Sample records for function fr infinity

  1. 76 FR 34123 - Culturally Significant Objects Imported for Exhibition Determinations: “Lee Ufan: Marking Infinity”

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-10

    ... DEPARTMENT OF STATE [Public Notice 7501] Culturally Significant Objects Imported for Exhibition Determinations: ``Lee Ufan: Marking Infinity'' SUMMARY: Notice is hereby given of the following determinations... the exhibition ``Lee Ufan: Marking Infinity,'' imported from abroad for temporary exhibition within...

  2. Mixed H(2)/H(sub infinity): Control with output feedback compensators using parameter optimization

    NASA Technical Reports Server (NTRS)

    Schoemig, Ewald; Ly, Uy-Loi

    1992-01-01

    Among the many possible norm-based optimization methods, the concept of H-infinity optimal control has gained enormous attention in the past few years. Here the H-infinity framework, based on the Small Gain Theorem and the Youla Parameterization, effectively treats system uncertainties in the control law synthesis. A design approach involving a mixed H(sub 2)/H-infinity norm strives to combine the advantages of both methods. This advantage motivates researchers toward finding solutions to the mixed H(sub 2)/H-infinity control problem. The approach developed in this research is based on a finite time cost functional that depicts an H-infinity bound control problem in a H(sub 2)-optimization setting. The goal is to define a time-domain cost function that optimizes the H(sub 2)-norm of a system with an H-infinity-constraint function.

  3. Mixed H2/H(infinity)-Control with an output-feedback compensator using parameter optimization

    NASA Technical Reports Server (NTRS)

    Schoemig, Ewald; Ly, Uy-Loi

    1992-01-01

    Among the many possible norm-based optimization methods, the concept of H-infinity optimal control has gained enormous attention in the past few years. Here the H-infinity framework, based on the Small Gain Theorem and the Youla Parameterization, effectively treats system uncertainties in the control law synthesis. A design approach involving a mixed H(sub 2)/H-infinity norm strives to combine the advantages of both methods. This advantage motivates researchers toward finding solutions to the mixed H(sub 2)/H-infinity control problem. The approach developed in this research is based on a finite time cost functional that depicts an H-infinity bound control problem in a H(sub 2)-optimization setting. The goal is to define a time-domain cost function that optimizes the H(sub 2)-norm of a system with an H-infinity-constraint function.

  4. Oscillation of two-dimensional linear second-order differential systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwong, M.K.; Kaper, H.G.

    This article is concerned with the oscillatory behavior at infinity of the solution y: (a, infinity) ..-->.. R/sup 2/ of a system of two second-order differential equations, y''(t) + Q(t) y(t) = 0, t epsilon(a, infinity); Q is a continuous matrix-valued function on (a, infinity) whose values are real symmetric matrices of order 2. It is shown that the solution is oscillatory at infinity if the largest eigenvalue of the matrix integral/sub a//sup t/ Q(s) ds tends to infinity as t ..-->.. infinity. This proves a conjecture of D. Hinton and R.T. Lewis for the two-dimensional case. Furthermore, it ismore » shown that considerably weaker forms of the condition still suffice for oscillatory behavior at infinity. 7 references.« less

  5. Characterization of Hadamard vector classes in terms of least deviations of their elements from vectors of finite degree

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radzievski, G V

    2001-12-31

    Let A be a linear operator with domain D(A) in a complex Banach space X. An element g element of D{sub {infinity}}(A):=intersection{sub j=1}{sup {infinity}}D(A{sup j}) is called a vector of degree at most {xi} (>0) relative to A if ||A{sup j}g||{<=}c(g){xi}{sup j}, j=0,1,.... The set of vectors of degree at most {xi} is denoted by G{sub {xi}}(A) and the least deviation of an element f of X from the set G{sub {xi}}(A) is denoted by E{sub {xi}}(f,A). For a fixed sequence of positive numbers ({psi}{sub j}){sub j=1}{sup {infinity}} consider a function {gamma}({xi}):=min{sub j=1,2,...}({xi}{psi}{sub j}){sup 1/j}. Conditions for the sequence ({psi}{submore » j}){sub j=1}{sup {infinity}} and the operator A are found that ensure the equality lim sup{sub j{yields}}{sub {infinity}}((||A{sup j}f||)/({psi}{sub j})){sup 1/j} = lim sup{sub {xi}}{sub {yields}}{sub {infinity}}{xi}/({gamma}(E{sub {xi}}(f,A){sup -1})) for f element of D{sub {infinity}}(A). If the quantity on the left-hand side of this formula is finite, then f belongs to the Hadamard class determined by the operator A and the sequence {l_brace}{psi}{sub j}{r_brace}{sub j=1}{sup {infinity}}. One consequence of the above formula is an expression in terms of E{sub {xi}}(f,A) for the radius of holomorphy of the vector-valued function F(zA)f, where f element of D{sub {infinity}}(A), and F(z):={sigma}{sub j=1}{sup {infinity}}z{sup j}/{psi}{sub j} is an entire function.« less

  6. Robust control of systems with real parameter uncertainty and unmodelled dynamics

    NASA Technical Reports Server (NTRS)

    Chang, Bor-Chin; Fischl, Robert

    1991-01-01

    During this research period we have made significant progress in the four proposed areas: (1) design of robust controllers via H infinity optimization; (2) design of robust controllers via mixed H2/H infinity optimization; (3) M-delta structure and robust stability analysis for structured uncertainties; and (4) a study on controllability and observability of perturbed plant. It is well known now that the two-Riccati-equation solution to the H infinity control problem can be used to characterize all possible stabilizing optimal or suboptimal H infinity controllers if the optimal H infinity norm or gamma, an upper bound of a suboptimal H infinity norm, is given. In this research, we discovered some useful properties of these H infinity Riccati solutions. Among them, the most prominent one is that the spectral radius of the product of these two Riccati solutions is a continuous, nonincreasing, convex function of gamma in the domain of interest. Based on these properties, quadratically convergent algorithms are developed to compute the optimal H infinity norm. We also set up a detailed procedure for applying the H infinity theory to robust control systems design. The desire to design controllers with H infinity robustness but H(exp 2) performance has recently resulted in mixed H(exp 2) and H infinity control problem formulation. The mixed H(exp 2)/H infinity problem have drawn the attention of many investigators. However, solution is only available for special cases of this problem. We formulated a relatively realistic control problem with H(exp 2) performance index and H infinity robustness constraint into a more general mixed H(exp 2)/H infinity problem. No optimal solution yet is available for this more general mixed H(exp 2)/H infinity problem. Although the optimal solution for this mixed H(exp 2)/H infinity control has not yet been found, we proposed a design approach which can be used through proper choice of the available design parameters to influence both robustness and performance. For a large class of linear time-invariant systems with real parametric perturbations, the coefficient vector of the characteristic polynomial is a multilinear function of the real parameter vector. Based on this multilinear mapping relationship together with the recent developments for polytopic polynomials and parameter domain partition technique, we proposed an iterative algorithm for coupling the real structured singular value.

  7. An analytic formula for H-infinity norm sensitivity with applications to control system design

    NASA Technical Reports Server (NTRS)

    Giesy, Daniel P.; Lim, Kyong B.

    1992-01-01

    An analytic formula for the sensitivity of singular value peak variation with respect to parameter variation is derived. As a corollary, the derivative of the H-infinity norm of a stable transfer function with respect to a parameter is presented. It depends on some of the first two derivatives of the transfer function with respect to frequency and the parameter. For cases when the transfer function has a linear system realization whose matrices depend on the parameter, analytic formulas for these first two derivatives are derived, and an efficient algorithm for calculating them is discussed. Examples are given which provide numerical verification of the H-infinity norm sensitivity formula and which demonstrate its utility in designing control systems satisfying H-infinity norm constraints. In the appendix, derivative formulas for singular values are paraphrased.

  8. Calculus Limits Involving Infinity: The Role of Students' Informal Dynamic Reasoning

    ERIC Educational Resources Information Center

    Jones, Steven R.

    2015-01-01

    Few studies on calculus limits have centred their focus on student understanding of limits at infinity or infinite limits that involve continuous functions (as opposed to discrete sequences). This study examines student understanding of these types of limits using both pure mathematics and applied-science functions and formulas. Seven calculus…

  9. On a cost functional for H2/H(infinity) minimization

    NASA Technical Reports Server (NTRS)

    Macmartin, Douglas G.; Hall, Steven R.; Mustafa, Denis

    1990-01-01

    A cost functional is proposed and investigated which is motivated by minimizing the energy in a structure using only collocated feedback. Defined for an H(infinity)-norm bounded system, this cost functional also overbounds the H2 cost. Some properties of this cost functional are given, and preliminary results on the procedure for minimizing it are presented. The frequency domain cost functional is shown to have a time domain representation in terms of a Stackelberg non-zero sum differential game.

  10. A new approach to mixed H2/H infinity controller synthesis using gradient-based parameter optimization methods

    NASA Technical Reports Server (NTRS)

    Ly, Uy-Loi; Schoemig, Ewald

    1993-01-01

    In the past few years, the mixed H(sub 2)/H-infinity control problem has been the object of much research interest since it allows the incorporation of robust stability into the LQG framework. The general mixed H(sub 2)/H-infinity design problem has yet to be solved analytically. Numerous schemes have considered upper bounds for the H(sub 2)-performance criterion and/or imposed restrictive constraints on the class of systems under investigation. Furthermore, many modern control applications rely on dynamic models obtained from finite-element analysis and thus involve high-order plant models. Hence the capability to design low-order (fixed-order) controllers is of great importance. In this research a new design method was developed that optimizes the exact H(sub 2)-norm of a certain subsystem subject to robust stability in terms of H-infinity constraints and a minimal number of system assumptions. The derived algorithm is based on a differentiable scalar time-domain penalty function to represent the H-infinity constraints in the overall optimization. The scheme is capable of handling multiple plant conditions and hence multiple performance criteria and H-infinity constraints and incorporates additional constraints such as fixed-order and/or fixed structure controllers. The defined penalty function is applicable to any constraint that is expressible in form of a real symmetric matrix-inequity.

  11. Infinity: The Twilight Zone of Mathematics.

    ERIC Educational Resources Information Center

    Love, William P.

    1989-01-01

    The theorems and proofs presented are designed to enhance student understanding of the theory of infinity as developed by Cantor and others. Three transfinite numbers are defined to express the cardinality of infinite algebraic sets, infinite sets of geometric points and infinite sets of functions. (DC)

  12. A H-infinity Fault Detection and Diagnosis Scheme for Discrete Nonlinear System Using Output Probability Density Estimation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Yumin; Lum, Kai-Yew; Wang Qingguo

    In this paper, a H-infinity fault detection and diagnosis (FDD) scheme for a class of discrete nonlinear system fault using output probability density estimation is presented. Unlike classical FDD problems, the measured output of the system is viewed as a stochastic process and its square root probability density function (PDF) is modeled with B-spline functions, which leads to a deterministic space-time dynamic model including nonlinearities, uncertainties. A weighting mean value is given as an integral function of the square root PDF along space direction, which leads a function only about time and can be used to construct residual signal. Thus,more » the classical nonlinear filter approach can be used to detect and diagnose the fault in system. A feasible detection criterion is obtained at first, and a new H-infinity adaptive fault diagnosis algorithm is further investigated to estimate the fault. Simulation example is given to demonstrate the effectiveness of the proposed approaches.« less

  13. A H-infinity Fault Detection and Diagnosis Scheme for Discrete Nonlinear System Using Output Probability Density Estimation

    NASA Astrophysics Data System (ADS)

    Zhang, Yumin; Wang, Qing-Guo; Lum, Kai-Yew

    2009-03-01

    In this paper, a H-infinity fault detection and diagnosis (FDD) scheme for a class of discrete nonlinear system fault using output probability density estimation is presented. Unlike classical FDD problems, the measured output of the system is viewed as a stochastic process and its square root probability density function (PDF) is modeled with B-spline functions, which leads to a deterministic space-time dynamic model including nonlinearities, uncertainties. A weighting mean value is given as an integral function of the square root PDF along space direction, which leads a function only about time and can be used to construct residual signal. Thus, the classical nonlinear filter approach can be used to detect and diagnose the fault in system. A feasible detection criterion is obtained at first, and a new H-infinity adaptive fault diagnosis algorithm is further investigated to estimate the fault. Simulation example is given to demonstrate the effectiveness of the proposed approaches.

  14. Exponential H(infinity) synchronization of general discrete-time chaotic neural networks with or without time delays.

    PubMed

    Qi, Donglian; Liu, Meiqin; Qiu, Meikang; Zhang, Senlin

    2010-08-01

    This brief studies exponential H(infinity) synchronization of a class of general discrete-time chaotic neural networks with external disturbance. On the basis of the drive-response concept and H(infinity) control theory, and using Lyapunov-Krasovskii (or Lyapunov) functional, state feedback controllers are established to not only guarantee exponential stable synchronization between two general chaotic neural networks with or without time delays, but also reduce the effect of external disturbance on the synchronization error to a minimal H(infinity) norm constraint. The proposed controllers can be obtained by solving the convex optimization problems represented by linear matrix inequalities. Most discrete-time chaotic systems with or without time delays, such as Hopfield neural networks, cellular neural networks, bidirectional associative memory networks, recurrent multilayer perceptrons, Cohen-Grossberg neural networks, Chua's circuits, etc., can be transformed into this general chaotic neural network to be H(infinity) synchronization controller designed in a unified way. Finally, some illustrated examples with their simulations have been utilized to demonstrate the effectiveness of the proposed methods.

  15. Mixed problems for the Korteweg-de Vries equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faminskii, A V

    1999-06-30

    Results are established concerning the non-local solubility and wellposedness in various function spaces of the mixed problem for the Korteweg-de Vries equation u{sub t}+u{sub xxx}+au{sub x}+uu{sub x}=f(t,x) in the half-strip (0,T)x(-{infinity},0). Some a priori estimates of the solutions are obtained using a special solution J(t,x) of the linearized KdV equation of boundary potential type. Properties of J are studied which differ essentially as x{yields}+{infinity} or x{yields}-{infinity}. Application of this boundary potential enables us in particular to prove the existence of generalized solutions with non-regular boundary values.

  16. Binary black hole spacetimes with a helical Killing vector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klein, Christian

    Binary black hole spacetimes with a helical Killing vector, which are discussed as an approximation for the early stage of a binary system, are studied in a projection formalism. In this setting the four-dimensional Einstein equations are equivalent to a three-dimensional gravitational theory with a SL(2,R)/SO(1,1) sigma model as the material source. The sigma model is determined by a complex Ernst equation. 2+1 decompositions of the three-metric are used to establish the field equations on the orbit space of the Killing vector. The two Killing horizons of spherical topology which characterize the black holes, the cylinder of light where themore » Killing vector changes from timelike to spacelike, and infinity are singular points of the equations. The horizon and the light cylinder are shown to be regular singularities, i.e., the metric functions can be expanded in a formal power series in the vicinity. The behavior of the metric at spatial infinity is studied in terms of formal series solutions to the linearized Einstein equations. It is shown that the spacetime is not asymptotically flat in the strong sense to have a smooth null infinity under the assumption that the metric tends asymptotically to the Minkowski metric. In this case the metric functions have an oscillatory behavior in the radial coordinate in a nonaxisymmetric setting, the asymptotic multipoles are not defined. The asymptotic behavior of the Weyl tensor near infinity shows that there is no smooth null infinity.« less

  17. An exact algebraic solution of the infimum in H-infinity optimization with output feedback

    NASA Technical Reports Server (NTRS)

    Chen, Ben M.; Saberi, Ali; Ly, Uy-Loi

    1991-01-01

    This paper presents a simple and noniterative procedure for the computation of the exact value of the infimum in the standard H-infinity-optimal control with output feedback. The problem formulation is general and does not place any restrictions on the direct feedthrough terms between the control input and the controlled output variables, and between the disturbance input and the measurement output variables. The method is applicable to systems that satisfy (1) the transfer function from the control input to the controlled output is right-invertible and has no invariant zeros on the j(w) axis and, (2) the transfer function from the disturbance to the measurement output is left-invertible and has no invariant zeros on the j(w) axis. A set of necessary and sufficient conditions for the solvability of H-infinity-almost disturbance decoupling problem via measurement feedback with internal stability is also given.

  18. Noniterative computation of infimum in H(infinity) optimisation for plants with invariant zeros on the j(omega)-axis

    NASA Technical Reports Server (NTRS)

    Chen, B. M.; Saber, A.

    1993-01-01

    A simple and noniterative procedure for the computation of the exact value of the infimum in the singular H(infinity)-optimization problem is presented, as a continuation of our earlier work. Our problem formulation is general and we do not place any restrictions in the finite and infinite zero structures of the system, and the direct feedthrough terms between the control input and the controlled output variables and between the disturbance input and the measurement output variables. Our method is applicable to a class of singular H(infinity)-optimization problems for which the transfer functions from the control input to the controlled output and from the disturbance input to the measurement output satisfy certain geometric conditions. In particular, the paper extends the result of earlier work by allowing these two transfer functions to have invariant zeros on the j(omega) axis.

  19. Objective measurement of postocclusion surge during phacoemulsification in human eye-bank eyes.

    PubMed

    Georgescu, Dan; Payne, Marielle; Olson, Randall J

    2007-03-01

    To objectively compare the postocclusion vacuum surge among different phacoemulsification machines and devices. Experimental study. Infiniti, Legacy, Millennium, and Sovereign were tested in an eye-bank eye. All the machines were tested with 20-gauge non-ABS tips, 430 mm Hg vacuum pressure, 24 ml/minute aspiration rate, peristaltic pump, and 75 cm bottle height. In addition, Infiniti and Legacy were also tested with 20-gauge bypass tips (ABS), 125 cm bottle height, and 40 ml/minute flow rate. We also tested 19-gauge tips with Infiniti and Sovereign and the venturi pump for Millennium. Significant differences were found between all the machines tested with Millennium peristaltic generating the least and Millennium Venturi the most surge. ABS tips significantly decreased the surge for Legacy but not for Infiniti. Cruise Control (CC) had a significant effect on Sovereign but not on Millennium. Increasing the bottle height decreased surge while increasing the flow increased surge for both Infiniti and Legacy. The 19-gauge tips increased surge for both Infiniti and Sovereign. Surge varied over a range of 40 microm to more than 2 mm. ABS and CC decrease surge, especially when the machine is not functioning near the limits of surge prevention. Certain parameters, such as a 19-gauge tip and high flow, dramatically increased surge, whereas elevating the bottle ameliorates it. Understanding the impact of all these features will help in minimizing the problem.

  20. Infinities in Quantum Field Theory and in Classical Computing: Renormalization Program

    NASA Astrophysics Data System (ADS)

    Manin, Yuri I.

    Introduction. The main observable quantities in Quantum Field Theory, correlation functions, are expressed by the celebrated Feynman path integrals. A mathematical definition of them involving a measure and actual integration is still lacking. Instead, it is replaced by a series of ad hoc but highly efficient and suggestive heuristic formulas such as perturbation formalism. The latter interprets such an integral as a formal series of finite-dimensional but divergent integrals, indexed by Feynman graphs, the list of which is determined by the Lagrangian of the theory. Renormalization is a prescription that allows one to systematically "subtract infinities" from these divergent terms producing an asymptotic series for quantum correlation functions. On the other hand, graphs treated as "flowcharts", also form a combinatorial skeleton of the abstract computation theory. Partial recursive functions that according to Church's thesis exhaust the universe of (semi)computable maps are generally not everywhere defined due to potentially infinite searches and loops. In this paper I argue that such infinities can be addressed in the same way as Feynman divergences. More details can be found in [9,10].

  1. Perturbations of Jacobi polynomials and piecewise hypergeometric orthogonal systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neretin, Yu A

    2006-12-31

    A family of non-complete orthogonal systems of functions on the ray [0,{infinity}] depending on three real parameters {alpha}, {beta}, {theta} is constructed. The elements of this system are piecewise hypergeometric functions with singularity at x=1. For {theta}=0 these functions vanish on [1,{infinity}) and the system is reduced to the Jacobi polynomials P{sub n}{sup {alpha}}{sup ,{beta}} on the interval [0,1]. In the general case the functions constructed can be regarded as an interpretation of the expressions P{sub n+{theta}}{sup {alpha}}{sup ,{beta}}. They are eigenfunctions of an exotic Sturm-Liouville boundary-value problem for the hypergeometric differential operator. The spectral measure for this problem ismore » found.« less

  2. 78 FR 28018 - Petition for Exemption From the Vehicle Theft Prevention Standard; Nissan

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-13

    ... (ECM). Nissan will also install an audible and visible alarm system on the Infiniti QX60 as standard... and transmitted to the BCM. The ECM then requests the BCM to start the encrypted communication. If the encrypted code is correct, the BCM sends an ``OK-code'' and encrypted code to the ECM. If the code is not...

  3. D{sub {infinity}}-differential E{sub {infinity}}-algebras and spectral sequences of fibrations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lapin, Sergei V

    2007-10-31

    The notion of an E{sub {infinity}}-algebra with a filtration is introduced. The connections are established between E{sub {infinity}}-algebras with filtrations and the theory of D{sub {infinity}}-differential E{sub {infinity}}-algebras over fields. Based on the technique of D{sub {infinity}}-differential E{sub {infinity}}-algebras, the apparatus of spectral sequences is developed for E{sub {infinity}}-algebras with filtrations, and applications of this apparatus to the multiplicative cohomology spectral sequences of fibrations are given. Bibliography: 21 titles.

  4. Are All Infinities Created Equal?

    ERIC Educational Resources Information Center

    Paoletti, Teo J.

    2013-01-01

    Can one infinity be more than another infinity? Ask students this question, and many will be puzzled; others will insist that "infinity is infinity." The question seems to pique their interest and provides an opportunity to present the beautifully simple but counterintuitive proofs concerning the size of infinity first constructed by…

  5. Adaptive critic designs for discrete-time zero-sum games with application to H(infinity) control.

    PubMed

    Al-Tamimi, Asma; Abu-Khalaf, Murad; Lewis, Frank L

    2007-02-01

    In this correspondence, adaptive critic approximate dynamic programming designs are derived to solve the discrete-time zero-sum game in which the state and action spaces are continuous. This results in a forward-in-time reinforcement learning algorithm that converges to the Nash equilibrium of the corresponding zero-sum game. The results in this correspondence can be thought of as a way to solve the Riccati equation of the well-known discrete-time H(infinity) optimal control problem forward in time. Two schemes are presented, namely: 1) a heuristic dynamic programming and 2) a dual-heuristic dynamic programming, to solve for the value function and the costate of the game, respectively. An H(infinity) autopilot design for an F-16 aircraft is presented to illustrate the results.

  6. Passeport pour les deux infinis: an educational project in French

    NASA Astrophysics Data System (ADS)

    Arnaud, Nicolas; Descotes-Genon, Sébastien; Kerhoas-Cavata, Sophie; Paul, Jacques; Robert-Esil, Jean-Luc; Royole-Degieux, Perrine

    2016-04-01

    Passeport pour les deux infinis (;Passport for the two infinities;, in short Pass2i) is a French educational project aiming at promoting the physics of the infinitely small (particle physics) and of the infinitely big (cosmology & astrophysics) to high-school teachers and students. It is managed since 2009 by a small team of outreach experts (physicists and engineers) from the CNRS and the CEA. The Pass2i cornerstone is a reversible book - where each side explores one of the two infinities - and which is given for free to science high school teachers who request it, thanks to the support of French funding agencies. The Pass2i non-profit association wants to be a bridge between science and education: training sessions are organized for teachers, educational resources created and made available for download on the Pass2i website (http://www.passeport2i.fr).

  7. D{sub {infinity}}-differential A{sub {infinity}}-algebras and spectral sequences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lapin, S V

    2002-02-28

    In the present paper the construction of a D{sub {infinity}}-differential A{sub {infinity}}-(co)algebra is introduced and basic homotopy properties of this construction are studied. The connection between D{sub {infinity}}-differential A{sub {infinity}}-(co)algebras and spectral sequences is established, which enables us to construct the structure of an A{sub {infinity}} -coalgebra on the Milnor coalgebra directly from the differentials of the Adams spectral sequence.

  8. Reconstruction of ionic currents in a molluscan photoreceptor.

    PubMed Central

    Sakakibara, M.; Ikeno, H.; Usui, S.; Collin, C.; Alkon, D. L.

    1993-01-01

    Two-microelectrode voltage-clamp measurements were made to determine the kinetics and voltage dependence of ionic currents across the soma membrane of the Hermissenda type B photoreceptor. The voltage-dependent outward potassium currents, IA and ICa(2+)-K+, the inward voltage-dependent calcium current, ICa2+ and the light-induced current, IIgt, were then described with Hodgkin-Huxley-type equations. The fast-activating and inactivating potassium current, IA, was described by the equation; IA(t) = gA(max)(ma infinity[1-exp(-t/tau ma)])3 x (ha infinity [1-exp(-t/tau ha)] + exp(-t/tau ha)) (Vm-EK), where the parameters ma infinity, ha infinity, tau ma, and tau ha are functions of membrane potential, Vm, and ma infinity and ha infinity are steady-state activation and inactivation parameters. Similarly, the calcium-dependent outward potassium current, ICa(2+)-K+, was described by the equation, ICa(2+)-K+ (t) = gc(max)(mc infinity(VC)(1-exp[-t/tau mc (VC)]))pc (hc infinity(VC) [1-exp(-t/tau hc)] + exp(-t/tau hc(VC)])pc(VC-EK). In high external potassium, ICa(2+)-K+ could be measured in approximate isolation from other currents as a voltage-dependent inward tail current following a depolarizing command pulse from a holding potential of -60 mV. A voltage-dependent inward calcium current across the type B soma membrane, ICa2+, activated rapidly, showed little inactivation, and was described by the equation: ICa2+ = gCa(max) [1 + exp](-Vm-5)/7]-1 (Vm-ECa), where gCa(max) was 0.5 microS. The light-induced current with both fast and slow phases was described by: IIgt(t) = IIgt1 + IIgt2 + IIgt3, IIgti = gIgti [1-exp(- ton/tau mi)] exp(-ton/tau hi)(Vm-EIgti) (i = 1, 2). For i = 3, /Igt(t) = gigt3m33h3(Vm - Eigt3)exp(-ton/Ton) x exp(-tfoff/t Off). Based on these reconstructions of ionic currents, learning-induced enhancement of the long lasting depolarization (LLD) of the photoreceptor'slight response was shown to arise from progressive inactivation of /A, lca2+ -K+, and lCa2+. PMID:8369456

  9. On strong homogeneity of a class of global optimization algorithms working with infinite and infinitesimal scales

    NASA Astrophysics Data System (ADS)

    Sergeyev, Yaroslav D.; Kvasov, Dmitri E.; Mukhametzhanov, Marat S.

    2018-06-01

    The necessity to find the global optimum of multiextremal functions arises in many applied problems where finding local solutions is insufficient. One of the desirable properties of global optimization methods is strong homogeneity meaning that a method produces the same sequences of points where the objective function is evaluated independently both of multiplication of the function by a scaling constant and of adding a shifting constant. In this paper, several aspects of global optimization using strongly homogeneous methods are considered. First, it is shown that even if a method possesses this property theoretically, numerically very small and large scaling constants can lead to ill-conditioning of the scaled problem. Second, a new class of global optimization problems where the objective function can have not only finite but also infinite or infinitesimal Lipschitz constants is introduced. Third, the strong homogeneity of several Lipschitz global optimization algorithms is studied in the framework of the Infinity Computing paradigm allowing one to work numerically with a variety of infinities and infinitesimals. Fourth, it is proved that a class of efficient univariate methods enjoys this property for finite, infinite and infinitesimal scaling and shifting constants. Finally, it is shown that in certain cases the usage of numerical infinities and infinitesimals can avoid ill-conditioning produced by scaling. Numerical experiments illustrating theoretical results are described.

  10. Hyperboloidal evolution of test fields in three spatial dimensions

    NASA Astrophysics Data System (ADS)

    Zenginoǧlu, Anıl; Kidder, Lawrence E.

    2010-06-01

    We present the numerical implementation of a clean solution to the outer boundary and radiation extraction problems within the 3+1 formalism for hyperbolic partial differential equations on a given background. Our approach is based on compactification at null infinity in hyperboloidal scri fixing coordinates. We report numerical tests for the particular example of a scalar wave equation on Minkowski and Schwarzschild backgrounds. We address issues related to the implementation of the hyperboloidal approach for the Einstein equations, such as nonlinear source functions, matching, and evaluation of formally singular terms at null infinity.

  11. Long-time asymptotics of the Navier-Stokes and vorticity equations on R(3).

    PubMed

    Gallay, Thierry; Wayne, C Eugene

    2002-10-15

    We use the vorticity formulation to study the long-time behaviour of solutions to the Navier-Stokes equation on R(3). We assume that the initial vorticity is small and decays algebraically at infinity. After introducing self-similar variables, we compute the long-time asymptotics of the rescaled vorticity equation up to second order. Each term in the asymptotics is a self-similar divergence-free vector field with Gaussian decay at infinity, and the coefficients in the expansion can be determined by solving a finite system of ordinary differential equations. As a consequence of our results, we are able to characterize the set of solutions for which the velocity field satisfies ||u(.,t)||(L(2)) = o(t(-5/4)) as t-->+ infinity. In particular, we show that these solutions lie on a smooth invariant submanifold of codimension 11 in our function space.

  12. Minimal conditions for the existence of a Hawking-like flux

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barcelo, Carlos; Liberati, Stefano; Sonego, Sebastiano

    2011-02-15

    We investigate the minimal conditions that an asymptotically flat general relativistic spacetime must satisfy in order for a Hawking-like Planckian flux of particles to arrive at future null infinity. We demonstrate that there is no requirement that any sort of horizon form anywhere in the spacetime. We find that the irreducible core requirement is encoded in an approximately exponential 'peeling' relationship between affine coordinates on past and future null infinity. As long as a suitable adiabaticity condition holds, then a Planck-distributed Hawking-like flux will arrive at future null infinity with temperature determined by the e-folding properties of the outgoing nullmore » geodesics. The temperature of the Hawking-like flux can slowly evolve as a function of time. We also show that the notion of peeling of null geodesics is distinct from the usual notion of 'inaffinity' used in Hawking's definition of surface gravity.« less

  13. Angular Momentum Transport in Turbulent Flow between Independently Rotating Cylinders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paoletti, M. S.; Lathrop, D. P.; Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742

    2011-01-14

    We present measurements of the angular momentum flux (torque) in Taylor-Couette flow of water between independently rotating cylinders for all regions of the ({Omega}{sub 1}, {Omega}{sub 2}) parameter space at high Reynolds numbers, where {Omega}{sub 1} ({Omega}{sub 2}) is the inner (outer) cylinder angular velocity. We find that the Rossby number Ro=({Omega}{sub 1}-{Omega}{sub 2})/{Omega}{sub 2} fully determines the state and torque G as compared to G(Ro={infinity}){identical_to}G{sub {infinity}.} The ratio G/G{sub {infinity}} is a linear function of Ro{sup -1} in four sections of the parameter space. For flows with radially increasing angular momentum, our measured torques greatly exceed those of previousmore » experiments [Ji et al., Nature (London), 444, 343 (2006)], but agree with the analysis of Richard and Zahn [Astron. Astrophys. 347, 734 (1999)].« less

  14. Poisson-type inequalities for growth properties of positive superharmonic functions.

    PubMed

    Luan, Kuan; Vieira, John

    2017-01-01

    In this paper, we present new Poisson-type inequalities for Poisson integrals with continuous data on the boundary. The obtained inequalities are used to obtain growth properties at infinity of positive superharmonic functions in a smooth cone.

  15. Representations of S{sub {infinity}} admissible with respect to Young subgroups

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nessonov, Nikolai I

    2012-03-31

    Let N be the set of positive integers and S{sub {infinity}} the set of finite permutations of N. For a partition {Pi} of the set N into infinite parts A{sub 1},A{sub 2},... we denote by S{sub {Pi}} the subgroup of S{sub {infinity}} whose elements leave invariant each of the sets A{sub j}. We set S{sub {infinity}}{sup (N)}={l_brace}s element of S{sub {infinity}:} s(i)=i for any i=1,2,...,N{r_brace}. A factor representation T of the group S{sub {infinity}} is said to be {Pi}-admissible if for some N it contains a nontrivial identity subrepresentation of the subgroup S{sub {Pi}} intersection S{sub {infinity}}{sup (N)}. In themore » paper, we obtain a classification of the {Pi}-admissible factor representations of S{sub {infinity}}. Bibliography: 14 titles.« less

  16. Homotopy Algorithm for Fixed Order Mixed H2/H(infinity) Design

    NASA Technical Reports Server (NTRS)

    Whorton, Mark; Buschek, Harald; Calise, Anthony J.

    1996-01-01

    Recent developments in the field of robust multivariable control have merged the theories of H-infinity and H-2 control. This mixed H-2/H-infinity compensator formulation allows design for nominal performance by H-2 norm minimization while guaranteeing robust stability to unstructured uncertainties by constraining the H-infinity norm. A key difficulty associated with mixed H-2/H-infinity compensation is compensator synthesis. A homotopy algorithm is presented for synthesis of fixed order mixed H-2/H-infinity compensators. Numerical results are presented for a four disk flexible structure to evaluate the efficiency of the algorithm.

  17. Radiation effects in Caenorhabditis elegans - Mutagenesis by high and low LET ionizing radiation

    NASA Technical Reports Server (NTRS)

    Nelson, Gregory A.; Schubert, Wayne W.; Marshall, Tamara M.; Benton, Eric R.; Benton, Eugene V.

    1989-01-01

    The nematode C. elegans was used to measure the effectiveness of high-energy ionized particles in the induction of three types of genetic lesions. Recessive lethal mutations in a 40-map unit autosomal region, sterility, and X-chromosome nondisjunction or damage were investigated. Induction rates were measured as a function of linear energy transfer, LET(infinity), for nine ions of atomic nunmber 1-57 accelerated at the BEVALAC accelerator. Linear kinetics were observed for all three types of lesions within the dose/fluence ranges tested and were found to vary strongly as a function of particle LET(infinity). Relative biological effectiveness (RBE) values of up to 4.2 were measured, and action cross sections were calculated and compared to mutagenic responses in other systems.

  18. Wavelet-based scalable L-infinity-oriented compression.

    PubMed

    Alecu, Alin; Munteanu, Adrian; Cornelis, Jan P H; Schelkens, Peter

    2006-09-01

    Among the different classes of coding techniques proposed in literature, predictive schemes have proven their outstanding performance in near-lossless compression. However, these schemes are incapable of providing embedded L(infinity)-oriented compression, or, at most, provide a very limited number of potential L(infinity) bit-stream truncation points. We propose a new multidimensional wavelet-based L(infinity)-constrained scalable coding framework that generates a fully embedded L(infinity)-oriented bit stream and that retains the coding performance and all the scalability options of state-of-the-art L2-oriented wavelet codecs. Moreover, our codec instantiation of the proposed framework clearly outperforms JPEG2000 in L(infinity) coding sense.

  19. Representations of some quantum tori Lie subalgebras

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Jingjing; Wang, Song

    2013-03-15

    In this paper, we define the q-analog Virasoro-like Lie subalgebras in x{sub {infinity}}=a{sub {infinity}}(b{sub {infinity}}, c{sub {infinity}}, d{sub {infinity}}). The embedding formulas into x{sub {infinity}} are introduced. Irreducible highest weight representations of A(tilde sign){sub q}, B(tilde sign){sub q}, and C(tilde sign){sub q}-series of the q-analog Virasoro-like Lie algebras in terms of vertex operators are constructed. We also construct the polynomial representations of the A(tilde sign){sub q}, B(tilde sign){sub q}, C(tilde sign){sub q}, and D(tilde sign){sub q}-series of the q-analog Virasoro-like Lie algebras.

  20. The Conceptual Evolution of Actual Mathematical Infinity.

    ERIC Educational Resources Information Center

    Moreno A., Luis E.; Waldegg, Guillermina

    1991-01-01

    Analyzed are the different stages in the conceptual evolution of infinity as developed historically through the work of Bolzano and Cantor. Results of a study of 18 to 20 year old's concept of infinity prior to instruction produced aspects of the passage between conceptual levels of infinity. (MDH)

  1. Note on the eigensolution of a homogeneous equation with semi-infinite domain

    NASA Technical Reports Server (NTRS)

    Wadia, A. R.

    1980-01-01

    The 'variation-iteration' method using Green's functions to find the eigenvalues and the corresponding eigenfunctions of a homogeneous Fredholm integral equation is employed for the stability analysis of fluid hydromechanics problems with a semiinfinite (infinite) domain of application. The objective of the study is to develop a suitable numerical approach to the solution of such equations in order to better understand the full set of equations for 'real-world' flow models. The study involves a search for a suitable value of the length of the domain which is a fair finite approximation to infinity, which makes the eigensolution an approximation dependent on the length of the interval chosen. In the examples investigated y = 1 = a seems to be the best approximation of infinity; for y greater than unity this method fails due to the polynomial nature of Green's functions.

  2. Calcium current in isolated neonatal rat ventricular myocytes.

    PubMed Central

    Cohen, N M; Lederer, W J

    1987-01-01

    1. Calcium currents (ICa) from neonatal rat ventricular heart muscle cells grown in primary culture were examined using the 'whole-cell' voltage-clamp technique (Hamill, Marty, Neher, Sakmann & Sigworth, 1981). Examination of ICa was limited to one calcium channel type, 'L' type (Nilius, Hess, Lansman & Tsien, 1985), by appropriate voltage protocols. 2. We measured transient and steady-state components of ICa, and could generally describe ICa in terms of the steady-state activation (d infinity) and inactivation (f infinity) parameters. 3. We observed that the reduction of ICa by the calcium channel antagonist D600 can be explained by both a shift of d infinity to more positive potentials as well as a slight reduction of ICa conductance. D600 did not significantly alter either the rate of inactivation of ICa or the voltage dependence of f infinity. 4. The calcium channel modulator BAY K8644 shifted both d infinity and f infinity to more negative potentials. Additionally, BAY K8644 increased the rate of inactivation at potentials between +5 and +55 mV. Furthermore, BAY K8644 also increased ICa conductance, a change consistent with a promotion of 'mode 2' calcium channel activity (Hess, Lansman & Tsien, 1984). 5. We conclude that, as predicted by d infinity and f infinity, there is a significant steady-state component of ICa ('window current') at plateau potentials in neonatal rat heart cells. Modulation of the steady-state and transient components of ICa by various agents can be attributed both to specific alterations in d infinity and f infinity and to more complicated alterations in the mode of calcium channel activity. PMID:2451004

  3. Conceptualisations of infinity by primary pre-service teachers

    NASA Astrophysics Data System (ADS)

    Date-Huxtable, Elizabeth; Cavanagh, Michael; Coady, Carmel; Easey, Michael

    2018-05-01

    As part of the Opening Real Science: Authentic Mathematics and Science Education for Australia project, an online mathematics learning module embedding conceptual thinking about infinity in science-based contexts, was designed and trialled with a cohort of 22 pre-service teachers during 1 week of intensive study. This research addressed the question: "How do pre-service teachers conceptualise infinity mathematically?" Participants argued the existence of infinity in a summative reflective task, using mathematical and empirical arguments that were coded according to five themes: definition, examples, application, philosophy and teaching; and 17 codes. Participants' reflections were differentiated as to whether infinity was referred to as an abstract (A) or a real (R) concept or whether both (B) codes were used. Principal component analysis of the reflections, using frequency of codings, revealed that A and R codes occurred at different frequencies in three groups of reflections. Distinct methods of argument were associated with each group of reflections: mathematical numerical examples and empirical measurement comparisons characterised arguments for infinity as an abstract concept, geometric and empirical dynamic examples and belief statements characterised arguments for infinity as a real concept and empirical measurement and mathematical examples and belief statements characterised arguments for infinity as both an abstract and a real concept. An implication of the results is that connections between mathematical and empirical applications of infinity may assist pre-service teachers to contrast finite with infinite models of the world.

  4. BMS in cosmology

    NASA Astrophysics Data System (ADS)

    Kehagias, A.; Riotto, A.

    2016-05-01

    Symmetries play an interesting role in cosmology. They are useful in characterizing the cosmological perturbations generated during inflation and lead to consistency relations involving the soft limit of the statistical correlators of large-scale structure dark matter and galaxies overdensities. On the other hand, in observational cosmology the carriers of the information about these large-scale statistical distributions are light rays traveling on null geodesics. Motivated by this simple consideration, we study the structure of null infinity and the associated BMS symmetry in a cosmological setting. For decelerating Friedmann-Robertson-Walker backgrounds, for which future null infinity exists, we find that the BMS transformations which leaves the asymptotic metric invariant to leading order. Contrary to the asymptotic flat case, the BMS transformations in cosmology generate Goldstone modes corresponding to scalar, vector and tensor degrees of freedom which may exist at null infinity and perturb the asymptotic data. Therefore, BMS transformations generate physically inequivalent vacua as they populate the universe at null infinity with these physical degrees of freedom. We also discuss the gravitational memory effect when cosmological expansion is taken into account. In this case, there are extra contribution to the gravitational memory due to the tail of the retarded Green functions which are supported not only on the light-cone, but also in its interior. The gravitational memory effect can be understood also from an asymptotic point of view as a transition among cosmological BMS-related vacua.

  5. The evolution of hyperboloidal data with the dual foliation formalism: mathematical analysis and wave equation tests

    NASA Astrophysics Data System (ADS)

    Hilditch, David; Harms, Enno; Bugner, Marcus; Rüter, Hannes; Brügmann, Bernd

    2018-03-01

    A long-standing problem in numerical relativity is the satisfactory treatment of future null-infinity. We propose an approach for the evolution of hyperboloidal initial data in which the outer boundary of the computational domain is placed at infinity. The main idea is to apply the ‘dual foliation’ formalism in combination with hyperboloidal coordinates and the generalized harmonic gauge formulation. The strength of the present approach is that, following the ideas of Zenginoğlu, a hyperboloidal layer can be naturally attached to a central region using standard coordinates of numerical relativity applications. Employing a generalization of the standard hyperboloidal slices, developed by Calabrese et al, we find that all formally singular terms take a trivial limit as we head to null-infinity. A byproduct is a numerical approach for hyperboloidal evolution of nonlinear wave equations violating the null-condition. The height-function method, used often for fixed background spacetimes, is generalized in such a way that the slices can be dynamically ‘waggled’ to maintain the desired outgoing coordinate lightspeed precisely. This is achieved by dynamically solving the eikonal equation. As a first numerical test of the new approach we solve the 3D flat space scalar wave equation. The simulations, performed with the pseudospectral bamps code, show that outgoing waves are cleanly absorbed at null-infinity and that errors converge away rapidly as resolution is increased.

  6. BMS in cosmology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kehagias, A.; Riotto, A.; Center for Astroparticle Physics

    Symmetries play an interesting role in cosmology. They are useful in characterizing the cosmological perturbations generated during inflation and lead to consistency relations involving the soft limit of the statistical correlators of large-scale structure dark matter and galaxies overdensities. On the other hand, in observational cosmology the carriers of the information about these large-scale statistical distributions are light rays traveling on null geodesics. Motivated by this simple consideration, we study the structure of null infinity and the associated BMS symmetry in a cosmological setting. For decelerating Friedmann-Robertson-Walker backgrounds, for which future null infinity exists, we find that the BMS transformationsmore » which leaves the asymptotic metric invariant to leading order. Contrary to the asymptotic flat case, the BMS transformations in cosmology generate Goldstone modes corresponding to scalar, vector and tensor degrees of freedom which may exist at null infinity and perturb the asymptotic data. Therefore, BMS transformations generate physically inequivalent vacua as they populate the universe at null infinity with these physical degrees of freedom. We also discuss the gravitational memory effect when cosmological expansion is taken into account. In this case, there are extra contribution to the gravitational memory due to the tail of the retarded Green functions which are supported not only on the light-cone, but also in its interior. The gravitational memory effect can be understood also from an asymptotic point of view as a transition among cosmological BMS-related vacua.« less

  7. Novel needle guide reduces time to perform ultrasound-guided femoral nerve catheter placement: A randomised controlled trial.

    PubMed

    Turan, Alparslan; Babazade, Rovnat; Elsharkawy, Hesham; Esa, Wael Ali Sakr; Maheshwari, Kamal; Farag, Ehab; Zimmerman, Nicole M; Soliman, Loran Mounir; Sessler, Daniel I

    2017-03-01

    Ultrasound-guided nerve blocks have become the standard when performing regional nerve blocks in anaesthesia. Infiniti Plus (CIVCO Medical Solutions, Kalona, Iowa, USA) is a needle guide that has been recently developed to help clinicians in performing ultrasound-guided nerve blocks. We tested the hypothesis that femoral nerve catheter placement carried out with the Infiniti Plus needle guide will be quicker to perform than without the Infiniti Plus. Secondary aims were to assess whether the Infiniti Plus needle guide decreased the number of block attempts and also whether it improved needle visibility. A randomised, controlled trial. Cleveland Clinic, Cleveland, Ohio, USA. We enrolled adult patients having elective total knee arthroplasty with a femoral nerve block and femoral nerve catheter. Patients, who were pregnant or those who had preexisting neuropathy involving the surgical limb, coagulopathy, infection at the block site or allergy to local anaesthetics were excluded. Patients were randomised into two groups to receive the ultrasound-guided femoral nerve catheter placement with or without the Infiniti Plus needle guide. The time taken to place the femoral nerve catheter, the number of attempts, the success rate and needle visibility were recorded. We used an overall α of 0.05 for both the primary and secondary analyses; the secondary analyses were Bonferroni corrected to control for multiple comparisons. The median (interquartile range Q1 to Q3) time to perform the femoral nerve catheter placement was 118 (100 to 150) s with Infiniti Plus and 177 (130 to 236) s without Infiniti Plus. Infiniti Plus significantly reduced the time spent performing femoral nerve catheterisation, with estimated ratio of means [(95% confidence interval), P value] of 0.67 [(0.60 to 0.75), P < 0.001] with Infiniti Plus compared with no Infiniti Plus. However, Infiniti Plus had no effect on the odds of a successful femoral nerve catheter placement, number of attempts or percentage of perfect needle visibility. We found that the use of Infiniti Plus decreased the median time to successfully place a femoral nerve catheter by 33% compared with not using Infiniti Plus. This difference may be more apparent to clinicians undertaking this procedure less often or by those in training as our team was very experienced, had been trained in the technique and was working in a hospital with a large caseload. Clinicaltrials.gov identifier: NCT02080481.

  8. ACCRETION ONTO BLACK HOLES FROM LARGE SCALES REGULATED BY RADIATIVE FEEDBACK. II. GROWTH RATE AND DUTY CYCLE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Kwang Ho; Ricotti, Massimo, E-mail: kpark@astro.umd.edu, E-mail: ricotti@astro.umd.edu

    2012-03-01

    This paper, the second in a series on radiation-regulated accretion onto black holes (BHs) from galactic scales, focuses on the effects of radiation pressure and angular momentum of the accreting gas. We simulate accretion onto intermediate-mass black holes, but we derive general scaling relationships that are solutions of the Bondi problem with radiation feedback valid for any mass of the BH M{sub bh}. Thermal pressure of the ionized sphere around the BH regulates the accretion rate, producing periodic and short-lived luminosity bursts. We find that for ambient gas densities exceeding n{sup cr}{sub H,{infinity}}{proportional_to}M{sup -1}{sub bh}, the period of the oscillationsmore » decreases rapidly and the duty cycle increases from 6%, in agreement with observations of the fraction of active galactic nuclei at z {approx} 3, to 50%. The mean accretion rate becomes Eddington limited for n{sub H,{infinity}} > n{sup Edd}{sub H,{infinity}} {approx_equal} n{sup cr}{sub H,{infinity}} T{sub {infinity},4}{sup -1} where T{sub {infinity},4} is the gas temperature in units of 10{sup 4} K. In the sub-Eddington regime, the mean accretion rate onto BHs is about 1%T{sup 2.5}{sub {infinity},4} of the Bondi rate, and thus is proportional to the thermal pressure of the ambient medium. The period of the oscillations coincides with the depletion timescale of the gas inside the ionized bubble surrounding the BH. Gas depletion is dominated by a pressure gradient pushing the gas outward if n{sub H,{infinity}} < n{sup cr}{sub H,{infinity}} and by accretion onto the BH otherwise. Generally, for n{sub H,{infinity}} < n{sup cr}{sub H,{infinity}} angular momentum does not significantly affect the accretion rate and period of the oscillations.« less

  9. Recursive boson system in the Cuntz algebra O{sub {infinity}}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawamura, Katsunori

    2007-09-15

    Bosons and fermions are often written by elements of other algebras. Abe (private communication) gave a realization of bosons by formal infinite sums of the canonical generators of the Cuntz algebra O{sub {infinity}}. We show that such formal infinite sum always makes sense on a certain dense subspace of any permutative representation of O{sub {infinity}}. In this meaning, we can regard as if the algebra B of bosons was a unital *-subalgebra of O{sub {infinity}} on a given permutative representation. According to this relation, we compute branching laws arising from restrictions of representations of O{sub {infinity}} on B. For example,more » it is shown that the Fock representation of B is given as the restriction of the standard representation of O{sub {infinity}} on B.« less

  10. Investigation of practical applications of H infinity control theory to the design of control systems for large space structures

    NASA Technical Reports Server (NTRS)

    Irwin, R. Dennis

    1988-01-01

    The applicability of H infinity control theory to the problems of large space structures (LSS) control was investigated. A complete evaluation to any technique as a candidate for large space structure control involves analytical evaluation, algorithmic evaluation, evaluation via simulation studies, and experimental evaluation. The results of analytical and algorithmic evaluations are documented. The analytical evaluation involves the determination of the appropriateness of the underlying assumptions inherent in the H infinity theory, the determination of the capability of the H infinity theory to achieve the design goals likely to be imposed on an LSS control design, and the identification of any LSS specific simplifications or complications of the theory. The resuls of the analytical evaluation are presented in the form of a tutorial on the subject of H infinity control theory with the LSS control designer in mind. The algorthmic evaluation of H infinity for LSS control pertains to the identification of general, high level algorithms for effecting the application of H infinity to LSS control problems, the identification of specific, numerically reliable algorithms necessary for a computer implementation of the general algorithms, the recommendation of a flexible software system for implementing the H infinity design steps, and ultimately the actual development of the necessary computer codes. Finally, the state of the art in H infinity applications is summarized with a brief outline of the most promising areas of current research.

  11. Stable H(infinity) Controller Design for the Longitudinal Dynamics of an Aircraft

    NASA Technical Reports Server (NTRS)

    Oezbay, Hitay; Garg, Sanjay

    1995-01-01

    This report discusses different approaches to stable H infinity controller design applied to the problem of augmenting the longitudinal dynamics of an aircraft. Stability of the H infinity controller is investigated by analyzing the effects of changes in the performance index weights, and modifications in the measured outputs. The existence of a stable suboptimal controller is also investigated. It is shown that this is equivalent to finding a stable controller, whose infinity norm is less than a specified bound, for an unstable plant which is determined from parametrization of all H infinity controllers. Examples are given for a gust alleviation and a command tracking problem.

  12. Electrostatic potential map modelling with COSY Infinity

    NASA Astrophysics Data System (ADS)

    Maloney, J. A.; Baartman, R.; Planche, T.; Saminathan, S.

    2016-06-01

    COSY Infinity (Makino and Berz, 2005) is a differential-algebra based simulation code which allows accurate calculation of transfer maps to arbitrary order. COSY's existing internal procedures were modified to allow electrostatic elements to be specified using an array of field potential data from the midplane. Additionally, a new procedure was created allowing electrostatic elements and their fringe fields to be specified by an analytic function. This allows greater flexibility in accurately modelling electrostatic elements and their fringe fields. Applied examples of these new procedures are presented including the modelling of a shunted electrostatic multipole designed with OPERA, a spherical electrostatic bender, and the effects of different shaped apertures in an electrostatic beam line.

  13. Il Concetto di Infinito nell'Intuizione Matematica (Concept of Infinity in Mathematical Intuition).

    ERIC Educational Resources Information Center

    Ferrari, E.; And Others

    1995-01-01

    Investigated the acquisition and maturation of the infinity concept in mathematics of students ages 13-15. Found the infinity concept is learned by students only when provided with appropriate guidance. (Author/MKR)

  14. Civilian American and European Surface Anthropometry Resource (CAESAR). Volume 2: Descriptions

    DTIC Science & Technology

    2002-06-01

    Audi BMW Buick Cadillac Chevrolet Chrysler Dodge Eagle Ford GMC Honda Hyundai Infiniti Isuzu Jeep Lexus Lincoln Mazda Mercedes - Benz Mercury Mitsubishi...Dodge Eagle Ford GMC Honda Hyundai Infiniti Isuzu Jeep Lexus Lincoln Mazda Mercedes - Benz Mercury Mitsubishi Nissan Oldsmobile Plymouth Pontiac Porsche...Honda 13 Infiniti Infiniti 14 Isuzu Isuzu 15 Jeep Jeep 16 Lexus Lexus 17 Lincoln Lincoln 18 Mazda Mazda Mazda 19 Mercedes - Benz Mercedes - Benz Mercedes

  15. Magnitude of visual accommodation to a head-up display

    NASA Technical Reports Server (NTRS)

    Leitner, E. F.; Haines, R. F.

    1981-01-01

    The virtual image symbology of head-up displays (HUDs) is presented at optical infinity to the pilot. This design feature is intended to help pilots maintain visual focus distance at optical infinity. However, the accommodation response could be nearer than optical infinity, due to an individual's dark focus response. Accommodation responses were measured of two age groups of airline pilots to: (1) static symbology on a HUD; (2) a landing site background at optical infinity; (3) the combination of the HUD symbology and the landing site background; and (4) complete darkness. Results indicate that magnitude of accommodation to HUD symbology, with and without the background, is not significantly different from an infinity focus response for either age group. The dark focus response is significantly closer than optical infinity for the younger pilots, but not the older pilots, a finding consistent with previous research.

  16. INFINITY ribbon-cutting

    NASA Image and Video Library

    2012-04-11

    Clare Johnston, 10, and Eden Landis, 3, stare in wonder at the moon rock on display at the INFINITY at NASA Stennis Space Center visitor center and museum. The children toured INFINITY exhibits during ribbon-cutting activities for the facility April 11, 2012.

  17. Spectral methods for the spin-2 equation near the cylinder at spatial infinity

    NASA Astrophysics Data System (ADS)

    Macedo, Rodrigo P.; Valiente Kroon, Juan A.

    2018-06-01

    We solve, numerically, the massless spin-2 equations, written in terms of a gauge based on the properties of conformal geodesics, in a neighbourhood of spatial infinity using spectral methods in both space and time. This strategy allows us to compute the solutions to these equations up to the critical sets where null infinity intersects with spatial infinity. Moreover, we use the convergence rates of the numerical solutions to read-off their regularity properties.

  18. On the asymptotic behaviour of 2D stationary Navier-Stokes solutions with symmetry conditions

    NASA Astrophysics Data System (ADS)

    Decaster, Agathe; Iftimie, Dragoş

    2017-10-01

    We consider the 2D stationary incompressible Navier-Stokes equations in ℝ2. Under suitable symmetry, smallness and decay at infinity conditions on the forcing we determine the behaviour at infinity of the solutions. Moreover, when the forcing is small, satisfies suitable symmetry conditions and decays at infinity like a vector field homogeneous of degree -3, we show that there exists a unique small solution whose asymptotic behaviour at infinity is homogeneous of degree -1.

  19. Limited Qualities Evaluation of Longitudinal Flight Control Systems Designed Using Multiobjective Control Design Techniques (HAVE INFINITY II)

    DTIC Science & Technology

    1998-06-01

    analytical phase of this research. Finally, the mixed H2/H-Infinity method optimally tradeoff the different benefits offered by the separate H2 and H...potential benefits of the multiobjective design techniques used. Due to the HAVE INFINITY I test results, AFIT made the decision to continue the...sensitivity and complimentary sensitivity weighting, and a mixed H2/H-Infinity design that compromised the benefits of both design techniques optimally. The

  20. Integrating Precalculus Review with the First Course in Calculus.

    ERIC Educational Resources Information Center

    Sevilla, Alicia; Somers, Kay

    1993-01-01

    Describes a course designed by Moravian College, Pennsylvania, to integrate precalculus topics as needed into a first calculus course. The textbook developed for the course covers the concepts of functions, Cartesian coordinates, limits, continuity, infinity, and the derivative. Examples are discussed. (MDH)

  1. Three Concepts or One? Students' Understanding of Basic Limit Concepts

    ERIC Educational Resources Information Center

    Fernández-Plaza, José Antonio; Simpson, Adrian

    2016-01-01

    In many mathematics curricula, the notion of limit is introduced three times: the limit of a sequence, the limit of a function at a point and the limit of a function at infinity. Despite the use of very similar symbols, few connections between these notions are made explicitly and few papers in the large literature on student understanding of…

  2. The Roles of Visualization and Symbolism in the Potential and Actual Infinity of the Limit Process

    ERIC Educational Resources Information Center

    Kidron, Ivy; Tall, David

    2015-01-01

    A teaching experiment-using Mathematica to investigate the convergence of sequence of functions visually as a sequence of objects (graphs) converging onto a fixed object (the graph of the limit function)-is here used to analyze how the approach can support the dynamic blending of visual and symbolic representations that has the potential to lead…

  3. Between Perception and Intuition: Learning about Infinity

    ERIC Educational Resources Information Center

    Singer, Florence Mihaela; Voica, Cristian

    2008-01-01

    Based on an empirical study, we explore children's primary and secondary perceptions on infinity. When discussing infinity, children seem to highlight three categories of primary perceptions: processional, topological, and spiritual. Based on their processional perception, children see the set of natural numbers as being infinite and endow Q with…

  4. INFINITY ribbon-cutting

    NASA Image and Video Library

    2012-04-11

    Ceremony participants prepare to cut the ribbon on the INFINITY at NASA Stennis Space Center facility April 11, 2012. Participating in the ceremony were (l to r): Gulfport Mayor and INFINITY Science Center Inc. Chairman George Schloegel; U.S. Rep. Steven Palazzo, R-Miss.; U.S. Sen. Roger Wicker, R-Miss.; Roy S. Estess granddaughter Lauren McKay; Mississippi Gov. Phil Bryant; Leo Seal Jr. grandson Leo Seal IV; Stennis Director Patrick Scheuermann; U.S. Sen. Thad Cochran, R-Miss.; NASA Chief of Staff David Radzanowski; and Apollo 13 astronaut and INFINITY Science Center Inc. Vice Chairman Fred Haise.

  5. Risk factors for acute generalized exanthematous pustulosis (AGEP)-results of a multinational case-control study (EuroSCAR).

    PubMed

    Sidoroff, A; Dunant, A; Viboud, C; Halevy, S; Bavinck, J N Bouwes; Naldi, L; Mockenhaupt, M; Fagot, J-P; Roujeau, J-C

    2007-11-01

    Acute generalized exanthematous pustulosis (AGEP) is a disease characterized by the rapid occurrence of many sterile, nonfollicular pustules usually arising on an oedematous erythema often accompanied by leucocytosis and fever. It is usually attributed to drugs. To evaluate the risk for different drugs of causing AGEP. A multinational case-control study (EuroSCAR) conducted to evaluate the risk for different drugs of causing severe cutaneous adverse reactions; the study included 97 validated community cases of AGEP and 1009 controls. Results Strongly associated drugs, i.e. drugs with a lower bound of the 95% confidence interval (CI) of the odds ratio (OR) > 5 were pristinamycin (CI 26-infinity), ampicillin/amoxicillin (CI 10-infinity), quinolones (CI 8.5-infinity), (hydroxy)chloroquine (CI 8-infinity), anti-infective sulphonamides (CI 7.1-infinity), terbinafine (CI 7.1-infinity) and diltiazem (CI 5.0-infinity). No significant risk was found for infections and a personal or family history of psoriasis (CI 0.7-2.2). Medications associated with AGEP differ from those associated with Stevens-Johnson syndrome or toxic epidermal necrolysis. Different timing patterns from drug intake to reaction onset were observed for different drugs. Infections, although possible triggers, played no prominent role in causing AGEP and there was no evidence that AGEP is a variant of pustular psoriasis.

  6. Synthesis, structure, and electronic structure of CsAgGa{sub 2}Se{sub 4}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mei Dajiang; Yin Wenlong; Feng Kai

    2012-02-15

    The new metal chalcogenide CsAgGa{sub 2}Se{sub 4} has been synthesized by means of the reactive flux method. It crystallizes in the space group P2{sub 1}/c of the monoclinic system with cell dimensions of a=11.225(2) A, b=7.9443(16) A, c=21.303(4) A, {beta}=103.10(3), V=1850.3(6), and Z=8. The structure contains two-dimensional {sub {infinity}}{sup 2}[AgGa{sub 2}Se{sub 4}]{sup -} layers separated by Cs{sup +} cations. The {sub {infinity}}{sup 2}[AgGa{sub 2}Se{sub 4}]{sup -} superlayer possesses a novel chain-sublayer-chain structure: a {sub {infinity}}{sup 2}[Ag{sub 2}GaSe{sub 6}]{sup 7-} sublayer, composed of {sub {infinity}}{sup 1}[AgGaSe{sub 4}]{sup 4-} chains that are further connected by Ag{sup +} ions, is sandwiched by parallelmore » {sub {infinity}}{sup 1}[Ga{sub 3}Se{sub 8}]{sup 7-} chains to generate the {sub {infinity}}{sup 2}[AgGa{sub 2}Se{sub 4}]{sup -} superlayer. From a band structure calculation, the orbitals of all atoms have contributions to the bottoms of conduction bands, but the band gap is mainly determined by the 4s, 4p orbitals of Ga and Se. - Graphical Abstract: CsAgGa{sub 2}Se{sub 4} contains two-dimensional {sub {infinity}}{sup 2}[AgGa{sub 2}Se{sub 4}]{sup -} layers with a novel chain-sublayer-chain structure. Highlights: Black-Right-Pointing-Pointer New chalcogenide CsAgGa{sub 2}Se{sub 4} has been synthesized. Black-Right-Pointing-Pointer It possesses a new structure type with {sub {infinity}}{sup 2}[AgGa{sub 2}Se{sub 4}]{sup -} layers separated by Cs{sup +} cations. Black-Right-Pointing-Pointer {sub {infinity}}{sup 2}[AgGa{sub 2}Se{sub 4}]{sup -} consists of a {sub {infinity}}{sup 2}[Ag{sub 2}GaSe{sub 6}]{sup 7-} sublayer sandwiched by {sub {infinity}}{sup 1}[Ga{sub 3}Se{sub 8}]{sup 7-} chains. Black-Right-Pointing-Pointer Band gap of CsAgGa{sub 2}Se{sub 4} is mainly determined by the 4s, 4p orbitals of Ga and Se.« less

  7. On the Penrose inequality along null hypersurfaces

    NASA Astrophysics Data System (ADS)

    Mars, Marc; Soria, Alberto

    2016-06-01

    The null Penrose inequality, i.e. the Penrose inequality in terms of the Bondi energy, is studied by introducing a functional on surfaces and studying its properties along a null hypersurface Ω extending to past null infinity. We prove a general Penrose-type inequality which involves the limit at infinity of the Hawking energy along a specific class of geodesic foliations called Geodesic Asymptotically Bondi (GAB), which are shown to always exist. Whenever this foliation approaches large spheres, this inequality becomes the null Penrose inequality and we recover the results of Ludvigsen-Vickers (1983 J. Phys. A: Math. Gen. 16 3349-53) and Bergqvist (1997 Class. Quantum Grav. 14 2577-83). By exploiting further properties of the functional along general geodesic foliations, we introduce an approach to the null Penrose inequality called the Renormalized Area Method and find a set of two conditions which imply the validity of the null Penrose inequality. One of the conditions involves a limit at infinity and the other a restriction on the spacetime curvature along the flow. We investigate their range of applicability in two particular but interesting cases, namely the shear-free and vacuum case, where the null Penrose inequality is known to hold from the results by Sauter (2008 PhD Thesis Zürich ETH), and the case of null shells propagating in the Minkowski spacetime. Finally, a general inequality bounding the area of the quasi-local black hole in terms of an asymptotic quantity intrinsic of Ω is derived.

