to initiate the task on selective conditions when sucrose reward was not obtained on the preceding trial. RAWM results suggest that chronic stress produces transient deficits in working memory without altering previously consolidated reference memory. Behavioral measures from FMI failed to correlate with metrics from RAWM except for one in which changes in FMI timing imprecision negatively correlated with changes in RAWM working memory errors for the controls, a finding that was not observed following chronic stress. Fisher's r-to-z transformation revealed no significant differences between control and stress groups with correlation coefficients. These findings are the first to show that chronic stress impairs both response inhibition and working memory, two behaviors that have never been directly compared within the same animals after chronic stress, using FMI, an appetitive task, and RAWM, a nonappetitive task. PsycINFO Database Record (c) 2012 APA, all rights reserved.
Ball, Kevin T; Stone, Eric; Best, Olivia; Collins, Tyler; Edson, Hunter; Hagan, Erin; Nardini, Salvatore; Neuciler, Phelan; Smolinsky, Michael; Tosh, Lindsay; Woodlen, Kristin
2018-06-01
A major obstacle in the treatment of individuals with cocaine addiction is their high propensity for relapse. Although the clinical scenario of acute stress-induced relapse has been well studied in animal models, few pre-clinical studies have investigated the role of chronic stress in relapse or the interaction between chronic stress and other relapse triggers. We tested the effect of chronic restraint stress on cocaine seeking in rats using both extinction- and abstinence-based animal relapse models. Rats were trained to press a lever for I.V. cocaine infusions (0.50 mg/kg/infusion) paired with a discrete tone + light cue in daily 3-h sessions. Following self-administration, rats were exposed to a chronic restraint stress procedure (3 h/day) or control procedure (unstressed) during the first seven days of a 13-day extinction period during which lever presses had no programmed consequences. This was followed by cue- and cocaine priming-induced drug seeking tests. In a separate group of rats, cocaine seeking was assessed during forced abstinence both before and after the same chronic stress procedure. A history of chronic restraint stress was associated with increased cocaine priming-induced drug seeking, an effect attenuated by co-administration of SCH-23390 (10.0 μg/kg; i.p.), a dopamine D 1 -like receptor antagonist, with daily restraint. Repeated SCH-23390 administration but not stress during extinction increased cue-induced reinstatement. Exposure to chronic stress during early withdrawal may confer lasting vulnerability to some types of relapse, and dopamine D 1 -like receptors appear to mediate both chronic stress effects on cocaine seeking and extinction of cocaine seeking. Copyright © 2018 Elsevier B.V. All rights reserved.
Generaal, Ellen; Milaneschi, Yuri; Jansen, Rick; Elzinga, Bernet M; Dekker, Joost; Penninx, Brenda W J H
2016-01-01
Brain-derived neurotrophic factor (BDNF) disturbances and life stress, both independently and in interaction, have been hypothesized to induce chronic pain. We examined whether (a) the BDNF pathway (val(66)met genotype, gene expression, and serum levels), (b) early and recent life stress, and (c) their interaction are associated with the presence and severity of chronic multi-site musculoskeletal pain. Cross-sectional data are from 1646 subjects of the Netherlands Study of Depression and Anxiety. The presence and severity of chronic multi-site musculoskeletal pain were determined using the Chronic Pain Grade (CPG) questionnaire. The BDNF val(66)met polymorphism, BDNF gene expression, and BDNF serum levels were measured. Early life stress before the age of 16 was assessed by calculating a childhood trauma index using the Childhood Trauma Interview. Recent life stress was assessed as the number of recent adverse life events using the List of Threatening Events Questionnaire. Compared to val(66)val, BDNF met carriers more often had chronic pain, whereas no differences were found for BDNF gene expression and serum levels. Higher levels of early and recent stress were both associated with the presence and severity of chronic pain (p < 0.001). No interaction effect was found for the BDNF pathway with life stress in the associations with chronic pain presence and severity. This study suggests that the BDNF gene marks vulnerability for chronic pain. Although life stress did not alter the impact of BDNF on chronic pain, it seems an independent factor in the onset and persistence of chronic pain. © The Author(s) 2016.
Schreier, Hannah M C; Chen, Edith
To determine whether the association between self-rated or interviewer-rated recent acute stress exposures and low-grade inflammation and daily cortisol production in adolescents is moderated by chronic stress ratings. Acute and chronic stress exposures were assessed in 261 adolescents aged 13 to 16 years using a semistructured life stress interview. The negative impact of acute stressors was independently rated by both adolescents (self-rated) and interviewers (interviewer-rated). Markers of inflammation (interleukin (IL)-6, IL-1ra, C-reactive protein) were measured from peripheral blood samples obtained via antecubital venipuncture. Participants collected 4 saliva samples at home on each of 6 consecutive days for the analysis of diurnal salivary cortisol profiles. There were no main effects of acute stressors (self- and interviewer-rated) and chronic family or peer stress on adolescent inflammation markers and cortisol (p values > .10). However, the interaction between interviewer-rated acute stress and chronic family stress was significantly associated with adolescent inflammation markers (IL-6, IL-1ra). Specifically, as chronic family stress increased, the association between acute stressor impact (interviewer-rated) and inflammation markers became more positive (IL-6 (B = .054, SE = .023, p = .022); IL-1ra (B = .030, SE = .014, p = .034)). Interactions between self-rated acute stress and chronic family stress were not associated with any biological measures (p values > .10). Interactions between acute stressor impact (both self- and interviewer-rated) and chronic peer stress were also not significantly associated with any biological measures (p values > .05). Among adolescents, interviewer-based ratings of acute stressor impact may allow for better prediction of health-relevant inflammation markers than adolescents' own ratings.
Schreier, Hannah M. C.; Chen, Edith
2016-01-01
Objective To determine whether the association between self-rated or interviewer-rated recent acute stress exposures and low-grade inflammation and daily cortisol production in adolescents is moderated by chronic stress ratings. Methods Acute and chronic stress exposures were assessed in 261 adolescents aged 13-16 using a semi-structured life stress interview. The negative impact of acute stressors was independently rated by both adolescents (self-rated) and interviewers (interviewer-rated). Markers of inflammation (IL-6, IL-1ra, CRP) were measured from peripheral blood samples obtained via antecubital venipuncture. Participants collected 4 saliva samples at home on each of six consecutive days for the analysis of diurnal salivary cortisol profiles. Results There were no main effects of acute stressors (self- and interviewer-rated) and chronic family or peer stress on adolescent inflammation markers and cortisol (ps > .10). However, the interaction between interviewer-rated acute stress and chronic family stress was significantly associated with adolescent inflammation markers (IL-6, IL-1ra). Specifically, as chronic family stress increased, the association between acute stressor impact (interviewer-rated) and inflammation markers became more positive (IL-6 (B = .054, SE = .023, p = .022); IL-1ra (B = .030, SE = .014, p = .034)). Interactions between self-rated acute stress and chronic family stress were not associated with any biological measures (ps > .10). Interactions between acute stressor impact (both self- and interviewer-rated) and chronic peer stress were also not significantly associated with any biological measures (ps > .05). Conclusions Among adolescents, interviewer-based ratings of acute stressor impact may allow for better prediction of health-relevant inflammation markers than adolescents’ own ratings. PMID:27490853
Chronic psychological stress activates BMP4-dependent extramedullary erythropoiesis.
Vignjević, Sanja; Budeč, Mirela; Marković, Dragana; Dikić, Dragoslava; Mitrović, Olivera; Mojsilović, Slavko; Durić, Sanja Vranješ; Koko, Vesna; Cokić, Bojana Beleslin; Cokić, Vladan; Jovčić, Gordana
2014-01-01
Psychological stress affects different physiological processes including haematopoiesis. However, erythropoietic effects of chronic psychological stress remain largely unknown. The adult spleen contains a distinct microenvironment favourable for rapid expansion of erythroid progenitors in response to stressful stimuli, and emerging evidence suggests that inappropriate activation of stress erythropoiesis may predispose to leukaemic transformation. We used a mouse model to study the influence of chronic psychological stress on erythropoiesis in the spleen and to investigate potential mediators of observed effects. Adult mice were subjected to 2 hrs daily restraint stress for 7 or 14 consecutive days. Our results showed that chronic exposure to restraint stress decreased the concentration of haemoglobin in the blood, elevated circulating levels of erythropoietin and corticosterone, and resulted in markedly increased number of erythroid progenitors and precursors in the spleen. Western blot analysis revealed significantly decreased expression of both erythropoietin receptor and glucocorticoid receptor in the spleen of restrained mice. Furthermore, chronic stress enhanced the expression of stem cell factor receptor in the red pulp. Moreover, chronically stressed animals exhibited significantly increased expression of bone morphogenetic protein 4 (BMP4) in the red pulp as well as substantially enhanced mRNA expression levels of its receptors in the spleen. These findings demonstrate for the first time that chronic psychological stress activates BMP4-dependent extramedullary erythropoiesis and leads to the prolonged activation of stress erythropoiesis pathways. Prolonged activation of these pathways along with an excessive production of immature erythroid cells may predispose chronically stressed subjects to a higher risk of leukaemic transformation. © 2013 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.
Chronic DON exposure and acute LPS challenge: effects on porcine liver morphology and function.
Renner, Lydia; Kahlert, Stefan; Tesch, Tanja; Bannert, Erik; Frahm, Jana; Barta-Böszörményi, Anikó; Kluess, Jeannette; Kersten, Susanne; Schönfeld, Peter; Rothkötter, Hermann-Josef; Dänicke, Sven
2017-08-01
The aim of the present study was to examine the role of chronic deoxynivalenol (DON) exposition on the liver morphology and function in combination with pre- and post-hepatic lipopolysaccharide (LPS) stress in young pigs fed for 4 weeks with a DON-contaminated diet (4.59 mg/kg feed). At the end of the experiment, LPS (7.5 μg/kg BW) was administered for 1 h pre-hepatically (Vena portae hepatis) or post-hepatically (Vena jugularis). Liver morphology was macroscopically checked and showed haemorrhage in all LPS groups, significantly higher relative liver weights, accompanied by marked oedema in the gallbladder wall. Histological changes were judged by a modified histology activity index (HAI). Liver HAI score was significantly increased in all LPS groups compared to placebo, primarily due to neutrophil infiltration and haemorrhage. DON feed alone was without effect on the liver HAI. Liver function was characterized by (i) hepatic biochemical markers, (ii) mitochondrial respiration and (iii) Ca 2+ accumulation capacity of isolated mitochondria. Clinical chemical parameters characterizing liver function were initially (<3 h) slightly influenced by LPS. After 3 h, bilirubin and alkaline phosphatase were increased significantly, in DON-fed, jugular-infused LPS group. Respiration and Ca 2+ accumulation capacity of isolated liver mitochondria was not impaired by chronic DON exposure, acute LPS challenge or combined treatments. DON-contaminated feed did not change macroscopy and histology of the liver, but modified the function under LPS stress. The different function was not linked to modifications of liver mitochondria.
Taylor, S B; Taylor, A R; Koenig, J I
2013-09-26
The incidence of anxiety, mood, substance abuse disorders and schizophrenia increases during adolescence. Epidemiological evidence confirms that exposure to stress during sensitive periods of development can create vulnerabilities that put genetically predisposed individuals at increased risk for psychiatric disorders. Neuregulin 1 (NRG1) is a frequently identified schizophrenia susceptibility gene that has also been associated with the psychotic features of bipolar disorder. Previously, we established that Type II NRG1 is expressed in the hypothalamic-pituitary-adrenal (HPA) axis neurocircuitry. We also found, using a line of Nrg1 hypomorphic rats (Nrg1(Tn)), that genetic disruption of Type II NRG1 results in altered HPA axis function and environmental reactivity. The present studies used the Nrg1(Tn) rats to test whether Type II NRG1 gene disruption and chronic stress exposure during adolescence interact to alter adult anxiety- and fear-related behaviors. Male and female Nrg1(Tn) and wild-type rats were exposed to chronic variable stress (CVS) during mid-adolescence and then tested for anxiety-like behavior, cued fear conditioning and basal corticosterone secretion in adulthood. The disruption of Type II NRG1 alone significantly impacts rat anxiety-related behavior by reversing normal sex-related differences and impairs the ability to acquire cued fear conditioning. Sex-specific interactions between genotype and adolescent stress also were identified such that CVS-treated wild-type females exhibited a slight reduction in anxiety-like behavior and basal corticosterone, while CVS-treated Nrg1(Tn) females exhibited a significant increase in cued fear extinction. These studies confirm the importance of Type II NRG1 in anxiety and fear behaviors and point to adolescence as a time when stressful experiences can shape adult behavior and HPA axis function. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.
Oxidative stress and vascular inflammation in aging.
El Assar, Mariam; Angulo, Javier; Rodríguez-Mañas, Leocadio
2013-12-01
Vascular aging, a determinant factor for cardiovascular disease and health status in the elderly, is now viewed as a modifiable risk factor. Impaired endothelial vasodilation is a early hallmark of arterial aging that precedes the clinical manifestations of vascular dysfunction, the first step to cardiovascular disease and influencing vascular outcomes in the elderly. Accordingly, the preservation of endothelial function is thought to be an essential determinant of healthy aging. With special attention on the effects of aging on the endothelial function, this review is focused on the two main mechanisms of aging-related endothelial dysfunction: oxidative stress and inflammation. Aging vasculature generates an excess of the reactive oxygen species (ROS), superoxide and hydrogen peroxide, that compromise the vasodilatory activity of nitric oxide (NO) and facilitate the formation of the deleterious radical, peroxynitrite. Main sources of ROS are mitochondrial respiratory chain and NADPH oxidases, although NOS uncoupling could also account for ROS generation. In addition, reduced antioxidant response mediated by erythroid-2-related factor-2 (Nrf2) and downregulation of mitochondrial manganese superoxide dismutase (SOD2) contributes to the establishment of chronic oxidative stress in aged vessels. This is accompanied by a chronic low-grade inflammatory phenotype that participates in defective endothelial vasodilation. The redox-sensitive transcription factor, nuclear factor-κB (NF-κB), is upregulated in vascular cells from old subjects and drives a proinflammatory shift that feedbacks oxidative stress. This chronic NF-κB activation is contributed by increased angiotensin-II signaling and downregulated sirtuins and precludes adequate cellular response to acute ROS generation. Interventions targeted to recover endogenous antioxidant capacity and cellular stress response rather than exogenous antioxidants could reverse oxidative stress-inflammation vicious cycle in vascular aging. Lifestyle attitudes such as caloric restriction and exercise training appear as effective ways to overcome defective antioxidant response and inflammation, favoring successful vascular aging and decreasing the risk for cardiovascular disease. Copyright © 2013 Elsevier Inc. All rights reserved.
Furuhashi, Tsubasa; Sakamoto, Kazuichi
2016-03-25
The autonomic nervous system (ANS) responds to many kinds of stressors to maintain homeostasis. Although the ANS is believed to regulate stress tolerance, the exact mechanism underlying this is not well understood. To understand this, we focused on longevity genes, which have functions such as lifespan extension and promotion of stress tolerance. To understand the relationship between ANS and longevity genes, we analyzed stress tolerance of Caenorhabditis elegans treated with octopamine, which has an affinity to noradrenaline in insects, and acetylcholine. Octopamine and acetylcholine did not show resistance against H2O2, but the neurotransmitters promoted thermotolerance via DAF-16. However, chronic treatment with octopamine and acetylcholine did not extend the lifespan, although DAF-16 plays an important role in longevity. In conclusion, our results show that octopamine and acetylcholine activate DAF-16 in response to stress, but chronic induction of octopamine and acetylcholine is not beneficial for increasing longevity. Copyright © 2016 Elsevier Inc. All rights reserved.
Yuen, Eunice Y.; Wei, Jing
2017-01-01
Abstract Evidence over the past decades has found that stress, particularly through the corticosterone stress hormones, produces complex changes in glutamatergic signaling in prefrontal cortex, which leads to the alteration of cognitive processes medicated by this brain region. Interestingly, the effects of stress on glutamatergic transmission appear to be “U-shaped,” depending upon the duration and severity of the stressor. These biphasic effects of acute vs chronic stress represent the adaptive vs maladaptive responses to stressful stimuli. Animal studies suggest that the stress-induced modulation of excitatory synaptic transmission involves changes in presynaptic glutamate release, postsynaptic glutamate receptor membrane trafficking and degradation, spine structure and cytoskeleton network, and epigenetic control of gene expression. This review will discuss current findings on the key molecules involved in the stress-induced regulation of prefrontal cortex synaptic physiology and prefrontal cortex-mediated functions. Understanding the molecular and epigenetic mechanisms that underlie the complex effects of stress will help to develop novel strategies to cope with stress-related mental disorders. PMID:29016816
Yuen, Eunice Y; Wei, Jing; Yan, Zhen
2017-11-01
Evidence over the past decades has found that stress, particularly through the corticosterone stress hormones, produces complex changes in glutamatergic signaling in prefrontal cortex, which leads to the alteration of cognitive processes medicated by this brain region. Interestingly, the effects of stress on glutamatergic transmission appear to be "U-shaped," depending upon the duration and severity of the stressor. These biphasic effects of acute vs chronic stress represent the adaptive vs maladaptive responses to stressful stimuli. Animal studies suggest that the stress-induced modulation of excitatory synaptic transmission involves changes in presynaptic glutamate release, postsynaptic glutamate receptor membrane trafficking and degradation, spine structure and cytoskeleton network, and epigenetic control of gene expression. This review will discuss current findings on the key molecules involved in the stress-induced regulation of prefrontal cortex synaptic physiology and prefrontal cortex-mediated functions. Understanding the molecular and epigenetic mechanisms that underlie the complex effects of stress will help to develop novel strategies to cope with stress-related mental disorders. © The Author 2017. Published by Oxford University Press on behalf of CINP.
Biobehavioral Mechanisms of Mindfulness as a Treatment for Chronic Stress: An RDoC Perspective
Garland, Eric L.; Hanley, Adam W.; Baker, Anne K.; Howard, Matthew O.
2017-01-01
Mindfulness-based interventions have been heralded as promising means of alleviating chronic stress. While meta-analyses indicate that mindfulness-based interventions significantly reduce global measures of stress, how mindfulness-based interventions modulate the specific mechanisms underpinning chronic stress as operationalized by the National Institute of Mental Health research domain criteria (RDoC) of sustained threat has not yet been detailed in the literature. To address this knowledge gap, this article aims to (1) review evidence that mindfulness-based interventions ameliorate each of the 10 elements of behavioral dysregulation characterizing sustained threat via an array of mindful counter-regulatory strategies; (2) review evidence that mindfulness-based interventions modify biological domains implicated in sustained threat, such as the hypothalamic–pituitary–adrenal axis, as well as brain circuits involved in attentional function, limbic reactivity, habit behavior, and the default mode network; and (3) integrate these findings into a novel conceptual framework of mindful self-regulation in the face of stress—the Mindfulness-to-Meaning Theory. Taken together, the extant body of scientific evidence suggests that the practice of mindfulness enhances a range biobehavioral factors implicated in adaptive stress coping and induces self-referential plasticity, leading to the ability to find meaning in adversity. These mechanistic findings can inform the treatment development process to optimize the next generation of mindfulness-based interventions for greater therapeutic efficacy. PMID:28840198
Cellular stress responses to chronic heat shock and shell damage in temperate Mya truncata.
Sleight, Victoria A; Peck, Lloyd S; Dyrynda, Elisabeth A; Smith, Valerie J; Clark, Melody S
2018-05-12
Acclimation, via phenotypic flexibility, is a potential means for a fast response to climate change. Understanding the molecular mechanisms underpinning phenotypic flexibility can provide a fine-scale cellular understanding of how organisms acclimate. In the last 30 years, Mya truncata populations around the UK have faced an average increase in sea surface temperature of 0.7 °C and further warming of between 1.5 and 4 °C, in all marine regions adjacent to the UK, is predicted by the end of the century. Hence, data are required on the ability of M. truncata to acclimate to physiological stresses, and most notably, chronic increases in temperature. Animals in the present study were exposed to chronic heat-stress for 2 months prior to shell damage and subsequently, only 3, out of 20 damaged individuals, were able to repair their shells within 2 weeks. Differentially expressed genes (between control and damaged animals) were functionally enriched with processes relating to cellular stress, the immune response and biomineralisation. Comparative transcriptomics highlighted genes, and more broadly molecular mechanisms, that are likely to be pivotal in this lack of acclimation. This study demonstrates that discovery-led transcriptomic profiling of animals during stress-response experiments can shed light on the complexity of biological processes and changes within organisms that can be more difficult to detect at higher levels of biological organisation.
Ali, Badreldin H.; Al-Husseni, Isehaq; Beegam, Sumyia; Al-Shukaili, Ahmed; Nemmar, Abderrahim; Schierling, Simone; Queisser, Nina; Schupp, Nicole
2013-01-01
Inflammation and oxidative stress are known to be involved in the pathogenesis of chronic kidney disease in humans, and in chronic renal failure (CRF) in rats. The aim of this work was to study the role of inflammation and oxidative stress in adenine-induced CRF and the effect thereon of the purported nephroprotective agent gum arabic (GA). Rats were divided into four groups and treated for 4 weeks as follows: control, adenine in feed (0.75%, w/w), GA in drinking water (15%, w/v) and adenine+GA, as before. Urine, blood and kidneys were collected from the rats at the end of the treatment for analysis of conventional renal function tests (plasma creatinine and urea concentration). In addition, the concentrations of the pro-inflammatory cytokine TNF-α and the oxidative stress markers glutathione and superoxide dismutase, renal apoptosis, superoxide formation and DNA double strand break frequency, detected by immunohistochemistry for γ-H2AX, were measured. Adenine significantly increased the concentrations of urea and creatinine in plasma, significantly decreased the creatinine clearance and induced significant increases in the concentration of the measured inflammatory mediators. Further, it caused oxidative stress and DNA damage. Treatment with GA significantly ameliorated these actions. The mechanism of the reported salutary effect of GA in adenine-induced CRF is associated with mitigation of the adenine-induced inflammation and generation of free radicals. PMID:23383316
Dendritic Spines in Depression: What We Learned from Animal Models
Qiao, Hui; Li, Ming-Xing; Xu, Chang; Chen, Hui-Bin; An, Shu-Cheng; Ma, Xin-Ming
2016-01-01
Depression, a severe psychiatric disorder, has been studied for decades, but the underlying mechanisms still remain largely unknown. Depression is closely associated with alterations in dendritic spine morphology and spine density. Therefore, understanding dendritic spines is vital for uncovering the mechanisms underlying depression. Several chronic stress models, including chronic restraint stress (CRS), chronic unpredictable mild stress (CUMS), and chronic social defeat stress (CSDS), have been used to recapitulate depression-like behaviors in rodents and study the underlying mechanisms. In comparison with CRS, CUMS overcomes the stress habituation and has been widely used to model depression-like behaviors. CSDS is one of the most frequently used models for depression, but it is limited to the study of male mice. Generally, chronic stress causes dendritic atrophy and spine loss in the neurons of the hippocampus and prefrontal cortex. Meanwhile, neurons of the amygdala and nucleus accumbens exhibit an increase in spine density. These alterations induced by chronic stress are often accompanied by depression-like behaviors. However, the underlying mechanisms are poorly understood. This review summarizes our current understanding of the chronic stress-induced remodeling of dendritic spines in the hippocampus, prefrontal cortex, orbitofrontal cortex, amygdala, and nucleus accumbens and also discusses the putative underlying mechanisms. PMID:26881133
GPER mediates the effects of 17β-estradiol in cardiac mitochondrial biogenesis and function.
Sbert-Roig, Miquel; Bauzá-Thorbrügge, Marco; Galmés-Pascual, Bel M; Capllonch-Amer, Gabriela; García-Palmer, Francisco J; Lladó, Isabel; Proenza, Ana M; Gianotti, Magdalena
2016-01-15
Considering the sexual dimorphism described in cardiac mitochondrial function and oxidative stress, we aimed to investigate the role of 17β-estradiol (E2) in these sex differences and the contribution of E2 receptors to these effects. As a model of chronic deprivation of ovarian hormones, we used ovariectomized (OVX) rats, half of which were treated with E2. Ovariectomy decreased markers of cardiac mitochondrial biogenesis and function and also increased oxidative stress, whereas E2 counteracted these effects. In H9c2 cardiomyocytes we observed that G-protein coupled estrogen receptor (GPER) agonist mimicked the effects of E2 in enhancing mitochondrial function and biogenesis, whereas GPER inhibitor neutralized them. These data suggest that E2 enhances mitochondrial function and decreases oxidative stress in cardiac muscle, thus it could be responsible for the sexual dimorphism observed in mitochondrial biogenesis and function in this tissue. These effects seem to be mediated through GPER stimulation. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Technical and clinical aspects of cortisol as a biochemical marker of chronic stress.
Lee, Do Yup; Kim, Eosu; Choi, Man Ho
2015-04-01
Stress is now recognized as a universal premorbid factor associated with many risk factors of various chronic diseases. Acute stress may induce an individual's adaptive response to environmental demands. However, chronic, excessive stress causes cumulative negative impacts on health outcomes through "allostatic load". Thus, monitoring the quantified levels of long-term stress mediators would provide a timely opportunity for prevention or earlier intervention of stress-related chronic illnesses. Although either acute or chronic stress could be quantified through measurement of changes in physiological parameters such as heart rate, blood pressure, and levels of various metabolic hormones, it is still elusive to interpret whether the changes in circulating levels of stress mediators such as cortisol can reflect the acute, chronic, or diurnal variations. Both serum and salivary cortisol levels reveal acute changes at a single point in time, but the overall long-term systemic cortisol exposure is difficult to evaluate due to circadian variations and its protein-binding capacity. Scalp hair has a fairy predictable growth rate of approximately 1 cm/month, and the most 1 cm segment approximates the last month's cortisol production as the mean value. The analysis of cortisol in hair is a highly promising technique for the retrospective assessment of chronic stress.
