Sample records for function incorporating volume

  1. Predonation Volume of Future Remnant Cortical Kidney Helps Predict Postdonation Renal Function in Live Kidney Donors.

    PubMed

    Fananapazir, Ghaneh; Benzl, Robert; Corwin, Michael T; Chen, Ling-Xin; Sageshima, Junichiro; Stewart, Susan L; Troppmann, Christoph

    2018-07-01

    Purpose To determine whether the predonation computed tomography (CT)-based volume of the future remnant kidney is predictive of postdonation renal function in living kidney donors. Materials and Methods This institutional review board-approved, retrospective, HIPAA-compliant study included 126 live kidney donors who had undergone predonation renal CT between January 2007 and December 2014 as well as 2-year postdonation measurement of estimated glomerular filtration rate (eGFR). The whole kidney volume and cortical volume of the future remnant kidney were measured and standardized for body surface area (BSA). Bivariate linear associations between the ratios of whole kidney volume to BSA and cortical volume to BSA were obtained. A linear regression model for 2-year postdonation eGFR that incorporated donor age, sex, and either whole kidney volume-to-BSA ratio or cortical volume-to-BSA ratio was created, and the coefficient of determination (R 2 ) for the model was calculated. Factors not statistically additive in assessing 2-year eGFR were removed by using backward elimination, and the coefficient of determination for this parsimonious model was calculated. Results Correlation was slightly better for cortical volume-to-BSA ratio than for whole kidney volume-to-BSA ratio (r = 0.48 vs r = 0.44, respectively). The linear regression model incorporating all donor factors had an R 2 of 0.66. The only factors that were significantly additive to the equation were cortical volume-to-BSA ratio and predonation eGFR (P = .01 and P < .01, respectively), and the final parsimonious linear regression model incorporating these two variables explained almost the same amount of variance (R 2 = 0.65) as did the full model. Conclusion The cortical volume of the future remnant kidney helped predict postdonation eGFR at 2 years. The cortical volume-to-BSA ratio should thus be considered for addition as an important variable to living kidney donor evaluation and selection guidelines. © RSNA, 2018.

  2. Space shuttle propulsion systems on-board checkout and monitoring system development study (extension). Volume 2: Guidelines for for incorporation of the onboard checkout and monitoring function on the space shuttle

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Guidelines are presented for incorporation of the onboard checkout and monitoring function (OCMF) into the designs of the space shuttle propulsion systems. The guidelines consist of and identify supporting documentation; requirements for formulation, implementation, and integration of OCMF; associated compliance verification techniques and requirements; and OCMF terminology and nomenclature. The guidelines are directly applicable to the incorporation of OCMF into the design of space shuttle propulsion systems and the equipment with which the propulsion systems interface. The techniques and general approach, however, are also generally applicable to OCMF incorporation into the design of other space shuttle systems.

  3. LH750 hematology analyzers to identify malaria and dengue and distinguish them from other febrile illnesses.

    PubMed

    Sharma, P; Bhargava, M; Sukhachev, D; Datta, S; Wattal, C

    2014-02-01

    Tropical febrile illnesses such as malaria and dengue are challenging to differentiate clinically. Automated cellular indices from hematology analyzers may afford a preliminary rapid distinction. Blood count and VCS parameters from 114 malaria patients, 105 dengue patients, and 105 febrile controls without dengue or malaria were analyzed. Statistical discriminant functions were generated, and their diagnostic performances were assessed by ROC curve analysis. Three statistical functions were generated: (i) malaria-vs.-controls factor incorporating platelet count and standard deviations of lymphocyte volume and conductivity that identified malaria with 90.4% sensitivity, 88.6% specificity; (ii) dengue-vs.-controls factor incorporating platelet count, lymphocyte percentage and standard deviation of lymphocyte conductivity that identified dengue with 81.0% sensitivity and 77.1% specificity; and (iii) febrile-controls-vs.-malaria/dengue factor incorporating mean corpuscular hemoglobin concentration, neutrophil percentage, mean lymphocyte and monocyte volumes, and standard deviation of monocyte volume that distinguished malaria and dengue from other febrile illnesses with 85.1% sensitivity and 91.4% specificity. Leukocyte abnormalities quantitated by automated analyzers successfully identified malaria and dengue and distinguished them from other fevers. These economic discriminant functions can be rapidly calculated by analyzer software programs to generate electronic flags to trigger-specific testing. They could potentially transform diagnostic approaches to tropical febrile illnesses in cost-constrained settings. © 2013 John Wiley & Sons Ltd.

  4. Structural incorporation of MgCl2 into ice VII at room temperature

    NASA Astrophysics Data System (ADS)

    Watanabe, Mao; Komatsu, Kazuki; Noritake, Fumiya; Kagi, Hiroyuki

    2017-05-01

    Raman spectra and X-ray diffraction patterns were obtained from 1:100 and 1:200 \\text{MgCl}2:\\text{H}2\\text{O} solutions (in molar ratio) at pressures up to 6 GPa using diamond anvil cells (DACs) and compared with those of pure water. The O-H stretching band from ice VII crystallized from the 1:200 solution was approximately 10 cm-1 higher than that of pure ice VII. The phase boundaries between ice VII and VIII crystallized from the MgCl2 solutions at 4 GPa were 2 K lower than those of pure ice VII and VIII. These observations indicate that ice VII incorporates MgCl2 into its structure. The unit cell volumes of ice VII crystallized from pure water and the two solutions coincided with each other within the experimental error, and salt incorporation was not detectable from the cell volume. Possible configurations of ion substitution and excess volume of ice VIII were simulated on the basis of density functional theory (DFT) calculations.

  5. WE-AB-202-02: Incorporating Regional Ventilation Function in Predicting Radiation Fibrosis After Concurrent Chemoradiotherapy for Lung Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lan, F; Jeudy, J; Tseng, H

    Purpose: To investigate the incorporation of pre-therapy regional ventilation function in predicting radiation fibrosis (RF) in stage III non-small-cell lung cancer (NSCLC) patients treated with concurrent thoracic chemoradiotherapy. Methods: 37 stage III NSCLC patients were retrospectively studied. Patients received one cycle of cisplatin-gemcitabine, followed by two to three cycles of cisplatin-etoposide concurrently with involved-field thoracic radiotherapy between 46 and 66 Gy (2 Gy per fraction). Pre-therapy regional ventilation images of the lung were derived from 4DCT via a density-change-based image registration algorithm with mass correction. RF was evaluated at 6-months post-treatment using radiographic scoring based on airway dilation and volumemore » loss. Three types of ipsilateral lung metrics were studied: (1) conventional dose-volume metrics (V20, V30, V40, and mean-lung-dose (MLD)), (2) dose-function metrics (fV20, fV30, fV40, and functional mean-lung-dose (fMLD) generated by combining regional ventilation and dose), and (3) dose-subvolume metrics (sV20, sV30, sV40, and subvolume mean-lung-dose (sMLD) defined as the dose-volume metrics computed on the sub-volume of the lung with at least 60% of the quantified maximum ventilation status). Receiver operating characteristic (ROC) curve analysis and logistic regression analysis were used to evaluate the predictability of these metrics for RF. Results: In predicting airway dilation, the area under the ROC curve (AUC) values for (V20, MLD), (fV20, fMLD), and (sV20, and sMLD) were (0.76, 0.70), (0.80, 0.74) and (0.82, 0.80), respectively. The logistic regression p-values were (0.09, 0.18), (0.02, 0.05) and (0.004, 0.006), respectively. With regard to volume loss, the corresponding AUC values for these metrics were (0.66, 0.57), (0.67, 0.61) and (0.71, 0.69), and p-values were (0.95, 0.90), (0.43, 0.64) and (0.08, 0.12), respectively. Conclusion: The inclusion of regional ventilation function improved predictability of radiation fibrosis. Dose-subvolume metrics provided a promising method for incorporating functional information into the conventional dose-volume parameters for outcome assessment.« less

  6. Kansas Working Papers in Linguistics.

    ERIC Educational Resources Information Center

    Khym, Hangyoo, Ed.; Kookiattikoon, Supath, Ed.

    1997-01-01

    The seven working papers on linguistic theory contained in this volume include: "Two Properties of the Intransitive Resultative Construction" (Yoichi Miyamoto); "Multiple Subject Construction in Korean: A Functional Explanation" (Youngjun Jang); "Constraints on Noun Incorporation in Korean" (Hangyoo Khym);…

  7. Volume labeling with Alexa Fluor dyes and surface functionalization of highly sensitive fluorescent silica (SiO2) nanoparticles

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Nallathamby, Prakash D.; Foster, Carmen M.; Morrell-Falvey, Jennifer L.; Mortensen, Ninell P.; Doktycz, Mitchel J.; Gu, Baohua; Retterer, Scott T.

    2013-10-01

    A new synthesis approach is described that allows the direct incorporation of fluorescent labels into the volume or body of SiO2 nanoparticles. In this process, fluorescent Alexa Fluor dyes with different emission wavelengths were covalently incorporated into the SiO2 nanoparticles during their formation by the hydrolysis of tetraethoxysilane. The dye molecules were homogeneously distributed throughout the SiO2 nanoparticles. The quantum yields of the Alexa Fluor volume-labeled SiO2 nanoparticles were much higher than nanoparticles labeled using conventional organic dyes. The size of the resulting nanoparticles was controlled using microemulsion reaction media with sizes in the range of 20-100 nm and a polydispersity of <15%. In comparison with conventional surface tagged particles created by post-synthesis modification, this process maintains the physical and surface chemical properties that have the most pronounced effect on colloidal stability and interactions with their surroundings. These volume-labeled nanoparticles have proven to be extremely robust, showing excellent signal strength, negligible photobleaching, and minimal loss of functional organic components. The native or ``free'' surface of the volume-labeled particles can be altered to achieve a specific surface functionality without altering fluorescence. Their utility was demonstrated for visualizing the association of surface-modified fluorescent particles with cultured macrophages. Differences in particle agglomeration and cell association were clearly associated with differences in observed nanoparticle toxicity. The capacity to maintain particle fluorescence while making significant changes to surface chemistry makes these particles extremely versatile and useful for studies of particle agglomeration, uptake, and transport in environmental and biological systems.A new synthesis approach is described that allows the direct incorporation of fluorescent labels into the volume or body of SiO2 nanoparticles. In this process, fluorescent Alexa Fluor dyes with different emission wavelengths were covalently incorporated into the SiO2 nanoparticles during their formation by the hydrolysis of tetraethoxysilane. The dye molecules were homogeneously distributed throughout the SiO2 nanoparticles. The quantum yields of the Alexa Fluor volume-labeled SiO2 nanoparticles were much higher than nanoparticles labeled using conventional organic dyes. The size of the resulting nanoparticles was controlled using microemulsion reaction media with sizes in the range of 20-100 nm and a polydispersity of <15%. In comparison with conventional surface tagged particles created by post-synthesis modification, this process maintains the physical and surface chemical properties that have the most pronounced effect on colloidal stability and interactions with their surroundings. These volume-labeled nanoparticles have proven to be extremely robust, showing excellent signal strength, negligible photobleaching, and minimal loss of functional organic components. The native or ``free'' surface of the volume-labeled particles can be altered to achieve a specific surface functionality without altering fluorescence. Their utility was demonstrated for visualizing the association of surface-modified fluorescent particles with cultured macrophages. Differences in particle agglomeration and cell association were clearly associated with differences in observed nanoparticle toxicity. The capacity to maintain particle fluorescence while making significant changes to surface chemistry makes these particles extremely versatile and useful for studies of particle agglomeration, uptake, and transport in environmental and biological systems. Electronic supplementary information (ESI) available: Cell culture preparation for dose/response imaging experiments. See DOI: 10.1039/c3nr02639f

  8. A scattering function of star polymers including excluded volume effects

    DOE PAGES

    Li, Xin; Do, Changwoo; Liu, Yun; ...

    2014-11-04

    In this work we present a new model for the form factor of a star polymer consisting of self-avoiding branches. This new model incorporates excluded volume effects and is derived from the two point correlation function for a star polymer.. We compare this model to small angle neutron scattering (SANS) measurements from polystyrene (PS) stars immersed in a good solvent, tetrahydrofuran (THF). It is shown that this model provides a good description of the scattering signature originating from the excluded volume effect and it explicitly elucidates the connection between the global conformation of a star polymer and the local stiffnessmore » of its constituent branch.« less

  9. Tracer techniques for urine volume determination and urine collection and sampling back-up system

    NASA Technical Reports Server (NTRS)

    Ramirez, R. V.

    1971-01-01

    The feasibility, functionality, and overall accuracy of the use of lithium were investigated as a chemical tracer in urine for providing a means of indirect determination of total urine volume by the atomic absorption spectrophotometry method. Experiments were conducted to investigate the parameters of instrumentation, tracer concentration, mixing times, and methods for incorporating the tracer material in the urine collection bag, and to refine and optimize the urine tracer technique to comply with the Skylab scheme and operational parameters of + or - 2% of volume error and + or - 1% accuracy of amount of tracer added to each container. In addition, a back-up method for urine collection and sampling system was developed and evaluated. This back-up method incorporates the tracer technique for volume determination in event of failure of the primary urine collection and preservation system. One chemical preservative was selected and evaluated as a contingency chemical preservative for the storage of urine in event of failure of the urine cooling system.

  10. Quantitative photoplethysmography: Lambert-Beer law or inverse function incorporating light scatter.

    PubMed

    Cejnar, M; Kobler, H; Hunyor, S N

    1993-03-01

    Finger blood volume is commonly determined from measurement of infra-red (IR) light transmittance using the Lambert-Beer law of light absorption derived for use in non-scattering media, even when such transmission involves light scatter around the phalangeal bone. Simultaneous IR transmittance and finger volume were measured over the full dynamic range of vascular volumes in seven subjects and outcomes compared with data fitted according to the Lambert-Beer exponential function and an inverse function derived for light attenuation by scattering materials. Curves were fitted by the least-squares method and goodness of fit was compared using standard errors of estimate (SEE). The inverse function gave a better data fit in six of the subjects: mean SEE 1.9 (SD 0.7, range 0.7-2.8) and 4.6 (2.2, 2.0-8.0) respectively (p < 0.02, paired t-test). Thus, when relating IR transmittance to blood volume, as occurs in the finger during measurements of arterial compliance, an inverse function derived from a model of light attenuation by scattering media gives more accurate results than the traditional exponential fit.

  11. 30 CFR 250.198 - Documents incorporated by reference.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Addenda, and all Section I Interpretations Volume 55, incorporated by reference at § 250.803(b)(1), (b)(1...; July 1, 2005 Addenda, and all Section IV Interpretations Volume 55, incorporated by reference at § 250... Addenda, Divisions 1 and 2, and all Section VIII Interpretations Volumes 54 and 55, incorporated by...

  12. Potential functional bakery products as delivery systems for prebiotics and probiotics health enhancers.

    PubMed

    Longoria-García, S; Cruz-Hernández, M A; Flores-Verástegui, M I M; Contreras-Esquivel, J C; Montañez-Sáenz, J C; Belmares-Cerda, R E

    2018-03-01

    Several health benefits have been associated to probiotics and prebiotics, most of these are involved in the regulation of the host's gut microbiome. Their incorporation to diverse food products has been done to develop potential functional foods. In the case of bakery products, their incorporation has been seen to improve several technological parameters such as volume, specific volume, texture along with sensorial parameters such as flavor and aroma. Scientific literature in this topic has been divided in three main research branches: nutrition, physical quality and sensory analyzes, however, studies rarely cover all of them. Due to the harsh thermal stress during baking, sourdough technology along with microencapsulation of probiotics, has been studied as an alternative to enhance its nutritional values and increase cell viability, though in few occasions. The potential functional baked goods have maintained acceptable physical characteristics and sensorial acceptability, while in some cases an improvement is seen due to the effect of probiotics and prebiotics. The results obtained from several studies done, have shown the viability of developing functional bakery products by applying prebiotics or probiotics. This could be used as an encouragement for more research to be done in this topic.

  13. Empirical model for the volume-change behavior of debris flows

    USGS Publications Warehouse

    Cannon, S.H.; ,

    1993-01-01

    The potential travel down hillsides; movement stops where the volume-change behavior of flows as they travel down hillsides ; movement stops where the volume of actively flowing debris becomes negligible. The average change in volume over distance for 26 recent debris flows in the Honolulu area was assumed to be a function of the slope over which the debris flow traveled, the degree of flow confinement by the channel, and an assigned value for the type of vegetation through which the debris flow traveled. Analysis of the data yielded a relation that can be incorporated into digital elevation models to characterize debris-flow travel on Oahu.

  14. Impact of field number and beam angle on functional image-guided lung cancer radiotherapy planning

    NASA Astrophysics Data System (ADS)

    Tahir, Bilal A.; Bragg, Chris M.; Wild, Jim M.; Swinscoe, James A.; Lawless, Sarah E.; Hart, Kerry A.; Hatton, Matthew Q.; Ireland, Rob H.

    2017-09-01

    To investigate the effect of beam angles and field number on functionally-guided intensity modulated radiotherapy (IMRT) normal lung avoidance treatment plans that incorporate hyperpolarised helium-3 magnetic resonance imaging (3He MRI) ventilation data. Eight non-small cell lung cancer patients had pre-treatment 3He MRI that was registered to inspiration breath-hold radiotherapy planning computed tomography. IMRT plans that minimised the volume of total lung receiving  ⩾20 Gy (V20) were compared with plans that minimised 3He MRI defined functional lung receiving  ⩾20 Gy (fV20). Coplanar IMRT plans using 5-field manually optimised beam angles and 9-field equidistant plans were also evaluated. For each pair of plans, the Wilcoxon signed ranks test was used to compare fV20 and the percentage of planning target volume (PTV) receiving 90% of the prescription dose (PTV90). Incorporation of 3He MRI led to median reductions in fV20 of 1.3% (range: 0.2-9.3% p  =  0.04) and 0.2% (range: 0 to 4.1%; p  =  0.012) for 5- and 9-field arrangements, respectively. There was no clinically significant difference in target coverage. Functionally-guided IMRT plans incorporating hyperpolarised 3He MRI information can reduce the dose received by ventilated lung without comprising PTV coverage. The effect was greater for optimised beam angles rather than uniformly spaced fields.

  15. Volume Labeling with Alexa-Fluor Dyes and Surface Functionalization of Highly Sensitive Fluorescent SiO2 Nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Wei; Foster, Carmen M; Morrell-Falvey, Jennifer L

    2013-01-01

    A new synthesis approach is described that allows the direct incorporation of fluorescent labels into the volume or body of SiO2 nanoparticles. In this process, fluorescent Alexa Fluor dyes with different emission wavelengths were covalently incorporated into the SiO2 nanoparticles during their formation by the hydrolysis of tetraethoxysilane. The dye molecules were homogeneously distributed throughout the SiO2 nanoparticles. The quantum yields of the Alexa Fluor volume-labeled SiO2 nanoparticles were much higher than nanoparticles labeled using conventional organic dyes. The size of the resulting nanoparticles was controlled using microemulsion reaction media with sizes in the range of 20-100 nm and amore » polydispersity of <15%. In comparison with conventional surface tagged particles created by post-synthesis modification, this process maintains the physical and surface chemical properties that have the most pronounced effect on colloidal stability and interactions with their surroundings. These volume-labeled nanoparticles have proven to be extremely robust, showing excellent signal strength, negligible photobleaching, and minimal loss of functional organic components. The native or free surface of the volume-labeled particles can be altered to achieve a specific surface functionality without altering fluorescence. Their utility was demonstrated for visualizing the association of surface modified fluorescent particles with cultured macrophages. Differences in particle agglomeration and cell association were clearly associated with differences in observed nanoparticle toxicity. The capacity to maintain particle fluorescence while making significant changes to surface chemistry makes these particles extremely versatile and useful for studies of particle agglomeration, uptake, and transport in environmental and biological systems.« less

  16. SU-E-J-250: A Methodology for Active Bone Marrow Protection for Cervical Cancer Intensity-Modulated Radiotherapy Using 18F-FLT PET/CT Image

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, C; Yin, Y

    Purpose: The purpose of this study was to compare a radiation therapy treatment planning that would spare active bone marrow and whole pelvic bone marrow using 18F FLT PET/CT image. Methods: We have developed an IMRT planning methodology to incorporate functional PET imaging using 18F FLT/CT scans. Plans were generated for two cervical cancer patients, where pelvicactive bone marrow region was incorporated as avoidance regions based on the range: SUV>2., another region was whole pelvic bone marrow. Dose objectives were set to reduce the volume of active bone marrow and whole bone marraw. The volumes of received 10 (V10) andmore » 20 (V20) Gy for active bone marrow were evaluated. Results: Active bone marrow regions identified by 18F FLT with an SUV>2 represented an average of 48.0% of the total osseous pelvis for the two cases studied. Improved dose volume histograms for identified bone marrow SUV volumes and decreases in V10(average 18%), and V20(average 14%) were achieved without clinically significant changes to PTV or OAR doses. Conclusion: Incorporation of 18F FLT/CT PET in IMRT planning provides a methodology to reduce radiation dose to active bone marrow without compromising PTV or OAR dose objectives in cervical cancer.« less

  17. Phospholipid component volumes: determination and application to bilayer structure calculations.

    PubMed

    Armen, R S; Uitto, O D; Feller, S E

    1998-08-01

    We present a new method for the determination of bilayer structure based on a combination of computational studies and laboratory experiments. From molecular dynamics simulations, the volumes of submolecular fragments of saturated and unsaturated phosphatidylcholines in the liquid crystalline state have been extracted with a precision not available experimentally. Constancy of component volumes, both among different lipids and as a function of membrane position for a given lipid, have been examined. The component volumes were then incorporated into the liquid crystallographic method described by Wiener and White (1992. Biophys. J. 61:434-447, and references therein) for determining the structure of a fluid-phase dioleoylphosphatidylcholine bilayer from x-ray and neutron diffraction experiments.

  18. Phospholipid component volumes: determination and application to bilayer structure calculations.

    PubMed Central

    Armen, R S; Uitto, O D; Feller, S E

    1998-01-01

    We present a new method for the determination of bilayer structure based on a combination of computational studies and laboratory experiments. From molecular dynamics simulations, the volumes of submolecular fragments of saturated and unsaturated phosphatidylcholines in the liquid crystalline state have been extracted with a precision not available experimentally. Constancy of component volumes, both among different lipids and as a function of membrane position for a given lipid, have been examined. The component volumes were then incorporated into the liquid crystallographic method described by Wiener and White (1992. Biophys. J. 61:434-447, and references therein) for determining the structure of a fluid-phase dioleoylphosphatidylcholine bilayer from x-ray and neutron diffraction experiments. PMID:9675175

  19. 30 CFR 250.198 - Documents incorporated by reference.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., and all Section I Interpretations Volume 55, incorporated by reference at § 250.803 and § 250.1629; (2... Interpretations Volume 55, incorporated by reference at §§ 250.803 and 250.1629; (3) ANSI/ASME Boiler and Pressure...; July 1, 2005 Addenda, Divisions 1 and 2, and all Section VIII Interpretations Volumes 54 and 55...