  8. Direct and converse theorems in problems of approximation by vectors of finite degree

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radzievski, G V

    1998-04-30

    Let A be a linear operator in a complex Banach space X with domain D(A) and a non-empty resolvent set. An element g element of D{sub {infinity}}(A):= intersection{sub j=0,1,...}D(A{sup j}) is called a vector of degree at most {zeta}(>0) with respect to A if ||A{sup j}g||{sub X}{<=}c(g){zeta}{sup j}, j=0,1,.... The set of vectors of degree at most {zeta} is denoted by G{sub {zeta}}(A). The quantity E{sub {zeta}}(f,A){sub X}=inf{sub gelement} {sub of{sub G}{sub {zeta}}}{sub (A)}||f-g||{sub X} is introduced and estimated in terms of the K-functional K({zeta}{sup -r},f;X,D(A{sup r}))=inf{sub gelementof} {sub D(A{sup r})}(||f-g||{sub X}+{zeta}{sup -r}||A{sup r}f||{sub X}) (the direct theorem). An estimatemore » of this K-functional in terms of E{sub {zeta}}(f,A){sub X} and ||f||{sub x} is established (the converse theorem). Using the estimates obtained, necessary and sufficient conditions for the following properties are found in terms of E{sub {zeta}}(f,A){sub X}: 1) f element of D{sub {infinity}}(A); 2) the series e{sup zA}f:={sigma}{sub r=0}{sup {infinity}}(z{sup r}A{sup r}f)/(r{exclamation_point}) converges in some disc; 3) the series e{sup zA}f converges in the entire complex plane. The growth order and the type of the entire function e{sup zA}f are calculated in terms of E{sub {zeta}}(f,A){sub X}.« less

  9. IMUX: Managing Tor Connections from Two to Infinity, and Beyond

    DTIC Science & Technology

    2014-11-03

    generalizes between the “per-circuit” approaches such as PCTCP and the fixed number of sessions in “ vanilla Tor” (1) and Torchestra (2). • We analyze a variety...increasing performance. The two main components of the algo- rithm are global scheduling and autotuning. In vanilla Tor, libevent iterates through the...1 2 3 4 5 Download Time (s) 0.0 0.2 0.4 0.6 0.8 1.0 C um ul at iv e Fr ac tio n vanilla imux-rr imux-ewma imux-shortest (a) Time to first byte 0 2 4

  10. Integrated flight/propulsion control design for a STOVL aircraft using H-infinity control design techniques

    NASA Technical Reports Server (NTRS)

    Garg, Sanjay; Ouzts, Peter J.

    1991-01-01

    Results are presented from an application of H-infinity control design methodology to a centralized integrated flight propulsion control (IFPC) system design for a supersonic Short Takeoff and Vertical Landing (STOVL) fighter aircraft in transition flight. The emphasis is on formulating the H-infinity control design problem such that the resulting controller provides robustness to modeling uncertainties and model parameter variations with flight condition. Experience gained from a preliminary H-infinity based IFPC design study performed earlier is used as the basis to formulate the robust H-infinity control design problem and improve upon the previous design. Detailed evaluation results are presented for a reduced order controller obtained from the improved H-infinity control design showing that the control design meets the specified nominal performance objectives as well as provides stability robustness for variations in plant system dynamics with changes in aircraft trim speed within the transition flight envelope. A controller scheduling technique which accounts for changes in plant control effectiveness with variation in trim conditions is developed and off design model performance results are presented.

  11. Isotropic probability measures in infinite-dimensional spaces

    NASA Technical Reports Server (NTRS)

    Backus, George

    1987-01-01

    Let R be the real numbers, R(n) the linear space of all real n-tuples, and R(infinity) the linear space of all infinite real sequences x = (x sub 1, x sub 2,...). Let P sub in :R(infinity) approaches R(n) be the projection operator with P sub n (x) = (x sub 1,...,x sub n). Let p(infinity) be a probability measure on the smallest sigma-ring of subsets of R(infinity) which includes all of the cylinder sets P sub n(-1) (B sub n), where B sub n is an arbitrary Borel subset of R(n). Let p sub n be the marginal distribution of p(infinity) on R(n), so p sub n(B sub n) = p(infinity) (P sub n to the -1 (B sub n)) for each B sub n. A measure on R(n) is isotropic if it is invariant under all orthogonal transformations of R(n). All members of the set of all isotropic probability distributions on R(n) are described. The result calls into question both stochastic inversion and Bayesian inference, as currently used in many geophysical inverse problems.

  12. Comparison of the Infiniti vision and the series 20,000 Legacy systems.

    PubMed

    Fernández de Castro, Luis E; Solomon, Kerry D; Hu, Daniel J; Vroman, David T; Sandoval, Helga P

    2008-01-01

    To compare the efficiency of the Infiniti vision system and the Series 20,000 Legacy system phacoemulsification units during routine cataract extraction. Thirty-nine eyes of 39 patients were randomized to have their cataract removed using either the Infiniti or the Legacy system, both using the Neosonix handpiece. System settings were standardized. Ultrasound time, amount of balanced salt solution (BSS) used intraoperatively, and postoperative visual acuity at postoperative days 1, 7 and 30 were evaluated. Preoperatively, best corrected visual acuity was significantly worse in the Infiniti group compared to the Legacy group (0.38 +/- 0.23 and 0.21 +/- 0.16, respectively; p = 0.012). The mean phacoemulsification time was 39.6 +/- 22.9 s (range 6.0-102.0) for the Legacy group and 18.3 +/-19.1 s (range 1.0-80.0) for the Infiniti group (p = 0.001). The mean amounts of intraoperative BSS used were 117 +/- 37.7 ml (range 70-195) in the Legacy group and 85.3 +/- 38.9 ml (range 40-200) in the Infiniti group (p = 0.005). No differences in postoperative visual acuity were found. The ability to use higher flow rates and vacuum settings with the Infiniti vision system allowed for cataract removal with less phacoemulsification time than when using the Legacy system. Copyright 2008 S. Karger AG, Basel.

  13. Bolzano's Approach to the Paradoxes of Infinity: Implications for Teaching

    ERIC Educational Resources Information Center

    Waldegg, Guillermina

    2005-01-01

    In this paper we analyze excerpts of "Paradoxes of the Infinite", the posthumous work of Bernard Bolzano (1781-1848), in order to show that Georg Cantor's (1845-1918) approach to the problem of defining actual mathematical infinity is not the most natural. In fact, Bolzano's approach to the paradoxes of infinity is more intuitive, while remaining…

  14. Infinity as a Multi-Faceted Concept in History and in the Mathematics Classroom

    ERIC Educational Resources Information Center

    Arzarello, Ferdinando; Bussi, Maria G., Bartolini; Robutti, Ornella

    2004-01-01

    This paper presents the conceptualisation of infinity as a multi-faceted concept, discussing two examples. The first is from history and illustrates the work of Euler, when using infinity in an algebraic context. The second sketches an activity in a school context, namely students who approach the definite integral with symbolic-graphic…

  15. INFINITY ribbon-cutting

    NASA Image and Video Library

    2012-04-11

    Mississippi Gov. Phil Bryant looks on as Apollo 13 astronaut and INFINITY Science Center Inc. Vice Chairman Fred Haise points out features of the spacesuit he wore on his lunar mission in 1970. The suit is on display at the INFINITY at NASA Stennis Space Center visitor center and museum. The two men toured the facility during ribbon-cutting activities April 11, 2012.

  16. Asymptotically extremal polynomials with respect to varying weights and application to Sobolev orthogonality

    NASA Astrophysics Data System (ADS)

    Díaz Mendoza, C.; Orive, R.; Pijeira Cabrera, H.

    2008-10-01

    We study the asymptotic behavior of the zeros of a sequence of polynomials whose weighted norms, with respect to a sequence of weight functions, have the same nth root asymptotic behavior as the weighted norms of certain extremal polynomials. This result is applied to obtain the (contracted) weak zero distribution for orthogonal polynomials with respect to a Sobolev inner product with exponential weights of the form e-[phi](x), giving a unified treatment for the so-called Freud (i.e., when [phi] has polynomial growth at infinity) and Erdös (when [phi] grows faster than any polynomial at infinity) cases. In addition, we provide a new proof for the bound of the distance of the zeros to the convex hull of the support for these Sobolev orthogonal polynomials.

  17. n-Person Dynamic Strategic Market Games

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiecek, Piotr, E-mail: Piotr.Wiecek@pwr.wroc.pl

    2012-04-15

    We present a discrete n-person model of a dynamic strategic market game. We show that for some values of the discount factor the game possesses a stationary equilibrium where all the players make high bids. Within the class of all the high-bidding strategies we distinguish between two classes of more and less aggressive ones. We show that the set of discount factors for which these more aggressive strategies form equilibria shrinks as n goes to infinity. On the other hand, the analogous set for the less aggressive strategies grows to the whole interval (0,1) as n grows to infinity. Furthermore » we analyze the properties of the value function corresponding to these high-bidding equilibria. We also give some numerical examples contradicting some other properties that seem intuitive.« less

  18. Discrete-time infinity control problem with measurement feedback

    NASA Technical Reports Server (NTRS)

    Stoorvogel, A. A.; Saberi, A.; Chen, B. M.

    1992-01-01

    The paper is concerned with the discrete-time H(sub infinity) control problem with measurement feedback. The authors extend previous results by having weaker assumptions on the system parameters. The authors also show explicitly the structure of H(sub infinity) controllers. Finally, they show that it is in certain cases possible, without loss of performance, to reduce the dynamical order of the controllers.

  19. Bolzano`s Approach to the Paradoxes of Infinity: Implications for Teaching

    NASA Astrophysics Data System (ADS)

    Waldegg, Guillermina

    2005-08-01

    In this paper we analyze excerpts of Paradoxes of the Infinite, the posthumous work of Bernard Bolzano (1781-1848), in order to show that Georg Cantor‘s (1845-1918) approach to the problem of defining actual mathematical infinity is not the most natural. In fact, Bolzano‘s approach to the paradoxes of infinity is more intuitive, while remaining internally coherent. Bolzano‘s approach, however, had limitations. We discuss implications for teaching, which include a better understanding of the responses of students to situations involving actual mathematical infinity, for it is possible to draw a kind of parallel between these responses and Bolzano‘s reasoning.

  20. Definite Integrals, Some Involving Residue Theory Evaluated by Maple Code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowman, Kimiko o

    2010-01-01

    The calculus of residue is applied to evaluate certain integrals in the range (-{infinity} to {infinity}) using the Maple symbolic code. These integrals are of the form {integral}{sub -{infinity}}{sup {infinity}} cos(x)/[(x{sup 2} + a{sup 2})(x{sup 2} + b{sup 2}) (x{sup 2} + c{sup 2})]dx and similar extensions. The Maple code is also applied to expressions in maximum likelihood estimator moments when sampling from the negative binomial distribution. In general the Maple code approach to the integrals gives correct answers to specified decimal places, but the symbolic result may be extremely long and complex.

  1. Isotropic probability measures in infinite dimensional spaces: Inverse problems/prior information/stochastic inversion

    NASA Technical Reports Server (NTRS)

    Backus, George

    1987-01-01

    Let R be the real numbers, R(n) the linear space of all real n-tuples, and R(infinity) the linear space of all infinite real sequences x = (x sub 1, x sub 2,...). Let P sub n :R(infinity) approaches R(n) be the projection operator with P sub n (x) = (x sub 1,...,x sub n). Let p(infinity) be a probability measure on the smallest sigma-ring of subsets of R(infinity) which includes all of the cylinder sets P sub n(-1) (B sub n), where B sub n is an arbitrary Borel subset of R(n). Let p sub n be the marginal distribution of p(infinity) on R(n), so p sub n(B sub n) = p(infinity)(P sub n to the -1(B sub n)) for each B sub n. A measure on R(n) is isotropic if it is invariant under all orthogonal transformations of R(n). All members of the set of all isotropic probability distributions on R(n) are described. The result calls into question both stochastic inversion and Bayesian inference, as currently used in many geophysical inverse problems.

  2. Lp-estimates on diffusion processes

    NASA Astrophysics Data System (ADS)

    Yan, Litan; Zhu, Bei

    2005-03-01

    Let be a diffusion process on given by where B=(Bt)t[greater-or-equal, slanted]0 is a standard Brownian motion starting at zero and [mu],[sigma] are two continuous functions on , and [sigma](x)>0 if x[not equal to]0. For a nonnegative continuous function [phi] we define the functional by , t[greater-or-equal, slanted]0. Then under suitable conditions we establish the relationship between Lp-norm of sup0[less-than-or-equals, slant]t[less-than-or-equals, slant][tau]Xt and Lp-norm of J[tau] for all stopping times [tau]. In particular, for a Bessel process Z of dimension [delta]>0 starting at zero, we show that the inequalities hold for all 00, where Cp and cp are some positive constants depending only on p, and H[mu],h[mu] are the inverses of x|->(e2[mu]x-2[mu]x-1)/2[mu]2 and x|->(e-2[mu]x+2[mu]x-1)/2[mu]2 on (0,[infinity]), respectively.

  3. Statistical Physics of Electron Temperature of Low-Pressure Discharge Nitrogen Plasma with Non-Maxwellian EEDF

    NASA Astrophysics Data System (ADS)

    Akatsuka, Hiroshi; Tanaka, Yoshinori

    2016-09-01

    We reconsider electron temperature of non-equilibrium plasmas on the basis of thermodynamics and statistical physics. Following our previous study on the oxygen plasma in GEC 2015, we discuss the common issue for the nitrogen plasma. First, we solve the Boltzmann equation to obtain the electron energy distribution function (EEDF) F(ɛ) of the nitrogen plasma as a function of the reduced electric field E / N . We also simultaneously solve the chemical kinetic equations of some essential excite species of nitrogen molecules and atoms, including vibrational distribution function (VDF). Next, we calculate the electron mean energy as U = < ɛ > =∫0∞ɛF(ɛ) dɛ and entropy S = - k∫0∞F(ɛ) ln [ F(ɛ) ] dɛ for each value of E / N . Then, we can obtain the electron temperature as Testat =[ ∂S / ∂U ] - 1 . After that, we discuss the difference between Testat and the kinetic temperature Tekin ≡(2 / 3) < ɛ > , as well as the temperature given as a slope of the calculated EEDF for each value of E / N . We found Testat is close to the slope at ɛ 4 eV in the EEPF.

  4. Tree-level gluon amplitudes on the celestial sphere

    NASA Astrophysics Data System (ADS)

    Schreiber, Anders Ø.; Volovich, Anastasia; Zlotnikov, Michael

    2018-06-01

    Pasterski, Shao and Strominger have recently proposed that massless scattering amplitudes can be mapped to correlators on the celestial sphere at infinity via a Mellin transform. We apply this prescription to arbitrary n-point tree-level gluon amplitudes. The Mellin transforms of MHV amplitudes are given by generalized hypergeometric functions on the Grassmannian Gr (4 , n), while generic non-MHV amplitudes are given by more complicated Gelfand A-hypergeometric functions.

  5. Exact and quasi-classical density matrix and Wigner functions for a particle in the box and half space

    NASA Technical Reports Server (NTRS)

    Akhundova, E. A.; Dodonov, V. V.; Manko, V. I.

    1993-01-01

    The exact expressions for density matrix and Wigner functions of quantum systems are known only in special cases. Corresponding Hamiltonians are quadratic forms of Euclidean coordinates and momenta. In this paper we consider the problem of one-dimensional free particle movement in the bounded region 0 is less than x is less than a (including the case a = infinity).

  6. The Nature of Infinity in Quantum Field Calculations

    NASA Astrophysics Data System (ADS)

    Kriske, Richard

    2011-05-01

    In many textbooks on Quantum Field Theory it has been noted that an infinity is taken a circle and the flux is calculated from the A field in that manner. There are of course many such examples of this sort of calculation using infinity as a circle. This author would like to point out that if the three dimensions of space are curved and the one dimension of time is not, in say a four space, infinity is the horizon, which is not a circle but rather a sphere; as long as space-time is curved uniformly, smoothly and has positive curvature. This author believes the math may be in error, since maps of the CMBR seem to indicate a ``Swiss-Cheese'' type of topology, wherein the Sphere at infinity (the Horizon of the Universe), has holes in it that can readily be seen. This author believes that these irregularities most certainly have a calculable effect on QED, QCD and Quantum Field Theory.

  7. The final size of a SARS epidemic model without quarantine

    NASA Astrophysics Data System (ADS)

    Hsu, Sze-Bi; Roeger, Lih-Ing W.

    2007-09-01

    In this article, we present the continuing work on a SARS model without quarantine by Hsu and Hsieh [Sze-Bi Hsu, Ying-Hen Hsieh, Modeling intervention measures and severity-dependent public response during severe acute respiratory syndrome outbreak, SIAM J. Appl. Math. 66 (2006) 627-647]. An "acting basic reproductive number" [psi] is used to predict the final size of the susceptible population. We find the relation among the final susceptible population size S[infinity], the initial susceptible population S0, and [psi]. If [psi]>1, the disease will prevail and the final size of the susceptible, S[infinity], becomes zero; therefore, everyone in the population will be infected eventually. If [psi]<1, the disease dies out, and then S[infinity]>0 which means part of the population will never be infected. Also, when S[infinity]>0, S[infinity] is increasing with respect to the initial susceptible population S0, and decreasing with respect to the acting basic reproductive number [psi].

  8. H-infinity based integrated flight-propulsion control design for a STOVL aircraft in transition flight

    NASA Technical Reports Server (NTRS)

    Garg, Sanjay; Mattern, Duane L.; Bright, Michelle M.; Ouzts, Peter J.

    1990-01-01

    Results are presented from an application of H-infinity control design methodology to a centralized integrated flight/propulsion control (IFPC) system design for a supersonic Short Take-Off and Vertical Landing (STOVL) fighter aircraft in transition flight. The overall design methodology consists of a centralized IFPC controller design with controller partitioning. Only the feedback controller design portion of the methodology is addressed. Design and evaluation vehicle models are summarized, and insight is provided into formulating the H-infinity control problem such that it reflects the IFPC design objectives. The H-infinity controller is shown to provide decoupled command tracking for the design model. The controller order could be significantly reduced by modal residualization of the fast controller modes without any deterioration in performance. A discussion is presented of the areas in which the controller performance needs to be improved, and ways in which these improvements can be achieved within the framework of an H-infinity based linear control design.

  9. Characterization of (asymptotically) Kerr-de Sitter-like spacetimes at null infinity

    NASA Astrophysics Data System (ADS)

    Mars, Marc; Paetz, Tim-Torben; Senovilla, José M. M.; Simon, Walter

    2016-08-01

    We investigate solutions ({M},g) to Einstein's vacuum field equations with positive cosmological constant Λ which admit a smooth past null infinity {{I}}- à la Penrose and a Killing vector field whose associated Mars-Simon tensor (MST) vanishes. The main purpose of this work is to provide a characterization of these spacetimes in terms of their Cauchy data on {{I}}-. Along the way, we also study spacetimes for which the MST does not vanish. In that case there is an ambiguity in its definition which is captured by a scalar function Q. We analyze properties of the MST for different choices of Q. In doing so, we are led to a definition of ‘asymptotically Kerr-de Sitter-like spacetimes’, which we also characterize in terms of their asymptotic data on {{I}}-. Preprint UWThPh-2016-5.

  10. L{sup {infinity}} Variational Problems with Running Costs and Constraints

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aronsson, G., E-mail: gunnar.aronsson@liu.se; Barron, E. N., E-mail: enbarron@math.luc.edu

    2012-02-15

    Various approaches are used to derive the Aronsson-Euler equations for L{sup {infinity}} calculus of variations problems with constraints. The problems considered involve holonomic, nonholonomic, isoperimetric, and isosupremic constraints on the minimizer. In addition, we derive the Aronsson-Euler equation for the basic L{sup {infinity}} problem with a running cost and then consider properties of an absolute minimizer. Many open problems are introduced for further study.

  11. Visual accommodation trainer-tester

    NASA Technical Reports Server (NTRS)

    Randle, R. J., Jr. (Inventor)

    1983-01-01

    An apparatus for training of the human visual accommodation system is presented, specifically, useful for training a person to volitionally control his focus to his far point (normaly infinity) from a position of myopia due to functional causes. The functional causes could be due, for example, to a behavioral accommodative spasm or the effects of an empty field. The device may also be used to measure accommodation, the accommodation resting position and the near and far points of vision.

  12. Automation of complex assays: pharmacogenetics of warfarin dosing.

    PubMed

    Wu, Whei-Kuo; Hujsak, Paul G; Kureshy, Fareed

    2007-10-01

    AutoGenomics, Inc. (Carlsbad, CA, USA) have developed a multiplex microarray assay for genotyping both VKORC1 and CYP2C9 using the INFINITI(™) Analyzer. Multiple alleles in each DNA sample are analyzed by polymerase chain reaction amplification, followed by detection primer extension using the INFINITI Analyzer. The INFINITI Analyzer performs single-nucleotide polymorphism (SNP) analysis using universal oligonucleotides immobilized on the biochip. To genotype broader ethnic groups, genomic DNA from whole blood was tested for nine SNPs for VKORC1 and six for CYP2C9 genotypes. Information related to all 15 SNPs is needed to determine dosing of population of diverse ethnic origin. The INFINITI system provides genotyping information for same day dosing of warfarin.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moebius, E.; Bochsler, P.; Heirtzler, D.

    Neutral atom imaging of the interstellar gas flow in the inner heliosphere provides the most detailed information on physical conditions of the surrounding interstellar medium (ISM) and its interaction with the heliosphere. The Interstellar Boundary Explorer (IBEX) measured neutral H, He, O, and Ne for three years. We compare the He and combined O+Ne flow distributions for two interstellar flow passages in 2009 and 2010 with an analytical calculation, which is simplified because the IBEX orientation provides observations at almost exactly the perihelion of the gas trajectories. This method allows separate determination of the key ISM parameters: inflow speed, longitude,more » and latitude, as well as temperature. A combined optimization, as in complementary approaches, is thus not necessary. Based on the observed peak position and width in longitude and latitude, inflow speed, latitude, and temperature are found as a function of inflow longitude. The latter is then constrained by the variation of the observed flow latitude as a function of observer longitude and by the ratio of the widths of the distribution in longitude and latitude. Identical results are found for 2009 and 2010: an He flow vector somewhat outside previous determinations ({lambda}{sub ISM{infinity}} = 79.{sup 0}0+3.{sup 0}0(-3.{sup 0}5), {beta}{sub ISM{infinity}} = -4.{sup 0}9 {+-} 0.{sup 0}2, V{sub ISM{infinity}} 23.5 + 3.0(-2.0) km s{sup -1}, T{sub He} = 5000-8200 K), suggesting a larger inflow longitude and lower speed. The O+Ne temperature range, T{sub O+Ne} = 5300-9000 K, is found to be close to the upper range for He and consistent with an isothermal medium for all species within current uncertainties.« less

  14. Thermal imaging comparison of Signature, Infiniti, and Stellaris phacoemulsification systems.

    PubMed

    Ryoo, Na Kyung; Kwon, Ji-Won; Wee, Won Ryang; Miller, Kevin M; Han, Young Keun

    2013-10-12

    To compare the heat production of 3 different phacoemulsification machines under strict laboratory test conditions. More specifically, the thermal behavior was analyzed between the torsional modality of the Infiniti system and longitudinal modalities of the Abbot WhiteStar Signature Phacoemulsification system and Bausch and Lomb Stellaris system. Experiments were performed under in-vitro conditions in this study.Three phacoemulsification handpieces (Infiniti, Signature, and Stellaris) were inserted into balanced salt solution-filled silicone test chambers and were imaged side-by-side by using a thermal camera. Incision compression was simulated by suspending 30.66-gram weights from the silicone chambers. The irrigation flow rate was set at 0, 1, 2, 3, 4, and 5 cc/min and the phacoemulsification power on the instrument consoles was set at 40, 60, 80, and 100%. The highest temperatures generated from each handpiece around the point of compression were measured at 0, 10, 30, and 60 seconds. Under the same displayed phacoemulsification power settings, the peak temperatures measured when using the Infiniti were lower than when using the other two machines, and the Signature was cooler than the Stellaris. At 10 seconds, torsional phacoemulsification with Infiniti at 100% power showed data comparable to that of the Signature at 80% and the Stellaris at 60%. At 30 seconds, the temperature from the Infiniti at 100% power was lower than the Signature at 60% and the Stellaris at 40%. Torsional phacoemulsification with the Infiniti generates less heat than longitudinal phacoemulsification with the Signature and the Stellaris. Lower operating temperatures indicate lower heat generation within the same fluid volume, which may provide additional thermal protection during cataract surgery.

  15. Thermal imaging comparison of Signature, Infiniti, and Stellaris phacoemulsification systems

    PubMed Central

    2013-01-01

    Background To compare the heat production of 3 different phacoemulsification machines under strict laboratory test conditions. More specifically, the thermal behavior was analyzed between the torsional modality of the Infiniti system and longitudinal modalities of the Abbot WhiteStar Signature Phacoemulsification system and Bausch and Lomb Stellaris system. Methods Experiments were performed under in-vitro conditions in this study. Three phacoemulsification handpieces (Infiniti, Signature, and Stellaris) were inserted into balanced salt solution-filled silicone test chambers and were imaged side-by-side by using a thermal camera. Incision compression was simulated by suspending 30.66-gram weights from the silicone chambers. The irrigation flow rate was set at 0, 1, 2, 3, 4, and 5 cc/min and the phacoemulsification power on the instrument consoles was set at 40, 60, 80, and 100%. The highest temperatures generated from each handpiece around the point of compression were measured at 0, 10, 30, and 60 seconds. Results Under the same displayed phacoemulsification power settings, the peak temperatures measured when using the Infiniti were lower than when using the other two machines, and the Signature was cooler than the Stellaris. At 10 seconds, torsional phacoemulsification with Infiniti at 100% power showed data comparable to that of the Signature at 80% and the Stellaris at 60%. At 30 seconds, the temperature from the Infiniti at 100% power was lower than the Signature at 60% and the Stellaris at 40%. Conclusions Torsional phacoemulsification with the Infiniti generates less heat than longitudinal phacoemulsification with the Signature and the Stellaris. Lower operating temperatures indicate lower heat generation within the same fluid volume, which may provide additional thermal protection during cataract surgery. PMID:24118895

  16. Comparison of vacuum rise time, vacuum limit accuracy, and occlusion break surge of 3 new phacoemulsification systems.

    PubMed

    Han, Young Keun; Miller, Kevin M

    2009-08-01

    To compare vacuum rise time, vacuum limit accuracy, and occlusion break surge of 3 new phacoemulsification machines. Jules Stein Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA. The vacuum rise time under normal and enhanced aspiration modes, vacuum limit accuracy, and occlusion break surge of the Infiniti Vision System, Stellaris Vision Enhancement System, and WhiteStar Signature Phacoemulsification System were tested. Vacuum rise time and limit accuracy were measured at limit settings of 400 mm Hg and 600 mm Hg. Surge area was recorded at vacuum limit settings of 200 mm Hg, 300 mm Hg, 400 mm Hg, and 500 mm Hg. The Infiniti had the fastest vacuum rise times under normal and enhanced aspiration modes. At 4 seconds, the vacuum limit accuracy was greatest with the Infiniti at the 400 mm Hg limit and the Signature at the 600 mm Hg limit. The Stellaris did not reach either vacuum target. The Infiniti performed better than the other 2 machines during testing of occlusion break surge at all vacuum limit settings above 200 mm Hg. Under controlled laboratory test conditions, the Infiniti had the fastest vacuum rise time, greatest vacuum limit accuracy at 400 mm Hg, and least occlusion break surge. These results can be explained by the lower compliance of the Infiniti system.

  17. Comparison of cumulative dissipated energy between the Infiniti and Centurion phacoemulsification systems.

    PubMed

    Chen, Ming; Anderson, Erik; Hill, Geoffrey; Chen, John J; Patrianakos, Thomas

    2015-01-01

    To compare cumulative dissipated energy between two phacoemulsification machines. An ambulatory surgical center, Honolulu, Hawaii, USA. Retrospective chart review. A total of 2,077 consecutive cases of cataract extraction by phacoemulsification performed by five surgeons from November 2012 to November 2014 were included in the study; 1,021 consecutive cases were performed using the Infiniti Vision System, followed by 1,056 consecutive cases performed using the Centurion Vision System. The Centurion phacoemulsification system required less energy to remove a cataractous lens with an adjusted average energy reduction of 38% (5.09 percent-seconds) (P<0.001) across all surgeons in comparison to the Infiniti phacoemulsification system. The reduction in cumulative dissipated energy was statistically significant for each surgeon, with a range of 29%-45% (2.25-12.54 percent-seconds) (P=0.005-<0.001). Cumulative dissipated energy for both the Infiniti and Centurion systems varied directly with patient age, increasing an average of 2.38 percent-seconds/10 years. The Centurion phacoemulsification system required less energy to remove a cataractous lens in comparison to the Infiniti phacoemulsification system.

  18. Hawking fluxes, fermionic currents, W{sub 1+{infinity}} algebra, and anomalies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonora, L.; Cvitan, M.; Theoretical Physics Department, Faculty of Science, University of Zagreb Bijenicka cesta 32, HR-10002 Zagreb

    2009-10-15

    We complete the analysis carried out in previous papers by studying the Hawking radiation for a Kerr black hole carried to infinity by fermionic currents of any spin. We find agreement with the thermal spectrum of the Hawking radiation for fermionic degrees of freedom. We start by showing that the near-horizon physics for a Kerr black hole is approximated by an effective two-dimensional field theory of fermionic fields. Then, starting from two-dimensional currents of any spin that form a W{sub 1+{infinity}} algebra, we construct an infinite set of covariant currents, each of which carries the corresponding moment of the Hawkingmore » radiation. All together they agree with the thermal spectrum of the latter. We show that the predictive power of this method is based not on the anomalies of the higher-spin currents (which are trivial) but on the underlying W{sub 1+{infinity}} structure. Our results point toward the existence in the near-horizon geometry of a symmetry larger than the Virasoro algebra, which very likely takes the form of a W{sub {infinity}} algebra.« less

  19. Conformal Infinity.

    PubMed

    Frauendiener, Jörg

    2000-01-01

    The notion of conformal infinity has a long history within the research in Einstein's theory of gravity. Today, "conformal infinity" is related with almost all other branches of research in general relativity, from quantisation procedures to abstract mathematical issues to numerical applications. This review article attempts to show how this concept gradually and inevitably evolved out of physical issues, namely the need to understand gravitational radiation and isolated systems within the theory of gravitation and how it lends itself very naturally to solve radiation problems in numerical relativity. The fundamental concept of null-infinity is introduced. Friedrich's regular conformal field equations are presented and various initial value problems for them are discussed. Finally, it is shown that the conformal field equations provide a very powerful method within numerical relativity to study global problems such as gravitational wave propagation and detection.

  20. Conformal Infinity.

    PubMed

    Frauendiener, Jörg

    2004-01-01

    The notion of conformal infinity has a long history within the research in Einstein's theory of gravity. Today, "conformal infinity" is related to almost all other branches of research in general relativity, from quantisation procedures to abstract mathematical issues to numerical applications. This review article attempts to show how this concept gradually and inevitably evolved from physical issues, namely the need to understand gravitational radiation and isolated systems within the theory of gravitation, and how it lends itself very naturally to the solution of radiation problems in numerical relativity. The fundamental concept of null-infinity is introduced. Friedrich's regular conformal field equations are presented and various initial value problems for them are discussed. Finally, it is shown that the conformal field equations provide a very powerful method within numerical relativity to study global problems such as gravitational wave propagation and detection.

  1. Relativized problems with abelian phase group in topological dynamics.

    PubMed

    McMahon, D

    1976-04-01

    Let (X, T) be the equicontinuous minimal transformation group with X = pi(infinity)Z(2), the Cantor group, and S = [unk](infinity)Z(2) endowed with the discrete topology acting on X by right multiplication. For any countable group T we construct a function F:X x S --> T such that if (Y, T) is a minimal transformation group, then (X x Y, S) is a minimal transformation group with the action defined by (x, y)s = [xs, yF(x, s)]. If (W, T) is a minimal transformation group and varphi:(Y, T) --> (W, T) is a homomorphism, then identity x varphi:(X x Y, S) --> (X x W, S) is a homomorphism and has many of the same properties that varphi has. For this reason, one may assume that the phase group is abelian (or S) without loss of generality for many relativized problems in topological dynamics.

  2. Chemotaxis with logistic source

    NASA Astrophysics Data System (ADS)

    Winkler, Michael

    2008-12-01

    We consider the chemotaxis system in a smooth bounded domain , where [chi]>0 and g generalizes the logistic function g(u)=Au-bu[alpha] with [alpha]>1, A[greater-or-equal, slanted]0 and b>0. A concept of very weak solutions is introduced, and global existence of such solutions for any nonnegative initial data u0[set membership, variant]L1([Omega]) is proved under the assumption that . Moreover, boundedness properties of the constructed solutions are studied. Inter alia, it is shown that if b is sufficiently large and u0[set membership, variant]L[infinity]([Omega]) has small norm in L[gamma]([Omega]) for some then the solution is globally bounded. Finally, in the case that additionally holds, a bounded set in L[infinity]([Omega]) can be found which eventually attracts very weak solutions emanating from arbitrary L1 initial data. The paper closes with numerical experiments that illustrate some of the theoretically established results.

  3. Stability for a class of difference equations

    NASA Astrophysics Data System (ADS)

    Muroya, Yoshiaki; Ishiwata, Emiko

    2009-06-01

    We consider the following non-autonomous and nonlinear difference equations with unbounded delays: where 0

  4. Excising das All: Evolving Maxwell waves beyond Scri

    NASA Technical Reports Server (NTRS)

    vanMeter, James R.; Fiske, David R.; Misner, Charles W.

    2006-01-01

    We study the numerical propagation of waves through future null infinity in a conformally compactified spacetime. We introduce an artificial cosmological constant, which allows us some control over the causal structure near null infinity. We exploit this freedom to ensure that all light cones are tilted outward in a region near null infinity, which allows us to impose excision-style boundary conditions in our finite difference code. In this preliminary study we consider electromagnetic waves propagating in a static, conformally compactified spacetime.

  5. Leaders break ground for INFINITY

    NASA Image and Video Library

    2008-11-20

    Community leaders from Mississippi and Louisiana break ground for the new INFINITY at NASA Stennis Space Center facility during a Nov. 20 ceremony. Groundbreaking participants included (l to r): Gottfried Construction representative John Smith, Mississippi Highway Commissioner Wayne Brown, INFINITY board member and Apollo 13 astronaut Fred Haise, Stennis Director Gene Goldman, Studio South representative David Hardy, Leo Seal Jr. family representative Virginia Wagner, Hancock Bank President George Schloegel, Mississippi Rep. J.P. Compretta, Mississippi Band of Choctaw Indians representative Charlie Benn and Louisiana Sen. A.G. Crowe.

  6. Semi-discrete approximations to nonlinear systems of conservation laws; consistency and L(infinity)-stability imply convergence

    NASA Technical Reports Server (NTRS)

    Tadmor, Eitan

    1988-01-01

    A convergence theory for semi-discrete approximations to nonlinear systems of conservation laws is developed. It is shown, by a series of scalar counter-examples, that consistency with the conservation law alone does not guarantee convergence. Instead, a notion of consistency which takes into account both the conservation law and its augmenting entropy condition is introduced. In this context it is concluded that consistency and L(infinity)-stability guarantee for a relevant class of admissible entropy functions, that their entropy production rate belongs to a compact subset of H(loc)sup -1 (x,t). One can now use compensated compactness arguments in order to turn this conclusion into a convergence proof. The current state of the art for these arguments includes the scalar and a wide class of 2 x 2 systems of conservation laws. The general framework of the vanishing viscosity method is studied as an effective way to meet the consistency and L(infinity)-stability requirements. How this method is utilized to enforce consistency and stability for scalar conservation laws is shown. In this context we prove, under the appropriate assumptions, the convergence of finite difference approximations (e.g., the high resolution TVD and UNO methods), finite element approximations (e.g., the Streamline-Diffusion methods) and spectral and pseudospectral approximations (e.g., the Spectral Viscosity methods).

  7. Semi-discrete approximations to nonlinear systems of conservation laws; consistency and L(infinity)-stability imply convergence. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tadmor, E.

    1988-07-01

    A convergence theory for semi-discrete approximations to nonlinear systems of conservation laws is developed. It is shown, by a series of scalar counter-examples, that consistency with the conservation law alone does not guarantee convergence. Instead, a notion of consistency which takes into account both the conservation law and its augmenting entropy condition is introduced. In this context it is concluded that consistency and L(infinity)-stability guarantee for a relevant class of admissible entropy functions, that their entropy production rate belongs to a compact subset of H(loc)sup -1 (x,t). One can now use compensated compactness arguments in order to turn this conclusionmore » into a convergence proof. The current state of the art for these arguments includes the scalar and a wide class of 2 x 2 systems of conservation laws. The general framework of the vanishing viscosity method is studied as an effective way to meet the consistency and L(infinity)-stability requirements. How this method is utilized to enforce consistency and stability for scalar conservation laws is shown. In this context we prove, under the appropriate assumptions, the convergence of finite difference approximations (e.g., the high resolution TVD and UNO methods), finite element approximations (e.g., the Streamline-Diffusion methods) and spectral and pseudospectral approximations (e.g., the Spectral Viscosity methods).« less

  8. INFINITY ribbon-cutting

    NASA Image and Video Library

    2012-04-11

    Stennis Space Center welcomes participants during ribbon-cutting activities for the INFINITY at NASA Stennis Space Center facility April 11, 2012. The visitor center and museum is located on Interstate 10, Exit 2, in south Mississippi.

  9. Robust integrated flight/propulsion control design for a STOVL aircraft using H-infinity control design techniques

    NASA Technical Reports Server (NTRS)

    Garg, Sanjay

    1993-01-01

    Results are presented from an application of H-infinity control design methodology to a centralized integrated flight/propulsion control (IFPC) system design for a supersonic STOVL fighter aircraft in transition flight. The emphasis is on formulating the H-infinity optimal control synthesis problem such that the critical requirements for the flight and propulsion systems are adequately reflected within the linear, centralized control problem formulation and the resulting controller provides robustness to modeling uncertainties and model parameter variations with flight condition. Detailed evaluation results are presented for a reduced order controller obtained from the improved H-infinity control design showing that the control design meets the specified nominal performance objective as well as provides stability robustness for variations in plant system dynamics with changes in aircraft trim speed within the transition flight envelope.

  10. Comparison of performance of three commercial platforms for warfarin sensitivity genotyping.

    PubMed

    Babic, Nikolina; Haverfield, Eden V; Burrus, Julie A; Lozada, Anthony; Das, Soma; Yeo, Kiang-Teck J

    2009-08-01

    We performed a 3-way comparison on the Osmetech eSensor, AutoGenomics INFINITI, and a real-time PCR method (Paragonx reagents/Stratagene RT-PCR platform) for their FDA-cleared warfarin panels, and additional polymorphisms (CYP2C9*5, *6, and 11 and extended VKORC1 panels) where available. One hundred de-identified DNA samples were used in this IRB-approved study. Accuracy was determined by comparison of genotyping results across three platforms. Any discrepancy was resolved by bi-directional sequencing. The CYP4F2 on Osmetech was validated by bi-directional sequencing. Accuracies for CYP2C9*2 and *3 were 100% for all 3 platforms. VKORC1 3673 genotyping accuracies were 100% on eSensor and 97% on Infiniti. CYP2C9*5, *6 and *11 showed 100% concordance between eSensor and Infiniti. VKORC1 6484 and 9041 variants compared between ParagonDx and Infiniti analyzer were 100% (6484) and 99% (9041) concordant. CYP4F2 was 100% concordant with sequencing results. The time required to generate the results from automated DNA extraction-to-result was approximately 8h on Infiniti, and 4h on eSensor and ParagonDx, respectively. Overall, we observed excellent CYP2C9*2 and *3 genotyping accuracy for all three platforms. For VKORC1 3673 genotyping, eSensor demonstrated a slightly higher accuracy than the Infiniti, and CYP4F2 on Osmetech was 100% accurate.

  11. Fully pseudospectral solution of the conformally invariant wave equation near the cylinder at spacelike infinity. III: nonspherical Schwarzschild waves and singularities at null infinity

    NASA Astrophysics Data System (ADS)

    Frauendiener, Jörg; Hennig, Jörg

    2018-03-01

    We extend earlier numerical and analytical considerations of the conformally invariant wave equation on a Schwarzschild background from the case of spherically symmetric solutions, discussed in Frauendiener and Hennig (2017 Class. Quantum Grav. 34 045005), to the case of general, nonsymmetric solutions. A key element of our approach is the modern standard representation of spacelike infinity as a cylinder. With a decomposition into spherical harmonics, we reduce the four-dimensional wave equation to a family of two-dimensional equations. These equations can be used to study the behaviour at the cylinder, where the solutions turn out to have, in general, logarithmic singularities at infinitely many orders. We derive regularity conditions that may be imposed on the initial data, in order to avoid the first singular terms. We then demonstrate that the fully pseudospectral time evolution scheme can be applied to this problem leading to a highly accurate numerical reconstruction of the nonsymmetric solutions. We are particularly interested in the behaviour of the solutions at future null infinity, and we numerically show that the singularities spread to null infinity from the critical set, where the cylinder approaches null infinity. The observed numerical behaviour is consistent with similar logarithmic singularities found analytically on the critical set. Finally, we demonstrate that even solutions with singularities at low orders can be obtained with high accuracy by virtue of a coordinate transformation that converts solutions with logarithmic singularities into smooth solutions.

  12. Comparison of cumulative dissipated energy between the Infiniti and Centurion phacoemulsification systems

    PubMed Central

    Chen, Ming; Anderson, Erik; Hill, Geoffrey; Chen, John J; Patrianakos, Thomas

    2015-01-01

    Purpose To compare cumulative dissipated energy between two phacoemulsification machines. Setting An ambulatory surgical center, Honolulu, Hawaii, USA. Design Retrospective chart review. Methods A total of 2,077 consecutive cases of cataract extraction by phacoemulsification performed by five surgeons from November 2012 to November 2014 were included in the study; 1,021 consecutive cases were performed using the Infiniti Vision System, followed by 1,056 consecutive cases performed using the Centurion Vision System. Results The Centurion phacoemulsification system required less energy to remove a cataractous lens with an adjusted average energy reduction of 38% (5.09 percent-seconds) (P<0.001) across all surgeons in comparison to the Infiniti phacoemulsification system. The reduction in cumulative dissipated energy was statistically significant for each surgeon, with a range of 29%–45% (2.25–12.54 percent-seconds) (P=0.005–<0.001). Cumulative dissipated energy for both the Infiniti and Centurion systems varied directly with patient age, increasing an average of 2.38 percent-seconds/10 years. Conclusion The Centurion phacoemulsification system required less energy to remove a cataractous lens in comparison to the Infiniti phacoemulsification system. PMID:26229430

  13. Kharitonov's theorem: Generalizations and algorithms

    NASA Technical Reports Server (NTRS)

    Rublein, George

    1989-01-01

    In 1978, the Russian mathematician V. Kharitonov published a remarkably simple necessary and sufficient condition in order that a rectangular parallelpiped of polynomials be a stable set. Here, stable is taken to mean that the polynomials have no roots in the closed right-half of the complex plane. The possibility of generalizing this result was studied by numerous authors. A set, Q, of polynomials is given and a necessary and sufficient condition that the set be stable is sought. Perhaps the most general result is due to Barmish who takes for Q a polytope and proceeds to construct a complicated nonlinear function, H, of the points in Q. With the notion of stability which was adopted, Barmish asks that the boundary of the closed right-half plane be swept, that the set G is considered = to (j(omega)(bar) - infinity is less than omega is less than infinity) and for each j(omega)(sigma)G, require H(delta) is greater than 0. Barmish's scheme has the merit that it describes a true generalization of Kharitonov's theorem. On the other hand, even when Q is a polyhedron, the definition of H requires that one do an optimization over the entire set of vertices, and then a subsequent optimization over an auxiliary parameter. In the present work, only the case where Q is a polyhedron is considered and the standard definition of stability described, is used. There are straightforward generalizations of the method to the case of discrete stability or to cases where certain root positions are deemed desirable. The cases where Q is non-polyhedral are less certain as candidates for the method. Essentially, a method of geometric programming was applied to the problem of finding maximum and minimum angular displacements of points in the Nyquist locus (Q(j x omega)(bar) - infinity is less than omega is less than infinity). There is an obvious connection with the boundary sweeping requirement of Barmish.

  14. Challenges in assessing college students' conception of duality: the case of infinity

    NASA Astrophysics Data System (ADS)

    Babarinsa-Ochiedike, Grace Olutayo

    Interpreting students' views of infinity posits a challenge for researchers due to the dynamic nature of the conception. There is diversity and variation among students' process-object perceptions. The fluctuations between students' views however reveal an undeveloped duality conception. This study examined college students' conception of duality in understanding and representing infinity with the intent to design strategies that could guide researchers in categorizing students' views of infinity into different levels. Data for the study were collected from N=238 college students enrolled in Calculus sequence courses (Pre-Calculus, Calculus I through Calculus III) at one of the southwestern universities in the U.S. using self-report questionnaires and semi-structured individual task-based interviews. Data was triangulated using multiple measures analyzed by three independent experts using self-designed coding sheets to assess students' externalization of the duality conception of infinity. Results of this study reveal that college students' experiences in traditional Calculus sequence courses are not supportive of the development of duality conception. On the contrary, it strengthens the singularity perspective on fundamental ideas of mathematics such as infinity. The study also found that coding and assessing college students' conception of duality is a challenging and complex process due to the dynamic nature of the conception that is task-dependent and context-dependent. Practical significance of the study is that it helps to recognize misconceptions and starts addressing them so students will have a more comprehensive view of fundamental mathematical ideas as they progress through the Calculus coursework sequence. The developed duality concept development framework called Action-Process-Object-Duality (APOD) adapted from the APOS theory could guide educators and researchers as they engage in assessing students' conception of duality. The results of this study could serve as a facilitating instrument to further analyze cognitive obstacles in college students' understanding of the infinity concept.

  15. A fluidics comparison of Alcon Infiniti, Bausch & Lomb Stellaris, and Advanced Medical Optics Signature phacoemulsification machines.

    PubMed

    Georgescu, Dan; Kuo, Annie F; Kinard, Krista I; Olson, Randall J

    2008-06-01

    To compare three phacoemulsification machines for measurement accuracy and postocclusion surge (POS) in human cadaver eyes. In vitro comparisons of machine accuracy and POS. Tip vacuum and flow were compared with machine indicated vacuum and flow. All machines were placed in two human cadaver eyes and POS was determined. Vacuum (% of actual) was 101.9% +/- 1.7% for Infiniti (Alcon, Fort Worth, Texas, USA), 93.2% +/- 3.9% for Stellaris (Bausch & Lomb, Rochester, New York, USA), and 107.8% +/- 4.6% for Signature (Advanced Medical Optics, Santa, Ana, California, USA; P < .0001). At 60 ml/minute flow, actual flow and unoccluded flow vacuum (UFV) was 55.8 +/- 0.4 ml/minute and 197.7 +/- 0.7 mm Hg for Infiniti, 53.5 +/- 0.0 ml/minute and 179.8 +/- 0.9 mm Hg for Stellaris, and 58.5 +/- 0.0 ml/minute and 115.1 +/- 2.3 mm Hg for Signature (P < .0001). POS in an 32-year-old eye was 0.33 +/- 0.05 mm for Infiniti, 0.16 +/- 0.06 mm for Stellaris, and 0.13 +/- 0.04 mm for Signature at 550 mm Hg, 60 cm bottle height, 45 ml/minute flow with 19-gauge tips (P < .0001 for Infiniti vs Stellaris and Signature). POS in an 81-year-old eye was 1.51 +/- 0.22 mm for Infiniti, 0.83 +/- 0.06 mm for Stellaris, 0.67 +/- 0.01 mm for Signature at 400 mm Hg vacuum, 70 cm bottle height, 40 ml/minute flow with 19-gauge tips (P < .0001). Machine-indicated accuracy, POS, and UFV were statistically significantly different. Signature had the lowest POS and vacuum to maintain flow. Regarding POS, Stellaris was close to Signature; regarding vacuum to maintain flow, Infiniti and Stellaris were similar. Minimizing POS and vacuum to maintain flow potentially are important in avoiding ocular damage and surgical complications.

  16. Light cone structure near null infinity of the Kerr metric

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bai Shan; Shang Yu; Graduate School of Chinese Academy of Sciences, Beijing, 100080

    2007-02-15

    Motivated by our attempt to understand the question of angular momentum of a relativistic rotating source carried away by gravitational waves, in the asymptotic regime near future null infinity of the Kerr metric, a family of null hypersurfaces intersecting null infinity in shearfree (good) cuts are constructed by means of asymptotic expansion of the eikonal equation. The geometry of the null hypersurfaces as well as the asymptotic structure of the Kerr metric near null infinity are studied. To the lowest order in angular momentum, the Bondi-Sachs form of the Kerr metric is worked out. The Newman-Unti formalism is then furthermore » developed, with which the Newman-Penrose constants of the Kerr metric are computed and shown to be zero. Possible physical implications of the vanishing of the Newman-Penrose constants of the Kerr metric are also briefly discussed.« less

  17. KRAS mutation testing in colorectal cancer: comparison of the results obtained using 3 different methods for the analysis of codons G12 and G13.

    PubMed

    Bihl, Michel P; Hoeller, Sylvia; Andreozzi, Maria Carla; Foerster, Anja; Rufle, Alexander; Tornillo, Luigi; Terracciano, Luigi

    2012-03-01

    Targeting the epidermal growth factor receptor (EGFR) is a new therapeutic option for patients with metastatic colorectal or lung carcinoma. However, the therapy efficiency highly depends on the KRAS mutation status in the given tumour. Therefore a reliable and secure KRAS mutation testing is crucial. Here we investigated 100 colorectal carcinoma samples with known KRAS mutation status (62 mutated cases and 38 wild type cases) in a comparative manner with three different KRAS mutation testing techniques (Pyrosequencing, Dideoxysequencing and INFINITI) in order to test their reliability and sensitivity. For the large majority of samples (96/100, 96%), the KRAS mutation status obtained by all three methods was the same. Only two cases with clear discrepancies were observed. One case was reported as wild type by the INFINITI method while the two other methods detected a G13C mutation. In the second case the mutation could be detected by the Pyrosequencing and INFINITI method (15% and 15%), while no signal for mutation could be observed with the Dideoxysequencing method. Additional two unclear results were due to a detection of a G12V with the INFINITI method, which was below cut-off when repeated and which was not detectable by the other two methods and very weak signals in a G12V mutated case with the Dideoxy- and Pyroseqencing method compared to the INFINITI method, respectively. In summary all three methods are reliable and robust methods in detecting KRAS mutations. INFINITI, however seems to be slightly more sensitive compared to Dideoxy- and Pyrosequencing.

  18. Comparison of ultrasonic energy expenditures and corneal endothelial cell density reductions during modulated and non-modulated phacoemulsification.

    PubMed

    Davison, James A

    2007-01-01

    To compare the Legacy 20000 Advantec continuous and Infiniti hyperpulse modes (Alcon Laboratories, Fort Worth, TX) with respect to average power, machine-measured phacoemulsification time, total stopwatch real time spent within the phacoemulsification process, balanced salt solution (BSS) volume, and corneal endothelial cell density losses. A background study was done of consecutive patients operated on with the Legacy (n = 60) and Infiniti (n = 40) machines programmed with identical parameters and using the continuous mode only. A primary study of another set of consecutive cases was operated on using the Legacy (n = 87) and Infiniti (n = 94) with the same parameters, but using the hyperpulse mode during quadrant removal with the Infiniti. Measurements for each set included average power and phacoemulsification time with corneal endothelial cell densities, BSS volume, and time spent in the phacoemulsification process. Similarities were found in the background study for average power percent and average minutes of phacoemulsification time. In the primary study, similarities were found for total minutes in the phacoemulsification process, BSS usage, and ECD losses, and differences were found for average power percent (P< .001) and machine-measured phacoemulsification minutes (P< .001). The Legacy and Infiniti performed similarly in continuous mode. With the Infiniti hyperpulse mode, a total ultrasonic energy reduction of 66% was noted. The machines required the same amount of total stopwatch measured time to accomplish phacoemulsification and produced the same 5% corneal endothelial cell loss. Therefore, clinically, these two machines behave in a comparable manner relative to safety and effectiveness.

  19. Examination of the effect of increasing doses of etoricoxib on oral methotrexate pharmacokinetics in patients with rheumatoid arthritis.

    PubMed

    Schwartz, Jules I; Agrawal, Nancy G B; Wong, P H; Miller, Jutta; Bachmann, Kenneth; Marbury, Thomas; Hoelscher, David; Cavanaugh, Paul F; Gottesdiener, Keith

    2009-10-01

    The authors designed 2 randomized controlled studies to examine the effects of etoricoxib 60 to 120 mg daily on methotrexate pharmacokinetics in 50 rheumatoid arthritis (RA) patients on stable doses of methotrexate (7.5-20 mg). Patients received oral methotrexate at baseline and on days 7 and 14. In study 1, patients received etoricoxib 60 mg (days 1-7) and then 120 mg (days 8-14); in study 2, patients received etoricoxib 90 mg (days 1-7) and then 120 mg (days 8-14). For study 1, the AUC(0-infinity) geometric mean ratio (GMR) (90% confidence interval [CI]) for day 7 versus baseline was 1.01 (0.91, 1.12) for etoricoxib 60 mg; the area under the plasma concentration-time curve from zero to infinity (AUC(0-infinity)) GMR (90% CI) for day 14 was 1.28 (1.15, 1.42) for etoricoxib 120 mg. For study 2, the AUC(0-infinity) GMR (90% CI) for day 7 versus baseline was 1.07 (1.01, 1.13) for etoricoxib 90 mg; the AUC(0-infinity) GMR (90% CI) for day 14 was 1.05 (0.99, 1.11) for etoricoxib 120 mg. In summary, etoricoxib 60 and 90 mg had no effect on methotrexate plasma concentrations. Although no effect on methotrexate pharmacokinetics was observed with etoricoxib 120 mg in study 2, GMR AUC(0-infinity) fell outside the prespecified bounds in study 1. Standard monitoring of methotrexate-related toxicity should be continued when etoricoxib and methotrexate are administered concurrently, especially with doses >90 mg etoricoxib.

  20. Multi-unit dosage formulations of theophylline for controlled release applications.

    PubMed

    Uhumwangho, Michael U; Okor, Roland S

    2007-01-01

    The study was carried out to investigate the drug release profiles of multi-unit dosage formulations of theophylline consisting of both the fast and slow release components in a unit dose. The fast release component consisted of conventional granules of theophylline formed by mixing the drug powder with starch mucilage (20% w/v) while the slow release component consisted of wax granulations of theophylline formed by triturating the drug powder with a melted Carnauba wax (drug:wax ratio, 4:1). The granules were either filled into capsules or tabletted. In the study design, the drug release characteristics of the individual fast or slow release particles were first determined separately and then mixed in various proportions for the purpose of optimizing the drug release profiles. The evaluating parameters were the prompt release in the first 1 h (mp), the maximum release (m infinity) and the time to attain it (t infinity). Total drug content in each capsule or tablet was 300 mg and two of such were used in dissolution studies. The release kinetics and hence the release mechanism was confirmed by measuring the linear regression coefficient (R2 values) of the release data. The release kinetics was generally most consistent with the Higuchi square root of time relationship (R2 = 0.95). indicating a diffusion-controlled mechanism. The mp (mg) and t infinity (h) values for capsules and tablets of the conventional granules were (420 mg, 3 h) and (348 mg, 5 h), respectively, while for the capsules and tablets of the wax granulations mp and t infinity values were (228 mg, 9 h) and (156 mg, 12 h), respectively, indicating that a combination of wax granulation and tableting markedly retarded drug release. In the multi-unit dose formulations where the conventional and wax granulations were mixed in the ratios 2:1, 1:1 and 1:2 (conventional: matrix), the m infinity and t infinity values for the capsules were (378 mg, 6 h), (326 mg, 6 h) and (272 mg, 7 h), reSpectively. The corresponding values of m infinity and t infinity for the tablets were (240 mg, 9 h), (180 mg, 11 h) and (128 mg, 12 h) against the set target (200 mg, 12 h). The indication is that tableting rather than encapsulation can more effectively control drug release from the systems.

  1. Robust reinforcement learning.

    PubMed

    Morimoto, Jun; Doya, Kenji

    2005-02-01

    This letter proposes a new reinforcement learning (RL) paradigm that explicitly takes into account input disturbance as well as modeling errors. The use of environmental models in RL is quite popular for both offline learning using simulations and for online action planning. However, the difference between the model and the real environment can lead to unpredictable, and often unwanted, results. Based on the theory of H(infinity) control, we consider a differential game in which a "disturbing" agent tries to make the worst possible disturbance while a "control" agent tries to make the best control input. The problem is formulated as finding a min-max solution of a value function that takes into account the amount of the reward and the norm of the disturbance. We derive online learning algorithms for estimating the value function and for calculating the worst disturbance and the best control in reference to the value function. We tested the paradigm, which we call robust reinforcement learning (RRL), on the control task of an inverted pendulum. In the linear domain, the policy and the value function learned by online algorithms coincided with those derived analytically by the linear H(infinity) control theory. For a fully nonlinear swing-up task, RRL achieved robust performance with changes in the pendulum weight and friction, while a standard reinforcement learning algorithm could not deal with these changes. We also applied RRL to the cart-pole swing-up task, and a robust swing-up policy was acquired.

  2. More on the covariant retarded Green's function for the electromagnetic field in de Sitter spacetime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Higuchi, Atsushi; Lee, Yen Cheong; Nicholas, Jack R.

    2009-11-15

    In a recent paper 2 it was shown in examples that the covariant retarded Green's functions in certain gauges for electromagnetism and linearized gravity can be used to reproduce field configurations correctly in spite of the spacelike nature of past infinity in de Sitter spacetime. In this paper we extend the work of Ref. 2 concerning the electromagnetic field and show that the covariant retarded Green's function with an arbitrary value of the gauge parameter reproduces the electromagnetic field from two opposite charges at antipodal points of de Sitter spacetime.

  3. Numerical taxonomy on data: Experimental results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cohen, J.; Farach, M.

    1997-12-01

    The numerical taxonomy problems associated with most of the optimization criteria described above are NP - hard [3, 5, 1, 4]. In, the first positive result for numerical taxonomy was presented. They showed that if e is the distance to the closest tree metric under the L{sub {infinity}} norm. i.e., e = min{sub T} [L{sub {infinity}} (T-D)], then it is possible to construct a tree T such that L{sub {infinity}} (T-D) {le} 3e, that is, they gave a 3-approximation algorithm for this problem. We will refer to this algorithm as the Single Pivot (SP) heuristic.

  4. Newman-Penrose constants of the Kerr-Newman metric

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gong Xuefei; Shang Yu; Bai Shan

    The Newman-Unti formalism of the Kerr-Newman metric near future null infinity is developed, with which the Newman-Penrose constants for both the gravitational and electromagnetic fields of the Kerr-Newman metric are computed and shown to be zero. The multipole structure near future null infinity in the sense of Janis-Newman of the Kerr-Newman metric is then further studied. It is found that up to the 2{sup 4}-pole, modulo a constant dependent upon the order of the pole, these multipole moments agree with those of Geroch-Hansen multipole moments defined at spatial infinity.

  5. Robust control synthesis for uncertain dynamical systems

    NASA Technical Reports Server (NTRS)

    Byun, Kuk-Whan; Wie, Bong; Sunkel, John

    1989-01-01

    This paper presents robust control synthesis techniques for uncertain dynamical systems subject to structured parameter perturbation. Both QFT (quantitative feedback theory) and H-infinity control synthesis techniques are investigated. Although most H-infinity-related control techniques are not concerned with the structured parameter perturbation, a new way of incorporating the parameter uncertainty in the robust H-infinity control design is presented. A generic model of uncertain dynamical systems is used to illustrate the design methodologies investigated in this paper. It is shown that, for a certain noncolocated structural control problem, use of both techniques results in nonminimum phase compensation.

  6. Development of homotopy algorithms for fixed-order mixed H2/H(infinity) controller synthesis

    NASA Technical Reports Server (NTRS)

    Whorton, M.; Buschek, H.; Calise, A. J.

    1994-01-01

    A major difficulty associated with H-infinity and mu-synthesis methods is the order of the resulting compensator. Whereas model and/or controller reduction techniques are sometimes applied, performance and robustness properties are not preserved. By directly constraining compensator order during the optimization process, these properties are better preserved, albeit at the expense of computational complexity. This paper presents a novel homotopy algorithm to synthesize fixed-order mixed H2/H-infinity compensators. Numerical results are presented for a four-disk flexible structure to evaluate the efficiency of the algorithm.

  7. Effect of bottle height and aspiration rate on postocclusion surge in Infiniti and Millennium peristaltic phacoemulsification machines.

    PubMed

    Ward, Matthew S; Georgescu, Dan; Olson, Randall J

    2008-08-01

    To assess how flow and bottle height affect postocclusion surge in the Infiniti (Alcon, Inc.) and Millennium (Bausch & Lomb) peristaltic machines. John A. Moran Eye Center Clinical Laboratories, University of Utah, Salt Lake City, Utah. Postocclusion anterior chamber depth changes were measured in human eye-bank eyes using A-scan. Surge was simulated by clamping the aspiration tubing and releasing it at maximum vacuum. In both machines, surge was measured (1) with aspiration held constant at 12 mL/min and bottle heights at 60, 120, and 180 cm and (2) with bottle height held constant at 60 cm and aspiration rates at 12, 24, and 36 mL/min. Surge decreased approximately 40% with each 60 cm increase in bottle height in the Infiniti. It was constant at all bottle heights in the Millennium. At 12 and 24 mL/min aspiration rates, surge in the Millennium was less than half that in the Infiniti (P<.001). Postocclusion surge decreased linearly with increasing bottle height in the Infiniti system and was relatively constant with increasing bottle height in the Millennium system. The Millennium may offer a more stable phacoemulsification platform with respect to surge at a higher aspiration rate.

  8. Curvature of Super Diff(S/sup 1/)/S/sup 1/

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oh, P.; Ramond, P.

    Motivated by the work of Bowick and Rajeev, we calculate the curvature of the infinite-dimensional flag manifolds DiffS/sup 1//S/sup 1/ and Super DiffS/sup 1//S/sup 1/ using standard finite-dimensional coset space techniques. We regularize the infinity by zeta-function regularization and recover the conformal and superconformal anomalies respectively for a specific choice of the torsion.

  9. Application of the Yoshida-Ruth Techniques to Implicit Integration and Multi-Map Explicit Integration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forest, E.; Bengtsson, J.; Reusch, M.F.

    1991-04-01

    The full power of Yoshida's technique is exploited to produce an arbitrary order implicit symplectic integrator and multi-map explicit integrator. This implicit integrator uses a characteristic function involving the force term alone. Also we point out the usefulness of the plain Ruth algorithm in computing Taylor series map using the techniques first introduced by Berz in his 'COSY-INFINITY' code.

  10. The BMS4 algebra at spatial infinity

    NASA Astrophysics Data System (ADS)

    Troessaert, Cédric

    2018-04-01

    We show how a global BMS4 algebra appears as part of the asymptotic symmetry algebra at spatial infinity. Using linearised theory, we then show that this global BMS4 algebra is the one introduced by Strominger as a symmetry of the S-matrix.

  11. Oceanic lithosphere and asthenosphere: The thermal and mechanical structure

    NASA Technical Reports Server (NTRS)

    Schubert, G.; Froidevaux, C.; Yuen, D. A.

    1976-01-01

    A coupled thermal and mechanical solid state model of the oceanic lithosphere and asthenosphere is presented. The model includes vertical conduction of heat with a temperature dependent thermal conductivity, horizontal and vertical advection of heat, viscous dissipation or shear heating, and linear or nonlinear deformation mechanisms with temperature and pressure dependent constitutive relations between shear stress and strain rate. A constant horizontal velocity u sub 0 and temperature t sub 0 at the surface and zero horizontal velocity and constant temperature t sub infinity at great depth are required. In addition to numerical values of the thermal and mechanical properties of the medium, only the values of u sub 0, t sub 0 and t sub infinity are specified. The model determines the depth and age dependent temperature horizontal and vertical velocity, and viscosity structures of the lithosphere and asthenosphere. In particular, ocean floor topography, oceanic heat flow, and lithosphere thickness are deduced as functions of the age of the ocean floor.