Jackowska, Marta; Fuchs, Reinhard; Klaperski, Sandra
2018-02-01
Evidence on the relationship between stress reactivity and sleep is conflicting. This study examined the association between disturbed sleep and perceived and endocrine stress reactivity independently of age, body mass index (BMI), and chronic stress. One hundred and twenty middle-aged men were exposed to the Trier Social Stress Test for Groups. The Pittsburgh Sleep Quality Index and the Perceived Stress Reactivity Scale were used to assess sleep and perceived stress reactivity, respectively. Endocrine stress reactivity was examined by assessing salivary cortisol levels. Regression analyses showed that men with disturbed sleep had blunted overall cortisol responses (b = -18.246, p = .044), but the association did not survive adjustment for age, BMI, and chronic stress. In contrast, poor sleep was associated with heightened perceived stress reactivity independently of age and BMI (b = 0.235, p = .005), but additional adjustment for chronic stress attenuated the relationship and only chronic stress remained a significant predictor of perceived stress reactivity (b = 0.470, p < .001). Cortisol and perceived stress reactivity were uncorrelated. In summary, our study indicates associations between sleep disturbances and stress reactivity were not independent of BMI and chronic stress levels, and endocrine and perceived stress reactivity were dissociated. © 2017 The British Psychological Society.
Effect of Chronic Psychological Stress on Liver Metastasis of Colon Cancer in Mice
Zhao, Lu; Xu, Jianhua; Liang, Fang; Li, Ao; Zhang, Yong; Sun, Jue
2015-01-01
Metastasis to the liver is a main factor in colorectal cancer mortality. Previous studies suggest that chronic psychological stress is important in cancer progression, but its effect on liver metastasis has not been investigated. To address this, we established a liver metastasis model in BALB/c nude mice to investigate the role of chronic stress in liver metastasis. Our data suggest that chronic stress elevates catecholamine levels and promotes liver metastasis. Chronic stress was also associated with increased tumor associated macrophages infiltration into the primary tumor and increased the expression of metastatic genes. Interestingly, β-blocker treatment reversed the effects of chronic stress on liver metastasis. Our results suggest the β-adrenergic signaling pathway is involved in regulating colorectal cancer progression and liver metastasis. Additionally, we submit that adjunctive therapy with a β-blocker may complement existing colorectal cancer therapies. PMID:26444281
Besheer, Joyce; Fisher, Kristen R.; Lindsay, Tessa G.; Cannady, Reginald
2013-01-01
Stressful life events and chronic stressors have been associated with escalations in alcohol drinking. Stress exposure leads to the secretion of glucocorticoids (cortisol in the human; corticosterone (CORT) in the rodent). To model a period of heightened elevations in CORT, the present work assessed the effects of chronic exposure to the stress hormone CORT on alcohol self-administration. Male Long Evans rats were trained to self-administer a sweetened alcohol solution (2% sucrose/15% alcohol) resulting in moderate levels of daily alcohol intake (0.5–0.7 g/kg). Following stable baseline operant self-administration, rats received CORT in the drinking water for 7 days. A transient increase in alcohol self-administration was observed on the first self-administration session following CORT exposure, and behavior returned to control levels by the second session. Control experiments determined that this increase in alcohol self-administration was specific to alcohol, unrelated to general motor activation, and functionally dissociated from decreased CORT levels at the time of testing. These results indicate that repeated exposure to heightened levels of stress hormone (e.g., as may be experienced during stressful episodes) has the potential to lead to exacerbated alcohol intake in low to moderate drinkers. Given that maladaptive drinking patterns, such as escalated alcohol drinking following stressful episodes, have the potential to put an individual at risk for future drinking disorders, utilization of this model will be important for examination of neuroadaptations that occur as a consequence of CORT exposure in order to better understand escalated drinking following stressful episodes in nondependent individuals. PMID:23643750
BREESE, GEORGE R.; SINHA, RAJITA; HEILIG, MARKUS
2010-01-01
Alcoholism is a chronic relapsing disorder. Major characteristics observed in alcoholics during an initial period of alcohol abstinence are altered physiological functions and a negative emotional state. Evidence suggests that a persistent, cumulative adaptation involving a kindling/allostasis-like process occurs during the course of repeated chronic alcohol exposures that is critical for the negative symptoms observed during alcohol withdrawal. Basic studies have provided evidence for specific neurotransmitters within identified brain sites being responsible for the negative emotion induced by the persistent cumulative adaptation following intermittent-alcohol exposures. After an extended period of abstinence, the cumulative alcohol adaptation increases susceptibility to stress- and alcohol cue-induced negative symptoms and alcohol seeking, both of which can facilitate excessive ingestion of alcohol. In the alcoholic, stressful imagery and alcohol cues alter physiological responses, enhance negative emotion, and induce craving. Brain fMRI imaging following stress and alcohol cues has documented neural changes in specific brain regions of alcoholics not observed in social drinkers. Such altered activity in brain of abstinent alcoholics to stress and alcohol cues is consistent with a continuing ethanol adaptation being responsible. Therapies in alcoholics found to block responses to stress and alcohol cues would presumably be potential treatments by which susceptibility for continued alcohol abuse can be reduced. By continuing to define the neurobiological basis of the sustained alcohol adaptation critical for the increased susceptibility of alcoholics to stress and alcohol cues that facilitate craving, a new era is expected to evolve in which the high rate of relapse in alcoholism is minimized. 250 PMID:20951730
Beidel, Deborah C.; Frueh, B. Christopher; Uhde, Thomas W.; Wong, Nina; Mentrikoski, Janelle M.
2010-01-01
This study examined the efficacy of a multicomponent cognitive-behavioral therapy, Trauma Management Therapy, which combines exposure therapy and social emotional rehabilitation, to exposure therapy only in a group of male combat veterans with chronic posttraumatic stress disorder (PTSD). Thirty-five male Vietnam veterans with PTSD were randomly assigned to receive either Trauma Management Therapy (TMT) or Exposure Therapy Only (EXP). Participants were assessed at pre-treatment, mid-treatment, and post-treatment. Primary clinical outcomes were reduction of PTSD symptoms and improved social emotional functioning. Results indicated that veterans in both conditions showed statistically significant and clinically meaningful reductions in PTSD symptoms from pre- to post-treatment, though consistent with a priori hypotheses there were no group differences on PTSD variables. However, compared to the EXP group, participants in the TMT group showed increased frequency in social activities and greater time spent in social activities. These changes occurred from mid-treatment (after completion of exposure therapy) to post-treatment (after completion of the social emotional rehabilitation component); supporting the hypothesis that TMT alone would result in improved social functioning. Although the TMT group also had a significant decrease in episodes of physical rage, that change occurred prior to introduction of the social emotional component of TMT. This study demonstrates efficacy of exposure therapy for treating the core symptoms of PTSD among combat veterans with a severe and chronic form of this disorder. Moreover, multi-component CBT shows promise for improving social functioning beyond that provided by exposure therapy alone, particularly by increasing social engagement/interpersonal functioning in a cohort of veterans with severe and chronic PTSD. PMID:20951543
Ocular-specific ER stress reduction rescues glaucoma in murine glucocorticoid-induced glaucoma
Zode, Gulab S.; Sharma, Arti B.; Lin, Xiaolei; Searby, Charles C.; Bugge, Kevin; Kim, Gun Hee; Clark, Abbot F.; Sheffield, Val C.
2014-01-01
Administration of glucocorticoids induces ocular hypertension in some patients. If untreated, these patients can develop a secondary glaucoma that resembles primary open-angle glaucoma (POAG). The underlying pathology of glucocorticoid-induced glaucoma is not fully understood, due in part to lack of an appropriate animal model. Here, we developed a murine model of glucocorticoid-induced glaucoma that exhibits glaucoma features that are observed in patients. Treatment of WT mice with topical ocular 0.1% dexamethasone led to elevation of intraocular pressure (IOP), functional and structural loss of retinal ganglion cells, and axonal degeneration, resembling glucocorticoid-induced glaucoma in human patients. Furthermore, dexamethasone-induced ocular hypertension was associated with chronic ER stress of the trabecular meshwork (TM). Similar to patients, withdrawal of dexamethasone treatment reduced elevated IOP and ER stress in this animal model. Dexamethasone induced the transcriptional factor CHOP, a marker for chronic ER stress, in the anterior segment tissues, and Chop deletion reduced ER stress in these tissues and prevented dexamethasone-induced ocular hypertension. Furthermore, reduction of ER stress in the TM with sodium 4-phenylbutyrate prevented dexamethasone-induced ocular hypertension in WT mice. Our data indicate that ER stress contributes to glucocorticoid-induced ocular hypertension and suggest that reducing ER stress has potential as a therapeutic strategy for treating glucocorticoid-induced glaucoma. PMID:24691439
Stress and psychopathology and its impact on quality of life in chronic anal fissure (CAF) patients.
Arısoy, Özden; Şengül, Neriman; Çakir, Affan
2017-06-01
Chronic anal fissure (CAF) onset, exacerbation, and impact on quality of life are influenced by a host of psychological, physiological, and social factors. We aimed to investigate the difference in psychopathology and stress between normal and CAF groups. Thirty CAF patients and 20 age-sex matched healthy controls were evaluated for Axis I psychopathology, depression, anxiety, and stress with Hamilton and Hospital Depression-Anxiety Scales, Perceived Stress Scale, and SF-36. With a mean age of 39.47, 83.3% of CAF patients were female. Anxiety-depression and stress scores were all significantly higher and functionality was lower in the CAF group compared to controls (p < 0.001); 36.7% of the patients had a triggering stress factor and 56.6% had an exacerbating stress factor; 56.7% of the patients had an ongoing Axis I psychopathology while 50% had a previous psychopathology. Pain (96.7% had pain (VAS = 6.55)) and bleeding (83.3% had bleeding (VAS = 4.14)) severity showed a negative impact on bodily pain and role limitations emotional subscales of SF36. There is a high comorbidity of psychopathology in the CAF patients and depression and anxiety severities show a negative impact on the quality of life. Stress acts as both a triggering and an exacerbating factor in CAF.
Longevity factor klotho and chronic psychological stress
Prather, A A; Epel, E S; Arenander, J; Broestl, L; Garay, B I; Wang, D; Dubal, D B
2015-01-01
Chronic psychological stress is associated with accelerated aging and premature morbidity and mortality; however, the biology linking chronic psychological stress and its maladaptive effects remains largely unknown. Klotho is a pleiotropic hormone that regulates the aging process and promotes better brain and body health. Whether klotho is linked to psychosocial stress or its negative impact in humans has not been investigated. To address this gap, we recruited 178 healthy women who were either chronically high-stress maternal caregivers for a child with autism spectrum disorder (n=90) or low-stress control mothers of a typically developing child (n=88). We found that women under high chronic stress displayed significantly lower levels of the longevity hormone klotho compared with low-stress controls (t(176)=2.92, P=0.004; d=0.44), and the decrease among those under high stress was age-dependent. In addition, high-stress caregivers who reported more depressive symptoms displayed even lower klotho levels compared with low-stress participants. These findings provide the first evidence that klotho levels are sensitive to psychosocial stressors and raise the possibility that klotho may serve as a novel biological link connecting stress, depression and risk for accelerated disease development. Furthermore, these findings have important implications for understanding the plasticity of the aging process and may represent a therapeutic target for mitigating the deleterious effects of chronic psychological stress on health and well-being. PMID:26080320
Crestani, Carlos C.
2016-01-01
Emotional stress has been recognized as a modifiable risk factor for cardiovascular diseases. The impact of stress on physiological and psychological processes is determined by characteristics of the stress stimulus. For example, distinct responses are induced by acute vs. chronic aversive stimuli. Additionally, the magnitude of stress responses has been reported to be inversely related to the degree of predictability of the aversive stimulus. Therefore, the purpose of the present review was to discuss experimental research in animal models describing the influence of stressor stimulus characteristics, such as chronicity and predictability, in cardiovascular dysfunctions induced by emotional stress. Regarding chronicity, the importance of cardiovascular and autonomic adjustments during acute stress sessions and cardiovascular consequences of frequent stress response activation during repeated exposure to aversive threats (i.e., chronic stress) is discussed. Evidence of the cardiovascular and autonomic changes induced by chronic stressors involving daily exposure to the same stressor (predictable) vs. different stressors (unpredictable) is reviewed and discussed in terms of the impact of predictability in cardiovascular dysfunctions induced by stress. PMID:27445843
Grover, Kelly E; Green, Kelly L; Pettit, Jeremy W; Monteith, Lindsey L; Garza, Monica J; Venta, Amanda
2009-12-01
The present study examined the unique and interactive effects of stress and problem-solving skills on suicidal behaviors among 102 inpatient adolescents. As expected, life event stress and chronic stress each significantly predicted suicidal ideation and suicide attempt. Problem solving significantly predicted suicidal ideation, but not suicide attempt. Problem solving moderated the associations between life event stress and suicidal behaviors, as well as between chronic stress and suicidal ideation, but not chronic stress and suicide attempt. At high levels of stress, adolescents with poor problem-solving skills experienced elevated suicidal ideation and were at greater risk of making a nonfatal suicide attempt. The interactive effects decreased to non-significance after controlling for depressive symptoms and hopelessness. Clinical implications are discussed.
Bhakta, Ami; Gavini, Kartheek; Yang, Euitaek; Lyman-Henley, Lani; Parameshwaran, Kodeeswaran
2017-09-29
Chronic stress in humans can result in multiple adverse psychiatric and neurobiological outcomes, including memory deficits. These adverse outcomes can be more severe if each episode of stress is very traumatic. When compared to acute or short term stress relatively little is known about the effects of chronic traumatic stress on memory and molecular changes in hippocampus, a brain area involved in memory processing. Here we studied the effects of chronic traumatic stress in mice by exposing them to adult Long Evan rats for 28 consecutive days and subsequently analyzing behavioral outcomes and the changes in the hippocampus. Results show that stressed mice developed memory deficits when assayed with radial arm maze tasks. However, chronic traumatic stress did not induce anxiety, locomotor hyperactivity or anhedonia. In the hippocampus of stressed mice interleukin-1β protein expression was increased along with decreased corticotropin releasing hormone (CRH) gene expression. Furthermore, there was a reduction in acetylcholine levels in the hippocampus of stressed mice. There were no changes in brain derived neurotrophic factor (BDNF) or nerve growth factor (NGF) levels in the hippocampus of stressed mice. Gene expression of immediate early genes (Zif268, Arc, C-Fos) as well as glucocorticoid and mineralocorticoid receptors were also not affected by chronic stress. These data demonstrate that chronic traumatic stress followed by a recovery period might lead to development of resilience resulting in the development of selected, most vulnerable behavioral alterations and molecular changes in the hippocampus. Copyright © 2017 Elsevier B.V. All rights reserved.
Domains of Chronic Stress and Suicidal Behaviors among Inpatient Adolescents
ERIC Educational Resources Information Center
Pettit, Jeremy W.; Green, Kelly L.; Grover, Kelly E.; Schatte, Dawnelle J.; Morgan, Sharon T.
2011-01-01
Little is known about the role of chronic stress in youth suicidal behaviors. This study examined the relations between specific domains of chronic stress and suicidal behaviors among 131 inpatient youth (M age = 15.02 years) who completed measures of stress, suicidal ideation, suicide attempt, and suicide intent. After controlling for…
Campbell, Adam M; Park, Collin R; Zoladz, Phillip R; Muñoz, Carmen; Fleshner, Monika; Diamond, David M
2008-02-01
Extensive research has shown that the antidepressant tianeptine blocks the adverse effects of chronic stress on hippocampal functioning. The current series of experiments extended this area of investigation by examining the influence of tianeptine on acute stress-induced impairments of spatial (hippocampus-dependent) memory. Tianeptine (10 mg/kg, ip) administered to adult male rats before, but not after, water maze training blocked the amnestic effects of predator stress (occurring between training and retrieval) on memory. The protective effects of tianeptine on memory occurred in rats which had extensive pre-stress training, as well as in rats which had only a single day of training. Tianeptine blocked stress effects on memory without altering the stress-induced increase in corticosterone levels. Propranolol, a beta-adrenergic receptor antagonist (5 and 10 mg/kg, ip), in contrast, did not block stress-induced amnesia. These findings indicate that treatment with tianeptine, unlike propanolol, provides an effective means with which to block the adverse effects of stress on cognitive functions of the hippocampus.
Teixeira, Renata Roland; Díaz, Miguel Mauricio; Santos, Tatiane Vanessa da Silva; Bernardes, Jean Tofoles Martins; Peixoto, Leonardo Gomes; Bocanegra, Olga Lucia; Neto, Morun Bernardino; Espindola, Foued Salmen
2015-01-01
The present study examined the incidence of chronic stress in business executives (109 subjects: 75 male and 34 female) and its relationship with cortisol levels, cognitive performance, and autonomic nervous system (ANS) reactivity after an acute mental stressor. Blood samples were collected from the subjects to measure cortisol concentration. After the sample collection, the subjects completed the Lipp Inventory of Stress Symptoms for Adults and the Stroop Color-Word Test to evaluate stress and cognitive performance levels, respectively. Saliva samples were collected prior to, immediately after, and five minutes after the test. The results revealed that 90.1% of the stressed subjects experienced stress phases that are considered chronic stress. At rest, the subjects with chronic stress showed higher cortisol levels, and no gender differences were observed. No differences were found between the stressed and non-stressed subjects regarding salivary amylase activity prior to test. Chronic stress also impaired performance on the Stroop test, which revealed higher rates of error and longer reaction times in the incongruent stimulus task independently of gender. For the congruent stimulus task of the Stroop test, the stressed males presented a higher rate of errors than the non-stressed males and a longer reaction time than the stressed females. After the acute mental stressor, the non-stressed male group showed an increase in salivary alpha-amylase activity, which returned to the initial values five minutes after the test; this ANS reactivity was not observed in the chronically stressed male subjects. The ANS responses of the non-stressed vs stressed female groups were not different prior to or after the Stroop test. This study is the first to demonstrate a blunted reactivity of the ANS when male subjects with chronic psychological stress were subjected to an acute mental stressor, and this change could contribute to impairments in cognitive performance. PMID:25807003
Teixeira, Renata Roland; Díaz, Miguel Mauricio; Santos, Tatiane Vanessa da Silva; Bernardes, Jean Tofoles Martins; Peixoto, Leonardo Gomes; Bocanegra, Olga Lucia; Neto, Morun Bernardino; Espindola, Foued Salmen
2015-01-01
The present study examined the incidence of chronic stress in business executives (109 subjects: 75 male and 34 female) and its relationship with cortisol levels, cognitive performance, and autonomic nervous system (ANS) reactivity after an acute mental stressor. Blood samples were collected from the subjects to measure cortisol concentration. After the sample collection, the subjects completed the Lipp Inventory of Stress Symptoms for Adults and the Stroop Color-Word Test to evaluate stress and cognitive performance levels, respectively. Saliva samples were collected prior to, immediately after, and five minutes after the test. The results revealed that 90.1% of the stressed subjects experienced stress phases that are considered chronic stress. At rest, the subjects with chronic stress showed higher cortisol levels, and no gender differences were observed. No differences were found between the stressed and non-stressed subjects regarding salivary amylase activity prior to test. Chronic stress also impaired performance on the Stroop test, which revealed higher rates of error and longer reaction times in the incongruent stimulus task independently of gender. For the congruent stimulus task of the Stroop test, the stressed males presented a higher rate of errors than the non-stressed males and a longer reaction time than the stressed females. After the acute mental stressor, the non-stressed male group showed an increase in salivary alpha-amylase activity, which returned to the initial values five minutes after the test; this ANS reactivity was not observed in the chronically stressed male subjects. The ANS responses of the non-stressed vs stressed female groups were not different prior to or after the Stroop test. This study is the first to demonstrate a blunted reactivity of the ANS when male subjects with chronic psychological stress were subjected to an acute mental stressor, and this change could contribute to impairments in cognitive performance.
Lee, M-S; Kim, Y-H; Park, W-S; Park, O-K; Kwon, S-H; Hong, K S; Rhim, H; Shim, I; Morita, K; Wong, D L; Patel, P D; Lyons, D M; Schatzberg, A F; Her, S
2016-02-01
Previous studies have shown inconsistent results regarding the actions of antidepressants on glucocorticoid receptor (GR) signalling. To resolve these inconsistencies, we used a lentiviral-based reporter system to directly monitor rat hippocampal GR activity during stress adaptation. Temporal GR activation was induced significantly by acute stress, as demonstrated by an increase in the intra-individual variability of the acute stress group compared with the variability of the non-stress group. However, the increased intra-individual variability was dampened by exposure to chronic stress, which was partly restored by fluoxetine treatment without affecting glucocorticoid secretion. Immobility in the forced-swim test was negatively correlated with the intra-individual variability, but was not correlated with the quantitative GR activity during fluoxetine therapy; this highlights the temporal variability in the neurobiological links between GR signalling and the therapeutic action of fluoxetine. Furthermore, we demonstrated sequential phosphorylation between GR (S224) and (S232) following fluoxetine treatment, showing a molecular basis for hormone-independent nuclear translocation and transcriptional enhancement. Collectively, these results suggest a neurobiological mechanism by which fluoxetine treatment confers resilience to the chronic stress-mediated attenuation of hypothalamic-pituitary-adrenal axis activity.
Central apelin mediates stress-induced gastrointestinal motor dysfunction in rats.
Bülbül, Mehmet; İzgüt-Uysal, V Nimet; Sinen, Osman; Birsen, İlknur; Tanrıöver, Gamze
2016-02-15
Apelin, an endogenous ligand for APJ receptor, has been reported to be upregulated in paraventricular nucleus (PVN) following stress. Central apelin is known to stimulate release of corticotropin-releasing factor (CRF) via APJ receptor. We tested the hypothesis that stress-induced gastrointestinal (GI) dysfunction is mediated by central apelin. We also assessed the effect of exogenous apelin on GI motility under nonstressed (NS) conditions in conscious rats. Prior to solid gastric emptying (GE) and colon transit (CT) measurements, APJ receptor antagonist F13A was centrally administered under NS conditions and following acute stress (AS), chronic homotypic stress (CHS), and chronic heterotypic stress (CHeS). Plasma corticosterone was assayed. Strain gage transducers were implanted on serosal surfaces of antrum and distal colon to record postprandial motility. Stress exposure induced coexpression of c-Fos and apelin in hypothalamic PVN. Enhanced hypothalamic apelin and CRF levels in microdialysates were detected following AS and CHeS, which were negatively and positively correlated with GE and CT, respectively. Central F13A administration abolished delayed GE and accelerated CT induced by AS and CHeS. Central apelin-13 administration increased the plasma corticosterone and inhibited GE and CT by attenuating antral and colonic contractions. The inhibitory effect elicited by apelin-13 was abolished by central pretreatment of CRF antagonist CRF9-41 in antrum, but not in distal colon. Central endogenous apelin mediates stress-induced changes in gastric and colonic motor functions through APJ receptor. The inhibitory effects of central exogenous apelin-13 on GI motility appear to be partly CRF dependent. Apelin-13 inhibits colon motor functions through a CRF-independent pathway. Copyright © 2016 the American Physiological Society.
Negrón-Oyarzo, Ignacio; Dagnino-Subiabre, Alexies; Muñoz Carvajal, Pablo
2015-01-01
Chronic stress is a risk factor for the development of psychiatric disorders, some of which involve dysfunction of the prefrontal cortex (PFC). There is a higher prevalence of these chronic stress-related psychiatric disorders during adolescence, when the PFC has not yet fully matured. In the present work we studied the effect of repeated stress during adolescence on synaptic function in the PFC in adolescence and adulthood. To this end, adolescent Sprague-Dawley rats were subjected to seven consecutive days of restraint stress. Afterward, both synaptic transmission and short- and long-term synaptic plasticity were evaluated in layer 1 of medial-PFC (mPFC) slices from adolescent and adult rats. We found that repeated stress significantly reduced the amplitude of evoked field excitatory post-synaptic potential (fEPSP) in the mPFC. Isolation of excitatory transmission reveled that lower-amplitude fEPSPs were associated with a reduction in α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor-mediated transmission. We also found that repeated stress significantly decreased long-term depression (LTD). Interestingly, AMPA/kainate receptor-mediated transmission and LTD were recovered in adult animals that experienced a three-week stress-free recovery period. The data indicates that the changes in synaptic transmission and plasticity in the mPFC induced by repeated stress during adolescence are reversed in adulthood after a stress-free period. PMID:26617490
Negrón-Oyarzo, Ignacio; Dagnino-Subiabre, Alexies; Muñoz Carvajal, Pablo
2015-01-01
Chronic stress is a risk factor for the development of psychiatric disorders, some of which involve dysfunction of the prefrontal cortex (PFC). There is a higher prevalence of these chronic stress-related psychiatric disorders during adolescence, when the PFC has not yet fully matured. In the present work we studied the effect of repeated stress during adolescence on synaptic function in the PFC in adolescence and adulthood. To this end, adolescent Sprague-Dawley rats were subjected to seven consecutive days of restraint stress. Afterward, both synaptic transmission and short- and long-term synaptic plasticity were evaluated in layer 1 of medial-PFC (mPFC) slices from adolescent and adult rats. We found that repeated stress significantly reduced the amplitude of evoked field excitatory post-synaptic potential (fEPSP) in the mPFC. Isolation of excitatory transmission reveled that lower-amplitude fEPSPs were associated with a reduction in α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor-mediated transmission. We also found that repeated stress significantly decreased long-term depression (LTD). Interestingly, AMPA/kainate receptor-mediated transmission and LTD were recovered in adult animals that experienced a three-week stress-free recovery period. The data indicates that the changes in synaptic transmission and plasticity in the mPFC induced by repeated stress during adolescence are reversed in adulthood after a stress-free period.
[Participation of pineal gland in antistressor activity of adaptogenic drugs].
Arushanian, É B; Beĭer, É V
2015-01-01
Chronic stress produces some morphological changes in rats, including thymus weight reduction, adrenal hypertrophy, and peptic ulcers in stomach. Repeated administration of phytoadaptogenic drugs (ginseng and bilobil) decreased these stress-induced disorders. The antistressor activity of drugs was attenuated upon by removal of the pineal gland. Histochemical and morphometric investigation of pineal tissues in stressed animals showed that that the pharmacological effect was accompanied by increasing functional activity of the pineal gland. It is suggested that pineal mobilization may participate in antistressor activity of phytoadaptogenic drugs.