  20. Microfluidic platform for efficient Nanodisc assembly, membrane protein incorporation, and purification.

    PubMed

    Wade, James H; Jones, Joshua D; Lenov, Ivan L; Riordan, Colleen M; Sligar, Stephen G; Bailey, Ryan C

    2017-08-22

    The characterization of integral membrane proteins presents numerous analytical challenges on account of their poor activity under non-native conditions, limited solubility in aqueous solutions, and low expression in most cell culture systems. Nanodiscs are synthetic model membrane constructs that offer many advantages for studying membrane protein function by offering a native-like phospholipid bilayer environment. The successful incorporation of membrane proteins within Nanodiscs requires experimental optimization of conditions. Standard protocols for Nanodisc formation can require large amounts of time and input material, limiting the facile screening of formation conditions. Capitalizing on the miniaturization and efficient mass transport inherent to microfluidics, we have developed a microfluidic platform for efficient Nanodisc assembly and purification, and demonstrated the ability to incorporate functional membrane proteins into the resulting Nanodiscs. In addition to working with reduced sample volumes, this platform simplifies membrane protein incorporation from a multi-stage protocol requiring several hours or days into a single platform that outputs purified Nanodiscs in less than one hour. To demonstrate the utility of this platform, we incorporated Cytochrome P450 into Nanodiscs of variable size and lipid composition, and present spectroscopic evidence for the functional active site of the membrane protein. This platform is a promising new tool for membrane protein biology and biochemistry that enables tremendous versatility for optimizing the incorporation of membrane proteins using microfluidic gradients to screen across diverse formation conditions.

  1. United States Air Force Summer Faculty Research Program 1989. Program Technical Report. Volume 3

    DTIC Science & Technology

    1989-12-01

    doppler broadened transitions by Holstein12 . We have used the functional form of Holstein and incorporated the 30 % increase 13 suggested by Phelps g...impact excitation of the 4 D level",J.Phys.B.,7,pp.2003-2020,1974. 12. T. Holstein ,"Imprisonment of Resonance Radiation in Gases. II",Physical Rev.,83...Backward Propagation Network FUNCTIONAL LINK NETWORKS Output Layer Devce ovice’lt one mNtdtq Camer Cowe . Oopng Corlc Functional MBE Input Characteristics

  2. Kinetic Glomerular Filtration Rate Equation Can Accommodate a Changing Body Volume: Derivation and Usage of the Formula.

    PubMed

    Chen, Sheldon

    2018-05-22

    Ascertaining a patient's kidney function is more difficult to do when the serum creatinine is changing than when it is stable. To accomplish the task, various kinetic clearance equations have been developed. To date, however, none of them have allowed for ongoing changes to the creatinine's volume of distribution. These diluting or concentrating effects on the [creatinine] can greatly impact the accuracy of kidney function assessment. Described herein is a model of creatinine kinetics that also accommodates volume changes. The differential equation is solved for the kinetic glomerular filtration rate (GFR), which is helpful information to the physician. Some of the equation's discontinuities, such as from dividing by a volume rate of zero, can be resolved by using limits. Being "volume-capable," the new kinetic equation reveals how a changing volume influences the maximum rate of rise in [creatinine], a parameter that heretofore was chosen empirically. To show the advantages of incorporating volume, the new and old kinetic equations are applied to a clinical case of overzealous fluid resuscitation. Appropriately, when the volume gain's dilution of [creatinine] is taken into account, the creatinine clearance is calculated to be substantially lower. In conclusion, the kinetic GFR equation has been upgraded to handle volume changes simultaneously with [creatinine] changes. Copyright © 2018. Published by Elsevier Inc.

  3. Dosimetric feasibility of 4DCT-ventilation imaging guided proton therapy for locally advanced non-small-cell lung cancer.

    PubMed

    Huang, Qijie; Jabbour, Salma K; Xiao, Zhiyan; Yue, Ning; Wang, Xiao; Cao, Hongbin; Kuang, Yu; Zhang, Yin; Nie, Ke

    2018-04-25

    The principle aim of this study is to incorporate 4DCT ventilation imaging into functional treatment planning that preserves high-functioning lung with both double scattering and scanning beam techniques in proton therapy. Eight patients with locally advanced non-small-cell lung cancer were included in this study. Deformable image registration was performed for each patient on their planning 4DCTs and the resultant displacement vector field with Jacobian analysis was used to identify the high-, medium- and low-functional lung regions. Five plans were designed for each patient: a regular photon IMRT vs. anatomic proton plans without consideration of functional ventilation information using double scattering proton therapy (DSPT) and intensity modulated proton therapy (IMPT) vs. functional proton plans with avoidance of high-functional lung using both DSPT and IMPT. Dosimetric parameters were compared in terms of tumor coverage, plan heterogeneity, and avoidance of normal tissues. Our results showed that both DSPT and IMPT plans gave superior dose advantage to photon IMRTs in sparing low dose regions of the total lung in terms of V5 (volume receiving 5Gy). The functional DSPT only showed marginal benefit in sparing high-functioning lung in terms of V5 or V20 (volume receiving 20Gy) compared to anatomical plans. Yet, the functional planning in IMPT delivery, can further reduce the low dose in high-functioning lung without degrading the PTV dosimetric coverages, compared to anatomical proton planning. Although the doses to some critical organs might increase during functional planning, the necessary constraints were all met. Incorporating 4DCT ventilation imaging into functional proton therapy is feasible. The functional proton plans, in intensity modulated proton delivery, are effective to further preserve high-functioning lung regions without degrading the PTV coverage.

  4. Prediction of radiation-induced normal tissue complications in radiotherapy using functional image data

    NASA Astrophysics Data System (ADS)

    Nioutsikou, Elena; Partridge, Mike; Bedford, James L.; Webb, Steve

    2005-03-01

    The aim of this study has been to explicitly include the functional heterogeneity of an organ as a factor that contributes to the probability of complication of normal tissues following radiotherapy. Situations for which the inclusion of this information can be advantageous to the design of treatment plans are then investigated. A Java program has been implemented for this purpose. This makes use of a voxelated model of a patient, which is based on registered anatomical and functional data in order to enable functional voxel weighting. Using this model, the functional dose-volume histogram (fDVH) and the functional normal tissue complication probability (fNTCP) are then introduced as extensions to the conventional dose-volume histogram (DVH) and normal tissue complication probability (NTCP). In the presence of functional heterogeneity, these tools are physically more meaningful for plan evaluation than the traditional indices, as they incorporate additional information and are anticipated to show a better correlation with outcome. New parameters mf, nf and TD50f are required to replace the m, n and TD50 parameters. A range of plausible values was investigated, awaiting fitting of these new parameters to patient outcomes where functional data have been measured. As an example, the model is applied to two lung datasets utilizing accurately registered computed tomography (CT) and single photon emission computed tomography (SPECT) perfusion scans. Assuming a linear perfusion-function relationship, the biological index mean perfusion weighted lung dose (MPWLD) has been extracted from integration over outlined regions of interest. In agreement with the MPWLD ranking, the fNTCP predictions reveal that incorporation of functional imaging in radiotherapy treatment planning is most beneficial for organs with a large volume effect and large focal areas of dysfunction. There is, however, no additional advantage in cases presenting with homogeneous function. Although presented for lung radiotherapy, this model is general. It can also be applied to positron emission tomography (PET)-CT or functional magnetic resonance imaging (fMRI)-CT registered data and extended to the functional description of tumour control probability.

  5. Inorganic mercury (Hg2+) accumulation in autotrophic and mixotrophic planktonic protists: Implications for Hg trophodynamics in ultraoligotrophic Andean Patagonian lakes.

    PubMed

    Soto Cárdenas, Carolina; Gerea, Marina; Queimaliños, Claudia; Ribeiro Guevara, Sergio; Diéguez, María C

    2018-05-01

    Microbial assemblages are typical of deep ultraoligotrophic Andean Patagonian lakes and comprise picoplankton and protists (phytoflagellates and mixotrophic ciliates), having a central role in the C cycle, primary production and in the incorporation of dissolved inorganic mercury (Hg 2+ ) into lake food webs. In this study we evaluated the mechanisms of Hg 2+ incorporation in hetero- and autotrophic bacteria, in the autotrophic dinoflagellate (Gymnodinium paradoxum) and in two mixotrophic ciliates (Stentor araucanus and Ophrydium naumanni) dominating the planktonic microbial assemblage. The radioisotope 197 Hg was used to trace the Hg 2+ incorporation in microbiota. Hg uptake was analyzed as a function of cell abundance (BCF: bioconcentration factor), cell surface (SCF: surface concentration factor) and cell volume (VCF: volume concentration factor). Overall, the results obtained showed that these organisms incorporate substantial amounts of dissolved Hg 2+ passively (adsorption) and actively (bacteria consumption or attachment), displaying different Hg internalization and therefore, varying potential for Hg transfer. Surface area and quality, and surface:volume ratio (S:V) control the passive uptake in all the organisms. Active incorporation depends on bacteria consumption in the mixotrophic ciliates, or on bacteria association to surface in the autotrophic dinoflagellate. Hg bioaccumulated by pelagic protists can be transferred to higher trophic levels through plankton and fish feeding, regenerated to the dissolved phase by excretion, and/or transferred to the sediments by particle sinking. In ultraoligotrophic Andean Patagonian lakes, picoplankton and planktonic protists are key components of lake food webs, linking the pelagic and benthic Hg pathways, and thereby playing a central role in Hg trophodynamics. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang Jenghwa; Kowalski, Alex; Hou, Bob

    The purpose of this work was to study the feasibility of incorporating functional magnetic resonance imaging (fMRI) information for intensity modulated radiotherapy (IMRT) treatment planning of brain tumors. Three glioma patients were retrospectively replanned for radiotherapy (RT) with additional fMRI information. The fMRI of each patient was acquired using a bilateral finger-tapping paradigm with a gradient echo EPI (Echo Planer Imaging) sequence. The fMRI data were processed using the Analysis of Functional Neuroimaging (AFNI) software package for determining activation volumes, and the volumes were fused with the simulation computed tomography (CT) scan. The actived pixels in left and right primarymore » motor cortexes (PMCs) were contoured as critical structures for IMRT planning. The goal of replanning was to minimize the RT dose to the activation volumes in the PMC regions, while maintaining a similar coverage to the planning target volume (PTV) and keeping critical structures within accepted dose tolerance. Dose-volume histograms of the treatment plans with and without considering the fMRI information were compared. Beam angles adjustment or additional beams were needed for 2 cases to meet the planning criteria. Mean dose to the contralateral and ipsilateral PMC was significantly reduced by 66% and 55%, respectively, for 1 patient. For the other 2 patients, mean dose to contralateral PMC region was lowered by 73% and 69%. In general, IMRT optimization can reduce the RT dose to the PMC regions without compromising the PTV coverage or sparing of other critical organs. In conclusion, it is feasible to incorporate the fMRI information into the RT treatment planning. IMRT planning allows a significant reduction in RT dose to the PMC regions, especially if the region does not lie within the PTV.« less

  7. A data-driven model for influenza transmission incorporating media effects.

    PubMed

    Mitchell, Lewis; Ross, Joshua V

    2016-10-01

    Numerous studies have attempted to model the effect of mass media on the transmission of diseases such as influenza; however, quantitative data on media engagement has until recently been difficult to obtain. With the recent explosion of 'big data' coming from online social media and the like, large volumes of data on a population's engagement with mass media during an epidemic are becoming available to researchers. In this study, we combine an online dataset comprising millions of shared messages relating to influenza with traditional surveillance data on flu activity to suggest a functional form for the relationship between the two. Using this data, we present a simple deterministic model for influenza dynamics incorporating media effects, and show that such a model helps explain the dynamics of historical influenza outbreaks. Furthermore, through model selection we show that the proposed media function fits historical data better than other media functions proposed in earlier studies.

  8. Piezo- and solenoid valve-based liquid dispensing for miniaturized assays.

    PubMed

    Niles, Walter D; Coassin, Peter J

    2005-04-01

    Miniaturization of biological assays requires dispensing liquids in the submicroliter range of volumes. Accuracy and reproducibility of dispensing this range depend on both the dispenser and the receptacle in which the assay is constructed. Miniaturization technologies developed by Aurora Discovery, Inc. (San Diego, CA) include high-density multiwell plates for assay samples and reagent storage, as well as piezo-based and solenoid valve-based liquid dispensers. Some basic principles of small-volume dispensing by jetting are described to provide context for dispenser design and function. Performance of the latest instruments incorporating these dispensing devices is presented.

  9. Linear energy transfer incorporated intensity modulated proton therapy optimization

    NASA Astrophysics Data System (ADS)

    Cao, Wenhua; Khabazian, Azin; Yepes, Pablo P.; Lim, Gino; Poenisch, Falk; Grosshans, David R.; Mohan, Radhe

    2018-01-01

    The purpose of this study was to investigate the feasibility of incorporating linear energy transfer (LET) into the optimization of intensity modulated proton therapy (IMPT) plans. Because increased LET correlates with increased biological effectiveness of protons, high LETs in target volumes and low LETs in critical structures and normal tissues are preferred in an IMPT plan. However, if not explicitly incorporated into the optimization criteria, different IMPT plans may yield similar physical dose distributions but greatly different LET, specifically dose-averaged LET, distributions. Conventionally, the IMPT optimization criteria (or cost function) only includes dose-based objectives in which the relative biological effectiveness (RBE) is assumed to have a constant value of 1.1. In this study, we added LET-based objectives for maximizing LET in target volumes and minimizing LET in critical structures and normal tissues. Due to the fractional programming nature of the resulting model, we used a variable reformulation approach so that the optimization process is computationally equivalent to conventional IMPT optimization. In this study, five brain tumor patients who had been treated with proton therapy at our institution were selected. Two plans were created for each patient based on the proposed LET-incorporated optimization (LETOpt) and the conventional dose-based optimization (DoseOpt). The optimized plans were compared in terms of both dose (assuming a constant RBE of 1.1 as adopted in clinical practice) and LET. Both optimization approaches were able to generate comparable dose distributions. The LET-incorporated optimization achieved not only pronounced reduction of LET values in critical organs, such as brainstem and optic chiasm, but also increased LET in target volumes, compared to the conventional dose-based optimization. However, on occasion, there was a need to tradeoff the acceptability of dose and LET distributions. Our conclusion is that the inclusion of LET-dependent criteria in the IMPT optimization could lead to similar dose distributions as the conventional optimization but superior LET distributions in target volumes and normal tissues. This may have substantial advantages in improving tumor control and reducing normal tissue toxicities.

  10. Detergent-mediated incorporation of transmembrane proteins in giant unilamellar vesicles with controlled physiological contents

    PubMed Central

    Dezi, Manuela; Di Cicco, Aurelie; Bassereau, Patricia; Lévy, Daniel

    2013-01-01

    Giant unilamellar vesicles (GUVs) are convenient biomimetic systems of the same size as cells that are increasingly used to quantitatively address biophysical and biochemical processes related to cell functions. However, current approaches to incorporate transmembrane proteins in the membrane of GUVs are limited by the amphiphilic nature or proteins. Here, we report a method to incorporate transmembrane proteins in GUVs, based on concepts developed for detergent-mediated reconstitution in large unilamellar vesicles. Reconstitution is performed either by direct incorporation from proteins purified in detergent micelles or by fusion of purified native vesicles or proteoliposomes in preformed GUVs. Lipid compositions of the membrane and the ionic, protein, or DNA compositions in the internal and external volumes of GUVs can be controlled. Using confocal microscopy and functional assays, we show that proteins are unidirectionally incorporated in the GUVs and keep their functionality. We have successfully tested our method with three types of transmembrane proteins. GUVs containing bacteriorhodopsin, a photoactivable proton pump, can generate large transmembrane pH and potential gradients that are light-switchable and stable for hours. GUVs with FhuA, a bacterial porin, were used to follow the DNA injection by T5 phage upon binding to its transmembrane receptor. GUVs incorporating BmrC/BmrD, a bacterial heterodimeric ATP-binding cassette efflux transporter, were used to demonstrate the protein-dependent translocation of drugs and their interactions with encapsulated DNA. Our method should thus apply to a wide variety of membrane or peripheral proteins for producing more complex biomimetic GUVs. PMID:23589883

  11. 30 CFR 250.198 - Documents incorporated by reference.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Conditions, May 2007; incorporated by reference at § 250.901; (3) API Bulletin 2INT-EX, Interim Guidance for...; incorporated by reference at § 250.1202; (34) API MPMS, Chapter 11.1—Volume Correction Factors, Volume 1, Table...; (35) API MPMS, Chapter 11.2.2—Compressibility Factors for Hydrocarbons: 0.350-0.637 Relative Density...

  12. 30 CFR 250.198 - Documents incorporated by reference.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Conditions, May 2007; incorporated by reference at § 250.901; (3) API Bulletin 2INT-EX, Interim Guidance for...; incorporated by reference at § 250.1202; (34) API MPMS, Chapter 11.1—Volume Correction Factors, Volume 1, Table...; (35) API MPMS, Chapter 11.2.2—Compressibility Factors for Hydrocarbons: 0.350-0.637 Relative Density...

  13. The dynamics of photoinduced defect creation in amorphous chalcogenides: The origin of the stretched exponential function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freitas, R. J.; Shimakawa, K.; Department of Electrical and Electronic Engineering, Gifu University, Gifu 501-1193

    The article discusses the dynamics of photoinduced defect creations (PDC) in amorphous chalcogenides, which is described by the stretched exponential function (SEF), while the well known photodarkening (PD) and photoinduced volume expansion (PVE) are governed only by the exponential function. It is shown that the exponential distribution of the thermal activation barrier produces the SEF in PDC, suggesting that thermal energy, as well as photon energy, is incorporated in PDC mechanisms. The differences in dynamics among three major photoinduced effects (PD, PVE, and PDC) in amorphous chalcogenides are now well understood.

  14. Analytical response function for planar Ge detectors

    NASA Astrophysics Data System (ADS)

    García-Alvarez, Juan A.; Maidana, Nora L.; Vanin, Vito R.; Fernández-Varea, José M.

    2016-04-01

    We model the response function (RF) of planar HPGe x-ray spectrometers for photon energies between around 10 keV and 100 keV. The RF is based on the proposal of Seltzer [1981. Nucl. Instrum. Methods 188, 133-151] and takes into account the full-energy absorption in the Ge active volume, the escape of Ge Kα and Kβ x-rays and the escape of photons after one Compton interaction. The relativistic impulse approximation is employed instead of the Klein-Nishina formula to describe incoherent photon scattering in the Ge crystal. We also incorporate a simple model for the continuous component of the spectrum produced by the escape of photo-electrons from the active volume. In our calculations we include external interaction contributions to the RF: (i) the incoherent scattering effects caused by the detector's Be window and (ii) the spectrum produced by photo-electrons emitted in the Ge dead layer that reach the active volume. The analytical RF model is compared with pulse-height spectra simulated using the PENELOPE Monte Carlo code.

  15. Vibrational and thermodynamic properties of β-HMX: a first-principles investigation.

    PubMed

    Wu, Zhongqing; Kalia, Rajiv K; Nakano, Aiichiro; Vashishta, Priya

    2011-05-28

    Thermodynamic properties of β-HMX crystal are investigated using the quasi-harmonic approximation and density functional theory within the local density approximation (LDA), generalized gradient approximation (GGA), and GGA + empirical van der Waals (vdW) correction. It is found that GGA well describes the thermal expansion coefficient and heat capacity but fails to produce correct bulk modulus and equilibrium volume. The vdW correction improves the bulk modulus and volume, but worsens the thermal expansion coefficient and heat capacity. In contrast, LDA describes all thermodynamic properties with reasonable accuracy, and overall is a good exchange-correlation functional for β-HMX molecular crystal. The results also demonstrate significant contributions of phonons to the equation of state. The static calculation of equilibrium volume for β-HMX differs from the room-temperature value incorporating lattice vibrations by over 5%. Therefore, for molecular crystals, it is essential to include phonon contributions when calculated equation of state is compared with experimental data at ambient condition. © 2011 American Institute of Physics

  16. Effects of Simulated Surface Effect Ship Motions on Crew Habitability. Phase II. Volume 4. Crew Cognitive Functions, Physiological Stress, and Sleep

    DTIC Science & Technology

    1977-05-01

    1OUM 44 rRE JamesIV FUNCION , Jn Vanlo07 James C./Miller NW147-C0_el H~fumnan Factors Research, Incorporated AE OKUI UBR Goleta, California 93017 311...a reduction in renal blood flow) and dilation of the skeletal muscle vessels produce a redistribution of the enlarged cardiac output which anticipates

  17. Aqueous cholesteric liquid crystals using uncharged rodlike polypeptides. Polypeptide vesicles by conformation-specific assembly. Ordered chiral macroporous hybrid silica-polypeptide composites

    NASA Astrophysics Data System (ADS)

    Bellomo, Enrico Giuseppe

    2005-07-01

    Aqueous cholesteric liquid crystals using uncharged rodlike polypeptides . The aqueous, lyotropic liquid-crystalline phase behavior of an alpha helical polypeptide, has been studied using optical microscopy and X-ray scattering. Solutions of optically pure polypeptide were found to form cholesteric liquid crystals at volume fractions that decreased with increasing average chain length. At very high volume fractions, the formation of a hexagonal mesophase was observed. The pitch of the cholesteric phase could be varied by a mixture of enantiomeric samples, where the pitch increased as the mixture approached equimolar. The cholesteric phases could be untwisted, using either magnetic field or shear flow, into nematic phases, which relaxed into cholesterics upon removal of field or shear. We have found that the phase diagram of this polypeptide in aqueous solution parallels that of poly(gamma-benzyl glutamate) in organic solvents, thus providing a useful system for liquid-crystal applications requiring water as solvent. Polypeptide vesicles by conformation-specific assembly. We have found that block copolymers composed of polypeptide segments provide significant advantages in controlling both the function and supramolecular structure of bioinspired self-assemblies. Incorporation of the stable chain conformations found in proteins into block copolymers was found to provide an additional element of control, beyond amphiphilicity and composition that defines self-assembled architecture. The abundance of functionality present in amino acids, and the ease by which they can be incorporated into these materials, also provides a powerful mechanism to impart block copolypeptides with function. This combination of structure and function work synergistically to enable significant advantages in the preparation of therapeutic agents as well as provide insight into design of self-assemblies beginning to approach the complexity of natural structures such as virus capsids. Ordered chiral macroporous hybrid silica-polypeptide composites. The mineralization of organic templates has been investigated as an effective way to control the size and structure of inorganic frameworks. Hybrid structures incorporating polypeptide with silica have been prepared and characterized using X-ray scattering, TGA, SEM and TEM. The results support the interaction between silica and polymer to form ordered chiral macroporous structures that can be easily controlled by polymer molecular weight and volume fraction.

  18. A method to directly measure maximum volume of fish stomachs or digestive tracts

    USGS Publications Warehouse

    Burley, C.C.; Vigg, S.

    1989-01-01

    A new method for measuring maximum stomach or digestive tract volume of fish incorporates air injection at constant pressure with water displacement to measure directly the internal volume of a stomach or analogous structure. The method was tested with coho salmon, Oncorhynchus kisutch (Walbaum), which has a true stomach, and northern squawfish, Ptychocheilus oregonensis(Richardson), which has a modified foregut as a functional analogue. Both species were collected during July-October 1987 from the Columbia River, U.S.A. Relationships between fish weight (= volume) and maximum volume of the digestive organ were best fitted for coho salmon by an allometric model and for northern squawfish by an exponential model. Least squares regression analysis of individual measurements showed less variability in the volume of coho salmon stomachs (R2= 0.85) than in the total digestive tracts (R2= 0.55) and foreguts (R2= 0.61) of northern squawfish, relative to fish size. Compared to previous methods, the new technique has the advantage of accurately measuring the internal volume of a wide range of digestive organ shapes and sizes.