  12. Energetics of a strongly correlated Fermi gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Shina

    2008-12-15

    The energy of the two-component Fermi gas with the s-wave contact interaction is a simple linear functional of its momentum distribution: E{sub internal}=h{sup 2}{omega}C/4{pi}am+{sigma}{sub k{sigma}}(h{sup 2}k{sup 2}/2m)(n{sub k{sigma}}= -C/k{sup 4}) where the external potential energy is not included, a is the scattering length, {omega} is the volume, n{sub k{sigma}} is the average number of fermions with wave vector k and spin {sigma}, and C{identical_to}lim{sub k{yields}}{sub {infinity}}k{sup 4}n{sub k{up_arrow}}=lim{sub k{yields}}{sub {infinity}}k{sup 4}n{sub k{down_arrow}}. This result is a universal identity. Its proof is facilitated by a novel mathematical idea, which might be of utility in dealing with ultraviolet divergences in quantum fieldmore » theories. Other properties of this Fermi system, including pair correlations and the dimer-fermion scattering length, are also studied.« less

  13. A New Adaptive H-Infinity Filtering Algorithm for the GPS/INS Integrated Navigation

    PubMed Central

    Jiang, Chen; Zhang, Shu-Bi; Zhang, Qiu-Zhao

    2016-01-01

    The Kalman filter is an optimal estimator with numerous applications in technology, especially in systems with Gaussian distributed noise. Moreover, the adaptive Kalman filtering algorithms, based on the Kalman filter, can control the influence of dynamic model errors. In contrast to the adaptive Kalman filtering algorithms, the H-infinity filter is able to address the interference of the stochastic model by minimization of the worst-case estimation error. In this paper, a novel adaptive H-infinity filtering algorithm, which integrates the adaptive Kalman filter and the H-infinity filter in order to perform a comprehensive filtering algorithm, is presented. In the proposed algorithm, a robust estimation method is employed to control the influence of outliers. In order to verify the proposed algorithm, experiments with real data of the Global Positioning System (GPS) and Inertial Navigation System (INS) integrated navigation, were conducted. The experimental results have shown that the proposed algorithm has multiple advantages compared to the other filtering algorithms. PMID:27999361

  14. A New Adaptive H-Infinity Filtering Algorithm for the GPS/INS Integrated Navigation.

    PubMed

    Jiang, Chen; Zhang, Shu-Bi; Zhang, Qiu-Zhao

    2016-12-19

    The Kalman filter is an optimal estimator with numerous applications in technology, especially in systems with Gaussian distributed noise. Moreover, the adaptive Kalman filtering algorithms, based on the Kalman filter, can control the influence of dynamic model errors. In contrast to the adaptive Kalman filtering algorithms, the H-infinity filter is able to address the interference of the stochastic model by minimization of the worst-case estimation error. In this paper, a novel adaptive H-infinity filtering algorithm, which integrates the adaptive Kalman filter and the H-infinity filter in order to perform a comprehensive filtering algorithm, is presented. In the proposed algorithm, a robust estimation method is employed to control the influence of outliers. In order to verify the proposed algorithm, experiments with real data of the Global Positioning System (GPS) and Inertial Navigation System (INS) integrated navigation, were conducted. The experimental results have shown that the proposed algorithm has multiple advantages compared to the other filtering algorithms.

  15. Hamiltonian thermodynamics of charged three-dimensional dilatonic black holes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dias, Goncalo A. S.; Lemos, Jose P. S.; Centro Multidisciplinar de Astrofisica-CENTRA, Departamento de Fisica, Instituto Superior Tecnico-IST, Universidade Tecnica de Lisboa-UTL, Avenida Rovisco Pais 1, 1049-001 Lisboa

    2008-10-15

    The action for a class of three-dimensional dilaton-gravity theories, with an electromagnetic Maxwell field and a cosmological constant, can be recast in a Brans-Dicke-Maxwell type action, with its free {omega} parameter. For a negative cosmological constant, these theories have static, electrically charged, and spherically symmetric black hole solutions. Those theories with well formulated asymptotics are studied through a Hamiltonian formalism, and their thermodynamical properties are found out. The theories studied are general relativity ({omega}{yields}{+-}{infinity}), a dimensionally reduced cylindrical four-dimensional general relativity theory ({omega}=0), and a theory representing a class of theories ({omega}=-3), all with a Maxwell term. The Hamiltonian formalismmore » is set up in three dimensions through foliations on the right region of the Carter-Penrose diagram, with the bifurcation 1-sphere as the left boundary, and anti-de Sitter infinity as the right boundary. The metric functions on the foliated hypersurfaces and the radial component of the vector potential one-form are the canonical coordinates. The Hamiltonian action is written, the Hamiltonian being a sum of constraints. One finds a new action which yields an unconstrained theory with two pairs of canonical coordinates (M,P{sub M};Q,P{sub Q}), where M is the mass parameter, which for {omega}<-(3/2) and for {omega}={+-}{infinity} needs a careful renormalization, P{sub M} is the conjugate momenta of M, Q is the charge parameter, and P{sub Q} is its conjugate momentum. The resulting Hamiltonian is a sum of boundary terms only. A quantization of the theory is performed. The Schroedinger evolution operator is constructed, the trace is taken, and the partition function of the grand canonical ensemble is obtained, where the chemical potential is the scalar electric field {phi}. Like the uncharged cases studied previously, the charged black hole entropies differ, in general, from the usual quarter of the horizon area due to the dilaton.« less

  16. SU-E-T-119: Dosimetric and Mechanical Characteristics of Elekta Infinity LINAC with Agility MLC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, J; Xu, Q; Xue, J

    2014-06-01

    Purpose: Elekta Infinity is the one of the latest generation LINAC with unique features. Two Infinity LINACs are recently commissioned at our institution. The dosimetric and mechanical characteristics of the machines are presented. Methods: Both Infinity LINACs with Agility MLC (160 leaves with 0.5 cm leaf width) are configured with five electron energies (6, 9, 12, 15, and 18 MeV) and two photon energies (6 and 15 MV). One machine has additional photon energy (10 MV). The commissioning was performed by following the manufacturer's specifications and AAPM TG recommendations. Beam data of both electron and photon beams are measured withmore » scanning ion chambers and linear diode array. Machines are adjusted to have the dosimetrically equivalent characteristics. Results: The commissioning of mechanical and imaging system meets the tolerances by TG recommendations. The PDD{sub 10} of various field sizes for 6 and 15 MV shows < 0.5% difference between two machines. For each electron beams, R{sub 80} matches with < 0.4 mm difference. The symmetry and flatness agree within 0.8% and 0.9% differences for photon beams, respectively. For electron beams, the differences of the symmetry and flatness are within 1.2% and 0.8%, respectively. The mean inline penumbras for 6, 10, and 15 MV are respectively 5.1±0.24, 5.6±0.07, and 5.9±0.10 mm for 10x10 cm at 10 cm depth. The crossline penumbras are larger than inline penumbras by 2.2, 1.4, and 1.0 mm, respectively. The MLC transmission factor with interleaf leakage is 0.5 % for all photon energies. Conclusion: The dosimetric and mechanical characteristics of two Infinity LINACs show good agreements between them. Although the Elekta Infinity has been used in many institutions, the detailed characteristics of the machine have not been reported. This study provides invaluable information to understand the Infinity LINAC and to compare the quality of commissioning data for other LINACs.« less

  17. Tensor tomography on Cartan–Hadamard manifolds

    NASA Astrophysics Data System (ADS)

    Lehtonen, Jere; Railo, Jesse; Salo, Mikko

    2018-04-01

    We study the geodesic x-ray transform on Cartan–Hadamard manifolds, generalizing the x-ray transforms on Euclidean and hyperbolic spaces that arise in medical and seismic imaging. We prove solenoidal injectivity of this transform acting on functions and tensor fields of any order. The functions are assumed to be exponentially decaying if the sectional curvature is bounded, and polynomially decaying if the sectional curvature decays at infinity. This work extends the results of Lehtonen (2016 arXiv:1612.04800) to dimensions n ≥slant 3 and to the case of tensor fields of any order.

  18. Ce{sub 2}AgYb{sub 5/3}Se{sub 6}, La{sub 2}CuErTe{sub 5}, and Ce{sub 2}CuTmTe{sub 5}: Three new quaternary interlanthanide chalcogenides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Babo, Jean-Marie; Albrecht-Schmitt, Thomas E., E-mail: talbrec1@nd.edu

    2013-01-15

    Three new ordered quaternary interlanthanide chalcogenides, Ce{sub 2}AgYb{sub 5/3}Se{sub 6}, La{sub 2}CuErTe{sub 5}, and Ce{sub 2}CuTmTe{sub 5}, have been prepared by direct reaction of the elements in molten NaBr at 900 Degree-Sign C. Each compound forms a new structure-type. The Ce{sub 2}AgYb{sub 5/3}Se{sub 6} structure consists of {infinity}{sup 2}{l_brace} [AgYb{sub 5/6}Se{sub 6}]{sup 6-}{r_brace} layers intercalated by Ce{sup 3+} cations. These layers are composed of {infinity}{sup 1}{l_brace} [Yb{sub 5/3}Se{sub 6}]{sup 7-}{r_brace} quadruplet ribbons of [YbSe{sub 6}]{sup 9-} octahedra and infinite {infinity}{sup 1}{l_brace} [AgSe{sub 6}]{sup 11-}{r_brace} double chains of [AgSe{sub 5}]{sup 9-}. The La{sub 2}CuErTe{sub 5} structure is made of one-dimensional {infinity}{supmore » 1}{l_brace} [CuErTe{sub 5}]{sup 6-}{r_brace} ribbons separated by La{sup 3+} cations. These ribbons are formed by cis-edge sharing {infinity}{sup 1}{l_brace} [CuTe{sub 2}]{sup 3-}{r_brace} tetrahedral chains and trans-edge sharing {infinity}{sup 1}{l_brace} [ErTe{sub 4}]{sup 5-}{r_brace} chains. While La{sub 2}CuErTe{sub 5} crystallizes in the orthorhombic space group Pnma, Ce{sub 2}CuTmTe{sub 5} crystallizes in the monoclinic space group C2/m. The latter crystal structure is assembled from {infinity}{sup 2}{l_brace} [CuTmTe{sub 5}]{sup 6-}{r_brace} layers intercalated by Ce{sup 3+} cations. These layers consist of single {infinity}{sup 1}{l_brace} [TmTe{sub 4}]{sup 5-}{r_brace} chains connected to each other through dimers or pseudo-double chains. - Graphical abstract: [CuTe{sub 4}]{sup 7-} tetrahedra sharing cis-edges to yield chains in the La{sub 2}CuErTe{sub 5}. Highlights: Black-Right-Pointing-Pointer New ordered interlanthanide tellurides. Black-Right-Pointing-Pointer New quaternary chalcogenides. Black-Right-Pointing-Pointer Low-dimensional lanthanide chalcogenide substructures. Black-Right-Pointing-Pointer Flux synthesis of new chalcogenides.« less

  19. BRAF mutation testing in solid tumors: a methodological comparison.

    PubMed

    Weyant, Grace W; Wisotzkey, Jeffrey D; Benko, Floyd A; Donaldson, Keri J

    2014-09-01

    Solid tumor genotyping has become standard of care for the characterization of proto-oncogene mutational status, which has traditionally been accomplished with Sanger sequencing. However, companion diagnostic assays and comparable laboratory-developed tests are becoming increasingly popular, such as the cobas 4800 BRAF V600 Mutation Test and the INFINITI KRAS-BRAF assay, respectively. This study evaluates and validates the analytical performance of the INFINITI KRAS-BRAF assay and compares concordance of BRAF status with two reference assays, the cobas test and Sanger sequencing. DNA extraction from FFPE tissue specimens was performed followed by multiplex PCR amplification and fluorescent label incorporation using allele-specific primer extension. Hybridization to a microarray, signal detection, and analysis were then performed. The limits of detection were determined by testing dilutions of mutant BRAF alleles within wild-type background DNA, and accuracy was calculated based on these results. The INFINITI KRAS-BRAF assay produced 100% concordance with the cobas test and Sanger sequencing and had sensitivity equivalent to the cobas assay. The INFINITI assay is repeatable with at least 95% accuracy in the detection of mutant and wild-type BRAF alleles. These results confirm that the INFINITI KRAS-BRAF assay is comparable to traditional sequencing and the Food and Drug Administration-approved companion diagnostic assay for the detection of BRAF mutations. Copyright © 2014 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  20. Global gradient estimates for divergence-type elliptic problems involving general nonlinear operators

    NASA Astrophysics Data System (ADS)

    Cho, Yumi

    2018-05-01

    We study nonlinear elliptic problems with nonstandard growth and ellipticity related to an N-function. We establish global Calderón-Zygmund estimates of the weak solutions in the framework of Orlicz spaces over bounded non-smooth domains. Moreover, we prove a global regularity result for asymptotically regular problems which are getting close to the regular problems considered, when the gradient variable goes to infinity.

  1. Neutron Star Models in Alternative Theories of Gravity

    NASA Astrophysics Data System (ADS)

    Manolidis, Dimitrios

    We study the structure of neutron stars in a broad class of alternative theories of gravity. In particular, we focus on Scalar-Tensor theories and f(R) theories of gravity. We construct static and slowly rotating numerical star models for a set of equations of state, including a polytropic model and more realistic equations of state motivated by nuclear physics. Observable quantities such as masses, radii, etc are calculated for a set of parameters of the theories. Specifically for Scalar-Tensor theories, we also calculate the sensitivities of the mass and moment of inertia of the models to variations in the asymptotic value of the scalar field at infinity. These quantities enter post-Newtonian equations of motion and gravitational waveforms of two body systems that are used for gravitational-wave parameter estimation, in order to test these theories against observations. The construction of numerical models of neutron stars in f(R) theories of gravity has been difficult in the past. Using a new formalism by Jaime, Patino and Salgado we were able to construct models with high interior pressure, namely pc > rho c/3, both for constant density models and models with a polytropic equation of state. Thus, we have shown that earlier objections to f(R) theories on the basis of the inability to construct viable neutron star models are unfounded.

  2. Calculation of the critical overdensity in the spherical-collapse approximation

    NASA Astrophysics Data System (ADS)

    Herrera, D.; Waga, I.; Jorás, S. E.

    2017-03-01

    Critical overdensity δc is a key concept in estimating the number count of halos for different redshift and halo-mass bins, and therefore, it is a powerful tool to compare cosmological models to observations. There are currently two different prescriptions in the literature for its calculation, namely, the differential-radius and the constant-infinity methods. In this work we show that the latter yields precise results only if we are careful in the definition of the so-called numerical infinities. Although the subtleties we point out are crucial ingredients for an accurate determination of δc both in general relativity and in any other gravity theory, we focus on f (R )-modified gravity models in the metric approach; in particular, we use the so-called large (F =1 /3 ) and small-field (F =0 ) limits. For both of them, we calculate the relative errors (between our method and the others) in the critical density δc, in the comoving number density of halos per logarithmic mass interval nln M, and in the number of clusters at a given redshift in a given mass bin Nbin, as functions of the redshift. We have also derived an analytical expression for the density contrast in the linear regime as a function of the collapse redshift zc and Ωm 0 for any F .

  3. Wise Guys: "The Man Who Knew Infinity" and Other Movies about Uppity Geniuses

    ERIC Educational Resources Information Center

    Beck, Bernard

    2017-01-01

    Conventional expectations about subcultural groups can be undermined by unusual performances of some individual members. Several recent movies have concerned people of exceptional ability who unexpectedly excelled at prestigious centers of learning. "The Man Who Knew Infinity," "The Imitation Game," and "The Theory of…

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mijnheer, J.

    Let (X(t): O{le}t{le}{infinity} be a stable subordinator with {alpha} {element_of}). For increasing sequences t{sub k} we give normalizing constants a{sub k} such that lim inf{sub k{le}{infinity}} a {sup {minus}1}{sub k} X(t{sub k}) is a.s. constant. We also derive a.s. upper bounds.

  5. INFINITY harvest

    NASA Image and Video Library

    2012-05-07

    Students from Benjamin E. Mays Preparatory School in New Orleans enjoyed a hands-on experience at the INFINITY at NASA Stennis Space Center facility May 7, 2012. The Louisiana students assisted in the first harvest of lettuce from the Controlled Environment Agriculture unit, which uses an aeroponic process that involves no soil and advance LED lighting techniques.

  6. The Infinite Hotel

    ERIC Educational Resources Information Center

    Wanko, Jeffrey J.

    2009-01-01

    This article provides a historical context for the debate between Georg Cantor and Leopold Kronecker regarding the cardinality of different infinities and incorporates the short story "Welcome to the Hotel Infinity," which uses the analogy of a hotel with an infinite number of rooms to help explain this concept. Wanko makes use of this history and…

  7. Googols and Infinity

    ERIC Educational Resources Information Center

    Gough, John

    2005-01-01

    In this article, the author presents his tales of very large numbers. He discusses the concept of infinity and extremely large numbers such as "googol" and "googolplex". "Googol" which could be written as 1, followed by one hundred zeros, was popularized by Edward Kasner and James Newman. Moreover, "googol" was coined by Kasner's nine-year old…

  8. An Innovation in Children's T.V. the Infinity Factory

    ERIC Educational Resources Information Center

    La Luz, 1977

    1977-01-01

    "Infinity Factory" is a slick, fast-paced, sophisticated series aimed at teaching mathematics fundamentals with a unique and arresting approach. The 30 minutes of live-action skits, brief filmed documentaries, and animation sequences explore common sense math concepts and present useful information showing math at work in everyday life. (NQ)

  9. Relativistic corrections to heavy quark fragmentation to S-wave heavy mesons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sang Wenlong; Yang Lanfei; Chen Yuqi

    The relativistic corrections of order v{sup 2} to the fragmentation functions for the heavy quark to S-wave heavy quarkonia are calculated in the framework of the nonrelativistic quantum chromodynamics factorization formula. We derive the fragmentation functions by using the Collins-Soper definition in both the Feynman gauge and the axial gauge. We also extract them through the process Z{sup 0}{yields}Hqq in the limit M{sub Z}/m{yields}{infinity}. We find that all results obtained by these two different methods and in different gauges are the same. We estimate the relative size of the relativistic corrections to the fragmentation functions.

  10. INtensive versus Standard Ambulatory Blood Pressure Lowering to Prevent Functional DeclINe In The ElderlY (INFINITY)

    PubMed Central

    White, William B.; Marfatia, Ravi; Schmidt, Julia; Wakefield, Dorothy B.; Kaplan, Richard F.; Bohannon, Richard W.; Hall, Charles B.; Guttmann, Charles R.; Moscufo, Nicola; Fellows, Douglas; Wolfson, Leslie

    2012-01-01

    Reductions in mobility and cognitive function linked to accrual of brain microvascular disease related white-matter hyperintensities(WMH) on magnetic resonance imaging (MRI) canoccur in older hypertensive patients in as little as 2 years. We have designed a trial evaluating two levels of ambulatory BP control in individuals with normal or mildly impaired mobility and cognition who have detectable cerebrovascular disease (>0.5% WMH fraction of intracranial volume) on functional outcomes. The study is a prospective randomized, open-label trial with blinded endpoints, inpatients ages 75 and older with elevated 24-h systolic BP (≥145 mmHg in the untreated state) who do not have unstable cardiovascular disease, heart failure or stroke. The primary and key secondary outcomes in the trial are: change from baseline in mobility and cognitive function and damage to brain white matter as demonstrated by accrual of WMH volume and changes indiffusion tensor imaging.Approximately 300 patients will be enrolled and 200 randomized to one of two levels of ambulatory BP control (intensive to achieve a goal 24-hour systolic BP of ≤ 130 mmHg or standard to achieve a goal 24-hour systolic BP of ≤ 145 mmHg) for a total of 36 months using similar antihypertensive regimens. The analytical approach provides 85% power to show a clinically meaningful effect in differences in mobility accompanied by quantitative differences in WMH between treatment groups. The INFINITY trial is the first to guide antihypertensive therapy using ambulatory BP monitoring rather than clinic BP to reduce cerebrovascular disease. PMID:23453090

  11. Riemannian geometry of thermodynamics and systems with repulsive power-law interactions.

    PubMed

    Ruppeiner, George

    2005-07-01

    A Riemannian geometric theory of thermodynamics based on the postulate that the curvature scalar R is proportional to the inverse free energy density is used to investigate three-dimensional fluid systems of identical classical point particles interacting with each other via a power-law potential energy gamma r(-alpha) . Such systems are useful in modeling melting transitions. The limit alpha-->infinity corresponds to the hard sphere gas. A thermodynamic limit exists only for short-range (alpha>3) and repulsive (gamma>0) interactions. The geometric theory solutions for given alpha>3 , gamma>0 , and any constant temperature T have the following properties: (1) the thermodynamics follows from a single function b (rho T(-3/alpha) ) , where rho is the density; (2) all solutions are equivalent up to a single scaling constant for rho T(-3/alpha) , related to gamma via the virial theorem; (3) at low density, solutions correspond to the ideal gas; (4) at high density there are solutions with pressure and energy depending on density as expected from solid state physics, though not with a Dulong-Petit heat capacity limit; (5) for 33.7913 a phase transition is required to go between these regimes; (7) for any alpha>3 we may include a first-order phase transition, which is expected from computer simulations; and (8) if alpha-->infinity, the density approaches a finite value as the pressure increases to infinity, with the pressure diverging logarithmically in the density difference.

  12. Probability distributions of linear statistics in chaotic cavities and associated phase transitions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vivo, Pierpaolo; Majumdar, Satya N.; Bohigas, Oriol

    2010-03-01

    We establish large deviation formulas for linear statistics on the N transmission eigenvalues (T{sub i}) of a chaotic cavity, in the framework of random matrix theory. Given any linear statistics of interest A=SIGMA{sub i=1}{sup N}a(T{sub i}), the probability distribution P{sub A}(A,N) of A generically satisfies the large deviation formula lim{sub N-}>{sub i}nfinity[-2 log P{sub A}(Nx,N)/betaN{sup 2}]=PSI{sub A}(x), where PSI{sub A}(x) is a rate function that we compute explicitly in many cases (conductance, shot noise, and moments) and beta corresponds to different symmetry classes. Using these large deviation expressions, it is possible to recover easily known results and to produce newmore » formulas, such as a closed form expression for v(n)=lim{sub N-}>{sub i}nfinity var(T{sub n}) (where T{sub n}=SIGMA{sub i}T{sub i}{sup n}) for arbitrary integer n. The universal limit v*=lim{sub n-}>{sub i}nfinity v(n)=1/2pibeta is also computed exactly. The distributions display a central Gaussian region flanked on both sides by non-Gaussian tails. At the junction of the two regimes, weakly nonanalytical points appear, a direct consequence of phase transitions in an associated Coulomb gas problem. Numerical checks are also provided, which are in full agreement with our asymptotic results in both real and Laplace space even for moderately small N. Part of the results have been announced by Vivo et al. [Phys. Rev. Lett. 101, 216809 (2008)].« less

  13. New black holes in D =5 minimal gauged supergravity: Deformed boundaries and frozen horizons

    NASA Astrophysics Data System (ADS)

    Blázquez-Salcedo, Jose Luis; Kunz, Jutta; Navarro-Lérida, Francisco; Radu, Eugen

    2018-04-01

    A new class of black hole solutions of the five-dimensional minimal gauged supergravity is presented. They are characterized by the mass, the electric charge, two equal magnitude angular momenta and the magnitude of the magnetic potential at infinity. These black holes possess a horizon of spherical topology; however, both the horizon and the sphere at infinity can be arbitrarily squashed, with nonextremal solutions interpolating between black strings and black branes. A particular set of extremal configurations corresponds to a new one-parameter family of supersymmetric black holes. While their conserved charges are determined by the squashing of the sphere at infinity, these supersymmetric solutions possess the same horizon geometry.

  14. INFINITY Science Center taking shape

    NASA Image and Video Library

    2010-09-06

    Construction of the new INFINITY Science Center is proceeding just west of the Mississippi Welcome Center at exit 2 on Interstate 10. Roy Anderson Corp. of Gulfport is building the 72,000-squarefoot, $43 million science and education center, which will feature a space gallery and an Earth gallery to showcase the science underpinning missions of the agencies at Stennis Space Center. The project is being spearheaded by INFINITY Science Center, Inc., a non-profit corporation led by Gulfport Mayor George Schloegel and Apollo 13 astronaut Fred Haise, in partnership with NASA, the state of Mississippi and private donors. When completed, it will serve as the official Stennis visitors center and will be home to the NASA Educator Resource Center.

  15. INFINITY harvest

    NASA Image and Video Library

    2012-05-07

    The Controlled Environment Agriculture unit at the INFINITY at NASA Stennis Space Center visitor center and museum grows butterhead lettuce using an aeroponic process that involves no soil and advance LED lighting techniques. Students from Benjamin E. Mays Preparatory School in New Orleans helped to harvest the first crop of lettuce during a visit to the facility May 7, 2012.

  16. INFINITY harvest

    NASA Image and Video Library

    2012-05-07

    Lauren Lombard from Benjamin E. Mays Preparatory School in New Orleans enjoys lettuce she helped to harvest at the INFINITY at NASA Stennis Space Center facility May 7, 2012. The Louisiana students assisted in the first harvest of lettuce from the Controlled Environment Agriculture unit, which uses an aeroponic process that involves no soil and advance LED lighting techniques

  17. INFINITY harvest

    NASA Image and Video Library

    2012-05-07

    Shania Etheridge from Benjamin E. Mays Preparatory School in New Orleans shows off the head of lettuce she harvested at the INFINITY at NASA Stennis Space Center facility May 7, 2012. The Louisiana students assisted in the first harvest of lettuce from the Controlled Environment Agriculture unit, which uses an aeroponic process that involves no soil and advance LED lighting techniques.

  18. Cantorian Set Theory and Teaching Prospective Teachers

    ERIC Educational Resources Information Center

    Narli, Serkan; Baser, Nes'e

    2008-01-01

    Infinity has contradictions arising from its nature. Since mind is actually adapted to finite realities attained by behaviors in space and time, when one starts to deal with real infinity, contradictions will arise. In particular, Cantorian Set Theory for it involves the notion of "equivalence of a set to one of its proper subsets,"…

  19. Cantorian Set Theory and Teaching Prospective Teachers

    ERIC Educational Resources Information Center

    Narli, Serkan; Baser, Nes'e

    2008-01-01

    Infinity has contradictions arising from its nature. Since mind is actually adapted to finite realities attained by behaviors in space and time, when one starts to deal with real infinity, contradictions will arise. In particular, Cantorian Set Theory, for it involves the notion of "equivalence of a set to one of its proper subsets," causes…

  20. Student's Concept of Infinity in the Context of a Simple Geometrical Construct

    ERIC Educational Resources Information Center

    Jirotkova, Darina; Littler, Graham

    2003-01-01

    The research described in this paper was undertaken to determine student-teachers' understanding of infinity in a geometrical context. The methods of analysis of students' responses is presented and these were found to be universally applicable. The findings show that school mathematics does not generally develop the students' ideas of infinity…

  1. Quantitative analysis of frequency-domain induced polarization soundings over horizontal beds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patella, D.; Schiavone, D.

    1976-06-01

    Following up a recent study of an indirect procedure for the practical determination of the maximum frequency-effect, defined as fe = I - rho/sub infinity//rho/sub dc/ with rho/sub infinity/ the resistivity at infinite frequency, it is shown at first how, through the Laplace transform theory, rho/sub infinity/ can be related to stationary field vectors in the simple form of Ohm's law. Then applying the equation of continuity for stationary currents with a suitable set of boundary conditions, the integral expression of the apparent resistivity at infinite frequency is derived rho/sub infinity,a/ in the case of a horizontally layered earth. Finally,more » from the definition of the maximum apparent frequency-effect, analytical expressions of fe/sub a/ are obtained for both Schlumberger and dipole arrays placed on the surface of the multi-layered earth section in the most general situation of vertical changes in induced polarization together with dc resistivity variations not at the same interfaces. Direct interpretation procedures are suggested for obtaining the layering parameters directly from the analysis of the sounding curves.« less

  2. An LMI approach to design H(infinity) controllers for discrete-time nonlinear systems based on unified models.

    PubMed

    Liu, Meiqin; Zhang, Senlin

    2008-10-01

    A unified neural network model termed standard neural network model (SNNM) is advanced. Based on the robust L(2) gain (i.e. robust H(infinity) performance) analysis of the SNNM with external disturbances, a state-feedback control law is designed for the SNNM to stabilize the closed-loop system and eliminate the effect of external disturbances. The control design constraints are shown to be a set of linear matrix inequalities (LMIs) which can be easily solved by various convex optimization algorithms (e.g. interior-point algorithms) to determine the control law. Most discrete-time recurrent neural network (RNNs) and discrete-time nonlinear systems modelled by neural networks or Takagi and Sugeno (T-S) fuzzy models can be transformed into the SNNMs to be robust H(infinity) performance analyzed or robust H(infinity) controller synthesized in a unified SNNM's framework. Finally, some examples are presented to illustrate the wide application of the SNNMs to the nonlinear systems, and the proposed approach is compared with related methods reported in the literature.

  3. Method for determining thermal conductivity and thermal capacity per unit volume of earth in situ

    DOEpatents

    Poppendiek, Heinz F.

    1982-01-01

    A method for determining the thermal conductivity of the earth in situ is based upon a cylindrical probe (10) having a thermopile (16) for measuring the temperature gradient between sets of thermocouple junctions (18 and 20) of the probe after it has been positioned in a borehole and has reached thermal equilibrium with its surroundings, and having means (14) for heating one set of thermocouple junctions (20) of the probe at a constant rate while the temperature gradient of the probe is recorded as a rise in temperature over several hours (more than about 3 hours). A fluid annulus thermally couples the probe to the surrounding earth. The recorded temperature curves are related to the earth's thermal conductivity, k.sub..infin., and to the thermal capacity per unit volume, (.gamma.c.sub.p).sub..infin., by comparison with calculated curves using estimates of k.sub..infin. and (.gamma.c.sub.p).sub..infin. in an equation which relates these parameters to a rise in the earth's temperature for a known and constant heating rate.

  4. INFINITY construction contract signed

    NASA Image and Video Library

    2010-04-06

    Key state and community leaders celebrated April 6 with the signing of a construction contract for the state-of-the-art INFINITY Science Center planned near John C. Stennis Space Center in south Mississippi. Gulfport Mayor George Schloegel (l to r), chair of non-profit INFINITY Science Center Inc., was joined for the signing ceremony at the Hancock Bank in Gulfport by Virginia Wagner, sister of late Hancock Bank President Leo Seal Jr.; and Roy Anderson III, president and CEO of Roy Anderson Corp. Seal was the first chair of INFINITY Science Center Inc., which has led in development of the project. Roy Anderson Corp. plans to begin construction on the 72,000-square-foot, $28 million science and education center in May. The Mississippi Department of Transportation (MDOT) also is set to begin construction of a $2 million access road to the new center. The April 6 ceremony was attended by numerous officials, including former Stennis Space Center Directors Jerry Hlass and Roy Estess; Mississippi Senate President Pro Tempore Billy Hewes, R-Gulfport; Mississippi Rep. Diane Peranich, D-Pass Christian; and MDOT Southern District Commissioner Wayne Brown.

  5. INFINITY construction contract signed

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Key state and community leaders celebrated April 6 with the signing of a construction contract for the state-of-the-art INFINITY Science Center planned near John C. Stennis Space Center in south Mississippi. Gulfport Mayor George Schloegel (l to r), chair of non-profit INFINITY Science Center Inc., was joined for the signing ceremony at the Hancock Bank in Gulfport by Virginia Wagner, sister of late Hancock Bank President Leo Seal Jr.; and Roy Anderson III, president and CEO of Roy Anderson Corp. Seal was the first chair of INFINITY Science Center Inc., which has led in development of the project. Roy Anderson Corp. plans to begin construction on the 72,000-square-foot, $28 million science and education center in May. The Mississippi Department of Transportation (MDOT) also is set to begin construction of a $2 million access road to the new center. The April 6 ceremony was attended by numerous officials, including former Stennis Space Center Directors Jerry Hlass and Roy Estess; Mississippi Senate President Pro Tempore Billy Hewes, R-Gulfport; Mississippi Rep. Diane Peranich, D-Pass Christian; and MDOT Southern District Commissioner Wayne Brown.

  6. [Determination of the solubility parameter of organosolv lignin by inverse gas chromatography].

    PubMed

    Yu, Yachen; Li, Kunlan; Ma, Yingchong; Wei, Ligang

    2013-02-01

    An inverse gas chromatographic (IGC) method has been used to measure the solubility parameters (delta2) of organosolv lignin at the absolute temperatures from 333.15 K to 373.15 K. The test probe solvents were n-octane (n-C8), n-decane (n-C10), n-dodecane (n-C12), and n-tetradecane (n-C14). The specific retention volumes of the solvents (Vg0), the molar enthalpy of sorption (deltaH1S), the partial molar enthalpy of mixing at infinite dilution (deltaH1infinity), the molar enthalpy of vaporization (deltaHv), the activity coefficients at infinite dilution (Omega1- infinity), and Flory-Huggins inter action parameters (chi12infinity) between organosolv lignin and probe solvents were obtained. The results showed that the above four probes are poor solvents for organosolv lignin; at the same temperature, the chi12infinity reduced with the increase of the carbon number of probe solvents. The average solubility parameter of organosolv lignin was determined as 19.03 (J x cm(-3))1/2.

  7. Asymptotic symmetries of Rindler space at the horizon and null infinity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, Hyeyoun

    2010-08-15

    We investigate the asymptotic symmetries of Rindler space at null infinity and at the event horizon using both systematic and ad hoc methods. We find that the approaches that yield infinite-dimensional asymptotic symmetry algebras in the case of anti-de Sitter and flat spaces only give a finite-dimensional algebra for Rindler space at null infinity. We calculate the charges corresponding to these symmetries and confirm that they are finite, conserved, and integrable, and that the algebra of charges gives a representation of the asymptotic symmetry algebra. We also use relaxed boundary conditions to find infinite-dimensional asymptotic symmetry algebras for Rindler spacemore » at null infinity and at the event horizon. We compute the charges corresponding to these symmetries and confirm that they are finite and integrable. We also determine sufficient conditions for the charges to be conserved on-shell, and for the charge algebra to give a representation of the asymptotic symmetry algebra. In all cases, we find that the central extension of the charge algebra is trivial.« less

  8. Determination of thermodynamic properties of isotactic poly(1-butene) at infinite dilution using density and inverse gas chromatography.

    PubMed

    Kozłowska, Marta Karolina; Domańska, Urszula; Lempert, Małgorzata; Rogalski, Marek

    2005-03-18

    The partial molar volumes, V1(M), and the molar volume of isotactic crystalline low-molecular-weight poly(1-butene), iPBu-1, V1, have been calculated from the measured density of {iPBu-1 + solvent (n-hexane, n-heptane, n-nonane, n-decane, p-xylene, cyclohexane and chloroform)} systems. Some of the thermodynamic quantities were also obtained for the iPBu-1 with eight hydrocarbons (n-octane, n-decane, n-undecane, n-dodecane, n-tridecane, o-xylene, m-xylene, p-xylene) by the method of inverse gas chromatography at various temperatures. The weight fraction activity coefficients of the solvent at infinite dilution, omega2(infinity) and the Flory-Huggins thermodynamic interaction parameters, chi21(infinity), between polymer and solvents were determined. The partial molar free energy, deltaG2(infinity), the partial molar heat of mixing, deltaH2(infinity), at infinite dilution and the polymer solubility parameter, delta1, were calculated. Additionally, the (solid + liquid) binary mixtures equilibria, SLE, of iPBu-1 with three hydrocarbons (n-octane, n-decane and m-xylene) were studied by a dynamic method. By performing these experiments over a large concentration range, the T-x phase diagrams of the polymer-solvent systems were constructed. The excess Gibbs energy models were used to describe the nonideal behaviour of the liquid phase. The omega2(infinity) were determined from the solubility measurements and were predicted by using the UNIFAC FV model.

  9. Laboratory evaluation of the pressure water level data logger manufactured by Infinities USA, Inc.: results of pressure and temperature tests

    USGS Publications Warehouse

    Carnley, Mark V.

    2015-01-01

    The Pressure Water Level Data Logger manufactured by Infinities USA, Inc., was evaluated by the U.S. Geological Survey (USGS) Hydrologic Instrumentation Facility for conformance with the manufacturer’s stated accuracy specifications for measuring pressure throughout the device’s operating temperature range and with the USGS accuracy requirements for water-level measurements. The Pressure Water Level Data Logger (Infinities Logger) is a submersible, sealed, water-level sensing device with an operating pressure range of 0 to 11.5 feet of water over a temperature range of −18 to 49 degrees Celsius. For the pressure range tested, the manufacturer’s accuracy specification of 0.1 percent of full scale pressure equals an accuracy of ±0.138 inch of water. Three Infinities Loggers were evaluated, and the testing procedures followed and results obtained are described in this report. On the basis of the test results, the device is poorly compensated for temperature. For the three Infinities Loggers, the mean pressure differences varied from –4.04 to 5.32 inches of water and were not within the manufacturer’s accuracy specification for pressure measurements made within the temperature-compensated range. The device did not meet the manufacturer’s stated accuracy specifications for pressure within its temperature-compensated operating range of –18 to 49 degrees Celsius or the USGS accuracy requirements of no more than 0.12 inch of water (0.01 foot of water) or 0.10 percent of reading, whichever is larger. The USGS accuracy requirements are routinely examined and reported when instruments are evaluated at the Hydrologic Instrumentation Facility. The estimated combined measurement uncertainty for the pressure cycling test was ±0.139 inch of water, and for temperature, the cycling test was ±0.127 inch of water for the three Infinities Loggers.

  10. On the semi-classical limit of scalar products of the XXZ spin chain

    NASA Astrophysics Data System (ADS)

    Jiang, Yunfeng; Brunekreef, Joren

    2017-03-01

    We study the scalar products between Bethe states in the XXZ spin chain with anisotropy |Δ| > 1 in the semi-classical limit where the length of the spin chain and the number of magnons tend to infinity with their ratio kept finite and fixed. Our method is a natural yet non-trivial generalization of similar methods developed for the XXX spin chain. The final result can be written in a compact form as a contour integral in terms of Faddeev's quantum dilogarithm function, which in the isotropic limit reduces to the classical dilogarithm function.

  11. A computational method for the Helmholtz equation in unbounded domains based on the minimization of an integral functional

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ciraolo, Giulio, E-mail: g.ciraolo@math.unipa.it; Gargano, Francesco, E-mail: gargano@math.unipa.it; Sciacca, Vincenzo, E-mail: sciacca@math.unipa.it

    2013-08-01

    We study a new approach to the problem of transparent boundary conditions for the Helmholtz equation in unbounded domains. Our approach is based on the minimization of an integral functional arising from a volume integral formulation of the radiation condition. The index of refraction does not need to be constant at infinity and may have some angular dependency as well as perturbations. We prove analytical results on the convergence of the approximate solution. Numerical examples for different shapes of the artificial boundary and for non-constant indexes of refraction will be presented.

  12. Solution of the General Helmholtz Equation Starting from Laplace’s Equation

    DTIC Science & Technology

    2002-11-01

    infinity for the two dimensional case. For the 3D the general form case, this term does not exist, as the potential at infinity is zero. Hence the Green’s...companies. She has assisted the Comisi6n the Living System Laboratory, Interministerial de Ciencia y Tecnologia (National LG Electronics, From 1998 to 2000

  13. An evolution infinity Laplace equation modelling dynamic elasto-plastic torsion

    NASA Astrophysics Data System (ADS)

    Messelmi, Farid

    2017-12-01

    We consider in this paper a parabolic partial differential equation involving the infinity Laplace operator and a Leray-Lions operator with no coercitive assumption. We prove the existence and uniqueness of the corresponding approached problem and we show that at the limit the solution solves the parabolic variational inequality arising in the elasto-plastic torsion problem.

  14. Generalized symmetries and [ital w][sub [infinity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lou, S.

    After establishing a formal theory for getting solutions of one type of high-dimensional partial differential equation, two sets of generalized symmetries of the 3D Toda theory, which arises from a particular reduction of the 4D self-dual gravity equation, are obtained concretely by a simple formula. Each set of symmetries constitutes a generalized [omega][sub [infinity

  15. Infrared image enhancement using H(infinity) bounds for surveillance applications.

    PubMed

    Qidwai, Uvais

    2008-08-01

    In this paper, two algorithms have been presented to enhance the infrared (IR) images. Using the autoregressive moving average model structure and H(infinity) optimal bounds, the image pixels are mapped from the IR pixel space into normal optical image space, thus enhancing the IR image for improved visual quality. Although H(infinity)-based system identification algorithms are very common now, they are not quite suitable for real-time applications owing to their complexity. However, many variants of such algorithms are possible that can overcome this constraint. Two such algorithms have been developed and implemented in this paper. Theoretical and algorithmic results show remarkable enhancement in the acquired images. This will help in enhancing the visual quality of IR images for surveillance applications.

  16. Robust H(infinity) tracking control of boiler-turbine systems.

    PubMed

    Wu, J; Nguang, S K; Shen, J; Liu, G; Li, Y G

    2010-07-01

    In this paper, the problem of designing a fuzzy H(infinity) state feedback tracking control of a boiler-turbine is solved. First, the Takagi and Sugeno fuzzy model is used to model a boiler-turbine system. Next, based on the Takagi and Sugeno fuzzy model, sufficient conditions for the existence of a fuzzy H(infinity) nonlinear state feedback tracking control are derived in terms of linear matrix inequalities. The advantage of the proposed tracking control design is that it does not involve feedback linearization technique and complicated adaptive scheme. An industrial boiler-turbine system is used to illustrate the effectiveness of the proposed design as compared with a linearized approach. 2010 ISA. Published by Elsevier Ltd. All rights reserved.

  17. Hypersonic vehicle control law development using H(infinity) and micron-synthesis

    NASA Technical Reports Server (NTRS)

    Gregory, Irene M.; Mcminn, John D.; Shaughnessy, John D.; Chowdhry, Rajiv S.

    1993-01-01

    Hypersonic vehicle control law development using H(infinity) and mu-synthesis is discussed. Airbreathing SSTO vehicles has a mutli-faceted mission that includes orbital operations, as well as re-entry and descent culminating in horizontal landing. However, the most challenging part of the operations is the ascent to orbit. The airbreathing propulsion requires lengthy atmospheric flight that may last as long as 30 minutes and take the vehicle half way around the globe. The vehicles's ascent is characterized by tight payload to orbit margins which translate into minimum fuel orbit as the performance criteria. Issues discussed include: SSTO airbreathing vehicle issues; control system performance requirements; robust control law framework; H(infinity) controller frequency analysis; and mu controller frequency analysis.

  18. Vibration attenuation of the NASA Langley evolutionary structure experiment using H(sub infinity) and structured singular value (micron) robust multivariable control techniques

    NASA Technical Reports Server (NTRS)

    Balas, Gary J.

    1992-01-01

    The use is studied of active control to attenuate structural vibrations of the NASA Langley Phase Zero Evolutionary Structure due to external disturbance excitations. H sub infinity and structured singular value (mu) based control techniques are used to analyze and synthesize control laws for the NASA Langley Controls Structures Interaction (CSI) Evolutionary Model (CEM). The CEM structure experiment provides an excellent test bed to address control design issues for large space structures. Specifically, control design for structures with numerous lightly damped, coupled flexible modes, collocated and noncollocated sensors and actuators and stringent performance specifications. The performance objectives are to attenuate the vibration of the structure due to external disturbances, and minimize the actuator control force. The control design problem formulation for the CEM Structure uses a mathematical model developed with finite element techniques. A reduced order state space model for the control design is formulated from the finite element model. It is noted that there are significant variations between the design model and the experimentally derived transfer function data.

  19. Lp-stability (1 less than or equal to p less than or equal to infinity) of multivariable nonlinear time-varying feedback systems that are open-loop unstable. [noting unstable convolution subsystem forward control and time varying nonlinear feedback

    NASA Technical Reports Server (NTRS)

    Callier, F. M.; Desoer, C. A.

    1973-01-01

    A class of multivariable, nonlinear time-varying feedback systems with an unstable convolution subsystem as feedforward and a time-varying nonlinear gain as feedback was considered. The impulse response of the convolution subsystem is the sum of a finite number of increasing exponentials multiplied by nonnegative powers of the time t, a term that is absolutely integrable and an infinite series of delayed impulses. The main result is a theorem. It essentially states that if the unstable convolution subsystem can be stabilized by a constant feedback gain F and if incremental gain of the difference between the nonlinear gain function and F is sufficiently small, then the nonlinear system is L(p)-stable for any p between one and infinity. Furthermore, the solutions of the nonlinear system depend continuously on the inputs in any L(p)-norm. The fixed point theorem is crucial in deriving the above theorem.

  20. Driver trust in five driver assistance technologies following real-world use in four production vehicles.

    PubMed

    Kidd, David G; Cicchino, Jessica B; Reagan, Ian J; Kerfoot, Laura B

    2017-05-29

    Information about drivers' experiences with driver assistance technologies in real driving conditions is sparse. This study characterized driver interactions with forward collision warning, adaptive cruise control, active lane keeping, side-view assist, and lane departure warning systems following real-world use. Fifty-four Insurance Institute for Highway Safety employees participated and drove a 2016 Toyota Prius, 2016 Honda Civic, 2017 Audi Q7, or 2016 Infiniti QX60 for up to several weeks. Participants reported mileage and warnings from the technologies in an online daily-use survey. Participants reported their level of agreement with five statements regarding trust in an online post-use survey. Responses were averaged to create a composite measure of trust ranging from -2 (strongly disagree) to +2 (strongly agree) for each technology. Mixed-effect regression models were constructed to compare trust among technologies and separately among the study vehicles. Participants' free-response answers about what they liked least about each system were coded and examined. Participants reported driving 33,584 miles during 4 months of data collection. At least one forward collision warning was reported in 26% of the 354 daily reports. The proportion of daily reports indicating a forward collision warning was much larger for the Honda (70%) than for the Audi (18%), Infiniti (15%), and Toyota (10%). Trust was highest for side-view assist (0.98) and lowest for active lane keeping (0.20). Trust in side-view assist was significantly higher than trust in active lane keeping and lane departure warning (0.53). Trust in active lane keeping was significantly lower than trust in adaptive cruise control (0.67) and forward collision warning (0.71). Trust in adaptive cruise control was higher for the Audi (0.72) and Toyota (0.75) compared with the Honda (0.30), and significantly higher for the Infiniti (0.93). Trust in Infiniti's side-view assist (0.58) was significantly lower than trust in Audi (1.17) and Honda (1.23) systems. Coding of answers to free-response questions showed that more than 80% of complaints about Honda's adaptive cruise control were about the way it functioned and/or performed. Infiniti's side-view assist was the only one with complaints mentioning circumstances where it was used. Trust in forward collision warning, lane departure warning, and active lane keeping was not significantly different among vehicles. Driver trust varied among driver assistance technologies, and trust in adaptive cruise control and side-view assist differed among vehicles. Trust may affect real-world use of driver assistance technologies and limit the opportunity for the systems to provide their intended benefits.

  1. Laboratory analysis of phacoemulsifier compliance and capacity.

    PubMed

    Nejad, Mitra; Injev, Valentine P; Miller, Kevin M

    2012-11-01

    To compare the compliance and capacity of 7 fluidics modules used by 6 phacoemulsifiers from 3 manufacturers. Jules Stein Eye Institute, Los Angeles, California, USA. Experimental study. Previous-model and current-model phacoemulsifiers from 3 manufacturers were subjected to laboratory analysis of compliance and capacity. Previous-generation models tested included the Legacy Advantec, Whitestar Sovereign Phacoemulsification System, and Millennium Microsurgical System. Current models tested were the Infiniti Vision System with standard and Intrepid cassettes, Whitestar Signature Phacoemulsification System, and Stellaris Vision Enhancement System. To measure compliance, the aspiration line was connected to an electronic pressure transducer and small volumes of fluid were injected or aspirated. To measure capacity, the space between the distal end of the aspiration line and the pump was filled with methylene blue-dyed fluid. The Legacy was the most compliant phacoemulsifier. The old and new Whitestar systems, Millennium system, and Stellaris system showed similar midrange compliances. The Infiniti Vision System with the Intrepid fluidic management system was the least compliant. The Infiniti cassettes had the greatest capacity, which is a detriment from a surge-control perspective, and Signature cassettes had the least capacity. The Infiniti Intrepid system had the lowest compliance of the 6 units tested, which is optimum from a surge-control perspective. All other things being equal, the Infiniti should have the safest occlusion-break surge response. Mr. Injev is an employee of Alcon Laboratories. Dr. Miller is a consultant to and investigator for Alcon Laboratories. Ms. Nejad has no financial or proprietary interest in any material or method mentioned. Copyright © 2012 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  2. Surface Green's function of a piezoelectric half-space.

    PubMed

    Laude, Vincent; Jerez-Hanckes, Carlos F; Ballandras, Sylvain

    2006-02-01

    The computation of the two-dimensional harmonic spatial-domain Green's function at the surface of a piezoelectric half-space is discussed. Starting from the known form of the Green's function expressed in the spectral domain, the singular contributions are isolated and treated separately. It is found that the surface acoustic wave contributions (i.e., poles in the spectral Green's function) give rise to an anisotropic generalization of the Hankel function H0(2), the spatial Green's function for the scalar two-dimensional wave equation. The asymptotic behavior at infinity and at the origin (for the electrostatic contribution) also are explicitly treated. The remaining nonsingular part of the spectral Green's function is obtained numerically by a combination of fast Fourier transform and quadrature. Illustrations are given in the case of a substrate of Y-cut lithium niobate.

  3. Feedback system design with an uncertain plant

    NASA Technical Reports Server (NTRS)

    Milich, D.; Valavani, L.; Athans, M.

    1986-01-01

    A method is developed to design a fixed-parameter compensator for a linear, time-invariant, SISO (single-input single-output) plant model characterized by significant structured, as well as unstructured, uncertainty. The controller minimizes the H(infinity) norm of the worst-case sensitivity function over the operating band and the resulting feedback system exhibits robust stability and robust performance. It is conjectured that such a robust nonadaptive control design technique can be used on-line in an adaptive control system.

  4. Global solutions to the equation of thermoelasticity with fading memory

    NASA Astrophysics Data System (ADS)

    Okada, Mari; Kawashima, Shuichi

    2017-07-01

    We consider the initial-history value problem for the one-dimensional equation of thermoelasticity with fading memory. It is proved that if the data are smooth and small, then a unique smooth solution exists globally in time and converges to the constant equilibrium state as time goes to infinity. Our proof is based on a technical energy method which makes use of the strict convexity of the entropy function and the properties of strongly positive definite kernels.

  5. INFINITY harvest

    NASA Image and Video Library

    2012-05-07

    Janice Hueschen of Innovative Imaging & Research Corp. at Stennis Space Center helps students from Benjamin E. Mays Preparatory School in New Orleans harvest lettuce at the INFINITY at NASA Stennis Space Center facility May 7, 2012. The Louisiana students assisted in the first harvest of lettuce from the Controlled Environment Agriculture unit, which uses an aeroponic process that involves no soil and advance LED lighting techniques.

  6. From Zero to Infinity: Montessori Parent Education in Hong Kong and Greater China

    ERIC Educational Resources Information Center

    Lau, Daisy; Yau, Ralph

    2015-01-01

    It was a hot and humid afternoon in 2006, 3 months after the opening of the Children's House at the Infinity Children's School in Hong Kong. A 3-year-old boy selected a table-scrubbing activity. He moved erratically and without purpose, accidentally bumping into another child and spilling water on the floor. Meanwhile, a toddler girl strolled…

  7. CUTTING BACK THE STEM: CULTIVATING LIBERAL ARTS IN OFFICER ACCESSIONS

    DTIC Science & Technology

    2016-06-01

    research demonstrates that creativity , innovation, and critical thinking are indeed important capabilities for the profession of arms. Additionally, a...Thinking and Action,” Infinity Journal Special Edition “ International Relations in Professional Military Education, Winter 2016, 10. 7 true...Developing Strategic-Minded Junior Officers,” Infinity Journal Special Edition “ International Relations in Professional Military Education, Winter 2016, 6

  8. Complete affine connection in the causal boundary: static, spherically symmetric spacetimes

    NASA Astrophysics Data System (ADS)

    Harris, Steven (Stacey) G.

    2017-02-01

    The boundary at I^+, future null infinity, for a standard static, spherically symmetric spactime is examined for possible linear connections. Two independent methods are employed, one for treating I^+ as the future causal boundary, and one for treating it as a conformal boundary (the latter is subsumed in the former, which is of greater generality). Both methods provide the same result: a constellation of various possible connections, depending on an arbitrary choice of a certain function, a sort of gauge freedom in obtaining a natural connection on I^+; choosing that function to be constant (for instance) results in a complete connection. Treating I^+ as part of the future causal boundary, the method is to impute affine connections on null hypersurfaces going out to I^+, in terms of a transverse vector field on each null hypersurface (there is much gauge freedom on choice of the transverse vector fields). Treating I^+ as part of a conformal boundary, the method is to make a choice of conformal factor that makes the boundary totally geodesic in the enveloping manifold (there is much gauge freedom in choice of that conformal factor). Similar examination is made of other boundaries, such as timelike infinity and timelike and spacelike singularities. These are much simpler, as they admit a unique connection from a similar limiting process (i.e., no gauge freedom); and that connection is complete.

  9. Two-dimensional coordination polymer matrix for solid-phase extraction of pesticide residues from plant Cordia salicifolia.

    PubMed

    de Carvalho, Pedro Henrique Viana; Barreto, Alysson Santos; Rodrigues, Marcelo O; Prata, Vanessa de Menezes; Alves, Péricles Barreto; de Mesquita, Maria Eliane; Alves, Severino; Navickiene, Sandro

    2009-06-01

    The 2D coordination polymer (infinity[Gd(DPA)(HDPA)]) was tested for extraction of acephate, chlorpropham, pirimicarb, bifenthrin, tetradifon, and phosalone from the medicinal plant Cordia salicifolia, whose extracts are commercialized in Brazil as diuretic, appetite suppressant, and weight loss products, using GC/MS, SIM. Considering that there are no Brazilian regulations concerning maximum permissible pesticide residue concentrations in medicinal herbs, recovery experiments were carried out (seven replicates), at two arbitrary fortification levels (0.5 and 1.0 mg/kg), resulting in recoveries in range of 20 to 107.7% and SDRSDs were between 5.6 and 29.1% for infinity[Gd(DPA)(HDPA)] sorbent. Detection and quantification limits for herb ranged from 0.10 to 0.15 mg/kg and from 0.15 to 0.25 mg/kg, respectively, for the different pesticides studied. The developed method is linear over the range assayed, 0.5-10.0 microg/mL, with correlation coefficients ranging from 0.9975 to 0.9986 for all pesticides. Comparison between infinity[Gd(DPA)(HDPA)] sorbent and conventional sorbent (neutral alumina) showed similar performance of infinity[Gd(DPA)(HDPA)] polymeric sorbent for three (bifenthrin, tetradifon, and phosalone) out of six pesticides tested.

  10. Thermodynamic properties of hyperbranched polymer, Boltorn U3000, using inverse gas chromatography.

    PubMed

    Domańska, Urszula; Zołek-Tryznowska, Zuzanna

    2009-11-19

    Mass-fraction activity coefficients at infinite dilution (Omega13(infinity)) of alkanes (C5-C10), cycloalkanes (C5-C8), alkenes (C5-C8), alkynes (C5-C8), aromatic hydrocarbons (benzene, toluene, ethylbenzene, o-, m-, p-xylene, thiophene), alcohols (C1-C5), water, ethers (tetrahydrofuran (THF), methyl-tert-butylether (MTBE), diethyl-, di-n-propyl-, di-n-butyl ether), and ketones (propanone, 2-pentanone, 3-pentanone, 2-hexanone, 3-hexanone, cyclopentanone) in the hyperbranched polymer, Boltorn U3000 (B-U3000), have been determined by inverse gas chromatography (IGC) using the polymer as the stationary phase. The measurements were carried out at different temperatures between 308.15 and 348.15 K. The density and thermophysical properties of polymer were described. The specific retention volume (V(g)), the Flory-Huggins interaction parameter (chi13(infinity)), the molar enthalpy of sorption (the partial molar enthalpies of solute dissolution) (Delta(s)H), the partial molar excess enthalpy at infinite dilution of the solute and polymer (DeltaH1(E,infinity)), the partial molar Gibbs excess energy at infinite dilution (DeltaG1(E,infinity)), and the solubility parameter (delta3) were calculated.

  11. Evolution of scalar fields surrounding black holes on compactified constant mean curvature hypersurfaces

    NASA Astrophysics Data System (ADS)

    Morales, Manuel D.; Sarbach, Olivier

    2017-02-01

    Motivated by the goal for high accuracy modeling of gravitational radiation emitted by isolated systems, recently, there has been renewed interest in the numerical solution of the hyperboloidal initial value problem for Einstein's field equations in which the outer boundary of the numerical grid is placed at null infinity. In this article, we numerically implement the tetrad-based approach presented by Bardeen, Sarbach, and Buchman [Phys. Rev. D 83, 104045 (2011), 10.1103/PhysRevD.83.104045] for a spherically symmetric, minimally coupled, self-gravitating scalar field. When this field is massless, the evolution system reduces to a regular, first-order symmetric hyperbolic system of equations for the conformally rescaled scalar field which is coupled to a set of singular elliptic constraints for the metric coefficients. We show how to solve this system based on a numerical finite-difference approximation, obtaining stable numerical evolutions for initial black hole configurations which are surrounded by a spherical shell of scalar field, part of which disperses to infinity and part of which is accreted by the black hole. As a nontrivial test, we study the tail decay of the scalar field along different curves, including one along the marginally trapped tube, one describing the world line of a timelike observer at a finite radius outside the horizon, and one corresponding to a generator of null infinity. Our results are in perfect agreement with the usual power-law decay discussed in previous work. This article also contains a detailed analysis for the asymptotic behavior and regularity of the lapse, conformal factor, extrinsic curvature and the Misner-Sharp mass function along constant mean curvature slices.

  12. Twilight and nighttime ionospheric temperatures from oxygen wavelengths 6300 and 5577 spectral line profiles

    NASA Technical Reports Server (NTRS)

    Feibelman, W. A.; Hake, R. D., Jr.; Sipler, D. P.; Biondi, M. A.

    1971-01-01

    Fabry-Perot interferometer measurements of atomic oxygen 6300 A and 5577 A line profiles from twilight and nightglow are used to determine the neutral temperatures in F2 and E regions of the earth's ionosphere. The exospheric temperatures T sub n (infinity) determined from the 6300 A profiles are usually somewhat higher than those calculated from Jacchia's model, with differences as large as approximately 300 K noted when T sub n (infinity) = 1500 to 1600 K. The post-sunset and pre-dawn rate of change of T sub n (infinity) is often substantially larger than the Jacchia prediction. The 5577 A (E-region) measured temperatures range from 200 to 220 K on quiet nights to 500 to 600 K during geomagnetic storms.

  13. Finite upper bound for the Hawking decay time of an arbitrarily large black hole in anti-de Sitter spacetime

    NASA Astrophysics Data System (ADS)

    Page, Don N.

    2018-01-01

    In an asymptotically flat spacetime of dimension d >3 and with the Newtonian gravitational constant G , a spherical black hole of initial horizon radius rh and mass M ˜rhd -3/G has a total decay time to Hawking emission of td˜rhd -1/G ˜G2 /(d -3 )M(d -1 )/(d -3 ) which grows without bound as the radius rh and mass M are taken to infinity. However, in asymptotically anti-de Sitter spacetime with a length scale ℓ and with absorbing boundary conditions at infinity, the total Hawking decay time does not diverge as the mass and radius go to infinity but instead remains bounded by a time of the order of ℓd-1/G .

  14. H(2)- and H(infinity)-design tools for linear time-invariant systems

    NASA Technical Reports Server (NTRS)

    Ly, Uy-Loi

    1989-01-01

    Recent advances in optimal control have brought design techniques based on optimization of H(2) and H(infinity) norm criteria, closer to be attractive alternatives to single-loop design methods for linear time-variant systems. Significant steps forward in this technology are the deeper understanding of performance and robustness issues of these design procedures and means to perform design trade-offs. However acceptance of the technology is hindered by the lack of convenient design tools to exercise these powerful multivariable techniques, while still allowing single-loop design formulation. Presented is a unique computer tool for designing arbitrary low-order linear time-invarient controllers than encompasses both performance and robustness issues via the familiar H(2) and H(infinity) norm optimization. Application to disturbance rejection design for a commercial transport is demonstrated.

  15. Some Historical Issues and Paradoxes Regarding the Concept of Infinity: An APOS Analysis: Part 2

    ERIC Educational Resources Information Center

    Dubinsky, Ed; Weller, Kirk; McDonald, Michael A.; Brown, Anne

    2005-01-01

    This is Part 2 of a two-part study of how APOS theory may be used to provide cognitive explanations of how students and mathematicians might think about the concept of infinity. We discuss infinite processes, describe how the mental mechanisms of interiorization and encapsulation can be used to conceive of an infinite process as a completed…

  16. Pointwise convergence of derivatives of Lagrange interpolation polynomials for exponential weights

    NASA Astrophysics Data System (ADS)

    Damelin, S. B.; Jung, H. S.

    2005-01-01

    For a general class of exponential weights on the line and on (-1,1), we study pointwise convergence of the derivatives of Lagrange interpolation. Our weights include even weights of smooth polynomial decay near +/-[infinity] (Freud weights), even weights of faster than smooth polynomial decay near +/-[infinity] (Erdos weights) and even weights which vanish strongly near +/-1, for example Pollaczek type weights.

  17. Special Advanced Studies for Pollution Prevention. Delivery Order 0058: The Monitor - Winter 2000

    DTIC Science & Technology

    2001-04-01

    Burning/Open Detonation of Energetic Materials ➨Emission factors from a draft EPA report are incorporated into the guidance Site Restoration ➨Method...Aqueous Cleaner Recycle System Microfiltration Removes oil/grease & TSS from alkaline and acid cleaning baths Commodore Separation Technologies, Inc... Microfiltration Removes all heavy metals from wastewater and recycles water Infinity Chemicals Group Infinity Prep-L Deoxidizing Chemical

  18. Scattering theory for graphs isomorphic to a regular tree at infinity

    NASA Astrophysics Data System (ADS)

    Colin de Verdière, Yves; Truc, Françoise

    2013-06-01

    We describe the spectral theory of the adjacency operator of a graph which is isomorphic to a regular tree at infinity. Using some combinatorics, we reduce the problem to a scattering problem for a finite rank perturbation of the adjacency operator on a regular tree. We develop this scattering theory using the classical recipes for Schrödinger operators in Euclidian spaces.

  19. A Simple Game to Derive Lognormal Distribution

    ERIC Educational Resources Information Center

    Omey, E.; Van Gulck, S.

    2007-01-01

    In the paper we present a simple game that students can play in the classroom. The game can be used to show that random variables can behave in an unexpected way: the expected mean can tend to zero or to infinity; the variance can tend to zero or to infinity. The game can also be used to introduce the lognormal distribution. (Contains 1 table and…

  20. Estimating energy-momentum and angular momentum near null infinity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Helfer, Adam D.

    2010-04-15

    The energy-momentum and angular momentum contained in a spacelike two-surface of spherical topology are estimated by joining the two-surface to null infinity via an approximate no-incoming-radiation condition. The result is a set of gauge-invariant formulas for energy-momentum and angular momentum which should be applicable to much numerical work; it also gives estimates of the finite-size effects.

  1. Pharmacokinetic characteristics of formulated alendronate transdermal delivery systems in rats and humans.

    PubMed

    Choi, Ahyoung; Gang, Hyesil; Whang, Jiae; Gwak, Hyesun

    2010-05-01

    The objective of this study was to examine the absorption of alendronate from formulated transdermal delivery systems in rats and humans. When alendronate was applied to rats by transdermal delivery systems (7.2 mg) and oral administration (30 mg/kg), a statistically significant difference was found in the amount remaining to be excreted at time t (Ae(t)) and the amount remaining to be excreted at time 0 (Ae(infinity)) (p < 0.01). The highest Ae(infinity) (1267.7+/-65.2 ng) was found in the formulation containing 6% caprylic acid in propylene glycol (PG), which was 5.4- and 2.0-times higher than the PG only formulation and oral administration, respectively. Compared to oral administration, significantly delayed half-life values were obtained from all the formulated transdermal delivery systems. There was a linear relationship (r(2) = 0.9854) between the drug loading dose and Ae(infinity). The Ae(infinity) values from the transdermal delivery system containing 6% caprylic acid (53.8 mg as alendronate) and an oral product (Fosamax), 70 mg as alendronate) in humans were 127.0 +/- 34.2 microg and 237.2 +/- 56.3 microg, respectively. The dose-adjusted relative Ae(infinity) ratio of the transdermal delivery system to oral product was calculated to be 69.7%. The long half-life of alendronate in the transdermal delivery system (50.6 +/- 6.4 h), compared to that of the oral product (3.5 +/- 1.1 h) could allow less-frequent dosing. In conclusion, this study showed that a transdermal delivery system containing 6% caprylic acid in PG could be a favorable alternative for alendronate administration.