A Molecular Web: Endoplasmic Reticulum Stress, Inflammation, and Oxidative Stress
Chaudhari, Namrata; Talwar, Priti; Parimisetty, Avinash; Lefebvre d’Hellencourt, Christian; Ravanan, Palaniyandi
2014-01-01
Execution of fundamental cellular functions demands regulated protein folding homeostasis. Endoplasmic reticulum (ER) is an active organelle existing to implement this function by folding and modifying secretory and membrane proteins. Loss of protein folding homeostasis is central to various diseases and budding evidences suggest ER stress as being a major contributor in the development or pathology of a diseased state besides other cellular stresses. The trigger for diseases may be diverse but, inflammation and/or ER stress may be basic mechanisms increasing the severity or complicating the condition of the disease. Chronic ER stress and activation of the unfolded-protein response (UPR) through endogenous or exogenous insults may result in impaired calcium and redox homeostasis, oxidative stress via protein overload thereby also influencing vital mitochondrial functions. Calcium released from the ER augments the production of mitochondrial Reactive Oxygen Species (ROS). Toxic accumulation of ROS within ER and mitochondria disturbs fundamental organelle functions. Sustained ER stress is known to potentially elicit inflammatory responses via UPR pathways. Additionally, ROS generated through inflammation or mitochondrial dysfunction could accelerate ER malfunction. Dysfunctional UPR pathways have been associated with a wide range of diseases including several neurodegenerative diseases, stroke, metabolic disorders, cancer, inflammatory disease, diabetes mellitus, cardiovascular disease, and others. In this review, we have discussed the UPR signaling pathways, and networking between ER stress-induced inflammatory pathways, oxidative stress, and mitochondrial signaling events, which further induce or exacerbate ER stress. PMID:25120434
Jung, Jun Man; Park, Se Jin; Lee, Young Woo; Lee, Hyung Eun; Hong, Sung In; Lew, Jae Hwan; Hong, Eunyoung; Shim, Jae Seok; Cheong, Jae Hoon; Ryu, Jong Hoon
2013-07-30
The roots and stem bark of Acanthopanax koreanum Nakai (Araliaceae), a well-known herbal medicine in Jeju Island, Korea, has been used as a tonic agent in treating stress-related states. Despite its popular application, the anti-anxiety or anti-depressive action of Acanthopanax koreanum is not yet known. This study aimed to determine the effects of Acanthopanax koreanum on stress-induced behavioral alterations such as anxiety and depression. Mice in the acute stress group were exposed to immobilization stress for 2h followed by electric foot shocks (0.5 mA in 1 s duration with a 10 s inter-shock interval) for 2 min, while sub-chronically stressed mice were exposed to these stresses for 2 weeks, once per day. 70% ethanolic extract of Acanthopanax koreanum (EEAK) (25, 50, 100, or 200 mg/kg) was administered once or sub-chronically (for 2 weeks) 1h prior to stress induction. Anxiety- or depression-like behavioral changes were evaluated using the elevated plus-maze (EPM) test and the forced swimming test (FST) a day after the final stress induction. Corticosterone levels and spleen weight were measured after conducting all the behavioral assays. The numbers of BrdU- or DCX-immunopositive cells in the hippocampal region of sub-chronically stressed mice were measured 2 days after EEAK treatment. The percentage of time spent in the open arms was decreased in both the acutely and chronically stressed mice. In the FST, the immobility time was increased by only chronic stress, but not by acute stress. Acute or sub-chronic administration of EEAK significantly prevented the anxiety- or depression-like behavioral changes caused by stress. EEAK also attenuated stress-induced decrease and increase of spleen weight and corticosterone levels, respectively. Furthermore, the sub-chronic administration of EEAK (100 or 200 mg/kg, for 2 weeks) increased the number of BrdU-, doublecortin-, and neuropeptide Y-positive cells in the hippocampal region of the sub-chronically stressed mice. EEAK attenuated the behavioral and biochemical changes in acute or sub-chronic stressed mice. These results suggest the therapeutic potential of Acanthopanax koreanum for the treatment of stress-related neuropsychiatric disorders including anxiety disorders or major depressive disorder. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
3xTgAD mice exhibit altered behavior and elevated Aβ after chronic mild social stress
Rothman, Sarah M.; Herdener, Nathan; Camandola, Simonetta; Texel, Sarah J.; Mughal, Mohamed R.; Cong, Wei-Na; Martin, Bronwen; Mattson, Mark P
2014-01-01
Chronic stress may be a risk factor for developing Alzheimer’s disease (AD), but most studies of the effects of stress in models of AD utilize acute adverse stressors of questionable clinical relevance. The goal of this work was to determine how chronic psychosocial stress affects behavioral and pathological outcomes in an animal model of AD, and to elucidate underlying mechanisms. A triple-transgenic mouse model of AD (3xTgAD mice) and nontransgenic control mice were used to test for an affect of chronic mild social stress on blood glucose, plasma glucocorticoids, plasma insulin, anxiety and hippocampal Aβ, ptau and BDNF levels. Despite the fact that both control and 3xTgAD mice experienced rises in corticosterone during episodes of mild social stress, at the end of the 6 week stress period 3xTgAD mice displayed increased anxiety, elevated levels of Aβ oligomers and intraneuronal Aβ, and decreased BDNF levels, whereas control mice did not. Findings suggest 3xTgAD mice are more vulnerable than control mice to chronic psychosocial stress, and that such chronic stress exacerbates Aβ accumulation and impairs neurotrophic signaling. PMID:21855175
Nagumo, Kohei; Tanaka, Motohiko; Chuang, Victor Tuan Giam; Setoyama, Hiroko; Watanabe, Hiroshi; Yamada, Naoyuki; Kubota, Kazuyuki; Tanaka, Motoko; Matsushita, Kazutaka; Yoshida, Akira; Jinnouchi, Hideaki; Anraku, Makoto; Kadowaki, Daisuke; Ishima, Yu; Sasaki, Yutaka; Otagiri, Masaki; Maruyama, Toru
2014-01-01
The degree of oxidized cysteine (Cys) 34 in human serum albumin (HSA), as determined by high performance liquid chromatography (HPLC), is correlated with oxidative stress related pathological conditions. In order to further characterize the oxidation of Cys34-HSA at the molecular level and to develop a suitable analytical method for a rapid and sensitive clinical laboratory analysis, the use of electrospray ionization time-of-flight mass spectrometer (ESI-TOFMS) was evaluated. A marked increase in the cysteinylation of Cys34 occurs in chronic liver and kidney diseases and diabetes mellitus. A significant positive correlation was observed between the Cys-Cys34-HSA fraction of plasma samples obtained from 229 patients, as determined by ESI-TOFMS, and the degree of oxidized Cys34-HSA determined by HPLC. The Cys-Cys34-HSA fraction was significantly increased with the progression of liver cirrhosis, and was reduced by branched chain amino acids (BCAA) treatment. The changes in the Cys-Cys34-HSA fraction were significantly correlated with the alternations of the plasma levels of advanced oxidized protein products, an oxidative stress marker for proteins. The binding ability of endogenous substances (bilirubin and tryptophan) and drugs (warfarin and diazepam) to HSA purified from chronic liver disease patients were significantly suppressed but significantly improved by BCAA supplementation. Interestingly, the changes in this physiological function of HSA in chronic liver disease were correlated with the Cys-Cys34-HSA fraction. In conclusion, ESI-TOFMS is a suitable high throughput method for the rapid and sensitive quantification of Cys-Cys34-HSA in a large number of samples for evaluating oxidative stress related chronic disease progression or in response to a treatment. PMID:24416365
Akasaka, Emiko; Takekoshi, Susumu; Horikoshi, Yosuke; Toriumi, Kentarou; Ikoma, Norihiro; Mabuchi, Tomotaka; Tamiya, Shiho; Matsuyama, Takashi; Ozawa, Akira
2010-12-20
Oxidative stress derived from ultraviolet (UV) light in sunlight induces different hazardous effects in the skin, including sunburn, photo-aging and DNA mutagenesis. In this study, the protein-bound lipid peroxidation products 4-hydroxy-2-nonenal (HNE) and the oxidative DNA damage marker 8-hydroxy-2'-deoxyguanosine (8OHdG) were investigated in chronically sun-exposed and sun-protected human skins using immunohistochemistry. The levels of antioxidative enzymes, such as heme oxygenase 1 and 2, Cu/Zn-SOD, Mn-SOD and catalase, were also examined. Oxidative stress is also implicated in the activation of signal transduction pathways, such as mitogen-activated protein kinase (MAPK). Therefore, the expression and distribution of phosphorylated p38 MAPK, phosphorylated Jun N-terminal kinase (JNK) and phosphorylated extracellular signal-regulated kinase (ERK) were observed. Skin specimens were obtained from the surgical margins. Chronically sunlight-exposed skin samples were taken from the ante-auricular (n = 10) and sunlight-protected skin samples were taken from the post-auricular (n = 10). HNE was increased in the chronically sunlight-exposed skin but not in the sunlight-protected skin. The expression of heme oxygenase-2 was markedly increased in the sunlight-exposed skin compared with the sun-protected skin. In contrast, the intensity of immunostaining of Cu/Zn-SOD, Mn-SOD and catalase was not different between the two areas. Phosphorylated p38 MAPK and phosphorylated JNK accumulated in the ante-auricular dermis and epidermis, respectively. These data show that particular anti-oxidative enzymes function as protective factors in chronically sunlight-exposed human skin. Taken together, our results suggest (1) antioxidative effects of heme oxygenase-2 in chronically sunlight-exposed human skin, and that (2) activation of p38 MAPK may be responsible for oxidative stress.
Louw, Adriaan; Diener, Ina; Butler, David S; Puentedura, Emilio J
2011-12-01
To evaluate the evidence for the effectiveness of neuroscience education (NE) for pain, disability, anxiety, and stress in chronic musculoskeletal (MSK) pain. Systematic searches were conducted on Biomed Central, BMJ.com, CINAHL, the Cochrane Library, NLM Central Gateway, OVID, ProQuest (Digital Dissertations), PsycInfo, PubMed/Medline, ScienceDirect, and Web of Science. Secondary searching (PEARLing) was undertaken, whereby reference lists of the selected articles were reviewed for additional references not identified in the primary search. All experimental studies including randomized controlled trials (RCTs), nonrandomized clinical trials, and case series evaluating the effect of NE on pain, disability, anxiety, and stress for chronic MSK pain were considered for inclusion. Additional limitations: studies published in English, published within the last 10 years, and patients older than 18 years. No limitations were set on specific outcome measures of pain, disability, anxiety, and stress. Data were extracted using the participants, interventions, comparison, and outcomes (PICO) approach. Methodological quality was assessed by 2 reviewers using the Critical Review Form-Quantitative Studies. This review includes 8 studies comprising 6 high-quality RCTs, 1 pseudo-RCT, and 1 comparative study involving 401 subjects. Most articles were of good quality, with no studies rated as poor or fair. Heterogeneity across the studies with respect to participants, interventions evaluated, and outcome measures used prevented meta-analyses. Narrative synthesis of results, based on effect size, established compelling evidence that NE may be effective in reducing pain ratings, increasing function, addressing catastrophization, and improving movement in chronic MSK pain. For chronic MSK pain disorders, there is compelling evidence that an educational strategy addressing neurophysiology and neurobiology of pain can have a positive effect on pain, disability, catastrophization, and physical performance. Copyright © 2011 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Yuan, Fang; Zhang, Li; Li, Yan-Qing; Teng, Xu; Tian, Si-Yu; Wang, Xiao-Ran; Zhang, Yi
2017-08-11
We investigated the role of endoplasmic reticulum stress (ERS) in chronic intermittent hypobaric hypoxia (CIHH)-induced cardiac protection. Adult male Sprague-Dawley rats were exposed to CIHH treatment simulating 5000 m altitude for 28 days, 6 hours per day. The heart was isolated and perfused with Langendorff apparatus and subjected to 30-min ischemia followed by 60-min reperfusion. Cardiac function, infarct size, and lactate dehydrogenase (LDH) activity were assessed. Expression of ERS molecular chaperones (GRP78, CHOP and caspase-12) was assayed by western blot analysis. CIHH treatment improved the recovery of left ventricular function and decreased cardiac infarct size and activity of LDH after I/R compared to control rats. Furthermore, CIHH treatment inhibited over-expression of ERS-related factors including GRP78, CHOP and caspase-12. CIHH-induced cardioprotection and inhibition of ERS were eliminated by application of dithiothreitol, an ERS inducer, and chelerythrine, a protein kinase C (PKC) inhibitor. In conclusion CIHH treatment exerts cardiac protection against I/R injury through inhibition of ERS via PKC signaling pathway.
Alzoubi, K H; Abdul-Razzak, K K; Khabour, O F; Al-Tuweiq, G M; Alzubi, M A; Alkadhi, K A
2013-01-15
Caffeine alleviates cognitive impairment associated with a variety of health conditions. In this study, we examined the effect of caffeine treatment on chronic stress- and/or high fat-high carbohydrate Western diet (WD)-induced impairment of learning and memory in rats. Chronic psychosocial stress, WD and caffeine (0.3 g/L in drinking water) were simultaneously administered for 3 months to adult male Wistar rats. At the conclusion of the 3 months, and while the previous treatments continued, rats were tested in the radial arm water maze (RAWM) for learning, short-term and long-term memory. This procedure was applied on a daily basis to all animals for 5 consecutive days or until the animal reaches days to criterion (DTC) in the 12th learning trial and memory tests. DTC is the number of days that the animal takes to make zero error in two consecutive days. Chronic stress and/or WD groups caused impaired learning, which was prevented by chronic caffeine administration. In the memory tests, chronic caffeine administration also prevented memory impairment during chronic stress conditions and/or WD. Furthermore, DTC value for caffeine treated stress, WD, and stress/WD groups indicated that caffeine normalizes memory impairment in these groups. These results showed that chronic caffeine administration prevented stress and/or WD-induced impairment of spatial learning and memory. Copyright © 2012 Elsevier B.V. All rights reserved.
Bandegi, Ahmad Reza; Rashidy-Pour, Ali; Vafaei, Abbas Ali; Ghadrdoost, Behshid
2014-01-01
Purpose: Chronic stress has been reported to induce oxidative damage of the brain. A few studies have shown that Crocus Sativus L., commonly known as saffron and its active constituent crocin may have a protective effect against oxidative stress. The present work was designed to study the protective effects of saffron extract and crocin on chronic – stress induced oxidative stress damage of the brain, liver and kidneys. Methods: Rats were injected with a daily dose of saffron extract (30 mg/kg, IP) or crocin (30 mg/kg, IP) during a period of 21 days following chronic restraint stress (6 h/day). In order to determine the changes of the oxidative stress parameters following chronic stress, the levels of the lipid peroxidation product, malondialdehyde (MDA), the total antioxidant reactivity (TAR), as well as antioxidant enzyme activities glutathione peroxidase (GPx), glutathione reductase (GR) and superoxide dismutase (SOD) were measured in the brain, liver and kidneys tissues after the end of chronic stress. Results: In the stressed animals that receiving of saline, levels of MDA, and the activities of GPx, GR, and SOD were significantly higher (P<0.0001) and the TAR capacity were significantly lower than those of the non-stressed animals (P<0.0001). Both saffron extract and crocin were able to reverse these changes in the stressed animals as compared with the control groups (P<0.05). Conclusion: These observations indicate that saffron and its active constituent crocin can prevent chronic stress–induced oxidative stress damage of the brain, liver and kidneys and suggest that these substances may be useful against oxidative stress. PMID:25671180
Ball, Kevin T; Best, Olivia; Luo, Jonathan; Miller, Leah R
2017-02-15
Relapse to unhealthy eating habits in dieters is often triggered by stress. Animal models, moreover, have confirmed a causal role for acute stress in relapse. The role of chronic stress in relapse vulnerability, however, has received relatively little attention. Therefore, in the present study, we used an abstinence-based relapse model in rats to test the hypothesis that exposure to chronic stress increases subsequent relapse vulnerability. Rats were trained to press a lever for highly palatable food reinforcers in daily 3-h sessions and then tested for food seeking (i.e., responding for food associated cues) both before and after an acute or chronic restraint stress procedure (3h/day×1day or 10days, respectively) or control procedure (unstressed). The second food seeking test was conducted either 1day or 7days after the last restraint. Because chronic stress causes dopamine D1-like receptor-mediated alterations in prefrontal cortex (a relapse node), we also assessed dopaminergic involvement by administering either SCH-23390 (10.0μg/kg; i.p.), a dopamine D1-like receptor antagonist, or vehicle prior to daily treatments. Results showed that chronically, but not acutely, stressed rats displayed increased food seeking 7days, but not 1day, after the last restraint. Importantly, SCH-23390 combined with chronic stress reversed this effect. These results suggest that drugs targeting D 1 -like receptors during chronic stress may help to prevent future relapse in dieters. Copyright © 2016 Elsevier B.V. All rights reserved.
Ball, Kevin T.; Best, Olivia; Luo, Jonathan; Miller, Leah R.
2016-01-01
Relapse to unhealthy eating habits in dieters is often triggered by stress. Animal models, moreover, have confirmed a causal role for acute stress in relapse. The role of chronic stress in relapse vulnerability, however, has received relatively little attention. Therefore, in the present study, we used an abstinence-based relapse model in rats to test the hypothesis that exposure to chronic stress increases subsequent relapse vulnerability. Rats were trained to press a lever for highly palatable food reinforcers in daily 3-hr sessions and then tested for food seeking (i.e., responding for food associated cues) both before and after an acute or chronic restraint stress procedure (3 h/day × 1 day or 10 days, respectively) or control procedure (unstressed). The second food seeking test was conducted either 1 day or 7 days after the last restraint. Because chronic stress causes dopamine D1-like receptor-mediated alterations in prefrontal cortex (a relapse node), we also assessed dopaminergic involvement by administering either SCH-23390 (10.0 μg/kg; i.p.), a dopamine D1-like receptor antagonist, or vehicle prior to daily treatments. Results showed that chronically, but not acutely, stressed rats displayed increased food seeking 7 days, but not 1 day, after the last restraint. Importantly, SCH-23390 combined with chronic stress reversed this effect. These results suggest that drugs targeting D1-like receptors during chronic stress may help to prevent future relapse in dieters. PMID:27845229
Chronic stress and illness in children: the role of allostatic load.
Johnston-Brooks, C H; Lewis, M A; Evans, G W; Whalen, C K
1998-01-01
Recent studies of stress have highlighted the contributions of chronic psychological and environmental stressors to health and well-being. Children may be especially vulnerable to the negative effects of chronic stressors. Allostasis, the body's ability to adapt and adjust to environmental demands, has been proposed as an explanatory mechanism for the stress-health link, yet empirical evidence is minimal. This study tested the proposition that allostasis may be an underlying physiological mechanism linking chronic stress to poor health outcomes in school-aged children. Specifically, we examined whether allostasis would mediate or moderate the link between chronic stress and health. To test the hypothesis that allostasis contributes to the relation between chronic stress and poor health, we examined household density as a chronic environmental stressor, cardiovascular reactivity (CVR) as a marker of allostatic load, and number of school absences due to illness as the health outcome in a sample of 81 boys. Structural equation modeling indicated that the mediating model fit the data well, accounting for 17% of the variance in days ill. Results provide the first evidence that CVR may mediate the relation between household density and medical illness in children. More generally, these findings support the role of allostasis as an underlying mechanism in the link between chronic stress and health.
Wang, Xiao-Dong; Chen, Yuncai; Wolf, Miriam; Wagner, Klaus V.; Liebl, Claudia; Scharf, Sebastian H.; Harbich, Daniela; Mayer, Bianca; Wurst, Wolfgang; Holsboer, Florian; Deussing, Jan M.; Baram, Tallie Z.; Müller, Marianne B.; Schmidt, Mathias V.
2011-01-01
Chronic stress evokes profound structural and molecular changes in the hippocampus, which may underlie spatial memory deficits. Corticotropin-releasing hormone (CRH) and CRH receptor 1 (CRHR1) mediate some of the rapid effects of stress on dendritic spine morphology and modulate learning and memory, thus providing a potential molecular basis for impaired synaptic plasticity and spatial memory by repeated stress exposure. Using adult male mice with CRHR1 conditionally inactivated in the forebrain regions, we investigated the role of CRH-CRHR1 signaling in the effects of chronic social defeat stress on spatial memory, the dendritic morphology of hippocampal CA3 pyramidal neurons, and the hippocampal expression of nectin-3, a synaptic cell adhesion molecule important in synaptic remodeling. In chronically stressed wild-type mice, spatial memory was disrupted, and the complexity of apical dendrites of CA3 neurons reduced. In contrast, stressed mice with forebrain CRHR1 deficiency exhibited normal dendritic morphology of CA3 neurons and mild impairments in spatial memory. Additionally, we showed that the expression of nectin-3 in the CA3 area was regulated by chronic stress in a CRHR1-dependent fashion and associated with spatial memory and dendritic complexity. Moreover, forebrain CRHR1 deficiency prevented the down-regulation of hippocampal glucocorticoid receptor expression by chronic stress but induced increased body weight gain during persistent stress exposure. These findings underscore the important role of forebrain CRH-CRHR1 signaling in modulating chronic stress-induced cognitive, structural and molecular adaptations, with implications for stress-related psychiatric disorders. PMID:21296667
Aniwidyaningsih, Wahju; Varraso, Raphaëlle; Cano, Noel; Pison, Christophe
2008-07-01
Chronic obstructive pulmonary disease is the fifth leading cause of mortality in the world. This study reviews diet as a risk or protective factor for chronic obstructive pulmonary disease, mechanisms of malnutrition, undernutrition consequences on body functioning and how to modulate nutritional status of patients with chronic obstructive pulmonary disease. Different dietary factors (dietary pattern, foods, nutrients) have been associated with chronic obstructive pulmonary disease and the course of the disease. Mechanical disadvantage, energy imbalance, disuse muscle atrophy, hypoxemia, systemic inflammation and oxidative stress have been reported to cause systemic consequences such as cachexia and compromise whole body functioning. Nutritional intervention makes it possible to modify the natural course of the disease provided that it is included in respiratory rehabilitation combining bronchodilators optimization, infection control, exercise and, in some patients, correction of hypogonadism. Diet, as a modifiable risk factor, appears more as an option to prevent and modify the course of chronic obstructive pulmonary disease. Reduction of mechanical disadvantage, physical training and anabolic agents should be used conjointly with oral nutrition supplements to overcome undernutrition and might change the prognosis of the disease in some cases. Major research challenges address the role of systemic inflammation and the best interventions for controlling it besides smoking cessation.
Algoe, Sara B; Stanton, Annette L
2012-02-01
Theory and evidence suggest that everyday positive emotions may be potent factors in resilience during periods of chronic stress, yet the body of evidence is scant. Even less research focuses on the adaptive functions of specific positive emotions in this critical context. In the current research, 54 women with metastatic breast cancer provided information about their emotional responses to benefits received to test hypotheses regarding the social functions of gratitude. One set of analyses provide support for the hypothesized role of ego-transcendence in feeling gratitude upon receipt of a benefit from another person. As predicted, in a second set of analyses, grateful responding to received benefits predicted an increase in perceived social support over three months only for women low in ambivalence over emotional expression. These findings add to evidence regarding the social causes and consequences of gratitude, supporting a view of gratitude as an other-focused positive emotion that functions to promote high-quality relationships. Discussion focuses on the chronically stressful context as an important testing ground for theory on gratitude and other positive emotions. PsycINFO Database Record (c) 2012 APA, all rights reserved
Effects of acute and chronic psychological stress on isolated islets' insulin release
Zardooz, Homeira; Zahediasl, Saleh; Rostamkhani, Fatemeh; Farrokhi, Babak; Nasiraei, Shiva; Kazeminezhad, Behrang; Gholampour, Roohollah
2012-01-01
This study investigated the effects of acute and chronic psychological stress on glucose-stimulated insulin secretion from isolated pancreatic islets. Male Wistar rats were divided into two control and stressed groups; each further was allocated into fed and fasted groups. Stress was induced by communication box for one (acute), fifteen and thirty (chronic) days. After islet isolation, their number, size and insulin output were assessed. Plasma corticosterone level was determined. In fasted animals, acute stress increased basal and post stress plasma corticosterone level, while 30 days stress decreased it compared to day 1. In fed rats, acute stress increased only post stress plasma corticosterone concentration, however, after 15 days stress, it was decreased compared to day 1. Acute stress did not change insulin output; however, the insulin output was higher in the fed acutely stressed rats at 8.3 and 16.7 mM glucose than fasted ones. Chronic stress increased insulin output on day 15 in the fasted animals but decreased it on day 30 in the fed animals at 8.3 and 16.7 mM glucose. In the fasted control rats insulin output was lower than fed ones. In the chronic stressed rats insulin output at 8.3 and 16.7 mM glucose was higher in the fasted than fed rats. The number of islets increased in the fasted rats following 15 days stress. This study indicated that the response of the isolated islets from acute and chronically stressed rats are different and depends on the feeding status. PMID:27385956
Massaly, Nicolas; Morón, Jose A; Al-Hasani, Ream
2016-01-01
Pain and stress are protective mechanisms essential in avoiding harmful or threatening stimuli and ensuring survival. Despite these beneficial roles, chronic exposure to either pain or stress can lead to maladaptive hormonal and neuronal modulations that can result in chronic pain and a wide spectrum of stress-related disorders including anxiety and depression. By inducing allostatic changes in the mesolimbic dopaminergic pathway, both chronic pain and stress disorders affect the rewarding values of both natural reinforcers, such as food or social interaction, and drugs of abuse. Despite opioids representing the best therapeutic strategy in pain conditions, they are often misused as a result of these allostatic changes induced by chronic pain and stress. The kappa opioid receptor (KOR) system is critically involved in these neuronal adaptations in part through its control of dopamine release in the nucleus accumbens. Therefore, it is likely that changes in the kappa opioid system following chronic exposure to pain and stress play a key role in increasing the misuse liability observed in pain patients treated with opioids. In this review, we will discuss how chronic pain and stress-induced pathologies can affect mesolimbic dopaminergic transmission, leading to increased abuse liability. We will also assess how the kappa opioid system may underlie these pathological changes.
Corry, Justine; Green, Melissa; Roberts, Gloria; Fullerton, Janice M; Schofield, Peter R; Mitchell, Philip B
2017-10-06
Bipolar disorder (BD) and the anxiety disorders are highly comorbid. The present study sought to examine perfectionism and goal attainment values as potential mechanisms of known associations between anxiety, stress and BD symptomatology. Measures of perfectionism and goal attainment values were administered to 269 members of BD pedigrees, alongside measures of anxiety and stress, and BD mood symptoms. Regression analyses were used to determine whether perfectionism and goal attainment values were related to depressive and (hypo)manic symptoms; planned mediation models were then used to test the potential for perfectionism to mediate associations between anxiety/stress and BD symptoms. Self-oriented perfectionism was associated with chronic depressive symptoms; socially-prescribed perfectionism was associated with chronic (hypo)manic symptoms. Self-oriented perfectionism mediated relationships between anxiety/stress and chronic depressive symptoms even after controlling for chronic hypomanic symptoms. Similarly, socially-prescribed perfectionism mediated associations between anxiety/stress and chronic hypomanic symptoms after controlling for chronic depressive symptoms. Goal attainment beliefs were not uniquely associated with chronic depressive or (hypo)manic symptoms. Cognitive styles of perfectionism may explain the co-occurrence of anxiety and stress symptoms and BD symptoms. Psychological interventions for anxiety and stress symptoms in BD might therefore address perfectionism in attempt to reduce depression and (hypo)manic symptoms in addition to appropriate pharmacotherapy.