  19. Quantification of brain tissue through incorporation of partial volume effects

    NASA Astrophysics Data System (ADS)

    Gage, Howard D.; Santago, Peter, II; Snyder, Wesley E.

    1992-06-01

    This research addresses the problem of automatically quantifying the various types of brain tissue, CSF, white matter, and gray matter, using T1-weighted magnetic resonance images. The method employs a statistical model of the noise and partial volume effect and fits the derived probability density function to that of the data. Following this fit, the optimal decision points can be found for the materials and thus they can be quantified. Emphasis is placed on repeatable results for which a confidence in the solution might be measured. Results are presented assuming a single Gaussian noise source and a uniform distribution of partial volume pixels for both simulated and actual data. Thus far results have been mixed, with no clear advantage being shown in taking into account partial volume effects. Due to the fitting problem being ill-conditioned, it is not yet clear whether these results are due to problems with the model or the method of solution.

  20. Economic analysis of standard interface modules for use with the multi-mission spacecraft, volume 1

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A preliminary technical and economic feasibility study was made of the use of Standardized Interstate Modules (SIM) to perform electual interfacing functions that were historically incorporated into sensors. Sensor interface functions that are capable of standardization from the set of missions planned for the NASA Multi-Mission Spacecraft (MMS) in the 1981 to 1985 time period were identified. The cost savings that could be achieved through the replacement of nonstandard sensor interface flight hardware that might be used in these missions with SIM were examined.

  1. Toward Increasing Micropore Volume between Hybrid Layered Perovskites with Silsesquioxane Interlayers.

    PubMed

    Kataoka, Sho; Kamimura, Yoshihiro; Endo, Akira

    2018-04-10

    Hybrid organic-inorganic layered perovskites are typically nonporous solids. However, the incorporation of silsesquioxanes with a cubic cage structure as interlayer materials creates micropores between the perovskite layers. In this study, we increase in the micropore volume in layered perovskites by replacing a portion of the silsesquioxane interlayers with organic amines. In the proposed method, approximately 20% of the silsesquioxane interlayers can be replaced without changing the layer distance owing to the size of the silsesquioxane. When small amines (e.g., ethylamine) are used in this manner, the micropore volume of the obtained hybrid layered perovskites increases by as much as 44%; when large amines (e.g., phenethylamine) are used, their micropore volume decreases by as much as 43%. Through the variation of amine fraction, the micropore volume can be adjusted in the range. Finally, the magnetic moment measurements reveal that the layered perovskites with mixed interlayers exhibit ferromagnetic ordering at temperature below 20 K, thus indicating that the obtained perovskites maintain their functions as layered perovskites.

  2. Should regional ventilation function be considered during radiation treatment planning to prevent radiation-induced complications?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lan, Fujun; Jeudy, Jean; D’Souza, Warren

    Purpose: To investigate the incorporation of pretherapy regional ventilation function in predicting radiation fibrosis (RF) in stage III nonsmall cell lung cancer (NSCLC) patients treated with concurrent thoracic chemoradiotherapy. Methods: Thirty-seven patients with stage III NSCLC were retrospectively studied. Patients received one cycle of cisplatin–gemcitabine, followed by two to three cycles of cisplatin–etoposide concurrently with involved-field thoracic radiotherapy (46–66 Gy; 2 Gy/fraction). Pretherapy regional ventilation images of the lung were derived from 4D computed tomography via a density change–based algorithm with mass correction. In addition to the conventional dose–volume metrics (V{sub 20}, V{sub 30}, V{sub 40}, and mean lung dose),more » dose–function metrics (fV{sub 20}, fV{sub 30}, fV{sub 40}, and functional mean lung dose) were generated by combining regional ventilation and radiation dose. A new class of metrics was derived and referred to as dose–subvolume metrics (sV{sub 20}, sV{sub 30}, sV{sub 40}, and subvolume mean lung dose); these were defined as the conventional dose–volume metrics computed on the functional lung. Area under the receiver operating characteristic curve (AUC) values and logistic regression analyses were used to evaluate these metrics in predicting hallmark characteristics of RF (lung consolidation, volume loss, and airway dilation). Results: AUC values for the dose–volume metrics in predicting lung consolidation, volume loss, and airway dilation were 0.65–0.69, 0.57–0.70, and 0.69–0.76, respectively. The respective ranges for dose–function metrics were 0.63–0.66, 0.61–0.71, and 0.72–0.80 and for dose–subvolume metrics were 0.50–0.65, 0.65–0.75, and 0.73–0.85. Using an AUC value = 0.70 as cutoff value suggested that at least one of each type of metrics (dose–volume, dose–function, dose–subvolume) was predictive for volume loss and airway dilation, whereas lung consolidation cannot be accurately predicted by any of the metrics. Logistic regression analyses showed that dose–function and dose–subvolume metrics were significant (P values ≤ 0.02) in predicting volume airway dilation. Likelihood ratio test showed that when combining dose–function and/or dose–subvolume metrics with dose–volume metrics, the achieved improvements of prediction accuracy on volume loss and airway dilation were significant (P values ≤ 0.04). Conclusions: The authors’ results demonstrated that the inclusion of regional ventilation function improved accuracy in predicting RF. In particular, dose–subvolume metrics provided a promising method for preventing radiation-induced pulmonary complications.« less

  3. Structural-functional integrated concrete with macro-encapsulated inorganic PCM

    NASA Astrophysics Data System (ADS)

    Mohseni, Ehsan; Tang, Waiching; Wang, Zhiyu

    2017-09-01

    Over the last few years the application of thermal energy storage system incorporating phase change materials (PCMs) to foster productivity and efficiency of buildings energy has grown rapidly. In this study, a structural-functional integrated concrete was developed using macro-encapsulated PCM-lightweight aggregate (LWA) as partial replacement (25 and 50% by volume) of coarse aggregate in control concrete. The PCM-LWA was prepared by incorporation of an inorganic PCM into porous LWAs through vacuum impregnation. The mechanical and thermal performance of PCM-LWA concrete were studied. The test results revealed that though the compressive strength of concrete with PCM-LWA was lower than the control concrete, but ranged from 22.02 MPa to 42.88 MPa which above the minimum strength requirement for structural application. The thermal performance test indicated that macro-encapsulated PCM-LWA has underwent the phase change transition reducing the indoor temperature.

  4. Incorporation of inorganic mercury (Hg²⁺) in pelagic food webs of ultraoligotrophic and oligotrophic lakes: the role of different plankton size fractions and species assemblages.

    PubMed

    Soto Cárdenas, Carolina; Diéguez, Maria C; Ribeiro Guevara, Sergio; Marvin-DiPasquale, Mark; Queimaliños, Claudia P

    2014-10-01

    In lake food webs, pelagic basal organisms such as bacteria and phytoplankton incorporate mercury (Hg(2+)) from the dissolved phase and pass the adsorbed and internalized Hg to higher trophic levels. This experimental investigation addresses the incorporation of dissolved Hg(2+) by four plankton fractions (picoplankton: 0.2-2.7 μm; pico+nanoplankton: 0.2-20 μm; microplankton: 20-50 μm; and mesoplankton: 50-200 μm) obtained from four Andean Patagonian lakes, using the radioisotope (197)Hg(2+). Species composition and abundance were determined in each plankton fraction. In addition, morphometric parameters such as surface and biovolume were calculated using standard geometric models. The incorporation of Hg(2+) in each plankton fraction was analyzed through three concentration factors: BCF (bioconcentration factor) as a function of cell or individual abundance, SCF (surface concentration factor) and VCF (volume concentration factor) as functions of individual exposed surface and biovolume, respectively. Overall, this investigation showed that through adsorption and internalization, pico+nanoplankton play a central role leading the incorporation of Hg(2+) in pelagic food webs of Andean lakes. Larger planktonic organisms included in the micro- and mesoplankton fractions incorporate Hg(2+) by surface adsorption, although at a lesser extent. Mixotrophic bacterivorous organisms dominate the different plankton fractions of the lakes connecting trophic levels through microbial loops (e.g., bacteria-nanoflagellates-crustaceans; bacteria-ciliates-crustaceans; endosymbiotic algae-ciliates). These bacterivorous organisms, which incorporate Hg from the dissolved phase and through their prey, appear to explain the high incorporation of Hg(2+) observed in all the plankton fractions. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Incorporation of inorganic mercury (Hg2+) in pelagic food webs of ultraoligotrophic and oligotrophic lakes: the role of different plankton size fractions and species assemblages

    USGS Publications Warehouse

    Soto Cárdenas, Carolina; Diéguez, Maria C.; Ribeiro Guevara, Sergio; Marvin-DiPasquale, Mark; Queimaliños, Claudia P.

    2014-01-01

    In lake food webs, pelagic basal organisms such as bacteria and phytoplankton incorporate mercury (Hg2+) from the dissolved phase and pass the adsorbed and internalized Hg to higher trophic levels. This experimental investigation addresses the incorporation of dissolved Hg2+ by four plankton fractions (picoplankton: 0.2–2.7 μm; pico + nanoplankton: 0.2–20 μm; microplankton: 20–50 μm; and mesoplankton: 50–200 μm) obtained from four Andean Patagonian lakes, using the radioisotope 197Hg2+. Species composition and abundance were determined in each plankton fraction. In addition, morphometric parameters such as surface and biovolume were calculated using standard geometric models. The incorporation of Hg2+ in each plankton fraction was analyzed through three concentration factors: BCF (bioconcentration factor) as a function of cell or individual abundance, SCF (surface concentration factor) and VCF (volume concentration factor) as functions of individual exposed surface and biovolume, respectively. Overall, this investigation showed that through adsorption and internalization, pico + nanoplankton play a central role leading the incorporation of Hg2+ in pelagic food webs of Andean lakes. Larger planktonic organisms included in the micro- and mesoplankton fractions incorporate Hg2+ by surface adsorption, although at a lesser extent. Mixotrophic bacterivorous organisms dominate the different plankton fractions of the lakes connecting trophic levels through microbial loops (e.g., bacteria–nanoflagellates–crustaceans; bacteria–ciliates–crustaceans; endosymbiotic algae–ciliates). These bacterivorous organisms, which incorporate Hg from the dissolved phase and through their prey, appear to explain the high incorporation of Hg2+ observed in all the plankton fractions.

  6. A first-principles study of He, Xe, Kr and O incorporation in thorium carbide

    NASA Astrophysics Data System (ADS)

    Pérez Daroca, D.; Llois, A. M.; Mosca, H. O.

    2015-05-01

    Thorium-based materials are currently being investigated in relation with their potential utilization in Generation-IV reactors as nuclear fuels. Understanding the incorporation of fission products and oxygen is very important to predict the behavior of nuclear fuels. A first approach to this goal is the study of the incorporation energies and stability of these elements in the material. By means of first-principles calculations within the framework of density functional theory, we calculate the incorporation energies of He, Xe, Kr and O atoms in Th and C vacancy sites, in tetrahedral interstitials and in Schottky defects along the 〈1 1 1〉 and 〈1 0 0〉 directions. We also analyze atomic displacements, volume modifications and Bader charges. This kind of results for ThC, to the best authors' knowledge, have not been obtained previously, neither experimentally, nor theoretically. This should deal as a starting point towards the study of the complex behavior of fission products in irradiated ThC.

  7. Quantifying uncertainty in soot volume fraction estimates using Bayesian inference of auto-correlated laser-induced incandescence measurements

    NASA Astrophysics Data System (ADS)

    Hadwin, Paul J.; Sipkens, T. A.; Thomson, K. A.; Liu, F.; Daun, K. J.

    2016-01-01

    Auto-correlated laser-induced incandescence (AC-LII) infers the soot volume fraction (SVF) of soot particles by comparing the spectral incandescence from laser-energized particles to the pyrometrically inferred peak soot temperature. This calculation requires detailed knowledge of model parameters such as the absorption function of soot, which may vary with combustion chemistry, soot age, and the internal structure of the soot. This work presents a Bayesian methodology to quantify such uncertainties. This technique treats the additional "nuisance" model parameters, including the soot absorption function, as stochastic variables and incorporates the current state of knowledge of these parameters into the inference process through maximum entropy priors. While standard AC-LII analysis provides a point estimate of the SVF, Bayesian techniques infer the posterior probability density, which will allow scientists and engineers to better assess the reliability of AC-LII inferred SVFs in the context of environmental regulations and competing diagnostics.

  8. Alterations of the occipital lobe in schizophrenia

    PubMed Central

    Tohid, Hassaan; Faizan, Muhammad; Faizan, Uzma

    2015-01-01

    The relationship of the occipital lobe of the brain with schizophrenia is not commonly studied; however, this topic is considered an essential subject matter among clinicians and scientists. We conducted this systematic review to elaborate the relationship in depth. We found that most schizophrenic patients show normal occipital anatomy and physiology, a minority showed dwindled values, and some demonstrated augmented function and structure. The findings are laborious to incorporate within single disease models that present the involvement of the occipital lobe in schizophrenia. Schizophrenia progresses clinically in the mid-twenties and thirties and its prognosis is inadequate. Changes in the volume, the gray matter, and the white matter in the occipital lobe are quite evident; however, the mechanism behind this involvement is not yet fully understood. Therefore, we recommend further research to explore the occipital lobe functions and volumes across the different stages of schizophrenia. PMID:26166588

  9. Reducing Interpolation Artifacts for Mutual Information Based Image Registration

    PubMed Central

    Soleimani, H.; Khosravifard, M.A.

    2011-01-01

    Medical image registration methods which use mutual information as similarity measure have been improved in recent decades. Mutual Information is a basic concept of Information theory which indicates the dependency of two random variables (or two images). In order to evaluate the mutual information of two images their joint probability distribution is required. Several interpolation methods, such as Partial Volume (PV) and bilinear, are used to estimate joint probability distribution. Both of these two methods yield some artifacts on mutual information function. Partial Volume-Hanning window (PVH) and Generalized Partial Volume (GPV) methods are introduced to remove such artifacts. In this paper we show that the acceptable performance of these methods is not due to their kernel function. It's because of the number of pixels which incorporate in interpolation. Since using more pixels requires more complex and time consuming interpolation process, we propose a new interpolation method which uses only four pixels (the same as PV and bilinear interpolations) and removes most of the artifacts. Experimental results of the registration of Computed Tomography (CT) images show superiority of the proposed scheme. PMID:22606673

  10. Asymmetrical booster ascent guidance and control system design study. Volume 2: SSFS math models - Ascent. [space shuttle development

    NASA Technical Reports Server (NTRS)

    Williams, F. E.; Lemon, R. S.

    1974-01-01

    The engineering equations and mathematical models developed for use in the space shuttle functional simulator (SSFS) are presented, and include extensive revisions and additions to earlier documentation. Definitions of coordinate systems used by the SSFS models and coordinate tranformations are given, along with documentation of the flexible body mathematical models. The models were incorporated in the SSFS and are in the checkout stage.

  11. The DISAM Journal of International Security Assistance Management. Volume 25, Number 3, Spring 2003

    DTIC Science & Technology

    2003-01-01

    rights impact in Latin America (El Salvador, Guatemala, and Nicaragua). The focus is on research derived from secondary sources and student surveys...E. Berdahl, Information Systems, Incorporated, “ Impact of Foreign Military Sales Case Payment Schedule Improvements on Defense Security Assistance...specialists functioned as it was intended. Ashline’s story, recently reported in the New York Daily News, illustrates the impact that DCMA has on the

  12. The application of functional imaging techniques to personalise chemoradiotherapy in upper gastrointestinal malignancies.

    PubMed

    Wilson, J M; Partridge, M; Hawkins, M

    2014-09-01

    Functional imaging gives information about physiological heterogeneity in tumours. The utility of functional imaging tests in providing predictive and prognostic information after chemoradiotherapy for both oesophageal cancer and pancreatic cancer will be reviewed. The benefit of incorporating functional imaging into radiotherapy planning is also evaluated. In cancers of the upper gastrointestinal tract, the vast majority of functional imaging studies have used (18)F-fluorodeoxyglucose positron emission tomography (FDG-PET). Few studies in locally advanced pancreatic cancer have investigated the utility of functional imaging in risk-stratifying patients or aiding target volume definition. Certain themes from the oesophageal data emerge, including the need for a multiparametric assessment of functional images and the added value of response assessment rather than relying on single time point measures. The sensitivity and specificity of FDG-PET to predict treatment response and survival are not currently high enough to inform treatment decisions. This suggests that a multimodal, multiparametric approach may be required. FDG-PET improves target volume definition in oesophageal cancer by improving the accuracy of tumour length definition and by improving the nodal staging of patients. The ideal functional imaging test would accurately identify patients who are unlikely to achieve a pathological complete response after chemoradiotherapy and would aid the delineation of a biological target volume that could be used for treatment intensification. The current limitations of published studies prevent integrating imaging-derived parameters into decision making on an individual patient basis. These limitations should inform future trial design in oesophageal and pancreatic cancers. Copyright © 2014 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  13. Automated pulmonary lobar ventilation measurements using volume-matched thoracic CT and MRI

    NASA Astrophysics Data System (ADS)

    Guo, F.; Svenningsen, S.; Bluemke, E.; Rajchl, M.; Yuan, J.; Fenster, A.; Parraga, G.

    2015-03-01

    Objectives: To develop and evaluate an automated registration and segmentation pipeline for regional lobar pulmonary structure-function measurements, using volume-matched thoracic CT and MRI in order to guide therapy. Methods: Ten subjects underwent pulmonary function tests and volume-matched 1H and 3He MRI and thoracic CT during a single 2-hr visit. CT was registered to 1H MRI using an affine method that incorporated block-matching and this was followed by a deformable step using free-form deformation. The resultant deformation field was used to deform the associated CT lobe mask that was generated using commercial software. 3He-1H image registration used the same two-step registration method and 3He ventilation was segmented using hierarchical k-means clustering. Whole lung and lobar 3He ventilation and ventilation defect percent (VDP) were generated by mapping ventilation defects to CT-defined whole lung and lobe volumes. Target CT-3He registration accuracy was evaluated using region- , surface distance- and volume-based metrics. Automated whole lung and lobar VDP was compared with semi-automated and manual results using paired t-tests. Results: The proposed pipeline yielded regional spatial agreement of 88.0+/-0.9% and surface distance error of 3.9+/-0.5 mm. Automated and manual whole lung and lobar ventilation and VDP were not significantly different and they were significantly correlated (r = 0.77, p < 0.0001). Conclusion: The proposed automated pipeline can be used to generate regional pulmonary structural-functional maps with high accuracy and robustness, providing an important tool for image-guided pulmonary interventions.

  14. Inorganic Nanocrystals Functionalized Mesoporous Silica Nanoparticles: Fabrication and Enhanced Bio-applications

    NASA Astrophysics Data System (ADS)

    Zhao, Tiancong; Nguyen, Nam-Trung; Xie, Yang; Sun, Xiaofei; Li, Qin; Li, Xiaomin

    2017-12-01

    Mesoporous SiO2 nanoparticles (MSNs) are one of the most promising materials for bio-related applications due to advantages such as good biocompatibility, tunable mesopores and large pore volume. However, unlike the inorganic nanocrystals with abundant physical properties, MSNs alone lack functional features. Thus, they are not sufficiently suitable for bio-applications that require special functions. Consequently, MSNs are often functionalized by incorporating inorganic nanocrystals, which provide a wide range of intriguing properties. This review focuses on inorganic nanocrystals functionalized MSNs, both their fabrication and bio-applications. Some of the most utilized methods for coating mesoporous silica (mSiO2) on nanoparticles were summarized. Magnetic, fluorescence and photothermal inorganic nanocrystals functionalized MSNs were taken as examples to demonstrate the bio-applications. Furthermore, asymmetry of MSNs and their effects on functions were also highlighted.

  15. Space station full-scale docking/berthing mechanisms development

    NASA Technical Reports Server (NTRS)

    Burns, Gene C.; Price, Harold A.; Buchanan, David B.

    1988-01-01

    One of the most critical operational functions for the space station is the orbital docking between the station and the STS orbiter. The program to design, fabricate, and test docking/berthing mechanisms for the space station is described. The design reflects space station overall requirements and consists of two mating docking mechanism halves. One half is designed for use on the shuttle orbiter and incorporates capture and energy attenuation systems using computer controlled electromechanical actuators and/or attenuators. The mating half incorporates a flexible feature to allow two degrees of freedom at the module-to-module interface of the space station pressurized habitat volumes. The design concepts developed for the prototype units may be used for the first space station flight hardware.

  16. Steamed bread enriched with quercetin as an antiglycative food product: its quality attributes and antioxidant properties.

    PubMed

    Lin, Jing; Gwyneth Tan, Yuan Xin; Leong, Lai Peng; Zhou, Weibiao

    2018-06-20

    Quercetin, a natural antiglycative agent, was incorporated into steamed bread to produce a functional food that has high potential to lower the risk of diabetes. With the incorporation of quercetin at 1.20, 2.40, and 3.60%, the volume of steamed bread significantly decreased and the hardness of the crumb correspondingly increased with incremental quercetin content, while incorporation levels below 1.20% had no impact. Within this range of enrichment (1.2-3.6%), quercetin negatively affected the yeast activity with significantly less CO2 produced in dough during proofing. The wheat protein structure was altered by quercetin in terms of a higher level of β-sheets and a lower level of β-turns. The antioxidant capacity of the steamed bread with quercetin (0.05-0.2%) was significantly enhanced dose-dependently. A high inhibitory activity of quercetin-enriched steamed bread (0.05-0.2%) against fluorescent advanced glycation endproducts (AGEs) via several different mechanisms was observed. The inhibition of total AGEs from 0.2% quercetin-enriched steamed bread was around 40% during in vitro protein glycation. Overall, the results support quercetin-enriched steamed bread to be a promising functional food with high antioxidant and antiglycation properties.

  17. Degradation of Nylon-6/Clay Nanocomposites in NO(x)

    NASA Astrophysics Data System (ADS)

    Shelley, J. S.; Devries, K. L.

    2000-04-01

    Nylon-6 is an important engineering polymer that, in its fully spherulitic (bulk) form, has many applications in gears, rollers, and other long life cycle components. In 1993, Toyota commercialized a nylon-6/clay nanocomposite out of which it produced the timing belt cover for the 1993 Camry. Although these hybrid nanocomposites show significant improvements in their mechanical response characteristics, including yield strength and heat distortion temperature, little is known about the degradation of these properties due to environmental pollutants like NOx. Nylon-6 fibers are severely degraded by interaction with NOx and other pollutants, showing a strong synergism between applied load and environmental degradation. While the nanocomposites show a significant reduction in permeability of gases and water due to the incorporation of lamellar clay, their susceptibility to non-diffusional mechano-chemical degradation is unknown. The fracture toughness of these nylon-6/day nanocomposites increases, not as a function of clay content, but as a function of the volume of nylon-6 polymer chains influenced by the clay lamellar surfaces. Both the clay and the constrained volume offer the nanocomposites some protection from the deleterious effects of NOx. The time-to-failure at a given stress intensity factor as a function of clay content and constrained volume will be discussed along with fracture toughness of the materials.