  2. Infinity: An In-Silico Tool for Genome-Wide Prediction of Specific DNA Matrices in miRNA Genomic Loci.

    PubMed

    Falcone, Emmanuela; Grandoni, Luca; Garibaldi, Francesca; Manni, Isabella; Filligoi, Giancarlo; Piaggio, Giulia; Gurtner, Aymone

    2016-01-01

    miRNAs are potent regulators of gene expression and modulate multiple cellular processes in physiology and pathology. Deregulation of miRNAs expression has been found in various cancer types, thus, miRNAs may be potential targets for cancer therapy. However, the mechanisms through which miRNAs are regulated in cancer remain unclear. Therefore, the identification of transcriptional factor-miRNA crosstalk is one of the most update aspects of the study of miRNAs regulation. In the present study we describe the development of a fast and user-friendly software, named infinity, able to find the presence of DNA matrices, such as binding sequences for transcriptional factors, on ~65kb (kilobase) of 939 human miRNA genomic sequences, simultaneously. Of note, the power of this software has been validated in vivo by performing chromatin immunoprecipitation assays on a subset of new in silico identified target sequences (CCAAT) for the transcription factor NF-Y on colon cancer deregulated miRNA loci. Moreover, for the first time, we have demonstrated that NF-Y, through its CCAAT binding activity, regulates the expression of miRNA-181a, -181b, -21, -17, -130b, -301b in colon cancer cells. The infinity software that we have developed is a powerful tool to underscore new TF/miRNA regulatory networks. Infinity was implemented in pure Java using Eclipse framework, and runs on Linux and MS Windows machine, with MySQL database. The software is freely available on the web at https://github.com/bio-devel/infinity. The website is implemented in JavaScript, PHP and HTML with all major browsers supported.

  3. Infinity: An In-Silico Tool for Genome-Wide Prediction of Specific DNA Matrices in miRNA Genomic Loci

    PubMed Central

    Garibaldi, Francesca; Manni, Isabella; Filligoi, Giancarlo; Piaggio, Giulia; Gurtner, Aymone

    2016-01-01

    Motivation miRNAs are potent regulators of gene expression and modulate multiple cellular processes in physiology and pathology. Deregulation of miRNAs expression has been found in various cancer types, thus, miRNAs may be potential targets for cancer therapy. However, the mechanisms through which miRNAs are regulated in cancer remain unclear. Therefore, the identification of transcriptional factor–miRNA crosstalk is one of the most update aspects of the study of miRNAs regulation. Results In the present study we describe the development of a fast and user-friendly software, named infinity, able to find the presence of DNA matrices, such as binding sequences for transcriptional factors, on ~65kb (kilobase) of 939 human miRNA genomic sequences, simultaneously. Of note, the power of this software has been validated in vivo by performing chromatin immunoprecipitation assays on a subset of new in silico identified target sequences (CCAAT) for the transcription factor NF-Y on colon cancer deregulated miRNA loci. Moreover, for the first time, we have demonstrated that NF-Y, through its CCAAT binding activity, regulates the expression of miRNA-181a, -181b, -21, -17, -130b, -301b in colon cancer cells. Conclusions The infinity software that we have developed is a powerful tool to underscore new TF/miRNA regulatory networks. Availability and Implementation Infinity was implemented in pure Java using Eclipse framework, and runs on Linux and MS Windows machine, with MySQL database. The software is freely available on the web at https://github.com/bio-devel/infinity. The website is implemented in JavaScript, PHP and HTML with all major browsers supported. PMID:27082112

  4. Risk factors for new-onset late postpartum preeclampsia in women without a history of preeclampsia.

    PubMed

    Bigelow, Catherine A; Pereira, Guilherme A; Warmsley, Amber; Cohen, Jennifer; Getrajdman, Chloe; Moshier, Erin; Paris, Julia; Bianco, Angela; Factor, Stephanie H; Stone, Joanne

    2014-04-01

    Risk factors for the development of new-onset late postpartum preeclampsia (LPP) in women without any history of preeclampsia are not known. Because identification of women who are at risk may lead to an earlier diagnosis of disease and improved maternal outcomes, this study identified risk factors (associated patient characteristics) for new-onset LPP. A case-control study of 34 women with new-onset LPP and 68 women without new-onset LPP after normal delivery, who were matched on date of delivery, was conducted at Mount Sinai Hospital, New York, NY. Data were collected by chart review. Exact conditional logistic regression identified patient characteristics that were associated with new-onset LPP. New-onset LPP was associated with age ≥40 years (adjusted odds ratio, 24.83; 95% confidence interval [CI], 1.43-infinity; P = .03), black race (adjusted odds ratio, 78.35; 95% CI, 7.25-infinity; P < .001), Latino ethnicity (adjusted odds ratio, 19.08; 95% CI, 2.73-infinity; P = .001), final pregnancy body mass index of ≥30 kg/m(2) (adjusted odds ratio, 13.38; 95% CI, 1.87-infinity; P = .01), and gestational diabetes mellitus (adjusted odds ratio, 72.91; 95% CI, 5.52-infinity; P < .001). As predictive tests for new-onset LPP, the sensitivity and specificity of having ≥1 of these characteristics was 100% and 59%, respectively, and the sensitivity and specificity of having ≥2 was 56% and 93%, respectively. Older age, black race, Latino ethnicity, obesity, and a pregnancy complicated by gestational diabetes mellitus all are associated positively with the development of new-onset LPP. Closer observation may be warranted in these populations. Copyright © 2014 Mosby, Inc. All rights reserved.

  5. Frequency-constant Q, unity and disorder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hargreaves, N.D.

    1995-12-31

    In exploration geophysics we obtain information about the earth by observing its response to different types of applied force. The response can cover the full range of possible Q values (where Q, the quality factor, is a measure of energy dissipation), from close to infinity in the case of deep crustal seismic to close to 0 in the case of many electromagnetic methods. When Q is frequency-constant, however, the various types of response have a common scaling behavior and can be described as being self-affine. The wave-equation then takes on a generalised form, changing from the standard wave-equation at Qmore » = {infinity} to the diffusion equation at Q = 0, via lossy, diffusive, propagation at intermediate Q values. Solutions of this wave-diffusion equation at any particular Q value can be converted to an equivalent set of results for any other Q value. In particular it is possible to convert from diffusive to wave propagation by a mapping from Q < {infinity} to Q = {infinity}. In the context of seismic sounding this is equivalent to applying inverse Q-filtering; in a more general context the mapping integrates different geophysical observations by referencing them to the common result at Q = {infinity}. The self-affinity of the observations for frequency-constant Q is an expression of scale invariance in the fundamental physical properties of the medium of propagation, this being the case whether the mechanism of diffusive propagation is scattering of intrinsic attenuation. Scale invariance, or fractal scaling, is a general property of disordered systems; the assumption of frequency-constant Q not only implies a unity between different geophysical observations, but also suggests that it is the disordered nature of the earth`s sub-surface that is the unifying factor.« less

  6. Effects of degeneracy and response function in a diffusion predator-prey model

    NASA Astrophysics Data System (ADS)

    Li, Shanbing; Wu, Jianhua; Dong, Yaying

    2018-04-01

    In this paper, we consider positive solutions of a diffusion predator-prey model with a degeneracy under the Dirichlet boundary conditions. We first obtain sufficient conditions of the existence of positive solutions by the Leray-Schauder degree theory, and then analyze the limiting behavior of positive solutions as the growth rate of the predator goes to infinity and the conversion rates of the predator goes to zero, respectively. It is shown that these results for Holling II response function (i.e. m  >  0) reveal interesting contrast with that for the classical Lotka-Volterra predator-prey model (i.e. m  =  0).

  7. Automated Shirt Collar Manufacturing. Volume 3. Sewing Head Control for High Speed Stitch Contour Tracking.

    DTIC Science & Technology

    1993-06-23

    mal control scheme sums the cost function for all data points from time zero to infinity; however, the preview case sums only through the preview step...shaft speed that is generated by the monitor port on the servo amplifiers. Therefore, the zero frequency gain shown in the figure contains the gain...Delivery Order 0014 SAOORESS (City, State, and ZIP Code ) 10. SOURCE OF FUNDING NUMBERS Rom415CmrnSainPROGRAM IPROJECT TASK WORK UNITAlexandriaR VA 22304-6100

  8. Spacelike matching to null infinity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zenginoglu, Anil; Tiglio, Manuel

    2009-07-15

    We present two methods to include the asymptotic domain of a background spacetime in null directions for numerical solutions of evolution equations so that both the radiation extraction problem and the outer boundary problem are solved. The first method is based on the geometric conformal approach, the second is a coordinate based approach. We apply these methods to the case of a massless scalar wave equation on a Kerr spacetime. Our methods are designed to allow existing codes to reach the radiative zone by including future null infinity in the computational domain with relatively minor modifications. We demonstrate the flexibilitymore » of the methods by considering both Boyer-Lindquist and ingoing Kerr coordinates near the black hole. We also confirm numerically predictions concerning tail decay rates for scalar fields at null infinity in Kerr spacetime due to Hod for the first time.« less

  9. Extensions of output variance constrained controllers to hard constraints

    NASA Technical Reports Server (NTRS)

    Skelton, R.; Zhu, G.

    1989-01-01

    Covariance Controllers assign specified matrix values to the state covariance. A number of robustness results are directly related to the covariance matrix. The conservatism in known upperbounds on the H infinity, L infinity, and L (sub 2) norms for stability and disturbance robustness of linear uncertain systems using covariance controllers is illustrated with examples. These results are illustrated for continuous and discrete time systems. **** ONLY 2 BLOCK MARKERS FOUND -- RETRY *****

  10. An H-infinity approach to optimal control of oxygen and carbon dioxide contents in blood

    NASA Astrophysics Data System (ADS)

    Rigatos, Gerasimos; Siano, Pierluigi; Selisteanu, Dan; Precup, Radu

    2016-12-01

    Nonlinear H-infinity control is proposed for the regulation of the levels of oxygen and carbon dioxide in the blood of patients undergoing heart surgery and extracorporeal blood circulation. The levels of blood gases are administered through a membrane oxygenator and the control inputs are the externally supplied oxygen, the aggregate gas supply (oxygen plus nitrogen), and the blood flow which is regulated by a blood pump. The proposed control method is based on linearization of the oxygenator's dynamical model through Taylor series expansion and the computation of Jacobian matrices. The local linearization points are defined by the present value of the oxygenator's state vector and the last value of the control input that was exerted on this system. The modelling errors due to linearization are considered as disturbances which are compensated by the robustness of the control loop. Next, for the linearized model of the oxygenator an H-infinity control input is computed at each iteration of the control algorithm through the solution of an algebraic Riccati equation. With the use of Lyapunov stability analysis it is demonstrated that the control scheme satisfies the H-infinity tracking performance criterion, which signifies improved robustness against modelling uncertainty and external disturbances. Moreover, under moderate conditions the asymptotic stability of the control loop is also proven.

  11. Local existence of solutions to the Euler-Poisson system, including densities without compact support

    NASA Astrophysics Data System (ADS)

    Brauer, Uwe; Karp, Lavi

    2018-01-01

    Local existence and well posedness for a class of solutions for the Euler Poisson system is shown. These solutions have a density ρ which either falls off at infinity or has compact support. The solutions have finite mass, finite energy functional and include the static spherical solutions for γ = 6/5. The result is achieved by using weighted Sobolev spaces of fractional order and a new non-linear estimate which allows to estimate the physical density by the regularised non-linear matter variable. Gamblin also has studied this setting but using very different functional spaces. However we believe that the functional setting we use is more appropriate to describe a physical isolated body and more suitable to study the Newtonian limit.

  12. Neural network application to aircraft control system design

    NASA Technical Reports Server (NTRS)

    Troudet, Terry; Garg, Sanjay; Merrill, Walter C.

    1991-01-01

    The feasibility of using artificial neural networks as control systems for modern, complex aerospace vehicles is investigated via an example aircraft control design study. The problem considered is that of designing a controller for an integrated airframe/propulsion longitudinal dynamics model of a modern fighter aircraft to provide independent control of pitch rate and airspeed responses to pilot command inputs. An explicit model following controller using H infinity control design techniques is first designed to gain insight into the control problem as well as to provide a baseline for evaluation of the neurocontroller. Using the model of the desired dynamics as a command generator, a multilayer feedforward neural network is trained to control the vehicle model within the physical limitations of the actuator dynamics. This is achieved by minimizing an objective function which is a weighted sum of tracking errors and control input commands and rates. To gain insight in the neurocontrol, linearized representations of the nonlinear neurocontroller are analyzed along a commanded trajectory. Linear robustness analysis tools are then applied to the linearized neurocontroller models and to the baseline H infinity based controller. Future areas of research are identified to enhance the practical applicability of neural networks to flight control design.

  13. Neural network application to aircraft control system design

    NASA Technical Reports Server (NTRS)

    Troudet, Terry; Garg, Sanjay; Merrill, Walter C.

    1991-01-01

    The feasibility of using artificial neural network as control systems for modern, complex aerospace vehicles is investigated via an example aircraft control design study. The problem considered is that of designing a controller for an integrated airframe/propulsion longitudinal dynamics model of a modern fighter aircraft to provide independent control of pitch rate and airspeed responses to pilot command inputs. An explicit model following controller using H infinity control design techniques is first designed to gain insight into the control problem as well as to provide a baseline for evaluation of the neurocontroller. Using the model of the desired dynamics as a command generator, a multilayer feedforward neural network is trained to control the vehicle model within the physical limitations of the actuator dynamics. This is achieved by minimizing an objective function which is a weighted sum of tracking errors and control input commands and rates. To gain insight in the neurocontrol, linearized representations of the nonlinear neurocontroller are analyzed along a commanded trajectory. Linear robustness analysis tools are then applied to the linearized neurocontroller models and to the baseline H infinity based controller. Future areas of research identified to enhance the practical applicability of neural networks to flight control design.

  14. A Note on a Family of Alternating Sums of Products of Binomial Numbers

    ERIC Educational Resources Information Center

    Gauthier, N.

    2013-01-01

    We study the following family of integral-valued alternating sums, where -infinity equal to or less than m equal to or less than infinity and n equal to or greater than 0 are integers [equation omitted]. We first consider h[subscript m](n) for m and n non-negative integers and show that it is of the form 2[superscript n + 2m] - P[subscript m](n),…

  15. F-18 Robust Control Design Using H2 and H-Infinity Methods

    DTIC Science & Technology

    1990-09-01

    INFINITY METHODS by Gerald A. Hartley September 1990 Thesis Advisor: Prof. D. J . Collins Approved for public release; distribution is unlimited. 91...AERONAUTICAL ENGINEERING from the NAVAL POSTGRADUATE SCHOOL September, 1990 Author: ’t -4 Cl > J 2 1I Gerald A. Hartley Approved by: -Y2__ ____ ____ Daniel... J Collins, Thesis Advisor Loui V. Schmidt, Second Reader Dep timent of Aeronauticsand-A tronautics iii ABSTRACT The open loop F-18 longitudinal

  16. Infinity Computer and Calculus

    NASA Astrophysics Data System (ADS)

    Sergeyev, Yaroslav D.

    2007-09-01

    Traditional computers work with finite numbers. Situations where the usage of infinite or infinitesimal quantities is required are studied mainly theoretically. In this survey talk, a new computational methodology (that is not related to nonstandard analysis) is described. It is based on the principle `The part is less than the whole' applied to all numbers (finite, infinite, and infinitesimal) and to all sets and processes (finite and infinite). It is shown that it becomes possible to write down finite, infinite, and infinitesimal numbers by a finite number of symbols as particular cases of a unique framework. The new methodology allows us to introduce the Infinity Computer working with all these numbers (its simulator is presented during the lecture). The new computational paradigm both gives possibilities to execute computations of a new type and simplifies fields of mathematics where infinity and/or infinitesimals are encountered. Numerous examples of the usage of the introduced computational tools are given during the lecture.

  17. Application of carbon nanotube hold-off voltage for determining gas composition

    NASA Technical Reports Server (NTRS)

    Schipper, John F. (Inventor); Li, Jing (Inventor)

    2009-01-01

    Method and system for determining chemical composition of a single-component or multiple-component gas, using a discharge holdoff mechanism. A voltage difference V between two spaced apart electrodes is brought to a selected value and held, the holdoff time interval .DELTA.t(V;ho) required before gas discharge occurs is measured, and the associated electrical current or cumulative electrical charge is measured. As the voltage difference V increases, the time interval length .DELTA.t(V;ho) decreases monotonically. Particular voltage values, V.sub..infin. and V.sub.0, correspond to initial appearance of discharge (.DELTA.t.apprxeq..infin.) and prompt discharge (.DELTA.t.apprxeq.0). The values V.sub..infin. and V.sub.0 and the rate of decrease of .DELTA.t(V;ho) and/or the rate of increase of current or cumulative charge with increasing V are characteristic of one or more gas components present.

  18. Kinetics of enzymes with iso-mechanisms: analysis of product inhibition.

    PubMed Central

    Rebholz, K L; Northrop, D B

    1993-01-01

    Isomerizations of free enzyme can be detected in kinetic patterns of product inhibition when the isomerization is partially rate-limiting. The kinetic pattern is non-competitive, owing to binding of substrate and product to different forms of free enzyme. This adds an additional term to the rate equation, sometimes represented as KSP. Several kineticists have noted that, as the rate of isomerization becomes high in relation to catalytic turnover, the intercept effect will become small, KSP will approach infinity, and the pattern will look competitive. Britton [(1973) Biochem. J. 133, 255-261] asserted that KSP will also approach infinity when the rate of isomerization becomes low. This second assertion is incorrect and can be traced to the particular model and graphical representation used to examine KSP as a function of relative rate constants. The function portrayed as a parabola with two roots for KSP is, instead, a straight line with one root. The algebraic condition justifying the second root obtains in the limit of zero in the rate of reaction and thus is not experimentally relevant, and the appearance of competitive inhibition, based on KSP alone, is not valid. Using a more general model, new equations are derived and presented which provide direct calculations of the apparent rate constants for free enzyme isomerizations from product-inhibition data when the equilibrium of the isomerization is near 1, and useful limits for the rate constants when greater than or less than 1. PMID:7980736

  19. Hamiltonian thermodynamics of three-dimensional dilatonic black holes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dias, Goncalo A. S.; Lemos, Jose P. S.

    2008-08-15

    The action for a class of three-dimensional dilaton-gravity theories with a negative cosmological constant can be recast in a Brans-Dicke type action, with its free {omega} parameter. These theories have static spherically symmetric black holes. Those with well formulated asymptotics are studied through a Hamiltonian formalism, and their thermodynamical properties are found out. The theories studied are general relativity ({omega}{yields}{infinity}), a dimensionally reduced cylindrical four-dimensional general relativity theory ({omega}=0), and a theory representing a class of theories ({omega}=-3). The Hamiltonian formalism is set up in three dimensions through foliations on the right region of the Carter-Penrose diagram, with the bifurcationmore » 1-sphere as the left boundary, and anti-de Sitter infinity as the right boundary. The metric functions on the foliated hypersurfaces are the canonical coordinates. The Hamiltonian action is written, the Hamiltonian being a sum of constraints. One finds a new action which yields an unconstrained theory with one pair of canonical coordinates (M,P{sub M}), M being the mass parameter and P{sub M} its conjugate momenta The resulting Hamiltonian is a sum of boundary terms only. A quantization of the theory is performed. The Schroedinger evolution operator is constructed, the trace is taken, and the partition function of the canonical ensemble is obtained. The black hole entropies differ, in general, from the usual quarter of the horizon area due to the dilaton.« less

  20. Single-user MIMO system, Painlevé transcendents, and double scaling

    NASA Astrophysics Data System (ADS)

    Chen, Hongmei; Chen, Min; Blower, Gordon; Chen, Yang

    2017-12-01

    In this paper, we study a particular Painlevé V (denoted PV) that arises from multi-input-multi-output wireless communication systems. Such PV appears through its intimate relation with the Hankel determinant that describes the moment generating function (MGF) of the Shannon capacity. This originates through the multiplication of the Laguerre weight or the gamma density xαe-x, x > 0, for α > -1 by (1 + x/t)λ with t > 0 a scaling parameter. Here the λ parameter "generates" the Shannon capacity; see Chen, Y. and McKay, M. R. [IEEE Trans. Inf. Theory 58, 4594-4634 (2012)]. It was found that the MGF has an integral representation as a functional of y(t) and y'(t), where y(t) satisfies the "classical form" of PV. In this paper, we consider the situation where n, the number of transmit antennas, (or the size of the random matrix), tends to infinity and the signal-to-noise ratio, P, tends to infinity such that s = 4n2/P is finite. Under such double scaling, the MGF, effectively an infinite determinant, has an integral representation in terms of a "lesser" PIII. We also consider the situations where α =k +1 /2 ,k ∈N , and α ∈ {0, 1, 2, …}, λ ∈ {1, 2, …}, linking the relevant quantity to a solution of the two-dimensional sine-Gordon equation in radial coordinates and a certain discrete Painlevé-II. From the large n asymptotic of the orthogonal polynomials, which appears naturally, we obtain the double scaled MGF for small and large s, together with the constant term in the large s expansion. With the aid of these, we derive a number of cumulants and find that the capacity distribution function is non-Gaussian.

  1. Exponential Approximations Using Fourier Series Partial Sums

    NASA Technical Reports Server (NTRS)

    Banerjee, Nana S.; Geer, James F.

    1997-01-01

    The problem of accurately reconstructing a piece-wise smooth, 2(pi)-periodic function f and its first few derivatives, given only a truncated Fourier series representation of f, is studied and solved. The reconstruction process is divided into two steps. In the first step, the first 2N + 1 Fourier coefficients of f are used to approximate the locations and magnitudes of the discontinuities in f and its first M derivatives. This is accomplished by first finding initial estimates of these quantities based on certain properties of Gibbs phenomenon, and then refining these estimates by fitting the asymptotic form of the Fourier coefficients to the given coefficients using a least-squares approach. It is conjectured that the locations of the singularities are approximated to within O(N(sup -M-2), and the associated jump of the k(sup th) derivative of f is approximated to within O(N(sup -M-l+k), as N approaches infinity, and the method is robust. These estimates are then used with a class of singular basis functions, which have certain 'built-in' singularities, to construct a new sequence of approximations to f. Each of these new approximations is the sum of a piecewise smooth function and a new Fourier series partial sum. When N is proportional to M, it is shown that these new approximations, and their derivatives, converge exponentially in the maximum norm to f, and its corresponding derivatives, except in the union of a finite number of small open intervals containing the points of singularity of f. The total measure of these intervals decreases exponentially to zero as M approaches infinity. The technique is illustrated with several examples.

  2. Acceleration and collimation of magnetized winds

    NASA Astrophysics Data System (ADS)

    Okamoto, Isao

    2000-10-01

    The acceleration-collimation problem is discussed for stationary, axisymmetric, polytropic, non-relativistic MHD outflows, with causality and the current-closure condition taken into account. To elucidate the properties of physically realizable `quasi-conical' winds, we consider four kinds of rather unphysical flows in contrast, namely `radial', `asymptotic', `conical' and `current-free' flows. `Radial' flows are supposed to possess the radial structure from the source to infinity, thereby not fulfilling the transfield equation, though keeping causal contact with the source. `Asymptotic' flows coincide in the asymptotic domain with the `quasi-conical' winds, and ones extrapolated inwards from them through the subasymptotic domain to the source. Thirdly, `conical' flows are supposed to satisfy the transfield equation in the subasymptotic domain; thus they are not literally conical, but are supposed to satisfy the `solvability condition at infinity for the conical structure'. It is, however, argued that there is one difficulty in connecting the asymptotic conical structure causally to the structure upstream. Finally, `current-free' flows with no poloidal and toroidal currents everywhere in the wind zone are treated, but it is pointed out that there is no means of satisfying the current-closure condition in the wind zone. Of physical relevance are the `quasi-conical' winds, for which it is shown that the condition that open field lines in the wind zone can reach infinity leads to the requirement that the Poynting flux, proportional to ζ≡αρϖ2η, is not carried to infinity along these field lines, i.e., ζ->0, where α is the angular velocity of field lines, ρ the gas density, and η the mass flux per unit flux tube. While ζ decreases from a value of ζB≡ζA+4πηδα near the coronal base through χχΑ = 4πηαω2Α at the Alfvénic surface to null at infinity, the specific angular momentum of the flow increases up to αω2Α, and the flow energy reaches nearly α2ω2Α at infinity, where δ is a constant of the Bernouilli integral, and ϖA is the axial distance of the Alfvénic surface. It is also argued that `quasi-conical' winds with the current-closure condition fulfilled in the wind zone possess the two-componentness of outflow as one of their generic properties.

  3. Heterobimetallic thiocyanato-bridged coordination polymers based on [Hg(SCN){sub 4}]{sup 2-}: Synthesis, crystal structure, magnetic properties and ESR studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jian Fangfang; Xiao Hailian; Liu Faqian

    2006-12-15

    Three new M/Hg bimetallic thiocyanato-bridged coordination polymers; [Hg(SCN){sub 4}Ni(Im){sub 3}] {sub {infinity}} 1, [Hg(SCN){sub 4}Mn(Im){sub 2}] {sub {infinity}} 2, and [Hg(SCN){sub 4}Cu(Me-Im){sub 2} Hg(SCN){sub 4}Cu(Me-Im){sub 4}] {sub {infinity}} 3, (Im=imidazole, Me-Im=N-methyl-imidazole), have been synthesized and characterized by means of elemental analysis, ESR, and single-crystal X-ray. X-ray diffraction analysis reveals that these three complexes all form 3D network structure, and their structures all contain a thiocyanato-bridged Hg...Hg chain (M=Mn, Ni, Cu) in which the metal and mercury centers exhibit different coordination environments. In complex 1, the [Hg(SCN){sub 4}]{sup 2-} anion connects three [Ni(Im){sub 3}]{sup 2+} using three SCN ligands giving risemore » to a 3D structure, and in complex 2, four SCN ligands bridge [Hg(SCN){sub 4}]{sup 2-} and [Mn(Im){sub 2}]{sup 2+} to form a 3D structure. The structure of 3 contains two copper atoms with distinct coordination environment; one is coordinated by four N-methyl-imidazole ligands and two axially elongated SCN groups, and another by four SCN groups (two elongated) and two N-methyl-imidazole ligands. The magnetic property of complex 1 has been investigated. The spin state structure in hetermetallic NiHgNi systems of complex 1 is irregular. The ESR spectra results of complex 3 demonstrate Cu{sup 2+} ion lie on octahedral environment. -- Graphical abstract: Three new M/Hg bimetallic thiocyanato-bridged coordination polymers; [Hg(SCN){sub 4}Ni(Im){sub 3}] {sub {infinity}} 1, [Hg(SCN){sub 4}Mn(Im){sub 2}] {sub {infinity}} 2, and [Hg(SCN){sub 4}Cu(Me-Im){sub 2} Hg(SCN){sub 4}Cu(Me-Im){sub 4}] {sub {infinity}} 3, (Im=imidazole, Me-Im=N-methyl-imidazole), have been synthesized and characterized by single-crystal X-ray. All coordination polymers possess 3-D structures, and consist of organic base neutral ligands (imidazole and N-methyl-imidazole) and SCN{sup -1} anions. Their structural difference is maicaused by the role of the organic base and metal ions. The complex 1 shows the irregular spin state structure.« less

  4. Quantal Time Asymmetry: Mathematical Foundation and Physical Interpretation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bohm, A.

    2010-07-29

    Time in standard quantum mechanics extends from -{infinity}t{sub 0}(Feynman (1948)). In experiments on single Ba{sup +} ions, Dehmelt and others observed this finite preparation timemore » as the ensemble of onset-times t{sub 0}{sup 1}, t{sub 0}{sup 2},...,t{sub 0}{sup n} of dark periods. How the semigroup time evolution, t{sub 0{identical_to}}0

  5. Determination of thermodynamic properties of poly (cyclohexyl methacrylate) by inverse gas chromatography.

    PubMed

    Kaya, Ismet; Pala, Cigdem Yigit

    2014-07-01

    In this work, some thermodynamic properties of poly (cyclohexyl methacrylate) were studied by inverse gas chromatography (IGC). For this purpose, the polymeric substance was coated on Chromosorb W and which was filled into a glass column. The retention times (t(r)) of the probes were determined from the interactions of poly (cyclohexyl methacrylate) with n-pentane, n-hexane, n-heptane, n-octane, n-decane, methanol, ethanol, 2-propanol, butanol, acetone, ethyl methyl ketone, benzene, toluene and o-xylene by IGC technique. Then, the specific volume (Vg(0)) was determined for each probe molecule. By using (1/T; lnVg(0)) graphics, the glass transition temperature of poly (cyclohexyl methacrylate) was found to be 373 K. The adsorption heat under the glass transition temperature (deltaH(a)), and partial molar heat of sorption above the glass transition (deltaH1(S)), partial molar free energy of sorption (deltaG1(S)) and partial molar entropy of sorption (deltaS1(S)) belonging to sorption for every probe were calculated. The partial molar heat of mixing at infinite dilution (deltaH1(infinity)), partial molar free energy of mixing at infinite dilution (deltaG1(infinity)), Flory-Huggins interaction parameter (chi12(infinity)) and weight fraction activity coefficient (a1/w1)(infinity) values of polymer-solute systems were calculated at different column temperatures. The solubility parameters (delta2) of the polymer were obtained by IGC technique.

  6. The Linear Perturbation Theory of Axially Symmetric Compressible Flow with Application to the Effect of Compressibility on the Pressure Coefficient at the Surface of a Body of Revolution

    DTIC Science & Technology

    1947-07-18

    which + la constant constitute a surface vhlch say he called a streaa surface. The stream surface Is In torn Bode up of streaallnee. If a...potential and stream function would be, reapeetHely, VpX and ia ^r8. The stream awfaeoa would he right circular cylinders with axes along the x...there is a double infinity of methods. In general, !n transforming frem the compreeslhlo-flov field to the IncrwpreSBlble-flow field, streaa

  7. Poincare inequalities, uniform domains and extension properties for Newton-Sobolev functions in metric spaces

    NASA Astrophysics Data System (ADS)

    Bjorn, Jana; Shanmugalingam, Nageswari

    2007-08-01

    In the setting of metric measure spaces equipped with a doubling measure supporting a weak p-Poincare inequality with 1[less-than-or-equals, slant]p<[infinity], we show that any uniform domain [Omega] is an extension domain for the Newtonian space N1,p([Omega]) and that [Omega], together with the metric and the measure inherited from X, supports a weak p-Poincare inequality. For p>1, we obtain a near characterization of N1,p-extension domains with local estimates for the extension operator.

  8. Effect of ensure on the oral bioavailability of gatifloxacin in healthy volunteers.

    PubMed

    Kays, Michael B; Overholser, Brian R; Lagvankar, Seema; Goldman, Mitchell; Sowinski, Kevin M

    2005-11-01

    To determine the effect of Ensure on the relative oral bioavailability of gatifloxacin in healthy volunteers. Single-dose, randomized, crossover study. University-affiliated research center. Twelve healthy volunteers (six men, six women) aged 18 years or older with no clinically significant abnormal findings on physical examination or in medical history. Intervention. Subjects consumed 120 ml of study liquid-water or Ensure-every 30 minutes for five doses. With the second dose, subjects ingested a single gatifloxacin 400-mg tablet that had been uniformly crushed and mixed into the study liquid. Serial blood samples were collected for 48 hours, and gatifloxacin concentrations were determined by high-performance liquid chromatography. Pharmacokinetic data were analyzed by using noncompartmental methods. Maximum serum concentration (Cmax) and area under the serum concentration-time curve from zero to infinity (AUC0-infinity) were tested for bioequivalence after log-transformation of the data. Comparison of parameters for gatifloxacin administered with water versus those with Ensure showed that Cmax (4.35 +/- 0.90 vs 2.41 +/- 0.58 mug/ml, p<0.0001) and AUC(0-infinity) (42.4 +/- 10.1 vs 31.3 +/- 8.3 mg*hr/L, p<0.0001) were significantly decreased with Ensure, and bioequivalence was not achieved for either parameter. The geometric least squares mean ratio was 0.553 (90% confidence interval [CI] 0.501-0.611) for Cmax and 0.730 (90% CI 0.664-0.802) for AUC0-infinity. The median time to reach Cmax was significantly prolonged when gatifloxacin was administered with Ensure versus that with water (2.5 hrs vs 1.0 hr, p=0.006). The Cmax and AUC0-infinity of gatifloxacin were significantly decreased when the drug was administered with Ensure. The clinical significance of these findings will depend on the offending pathogen and its susceptibility to gatifloxacin.

  9. Mars curiosity mission

    NASA Image and Video Library

    2012-08-04

    NASA welcomed hundreds of children and accompanying adults to its INFINITY visitor center on Aug. 4, offering Mars-related activities that focused attention on the space agency's Curiosity mission to the Red Planet. Among other things, students from Gulfport High School, who field a team each year in the FIRST (For Inspiration and Recognition of Science and Technology) Robotics Competition, offered young visitors a firsthand look at how robots work Hundreds of persons visited the INFINITY facility during the day, including media representatives from surrounding communities.

  10. Casimir force in O(n) systems with a diffuse interface.

    PubMed

    Dantchev, Daniel; Grüneberg, Daniel

    2009-04-01

    We study the behavior of the Casimir force in O(n) systems with a diffuse interface and slab geometry infinity;{d-1}xL , where 2infinity limit of O(n) models with antiperiodic boundary conditions applied along the finite dimension L of the film. We observe that the Casimir amplitude Delta_{Casimir}(dmid R:J_{ perpendicular},J_{ parallel}) of the anisotropic d -dimensional system is related to that of the isotropic system Delta_{Casimir}(d) via Delta_{Casimir}(dmid R:J_{ perpendicular},J_{ parallel})=(J_{ perpendicular}J_{ parallel});{(d-1)2}Delta_{Casimir}(d) . For d=3 we derive the exact Casimir amplitude Delta_{Casimir}(3,mid R:J_{ perpendicular},J_{ parallel})=[Cl_{2}(pi3)3-zeta(3)(6pi)](J_{ perpendicular}J_{ parallel}) , as well as the exact scaling functions of the Casimir force and of the helicity modulus Upsilon(T,L) . We obtain that beta_{c}Upsilon(T_{c},L)=(2pi;{2})[Cl_{2}(pi3)3+7zeta(3)(30pi)](J_{ perpendicular}J_{ parallel})L;{-1} , where T_{c} is the critical temperature of the bulk system. We find that the contributions in the excess free energy due to the existence of a diffuse interface result in a repulsive Casimir force in the whole temperature region.

  11. Pharmacogenetic testing for clopidogrel using the rapid INFINITI analyzer: a dose-escalation study.

    PubMed

    Gladding, Patrick; White, Harvey; Voss, Jamie; Ormiston, John; Stewart, Jim; Ruygrok, Peter; Bvaldivia, Badi; Baak, Ruth; White, Catherine; Webster, Mark

    2009-11-01

    Our aim was to assess whether a higher clopidogrel maintenance dose has a greater antiplatelet effect in CYP2C19*2 allele carriers compared with noncarriers. Clopidogrel is a prodrug that is biotransformed by the cytochrome P450 enzymes CYP2C19, 2C9, and 3A4, 2B6, 1A2. The CYPC219*2 loss of function variant has been associated with a reduced antiplatelet response to clopidogrel and a 3-fold risk of stent thrombosis. Forty patients on standard maintenance dosage clopidogrel (75 mg), for 9.4 +/- 9.2 weeks, were enrolled into a dose escalation study. Platelet function was assessed at baseline and after 1 week of 150 mg once daily using the VerifyNow platelet function analyzer (Accumetrics Ltd., San Diego, California). Genomic DNA was hybridized to a BioFilmChip microarray on the INFINITI analyzer (AutoGenomics Inc., Carlsbad, California) and analyzed for the CYP19*2, *4, *17, and CYP2C9*2, *3 polymorphisms. Platelet inhibition increased over 1 week, mean +8.6 +/- 13.5% (p = 0.0003). Carriers of the CYP2C19*2 allele had significantly reduced platelet inhibition at baseline (median 18%, range 0% to 72%) compared with wildtype (wt) (median 59%, range 11% to 95%, p = 0.01) and at 1 week (p = 0.03). CYP2C19*2 allele carriers had an increase in platelet inhibition of (mean +9 +/- 11%, p = 0.03) and reduction in platelet reactivity (mean -26 +/- 38 platelet response unit, p = 0.04) with a higher dose. Together CYP2C19*2 and CYP2C9*3 loss of function carriers had a greater change in platelet inhibition with 150 mg daily than wt/wt (+10.9% vs. +0.7%, p = 0.04). Increasing the dose of clopidogrel in patients with nonresponder polymorphisms can increase antiplatelet response. Personalizing clopidogrel dosing using pharmacogenomics may be an effective method of optimizing treatment.

  12. Robust Nonlinear Feedback Control of Aircraft Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Garrard, William L.; Balas, Gary J.; Litt, Jonathan (Technical Monitor)

    2001-01-01

    This is the final report on the research performed under NASA Glen grant NASA/NAG-3-1975 concerning feedback control of the Pratt & Whitney (PW) STF 952, a twin spool, mixed flow, after burning turbofan engine. The research focussed on the design of linear and gain-scheduled, multivariable inner-loop controllers for the PW turbofan engine using H-infinity and linear, parameter-varying (LPV) control techniques. The nonlinear turbofan engine simulation was provided by PW within the NASA Rocket Engine Transient Simulator (ROCETS) simulation software environment. ROCETS was used to generate linearized models of the turbofan engine for control design and analysis as well as the simulation environment to evaluate the performance and robustness of the controllers. Comparison between the H-infinity, and LPV controllers are made with the baseline multivariable controller and developed by Pratt & Whitney engineers included in the ROCETS simulation. Simulation results indicate that H-infinity and LPV techniques effectively achieve desired response characteristics with minimal cross coupling between commanded values and are very robust to unmodeled dynamics and sensor noise.

  13. [Determination of solubility parameters of high density polyethylene by inverse gas chromatography].

    PubMed

    Wang, Qiang; Chen, Yali; Liu, Ruiting; Shi, Yuge; Zhang, Zhengfang; Tang, Jun

    2011-11-01

    Inverse gas chromatographic (IGC) technology was used to determine the solubility parameters of high density polyethylene (HDPE) at the absolute temperatures from 303.15 to 343.15 K. Six solvents were applied as test probes including hexane (n-C6), heptane (n-C7), octane (n-C8), nonane (n-C9), chloroform (CHCl3) and ethyl acetate (EtAc). Some thermodynamic parameters were obtained by IGC data analysis such as the specific retention volumes of the solvents (V(0)(g)), the molar enthalpy of sorption (delta H(S)(1)), the partial molar enthalpy of mixing at infinite dilution (delta H(1)(infinity)), the molar enthalpy of vaporization (delta H(v)), the activity coefficients at infinite dilution (omega (1)(infinity)), and Flow-Huggins interaction parameters (X(1,2)(infinity)) between HDPE and probe solvents. The results showed that the above six probes are poor solvents for HDPE. The solubility parameter of HDPE at room temperature (298.15 K) was also derived as 19.00 (J/cm3)(0.5).

  14. Feedback control laws for highly maneuverable aircraft

    NASA Technical Reports Server (NTRS)

    Garrard, William L.; Balas, Gary J.

    1992-01-01

    The results of a study of the application of H infinity and mu synthesis techniques to the design of feedback control laws for the longitudinal dynamics of the High Angle of Attack Research Vehicle (HARV) are presented. The objective of this study is to develop methods for the design of feedback control laws which cause the closed loop longitudinal dynamics of the HARV to meet handling quality specifications over the entire flight envelope. Control law designs are based on models of the HARV linearized at various flight conditions. The control laws are evaluated by both linear and nonlinear simulations of typical maneuvers. The fixed gain control laws resulting from both the H infinity and mu synthesis techniques result in excellent performance even when the aircraft performs maneuvers in which the system states vary significantly from their equilibrium design values. Both the H infinity and mu synthesis control laws result in performance which compares favorably with an existing baseline longitudinal control law.

  15. Novel density functional methodology for the computation of accurate electronic and thermodynamic properties of molecular systems and improved long-range behavior

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kafafi, S.A.

    1998-12-10

    A novel general purpose density functional methodology for the computation of accurate electronic and thermodynamic properties of molecules and improved long-range behavior is reported. Assuming the separability of the exchange (E{sub x}) and correlation (E{sub c}) contributions to the total exchange-correlation energy functional (E{sub xc}), the E{sub x} term consists of a hybrid mixture of 37.5% Hartree-Fock exchange and the appropriate local spin density exchange using the adiabatic connection formula. He demonstrated that E{sub x} and its corresponding potential V{sub x} [=dE{sub x}/d{rho}(r)] have the proper asymptotic limits at r = 0 and r {r_arrow} {infinity}, E{sub c} consists ofmore » the Vosko, Wilk, and Nusair formula for the free-electron gas correlation energy and a generalized gradient approximation term with one adjustable parameter. V{sub c} [=dE{sub c}/d{rho}(r)] was shown to obey the r {r_arrow} {infinity} limit of the corresponding potential derived from exact atomic exchange-correlation computations; namely, V{sub c} is proportional to r{sup {minus}4}. Most importantly, he demonstrated that, at r values where dispersion forces are operating, V{sub c} is proportional to 1/r{sup n} (n = 4, 6, 8, {hor_ellipsis}). The reported method was denoted by K2-BVWN because it used two adjustable parameters in its formulation. The K2-BVWN scheme scales as N{sup 3}, where N is the number of basis functions, compared to {approximately}N{sup 7} for Gaussian-2 (G2) ab initio theory and related methods, {approximately}N{sup 5} for Barone`s mPW1,3PW, and {approximately}N{sup 4} for Becke`s three-parameter density functional approaches. The G2 data set complemented by the reported molecular systems investigated in this work was recommended as a critical test for evaluating novel ab initio and density functional methodologies. The K2-BVWN method has been implemented in the Gaussian series of programs.« less

  16. Comparison of occlusion break responses and vacuum rise times of phacoemulsification systems.

    PubMed

    Sharif-Kashani, Pooria; Fanney, Douglas; Injev, Val

    2014-07-30

    Occlusion break surge during phacoemulsification cataract surgery can lead to potential surgical complications. The purpose of this study was to quantify occlusion break surge and vacuum rise time of current phacoemulsification systems used in cataract surgery. Occlusion break surge at vacuum pressures between 200 and 600 mmHg was assessed with the Infiniti® Vision System, the WhiteStar Signature® Phacoemulsification System, and the Centurion® Vision System using gravity-fed fluidics. Centurion Active FluidicsTM were also tested at multiple intraoperative pressure target settings. Vacuum rise time was evaluated for Infiniti, WhiteStar Signature, Centurion, and Stellaris® Vision Enhancement systems. Rise time to vacuum limits of 400 and 600 mmHg was assessed at flow rates of 30 and 60 cc/minute. Occlusion break surge was analyzed by 2-way analysis of variance. The Centurion system exhibited substantially less occlusion break surge than the other systems tested. Surge area with Centurion Active Fluidics was similar to gravity fluidics at an equivalent bottle height. At all Centurion Active Fluidics intraoperative pressure target settings tested, surge was smaller than with Infiniti and WhiteStar Signature. Infiniti had the fastest vacuum rise time and Stellaris had the slowest. No system tested reached the 600-mmHg vacuum limit. In this laboratory study, Centurion had the least occlusion break surge and similar vacuum rise times compared with the other systems tested. Reducing occlusion break surge may increase safety of phacoemulsification cataract surgery.

  17. Comparison of occlusion break responses and vacuum rise times of phacoemulsification systems

    PubMed Central

    2014-01-01

    Background Occlusion break surge during phacoemulsification cataract surgery can lead to potential surgical complications. The purpose of this study was to quantify occlusion break surge and vacuum rise time of current phacoemulsification systems used in cataract surgery. Methods Occlusion break surge at vacuum pressures between 200 and 600 mmHg was assessed with the Infiniti® Vision System, the WhiteStar Signature® Phacoemulsification System, and the Centurion® Vision System using gravity-fed fluidics. Centurion Active FluidicsTM were also tested at multiple intraoperative pressure target settings. Vacuum rise time was evaluated for Infiniti, WhiteStar Signature, Centurion, and Stellaris® Vision Enhancement systems. Rise time to vacuum limits of 400 and 600 mmHg was assessed at flow rates of 30 and 60 cc/minute. Occlusion break surge was analyzed by 2-way analysis of variance. Results The Centurion system exhibited substantially less occlusion break surge than the other systems tested. Surge area with Centurion Active Fluidics was similar to gravity fluidics at an equivalent bottle height. At all Centurion Active Fluidics intraoperative pressure target settings tested, surge was smaller than with Infiniti and WhiteStar Signature. Infiniti had the fastest vacuum rise time and Stellaris had the slowest. No system tested reached the 600-mmHg vacuum limit. Conclusions In this laboratory study, Centurion had the least occlusion break surge and similar vacuum rise times compared with the other systems tested. Reducing occlusion break surge may increase safety of phacoemulsification cataract surgery. PMID:25074069

  18. Pharmacokinetics and bioequivalence study of a fixed dose combination of rabeprazole and itopride in healthy Indian volunteers.

    PubMed

    Sahoo, Bijay Kumar; Das, Ayan; Agarwal, Sangita; Bhaumik, Uttam; Bose, Anirbandeep; Ghosh, Debotri; Roy, Bikash; Pal, Tapan Kumar

    2009-01-01

    The aim of the present study was to compare the pharmacokinetics of rabeprazole (CAS 117976-89-3) and itopride (CAS 122898-67-3) after oral administration of a rabeprazole (20 mg)-itopride (150 mg) fixed dose combination (FDC) in healthy human volunteers. The bioequivalence of two formulations (test and reference) was determined in 12 healthy Indian male volunteers (age: 25.25 +/- 4.69 years; weight: 60.50 +/- 5.04 kg) in a randomized, single-dose, two-period, two-treatment crossover study. Both formulations were administered orally as a single dose, with the treatments separated by a washout period of 1 week. Rabeprazole and itopride plasma levels were determined by a validated HPLC method using UV detection. The formulations were compared using the pharmacokinetic parameters area under the plasma concentration-time curve (AUC(0-t)), area under the plasma concentration-time curve from zero to infinity (AUC(0-infinity)) and peak plasma concentration (Cmax). General linear model (GLM) procedures were used in which sources of variation were subject, treatment and period. The results indicated that there were no statistically significant differences (P > 0.05) between the logarithmically transformed AUC(0-infinity) and Cmax values between test and reference formulation. The 90% confidence interval for the ratio of the logarithmically transformed AUC(0-t), AUC(0-infinity) and Cmax were within the bioequivalence limits of 0.8-1.25 and the relative bioavailability of rabeprazole and itopride test and reference formulations was 98.24 and 93.65%, respectively.

  19. Stochastic modeling and simulation of reaction-diffusion system with Hill function dynamics.

    PubMed

    Chen, Minghan; Li, Fei; Wang, Shuo; Cao, Young

    2017-03-14

    Stochastic simulation of reaction-diffusion systems presents great challenges for spatiotemporal biological modeling and simulation. One widely used framework for stochastic simulation of reaction-diffusion systems is reaction diffusion master equation (RDME). Previous studies have discovered that for the RDME, when discretization size approaches zero, reaction time for bimolecular reactions in high dimensional domains tends to infinity. In this paper, we demonstrate that in the 1D domain, highly nonlinear reaction dynamics given by Hill function may also have dramatic change when discretization size is smaller than a critical value. Moreover, we discuss methods to avoid this problem: smoothing over space, fixed length smoothing over space and a hybrid method. Our analysis reveals that the switch-like Hill dynamics reduces to a linear function of discretization size when the discretization size is small enough. The three proposed methods could correctly (under certain precision) simulate Hill function dynamics in the microscopic RDME system.

  20. Theoretical model of the Bergeron-Findeisen mechanism of ice crystal growth in clouds

    NASA Astrophysics Data System (ADS)

    Castellano, N. E.; Avila, E. E.; Saunders, C. P. R.

    A numerical study of growth rate of ice particles in an array of water droplets (Bergeron-Findeisen mechanism) has used the method of electrostatic image charges to determine the vapour field in which a particle grows. Analysis of growth rate in various conditions of relevance to clouds has shown that it is proportional to liquid water content and to ice particle size, while it is inversely proportional to cloud droplet size. The results show that growth rate is enhanced by several percent relative to the usual treatment in which vapour is assumed to diffuse from infinity towards a growing ice particle. The study was performed for ice particles between 25 and 150 μm radii, water droplet sizes between 6 and 20 μm diameter and a wide range of liquid water contents. A study was also made to determine the effect of reducing the vapour source at infinity so that the droplets alone provided the vapour for particle growth. A parameterisation of ice particle growth rate is given as a function of liquid water content and ice particle and droplet sizes. These studies are of importance to considerations in thunderstorm electrification processes, where the mechanism of charge transfer between ice particles and graupel could take place.

  1. Bioequivalence of the 4-mg Oral Granules and Chewable Tablet Formulations of Montelukast.

    PubMed

    Knorr, Barbara; Hartford, Alan; Li, Xiujiang Susie; Yang, Amy Yifan; Noonan, Gertrude; Migoya, Elizabeth

    2010-06-01

    PURPOSE: The primary objective of the studies was to demonstrate bioequivalence between the oral granules formulation and chewable tablet of montelukast in the fasted state. Effect of food on the pharmacokinetics of the oral granules was also evaluated. METHODS: The Formulation Biocomparison Study (Study 1) and the Final Market Image Study (Study 2) each used an open-label, randomized, 3-period crossover design where healthy adult subjects (N = 24 and 30, respectively) received montelukast as a single 4-mg dose of the oral granules formulation and a 4-mg chewable tablet fasted, and a single 4-mg dose of the oral granules formulation with food (on 2 teaspoons of applesauce [Study 1] or after consumption of a high-fat breakfast [Study 2]). The formulations were to be considered bioequivalent if the 90% confidence intervals (CIs) for geometric mean ratios (GMRs) (oral granules/chewable tablet) for the AUC(0-infinity) and C(max) of montelukast were within the prespecified comparability bounds of (0.80, 1.25). For the food-effect assessment in Study 1, comparability bounds were prespecified as (0.50, 2.00) only for the 90% CI of the GMR (oral granules fed/oral granules fasted) for the AUC(0-infinity) of montelukast; the 90% CI of the GMR for the C(max) of montelukast, however, also was computed. In Study 2, 90% CIs of the GMRs (oral granules fed/oral granules fasted) for the AUC(0-infinity) and C(max) of montelukast were computed; comparability bounds were not prespecified. RESULTS: Comparing the exposure of the formulations, the 90% CIs of the GMRs for AUC(0-infinity) and C(max) were within the prespecified bound of (0.80, 1.25). For AUC(0-infinity), the GMRs (90% CI) for Study 1 and Study 2 were 1.01 (0.92, 1.11) and 0.95 (0.91, 0.99), respectively. For C(max), respective values were 0.99 (0.86, 1.13) and 0.92 (0.84, 1.01). When the oral granules formulation was administered with food, 90% CIs of the GMRs for both AUC(0-infinity) and C(max) in both studies were contained within the interval of (0.50, 2.00). CONCLUSIONS: The 4-mg oral granules and 4-mg chewable tablet formulations of montelukast administered in the fasted state are bioequivalent. Single 4-mg doses of the oral granules formulation and the chewable tablet of montelukast are generally well tolerated.

  2. Complete conformal classification of the Friedmann–Lemaître–Robertson–Walker solutions with a linear equation of state

    NASA Astrophysics Data System (ADS)

    Harada, Tomohiro; Carr, B. J.; Igata, Takahisa

    2018-05-01

    We completely classify Friedmann–Lemaître–Robertson–Walker solutions with spatial curvature and equation of state , according to their conformal structure, singularities and trapping horizons. We do not assume any energy conditions and allow , thereby going beyond the usual well-known solutions. For each spatial curvature, there is an initial spacelike big-bang singularity for w  >  ‑1/3 and , while there is no big-bang singularity for w  <  ‑1 and . For K  =  0 or  ‑1, ‑1  <  w  <  ‑1/3 and , there is an initial null big-bang singularity. For each spatial curvature, there is a final spacelike future big-rip singularity for w  <  ‑1 and , with null geodesics being future complete for but incomplete for w  <  ‑5/3. For w  =  ‑1/3, the expansion speed is constant. For  ‑1  <  w  <  ‑1/3 and K  =  1, the universe contracts from infinity, then bounces and expands back to infinity. For K  =  0, the past boundary consists of timelike infinity and a regular null hypersurface for  ‑5/3  <  w  <  ‑1, while it consists of past timelike and past null infinities for . For w  <  ‑1 and K  =  1, the spacetime contracts from an initial spacelike past big-rip singularity, then bounces and blows up at a final spacelike future big-rip singularity. For w  <  ‑1 and K  =  ‑1, the past boundary consists of a regular null hypersurface. The trapping horizons are timelike, null and spacelike for , and , respectively. A negative energy density () is possible only for K  =  ‑1. In this case, for w  >  ‑1/3, the universe contracts from infinity, then bounces and expands to infinity; for  ‑1  <  w  <  ‑1/3, it starts from a big-bang singularity and contracts to a big-crunch singularity; for w  <  ‑1, it expands from a regular null hypersurface and contracts to another regular null hypersurface.

  3. Unprecedented {sup 1}/{sub {infinity}}[{beta}-Mo{sub 8}O{sub 26}]{sup 4-} polymeric chains and four novel organic-inorganic hybrids based on Mo-POMs and azaheterocycles templates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du Haijuan; Zunzhe Shu; Niu Yunyin, E-mail: niuyy@zzu.edu.cn

    2012-06-15

    Abstrct: Four novel organic-inorganic hybrid materials based on Mo-POMs and organic templates, namely [DEB] [{beta}-Mo{sub 8}O{sub 26}] [NH{sub 4}]{sub 2} (1), [BMIM] [{beta}-Mo{sub 8}O{sub 26}]{sub 0.5}{center_dot}H{sub 2}O (2), [BMIM] [1D-Mo{sub 8}O{sub 26}]{sub 0.5} (3) and {l_brace}3D-[Cu(DIE){sub 2}] [1D-Mo{sub 8}O{sub 26}]{sub 0.5}{r_brace}{sub {infinity}} (4) [DEB= 1,1 Prime -diethyl-4,4 Prime -bipyridinium, BMIM=1,1 Prime -bis(1-methylimidazolium)methylene, DIE=1,2-diimidazoloethane] have been hydrothermally synthesized and characterized by elemental analyses, IR spectroscopy, thermal gravimetric analysis(TGA) and single-crystal X-ray diffraction. Both compounds 1 and 2 are POMs-based supramolecular compounds consisted of independent [{beta}-Mo{sub 8}O{sub 26}]{sup 4-} anions and [DEB]{sup 2+} or [BMIM]{sup 2+} organic cations. Compound 3 is themore » first external template example of Mo-POMs-based supramolecular network incorporated with novel {sup 1}/{sub {infinity}}[{beta}-Mo{sub 8}O{sub 26}]{sup 4-} polymeric chains. Compound 4 is a rare supramolecular structure that contains octamolybdate {sup 1}/{sub {infinity}}[{beta}-Mo{sub 8}O{sub 26}]{sup 4-} polymeric chains interconnected via DIE ligands to form a 3D net. Moreover, it was indicated that these polyacid compounds had definite catalytic activities on the probe reaction of acetaldehyde oxidation to acetic acid with H{sub 2}O{sub 2}. - Graphical abstract: Four novel organic templated polyoxometalates comprising of 0D, 1D and 3D supramolecular frameworks together with the catalytic activities on the acetaldehyde oxidation to acetic acid were reported. Highlights: Using cation templated self-assembly four novel polyoxometalates were prepared. Compounds 1 and 2 consisted of independent [{beta}-Mo{sub 8}O{sub 26}]{sup 4-} anions and organic cations. Compound 3 is the first external template-assisted POMs with {sup 1}/{sub {infinity}}[{beta}-Mo{sub 8}O{sub 26}]{sup 4-} chain. Compound 4 is a rare 3D net containing {sup 1}/{sub {infinity}}[{beta}-Mo{sub 8}O{sub 26}]{sup 4-} 1D chain and DIE ligands. These compounds had definite catalytic activities on the acetaldehyde oxidation.« less

  4. Solution of a cauchy problem for a diffusion equation in a Hilbert space by a Feynman formula

    NASA Astrophysics Data System (ADS)

    Remizov, I. D.

    2012-07-01

    The Cauchy problem for a class of diffusion equations in a Hilbert space is studied. It is proved that the Cauchy problem in well posed in the class of uniform limits of infinitely smooth bounded cylindrical functions on the Hilbert space, and the solution is presented in the form of the so-called Feynman formula, i.e., a limit of multiple integrals against a gaussian measure as the multiplicity tends to infinity. It is also proved that the solution of the Cauchy problem depends continuously on the diffusion coefficient. A process reducing an approximate solution of an infinite-dimensional diffusion equation to finding a multiple integral of a real function of finitely many real variables is indicated.

  5. Theoretical Investigation of Thermo-Mechanical Behavior of Carbon Nanotube-Based Composites Using the Integral Transform Method

    NASA Technical Reports Server (NTRS)

    Pawloski, Janice S.

    2001-01-01

    This project uses the integral transform technique to model the problem of nanotube behavior as an axially symmetric system of shells. Assuming that the nanotube behavior can be described by the equations of elasticity, we seek a stress function x which satisfies the biharmonic equation: del(exp 4) chi = [partial deriv(r(exp 2)) + partial deriv(r) + partial deriv(z(exp 2))] chi = 0. The method of integral transformations is used to transform the differential equation. The symmetry with respect to the z-axis indicates that we only need to consider the sine transform of the stress function: X(bar)(r,zeta) = integral(from 0 to infinity) chi(r,z)sin(zeta,z) dz.

  6. Analysis of effect of the solubility on gas exchange in nonhomogeneous lungs

    NASA Technical Reports Server (NTRS)

    Colburn, W. E., Jr.; Evans, J. W.; West, J. B.

    1974-01-01

    A comparison is made of the gas exchange in nonhomogeneous lung models and in homogeneous lung models with the same total blood flow and ventilation. It is shown that the ratio of the rate of gas transfer of the inhomogeneous lung model over the rate of gas transfer of the homogeneous lung model as a function of gas solubility always has the qualitative features for gases with linear dissociation curves. This ratio is 1 for a gas with zero solubility and decreases to a single minimum. It subsequently rises to approach 1 as the solubility tends to infinity. The early portion of the graph of this function is convex, then after a single inflection point it is concave.

  7. Properties of Zero-Free Transfer Function Matrices

    NASA Astrophysics Data System (ADS)

    D. O. Anderson, Brian; Deistler, Manfred

    Transfer functions of linear, time-invariant finite-dimensional systems with more outputs than inputs, as arise in factor analysis (for example in econometrics), have, for state-variable descriptions with generic entries in the relevant matrices, no finite zeros. This paper gives a number of characterizations of such systems (and indeed square discrete-time systems with no zeros), using state-variable, impulse response, and matrix-fraction descriptions. Key properties include the ability to recover the input values at any time from a bounded interval of output values, without any knowledge of an initial state, and an ability to verify the no-zero property in terms of a property of the impulse response coefficient matrices. Results are particularized to cases where the transfer function matrix in question may or may not have a zero at infinity or a zero at zero.

  8. Flight Tests of the Head-Up Display (HUD) in DC-9-20 Ship 382, November 1968 - January 1969. IRAD Line Item Description Number D36-69-033f

    DTIC Science & Technology

    1970-09-14

    in this report was carried out as part of an Independent Research and Development program on the contribution of the Head-Up Display to an All...through windshield. W, by partial mirror, M. and imaged at infinity by lens. L. ] 1 »hMWMMMMMHi^^Hik«ni l TABLE I. ORGANIZATIONAL PRINCIPLES USED...movement of the equipment or its components. Translational movements are unlikely to give trouble because the display format is imaged at infinity

  9. OPERATION CASTLE. Radiological Safety. Volume 2

    DTIC Science & Technology

    1985-09-01

    d.’ That, orcopt as noted sbovo, a radiolocical safety program similar to that of CaSTIS, bo planned for future operations» e. That research and...sane manner as that for liONGEL’iT, indicated l60 nr/hr at 1830M, 3 March« The infinity dose of the UTHUK natives was computed at 58r« The decision...status of /JLUK mt pot up f o» .. consideratioa aprroxlmatoly 200CM, 2 March. This atoll ha» a reported. ^ population of 401; The infinity dose wa

  10. Radiation Electrodynamics of the Photo-Electron Cloud Produced By an Arbitrary Photon Pulse Incident on a Planar Emitting Surface in Vacuum

    DTIC Science & Technology

    1994-06-01

    charge clouds. These finitely-remote fields are then used to compute asymptotic radiation fields in the limit of the field point going to infinity in a 0...like to thank Doug Beason for providing an environment conducive to performing the research reported on here and Michelle Tafoya for her excellent...radiation quantities, however, are obtained only in the limit of the field point going to infinity ; we thus demonstrate the existence of this limit and

  11. INFINITY at NASA Stennis Space Center

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Flags are planted on the roof of the new INFINITY at NASA Stennis Space Center facility under construction just west of the Mississippi Welcome Center at exit 2 on Interstate 10. Stennis and community leaders celebrated the 'topping out' of the new science center Nov. 17, marking a construction milestone for the center. The 72,000-square-foot science and education center will feature space and Earth galleries to showcase the science that underpins the missions of the agencies at Stennis Space Center. The center is targeted to open in 2012.

  12. Progress report on the k{sub infinity} measurements of HTGR type lattices with the oscillation technique at zero reactivity; Rapport d'advancement sur les mesures de K {sub infinite} des reseaux du type HTGR avec la technique de l'oscillateur a'reactivite' nulle (in French)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1971-01-15

    The principles of measuring k {sub infinity} for a HTGR lattice using the oscillation technique with zero reactivity were already presented at the ''9th reactor physics meeting of countries participating in the Dragon project''. A brief summary of the essential characteristics of the experiment is followed by a status report on present work.

  13. INFINITY at NASA Stennis Space Center

    NASA Image and Video Library

    2010-11-17

    Flags are planted on the roof of the new INFINITY at NASA Stennis Space Center facility under construction just west of the Mississippi Welcome Center at exit 2 on Interstate 10. Stennis and community leaders celebrated the 'topping out' of the new science center Nov. 17, marking a construction milestone for the center. The 72,000-square-foot science and education center will feature space and Earth galleries to showcase the science that underpins the missions of the agencies at Stennis Space Center. The center is targeted to open in 2012.

  14. Mixed H2/H Infinity Optimization with Multiple H Infinity Constraints

    DTIC Science & Technology

    1994-06-01

    given by (w = 1P I Ijwj, !5 1); p = 2900 The 2-norm is the energy, and the c-norm is the maximum magnitude of the signal. A good measure of performance is...the system 2-norm is not good for uncertainty management)] is conservative, especially when the uncertainty model is highly structured. In this case, g...57.6035 T [-6.4183, 3.6504] ±30.2811 Although the objective was to design a pure regulator, from Table 5-1 we see that the H2 controller provides good

  15. Parametric robust control and system identification: Unified approach

    NASA Technical Reports Server (NTRS)

    Keel, Leehyun

    1994-01-01

    Despite significant advancement in the area of robust parametric control, the problem of synthesizing such a controller is still a wide open problem. Thus, we attempt to give a solution to this important problem. Our approach captures the parametric uncertainty as an H(sub infinity) unstructured uncertainty so that H(sub infinity) synthesis techniques are applicable. Although the techniques cannot cope with the exact parametric uncertainty, they give a reasonable guideline to model the unstructured uncertainty that contains the parametric uncertainty. An additional loop shaping technique is also introduced to relax its conservatism.

  16. Dynamic stability analysis of fractional order leaky integrator echo state neural networks

    NASA Astrophysics Data System (ADS)

    Pahnehkolaei, Seyed Mehdi Abedi; Alfi, Alireza; Tenreiro Machado, J. A.

    2017-06-01

    The Leaky integrator echo state neural network (Leaky-ESN) is an improved model of the recurrent neural network (RNN) and adopts an interconnected recurrent grid of processing neurons. This paper presents a new proof for the convergence of a Lyapunov candidate function to zero when time tends to infinity by means of the Caputo fractional derivative with order lying in the range (0, 1). The stability of Fractional-Order Leaky-ESN (FO Leaky-ESN) is then analyzed, and the existence, uniqueness and stability of the equilibrium point are provided. A numerical example demonstrates the feasibility of the proposed method.

  17. Incomplete Kochen-Specker coloring

    NASA Astrophysics Data System (ADS)

    Granström, Helena

    2007-09-01

    A particular incomplete Kochen-Specker coloring, suggested by Appleby [Stud. Hist. Philos. Mod. Phys. 36, 1 (2005)] in dimension three, is generalized to arbitrary dimension. We investigate its effectivity as a function of dimension, using two different measures. A limit is derived for the fraction of the sphere that can be colored using the generalized Appleby construction as the number of dimensions approaches infinity. The second, and physically more relevant measure of effectivity, is to look at the fraction of properly colored ON bases. Using this measure, we derive a "lower bound for the upper bound" in three and four real dimensions.

  18. Generation of dynamo magnetic fields in protoplanetary and other astrophysical accretion disks

    NASA Technical Reports Server (NTRS)

    Stepinski, T. F.; Levy, E. H.