Neuroplasticity and Calcium Signaling in Stressed Rat Amygdala
2005-02-01
kainate receptor and neuroplasticity in the amygdala. National Institute of aging, November, 2001. • He Li: GluR5 kainate receptor mediated synaptic...functions in the amygdala. National Institute of Mental Health, April, 2002. 50 " Maria F. M. Braga: Chronic Stress Causes Impairment of aI-Adrenoceptor...resistance All animal experiments were performed in accordance with of 1.5-5.0 Mf when filled with a solution containing (in our institutional guidelines
Gerwyn, Morris; Maes, Michael
2017-01-01
Here, we review potential causes of muscle dysfunction seen in many patients with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) such as the effects of oxidative and nitrosative stress (O&NS) and mitochondrial impairments together with reduced heat shock protein production and a range of metabolic abnormalities. Several studies published in the last few years have highlighted the existence of chronic O&NS, inflammation, impaired mitochondrial function and reduced heat shock protein production in many patients with ME/CFS. These studies have also highlighted the detrimental effects of chronically elevated O&NS on muscle functions such as reducing the time to muscle fatigue during exercise and impairing muscle contractility. Mechanisms have also been revealed by which chronic O&NS and or impaired heat shock production may impair muscle repair following exercise and indeed the adaptive responses in the striated muscle to acute and chronic increases in physical activity. The presence of chronic O&NS, low-grade inflammation and impaired heat shock protein production may well explain the objective findings of increased muscle fatigue, impaired contractility and multiple dimensions of exercise intolerance in many patients with ME/CFS.
Campbell, W.B.; Emlen, J.M.; Hershberger, W.K.
1998-01-01
Developmental stability, or homeostasis, facilitates the production of consistent phenotypes by buffering against stress. Fluctuating asymmetry is produced by developmental instability and is manifested as small random departures from bilateral symmetry. Increased fluctuating asymmetry is thought to parallel compromised fitness, in part, because stress promotes energy dissipation. Compensatory energy expenditures within the organism are required to complete development, thus promoting instability through reductions in homeostasis. Increased heterozygosity may enhance developmental stability by reducing energy dissipation from stress through increased metabolic efficiency, possibly by providing greater flexibility in metabolic pathways. Traditionally, fluctuating asymmetry has been used as a bioindicator of chronic stress, provided that selective mortality of less fit individuals did not reduce stress-mediated increases in fluctuating asymmetry to background levels produced by natural developmental error, or create data inconsistencies such as higher asymmetry in groups exposed to lower stress. Unfortunately, absence of selective mortality and its effects, while often assumed, can be difficult to substantiate. We integrated measures of early growth, mortality, fluctuating asymmetry (mandibular pores, pectoral finrays, pelvic finrays, and gillrakers on the upper and lower arms of the first branchial arch) and directional asymmetry (branchiostegal rays) to assess chronic thermal stress (fluctuating temperatures as opposed to ambient temperatures) in developing eggs from two different coho salmon (Oncorhynchus kisutch) stocks and their reciprocal hybrids. Hybridization provided insight on the capacity of heterozygosity to reduce stress during development. Although egg losses were consistently higher in crosses exposed to fluctuating temperatures, egg mortality was predominantly a function of maternal stock of origin. Post-hatch losses were higher in crosses exposed to ambient temperatures than in crosses exposed to fluctuating temperatures during embryogenesis. Observed patterns of early growth revealed no heterosis, but instead reflected maternal effects, with some crosses slowing growth and yolk utilization when exposed to fluctuating temperatures. Analyses of fluctuating asymmetry also showed no effects from heterosis. While analyses of composite asymmetry scores and branchiostegal rays were inconclusive, analyses of individual characters showed significantly higher fluctuating asymmetry in pelvic finray counts and a marginal change in the numbers of fish asymmetric for this character in crosses exposed to chronic thermal stress. In contrast, the fluctuating asymmetry in lower gillraker counts was significantly higher in crosses exposed to ambient temperatures and there were significantly more fish asymmetric for this character. Data on mortalities and fluctuating asymmetry indicate pelvic finray development was thermally stressed, while the heightened fluctuating asymmetry in lower gillraker counts under ambient temperatures was due to a greater frequency of less fit fish that had not been culled by thermal stress. Changes in early growth patterns in response to developmental stress yielded no parallel responses in meristic characters. We conclude that chronic thermal stress produced both selectively lethal and sublethal effects that directly shaped fluctuating asymmetry and fitness profiles in these crosses. Implicit in this conclusion is that developmental instability analyses can detect more than just chronic sublethal stress, thus providing substantial credence for using instability studies as proactive bioassessment methodologies.
High-fat diet effects on metabolic responses to chronic stress.
Nemati, Marzieh; Zardooz, Homeira; Rostamkhani, Fatemeh; Abadi, Alireza; Foroughi, Forough
2017-07-01
High-fat diets and chronic stress are prevalent risk factors for various chronic diseases in modern societies. This study investigated the effect of high-fat diet on glucose-related metabolic responses to chronic foot-shock stress. Male rats were divided into high-fat diet (containing 54.21% saturated and 44.89% unsaturated fatty acids) and normal diet groups and then into stress and non-stress subgroups. The diets were applied for 5 weeks, and stress was induced during the last week of the diet course. Plasma levels of metabolic parameters, HOMA-IR index, intra-abdominal fat weight, and islets' insulin secretion were assessed. High-fat diet increased abdominal fat weight and plasma leptin, and insulin levels in response to stress without affecting HOMA-IR index and islets' insulin secretion. High proportion of unsaturated fat may not lead to deleterious metabolic responses; however combined with chronic stress has a synergistic and adverse effect on visceral adiposity and results in elevated plasma leptin.
Cascella, D; Raffi, G B; Caudarella, R; Gennari, P; Caprara, C; Cipolla, C
1979-12-01
A group of 20 chronic bronchopneumopathics was treated for 15 days with fenspiride orally and i.m. The behaviour of a set of functional respiratory and haemogasanalytic parameters was monitored at various times (basic, 5th, 10th and 15th days). Progressive, significant improvements in VC, FEV1, RV and in related parameters were observed. These were attributed to the drug's anti-inflammatory effect in the respiratory ways as well as to its direct antibronchospastic action. Stress is laid on the excellent clinical tolerance of fenspiride following its oral and i.m. administration.
The Interaction Between Chronic Stress and Pregnancy: Preterm Birth from A Biobehavioral Perspective
Latendresse, Gwen
2009-01-01
Women's health care providers are increasingly aware that chronic stressors—such as poverty, ongoing perceived stress and anxiety, intimate partner violence, and experiences of racism—are associated with an increased incidence of preterm birth in the United States. It is important to increase our understanding of the explanatory pathways involved in these associations. This article discusses the concepts of stress, chronic stress response, allostatic load, the physiology of labor initiation, and the pathophysiologic interactions that may contribute to the occurrence of chronic stress-related preterm birth. Implications for future research and interventions are explored. PMID:19114234
Wiegman, Coen H; Michaeloudes, Charalambos; Haji, Gulammehdi; Narang, Priyanka; Clarke, Colin J; Russell, Kirsty E; Bao, Wuping; Pavlidis, Stelios; Barnes, Peter J; Kanerva, Justin; Bittner, Anton; Rao, Navin; Murphy, Michael P; Kirkham, Paul A; Chung, Kian Fan; Adcock, Ian M
2015-09-01
Inflammation and oxidative stress play critical roles in patients with chronic obstructive pulmonary disease (COPD). Mitochondrial oxidative stress might be involved in driving the oxidative stress-induced pathology. We sought to determine the effects of oxidative stress on mitochondrial function in the pathophysiology of airway inflammation in ozone-exposed mice and human airway smooth muscle (ASM) cells. Mice were exposed to ozone, and lung inflammation, airway hyperresponsiveness (AHR), and mitochondrial function were determined. Human ASM cells were isolated from bronchial biopsy specimens from healthy subjects, smokers, and patients with COPD. Inflammation and mitochondrial function in mice and human ASM cells were measured with and without the presence of the mitochondria-targeted antioxidant MitoQ. Mice exposed to ozone, a source of oxidative stress, had lung inflammation and AHR associated with mitochondrial dysfunction and reflected by decreased mitochondrial membrane potential (ΔΨm), increased mitochondrial oxidative stress, and reduced mitochondrial complex I, III, and V expression. Reversal of mitochondrial dysfunction by the mitochondria-targeted antioxidant MitoQ reduced inflammation and AHR. ASM cells from patients with COPD have reduced ΔΨm, adenosine triphosphate content, complex expression, basal and maximum respiration levels, and respiratory reserve capacity compared with those from healthy control subjects, whereas mitochondrial reactive oxygen species (ROS) levels were increased. Healthy smokers were intermediate between healthy nonsmokers and patients with COPD. Hydrogen peroxide induced mitochondrial dysfunction in ASM cells from healthy subjects. MitoQ and Tiron inhibited TGF-β-induced ASM cell proliferation and CXCL8 release. Mitochondrial dysfunction in patients with COPD is associated with excessive mitochondrial ROS levels, which contribute to enhanced inflammation and cell hyperproliferation. Targeting mitochondrial ROS represents a promising therapeutic approach in patients with COPD. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Diurnal behavioral and endocrine effects of chronic shaker stress in mice.
Dubovicky, Michal; Mach, Mojmir; Key, Mary; Morris, Mariana; Paton, Sara; Lucot, James B
2007-12-01
Experiments were performed in C57BL/6J male mice to determine 1) light/dark effects of acute and chronic shaker stress on open field behavioral patterns and 2) light/dark effects of chronic stress on plasma corticosterone and oxytocin. Shaker stress was applied acutely (15 min) or chronically (3 or 7 days). Mice were tested in the open field in the light or dark phase of the circadian cycle. For the endocrine study, mice were exposed to 3 days of intermittent shaker stress and sacrificed after the last stress event (09:00 or 19:00 h). Acute or chronic shaker stress had no significant effects on intensity of motor activity and rearing of mice tested under either light condition. Mice tested in the dark phase had higher motor activity and exhibited lower anxiety-like behavior as expressed by central zone activities and had higher emotionality as expressed by increased defecation. Chronic stress increased corticosterone with a greater absolute increase in the dark period. However, the percentage stress-induced increase was not different between the day and night periods. The oxytocin response to stress was observed only during the light phase with no change seen at dark phase. These results show that there is a marked difference in the light/dark pituitary stress response with no alteration in stress induced behavioral changes. They also suggest that there are circadian interactions in the endocrine stress axis that are without consequences for open field behavior.
The short-term effects of TENS plus therapeutic ultrasound combinations in chronic neck pain.
Sayilir, Selcuk
2018-05-01
To investigate the effects of TENS plus therapeutic ultrasound combinations on symptom relief, physical functionality, perceived stress levels, daytime sleepiness and neck mobility in patients with chronic neck pain (CNP). A total of 64 patients were divided into two groups as the TENS plus ultrasound group (n = 39) and the control CNP group (n = 25). The therapy comprised TENS and therapeutic ultrasound applications for 10 sessions. The control subjects were discouraged from using analgesics but were allowed to use paracetamol daily, if necessary. The Neck Disability Index (NDI), Epworth Sleepiness Scale (ESS), Perceived Stress Scale (PSS), visual analog scale (VAS) and tragus-wall/chin-manubrium distances were recorded at the baseline and after therapy. Significant improvements were detected in the TENS plus ultrasound group compared to the control CNP subjects in respect of VAS, PSS and NDI scores after the TENS plus therapeutic ultrasound therapies (all p < 0.05). The combination of therapeutic ultrasound plus TENS can be an effective modality for relieving pain/stress levels and improving functionality in the short-term of CNP. Copyright © 2018 Elsevier Ltd. All rights reserved.
Pollano, Antonella; Trujillo, Verónica; Suárez, Marta M
2018-01-01
Vulnerability to emotional disorders like depression derives from interactions between early and late environments, including stressful conditions. The serotonin (5HT) system is strongly affected by stress and chronic unpredictable stress can alter the 5HT system. We evaluated the distribution of active serotonergic neurons in the dorsal raphe nucleus (DR) through immunohistochemistry in maternally separated and chronically stressed rats treated with an antidepressant, tianeptine, whose mechanism of action is still under review. Male Wistar rats were subjected to daily maternal separation (MS) for 4.5 h between postnatal days (PND) 1-21, or to animal facility rearing (AFR). Between (PND) days 50-74, rats were exposed to chronic unpredictable stress and were treated daily with tianeptine (10 mg/kg) or vehicle. We found an interaction between the effects of MS and chronic unpredictable stress on Fos-5HT immunoreactive cells at mid-caudal level of the DR. MS-chronically stressed rats showed an increase of Fos-5HT immunoreactive cells compared with AFR-chronically stressed rats. The ventrolateral (DRL/VLPAG) and dorsal (DRD) subdivisions of the DR were significantly more active than the ventral part (DRV). At the rostral level of the DR, tianeptine decreased the number of Fos-5HT cells in DR in the AFR groups, both unstressed and stressed. Overall, our results support the idea of a match in phenotype exhibited when the early and the adult environment correspond.
Chronic and Episodic Stress in Children of Depressed Mothers.
Feurer, Cope; Hammen, Constance L; Gibb, Brandon E
2016-01-01
The goal of this study was to examine chronic and episodic stress in children of mothers with and without a history of major depressive disorder (MDD) during the children's lives. Participants were 255 mothers selected according to their history of MDD (present vs. absent during child's life) and their children (age 8-14; 53% girls, 81% Caucasian). Mothers' and children's histories of MDD were assessed using diagnostic interviews, and their depressive symptoms were assessed via self-report measures. Children's levels of chronic and episodic stress were assessed using a semistructured contextual threat interview. Children of mothers with a history of recurrent MDD, compared to single MDD or no depression, experienced more chronic stress within several domains including peers, mother-child relations, and other family member relations as well as greater episodic dependent interpersonal stress. Each of these group differences was maintained after excluding children with a history of MDD themselves and controlling for their current depressive symptoms. However, only the group difference in chronic peer stress was maintained when controlling for mothers' current depression. The results suggest that children exposed to recurrent maternal MDD experience higher levels of both chronic and episodic stress, at least some of which they contribute to themselves (dependent interpersonal stress) and which is at least partially independent of the effects of children's depression. In addition, much of this stress is associated primarily with current depression in the mother, though it appears that chronic peer stress may remain elevated even after the remission of maternal depression.
Resilience to chronic stress is mediated by hippocampal brain-derived neurotrophic factor.
Taliaz, Dekel; Loya, Assaf; Gersner, Roman; Haramati, Sharon; Chen, Alon; Zangen, Abraham
2011-03-23
Chronic stress is a trigger for several psychiatric disorders, including depression; however, critical individual differences in resilience to both the behavioral and the neurochemical effects of stress have been reported. A prominent mechanism by which the brain reacts to acute and chronic stress is activation of the hypothalamic-pituitary-adrenal (HPA) axis, which is inhibited by the hippocampus via a polysynaptic circuit. Alterations in secretion of stress hormones and levels of brain-derived neurotrophic factor (BDNF) in the hippocampus were implicated in depression and the effects of antidepressant medications. However, the potential role of hippocampal BDNF in behavioral resilience to chronic stress and in the regulation of the HPA axis has not been evaluated. In the present study, Sprague Dawley rats were subjected to 4 weeks of chronic mild stress (CMS) to induce depressive-like behaviors after lentiviral vectors were used to induce localized BDNF overexpression or knockdown in the hippocampus. The behavioral outcome was measured during 3 weeks after the CMS procedure, then plasma samples were taken for measurements of corticosterone levels, and finally hippocampal tissue was taken for BDNF measurements. We found that hippocampal BDNF expression plays a critical role in resilience to chronic stress and that reduction of hippocampal BDNF expression in young, but not adult, rats induces prolonged elevations in corticosterone secretion. The present study describes a mechanism for individual differences in responses to chronic stress and implicates hippocampal BDNF in the development of neural circuits that control adequate stress adaptations.
Wu, Li-Min; Hu, Mei-Hong; Tong, Xian-Hong; Han, Hui; Shen, Ni; Jin, Ren-Tao; Wang, Wei; Zhou, Gui-Xiang; He, Guo-Ping; Liu, Yu-Sheng
2012-01-01
Brain-derived neurotropic factor (BDNF) was originally described in the nervous system but has been shown to be expressed in ovary tissues recently, acting as a paracrine/autocrine regulator required for developments of follicles and oocytes. Although it is generally accepted that chronic stress impairs female reproduction and decreases the expression of BDNF in limbic structures of central nervous system, which contributes to mood disorder. However, it is not known whether chronic stress affects oocytes developments, nor whether it affects expression of BDNF in ovary. Mice were randomly assigned into control group, stressed group, BDNF-treated group and BDNF-treated stressed group. The chronic unpredictable mild stress model was used to produce psychosocial stress in mice, and the model was verified by open field test and hypothalamic-pituitary-adrenal (HPA) axis activity. The methods of immunohistochemistry and western blotting were used to detect BDNF protein level and distribution. The number of retrieved oocytes, oocyte maturation, embryo cleavage and the rates of blastocyst formation after parthenogenetic activation were evaluated. Chronic unpredictable stress decreased the BDNF expression in antral follicles, but didn't affect the BDNF expression in primordial, primary and secondary follicles. Chronic unpredictable stress also decreased the number of retrieved oocytes and the rate of blastocyst formation, which was rescued by exogenous BDNF treatment. BDNF in mouse ovaries may be related to the decreased number of retrieved oocytes and impaired oocytes developmental potential induced by chronic unpredictable stress.
Tong, Xian-Hong; Han, Hui; Shen, Ni; Jin, Ren-Tao; Wang, Wei; Zhou, Gui-Xiang; He, Guo-Ping; Liu, Yu-Sheng
2012-01-01
Background Brain-derived neurotropic factor (BDNF) was originally described in the nervous system but has been shown to be expressed in ovary tissues recently, acting as a paracrine/autocrine regulator required for developments of follicles and oocytes. Although it is generally accepted that chronic stress impairs female reproduction and decreases the expression of BDNF in limbic structures of central nervous system, which contributes to mood disorder. However, it is not known whether chronic stress affects oocytes developments, nor whether it affects expression of BDNF in ovary. Methods Mice were randomly assigned into control group, stressed group, BDNF-treated group and BDNF-treated stressed group. The chronic unpredictable mild stress model was used to produce psychosocial stress in mice, and the model was verified by open field test and hypothalamic-pituitary-adrenal (HPA) axis activity. The methods of immunohistochemistry and western blotting were used to detect BDNF protein level and distribution. The number of retrieved oocytes, oocyte maturation, embryo cleavage and the rates of blastocyst formation after parthenogenetic activation were evaluated. Results Chronic unpredictable stress decreased the BDNF expression in antral follicles, but didn’t affect the BDNF expression in primordial, primary and secondary follicles. Chronic unpredictable stress also decreased the number of retrieved oocytes and the rate of blastocyst formation, which was rescued by exogenous BDNF treatment. Conclusion BDNF in mouse ovaries may be related to the decreased number of retrieved oocytes and impaired oocytes developmental potential induced by chronic unpredictable stress. PMID:23284991
Physical activity buffers fatigue only under low chronic stress.
Strahler, Jana; Doerr, Johanna M; Ditzen, Beate; Linnemann, Alexandra; Skoluda, Nadine; Nater, Urs M
2016-09-01
Fatigue is one of the most commonly reported complaints in the general population. As physical activity (PA) has been shown to have beneficial effects, we hypothesized that everyday life PA improves fatigue. Thirty-three healthy students (21 women, 22.8 ± 3.3 years, 21.7 ± 2.3 kg/m(2)) completed two ambulatory assessment periods. During five days at the beginning of the semester (control condition) and five days during final examination preparation (examination condition), participants repeatedly reported on general fatigue (awakening, 10 am, 2 pm, 6 pm and 9 pm) by means of an electronic diary, collected saliva samples for the assessment of cortisol and α-amylase immediately after providing information on fatigue and wore a triaxial accelerometer to continuously record PA. Self-perceived chronic stress was assessed as a moderator. Using hierarchical linear modeling, including PA, condition (control vs. examination), sex and chronic stress as predictors, PA level during the 15 min prior to data entry did not predict momentary fatigue level. Furthermore, there was no effect of condition. However, a significant cross-level interaction of perceived chronic stress with PA was observed. In fact, the (negative) relationship between PA and fatigue was stronger in those participants with less chronic stress. Neither cortisol nor α-amylase was significantly related to physical activity or fatigue. Our study showed an immediate short-term buffering effect of everyday life PA on general fatigue, but only when experiencing lower chronic stress. There seems to be no short-term benefit of PA in the face of higher chronic stress. These findings highlight the importance of considering chronic stress when evaluating the effectiveness of PA interventions in different target populations, in particular among chronically stressed and fatigued subjects.
Adolescents' sleep in low-stress and high-stress (exam) times: a prospective quasi-experiment.
Dewald, Julia F; Meijer, Anne Marie; Oort, Frans J; Kerkhof, Gerard A; Bögels, Susan M
2014-01-01
This prospective quasi-experiment (N = 175; mean age = 15.14 years) investigates changes in adolescents' sleep from low-stress (regular school week) to high-stress times (exam week), and examines the (moderating) role of chronic sleep reduction, baseline stress, and gender. Sleep was monitored over three consecutive weeks using actigraphy. Adolescents' sleep was more fragmented during the high-stress time than during the low-stress time, meaning that individuals slept more restless during stressful times. However, sleep efficiency, total sleep time, and sleep onset latency remained stable throughout the three consecutive weeks. High chronic sleep reduction was related to later bedtimes, later sleep start times, later sleep end times, later getting up times, and more time spent in bed. Furthermore, low chronic sleep reduction and high baseline stress levels were related to more fragmented sleep during stressful times. This study shows that stressful times can have negative effects on adolescents' sleep fragmentation, especially for adolescents with low chronic sleep reduction or high baseline stress levels.
Stress does not increase blood–brain barrier permeability in mice
Roszkowski, Martin
2016-01-01
Several studies have reported that exposure to acute psychophysiological stressors can lead to an increase in blood–brain barrier permeability, but these findings remain controversial and disputed. We thoroughly examined this issue by assessing the effect of several well-established paradigms of acute stress and chronic stress on blood–brain barrier permeability in several brain areas of adult mice. Using cerebral extraction ratio for the small molecule tracer sodium fluorescein (NaF, 376 Da) as a sensitive measure of blood–brain barrier permeability, we find that neither acute swim nor restraint stress lead to increased cerebral extraction ratio. Daily 6-h restraint stress for 21 days, a model for the severe detrimental impact of chronic stress on brain function, also does not alter cerebral extraction ratio. In contrast, we find that cold forced swim and cold restraint stress both lead to a transient, pronounced decrease of cerebral extraction ratio in hippocampus and cortex, suggesting that body temperature can be an important confounding factor in studies of blood–brain barrier permeability. To additionally assess if stress could change blood–brain barrier permeability for macromolecules, we measured cerebral extraction ratio for fluorescein isothiocyanate-dextran (70 kDa). We find that neither acute restraint nor cold swim stress affected blood–brain barrier permeability for macromolecules, thus corroborating our findings that various stressors do not increase blood–brain barrier permeability. PMID:27146513
Endoplasmic reticulum stress implicated in chronic traumatic encephalopathy.
Lucke-Wold, Brandon P; Turner, Ryan C; Logsdon, Aric F; Nguyen, Linda; Bailes, Julian E; Lee, John M; Robson, Matthew J; Omalu, Bennet I; Huber, Jason D; Rosen, Charles L
2016-03-01
Chronic traumatic encephalopathy is a progressive neurodegenerative disease characterized by neurofibrillary tau tangles following repetitive neurotrauma. The underlying mechanism linking traumatic brain injury to chronic traumatic encephalopathy has not been elucidated. The authors investigate the role of endoplasmic reticulum stress as a link between acute neurotrauma and chronic neurodegeneration. The authors used pharmacological, biochemical, and behavioral tools to assess the role of endoplasmic reticulum stress in linking acute repetitive traumatic brain injury to the development of chronic neurodegeneration. Data from the authors' clinically relevant and validated rodent blast model were compared with those obtained from postmortem human chronic traumatic encephalopathy specimens from a National Football League player and World Wrestling Entertainment wrestler. The results demonstrated strong correlation of endoplasmic reticulum stress activation with subsequent tau hyperphosphorylation. Various endoplasmic reticulum stress markers were increased in human chronic traumatic encephalopathy specimens, and the endoplasmic reticulum stress response was associated with an increase in the tau kinase, glycogen synthase kinase-3β. Docosahexaenoic acid, an endoplasmic reticulum stress inhibitor, improved cognitive performance in the rat model 3 weeks after repetitive blast exposure. The data showed that docosahexaenoic acid administration substantially reduced tau hyperphosphorylation (t = 4.111, p < 0.05), improved cognition (t = 6.532, p < 0.001), and inhibited C/EBP homology protein activation (t = 5.631, p < 0.01). Additionally the data showed, for the first time, that endoplasmic reticulum stress is involved in the pathophysiology of chronic traumatic encephalopathy. Docosahexaenoic acid therefore warrants further investigation as a potential therapeutic agent for the prevention of chronic traumatic encephalopathy.