  18. Volume Sensor Development Test. Series 5 - Multi-Compartment System

    DTIC Science & Technology

    2005-12-30

    while concurrently rejecting nuisance sources. The VSP system was also successfully integrated with the DD(X) Autonomic Fire Suppression System ( AFSS ...represents a functional prototype of the device-level layer of the envisioned DD(X) Flight I AFSS control system [24]. The system’s automated response to...present in the DD(X) Flight I design [24]. The VSP system was incorporated into the AFSS control system , replacing the fire and smoke detectors that were

  19. Alveolar Ridge Contouring with Free Connective Tissue Graft at Implant Placement: A 5-Year Consecutive Clinical Study.

    PubMed

    Hanser, Thomas; Khoury, Fouad

    2016-01-01

    This study evaluated volume stability after alveolar ridge contouring with free connective tissue grafts at implant placement in single-tooth gaps. A total of 52 single-tooth gaps with labial volume deficiencies in the maxilla (incisors, canines, and premolars) were consecutively treated with implants and concomitant free palatal connective tissue grafts in 46 patients between 2006 and 2009. Implants had to be covered with at least 2 mm peri-implant local bone after insertion. At implant placement, a free connective tissue graft from the palate was fixed inside a labial split-thickness flap to form an existing concave buccal alveolar ridge contour due to tissue volume deficiency into a convex shape. Standardized volumetric measurements of the labial alveolar contour using a template were evaluated before connective tissue grafting and at 2 weeks, 1 year, and 5 years after implantprosthetic incorporation. Tissue volume had increased significantly (P < .05) in all six reference points representing the outer alveolar soft tissue contour of the implant before connective tissue grafting to baseline (2 weeks after implant-prosthetic incorporation). Statistically, 50% of the reference points (P > .05) kept their volume from baseline to 1 year after prosthetic incorporation and from baseline to 5 years after prosthetic incorporation, respectively, whereas reference points located within the area of the implant sulcus showed a significant (P < .05) decrease in volume. Clinically, 5 years after prosthetic incorporation the originally concave buccal alveolar contour was still convex in all implants, leading to a continuous favorable anatomical shape and improved esthetic situation. Intraoral radiographs confirmed osseointegration and stable peri-implant parameters with a survival rate of 100% after a follow-up of approximately 5 years. Implant placement with concomitant free connective tissue grafting appears to be an appropriate long-term means to contour preexisting buccal alveolar volume deficiencies in single implants.

  20. Microencapsulation of Garcinia fruit extract by spray drying and its effect on bread quality.

    PubMed

    Ezhilarasi, Perumal Natarajan; Indrani, Dasappa; Jena, Bhabani Sankar; Anandharamakrishnan, Chinnaswamy

    2014-04-01

    (-)-Hydroxycitric acid (HCA) is the major acid present in the fruit rinds of certain species of Garcinia. HCA has been reported to have several health benefits. As HCA is highly hygroscopic in nature and thermally sensitive, it is difficult to incorporate in foodstuffs. Hence, Garcinia cowa fruit extract was microencapsulated using three different wall materials such as whey protein isolate (WPI), maltodextrin (MD) and a combination of whey protein isolate and maltodextrin (WPI + MD) by spray drying. Further, these microencapsulated powders were evaluated for their impact on bread quality and HCA retention. Maltodextrin (MD) encapsulates had higher free (86%) and net HCA (90%) recovery. Microencapsulates incorporated breads had enhanced qualitative characteristics and higher HCA content than water extract incorporated bread due to efficient encapsulation during bread baking. Comparatively, bread with MD encapsulates showed softer crumb texture, desirable sensory attributes with considerable volume and higher HCA content. The higher HCA contents of encapsulate incorporated breads were sufficient to claim for functionality of HCA in bread. Comparatively, MD had efficiently encapsulated Garcinia fruit extract during spray drying and bread baking. Spray drying proved to be an excellent encapsulation technique for incorporation into the food system. © 2013 Society of Chemical Industry.

  1. A novel partial volume effects correction technique integrating deconvolution associated with denoising within an iterative PET image reconstruction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merlin, Thibaut, E-mail: thibaut.merlin@telecom-bretagne.eu; Visvikis, Dimitris; Fernandez, Philippe

    2015-02-15

    Purpose: Partial volume effect (PVE) plays an important role in both qualitative and quantitative PET image accuracy, especially for small structures. A previously proposed voxelwise PVE correction method applied on PET reconstructed images involves the use of Lucy–Richardson deconvolution incorporating wavelet-based denoising to limit the associated propagation of noise. The aim of this study is to incorporate the deconvolution, coupled with the denoising step, directly inside the iterative reconstruction process to further improve PVE correction. Methods: The list-mode ordered subset expectation maximization (OSEM) algorithm has been modified accordingly with the application of the Lucy–Richardson deconvolution algorithm to the current estimationmore » of the image, at each reconstruction iteration. Acquisitions of the NEMA NU2-2001 IQ phantom were performed on a GE DRX PET/CT system to study the impact of incorporating the deconvolution inside the reconstruction [with and without the point spread function (PSF) model] in comparison to its application postreconstruction and to standard iterative reconstruction incorporating the PSF model. The impact of the denoising step was also evaluated. Images were semiquantitatively assessed by studying the trade-off between the intensity recovery and the noise level in the background estimated as relative standard deviation. Qualitative assessments of the developed methods were additionally performed on clinical cases. Results: Incorporating the deconvolution without denoising within the reconstruction achieved superior intensity recovery in comparison to both standard OSEM reconstruction integrating a PSF model and application of the deconvolution algorithm in a postreconstruction process. The addition of the denoising step permitted to limit the SNR degradation while preserving the intensity recovery. Conclusions: This study demonstrates the feasibility of incorporating the Lucy–Richardson deconvolution associated with a wavelet-based denoising in the reconstruction process to better correct for PVE. Future work includes further evaluations of the proposed method on clinical datasets and the use of improved PSF models.« less

  2. A multi-criteria approach to camera motion design for volume data animation.

    PubMed

    Hsu, Wei-Hsien; Zhang, Yubo; Ma, Kwan-Liu

    2013-12-01

    We present an integrated camera motion design and path generation system for building volume data animations. Creating animations is an essential task in presenting complex scientific visualizations. Existing visualization systems use an established animation function based on keyframes selected by the user. This approach is limited in providing the optimal in-between views of the data. Alternatively, computer graphics and virtual reality camera motion planning is frequently focused on collision free movement in a virtual walkthrough. For semi-transparent, fuzzy, or blobby volume data the collision free objective becomes insufficient. Here, we provide a set of essential criteria focused on computing camera paths to establish effective animations of volume data. Our dynamic multi-criteria solver coupled with a force-directed routing algorithm enables rapid generation of camera paths. Once users review the resulting animation and evaluate the camera motion, they are able to determine how each criterion impacts path generation. In this paper, we demonstrate how incorporating this animation approach with an interactive volume visualization system reduces the effort in creating context-aware and coherent animations. This frees the user to focus on visualization tasks with the objective of gaining additional insight from the volume data.

  3. Functionalization of deproteinized bovine bone with a coating-incorporated depot of BMP-2 renders the material efficiently osteoinductive and suppresses foreign-body reactivity.

    PubMed

    Wu, Gang; Hunziker, Ernst B; Zheng, Yuanna; Wismeijer, Daniel; Liu, Yuelian

    2011-12-01

    The repair of critical-sized bony defects remains a challenge in the fields of implantology, maxillofacial surgery and orthopaedics. As an alternative bone-defect filler to autologous bone grafts, deproteinized bovine bone (DBB) is highly osteoconductive and clinically now widely used. However, this product suffers from the disadvantage of not being intrinsically osteoinductive. In the present study, this property was conferred by coating DBB with a layer of calcium phosphate into which bone morphogenetic protein 2 (BMP-2) was incorporated. Granules of DBB bearing a coating-incorporated depot of BMP-2--together with the appropriate controls (DBB bearing a coating but no BMP-2; uncoated DBB bearing adsorbed BMP-2; uncoated DBB bearing no BMP-2)--were implanted subcutaneously in rats. Five weeks later, the implants were withdrawn for a histomorphometric analysis of the volume densities of (i) bone, (ii) bone marrow, (iii) foreign-body giant cells and (iv) fibrous capsular tissue. Parameters (i) and (ii) were highest, whilst parameters (iii) and (iv) were lowest in association with DBB bearing a coating-incorporated depot of BMP-2. Hence, this mode of functionalization not only confers DBB with the property of osteoinductivity but also improves its biocompatibility--thus dually enhancing its clinical potential in the repair of bony defects. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. 49 CFR 572.40 - Incorporated materials.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Register has approved the materials incorporated by reference. For materials subject to change, only the... incorporated. A notice of any change will be published in the Federal Register. As a convenience to the reader... volume of the Code of Federal Regulations. (b) The materials incorporated in this part by reference are...

  5. The Foreign Area Officer Program. Volume I. The Role of the Military Advisor

    DTIC Science & Technology

    1973-05-01

    attended the MAPA or MAO C&SC, and are not MAOP members. Some of these positions are advisory posi- tions. For purposes of this report, we did not...determine whether there is a comparable problem at the MAAG end--i.e. , requisitioning MAPA or MAO C&SC graduates and not getting them—or to what...U. S. Army training in advisor functions and roles is incorporated in the Military Assistance Programmer/Advisor ( MAPA ) and Military Assistance

  6. Enhanced catalytic activity through the tuning of micropore environment and supercritical CO2 processing: Al(porphyrin)-based porous organic polymers for the degradation of a nerve agent simulant.

    PubMed

    Totten, Ryan K; Kim, Ye-Seong; Weston, Mitchell H; Farha, Omar K; Hupp, Joseph T; Nguyen, SonBinh T

    2013-08-14

    An Al(porphyrin) functionalized with a large axial ligand was incorporated into a porous organic polymer (POP) using a cobalt-catalyzed acetylene trimerization strategy. Removal of the axial ligand afforded a microporous POP that is catalytically active in the methanolysis of a nerve agent simulant. Supercritical CO2 processing of the POP dramatically increased the pore size and volume, allowing for significantly higher catalytic activities.

  7. Nonlinear Optics Technology. Volume 1. Solid State Laser Technology. Phase 3

    DTIC Science & Technology

    1991-01-12

    84 Figure 5.6 Modulator diffraction efficiency as a function of peak power for several 86 RF frequencies Figure 5.7 Thermal effects in the modulator. a...far-field profile of a beam making a 87 double pass through the modulator operating with a peak power of 80 W and average power of 1.6 W. b) same...AU three shown incorporate phase conjugation to provide good beam quality. Figure 1.1a is a standard phase conjugated master oscillator power

  8. Systems for lung volume standardization during static and dynamic MDCT-based quantitative assessment of pulmonary structure and function.

    PubMed

    Fuld, Matthew K; Grout, Randall W; Guo, Junfeng; Morgan, John H; Hoffman, Eric A

    2012-08-01

    Multidetector-row computed tomography (MDCT) has emerged as a tool for quantitative assessment of parenchymal destruction, air trapping (density metrics), and airway remodeling (metrics relating airway wall and lumen geometry) in chronic obstructive pulmonary disease (COPD) and asthma. Critical to the accuracy and interpretability of these MDCT-derived metrics is the assurance that the lungs are scanned during a breathhold at a standardized volume. A computer monitored turbine-based flow meter system was developed to control patient breathholds and facilitate static imaging at fixed percentages of the vital capacity. Because of calibration challenges with gas density changes during multibreath xenon CT, an alternative system was required. The design incorporated dual rolling seal pistons. Both systems were tested in a laboratory environment and human subject trials. The turbine-based system successfully controlled lung volumes in 32/37 subjects, having a linear relationship for CT measured air volume between repeated scans: for all scans, the mean and confidence interval of the differences (scan1-scan2) was -9 mL (-169, 151); for total lung capacity alone 6 mL (-164, 177); for functional residual capacity alone, -23 mL (-172, 126). The dual-piston system successfully controlled lung volume in 31/41 subjects. Study failures related largely to subject noncompliance with verbal instruction and gas leaks around the mouthpiece. We demonstrate the successful use of a turbine-based system for static lung volume control and demonstrate its inadequacies for dynamic xenon CT studies. Implementation of a dual-rolling seal spirometer has been shown to adequately control lung volume for multibreath wash-in xenon CT studies. These systems coupled with proper patient coaching provide the tools for the use of CT to quantitate regional lung structure and function. The wash-in xenon CT method for assessing regional lung function, although not necessarily practical for routine clinical studies, provides for a dynamic protocol against which newly emerging single breath, dual-energy xenon CT measures can be validated. Copyright © 2012 AUR. Published by Elsevier Inc. All rights reserved.

  9. New optical probes for the continuous monitoring of renal function

    NASA Astrophysics Data System (ADS)

    Dorshow, Richard B.; Asmelash, Bethel; Chinen, Lori K.; Debreczeny, Martin P.; Fitch, Richard M.; Freskos, John N.; Galen, Karen P.; Gaston, Kimberly R.; Marzan, Timothy A.; Poreddy, Amruta R.; Rajagopalan, Raghavan; Shieh, Jeng-Jong; Neumann, William L.

    2008-02-01

    The ability to continuously monitor renal function via the glomerular filtration rate (GFR) in the clinic is currently an unmet medical need. To address this need we have developed a new series of hydrophilic fluorescent probes designed to clear via glomerular filtration for use as real time optical monitoring agents at the bedside. The ideal molecule should be freely filtered via the glomerular filtration barrier and be neither reabsorbed nor secreted by the renal tubule. In addition, we have hypothesized that a low volume of distribution into the interstitial space could also be advantageous. Our primary molecular design strategy employs a very small pyrazine-based fluorophore as the core unit. Modular chemistry for functionalizing these systems for optimal pharmacokinetics (PK) and photophysical properties have been developed. Structure-activity relationship (SAR) and pharmacokinetic (PK) studies involving hydrophilic pyrazine analogues incorporating polyethylene glycol (PEG), carbohydrate, amino acid and peptide functionality have been a focus of this work. Secondary design strategies for minimizing distribution into the interstitium while maintaining glomerular filtration include enhancing molecular volume through PEG substitution. In vivo optical monitoring experiments with advanced candidates have been correlated with plasma PK for measurement of clearance and hence GFR.

  10. Structure of the Nucleon and its Excitations

    NASA Astrophysics Data System (ADS)

    Kamleh, Waseem; Leinweber, Derek; Liu, Zhan-wei; Stokes, Finn; Thomas, Anthony; Thomas, Samuel; Wu, Jia-jun

    2018-03-01

    The structure of the ground state nucleon and its finite-volume excitations are examined from three different perspectives. Using new techniques to extract the relativistic components of the nucleon wave function, the node structure of both the upper and lower components of the nucleon wave function are illustrated. A non-trivial role for gluonic components is manifest. In the second approach, the parity-expanded variational analysis (PEVA) technique is utilised to isolate states at finite momenta, enabling a novel examination of the electric and magnetic form factors of nucleon excitations. Here the magnetic form factors of low-lying odd-parity nucleons are particularly interesting. Finally, the structure of the nucleon spectrum is examined in a Hamiltonian effective field theory analysis incorporating recent lattice-QCD determinations of low-lying two-particle scattering-state energies in the finite volume. The Roper resonance of Nature is observed to originate from multi-particle coupled-channel interactions while the first radial excitation of the nucleon sits much higher at approximately 1.9 GeV.

  11. A Solar Volumetric Receiver: Influence of Absorbing Cells Configuration on Device Thermal Performance

    NASA Astrophysics Data System (ADS)

    Yilbas, B. S.; Shuja, S. Z.

    2017-01-01

    Thermal performance of a solar volumetric receiver incorporating the different cell geometric configurations is investigated. Triangular, hexagonal, and rectangular absorbing cells are incorporated in the analysis. The fluid volume fraction, which is the ratio of the volume of the working fluid over the total volume of solar volumetric receiver, is introduced to assess the effect of cell size on the heat transfer rates in the receiver. In this case, reducing the fluid volume fraction corresponds to increasing cell size in the receiver. SiC is considered as the cell material, and air is used as the working fluid in the receiver. The Lambert's Beer law is incorporated to account for the solar absorption in the receiver. A finite element method is used to solve the governing equation of flow and heat transfer. It is found that the fluid volume fraction has significant effect on the flow field in the solar volumetric receiver, which also modifies thermal field in the working fluid. The triangular absorbing cell gives rise to improved effectiveness of the receiver and then follows the hexagonal and rectangular cells. The second law efficiency of the receiver remains high when hexagonal cells are used. This occurs for the fluid volume fraction ratio of 0.5.

  12. Diversifying biological fuel cell designs by use of nanoporous filters.

    PubMed

    Biffinger, Justin C; Ray, Ricky; Little, Brenda; Ringeisen, Bradley R

    2007-02-15

    The use of proton exchange membranes (PEMs) in biological fuel cells limits the diversity of novel designs for increasing output power or enabling autonomous function in unique environments. Here we show that selected nanoporous polymer filters (nylon, cellulose, or polycarbonate) can be used effectively in place of PEMs in a miniature microbial fuel cell (mini-MFC, device cross-section 2 cm2), generating a power density of 16 W/m3 with an uncoated graphite felt oxygen reduction reaction (ORR) cathode. The incorporation of polycarbonate or nylon membranes into biological fuel cell designs produced comparable power and durability to Nafion-117 membranes. Also, high power densities for novel larger (5 cm3 anode volume, 0.6 W/m3) and smaller (0.025 cm3 projected geometric volume, average power density 10 W/m3) chamberless and pumpless microbial fuel cells were observed. As an additional benefit, the nanoporous membranes isolated the anode from invading natural bacteria, increasing the potential applications for MFCs beyond aquatic sediment environments. This work is a practical solution for decreasing the cost of biological fuel cells while incorporating new features for powering long-term autonomous devices.

  13. A prototype of volume-controlled tidal liquid ventilator using independent piston pumps.

    PubMed

    Robert, Raymond; Micheau, Philippe; Cyr, Stéphane; Lesur, Olivier; Praud, Jean-Paul; Walti, Hervé

    2006-01-01

    Liquid ventilation using perfluorochemicals (PFC) offers clear theoretical advantages over gas ventilation, such as decreased lung damage, recruitment of collapsed lung regions, and lavage of inflammatory debris. We present a total liquid ventilator designed to ventilate patients with completely filled lungs with a tidal volume of PFC liquid. The two independent piston pumps are volume controlled and pressure limited. Measurable pumping errors are corrected by a programmed supervisor module, which modifies the inserted or withdrawn volume. Pump independence also allows easy functional residual capacity modifications during ventilation. The bubble gas exchanger is divided into two sections such that the PFC exiting the lungs is not in contact with the PFC entering the lungs. The heating system is incorporated into the metallic base of the gas exchanger, and a heat-sink-type condenser is placed on top of the exchanger to retrieve PFC vapors. The prototype was tested on 5 healthy term newborn lambs (<5 days old). The results demonstrate the efficiency and safety of the prototype in maintaining adequate gas exchange, normal acido-basis equilibrium, and cardiovascular stability during a short, 2-hour total liquid ventilator. Airway pressure, lung volume, and ventilation scheme were maintained in the targeted range.

  14. Shape-Memory Hydrogels: Evolution of Structural Principles To Enable Shape Switching of Hydrophilic Polymer Networks.

    PubMed

    Löwenberg, Candy; Balk, Maria; Wischke, Christian; Behl, Marc; Lendlein, Andreas

    2017-04-18

    The ability of hydrophilic chain segments in polymer networks to strongly interact with water allows the volumetric expansion of the material and formation of a hydrogel. When polymer chain segments undergo reversible hydration depending on environmental conditions, smart hydrogels can be realized, which are able to shrink/swell and thus alter their volume on demand. In contrast, implementing the capacity of hydrogels to switch their shape rather than volume demands more sophisticated chemical approaches and structural concepts. In this Account, the principles of hydrogel network design, incorporation of molecular switches, and hydrogel microstructures are summarized that enable a spatially directed actuation of hydrogels by a shape-memory effect (SME) without major volume alteration. The SME involves an elastic deformation (programming) of samples, which are temporarily fixed by reversible covalent or physical cross-links resulting in a temporary shape. The material can reverse to the original shape when these molecular switches are affected by application of a suitable stimulus. Hydrophobic shape-memory polymers (SMPs), which are established with complex functions including multiple or reversible shape-switching, may provide inspiration for the molecular architecture of shape-memory hydrogels (SMHs), but cannot be identically copied in the world of hydrophilic soft materials. For instance, fixation of the temporary shape requires cross-links to be formed also in an aqueous environment, which may not be realized, for example, by crystalline domains from the hydrophilic main chains as these may dissolve in presence of water. Accordingly, dual-shape hydrogels have evolved, where, for example, hydrophobic crystallizable side chains have been linked into hydrophilic polymer networks to act as temperature-sensitive temporary cross-links. By incorporating a second type of such side chains, triple-shape hydrogels can be realized. Considering the typically given light permeability of hydrogels and the fully hydrated state with easy permeation by small molecules, other types of stimuli like light, pH, or ions can be employed that may not be easily used in hydrophobic SMPs. In some cases, those molecular switches can respond to more than one stimulus, thus increasing the number of opportunities to induce actuation of these synthetic hydrogels. Beyond this, biopolymer-based hydrogels can be equipped with a shape switching function when facilitating, for example, triple helix formation in proteins or ionic interactions in polysaccharides. Eventually, microstructured SMHs such as hybrid or porous structures can combine the shape-switching function with an improved performance by helping to overcome frequent shortcomings of hydrogels such as low mechanical strength or volume change upon temporary cross-link cleavage. Specifically, shape switching without major volume alteration is possible in porous SMHs by decoupling small volume changes of pore walls on the microscale and the macroscopic sample size. Furthermore, oligomeric rather than short aliphatic side chains as molecular switches allow stabilization of the sample volumes. Based on those structural principles and switching functionalities, SMHs have already entered into applications as soft actuators and are considered, for example, for cell manipulation in biomedicine. In the context of those applications, switching kinetics, switching forces, and reversibility of switching are aspects to be further explored.

  15. PET imaging in adaptive radiotherapy of gastrointestinal tumours.

    PubMed

    Bulens, Philippe; Thomas, Melissa; Deroose, Christophe M; Haustermans, Karin

    2018-06-04

    Radiotherapy is the standard of care in the multimodality treatment of a variety of gastrointestinal (GI) tumours, such as oesophageal cancer, gastric cancer, rectal cancer and anal cancer. Additionally, radiotherapy has served as an alternative for surgery in patients with liver cancer, cancer of the biliary tract and pancreatic cancer. Positron-emission tomography (PET), generally in combination with computed tomography (CT), has an established role in the diagnosis, response assessment and (re-)staging of several GI tumours. However, the additional value of PET in adaptive radiotherapy, i.e. during the radiation treatment course and in the delineation process, is still unclear. When performed during radiotherapy, PET aims at assessing treatment-induced variations in functional tumour volumes to reduce the radiation target volume. Moreover, in the radiation treatment planning, tumour delineation could be more accurate by incorporating PET to identify the metabolic tumour volume. This review focuses on the additional value of PET for adaptive radiotherapy protocols as well as for the target volume adaptation for individualised treatment strategies in oesophageal, gastric, pancreatic, liver, biliary tract, rectal and anal neoplasms.