    1988-01-01

    A computational method for treating the generation of dynamo magnetic fields in astrophysical disks is presented. The numerical difficulty of handling the boundary condition at infinity in the cylindrical disk geometry is overcome by embedding the disk in a spherical computational space and matching the solutions to analytically tractable spherical functions in the surrounding space. The lowest lying dynamo normal modes for a 'thick' astrophysical disk are calculated. The generated modes found are all oscillatory and spatially localized. Tha potential implications of the results for the properties of dynamo magnetic fields in real astrophysical disks are discussed.

  19. Synthesis, crystal structure and optical properties of a novel sodium lead pentaborate, NaPbB{sub 5}O{sub 9}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Min; Graduate University of Chinese Academy of Sciences, Beijing 100049; Pan, Shilie, E-mail: slpan@ms.xjb.ac.c

    A novel sodium lead pentaborate, NaPbB{sub 5}O{sub 9}, has been successfully synthesized by standard solid-state reaction. The single-crystal X-ray structural analysis showed that NaPbB{sub 5}O{sub 9} crystallizes in the monoclinic space group P2{sub 1}/c with a=6.5324(10) A, b=13.0234(2) A, c=8.5838(10) A, {beta}=104.971(10){sup o}, and Z=4. The crystal structure is composed of double ring [B{sub 5}O{sub 9}]{sup 3-} units, [PbO{sub 7}] and [NaO{sub 7}] polyhedra. [B{sub 5}O{sub 9}]{sup 3-} groups connect with each other forming two-dimensional infinite {sub {infinity}}[B{sub 5}O{sub 9}]{sup 3-} layers, while [PbO{sub 7}] and [NaO{sub 7}] polyhedra are located between the layers. [PbO{sub 7}] polyhedra linked together viamore » corner-sharing O atom forming novel infinite {sub {infinity}}[PbO{sub 6}] chains along the c axis. The thermal behavior, IR spectrum and the optical diffuse reflectance spectrum of NaPbB{sub 5}O{sub 9} were reported. -- Graphical abstract: A new phase, NaPbB{sub 5}O{sub 9}, has been discovered in the ternary M{sub 2}O-PbO-B{sub 2}O{sub 3} (M=alkali-metal) system. The crystal structure consists of a novel infinite {sub {infinity}}[PbO{sub 6}] chains. Display Omitted Research highlights: NaPbB{sub 5}O{sub 9} is the first borate discovered in the ternary M{sub 2}O-PbO-B{sub 2}O{sub 3} (M=alkali-metal) system. NaPbB{sub 5}O{sub 9} crystal structure includes a two-dimensional infinite {sub {infinity}}[B{sub 5}O{sub 9}]{sup 3-} layers and a novel one-dimensional infinite {sub {infinity}}[PbO{sub 6}] chains. [PbO{sub 7}] polyhedron has a highly asymmetric bonding configuration.« less

  20. Binary black hole coalescence in the large-mass-ratio limit: The hyperboloidal layer method and waveforms at null infinity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernuzzi, Sebastiano; Nagar, Alessandro; Zenginoglu, Anil

    2011-10-15

    We compute and analyze the gravitational waveform emitted to future null infinity by a system of two black holes in the large-mass-ratio limit. We consider the transition from the quasiadiabatic inspiral to plunge, merger, and ringdown. The relative dynamics is driven by a leading order in the mass ratio, 5PN-resummed, effective-one-body (EOB), analytic-radiation reaction. To compute the waveforms, we solve the Regge-Wheeler-Zerilli equations in the time-domain on a spacelike foliation, which coincides with the standard Schwarzschild foliation in the region including the motion of the small black hole, and is globally hyperboloidal, allowing us to include future null infinity inmore » the computational domain by compactification. This method is called the hyperboloidal layer method, and is discussed here for the first time in a study of the gravitational radiation emitted by black hole binaries. We consider binaries characterized by five mass ratios, {nu}=10{sup -2,-3,-4,-5,-6}, that are primary targets of space-based or third-generation gravitational wave detectors. We show significative phase differences between finite-radius and null-infinity waveforms. We test, in our context, the reliability of the extrapolation procedure routinely applied to numerical relativity waveforms. We present an updated calculation of the final and maximum gravitational recoil imparted to the merger remnant by the gravitational wave emission, v{sub kick}{sup end}/(c{nu}{sup 2})=0.04474{+-}0.00007 and v{sub kick}{sup max}/(c{nu}{sup 2})=0.05248{+-}0.00008. As a self-consistency test of the method, we show an excellent fractional agreement (even during the plunge) between the 5PN EOB-resummed mechanical angular momentum loss and the gravitational wave angular momentum flux computed at null infinity. New results concerning the radiation emitted from unstable circular orbits are also presented. The high accuracy waveforms computed here could be considered for the construction of template banks or for calibrating analytic models such as the effective-one-body model.« less

  1. Stroke dynamics and frequency of 3 phacoemulsification machines.

    PubMed

    Tognetto, Daniele; Cecchini, Paolo; Leon, Pia; Di Nicola, Marta; Ravalico, Giuseppe

    2012-02-01

    To measure the working frequency and the stroke dynamics of the phaco tip of 3 phacoemulsification machines. University Eye Clinic of Trieste, Italy. Experimental study. A video wet fixture was assembled to measure the working frequency using a micro camera and a micropulsed strobe-light system. A different video wet fixture was created to measure tip displacement as vectorial movement at different phaco powers using a microscopic video apparatus. The working frequency of the Infiniti Ozil machine was 43.0 kHz in longitudinal mode and 31.6 kHz in torsional mode. The frequency of the Whitestar Signature machine was 29.0 kHz in longitudinal mode and 38.0 kHz with the Ellips FX handpiece. The Stellaris machine had a frequency of 28.8 kHz. The longitudinal stroke of the 3 machines at different phaco powers was statistically significantly different. The Stellaris machine had the highest stroke extent (139 μm). The lateral movement of the Infiniti Ozil and Whitestar Signature machines differed significantly. No movement on the y-axis was observed for the Infiniti Ozil machine in torsional mode. The elliptical path of the Ellips FX handpiece had different x and y components at different phaco powers. The 3 phaco machines performed differently in terms of working frequency and stroke dynamics. The knowledge of the peculiar lateral and elliptical path strokes of Infiniti and Whitestar Signature machines may allow the surgeon to fully use these features for lens removal. Copyright © 2012 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  2. Pharmacokinetics and metabolic profile of free, conjugated, and total silymarin flavonolignans in human plasma after oral administration of milk thistle extract.

    PubMed

    Wen, Zhiming; Dumas, Todd E; Schrieber, Sarah J; Hawke, Roy L; Fried, Michael W; Smith, Philip C

    2008-01-01

    Silymarin, a mixture of polyphenolic flavonoids extracted from milk thistle (Silybum marianum), is composed mainly of silychristin, silydianin, silybin A, silybin B (SB(B)), isosilybin A (ISB(A)), and isosilybin B. In this study, the plasma concentrations of free (unconjugated), conjugated (sulfated and glucuronidated), and total (free and conjugated) silymarin flavonolignans were measured using liquid chromatography-electrospray ionization-mass spectrometry, after a single oral dose of 600 mg of standardized milk thistle extracts to three healthy volunteers. Pharmacokinetic analysis indicated that silymarin flavonolignans were rapidly eliminated with short half-lives (1-3 and 3-8 h for free and conjugated, respectively). The AUC(0-->infinity) values of the conjugated silymarin flavonolignans were 4- to 30-fold higher than those of their free fractions, with SB(B) (mean AUC(0-->infinity) = 51 and 597 microg x h/l for free and conjugated, respectively) and ISB(A) (mean AUC(0-->infinity) = 30 and 734 microg x h/l for free and conjugated, respectively) exhibiting higher AUC(0-->infinity) values in comparison with other flavonolignans. Near the plasma peak times (1-3 h), the free, sulfated, and glucuronidated flavonolignans represented approximately 17, 28, and 55% of the total silymarin, respectively. In addition, the individual silymarin flavonolignans exhibited quite different plasma profiles for both the free and conjugated fractions. These data suggest that, after oral administration, silymarin flavonolignans are quickly metabolized to their conjugates, primarily forming glucuronides, and the conjugates are primary components present in human plasma.

  3. Space-Time Correlations and Spectra of Wall Pressure in a Turbulent Boundary Layer

    NASA Technical Reports Server (NTRS)

    Willmarth, W. W.

    1959-01-01

    Measurements of the statistical properties of the fluctuating wall pressure produced by a subsonic turbulent boundary layer are described. The measurements provide additional information about the structure of the turbulent boundary layer; they are applicable to the problems of boundary-layer induced noise inside an airplane fuselage and to the generation of waves-on water. The spectrum of the wall pressure is presented in dimensionless form. The ratio of the root-mean-square wall pressure to the free-stream dynamic pressure is found to be a constant square root of bar P(sup 2)/q(sub infinity) = 0.006 independent of Mach number and Reynolds number. In addition, space- time correlation measurements in the stream direction show that pressure fluctuations whose scale is greater than or equal to 0.3 times the boundary-layer thickness are convected with the convection speed U(sub c) = 0.82U(sub infinity) where U(infinity) is the free-stream velocity and have lost their identity in a distance approximately equal to 10 boundary-layer thicknesses.

  4. New 3D coordination polymers constructed from pillared metal-formate Kagomé layers exhibiting spin canting only in the nickel(II) complex.

    PubMed

    Li, Zuo-Xi; Zhao, Jiong-Peng; Sañudo, E C; Ma, Hong; Pan, Zhong-Da; Zeng, Yong-Fei; Bu, Xian-He

    2009-12-21

    Sparked by the strategy of pillared-layer MOFs, three formate coordination polymers, {[Ni(2)(HCO(2))(3)(L)(2)](NO(3)).2H(2)O}(infinity) (1), {[Co(2)(HCO(2))(3)(L)(2)](HCO(2)).2H(2)O}(infinity) (2), and {[Cu(2)(HCO(2))(3)(L)(2)](HCO(2)).2H(2)O}(infinity) (3), have been synthesized by employing the rodlike ligand 4,4'-bis(imidazol-1-yl)biphenyl (L) as the pillar. Structural analysis indicates that the title complexes 1-3 are isostructural compounds, which possess metal-formate 2D layers perpendicularly pillared by the ligand L to afford a 3D open framework. This is an interesting example of a Kagome lattice based on the formate mediator. Moreover, the formate anion of this 2D Kagome layer exhibits various bridging modes: anti-anti, syn-anti, and 3.21 modes. Their magnetic measurements reveals that only complex 1 presents the spin canting phenomenon, while its isostructural Co(II) and Cu(II) complexes are simply paramagnets with antiferromagnetic coupling.

  5. Integrated multiple-model adaptive fault identification and reconfigurable fault-tolerant control for Lead-Wing close formation systems

    NASA Astrophysics Data System (ADS)

    Liu, Chun; Jiang, Bin; Zhang, Ke

    2018-03-01

    This paper investigates the attitude and position tracking control problem for Lead-Wing close formation systems in the presence of loss of effectiveness and lock-in-place or hardover failure. In close formation flight, Wing unmanned aerial vehicle movements are influenced by vortex effects of the neighbouring Lead unmanned aerial vehicle. This situation allows modelling of aerodynamic coupling vortex-effects and linearisation based on optimal close formation geometry. Linearised Lead-Wing close formation model is transformed into nominal robust H-infinity models with respect to Mach hold, Heading hold, and Altitude hold autopilots; static feedback H-infinity controller is designed to guarantee effective tracking of attitude and position while manoeuvring Lead unmanned aerial vehicle. Based on H-infinity control design, an integrated multiple-model adaptive fault identification and reconfigurable fault-tolerant control scheme is developed to guarantee asymptotic stability of close-loop systems, error signal boundedness, and attitude and position tracking properties. Simulation results for Lead-Wing close formation systems validate the efficiency of the proposed integrated multiple-model adaptive control algorithm.

  6. Bismuth(III) 5-sulfosalicylate complexes: structure, solubility and activity against Helicobacter pylori.

    PubMed

    Andrews, Philip C; Deacon, Glen B; Ferrero, Richard L; Junk, Peter C; Karrar, Abdulgader; Kumar, Ish; MacLellan, Jonathan G

    2009-08-28

    Treatment of 5-sulfosalicylic acid (H(3)Ssal) with BiPh(3) results in the formation of the first dianionic carboxylate-sulfonate bismuth complex, [PhBi(HSsal)H(2)O](infinity) 1a, and its ethanol analogue [PhBi(HSsal)EtOH](infinity) 1b (space group P2(1)/c), while Bi(OAc)(3) gives the mixed monoanionic and dianionic complex, {[Bi(HSsal)(H(2)Ssal)(H(2)O)(3)](2) x 2 H(2)O}(infinity) 2 (space group P1). The three complexes are all polymeric in the solid state as determined by single crystal X-ray diffraction, with extended frameworks constructed from dimeric [Bi(HSsal)](2), 1a and 1b, or from [Bi(HSsal)(H(2)Ssal)](2) units, 2. The heteroleptic bismuth complexes 1a and 2 display remarkable aqueous solubility, 10 and 2.5 mg ml(-1) respectively, resulting in a clear solution of pH 1.5. In contrast, 1b is essentially insoluble in aqueous environments. All three complexes show significant activity against the bacterium Helicobacter pylori of <6.25 microg ml(-1).

  7. A nonlinear H-infinity approach to optimal control of the depth of anaesthesia

    NASA Astrophysics Data System (ADS)

    Rigatos, Gerasimos; Rigatou, Efthymia; Zervos, Nikolaos

    2016-12-01

    Controlling the level of anaesthesia is important for improving the success rate of surgeries and for reducing the risks to which operated patients are exposed. This paper proposes a nonlinear H-infinity approach to optimal control of the level of anaesthesia. The dynamic model of the anaesthesia, which describes the concentration of the anaesthetic drug in different parts of the body, is subjected to linearization at local operating points. These are defined at each iteration of the control algorithm and consist of the present value of the system's state vector and of the last control input that was exerted on it. For this linearization Taylor series expansion is performed and the system's Jacobian matrices are computed. For the linearized model an H-infinity controller is designed. The feedback control gains are found by solving at each iteration of the control algorithm an algebraic Riccati equation. The modelling errors due to this approximate linearization are considered as disturbances which are compensated by the robustness of the control loop. The stability of the control loop is confirmed through Lyapunov analysis.

  8. Charged particle layers in the Debye limit.

    PubMed

    Golden, Kenneth I; Kalman, Gabor J; Kyrkos, Stamatios

    2002-09-01

    We develop an equivalent of the Debye-Hückel weakly coupled equilibrium theory for layered classical charged particle systems composed of one single charged species. We consider the two most important configurations, the charged particle bilayer and the infinite superlattice. The approach is based on the link provided by the classical fluctuation-dissipation theorem between the random-phase approximation response functions and the Debye equilibrium pair correlation function. Layer-layer pair correlation functions, screened and polarization potentials, static structure functions, and static response functions are calculated. The importance of the perfect screening and compressibility sum rules in determining the overall behavior of the system, especially in the r--> infinity limit, is emphasized. The similarities and differences between the quasi-two-dimensional bilayer and the quasi-three-dimensional superlattice are highlighted. An unexpected behavior that emerges from the analysis is that the screened potential, the correlations, and the screening charges carried by the individual layers exhibit a marked nonmonotonic dependence on the layer separation.

  9. Analytic complexity of functions of two variables

    NASA Astrophysics Data System (ADS)

    Beloshapka, V. K.

    2007-09-01

    The definition of analytic complexity of an analytic function of two variables is given. It is proved that the class of functions of a chosen complexity is a differentialalgebraic set. A differential polynomial defining the functions of first class is constructed. An algorithm for obtaining relations defining an arbitrary class is described. Examples of functions are given whose order of complexity is equal to zero, one, two, and infinity. It is shown that the formal order of complexity of the Cardano and Ferrari formulas is significantly higher than their analytic complexity. The complexity classes turn out to be invariant with respect to a certain infinite-dimensional transformation pseudogroup. In this connection, we describe the orbits of the action of this pseudogroup in the jets of orders one, two, and three. The notion of complexity order is extended to plane (or “planar”) 3-webs. It is discovered that webs of complexity order one are the hexagonal webs. Some problems are posed.

  10. Synthesis and biological activity of organothiophosphoryl polyoxotungstates.

    PubMed

    Sun, Zhengang; Liu, Jutao; Ma, Jianfang; Liu, Jingfu

    2002-01-01

    Organothiophosphoryl polyoxotungstates R(contains)XW(infinityinfinity)O(contains exists) (/-) , R(contains) P(contains)W(infinity),O(infinity) (/-), R(contains)PW( exists)O(contains) (Delta) (-)(X = P, Si, Ge, B or Ga; R = PhP(S), C(6)H(11)P(S)) have been prepared from lacunary polyoxoanions and PhP(S). The products were characterized by elemental analysis, IR, and NMR spectroscopy. According to spectroscopic observations, the hybrid anions consist of a lacunary anion framework on which are grafted two equivalent or groups through P-O-W bridges. Some of the title compounds showed the antigerm activity.

  11. Zeros and logarithmic asymptotics of Sobolev orthogonal polynomials for exponential weights

    NASA Astrophysics Data System (ADS)

    Díaz Mendoza, C.; Orive, R.; Pijeira Cabrera, H.

    2009-12-01

    We obtain the (contracted) weak zero asymptotics for orthogonal polynomials with respect to Sobolev inner products with exponential weights in the real semiaxis, of the form , with [gamma]>0, which include as particular cases the counterparts of the so-called Freud (i.e., when [phi] has a polynomial growth at infinity) and Erdös (when [phi] grows faster than any polynomial at infinity) weights. In addition, the boundness of the distance of the zeros of these Sobolev orthogonal polynomials to the convex hull of the support and, as a consequence, a result on logarithmic asymptotics are derived.

  12. Actively Controlled Structures Theory. Volume 1. Theory of Design Methods

    DTIC Science & Technology

    1979-11-01

    the effects of control and observacion spillover can be treated as stochastic disturbances instead of being ignored as usual. Furthermore, the...accordingly given by k = lA .. + 6.7021/-X.. for A.. <^ 0. Note first that as IX-J increases from zero to infinity, k decreases from infinity to k...BFiC1l TK + Q + PCJFJNF^J - 0 YES (solve for K) (c)pL{A-BF1Ci] T + lA -BFiCi]L + Xo 1 -1 T T T -1 „F, - - N XB KLCnC.LC.1] 1 p ill

  13. Collisional Penrose process with spinning particles

    NASA Astrophysics Data System (ADS)

    Mukherjee, Sajal

    2018-03-01

    In this article, we have investigated collisional Penrose process (CPP) using spinning particles in a Kerr spacetime. Recent studies have shown that the collision between two spinning particles can produce a significantly high energy in the center of mass frame. Here, we explicitly compute the energy extraction and efficiency as measured by an observer at infinity. We consider the colliding particles as well as the escaping particles may contain spins. It has been shown that the energy extraction is larger than the non-spinning case and also their possibility to escape to infinity is wider than the geodesics.

  14. Costs and Benefits of Network Based Instruction at the Naval Postgraduate School.

    DTIC Science & Technology

    1998-06-01

    Secondary Research Questions 3 D. SCOPE 3 E. METHODOLOGY 3 F. ORGANIZATION 4 G. BENEFITS OF THE STUDY 5 II. BACKGROUND. 7 A. INTRODUCTION 7...50% 60% 70% 80% 90% 100% Frequency Counts: Frequency: Group Start Value - Infinity 1 $40,000.00 2 $45,600.00 3 $51,200.00 4 $56,800.00 5 ...Value - Infinity 1 $35,000.00 2 $37,400.00 3 $39,800.00 4 $42,200.00 5 $44,600.00 6 $47,000.00 7 $49,400.00 8 $51,800.00 9 $54,200.00 10

  15. Existence of the Harmonic Measure for Random Walks on Graphs and in Random Environments

    NASA Astrophysics Data System (ADS)

    Boivin, Daniel; Rau, Clément

    2013-01-01

    We give a sufficient condition for the existence of the harmonic measure from infinity of transient random walks on weighted graphs. In particular, this condition is verified by the random conductance model on ℤ d , d≥3, when the conductances are i.i.d. and the bonds with positive conductance percolate. The harmonic measure from infinity also exists for random walks on supercritical clusters of ℤ2. This is proved using results of Barlow (Ann. Probab. 32:3024-3084, 2004) and Barlow and Hambly (Electron. J. Probab. 14(1):1-27, 2009).

  16. Small violations of Bell inequalities for multipartite pure random states

    NASA Astrophysics Data System (ADS)

    Drumond, Raphael C.; Duarte, Cristhiano; Oliveira, Roberto I.

    2018-05-01

    For any finite number of parts, measurements, and outcomes in a Bell scenario, we estimate the probability of random N-qudit pure states to substantially violate any Bell inequality with uniformly bounded coefficients. We prove that under some conditions on the local dimension, the probability to find any significant amount of violation goes to zero exponentially fast as the number of parts goes to infinity. In addition, we also prove that if the number of parts is at least 3, this probability also goes to zero as the local Hilbert space dimension goes to infinity.

  17. Optimal Controller Design for the Microgravity Isolation Mount (MIM)

    NASA Technical Reports Server (NTRS)

    Hampton, R. David

    1998-01-01

    H2 controllers, when designed using an appropriate design model and carefully chosen frequency weightings, appear to provide robust performance and robust stability for Microgravity Isolation Mount (MIM). The STS-85 flight data will be used to evaluate the H2 controllers' performance on the actual hardware under working conditions. Next, full-order H-infinity controllers will be developed, as an intermediate step, in order to determine appropriate H-infinity performance weights for use in the mixed-norm design. Finally the basic procedure outlined above will be used to develop fixed-order mixed-norm controllers for MIM.

  18. Adaptive Attitude Control of the Crew Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Muse, Jonathan

    2010-01-01

    An H(sub infinity)-NMA architecture for the Crew Launch Vehicle was developed in a state feedback setting. The minimal complexity adaptive law was shown to improve base line performance relative to a performance metric based on Crew Launch Vehicle design requirements for all most all of the Worst-on-Worst dispersion cases. The adaptive law was able to maintain stability for some dispersions that are unstable with the nominal control law. Due to the nature of the H(sub infinity)-NMA architecture, the augmented adaptive control signal has low bandwidth which is a great benefit for a manned launch vehicle.

  19. Method of model reduction and multifidelity models for solute transport in random layered porous media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Zhijie; Tartakovsky, Alexandre M.

    This work presents a hierarchical model for solute transport in bounded layered porous media with random permeability. The model generalizes the Taylor-Aris dispersion theory to stochastic transport in random layered porous media with a known velocity covariance function. In the hierarchical model, we represent (random) concentration in terms of its cross-sectional average and a variation function. We derive a one-dimensional stochastic advection-dispersion-type equation for the average concentration and a stochastic Poisson equation for the variation function, as well as expressions for the effective velocity and dispersion coefficient. We observe that velocity fluctuations enhance dispersion in a non-monotonic fashion: the dispersionmore » initially increases with correlation length λ, reaches a maximum, and decreases to zero at infinity. Maximum enhancement can be obtained at the correlation length about 0.25 the size of the porous media perpendicular to flow.« less

  20. Exploiting structure: Introduction and motivation

    NASA Technical Reports Server (NTRS)

    Xu, Zhong Ling

    1994-01-01

    This annual report summarizes the research activities that were performed from 26 Jun. 1993 to 28 Feb. 1994. We continued to investigate the Robust Stability of Systems where transfer functions or characteristic polynomials are affine multilinear functions of parameters. An approach that differs from 'Stability by Linear Process' and that reduces the computational burden of checking the robust stability of the system with multilinear uncertainty was found for low order, 2-order, and 3-order cases. We proved a crucial theorem, the so-called Face Theorem. Previously, we have proven Kharitonov's Vertex Theorem and the Edge Theorem by Bartlett. The detail of this proof is contained in the Appendix. This Theorem provides a tool to describe the boundary of the image of the affine multilinear function. For SPR design, we have developed some new results. The third objective for this period is to design a controller for IHM by the H-infinity optimization technique. The details are presented in the Appendix.

  1. Alternative dimensional reduction via the density matrix

    NASA Astrophysics Data System (ADS)

    de Carvalho, C. A.; Cornwall, J. M.; da Silva, A. J.

    2001-07-01

    We give graphical rules, based on earlier work for the functional Schrödinger equation, for constructing the density matrix for scalar and gauge fields in equilibrium at finite temperature T. More useful is a dimensionally reduced effective action (DREA) constructed from the density matrix by further functional integration over the arguments of the density matrix coupled to a source. The DREA is an effective action in one less dimension which may be computed order by order in perturbation theory or by dressed-loop expansions; it encodes all thermal matrix elements. We term the DREA procedure alternative dimensional reduction, to distinguish it from the conventional dimensionally reduced field theory (DRFT) which applies at infinite T. The DREA is useful because it gives a dimensionally reduced theory usable at any T including infinity, where it yields the DRFT, and because it does not and cannot have certain spurious infinities which sometimes occur in the density matrix itself or the conventional DRFT; these come from ln T factors at infinite temperature. The DREA can be constructed to all orders (in principle) and the only regularizations needed are those which control the ultraviolet behavior of the zero-T theory. An example of spurious divergences in the DRFT occurs in d=2+1φ4 theory dimensionally reduced to d=2. We study this theory and show that the rules for the DREA replace these ``wrong'' divergences in physical parameters by calculable powers of ln T; we also compute the phase transition temperature of this φ4 theory in one-loop order. Our density-matrix construction is equivalent to a construction of the Landau-Ginzburg ``coarse-grained free energy'' from a microscopic Hamiltonian.

  2. A generalised age- and phase-structured model of human tumour cell populations both unperturbed and exposed to a range of cancer therapies.

    PubMed

    Basse, Britta; Ubezio, Paolo

    2007-07-01

    We develop a general mathematical model for a population of cells differentiated by their position within the cell division cycle. A system of partial differential equations governs the kinetics of cell densities in certain phases of the cell division cycle dependent on time t (hours) and an age-like variable tau (hours) describing the time since arrival in a particular phase of the cell division cycle. Transition rate functions control the transfer of cells between phases. We first obtain a theoretical solution on the infinite domain -infinity < t < infinity. We then assume that age distributions at time t=0 are known and write our solution in terms of these age distributions on t=0. In practice, of course, these age distributions are unknown. All is not lost, however, because a cell line before treatment usually lies in a state of asynchronous balanced growth where the proportion of cells in each phase of the cell cycle remain constant. We assume that an unperturbed cell line has four distinct phases and that the rate of transition between phases is constant within a short period of observation ('short' relative to the whole history of the tumour growth) and we show that under certain conditions, this is equivalent to exponential growth or decline. We can then gain expressions for the age distributions. So, in short, our approach is to assume that we have an unperturbed cell line on t

  3. A Comparative Study of Standardized Infinity Reference and Average Reference for EEG of Three Typical Brain States

    PubMed Central

    Zheng, Gaoxing; Qi, Xiaoying; Li, Yuzhu; Zhang, Wei; Yu, Yuguo

    2018-01-01

    The choice of different reference electrodes plays an important role in deciphering the functional meaning of electroencephalography (EEG) signals. In recent years, the infinity zero reference using the reference electrode standard technique (REST) has been increasingly applied, while the average reference (AR) was generally advocated as the best available reference option in previous classical EEG studies. Here, we designed EEG experiments and performed a direct comparison between the influences of REST and AR on EEG-revealed brain activity features for three typical brain behavior states (eyes-closed, eyes-open and music-listening). The analysis results revealed the following observations: (1) there is no significant difference in the alpha-wave-blocking effect during the eyes-open state compared with the eyes-closed state for both REST and AR references; (2) there was clear frontal EEG asymmetry during the resting state, and the degree of lateralization under REST was higher than that under AR; (3) the global brain functional connectivity density (FCD) and local FCD have higher values for REST than for AR under different behavior states; and (4) the value of the small-world network characteristic in the eyes-closed state is significantly (in full, alpha, beta and gamma frequency bands) higher than that in the eyes-open state, and the small-world effect under the REST reference is higher than that under AR. In addition, the music-listening state has a higher small-world network effect than the eyes-closed state. The above results suggest that typical EEG features might be more clearly presented by applying the REST reference than by applying AR when using a 64-channel recording. PMID:29593490

  4. Analytical results for the statistical distribution related to a memoryless deterministic walk: dimensionality effect and mean-field models.

    PubMed

    Terçariol, César Augusto Sangaletti; Martinez, Alexandre Souto

    2005-08-01

    Consider a medium characterized by N points whose coordinates are randomly generated by a uniform distribution along the edges of a unitary d-dimensional hypercube. A walker leaves from each point of this disordered medium and moves according to the deterministic rule to go to the nearest point which has not been visited in the preceding mu steps (deterministic tourist walk). Each trajectory generated by this dynamics has an initial nonperiodic part of t steps (transient) and a final periodic part of p steps (attractor). The neighborhood rank probabilities are parametrized by the normalized incomplete beta function Id= I1/4 [1/2, (d+1) /2] . The joint distribution S(N) (mu,d) (t,p) is relevant, and the marginal distributions previously studied are particular cases. We show that, for the memory-less deterministic tourist walk in the euclidean space, this distribution is Sinfinity(1,d) (t,p) = [Gamma (1+ I(-1)(d)) (t+ I(-1)(d) ) /Gamma(t+p+ I(-1)(d)) ] delta(p,2), where t=0, 1,2, ... infinity, Gamma(z) is the gamma function and delta(i,j) is the Kronecker delta. The mean-field models are the random link models, which correspond to d-->infinity, and the random map model which, even for mu=0 , presents nontrivial cycle distribution [ S(N)(0,rm) (p) proportional to p(-1) ] : S(N)(0,rm) (t,p) =Gamma(N)/ {Gamma[N+1- (t+p) ] N( t+p)}. The fundamental quantities are the number of explored points n(e)=t+p and Id. Although the obtained distributions are simple, they do not follow straightforwardly and they have been validated by numerical experiments.

  5. PROPOSED SIAM PROBLEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BAILEY, DAVID H.; BORWEIN, JONATHAN M.

    A recent paper by the present authors, together with mathematical physicists David Broadhurst and M. Larry Glasser, explored Bessel moment integrals, namely definite integrals of the general form {integral}{sub 0}{sup {infinity}} t{sup m}f{sup n}(t) dt, where the function f(t) is one of the classical Bessel functions. In that paper, numerous previously unknown analytic evaluations were obtained, using a combination of analytic methods together with some fairly high-powered numerical computations, often performed on highly parallel computers. In several instances, while we were able to numerically discover what appears to be a solid analytic identity, based on extremely high-precision numerical computations, wemore » were unable to find a rigorous proof. Thus we present here a brief list of some of these unproven but numerically confirmed identities.« less

  6. Dynamic ductile fracture of a central crack

    NASA Technical Reports Server (NTRS)

    Tsai, Y. M.

    1976-01-01

    A central crack, symmetrically growing at a constant speed in a two dimensional ductile material subject to uniform tension at infinity, is investigated using the integral transform methods. The crack is assumed to be the Dugdale crack, and the finite stress condition at the crack tip is satisfied during the propagation of the crack. Exact expressions of solution are obtained for the finite stress condition at the crack tip, the crack shape, the crack opening displacement, and the energy release rate. All those expressions are written as the product of explicit dimensional quantities and a nondimensional dynamic correction function. The expressions reduce to the associated static results when the crack speed tends to zero, and the nondimensional dynamic correction functions were calculated for various values of the parameter involved.

  7. Clash of symmetries in a Randall-Sundrum-like spacetime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dando, Gareth; George, Damien P.; Volkas, Raymond R.

    2005-08-15

    We present a toy model that exhibits clash-of-symmetries style Higgs field kink configurations in a Randall-Sundrum-like spacetime. The model has two complex scalar fields {phi}{sub 1,2}, with a sextic potential obeying global U(1)xU(1) and discrete {phi}{sub 1}{r_reversible}{phi}{sub 2} interchange symmetries. The scalar fields are coupled to 4+1 dimensional gravity endowed with a bulk cosmological constant. We show that the coupled Einstein-Higgs field equations have an interesting analytic solution provided the sextic potential adopts a particular form. The 4+1 metric is shown to be that of a smoothed-out Randall-Sundrum type of spacetime. The thin-brane Randall-Sundrum limit, whereby the Higgs field kinksmore » become step functions, is carefully defined in terms of the fundamental parameters in the action. The 'clash-of-symmetries' feature, defined in previous papers, is manifested here through the fact that both of the U(1) symmetries are spontaneously broken at all nonasymptotic points in the extra dimension w. One of the U(1)'s is asymptotically restored as w{yields}-{infinity}, with the other U(1) restored as w{yields}+{infinity}. The spontaneously broken discrete symmetry ensures topological stability. In the gauged version of this model we find new flat-space solutions, but in the warped metric case we have been unable to find any solutions with nonzero gauge fields.« less

  8. Full Multigrid Flow Solver

    NASA Technical Reports Server (NTRS)

    Mineck, Raymond E.; Thomas, James L.; Biedron, Robert T.; Diskin, Boris

    2005-01-01

    FMG3D (full multigrid 3 dimensions) is a pilot computer program that solves equations of fluid flow using a finite difference representation on a structured grid. Infrastructure exists for three dimensions but the current implementation treats only two dimensions. Written in Fortran 90, FMG3D takes advantage of the recursive subroutine feature, dynamic memory allocation, and structured-programming constructs of that language. FMG3D supports multi-block grids with three types of block-to-block interfaces: periodic, C-zero, and C-infinity. For all three types, grid points must match at interfaces. For periodic and C-infinity types, derivatives of grid metrics must be continuous at interfaces. The available equation sets are as follows: scalar elliptic equations, scalar convection equations, and the pressure-Poisson formulation of the Navier-Stokes equations for an incompressible fluid. All the equation sets are implemented with nonzero forcing functions to enable the use of user-specified solutions to assist in verification and validation. The equations are solved with a full multigrid scheme using a full approximation scheme to converge the solution on each succeeding grid level. Restriction to the next coarser mesh uses direct injection for variables and full weighting for residual quantities; prolongation of the coarse grid correction from the coarse mesh to the fine mesh uses bilinear interpolation; and prolongation of the coarse grid solution uses bicubic interpolation.

  9. Evaluation of the PrimerDesign™ genesig real-time reverse transcription-polymerase chain reaction assay and the INFINITI® Respiratory Viral Panel Plus assay for the detection of human metapneumovirus in Kuwait.

    PubMed

    Al-Turab, Mariam; Chehadeh, Wassim; Al-Mulla, Fahd; Al-Nakib, Widad

    2012-04-01

    Human metapneumovirus (hMPV) is a respiratory pathogen that was discovered in 2001 and is considered a major cause of both upper and lower respiratory tract infections. A sensitive, fast, and high-throughput diagnostic test is needed for the detection of hMPV that may assist in the clinical management as well as in the reduction of inappropriate therapy. Therefore, a comparison assessment was performed in this study between the PrimerDesign™ genesig real-time reverse transcription-polymerase chain reaction (RT-PCR) Assay and the INFINITI(®) Respiratory Viral Panel Plus Assay (RVP-Plus) for the detection of hMPV infection in patients with respiratory tract infections. A total of 200 respiratory samples were collected from 185 hospitalized patients, during the winter season in Kuwait. Of 185 patients, 10 (5.4%) were positive for hMPV RNA by the in-house RT-PCR assay, while 7 (4%) were positive for hMPV RNA by the real-time RT-PCR assay and 9 (5%) were positive for hMPV RNA by the INFINITI(®) RVP-Plus assay. The high incidence rate (60%) of hMPV infection was in January 2011. The sensitivity of the real-time RT-PCR and INFINITI(®) RVP-Plus assays was 70% and 90%, respectively, with specificity of 100% for both assays. hMPV types A and B could be identified in this study; however, discordant genotyping results were found between the direct sequencing method and the INFINITI(®) RVP-Plus assay in 33% of hMPV-positive patients. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Fluidics and heat generation of Alcon Infiniti and Legacy, Bausch & Lomb Millennium, and advanced medical optics sovereign phacoemulsification systems.

    PubMed

    Floyd, Michael S; Valentine, Jeremy R; Olson, Randall J

    2006-09-01

    To study heat generation, vacuum, and flow characteristics of the Alcon Infiniti and Bausch & Lomb Millennium with results compared with the Alcon Legacy and advanced medical optics (AMO) Sovereign machines previously studied. Experimental study. Heat generation with continuous ultrasound was determined with and without a 200-g weight. Flow and vacuum were determined from 12 to 40-ml/min in 2-ml/min steps. The impact of a STAAR Cruise Control was also tested. Millennium created the most heat/20% of power (5.67 +/- 0.51 degrees C unweighted and 6.80 +/- 0.80 degrees C weighted), followed by Sovereign (4.59 +/- 0.70 degrees C unweighted and 5.65 +/- 0.72 degrees C weighted), Infiniti (2.79 +/- 0.62 degrees C unweighted and 3.96 +/- 0.31 degrees C weighted), and Legacy (1.99 +/- 0.49 degrees C unweighted and 4.27 +/- 0.76 degrees C weighted; P < .0001 for all comparisons between machines except Infiniti vs Legacy, both weighted). Flow studies revealed that Millennium Peristaltic was 17% less than indicated (P < .0001 to all other machines), and all other machines were within 3.5% of indicated. Cruise Control decreased flow by 4.1% (P < .0001 for same machine without it). Millennium Venturi had the greatest vacuum (81% more than the least Sovereign; P < .0001), and Cruise Control increased vacuum in a peristaltic machine 35% more than the Venturi system (P < .0001). Percent power is not consistent in regard to heat generation, however, flow was accurate for all machines except Millennium Peristaltic. Restriction with Cruise Control elevates unoccluded vacuum to levels greater than the Venturi system tested.

  11. Impact of uncertainty in expected return estimation on stock price volatility

    NASA Astrophysics Data System (ADS)

    Kostanjcar, Zvonko; Jeren, Branko; Juretic, Zeljan

    2012-11-01

    We investigate the origin of volatility in financial markets by defining an analytical model for time evolution of stock share prices. The defined model is similar to the GARCH class of models, but can additionally exhibit bimodal behaviour in the supply-demand structure of the market. Moreover, it differs from existing Ising-type models. It turns out that the constructed model is a solution of a thermodynamic limit of a Gibbs probability measure when the number of traders and the number of stock shares approaches infinity. The energy functional of the Gibbs probability measure is derived from the Nash equilibrium of the underlying game.

  12. Analytic approximations to the modon dispersion relation. [in oceanography

    NASA Technical Reports Server (NTRS)

    Boyd, J. P.

    1981-01-01

    Three explicit analytic approximations are given to the modon dispersion relation developed by Flierl et al. (1980) to describe Gulf Stream rings and related phenomena in the oceans and atmosphere. The solutions are in the form of k(q), and are developed in the form of a power series in q for small q, an inverse power series in 1/q for large q, and a two-point Pade approximant. The low order Pade approximant is shown to yield a solution for the dispersion relation with a maximum relative error for the lowest branch of the function equal to one in 700 in the q interval zero to infinity.

  13. Propagation-invariant beams with quantum pendulum spectra: from Bessel beams to Gaussian beam-beams.

    PubMed

    Dennis, Mark R; Ring, James D

    2013-09-01

    We describe a new class of propagation-invariant light beams with Fourier transform given by an eigenfunction of the quantum mechanical pendulum. These beams, whose spectra (restricted to a circle) are doubly periodic Mathieu functions in azimuth, depend on a field strength parameter. When the parameter is zero, pendulum beams are Bessel beams, and as the parameter approaches infinity, they resemble transversely propagating one-dimensional Gaussian wave packets (Gaussian beam-beams). Pendulum beams are the eigenfunctions of an operator that interpolates between the squared angular momentum operator and the linear momentum operator. The analysis reveals connections with Mathieu beams, and insight into the paraxial approximation.

  14. Efficient numerical method for solving Cauchy problem for the Gamma equation

    NASA Astrophysics Data System (ADS)

    Koleva, Miglena N.

    2011-12-01

    In this work we consider Cauchy problem for the so called Gamma equation, derived by transforming the fully nonlinear Black-Scholes equation for option price into a quasilinear parabolic equation for the second derivative (Greek) Γ = VSS of the option price V. We develop an efficient numerical method for solving the model problem concerning different volatility terms. Using suitable change of variables the problem is transformed on finite interval, keeping original behavior of the solution at the infinity. Then we construct Picard-Newton algorithm with adaptive mesh step in time, which can be applied also in the case of non-differentiable functions. Results of numerical simulations are given.

  15. Deforming baryons into confining strings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartnoll, Sean A.; Portugues, Ruben

    2004-09-15

    We find explicit probe D3-brane solutions in the infrared of the Maldacena-Nunez background. The solutions describe deformed baryon vertices: q external quarks are separated in spacetime from the remaining N-q. As the separation is taken to infinity we recover known solutions describing infinite confining strings in N=1 gauge theory. We present results for the mass of finite confining strings as a function of length. We also find probe D2-brane solutions in a confining type IIA geometry, the reduction of a G{sub 2} holonomy M theory background. The relation between these deformed baryons and confining strings is not as straightforward.

  16. A new approach to the Schrödinger equation with rational potentials

    NASA Astrophysics Data System (ADS)

    Dong, Ming-de; Chu, Jue-Hui

    1984-04-01

    A new analytic theory is established for the Schrödinger equation with a rational potential, including a complete classification of the regular eigenfunctions into three different types, an exact method of obtaining wavefunctions, an explicit formulation of the spectral equation (3 x 3 determinant) etc. All representations are exhibited in a unifying way via function-theoretic methods and therefore given in explicit form, in contrast to the prevailing discussion appealing to perturbation or variation methods or continued-fraction techniques. The irregular eigenfunctions at infinity can be obtained analogously and will be discussed separately as another solvable case for singular potentials.

  17. The Kirkwood{endash}Buckingham variational method and the boundary value problems for the molecular Schr{umlt o}dinger equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pupyshev, V.I.; Scherbinin, A.V.; Stepanov, N.F.

    1997-11-01

    The approach based on the multiplicative form of a trial wave function within the framework of the variational method, initially proposed by Kirkwood and Buckingham, is shown to be an effective analytical tool in the quantum mechanical study of atoms and molecules. As an example, the elementary proof is given to the fact that the ground state energy of a molecular system placed into the box with walls of finite height goes to the corresponding eigenvalue of the Dirichlet boundary value problem when the height of the walls is growing up to infinity. {copyright} {ital 1997 American Institute of Physics.}

  18. Commutators associated with Schrödinger operators on the nilpotent Lie group.

    PubMed

    Ni, Tianzhen; Liu, Yu

    2017-01-01

    Assume that G is a nilpotent Lie group. Denote by [Formula: see text] the Schrödinger operator on G , where Δ is the sub-Laplacian, the nonnegative potential W belongs to the reverse Hölder class [Formula: see text] for some [Formula: see text] and D is the dimension at infinity of  G . Let [Formula: see text] be the Riesz transform associated with  L . In this paper we obtain some estimates for the commutator [Formula: see text] for [Formula: see text], where [Formula: see text] is a function space which is larger than the classical Lipschitz space.

  19. Stable boundary conditions and difference schemes for Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Dutt, P.

    1985-01-01

    The Navier-Stokes equations can be viewed as an incompletely elliptic perturbation of the Euler equations. By using the entropy function for the Euler equations as a measure of energy for the Navier-Stokes equations, it was possible to obtain nonlinear energy estimates for the mixed initial boundary value problem. These estimates are used to derive boundary conditions which guarantee L2 boundedness even when the Reynolds number tends to infinity. Finally, a new difference scheme for modelling the Navier-Stokes equations in multidimensions for which it is possible to obtain discrete energy estimates exactly analogous to those we obtained for the differential equation was proposed.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biondini, Gino

    We study soliton solutions of the Kadomtsev-Petviashvili II equation (-4u{sub t}+6uu{sub x}+3u{sub xxx}){sub x}+u{sub yy}=0 in terms of the amplitudes and directions of the interacting solitons. In particular, we classify elastic N-soliton solutions, namely, solutions for which the number, directions, and amplitudes of the N asymptotic line solitons as y{yields}{infinity} coincide with those of the N asymptotic line solitons as y{yields}-{infinity}. We also show that the (2N-1){exclamation_point}{exclamation_point} types of solutions are uniquely characterized in terms of the individual soliton parameters, and we calculate the soliton position shifts arising from the interactions.

  1. Crater property in two-particle bound states: When and why

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chow, Chi-Keung

    2000-06-01

    Crater has shown that, for two particles (with masses m{sub 1} and m{sub 2}) in a Coulombic bound state, the charge distribution is equal to the sum of the two charge distributions obtained by taking m{sub 1}{yields}{infinity} and m{sub 2}{yields}{infinity}, respectively, while keeping the same Coulombic potential. We provide a simple scaling criterion to determine whether an arbitrary Hamiltonian possesses this property. In particular, we show that, for a Coulombic system, fine structure corrections preserve this Crater property while two-particle relativistic corrections and/or hyperfine corrections may destroy it. (c) 2000 American Association of Physics Teachers.

  2. Line soliton interactions of the Kadomtsev-Petviashvili equation.

    PubMed

    Biondini, Gino

    2007-08-10

    We study soliton solutions of the Kadomtsev-Petviashvili II equation (-4u(t)+6uu(x)+3u(xxx))(x)+u(yy)=0 in terms of the amplitudes and directions of the interacting solitons. In particular, we classify elastic N-soliton solutions, namely, solutions for which the number, directions, and amplitudes of the N asymptotic line solitons as y-->infinity coincide with those of the N asymptotic line solitons as y-->-infinity. We also show that the (2N-1)!! types of solutions are uniquely characterized in terms of the individual soliton parameters, and we calculate the soliton position shifts arising from the interactions.

  3. Distribution of G concurrence of random pure states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cappellini, Valerio; Sommers, Hans-Juergen; Zyczkowski, Karol

    2006-12-15

    The average entanglement of random pure states of an NxN composite system is analyzed. We compute the average value of the determinant D of the reduced state, which forms an entanglement monotone. Calculating higher moments of the determinant, we characterize the probability distribution P(D). Similar results are obtained for the rescaled Nth root of the determinant, called the G concurrence. We show that in the limit N{yields}{infinity} this quantity becomes concentrated at a single point G{sub *}=1/e. The position of the concentration point changes if one consider an arbitrary NxK bipartite system, in the joint limit N,K{yields}{infinity}, with K/N fixed.

  4. Interpretation of mutation induction by accelerated heavy ions in bacteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kozubek, S.; Ryznar, L.; Horneck, G.

    In this report, a quantitative interpretation of mutation induction cross sections by heavy charged particles in bacterial cells is presented. The approach is based on the calculation of the fraction of energy deposited by indirect hits in the sensitive structure. In these events the particle does not pass through the sensitive volume, but this region is hit by {delta} rays. Four track structure models, developed by Katz, Chatterjee et al, Kiefer and Straaten and Kudryashov et al., respectively, were used for the calculations. With the latter two models, very good agreement of the calculations with experimental results on mutagenesis inmore » bacteria was obtained. Depending on the linear energy transfer (LET{infinity}) of the particles, two different modes of mutagenic action of heavy ions are distinguished: {open_quotes}{delta}-ray mutagenesis,{close_quotes} which is related to those radiation qualities that preferentially kill the cells in direct hits (LET{infinity} {ge} 100 keV/{mu}m), and {open_quotes}track core mutagenesis,{close_quotes} which arises from direct hits and is observed for lighter ions or ions with high energy (LET{infinity} {le} 100 keV/{mu}m). 37 refs., 6 figs., 1 tab.« less

  5. H Infinity Control of Magnetic Bearings to Ensure Both System and External Periodic Disturbance Robustness

    NASA Technical Reports Server (NTRS)

    Jiang, Yuhong; Zmood, R. B.

    1996-01-01

    Both self-excited and forced disturbances often lead to severe rotor vibrations in a magnetic bearing systems with long slender shafts. This problem has been studied using the H-infinity method, and stability with good robustness can be achieved for the linearized model of a magnetic bearing when small transient disturbances are applied. In this paper, the H-infinity control method for self-excited and forced disturbances is first reviewed. It is then applied to the control of a magnetic bearing rotor system. In modelling the system, the shaft is first discretized into 18 finite elements and then three levels of condensation are applied. This leads to a system with three masses and three compliant elements which can be described by six state variable coordinates. Simulation of the resultant system design has been performed at speeds up to 10,000 rpm. Disturbances in terms of different initial displacements, initial impulses, and external periodic inputs have been imposed. The simulation results show that good stability can be achieved under these different transient disturbances using the proposed controller while at the same time reducing the sensitivity to external periodic disturbances.

  6. Exact, E = 0, classical and quantum solutions for general power-law oscillators

    NASA Technical Reports Server (NTRS)

    Nieto, Michael Martin; Daboul, Jamil

    1995-01-01

    For zero energy, E = 0, we derive exact, classical and quantum solutions for all power-law oscillators with potentials V(r) = -gamma/r(exp nu), gamma greater than 0 and -infinity less than nu less than infinity. When the angular momentum is non-zero, these solutions lead to the classical orbits (p(t) = (cos mu(phi(t) - phi(sub 0)t))(exp 1/mu) with mu = nu/2 - 1 does not equal 0. For nu greater than 2, the orbits are bound and go through the origin. We calculate the periods and precessions of these bound orbits, and graph a number of specific examples. The unbound orbits are also discussed in detail. Quantum mechanically, this system is also exactly solvable. We find that when nu is greater than 2 the solutions are normalizable (bound), as in the classical case. Further, there are normalizable discrete, yet unbound, states. They correspond to unbound classical particles which reach infinity in a finite time. Finally, the number of space dimensions of the system can determine whether or not an E = 0 state is bound. These and other interesting comparisons to the classical system will be discussed.

  7. Multivariable control of the Space Shuttle remote manipulator system using H2 and H(infinity) optimization. M.S. Thesis - Massachusetts Inst. of Tech.

    NASA Technical Reports Server (NTRS)

    Prakash, OM, II

    1991-01-01

    Three linear controllers are desiged to regulate the end effector of the Space Shuttle Remote Manipulator System (SRMS) operating in Position Hold Mode. In this mode of operation, jet firings of the Orbiter can be treated as disturbances while the controller tries to keep the end effector stationary in an orbiter-fixed reference frame. The three design techniques used include: the Linear Quadratic Regulator (LQR), H2 optimization, and H-infinity optimization. The nonlinear SRMS is linearized by modelling the effects of the significant nonlinearities as uncertain parameters. Each regulator design is evaluated for robust stability in light of the parametric uncertanties using both the small gain theorem with an H-infinity norm and the less conservative micro-analysis test. All three regulator designs offer significant improvement over the current system on the nominal plant. Unfortunately, even after dropping performance requirements and designing exclusively for robust stability, robust stability cannot be achieved. The SRMS suffers from lightly damped poles with real parametric uncertainties. Such a system renders the micro-analysis test, which allows for complex peturbations, too conservative.

  8. Microscope basics.

    PubMed

    Sluder, Greenfield; Nordberg, Joshua J

    2013-01-01

    This chapter provides information on how microscopes work and discusses some of the microscope issues to be considered in using a video camera on the microscope. There are two types of microscopes in use today for research in cell biology-the older finite tube-length (typically 160mm mechanical tube length) microscopes and the infinity optics microscopes that are now produced. The objective lens forms a magnified, real image of the specimen at a specific distance from the objective known as the intermediate image plane. All objectives are designed to be used with the specimen at a defined distance from the front lens element of the objective (the working distance) so that the image formed is located at a specific location in the microscope. Infinity optics microscopes differ from the finite tube-length microscopes in that the objectives are designed to project the image of the specimen to infinity and do not, on their own, form a real image of the specimen. Three types of objectives are in common use today-plan achromats, plan apochromats, and plan fluorite lenses. The concept of mounting video cameras on the microscope is also presented in the chapter. Copyright © 2003 Elsevier Inc. All rights reserved.

  9. A Functional Central Limit Theorem for the Becker-Döring Model

    NASA Astrophysics Data System (ADS)

    Sun, Wen

    2018-04-01

    We investigate the fluctuations of the stochastic Becker-Döring model of polymerization when the initial size of the system converges to infinity. A functional central limit problem is proved for the vector of the number of polymers of a given size. It is shown that the stochastic process associated to fluctuations is converging to the strong solution of an infinite dimensional stochastic differential equation (SDE) in a Hilbert space. We also prove that, at equilibrium, the solution of this SDE is a Gaussian process. The proofs are based on a specific representation of the evolution equations, the introduction of a convenient Hilbert space and several technical estimates to control the fluctuations, especially of the first coordinate which interacts with all components of the infinite dimensional vector representing the state of the process.

  10. Approximating smooth functions using algebraic-trigonometric polynomials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharapudinov, Idris I

    2011-01-14

    The problem under consideration is that of approximating classes of smooth functions by algebraic-trigonometric polynomials of the form p{sub n}(t)+{tau}{sub m}(t), where p{sub n}(t) is an algebraic polynomial of degree n and {tau}{sub m}(t)=a{sub 0}+{Sigma}{sub k=1}{sup m}a{sub k} cos k{pi}t + b{sub k} sin k{pi}t is a trigonometric polynomial of order m. The precise order of approximation by such polynomials in the classes W{sup r}{sub {infinity}(}M) and an upper bound for similar approximations in the class W{sup r}{sub p}(M) with 4/3

  11. Autocorrelation exponent of conserved spin systems in the scaling regime following a critical quench.

    PubMed

    Sire, Clément

    2004-09-24

    We study the autocorrelation function of a conserved spin system following a quench at the critical temperature. Defining the correlation length L(t) approximately t(1/z), we find that for times t' and t satisfying L(t')infinity limit, we show that lambda(')(c)=d+2 and phi=z/2. We give a heuristic argument suggesting that this result is, in fact, valid for any dimension d and spin vector dimension n. We present numerical simulations for the conserved Ising model in d=1 and d=2, which are fully consistent with the present theory.

  12. Stress concentration in a cylindrical shell containing a circular hole.

    NASA Technical Reports Server (NTRS)

    Adams, N. J. I.

    1971-01-01

    The state of stress in a cylindrical shell containing a circular cutout was determined for axial tension, torsion, and internal pressure loading. The solution was obtained for the shallow shell equations by a variational method. The results were expressed in terms of a nondimensional curvature parameter which was a function of shell radius, shell thickness, and hole radius. The function chosen for the solution was such that when the radius of the cylindrical shell approaches infinity, the flat-plate solution was obtained. The results are compared with solutions obtained by more rigorous analytical methods, and with some experimental results. For small values of the curvature parameter, the agreement is good. For higher values of the curvature parameter, the present solutions indicate a limiting value of stress concentration, which is in contrast to previous results.

  13. Geometric constraints on potentially singular solutions for the 3-D Euler equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Constantin, P.; Fefferman, C.; Majda, A.J.

    1996-12-31

    We discuss necessary and sufficient conditions for the formation of finite time singularities (blow up) in the incompressible three dimensional Euler equations. The well-known result of Beale, Kato and Majda states that these equations have smooth solutions on the time interval (0,t) if, and only if lim/t{r_arrow}T {integral}{sup t}{sub 0} {parallel}{Omega}({center_dot},s){parallel}{sub L}{sup {infinity}} (dx)dx < {infinity} where {Omega} = {triangledown} X u is the vorticity of the fluid and u is its divergence=free velocity. In this paper we prove criteria in which the direction of vorticity {xi} = {Omega}/{vert_bar}{Omega}{vert_bar} plays an important role.

  14. On the Nodal Lines of Eisenstein Series on Schottky Surfaces

    NASA Astrophysics Data System (ADS)

    Jakobson, Dmitry; Naud, Frédéric

    2017-04-01

    On convex co-compact hyperbolic surfaces {X=Γ backslash H2}, we investigate the behavior of nodal curves of real valued Eisenstein series {F_λ(z,ξ)}, where {λ} is the spectral parameter, {ξ} the direction at infinity. Eisenstein series are (non-{L^2}) eigenfunctions of the Laplacian {Δ_X} satisfying {Δ_X F_λ=(1/4+λ^2)F_λ}. As {λ} goes to infinity (the high energy limit), we show that, for generic {ξ}, the number of intersections of nodal lines with any compact segment of geodesic grows like {λ}, up to multiplicative constants. Applications to the number of nodal domains inside the convex core of the surface are then derived.

  15. Intergration of system identification and robust controller designs for flexible structures in space

    NASA Technical Reports Server (NTRS)

    Juang, Jer-Nan; Lew, Jiann-Shiun

    1990-01-01

    An approach is developed using experimental data to identify a reduced-order model and its model error for a robust controller design. There are three steps involved in the approach. First, an approximately balanced model is identified using the Eigensystem Realization Algorithm, which is an identification algorithm. Second, the model error is calculated and described in frequency domain in terms of the H(infinity) norm. Third, a pole placement technique in combination with a H(infinity) control method is applied to design a controller for the considered system. A set experimental data from an existing setup, namely the Mini-Mast system, is used to illustrate and verify the approach.

  16. A fuzzy controller with nonlinear control rules is the sum of a global nonlinear controller and a local nonlinear PI-like controller

    NASA Technical Reports Server (NTRS)

    Ying, Hao

    1993-01-01

    The fuzzy controllers studied in this paper are the ones that employ N trapezoidal-shaped members for input fuzzy sets, Zadeh fuzzy logic and a centroid defuzzification algorithm for output fuzzy set. The author analytically proves that the structure of the fuzzy controllers is the sum of a global nonlinear controller and a local nonlinear proportional-integral-like controller. If N approaches infinity, the global controller becomes a nonlinear controller while the local controller disappears. If linear control rules are used, the global controller becomes a global two-dimensional multilevel relay which approaches a global linear proportional-integral (PI) controller as N approaches infinity.

  17. A retrospective randomized study to compare the energy delivered using CDE with different techniques and OZil settings by different surgeons in phacoemulsification.

    PubMed

    Chen, Ming; Sweeney, Henry W; Luke, Becky; Chen, Mindy; Brown, Mathew

    2009-01-01

    Cumulative dissipated energy (CDE) was used with Infiniti((R)) Vision System (Alcon Labs) as an energy delivery guide to compare four different phaco techniques and phaco settings. The supracapsular phaco technique and burst mode is known for efficiency and surgery is faster compared with the old phaco unit. In this study, we found that supracapsular phaco with burst mode had the least CDE in both cataract and nuclear sclerosis cataract with the new Infiniti((R)) unit. We suggest that CDE can be used as one of the references to modify technique and setting to improve outcome for surgeons, especially for new surgeons.

  18. A retrospective randomized study to compare the energy delivered using CDE with different techniques and OZil® settings by different surgeons in phacoemulsification

    PubMed Central

    Chen, Ming; Sweeney, Henry W; Luke, Becky; Chen, Mindy; Brown, Mathew

    2009-01-01

    Cumulative dissipated energy (CDE) was used with Infiniti® Vision System (Alcon Labs) as an energy delivery guide to compare four different phaco techniques and phaco settings. The supracapsular phaco technique and burst mode is known for efficiency and surgery is faster compared with the old phaco unit. In this study, we found that supracapsular phaco with burst mode had the least CDE in both cataract and nuclear sclerosis cataract with the new Infiniti® unit. We suggest that CDE can be used as one of the references to modify technique and setting to improve outcome for surgeons, especially for new surgeons. PMID:19688027

  19. Steady axisymmetric vortex flows with swirl and shear

    NASA Astrophysics Data System (ADS)

    Elcrat, Alan R.; Fornberg, Bengt; Miller, Kenneth G.

    A general procedure is presented for computing axisymmetric swirling vortices which are steady with respect to an inviscid flow that is either uniform at infinity or includes shear. We consider cases both with and without a spherical obstacle. Choices of numerical parameters are given which yield vortex rings with swirl, attached vortices with swirl analogous to spherical vortices found by Moffatt, tubes of vorticity extending to infinity and Beltrami flows. When there is a spherical obstacle we have found multiple solutions for each set of parameters. Flows are found by numerically solving the Bragg-Hawthorne equation using a non-Newton-based iterative procedure which is robust in its dependence on an initial guess.

  20. Modern CACSD using the Robust-Control Toolbox

    NASA Technical Reports Server (NTRS)

    Chiang, Richard Y.; Safonov, Michael G.

    1989-01-01

    The Robust-Control Toolbox is a collection of 40 M-files which extend the capability of PC/PRO-MATLAB to do modern multivariable robust control system design. Included are robust analysis tools like singular values and structured singular values, robust synthesis tools like continuous/discrete H(exp 2)/H infinity synthesis and Linear Quadratic Gaussian Loop Transfer Recovery methods and a variety of robust model reduction tools such as Hankel approximation, balanced truncation and balanced stochastic truncation, etc. The capabilities of the toolbox are described and illustated with examples to show how easily they can be used in practice. Examples include structured singular value analysis, H infinity loop-shaping and large space structure model reduction.

  1. A family of Nikishin systems with periodic recurrence coefficients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delvaux, Steven; Lopez, Abey; Lopez, Guillermo L

    2013-01-31

    Suppose we have a Nikishin system of p measures with the kth generating measure of the Nikishin system supported on an interval {Delta}{sub k} subset of R with {Delta}{sub k} Intersection {Delta}{sub k+1} = Empty-Set for all k. It is well known that the corresponding staircase sequence of multiple orthogonal polynomials satisfies a (p+2)-term recurrence relation whose recurrence coefficients, under appropriate assumptions on the generating measures, have periodic limits of period p. (The limit values depend only on the positions of the intervals {Delta}{sub k}.) Taking these periodic limit values as the coefficients of a new (p+2)-term recurrence relation, wemore » construct a canonical sequence of monic polynomials {l_brace}P{sub n}{r_brace}{sub n=0}{sup {infinity}}, the so-called Chebyshev-Nikishin polynomials. We show that the polynomials P{sub n} themselves form a sequence of multiple orthogonal polynomials with respect to some Nikishin system of measures, with the kth generating measure being absolutely continuous on {Delta}{sub k}. In this way we generalize a result of the third author and Rocha [22] for the case p=2. The proof uses the connection with block Toeplitz matrices, and with a certain Riemann surface of genus zero. We also obtain strong asymptotics and an exact Widom-type formula for functions of the second kind of the Nikishin system for {l_brace}P{sub n}{r_brace}{sub n=0}{sup {infinity}}. Bibliography: 27 titles.« less

  2. Mu- and Tau-Neutrino Spectra Formation in Supernovae

    NASA Astrophysics Data System (ADS)

    Raffelt, Georg G.

    2001-11-01

    The μ- and τ-neutrinos emitted from a proto-neutron star are produced by nucleonic bremsstrahlung NN-->NNνν and pair annihilation e+e--->νν, reactions that freeze out at the ``energy sphere.'' Before escaping from there to infinity, the neutrinos diffuse through the ``scattering atmosphere,'' a layer in which their main interaction is elastic scattering on nucleons νN-->Nν. If these collisions are taken to be isoenergetic, as in all numerical supernova simulations, the neutrino flux spectrum escaping to infinity depends only on the medium temperature TES and the thermally averaged optical depth τES at the energy sphere. For τES=10-50, one finds for the spectral flux temperature of the escaping neutrinos Tflux=0.5-0.6TES. Including energy exchange (nucleon recoil) in νN-->Nν can shift Tflux both up and down. ΔTflux depends on τES, on the scattering atmosphere's temperature profile, and on TES. Based on a numerical study, we find that for typical conditions, ΔTflux/Tflux is between -10% and -20% and even for extreme parameter choices does not exceed -30%. The exact value of ΔTflux/Tflux is surprisingly insensitive to the assumed value of the nucleon mass; i.e., the exact efficiency of energy transfer between neutrinos and nucleons is not important as long as it can occur at all. Therefore, calculating the νμ and ντ spectra does not seem to require a precise knowledge of the nuclear medium's dynamical structure functions.

  3. Strength functions, entropies, and duality in weakly to strongly interacting fermionic systems.

    PubMed

    Angom, D; Ghosh, S; Kota, V K B

    2004-01-01

    We revisit statistical wave function properties of finite systems of interacting fermions in the light of strength functions and their participation ratio and information entropy. For weakly interacting fermions in a mean-field with random two-body interactions of increasing strength lambda, the strength functions F(k) (E) are well known to change, in the regime where level fluctuations follow Wigner's surmise, from Breit-Wigner to Gaussian form. We propose an ansatz for the function describing this transition which we use to investigate the participation ratio xi(2) and the information entropy S(info) during this crossover, thereby extending the known behavior valid in the Gaussian domain into much of the Breit-Wigner domain. Our method also allows us to derive the scaling law lambda(d) approximately 1/sqrt[m] ( m is number of fermions) for the duality point lambda= lambda(d), where F(k) (E), xi(2), and S(info) in both the weak ( lambda=0 ) and strong mixing ( lambda= infinity ) basis coincide. As an application, the ansatz function for strength functions is used in describing the Breit-Wigner to Gaussian transition seen in neutral atoms CeI to SmI with valence electrons changing from 4 to 8.