Ren, Jiayi; Liu, Chunpeng; Zhao, Dan; Fu, Jing
2018-05-15
The aim of this study was to investigate the role of heat shock protein 70 (Hsp70) in oxidative stress and inflammatory damage in the spleen of quails which were induced by cold stress. One hundred ninety-two 15-day-old male quails were randomly divided into 12 groups and kept at 12 ± 1 °C to examine acute and chronic cold stress. We first detected the changes in activities of antioxidant enzymes in the spleen tissue under acute and chronic cold stress. The activities of glutathione peroxidase (GSH-Px) fluctuated in acute cold stress groups, while they were significantly decreased (p < 0.05) after chronic cold stress. The activities of superoxide dismutase (SOD), inducible nitric oxide synthase (iNOS), and nitric oxide (NO) content were decreased significantly (p < 0.05) in both of the acute and chronic cold stress groups. Malondialdehyde (MDA) content was significantly increased (p < 0.05) under cold stress except the 0.5 h group of acute cold stress. Besides, histopathological analysis showed that quail's spleen tissue was inflammatory injured seriously in both the acute and chronic cold stress groups. Additionally, the inflammatory factors (cyclooxygenase-2 (COX-2), prostaglandin E synthase (PTGES), iNOS, nuclear factor-kappa B (NF-κB), and tumor necrosis factor-a (TNF-α)) and Hsp70 mRNA levels were increased in both of the acute and chronic cold stress groups compared with the control groups. These results suggest that oxidative stress and inflammatory injury could be induced by cold stress in spleen tissues of quails. Furthermore, the increased expression of Hsp70 may play a role in protecting the spleen against oxidative stress and inflammatory damage caused by cold stress.
Chronic Stress is Prospectively Associated with Sleep in Midlife Women: The SWAN Sleep Study.
Hall, Martica H; Casement, Melynda D; Troxel, Wendy M; Matthews, Karen A; Bromberger, Joyce T; Kravitz, Howard M; Krafty, Robert T; Buysse, Daniel J
2015-10-01
Evaluate whether levels of upsetting life events measured over a 9-y period prospectively predict subjective and objective sleep outcomes in midlife women. Prospective cohort study. Four sites across the United States. 330 women (46-57 y of age) enrolled in the Study of Women's Health Across the Nation (SWAN) Sleep Study. N/A. Upsetting life events were assessed annually for up to 9 y. Trajectory analysis applied to life events data quantitatively identified three distinct chronic stress groups: low stress, moderate stress, and high stress. Sleep was assessed by self-report and in-home polysomnography (PSG) during the ninth year of the study. Multivariate analyses tested the prospective association between chronic stress group and sleep, adjusting for race, baseline sleep complaints, marital status, body mass index, symptoms of depression, and acute life events at the time of the Sleep Study. Women characterized by high chronic stress had lower subjective sleep quality, were more likely to report insomnia, and exhibited increased PSG-assessed wake after sleep onset (WASO) relative to women with low to moderate chronic stress profiles. The effect of chronic stress group on WASO persisted in the subsample of participants without baseline sleep complaints. Chronic stress is prospectively associated with sleep disturbance in midlife women, even after adjusting for acute stressors at the time of the sleep study and other factors known to disrupt sleep. These results are consistent with current models of stress that emphasize the cumulative effect of stressors on health over time. © 2015 Associated Professional Sleep Societies, LLC.
Effects of stress on alcohol drinking: a review of animal studies
Lopez, Marcelo F.; Doremus-Fitzwater, Tamara L.
2011-01-01
Rationale While stress is often proposed to play a significant role in influencing alcohol consumption, the relationship between stress and alcohol is complex and poorly understood. Over several decades, stress effects on alcohol drinking have been studied using a variety of animal models and experimental procedures, yet this large body of literature has generally produced equivocal results. Objectives This paper reviews results from animal studies in which alcohol consumption is evaluated under conditions of acute/sub-chronic stress exposure or models of chronic stress exposure. Evidence also is presented indicating that chronic intermittent alcohol exposure serves as a stressor that consequently influences drinking. Results The effects of various acute/sub-chronic stress procedures on alcohol consumption have generally been mixed, but most study outcomes suggest either no effect or decreased alcohol consumption. In contrast, most studies indicate that chronic stress, especially when administered early in development, results in elevated drinking later in adulthood. Chronic alcohol exposure constitutes a potent stressor itself, and models of chronic intermittent alcohol exposure reliably produce escalation of voluntary alcohol consumption. Conclusions A complex and dynamic interplay among a wide array of genetic, biological, and environmental factors govern stress responses, regulation of alcohol drinking, and the circumstances in which stress modulates alcohol consumption. Suggestions for future directions and new approaches are presented that may aid in developing more sensitive and valid animal models that not only better mimic the clinical situation, but also provide greater understanding of mechanisms that underlie the complexity of stress effects on alcohol drinking. PMID:21850445
Wiegman, Coen H.; Michaeloudes, Charalambos; Haji, Gulammehdi; Narang, Priyanka; Clarke, Colin J.; Russell, Kirsty E.; Bao, Wuping; Pavlidis, Stelios; Barnes, Peter J.; Kanerva, Justin; Bittner, Anton; Rao, Navin; Murphy, Michael P.; Kirkham, Paul A.; Chung, Kian Fan; Adcock, Ian M.; Brightling, Christopher E.; Davies, Donna E.; Finch, Donna K.; Fisher, Andrew J.; Gaw, Alasdair; Knox, Alan J.; Mayer, Ruth J.; Polkey, Michael; Salmon, Michael; Singh, David
2015-01-01
Background Inflammation and oxidative stress play critical roles in patients with chronic obstructive pulmonary disease (COPD). Mitochondrial oxidative stress might be involved in driving the oxidative stress–induced pathology. Objective We sought to determine the effects of oxidative stress on mitochondrial function in the pathophysiology of airway inflammation in ozone-exposed mice and human airway smooth muscle (ASM) cells. Methods Mice were exposed to ozone, and lung inflammation, airway hyperresponsiveness (AHR), and mitochondrial function were determined. Human ASM cells were isolated from bronchial biopsy specimens from healthy subjects, smokers, and patients with COPD. Inflammation and mitochondrial function in mice and human ASM cells were measured with and without the presence of the mitochondria-targeted antioxidant MitoQ. Results Mice exposed to ozone, a source of oxidative stress, had lung inflammation and AHR associated with mitochondrial dysfunction and reflected by decreased mitochondrial membrane potential (ΔΨm), increased mitochondrial oxidative stress, and reduced mitochondrial complex I, III, and V expression. Reversal of mitochondrial dysfunction by the mitochondria-targeted antioxidant MitoQ reduced inflammation and AHR. ASM cells from patients with COPD have reduced ΔΨm, adenosine triphosphate content, complex expression, basal and maximum respiration levels, and respiratory reserve capacity compared with those from healthy control subjects, whereas mitochondrial reactive oxygen species (ROS) levels were increased. Healthy smokers were intermediate between healthy nonsmokers and patients with COPD. Hydrogen peroxide induced mitochondrial dysfunction in ASM cells from healthy subjects. MitoQ and Tiron inhibited TGF-β–induced ASM cell proliferation and CXCL8 release. Conclusions Mitochondrial dysfunction in patients with COPD is associated with excessive mitochondrial ROS levels, which contribute to enhanced inflammation and cell hyperproliferation. Targeting mitochondrial ROS represents a promising therapeutic approach in patients with COPD. PMID:25828268
Tabak, Benjamin A.; Vrshek-Schallhorn, Suzanne; Zinbarg, Richard E.; Prenoveau, Jason M.; Mineka, Susan; Redei, Eva E.; Adam, Emma K.; Craske, Michelle G.
2015-01-01
Variation in the CD38 gene, which regulates secretion of the neuropeptide oxytocin, has been associated with several social phenotypes. Specifically, rs3796863 A allele carriers have demonstrated increased social sensitivity. In 400 older adolescents, we used trait-state-occasion modeling to investigate how rs3796863 genotype, baseline ratings of chronic interpersonal stress, and their gene-environment (GxE) interaction predicted trait social anxiety and depression symptoms over six years. We found significant GxE effects for CD38 A-carrier genotypes and chronic interpersonal stress at baseline predicting greater social anxiety and depression symptoms. A significant GxE effect of smaller magnitude was also found for C/C genotype and chronic interpersonal stress predicting greater depression; however, this effect was small compared to the main effect of chronic interpersonal stress. Thus, in the context of chronic interpersonal stress, heightened social sensitivity associated with the rs3796863 A allele may prospectively predict risk for social anxiety and (to a lesser extent) depression. PMID:26958455
Dougherty, Lea R; Klein, Daniel N; Davila, Joanne
2004-12-01
Using mixed effects models, the authors examined the effects of chronic stress, adverse parent-child relationships, and family history on the 7.5-year course of dysthymic disorder. Participants included 97 outpatients with early-onset dysthymia who were assessed with semistructured interviews at baseline and 3 additional times at 30-month intervals for 7.5 years. Results indicated that higher levels of chronic stress 6 months prior to each follow-up predicted greater depression severity at follow-up, controlling for depression severity at the start of the chronic stress assessment. In addition, adverse parent-child relationships and family history of dysthymic disorder moderated this association. For patients with poorer parent-child relationships, chronic stress was associated with increased depression severity at follow-up, whereas patients with a higher familial loading for dysthymic disorder were less responsive to chronic stress over time. Copyright 2004 APA.
Zhao, Zidan; Ong, Lin Kooi; Johnson, Sarah; Nilsson, Michael; Walker, Frederick R
2017-12-01
How stress influences brain repair is an issue of considerable importance, as patients recovering from stroke are known to experience high and often unremitting levels of stress post-event. In the current study, we investigated how chronic stress modified the key cellular components of the neurovascular unit. Using an experimental model of focal cortical ischemia in male C57BL/6 mice, we examined how exposure to a persistently aversive environment, induced by the application of chronic restraint stress, altered the cortical remodeling post-stroke. We focused on systematically investigating changes in the key components of the neurovascular unit (i.e. neurons, microglia, astrocytes, and blood vessels) within the peri-infarct territories using both immunohistochemistry and Western blotting. The results from our study indicated that exposure to chronic stress exerted a significant suppressive effect on each of the key cellular components involved in neurovascular remodeling. Co-incident with these cellular changes, we observed that chronic stress was associated with an exacerbation of motor impairment 42 days post-event. Collectively, these results highlight the vulnerability of the peri-infarct neurovascular unit to the negative effects of chronic stress.
Davis, Margaret T.; Holmes, Sophie E.; Pietrzak, Robert H.; Esterlis, Irina
2018-01-01
Chronic stress accounts for billions of dollars of economic loss annually in the United States alone, and is recognized as a major source of disability and mortality worldwide. Robust evidence suggests that chronic stress plays a significant role in the onset of severe and impairing psychiatric conditions, including major depressive disorder, bipolar disorder, and posttraumatic stress disorder. Application of molecular imaging techniques such as positron emission tomography and single photon emission computed tomography in recent years has begun to provide insight into the molecular mechanisms by which chronic stress confers risk for these disorders. The present paper provides a comprehensive review and synthesis of all positron emission tomography and single photon emission computed tomography imaging publications focused on the examination of molecular targets in individuals with major depressive disorder, posttraumatic stress disorder, or bipolar disorder to date. Critical discussion of discrepant findings and broad strengths and weaknesses of the current body of literature is provided. Recommended future directions for the field of molecular imaging to further elucidate the neurobiological substrates of chronic stress-related disorders are also discussed. This article is part of the inaugural issue for the journal focused on various aspects of chronic stress. PMID:29862379
Are there associations between sleep bruxism, chronic stress, and sleep quality?
Ohlmann, Brigitte; Bömicke, Wolfgang; Habibi, Yasamin; Rammelsberg, Peter; Schmitter, Marc
2018-07-01
The purpose of this study was to identify associations between definite sleep bruxism, as defined by the American academy of sleep medicine, and chronic stress and sleep quality. Sleep bruxism was determined by use of questionnaires, assessment of clinical symptoms, and recording of electromyographic and electrocardiographic data (recorded by the Bruxoff ® device). The study included 67 participants. Of these, 38 were identified as bruxers and 29 as non-bruxers. The 38 bruxers were further classified as 17 moderate and 21 intense bruxers. Self-reported stress and self-reported sleep quality were determined by use of the validated questionnaires "Trier Inventory for the Assessment of Chronic Stress" (TICS) and the "Pittsburgh Sleep Quality Index" (PSQI). No statistically significant association was found between sleep bruxism and self-reported stress or sleep quality. However, a significant association between specific items of chronic stress and poor sleep quality was identified. The results of this study indicate an association between subjective sleep quality and subjective chronic stress, irrespective of the presence or absence of sleep bruxism. Chronic stress and sleep quality do not seem to be associated with sleep bruxism. (clinical trial no. NCT03039985). Copyright © 2018 Elsevier Ltd. All rights reserved.
Zhang, Yonghong; Luo, Xi; Che, Xianwei; Duan, Wenjie
2016-01-01
The literature has shown that self-compassion is a protective factor of an individual’s emotional response to chronic stress. However, this stress-buffering effect has not been completely analyzed in individuals who report significantly high academic stress. The present study explored the role of self-compassion in a group of undergraduate students who experience chronic academic stress. A total of 208 undergraduate students who were preparing for the Postgraduate Entrance Examination (PEE) were recruited and completed the Self-Compassion Scale, Adolescent Self-Rating Life Event Check List, and Positive and Negative Affect Schedule. Differences analysis confirmed that the participants reported significantly higher academic stress than their peers who were not preparing for PEE. Self-compassion positively related to positive affect but negatively related to negative affect and learning stress. Further analysis showed that self-compassion negatively mediated the relationship between chronic academic stress and negative affect. Findings imply that self-compassion-centered interventions can be developed in the educational context to assist students cope with chronic academic stress. PMID:27920736
Valenzuela, Cristián A; Zuloaga, Rodrigo; Mercado, Luis; Einarsdottir, Ingibjörg Eir; Björnsson, Björn Thrandur; Valdés, Juan Antonio; Molina, Alfredo
2018-01-01
Chronic stress detrimentally affects animal health and homeostasis, with somatic growth, and thus skeletal muscle, being particularly affected. A detailed understanding of the underlying endocrine and molecular mechanisms of how chronic stress affects skeletal muscle growth remains lacking. To address this issue, the present study assessed primary (plasma cortisol), secondary (key components of the GH/IGF system, muscular proteolytic pathways, and apoptosis), and tertiary (growth performance) stress responses in fine flounder ( Paralichthys adspersus) exposed to crowding chronic stress. Levels of plasma cortisol, glucocorticoid receptor 2 ( gr2), and its target genes ( klf15 and redd1) mRNA increased significantly only at 4 wk of crowding ( P < 0.05). The components of the GH/IGF system, including ligands, receptors, and their signaling pathways, were significantly downregulated at 7 wk of crowding ( P < 0.05). Interestingly, chronic stress upregulated the ubiquitin-proteasome pathway and the intrinsic apoptosis pathways at 4wk ( P < 0.01), whereas autophagy was only significantly activated at 7 wk ( P < 0.05), and meanwhile the ubiquitin-proteasome and the apoptosis pathways returned to control levels. Overall growth was inhibited in fish in the 7-wk chronic stress trial ( P < 0.05). In conclusion, chronic stress directly affects muscle growth and downregulates the GH/IGF system, an action through which muscular catabolic mechanisms are promoted by two different and nonoverlapping proteolytic pathways. These findings provide new information on molecular mechanisms involved in the negative effects that chronic stress has on muscle anabolic/catabolic signaling balance.
Peterlik, Daniel; Flor, Peter J.; Uschold-Schmidt, Nicole
2016-01-01
Chronic stress-related psychiatric conditions such as anxiety, depression, and alcohol abuse are an enormous public health concern. The etiology of these pathologies is complex, with psychosocial stressors being among the most frequently discussed risk factors. The brain glutamatergic neurotransmitter system has often been found involved in behaviors and pathophysiologies resulting from acute stress and fear. Despite this, relatively little is known about the role of glutamatergic system components in chronic psychosocial stress, neither in rodents nor in humans. Recently, drug discovery efforts at the metabotropic receptor subtypes of the glutamatergic system (mGlu1-8 receptors) led to the identification of pharmacological tools with emerging potential in psychiatric conditions. But again, the contribution of individual mGlu subtypes to the manifestation of physiological, molecular, and behavioral consequences of chronic psychosocial stress remains still largely unaddressed. The current review will describe animal models typically used to analyze acute and particularly chronic stress conditions, including models of psychosocial stress, and there we will discuss the emerging roles for mGlu receptor subtypes. Indeed, accumulating evidence indicates relevance and potential therapeutic usefulness of mGlu2/3 ligands and mGlu5 receptor antagonists in chronic stress-related disorders. In addition, a role for further mechanisms, e.g. mGlu7-selective compounds, is beginning to emerge. These mechanisms are important to be analyzed in chronic psychosocial stress paradigms, e.g. in the chronic subordinate colony housing (CSC) model. We summarize the early results and discuss necessary future investigations, especially for mGlu5 and mGlu7 receptor blockers, which might serve to suggest improved therapeutic strategies to treat stress-related disorders. PMID:27296643
Vancampfort, Davy; Koyanagi, A; Ward, Philip B; Veronese, Nicola; Carvalho, André F; Solmi, Marco; Mugisha, James; Rosenbaum, Simon; De Hert, Marc; Stubbs, Brendon
2017-10-15
In this study, we assessed the association of chronic medical conditions and multimorbidity with perceived stress among community-dwelling adults in 44 low- and middle-income countries. Data from the World Health Survey (2002-2004), including 229,293 adults, were analyzed. A perceived stress score (range, 0 (lowest stress)-100 (highest stress)) was computed on the basis of 2 questions from the Perceived Stress Scale. Eleven chronic conditions were assessed. Multivariable linear regression analyses were conducted to explore the associations. All chronic conditions were associated with significantly higher mean perceived stress scores, with the exception of edentulism. The associations were particularly strong for depression (β = 14.71, 95% confidence interval (CI): 13.68, 15.74), visual impairment (β = 10.66, 95% CI: 8.09, 13.23), and schizophrenia (β = 9.98, 95% CI: 7.71, 12.24). Compared with no chronic conditions, the β coefficients for perceived stress with the presence of 1, 2, 3, and ≥4 chronic conditions were 5.58 (95% CI: 4.94, 6.23), 9.58 (95% CI: 8.67, 10.49), 14.15 (95% CI: 12.63, 15.67), and 20.17 (95% CI: 18.29, 22.05), respectively. The associations with perceived stress were significantly stronger among the poorest individuals for arthritis, asthma, diabetes, edentulism, and ≥4 chronic conditions. Our data suggest that a range of chronic conditions and multimorbidity are associated with greatly increased perceived stress among people in low- and middle-income countries, and that the poorest persons may be a particularly vulnerable group. © The Author(s) 2017. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Inflammation: The Common Pathway of Stress-Related Diseases
Liu, Yun-Zi; Wang, Yun-Xia; Jiang, Chun-Lei
2017-01-01
While modernization has dramatically increased lifespan, it has also witnessed that the nature of stress has changed dramatically. Chronic stress result failures of homeostasis thus lead to various diseases such as atherosclerosis, non-alcoholic fatty liver disease (NAFLD) and depression. However, while 75%–90% of human diseases is related to the activation of stress system, the common pathways between stress exposure and pathophysiological processes underlying disease is still debatable. Chronic inflammation is an essential component of chronic diseases. Additionally, accumulating evidence suggested that excessive inflammation plays critical roles in the pathophysiology of the stress-related diseases, yet the basis for this connection is not fully understood. Here we discuss the role of inflammation in stress-induced diseases and suggest a common pathway for stress-related diseases that is based on chronic mild inflammation. This framework highlights the fundamental impact of inflammation mechanisms and provides a new perspective on the prevention and treatment of stress-related diseases. PMID:28676747
Pantoja, Joe Luis; Ge, Liang; Zhang, Zhihong; Morrel, William G; Guccione, Julius M; Grossi, Eugene A; Ratcliffe, Mark B
2014-10-01
The role of posterior papillary muscle anchoring (PPMA) in the management of chronic ischemic mitral regurgitation (CIMR) is controversial. We studied the effect of anchoring point direction and relocation displacement on left ventricular (LV) regional myofiber stress and pump function. Previously described finite element models of sheep 16 weeks after posterolateral myocardial infarction (MI) were used. True-sized mitral annuloplasty (MA) ring insertion plus different PPM anchoring techniques were simulated. Anchoring points tested included both commissures and the central anterior mitral annulus; relocation displacement varied from 10% to 40% of baseline diastolic distance from the PPM to the anchor points on the annulus. For each reconstruction scenario, myofiber stress in the MI, border zone, and remote myocardium as well as pump function were calculated. PPMA caused reductions in myofiber stress at end-diastole and end-systole in all regions of the left ventricle that were proportional to the relocation displacement. Although stress reduction was greatest in the MI region, it also occurred in the remote region. The maximum 40% displacement caused a slight reduction in LV pump function. However, with the correction of regurgitation by MA plus PPMA, there was an overall increase in forward stroke volume. Finally, anchoring point direction had no effect on myofiber stress or pump function. PPMA reduces remote myofiber stress, which is proportional to the absolute distance of relocation and independent of anchoring point. Aggressive use of PPMA techniques to reduce remote myofiber stress may accelerate reverse LV remodeling without impairing LV function. Copyright © 2014 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.
Zhao, Yunan; Wang, Zhongli; Dai, Jianguo; Chen, Lin; Huang, Yufang; Zhan, Zhen
2012-03-17
Whether benzodiazepines (BZDs) have beneficial effects on the progress of chronic stress-induced impairment of hippocampal structural plasticity and major depression is uncertain. The present study designed four preclinical experiments to determine the effects of BZDs using chronic unpredictable stress model. In Experiment 1, several time course studies on behavior and hippocampus response to stress were conducted using the forced swim and tail suspension tests (FST and TST) as well as hippocampal structural plasticity markers. Chronic stress induced depression-like behavior in the FST and TST as well as decreased hippocampal structural plasticity that returned to normal within 3 wk. In Experiment 2, mice received p.o. administration of three diazepam dosages prior to each variate stress session for 4 wk. This treatment significantly antagonized the elevation of stress-induced corticosterone levels. Only low- (0.5mg/kg) and medium-dose (1mg/kg) diazepam blocked the detrimental effects of chronic stress. In Experiment 3, after 7 wk of stress sessions, daily p.o. diazepam administration during 1 wk recovery phase dose-dependently accelerated the recovery of stressed mice. In Experiment 4, 1 wk diazepam administration to control mice enhanced significantly hippocampal structural plasticity and induced an antidepressant-like behavioral effect, whereas 4 wk diazepam administration produced opposite effects. Hence, diazepam can slow the progress of chronic stress-induced detrimental consequences by normalizing glucocorticoid hormones. Considering the adverse effect of long-term diazepam administration on hippocampal plasticity, the preventive effects of diazepam may depend on the proper dose. Short-term diazepam treatment enhances hippocampal structural plasticity and is beneficial to recovery following chronic stress. Copyright © 2011 Elsevier B.V. All rights reserved.
Holly, Elizabeth N.; Boyson, Christopher O.; DeBold, Joseph F.; Miczek, Klaus A.
2014-01-01
Rationale Women are twice as likely as men to develop major depressive disorder. Exposure to chronic stress can induce depression in some vulnerable individuals, while others are resistant to depressive-like symptoms after equivalent levels of chronic stress. Objectives In female rats, individual differences in saccharin intake during chronic social defeat stress may predict subsequent cocaine self-administration, and may be attributed to alterations in mesolimbic dopamine activity. Methods Female rats were exposed to 21 days of chronic social defeat stress, during which they were evaluated for their anhedonia-like responses in the form of saccharin intake. After chronic social defeat stress, the rats were tested for behavioral cross-sensitization to cocaine and escalated cocaine self-administration in a 24-h “binge.” A separate group of animals underwent in vivo microdialysis of the nucleus accumbens (NAc) shell to assess dopamine (DA) in response to acute cocaine challenge. Results Cluster analysis revealed two phenotypes among the stressed female rats based on their saccharin intake while being exposed to stress, termed stress-resistant (SR, 28 %) and stress-sensitive (SS, 72 %). The amount of cocaine self-administered during the 24-h “binge” was positively correlated with preceding saccharin intake. The NAc DA response to a cocaine challenge was significantly lower in SR rats than in the SS and non-stressed control rats. No other significant differences were observed in behavioral cross-sensitization or cocaine self-administration prior to the “binge.” Conclusion Female rats showed individual differences in their anhedonic-like response to chronic social defeat stress, and these differences were reliably associated with subsequent cocaine-taking behavior. PMID:25178816
Behavioral effects of chronic adolescent stress are sustained and sexually dimorphic
Bourke, Chase H.; Neigh, Gretchen N.
2011-01-01
Evidence suggests that women are more susceptible to stress-related disorders than men. Animal studies demonstrate a similar female sensitivity to stress and have been used to examine the underlying neurobiology of sex-specific effects of stress. Although our understanding of the sex-specific effects of chronic adolescent stress has grown in recent years, few studies have reported the effects of adolescent stress on depressive-like behavior. The purpose of this study was to determine if a chronic mixed modality stressor (consisting of isolation, restraint, and social defeat) during adolescence (PND37-49) resulted in differential and sustained changes in depressive-like behavior in male and female Wistar rats. Female rats exposed to chronic adolescent stress displayed decreased sucrose consumption, hyperactivity in the elevated plus maze, decreased activity in the forced swim test, and a blunted corticosterone response to an acute forced swim stress compared to controls during both adolescence (PND48-57) and adulthood (PND96-104). Male rats exposed to chronic adolescent stress did not manifest significant behavioral changes at either the end of adolescence or in adulthood. These data support the proposition that adolescence may be a stress sensitive period for females and exposure to stress during adolescence results in behavioral effects that persist in females. Studies investigating the sex-specific effects of chronic adolescent stress may lead to a better understanding of the sexually dimorphic incidence of depressive and anxiety disorders in humans and ultimately improve prevention and treatment strategies. PMID:21466807
α1A-Subtype adrenergic agonist therapy for the failing right ventricle.