  16. Lung Cancer Risk Prediction Model Incorporating Lung Function: Development and Validation in the UK Biobank Prospective Cohort Study.

    PubMed

    Muller, David C; Johansson, Mattias; Brennan, Paul

    2017-03-10

    Purpose Several lung cancer risk prediction models have been developed, but none to date have assessed the predictive ability of lung function in a population-based cohort. We sought to develop and internally validate a model incorporating lung function using data from the UK Biobank prospective cohort study. Methods This analysis included 502,321 participants without a previous diagnosis of lung cancer, predominantly between 40 and 70 years of age. We used flexible parametric survival models to estimate the 2-year probability of lung cancer, accounting for the competing risk of death. Models included predictors previously shown to be associated with lung cancer risk, including sex, variables related to smoking history and nicotine addiction, medical history, family history of lung cancer, and lung function (forced expiratory volume in 1 second [FEV1]). Results During accumulated follow-up of 1,469,518 person-years, there were 738 lung cancer diagnoses. A model incorporating all predictors had excellent discrimination (concordance (c)-statistic [95% CI] = 0.85 [0.82 to 0.87]). Internal validation suggested that the model will discriminate well when applied to new data (optimism-corrected c-statistic = 0.84). The full model, including FEV1, also had modestly superior discriminatory power than one that was designed solely on the basis of questionnaire variables (c-statistic = 0.84 [0.82 to 0.86]; optimism-corrected c-statistic = 0.83; p FEV1 = 3.4 × 10 -13 ). The full model had better discrimination than standard lung cancer screening eligibility criteria (c-statistic = 0.66 [0.64 to 0.69]). Conclusion A risk prediction model that includes lung function has strong predictive ability, which could improve eligibility criteria for lung cancer screening programs.

  17. Probabilistic objective functions for margin-less IMRT planning

    NASA Astrophysics Data System (ADS)

    Bohoslavsky, Román; Witte, Marnix G.; Janssen, Tomas M.; van Herk, Marcel

    2013-06-01

    We present a method to implement probabilistic treatment planning of intensity-modulated radiation therapy using custom software plugins in a commercial treatment planning system. Our method avoids the definition of safety-margins by directly including the effect of geometrical uncertainties during optimization when objective functions are evaluated. Because the shape of the resulting dose distribution implicitly defines the robustness of the plan, the optimizer has much more flexibility than with a margin-based approach. We expect that this added flexibility helps to automatically strike a better balance between target coverage and dose reduction for surrounding healthy tissue, especially for cases where the planning target volume overlaps organs at risk. Prostate cancer treatment planning was chosen to develop our method, including a novel technique to include rotational uncertainties. Based on population statistics, translations and rotations are simulated independently following a marker-based IGRT correction strategy. The effects of random and systematic errors are incorporated by first blurring and then shifting the dose distribution with respect to the clinical target volume. For simplicity and efficiency, dose-shift invariance and a rigid-body approximation are assumed. Three prostate cases were replanned using our probabilistic objective functions. To compare clinical and probabilistic plans, an evaluation tool was used that explicitly incorporates geometric uncertainties using Monte-Carlo methods. The new plans achieved similar or better dose distributions than the original clinical plans in terms of expected target coverage and rectum wall sparing. Plan optimization times were only about a factor of two higher than in the original clinical system. In conclusion, we have developed a practical planning tool that enables margin-less probability-based treatment planning with acceptable planning times, achieving the first system that is feasible for clinical implementation.

  18. System diagnostics using qualitative analysis and component functional classification

    DOEpatents

    Reifman, J.; Wei, T.Y.C.

    1993-11-23

    A method for detecting and identifying faulty component candidates during off-normal operations of nuclear power plants involves the qualitative analysis of macroscopic imbalances in the conservation equations of mass, energy and momentum in thermal-hydraulic control volumes associated with one or more plant components and the functional classification of components. The qualitative analysis of mass and energy is performed through the associated equations of state, while imbalances in momentum are obtained by tracking mass flow rates which are incorporated into a first knowledge base. The plant components are functionally classified, according to their type, as sources or sinks of mass, energy and momentum, depending upon which of the three balance equations is most strongly affected by a faulty component which is incorporated into a second knowledge base. Information describing the connections among the components of the system forms a third knowledge base. The method is particularly adapted for use in a diagnostic expert system to detect and identify faulty component candidates in the presence of component failures and is not limited to use in a nuclear power plant, but may be used with virtually any type of thermal-hydraulic operating system. 5 figures.

  19. System diagnostics using qualitative analysis and component functional classification

    DOEpatents

    Reifman, Jaques; Wei, Thomas Y. C.

    1993-01-01

    A method for detecting and identifying faulty component candidates during off-normal operations of nuclear power plants involves the qualitative analysis of macroscopic imbalances in the conservation equations of mass, energy and momentum in thermal-hydraulic control volumes associated with one or more plant components and the functional classification of components. The qualitative analysis of mass and energy is performed through the associated equations of state, while imbalances in momentum are obtained by tracking mass flow rates which are incorporated into a first knowledge base. The plant components are functionally classified, according to their type, as sources or sinks of mass, energy and momentum, depending upon which of the three balance equations is most strongly affected by a faulty component which is incorporated into a second knowledge base. Information describing the connections among the components of the system forms a third knowledge base. The method is particularly adapted for use in a diagnostic expert system to detect and identify faulty component candidates in the presence of component failures and is not limited to use in a nuclear power plant, but may be used with virtually any type of thermal-hydraulic operating system.

  20. Utility of Functional Hemodynamics and Echocardiography to Aid Diagnosis and Management of Shock.

    PubMed

    McGee, William T; Raghunathan, Karthik; Adler, Adam C

    2015-12-01

    The utility of functional hemodynamics and bedside ultrasonography is increasingly recognized as advantageous for both improved diagnosis and management of shock states. In contrast to conventional "static" measures, "dynamic" hemodynamic measures and bedside imaging modalities enhance pathophysiology-based comprehensive understanding of shock states and the response to therapy. The current editions of major textbooks in the primary specialties--in which clinicians routinely encounter patients in shock--including surgery, anesthesia, emergency medicine, and internal medicine continue to incorporate traditional (conventional) descriptions of shock that use well-described (but potentially misleading) intravascular pressures to classify shock states. Reliance on such intravascular pressure measurements is not as helpful as newer "dynamic" functional measures including ultrasonography to both better assess volume responsiveness and biventricular cardiac function. This review thus emphasizes the application of current functional hemodynamics and ultrasonography to the diagnosis and management of shock as a contrast to conventional "static" pressure-based measures.

  1. Nontangent, Developed Contour Bulkheads for a Single-Stage Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Wu, K. Chauncey; Lepsch, Roger A., Jr.

    2000-01-01

    Dry weights for single-stage launch vehicles that incorporate nontangent, developed contour bulkheads are estimated and compared to a baseline vehicle with 1.414 aspect ratio ellipsoidal bulkheads. Weights, volumes, and heights of optimized bulkhead designs are computed using a preliminary design bulkhead analysis code. The dry weights of vehicles that incorporate the optimized bulkheads are predicted using a vehicle weights and sizing code. Two optimization approaches are employed. A structural-level method, where the vehicle's three major bulkhead regions are optimized separately and then incorporated into a model for computation of the vehicle dry weight, predicts a reduction of4365 lb (2.2 %) from the 200,679-lb baseline vehicle dry weight. In the second, vehicle-level, approach, the vehicle dry weight is the objective function for the optimization. For the vehicle-level analysis, modified bulkhead designs are analyzed and incorporated into the weights model for computation of a dry weight. The optimizer simultaneously manipulates design variables for all three bulkheads to reduce the dry weight. The vehicle-level analysis predicts a dry weight reduction of 5129 lb, a 2.6% reduction from the baseline weight. Based on these results, nontangent, developed contour bulkheads may provide substantial weight savings for single stage vehicles.

  2. Computational Quantification of the Cardiac Energy Consumption during Intra-Aortic Balloon Pumping Using a Cardiac Electromechanics Model

    PubMed Central

    Lim, Ki Moo; Lee, Jeong Sang; Gyeong, Min-Soo; Choi, Jae-Sung; Choi, Seong Wook

    2013-01-01

    To quantify the reduction in workload during intra-aortic balloon pump (IABP) therapy, indirect parameters are used, such as the mean arterial pressure during diastole, product of heart rate and peak systolic pressure, and pressure-volume area. Therefore, we investigated the cardiac energy consumption during IABP therapy using a cardiac electromechanics model. We incorporated an IABP function into a previously developed electromechanical model of the ventricle with a lumped model of the circulatory system and investigated the cardiac energy consumption at different IABP inflation volumes. When the IABP was used at inflation level 5, the cardiac output and stroke volume increased 11%, the ejection fraction increased 21%, the stroke work decreased 1%, the mean arterial pressure increased 10%, and the ATP consumption decreased 12%. These results show that although the ATP consumption is decreased significantly, stroke work is decreased only slightly, which indicates that the IABP helps the failed ventricle to pump blood efficiently. PMID:23341718

  3. Computational quantification of the cardiac energy consumption during intra-aortic balloon pumping using a cardiac electromechanics model.

    PubMed

    Lim, Ki Moo; Lee, Jeong Sang; Gyeong, Min-Soo; Choi, Jae-Sung; Choi, Seong Wook; Shim, Eun Bo

    2013-01-01

    To quantify the reduction in workload during intra-aortic balloon pump (IABP) therapy, indirect parameters are used, such as the mean arterial pressure during diastole, product of heart rate and peak systolic pressure, and pressure-volume area. Therefore, we investigated the cardiac energy consumption during IABP therapy using a cardiac electromechanics model. We incorporated an IABP function into a previously developed electromechanical model of the ventricle with a lumped model of the circulatory system and investigated the cardiac energy consumption at different IABP inflation volumes. When the IABP was used at inflation level 5, the cardiac output and stroke volume increased 11%, the ejection fraction increased 21%, the stroke work decreased 1%, the mean arterial pressure increased 10%, and the ATP consumption decreased 12%. These results show that although the ATP consumption is decreased significantly, stroke work is decreased only slightly, which indicates that the IABP helps the failed ventricle to pump blood efficiently.

  4. Rapid Airplane Parametric Input Design(RAPID)

    NASA Technical Reports Server (NTRS)

    Smith, Robert E.; Bloor, Malcolm I. G.; Wilson, Michael J.; Thomas, Almuttil M.

    2004-01-01

    An efficient methodology is presented for defining a class of airplane configurations. Inclusive in this definition are surface grids, volume grids, and grid sensitivity. A small set of design parameters and grid control parameters govern the process. The general airplane configuration has wing, fuselage, vertical tail, horizontal tail, and canard components. The wing, tail, and canard components are manifested by solving a fourth-order partial differential equation subject to Dirichlet and Neumann boundary conditions. The design variables are incorporated into the boundary conditions, and the solution is expressed as a Fourier series. The fuselage has circular cross section, and the radius is an algebraic function of four design parameters and an independent computational variable. Volume grids are obtained through an application of the Control Point Form method. Grid sensitivity is obtained by applying the automatic differentiation precompiler ADIFOR to software for the grid generation. The computed surface grids, volume grids, and sensitivity derivatives are suitable for a wide range of Computational Fluid Dynamics simulation and configuration optimizations.

  5. 49 CFR 587.5 - Incorporated materials.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... incorporated by reference. For materials subject to change, only the specific version approved by the Director of the Federal Register and specified in the regulation are incorporated. A notice of any change will... reference are listed in the Finding Aid Table found at the end of this volume of the Code of Federal...

  6. Comparison of volume and surface area nonpolar solvation free energy terms for implicit solvent simulations.

    PubMed

    Lee, Michael S; Olson, Mark A

    2013-07-28

    Implicit solvent models for molecular dynamics simulations are often composed of polar and nonpolar terms. Typically, the nonpolar solvation free energy is approximated by the solvent-accessible-surface area times a constant factor. More sophisticated approaches incorporate an estimate of the attractive dispersion forces of the solvent and∕or a solvent-accessible volume cavitation term. In this work, we confirm that a single volume-based nonpolar term most closely fits the dispersion and cavitation forces obtained from benchmark explicit solvent simulations of fixed protein conformations. Next, we incorporated the volume term into molecular dynamics simulations and find the term is not universally suitable for folding up small proteins. We surmise that while mean-field cavitation terms such as volume and SASA often tilt the energy landscape towards native-like folds, they also may sporadically introduce bottlenecks into the folding pathway that hinder the progression towards the native state.

  7. Comparison of volume and surface area nonpolar solvation free energy terms for implicit solvent simulations

    NASA Astrophysics Data System (ADS)

    Lee, Michael S.; Olson, Mark A.

    2013-07-01

    Implicit solvent models for molecular dynamics simulations are often composed of polar and nonpolar terms. Typically, the nonpolar solvation free energy is approximated by the solvent-accessible-surface area times a constant factor. More sophisticated approaches incorporate an estimate of the attractive dispersion forces of the solvent and/or a solvent-accessible volume cavitation term. In this work, we confirm that a single volume-based nonpolar term most closely fits the dispersion and cavitation forces obtained from benchmark explicit solvent simulations of fixed protein conformations. Next, we incorporated the volume term into molecular dynamics simulations and find the term is not universally suitable for folding up small proteins. We surmise that while mean-field cavitation terms such as volume and SASA often tilt the energy landscape towards native-like folds, they also may sporadically introduce bottlenecks into the folding pathway that hinder the progression towards the native state.

  8. Noise produced by turbulent flow into a rotor: Users manual for noise calculation

    NASA Technical Reports Server (NTRS)

    Amiet, R. K.; Egolf, C. G.; Simonich, J. C.

    1989-01-01

    A users manual for a computer program for the calculation of noise produced by turbulent flow into a helicopter rotor is presented. These inputs to the program are obtained from the atmospheric turbulence model and mean flow distortion calculation, described in another volume of this set of reports. Descriptions of the various program modules and subroutines, their function, programming structure, and the required input and output variables are included. This routine is incorporated as one module of NASA's ROTONET helicopter noise prediction program.

  9. Tissue culture apparatus for flight experimentation

    NASA Technical Reports Server (NTRS)

    Scheld, H. W.; Magnuson, J. W.; Krikorian, A. D.

    1985-01-01

    The development of an apparatus for in-flight treatment of cells, tissues, or small organisms for microscopic and chemical analyses is discussed. The hardware for the apparatus is to have: (1) automated functions, (2) the capability to interface with ground-based facilities, (3) independently controlled chambers, (4) variable chamber configurations and volumes, and (4) the capabilities for processing the materials. The components of the equipment used on Skylab 3 for the study of animal cells are described. The design of an apparatus which incorporates all the required capabilities is proposed.

  10. Passive, Collapsible Contingency Urinal for Human Space Flight

    NASA Technical Reports Server (NTRS)

    Jenson, Ryan

    2015-01-01

    Fluid transport systems for spacecraft face acute challenges because of the persistently unfamiliar and unforgiving low-gravity environment. IRPI, LLC, has developed a contingency wastewater collection and processing device that provides passive liquid collation, containment, bubble separation, and droplet coalescence functions. The lightweight, low-volume, low-cost, and potentially disposable device may be used for subsequent sampling, metering, storage, disposal, and/or reuse. The approach includes a fractal wetting design that incorporates smart capillary fluidics. This work could have a broad impact on capillary-based fluid management on spacecraft and on Earth.

  11. Continuous energy adjoint transport for photons in PHITS

    NASA Astrophysics Data System (ADS)

    Malins, Alex; Machida, Masahiko; Niita, Koji

    2017-09-01

    Adjoint Monte Carlo can be an effcient algorithm for solving photon transport problems where the size of the tally is relatively small compared to the source. Such problems are typical in environmental radioactivity calculations, where natural or fallout radionuclides spread over a large area contribute to the air dose rate at a particular location. Moreover photon transport with continuous energy representation is vital for accurately calculating radiation protection quantities. Here we describe the incorporation of an adjoint Monte Carlo capability for continuous energy photon transport into the Particle and Heavy Ion Transport code System (PHITS). An adjoint cross section library for photon interactions was developed based on the JENDL- 4.0 library, by adding cross sections for adjoint incoherent scattering and pair production. PHITS reads in the library and implements the adjoint transport algorithm by Hoogenboom. Adjoint pseudo-photons are spawned within the forward tally volume and transported through space. Currently pseudo-photons can undergo coherent and incoherent scattering within the PHITS adjoint function. Photoelectric absorption is treated implicitly. The calculation result is recovered from the pseudo-photon flux calculated over the true source volume. A new adjoint tally function facilitates this conversion. This paper gives an overview of the new function and discusses potential future developments.

  12. 78 FR 7467 - Self-Regulatory Organizations; Chicago Board Options Exchange, Incorporated; Notice of Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-01

    ... Effectiveness of a Proposed Rule Change Relating to Minimum Volume Orders January 28, 2013. Pursuant to Section... to codify the ``Minimum Volume Order.'' The text of the proposed rule change is provided below... Circular. (a)-(v) No changes. (w) Minimum Volume Order. A minimum volume order is an order represented in...

  13. Is There a Safe Lipoaspirate Volume? A Risk Assessment Model of Liposuction Volume as a Function of Body Mass Index.

    PubMed

    Chow, Ian; Alghoul, Mohammed S; Khavanin, Nima; Hanwright, Philip J; Mayer, Kristen E; Hume, Keith M; Murphy, Robert X; Gutowski, Karol A; Kim, John Y S

    2015-09-01

    No concrete data exist to support a specific volume at which liposuction becomes unsafe; surgeons rely on their own estimates, professional organization advisories, or institutional or government-imposed restrictions. This study represents the first attempt to quantify the comprehensive risk associated with varying liposuction volumes and its interaction with body mass index. Suction-assisted lipectomies were identified from the Tracking Operations and Outcomes for Plastic Surgeons database. Multivariate regression models incorporating the interaction between liposuction volume and body mass index were used to assess the influence of liposuction volume on complications and to develop a tool that returns a single adjusted odds ratio for any combination of body mass index and liposuction volume. Recursive partitioning was used to determine whether exceeding a threshold in liposuction volume per body mass index unit significantly increased complications. Sixty-nine of 4534 patients (1.5 percent) meeting inclusion criteria experienced a postoperative complication. Liposuction volume and body mass index were significant independent risk factors for complications. With progressively higher volumes, increasing body mass index reduced risk (OR, 0.99; 95 percent CI, 0.98 to 0.99; p = 0.007). Liposuction volumes in excess of 100 ml per unit of body mass index were an independent predictor of complications (OR, 4.58; 95 percent CI, 2.60 to 8.05; p < 0.001). Liposuction by board-certified plastic surgeons is safe, with a low risk of life-threatening complications. Traditional liposuction volume thresholds do not accurately convey individualized risk. The authors' risk assessment model demonstrates that volumes in excess of 100 ml per unit of body mass index confer an increased risk of complications. Therapeutic, III.

  14. An Improved Model for Predicting Radiation Pneumonitis Incorporating Clinical and Dosimetric Variables;Lung cancer; Radiation pneumonitis; Dose-volume histogram; Angiotensin converting enzyme inhibitor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jenkins, Peter, E-mail: peter.jenkins@glos.nhs.uk; Watts, Joanne

    2011-07-15

    Purpose: Single dose-volume metrics are of limited value for the prediction of radiation pneumonitis (RP) in day-to-day clinical practice. We investigated whether multiparametric models that incorporate clinical and physiologic factors might have improved accuracy. Methods and Materials: The records of 160 patients who received radiation therapy for non-small-cell lung cancer were reviewed. All patients were treated to the same dose and with an identical technique. Dosimetric, pulmonary function, and clinical parameters were analyzed to determine their ability to predict for the subsequent development of RP. Results: Twenty-seven patients (17%) developed RP. On univariate analysis, the following factors were significantly correlatedmore » with the risk of pneumonitis: fractional volume of lung receiving >5-20 Gy, absolute volume of lung spared from receiving >5-15 Gy, mean lung dose, craniocaudal position of the isocenter, transfer coefficient for carbon monoxide (KCOc), total lung capacity, coadministration of angiotensin converting enzyme inhibitors, and coadministration of angiotensin receptor antagonists. By combining the absolute volume of lung spared from receiving >5 Gy with the KCOc, we defined a new parameter termed Transfer Factor Spared from receiving >5 Gy (TFS{sub 5}). The area under the receiver operator characteristic curve for TFS{sub 5} was 0.778, increasing to 0.846 if patients receiving modulators of the renin-angiotensin system were excluded from the analysis. Patients with a TFS{sub 5} <2.17 mmol/min/kPa had a risk of RP of 30% compared with 5% for the group with a TFS{sub 5} {>=}2.17. Conclusions: TFS{sub 5} represents a simple parameter that can be used in routine clinical practice to more accurately segregate patients into high- and low-risk groups for developing RP.« less

  15. Systems for Lung Volume Standardization during Static and Dynamic MDCT-based Quantitative Assessment of Pulmonary Structure and Function

    PubMed Central

    Fuld, Matthew K.; Grout, Randall; Guo, Junfeng; Morgan, John H.; Hoffman, Eric A.

    2013-01-01

    Rationale and Objectives Multidetector-row Computed Tomography (MDCT) has emerged as a tool for quantitative assessment of parenchymal destruction, air trapping (density metrics) and airway remodeling (metrics relating airway wall and lumen geometry) in chronic obstructive pulmonary disease (COPD) and asthma. Critical to the accuracy and interpretability of these MDCT-derived metrics is the assurance that the lungs are scanned during a breath-hold at a standardized volume. Materials and Methods A computer monitored turbine-based flow meter system was developed to control patient breath-holds and facilitate static imaging at fixed percentages of the vital capacity. Due to calibration challenges with gas density changes during multi-breath xenon-CT an alternative system was required. The design incorporated dual rolling seal pistons. Both systems were tested in a laboratory environment and human subject trials. Results The turbine-based system successfully controlled lung volumes in 32/37 subjects, having a linear relationship for CT measured air volume between repeated scans: for all scans, the mean and confidence interval of the differences (scan1-scan2) was −9 ml (−169, 151); for TLC alone 6 ml (−164, 177); for FRC alone, −23 ml (−172, 126). The dual-piston system successfully controlled lung volume in 31/41 subjects. Study failures related largely to subject non-compliance with verbal instruction and gas leaks around the mouthpiece. Conclusion We demonstrate the successful use of a turbine-based system for static lung volume control and demonstrate its inadequacies for dynamic xenon-CT studies. Implementation of a dual-rolling seal spirometer has been shown to adequately control lung volume for multi-breath wash-in xenon-CT studies. These systems coupled with proper patient coaching provide the tools for the use of CT to quantitate regional lung structure and function. The wash-in xenon-CT method for assessing regional lung function, while not necessarily practical for routine clinical studies, provides for a dynamic protocol against which newly emerging single breath, dual-energy xenon-CT measures can be validated. PMID:22555001

  16. A discrete model of Ostwald ripening based on multiple pairwise interactions

    NASA Astrophysics Data System (ADS)

    Di Nunzio, Paolo Emilio

    2018-06-01

    A discrete multi-particle model of Ostwald ripening based on direct pairwise interactions is developed for particles with incoherent interfaces as an alternative to the classical LSW mean field theory. The rate of matter exchange depends on the average surface-to-surface interparticle distance, a characteristic feature of the system which naturally incorporates the effect of volume fraction of second phase. The multi-particle diffusion is described through the definition of an interaction volume containing all the particles involved in the exchange of solute. At small volume fractions this is proportional to the size of the central particle, at higher volume fractions it gradually reduces as a consequence of diffusion screening described on a geometrical basis. The topological noise present in real systems is also included. For volume fractions below about 0.1 the model predicts broad and right-skewed stationary size distributions resembling a lognormal function. Above this value, a transition to sharper, more symmetrical but still right-skewed shapes occurs. An excellent agreement with experiments is obtained for 3D particle size distributions of solid-solid and solid-liquid systems with volume fraction 0.07, 0.30, 0.52 and 0.74. The kinetic constant of the model depends on the cube root of volume fraction up to about 0.1, then increases rapidly with an upward concavity. It is in good agreement with the available literature data on solid-liquid mixtures in the volume fraction range from 0.20 to about 0.75.