  4. Tulip-form variable-curvature mirrors: interferometry and field compensation

    NASA Astrophysics Data System (ADS)

    Lemaitre, Gerard R.; Mazzanti, Silvio; Ferrari, Marc

    1998-07-01

    Active Optics methods are now capable to provide variable curvature mirrors (VCMs) having controlled sags in the focal range from f/(infinity) to f/2.5. Those development have been carried out by the authors for the optical path equalizer dedicated to each Mersenne focus of the VLTI. The basic principle is to use VCMs as cat's eye mirrors in each delay line in order to achieve field compensations at the recombined Mersenne focii. During the VLTI development phase, cycloid form VCMs controlled by air pressure have been performed with a 10(superscript -4) mirror sag resolution. The cycloid form has been selected for the VLTi delay lines. However, other analytical solutions from circular plates elasticity theory have been found. Two thickness distributions lead to tulip form VCMs controlled by a central force. One of them, using a lineic reaction at the edge is the object of this paper. Active optics design, construction features, test and experimental He-Ne interferograms obtained with 16mm boundary aperture and 10mm clear aperture are presented. The mean aspect-ratio of the tulip from VCM is d/t(subscript 0.5) approximately equals 60, providing a focal zoom range from f/(infinity) to f/2.5. The experiment is carried out form f/(infinity) to f/5.

  5. Invariance of Hypersonic Normal Force Coefficients with Reynolds Number and Determination of Inviscid Wave Drag from Laminar Experimental Results

    NASA Technical Reports Server (NTRS)

    Hawkins, Richard; Penland, Jim A.

    1997-01-01

    Observations have been made and reported that the experimental normal force coefficients at a constant angle of attack were constant with a variation of more than 2 orders of magnitude of Reynolds number at a free-stream Mach number M(sub infinity) of 8.00 and more than 1 order of magnitude variation at M(sub infinity) = 6.00 on the same body-wing hypersonic cruise configuration. These data were recorded under laminar, transitional, and turbulent boundary layer conditions with both hot-wall and cold-wall models. This report presents experimental data on 25 configurations of 17 models of both simple and complex geometry taken at M(sub infinity) = 6.00, 6.86, and 8.00 in 4 different hypersonic facilities. Aerodynamic calculations were made by computational fluid dynamics (CID) and engineering methods to analyze these data. The conclusions were that the normal force coefficients at a given altitude are constant with Reynolds numbers at hypersonic speeds and that the axial force coefficients recorded under laminar boundary-layer conditions at several Reynolds numbers may be plotted against the laminar parameter (the reciprocal of the Reynolds number to the one-half power) and extrapolated to the ordinate axis to determine the inviscid-wave-drag coefficient at the intercept.

  6. Methylphenidate bioavailability in adults when an extended-release multiparticulate formulation is administered sprinkled on food or as an intact capsule.

    PubMed

    Pentikis, Helen S; Simmons, Roy D; Benedict, Michael F; Hatch, Simon J

    2002-04-01

    To determine the single-dose bioavailability of 20-mg Metadate CD (methylphenidate HCI, USP) Extended-Release Capsules sprinkled onto 1 level tablespoon (15 mL) of applesauce relative to an intact capsule under fasted conditions in healthy adults. This was a single-center, open-label, single-dose, randomized, two-way crossover study with a 6-day washout period between doses, in healthy male and female subjects (N= 26), aged 21-40 years. Plasma concentration-time data for methylphenidate were used to calculate the pharmacokinetic parameters for each treatment. The pharmacokinetic profile for Metadate CD exhibited biphasic release characteristics with a sharp initial slope and a second rising portion. For Cmax (maximum observed concentration), AUC(0-infinity) (area under the plasma concentration curve from time 0 to infinity) and AUC(0-infinity) (area under the plasma concentration curve from time 0 to the last measurable time point), the geometric least squares mean ratios and 90% confidence intervals were within the 80% to 125% confidence interval for bioequivalence. Adverse events were similar to those reported for methylphenidate. The bioavailability of methylphenidate was not altered when Metadate CD capsules were administered by sprinkling their contents onto a small amount of applesauce.

  7. Bottom-up approach for microstructure optimization of sound absorbing materials.

    PubMed

    Perrot, Camille; Chevillotte, Fabien; Panneton, Raymond

    2008-08-01

    Results from a numerical study examining micro-/macrorelations linking local geometry parameters to sound absorption properties are presented. For a hexagonal structure of solid fibers, the porosity phi, the thermal characteristic length Lambda('), the static viscous permeability k(0), the tortuosity alpha(infinity), the viscous characteristic length Lambda, and the sound absorption coefficient are computed. Numerical solutions of the steady Stokes and electrical equations are employed to provide k(0), alpha(infinity), and Lambda. Hybrid estimates based on direct numerical evaluation of phi, Lambda('), k(0), alpha(infinity), Lambda, and the analytical model derived by Johnson, Allard, and Champoux are used to relate varying (i) throat size, (ii) pore size, and (iii) fibers' cross-section shapes to the sound absorption spectrum. The result of this paper tends to demonstrate the important effect of throat size in the sound absorption level, cell size in the sound absorption frequency selectivity, and fibers' cross-section shape in the porous material weight reduction. In a hexagonal porous structure with solid fibers, the sound absorption level will tend to be maximized with a 48+/-10 microm throat size corresponding to an intermediate resistivity, a 13+/-8 microm fiber radius associated with relatively small interfiber distances, and convex triangular cross-section shape fibers allowing weight reduction.

  8. Consideration of plant behaviour in optimal servo-compensator design

    NASA Astrophysics Data System (ADS)

    Moase, W. H.; Manzie, C.

    2016-07-01

    Where the most prevalent optimal servo-compensator formulations penalise the behaviour of an error system, this paper considers the problem of additionally penalising the actual states and inputs of the plant. Doing so has the advantage of enabling the penalty function to better resemble an economic cost. This is especially true of problems where control effort needs to be sensibly allocated across weakly redundant inputs or where one wishes to use penalties to soft-constrain certain states or inputs. It is shown that, although the resulting cost function grows unbounded as its horizon approaches infinity, it is possible to formulate an equivalent optimisation problem with a bounded cost. The resulting optimisation problem is similar to those in earlier studies but has an additional 'correction term' in the cost function, and a set of equality constraints that arise when there are redundant inputs. A numerical approach to solve the resulting optimisation problem is presented, followed by simulations on a micro-macro positioner that illustrate the benefits of the proposed servo-compensator design approach.

  9. Particle Creation at a Point Source by Means of Interior-Boundary Conditions

    NASA Astrophysics Data System (ADS)

    Lampart, Jonas; Schmidt, Julian; Teufel, Stefan; Tumulka, Roderich

    2018-06-01

    We consider a way of defining quantum Hamiltonians involving particle creation and annihilation based on an interior-boundary condition (IBC) on the wave function, where the wave function is the particle-position representation of a vector in Fock space, and the IBC relates (essentially) the values of the wave function at any two configurations that differ only by the creation of a particle. Here we prove, for a model of particle creation at one or more point sources using the Laplace operator as the free Hamiltonian, that a Hamiltonian can indeed be rigorously defined in this way without the need for any ultraviolet regularization, and that it is self-adjoint. We prove further that introducing an ultraviolet cut-off (thus smearing out particles over a positive radius) and applying a certain known renormalization procedure (taking the limit of removing the cut-off while subtracting a constant that tends to infinity) yields, up to addition of a finite constant, the Hamiltonian defined by the IBC.

  10. Transversal Fluctuations of the ASEP, Stochastic Six Vertex Model, and Hall-Littlewood Gibbsian Line Ensembles

    NASA Astrophysics Data System (ADS)

    Corwin, Ivan; Dimitrov, Evgeni

    2018-05-01

    We consider the ASEP and the stochastic six vertex model started with step initial data. After a long time, T, it is known that the one-point height function fluctuations for these systems are of order T 1/3. We prove the KPZ prediction of T 2/3 scaling in space. Namely, we prove tightness (and Brownian absolute continuity of all subsequential limits) as T goes to infinity of the height function with spatial coordinate scaled by T 2/3 and fluctuations scaled by T 1/3. The starting point for proving these results is a connection discovered recently by Borodin-Bufetov-Wheeler between the stochastic six vertex height function and the Hall-Littlewood process (a certain measure on plane partitions). Interpreting this process as a line ensemble with a Gibbsian resampling invariance, we show that the one-point tightness of the top curve can be propagated to the tightness of the entire curve.

  11. Symmetric flows for compressible heat-conducting fluids with temperature dependent viscosity coefficients

    NASA Astrophysics Data System (ADS)

    Wan, Ling; Wang, Tao

    2017-06-01

    We consider the Navier-Stokes equations for compressible heat-conducting ideal polytropic gases in a bounded annular domain when the viscosity and thermal conductivity coefficients are general smooth functions of temperature. A global-in-time, spherically or cylindrically symmetric, classical solution to the initial boundary value problem is shown to exist uniquely and converge exponentially to the constant state as the time tends to infinity under certain assumptions on the initial data and the adiabatic exponent γ. The initial data can be large if γ is sufficiently close to 1. These results are of Nishida-Smoller type and extend the work (Liu et al. (2014) [16]) restricted to the one-dimensional flows.

  12. Exact formulas for multipole moments using Slater-type molecular orbitals

    NASA Technical Reports Server (NTRS)

    Jones, H. W.

    1986-01-01

    A triple infinite sum of formulas expressed as an expansion in Legendre polynomials is generated by use of computer algebra to represent the potential from the midpoint of two Slater-type orbitals; the charge density that determines the potential is given as the product of the two orbitals. An example using 1s orbitals shows that only a few terms are needed to obtain four-figure accuracy. Exact formulas are obtained for multipole moments by means of a careful study of expanded formulas, allowing an 'extrapolation to infinity'. This Loewdin alpha-function approach augmented by using a C matrix to characterize Slater-type orbitals can be readily generalized to all cases.

  13. Decay Rates and Probability Estimatesfor Massive Dirac Particlesin the Kerr-Newman Black Hole Geometry

    NASA Astrophysics Data System (ADS)

    Finster, F.; Kamran, N.; Smoller, J.; Yau, S.-T.

    The Cauchy problem is considered for the massive Dirac equation in the non-extreme Kerr-Newman geometry, for smooth initial data with compact support outside the event horizon and bounded angular momentum. We prove that the Dirac wave function decays in L∞ {loc} at least at the rate t-5/6. For generic initial data, this rate of decay is sharp. We derive a formula for the probability p that the Dirac particle escapes to infinity. For various conditions on the initial data, we show that p = 0, 1 or 0 < p < 1. The proofs are based on a refined analysis of the Dirac propagator constructed in [4].

  14. The damped wave equation with unbounded damping

    NASA Astrophysics Data System (ADS)

    Freitas, Pedro; Siegl, Petr; Tretter, Christiane

    2018-06-01

    We analyze new phenomena arising in linear damped wave equations on unbounded domains when the damping is allowed to become unbounded at infinity. We prove the generation of a contraction semigroup, study the relation between the spectra of the semigroup generator and the associated quadratic operator function, the convergence of non-real eigenvalues in the asymptotic regime of diverging damping on a subdomain, and we investigate the appearance of essential spectrum on the negative real axis. We further show that the presence of the latter prevents exponential estimates for the semigroup and turns out to be a robust effect that cannot be easily canceled by adding a positive potential. These analytic results are illustrated by examples.

  15. Linear quadratic tracking problems in Hilbert space - Application to optimal active noise suppression

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Silcox, R. J.; Keeling, S. L.; Wang, C.

    1989-01-01

    A unified treatment of the linear quadratic tracking (LQT) problem, in which a control system's dynamics are modeled by a linear evolution equation with a nonhomogeneous component that is linearly dependent on the control function u, is presented; the treatment proceeds from the theoretical formulation to a numerical approximation framework. Attention is given to two categories of LQT problems in an infinite time interval: the finite energy and the finite average energy. The behavior of the optimal solution for finite time-interval problems as the length of the interval tends to infinity is discussed. Also presented are the formulations and properties of LQT problems in a finite time interval.

  16. Similarity between the superconductivity in the graphene with the spin transport in the two-dimensional antiferromagnet in the honeycomb lattice

    NASA Astrophysics Data System (ADS)

    Lima, L. S.

    2017-02-01

    We have used the Dirac's massless quasi-particles together with the Kubo's formula to study the spin transport by electrons in the graphene monolayer. We have calculated the electric conductivity and verified the behavior of the AC and DC currents of this system, that is a relativistic electron plasma. Our results show that the AC conductivity tends to infinity in the limit ω → 0 , similar to the behavior obtained for the spin transport in the two-dimensional frustrated antiferromagnet in the honeycomb lattice. We have made a diagrammatic expansion for the Green's function and we have not gotten significative change in the results.

  17. Observer-based distributed adaptive iterative learning control for linear multi-agent systems

    NASA Astrophysics Data System (ADS)

    Li, Jinsha; Liu, Sanyang; Li, Junmin

    2017-10-01

    This paper investigates the consensus problem for linear multi-agent systems from the viewpoint of two-dimensional systems when the state information of each agent is not available. Observer-based fully distributed adaptive iterative learning protocol is designed in this paper. A local observer is designed for each agent and it is shown that without using any global information about the communication graph, all agents achieve consensus perfectly for all undirected connected communication graph when the number of iterations tends to infinity. The Lyapunov-like energy function is employed to facilitate the learning protocol design and property analysis. Finally, simulation example is given to illustrate the theoretical analysis.

  18. Epidemiology of Human Papillomavirus Detected in the Oral Cavity and Fingernails of Mid-Adult Women.

    PubMed

    Fu, Tsung-chieh Jane; Hughes, James P; Feng, Qinghua; Hulbert, Ayaka; Hawes, Stephen E; Xi, Long Fu; Schwartz, Stephen M; Stern, Joshua E; Koutsky, Laura A; Winer, Rachel L

    2015-12-01

    Oral and fingernail human papillomavirus (HPV) detection may be associated with HPV-related carcinoma risk at these nongenital sites and foster transmission to the genitals. We describe the epidemiology of oral and fingernail HPV among mid-adult women. Between 2011 and 2012, 409 women aged 30 to 50 years were followed up for 6 months. Women completed health and behavior surveys and provided self-collected oral, fingernail, and vaginal specimens at enrollment and exit for type-specific HPV DNA testing. Concordance of type-specific HPV detection across anatomical sites was described with κ statistics. Using generalized estimating equations or exact logistic regression, we measured the univariate associations of various risk factors with type-specific oral and fingernail HPV detection. Prevalence of detecting HPV in the oral cavity (2.4%) and fingernails (3.8%) was low compared with the vagina (33.1%). Concordance across anatomical sites was poor (κ < 0.20 for all comparisons). However, concurrent vaginal infection with the same HPV type (odds ratio [OR], 101.0; 95% confidence interval [CI], 31.4-748.6) and vaginal HPV viral load (OR per 1 log10 viral load increase, 2.2; 95% CI, 1.5-5.5) were each associated with fingernail HPV detection. Abnormal Papanicolaou history (OR, 11.1; 95% CI, 2.8-infinity), lifetime number of male vaginal sex partners at least 10 (OR vs. 0-3 partners, 5.0; 95% CI, 1.2-infinity), and lifetime number of open-mouth kissing partners at least 16 (OR vs. 0-15 partners, infinity; 95% CI, 2.6-infinity, by exact logistic regression) were each associated with oral HPV detection. Although our findings support HPV DNA deposition or autoinoculation between anatomical sites in mid-adult women, the rarity of HPV in the oral cavity and fingernails suggests that oral/fingernail HPV does not account for a significant fraction of HPV in genital sites.

  19. Epidemiology of Human Papillomavirus (HPV) Detected in the Oral Cavity and Fingernails of Mid-Adult Women

    PubMed Central

    Fu, Tsung-chieh (Jane); Hughes, James P.; Feng, Qinghua; Hulbert, Ayaka; Hawes, Stephen E.; Xi, Long Fu; Schwartz, Stephen M.; Stern, Joshua E.; Koutsky, Laura A.; Winer, Rachel L.

    2015-01-01

    Background Oral and fingernail human papillomavirus (HPV) detection may be associated with HPV-related carcinoma risk at these non-genital sites and foster transmission to the genitals. We describe the epidemiology of oral and fingernail HPV among mid-adult women. Methods Between 2011–2012, 409 women aged 30–50 years were followed for 6 months. Women completed health and behavior surveys and provided self-collected oral, fingernail, and vaginal specimens at enrollment and exit for type-specific HPV DNA testing. Concordance of type-specific HPV detection across anatomic sites was described with kappa statistics. Using generalized estimating equations or exact logistic regression, we measured the univariate associations of various risk factors with type-specific oral and fingernail HPV detection. Results Prevalence of detecting HPV in the oral cavity (2.4%) and fingernails (3.8%) was low compared to the vagina (33.1%). Concordance across anatomic sites was poor (kappa<.20 for all comparisons). However, concurrent vaginal infection with the same HPV type (OR=101.0;95%CI: 31.4–748.6) and vaginal HPV viral load (OR per one log10 viral load increase=2.2;95%CI:1.5–5.5) were each associated with fingernail HPV detection. Abnormal Pap history (OR=11.1;95%CI:2.8-infinity), lifetime number of male vaginal sex partners ≥10 (OR vs. 0–3 partners=5.0;95%CI:1.2-infinity), and lifetime number of open-mouth kissing partners ≥16 (OR vs. 0–15 partners=infinity;95%CI:2.6-infinity, by exact logistic regression) were each associated with oral HPV detection. Conclusions While our findings support HPV DNA deposition or autoinoculation between anatomic sites in mid-adult women, the rarity of HPV in the oral cavity and fingernails suggests that oral/fingernail HPV does not account for a significant fraction of HPV in genital sites. PMID:26562696

  20. Synthesis, characterization, and fluorescent properties of two Pb(II) complexes: {l_brace}[Pb(hca){sub 2}.DMF].DMF{r_brace} {sub {infinity}} and [Pb(hca){sub 2}(phen).DMF]{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu Qingfeng; Zhou Qiuxuan; Lu Jianmei

    2007-01-15

    Two novel Pb(II) complexes, {l_brace}[Pb(hca){sub 2}.DMF].DMF{r_brace} {sub {infinity}} and [Pb(hca){sub 2}(phen).DMF]{sub 2} (hca=trans-4-hydroxycinnamic group), were obtained by solid-phase reactions of PbAc{sub 2} and Hhca and PbAc{sub 2}, Hhca, and phen, respectively, and characterized by spectroscopy. X-ray crystallography analysis reveals that complex 1, {l_brace}[Pb(hca){sub 2}.DMF].DMF{r_brace} {sub {infinity}} , adopts a 2-dimensional structure through the weak interactions of Pb and O atoms and that complex 2, [Pb(hca){sub 2}(phen).DMF]{sub 2}, shows a discrete dimeric structure, in which hydrogen bonds link the dimers into a 2D network. Both complexes 1 and 2 show visible fluorescence and the intensity is stronger than that of themore » ligand. More interestingly, the intensity of emission was increased at least fivefolds when the pH of the solution was adjusted to alkalinity. This can be attributed to that the deprotonization of phenolic group enhancing the conjugation of the ligand hca. These results indicate that this method may be an effective way to increase the emission intensity of similar complexes. - Graphical abstract: Two novel Pb(II) complexes: {l_brace}[Pb(hca){sub 2}.DMF].DMF{r_brace}{sub {infinity}} and [Pb(hca){sub 2}(phen).DMF]{sub 2}, (hca = trans-4-hydroxycinnamic anion) were obtained and characterized. Their structures are also determined by X-ray crystal analysis. Both of complexes in DMF solution show visible fluorescence and the intensity is stronger than that of ligand. Their emission intensities are increased greatly in an alkaline solution of pH 8, which is due to the enhancement of the planar conjugation of ligand hca with the deprotonate of the phenolic group.« less

  1. Synthesis and X-ray crystal structure of (OsO(3)F(2))(2)2XeOF(4) and the Raman spectra of (OsO(3)F(2))(infinity), (OsO(3)F(2))(2), and (OsO(3)F(2))(2)2XeOF(4).

    PubMed

    Hughes, Michael J; Mercier, Hélène P A; Schrobilgen, Gary J

    2009-05-18

    The adduct, (OsO(3)F(2))(2)2XeOF(4), was synthesized by dissolution of the infinite chain polymer, (OsO(3)F(2))(infinity), in XeOF(4) solvent at room temperature followed by removal of excess XeOF(4) under dynamic vacuum at 0 degrees C. Continued pumping at 0 degrees C resulted in removal of associated XeOF(4), yielding (OsO(3)F(2))(2), a new low-temperature phase of OsO(3)F(2). Upon standing at 25 degrees C for 1(1)/(2) h, (OsO(3)F(2))(2) underwent a phase transition to the known monoclinic phase, (OsO(3)F(2))(infinity). The title compounds, (OsO(3)F(2))(infinity), (OsO(3)F(2))(2), and (OsO(3)F(2))(2)2XeOF(4) have been characterized by low-temperature (-150 degrees C) Raman spectroscopy. Crystallization of (OsO(3)F(2))(2)2XeOF(4) from XeOF(4) solution at 0 degrees C yielded crystals suitable for X-ray structure determination. The structural unit contains the (OsO(3)F(2))(2) dimer in which the OsO(3)F(3) units are joined by two Os---F---Os bridges having fluorine bridge atoms that are equidistant from the osmium centers (2.117(5) and 2.107(4) A). The dimer coordinates to two XeOF(4) molecules through Os-F...Xe bridges in which the Xe...F distances (2.757(5) A) are significantly less than the sum of the Xe and F van der Waals radii (3.63 A). The (OsO(3)F(2))(2) dimer has C(i) symmetry in which each pseudo-octahedral OsO(3)F(3) unit has a facial arrangement of oxygen ligands with XeOF(4) molecules that are only slightly distorted from their gas-phase C(4v) symmetry. Quantum-chemical calculations using SVWN and B3LYP methods were employed to calculate the gas-phase geometries, natural bond orbital analyses, and vibrational frequencies of (OsO(3)F(2))(2), (OsO(3)F(2))(2)2XeOF(4), XeOF(4), OsO(2)F(4), and (mu-FOsO(3)F(2))(2)OsO(3)F(-) to aid in the assignment of the experimental vibrational frequencies of (OsO(3)F(2))(2), (OsO(3)F(2))(2)2XeOF(4), and (OsO(3)F(2))(infinity). The vibrational modes of the low-temperature polymeric phase, (OsO(3)F(2))(infinity), have been assigned by comparison with the calculated frequencies of (mu-FOsO(3)F(2))(2)OsO(3)F(-), providing more complete and reliable assignments than were previously available.

  2. Boundary charges and integral identities for solitons in (d + 1)-dimensional field theories

    NASA Astrophysics Data System (ADS)

    Gudnason, Sven Bjarke; Gao, Zhifeng; Yang, Yisong

    2017-12-01

    We establish a 3-parameter family of integral identities to be used on a class of theories possessing solitons with spherical symmetry in d spatial dimensions. The construction provides five boundary charges that are related to certain integrals of the profile functions of the solitons in question. The framework is quite generic and we give examples of both topological defects (like vortices and monopoles) and topological textures (like Skyrmions) in 2 and 3 dimensions. The class of theories considered here is based on a kinetic term and three functionals often encountered in reduced Lagrangians for solitons. One particularly interesting case provides a generalization of the well-known Pohozaev identity. Our construction, however, is fundamentally different from scaling arguments behind Derrick's theorem and virial relations. For BPS vortices, we find interestingly an infinity of integrals simply related to the topological winding number.

  3. Phantom of the Hartle–Hawking instanton: Connecting inflation with dark energy

    DOE PAGES

    Chen, Pisin; Qiu, Taotao; Yeom, Dong -han

    2016-02-20

    If the Hartle–Hawking wave function is the correct boundary condition of our universe, the history of our universe will be well approximated by an instanton. Although this instanton should be classicalized at infinity, as long as we are observing a process of each history, we may detect a non-classicalized part of field combinations. When we apply it to a dark energy model, this non-classicalized part of fields can be well embedded to a quintessence and a phantom model, i.e., a quintom model. Because of the property of complexified instantons, the phantomness will be naturally free from a big rip singularity.more » This phantomness does not cause perturbative instabilities, as it is an effect emergent from the entire wave function. Lastly, our work may thus provide a theoretical basis for the quintom models, whose equation of state can cross the cosmological constant boundary phenomenologically.« less

  4. About the coordinate time for photons in Lifshitz space-times

    NASA Astrophysics Data System (ADS)

    Villanueva, J. R.; Vásquez, Yerko

    2013-10-01

    In this paper we studied the behavior of radial photons from the point of view of the coordinate time in (asymptotically) Lifshitz space-times, and we found a generalization to the result reported in previous works by Cruz et al. (Eur. Phys. J. C 73:7, 2013), Olivares et al. (Astrophys. Space Sci. 347:83-89, 2013), and Olivares et al. (arXiv:1306.5285). We demonstrate that all asymptotically Lifshitz space-times characterized by a lapse function f( r) which tends to one when r→∞, present the same behavior, in the sense that an external observer will see that photons arrive at spatial infinity in a finite coordinate time. Also, we show that radial photons in the proper system cannot determine the presence of the black hole in the region r +< r<∞, because the proper time as a result is independent of the lapse function f( r).

  5. One-loop renormalization of Lee-Wick gauge theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grinstein, Benjamin; O'Connell, Donal

    2008-11-15

    We examine the renormalization of Lee-Wick gauge theory to one-loop order. We show that only knowledge of the wave function renormalization is necessary to determine the running couplings, anomalous dimensions, and vector boson masses. In particular, the logarithmic running of the Lee-Wick vector boson mass is exactly related to the running of the coupling. In the case of an asymptotically free theory, the vector boson mass runs to infinity in the ultraviolet. Thus, the UV fixed point of the pure gauge theory is an ordinary quantum field theory. We find that the coupling runs more quickly in Lee-Wick gauge theorymore » than in ordinary gauge theory, so the Lee-Wick standard model does not naturally unify at any scale. Finally, we present results on the beta function of more general theories containing dimension six operators which differ from previous results in the literature.« less

  6. Phantom of the Hartle-Hawking instanton: connecting inflation with dark energy

    NASA Astrophysics Data System (ADS)

    Chen, Pisin; Qiu, Taotao; Yeom, Dong-han

    2016-02-01

    If the Hartle-Hawking wave function is the correct boundary condition of our universe, the history of our universe will be well approximated by an instanton. Although this instanton should be classicalized at infinity, as long as we are observing a process of each history, we may detect a non-classicalized part of field combinations. When we apply it to a dark energy model, this non-classicalized part of fields can be well embedded to a quintessence and a phantom model, i.e., a quintom model. Because of the property of complexified instantons, the phantomness will be naturally free from a big rip singularity. This phantomness does not cause perturbative instabilities, as it is an effect emergent from the entire wave function. Our work may thus provide a theoretical basis for the quintom models, whose equation of state can cross the cosmological constant boundary phenomenologically.

  7. Modified coulomb law in a strongly magnetized vacuum.

    PubMed

    Shabad, Anatoly E; Usov, Vladimir V

    2007-05-04

    We study the electric potential of a charge placed in a strong magnetic field B>B(0) approximately 4.4x10(13) G, as modified by the vacuum polarization. In such a field the electron Larmour radius is much less than its Compton length. At the Larmour distances a scaling law occurs, with the potential determined by a magnetic-field-independent function. The scaling regime implies short-range interaction, expressed by the Yukawa law. The electromagnetic interaction regains its long-range character at distances larger than the Compton length, the potential decreasing across B faster than along. Correction to the nonrelativistic ground-state energy of a hydrogenlike atom is found. In the limit B = infinity, the modified potential becomes the Dirac delta function plus a regular background. With this potential the ground-state energy is finite--the best pronounced effect of the vacuum polarization.

  8. Expendable launch vehicle studies

    NASA Technical Reports Server (NTRS)

    Bainum, Peter M.; Reiss, Robert

    1995-01-01

    Analytical support studies of expendable launch vehicles concentrate on the stability of the dynamics during launch especially during or near the region of maximum dynamic pressure. The in-plane dynamic equations of a generic launch vehicle with multiple flexible bending and fuel sloshing modes are developed and linearized. The information from LeRC about the grids, masses, and modes is incorporated into the model. The eigenvalues of the plant are analyzed for several modeling factors: utilizing diagonal mass matrix, uniform beam assumption, inclusion of aerodynamics, and the interaction between the aerodynamics and the flexible bending motion. Preliminary PID, LQR, and LQG control designs with sensor and actuator dynamics for this system and simulations are also conducted. The initial analysis for comparison of PD (proportional-derivative) and full state feedback LQR Linear quadratic regulator) shows that the split weighted LQR controller has better performance than that of the PD. In order to meet both the performance and robustness requirements, the H(sub infinity) robust controller for the expendable launch vehicle is developed. The simulation indicates that both the performance and robustness of the H(sub infinity) controller are better than that for the PID and LQG controllers. The modelling and analysis support studies team has continued development of methodology, using eigensensitivity analysis, to solve three classes of discrete eigenvalue equations. In the first class, the matrix elements are non-linear functions of the eigenvector. All non-linear periodic motion can be cast in this form. Here the eigenvector is comprised of the coefficients of complete basis functions spanning the response space and the eigenvalue is the frequency. The second class of eigenvalue problems studied is the quadratic eigenvalue problem. Solutions for linear viscously damped structures or viscoelastic structures can be reduced to this form. Particular attention is paid to Maxwell and Kelvin models. The third class of problems consists of linear eigenvalue problems in which the elements of the mass and stiffness matrices are stochastic. dynamic structural response for which the parameters are given by probabilistic distribution functions, rather than deterministic values, can be cast in this form. Solutions for several problems in each class will be presented.

  9. Cardiovascular risk factors and small vessel disease of the brain: Blood pressure, white matter lesions, and functional decline in older persons

    PubMed Central

    Abraham, Hazel Mae A; Wolfson, Leslie; Moscufo, Nicola; Guttmann, Charles R G; Kaplan, Richard F

    2016-01-01

    Several potential vascular risk factors exist for the development and accumulation of subcortical white matter disease in older people. We have reported that in older people followed for up to 4 years white matter hyperintensity (WMH) lesions on magnetic resonance imaging nearly doubled in volume and were associated with alterations in mobility and cognitive function. Herein we review the genetic, metabolic, and vascular risk factors that have been evaluated in association with the development and pathogenesis of WMH in older persons. Our research efforts have focused on systemic hypertension, particularly in the out-of-office setting as 24-hour ambulatory blood pressure (BP) has proven to be a stronger indicator of the progression of WMH in older people and the associated functional decline than doctor’s office BP. Based on relations between 24-hour systolic BP levels, the accrual of WMH, and functional decline, we have designed the INFINITY trial, the first interventional study to use ambulatory BP to guide antihypertensive therapy to address this problem in the geriatric population. PMID:26036933

  10. How to use retarded Green's functions in de Sitter spacetime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Higuchi, Atsushi; Cheong, Lee Yen

    2008-10-15

    We demonstrate in examples that the covariant retarded Green's functions in electromagnetism and linearized gravity work as expected in de Sitter spacetime. We first clarify how retarded Green's functions should be used in spacetimes with spacelike past infinity such as de Sitter spacetime. In particular, we remind the reader of a general formula which gives the field for given initial data on a Cauchy surface and a given source (a charge or stress-energy tensor distribution) in its future. We then apply this formula to three examples: (i) electromagnetism in the future of a Cauchy surface in Minkowski spacetime, (ii) electromagnetismmore » in de Sitter spacetime, and (iii) linearized gravity in de Sitter spacetime. In each example the field is reproduced correctly as predicted by the general argument. In the third example we construct a linearized gravitational field from two equal point masses located at the 'North and South Poles' which is nonsingular on the cosmological horizon and satisfies a covariant gauge condition and show that this field is reproduced by the retarded Green's function with corresponding gauge parameters.« less

  11. Analysis of the localization of Michelson interferometer fringes using Fourier optics and temporal coherence

    NASA Astrophysics Data System (ADS)

    Narayanamurthy, C. S.

    2009-01-01

    Fringes formed in a Michelson interferometer never localize in any plane, in the detector plane and in the localization plane. Instead, the fringes are assumed to localize at infinity. Except for some explanation in Principles of Optics by Born and Wolf (1964 (New York: Macmillan)), the fringe localization phenomena of Michelson's interferometer have never been analysed seriously in any book. Because Michelson's interferometer is one of the important and fundamental optical experiments taught at both undergraduate and graduate levels, it would be appropriate to explain the localization of these fringes. In this paper, we analyse the localization of Michelson interferometer fringes using Fourier optics and temporal coherence, and show that they never localize at any plane even at infinity.

  12. Quantum Gravity in Cyclic (ekpyrotic) and Multiple (anthropic) Universes with Strings And/or Loops

    NASA Astrophysics Data System (ADS)

    Chung, T. J.

    2008-09-01

    This paper addresses a hypothetical extension of ekpyrotic and anthropic principles, implying cyclic and multiple universes, respectively. Under these hypotheses, from time immemorial (t = -∞), a universe undergoes a big bang from a singularity, initially expanding and eventually contracting to another singularity (big crunch). This is to prepare for the next big bang, repeating these cycles toward eternity (t = +∞), every 30 billion years apart. Infinity in time backward and forward (t = ±∞) is paralleled with infinity in space (Xi = ±∞), allowing multiple universes to prevail, each undergoing big bangs and big crunches similarly as our own universe. It is postulated that either string theory and /or loop quantum gravity might be able to substantiate these hypotheses.

  13. Scalar fields in black hole spacetimes

    NASA Astrophysics Data System (ADS)

    Thuestad, Izak; Khanna, Gaurav; Price, Richard H.

    2017-07-01

    The time evolution of matter fields in black hole exterior spacetimes is a well-studied subject, spanning several decades of research. However, the behavior of fields in the black hole interior spacetime has only relatively recently begun receiving some attention from the research community. In this paper, we numerically study the late-time evolution of scalar fields in both Schwarzschild and Kerr spacetimes, including the black hole interior. We recover the expected late-time power-law "tails" on the exterior (null infinity, timelike infinity, and the horizon). In the interior region, we find an interesting oscillatory behavior that is characterized by the multipole index ℓ of the scalar field. In addition, we also study the extremal Kerr case and find strong indications of an instability developing at the horizon.

  14. C-metric solution for conformal gravity with a conformally coupled scalar field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meng, Kun, E-mail: mengkun@tjpu.edu.cn; Zhao, Liu, E-mail: lzhao@nankai.edu.cn

    The C-metric solution of conformal gravity with a conformally coupled scalar field is presented. The solution belongs to the class of Petrov type D spacetimes and is conformal to the standard AdS C-metric appeared in vacuum Einstein gravity. For all parameter ranges, we identify some of the physically interesting static regions and the corresponding coordinate ranges. The solution may contain a black hole event horizon, an acceleration horizon, either of which may be cut by the conformal infinity or be hidden behind the conformal infinity. Since the model is conformally invariant, we also discussed the possible effects of the conformalmore » gauge choices on the structure of the spacetime.« less

  15. Superconductivity, phase separation, and charge-transfer instability in the U = infinity limit of the three-band model of the CuO sub 2 planes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grilli, M.; Raimondi, R.; Castellani, C.

    1991-07-08

    The {ital U}={infinity} limit of the three-band Hubbard model with nearest-neighbor repulsion {ital V} is studied using the slave-boson approach and the large-{ital N} expansion technique to order 1/{ital N}. A charge-transfer instability is found as in weak-coupling theory. The charge-transfer instability is always associated with a diverging compressibility leading to a phase separation. Near the phase-separation, charge-transfer-instability region we find superconducting instabilities in the {ital s}- and {ital d}-wave channel. The requirement for superconductivity is that {ital V} be on the scale of the Cu-O hopping as suggested by Varma, Schmitt-Rink, and Abrahams.

  16. Coordinate Families for the Schwarzschild Geometry Based on Radial Timelike Geodesics

    NASA Technical Reports Server (NTRS)

    Finch, Tehani K.

    2015-01-01

    We explore the connections between various coordinate systems associated with observersmoving inwardly along radial geodesics in the Schwarzschild geometry. Painleve-Gullstrand (PG) time is adapted to freely falling observers dropped from rest from infinity; Lake-Martel-Poisson (LMP) time coordinates are adapted to observers who start at infinity with non-zero initial inward velocity; Gautreau-Hoffmann time coordinates are adapted to observers dropped from rest from a finite distance from the black hole horizon.We construct from these an LMP family and a proper-time family of time coordinates, the intersection of which is PG time. We demonstrate that these coordinate families are distinct, but related, one-parameter generalizations of PG time, and show linkage to Lemaître coordinates as well.

  17. A clinical study of patient acceptance and satisfaction of Varilux Plus and Varilux Infinity lenses.

    PubMed

    Cho, M H; Barnette, C B; Aiken, B; Shipp, M

    1991-06-01

    An independent study was conducted at the UAB School of Optometry to determine the clinical success with Varilux Plus (Varilux 2) and Varilux Infinity progressive addition lenses (PAL). Two hundred eighty patients (280) were fit between June 1988 and May 1989. The acceptance rate of 97.5 percent was based on the number of lenses ordered versus the number of lenses returned. Patients were contacted by telephone and asked to rate their level of satisfaction with their PALs. A chi-square (non-parametric) test revealed no statistically significant differences in levels of satisfaction with respect to gender, PAL type, or degree of presbyopia. Also, neither refractive error nor previous lens history had a measurable impact on patient satisfaction.

  18. Development of a three-dimensional Navier-Stokes code on CDC star-100 computer

    NASA Technical Reports Server (NTRS)

    Vatsa, V. N.; Goglia, G. L.

    1978-01-01

    A three-dimensional code in body-fitted coordinates was developed using MacCormack's algorithm. The code is structured to be compatible with any general configuration, provided that the metric coefficients for the transformation are available. The governing equations are developed in primitive variables in order to facilitate the incorporation of physical boundary conditions and turbulence-closure models. MacCormack's two-step, unsplit, time-marching algorithm is used to solve the unsteady Navier-Stokes equations until steady-state solution is achieved. Cases discussed include (1) flat plate in supersonic free stream; (2) supersonic flow along an axial corner; (3) subsonic flow in an axial corner at M infinity = 0.95; and (4) supersonic flow in an axial corner at M infinity 1.5.

  19. Structural and luminescence studies on pi...pi and Pt...Pt interactions in mixed chloro-isocyanide cyclometalated platinum(II) complexes.

    PubMed

    Díez, Alvaro; Forniés, Juan; Larraz, Carmen; Lalinde, Elena; López, José A; Martín, Antonio; Moreno, M Teresa; Sicilia, Violeta

    2010-04-05

    [Pt(bzq)Cl(CNR)] [bzq = benzoquinolinate; R = tert-butyl ((t)Bu 1), 2-6-dimethylphenyl (Xyl 2), 2-naphthyl (2-Np 3)] complexes have been synthesized and structurally and photophysically characterized. 1 was found to co-crystallize in two distinct pseudopolymorphs: a red form, which exhibits an infinite 1D-chain ([1](infinity)) and a yellow form, which contains discrete dimers ([1](2)), both stabilized by interplanar pi...pi (bzq) and short Pt...Pt bonding interactions. Complex 3, generated through the unexpected garnet-red double salt isomer [Pt(bzq)(CN-2-Np)(2)][Pt(bzq)Cl(2)] 4, crystallizes as yellow Pt...Pt dimers ([3](2)), while 2 only forms pi...pi (bzq) contacting dimers. Their electronic absorption and luminescence behaviors have been investigated. According to Time-Dependent Density Functional Theory (TD-DFT) calculations, the lowest-lying absorption (CH(2)Cl(2)) has been attributed to combined (1)ILCT and (1)MLCT/(1)ML'CT (L = bzq, L' = CNR) transitions, the latter increasing from 1 to 3. In solid state, while the yellow form [1](2) exhibits a green (3)MLCT unstructured emission only at 77 K, the 1-D form [1](infinity) displays a characteristic low-energy red emission (672 nm, 298 K; 744 nm, 77 K) attributed to a mixed (3)MMCT [d(sigma*)-->p(sigma)]/(3)MMLCT [dsigma*(M(2))-->sigma(pi*)(bzq)] excited state. However, upon exposure to standard atmospheric conditions, [1](infinity) shows an irreversible change to an orange-ochre solid, whose emissive properties are similar to those of the crude 1. Complexes 2 and 3 (77 K) exhibit a structured emission from discrete fragments ((3)LC/(3)MLCT), whereas the luminescence of the garnet-red salt 4 is dominated by a low energy emission (680 nm, 298 K; 730 nm, 77 K) arising from a (3)MMLCT excited state. Solvent (CH(2)Cl(2), toluene, 2-MeTHF and CH(3)CN) and concentration-dependent emission studies at 298 K and at 77 K are also reported for 1-3. In CH(2)Cl(2) solution, the low phosphorescent emission band is ascribed to bzq intraligand charge transfer (3)ILCT mixed with metal-to-ligand (L = bzq, L' = CNR) charge transfer (3)MLCT/(3)ML'CT character with the Pt to CNR contribution increasing from 1 to 3, according to computational studies.

  20. Flat bases of invariant polynomials and P-matrices of E{sub 7} and E{sub 8}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Talamini, Vittorino

    2010-02-15

    Let G be a compact group of linear transformations of a Euclidean space V. The G-invariant C{sup {infinity}} functions can be expressed as C{sup {infinity}} functions of a finite basic set of G-invariant homogeneous polynomials, sometimes called an integrity basis. The mathematical description of the orbit space V/G depends on the integrity basis too: it is realized through polynomial equations and inequalities expressing rank and positive semidefiniteness conditions of the P-matrix, a real symmetric matrix determined by the integrity basis. The choice of the basic set of G-invariant homogeneous polynomials forming an integrity basis is not unique, so it ismore » not unique the mathematical description of the orbit space too. If G is an irreducible finite reflection group, Saito et al. [Commun. Algebra 8, 373 (1980)] characterized some special basic sets of G-invariant homogeneous polynomials that they called flat. They also found explicitly the flat basic sets of invariant homogeneous polynomials of all the irreducible finite reflection groups except of the two largest groups E{sub 7} and E{sub 8}. In this paper the flat basic sets of invariant homogeneous polynomials of E{sub 7} and E{sub 8} and the corresponding P-matrices are determined explicitly. Using the results here reported one is able to determine easily the P-matrices corresponding to any other integrity basis of E{sub 7} or E{sub 8}. From the P-matrices one may then write down the equations and inequalities defining the orbit spaces of E{sub 7} and E{sub 8} relatively to a flat basis or to any other integrity basis. The results here obtained may be employed concretely to study analytically the symmetry breaking in all theories where the symmetry group is one of the finite reflection groups E{sub 7} and E{sub 8} or one of the Lie groups E{sub 7} and E{sub 8} in their adjoint representations.« less

  1. The Making of the Standard Theory

    NASA Astrophysics Data System (ADS)

    Iliopoulos, John

    2016-10-01

    The following sections are included: * Introduction * Prehistory * Thirty Years of Unconcern, Thirty Years of Doubt * Gauge Theories * Fighting the Infinities * The Standard Model * Beyond the Standard Model

  2. Autonomic correlates at rest and during evoked attention in children with attention-deficit/hyperactivity disorder and effects of methylphenidate.

    PubMed

    Negrao, Bianca Lee; Bipath, Priyesh; van der Westhuizen, Deborah; Viljoen, Margaretha

    2011-01-01

    The aim of this study was to assess autonomic nervous system functioning in children with attention-deficit/hyperactivity disorder (ADHD) and to examine the effects of methylphenidate and focussed attention. Children with ADHD (n = 19) were tested while they were stimulant free and during a period in which they were on stimulants. On both occasions, autonomic nervous system functioning was tested at baseline and during focussed attention. Autonomic nervous system functioning of control subjects was also tested at baseline and during focussed attention. Autonomic nervous system activity was determined by means of heart rate variability (HRV) and skin conductivity analyses. Attention was evoked by means of the BioGraph Infiniti biofeedback apparatus. HRV was determined by time domain, frequency domain and Poincaré analysis of RR interval data. Skin conductivity was determined by the BioGraph Infiniti biofeedback apparatus. The main findings of this study were (a) that stimulant-free children with ADHD showed a sympathetic underarousal and parasympathetic overarousal of the sympathovagal balance relative to control subjects; (b) methylphenidate shifted the autonomic balance of children with ADHD towards normal levels; however, a normal autonomic balance was not reached, and (c) stimulant-free children with ADHD exhibited a shift in the sympathovagal balance towards the sympathetic nervous system from baseline to focussed attention; however, methylphenidate appeared to abolish this shift. Stimulant-free children with ADHD have a parasympathetic dominance of the autonomic balance, relative to control subjects. Methylphenidate attempts to restore the normal autonomic balance in children with ADHD, but inhibits the normal autonomic nervous system response to a cognitive challenge. These results indicate that methylphenidate may have a suppressive effect on the normal stress response. Although this may be of benefit to those who interact with children who suffer from ADHD, the implications for the physiological and psychological well-being of the children themselves are debatable. Further research is needed. Only 19 children with ADHD and 18 control subjects were tested. Further studies should include prior testing in order to exclude children with possible co-existing learning disabilities. Cognitive function and emotional responses of children with ADHD were not tested. © 2010 S. Karger AG, Basel.

  3. An Engineering Approach to the Variable Fluid Property Problem in Free Convection

    NASA Technical Reports Server (NTRS)

    Gregg, J. L.; Sparrow, E. M.

    1956-01-01

    An analysis is made for the variable fluid property problem for laminar free convection on an isothermal vertical flat plate. For a number of specific cases, solutions of the boundary layer equations appropriate to the variable property situation were carried out for gases and liquid mercury. Utilizing these findings, a simple and accurate shorthand procedure is presented for calculating free convection heat transfer under variable property conditions. This calculation method is well established in the heat transfer field. It involves the use of results which have been derived for constant property fluids, and of a set of rules (called reference temperatures) for extending these constant property results to variable property situations. For gases, the constant property heat transfer results are generalized to the variable property situation by replacing beta (expansion coefficient) by one over T sub infinity and evaluating the other properties at T sub r equals T sub w minus zero point thirty-eight (T sub w minus T sub infinity). For liquid mercury, the generalization may be accomplished by evaluating all the properties (including beta) at this same T sub r. It is worthwhile noting that for these fluids, the film temperature (with beta equals one over T sub infinity for gases) appears to serve as an adequate reference temperature for most applications. Results are also presented for boundary layer thickness and velocity parameters.

  4. Use of a Stanton Tube for Skin-Friction Measurements

    NASA Technical Reports Server (NTRS)

    Abarbanel, S. S.; Hakkinen, R. J.; Trilling, L.

    1959-01-01

    A small total-pressure tube resting against a flat-plate surface was used as a Stanton tube and calibrated as a skin-friction meter at various subsonic and supersonic speeds. Laminar flow was maintained for the supersonic runs at a Mach number M(sub infinity) of 2. At speeds between M(sub infinity) = 1.33 and M(sub infinity) = 1.87, the calibrations were carried-out in a turbulent boundary layer. The subsonic flows were found to be in transition. The skin-friction readings of a floating-element type of balance served as the reference values against which the Stanton tube was calibrated. A theoretical model was developed which, for moderate values of the shear parameter tau, accurately predicts the performance of the Stanton tube in subsonic and supersonic flows. A "shear correction factor" was found to explain the deviations from the basic model when T became too large. Compressibility effects were important only in the case of turbulent supersonic flows, and they did not alter the form of the calibration curve. The test Reynolds numbers, based on the distance from the leading edge and free-stream conditions, ranged from 70,000 to 875,000. The turbulent-boundary-layer Reynolds numbers, based on momentum thickness, varied between 650 and 2,300. Both laminar and turbulent velocity profiles were taken and the effect of pressure gradient on the calibration was investigated.

  5. Measurement of the Infinite Multiplication Constant of Natural Uranium--Graphite Lattices in the RB-1 Critical Assembly by Means of the Zero Reactivity Method. MISURA DELLA COSTANTE DI MOLTIPLICAZIONE INFINITA DI RETICOLI A URANIO NATURALE E GRAFITE NELL'INSIEME CRITICO RB-1 CON IL METODO DELLA REATTIVITA' NULLA (in Italian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghillardotti, G.

    1966-07-01

    To reduce uncertainties to the minimum, measurements in the RB-1 were conducted on the same materials and with the same instrumentation as those used previously in MARIUS. The values measured in the RB-1, compared with the already known substitution data, are as follows: (a) the difference between the multiplication and the absorption intensity; (b) the fine structure of the flux in the cell; (c) the Pu/U index. The infinite mutiplication factor K{sub infinity} is obtained by combining measurements (a) and (b). The results of this research can be summed up as follows: 1. A consistent and complete experimental procedure hasmore » been devised for measuring the K{sub infinity} of natural uranium/graphite lattices by means of the zero reactivity method. The same applies to the procedure for analysis of the experimental data. 2. The error in (K{sub infinity} -- 1) inherent in the measurement can in our opinion be reduced to 2%. This limit was reached in the last experiment on lattices consisting of tubular elements. 3. Agreement proved to be good with the results obtained by the CEA in the critical assembly MARIUS. (auth)« less

  6. On convergence of differential evolution over a class of continuous functions with unique global optimum.

    PubMed

    Ghosh, Sayan; Das, Swagatam; Vasilakos, Athanasios V; Suresh, Kaushik

    2012-02-01

    Differential evolution (DE) is arguably one of the most powerful stochastic real-parameter optimization algorithms of current interest. Since its inception in the mid 1990s, DE has been finding many successful applications in real-world optimization problems from diverse domains of science and engineering. This paper takes a first significant step toward the convergence analysis of a canonical DE (DE/rand/1/bin) algorithm. It first deduces a time-recursive relationship for the probability density function (PDF) of the trial solutions, taking into consideration the DE-type mutation, crossover, and selection mechanisms. Then, by applying the concepts of Lyapunov stability theorems, it shows that as time approaches infinity, the PDF of the trial solutions concentrates narrowly around the global optimum of the objective function, assuming the shape of a Dirac delta distribution. Asymptotic convergence behavior of the population PDF is established by constructing a Lyapunov functional based on the PDF and showing that it monotonically decreases with time. The analysis is applicable to a class of continuous and real-valued objective functions that possesses a unique global optimum (but may have multiple local optima). Theoretical results have been substantiated with relevant computer simulations.

  7. Equilibrium fluid interface behavior under low- and zero-gravity conditions

    NASA Technical Reports Server (NTRS)

    Concus, Paul; Finn, Robert

    1994-01-01

    We describe here some of our recent mathematical work, which forms a basis for the Interface Configuration Experiment scheduled for USML-2. The work relates to the design of apparatus that exploits microgravity conditions for accurate determination of contact angle. The underlying motivation for the procedures rests on a discontinuous dependence of the capillary free surface interface S on the contact angle gamma, in a cylindrical capillary tube whose section (base) omega contains a protruding corner with opening angle 2 alpha. Specifically, in a gravity-free environment, omega can be chosen so that, for all sufficiently large fluid volume, the height of S is uniquely determined as a (single-valued) function mu(x,y) entirely covering the base; the height mu is bounded over omega uniformly in gamma throughout the range absolute value of (gamma -(pion/2)) less than or equal to alpha, while for absolute value of (gamma - (pion/2)) greater than alpha fluid will necessarily move to the corner and uncover the base, rising to infinity (or falling to negative infinity) at the vertex, regardless of volume. We mention here only that procedures based on the phenomenon promise excellent accuracy when gamma is close pion/2 but may be subject to experimental error when gamma is close to zero (orpion), as the 'singular' part of the domain over which the fluid accumulates (or disappears) when a critical angle gamma theta is crossed then becomes very small and may be difficult to observe. We ignore the trivial case gamma is equal to pion/2 (planar free surface), to simplify the discussion.

  8. Counting relative equilibrium configurations of the full two-body problem

    NASA Astrophysics Data System (ADS)

    Moeckel, Richard

    2018-02-01

    Consider a system of two rigid, massive bodies interacting according to their mutual gravitational attraction. In a relative equilibrium motion, the bodies rotate rigidly and uniformly about a fixed axis in R^3. This is possible only for special positions and orientations of the bodies. After fixing the angular momentum, these relative equilibrium configurations can be characterized as critical points of a smooth function on configuration space. The goal of this paper is to use Morse theory and Lusternik-Schnirelmann category theory to give lower bounds for the number of critical points when the angular momentum is sufficiently large. In addition, the exact number of critical points and their Morse indices are found in the limit as the angular momentum tends to infinity.

  9. Statistics of Gaussian packets on metric and decorated graphs.

    PubMed

    Chernyshev, V L; Shafarevich, A I

    2014-01-28

    We study a semiclassical asymptotics of the Cauchy problem for a time-dependent Schrödinger equation on metric and decorated graphs with a localized initial function. A decorated graph is a topological space obtained from a graph via replacing vertices with smooth Riemannian manifolds. The main term of an asymptotic solution at an arbitrary finite time is a sum of Gaussian packets and generalized Gaussian packets (localized near a certain set of codimension one). We study the number of packets as time tends to infinity. We prove that under certain assumptions this number grows in time as a polynomial and packets fill the graph uniformly. We discuss a simple example of the opposite situation: in this case, a numerical experiment shows a subexponential growth.

  10. Fingering in a channel and tripolar Loewner evolutions.

    PubMed

    Durán, Miguel A; Vasconcelos, Giovani L

    2011-11-01

    A class of Laplacian growth models in the channel geometry is studied using the formalism of tripolar Loewner evolutions, in which three points, namely, the channel corners and the point at infinity, are kept fixed. Initially, the problem of fingered growth, where growth takes place only at the tips of slitlike fingers, is revisited and a class of exact solutions of the corresponding Loewner equation is presented for the case of stationary driving functions. A model for interface growth is then formulated in terms of a generalized tripolar Loewner equation and several examples are presented. It is shown that the growing interface evolves into a steadily moving finger and that tip competition arises for nonsymmetric initial configurations with multiple tips.

  11. Fingering in a channel and tripolar Loewner evolutions

    NASA Astrophysics Data System (ADS)

    Durán, Miguel A.; Vasconcelos, Giovani L.

    2011-11-01

    A class of Laplacian growth models in the channel geometry is studied using the formalism of tripolar Loewner evolutions, in which three points, namely, the channel corners and the point at infinity, are kept fixed. Initially, the problem of fingered growth, where growth takes place only at the tips of slitlike fingers, is revisited and a class of exact solutions of the corresponding Loewner equation is presented for the case of stationary driving functions. A model for interface growth is then formulated in terms of a generalized tripolar Loewner equation and several examples are presented. It is shown that the growing interface evolves into a steadily moving finger and that tip competition arises for nonsymmetric initial configurations with multiple tips.

  12. Collision group and renormalization of the Boltzmann collision integral.

    PubMed

    Saveliev, V L; Nanbu, K

    2002-05-01

    On the basis of a recently discovered collision group [V. L. Saveliev, in Rarefied Gas Dynamics: 22nd International Symposium, edited by T. J. Bartel and M. Gallis, AIP Conf. Proc. No. 585 (AIP, Melville, NY, 2001), p. 101], the Boltzmann collision integral is exactly rewritten in two parts. The first part describes the scattering of particles with small angles. In this part the infinity due to the infinite cross sections is extracted from the Boltzmann collision integral. Moreover, the Boltzmann collision integral is represented as a divergence of the flow in velocity space. Owing to this, the role of collisions in the kinetic equation can be interpreted in terms of the nonlocal friction force that depends on the distribution function.

  13. Collision group and renormalization of the Boltzmann collision integral

    NASA Astrophysics Data System (ADS)

    Saveliev, V. L.; Nanbu, K.

    2002-05-01

    On the basis of a recently discovered collision group [V. L. Saveliev, in Rarefied Gas Dynamics: 22nd International Symposium, edited by T. J. Bartel and M. Gallis, AIP Conf. Proc. No. 585 (AIP, Melville, NY, 2001), p. 101], the Boltzmann collision integral is exactly rewritten in two parts. The first part describes the scattering of particles with small angles. In this part the infinity due to the infinite cross sections is extracted from the Boltzmann collision integral. Moreover, the Boltzmann collision integral is represented as a divergence of the flow in velocity space. Owing to this, the role of collisions in the kinetic equation can be interpreted in terms of the nonlocal friction force that depends on the distribution function.

  14. Fourier/Chebyshev methods for the incompressible Navier-Stokes equations in finite domains

    NASA Technical Reports Server (NTRS)

    Corral, Roque; Jimenez, Javier

    1992-01-01

    A fully spectral numerical scheme for the incompressible Navier-Stokes equations in domains which are infinite or semi-infinite in one dimension. The domain is not mapped, and standard Fourier or Chebyshev expansions can be used. The handling of the infinite domain does not introduce any significant overhead. The scheme assumes that the vorticity in the flow is essentially concentrated in a finite region, which is represented numerically by standard spectral collocation methods. To accomodate the slow exponential decay of the velocities at infinity, extra expansion functions are introduced, which are handled analytically. A detailed error analysis is presented, and two applications to Direct Numerical Simulation of turbulent flows are discussed in relation with the numerical performance of the scheme.

  15. Properties of Coulomb crystals: rigorous results.

    PubMed

    Cioslowski, Jerzy

    2008-04-28

    Rigorous equalities and bounds for several properties of Coulomb crystals are presented. The energy e(N) per particle pair is shown to be a nondecreasing function of the particle number N for all clusters described by double-power-law pairwise-additive potentials epsilon(r) that are unbound at both r-->0 and r-->infinity. A lower bound for the ratio of the mean reciprocal crystal radius and e(N) is derived. The leading term in the asymptotic expression for the shell capacity that appears in the recently introduced approximate model of Coulomb crystals is obtained, providing in turn explicit large-N asymptotics for e(N) and the mean crystal radius. In addition, properties of the harmonic vibrational spectra are investigated, producing an upper bound for the zero-point energy.

  16. Estimation of regions of attraction and ultimate boundedness for multiloop LQ regulators. [Linear Quadratic

    NASA Technical Reports Server (NTRS)

    Joshi, S. M.

    1984-01-01

    Closed-loop stability is investigated for multivariable linear time-invariant systems controlled by optimal full state feedback linear quadratic (LQ) regulators, with nonlinear gains present in the feedback channels. Estimates are obtained for the region of attraction when the nonlinearities escape the (0.5, infinity) sector in regions away from the origin and for the region of ultimate boundedness when the nonlinearities escape the sector near the origin. The expressions for these regions also provide methods for selecting the performance function parameters in order to obtain LQ designs with better tolerance for nonlinearities. The analytical results are illustrated by applying them to the problem of controlling the rigid-body pitch angle and elastic motion of a large, flexible space antenna.

  17. Cosmic infinity: a dynamical system approach

    NASA Astrophysics Data System (ADS)

    Bouhmadi-López, Mariam; Marto, João; Morais, João; Silva, César M.

    2017-03-01

    Dynamical system techniques are extremely useful to study cosmology. It turns out that in most of the cases, we deal with finite isolated fixed points corresponding to a given cosmological epoch. However, it is equally important to analyse the asymptotic behaviour of the universe. On this paper, we show how this can be carried out for 3-form models. In fact, we show that there are fixed points at infinity mainly by introducing appropriate compactifications and defining a new time variable that washes away any potential divergence of the system. The richness of 3-form models allows us as well to identify normally hyperbolic non-isolated fixed points. We apply this analysis to three physically interesting situations: (i) a pre-inflationary era; (ii) an inflationary era; (iii) the late-time dark matter/dark energy epoch.

  18. Robust Hinfinity position control synthesis of an electro-hydraulic servo system.

    PubMed

    Milić, Vladimir; Situm, Zeljko; Essert, Mario

    2010-10-01

    This paper focuses on the use of the techniques based on linear matrix inequalities for robust H(infinity) position control synthesis of an electro-hydraulic servo system. A nonlinear dynamic model of the hydraulic cylindrical actuator with a proportional valve has been developed. For the purpose of the feedback control an uncertain linearized mathematical model of the system has been derived. The structured (parametric) perturbations in the electro-hydraulic coefficients are taken into account. H(infinity) controller extended with an integral action is proposed. To estimate internal states of the electro-hydraulic servo system an observer is designed. Developed control algorithms have been tested experimentally in the laboratory model of an electro-hydraulic servo system. Copyright © 2010 ISA. Published by Elsevier Ltd. All rights reserved.

  19. Modified hollow Gaussian beam and its paraxial propagation

    NASA Astrophysics Data System (ADS)

    Cai, Yangjian; Chen, Chiyi; Wang, Fei

    2007-10-01

    A model named modified hollow Gaussian beam (HGB) is proposed to describe a dark hollow beam with adjustable beam spot size, central dark size and darkness factor. In this modified model, both the beam spot size and the central dark size will be convergent to finite constants as the beam order approaches infinity, which are much different from that of the previous unmodified model, where the beam spot size and the central dark size will not be convergent as the beam order approaches infinity. The dependences of the propagation factor of modified and unmodified HGBs on the beam order are found to be the same. Based on the Collins integral, analytical formulas for the modified HGB propagating through aligned and misaligned optical system are derived. Some numerical examples are given.

  20. Hölder Regularity of the 2D Dual Semigeostrophic Equations via Analysis of Linearized Monge-Ampère Equations

    NASA Astrophysics Data System (ADS)

    Le, Nam Q.

    2018-05-01

    We obtain the Hölder regularity of time derivative of solutions to the dual semigeostrophic equations in two dimensions when the initial potential density is bounded away from zero and infinity. Our main tool is an interior Hölder estimate in two dimensions for an inhomogeneous linearized Monge-Ampère equation with right hand side being the divergence of a bounded vector field. As a further application of our Hölder estimate, we prove the Hölder regularity of the polar factorization for time-dependent maps in two dimensions with densities bounded away from zero and infinity. Our applications improve previous work by G. Loeper who considered the cases of densities sufficiently close to a positive constant.

  1. Application of a real-time, calculable limiting form of the Renyi entropy for molecular imaging of tumors.

    PubMed

    Marsh, Jon N; Wallace, Kirk D; McCarthy, John E; Wickerhauser, Mladen V; Maurizi, Brian N; Lanza, Gregory M; Wickline, Samuel A; Hughes, Michael S

    2010-08-01

    Previously, we reported new methods for ultrasound signal characterization using entropy, H(f); a generalized entropy, the Renyi entropy, I(f)(r); and a limiting form of Renyi entropy suitable for real-time calculation, I(f),(infinity). All of these quantities demonstrated significantly more sensitivity to subtle changes in scattering architecture than energy-based methods in certain settings. In this study, the real-time calculable limit of the Renyi entropy, I(f),(infinity), is applied for the imaging of angiogenic murine neovasculature in a breast cancer xenograft using a targeted contrast agent. It is shown that this approach may be used to reliably detect the accumulation of targeted nanoparticles at five minutes post-injection in this in vivo model.

  2. Bounce universe and black holes from critical Einsteinian cubic gravity

    NASA Astrophysics Data System (ADS)

    Feng, Xing-Hui; Huang, Hyat; Mai, Zhan-Feng; Lü, Hong

    2017-11-01

    We show that there exists a critical point for the coupling constants in Einsteinian cubic gravity in which the linearized equations on the maximally symmetric vacuum vanish identically. We construct an exact isotropic bounce universe in the critical theory in four dimensions. The comoving time runs from minus infinity to plus infinity, yielding a smooth universe bouncing between two de Sitter vacua. In five dimensions, we adopt a numerical approach to construct a bounce solution, in which a singularity occurs before the bounce takes place. We then construct exact anisotropic bounces that connect two isotropic de Sitter spacetimes with flat spatial sections. We further construct exact anti-de Sitter black holes in the critical theory in four and five dimensions and obtain an exact anti-de Sitter worm brane in four dimensions.

  3. Laser skin friction measurements and CFD comparison of weak-to-strong swept shock/boundary-layer interactions

    NASA Technical Reports Server (NTRS)

    Kim, K.-S.; Lee, Y.; Alvi, F. S.; Settles, G. S.; Horstman, C. C.

    1990-01-01

    A joint experimental and computational study of skin friction in weak-to-strong swept shock wave/turbulent boundary-layer interactions has been carried out. A planar shock wave is generated by a sharp fin at angles of attack alpha = 10 deg and 16 deg at M(infinity) = 3 and 16 and 20 deg at M(infinity) = 4. Measurements are made using the Laser Interferometer Skin Friction meter, which optically detects the rate of thinning of an oil film applied to the test surface. The results show a systematic rise in the peak c(f) at the rear part of the interaction, where the separated flow atttaches. For the stronget case studied, this peak is an order of magnitude higher than the incoming freestream c(f)level.

  4. A Parametric Study of Jet Interactions with Rarefied Flow

    NASA Technical Reports Server (NTRS)

    Glass, C. E.