Cowley, Patrick M; Wang, Guanying; Joshi, Sunil; Swigart, Philip M; Lovett, David H; Simpson, Paul C; Baker, Anthony J
2017-12-01
Failure of the right ventricle (RV) is a serious disease with a poor prognosis and limited treatment options. Signaling by α 1 -adrenergic receptors (α 1 -ARs), in particular the α 1A -subtype, mediate cardioprotective effects in multiple heart failure models. Recent studies have shown that chronic treatment with the α 1A -subtype agonist A61603 improves function and survival in a model of left ventricular failure. The goal of the present study was to determine if chronic A61603 treatment is beneficial in a RV failure model. We used tracheal instillation of the fibrogenic antibiotic bleomycin in mice to induce pulmonary fibrosis, pulmonary hypertension, and RV failure within 2 wk. Some mice were chronically treated with a low dose of A61603 (10 ng·kg -1 ·day -1 ). In the bleomycin model of RV failure, chronic A61603 treatment was associated with improved RV fractional shortening and greater in vitro force development by RV muscle preparations. Cell injury markers were reduced with A61603 treatment (serum cardiac troponin I, RV fibrosis, and expression of matrix metalloproteinase-2). RV oxidative stress was reduced (using the probes dihydroethidium and 4-hydroxynonenal). Consistent with lowered RV oxidative stress, A61603 was associated with an increased level of the cellular antioxidant superoxide dismutase 1 and a lower level of the prooxidant NAD(P)H oxidase isoform NOX4. In summary, in the bleomycin model of RV failure, chronic A61603 treatment reduced RV oxidative stress, RV myocyte necrosis, and RV fibrosis and increased both RV function and in vitro force development. These findings suggest that in the context of pulmonary fibrosis, the α 1A -subtype is a potential therapeutic target to treat the failing RV. NEW & NOTEWORTHY Right ventricular (RV) failure is a serious disease with a poor prognosis and no effective treatments. In the mouse bleomycin model of RV failure, we tested the efficacy of a treatment using the α 1A -adrenergic receptor subtype agonist A61603. Chronic A61603 treatment improved RV contraction and reduced multiple indexes of RV injury, suggesting that the α 1A -subtype is a therapeutic target to treat RV failure.
Eggers, Arnold E
2006-01-01
A new hypothesis is presented on the function of factor XII, which is postulated to be a "missing link" between acute stress and transient hypercoagulability. The implications of this idea are developed to show how chronic stress, which involves activation of hypertension and migraine as well as hypercoagulability, can cause of cerebrovascular disease. "Acute stress" is defined as "the normal short-term physiological response to the perception of major threats or demands". "Chronic stress" is "the abnormal ongoing physiological response to the continuing perception of unresolvable major threats or demands". The factor XII hypothesis is as follows: Acute stress includes release of epinephrine by the adrenal medulla. Epinephrine activates platelets by binding to alpha-2A adrenergic receptors. Activated platelets convert pre-bound factor XII to its active form, which then initiates the intrinsic coagulation cascade. This can be called the "activated platelet initiation pathway" for coagulation. Neither tissue factor nor pre-formed thrombin is required. Thrombosis proceeds to completion, but only a minute amount of thrombin is formed, and the process normally stops at this point. In people who lapse into a state of chronic stress, essential hypertension, which is also a manifestation of stress, synergizes with hypercoagulability: there is both a baseline rise in blood pressure and systemic platelet activation as well as superimposed labile rises of both. Upregulation of these two stress parameters is atherogenic: epinephrine-activated platelets stimulating thrombin formation interact with endothelial cells activated by angiotensin II to cause, first, smooth muscle cell proliferation, which is a histological hallmark of atherosclerosis, and, lastly, a symptomatic thrombotic occlusion-the stroke. The migraine symptoms which often accompany this process are a marker of chronic stress and ongoing pathophysiologic damage. Therapeutic predictions are made regarding novel ways of blocking stress-induced hypercoagulability and hypertension. Hypercoagulability could be targeted by monoclonal antibodies directed against the platelet-specific alpha-2 adrenergic receptor or the (putative) platelet receptor for Factor XII; hypertension could be treated with monoclonal antibodies directed against the beta-adrenergic receptor in the juxtaglomerular apparatus or by surgical denervation of the kidneys, either of which would decrease the renin release which helps drive the hypertension.
Kidney Diseases in Agricultural Communities: A Case Against Heat-Stress Nephropathy.
Herath, Chula; Jayasumana, Channa; De Silva, P Mangala C S; De Silva, P H Chaminda; Siribaddana, Sisira; De Broe, Marc E
2018-03-01
The beginning of the 21st century has seen the emergence of a new chronic tubulo-interstitial kidney disease of uncertain cause among agricultural communities in Central America and Sri Lanka. Despite many similarities in demography, presentation, clinical features, and renal histopathology in affected individuals in these regions, a toxic etiology has been considered mainly in Sri Lanka, whereas the predominant hypothesis in Central America has been that recurrent acute kidney injury (AKI) caused by heat stress leads to chronic kidney disease (CKD). This is termed the heat stress/dehydration hypothesis . This review attempts to demonstrate that there is sparse evidence for the occurrence of significant AKI among manual workers who are at high risk, and that there is little substantial evidence that an elevation of serum creatinine < 0.3 mg/dl in previously healthy people will lead to CKD even with recurrent episodes. It is also proposed that the extent of global warming over the last half-century was not sufficient to have caused a drastic change in the effects of heat stress on renal function in manual workers. Comparable chronic tubulo-interstitial kidney disease is not seen in workers exposed to heat in most tropical regions, although the disease is seen in individuals not exposed to heat stress in the affected regions. The proposed pathogenic mechanisms of heat stress causing CKD have not yet been proved in humans or demonstrated in workers at risk. It is believed that claims of a global warming nephropathy in relation to this disease may be premature and without convincing evidence.
Chronic and Daily Stressors Along With Negative Affect Interact to Predict Daily Tiredness.
Hartsell, Elizabeth N; Neupert, Shevaun D
2017-11-01
The present study examines the within-person relationship of daily stressors and tiredness and whether this depends on daily negative affect and individual differences in chronic stress. One hundred sixteen older adult participants were recruited via Amazon's Mechanical Turk for a 9-day daily diary study. Daily tiredness, daily stressors, and negative affect were measured each day, and chronic stress was measured at baseline. Daily stressors, daily negative affect, and chronic stress interacted to predict daily tiredness. People with high chronic stress who experienced an increase in daily negative affect were the most reactive to daily stressors in terms of experiencing an increase in daily tiredness. We also found that people with low levels of chronic stress were the most reactive to daily stressors when they experienced low levels of daily negative affect. Our results highlight the need for individualized and contextualized approaches to combating daily tiredness in older adults.
The PHF21B gene is associated with major depression and modulates the stress response.
Wong, M-L; Arcos-Burgos, M; Liu, S; Vélez, J I; Yu, C; Baune, B T; Jawahar, M C; Arolt, V; Dannlowski, U; Chuah, A; Huttley, G A; Fogarty, R; Lewis, M D; Bornstein, S R; Licinio, J
2017-07-01
Major depressive disorder (MDD) affects around 350 million people worldwide; however, the underlying genetic basis remains largely unknown. In this study, we took into account that MDD is a gene-environment disorder, in which stress is a critical component, and used whole-genome screening of functional variants to investigate the 'missing heritability' in MDD. Genome-wide association studies (GWAS) using single- and multi-locus linear mixed-effect models were performed in a Los Angeles Mexican-American cohort (196 controls, 203 MDD) and in a replication European-ancestry cohort (499 controls, 473 MDD). Our analyses took into consideration the stress levels in the control populations. The Mexican-American controls, comprised primarily of recent immigrants, had high levels of stress due to acculturation issues and the European-ancestry controls with high stress levels were given higher weights in our analysis. We identified 44 common and rare functional variants associated with mild to moderate MDD in the Mexican-American cohort (genome-wide false discovery rate, FDR, <0.05), and their pathway analysis revealed that the three top overrepresented Gene Ontology (GO) processes were innate immune response, glutamate receptor signaling and detection of chemical stimulus in smell sensory perception. Rare variant analysis replicated the association of the PHF21B gene in the ethnically unrelated European-ancestry cohort. The TRPM2 gene, previously implicated in mood disorders, may also be considered replicated by our analyses. Whole-genome sequencing analyses of a subset of the cohorts revealed that European-ancestry individuals have a significantly reduced (50%) number of single nucleotide variants compared with Mexican-American individuals, and for this reason the role of rare variants may vary across populations. PHF21b variants contribute significantly to differences in the levels of expression of this gene in several brain areas, including the hippocampus. Furthermore, using an animal model of stress, we found that Phf21b hippocampal gene expression is significantly decreased in animals resilient to chronic restraint stress when compared with non-chronically stressed animals. Together, our results reveal that including stress level data enables the identification of novel rare functional variants associated with MDD.
Chronic Stress is Prospectively Associated with Sleep in Midlife Women: The SWAN Sleep Study
Hall, Martica H.; Casement, Melynda D.; Troxel, Wendy M.; Matthews, Karen A.; Bromberger, Joyce T.; Kravitz, Howard M.; Krafty, Robert T.; Buysse, Daniel J.
2015-01-01
Study Objectives: Evaluate whether levels of upsetting life events measured over a 9-y period prospectively predict subjective and objective sleep outcomes in midlife women. Design: Prospective cohort study. Setting: Four sites across the United States. Participants: 330 women (46–57 y of age) enrolled in the Study of Women's Health Across the Nation (SWAN) Sleep Study. Interventions: N/A. Measurements and Results: Upsetting life events were assessed annually for up to 9 y. Trajectory analysis applied to life events data quantitatively identified three distinct chronic stress groups: low stress, moderate stress, and high stress. Sleep was assessed by self-report and in-home polysomnography (PSG) during the ninth year of the study. Multivariate analyses tested the prospective association between chronic stress group and sleep, adjusting for race, baseline sleep complaints, marital status, body mass index, symptoms of depression, and acute life events at the time of the Sleep Study. Women characterized by high chronic stress had lower subjective sleep quality, were more likely to report insomnia, and exhibited increased PSG-assessed wake after sleep onset (WASO) relative to women with low to moderate chronic stress profiles. The effect of chronic stress group on WASO persisted in the subsample of participants without baseline sleep complaints. Conclusions: Chronic stress is prospectively associated with sleep disturbance in midlife women, even after adjusting for acute stressors at the time of the sleep study and other factors known to disrupt sleep. These results are consistent with current models of stress that emphasize the cumulative effect of stressors on health over time. Citation: Hall MH, Casement MD, Troxel WM, Matthews KA, Bromberger JT, Kravitz HM, Krafty RT, Buysse DJ. Chronic stress is prospectively associated with sleep in midlife women: the SWAN Sleep Study. SLEEP 2015;38(10):1645–1654. PMID:26039965
Zvolensky, Michael J; Farris, Samantha G; Kotov, Roman; Schechter, Clyde B; Bromet, Evelyn; Gonzalez, Adam; Vujanovic, Anka; Pietrzak, Robert H; Crane, Michael; Kaplan, Julia; Moline, Jacqueline; Southwick, Steven M; Feder, Adriana; Udasin, Iris; Reissman, Dori B; Luft, Benjamin J
2015-06-01
The current study examined the role of World Trade Center (WTC) disaster exposure (hours spent working on the site, dust cloud exposure, and losing friend/loved one) in exacerbating the effects of post-disaster life stress on posttraumatic stress disorder (PTSD) symptoms and overall functioning among WTC responders. Participants were 18,896 responders (8466 police officers and 10,430 non-traditional responders) participating in the WTC Health Program who completed an initial examination between July, 2002 and April, 2010 and were reassessed an average of two years later. Among police responders, there was a significant interaction, such that the effect of post-disaster life stress on later PTSD symptoms and overall functioning was stronger among police responders who had greater WTC disaster exposure (β's=.029 and .054, respectively, for PTSD symptoms and overall functioning). This moderating effect was absent in non-traditional responders. Across both groups, post-disaster life stress also consistently was related to the dependent variables in a more robust manner than WTC exposure. The present findings suggest that WTC exposure may compound post-disaster life stress, thereby resulting in a more chronic course of PTSD symptoms and reduced functioning among police responders. Copyright © 2015 Elsevier Inc. All rights reserved.
Stress and Resilience in Functional Somatic Syndromes – A Structural Equation Modeling Approach
Fischer, Susanne; Lemmer, Gunnar; Gollwitzer, Mario; Nater, Urs M.
2014-01-01
Background Stress has been suggested to play a role in the development and perpetuation of functional somatic syndromes. The mechanisms of how this might occur are not clear. Purpose We propose a multi-dimensional stress model which posits that childhood trauma increases adult stress reactivity (i.e., an individual's tendency to respond strongly to stressors) and reduces resilience (e.g., the belief in one's competence). This in turn facilitates the manifestation of functional somatic syndromes via chronic stress. We tested this model cross-sectionally and prospectively. Methods Young adults participated in a web survey at two time points. Structural equation modeling was used to test our model. The final sample consisted of 3′054 participants, and 429 of these participated in the follow-up survey. Results Our proposed model fit the data in the cross-sectional (χ2(21) = 48.808, p<.001, CFI = .995, TLI = .992, RMSEA = .021, 90% CI [.013.029]) and prospective analyses (χ2(21) = 32.675, p<.05, CFI = .982, TLI = .969, RMSEA = .036, 90% CI [.001.059]). Discussion Our findings have several clinical implications, suggesting a role for stress management training in the prevention and treatment of functional somatic syndromes. PMID:25396736
Diurnal cortisol rhythms among Latino immigrants in Oregon, USA
2012-01-01
One of the most commonly used stress biomarkers is cortisol, a glucocorticoid hormone released by the adrenal glands that is central to the physiological stress response. Free cortisol can be measured in saliva and has been the biomarker of choice in stress studies measuring the function of the hypothalamic-pituitary-adrenal axis. Chronic psychosocial stress can lead to dysregulation of hypothalamic-pituitary-adrenal axis function and results in an abnormal diurnal cortisol profile. Little is known about objectively measured stress and health in Latino populations in the United States, yet this is likely an important factor in understanding health disparities that exist between Latinos and whites. The present study was designed to measure cortisol profiles among Latino immigrant farmworkers in Oregon (USA), and to compare quantitative and qualitative measures of stress in this population. Our results indicate that there were no sex differences in average cortisol AUCg (area under the curve with respect to the ground) over two days (AvgAUCg; males = 1.38, females = 1.60; P = 0.415). AUCg1 (Day 1 AUCg) and AvgAUCg were significantly negatively associated with age in men (P<0.05). AUCg1 was negatively associated with weight (P<0.05), waist circumference (P<0.01) and waist-to-stature ratio (P<0.05) in women, which is opposite of the expected relationship between cortisol and waist-to-stature ratio, possibly indicating hypothalamic-pituitary-adrenal axis dysregulation. Among men, more time in the United States and immigration to the United States at older ages predicted greater AvgAUCg. Among women, higher lifestyle incongruity was significantly related to greater AvgAUCg. Although preliminary, these results suggest that chronic psychosocial stress plays an important role in health risk in this population. PMID:22738123
Chronic intermittent hypobaric hypoxia attenuates radiation induced heart damage in rats.
Wang, Jun; Wu, Yajing; Yuan, Fang; Liu, Yixian; Wang, Xuefeng; Cao, Feng; Zhang, Yi; Wang, Sheng
2016-09-01
Radiation-induced heart damage (RIHD) is becoming an increasing concern for patients and clinicians due to the use of radiotherapy for thoracic tumor. Chronic intermittent hypobaric hypoxia (CIHH) preconditioning has been documented to exert a cardioprotective effect. Here we hypothesized that CIHH was capable of attenuating functional and structural damage in a rat model of RIHD. Male adult Sprague-Dawley rats were randomly divided into 4 groups: control, radiation, CIHH and CIHH plus radiation. Cardiac function was measured using Langendorff perfusion in in vitro rat hearts. Cardiac fibrosis, oxidative stress and endoplasmic reticulum stress (ERS) was assessed by quantitative analysis of protein expression. No significant difference between any two groups was observed in baseline cardiac function as assessed by left ventricular end diastolic pressure (LVEDP), left ventricular developing pressure (LVDP) and the derivative of left ventricular pressure (±LVdp/dt). When challenged by ischemia/reperfusion, LVEDP was increased but LVDP and ±LVdp/dt was decreased significantly in radiation group compared with controls, accompanied by an enlarged infarct size and decreased coronary flow. Importantly, CIHH dramatically improved radiation-induced damage of cardiac function and blunted radiation-induced cardiac fibrosis in the perivascular and interstitial area. Furthermore, CIHH abrogated radiation-induced increase in malondialdehyde and enhanced total superoxide dismutase activity, as well as downregulated expression levels of ERS markers like GRP78 and CHOP. CIHH pretreatment alleviated radiation-induced damage of cardiac function and fibrosis. Such a protective effect was closely associated with suppression of oxidative stress and ERS responses. Copyright © 2016 Elsevier Inc. All rights reserved.
McAlinn, Helena R; Reich, Batsheva; Contoreggi, Natalina H; Kamakura, Renata Poulton; Dyer, Andreina G; McEwen, Bruce S; Waters, Elizabeth M; Milner, Teresa A
2018-07-15
Corticotropin-releasing factor receptors (CRFR1) contribute to stress-induced adaptations in hippocampal structure and function that can affect learning and memory processes. Our prior studies showed that female rats with elevated estrogens compared to males have more plasmalemmal CRFR1 in CA1 pyramidal cells, suggesting a greater sensitivity to stress. Here, we examined the distribution of hippocampal CRFR1 following chronic immobilization stress (CIS) in female and male rats using immuno-electron microscopy. Without stress, total CRFR1 dendritic levels were higher in females in CA1 and in males in the hilus; moreover, plasmalemmal CRFR1 was elevated in pyramidal cell dendrites in CA1 in females and in CA3 in males. Following CIS, near-plasmalemmal CRFR1 increased in CA1 pyramidal cell dendrites in males but not to levels of control or CIS females. In CA3 and the hilus, CIS decreased cytoplasmic and total CRFR1 in dendrites in males only. These results suggest that in naive rats, CRF could induce a greater activation of CA1 pyramidal cells in females than males. Moreover, after CIS, which leads to even greater sex differences in CRFR1 by trafficking it to different subcellular compartments, CRF could enhance activation of CA1 pyramidal cells in males but to a lesser extent than either unstressed or CIS females. Additionally, CA3 pyramidal cells and inhibitory interneurons in males have heightened sensitivity to CRF, regardless of stress state. These sex differences in CRFR1 distribution and trafficking in the hippocampus may contribute to reported sex differences in hippocampus-dependent learning processes in baseline conditions and following chronic stress. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.
Gulewitsch, Marco D; Enck, Paul; Schwille-Kiuntke, Juliane; Weimer, Katja; Schlarb, Angelika A
2013-01-01
Aim. To investigate the degree of mental strain and chronic stress in a German community sample of students with IBS-like symptoms. Methods and Materials. Following an internet-based survey about stress, this study recruited 176 German university students (23.45 ± 2.48 years; 48.3% males) with IBS-like symptoms according to Rome III and 181 students without IBS (23.55 ± 2.82 years; 50.3% males) and compared them regarding current mental strain (SCL-90-R) and the extend of chronic stress. Beyond this, IBS subtypes, IBS severity, and health care utilization were assessed. Results. Students fulfilling IBS criteria showed significantly elevated values of mental strain and chronic stress. Nearly 40% of the IBS group (versus 20% of the controls) reached a clinically relevant value on the SCL-90-R global severity scale. IBS subtypes did not differ in terms of mental distress or chronic stress. Somatization, anxiety, and the chronic stressors "work overload," "social tension," and "dissatisfaction with job" were most closely connected to IBS symptom severity. Regarding health care utilization, our results show that consulting a physician frequently was not associated significantly with elevated mental strain or chronic stress but with IBS symptom severity. Conclusion. Our data contribute additional evidence to the distinct association between psychological stress and IBS in community samples.
Chronic stress and sex differences on the recall of fear conditioning and extinction.
Baran, Sarah E; Armstrong, Charles E; Niren, Danielle C; Hanna, Jeffery J; Conrad, Cheryl D
2009-03-01
Chronic stress effects and sex differences were examined on conditioned fear extinction. Male and female Sprague-Dawley rats were chronically stressed by restraint (6 h/d/21 d), conditioned to tone and footshock, followed by extinction after 1 h and 24 h delays. Chronic stress impaired the recall of fear extinction in males, as evidenced by high freezing to tone after the 24 h delay despite exposure to the previous 1 h delay extinction trials, and this effect was not due to ceiling effects from overtraining during conditioning. In contrast, chronic stress attenuated the recall of fear conditioning acquisition in females, regardless of exposure to the 1 h extinction exposure. Since freezing to tone was reinstated following unsignalled footshocks, the deficit in the stressed rats reflected impaired recall rather than impaired consolidation. Sex differences in fear conditioning and extinction were observed in nonstressed controls as well, with control females resisting extinction to tone. Analysis of contextual freezing showed that all groups (control, stress, male, female) increased freezing immediately after the first tone extinction trial, demonstrating contextual discrimination. These findings show that chronic stress and sex interact to influence fear conditioning, with chronic stress impairing the recall of delayed fear extinction in males to implicate the medial prefrontal cortex, disrupting the recall of the fear conditioning acquisition in females to implicate the amygdala, and nonstressed controls exhibiting sex differences in fear conditioning and extinction, which may involve the amygdala and/or corticosterone levels.
Naert, Gaelle; Ixart, Guy; Maurice, Tangui; Tapia-Arancibia, Lucia; Givalois, Laurent
2011-01-01
Depression is potentially life-threatening. The most important neuroendocrine abnormality in this disorder is hypothalamo-pituitary-adrenocortical (HPA) axis hyperactivity. Recent findings suggest that all depression treatments may boost the neurotrophin production especially brain-derived neurotrophic factor (BDNF). Moreover, BDNF is highly involved in the regulation of HPA axis activity. The aim of this study was to determine the impact of chronic stress (restraint 3h/day for 3 weeks) on animal behavior and HPA axis activity in parallel with hippocampus, hypothalamus and pituitary BDNF levels. Chronic stress induced changes in anxiety (light/dark box test) and anhedonic states (sucrose preference test) and in depressive-like behavior (forced swimming test); general locomotor activity and body temperature were modified and animal body weight gain was reduced by 17%. HPA axis activity was highly modified by chronic stress, since basal levels of mRNA and peptide hypothalamic contents in CRH and AVP and plasma concentrations in ACTH and corticosterone were significantly increased. The HPA axis response to novel acute stress was also modified in chronically stressed rats, suggesting adaptive mechanisms. Basal BDNF contents were increased in the hippocampus, hypothalamus and pituitary in chronically stressed rats and the BDNF response to novel acute stress was also modified. This multiparametric study showed that chronic restraint stress induced a depressive-like state that was sustained by mechanisms associated with BDNF regulation. Copyright © 2010 Elsevier Inc. All rights reserved.
mRNA Transcript Abundance during Plant Growth and the Influence of Li + Exposure
Duff, M. C.; Kuhne, W. W.; Halverson, N. V.; ...
2014-10-23
Lithium (Li) toxicity in plants is, at a minimum, a function of Li + concentration, exposure time, species and growth conditions. Most plant studies with Li + focus on short-term acute exposures. This study examines short- and long-term effects of Li + exposure in Arabidopsis with Li + uptake studies and measured shoot mRNA transcript abundance levels in treated and control plants. Stress, pathogen-response and arabinogalactan protein genes were typically more up-regulated in older (chronic, low level) Li +-treatment plants and in the much younger plants from acute high-level exposures. The gene regulation behavior of high-level Li + resembled priormore » studies due to its influence on: inositol synthesis, 1-aminocyclopropane-1-carboxylate synthases and membrane ion transport. In contrast, chronically-exposed plants had gene regulation responses that were indicative of pathogen, cold, and heavy-metal stress, cell wall degradation, ethylene production, signal transduction, and calcium-release modulation. Acute Li + exposure phenocopies magnesium-deficiency symptoms and is associated with elevated expression of stress response genes that could lead to consumption of metabolic and transcriptional energy reserves and the dedication of more resources to cell development. In contrast, chronic Li + exposure increases expression signal transduction genes. The identification of new Li +-sensitive genes and a gene-based “response plan” for acute and chronic Li + exposure are delineated.« less
mRNA Transcript abundance during plant growth and the influence of Li(+) exposure.
Duff, M C; Kuhne, W W; Halverson, N V; Chang, C-S; Kitamura, E; Hawthorn, L; Martinez, N E; Stafford, C; Milliken, C E; Caldwell, E F; Stieve-Caldwell, E
2014-12-01
Lithium (Li) toxicity in plants is, at a minimum, a function of Li(+) concentration, exposure time, species and growth conditions. Most plant studies with Li(+) focus on short-term acute exposures. This study examines short- and long-term effects of Li(+) exposure in Arabidopsis with Li(+) uptake studies and measured shoot mRNA transcript abundance levels in treated and control plants. Stress, pathogen-response and arabinogalactan protein genes were typically more up-regulated in older (chronic, low level) Li(+)-treatment plants and in the much younger plants from acute high-level exposures. The gene regulation behavior of high-level Li(+) resembled prior studies due to its influence on: inositol synthesis, 1-aminocyclopropane-1-carboxylate synthases and membrane ion transport. In contrast, chronically-exposed plants had gene regulation responses that were indicative of pathogen, cold, and heavy-metal stress, cell wall degradation, ethylene production, signal transduction, and calcium-release modulation. Acute Li(+) exposure phenocopies magnesium-deficiency symptoms and is associated with elevated expression of stress response genes that could lead to consumption of metabolic and transcriptional energy reserves and the dedication of more resources to cell development. In contrast, chronic Li(+) exposure increases expression signal transduction genes. The identification of new Li(+)-sensitive genes and a gene-based "response plan" for acute and chronic Li(+) exposure are delineated. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
... can last for years. Common causes of chronic insomnia include: Stress. Concerns about work, school, health, finances or family ... stress. Stressful times and events can cause temporary insomnia. And major or long-lasting stress can lead to chronic insomnia. You don't ...
Chronic Stress Impairs Collateral Blood Flow Recovery in Aged Mice
2014-10-15
Moreover, chronic psychological stress is associated, in leukocytes, with shorter telomere length and lower telomerase activity [16], both of which are...factor associated with atherosclerosis [19, 20]. Chronic stress, mental disorders, and non-pathological psychological stress states are associat- ed...Impact of psychological factors on the pathogenesis of cardiovascular disease and implications for therapy. Circulation, 99(16), 2192–2217. 2. Everson
Bahi, Amine
2013-07-01
Stress exposure is known to be a risk factor for alcohol use and anxiety disorders. Comorbid chronic stress and alcohol dependence may lead to a complicated and potentially severe treatment profile. To gain an understanding of the interaction between chronic psychosocial stress and drug exposure, we studied the effects of concomitant chronic stress exposure on alcohol reward using two-bottle choice and ethanol-conditioned place preference (CPP). The study consisted of exposure of the chronic subordinate colony (CSC) mice "intruders" to an aggressive "resident" mouse for 19 consecutive days. Control mice were single housed (SHC). Ethanol consumption using two-bottle choice paradigm and ethanol CPP acquisition was assessed at the end of this time period. As expected, CSC exposure increased anxiety-like behavior and reduced weight gain as compared to SHC controls. Importantly, in the two-bottle choice procedure, CSC mice showed higher alcohol intake than SHC. When testing their response to ethanol-induced CPP, CSC mice achieved higher preference for the ethanol-paired chamber. In fact, CSC exposure increased ethanol-CPP acquisition. Taken together, these data demonstrate the long-term consequences of chronic psychosocial stress on alcohol intake in male mice, suggesting chronic stress as a risk factor for developing alcohol consumption and/or anxiety disorders.