  17. Volume-labeled nanoparticles and methods of preparation

    DOEpatents

    Wang, Wei; Gu, Baohua; Retterer, Scott T; Doktycz, Mitchel J

    2015-04-21

    Compositions comprising nanosized objects (i.e., nanoparticles) in which at least one observable marker, such as a radioisotope or fluorophore, is incorporated within the nanosized object. The nanosized objects include, for example, metal or semi-metal oxide (e.g., silica), quantum dot, noble metal, magnetic metal oxide, organic polymer, metal salt, and core-shell nanoparticles, wherein the label is incorporated within the nanoparticle or selectively in a metal oxide shell of a core-shell nanoparticle. Methods of preparing the volume-labeled nanoparticles are also described.

  18. Reconciling transport models across scales: The role of volume exclusion

    NASA Astrophysics Data System (ADS)

    Taylor, P. R.; Yates, C. A.; Simpson, M. J.; Baker, R. E.

    2015-10-01

    Diffusive transport is a universal phenomenon, throughout both biological and physical sciences, and models of diffusion are routinely used to interrogate diffusion-driven processes. However, most models neglect to take into account the role of volume exclusion, which can significantly alter diffusive transport, particularly within biological systems where the diffusing particles might occupy a significant fraction of the available space. In this work we use a random walk approach to provide a means to reconcile models that incorporate crowding effects on different spatial scales. Our work demonstrates that coarse-grained models incorporating simplified descriptions of excluded volume can be used in many circumstances, but that care must be taken in pushing the coarse-graining process too far.

  19. Psychological intervention with working memory training increases basal ganglia volume: A VBM study of inpatient treatment for methamphetamine use.

    PubMed

    Brooks, S J; Burch, K H; Maiorana, S A; Cocolas, E; Schioth, H B; Nilsson, E K; Kamaloodien, K; Stein, D J

    2016-01-01

    Protracted methamphetamine (MA) use is associated with decreased control over drug craving and altered brain volume in the frontostriatal network. However, the nature of volumetric changes following a course of psychological intervention for MA use is not yet known. 66 males (41 MA patients, 25 healthy controls, HC) between the ages of 18-50 were recruited, the MA patients from new admissions to an in-patient drug rehabilitation centre and the HC via public advertisement, both in Cape Town, South Africa. 17 MA patients received 4 weeks of treatment as usual (TAU), and 24 MA patients completed TAU plus daily 30-minute cognitive training (CT) using an N-back working memory task. Magnetic resonance imaging (MRI) at baseline and 4-week follow-up was acquired and voxel-based morphometry (VBM) was used for analysis. TAU was associated with larger bilateral striatum (caudate/putamen) volume, whereas CT was associated with more widespread increases of the bilateral basal ganglia (incorporating the amygdala and hippocampus) and reduced bilateral cerebellum volume coinciding with improvements in impulsivity scores. While psychological intervention is associated with larger volume in mesolimbic reward regions, the utilisation of additional working memory training as an adjunct to treatment may further normalize frontostriatal structure and function.

  20. Living Together in Space: The Design and Operation of the Life Support Systems on the International Space Station. Volume 1

    NASA Technical Reports Server (NTRS)

    Wieland, P. O.

    1998-01-01

    The International Space Station (ISS) incorporates elements designed and developed by an international consortium led by the United States (U.S.), and by Russia. For this cooperative effort to succeed, it is crucial that the designs and methods of design of the other partners are understood sufficiently to ensure compatibility. Environmental Control and Life Support (ECLS) is one system in which functions are performed independently on the Russian Segment (RS) and on the U.S./international segments. This document describes, in two volumes, the design and operation of the ECLS Systems (ECLSS) on board the ISS. This current volume, Volume 1, is divided into three chapters. Chapter 1 is a general overview of the ISS, describing the configuration, general requirements, and distribution of systems as related to the ECLSS, and includes discussion of the design philosophies of the partners and methods of verification of equipment. Chapter 2 describes the U.S. ECLSS and technologies in greater detail. Chapter 3 describes the ECLSS in the European Attached Pressurized Module (APM), Japanese Experiment Module (JEM), and Italian Mini-Pressurized Logistics Module (MPLM). Volume II describes the Russian ECLSS and technologies in greater detail. These documents present thorough, yet concise, descriptions of the ISS ECLSS.

  1. Improving the clinical correlation of multiple sclerosis black hole volume change by paired-scan analysis.

    PubMed

    Tam, Roger C; Traboulsee, Anthony; Riddehough, Andrew; Li, David K B

    2012-01-01

    The change in T 1-hypointense lesion ("black hole") volume is an important marker of pathological progression in multiple sclerosis (MS). Black hole boundaries often have low contrast and are difficult to determine accurately and most (semi-)automated segmentation methods first compute the T 2-hyperintense lesions, which are a superset of the black holes and are typically more distinct, to form a search space for the T 1w lesions. Two main potential sources of measurement noise in longitudinal black hole volume computation are partial volume and variability in the T 2w lesion segmentation. A paired analysis approach is proposed herein that uses registration to equalize partial volume and lesion mask processing to combine T 2w lesion segmentations across time. The scans of 247 MS patients are used to compare a selected black hole computation method with an enhanced version incorporating paired analysis, using rank correlation to a clinical variable (MS functional composite) as the primary outcome measure. The comparison is done at nine different levels of intensity as a previous study suggests that darker black holes may yield stronger correlations. The results demonstrate that paired analysis can strongly improve longitudinal correlation (from -0.148 to -0.303 in this sample) and may produce segmentations that are more sensitive to clinically relevant changes.

  2. Elasticity Dominated Surface Segregation of Small Molecules in Polymer Mixtures

    NASA Astrophysics Data System (ADS)

    Krawczyk, Jarosław; Croce, Salvatore; McLeish, T. C. B.; Chakrabarti, Buddhapriya

    2016-05-01

    We study the phenomenon of migration of the small molecular weight component of a binary polymer mixture to the free surface using mean field and self-consistent field theories. By proposing a free energy functional that incorporates polymer-matrix elasticity explicitly, we compute the migrant volume fraction and show that it decreases significantly as the sample rigidity is increased. A wetting transition, observed for high values of the miscibility parameter can be prevented by increasing the matrix rigidity. Estimated values of the bulk modulus suggest that the effect should be observable experimentally for rubberlike materials. This provides a simple way of controlling surface migration in polymer mixtures and can play an important role in industrial formulations, where surface migration often leads to decreased product functionality.

  3. Ceramic Hollow Fibre Constructs for Continuous Perfusion and Cell Harvest from 3D Hematopoietic Organoids

    PubMed Central

    Tahlawi, Asma; Li, Kang

    2018-01-01

    Tissue vasculature efficiently distributes nutrients, removes metabolites, and possesses selective cellular permeability for tissue growth and function. Engineered tissue models have been limited by small volumes, low cell densities, and invasive cell extraction due to ineffective nutrient diffusion and cell-biomaterial attachment. Herein, we describe the fabrication and testing of ceramic hollow fibre membranes (HFs) able to separate red blood cells (RBCs) and mononuclear cells (MNCs) and be incorporated into 3D tissue models to improve nutrient and metabolite exchange. These HFs filtered RBCs from human umbilical cord blood (CB) suspensions of 20% RBCs to produce 90% RBC filtrate suspensions. When incorporated within 5 mL of 3D collagen-coated polyurethane porous scaffold, medium-perfused HFs maintained nontoxic glucose, lactate, pH levels, and higher cell densities over 21 days of culture in comparison to nonperfused 0.125 mL scaffolds. This hollow fibre bioreactor (HFBR) required a smaller per-cell medium requirement and operated at cell densities > 10-fold higher than current 2D methods whilst allowing for continuous cell harvest through HFs. Herein, we propose HFs to improve 3D cell culture nutrient and metabolite diffusion, increase culture volume and cell density, and continuously harvest products for translational cell therapy biomanufacturing protocols. PMID:29760729

  4. Structure and thermodynamics of a mixture of patchy and spherical colloids: A multi-body association theory with complete reference fluid information

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bansal, Artee; Asthagiri, D.; Cox, Kenneth R.

    A mixture of solvent particles with short-range, directional interactions and solute particles with short-range, isotropic interactions that can bond multiple times is of fundamental interest in understanding liquids and colloidal mixtures. Because of multi-body correlations, predicting the structure and thermodynamics of such systems remains a challenge. Earlier Marshall and Chapman [J. Chem. Phys. 139, 104904 (2013)] developed a theory wherein association effects due to interactions multiply the partition function for clustering of particles in a reference hard-sphere system. The multi-body effects are incorporated in the clustering process, which in their work was obtained in the absence of the bulk medium.more » The bulk solvent effects were then modeled approximately within a second order perturbation approach. However, their approach is inadequate at high densities and for large association strengths. Based on the idea that the clustering of solvent in a defined coordination volume around the solute is related to occupancy statistics in that defined coordination volume, we develop an approach to incorporate the complete information about hard-sphere clustering in a bulk solvent at the density of interest. The occupancy probabilities are obtained from enhanced sampling simulations but we also develop a concise parametric form to model these probabilities using the quasichemical theory of solutions. We show that incorporating the complete reference information results in an approach that can predict the bonding state and thermodynamics of the colloidal solute for a wide range of system conditions.« less

  5. N-acetyl cysteine (NAC)-mediated detoxification and functionalization of poly(methyl methacrylate) bone cement.

    PubMed

    Tsukimura, Naoki; Yamada, Masahiro; Aita, Hideki; Hori, Norio; Yoshino, Fumihiko; Chang-Il Lee, Masaichi; Kimoto, Katsuhiko; Jewett, Anahid; Ogawa, Takahiro

    2009-07-01

    Currently used poly(methyl methacrylate) (PMMA)-based bone cement lacks osteoconductivity and induces osteolysis and implant loosening due to its cellular and tissue-toxicity. A high percentage of revision surgery following the use of bone cement has become a significant universal problem. This study determined whether incorporation of the amino acid derivative N-acetyl cysteine (NAC) in bone cement reduces its cytotoxicity and adds osteoconductivity to the material. Biocompatibility and bioactivity of PMMA-based bone cement with or without 25mm NAC incorporation was examined using rat bone marrow-derived osteoblastic cells. Osteoconductive potential of NAC-incorporated bone cement was determined by microCT bone morphometry and implant biomechanical test in the rat model. Generation of free radicals within the polymerizing bone cement was examined using electron spin resonance spectroscopy. Severely compromised viability and completely suppressed phenotypes of osteoblasts on untreated bone cement were restored to the normal level by NAC incorporation. Bone volume formed around 25mm NAC-incorporated bone cement was threefold greater than that around control bone cement. The strength of bone-bone cement integration was 2.2 times greater for NAC-incorporated bone cement. For NAC-incorporated bone cement, the spike of free radical generation ended within 12h, whereas for control bone cement, a peak level lasted for 6 days and a level greater than half the level of the peak was sustained for 20 days. NAC also increased the level of antioxidant glutathione in osteoblasts. These results suggest that incorporation of NAC in PMMA bone cement detoxifies the material by immediate and effective in situ scavenging of free radicals and increasing intracellular antioxidant reserves, and consequently adds osteoconductivity to the material.

  6. Precise segmentation of multiple organs in CT volumes using learning-based approach and information theory.

    PubMed

    Lu, Chao; Zheng, Yefeng; Birkbeck, Neil; Zhang, Jingdan; Kohlberger, Timo; Tietjen, Christian; Boettger, Thomas; Duncan, James S; Zhou, S Kevin

    2012-01-01

    In this paper, we present a novel method by incorporating information theory into the learning-based approach for automatic and accurate pelvic organ segmentation (including the prostate, bladder and rectum). We target 3D CT volumes that are generated using different scanning protocols (e.g., contrast and non-contrast, with and without implant in the prostate, various resolution and position), and the volumes come from largely diverse sources (e.g., diseased in different organs). Three key ingredients are combined to solve this challenging segmentation problem. First, marginal space learning (MSL) is applied to efficiently and effectively localize the multiple organs in the largely diverse CT volumes. Second, learning techniques, steerable features, are applied for robust boundary detection. This enables handling of highly heterogeneous texture pattern. Third, a novel information theoretic scheme is incorporated into the boundary inference process. The incorporation of the Jensen-Shannon divergence further drives the mesh to the best fit of the image, thus improves the segmentation performance. The proposed approach is tested on a challenging dataset containing 188 volumes from diverse sources. Our approach not only produces excellent segmentation accuracy, but also runs about eighty times faster than previous state-of-the-art solutions. The proposed method can be applied to CT images to provide visual guidance to physicians during the computer-aided diagnosis, treatment planning and image-guided radiotherapy to treat cancers in pelvic region.

  7. A volume change index for forest growth and sustainability

    Treesearch

    Paul Van Deusen; Francis Roesch

    2009-01-01

    A volume change index is suggested that is derived from growth components that can be estimated from remeasured plots. The new index incorporates more information than the traditional growth over removals, ratio. The new index directly indicates whether the standing volume will be increasing or decreasing if current conditions persist, whereas the ratio of...

  8. Atmospheric science facility pallet-only mode space transportation system payload (feasibility study), Volume 1

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The economic and technical feasibility is assessed of employing a pallet-only mode for conducting Atmospheric Magnetospheric Plasmas-in-Space experiments. A baseline design incorporating the experiment and instrument descriptions is developed. The prime instruments are packaged into four pallets in a physical and functional manner compatible with the Space Transportation System capabilities and/or constraints and an orbiter seven-day mission timeline. Operational compatibility is verified between the orbiter/payload and supporting facilities. The development status and the schedule requirements applicable to the Atmospheric Science Facility mission are identified. Conclusions and recommendations are presented and discussed.

  9. Satellite Power Systems (SPS) concept definition study. Volume 6: SPS technology requirements and verification

    NASA Technical Reports Server (NTRS)

    Hanley, G.

    1978-01-01

    Volume 6 of the SPS Concept Definition Study is presented and also incorporates results of NASA/MSFC in-house effort. This volume includes a supporting research and technology summary. Other volumes of the final report that provide additional detail are as follows: (1) Executive Summary; (2) SPS System Requirements; (3) SPS Concept Evolution; (4) SPS Point Design Definition; (5) Transportation and Operations Analysis; and Volume 7, SPS Program Plan and Economic Analysis.

  10. Application of Hydrogel in Reconstruction Surgery: Hydrogel/Fat Graft Complex Filler for Volume Reconstruction in Critical Sized Muscle Defects.

    PubMed

    Lui, Y F; Ip, W Y

    2016-01-01

    Autogenic fat graft usually suffers from degeneration and volume shrinkage in volume reconstruction applications. How to maintain graft viability and graft volume is an essential consideration in reconstruction therapies. In this presented investigation, a new fat graft transplantation method was developed aiming to improve long term graft viability and volume reconstruction effect by incorporation of hydrogel. The harvested fat graft is dissociated into small fragments and incorporated into a collagen based hydrogel to form a hydrogel/fat graft complex for volume reconstruction purpose. In vitro results indicate that the collagen based hydrogel can significantly improve the survivability of cells inside isolated graft. In a 6-month investigation on artificial created defect model, this hydrogel/fat graft complex filler has demonstrated the ability of promoting fat pad formation inside the targeted defect area. The newly generated fat pad can cover the whole defect and restore its original dimension in 6-month time point. Compared to simple fat transplantation, this hydrogel/fat graft complex system provides much improvement on long term volume restoration effect against degeneration and volume shrinkage. One notable effect is that there is continuous proliferation of adipose tissue throughout the 6-month period. In summary, the hydrogel/fat graft system presented in this investigation demonstrated a better and more significant effect on volume reconstruction in large sized volume defect than simple fat transplantation.

  11. Cost drivers and resource allocation in military health care systems.

    PubMed

    Fulton, Larry; Lasdon, Leon S; McDaniel, Reuben R

    2007-03-01

    This study illustrates the feasibility of incorporating technical efficiency considerations in the funding of military hospitals and identifies the primary drivers for hospital costs. Secondary data collected for 24 U.S.-based Army hospitals and medical centers for the years 2001 to 2003 are the basis for this analysis. Technical efficiency was measured by using data envelopment analysis; subsequently, efficiency estimates were included in logarithmic-linear cost models that specified cost as a function of volume, complexity, efficiency, time, and facility type. These logarithmic-linear models were compared against stochastic frontier analysis models. A parsimonious, three-variable, logarithmic-linear model composed of volume, complexity, and efficiency variables exhibited a strong linear relationship with observed costs (R(2) = 0.98). This model also proved reliable in forecasting (R(2) = 0.96). Based on our analysis, as much as $120 million might be reallocated to improve the United States-based Army hospital performance evaluated in this study.

  12. The effects of iterative reconstruction in CT on low-contrast liver lesion volumetry: a phantom study

    NASA Astrophysics Data System (ADS)

    Li, Qin; Berman, Benjamin P.; Schumacher, Justin; Liang, Yongguang; Gavrielides, Marios A.; Yang, Hao; Zhao, Binsheng; Petrick, Nicholas

    2017-03-01

    Tumor volume measured from computed tomography images is considered a biomarker for disease progression or treatment response. The estimation of the tumor volume depends on the imaging system parameters selected, as well as lesion characteristics. In this study, we examined how different image reconstruction methods affect the measurement of lesions in an anthropomorphic liver phantom with a non-uniform background. Iterative statistics-based and model-based reconstructions, as well as filtered back-projection, were evaluated and compared in this study. Statistics-based and filtered back-projection yielded similar estimation performance, while model-based yielded higher precision but lower accuracy in the case of small lesions. Iterative reconstructions exhibited higher signal-to-noise ratio but slightly lower contrast of the lesion relative to the background. A better understanding of lesion volumetry performance as a function of acquisition parameters and lesion characteristics can lead to its incorporation as a routine sizing tool.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, Carla S.; Xu, Liza; Olsen, Bradley D.

    Blending the small molecule osmolytes glycerol and trehalose with the model globular protein–polymer block copolymer mCherry-b-poly(N-isopropyl acrylamide) (mCherry-b-PNIPAM) is demonstrated to improve protein functionality in self-assembled nanostructures. The incorporation of either additive into block copolymers results in functionality retention in the solid state of 80 and 100% for PNIPAM volume fractions of 40 and 55%, respectively. This represents a large improvement over the 50–60% functionality observed in the absence of any additive. Furthermore, glycerol decreases the thermal stability of block copolymer films by 15–20 °C, while trehalose results in an improvement in the thermal stability by 15–20 °C. These resultsmore » suggest that hydrogen bond replacement is responsible for the retention of protein function but suppression or enhancement of thermal motion based on the glass transition of the osmolyte primarily determines thermal stability. While both osmolytes are observed to have a disordering effect on the nanostructure morphology with increasing concentration, this effect is less pronounced in materials with a larger polymer volume fraction. Glycerol preferentially localizes in the protein domains and swells the nanostructures, inducing disordering or a change in morphology depending on the PNIPAM coil fraction. In contrast, trehalose is observed to macrophase separate from the block copolymer, which results in nanodomains becoming more disordered without changing significantly in size.« less

  14. 78 FR 5538 - Self-Regulatory Organizations; Chicago Board Options Exchange, Incorporated; Notice of Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-25

    ... contracts, and qualifying volume of other proprietary products of 500,000 contracts (totaling 1,350,000... executed greater than (or equal to) 375,000 contracts of multiply-listed options volume but less than 1,500... contracts of multiply-listed options volume but less than 1,500,000 such contracts, the Clearing Trading...

  15. Diving in Head First: Finding the Volume of Norris lake

    ERIC Educational Resources Information Center

    Foster, Drew W.

    2008-01-01

    This article allows students to apply their knowledge and experience of area and volume to find the volume of Norris Lake, a large reservoir lake in Tennessee. Students have the opportunity to demonstrate their skills in using maps and scales as well as to incorporate the use of technology in developing the solution. This project satisfied the…

  16. TH-E-BRF-02: 4D-CT Ventilation Image-Based IMRT Plans Are Dosimetrically Comparable to SPECT Ventilation Image-Based Plans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kida, S; University of Tokyo Hospital, Bunkyo, Tokyo; Bal, M

    Purpose: An emerging lung ventilation imaging method based on 4D-CT can be used in radiotherapy to selectively avoid irradiating highly-functional lung regions, which may reduce pulmonary toxicity. Efforts to validate 4DCT ventilation imaging have been focused on comparison with other imaging modalities including SPECT and xenon CT. The purpose of this study was to compare 4D-CT ventilation image-based functional IMRT plans with SPECT ventilation image-based plans as reference. Methods: 4D-CT and SPECT ventilation scans were acquired for five thoracic cancer patients in an IRB-approved prospective clinical trial. The ventilation images were created by quantitative analysis of regional volume changes (amore » surrogate for ventilation) using deformable image registration of the 4D-CT images. A pair of 4D-CT ventilation and SPECT ventilation image-based IMRT plans was created for each patient. Regional ventilation information was incorporated into lung dose-volume objectives for IMRT optimization by assigning different weights on a voxel-by-voxel basis. The objectives and constraints of the other structures in the plan were kept identical. The differences in the dose-volume metrics have been evaluated and tested by a paired t-test. SPECT ventilation was used to calculate the lung functional dose-volume metrics (i.e., mean dose, V20 and effective dose) for both 4D-CT ventilation image-based and SPECT ventilation image-based plans. Results: Overall there were no statistically significant differences in any dose-volume metrics between the 4D-CT and SPECT ventilation imagebased plans. For example, the average functional mean lung dose of the 4D-CT plans was 26.1±9.15 (Gy), which was comparable to 25.2±8.60 (Gy) of the SPECT plans (p = 0.89). For other critical organs and PTV, nonsignificant differences were found as well. Conclusion: This study has demonstrated that 4D-CT ventilation image-based functional IMRT plans are dosimetrically comparable to SPECT ventilation image-based plans, providing evidence to use 4D-CT ventilation imaging for clinical applications. Supported in part by Free to Breathe Young Investigator Research Grant and NIH/NCI R01 CA 093626. The authors thank Philips Radiation Oncology Systems for the Pinnacle3 treatment planning systems.« less

  17. Rapid Airplane Parametric Input Design (RAPID)

    NASA Technical Reports Server (NTRS)

    Smith, Robert E.