    2004-01-01

    Three-dimensional computational techniques, in particular the uncoupled CFD-DSMC of the present study, are available to be applied to problems such as jet interactions with variable density regions ranging from a continuum jet to a rarefied free stream. When the value of the jet to free stream momentum flux ratio approximately greater than 2000 for a sharp leading edge flat plate forward separation vortices induced by the jet interaction are present near the surface. Also as the free stream number density n (infinity) decreases, the extent and magnitude of normalized pressure increases and moves upstream of the nozzle exit. Thus for the flat plate model the effect of decreasing n (infinity) is to change the sign of the moment caused by the jet interaction on the flat plate surface.

  5. Quasicrystals: Making invisible materials

    NASA Astrophysics Data System (ADS)

    Boriskina, Svetlana V.

    2015-07-01

    All-dielectric photonic quasicrystals may act as zero-refractive-index homogeneous materials despite their lack of translational symmetry and periodicity, stretching wavelengths to infinity and offering applications in light wavefront sculpting and optical cloaking.

  6. Farm- and flock-level risk factors associated with Highly Pathogenic Avian Influenza outbreaks on small holder duck and chicken farms in the Mekong Delta of Viet Nam.

    PubMed

    Henning, Kate A; Henning, Joerg; Morton, John; Long, Ngo Thanh; Ha, Nguyen Truc; Meers, Joanne

    2009-10-01

    After 11 consecutive months of control, the Mekong Delta in Viet Nam experienced a wave of Highly Pathogenic Avian Influenza (HPAI) H5N1 outbreaks on small holder poultry farms from December 2006 to January 2007. We conducted a retrospective matched case-control study to investigate farm- and flock-level risk factors for outbreak occurrence during this period. Twenty-two case farms were selected from those where clinical signs consistent with HPAI H5N1 had been present and HPAI H5N1 had been confirmed with a positive real-time PCR test from samples obtained from affected birds. For every case farm enrolled, two control farms were selected matched on time of outbreak occurrence, farm location and species. Veterinarians conducted interviews with farmers, to collect information on household demographics, farm characteristics, husbandry practices, trading practices, poultry health, vaccination and biosecurity. Exact stratified logistic regression models were used to assess putative risk factors associated with a flock having or not having a HPAI outbreak. Nested analyses were also performed, restricted to subsets of farms using scavenging, confinement or supplementary feeding practices. Risk of an outbreak of HPAI H5N1 was increased in flocks that had received no vaccination (odds ratio (OR)=20.2; 95% confidence interval (CI): 1.0, +infinity) or only one vaccination (OR=85.2; 95% CI: 6.5, +infinity) of flocks compared to two vaccinations, and in flocks on farms that had family and friends visiting (OR=8.2; 95% CI: 1.0, +infinity) and geese present (OR=11.5; 95% CI: 1.1, +infinity). The subset analysis using only flocks that scavenged showed that sharing of scavenging areas with flocks from other farms was associated with increased risk of an outbreak (OR=10.9; 95% CI: 1.4, 492.9). We conclude that none or only one vaccination, visitors to farms, the presence of geese on farms and sharing of scavenging areas with ducks from other farms increase the risk of HPAI H5N1 outbreaks in poultry flocks in Viet Nam.

  7. [La(UO{sub 2})V{sub 2}O{sub 7}][(UO{sub 2})(VO{sub 4})] the first lanthanum uranyl-vanadate with structure built from two types of sheets based upon the uranophane anion-topology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mer, A.; Obbade, S.; Rivenet, M.

    2012-01-15

    The new lanthanum uranyl vanadate divanadate, [La(UO{sub 2})V{sub 2}O{sub 7}][(UO{sub 2})(VO{sub 4})] was obtained by reaction at 800 Degree-Sign C between lanthanum chloride, uranium oxide (U{sub 3}O{sub 8}) and vanadium oxide (V{sub 2}O{sub 5}) and the structure was determined from single-crystal X-ray diffraction data. This compound crystallizes in the orthorhombic system with space group P2{sub 1}2{sub 1}2{sub 1} and unit-cell parameters a=6.9470(2) A, b=7.0934(2) A, c=25.7464(6) A, V=1268.73(5) A{sup 3}, Z=4. A full matrix least-squares refinement yielded R{sub 1}=0.0219 for 5493 independent reflections. The crystal structure is characterized by the stacking of uranophane-type sheets {sup 2}{sub {infinity}}[(UO{sub 2})(VO{sub 4})]{sup -}more » and double layers {sup 2}{sub {infinity}}[La(UO{sub 2})(V{sub 2}O{sub 7})]{sup +} connected through La-O bonds involving the uranyl oxygen of the uranyl-vanadate sheets. The double layers result from the connection of two {sup 2}{sub {infinity}}[La(UO{sub 2})(VO{sub 4}){sub 2}]{sup -} sheets derived from the uranophane anion-topology by replacing half of the uranyl ions by lanthanum atoms and connected through the formation of divanadate entities. - Graphical abstract: A view of the three-dimensional structure of [La(UO{sub 2})V{sub 2}O{sub 7}][(UO{sub 2})(VO{sub 4})]. Highlights: Black-Right-Pointing-Pointer New lanthanum uranyl vanadate divanadate has been synthesized. Black-Right-Pointing-Pointer Structure was determined from single-crystal X-ray diffraction data. Black-Right-Pointing-Pointer Structure is characterized by uranophane-type sheets and double layers {sup 2}{sub {infinity}}[La(UO{sub 2})(V{sub 2}O{sub 7})]{sup +}.« less

  8. Number, Infinity and Truth: Reflections on the Spiritual in Mathematics.

    ERIC Educational Resources Information Center

    Rauff, James V.

    2000-01-01

    Mathematics has had a spiritual aspect throughout its history. Discusses the nature of the interplay between mathematics and spirituality in some traditional and modern contexts. (Contains 29 references.) (ASK)

  9. Dikin-type algorithms for dextrous grasping force optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buss, M.; Faybusovich, L.; Moore, J.B.

    1998-08-01

    One of the central issues in dextrous robotic hand grasping is to balance external forces acting on the object and at the same time achieve grasp stability and minimum grasping effort. A companion paper shows that the nonlinear friction-force limit constraints on grasping forces are equivalent to the positive definiteness of a certain matrix subject to linear constraints. Further, compensation of the external object force is also a linear constraint on this matrix. Consequently, the task of grasping force optimization can be formulated as a problem with semidefinite constraints. In this paper, two versions of strictly convex cost functions, onemore » of them self-concordant, are considered. These are twice-continuously differentiable functions that tend to infinity at the boundary of possible definiteness. For the general class of such cost functions, Dikin-type algorithms are presented. It is shown that the proposed algorithms guarantee convergence to the unique solution of the semidefinite programming problem associated with dextrous grasping force optimization. Numerical examples demonstrate the simplicity of implementation, the good numerical properties, and the optimality of the approach.« less

  10. Visual accommodation trainer-tester

    NASA Technical Reports Server (NTRS)

    Randle, Robert J. (Inventor)

    1988-01-01

    An apparatus for training the human visual accommodation system is described. Specifically, the apparatus is useful for training personnel to volitionally control focus to the far point (normally infinity) from a position of myopia due to functional causes. The functional causes could be due, for example, to a behavioral accommodative spasm or the effects of an empty field. The device may also be used to measure accommodation, the accommodation resting position and the near and far points of vision. The device comprises a number of optical elements arranged on a single optical axis. Several of the elements are arranged in order on a movable stage in fixed relationship to each other: a light source, a lens, a target, an aperture and/or a second lens. On a base and in fixed relationship to each other are eyepiece and third lens. A stage generates an image of the target and the stage is movable with respect to the base by means of a knob. The device is utilized for the various training and test functions by following a series of procedural steps, and interchanging the apertures as necessary for the selected procedure.

  11. A cost-function approach to rival penalized competitive learning (RPCL).

    PubMed

    Ma, Jinwen; Wang, Taijun

    2006-08-01

    Rival penalized competitive learning (RPCL) has been shown to be a useful tool for clustering on a set of sample data in which the number of clusters is unknown. However, the RPCL algorithm was proposed heuristically and is still in lack of a mathematical theory to describe its convergence behavior. In order to solve the convergence problem, we investigate it via a cost-function approach. By theoretical analysis, we prove that a general form of RPCL, called distance-sensitive RPCL (DSRPCL), is associated with the minimization of a cost function on the weight vectors of a competitive learning network. As a DSRPCL process decreases the cost to a local minimum, a number of weight vectors eventually fall into a hypersphere surrounding the sample data, while the other weight vectors diverge to infinity. Moreover, it is shown by the theoretical analysis and simulation experiments that if the cost reduces into the global minimum, a correct number of weight vectors is automatically selected and located around the centers of the actual clusters, respectively. Finally, we apply the DSRPCL algorithms to unsupervised color image segmentation and classification of the wine data.

  12. The Calculation of the Electrostatic Potential of Infinite Charge Distributions

    ERIC Educational Resources Information Center

    Redzic, Dragan V.

    2012-01-01

    We discuss some interesting aspects in the calculation of the electrostatic potential of charge distributions extending to infinity. The presentation is suitable for the advanced undergraduate level. (Contains 3 footnotes.)

  13. New powerful statistics for alignment-free sequence comparison under a pattern transfer model.

    PubMed

    Liu, Xuemei; Wan, Lin; Li, Jing; Reinert, Gesine; Waterman, Michael S; Sun, Fengzhu

    2011-09-07

    Alignment-free sequence comparison is widely used for comparing gene regulatory regions and for identifying horizontally transferred genes. Recent studies on the power of a widely used alignment-free comparison statistic D2 and its variants D*2 and D(s)2 showed that their power approximates a limit smaller than 1 as the sequence length tends to infinity under a pattern transfer model. We develop new alignment-free statistics based on D2, D*2 and D(s)2 by comparing local sequence pairs and then summing over all the local sequence pairs of certain length. We show that the new statistics are much more powerful than the corresponding statistics and the power tends to 1 as the sequence length tends to infinity under the pattern transfer model. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. On the asymptotically Poincaré-Einstein 4-manifolds with harmonic curvature

    NASA Astrophysics Data System (ADS)

    Hu, Xue

    2018-06-01

    In this paper, we discuss the mass aspect tensor and the rigidity of an asymptotically Poincaré-Einstein (APE) 4-manifold with harmonic curvature. We prove that the trace-free part of the mass aspect tensor of an APE 4-manifold with harmonic curvature and normalized Einstein conformal infinity is zero. As to the rigidity, we first show that a complete noncompact Riemannian 4-manifold with harmonic curvature and positive Yamabe constant as well as a L2-pinching condition is Einstein. As an application, we then obtain that an APE 4-manifold with harmonic curvature and positive Yamabe constant is isometric to the hyperbolic space provided that the L2-norm of the traceless Ricci tensor or the Weyl tensor is small enough and the conformal infinity is a standard round 3-sphere.

  15. Vortex/surface interaction

    NASA Technical Reports Server (NTRS)

    Bodstein, G. C. R.; George, A. R.; Hui, C. Y.

    1993-01-01

    This paper considers the interaction of a vortex generated upstream in a flow field with a downstream aerodynamic surface that possesses a large chord. The flow is assumed to be steady, incompressible, inviscid and irrotational, and the surface to be semiinfinite. The vortex is considered to be a straight vortex filament. To lowest order the problem is modeled using potential theory, where the 3D Laplace's equation for the velocity potential on the surface is solved exactly. The closed-form equation for pressure distribution obtained from this theory is found to have a square root singularity at the leading-edge. It also converges, as x goes to infinity, to the solution of the 2D point-vortex/infinite plane problem. The pressure coefficient presents an anti-symmetric behavior, near the leading-edge and a symmetric behavior as x goes to infinity.

  16. Squashed, magnetized black holes in D = 5 minimal gauged supergravity

    NASA Astrophysics Data System (ADS)

    Blázquez-Salcedo, Jose Luis; Kunz, Jutta; Navarro-Lérida, Francisco; Radu, Eugen

    2018-02-01

    We construct a new class of black hole solutions in five-dimensional Einstein-Maxwell-Chern-Simons theory with a negative cosmological constant. These configurations are cohomogeneity-1, with two equal-magnitude angular momenta. In the generic case, they possess a non-vanishing magnetic potential at infinity with a boundary metric which is the product of time and a squashed three-dimensional sphere. Both extremal and non-extremal black holes are studied. The non-extremal black holes satisfying a certain relation between electric charge, angular momenta and magnitude of the magnetic potential at infinity do not trivialize in the limit of vanishing event horizon size, becoming particle-like (non-topological) solitonic configurations. Among the extremal black holes, we show the existence of a new one-parameter family of supersymmetric solutions, which bifurcate from a critical Gutowski-Reall configuration.

  17. Escape probability of the super-Penrose process

    NASA Astrophysics Data System (ADS)

    Ogasawara, Kota; Harada, Tomohiro; Miyamoto, Umpei; Igata, Takahisa

    2017-06-01

    We consider a head-on collision of two massive particles that move in the equatorial plane of an extremal Kerr black hole, which results in the production of two massless particles. Focusing on a typical case, where both of the colliding particles have zero angular momenta, we show that a massless particle produced in such a collision can escape to infinity with arbitrarily large energy in the near-horizon limit of the collision point. Furthermore, if we assume that the emission of the produced massless particles is isotropic in the center-of-mass frame but confined to the equatorial plane, the escape probability of the produced massless particle approaches 5 /12 , and almost all escaping massless particles have arbitrarily large energy at infinity and an impact parameter approaching 2 G M /c2, where M is the mass of the black hole.

  18. Nonlinear optimal control for the synchronization of chaotic and hyperchaotic finance systems

    NASA Astrophysics Data System (ADS)

    Rigatos, G.; Siano, P.; Loia, V.; Ademi, S.; Ghosh, T.

    2017-11-01

    It is possible to make specific finance systems get synchronized to other finance systems exhibiting chaotic and hyperchaotic dynamics, by applying nonlinear optimal (H-infinity) control. This signifies that chaotic behavior can be generated in finance systems by exerting a suitable control input. Actually, a lead financial system is considered which exhibits inherently chaotic dynamics. Moreover, a follower finance system is introduced having parameters in its model that inherently prohibit the appearance of chaotic dynamics. Through the application of a suitable nonlinear optimal (H-infinity) control input it is proven that the follower finance system can replicate the chaotic dynamics of the lead finance system. By applying Lyapunov analysis it is proven that asymptotically the follower finance system gets synchronized with the lead system and that the tracking error between the state variables of the two systems vanishes.

  19. Aeroelastic Calculations Using CFD for a Typical Business Jet Model

    NASA Technical Reports Server (NTRS)

    Gibbons, Michael D.

    1996-01-01

    Two time-accurate Computational Fluid Dynamics (CFD) codes were used to compute several flutter points for a typical business jet model. The model consisted of a rigid fuselage with a flexible semispan wing and was tested in the Transonic Dynamics Tunnel at NASA Langley Research Center where experimental flutter data were obtained from M(sub infinity) = 0.628 to M(sub infinity) = 0.888. The computational results were computed using CFD codes based on the inviscid TSD equation (CAP-TSD) and the Euler/Navier-Stokes equations (CFL3D-AE). Comparisons are made between analytical results and with experiment where appropriate. The results presented here show that the Navier-Stokes method is required near the transonic dip due to the strong viscous effects while the TSD and Euler methods used here provide good results at the lower Mach numbers.

  20. Cosmic infinity: a dynamical system approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bouhmadi-López, Mariam; Marto, João; Morais, João

    2017-03-01

    Dynamical system techniques are extremely useful to study cosmology. It turns out that in most of the cases, we deal with finite isolated fixed points corresponding to a given cosmological epoch. However, it is equally important to analyse the asymptotic behaviour of the universe. On this paper, we show how this can be carried out for 3-form models. In fact, we show that there are fixed points at infinity mainly by introducing appropriate compactifications and defining a new time variable that washes away any potential divergence of the system. The richness of 3-form models allows us as well to identifymore » normally hyperbolic non-isolated fixed points. We apply this analysis to three physically interesting situations: (i) a pre-inflationary era; (ii) an inflationary era; (iii) the late-time dark matter/dark energy epoch.« less

  1. New Powerful Statistics for Alignment-free Sequence Comparison Under a Pattern Transfer Model

    PubMed Central

    Liu, Xuemei; Wan, Lin; Li, Jing; Reinert, Gesine; Waterman, Michael S.; Sun, Fengzhu

    2011-01-01

    Alignment-free sequence comparison is widely used for comparing gene regulatory regions and for identifying horizontally transferred genes. Recent studies on the power of a widely used alignment-free comparison statistic D2 and its variants D2∗ and D2s showed that their power approximates a limit smaller than 1 as the sequence length tends to infinity under a pattern transfer model. We develop new alignment-free statistics based on D2, D2∗ and D2s by comparing local sequence pairs and then summing over all the local sequence pairs of certain length. We show that the new statistics are much more powerful than the corresponding statistics and the power tends to 1 as the sequence length tends to infinity under the pattern transfer model. PMID:21723298

  2. A simple high-performance liquid chromatographic method for the determination of acyclovir in human plasma and application to a pharmacokinetic study.

    PubMed

    Yu, Liyan; Xiang, Bingren; Zhan, Ying

    2008-01-01

    A rapid, simple and sensitive reversed-phase high-performance liquid chromatographic (HPLC) method has been developed for the measurement of acyclovir (CAS 59277-89-3) concentrations in human plasma and its use in bioavailability studies is evaluated. The method was linear in the concentration range of 0.05-4.0 microg/ml. The lower limit of quantification (LLOQ) was 0.05 microg/ml in 0.5 ml plasma sample. The intra- and inter-day relative standard deviations across three validation runs over the entire concentration range were less than 8.2%. This method was successfully applied for the evaluation of pharmacokinetic profiles of acyclovir capsule in 19 healthy volunteers. The main pharmacokinetic parameters obtained were: AUC(o-t) 6.50 +/- 1.47 and 7.13 +/- 1.44 microg x h/ml, AUC(0-infinity) 6.77 +/- 1.48 and 7.41 +/- 1.49 microg x h/ml, C(max) 2.27 +/- 0.57 and 2.27 +/- 0.62 microg/ml, t(1/2) 2.96 +/- 0.41 and 2.88 +/- 0.33 h, t(max) 0.8 +/- 0.3 and 1.0 +/- 0.5 h for test and reference formulations, respectively. No statistical differences were observed for C(max) and the area under the plasma concentration--time curve for acyclovir. 90% confidence limits calculated for C(max) and AUC from zero to infinity (AUC(0-infinity)) of acyclovir were included in the bioequivalence range (0.8-1.25 for AUC).

  3. Robust tracking and distributed synchronization control of a multi-motor servomechanism with H-infinity performance.

    PubMed

    Wang, Minlin; Ren, Xuemei; Chen, Qiang

    2018-01-01

    The multi-motor servomechanism (MMS) is a multi-variable, high coupling and nonlinear system, which makes the controller design challenging. In this paper, an adaptive robust H-infinity control scheme is proposed to achieve both the load tracking and multi-motor synchronization of MMS. This control scheme consists of two parts: a robust tracking controller and a distributed synchronization controller. The robust tracking controller is constructed by incorporating a neural network (NN) K-filter observer into the dynamic surface control, while the distributed synchronization controller is designed by combining the mean deviation coupling control strategy with the distributed technique. The proposed control scheme has several merits: 1) by using the mean deviation coupling synchronization control strategy, the tracking controller and the synchronization controller can be designed individually without any coupling problem; 2) the immeasurable states and unknown nonlinearities are handled by a NN K-filter observer, where the number of NN weights is largely reduced by using the minimal learning parameter technique; 3) the H-infinity performances of tracking error and synchronization error are guaranteed by introducing a robust term into the tracking controller and the synchronization controller, respectively. The stabilities of the tracking and synchronization control systems are analyzed by the Lyapunov theory. Simulation and experimental results based on a four-motor servomechanism are conducted to demonstrate the effectiveness of the proposed method. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  4. Single-dose and steady-state pharmacokinetics of tenofovir disoproxil fumarate in human immunodeficiency virus-infected children.

    PubMed

    Hazra, Rohan; Balis, Frank M; Tullio, Antonella N; DeCarlo, Ellen; Worrell, Carol J; Steinberg, Seth M; Flaherty, John F; Yale, Kitty; Poblenz, Marianne; Kearney, Brian P; Zhong, Lijie; Coakley, Dion F; Blanche, Stephane; Bresson, Jean Louis; Zuckerman, Judith A; Zeichner, Steven L

    2004-01-01

    Tenofovir disoproxil fumarate (DF) is a potent nucleotide analog reverse transcriptase inhibitor approved for the treatment of human immunodeficiency virus (HIV)-infected adults. The single-dose and steady-state pharmacokinetics of tenofovir were evaluated following administration of tenofovir DF in treatment-experienced HIV-infected children requiring a change in antiretroviral therapy. Using increments of tenofovir DF 75-mg tablets, the target dose was 175 mg/m(2); the median administered dose was 208 mg/m(2). Single-dose pharmacokinetics were evaluated in 18 subjects, and the geometric mean area under the concentration-time curve from 0 h to infinity (AUC(0- infinity )) was 2,150 ng. h/ml and the geometric mean maximum concentration (C(max)) was 266 ng/ml. Subsequently, other antiretrovirals were added to each patient's regimen based upon treatment history and baseline viral resistance results. Steady-state pharmacokinetics were evaluated in 16 subjects at week 4. The steady-state, geometric mean AUC for the 24-h dosing interval was 2,920 ng. h/ml and was significantly higher than the AUC(0- infinity ) after the first dose (P = 0.0004). The geometric mean C(max) at steady state was 302 ng/ml. Tenofovir DF was generally very well tolerated. Steady-state tenofovir exposures in children receiving tenofovir DF-containing combination antiretroviral therapy approached values seen in HIV-infected adults (AUC, approximately 3,000 ng. h/ml; C(max), approximately 300 ng/ml) treated with tenofovir DF at 300 mg.

  5. From here and now to infinity and eternity: a message to new medical doctors(*).

    PubMed

    Lapeña, José Florencio F

    2014-01-01

    Commencement means both an end and a beginning; the end of the academic year and the beginning of the rest of your life as new physicians. For such a beginning, it is useful to view it in retrospect, from the point of view of the end, by conducting a pre-mortem on your life. Taking the existentialist (ex sistere, to stand forth) stance, each of us can be classified into one of four basic types of person, based on our characteristic space and time (or spatio-temporal) context or horizon. Our space can be limited to the "here" and our time to the "now;" or our space may extend to "infinity" and our time embark on "eternity." In-between these poles, most have space contexts rooted in their home and work "turf" and time involving their "lifetime," while some expand their space to include the "world" and their time to encompass "history." From the "here and now" and "turf and lifetime" contexts, the horizons of "world and history," and "infinity and eternity" are examined, challenging new medical doctors to realize their full potential. The new physician is exhorted not to wait for a post-mortem to define (des finitus, to set limits) his or her life. He or she should stand forth, to live, and give life. The new medical doctor is encouraged to look to the sunrise, draw strength from the sunshine, to be brave, and strong and true.

  6. The effect of SLCO1B1 polymorphism on repaglinide pharmacokinetics persists over a wide dose range.

    PubMed

    Kalliokoski, Annikka; Neuvonen, Mikko; Neuvonen, Pertti J; Niemi, Mikko

    2008-12-01

    To establish whether the effect of SLCO1B1[encoding organic anion transporting polypeptide 1B1 (OATP1B1)] c.521T-->C (p.Val174Ala) polymorphism on the pharmacokinetics of repaglinide is dose-dependent. Twelve healthy volunteers with the SLCO1B1 c.521TT genotype (controls) and eight with the c.521CC genotype ingested a single 0.25-, 0.5-, 1- or 2-mg dose of repaglinide in a dose-escalation study with a wash-out period of > or =1 week. The mean area under the plasma concentration-time curve from time 0 to infinity (AUC(0-infinity)) of 0.25, 0.5, 1 or 2 mg repaglinide was 82% (95% confidence interval 47, 125), 72% (24, 138), 56% (24, 95) or 108% (59, 171) (P < or = 0.001) larger in participants with the SLCO1B1 c.521CC genotype than in those with the c.521TT genotype, respectively. Repaglinide peak plasma concentration and AUC(0-infinity) increased linearly along with repaglinide dose in both genotype groups (r > 0.88, P < 0.001). There was a tendency towards lower blood glucose concentrations after repaglinide administration in the participants with the c.521CC genotype than in those with the c.521TT genotype. The effect of SLCO1B1 c.521T-->C polymorphism on the pharmacokinetics of repaglinide persists throughout the clinically relevant dose range.

  7. Lanthanide-based coordination polymers assembled by a flexible multidentate linker: design, structure, photophysical properties, and dynamic solid-state behavior.

    PubMed

    Marchal, Claire; Filinchuk, Yaroslav; Chen, Xiao-Yan; Imbert, Daniel; Mazzanti, Marinella

    2009-01-01

    Four picolinate building blocks were implemented into the multidentate linker N,N',N'-tetrakis[(6-carboxypyridin-2-yl)methyl]butylenediamine (H(4)tpabn) with a linear flexible spacer to promote the assembly of lanthanide-based 1D coordination polymers. The role of the linker in directing the geometry of the final assembly is evidenced by the different results obtained in the presence of Htpabn(3-) and tpabn(4-) ions. The tpabn(4-) ion leads to the desired 1D polymer {[Nd(tpabn)]H(3)O x 6 H(2)O}(infinity) (12). The Htpabn(3-) ion leads to the assembly of Tb(III) and Er(III) ions into 1D zigzag chains of the general formula {[M(Htpabn)] x xH(2)O}(infinity) (M = Tb, x = 14 (1); M = Tb, x = 8 (11); M = Er, x = 14 (2); M = Er, x = 5.5 (4)), a 2D network is formed by the Eu(III) ion (i.e., {[Eu(Htpabn)] x 10 H(2)O}(infinity) (7)), and both supramolecular isomers (1D and 2D) are obtained by the Tb(III) ion. The high flexibility of the polymeric chains results in a dynamic behavior with a solvent-induced reversible structural transition. The Tb(III)- and Eu(III)-containing polymers display high-luminescence quantum yields (38 and 18%, respectively). A sizeable near-IR luminescence emission is observed for the Er(III)- and Nd(III)-containing polymers when lattice water molecules are removed.

  8. Effects of gemfibrozil and atorvastatin on the pharmacokinetics of repaglinide in relation to SLCO1B1 polymorphism.

    PubMed

    Kalliokoski, A; Backman, J T; Kurkinen, K J; Neuvonen, P J; Niemi, M

    2008-10-01

    In a randomized crossover study, 24 SLCO181-genotyped healthy volunteers were given daily doses of 1,200 mg gemfibrozil, 40 mg atorvastatin, or placebo, followed by 0.25 mg of repaglinide on day 3. The mean increase in the repaglinide area under the plasma concentration-time curve from 0 h to infinity (AUC(0-infinity)) produced by gemfibrozil was larger in individuals with the SLCO1B1 c.521CC genotype (n = 6) than in those with the c.521TC (n = 6) and c.521TT (n = 12) genotypes, by factors of 1.56 (P = 0.004) and 1.54 (P = 0.002), respectively. Gemfibrozil prolonged the repaglinide elimination half-life 1.43 times more in the c.521 CC group than in the c.521TT group (P = 0.047), but no differences were seen in the effects on peak plasma concentration (C(max)). While on gemfibrozil, the minimum blood glucose concentration after repaglinide intake was 19% lower in the c.521CC participants than in the c.521TT participants (P = 0.009). In the c.521TT group, atorvastatin intake had the effect of increasing repaglinide Cmax and AUC(0-infinity) by41% (P = 0.001) and 18% (P = 0.033), respectively. In conclusion, the extent of gemfibrozil-repaglinide interaction depends on SLCO1B1 genotype. Atorvastatin raises plasma repaglinide concentrations, probably by inhibiting organic anion transporting polypeptide 1B1 (OATP1B1).

  9. The Wagner-Nelson method can generate an accurate gastric emptying flow curve from CO2 data obtained by a 13C-labeled substrate breath test.

    PubMed

    Sanaka, Masaki; Yamamoto, Takatsugu; Ishii, Tarou; Kuyama, Yasushi

    2004-01-01

    In pharmacokinetics, the Wagner-Nelson (W-N) method can accurately estimate the rate of drug absorption from its urinary elimination rate. A stable isotope (13C) breath test attempts to estimate the rate of absorption of 13C, as an index of gastric emptying rate, from the rate of pulmonary elimination of 13CO2. The time-gastric emptying curve determined by the breath test is quite different from that determined by scintigraphy or ultrasonography. In this report, we have shown that the W-N method can adjust the difference. The W-N equation to estimate gastric emptying from breath data is as follows: the fractional cumulative amount of gastric contents emptied by time t = Abreath (t)/Abreath (infinity) + (1/0.65).d[Abreath (t)/Abreath (infinity) ]/dt, where Abreath (t) = the cumulative recovery of 13CO2 in breath by time t and Abreath ( infinity ) = the ultimate cumulative 13CO2 recovery. The emptying flow curve generated by ultrasonography was compared with that generated by the W-N method-adjusted breath test in 6 volunteers. The emptying curves by the W-N method were almost identical to those by ultrasound. The W-N method can generate an accurate emptying flow curve from 13CO2 data, and it can adjust the difference between ultrasonography and the breath test. Copyright 2004 S. Karger AG, Basel

  10. Spectral simplicity of apparent complexity. I. The nondiagonalizable metadynamics of prediction

    NASA Astrophysics Data System (ADS)

    Riechers, Paul M.; Crutchfield, James P.

    2018-03-01

    Virtually all questions that one can ask about the behavioral and structural complexity of a stochastic process reduce to a linear algebraic framing of a time evolution governed by an appropriate hidden-Markov process generator. Each type of question—correlation, predictability, predictive cost, observer synchronization, and the like—induces a distinct generator class. Answers are then functions of the class-appropriate transition dynamic. Unfortunately, these dynamics are generically nonnormal, nondiagonalizable, singular, and so on. Tractably analyzing these dynamics relies on adapting the recently introduced meromorphic functional calculus, which specifies the spectral decomposition of functions of nondiagonalizable linear operators, even when the function poles and zeros coincide with the operator's spectrum. Along the way, we establish special properties of the spectral projection operators that demonstrate how they capture the organization of subprocesses within a complex system. Circumventing the spurious infinities of alternative calculi, this leads in the sequel, Part II [P. M. Riechers and J. P. Crutchfield, Chaos 28, 033116 (2018)], to the first closed-form expressions for complexity measures, couched either in terms of the Drazin inverse (negative-one power of a singular operator) or the eigenvalues and projection operators of the appropriate transition dynamic.

  11. Solutions to an advanced functional partial differential equation of the pantograph type

    PubMed Central

    Zaidi, Ali A.; Van Brunt, B.; Wake, G. C.

    2015-01-01

    A model for cells structured by size undergoing growth and division leads to an initial boundary value problem that involves a first-order linear partial differential equation with a functional term. Here, size can be interpreted as DNA content or mass. It has been observed experimentally and shown analytically that solutions for arbitrary initial cell distributions are asymptotic as time goes to infinity to a certain solution called the steady size distribution. The full solution to the problem for arbitrary initial distributions, however, is elusive owing to the presence of the functional term and the paucity of solution techniques for such problems. In this paper, we derive a solution to the problem for arbitrary initial cell distributions. The method employed exploits the hyperbolic character of the underlying differential operator, and the advanced nature of the functional argument to reduce the problem to a sequence of simple Cauchy problems. The existence of solutions for arbitrary initial distributions is established along with uniqueness. The asymptotic relationship with the steady size distribution is established, and because the solution is known explicitly, higher-order terms in the asymptotics can be readily obtained. PMID:26345391

  12. Solutions to an advanced functional partial differential equation of the pantograph type.

    PubMed

    Zaidi, Ali A; Van Brunt, B; Wake, G C

    2015-07-08

    A model for cells structured by size undergoing growth and division leads to an initial boundary value problem that involves a first-order linear partial differential equation with a functional term. Here, size can be interpreted as DNA content or mass. It has been observed experimentally and shown analytically that solutions for arbitrary initial cell distributions are asymptotic as time goes to infinity to a certain solution called the steady size distribution. The full solution to the problem for arbitrary initial distributions, however, is elusive owing to the presence of the functional term and the paucity of solution techniques for such problems. In this paper, we derive a solution to the problem for arbitrary initial cell distributions. The method employed exploits the hyperbolic character of the underlying differential operator, and the advanced nature of the functional argument to reduce the problem to a sequence of simple Cauchy problems. The existence of solutions for arbitrary initial distributions is established along with uniqueness. The asymptotic relationship with the steady size distribution is established, and because the solution is known explicitly, higher-order terms in the asymptotics can be readily obtained.

  13. Surface Estimation, Variable Selection, and the Nonparametric Oracle Property.

    PubMed

    Storlie, Curtis B; Bondell, Howard D; Reich, Brian J; Zhang, Hao Helen

    2011-04-01

    Variable selection for multivariate nonparametric regression is an important, yet challenging, problem due, in part, to the infinite dimensionality of the function space. An ideal selection procedure should be automatic, stable, easy to use, and have desirable asymptotic properties. In particular, we define a selection procedure to be nonparametric oracle (np-oracle) if it consistently selects the correct subset of predictors and at the same time estimates the smooth surface at the optimal nonparametric rate, as the sample size goes to infinity. In this paper, we propose a model selection procedure for nonparametric models, and explore the conditions under which the new method enjoys the aforementioned properties. Developed in the framework of smoothing spline ANOVA, our estimator is obtained via solving a regularization problem with a novel adaptive penalty on the sum of functional component norms. Theoretical properties of the new estimator are established. Additionally, numerous simulated and real examples further demonstrate that the new approach substantially outperforms other existing methods in the finite sample setting.

  14. Surface Estimation, Variable Selection, and the Nonparametric Oracle Property

    PubMed Central

    Storlie, Curtis B.; Bondell, Howard D.; Reich, Brian J.; Zhang, Hao Helen

    2010-01-01

    Variable selection for multivariate nonparametric regression is an important, yet challenging, problem due, in part, to the infinite dimensionality of the function space. An ideal selection procedure should be automatic, stable, easy to use, and have desirable asymptotic properties. In particular, we define a selection procedure to be nonparametric oracle (np-oracle) if it consistently selects the correct subset of predictors and at the same time estimates the smooth surface at the optimal nonparametric rate, as the sample size goes to infinity. In this paper, we propose a model selection procedure for nonparametric models, and explore the conditions under which the new method enjoys the aforementioned properties. Developed in the framework of smoothing spline ANOVA, our estimator is obtained via solving a regularization problem with a novel adaptive penalty on the sum of functional component norms. Theoretical properties of the new estimator are established. Additionally, numerous simulated and real examples further demonstrate that the new approach substantially outperforms other existing methods in the finite sample setting. PMID:21603586

  15. Design of a new type synchronous focusing mechanism

    NASA Astrophysics Data System (ADS)

    Zhang, Jintao; Tan, Ruijun; Chen, Zhou; Zhang, Yongqi; Fu, Panlong; Qu, Yachen

    2018-05-01

    Aiming at the dual channel telescopic imaging system composed of infrared imaging system, low-light-level imaging system and image fusion module, In the fusion of low-light-level images and infrared images, it is obvious that using clear source images is easier to obtain high definition fused images. When the target is imaged at 15m to infinity, focusing is needed to ensure the imaging quality of the dual channel imaging system; therefore, a new type of synchronous focusing mechanism is designed. The synchronous focusing mechanism realizes the focusing function through the synchronous translational imaging devices, mainly including the structure of the screw rod nut, the shaft hole coordination structure and the spring steel ball eliminating clearance structure, etc. Starting from the synchronous focusing function of two imaging devices, the structure characteristics of the synchronous focusing mechanism are introduced in detail, and the focusing range is analyzed. The experimental results show that the synchronous focusing mechanism has the advantages of ingenious design, high focusing accuracy and stable and reliable operation.

  16. Is the tautochrone curve unique?

    NASA Astrophysics Data System (ADS)

    Terra, Pedro; de Melo e Souza, Reinaldo; Farina, C.

    2016-12-01

    We show that there are an infinite number of tautochrone curves in addition to the cycloid solution first obtained by Christiaan Huygens in 1658. We begin by reviewing the inverse problem of finding the possible potential energy functions that lead to periodic motions of a particle whose period is a given function of its mechanical energy. There are infinitely many such solutions, called "sheared" potentials. As an interesting example, we show that a Pöschl-Teller potential and the one-dimensional Morse potentials are sheared relative to one another for negative energies, clarifying why they share the same oscillation periods for their bounded solutions. We then consider periodic motions of a particle sliding without friction over a track around its minimum under the influence of a constant gravitational field. After a brief historical survey of the tautochrone problem we show that, given the oscillation period, there is an infinity of tracks that lead to the same period. As a bonus, we show that there are infinitely many tautochrones.

  17. Exact solution for a two-phase Stefan problem with variable latent heat and a convective boundary condition at the fixed face

    NASA Astrophysics Data System (ADS)

    Bollati, Julieta; Tarzia, Domingo A.

    2018-04-01

    Recently, in Tarzia (Thermal Sci 21A:1-11, 2017) for the classical two-phase Lamé-Clapeyron-Stefan problem an equivalence between the temperature and convective boundary conditions at the fixed face under a certain restriction was obtained. Motivated by this article we study the two-phase Stefan problem for a semi-infinite material with a latent heat defined as a power function of the position and a convective boundary condition at the fixed face. An exact solution is constructed using Kummer functions in case that an inequality for the convective transfer coefficient is satisfied generalizing recent works for the corresponding one-phase free boundary problem. We also consider the limit to our problem when that coefficient goes to infinity obtaining a new free boundary problem, which has been recently studied in Zhou et al. (J Eng Math 2017. https://doi.org/10.1007/s10665-017-9921-y).

  18. Finite-size effects in Monte Carlo simulations of two stock market models

    NASA Astrophysics Data System (ADS)

    Egenter, E.; Lux, T.; Stauffer, D.

    The microscopic market models of Kim-Markowitz and of Lux-Marchesi are simulated for varying number of investors. If this number goes to infinity, in some quantities nearly periodic oscillations occur.

  19. Ground state for a massive scalar field in the BTZ spacetime with Robin boundary conditions

    NASA Astrophysics Data System (ADS)

    Bussola, Francesco; Dappiaggi, Claudio; Ferreira, Hugo R. C.; Khavkine, Igor

    2017-11-01

    We consider a real, massive scalar field in Bañados-Teitelboim-Zanelli spacetime, a 2 +1 -dimensional black hole solution of Einstein's field equations with a negative cosmological constant. First, we analyze the space of classical solutions in a mode decomposition, and we characterize the collection of all admissible boundary conditions of Robin type which can be imposed at infinity. Second, we investigate whether, for a given boundary condition, there exists a ground state by constructing explicitly its two-point function. We demonstrate that for a subclass of the boundary conditions it is possible to construct a ground state that locally satisfies the Hadamard property. In all other cases, we show that bound state mode solutions exist and, therefore, such construction is not possible.

  20. Squared eigenvalue condition numbers and eigenvector correlations from the single ring theorem

    NASA Astrophysics Data System (ADS)

    Belinschi, Serban; Nowak, Maciej A.; Speicher, Roland; Tarnowski, Wojciech

    2017-03-01

    We extend the so-called ‘single ring theorem’ (Feinberg and Zee 1997 Nucl. Phys. B 504 579), also known as the Haagerup-Larsen theorem (Haagerup and Larsen 2000 J. Funct. Anal. 176 331). We do this by showing that in the limit when the size of the matrix goes to infinity a particular correlator between left and right eigenvectors of the relevant non-hermitian matrix X, being the spectral density weighted by the squared eigenvalue condition number, is given by a simple formula involving only the radial spectral cumulative distribution function of X. We show that this object allows the calculation of the conditional expectation of the squared eigenvalue condition number. We give examples and provide a cross-check of the analytic prediction by the large scale numerics.

  1. A method for deriving lower bounds for the complexity of monotone arithmetic circuits computing real polynomials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gashkov, Sergey B; Sergeev, Igor' S

    2012-10-31

    This work suggests a method for deriving lower bounds for the complexity of polynomials with positive real coefficients implemented by circuits of functional elements over the monotone arithmetic basis {l_brace}x+y, x {center_dot} y{r_brace} Union {l_brace}a {center_dot} x | a Element-Of R{sub +}{r_brace}. Using this method, several new results are obtained. In particular, we construct examples of polynomials of degree m-1 in each of the n variables with coefficients 0 and 1 having additive monotone complexity m{sup (1-o(1))n} and multiplicative monotone complexity m{sup (1/2-o(1))n} as m{sup n}{yields}{infinity}. In this form, the lower bounds derived here are sharp. Bibliography: 72 titles.

  2. Projection moire for remote contour analysis

    NASA Technical Reports Server (NTRS)

    Doty, J. L.

    1983-01-01

    Remote projection and viewing of moire contours are examined analytically for a system employing separate projection and viewing optics, with specific attention paid to the practical limitations imposed by the optical systems. It is found that planar contours are possible only when the optics are telecentric (exit pupil at infinity) but that the requirement for spatial separability of the contour fringes from extraneous fringes is independent of the specific optics and is a function only of the angle separating the two optic axes. In the nontelecentric case, the contour separation near the object is unchanged from that of the telecentric case, although the contours are distorted into low-eccentricity (near-circular) ellipses. Furthermore, the minimum contour spacing is directly related to the depth of focus through the resolution of the optics.

  3. Switching State-Feedback LPV Control with Uncertain Scheduling Parameters

    NASA Technical Reports Server (NTRS)

    He, Tianyi; Al-Jiboory, Ali Khudhair; Swei, Sean Shan-Min; Zhu, Guoming G.

    2017-01-01

    This paper presents a new method to design Robust Switching State-Feedback Gain-Scheduling (RSSFGS) controllers for Linear Parameter Varying (LPV) systems with uncertain scheduling parameters. The domain of scheduling parameters are divided into several overlapped subregions to undergo hysteresis switching among a family of simultaneously designed LPV controllers over the corresponding subregion with the guaranteed H-infinity performance. The synthesis conditions are given in terms of Parameterized Linear Matrix Inequalities that guarantee both stability and performance at each subregion and associated switching surfaces. The switching stability is ensured by descent parameter-dependent Lyapunov function on switching surfaces. By solving the optimization problem, RSSFGS controller can be obtained for each subregion. A numerical example is given to illustrate the effectiveness of the proposed approach over the non-switching controllers.

  4. Boosted Schwarzschild metrics from a Kerr–Schild perspective

    NASA Astrophysics Data System (ADS)

    Mädler, Thomas; Winicour, Jeffrey

    2018-02-01

    The Kerr–Schild version of the Schwarzschild metric contains a Minkowski background which provides a definition of a boosted black hole. There are two Kerr–Schild versions corresponding to ingoing or outgoing principle null directions. We show that the two corresponding Minkowski backgrounds and their associated boosts have an unexpected difference. We analyze this difference and discuss the implications in the nonlinear regime for the gravitational memory effect resulting from the ejection of massive particles from an isolated system. We show that the nonlinear effect agrees with the linearized result based upon the retarded Green function only if the velocity of the ejected particle corresponds to a boost symmetry of the ingoing Minkowski background. A boost with respect to the outgoing Minkowski background is inconsistent with the absence of ingoing radiation from past null infinity.

  5. Some Properties and Stability Results for Sector-Bounded LTI Systems

    NASA Technical Reports Server (NTRS)

    Gupta, Sandeep; Joshi, Suresh M.

    1994-01-01

    This paper presents necessary and sufficient conditions for a linear, time-invariant (LTI) system to be inside sector (n, b) in terms of linear matrix inequalities in its state-space realization matrices, which represents a generalization of similar conditions for bounded H(sub infinity)-norm systems. Further, a weaker definition of LTI systems strictly inside closed sector (a, b) is proposed, and state-space characterization of such systems is presented. Sector conditions for stability of the negative feedback interconnection of two LTI systems and for stability of LTI systems with feedback nonlinearities are investigated using the Lyapunov function approach. It is shown that the proposed weaker conditions for an LTI system to be strictly inside a sector are sufficient to establish closed-loop stability of these systems.

  6. Effect of anterior cervical osteophyte in poststroke dysphagia: a case-control study.

    PubMed

    Kim, Youngkook; Park, Geun-Young; Seo, Yu Jung; Im, Sun

    2015-07-01

    To investigate whether the concomitant presence of anterior cervical osteophytes can influence the severity and outcome of patients with poststroke dysphagia. Retrospective case-control study. Hospital. A total of 40 participants were identified (N=40). Patients with poststroke dysphagia with anterior cervical osteophytes (n=20) were identified and matched by age, sex, location, and laterality of the stroke lesion to a poststroke dysphagia control group with no anterior cervical osteophytes (n=20). Not applicable. Videofluoroscopic swallowing study, Functional Oral Intake Scale (FOIS), and Penetration-Aspiration Scale results assessed within the first month of stroke were analyzed. The FOIS at 6 months was recorded, and severity of dysphagia was compared between the 2 groups. The case group had larger degrees of postswallow residues in the valleculae and pyriform sinuses (P=.020 and P<.001, respectively), with more patients showing postswallow aspiration (62.5%) than the control group (0%; P<.001), along with a higher risk of being on enteral nutrition feeding (odds ratio [OR]=13.933; 95% confidence interval [CI], 2.863-infinity) within the first month of stroke. At the 6-month follow-up, the case group had significantly lower mean FOIS scores (3.8±1.7) than the control group (6.1±1.3; P<.001), with an increased risk of having persistent dysphagia (OR=15.375; 95% CI, 3.195-infinity). The presence of anterior cervical osteophytes, which may cause mechanical obstruction and interfere with residue clearance at the valleculae and pyriform sinuses and result in more postswallow aspiration, may influence initial severity and outcome of poststroke dysphagia. The presence of anterior cervical osteophytes may be considered an important clinical condition that may affect poststroke dysphagia rehabilitation. Copyright © 2015 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  7. Asymptotic domination of cold relativistic MHD winds by kinetic energy flux

    NASA Technical Reports Server (NTRS)

    Begelman, Mitchell C.; Li, Zhi-Yun

    1994-01-01

    We study the conditions which lead to the conversion of most Poynting flux into kinetic energy flux in cold, relativistic hydromagnetic winds. It is shown that plasma acceleration along a precisely radial flow is extremely inefficient due to the near cancellation of the toroidal magnetic pressure and tension forces. However, if the flux tubes in a flow diverge even slightly faster than radially, the fast magnetosonic point moves inward from infinity to a few times the light cylinder radius. Once the flow becomes supermagnetosonic, further divergence of the flux tubes beyond the fast point can accelerate the flow via the 'magnetic nozzle' effect, thereby further converting Poynting flux to kinetic energy flux. We show that the Grad-Shafranov equation admits a generic family of kinetic energy-dominated asymptotic wind solutions with finite total magnetic flux. The Poynting flux in these solutions vanishes logarithmically with distance. The way in which the flux surfaces are nested within the flow depends only on the ratio of angular velocity to poliodal 4-velocity as a function of magnetic flux. Radial variations in flow structure can be expressed in terms of a pressure boundary condition on the outermost flux surface, provided that no external toriodal field surrounds the flow. For a special case, we show explicitly how the flux surfaces merge gradually to their asymptotes. For flows confined by an external medium of pressure decreasing to zero at infinity we show that, depending on how fast the ambient pressure declines, the final flow state could be either a collimated jet or a wind that fills the entire space. We discuss the astrophysical implications of our results for jets from active galactic nuclei and for free pulsar winds such as that believed to power the Crab Nebula.

  8. Theory and simulation of the time-dependent rate coefficients of diffusion-influenced reactions.

    PubMed Central

    Zhou, H X; Szabo, A

    1996-01-01

    A general formalism is developed for calculating the time-dependent rate coefficient k(t) of an irreversible diffusion-influenced reaction. This formalism allows one to treat most factors that affect k(t), including rotational Brownian motion and conformational gating of reactant molecules and orientation constraint for product formation. At long times k(t) is shown to have the asymptotic expansion k(infinity)[1 + k(infinity) (pie Dt)-1/2 /4 pie D + ...], where D is the relative translational diffusion constant. An approximate analytical method for calculating k(t) is presented. This is based on the approximation that the probability density of the reactant pair in the reactive region keeps the equilibrium distribution but with a decreasing amplitude. The rate coefficient then is determined by the Green function in the absence of chemical reaction. Within the framework of this approximation, two general relations are obtained. The first relation allows the rate coefficient for an arbitrary amplitude of the reactivity to be found if the rate coefficient for one amplitude of the reactivity is known. The second relation allows the rate coefficient in the presence of conformational gating to be found from that in the absence of conformational gating. The ratio k(t)/k(0) is shown to be the survival probability of the reactant pair at time t starting from an initial distribution that is localized in the reactive region. This relation forms the basis of the calculation of k(t) through Brownian dynamics simulations. Two simulation procedures involving the propagation of nonreactive trajectories initiated only from the reactive region are described and illustrated on a model system. Both analytical and simulation results demonstrate the accuracy of the equilibrium-distribution approximation method. PMID:8913584

  9. Application of functional analysis to perturbation theory of differential equations. [nonlinear perturbation of the harmonic oscillator

    NASA Technical Reports Server (NTRS)

    Bogdan, V. M.; Bond, V. B.

    1980-01-01

    The deviation of the solution of the differential equation y' = f(t, y), y(O) = y sub O from the solution of the perturbed system z' = f(t, z) + g(t, z), z(O) = z sub O was investigated for the case where f and g are continuous functions on I x R sup n into R sup n, where I = (o, a) or I = (o, infinity). These functions are assumed to satisfy the Lipschitz condition in the variable z. The space Lip(I) of all such functions with suitable norms forms a Banach space. By introducing a suitable norm in the space of continuous functions C(I), introducing the problem can be reduced to an equivalent problem in terminology of operators in such spaces. A theorem on existence and uniqueness of the solution is presented by means of Banach space technique. Norm estimates on the rate of growth of such solutions are found. As a consequence, estimates of deviation of a solution due to perturbation are obtained. Continuity of the solution on the initial data and on the perturbation is established. A nonlinear perturbation of the harmonic oscillator is considered a perturbation of equations of the restricted three body problem linearized at libration point.

  10. Simple and easy assessment of falling risk in the elderly by functional reach test using elastic stick.

    PubMed

    Demura, Shin-Ichi; Yamada, Takayoshi

    2007-10-01

    Dynamic balance ability related to maintaining postural stability during movement is closely tied to fall risk in the elderly. The functional reach (FR) test has been developed to evaluate their dynamic balance. Although a simple and new FR test using an elastic stick has been proposed by modifying the above original FR test, the abilities related to both FR tests are judged to differ because of the large difference in the testing method. This study aimed to compare center of gravity fluctuation, muscle activity and functional reach distance as measured by the original FR test and the elastic stick FR test. First, reach distance, back/forth and right/left moving distance of the center of gravity, and activity of the lower leg muscles (soleus and tibialis anterior) were compared between both tests based on data obtained from 30 young male adults. All parameters except for the right/left moving distance were significantly larger in the elastic stick FR test. Next, the reach distance was examined in both FR tests using 53 elderly subjects; it was significantly longer in the elastic stick FR test, but showed no significant sex difference. The reach distance in both tests was significantly shorter (about 7 cm) in the elderly than in young adults. In conclusion, the elastic stick FR test involves greater leg muscle strength exertion and forward transferring of the center of gravity as compared with the original FR test. Because the elastic stick FR test relates largely to leg muscle function and equilibrium function, it may be more useful for evaluating the dynamic balance ability of the elderly.

  11. Rounded stretched exponential for time relaxation functions.

    PubMed

    Powles, J G; Heyes, D M; Rickayzen, G; Evans, W A B

    2009-12-07

    A rounded stretched exponential function is introduced, C(t)=exp{(tau(0)/tau(E))(beta)[1-(1+(t/tau(0))(2))(beta/2)]}, where t is time, and tau(0) and tau(E) are two relaxation times. This expression can be used to represent the relaxation function of many real dynamical processes, as at long times, t>tau(0), the function converges to a stretched exponential with normalizing relaxation time, tau(E), yet its expansion is even or symmetric in time, which is a statistical mechanical requirement. This expression fits well the shear stress relaxation function for model soft soft-sphere fluids near coexistence, with tau(E)

  12. Establish Effective Lower Bounds of Watershed Slope for Traditional Hydrologic Methods

    DOT National Transportation Integrated Search

    2012-06-01

    Equations to estimate timing parameters for a watershed contain watershed slope as a principal parameter and : estimates are usually inversely proportional to topographic slope. Hence as slope vanishes, the estimates approach : infinity. The research...

  13. Random bipartite entanglement from W and W-like states.

    PubMed

    Fortescue, Ben; Lo, Hoi-Kwong

    2007-06-29

    We describe a protocol for distilling maximally entangled bipartite states between random pairs of parties from those sharing a tripartite W state |W=(1/sqrt[3])(|100+|010+|001)(ABC), and show that the total distillation rate E(t)(infinity) [the total number of Einstein-Podolsky-Rosen (EPR) pairs distilled per W, irrespective of who shares them] may be done at a higher rate than EPR distillation between specified pairs of parties. Specifically, the optimal rate for distillation to specified parties has been previously shown to be 0.92 EPR pairs per W, while our protocol can asymptotically distill 1 EPR pair per W between random pairs of parties, which we conjecture to be optimal. We thus demonstrate a tradeoff between overall distillation rate and final distribution of EPR pairs. We further show that there exist states with fixed lower-bounded E(t)(infinity), but arbitrarily small distillable entanglement for specified parties.

  14. Symmetrical and Asymmetrical separations about a yawed cone

    NASA Technical Reports Server (NTRS)

    Peake, D. J.; Owen, F. K.; Higuchi, H.

    1979-01-01

    Three-dimensional flow separations about a 5 degree (semiapex angle, theta sub C), 1.4 m long, circular cone up to moderately high relative incidence, alpha/theta sub C approximately 5, were studied in the Mach number range 0.3 M sub infinity 1.8. The cone was tested in the Ames 1.8 by 1.8 m wind tunnel at Reynolds numbers, R sub L infinity, based on the cone length, L, from 4.5 times 10 to the 6th power to 13.5 times 10 to the 6th power, under nominally zero heat transfer conditions. Overall forces and mean surface pressures were compared with earlier measurements. Supportive three-dimensional laser velocimeter measurements of mean and fluctuating velocity in a slightly asymmetric vortex wake about a slender tangent ogive cylinder at incidence having respective nose and overall body fineness ratios of 3.5 and 12, are included.

  15. Scanning optical microscope with long working distance objective

    DOEpatents

    Cloutier, Sylvain G.

    2010-10-19

    A scanning optical microscope, including: a light source to generate a beam of probe light; collimation optics to substantially collimate the probe beam; a probe-result beamsplitter; a long working-distance, infinity-corrected objective; scanning means to scan a beam spot of the focused probe beam on or within a sample; relay optics; and a detector. The collimation optics are disposed in the probe beam. The probe-result beamsplitter is arranged in the optical paths of the probe beam and the resultant light from the sample. The beamsplitter reflects the probe beam into the objective and transmits resultant light. The long working-distance, infinity-corrected objective is also arranged in the optical paths of the probe beam and the resultant light. It focuses the reflected probe beam onto the sample, and collects and substantially collimates the resultant light. The relay optics are arranged to relay the transmitted resultant light from the beamsplitter to the detector.

  16. Large deviations in the random sieve

    NASA Astrophysics Data System (ADS)

    Grimmett, Geoffrey

    1997-05-01

    The proportion [rho]k of gaps with length k between square-free numbers is shown to satisfy log[rho]k=[minus sign](1+o(1))(6/[pi]2) klogk as k[rightward arrow][infty infinity]. Such asymptotics are consistent with Erdos's challenge to prove that the gap following the square-free number t is smaller than clogt/log logt, for all t and some constant c satisfying c>[pi]2/12. The results of this paper are achieved by studying the probabilities of large deviations in a certain ‘random sieve’, for which the proportions [rho]k have representations as probabilities. The asymptotic form of [rho]k may be obtained in situations of greater generality, when the squared primes are replaced by an arbitrary sequence (sr) of relatively prime integers satisfying [sum L: summation operator]r1/sr<[infty infinity], subject to two further conditions of regularity on this sequence.

  17. An efficient method to compute microlensed light curves for point sources

    NASA Technical Reports Server (NTRS)

    Witt, Hans J.

    1993-01-01

    We present a method to compute microlensed light curves for point sources. This method has the general advantage that all microimages contributing to the light curve are found. While a source moves along a straight line, all micro images are located either on the primary image track or on the secondary image tracks (loops). The primary image track extends from - infinity to + infinity and is made of many sequents which are continuously connected. All the secondary image tracks (loops) begin and end on the lensing point masses. The method can be applied to any microlensing situation with point masses in the deflector plane, even for the overcritical case and surface densities close to the critical. Furthermore, we present general rules to evaluate the light curve for a straight track arbitrary placed in the caustic network of a sample of many point masses.

  18. Asymptotically locally Euclidean/Kaluza-Klein stationary vacuum black holes in five dimensions

    NASA Astrophysics Data System (ADS)

    Khuri, Marcus; Weinstein, Gilbert; Yamada, Sumio

    2018-05-01

    We produce new examples, both explicit and analytical, of bi-axisymmetric stationary vacuum black holes in five dimensions. A novel feature of these solutions is that they are asymptotically locally Euclidean, in which spatial cross-sections at infinity have lens space L(p,q) topology, or asymptotically Kaluza-Klein so that spatial cross-sections at infinity are topologically S^1× S^2. These are nondegenerate black holes of cohomogeneity 2, with any number of horizon components, where the horizon cross-section topology is any one of the three admissible types: S^3, S^1× S^2, or L(p,q). Uniqueness of these solutions is also established. Our method is to solve the relevant harmonic map problem with prescribed singularities, having target symmetric space SL(3,{R})/SO(3). In addition, we analyze the possibility of conical singularities and find a large family for which geometric regularity is guaranteed.

  19. Supertranslations: redundancies of horizon data and global symmetries at null infinity

    NASA Astrophysics Data System (ADS)

    Sousa, K.; Miláns del Bosch, G.; Reina, B.

    2018-03-01

    We characterise the geometrical nature of smooth supertranslations defined on a generic non-expanding horizon (NEH) embedded in vacuum. To this end we consider the constraints imposed by the vacuum Einstein’s equations on the NEH structure, and discuss the transformation properties of their solutions under supertranslations. We present a freely specifiable data set which is both necessary and sufficient to reconstruct the full horizon geometry, and is composed of objects which are invariant under supertranslations. We conclude that smooth supertranslations do not transform the geometry of the NEH and that they should be regarded as pure gauge. Our results apply both to stationary and non-stationary states of a NEH, the latter ones being able to describe radiative processes taking place on the horizon. As a consistency check we repeat the analysis for Bondi–Metzner–Sachs (BMS) supertranslations defined on null infinity, \

  20. Current-Current Interactions, Dynamical Symmetry - and Quantum Chromodynamics.

    NASA Astrophysics Data System (ADS)

    Neuenschwander, Dwight Edward, Jr.

    Quantum Chromodynamics with massive gluons (gluon mass (TBOND) xm(,p)) in a contact-interaction limit called CQCD (strong coupling g (--->) (INFIN); x (--->) (INFIN)), despite its non-renormalizability and lack of hope of confinement, is nevertheless interesting for at least two reasons. (1) Some authors have suggested a relation between 4-Fermi and Yang-Mills theories. If g/x('2) << 1, then CQCD is not merely a 4-Fermi interaction, but includes 4, 6, 8, ...-Fermi non-Abelian contact interactions. (2) With the possibility of infrared slavery, perturbative evaluation of QCD in the infrared is a dubious practice. However, if g('2)/x('2) << 1 in CQCD, then the simplest 4-Fermi interaction is dominant, and CQCD admits perturbative treatment, but only in the infrared. With the dominant interaction, a dynamical Nambu-Goldstone realization of chiral symmetry -breaking (XSB) is found. Although in QCD the relation between confinement and XSB is controversial, XSB occurs in CQCD provided confinement is sacrificed.

  1. Synthesis and molecular structures of phenylamides of magnesium, calcium, strontium, and barium--from molecular to polymeric structures.

    PubMed

    Gärtner, Martin; Görls, Helmar; Westerhausen, Matthias

    2007-09-03

    Several preparative procedures for the synthesis of the THF complexes of the alkaline earth metal bis(phenylamides) of Mg (1), Ca (2), Sr (3), and Ba (4) are presented such as metalation of aniline with strontium and barium, metathesis reactions of MI2 with KN(H)Ph, and metalation of aniline with arylcalcium compounds or dialkylmagnesium. The THF content of these compounds is rather low and an increasing aggregation is observed with the size of the metal atom. Thus, tetrameric [(THF)2Ca{mu-N(H)Ph}2]4 (2) and polymeric [(THF)2Sr{mu-N(H)Ph}2]infinity and {[(THF)2Ba{mu-N(H)Ph}2]2[(THF)Ba{mu-N(H)Ph}2]2}infinity show six-coordinate metal atoms with increasing interactions to the pi systems of the phenyl groups with increasing the radius of the alkaline earth metal atom.

  2. Intelligent robust control for uncertain nonlinear time-varying systems and its application to robotic systems.

    PubMed

    Chang, Yeong-Chan

    2005-12-01

    This paper addresses the problem of designing adaptive fuzzy-based (or neural network-based) robust controls for a large class of uncertain nonlinear time-varying systems. This class of systems can be perturbed by plant uncertainties, unmodeled perturbations, and external disturbances. Nonlinear H(infinity) control technique incorporated with adaptive control technique and VSC technique is employed to construct the intelligent robust stabilization controller such that an H(infinity) control is achieved. The problem of the robust tracking control design for uncertain robotic systems is employed to demonstrate the effectiveness of the developed robust stabilization control scheme. Therefore, an intelligent robust tracking controller for uncertain robotic systems in the presence of high-degree uncertainties can easily be implemented. Its solution requires only to solve a linear algebraic matrix inequality and a satisfactorily transient and asymptotical tracking performance is guaranteed. A simulation example is made to confirm the performance of the developed control algorithms.

  3. Creation

    NASA Astrophysics Data System (ADS)

    Terry, Bruce

    2003-04-01

    An infinity of pure, non-moving space did not need to be created. What would or could replace it? The Self-Creating Universe* explains exactly the importance of why this infinity of space was static and how static space converted itself to first movement thus creating the two equal but opposite forces necessary for cosmic evolution to begin. This process provided the atmosphere for a self-causing third force to develope. The third force, in conjunction with the original two forces, became the background that triggered the creation of the physical forces. The derivatives of this action/re-action allowed all of the known cosmos to complete itself. All processes of movement constituting the cosmos, whether it be compression (creating density) or expansion (drawing a vacuum), must involve two or more of the three original forces. The full abstract of The Self-Creating Universe* theory, can be found at http://www.scuinc.com. *copyright by Bruce Terry All Rights Reserved

  4. The three-dimensional steady radial expansion of a viscous gas from a sonic source into a vacuum.

    NASA Technical Reports Server (NTRS)

    Bush, W. B.; Rosen, R.

    1971-01-01

    The three-dimensional steady radial expansion of a viscous, heat-conducting, compressible fluid from a spherical sonic source into a vacuum is analyzed using the Navier-Stokes equations as a basis. It is assumed that the model fluid is a perfect gas having constant specific heats, a constant Prandtl number of order unity, and viscosity coefficients varying as a power of the absolute temperature. Limiting forms for the flow variable solutions are studied for the Reynolds number based on the sonic source conditions, going to infinity and the Newtonian parameter both fixed and going to zero. For the case of the viscosity-temperature exponent between .5 and 1, it is shown that the velocity as well as the pressure approach zero as the radial distance goes to infinity. The formulations of the distinct regions that span the domain extending from the sonic source to the vacuum are presented.

  5. A Study of Energy Management Systems and its Failure Modes in Smart Grid Power Distribution

    NASA Astrophysics Data System (ADS)

    Musani, Aatif

    The subject of this thesis is distribution level load management using a pricing signal in a smart grid infrastructure. The project relates to energy management in a spe-cialized distribution system known as the Future Renewable Electric Energy Delivery and Management (FREEDM) system. Energy management through demand response is one of the key applications of smart grid. Demand response today is envisioned as a method in which the price could be communicated to the consumers and they may shift their loads from high price periods to the low price periods. The development and deployment of the FREEDM system necessitates controls of energy and power at the point of end use. In this thesis, the main objective is to develop the control model of the Energy Management System (EMS). The energy and power management in the FREEDM system is digitally controlled therefore all signals containing system states are discrete. The EMS is modeled as a discrete closed loop transfer function in the z-domain. A breakdown of power and energy control devices such as EMS components may result in energy con-sumption error. This leads to one of the main focuses of the thesis which is to identify and study component failures of the designed control system. Moreover, H-infinity ro-bust control method is applied to ensure effectiveness of the control architecture. A focus of the study is cyber security attack, specifically bad data detection in price. Test cases are used to illustrate the performance of the EMS control design, the effect of failure modes and the application of robust control technique. The EMS was represented by a linear z-domain model. The transfer function be-tween the pricing signal and the demand response was designed and used as a test bed. EMS potential failure modes were identified and studied. Three bad data detection meth-odologies were implemented and a voting policy was used to declare bad data. The run-ning mean and standard deviation analysis method proves to be the best method to detect bad data. An H-infinity robust control technique was applied for the first time to design discrete EMS controller for the FREEDM system.