Neigh, Gretchen N.; Nemeth, Christina L; Kelly, Sean D.; Hardy, Emily E.; Bourke, Chase; Stowe, Zachary N.; Owens, Michael J.
2016-01-01
Prenatal stress has been linked to deficits in neurological function including deficient social behavior, alterations in learning and memory, impaired stress regulation, and susceptibility to adult disease. In addition, prenatal environment is known to alter cardiovascular health; however, limited information is available regarding the cerebrovascular consequences of prenatal stress exposure. Vascular disturbances late in life may lead to cerebral hypoperfusion which is linked to a variety of neurodegenerative and psychiatric diseases. The known impact of cerebrovascular compromise on neuronal function and behavior highlights the importance of characterizing the impact of stress on not just neurons and glia, but also cerebrovasculature. Von Willebrand factor has previously been shown to be impacted by prenatal stress and is predictive of cerebrovascular health. Here we assess the impact of prenatal stress on von Willebrand factor and related angiogenic factors. Furthermore, we assess the potential protective effects of concurrent anti-depressant treatment during in utero stress exposure on the assessed cerebrovascular endpoints. Prenatal stress augmented expression of von Willebrand factor which was prevented by concurrent in utero escitalopram treatment. The functional implications of this increase in von Willebrand factor remain elusive, but the presented data demonstrate that although prenatal stress did not independently impact total vascularization, exposure to chronic stress in adulthood decreased blood vessel length. In addition, the current study demonstrates that production of reactive oxygen species in the hippocampus is decreased by prenatal exposure to escitalopram. Collectively, these findings demonstrate that the prenatal experience can cause complex changes in adult cerebral vascular structure and function. PMID:27422674
Van Houdenhove, Boudewijn; Luyten, Patrick
2008-01-01
Syndromes characterized by chronic, medically unexplained fatigue, effort- and stress-intolerance, and widespread pain are highly prevalent in medicine. In chronic fatigue syndrome (CFS) and fibromyalgia (FM), various perpetuating factors may impair patients' quality of life and functioning and impede recovery. Although cognitive-behavioral and graded-exercise therapy are evidence-based treatments, the effectiveness and acceptability of therapeutic interventions in CFS/FM may largely depend on a customized approach taking the heterogeneity of perpetuating factors into account. Further research should clarify the aim and outcome of different treatment strategies in CFS/FM, as well as the underlying mechanisms of change, including those facilitating neurobiological recovery.
Chronic sublethal stress causes bee colony failure.
Bryden, John; Gill, Richard J; Mitton, Robert A A; Raine, Nigel E; Jansen, Vincent A A
2013-12-01
Current bee population declines and colony failures are well documented yet poorly understood and no single factor has been identified as a leading cause. The evidence is equivocal and puzzling: for instance, many pathogens and parasites can be found in both failing and surviving colonies and field pesticide exposure is typically sublethal. Here, we investigate how these results can be due to sublethal stress impairing colony function. We mathematically modelled stress on individual bees which impairs colony function and found how positive density dependence can cause multiple dynamic outcomes: some colonies fail while others thrive. We then exposed bumblebee colonies to sublethal levels of a neonicotinoid pesticide. The dynamics of colony failure, which we observed, were most accurately described by our model. We argue that our model can explain the enigmatic aspects of bee colony failures, highlighting an important role for sublethal stress in colony declines. © 2013 The Authors. Ecology Letters published by John Wiley & Sons Ltd and CNRS.
Chronic sublethal stress causes bee colony failure
Bryden, John; Gill, Richard J; Mitton, Robert A A; Raine, Nigel E; Jansen, Vincent A A; Hodgson, David
2013-01-01
Current bee population declines and colony failures are well documented yet poorly understood and no single factor has been identified as a leading cause. The evidence is equivocal and puzzling: for instance, many pathogens and parasites can be found in both failing and surviving colonies and field pesticide exposure is typically sublethal. Here, we investigate how these results can be due to sublethal stress impairing colony function. We mathematically modelled stress on individual bees which impairs colony function and found how positive density dependence can cause multiple dynamic outcomes: some colonies fail while others thrive. We then exposed bumblebee colonies to sublethal levels of a neonicotinoid pesticide. The dynamics of colony failure, which we observed, were most accurately described by our model. We argue that our model can explain the enigmatic aspects of bee colony failures, highlighting an important role for sublethal stress in colony declines. PMID:24112478
Fox, Helen C.; Sinha, Rajita
2009-01-01
Extensive research indicates that chronic substance abuse disrupts stress and reward systems of the brain. Gender variation within these stress-system alterations, including the impact of sex hormones on these changes, may influence sex-specific differences in both the development of, and recovery from, dependency. As such, gender variations in stress-system function may also provide a viable explanation for why women are markedly more vulnerable than men to the negative consequences of drug use. This article therefore initially reviews studies that have examined gender differences in emotional and biophysiological changes to the stress and reward system following the acute administration of drugs, including cocaine, alcohol, and nicotine. The article then reviews studies that have examined gender differences in response to various types of stress in both healthy and drug-abusing populations. Studies examining the impact of sex hormones on these gender-related responses are also reported. The implications of these sex-specific variations in stress and reward system function are discussed in terms of both comorbid psychopathology and treatment outcome. PMID:19373619
Effects of chronic stress and high-fat diet on metabolic and nutritional parameters in Wistar rats.
Bruder-Nascimento, Thiago; Campos, Dijon Henrique Salomé; Alves, Carlos; Thomaz, Samuel; Cicogna, Antônio Carlos; Cordellini, Sandra
2013-11-01
The aim of this study was assess the role of chronic stress on the metabolic and nutritional profile of rats exposed to a high-fat diet. Thirty-day-old male Wistar rats (70-100 g) were distributed into four groups: normal-diet (NC), chronic stress (St), high-fat diet (HD), and chronic stress/high-fat diet (HD/St). Stress consisted at immobilization during 15 weeks, 5 times per week, 1h per day; and exposure to the high-fat diet lasted 15 weeks. Nutritional and metabolic parameters were assessed. The level of significance was 5%. The HD group had final body weight, total fat, as well as insulin and leptin increased, and they were insulin resistant. The St and HD/St had arterial hypertension and increased levels of corticosterone. Stress blocked the effects of the high-fat diet. Chronic stress prevented the appearance of obesity. Our results help to clarify the mechanisms involved in metabolic and nutritional dysfunction, and contribute to clinical cases linked to stress and high-fat diet.
Chronic stress and coping among cardiac surgeons: a single center study
Spiliopoulos, Kyriakos; Gansera, Laura; Weiland, Hans Christian; Schuster, Tibor; Eichinger, Walter; Gansera, Brigitte
2014-01-01
Introduction Cardiac surgeons stress may impair their quality of life and professional practice. Objective To assess perceived chronic stress and coping strategies among cardiac surgeons. Methods Twenty-two cardiac surgeons answered two self-assessment questionnaires, the Trier Inventory for Chronic Stress and the German SGV for coping strategies. Results Participants mean age was 40±14.1 years and 13 were male; eight were senior physicians and 14 were residents. Mean values for the Trier Inventory for Chronic Stress were within the normal range. Unexperienced physicians had significantly higher levels of dissatisfaction at work, lack of social recognition, and isolation (P<0.05). Coping strategies such as play down, distraction from situation, and substitutional satisfaction were also significantly more frequent among unexperienced surgeons. "Negative" stress-coping strategies occur more often in experienced than in younger colleagues (P=0.029). Female surgeons felt more exposed to overwork (P=0.04) and social stress (P=0.03). Conclusion Cardiac surgeons show a tendency to high perception of chronic stress phenomena and vulnerability for negative coping strategies. PMID:25372902
[Unpredictable chronic mild stress effects on antidepressants activities in forced swim test].
Kudryashov, N V; Kalinina, T S; Voronina, T A
2015-02-01
The experiments has been designed to study unpredictable chronic mild stress effect on anti-depressive activities of amitriptyline (10 mg/kg) and fluoxetine (20 mg/kg) in forced swim test in male outbred mice. It is shown that acute treatment with fluoxetine does not produce any antidepressant effects in mice following stress of 14 days while the sub-chronic injections of fluoxetine result in more deep depressive-like behavior. In 28 daily stressed mice, antidepressant effect of fluoxetine is observed independently of the injection rates. Amitriptyline demonstrates the antidepressant activity regardless of the duration of stress or administration scheduling, but at the same time the severity of anti-immobilization effect of amitriptyline in stressed mice is weaker in compare to non-stressed trails. Thus, the injection rates and duration of unpredictable mild chronic stress are the parameters that determine the efficiency of antidepressants in the mouse forced swimming test.
Self-Affirmation Improves Problem-Solving under Stress
Creswell, J. David; Dutcher, Janine M.; Klein, William M. P.; Harris, Peter R.; Levine, John M.
2013-01-01
High levels of acute and chronic stress are known to impair problem-solving and creativity on a broad range of tasks. Despite this evidence, we know little about protective factors for mitigating the deleterious effects of stress on problem-solving. Building on previous research showing that self-affirmation can buffer stress, we tested whether an experimental manipulation of self-affirmation improves problem-solving performance in chronically stressed participants. Eighty undergraduates indicated their perceived chronic stress over the previous month and were randomly assigned to either a self-affirmation or control condition. They then completed 30 difficult remote associate problem-solving items under time pressure in front of an evaluator. Results showed that self-affirmation improved problem-solving performance in underperforming chronically stressed individuals. This research suggests a novel means for boosting problem-solving under stress and may have important implications for understanding how self-affirmation boosts academic achievement in school settings. PMID:23658751
Self-affirmation improves problem-solving under stress.
Creswell, J David; Dutcher, Janine M; Klein, William M P; Harris, Peter R; Levine, John M
2013-01-01
High levels of acute and chronic stress are known to impair problem-solving and creativity on a broad range of tasks. Despite this evidence, we know little about protective factors for mitigating the deleterious effects of stress on problem-solving. Building on previous research showing that self-affirmation can buffer stress, we tested whether an experimental manipulation of self-affirmation improves problem-solving performance in chronically stressed participants. Eighty undergraduates indicated their perceived chronic stress over the previous month and were randomly assigned to either a self-affirmation or control condition. They then completed 30 difficult remote associate problem-solving items under time pressure in front of an evaluator. Results showed that self-affirmation improved problem-solving performance in underperforming chronically stressed individuals. This research suggests a novel means for boosting problem-solving under stress and may have important implications for understanding how self-affirmation boosts academic achievement in school settings.
Schmeltzer, Sarah N; Vollmer, Lauren L; Rush, Jennifer E; Weinert, Mychal; Dolgas, Charles M; Sah, Renu
2015-01-01
Chronicity of trauma exposure plays an important role in the pathophysiology of posttraumatic stress disorder (PTSD). Thus, exposure to multiple traumas on a chronic scale leads to worse outcomes than acute events. The rationale for the current study was to investigate the effects of a single adverse event versus the same event on a background of chronic stress. We hypothesized that a history of chronic stress would lead to worse behavioral outcomes than a single event alone. Male rats (n = 14/group) were exposed to either a single traumatic event in the form of electric foot shocks (acute shock, AS), or to footshocks on a background of chronic stress (chronic variable stress-shock, CVS-S). PTSD-relevant behaviors (fear memory and acoustic startle responses) were measured following 7 d recovery. In line with our hypothesis, CVS-S elicited significant increases in fear acquisition and conditioning versus the AS group. Unexpectedly, CVS-S elicited reduced startle reactivity to an acoustic stimulus in comparison with the AS group. Significant increase in FosB/ΔFosB-like immunostaining was observed in the dentate gyrus, basolateral amygdala and medial prefrontal cortex of CVS-S rats. Assessments of neuropeptide Y (NPY), a stress-regulatory transmitter associated with chronic PTSD, revealed selective reduction in the hippocampus of CVS-S rats. Collectively, our data show that cumulative stress potentiates delayed fear memory and impacts defensive responding. Altered neuronal activation in forebrain limbic regions and reduced NPY may contribute to these phenomena. Our preclinical studies support clinical findings reporting worse PTSD outcomes stemming from cumulative traumatization in contrast to acute trauma.
Popliteal Artery Entrapment or Chronic Exertional Compartment Syndrome?
Gaunder, Christopher; Rivera, Jessica
2017-01-01
Diagnosis of lower limb pain in an athlete can be a challenging task due to the variety of potential etiologies and ambiguity of presenting symptoms. Five of the most commonly encountered causes of limb pain in athletes are chronic exertional compartment syndrome (CECS), medial tibial stress syndrome (MTSS), tibial stress fractures, soleal sling syndrome, and popliteal artery entrapment syndrome (PAES). Of these, the least frequent but potentially most serious of the pathologies is PAES. With an incidence of less than 1% seen in living subject studies, the condition is rare. However, a missed diagnosis will likely lead to progression of the disease and potential for unnecessary invasive procedures (McAree et al. 2008). In this paper, we present a young athlete misdiagnosed and treated for chronic exertional compartment syndrome. In both descriptive and a quick-reference table format, we review current literature and discuss how best to distinguish functional PAES from other causes of activity-related leg pain. PMID:28890727
Harder, Laura H; Chen, Shuo; Baker, Dewleen G; Chow, Bruce; McFall, Miles; Saxon, Andrew; Smith, Mark W
2011-12-01
Smoking and PTSD are predictors of poor physical health status. This study examined the unique contribution of PTSD symptoms in the prediction of the SF-36 physical health status subscales accounting for cigarette smoking, chronic medical conditions, alcohol and drug use disorders, and depression. This study examined baseline interview and self-report data from a national tobacco cessation randomized, controlled trial (Veterans Affairs Cooperative Study 519) that enrolled tobacco-dependent veterans with chronic PTSD (N = 943). A series of blockwise multiple regression analyses indicated that PTSD numbing and hyperarousal symptom clusters explained a significant proportion of the variance across all physical health domains except for the Physical Functioning subscale, which measures impairments in specific physical activities. Our findings further explain the impact of PTSD on health status by exploring the way PTSD symptom clusters predict self-perceptions of health, role limitations, pain, and vitality.
Martin, Vincent; Allaïli, Najib; Euvrard, Marine; Marday, Tevrasamy; Riffaud, Armance; Franc, Bernard; Mocaër, Elisabeth; Gabriel, Cecilia; Fossati, Philippe; Lehericy, Stéphane; Lanfumey, Laurence
2017-01-01
Chronic stress is known to induce not only anxiety and depressive-like phenotypes in mice but also cognitive impairments, for which the action of classical antidepressant compounds remains unsatisfactory. In this context, we investigated the effects of chronic social defeat stress (CSDS) on anxiety-, social- and cognitive-related behaviors, as well as hippocampal Bdnf, synaptic plasticity markers (PSD-95, Synaptophysin, Spinophilin, Synapsin I and MAP-2), and epigenetic modifying enzymes (MYST2, HDAC2, HDAC6, MLL3, KDM5B, DNMT3B, GADD45B) gene expression in C57BL/6J mice. CSDS for 10 days provoked long-lasting anxious-like phenotype in the open field and episodic memory deficits in the novel object recognition test. While total Bdnf mRNA level was unchanged, Bdnf exon IV, MAP-2, HDAC2, HDAC6 and MLL3 gene expression was significantly decreased in the CSDS mouse hippocampus. In CSDS mice treated 3 weeks with 50 mg/kg/d agomelatine, an antidepressant with melatonergic receptor agonist and 5-HT2C receptor antagonist properties, the anxious-like phenotype was not reversed, but the treatment successfully prevented the cognitive impairments and hippocampal gene expression modifications. Altogether, these data evidenced that, in mice, agomelatine was effective in alleviating stress-induced altered cognitive functions, possibly through a mechanism involving BDNF signaling, synaptic plasticity and epigenetic remodeling. PMID:28374847
Childhood Maltreatment and Its Effect on Neurocognitive Functioning: Timing and Chronicity Matter
Cowell, Raquel A.; Cicchetti, Dante; Rogosch, Fred A.; Toth, Sheree L.
2015-01-01
Childhood maltreatment represents a complex stressor, with the developmental timing, duration, frequency, and type of maltreatment varying with each child (Barnett, Manly, & Cicchetti, 1993; Cicchetti & Manly, 2001). Multiple brain regions and neural circuits are disrupted by the experience of child maltreatment (Cicchetti & Toth, in press; DeBellis et al., 2002; McCrory & Viding, 2010; Teicher, Anderson, & Polcari, 2012). These neurobiological compromises indicate the impairment of a number of important cognitive functions, including working memory and inhibitory control. The present study extends prior research by examining the effect of childhood maltreatment on neurocognitive functioning based on developmental timing of maltreatment, including onset, chronicity, and recency, in a sample of 3- to 9-year-old nonmaltreated (n = 136) and maltreated children (n = 223). Maltreated children performed more poorly on inhibitory control and working memory tasks than nonmaltreated children. Group differences between maltreated children based on the timing of maltreatment and the chronicity of maltreatment also were evident. Specifically, children who were maltreated during infancy, and children with a chronic history of maltreatment, exhibited significantly poorer inhibitory control and working memory performance than children without a history of maltreatment. The results suggest that maltreatment occurring during infancy, a period of major brain organization, disrupts normative structure and function, and these deficits are further instantiated by the prolonged stress of chronic maltreatment during the early years of life. PMID:25997769
Socioeconomic status and stress in Mexican–American women: a multi-method perspective
Shivpuri, Smriti; Gonzalez, Patricia; Fortmann, Addie L.; de los Monteros, Karla Espinosa; Roesch, Scott C.; Talavera, Gregory A.; Matthews, Karen A.
2014-01-01
Stress is a hypothesized pathway in socioeconomic status (SES)-physical health associations, but the available empirical data are inconsistent. In part, this may reflect discrepancies in the approach to measuring stress across studies, and differences in the nature of SES-stress associations across demographic groups. We examined associations of SES (education, income) with general and domain-specific chronic stressors, stressful life events, perceived stress, and stressful daily experiences in 318 Mexican–American women (40–65 years old). Women with higher SES reported lower perceived stress and fewer low-control experiences in everyday life (ps < .05), but greater chronic stress (education only, p < .05). Domain-specific analyses showed negative associations of income with chronic housing and financial stress (ps < .05), but positive associations of SES with chronic work and care-giving stress (all ps < .05 except for income and caregiving stress, p < .10). Sensitivity analyses showed that most SES-stress associations were consistent across acculturation levels. Future research should adopt a multi-dimensional assessment approach to better understand links among SES, stress, and physical health, and should consider the sociodemographic context in conceptualizing the role of stress in SES-related health inequalities. PMID:22644814
Miele, Emily M; Headley, Samuel A E
2017-09-12
Aerobic exercise training is a component of diabetes mellitus (DM) care guidelines due to its favorable effects on glycemic control and cardiovascular disease (CVD) risk factors. The purpose of this review is to outline the recent evidence regarding the clinical effects of chronic aerobic exercise on CVD risk factors in persons with DM and to compare the effects of varying intensities and types of exercise. Among individuals with DM, all types of aerobic exercise training can impact positively on some traditional and non-traditional risk factors for CVD. Training programs with a higher volume or intensity induce greater improvements in vascular function, cardiorespiratory fitness (CRF), and lipid profiles. The beneficial outcomes of aerobic training include improvements in glycemic control, endothelial function, oxidative stress, dyslipidemia, myocardial function, adiposity, and CRF. Findings regarding markers of inflammation are discrepant and further research should focus on the role of exercise to impact upon the chronic inflammation associated with DM.
Work-related stress and posttraumatic stress in emergency medical services.
Donnelly, Elizabeth
2012-01-01
Recent research efforts in emergency medical services (EMS) has identified variability in the ability of EMS personnel to recognize their level of stress-related impairment. Developing a better understanding of how workplace stress may affect EMS personnel is a key step in the process of increasing awareness of the impact of work-related stress and stress-related impairment. This paper demonstrates that for those in EMS, exposure to several types of workplace stressors is linked to stress reactions. Stress reactions such as posttraumatic stress symptomatology (PTSS) have the potential to negatively influence the health of EMS providers. This research demonstrates that two different types of work-related stress and alcohol use influence the development of PTSS. A probability sample of nationally registered emergency medical technician (EMT)-Basics and EMT-Paramedics (n = 1,633) completed an Internet-based survey. Respondents reported their levels of operational and organizational types of chronic stress, critical incident stress, alcohol use, and PTSS. Ordinary least squares regression illustrated that when demographic factors were controlled, organizational and operational forms of chronic stress, critical incident stress, and alcohol use were all significant predictors of PTSS (p < 0.01). Inclusion of an interaction effect between operational stress and critical incident stress (p < 0.01) as well as between operational stress and alcohol use (p < 0.01) created a robust final model with an R(2) of 0.343. These findings indicate that exposure to both chronic and critical incident stressors increases the risk of EMS providers' developing a posttraumatic stress reaction. Higher levels of chronic stress, critical incident stress, and alcohol use significantly related to an increased level of PTSS. Further, for those reporting high levels of alcohol use or critical incident stress, interactions with high levels of chronic operational stress were associated with higher rates of PTSS. For those interested in the impact of work-related stress in EMS, these findings indicate that attention must be paid to levels of stress associated with both critical incident exposure as well as the chronic stress providers experience on a day-to-day basis.
Curcumin, inflammation, and chronic diseases: how are they linked?
He, Yan; Yue, Yuan; Zheng, Xi; Zhang, Kun; Chen, Shaohua; Du, Zhiyun
2015-05-20
It is extensively verified that continued oxidative stress and oxidative damage may lead to chronic inflammation, which in turn can mediate most chronic diseases including cancer, diabetes, cardiovascular, neurological, inflammatory bowel disease and pulmonary diseases. Curcumin, a yellow coloring agent extracted from turmeric, shows strong anti-oxidative and anti-inflammatory activities when used as a remedy for the prevention and treatment of chronic diseases. How oxidative stress activates inflammatory pathways leading to the progression of chronic diseases is the focus of this review. Thus, research to date suggests that chronic inflammation, oxidative stress, and most chronic diseases are closely linked, and the antioxidant properties of curcumin can play a key role in the prevention and treatment of chronic inflammation diseases.
Dhabhar, Firdaus S
2018-03-26
Our group has proposed that in contrast to chronic stress that can have harmful effects, the short-term (fight-or-flight) stress response (lasting for minutes to hours) is nature's fundamental survival mechanism that enhances protection and performance under conditions involving threat/challenge/opportunity. Short-term stress enhances innate/primary, adaptive/secondary, vaccine-induced, and anti-tumor immune responses, and post-surgical recovery. Mechanisms and mediators include stress hormones, dendritic cell, neutrophil, macrophage, and lymphocyte trafficking/function and local/systemic chemokine and cytokine production. Short-term stress may also enhance mental/cognitive and physical performance through effects on brain, musculo-skeletal, and cardiovascular function, reappraisal of threat/anxiety, and training-induced stress-optimization. Therefore, short-term stress psychology/physiology could be harnessed to enhance immuno-protection, as well as mental and physical performance. This review aims to provide a conceptual framework and targets for further investigation of mechanisms and conditions under which the protective/adaptive aspects of short-term stress/exercise can be optimized/harnessed, and for developing pharmacological/biobehavioral interventions to enhance health/healing, and mental/cognitive/physical performance. Copyright © 2018 Elsevier Inc. All rights reserved.
Cho, Jae Ho; Lee, Doo Hyung; Song, Hyung Keun; Bang, Joon Young; Lee, Kyung Tai; Park, Young Uk
2016-04-01
Clinicians frequently diagnose chronic ankle instability using the manual anterior drawer test and stress radiography. However, both examinations can yield incorrect results and do not reveal the extent of ankle instability. Stress ultrasound has been reported to be a new diagnostic tool for the diagnosis of chronic ankle instability. The purpose of this study was to assess the diagnostic value of stress ultrasound for chronic ankle instability compared to the manual anterior drawer test, stress radiography, magnetic resonance imaging (MRI), and arthroscopy. Twenty-eight consecutive patients who underwent ankle arthroscopy and subsequent modified Broström repair for treatment of chronic ankle instability were included. The arthroscopic findings were used as the reference standard. A standardized physical examination (manual anterior drawer test), stress radiography, MRI, and stress ultrasound were performed to assess the anterior talofibular ligament (ATFL) prior to operation. Ultrasound images were taken in the resting position and the maximal anterior drawer position. Grade 3 lateral instability was verified arthroscopically in all 28 cases with a clinical diagnosis (100%). Twenty-two cases showed grade III instability on the manual anterior drawer test (78.6%). Twenty-four cases displayed anterior translation exceeding 5 mm on stress radiography (86%), and talar tilt angle exceeded 15° in three cases (11 %). Nineteen cases displayed a partial chronic tear (change in thickness or signal intensity), and nine cases displayed complete tear on MRI (100%). Lax and wavy ATFL was evident on stress ultrasound in all cases (100 %). The mean value of the ATFL length was 2.8 ± 0.3 cm for the stressed condition and 2.1 ± 0.2 cm for the resting condition (p < 0.001). Stress ultrasound may be useful for the diagnosis of chronic ankle instability in addition to the manual anterior drawer test and stress radiography. III.
Simic, Iva; Mitic, Milos; Djordjevic, Jelena; Radojcic, Marija; Adzic, Miroslav
2012-05-01
Chronic psychosocial isolation (CPSI) is known to cause several maladaptive changes in the limbic brain structures, which regulate the hypothalamic-pituitary-adrenal (HPA) axis activity. In this study, we focused our investigation on CPSI effects in the hypothalamus (HT) since it is a major driver of HPA axis activity. We also investigated whether the exposure to CPSI could alter the response to subsequent acute stress (30-min immobilization). In the HT, we followed cytosolic and nuclear levels of the glucocorticoid receptor (GR), as a mediator of HPA axis feedback inhibition, and its chaperones, the heat shock proteins (HSPs), hsp70 and hsp90. The CPSI did not cause any changes in either GR or HSPs levels. However, we observed increase of the GR and hsp70 in both HT cellular compartments as a response of naïve rats to acute stress, whereas the response of CPSI rats to acute stress was associated with elevation of the GR in the cytosol and decrease of HSPs in the nucleus. Thus, our data indicated reduced availability of HSPs to GR in both cytosol and nucleus of the HT under acute stress of CPSI animals, and therefore, pointed out to potentially negative effects of CPSI on GR function in the HT.