    1995-01-01

    RAPID is a methodology and software system to define a class of airplane configurations and directly evaluate surface grids, volume grids, and grid sensitivity on and about the configurations. A distinguishing characteristic which separates RAPID from other airplane surface modellers is that the output grids and grid sensitivity are directly applicable in CFD analysis. A small set of design parameters and grid control parameters govern the process which is incorporated into interactive software for 'real time' visual analysis and into batch software for the application of optimization technology. The computed surface grids and volume grids are suitable for a wide range of Computational Fluid Dynamics (CFD) simulation. The general airplane configuration has wing, fuselage, horizontal tail, and vertical tail components. The double-delta wing and tail components are manifested by solving a fourth order partial differential equation (PDE) subject to Dirichlet and Neumann boundary conditions. The design parameters are incorporated into the boundary conditions and therefore govern the shapes of the surfaces. The PDE solution yields a smooth transition between boundaries. Surface grids suitable for CFD calculation are created by establishing an H-type topology about the configuration and incorporating grid spacing functions in the PDE equation for the lifting components and the fuselage definition equations. User specified grid parameters govern the location and degree of grid concentration. A two-block volume grid about a configuration is calculated using the Control Point Form (CPF) technique. The interactive software, which runs on Silicon Graphics IRIS workstations, allows design parameters to be continuously varied and the resulting surface grid to be observed in real time. The batch software computes both the surface and volume grids and also computes the sensitivity of the output grid with respect to the input design parameters by applying the precompiler tool ADIFOR to the grid generation program. The output of ADIFOR is a new source code containing the old code plus expressions for derivatives of specified dependent variables (grid coordinates) with respect to specified independent variables (design parameters). The RAPID methodology and software provide a means of rapidly defining numerical prototypes, grids, and grid sensitivity of a class of airplane configurations. This technology and software is highly useful for CFD research for preliminary design and optimization processes.

  18. Advanced Software Techniques for Data Management Systems. Volume 2: Space Shuttle Flight Executive System: Functional Design

    NASA Technical Reports Server (NTRS)

    Pepe, J. T.

    1972-01-01

    A functional design of software executive system for the space shuttle avionics computer is presented. Three primary functions of the executive are emphasized in the design: task management, I/O management, and configuration management. The executive system organization is based on the applications software and configuration requirements established during the Phase B definition of the Space Shuttle program. Although the primary features of the executive system architecture were derived from Phase B requirements, it was specified for implementation with the IBM 4 Pi EP aerospace computer and is expected to be incorporated into a breadboard data management computer system at NASA Manned Spacecraft Center's Information system division. The executive system was structured for internal operation on the IBM 4 Pi EP system with its external configuration and applications software assumed to the characteristic of the centralized quad-redundant avionics systems defined in Phase B.

  19. Preliminary design of an auxiliary power unit for the space shuttle. Volume 5: Selected system cycle performance data

    NASA Technical Reports Server (NTRS)

    Hamilton, M. L.; Burriss, W. L.

    1972-01-01

    Detailed cycle steady-state performance data are presented for the final auxiliary power unit (APU) system configuration. The selection configuration is a hydrogen-oxygen APU incorporating a recuperator to utilize the exhaust energy and using the cycle hydrogen flow as a means of cooling the component heat loads. The data are given in the form of computer printouts and provide the following: (1) verification of the adequacy of the design to meet the problem statement for steady-state performance; (2) overall system performance data for the vehicle system analyst to determine propellant consumption and hydraulic fluid temperature as a function for varying mission profiles, propellant inlet conditions, etc.; and (3) detailed component performance and cycle state point data to show what is happening in the cycle as a function of the external forcing functions.

  20. Functionality screen of streptavidin mutants by non-denaturing SDS-PAGE using biotin-4-fluorescein.

    PubMed

    Humbert, Nicolas; Ward, Thomas R

    2008-01-01

    Site-directed mutagenesis or directed evolution of proteins often leads to the production of inactive mutants. For streptavidin and related proteins, mutations may lead to the loss of their biotin-binding properties. With high-throughput screening methodologies in mind, it is imperative to detect, prior to the high-density protein production, the bacteria that produce non-functional streptavidin isoforms. Based on the incorporation of biotin-4-fluorescein in streptavidin mutants present in Escherichia coli bacterial extracts, we detail a functional screen that allows the identification of biotin-binding streptavidin variants. Bacteria are cultivated in a small volume, followed by a rapid treatment of the cells; biotin-4-fluorescein is added to the bacterial extract and loaded on an Sodium Dodecyl Sulfate Poly-Acrylamide Gel Electrophoresis (SDS-PAGE) under non-denaturing conditions. Revealing is performed using a UV transilluminator. This screen is thus easy to implement, cheap and requires only readily available equipment.

  1. Porosity of Self-Compacting Concrete (SCC) incorporating high volume fly ash

    NASA Astrophysics Data System (ADS)

    Kristiawan, S. A.; Sunarmasto; Murti, G. Y.

    2017-02-01

    Degradation of concrete could be triggered by the presence of aggressive agents from the environment into the body of concrete. The penetration of these agents is influenced by the pore characteristics of the concrete. Incorporating a pozzolanic material such as fly ash could modify the pore characteristic of the concrete. This research aims to investigate the influence of incorporating fly ash at high volume level on the porosity of Self-Compacting Concrete (SCC). Laboratory investigations were carried out following the ASTM C642 for measuring density and volume of permeable pores (voids) of the SCC with varying fly ash contents (50-70% by weight of total binder). In addition, a measurement of permeable voids by saturation method was carried out to obtain an additional volume of voids that could not be measured by the immersion and boiling method of ASTM C642. The results show that the influence of fly ash content on the porosity appears to be dependent on age of SCC. At age less than 56 d, fly ash tends to cause an increase of voids but at 90 d of age it reduces the pores. The additional pores that can be penetrated by vacuum saturation method counts about 50% of the total voids.

  2. A multiagent system enhancing home-care health services for chronic disease management.

    PubMed

    Koutkias, Vassilis G; Chouvarda, Ioanna; Maglaveras, Nicos

    2005-12-01

    In this paper, a multiagent system (MAS) is presented, aiming to enhance monitoring, surveillance, and educational services of a generic medical contact center (MCC) for chronic disease management. In such a home-care scenario, a persistent need arises for efficiently monitoring the patient contacts and the MCC's functionality, in order to effectively manage and interpret the large volume of medical data collected during the patient sessions with the system, and to assess the use of MCC resources. Software agents were adopted to provide the means to accomplish such real-time information-processing tasks, due to their autonomous, reactive and/or proactive nature, and their effectiveness in dynamic environments by incorporating coordination strategies. Specifically, the objective of the MAS is to monitor the MCC environment, detect important cases, and inform the healthcare and administrative personnel via alert messages, notifications, recommendations, and reports, prompting them for actions. The main aim of this paper is to present the overall design and implementation of a proposed MAS, emphasizing its functional model and architecture, as well as on the agent interactions and the knowledge-sharing mechanism incorporated, in the context of a generic MCC.

  3. Variations in respiratory excretion of carbon dioxide can be used to calculate pulmonary blood flow.

    PubMed

    Preiss, David A; Azami, Takafumi; Urman, Richard D

    2015-02-01

    A non-invasive means of measuring pulmonary blood flow (PBF) would have numerous benefits in medicine. Traditionally, respiratory-based methods require breathing maneuvers, partial rebreathing, or foreign gas mixing because exhaled CO2 volume on a per-breath basis does not accurately represent alveolar exchange of CO2. We hypothesized that if the dilutional effect of the functional residual capacity was accounted for, the relationship between the calculated volume of CO2 removed per breath and the alveolar partial pressure of CO2 would be reversely linear. A computer model was developed that uses variable tidal breathing to calculate CO2 removal per breath at the level of the alveoli. We iterated estimates for functional residual capacity to create the best linear fit of alveolar CO2 pressure and CO2 elimination for 10 minutes of breathing and incorporated the volume of CO2 elimination into the Fick equation to calculate PBF. The relationship between alveolar pressure of CO2 and CO2 elimination produced an R(2) = 0.83. The optimal functional residual capacity differed from the "actual" capacity by 0.25 L (8.3%). The repeatability coefficient leveled at 0.09 at 10 breaths and the difference between the PBF calculated by the model and the preset blood flow was 0.62 ± 0.53 L/minute. With variations in tidal breathing, a linear relationship exists between alveolar CO2 pressure and CO2 elimination. Existing technology may be used to calculate CO2 elimination during quiet breathing and might therefore be used to accurately calculate PBF in humans with healthy lungs.

  4. Near Real-Time Call Detail Record ETL Flows

    NASA Astrophysics Data System (ADS)

    Cochinwala, Munir; Panagos, Euthimios

    Telecommunication companies face significant business challenges as they strive to reduce subscriber churn and increase average revenue per user (ARPU) by offering new services and incorporating new functionality into existing services. The increased number of service offerings and available functionality result in an ever growing volume of call detail records (CDRs). For many services (e.g., pre-paid), CDRs need to be processed and analyzed in near real-time for several reasons, including charging, on-line subscriber access to their accounts, and analytics for predicting subscriber usage and preventing fraudulent activity. In this paper, we describe the challenges associated with near real-time extract, transform, and load (ETL) of CDR data warehouse flows for supporting both the operational and business intelligence needs of telecommunication services, and we present our approach to addressing these challenges.

  5. Space Shuttle food galley design concept

    NASA Technical Reports Server (NTRS)

    Heidelbaugh, N. D.; Smith, M. C.; Fischer, R.; Cooper, B.

    1974-01-01

    A food galley has been designed for the crew compartment of the NASA Space Shuttle Orbiter. The rationale for the definition of this design was based upon assignment of priorities to each functional element of the total food system. Principle priority categories were assigned in the following order: food quality, nutrition, food packaging, menu acceptance, meal preparation efficiency, total system weight, total system volume, and total power requirements. Hence, the galley was designed using an 'inside-out' approach which first considered the food and related biological functions and subsequently proceeded 'outward' from the food to encompass supporting hardware. The resulting galley is an optimal design incorporating appropriate priorities for trade-offs between biological and engineering constraints. This design approach is offered as a model for the design of life support systems.

  6. Comments regarding two upwind methods for solving two-dimensional external flows using unstructured grids

    NASA Technical Reports Server (NTRS)

    Kleb, W. L.

    1994-01-01

    Steady flow over the leading portion of a multicomponent airfoil section is studied using computational fluid dynamics (CFD) employing an unstructured grid. To simplify the problem, only the inviscid terms are retained from the Reynolds-averaged Navier-Stokes equations - leaving the Euler equations. The algorithm is derived using the finite-volume approach, incorporating explicit time-marching of the unsteady Euler equations to a time-asymptotic, steady-state solution. The inviscid fluxes are obtained through either of two approximate Riemann solvers: Roe's flux difference splitting or van Leer's flux vector splitting. Results are presented which contrast the solutions given by the two flux functions as a function of Mach number and grid resolution. Additional information is presented concerning code verification techniques, flow recirculation regions, convergence histories, and computational resources.

  7. Effect of three-body interactions on the zero-temperature equation of state of HCP solid 4He

    NASA Astrophysics Data System (ADS)

    Barnes, Ashleigh L.; Hinde, Robert J.

    2017-03-01

    Previous studies have pointed to the importance of three-body interactions in high density 4He solids. However the computational cost often makes it unfeasible to incorporate these interactions into the simulation of large systems. We report the implementation and evaluation of a computationally efficient perturbative treatment of three-body interactions in hexagonal close packed solid 4He utilizing the recently developed nonadditive three-body potential of Cencek et al. This study represents the first application of the Cencek three-body potential to condensed phase 4He systems. Ground state energies from quantum Monte Carlo simulations, with either fully incorporated or perturbatively treated three-body interactions, are calculated in systems with molar volumes ranging from 21.3 cm3/mol down to 2.5 cm3/mol. These energies are used to derive the zero-temperature equation of state for comparison against existing experimental and theoretical data. The equations of state derived from both perturbative and fully incorporated three-body interactions are found to be in very good agreement with one another, and reproduce the experimental pressure-volume data with significantly better accuracy than is obtained when only two-body interactions are considered. At molar volumes below approximately 4.0 cm3/mol, neither two-body nor three-body equations of state are able to accurately reproduce the experimental pressure-volume data, suggesting that below this molar volume four-body and higher many-body interactions are becoming important.

  8. A feature alignment score for online cone-beam CT-based image-guided radiotherapy for prostate cancer.

    PubMed

    Hargrave, Catriona; Deegan, Timothy; Poulsen, Michael; Bednarz, Tomasz; Harden, Fiona; Mengersen, Kerrie

    2018-05-17

    To develop a method for scoring online cone-beam CT (CBCT)-to-planning CT image feature alignment to inform prostate image-guided radiotherapy (IGRT) decision-making. The feasibility of incorporating volume variation metric thresholds predictive of delivering planned dose into weighted functions, was investigated. Radiation therapists and radiation oncologists participated in workshops where they reviewed prostate CBCT-IGRT case examples and completed a paper-based survey of image feature matching practices. For 36 prostate cancer patients, one daily CBCT was retrospectively contoured then registered with their plan to simulate delivered dose if (a) no online setup corrections and (b) online image alignment and setup corrections, were performed. Survey results were used to select variables for inclusion in classification and regression tree (CART) and boosted regression trees (BRT) modeling of volume variation metric thresholds predictive of delivering planned dose to the prostate, proximal seminal vesicles (PSV), bladder, and rectum. Weighted functions incorporating the CART and BRT results were used to calculate a score of individual tumor and organ at risk image feature alignment (FAS TV _ OAR ). Scaled and weighted FAS TV _ OAR were then used to calculate a score of overall treatment compliance (FAS global ) for a given CBCT-planning CT registration. The FAS TV _ OAR were assessed for sensitivity, specificity, and predictive power. FAS global thresholds indicative of high, medium, or low overall treatment plan compliance were determined using coefficients from multiple linear regression analysis. Thirty-two participants completed the prostate CBCT-IGRT survey. While responses demonstrated consensus of practice for preferential ranking of planning CT and CBCT match features in the presence of deformation and rotation, variation existed in the specified thresholds for observed volume differences requiring patient repositioning or repeat bladder and bowel preparation. The CART and BRT modeling indicated that for a given registration, a Dice similarity coefficient >0.80 and >0.60 for the prostate and PSV, respectively, and a maximum Hausdorff distance <8.0 mm for both structures were predictive of delivered dose ± 5% of planned dose. A normalized volume difference <1.0 and a CBCT anterior rectum wall >1.0 mm anterior to the planning CT anterior rectum wall were predictive of delivered dose >5% of planned rectum dose. A normalized volume difference <0.88, and a CBCT bladder wall >13.5 mm inferior and >5.0 mm posterior to the planning CT bladder were predictive of delivered dose >5% of planned bladder dose. A FAS TV _ OAR >0 is indicative of delivery of planned dose. For calculated FAS TV _ OAR for the prostate, PSV, bladder, and rectum using test data, sensitivity was 0.56, 0.75, 0.89, and 1.00, respectively; specificity 0.90, 0.94, 0.59, and 1.00, respectively; positive predictive power 0.90, 0.86, 0.53, and 1.00, respectively; and negative predictive power 0.56, 0.89, 0.91, and 1.00, respectively. Thresholds for the calculated FAS global of were low <60, medium 60-80, and high >80, with a 27% misclassification rate for the test data. A FAS global incorporating nested FAS TV _ OAR and volume variation metric thresholds predictive of treatment plan compliance was developed, offering an alternative to pretreatment dose calculations to assess treatment delivery accuracy. © 2018 American Association of Physicists in Medicine.

  9. Evaluation of Fractional Regional Ventilation Using 4D-CT and Effects of Breathing Maneuvers on Ventilation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mistry, Nilesh N., E-mail: nmistry@som.umaryland.edu; Diwanji, Tejan; Shi, Xiutao

    2013-11-15

    Purpose: Current implementations of methods based on Hounsfield units to evaluate regional lung ventilation do not directly incorporate tissue-based mass changes that occur over the respiratory cycle. To overcome this, we developed a 4-dimensional computed tomography (4D-CT)-based technique to evaluate fractional regional ventilation (FRV) that uses an individualized ratio of tidal volume to end-expiratory lung volume for each voxel. We further evaluated the effect of different breathing maneuvers on regional ventilation. The results from this work will help elucidate the relationship between global and regional lung function. Methods and Materials: Eight patients underwent 3 sets of 4D-CT scans during 1more » session using free-breathing, audiovisual guidance, and active breathing control. FRV was estimated using a density-based algorithm with mass correction. Internal validation between global and regional ventilation was performed by use of the imaging data collected during the use of active breathing control. The impact of breathing maneuvers on FRV was evaluated comparing the tidal volume from 3 breathing methods. Results: Internal validation through comparison between the global and regional changes in ventilation revealed a strong linear correlation (slope of 1.01, R{sup 2} of 0.97) between the measured global lung volume and the regional lung volume calculated by use of the “mass corrected” FRV. A linear relationship was established between the tidal volume measured with the automated breathing control system and FRV based on 4D-CT imaging. Consistently larger breathing volumes were observed when coached breathing techniques were used. Conclusions: The technique presented improves density-based evaluation of lung ventilation and establishes a link between global and regional lung ventilation volumes. Furthermore, the results obtained are comparable with those of other techniques of functional evaluation such as spirometry and hyperpolarized-gas magnetic resonance imaging. These results were demonstrated on retrospective analysis of patient data, and further research using prospective data is under way to validate this technique against established clinical tests.« less

  10. Incorporating Storm Sewer Exfiltration into SWMM: Proof of Concept

    EPA Science Inventory

    This study evaluates the peak flow and volume reduction achieved by exfiltration from a perforated storm sewer in an urban catchment. There are three related objectives: [1] quantify peak flow and volume reduction; [2] demonstrate adaptability to climate change; and [3] evaluate ...

  11. Feasibility study for using video detection system data to supplement automatic traffic recorder data.

    DOT National Transportation Integrated Search

    2013-12-01

    The objective of this study was to determine the feasibility of incorporating Georgia NaviGAtor : traffic volume data with Georgia Department of Transportation (GDOT) traffic volume data to : enhance federal reporting. Some of the pertinent conclusio...

  12. Effect of oxygen incorporation on the structure and elasticity of Ti-Al-O-N coatings synthesized by cathodic arc and high power pulsed magnetron sputtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hans, M., E-mail: hans@mch.rwth-aachen.de; Baben, M. to; Music, D.

    2014-09-07

    Ti-Al-O-N coatings were synthesized by cathodic arc and high power pulsed magnetron sputtering. The chemical composition of the coatings was determined by means of elastic recoil detection analysis and energy dispersive X-ray spectroscopy. The effect of oxygen incorporation on the stress-free lattice parameters and Young's moduli of Ti-Al-O-N coatings was investigated by X-ray diffraction and nanoindentation, respectively. As nitrogen is substituted by oxygen, implications for the charge balance may be expected. A reduction in equilibrium volume with increasing O concentration is identified by X-ray diffraction and density functional theory calculations of Ti-Al-O-N supercells reveal the concomitant formation of metal vacancies.more » Hence, the oxygen incorporation-induced formation of metal vacancies enables charge balancing. Furthermore, nanoindentation experiments reveal a decrease in elastic modulus with increasing O concentration. Based on ab initio data, two causes can be identified for this: First, the metal vacancy-induced reduction in elasticity; and second, the formation of, compared to the corresponding metal nitride bonds, relatively weak Ti-O and Al-O bonds.« less

  13. Incorporating contact angles in the surface tension force with the ACES interface curvature scheme

    NASA Astrophysics Data System (ADS)

    Owkes, Mark

    2017-11-01

    In simulations of gas-liquid flows interacting with solid boundaries, the contact line dynamics effect the interface motion and flow field through the surface tension force. The surface tension force is directly proportional to the interface curvature and the problem of accurately imposing a contact angle must be incorporated into the interface curvature calculation. Many commonly used algorithms to compute interface curvatures (e.g., height function method) require extrapolating the interface, with defined contact angle, into the solid to allow for the calculation of a curvature near a wall. Extrapolating can be an ill-posed problem, especially in three-dimensions or when multiple contact lines are near each other. We have developed an accurate methodology to compute interface curvatures that allows for contact angles to be easily incorporated while avoiding extrapolation and the associated challenges. The method, known as Adjustable Curvature Evaluation Scale (ACES), leverages a least squares fit of a polynomial to points computed on the volume-of-fluid (VOF) representation of the gas-liquid interface. The method is tested by simulating canonical test cases and then applied to simulate the injection and motion of water droplets in a channel (relevant to PEM fuel cells).

  14. Startup of electrophoresis in a suspension of colloidal spheres.

    PubMed

    Chiang, Chia C; Keh, Huan J

    2015-12-01

    The transient electrophoretic response of a homogeneous suspension of spherical particles to the step application of an electric field is analyzed. The electric double layer encompassing each particle is assumed to be thin but finite, and the effect of dynamic electroosmosis within it is incorporated. The momentum equation for the fluid outside the double layers is solved through the use of a unit cell model. Closed-form formulas for the time-evolving electrophoretic and settling velocities of the particles in the Laplace transform are obtained in terms of the electrokinetic radius, relative mass density, and volume fraction of the particles. The time scale for the development of electrophoresis and sedimentation is significantly smaller for a suspension with a higher particle volume fraction or a smaller particle-to-fluid density ratio, and the electrophoretic mobility at any instant increases with an increase in the electrokinetic particle radius. The transient electrophoretic mobility is a decreasing function of the particle volume fraction if the particle-to-fluid density ratio is relatively small, but it may increase with an increase in the particle volume fraction if this density ratio is relatively large. The particle interaction effect in a suspension on the transient electrophoresis is much weaker than that on the transient sedimentation of the particles. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. 3D prostate MR-TRUS non-rigid registration using dual optimization with volume-preserving constraint

    NASA Astrophysics Data System (ADS)

    Qiu, Wu; Yuan, Jing; Fenster, Aaron

    2016-03-01

    We introduce an efficient and novel convex optimization-based approach to the challenging non-rigid registration of 3D prostate magnetic resonance (MR) and transrectal ultrasound (TRUS) images, which incorporates a new volume preserving constraint to essentially improve the accuracy of targeting suspicious regions during the 3D TRUS guided prostate biopsy. Especially, we propose a fast sequential convex optimization scheme to efficiently minimize the employed highly nonlinear image fidelity function using the robust multi-channel modality independent neighborhood descriptor (MIND) across the two modalities of MR and TRUS. The registration accuracy was evaluated using 10 patient images by calculating the target registration error (TRE) using manually identified corresponding intrinsic fiducials in the whole prostate gland. We also compared the MR and TRUS manually segmented prostate surfaces in the registered images in terms of the Dice similarity coefficient (DSC), mean absolute surface distance (MAD), and maximum absolute surface distance (MAXD). Experimental results showed that the proposed method with the introduced volume-preserving prior significantly improves the registration accuracy comparing to the method without the volume-preserving constraint, by yielding an overall mean TRE of 2:0+/-0:7 mm, and an average DSC of 86:5+/-3:5%, MAD of 1:4+/-0:6 mm and MAXD of 6:5+/-3:5 mm.

  16. NE-TWIGS update: Incorporating tree quality

    Treesearch

    Daniel A. Yaussy

    1993-01-01

    A method to distribute tree quality was incorporated into the NE-TWIGS individual-tree growth and yield simulator. The program uses potential tree grade to allow changes in actual tree grade over time. Volume is reported by grade and value is calculated using tree grades. Example screens are shown.