  6. Numerical investigation of the hydrodynamics of carangiform swimming in the transitional and inertial flow regimes.

    PubMed

    Borazjani, Iman; Sotiropoulos, Fotis

    2008-05-01

    We employ numerical simulation to investigate the hydrodynamics of carangiform locomotion as the relative magnitude of viscous and inertial forces, i.e. the Reynolds number (Re), and the tail-beat frequency, i.e. the Strouhal number (St), are systematically varied. The model fish is a three-dimensional (3D) mackerel-like flexible body undulating with prescribed experimental kinematics of carangiform type. Simulations are carried out for three Re spanning the transitional and inertial flow regimes, Re=300 and 4000 (viscous flow), and infinity (inviscid flow). For each Re there is a critical Strouhal number, St*, at which the net mean force becomes zero, making constant-speed self-propulsion possible. St* is a decreasing function of Re and approaches the range of St at which most carangiform swimmers swim in nature (St approximately 0.25) only as Re approaches infinity. The propulsive efficiency at St* is an increasing function of Re while the power required for swimming is decreasing with Re. For all Re, however, the swimming power is shown to be significantly greater than that required to tow the rigid body at the same speed. We also show that the variation of the total drag and its viscous and form components with St depend on the Re. For Re=300, body undulations increase the drag over the rigid body level, while significant drag reduction is observed for Re=4000. This difference is shown to be due to the fact that at sufficiently high Re the drag force variation with St is dominated by its form component variation, which is reduced by undulatory swimming for St>0.2. Finally, our simulations clarify the 3D structure of various wake patterns observed in experiments--single and double row vortices--and suggest that the wake structure depends primarily on the St. Our numerical findings help elucidate the results of previous experiments with live fish, underscore the importance of scale (Re) effects on the hydrodynamic performance of carangiform swimming, and help explain why in nature this mode of swimming is typically preferred by fast swimmers.

  7. Pharmacokinetic and bioequivalence study of itopride HCl in healthy volunteers.

    PubMed

    Cho, Kyung-Jin; Cho, Wonkyung; Cha, Kwang-Ho; Park, Junsung; Kim, Min-Soo; Kim, Jeong-Soo; Hwang, Sung-Joo

    2010-01-01

    In the present study two different formulations containing 50 mg itopride HCl (N-[4-12-(dimethylamino)ethoxylbenzyl]-3,4-dimethoxybenzamide HCl, CAS 122898-67-3) were compared in 28 healthy male volunteers in order to compare the bioavailability and prove the bioequivalence. The study was performed in an open, single dose randomized, 2-sequence, crossover design in 28 healthy male volunteers with a one-week washout period. Blood samples for pharmacokinetic profiling were drawn at selected times during 24 h. The serum concentrations of itopride HCl were determined using a specific and sensitive HPLC method with fluorescence detection. The detection limit of itopride HCl was 5 ng/ml and no endogenous compounds were found to interfere with analysis. The mean AUC(0-4h), AUC(0 --> infinity), C(max), T(max) and T1/2 were 865.28 ng x h/ml, 873.04 ng x h/ml, 303.72 ng/ml, 0.75 h, and 2.95 h, respectively, for the test formulations, and 833.00 ng x h/ml, 830.97 ng x h/ml, 268.01 ng/ml, 0.78 h, and 2.83 h, respectively, for the reference formulation. Both primary target parameters AUC(0 --> infinity) and C(max) were log-transformed and tested parametrically by analysis of variance (ANOVA). 90% confidence intervals of AUC(0 --> infinity) and C(max) were 100.57%-109.56% and 105.46%-121.18%, respectively, and were in the range of acceptable limits of bioequivalence (80-125%). Based on these results, the two formulations of itopride HCl are considered to be bioequivalent.

  8. Vasoparalysis associated with brain damage in asphyxiated term infants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pryds, O.; Greisen, G.; Lou, H.

    1990-07-01

    The relationship of cerebral blood flow to acute changes in arterial carbon dioxide and mean arterial blood pressure (MABP) was determined during the first day of life in 19 severely asphyxiated term infants supported by mechanical ventilation. For comparison, 12 infants without perinatal asphyxia were also investigated. Global cerebral blood flow (CBF infinity) was determined by xenon 133 clearance two or three times within approximately 2 hours. During the cerebral blood flow measurement, the amplitude-integrated electroencephalogram and visual-evoked potential were recorded. Changes in arterial carbon dioxide pressure followed adjustments of the ventilator settings, whereas MABP fluctuated spontaneously. Arterial oxygen pressuremore » and blood glucose concentration were in the normal range. Five of the asphyxiated infants had isoelectric electroencephalograms and died subsequently with severe brain damage. They had a high CBF infinity (mean 30.6 ml/100 gm/min) and abolished carbon dioxide and MABP reactivity. Lower CBF infinity (mean 14.7 ml/100 gm/min) and abolished MABP reactivity were found in another five asphyxiated infants with burst-suppression electroencephalograms in whom computed tomographic or clinical signs of brain lesions developed. The carbon dioxide reactivity was preserved in these infants. In the remaining nine asphyxiated infants without signs of central nervous system abnormality, carbon dioxide and MABP reactivity were preserved, as was also the case in the control group. We conclude that abolished autoregulation is associated with cerebral damage in asphyxiated infants and that the combination of isoelectric electroencephalograms and cerebral hyperperfusion is an early indicator of very severe brain damage.« less

  9. Model for thickness dependence of mobility and concentration in highly conductive ZnO

    NASA Astrophysics Data System (ADS)

    Look, D. C.; Leedy, K. D.; Kiefer, A.; Claflin, B.; Itagaki, N.; Matsushima, K.; Suhariadi, I.

    2013-03-01

    The dependences of the 294-K and 10-K mobility μ and volume carrier concentration n on thickness (d = 25 - 147 nm) were examined in Al-doped ZnO (AZO) layers grown in Ar ambient at 200 °C on quartz-glass substrates. Two AZO layers were grown at each thickness, one with and one without a 20-nm-thick ZnON buffer layer grown at 300 °C in Ar/N2 ambient. Plots of the 10-K sheet concentration ns vs d for buffered (B) and unbuffered (UB) samples give straight lines of similar slope, n = 8.36 x 1020 and 8.32 x 1020 cm-3, but different x-axis intercepts, δd = -4 and +13 nm, respectively. Thus, the electrical thicknesses are d - δd = d + 4 and d - 13 nm, respectively. Plots of ns vs d at 294 K produced substantially the same results. Plots of μ vs d can be well fitted with the equation μ(d) = μ(infinity symbol)/[1 + d*/(d-δd)], where d* is the thickness for which μ(infinity symbol) is reduced by a factor 2. For the B and UB samples, d* = 7 and 23 nm, respectively, showing the efficacy of the ZnON buffer. Finally, from n and μ(infinity symbol) we can use degenerate electron scattering theory to calculate bulk donor and acceptor concentrations of 1.23 x 1021 cm-3 and 1.95 x 1020 cm-3, respectively, and Drude theory to predict a plasmonic resonance at1.34 μm. The latter is confirmed by reflectance measurements.

  10. Experimental Investigation of the NASA Common Research Model

    NASA Technical Reports Server (NTRS)

    Rivers, Melissa B.; Dittberner, Ashley

    2010-01-01

    An experimental aerodynamic investigation of the NASA Common Research Model has been conducted in the NASA NTF (National Transonic Facility). Data have been obtained at chord Reynolds numbers of 5, 19.8 and 30 million for the WB and WBT0 configurations. Data have also been obtained at a chord Reynolds number of 5 million for the WBNP, WBT+2 and WBT-2 configurations. Force and moment, surface pressure and surface flow visualization data were obtained but only the force and moment data are presented herein. Model deformation measurements, aeroelastic, nacelle/pylon Reynolds number and tail effects have been assessed. The model deformation measurements showed more twist as you go out the wing span, with a break in the high q(sub infinity) data close to CL = 0.6 which is consistent with separation near the tip. Increases in dynamic pressure give an increase in pitching moment and drag and a decrease in lift for the WB and WBT0 configuration at Mach = 0.7, 0.85 and 0.87. The addition of a nacelle/pylon gave an increase in drag, decrease in lift and a less nose down pitching moment around the design lift condition of 0.5. Increases in chord Reynolds number have been found to follow the normal Reynolds number trends except at the 19.8 million low q(sub infinity) cases. The abnormality of the 19.8 million low q(sub infinity) cases is being investigated. The tail effects also follow the expected trends. All of the data shown fall within the 2-sigma limits for repeatability.

  11. Inverse scattering transform for the nonlocal nonlinear Schrödinger equation with nonzero boundary conditions

    NASA Astrophysics Data System (ADS)

    Ablowitz, Mark J.; Luo, Xu-Dan; Musslimani, Ziad H.

    2018-01-01

    In 2013, a new nonlocal symmetry reduction of the well-known AKNS (an integrable system of partial differential equations, introduced by and named after Mark J. Ablowitz, David J. Kaup, and Alan C. Newell et al. (1974)) scattering problem was found. It was shown to give rise to a new nonlocal PT symmetric and integrable Hamiltonian nonlinear Schrödinger (NLS) equation. Subsequently, the inverse scattering transform was constructed for the case of rapidly decaying initial data and a family of spatially localized, time periodic one-soliton solutions was found. In this paper, the inverse scattering transform for the nonlocal NLS equation with nonzero boundary conditions at infinity is presented in four different cases when the data at infinity have constant amplitudes. The direct and inverse scattering problems are analyzed. Specifically, the direct problem is formulated, the analytic properties of the eigenfunctions and scattering data and their symmetries are obtained. The inverse scattering problem, which arises from a novel nonlocal system, is developed via a left-right Riemann-Hilbert problem in terms of a suitable uniformization variable and the time dependence of the scattering data is obtained. This leads to a method to linearize/solve the Cauchy problem. Pure soliton solutions are discussed, and explicit 1-soliton solution and two 2-soliton solutions are provided for three of the four different cases corresponding to two different signs of nonlinearity and two different values of the phase difference between plus and minus infinity. In another case, there are no solitons.

  12. A nonlinear optimal control approach to stabilization of a macroeconomic development model

    NASA Astrophysics Data System (ADS)

    Rigatos, G.; Siano, P.; Ghosh, T.; Sarno, D.

    2017-11-01

    A nonlinear optimal (H-infinity) control approach is proposed for the problem of stabilization of the dynamics of a macroeconomic development model that is known as the Grossman-Helpman model of endogenous product cycles. The dynamics of the macroeconomic development model is divided in two parts. The first one describes economic activities in a developed country and the second part describes variation of economic activities in a country under development which tries to modify its production so as to serve the needs of the developed country. The article shows that through control of the macroeconomic model of the developed country, one can finally control the dynamics of the economy in the country under development. The control method through which this is achieved is the nonlinear H-infinity control. The macroeconomic model for the country under development undergoes approximate linearization round a temporary operating point. This is defined at each time instant by the present value of the system's state vector and the last value of the control input vector that was exerted on it. The linearization is based on Taylor series expansion and the computation of the associated Jacobian matrices. For the linearized model an H-infinity feedback controller is computed. The controller's gain is calculated by solving an algebraic Riccati equation at each iteration of the control method. The asymptotic stability of the control approach is proven through Lyapunov analysis. This assures that the state variables of the macroeconomic model of the country under development will finally converge to the designated reference values.

  13. Clustering of galaxies with f(R) gravity

    NASA Astrophysics Data System (ADS)

    Capozziello, Salvatore; Faizal, Mir; Hameeda, Mir; Pourhassan, Behnam; Salzano, Vincenzo; Upadhyay, Sudhaker

    2018-02-01

    Based on thermodynamics, we discuss the galactic clustering of expanding Universe by assuming the gravitational interaction through the modified Newton's potential given by f(R) gravity. We compute the corrected N-particle partition function analytically. The corrected partition function leads to more exact equations of state of the system. By assuming that the system follows quasi-equilibrium, we derive the exact distribution function that exhibits the f(R) correction. Moreover, we evaluate the critical temperature and discuss the stability of the system. We observe the effects of correction of f(R) gravity on the power-law behaviour of particle-particle correlation function also. In order to check the feasibility of an f(R) gravity approach to the clustering of galaxies, we compare our results with an observational galaxy cluster catalogue.

  14. Infinite efficiency of the collisional Penrose process: Can a overspinning Kerr geometry be the source of ultrahigh-energy cosmic rays and neutrinos?

    NASA Astrophysics Data System (ADS)

    Patil, Mandar; Harada, Tomohiro; Nakao, Ken-ichi; Joshi, Pankaj S.; Kimura, Masashi

    2016-05-01

    The origin of the ultrahigh-energy particles we receive on Earth from outer space such as EeV cosmic rays and PeV neutrinos remains an enigma. All mechanisms known to us currently make use of electromagnetic interaction to accelerate charged particles. In this paper, we propose a mechanism exclusively based on gravity rather than electromagnetic interaction. We show that it is possible to generate ultrahigh-energy particles starting from particles with moderate energies using the collisional Penrose process in an overspinning Kerr spacetime transcending the Kerr bound only by an infinitesimal amount, i.e., with the Kerr parameter a =M (1 +ɛ ) , where we take the limit ɛ →0+. We consider two massive particles starting from rest at infinity that collide at r =M with divergent center-of-mass energy and produce two massless particles. We show that massless particles produced in the collision can escape to infinity with the ultrahigh energies exploiting the collisional Penrose process with the divergent efficiency η ˜1 /√{ɛ }→∞ . Assuming the isotropic emission of massless particles in the center-of-mass frame of the colliding particles, we show that half of the particles created in the collisions escape to infinity with the divergent energies, while the proportion of particles that reach infinity with finite energy is minuscule. To a distant observer, ultrahigh-energy particles appear to originate from a bright spot which is at the angular location ξ ˜2 M /robs with respect to the singularity on the side which is rotating toward the observer. We compute the spectrum of the high-energy massless particles and show that anisotropy in the emission in the center-of-mass frame leaves a distinct signature on its shape. Since the anisotropy is dictated by the differential cross section of the underlying particle physics process, the observation of the spectrum can constrain the particle physics model and serve as a unique probe into fundamental physics at ultrahigh energies at which particles collide. Thus, the existence of the near-extremal overspinning Kerr geometry in the Universe, either as a transient or permanent configuration, would have deep implications on astrophysics as well as fundamental particle physics.

  15. Pharmacokinetics and bioequivalence of ranitidine and bismuth derived from two compound preparations

    PubMed Central

    Zhou, Quan; Ruan, Zou-Rong; Yuan, Hong; Jiang, Bo; Xu, Dong-Hang

    2006-01-01

    AIM: To evaluate the bioequivalence of ranitidine and bismuth derived from two compound preparations. METHODS: The bioavailability was measured in 20 healthy male Chinese volunteers following a single oral dose (equivalent to 200 mg of ranitidine and 220 mg of bismuth) of the test or reference products in the fasting state. Then blood samples were collected for 24 h. Plasma concentrations of ranitidine and bismuth were analyzed by high-performance liquid chromatography and inductively coupled plasma-mass spectrometry (ICP-MS), respectively. The non-compartmental method was used for pharmacokinetic analysis. Log-transformed Cmax, AUC(0-t) and AUC(0-infinity) were tested for bioequivalence using ANOVA and Schuirmann two-one sided t-test. Tmax was analyzed by Wilcoxon’s test. RESULTS: Various pharmacokinetic parameters of ranitidine derived from the two compound preparations, including Cmax, AUC(0-t), AUC(0-infinity), Tmax and T1/2, were nearly consistent with previous observations. These parameters derived from test and reference drug were as follows: Cmax (0.67 ± 0.21 vs 0.68 ± 0.22 mg/L), AUC(0-t) (3.1 ± 0.6 vs 3.0 ± 0.7 mg/L per hour), AUC(0-infinity) (3.3 ± 0.6 vs 3.2 ± 0.8 mg/L per hour), Tmax (2.3 ± 0.9 vs 2.1 ± 0.9 h) and T1/2 (2.8 ± 0.3 vs 3.1 ± 0.4 h). In addition, double-peak absorption profiles of ranitidine were found in some Chinese volunteers. For bismuth, those parameters derived from test and reference drug were as follows: Cmax (11.80 ± 7.36 vs 11.40 ± 6.55 μg/L), AUC(0-t) (46.65 ± 16.97 vs 47.03 ± 21.49 μg/L per hour), Tmax (0.50 ± 0.20 vs 0.50 ± 0.20 h) and T1/2 (10.2 ± 2.3 vs 13.0 ± 6.9 h). Ninety percent of confidence intervals for the test/reference ratio of Cmax, AUC(0-t) and AUC(0-infinity) derived from both ranitidine and bismuth were found within the bioequivalence acceptable range of 80%-125%. No significant difference was found in Tmax derived from both ranitidine and bismuth. CONCLUSION: The two compound preparations are bioequivalent and may be prescribed interchangeably. PMID:16718762

  16. Rational approximation to e to the -x power with negative poles

    NASA Technical Reports Server (NTRS)

    Cuthill, E.

    1977-01-01

    MACSYMA was applied to the generation of an expansion in terms of Laguerre polynomials to obtain approximations to e to the -x power on 0, infinity. These approximations are compared with those developed by Saff, Schonhage, and Varga.

  17. Self-propulsion of a body with rigid surface and variable coefficient of lift in a perfect fluid

    NASA Astrophysics Data System (ADS)

    Ramodanov, Sergey M.; Tenenev, Valentin A.; Treschev, Dmitry V.

    2012-11-01

    We study the system of a 2D rigid body moving in an unbounded volume of incompressible, vortex-free perfect fluid which is at rest at infinity. The body is equipped with a gyrostat and a so-called Flettner rotor. Due to the latter the body is subject to a lifting force (Magnus effect). The rotational velocities of the gyrostat and the rotor are assumed to be known functions of time (control inputs). The equations of motion are presented in the form of the Kirchhoff equations. The integrals of motion are given in the case of piecewise continuous control. Using these integrals we obtain a (reduced) system of first-order differential equations on the configuration space. Then an optimal control problem for several types of the inputs is solved using genetic algorithms.

  18. Electromagnetic radiation due to naked singularity formation in self-similar gravitational collapse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitsuda, Eiji; Yoshino, Hirotaka; Tomimatsu, Akira

    Dynamical evolution of test fields in background geometry with a naked singularity is an important problem relevant to the Cauchy horizon instability and the observational signatures different from black hole formation. In this paper we study electromagnetic perturbations generated by a given current distribution in collapsing matter under a spherically symmetric self-similar background. Using the Green's function method, we construct the formula to evaluate the outgoing energy flux observed at the future null infinity. The contributions from 'quasinormal' modes of the self-similar system as well as 'high-frequency' waves are clarified. We find a characteristic power-law time evolution of the outgoingmore » energy flux which appears just before naked singularity formation and give the criteria as to whether or not the outgoing energy flux diverges at the future Cauchy horizon.« less

  19. Interacting Bosons in a Double-Well Potential: Localization Regime

    NASA Astrophysics Data System (ADS)

    Rougerie, Nicolas; Spehner, Dominique

    2018-06-01

    We study the ground state of a large bosonic system trapped in a symmetric double-well potential, letting the distance between the two wells increase to infinity with the number of particles. In this context, one should expect an interaction-driven transition between a delocalized state (particles are independent and all live in both wells) and a localized state (particles are correlated, half of them live in each well). We start from the full many-body Schrödinger Hamiltonian in a large-filling situation where the on-site interaction and kinetic energies are comparable. When tunneling is negligible against interaction energy, we prove a localization estimate showing that the particle number fluctuations in each well are strongly suppressed. The modes in which the particles condense are minimizers of nonlinear Schrödinger-type functionals.

  20. Near-horizon BMS symmetries as fluid symmetries

    NASA Astrophysics Data System (ADS)

    Penna, Robert F.

    2017-10-01

    The Bondi-van der Burg-Metzner-Sachs (BMS) group is the asymptotic symmetry group of asymptotically flat gravity. Recently, Donnay et al. have derived an analogous symmetry group acting on black hole event horizons. For a certain choice of boundary conditions, it is a semidirect product of Diff( S 2), the smooth diffeomorphisms of the twosphere, acting on C ∞( S 2), the smooth functions on the two-sphere. We observe that the same group appears in fluid dynamics as symmetries of the compressible Euler equations. We relate these two realizations of Diff( S 2) ⋉ C ∞( S 2) using the black hole membrane paradigm. We show that the Lie-Poisson brackets of membrane paradigm fluid charges reproduce the near-horizon BMS algebra. The perspective presented here may be useful for understanding the BMS algebra at null infinity.

  1. PCT theorem for fields with arbitrary high-energy behavior

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luecke, W.

    1986-07-01

    A neutral scalar field A(x) is considered that has to be smeared by Fourier transforms of C/sup infinity/ functions with compact support but otherwise fulfills all the Wightman axioms, except strict local commutativity. It is shown to fulfill the PCT symmetry condition (where ..cap omega.. denotes the vacuum state vector) <..cap omega..Vertical BarA(x/sub 1/) xxx A(x/sub n/)..cap omega..> = <..cap omega..Vertical BarA(-x/sub n/) xxx A(-x/sub 1/)..cap omega..> if and only if <..cap omega..Vertical BarA(x/sub 1/) xxx A(x/sub n/)..cap omega..> -<..cap omega..Vertical BarA(x/sub n/) xxx A(x/sub 1/)..cap omega..> can be represented, in a sense, as an infinite sum of derivatives ofmore » measures with supports containing no Jost points.« less

  2. On the Gause predator-prey model with a refuge: a fresh look at the history.

    PubMed

    Křivan, Vlastimil

    2011-04-07

    This article re-analyses a prey-predator model with a refuge introduced by one of the founders of population ecology Gause and his co-workers to explain discrepancies between their observations and predictions of the Lotka-Volterra prey-predator model. They replaced the linear functional response used by Lotka and Volterra by a saturating functional response with a discontinuity at a critical prey density. At concentrations below this critical density prey were effectively in a refuge while at a higher densities they were available to predators. Thus, their functional response was of the Holling type III. They analyzed this model and predicted existence of a limit cycle in predator-prey dynamics. In this article I show that their model is ill posed, because trajectories are not well defined. Using the Filippov method, I define and analyze solutions of the Gause model. I show that depending on parameter values, there are three possibilities: (1) trajectories converge to a limit cycle, as predicted by Gause, (2) trajectories converge to an equilibrium, or (3) the prey population escapes predator control and grows to infinity. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. On the existence of a scaling relation in the evolution of cellular systems

    NASA Astrophysics Data System (ADS)

    Fortes, M. A.

    1994-05-01

    A mean field approximation is used to analyze the evolution of the distribution of sizes in systems formed by individual 'cells,' each of which grows or shrinks, in such a way that the total number of cells decreases (e.g. polycrystals, soap froths, precipitate particles in a matrix). The rate of change of the size of a cell is defined by a growth function that depends on the size (x) of the cell and on moments of the size distribution, such as the average size (bar-x). Evolutionary equations for the distribution of sizes and of reduced sizes (i.e. x/bar-x) are established. The stationary (or steady state) solutions of the equations are obtained for various particular forms of the growth function. A steady state of the reduced size distribution is equivalent to a scaling behavior. It is found that there are an infinity of steady state solutions which form a (continuous) one-parameter family of functions, but they are not, in general, reached from an arbitrary initial state. These properties are at variance from those that can be derived from models based on von Neumann-Mullins equation.

  4. Generalized hamming networks and applications.

    PubMed

    Koutroumbas, Konstantinos; Kalouptsidis, Nicholas

    2005-09-01

    In this paper the classical Hamming network is generalized in various ways. First, for the Hamming maxnet, a generalized model is proposed, which covers under its umbrella most of the existing versions of the Hamming Maxnet. The network dynamics are time varying while the commonly used ramp function may be replaced by a much more general non-linear function. Also, the weight parameters of the network are time varying. A detailed convergence analysis is provided. A bound on the number of iterations required for convergence is derived and its distribution functions are given for the cases where the initial values of the nodes of the Hamming maxnet stem from the uniform and the peak distributions. Stabilization mechanisms aiming to prevent the node(s) with the maximum initial value diverging to infinity or decaying to zero are described. Simulations demonstrate the advantages of the proposed extension. Also, a rough comparison between the proposed generalized scheme as well as the original Hamming maxnet and its variants is carried out in terms of the time required for convergence, in hardware implementations. Finally, the other two parts of the Hamming network, namely the competitors generating module and the decoding module, are briefly considered in the framework of various applications such as classification/clustering, vector quantization and function optimization.

  5. Graph characterization via Ihara coefficients.

    PubMed

    Ren, Peng; Wilson, Richard C; Hancock, Edwin R

    2011-02-01

    The novel contributions of this paper are twofold. First, we demonstrate how to characterize unweighted graphs in a permutation-invariant manner using the polynomial coefficients from the Ihara zeta function, i.e., the Ihara coefficients. Second, we generalize the definition of the Ihara coefficients to edge-weighted graphs. For an unweighted graph, the Ihara zeta function is the reciprocal of a quasi characteristic polynomial of the adjacency matrix of the associated oriented line graph. Since the Ihara zeta function has poles that give rise to infinities, the most convenient numerically stable representation is to work with the coefficients of the quasi characteristic polynomial. Moreover, the polynomial coefficients are invariant to vertex order permutations and also convey information concerning the cycle structure of the graph. To generalize the representation to edge-weighted graphs, we make use of the reduced Bartholdi zeta function. We prove that the computation of the Ihara coefficients for unweighted graphs is a special case of our proposed method for unit edge weights. We also present a spectral analysis of the Ihara coefficients and indicate their advantages over other graph spectral methods. We apply the proposed graph characterization method to capturing graph-class structure and clustering graphs. Experimental results reveal that the Ihara coefficients are more effective than methods based on Laplacian spectra.

  6. To Infinity. . .and beyond!

    ERIC Educational Resources Information Center

    Larson, Jeffrey M.; Jacobson, Michael S.; Den Ouden, Katherine M.; Basile, Carole G.

    2012-01-01

    Developmentally, middle school students progress from being concrete thinkers and learners to abstract thinkers. Traditional middle school mathematics instruction introduces a curriculum that is intuitive and taught within a natural trajectory of the content. However, with this traditional approach, students may miss out on being exposed to…

  7. On Solving Linear Recurrences

    ERIC Educational Resources Information Center

    Dobbs, David E.

    2013-01-01

    A direct method is given for solving first-order linear recurrences with constant coefficients. The limiting value of that solution is studied as "n to infinity." This classroom note could serve as enrichment material for the typical introductory course on discrete mathematics that follows a calculus course.

  8. A Fifth Way to Skin a Definite Integral

    ERIC Educational Resources Information Center

    Singh, Satyanand

    2012-01-01

    We use a novel approach to evaluate the indefinite integral of 1/(1 + x4) and use this to evaluate the improper integral of this integrand from 0 to [infinity]. Our method has advantages over other methods in ease of implementation and accessibility.

  9. Topics for Mathematics Clubs.

    ERIC Educational Resources Information Center

    Dalton, LeRoy C., Ed.; Snyder, Henry D., Ed.

    The ten chapters in this booklet cover topics not ordinarily discussed in the classroom: Fibonacci sequences, projective geometry, groups, infinity and transfinite numbers, Pascal's Triangle, topology, experiments with natural numbers, non-Euclidean geometries, Boolean algebras, and the imaginary and the infinite in geometry. Each chapter is…

  10. Hypersonic vehicle model and control law development using H(infinity) and micron synthesis

    NASA Astrophysics Data System (ADS)

    Gregory, Irene M.; Chowdhry, Rajiv S.; McMinn, John D.; Shaughnessy, John D.

    1994-10-01

    The control system design for a Single Stage To Orbit (SSTO) air breathing vehicle will be central to a successful mission because a precise ascent trajectory will preserve narrow payload margins. The air breathing propulsion system requires the vehicle to fly roughly halfway around the Earth through atmospheric turbulence. The turbulence, the high sensitivity of the propulsion system to inlet flow conditions, the relatively large uncertainty of the parameters characterizing the vehicle, and continuous acceleration make the problem especially challenging. Adequate stability margins must be provided without sacrificing payload mass since payload margins are critical. Therefore, a multivariable control theory capable of explicitly including both uncertainty and performance is needed. The H(infinity) controller in general provides good robustness but can result in conservative solutions for practical problems involving structured uncertainty. Structured singular value mu framework for analysis and synthesis is potentially much less conservative and hence more appropriate for problems with tight margins. An SSTO control system requires: highly accurate tracking of velocity and altitude commands while limiting angle-of-attack oscillations, minimized control power usage, and a stabilized vehicle when atmospheric turbulence and system uncertainty are present. The controller designs using H(infinity) and mu-synthesis procedures were compared. An integrated flight/propulsion dynamic mathematical model of a conical accelerator vehicle was linearized as the vehicle accelerated through Mach 8. Vehicle acceleration through the selected flight condition gives rise to parametric variation that was modeled as a structured uncertainty. The mu-analysis approach was used in the frequency domain to conduct controller analysis and was confirmed by time history plots. Results demonstrate the inherent advantages of the mu framework for this class of problems.

  11. Experimental Investigation of a Point Design Optimized Arrow Wing HSCT Configuration

    NASA Technical Reports Server (NTRS)

    Narducci, Robert P.; Sundaram, P.; Agrawal, Shreekant; Cheung, S.; Arslan, A. E.; Martin, G. L.

    1999-01-01

    The M2.4-7A Arrow Wing HSCT configuration was optimized for straight and level cruise at a Mach number of 2.4 and a lift coefficient of 0.10. A quasi-Newton optimization scheme maximized the lift-to-drag ratio (by minimizing drag-to-lift) using Euler solutions from FL067 to estimate the lift and drag forces. A 1.675% wind-tunnel model of the Opt5 HSCT configuration was built to validate the design methodology. Experimental data gathered at the NASA Langley Unitary Plan Wind Tunnel (UPWT) section #2 facility verified CFL3D Euler and Navier-Stokes predictions of the Opt5 performance at the design point. In turn, CFL3D confirmed the improvement in the lift-to-drag ratio obtained during the optimization, thus validating the design procedure. A data base at off-design conditions was obtained during three wind-tunnel tests. The entry into NASA Langley UPWT section #2 obtained data at a free stream Mach number, M(sub infinity), of 2.55 as well as the design Mach number, M(sub infinity)=2.4. Data from a Mach number range of 1.8 to 2.4 was taken at UPWT section #1. Transonic and low supersonic Mach numbers, M(sub infinity)=0.6 to 1.2, was gathered at the NASA Langley 16 ft. Transonic Wind Tunnel (TWT). In addition to good agreement between CFD and experimental data, highlights from the wind-tunnel tests include a trip dot study suggesting a linear relationship between trip dot drag and Mach number, an aeroelastic study that measured the outboard wing deflection and twist, and a flap scheduling study that identifies the possibility of only one leading-edge and trailing-edge flap setting for transonic cruise and another for low supersonic acceleration.

  12. Comparative bioavailability of 4 amoxicillin formulations in healthy human volunteers after a single dose administration.

    PubMed

    Oliveira, C H; Abib, E; Vannuchi, Y B; Sucupira, M; Ilha, J; De Nucci, G

    2001-04-01

    To compare the bioavailability of two amoxicillin oral suspension (250 mg/5 ml) formulations and two amoxicillin capsule (500 mg) formulations (Amoxicilina from Medley S/A Indústria Farmaceûtica, Brazil, as test formulations and Amoxil from SmithKline Beecham Laboratórios Ltda., Brazil, as reference formulations) in 48 volunteers of both sexes. The study was conducted open with a randomized two-period crossover design and a one-week washout period. Plasma samples were obtained over a 12-hour interval. Amoxicillin concentrations were analyzed by combined reversed phase liquid chromatography and tandem mass spectrometry (LC-MS-MS) with positive ion electrospray ionization using the selected ion monitoring method. From the amoxicillin plasma concentration vs. time curves the following pharmacokinetic parameters were obtained: AUC(last), AUC(0-infinity) and Cmax. Geometric mean of Amoxicilina/Amoxil 250 mg/5 ml individual percent ratio was 103.70% for AUC(last), 103.15% for AUC(0-infinity) and 106.79% for Cmax. The 90% confidence intervals were 97.82-109.94%, 97.40 to 109.24%, and 96.38-118.33%, respectively. Geometric mean of Amoxicilina/Amoxil 500 mg capsule individual percent ratio was 93.26% for AUC(last), 93.27% for AUC(0-infinity) and 90.74% for Cmax. The 90% confidence intervals were 85.0-102.33%, 85.12-102.31%, and 80.14-102.73%, respectively. Since the 90% CI for both Cmax, AUC(last) and AUC(0-inifnity) were within the 80-125% interval proposed by the Food and Drug Administration, it was concluded that Amoxicilina 250 mg/5 ml oral suspension and Amoxicilina 500 mg capsule were bioequivalent to Amoxil 250 mg/5 ml oral suspension and to Amoxil capsule 500 mg, respectively, with regard to both the rate and extent of absorption.

  13. Foundational Principles for Large-Scale Inference: Illustrations Through Correlation Mining.

    PubMed

    Hero, Alfred O; Rajaratnam, Bala

    2016-01-01

    When can reliable inference be drawn in fue "Big Data" context? This paper presents a framework for answering this fundamental question in the context of correlation mining, wifu implications for general large scale inference. In large scale data applications like genomics, connectomics, and eco-informatics fue dataset is often variable-rich but sample-starved: a regime where the number n of acquired samples (statistical replicates) is far fewer than fue number p of observed variables (genes, neurons, voxels, or chemical constituents). Much of recent work has focused on understanding the computational complexity of proposed methods for "Big Data". Sample complexity however has received relatively less attention, especially in the setting when the sample size n is fixed, and the dimension p grows without bound. To address fuis gap, we develop a unified statistical framework that explicitly quantifies the sample complexity of various inferential tasks. Sampling regimes can be divided into several categories: 1) the classical asymptotic regime where fue variable dimension is fixed and fue sample size goes to infinity; 2) the mixed asymptotic regime where both variable dimension and sample size go to infinity at comparable rates; 3) the purely high dimensional asymptotic regime where the variable dimension goes to infinity and the sample size is fixed. Each regime has its niche but only the latter regime applies to exa cale data dimension. We illustrate this high dimensional framework for the problem of correlation mining, where it is the matrix of pairwise and partial correlations among the variables fua t are of interest. Correlation mining arises in numerous applications and subsumes the regression context as a special case. we demonstrate various regimes of correlation mining based on the unifying perspective of high dimensional learning rates and sample complexity for different structured covariance models and different inference tasks.

  14. The risk of capsular breakage from phacoemulsification needle contact with the lens capsule: a laboratory study.

    PubMed

    Meyer, Jay J; Kuo, Annie F; Olson, Randall J

    2010-06-01

    To determine capsular breakage risk from contact by phacoemulsification needles by machine and tip type. Experimental laboratory investigation. Infiniti (Alcon, Inc.) with Intrepid cartridges and Signature (Abbott Medical Optics, Inc.) phacoemulsification machines were tested using 19- and 20-gauge sharp and rounded tips. Actual and unoccluded flow vacuum were determined at 550 mm Hg, bottle height of 75 cm, and machine-indicated flow rate of 60 mL/minute. Breakage from brief tip contact with a capsular surrogate and human cadaveric lenses was calculated. Nineteen-gauge tips had more flow and less unoccluded flow vacuum than 20-gauge tips for both machines, with highest unoccluded flow vacuum in the Infiniti. The 19-gauge sharp tip was more likely than the 20-gauge sharp tip to cause surrogate breakage for Signature with micropulse and Ellips (Abbott Medical Optics, Inc.) ultrasound at 100% power. For Infiniti using OZil (Alcon, Inc.) ultrasound, 20-gauge sharp tips were more likely than 19-gauge sharp tips to break the membrane. For cadaveric lenses, using rounded 20-gauge tips at 100% power, breakage rates were micropulse (2.3%), Ellips (2.3%), OZil (5.3%). Breakage rates for sharp 20-gauge Ellips tips were higher than for rounded tips. Factors influencing capsular breakage may include active vacuum at the tip, flow rate, needle gauge, and sharpness. Nineteen-gauge sharp tips were more likely than 20-gauge tips to cause breakage in lower vacuum methods. For higher-vacuum methods, breakage is more likely with 20-gauge than with 19-gauge tips. Rounded-edge tips are less likely than sharp-edged tips to cause breakage. Copyright 2010 Elsevier Inc. All rights reserved.

  15. Volvo and Infiniti drivers' experiences with select crash avoidance technologies.

    PubMed

    Braitman, Keli A; McCartt, Anne T; Zuby, David S; Singer, Jeremiah

    2010-06-01

    Vehicle-based crash avoidance systems can potentially reduce crashes, but success depends on driver acceptance and understanding. This study gauged driver use, experience, and acceptance among early adopters of select technologies. Telephone interviews were conducted in early 2009 with 380 owners of Volvo vehicles equipped with forward collision warning with autobrake, lane departure warning, side-view assist, and/or active bi-xenon headlights and 485 owners of Infiniti vehicles with lane departure warning/prevention. Most owners kept systems turned on most of the time, especially forward collision warning with autobrake and side-view assist. The exception was lane departure prevention; many owners were unaware they had it, and the system must be activated each time the vehicle is started. Most owners reported being safer with the technologies and would want them again on their next vehicles. Perceived false or unnecessary warnings were fairly common, particularly with side-view assist. Some systems were annoying, especially lane departure warning. Many owners reported safer driving behaviors such as greater use of turn signals (lane departure warning), increased following distance (forward collision warning), and checking side mirrors more frequently (side-view assist), but some reported driving faster at night (active headlights). Despite some unnecessary or annoying warnings, most Volvo and Infiniti owners use crash avoidance systems most of the time. Among early adopters, the first requirement of effective warning systems (that owners use the technology) seems largely met. Systems requiring activation by drivers for each trip are used less often. Owner experience with the latest technologies from other automobile manufacturers should be studied, as well as for vehicles on which technologies are standard (versus optional) equipment. The effectiveness of technologies in preventing and mitigating crashes and injuries, and user acceptance of interfaces, should be examined as more vehicles with advanced technologies penetrate the fleet.

  16. Hypersonic vehicle model and control law development using H(infinity) and micron synthesis

    NASA Technical Reports Server (NTRS)

    Gregory, Irene M.; Chowdhry, Rajiv S.; Mcminn, John D.; Shaughnessy, John D.

    1994-01-01

    The control system design for a Single Stage To Orbit (SSTO) air breathing vehicle will be central to a successful mission because a precise ascent trajectory will preserve narrow payload margins. The air breathing propulsion system requires the vehicle to fly roughly halfway around the Earth through atmospheric turbulence. The turbulence, the high sensitivity of the propulsion system to inlet flow conditions, the relatively large uncertainty of the parameters characterizing the vehicle, and continuous acceleration make the problem especially challenging. Adequate stability margins must be provided without sacrificing payload mass since payload margins are critical. Therefore, a multivariable control theory capable of explicitly including both uncertainty and performance is needed. The H(infinity) controller in general provides good robustness but can result in conservative solutions for practical problems involving structured uncertainty. Structured singular value mu framework for analysis and synthesis is potentially much less conservative and hence more appropriate for problems with tight margins. An SSTO control system requires: highly accurate tracking of velocity and altitude commands while limiting angle-of-attack oscillations, minimized control power usage, and a stabilized vehicle when atmospheric turbulence and system uncertainty are present. The controller designs using H(infinity) and mu-synthesis procedures were compared. An integrated flight/propulsion dynamic mathematical model of a conical accelerator vehicle was linearized as the vehicle accelerated through Mach 8. Vehicle acceleration through the selected flight condition gives rise to parametric variation that was modeled as a structured uncertainty. The mu-analysis approach was used in the frequency domain to conduct controller analysis and was confirmed by time history plots. Results demonstrate the inherent advantages of the mu framework for this class of problems.

  17. The Mars Science Laboratory (MSL) Mast cameras and Descent imager: Investigation and instrument descriptions

    NASA Astrophysics Data System (ADS)

    Malin, Michal C.; Ravine, Michael A.; Caplinger, Michael A.; Tony Ghaemi, F.; Schaffner, Jacob A.; Maki, Justin N.; Bell, James F.; Cameron, James F.; Dietrich, William E.; Edgett, Kenneth S.; Edwards, Laurence J.; Garvin, James B.; Hallet, Bernard; Herkenhoff, Kenneth E.; Heydari, Ezat; Kah, Linda C.; Lemmon, Mark T.; Minitti, Michelle E.; Olson, Timothy S.; Parker, Timothy J.; Rowland, Scott K.; Schieber, Juergen; Sletten, Ron; Sullivan, Robert J.; Sumner, Dawn Y.; Aileen Yingst, R.; Duston, Brian M.; McNair, Sean; Jensen, Elsa H.

    2017-08-01

    The Mars Science Laboratory Mast camera and Descent Imager investigations were designed, built, and operated by Malin Space Science Systems of San Diego, CA. They share common electronics and focal plane designs but have different optics. There are two Mastcams of dissimilar focal length. The Mastcam-34 has an f/8, 34 mm focal length lens, and the M-100 an f/10, 100 mm focal length lens. The M-34 field of view is about 20° × 15° with an instantaneous field of view (IFOV) of 218 μrad; the M-100 field of view (FOV) is 6.8° × 5.1° with an IFOV of 74 μrad. The M-34 can focus from 0.5 m to infinity, and the M-100 from 1.6 m to infinity. All three cameras can acquire color images through a Bayer color filter array, and the Mastcams can also acquire images through seven science filters. Images are ≤1600 pixels wide by 1200 pixels tall. The Mastcams, mounted on the 2 m tall Remote Sensing Mast, have a 360° azimuth and 180° elevation field of regard. Mars Descent Imager is fixed-mounted to the bottom left front side of the rover at 66 cm above the surface. Its fixed focus lens is in focus from 2 m to infinity, but out of focus at 66 cm. The f/3 lens has a FOV of 70° by 52° across and along the direction of motion, with an IFOV of 0.76 mrad. All cameras can acquire video at 4 frames/second for full frames or 720p HD at 6 fps. Images can be processed using lossy Joint Photographic Experts Group and predictive lossless compression.

  18. K(2)MM'(3)Se(6) (M = Cu, Ag; M' = Ga, In), A new series of metal chalcogenides with chain-sublayer-chain slabs: (infinity)(1)[M'Se(4)]-(infinity)(2)[(MSe(4))(M'Se(4))]-(infinity)(1)[M'Se(4)].

    PubMed

    Ma, Hong-Wei; Guo, Guo-Cong; Wang, Ming-Sheng; Zhou, Guo-Wei; Lin, Shan-Hou; Dong, Zhen-Chao; Huang, Jin-Shun

    2003-02-24

    A new series of novel isostructural metal chalcogenides, K(2)CuIn(3)Se(6) (1), K(2)CuGa(3)Se(6) (2), and K(2)AgIn(3)Se(6) (3), were obtained by a reactive flux technique and structurally characterized. Compounds 1, 2, and 3 crystallize in the space group C2/c of the monoclinic system with eight formula units in a cell: a = 11.445(2) A, b = 11.495(2) A, c = 21.263(4) A, beta = 97.68(3) degrees, V = 2772(1) A(3), R1/wR2 = 0.0676/0.1652 for 1; a = 11.031(2) A, b = 11.050(4) A, c = 20.808(7) A, beta = 97.71(2) degrees, V = 2513(1) A(3), R1/wR2 = 0.0301/0.0511 for 2; and a = 11.633(1) A, b = 11.587(1) A, c = 21.355(1) A, beta = 98.010(8) degrees, V = 2850.4(4) A(3), R1/wR2 = 0.0471/0.0732 for 3. These isostructural compounds are characterized by a chain-sublayer-chain slab structure. The sublayer, composed of alternative corner-sharing mixed-metal tetrahedra, is sandwiched by parallel corner-sharing tetrahedral chains. Optical absorption spectra of compounds 1, 2, and 3 reveal the presence of a sharp optical gap of 1.68, 1.72, and 1.64 eV, respectively, suggesting that these materials are semiconductors and suitable for efficient absorption of solar radiation in solar cell applications. IR spectra show no obvious absorption in the range 800-4000 cm(-)(1).

  19. Gravitational and topological effects on $\\sqrt{-F^2}$ confinement dynamics

    NASA Astrophysics Data System (ADS)

    Vasihoun, Mahary; Guendelman, Eduardo

    2014-09-01

    We present a review, of recent developments on nonlinear gauge theory containing a √ {-F2} term coupled to gravity. We start by showing some of the confining features of this theory in flat space-time. We then consider the coupling, of this nonlinear term, to gravity and discuss two types of spherically symmetric solutions. One of them has a tube topology, that is ℳ2 × S2, or of the Levi-Civita-Bertotti-Robinson (LCBR) type, where the metric coefficient gθθ is a constant. The other type of solutions, Reissner-Nordström-de Sitter (RNdS), with gθθ = r2, where r is a radial variable allowed to have all values from zero to infinity. Next we consider the matching of these solutions via lightlike, and subsequently, timelike membranes and show the topologically induced effects of "hiding of charge," where a charged particle can appear neutral to an external observer looking at it from the RNdS region and the "confining of charge" in a wormhole throat, where two opposite charges are at the opposite sides of a wormhole throats. We proceed with some applications to extended theories of general relativity, in the form of quadratic gravity model (F(R)), then wormholes arise naturally from the nonlinear electromagnetic field rather than requiring exotic matter to generate a predesigned wormhole geometry (Morris-Thorne approach), in another model considered here we have, in addition to quadratic gravity, a dilaton field (ϕ), where we find wormhole solutions with de Sitter asymptotics and confinement-deconfinement transition effects as function of the dilaton vacuum expectation value. The last application we present is to the "Two Measure Theory," where in addition to the metric volume element, √ {-g}, we consider a new, metric independent, volume element Φ. Finally we conclude and summarize our findings.

  20. Analysis of Classes of Superlinear Semipositone Problems with Nonlinear Boundary Conditions

    NASA Astrophysics Data System (ADS)

    Morris, Quinn A.

    We study positive radial solutions for classes of steady state reaction diffusion problems on the exterior of a ball with both Dirichlet and nonlinear boundary conditions. We consider p-Laplacian problems (p > 1) with reaction terms which are superlinear at infinity and semipositone. In the case p = 2, using variational methods, we establish the existence of a solution, and via detailed analysis of the Green's function, we prove the positivity of the solution. In the case p ≠ 2, we again use variational methods to establish the existence of a solution, but the positivity of the solution is achieved via sophisticated a priori estimates. In the case p ≠ 2, the Green's function analysis is no longer available. Our results significantly enhance the literature on superlinear semipositone problems. Finally, we provide algorithms for the numerical generation of exact bifurcation curves for one-dimensional problems. In the autonomous case, we extend and analyze a quadrature method, and using nonlinear solvers in Mathematica, generate bifurcation curves. In the nonautonomous case, we employ shooting methods in Mathematica to generate bifurcation curves.

  1. Convergence of Distributed Optimal Controls on the Internal Energy in Mixed Elliptic Problems when the Heat Transfer Coefficient Goes to Infinity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gariboldi, C.; E-mail: cgariboldi@exa.unrc.edu.ar; Tarzia, D.

    2003-05-21

    We consider a steady-state heat conduction problem P{sub {alpha}} with mixed boundary conditions for the Poisson equation depending on a positive parameter {alpha} , which represents the heat transfer coefficient on a portion {gamma} {sub 1} of the boundary of a given bounded domain in R{sup n} . We formulate distributed optimal control problems over the internal energy g for each {alpha}. We prove that the optimal control g{sub o}p{sub {alpha}} and its corresponding system u{sub go}p{sub {alpha}}{sub {alpha}} and adjoint p{sub go}p{sub {alpha}}{sub {alpha}} states for each {alpha} are strongly convergent to g{sub op},u{sub gop} and p{sub gop} ,more » respectively, in adequate functional spaces. We also prove that these limit functions are respectively the optimal control, and the system and adjoint states corresponding to another distributed optimal control problem for the same Poisson equation with a different boundary condition on the portion {gamma}{sub 1} . We use the fixed point and elliptic variational inequality theories.« less

  2. Implementation of the infinite-range exterior complex scaling to the time-dependent complete-active-space self-consistent-field method

    NASA Astrophysics Data System (ADS)

    Orimo, Yuki; Sato, Takeshi; Scrinzi, Armin; Ishikawa, Kenichi L.

    2018-02-01

    We present a numerical implementation of the infinite-range exterior complex scaling [Scrinzi, Phys. Rev. A 81, 053845 (2010), 10.1103/PhysRevA.81.053845] as an efficient absorbing boundary to the time-dependent complete-active-space self-consistent field method [Sato, Ishikawa, Březinová, Lackner, Nagele, and Burgdörfer, Phys. Rev. A 94, 023405 (2016), 10.1103/PhysRevA.94.023405] for multielectron atoms subject to an intense laser pulse. We introduce Gauss-Laguerre-Radau quadrature points to construct discrete variable representation basis functions in the last radial finite element extending to infinity. This implementation is applied to strong-field ionization and high-harmonic generation in He, Be, and Ne atoms. It efficiently prevents unphysical reflection of photoelectron wave packets at the simulation boundary, enabling accurate simulations with substantially reduced computational cost, even under significant (≈50 % ) double ionization. For the case of a simulation of high-harmonic generation from Ne, for example, 80% cost reduction is achieved, compared to a mask-function absorption boundary.

  3. On the Learning of Mathematics Through Conversation.

    ERIC Educational Resources Information Center

    Haroutunian-Gordan, Sophie; Tartakoff, David S.

    1996-01-01

    Describes an experimental mathematics course involving an interpretive discussion approach in which students and instructors work together to develop questions about the meaning of mathematical, philosophical, and musical texts. Appendix contains a cluster of questions for Euclid's proof of the infinity of prime numbers. (MKR)

  4. Computer Calculation of First-Order Rate Constants

    ERIC Educational Resources Information Center

    Williams, Robert C.; Taylor, James W.

    1970-01-01

    Discusses the computer program used to calculate first-order rate constants. Discussion includes data preparation, weighting options, comparison techniques, infinity point adjustment, least-square fit, Guggenheim calculation, and printed outputs. Exemplifies the utility of the computer program by two experiments: (1) the thermal decomposition of…

  5. Four-dimensional symmetry from a broad viewpoint. II Invariant distribution of quantized field oscillators and questions on infinities

    NASA Technical Reports Server (NTRS)

    Hsu, J. P.

    1983-01-01

    The foundation of the quantum field theory is changed by introducing a new universal probability principle into field operators: one single inherent and invariant probability distribution P(/k/) is postulated for boson and fermion field oscillators. This can be accomplished only when one treats the four-dimensional symmetry from a broad viewpoint. Special relativity is too restrictive to allow such a universal probability principle. A radical length, R, appears in physics through the probability distribution P(/k/). The force between two point particles vanishes when their relative distance tends to zero. This appears to be a general property for all forces and resembles the property of asymptotic freedom. The usual infinities in vacuum fluctuations and in local interactions, however complicated they may be, are all removed from quantum field theories. In appendix A a simple finite and unitary theory of unified electroweak interactions is discussed without assuming Higgs scalar bosons.

  6. Control Allocation with Load Balancing

    NASA Technical Reports Server (NTRS)

    Bodson, Marc; Frost, Susan A.

    2009-01-01

    Next generation aircraft with a large number of actuators will require advanced control allocation methods to compute the actuator commands needed to follow desired trajectories while respecting system constraints. Previously, algorithms were proposed to minimize the l1 or l2 norms of the tracking error and of the actuator deflections. The paper discusses the alternative choice of the l(infinity) norm, or sup norm. Minimization of the control effort translates into the minimization of the maximum actuator deflection (min-max optimization). The paper shows how the problem can be solved effectively by converting it into a linear program and solving it using a simplex algorithm. Properties of the algorithm are also investigated through examples. In particular, the min-max criterion results in a type of load balancing, where the load is th desired command and the algorithm balances this load among various actuators. The solution using the l(infinity) norm also results in better robustness to failures and to lower sensitivity to nonlinearities in illustrative examples.

  7. Robust cooperation of connected vehicle systems with eigenvalue-bounded interaction topologies in the presence of uncertain dynamics

    NASA Astrophysics Data System (ADS)

    Li, Keqiang; Gao, Feng; Li, Shengbo Eben; Zheng, Yang; Gao, Hongbo

    2017-12-01

    This study presents a distributed H-infinity control method for uncertain platoons with dimensionally and structurally unknown interaction topologies provided that the associated topological eigenvalues are bounded by a predesigned range.With an inverse model to compensate for nonlinear powertrain dynamics, vehicles in a platoon are modeled by third-order uncertain systems with bounded disturbances. On the basis of the eigenvalue decomposition of topological matrices, we convert the platoon system to a norm-bounded uncertain part and a diagonally structured certain part by applying linear transformation. We then use a common Lyapunov method to design a distributed H-infinity controller. Numerically, two linear matrix inequalities corresponding to the minimum and maximum eigenvalues should be solved. The resulting controller can tolerate interaction topologies with eigenvalues located in a certain range. The proposed method can also ensure robustness performance and disturbance attenuation ability for the closed-loop platoon system. Hardware-in-the-loop tests are performed to validate the effectiveness of our method.

  8. Breakup of Kol'mogorov-Arnol'd-Moser tori of cubic irrational winding number

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mao, J.; Helleman, R.H.G.

    1989-01-01

    For the special case in which the irrational winding number is the root of a cubic equation, we present numerical evidence for the validity of some form of residue criterion (Greene, J. Math. Phys. 20, 1182 (1979)). This is a criterion for the breakup of Kol'mogorov-Arnol'd-Moser tori in two degrees of freedom. The cubic case is essential for future work on four-dimensional maps. While the residues do approach infinity (respectively, 0) after (respectively, before) the breaking point, it is numerically very difficult to estimate a critical residue value R/sub cr/ for this cubic case (0.15approx. ..infinity, with a ''new'' scalingmore » constant xiapprox. =0.72, where p/sub n//q/sub n/ is the nth rational approximant in the continued-fraction expansion of the cubic irrational. For a quadratic irrational this scaling reduces to the usual power-law scaling approx.delta/sup -//sup n/.« less

  9. Hörmander multipliers on two-dimensional dyadic Hardy spaces

    NASA Astrophysics Data System (ADS)

    Daly, J.; Fridli, S.

    2008-12-01

    In this paper we are interested in conditions on the coefficients of a two-dimensional Walsh multiplier operator that imply the operator is bounded on certain of the Hardy type spaces Hp, 0

  10. Current-current interactions, dynamical symmetry-breaking, and quantum chromodynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neuenschwander, D.E. Jr.

    1983-01-01

    Quantum Chromodynamics with massive gluons (gluon mass triple bond xm/sub p/) in a contact-interaction limit called CQCD (strong coupling g..-->..infinity; x..-->..infinity), despite its non-renormalizability and lack of hope of confinement, is nevertheless interesting for at least two reasons. Some authors have suggested a relation between 4-Fermi and Yang-Mills theories. If g/x/sup 2/ much less than 1, then CQCD is not merely a 4-Fermi interaction, but includes 4,6,8 etc-Fermi non-Abelian contact interactions. With possibility of infrared slavery, perturbative evaluation of QCD in the infrared is a dubious practice. However, if g/sup 2//x/sup 2/ much less than 1 in CQCD, then themore » simplest 4-Fermi interaction is dominant, and CQCD admits perturbative treatment, but only in the infrared. With the dominant interaction, a dynamical Nambu-Goldstone realization of chiral symmetry-breaking (XSB) is found. Although in QCD the relation between confinement and XSB is controversial, XSB occurs in CQCD provided confinement is sacrificed.« less

  11. Mefloquine pharmacokinetics in healthy subjects and in peptic ulcer patients after cimetidine administration.

    PubMed

    Kolawole, J A; Mustapha, A; Abudu-Aguye, I; Ochekpe, N

    2000-01-01

    The pharmacokinetics of orally administered mefloquine were determined in six healthy male subjects and in six ulcer patients before and after a 3-day course of cimetidine (400 mg morning and evening). Peak plasma concentrations Cmax and AUC0-infinity were similarly and significantly (P < 0.05) increased after cimetidine pretreatement in both healthy subjects and peptic ulcer patients Cmax was increased by 42.4% and 20.5% while AUC0-infinity was increased by 37.5% in healthy and peptic ulcer subjects respectively. The values of t1/2ab absorption and t1/2 beta elimination, total crearance CLT/F and volume of distribution were altered to varying levels after cimetidine treatment but the changes were not statistically significant in both healthy and peptic ulcer subjects. The established long t1/2 beta and this apparent interaction between mefloquine and cimetidine which resulted in increased mefloquine plasma concentration might be of clinical significant in patients with neurological/psychiatric history.

  12. Precise, motion-free polarization control in Second Harmonic Generation microscopy using a liquid crystal modulator in the infinity space.

    PubMed

    Lien, Chi-Hsiang; Tilbury, Karissa; Chen, Shean-Jen; Campagnola, Paul J

    2013-01-01

    Second Harmonic Generation (SHG) microscopy coupled with polarization analysis has great potential for use in tissue characterization, as molecular and supramolecular structural details can be extracted. Such measurements are difficult to perform quickly and accurately. Here we present a new method that uses a liquid crystal modulator (LCM) located in the infinity space of a SHG laser scanning microscope that allows the generation of any desired linear or circular polarization state. As the device contains no moving parts, polarization can be rotated accurately and faster than by manual or motorized control. The performance in terms of polarization purity was validated using Stokes vector polarimetry, and found to have minimal residual polarization ellipticity. SHG polarization imaging characteristics were validated against well-characterized specimens having cylindrical and/or linear symmetries. The LCM has a small footprint and can be implemented easily in any standard microscope and is cost effective relative to other technologies.

  13. Robust Control for Microgravity Vibration Isolation using Fixed Order, Mixed H2/Mu Design

    NASA Technical Reports Server (NTRS)

    Whorton, Mark

    2003-01-01

    Many space-science experiments need an active isolation system to provide a sufficiently quiescent microgravity environment. Modern control methods provide the potential for both high-performance and robust stability in the presence of parametric uncertainties that are characteristic of microgravity vibration isolation systems. While H2 and H(infinity) methods are well established, neither provides the levels of attenuation performance and robust stability in a compensator with low order. Mixed H2/H(infinity), controllers provide a means for maximizing robust stability for a given level of mean-square nominal performance while directly optimizing for controller order constraints. This paper demonstrates the benefit of mixed norm design from the perspective of robustness to parametric uncertainties and controller order for microgravity vibration isolation. A nominal performance metric analogous to the mu measure, for robust stability assessment is also introduced in order to define an acceptable trade space from which different control methodologies can be compared.

  14. Robust predictive control with optimal load tracking for critical applications. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tse, J.; Bentsman, J.; Miller, N.

    1994-09-01

    This report derives a multi-input multi-output (MIMO) version of a two-degree-of-freedom receding-horizon control law based on mixed H{sub 2}/H{infinity} minimization. First, the integrand in the frequency domain representation of the MIMO performance criterion is decomposed into disturbance and reference spectra. Then the controller is derived which minimizes the peak of the disturbance spectrum and the integral of the reference spectrum on the unit circle. The resulting two-degree-of-freedom MIMO control strategy, referred to as the minimax predictive multivariable control (MPC), is shown to have worst-case-disturbance-rejection and robust-stability properties superior to those of purely H{sub 2}-optimal controllers, such as Generalized Predictive Controlmore » (GPC), for identical horizons. An attractive feature of the receding horizon structure of MPC is that it can, in ways similar to GPC, directly incorporate input constraints and pre-programmed reference inputs, which are nontrivial tasks in the standard H{infinity} design.« less

  15. Comparison of adaptive critic-based and classical wide-area controllers for power systems.

    PubMed

    Ray, Swakshar; Venayagamoorthy, Ganesh Kumar; Chaudhuri, Balarko; Majumder, Rajat

    2008-08-01

    An adaptive critic design (ACD)-based damping controller is developed for a thyristor-controlled series capacitor (TCSC) installed in a power system with multiple poorly damped interarea modes. The performance of this ACD computational intelligence-based method is compared with two classical techniques, which are observer-based state-feedback (SF) control and linear matrix inequality LMI-H(infinity) robust control. Remote measurements are used as feedback signals to the wide-area damping controller for modulating the compensation of the TCSC. The classical methods use a linearized model of the system whereas the ACD method is purely measurement-based, leading to a nonlinear controller with fixed parameters. A comparative analysis of the controllers' performances is carried out under different disturbance scenarios. The ACD-based design has shown promising performance with very little knowledge of the system compared to classical model-based controllers. This paper also discusses the advantages and disadvantages of ACDs, SF, and LMI-H(infinity).

  16. Model Reduction for Control System Design

    NASA Technical Reports Server (NTRS)

    Enns, D. F.

    1985-01-01

    An approach and a technique for effectively obtaining reduced order mathematical models of a given large order model for the purposes of synthesis, analysis and implementation of control systems is developed. This approach involves the use of an error criterion which is the H-infinity norm of a frequency weighted error between the full and reduced order models. The weightings are chosen to take into account the purpose for which the reduced order model is intended. A previously unknown error bound in the H-infinity norm for reduced order models obtained from internally balanced realizations was obtained. This motivated further development of the balancing technique to include the frequency dependent weightings. This resulted in the frequency weighted balanced realization and a new model reduction technique. Two approaches to designing reduced order controllers were developed. The first involves reducing the order of a high order controller with an appropriate weighting. The second involves linear quadratic Gaussian synthesis based on a reduced order model obtained with an appropriate weighting.

  17. Precise, motion-free polarization control in Second Harmonic Generation microscopy using a liquid crystal modulator in the infinity space

    PubMed Central

    Lien, Chi-Hsiang; Tilbury, Karissa; Chen, Shean-Jen; Campagnola, Paul J.

    2013-01-01

    Second Harmonic Generation (SHG) microscopy coupled with polarization analysis has great potential for use in tissue characterization, as molecular and supramolecular structural details can be extracted. Such measurements are difficult to perform quickly and accurately. Here we present a new method that uses a liquid crystal modulator (LCM) located in the infinity space of a SHG laser scanning microscope that allows the generation of any desired linear or circular polarization state. As the device contains no moving parts, polarization can be rotated accurately and faster than by manual or motorized control. The performance in terms of polarization purity was validated using Stokes vector polarimetry, and found to have minimal residual polarization ellipticity. SHG polarization imaging characteristics were validated against well-characterized specimens having cylindrical and/or linear symmetries. The LCM has a small footprint and can be implemented easily in any standard microscope and is cost effective relative to other technologies. PMID:24156059

  18. Studies of the Twin Helix Parametric-resonance Ionization Cooling Channel with COSY INFINITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J.A. Maloney, K.B. Beard, R.P. Johnson, A. Afanasev, S.A. Bogacz, Y.S. Derbenev, V.S. Morozov, B. Erdelyi

    2012-07-01

    A primary technical challenge to the design of a high luminosity muon collider is an effective beam cooling system. An epicyclic twin-helix channel utilizing parametric-resonance ionization cooling has been proposed for the final 6D cooling stage. A proposed design of this twin-helix channel is presented that utilizes correlated optics between the horizontal and vertical betatron periods to simultaneously focus transverse motion of the beam in both planes. Parametric resonance is induced in both planes via a system of helical quadrupole harmonics. Ionization cooling is achieved via periodically placed wedges of absorbing material, with intermittent rf cavities restoring longitudinal momentum necessarymore » to maintain stable orbit of the beam. COSY INFINITY is utilized to simulate the theory at first order. The motion of particles around a hyperbolic fixed point is tracked. Comparison is made between the EPIC cooling channel and standard ionization cooling effects. Cooling effects are measured, after including stochastic effects, for both a single particle and a distribution of particles.« less

  19. The Effects of Constructivist Learning Environment on Prospective Mathematics Teachers' Opinions

    ERIC Educational Resources Information Center

    Narli, Serkan; Baser, Nes'e

    2010-01-01

    To explore the effects of constructivist learning environment on prospective teachers' opinions about "mathematics, department of mathematics, discrete mathematics, countable and uncountable infinity" taught under the subject of Cantorian Set Theory in discrete mathematics class, 60 first-year students in the Division of Mathematics…

  20. Ancient Paradoxes Can Extend Mathematical Thinking

    ERIC Educational Resources Information Center

    Czocher, Jennifer A.; Moss, Diana L.

    2017-01-01

    This article presents the Snail problem, a relatively simple challenge about motion that offers engaging extensions involving the notion of infinity. It encourages students in grades 5-9 to connect mathematics learning to logic, history, and philosophy through analyzing the problem, making sense of quantitative relationships, and modeling with…

Top