Monoamine oxidases (MAO) in the pathogenesis of heart failure and ischemia/reperfusion injury.
Kaludercic, Nina; Carpi, Andrea; Menabò, Roberta; Di Lisa, Fabio; Paolocci, Nazareno
2011-07-01
Recent evidence highlights monoamine oxidases (MAO) as another prominent source of oxidative stress. MAO are a class of enzymes located in the outer mitochondrial membrane, deputed to the oxidative breakdown of key neurotransmitters such as norepinephrine, epinephrine and dopamine, and in the process generate H(2)O(2). All these monoamines are endowed with potent modulatory effects on myocardial function. Thus, when the heart is subjected to chronic neuro-hormonal and/or peripheral hemodynamic stress, the abundance of circulating/tissue monoamines can make MAO-derived H(2)O(2) production particularly prominent. This is the case of acute cardiac damage due to ischemia/reperfusion injury or, on a more chronic stand, of the transition from compensated hypertrophy to overt ventricular dilation/pump failure. Here, we will first briefly discuss mitochondrial status and contribution to acute and chronic cardiac disorders. We will illustrate possible mechanisms by which MAO activity affects cardiac biology and function, along with a discussion as to their role as a prominent source of reactive oxygen species. Finally, we will speculate on why MAO inhibition might have a therapeutic value for treating cardiac affections of ischemic and non-ischemic origin. This article is part of a Special Issue entitled: Mitochondria and Cardioprotection. Copyright © 2010 Elsevier B.V. All rights reserved.
The role of stress on close relationships and marital satisfaction.
Randall, Ashley K; Bodenmann, Guy
2009-03-01
Stress is a concept that has received increased attention in marital research during the last decade, showing that it plays an important role in understanding the quality and stability of close relationships. Evidence suggests that stress is a threat to marital satisfaction and its longevity. Research has been based upon theoretical models of stress in close relationships, specifically family stress models [e.g., Hill, R. (1958). Generic features of families under stress. Social Casework, 39, 139-150.; McCubbin, H. I., & Patterson, J. M. (1983). Family transitions: Adaptation to stress. In H. I. McCubbin & C. R. Figley (Eds.), Stress and the family: Coping with normative transitions (Vol. 2, pp. 5-25). New York: Brunner/Mazel] and couple's stress model's proposed by Karney, Story, and Bradbury [Karney, B. R., Story, L. B., & Bradbury, T. N. (2005). Marriages in context: Interactions between chronic an acute stress among newlyweds. In T. A. Revenson, K. Kayser, & G. Bodenmann (Eds.), Couples coping with stress: Emerging perspectives on dyadic coping (pp.13-32). American Psychological Association: Washington, D.C.] and Bodenmann [Bodenmann, G. (1995). A systemic-transactional conceptualization of stress and coping in couples. Swiss Journal of Psychology, 54, 34-49.; Bodenmann, G. (2005). Dyadic coping and its significant for marital functioning. In T. Revenson, K. Kayser, & G. Bodenmann (Eds.), Couples coping with stress: Emerging perspectives on dyadic coping (pp.33-50). American Psychological Association: Washington, D.C.]. In this review we: (1) examine the various theoretical models of stress, (2) analyze and summarize the typologies relating to stress models (internal versus external, major versus minor, acute versus chronic), and (3) summarize findings from stress research in couples that has practical significance and may inspire clinical work. Future directions in research and clincial significance are suggested.
Stress and Sleep Duration Predict Headache Severity in Chronic Headache Sufferers
Houle, Timothy T.; Butschek, Ross A.; Turner, Dana P.; Smitherman, Todd A.; Rains, Jeanetta C.; Penzien, Donald B.
2013-01-01
The objective of this study was to evaluate the time-series relationships between stress, sleep duration, and headache pain among patients with chronic headaches. Sleep and stress have long been recognized as potential triggers of episodic headache (< 15 headache days/month), though prospective evidence is inconsistent and absent in patients diagnosed with chronic headaches (≥ 15 days/month). We reanalyzed data from a 28-day observational study of chronic migraine (n = 33) and chronic tension-type headache (n = 22) sufferers. Patients completed the Daily Stress Inventory and recorded headache and sleep variables using a daily sleep/headache diary. Stress ratings, duration of previous nights' sleep, and headache severity were modeled using a series of linear mixed models with random effects to account for individual differences in observed associations. Models were displayed using contour plots. Two consecutive days of either high stress or low sleep were strongly predictive of headache, whereas two days of low stress or adequate sleep were protective. When patterns of stress or sleep were divergent across days, headache risk was increased only when the earlier day was characterized by high stress or poor sleep. As predicted, headache activity in the combined model was highest when high stress and low sleep occurred concurrently during the prior 2 days denoting an additive effect. Future research is needed to expand on current findings among chronic headache patients and to develop individualized models that account for multiple simultaneous influences of headache trigger factors. PMID:23073072
Hu, Wen; Zhang, Mingyue; Czéh, Boldizsár; Zhang, Weiqi; Flügge, Gabriele
2011-07-15
Chronic stress, a risk factor for the development of psychiatric disorders, is known to induce alterations in neuronal networks in many brain areas. Previous studies have shown that chronic stress changes the expression of the cannabinoid receptor 1 (CB1) in the brains of adult rats, but neurophysiological consequences of these changes remained unclear. Here we demonstrate that chronic restraint stress causes a dysfunction in CB1 mediated modulation of GABAergic transmission in the hippocampus. Using an established protocol, adult male Sprague Dawley rats were daily restrained for 21 days and whole-cell voltage clamp was performed at CA1 pyramidal neurons. When recording carbachol-evoked inhibitory postsynaptic currents (IPSCs) which presumably originate from CB1 expressing cholecystokinin (CCK) interneurons, we found that depolarization-induced suppression of inhibition (DSI) was impaired by the stress. DSI is a form of short-term plasticity at GABAergic synapses that is known to be CB1 mediated and has been suggested to be involved in hippocampal information encoding. Chronic stress attenuated the depolarization-induced suppression of the frequency of carbachol-evoked IPSCs. Incubation with a CB1 receptor antagonist prevented this DSI effect in control but not in chronically stressed animals. The stress-induced impairment of CB1-mediated short-term plasticity at GABAergic synapses may underlie cognitive deficits which are commonly observed in animal models of stress as well as in patients with stress-related psychiatric disorders. Copyright © 2011 Elsevier Inc. All rights reserved.
The habenula as a critical node in chronic stress-related anxiety.
Jacinto, Luis R; Mata, Rui; Novais, Ashley; Marques, Fernanda; Sousa, Nuno
2017-03-01
The habenula is activated in response to stressful and aversive events, resulting in exploratory inhibition. Although possible mechanisms for habenula activation have been proposed, the effects of chronic stress on the habenular structure have never been studied. Herein, we assessed changes in volume, cell density and dendritic structure of habenular cells after chronic stress exposure using stereological and 3D morphological analysis. This study shows for the first time that there is a hemispherical asymmetry in the medial habenula (MHb) of the adult rat, with the right MHb containing more neurons than its left counterpart. Additionally, it shows that chronic stress induces a bilateral atrophy of both the MHb and the lateral habenula (LHb). This atrophy was accompanied by a reduction of the number of neurons in the right MHb and the number of glial cells in the bilateral LHb, but not by changes in the dendritic arbors of multipolar neurons. Importantly, these structural changes were correlated with elevated levels of serum corticosterone and increased anxious-like behavior in stressed animals. To further assess the role of the habenula in stress-related anxiety, bilateral lesions of the LHb were performed; interestingly, in lesioned animals the chronic stress protocol did not trigger increases in circulating corticosterone or anxious-like behavior. This study highlights the role of the habenula in the stress responses and how its sub-regions are structurally impacted by chronic stress with physiological and behavioral consequences. Copyright © 2016. Published by Elsevier Inc.
Yoshimoto, Sazu; Babygirija, Reji; Dobner, Anthony; Ludwig, Kirk; Takahashi, Toku
2012-05-01
Disorders of colonic motility may contribute to symptoms in patients with irritable bowel syndrome (IBS), and stress is widely believed to play a major role in developing IBS. Stress increases corticotropin releasing factor (CRF) of the hypothalamus, resulting in acceleration of colonic transit in rodents. In contrast, hypothalamic oxytocin (OXT) has an anti-stress effect via inhibiting CRF expression and hypothalamic-pituitary-adrenal axis activity. Although transcutaneous electrical nerve stimulation (TENS) and acupuncture have been shown to have anti-stress effects, the mechanism of the beneficial effects remains unknown. We tested the hypothesis that TENS upregulates hypothalamic OXT expression resulting in reduced CRF expression and restoration of colonic dysmotility in response to chronic stress. Male SD rats received different types of stressors for seven consecutive days (chronic heterotypic stress). TENS was applied to the bilateral hind limbs every other day before stress loading. Another group of rats did not receive TENS treatment. TENS significantly attenuated accelerated colonic transit induced by chronic heterotypic stress, which was antagonized by a central injection of an OXT antagonist. Immunohistochemical study showed that TENS increased OXT expression and decreased CRF expression at the paraventricular nucleus (PVN) following chronic heterotypic stress. It is suggested that TENS upregulates hypothalamic OXT expression which acts as an anti-stressor agent and mediates restored colonic dysmotility following chronic stress. TENS may be useful to treat gastrointestinal symptoms associated with stress.
Sun, Rao; Zhang, Zuoxia; Lei, Yishan; Liu, Yue; Lu, Cui'e; Rong, Hui; Sun, Yu'e; Zhang, Wei; Ma, Zhengliang; Gu, Xiaoping
2016-01-01
The high comorbidity rates of posttraumatic stress disorder and chronic pain have been widely reported, but the underlying mechanisms remain unclear. Emerging evidence suggested that an excess of inflammatory immune activities in the hippocampus involved in the progression of both posttraumatic stress disorder and chronic pain. Considering that microglia are substrates underlying the initiation and propagation of the neuroimmune response, we hypothesized that stress-induced activation of hippocampal microglia may contribute to the pathogenesis of posttraumatic stress disorder-pain comorbidity. We showed that rats exposed to single prolonged stress, an established posttraumatic stress disorder model, exhibited persistent mechanical allodynia and anxiety-like behavior, which were accompanied by increased activation of microglia and secretion of pro-inflammatory cytokines in the hippocampus. Correlation analyses showed that hippocampal activation of microglia was significantly correlated with mechanical allodynia and anxiety-like behavior. Our data also showed that both intraperitoneal and intra-hippocampal injection of minocycline suppressed single prolonged stress-induced microglia activation and inflammatory cytokines accumulation in the hippocampus, and attenuated both single prolonged stress-induced mechanical allodynia and anxiety-like behavior. Taken together, the present study suggests that stress-induced microglia activation in the hippocampus may serve as a critical mechanistic link in the comorbid relationship between posttraumatic stress disorder and chronic pain. The novel concept introduces the possibility of cotreating chronic pain and posttraumatic stress disorder. © The Author(s) 2016.
Kleeff, Jorg; Whitcomb, David C; Shimosegawa, Tooru; Esposito, Irene; Lerch, Markus M; Gress, Thomas; Mayerle, Julia; Drewes, Asbjørn Mohr; Rebours, Vinciane; Akisik, Fatih; Muñoz, J Enrique Domínguez; Neoptolemos, John P
2017-09-07
Chronic pancreatitis is defined as a pathological fibro-inflammatory syndrome of the pancreas in individuals with genetic, environmental and/or other risk factors who develop persistent pathological responses to parenchymal injury or stress. Potential causes can include toxic factors (such as alcohol or smoking), metabolic abnormalities, idiopathic mechanisms, genetics, autoimmune responses and obstructive mechanisms. The pathophysiology of chronic pancreatitis is fairly complex and includes acinar cell injury, acinar stress responses, duct dysfunction, persistent or altered inflammation, and/or neuro-immune crosstalk, but these mechanisms are not completely understood. Chronic pancreatitis is characterized by ongoing inflammation of the pancreas that results in progressive loss of the endocrine and exocrine compartment owing to atrophy and/or replacement with fibrotic tissue. Functional consequences include recurrent or constant abdominal pain, diabetes mellitus (endocrine insufficiency) and maldigestion (exocrine insufficiency). Diagnosing early-stage chronic pancreatitis is challenging as changes are subtle, ill-defined and overlap those of other disorders. Later stages are characterized by variable fibrosis and calcification of the pancreatic parenchyma; dilatation, distortion and stricturing of the pancreatic ducts; pseudocysts; intrapancreatic bile duct stricturing; narrowing of the duodenum; and superior mesenteric, portal and/or splenic vein thrombosis. Treatment options comprise medical, radiological, endoscopic and surgical interventions, but evidence-based approaches are limited. This Primer highlights the major progress that has been made in understanding the pathophysiology, presentation, prevalence and management of chronic pancreatitis and its complications.
Hayashi, Teruo
2015-04-01
Psychiatrists empirically recognize that excessive or chronic psychological stress can result in long-lasting impairments of brain functions that partly involve neuronal cell damage. Recent studies begin to elucidate the molecular pathways activated/inhibited by psychological stress. Activation of the hypothalamic-pituitary-adrenal axis under psychological stress causes inflammatory oxidative stresses in the brain, in part due to elevation of cytokines. Psychological stress or neuropathological conditions (e.g., accumulation of β-amyloids) trigger 'cellular stress responses', which promote upregulation of molecular chaperones to protect macromolecules from degradation. The unfolded protein response, the endoplasmic reticulum (ER)-specific cellular stress response, has been recently implicated in the pathophysiology of neuropsychiatric disorders and the pharmacology of certain clinically used drugs. The sigma-1 receptor is an ER protein whose ligands are shown to exert antidepressant-like and neuroprotective actions. Recent studies found that the sigma-1 receptor is a novel ligand-operated ER chaperone that regulates bioenergetics, free radical generation, oxidative stress, unfolded protein response and cytokine signaling. The sigma-1 receptor also regulates morphogenesis of neuronal cells, such as neurite outgrowth, synaptogenesis, and myelination, which can be perturbed by cellular stress. The sigma-1 receptor may thus contribute to a cellular defense system that protects nervous systems against chronic psychological stress. Findings from sigma receptor research imply that not only cell surface monoamine effectors but also intracellular molecules, especially those at the ER, may provide novel therapeutic targets for future drug developments. © 2014 The Author. Psychiatry and Clinical Neurosciences © 2014 Japanese Society of Psychiatry and Neurology.
Biava, Pier M; Norbiato, Guido
2015-01-01
As the modern society is troubled by multi-factorial diseases, research has been conducted on complex realities including chronic inflammation, cancer, obesity, HIV infection, metabolic syndrome and its detrimental cardiovascular complications as well as depression and other brain disorders. Deterioration of crucial homeostatic mechanisms in such diseases invariably results in activation of inflammatory mediators, chronic inflammation, loss in immunological function, increased susceptibility to diseases, alteration of metabolism, decrease of energy production and neuro-cognitive decline. Regulation of genes expression by epigenetic code is the dominant mechanism for the transduction of environmental inputs, such as stress and inflammation to lasting physiological changes. Acute and chronic stress determines DNA methylation and histone modifications in brain regions which may contribute to neuro-degenerative disorders. Nuclear glucocorticoids receptor interacts with the epigenoma resulting in a cortisol resistance status associated with a deterioration of the metabolic and immune functions. Gonadal steroids receptors have a similar capacity to produce epigenomic reorganization of chromatine structure. Epigenomic-induced reduction in immune cells telomeres length has been observed in many degenerative diseases, including all types of cancer. The final result of these epigenetic alterations is a serious damage to the neuro-endocrine-immune-metabolic adaptive systems. In this study, we propose a treatment with stem cells differentiation stage factors taken from zebrafish embryos which are able to regulate the genes expression of normal and pathological stem cells in a different specific way.
Financial stress response profiles and psychosocial functioning in low-income parents.
Perzow, Sarah E D; Bray, Bethany C; Wadsworth, Martha E
2018-06-01
Parenting in the context of poverty is accompanied by heightened stress and heightened stakes. How parents respond to poverty-related stress has important implications for family functioning, but research investigating individual differences in low-income mothers' and fathers' responses to financial stress and their associations with parents' concurrent psychosocial adaptation is lacking. A better understanding of differences in stress responses among low-income parents is required to develop and tailor prevention programs that meet these families' needs. This study applies latent profile analysis (LPA) to identify and describe profiles of financial stress responses (problem solving, emotion regulation, emotion expression, cognitive restructuring, positive thinking, acceptance, distraction, denial, avoidance, wishful thinking, rumination, intrusive thoughts, emotional arousal, physiologic arousal, impulsive action, emotional numbing, cognitive interference, escape, and inaction) and examines associations between profile membership and psychosocial functioning in low-income parents. Five profiles were identified that were distinguished by self-reported voluntary and involuntary financial stress responses: active (32% of sample), low (11%), high (11%), negative cognitive (NC; 17%), and average (29%) responders. Notable differences emerged on measures of life stress, economic hardship, psychopathology, and social support, with individuals in the NC responders profile reporting the most difficulty and members of the active responders profile reporting the greatest adaptation. These findings offer a more nuanced understanding of how mothers and fathers respond to chronic poverty-related stress and have valuable implications for intervention efforts to promote adaptive stress responses and psychosocial functioning in low-income families. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Nevalainen, Netta; Lähdesmäki, Raija; Mäki, Pirjo; Ek, Ellen; Taanila, Anja; Pesonen, Paula; Sipilä, Kirsi
2017-05-01
The aim was to study the association between stress level and chronic facial pain, while controlling for the effect of depression on this association, during a three-year follow-up in a general population-based birth cohort. In the general population-based Northern Finland 1966 Birth Cohort, information about stress level, depression and facial pain were collected using questionnaires at the age of 31 years. Stress level was measured using the Work Ability Index. Depression was assessed using the 13-item depression subscale in the Hopkins Symptom Checklist-25. Three years later, a subsample of 52 subjects (42 women) with chronic facial pain and 52 pain-free controls (42 women) was formed. Of the subjects having high stress level at baseline, 73.3% had chronic facial pain, and 26.7% were pain-free three years later. The univariate logistic regression analysis showed that high stress level at 31 years increased the risk for chronic facial pain (crude OR 6.1, 95%, CI 1.3-28.7) three years later. When including depression in a multivariate model, depression associated statistically significantly with chronic facial pain (adjusted OR 2.5, 95%, CI 1.0-5.8), whereas stress level did not (adjusted OR 2.3, 95%, CI 0.6-8.4). High stress level is connected with increased risk for chronic facial pain. This association seems to mediate through depression.
Lattin, Christine R; Romero, L Michael
2014-07-15
The physiological stress response results in release of glucocorticoid hormones such as corticosterone (CORT). Whereas short-term activation of this response helps animals cope with environmental stressors, chronic activation can result in negative effects including metabolic dysregulation and reproductive failure. However, there is no consensus hormonal profile of a chronically stressed animal, suggesting that researchers may need to look beyond hormone titers to interpret the impacts of chronic stress. In this study, we brought wild house sparrows (Passer domesticus) into captivity. We then compared glucocorticoid and mineralocorticoid receptor concentrations in sparrows exposed either to a standardized chronic stress protocol (n=26) or to standard husbandry conditions (controls; n=20). We used radioligand binding assays to quantify receptors in whole brain, liver, kidneys, spleen, gonads, gastrocnemius and pectoralis muscle, omental and subcutaneous fat, and bib and back skin. In most tissues, CORT receptors did not differ between controls and stressed animals, although we found marginal increases in receptor density in kidney and testes in stressed birds at some time points. Only in pectoralis muscle was there a robust effect of chronic stress, with both receptor types higher in stressed animals. Increased pectoralis sensitivity to CORT with chronic stress may be part of the underlying mechanism for muscle wasting in animals administered exogenous CORT. Furthermore, the change in pectoralis was not paralleled by gastrocnemius receptors. This difference may help explain previous reports of a greater effect of CORT on pectoralis than on other muscle types, and indicate that birds use this muscle as a protein reserve. © 2014. Published by The Company of Biologists Ltd.
Stress activates pronociceptive endogenous opioid signalling in DRG neurons during chronic colitis.
Guerrero-Alba, Raquel; Valdez-Morales, Eduardo E; Jimenez-Vargas, Nestor N; Lopez-Lopez, Cintya; Jaramillo-Polanco, Josue; Okamoto, Takanobu; Nasser, Yasmin; Bunnett, Nigel W; Lomax, Alan E; Vanner, Stephen J
2017-12-01
Psychological stress accompanies chronic inflammatory diseases such as IBD, and stress hormones can exacerbate pain signalling. In contrast, the endogenous opioid system has an important analgesic action during chronic inflammation. This study examined the interaction of these pathways. Mouse nociceptive dorsal root ganglia (DRG) neurons were incubated with supernatants from segments of inflamed colon collected from patients with chronic UC and mice with dextran sodium sulfate (cDSS)-induced chronic colitis. Stress effects were studied by adding stress hormones (epinephrine and corticosterone) to dissociated neurons or by exposing cDSS mice to water avoidance stress. Changes in excitability of colonic DRG nociceptors were measured using patch clamp and Ca 2+ imaging techniques. Supernatants from patients with chronic UC and from colons of mice with chronic colitis caused a naloxone-sensitive inhibition of neuronal excitability and capsaicin-evoked Ca 2+ responses. Stress hormones decreased signalling induced by human and mouse supernatants. This effect resulted from stress hormones signalling directly to DRG neurons and indirectly through signalling to the immune system, leading to decreased opioid levels and increased acute inflammation. The net effect of stress was a change endogenous opioid signalling in DRG neurons from an inhibitory to an excitatory effect. This switch was associated with a change in G protein-coupled receptor excitatory signalling to a pathway sensitive to inhibitors of protein kinase A-protein, phospholipase C-protein and G protein βϒ subunits. Stress hormones block the inhibitory actions of endogenous opioids and can change the effect of opioid signalling in DRG neurons to excitation. Targeting these pathways may prevent heavy opioid use in IBD. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Rabellino, Daniela; Densmore, Maria; Harricharan, Sherain; Jean, Théberge; McKinnon, Margaret C; Lanius, Ruth A
2018-03-01
The bed nucleus of the stria terminals (BNST) is a subcortical structure involved in anticipatory and sustained reactivity to threat and is thus essential to the understanding of anxiety and stress responses. Although chronic stress and anxiety represent a hallmark of post-traumatic stress disorder (PTSD), to date, few studies have examined the functional connectivity of the BNST in PTSD. Here, we used resting state functional Magnetic Resonance Imaging (fMRI) to investigate the functional connectivity of the BNST in PTSD (n = 70), its dissociative subtype (PTSD + DS) (n = 41), and healthy controls (n = 50). In comparison to controls, PTSD showed increased functional connectivity of the BNST with regions of the reward system (ventral and dorsal striatum), possibly underlying stress-induced reward-seeking behaviors in PTSD. By contrast, comparing PTSD + DS to controls, we observed increased functional connectivity of the BNST with the claustrum, a brain region implicated in consciousness and a primary site of kappa-opioid receptors, which are critical to the dynorphin-mediated dysphoric stress response. Moreover, PTSD + DS showed increased functional connectivity of the BNST with brain regions involved in attention and salience detection (anterior insula and caudate nucleus) as compared to PTSD and controls. Finally, BNST functional connectivity positively correlated with default-mode network regions as a function of state identity dissociation, suggesting a role of BNST networks in the disruption of self-relevant processing characterizing the dissociative subtype. These findings represent an important first step in elucidating the role of the BNST in aberrant functional networks underlying PTSD and its dissociative subtype. © 2017 Wiley Periodicals, Inc.
Various aspects of the energy metabolism of an estuarine mysid (Mysidopsis bahia) were examined for different life stages during a life-cycle exposure to the organophosphate pesticide fenthion. Dose-response relationships were developed for several metabolic rate functions (oxyge...
ERIC Educational Resources Information Center
Janusis, Grace M.; Weyandt, Lisa L.
2010-01-01
Objective: The present study investigated potential differences between college students with and without disabilities (including ADHD, Asperger's syndrome, executive functioning disorder, and learning, mental health, vision, hearing, and physical/chronic disabilities) regarding self-reported substance use and misuse, perceived stress, and…
How Motherhood and Poverty Change the Brain
ERIC Educational Resources Information Center
Kim, Pilyoung; Bianco, Hannah
2014-01-01
Poverty-associated chronic stress is a serious threat not only to a mother's mental health but also to maternal functioning. Recent neuroimaging studies suggest that a mother's brain undergoes dynamic changes to support her transition to parenthood, including better emotion regulation and heightened sensitivity to infants. However, we propose that…
Stress-induced structural remodeling in hippocampus: Prevention by lithium treatment
NASA Astrophysics Data System (ADS)
Wood, Gwendolyn E.; Young, L. Trevor; Reagan, Lawrence P.; Chen, Biao; McEwen, Bruce S.
2004-03-01
Chronic restraint stress, psychosocial stress, as well as systemic or oral administration of the stress-hormone corticosterone induces a morphological reorganization in the rat hippocampus, in which adrenal steroids and excitatory amino acids mediate a reversible remodeling of apical dendrites on CA3 pyramidal cell neurons of the hippocampus. This stress-induced neuronal remodeling is accompanied also by behavioral changes, some of which can be prevented with selective antidepressant and anticonvulsive drug treatments. Lithium is an effective treatment for mood disorders and has neuroprotective effects, which may contribute to its therapeutic properties. Thus, we wanted to determine whether lithium treatment could prevent the effects of chronic stress on CA3 pyramidal cell neuroarchitecture and the associated molecular and behavioral measures. Chronic lithium treatment prevented the stress-induced decrease in dendritic length, as well as the stress-induced increase in glial glutamate transporter 1 (GLT-1) mRNA expression and the phosphorylation of cAMP-response element binding in the hippocampus. Lithium treatment, however, did not prevent stress effects on behavior in the open field or the plus-maze. These data demonstrate that chronic treatment with lithium can protect the hippocampus from potentially deleterious effects of chronic stress on glutamatergic activation, which may be relevant to its therapeutic efficacy in the treatment of major depressive disorder and bipolar disorder.