  17. Numeracy and Beyond. Proceedings of the Annual Meeting of the Mathematics Education Research Group of Australasia Incorporated (24th, Sydney, Australia, June 30-July 4, 2001). Volume 1 [and] Volume 2.

    ERIC Educational Resources Information Center

    Bobis, Janette, Ed.; Perry, Bob, Ed.; Mitchelmore, Michael, Ed.

    This document represents volumes 1 and 2 of the proceedings of the 24th annual conference of the Mathematics Education Research Group of Australasia (MERGA) held at the University of Sydney, June 30-July 4, 2001. In volume 1, papers include: (1) "Connecting Mathematics Education Research to Practice" (Judith Sowder); (2) "Understanding, Assessing,…

  18. Mathematics Education beyond 2000: Proceedings of the Annual Meeting of the Mathematics Education Research Group of Australasia (23rd, Fremantle, Western Australia, Australia, July 5-9, 2000). Volume 1 [and] Volume 2.

    ERIC Educational Resources Information Center

    Bana, Jack, Ed.; Chapman, Anne, Ed.

    This document contains Volumes 1 and 2 of the proceedings of the 23rd annual conference of the Mathematics Education Research Group of Australasia Incorporated (MERGA) held at Fremantle, Western Australia, July 5-9, 2000. Papers in Volume 1 include: (1) "Bridging Practices: Intertwining Content and Pedagogy in Teaching and Learning To Teach"…

  19. The relationship between alcohol taxes and binge drinking: evaluating new tax measures incorporating multiple tax and beverage types.

    PubMed

    Xuan, Ziming; Chaloupka, Frank J; Blanchette, Jason G; Nguyen, Thien H; Heeren, Timothy C; Nelson, Toben F; Naimi, Timothy S

    2015-03-01

    U.S. studies contribute heavily to the literature about the tax elasticity of demand for alcohol, and most U.S. studies have relied upon specific excise (volume-based) taxes for beer as a proxy for alcohol taxes. The purpose of this paper was to compare this conventional alcohol tax measure with more comprehensive tax measures (incorporating multiple tax and beverage types) in analyses of the relationship between alcohol taxes and adult binge drinking prevalence in U.S. states. Data on U.S. state excise, ad valorem and sales taxes from 2001 to 2010 were obtained from the Alcohol Policy Information System and other sources. For 510 state-year strata, we developed a series of weighted tax-per-drink measures that incorporated various combinations of tax and beverage types, and related these measures to state-level adult binge drinking prevalence data from the Behavioral Risk Factor Surveillance System surveys. In analyses pooled across all years, models using the combined tax measure explained approximately 20% of state binge drinking prevalence, and documented more negative tax elasticity (-0.09, P = 0.02 versus -0.005, P = 0.63) and price elasticity (-1.40, P < 0.01 versus -0.76, P = 0.15) compared with models using only the volume-based tax. In analyses stratified by year, the R-squares for models using the beer combined tax measure were stable across the study period (P = 0.11), while the R-squares for models rely only on volume-based tax declined (P < 0.0). Compared with volume-based tax measures, combined tax measures (i.e. those incorporating volume-based tax and value-based taxes) yield substantial improvement in model fit and find more negative tax elasticity and price elasticity predicting adult binge drinking prevalence in U.S. states. © 2014 Society for the Study of Addiction.

  20. The relationship between alcohol taxes and binge drinking: evaluating new tax measures incorporating multiple tax and beverage types

    PubMed Central

    Xuan, Ziming; Chaloupka, Frank J.; Blanchette, Jason G.; Nguyen, Thien H.; Heeren, Timothy C.; Nelson, Toben F.; Naimi, Timothy S.

    2015-01-01

    Aims U.S. studies contribute heavily to the literature about the tax elasticity of demand for alcohol, and most U.S. studies have relied upon specific excise (volume-based) taxes for beer as a proxy for alcohol taxes. The purpose of this paper was to compare this conventional alcohol tax measure with more comprehensive tax measures (incorporating multiple tax and beverage types) in analyses of the relationship between alcohol taxes and adult binge drinking prevalence in U.S. states. Design Data on U.S. state excise, ad valorem and sales taxes from 2001 to 2010 were obtained from the Alcohol Policy Information System and other sources. For 510 state-year strata, we developed a series of weighted tax-per-drink measures that incorporated various combinations of tax and beverage types, and related these measures to state-level adult binge drinking prevalence data from the Behavioral Risk Factor Surveillance System surveys. Findings In analyses pooled across all years, models using the combined tax measure explained approximately 20% of state binge drinking prevalence, and documented more negative tax elasticity (−0.09, P=0.02 versus −0.005, P=0.63) and price elasticity (−1.40, P<0.01 versus −0.76, P=0.15) compared with models using only the volume-based tax. In analyses stratified by year, the R-squares for models using the beer combined tax measure were stable across the study period (P=0.11), while the R-squares for models rely only on volume-based tax declined (P<0.01). Conclusions Compared with volume-based tax measures, combined tax measures (i.e. those incorporating volume-based tax and value-based taxes) yield substantial improvement in model fit and find more negative tax elasticity and price elasticity predicting adult binge drinking prevalence in U.S. states. PMID:25428795

  1. Automatic Extraction of Myocardial Mass and Volume Using Parametric Images from Dynamic Nongated PET.

    PubMed

    Harms, Hendrik Johannes; Stubkjær Hansson, Nils Henrik; Tolbod, Lars Poulsen; Kim, Won Yong; Jakobsen, Steen; Bouchelouche, Kirsten; Wiggers, Henrik; Frøkiaer, Jørgen; Sörensen, Jens

    2016-09-01

    Dynamic cardiac PET is used to quantify molecular processes in vivo. However, measurements of left ventricular (LV) mass and volume require electrocardiogram-gated PET data. The aim of this study was to explore the feasibility of measuring LV geometry using nongated dynamic cardiac PET. Thirty-five patients with aortic-valve stenosis and 10 healthy controls underwent a 27-min (11)C-acetate PET/CT scan and cardiac MRI (CMR). The controls were scanned twice to assess repeatability. Parametric images of uptake rate K1 and the blood pool were generated from nongated dynamic data. Using software-based structure recognition, the LV wall was automatically segmented from K1 images to derive functional assessments of LV mass (mLV) and wall thickness. End-systolic and end-diastolic volumes were calculated using blood pool images and applied to obtain stroke volume and LV ejection fraction (LVEF). PET measurements were compared with CMR. High, linear correlations were found for LV mass (r = 0.95), end-systolic volume (r = 0.93), and end-diastolic volume (r = 0.90), and slightly lower correlations were found for stroke volume (r = 0.74), LVEF (r = 0.81), and thickness (r = 0.78). Bland-Altman analyses showed significant differences for mLV and thickness only and an overestimation for LVEF at lower values. Intra- and interobserver correlations were greater than 0.95 for all PET measurements. PET repeatability accuracy in the controls was comparable to CMR. LV mass and volume are accurately and automatically generated from dynamic (11)C-acetate PET without electrocardiogram gating. This method can be incorporated in a standard routine without any additional workload and can, in theory, be extended to other PET tracers. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  2. Determination of depth-viewing volumes for stereo three-dimensional graphic displays

    NASA Technical Reports Server (NTRS)

    Parrish, Russell V.; Williams, Steven P.

    1990-01-01

    Real-world, 3-D, pictorial displays incorporating true depth cues via stereopsis techniques offer a potential means of displaying complex information in a natural way to prevent loss of situational awareness and provide increases in pilot/vehicle performance in advanced flight display concepts. Optimal use of stereopsis requires an understanding of the depth viewing volume available to the display designer. Suggested guidelines are presented for the depth viewing volume from an empirical determination of the effective region of stereopsis cueing (at several viewer-CRT screen distances) for a time multiplexed stereopsis display system. The results provide the display designer with information that will allow more effective placement of depth information to enable the full exploitation of stereopsis cueing. Increasing viewer-CRT screen distances provides increasing amounts of usable depth, but with decreasing fields-of-view. A stereopsis hardware system that permits an increased viewer-screen distance by incorporating larger screen sizes or collimation optics to maintain the field-of-view at required levels would provide a much larger stereo depth-viewing volume.

  3. A Stress Gradient Failure Theory for Textile Structural Composites

    DTIC Science & Technology

    2006-05-01

    additional element failures occur. Incorporation of thermal stresses and investigation of the coefficient of thermal expansion is another potential...avenue for further development of the failure modeling. Due to mismatches between the coefficient of thermal expansion of constituent materials...directly from ABAQUS software, which yields element volumes as outputs, thus the volume of all matrix elements can be compared to the volume of all

  4. Energy-Environment Source Book. Volume 1: Energy, Society, and the Environment. Volume 2: Energy, Its Extraction, Conversion and Use.

    ERIC Educational Resources Information Center

    Fowler, John W.

    This source book, one part of a three-part NSTA series on energy-environment, is written for teachers who wish to incorporate material on the complex subject of energy into their teaching. This work is divided into two volumes, each with numerous tables and figures, along with appendices containing a glossary, mathematics primer, heat engine…

  5. Materials and structures technology insertion into spacecraft systems: Successes and challenges

    NASA Astrophysics Data System (ADS)

    Rawal, Suraj

    2018-05-01

    Over the last 30 years, significant advancements have led to the use of multifunctional materials and structures technologies in spacecraft systems. This includes the integration of adaptive structures, advanced composites, nanotechnology, and additive manufacturing technologies. Development of multifunctional structures has been directly influenced by the implementation of processes and tools for adaptive structures pioneered by Prof. Paolo Santini. Multifunctional materials and structures incorporating non-structural engineering functions such as thermal, electrical, radiation shielding, power, and sensors have been investigated. The result has been an integrated structure that offers reduced mass, packaging volume, and ease of integration for spacecraft systems. Current technology development efforts are being conducted to develop innovative multifunctional materials and structures designs incorporating advanced composites, nanotechnology, and additive manufacturing. However, these efforts offer significant challenges in the qualification and acceptance into spacecraft systems. This paper presents a brief overview of the technology development and successful insertion of advanced material technologies into spacecraft structures. Finally, opportunities and challenges to develop and mature next generation advanced materials and structures are presented.

  6. Temperature modelling and prediction for activated sludge systems.

    PubMed

    Lippi, S; Rosso, D; Lubello, C; Canziani, R; Stenstrom, M K

    2009-01-01

    Temperature is an important factor affecting biomass activity, which is critical to maintain efficient biological wastewater treatment, and also physiochemical properties of mixed liquor as dissolved oxygen saturation and settling velocity. Controlling temperature is not normally possible for treatment systems but incorporating factors impacting temperature in the design process, such as aeration system, surface to volume ratio, and tank geometry can reduce the range of temperature extremes and improve the overall process performance. Determining how much these design or up-grade options affect the tank temperature requires a temperature model that can be used with existing design methodologies. This paper presents a new steady state temperature model developed by incorporating the best aspects of previously published models, introducing new functions for selected heat exchange paths and improving the method for predicting the effects of covering aeration tanks. Numerical improvements with embedded reference data provide simpler formulation, faster execution, easier sensitivity analyses, using an ordinary spreadsheet. The paper presents several cases to validate the model.

  7. 78 FR 43898 - Agency Information Collection Activities: Proposed Collection; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-22

    ... volume control credits were added to Stormwater Management. Incorporating low impact development practices will result in cleaner rainwater runoff. It will also delay urban runoff into floodplains, resulting in reduced stormwater volume that can otherwise have a detrimental scouring impact on a stream's...

  8. Evaluation of graded limestone base course on a low volume road : final report.

    DOT National Transportation Integrated Search

    1985-04-01

    Due to decreasing supplies of native aggregate which may be incorporated into a base course, other materials need to be evaluated for constructibility and performance. To this end, a graded limestone base was constructed on a low volume road and eval...

  9. Functional Image-Guided Radiotherapy Planning in Respiratory-Gated Intensity-Modulated Radiotherapy for Lung Cancer Patients With Chronic Obstructive Pulmonary Disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kimura, Tomoki, E-mail: tkkimura@hiroshima-u.ac.jp; Nishibuchi, Ikuno; Murakami, Yuji

    2012-03-15

    Purpose: To investigate the incorporation of functional lung image-derived low attenuation area (LAA) based on four-dimensional computed tomography (4D-CT) into respiratory-gated intensity-modulated radiotherapy (IMRT) or volumetric modulated arc therapy (VMAT) in treatment planning for lung cancer patients with chronic obstructive pulmonary disease (COPD). Methods and Materials: Eight lung cancer patients with COPD were the subjects of this study. LAA was generated from 4D-CT data sets according to CT values of less than than -860 Hounsfield units (HU) as a threshold. The functional lung image was defined as the area where LAA was excluded from the image of the total lung.more » Two respiratory-gated radiotherapy plans (70 Gy/35 fractions) were designed and compared in each patient as follows: Plan A was an anatomical IMRT or VMAT plan based on the total lung; Plan F was a functional IMRT or VMAT plan based on the functional lung. Dosimetric parameters (percentage of total lung volume irradiated with {>=}20 Gy [V20], and mean dose of total lung [MLD]) of the two plans were compared. Results: V20 was lower in Plan F than in Plan A (mean 1.5%, p = 0.025 in IMRT, mean 1.6%, p = 0.044 in VMAT) achieved by a reduction in MLD (mean 0.23 Gy, p = 0.083 in IMRT, mean 0.5 Gy, p = 0.042 in VMAT). No differences were noted in target volume coverage and organ-at-risk doses. Conclusions: Functional IGRT planning based on LAA in respiratory-guided IMRT or VMAT appears to be effective in preserving a functional lung in lung cancer patients with COPD.« less

  10. Technical Report Series on Global Modeling and Data Assimilation. Volume 22; A Coupled Ocean-Atmosphere Radiative Model for Global Ocean Biogeochemical Models

    NASA Technical Reports Server (NTRS)

    Gregg, Watson W.; Suarez, Max J. (Editor)

    2002-01-01

    An ocean-atmosphere radiative model (OARM) evaluates irradiance availability and quality in the water column to support phytoplankton growth and drive ocean thermodynamics. An atmospheric component incorporates spectral and directional effects of clear and cloudy skies as a function of atmospheric optical constituents, and spectral reflectance across the air-sea interface. An oceanic component evaluates the propagation of spectral and directional irradiance through the water column as a function of water, five phytoplankton groups, and chromophoric dissolved organic matter. It tracks the direct and diffuse streams from the atmospheric component, and a third stream, upwelling diffuse irradiance. The atmospheric component of OARM was compared to data sources at the ocean surface with a coefficient of determination (r2) of 0.97 and a root mean square of 12.1%.

  11. Combined Ventilation and Perfusion Imaging Correlates With the Dosimetric Parameters of Radiation Pneumonitis in Radiation Therapy Planning for Lung Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kimura, Tomoki, E-mail: tkkimura@hiroshima-u.ac.jp; Doi, Yoshiko; Nakashima, Takeo

    2015-11-15

    Purpose: The purpose of this study was to prospectively investigate clinical correlations between dosimetric parameters associated with radiation pneumonitis (RP) and functional lung imaging. Methods and Materials: Functional lung imaging was performed using four-dimensional computed tomography (4D-CT) for ventilation imaging, single-photon emission computed tomography (SPECT) for perfusion imaging, or both (V/Q-matched region). Using 4D-CT, ventilation imaging was derived from a low attenuation area according to CT numbers below different thresholds (vent-860 and -910). Perfusion imaging at the 10th, 30th, 50th, and 70th percentile perfusion levels (F10-F70) were defined as the top 10%, 30%, 50%, and 70% hyperperfused normal lung, respectively.more » All imaging data were incorporated into a 3D planning system to evaluate correlations between RP dosimetric parameters (where fV20 is the percentage of functional lung volume irradiated with >20 Gy, or fMLD, the mean dose administered to functional lung) and the percentage of functional lung volume. Radiation pneumonitis was evaluated using Common Terminology Criteria for Adverse Events version 4.0. Statistical significance was defined as a P value of <.05. Results: Sixty patients who underwent curative radiation therapy were enrolled (48 patients for non-small cell lung cancer, and 12 patients for small cell lung cancer). Grades 1, 2, and ≥3 RP were observed in 16, 44, and 6 patients, respectively. Significant correlations were observed between the percentage of functional lung volume and fV20 (r=0.4475 in vent-860 and 0.3508 in F30) or fMLD (r=0.4701 in vent-860 and 0.3128 in F30) in patients with grade ≥2 RP. F30∩vent-860 results exhibited stronger correlations with fV20 and fMLD in patients with grade ≥2 (r=0.5509 in fV20 and 0.5320 in fMLD) and grade ≥3 RP (r=0.8770 in fV20 and 0.8518 in fMLD). Conclusions: RP dosimetric parameters correlated significantly with functional lung imaging.« less

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanchez-Nieto, Beatriz, E-mail: bsanchez@fis.puc.cl; Goset, Karen C.; Caviedes, Ivan

    Purpose: To propose multivariate predictive models for changes in pulmonary function tests ({Delta}PFTs) with respect to preradiotherapy (pre-RT) values in patients undergoing RT for breast cancer and lymphoma. Methods and Materials: A prospective study was designed to measure {Delta}PFTs of patients undergoing RT. Sixty-six patients were included. Spirometry, lung capacity (measured by helium dilution), and diffusing capacity of carbon monoxide tests were used to measure lung function. Two lung definitions were considered: paired lung vs. irradiated lung (IL). Correlation analysis of dosimetric parameters (mean lung dose and the percentage of lung volume receiving more than a threshold dose) and {Delta}PFTsmore » was carried out to find the best dosimetric predictor. Chemotherapy, age, smoking, and the selected dose-volume parameter were considered as single and interaction terms in a multivariate analysis. Stability of results was checked by bootstrapping. Results: Both lung definitions proved to be similar. Modeling was carried out for IL. Acute and late damage showed the highest correlations with volumes irradiated above {approx}20 Gy (maximum R{sup 2} = 0.28) and {approx}40 Gy (maximum R{sup 2} = 0.21), respectively. RT alone induced a minor and transitory restrictive defect (p = 0.013). Doxorubicin-cyclophosphamide-paclitaxel (Taxol), when administered pre-RT, induced a late, large restrictive effect, independent of RT (p = 0.031). Bootstrap values confirmed the results. Conclusions: None of the dose-volume parameters was a perfect predictor of outcome. Thus, different predictor models for {Delta}PFTs were derived for the IL, which incorporated other nondosimetric parameters mainly through interaction terms. Late {Delta}PFTs seem to behave more serially than early ones. Large restrictive defects were demonstrated in patients pretreated with doxorubicin-cyclophosphamide-paclitaxel.« less

  13. Enhancing ejection fraction measurement through 4D respiratory motion compensation in cardiac PET imaging

    NASA Astrophysics Data System (ADS)

    Tang, Jing; Wang, Xinhui; Gao, Xiangzhen; Segars, W. Paul; Lodge, Martin A.; Rahmim, Arman

    2017-06-01

    ECG gated cardiac PET imaging measures functional parameters such as left ventricle (LV) ejection fraction (EF), providing diagnostic and prognostic information for management of patients with coronary artery disease (CAD). Respiratory motion degrades spatial resolution and affects the accuracy in measuring the LV volumes for EF calculation. The goal of this study is to systematically investigate the effect of respiratory motion correction on the estimation of end-diastolic volume (EDV), end-systolic volume (ESV), and EF, especially on the separation of normal and abnormal EFs. We developed a respiratory motion incorporated 4D PET image reconstruction technique which uses all gated-frame data to acquire a motion-suppressed image. Using the standard XCAT phantom and two individual-specific volunteer XCAT phantoms, we simulated dual-gated myocardial perfusion imaging data for normally and abnormally beating hearts. With and without respiratory motion correction, we measured the EDV, ESV, and EF from the cardiac-gated reconstructed images. For all the phantoms, the estimated volumes increased and the biases significantly reduced with motion correction compared with those without. Furthermore, the improvement of ESV measurement in the abnormally beating heart led to better separation of normal and abnormal EFs. The simulation study demonstrated the significant effect of respiratory motion correction on cardiac imaging data with motion amplitude as small as 0.7 cm. The larger the motion amplitude the more improvement respiratory motion correction brought about on the EF measurement. Using data-driven respiratory gating, we also demonstrated the effect of respiratory motion correction on estimating the above functional parameters from list mode patient data. Respiratory motion correction has been shown to improve the accuracy of EF measurement in clinical cardiac PET imaging.

  14. Feasibility of single-beat full-volume capture real-time three-dimensional echocardiography and auto-contouring algorithm for quantification of left ventricular volume: validation with cardiac magnetic resonance imaging.

    PubMed

    Chang, Sung-A; Lee, Sang-Chol; Kim, Eun-Young; Hahm, Seung-Hee; Jang, Shin Yi; Park, Sung-Ji; Choi, Jin-Oh; Park, Seung Woo; Choe, Yeon Hyeon; Oh, Jae K

    2011-08-01

    With recent developments in echocardiographic technology, a new system using real-time three-dimensional echocardiography (RT3DE) that allows single-beat acquisition of the entire volume of the left ventricle and incorporates algorithms for automated border detection has been introduced. Provided that these techniques are acceptably reliable, three-dimensional echocardiography may be much more useful for clinical practice. The aim of this study was to evaluate the feasibility and accuracy of left ventricular (LV) volume measurements by RT3DE using the single-beat full-volume capture technique. One hundred nine consecutive patients scheduled for cardiac magnetic resonance imaging and RT3DE using the single-beat full-volume capture technique on the same day were recruited. LV end-systolic volume, end-diastolic volume, and ejection fraction were measured using an auto-contouring algorithm from data acquired on RT3DE. The data were compared with the same measurements obtained using cardiac magnetic resonance imaging. Volume measurements on RT3DE with single-beat full-volume capture were feasible in 84% of patients. Both interobserver and intraobserver variability of three-dimensional measurements of end-systolic and end-diastolic volumes showed excellent agreement. Pearson's correlation analysis showed a close correlation of end-systolic and end-diastolic volumes between RT3DE and cardiac magnetic resonance imaging (r = 0.94 and r = 0.91, respectively, P < .0001 for both). Bland-Altman analysis showed reasonable limits of agreement. After application of the auto-contouring algorithm, the rate of successful auto-contouring (cases requiring minimal manual corrections) was <50%. RT3DE using single-beat full-volume capture is an easy and reliable technique to assess LV volume and systolic function in clinical practice. However, the image quality and low frame rate still limit its application for dilated left ventricles, and the automated volume analysis program needs more development to make it clinically efficacious. Copyright © 2011 American Society of Echocardiography. Published by Mosby, Inc. All rights reserved.

  15. Stochastic Order Redshift Technique (SORT): a simple, efficient and robust method to improve cosmological redshift measurements

    NASA Astrophysics Data System (ADS)

    Tejos, Nicolas; Rodríguez-Puebla, Aldo; Primack, Joel R.

    2018-01-01

    We present a simple, efficient and robust approach to improve cosmological redshift measurements. The method is based on the presence of a reference sample for which a precise redshift number distribution (dN/dz) can be obtained for different pencil-beam-like sub-volumes within the original survey. For each sub-volume we then impose that: (i) the redshift number distribution of the uncertain redshift measurements matches the reference dN/dz corrected by their selection functions and (ii) the rank order in redshift of the original ensemble of uncertain measurements is preserved. The latter step is motivated by the fact that random variables drawn from Gaussian probability density functions (PDFs) of different means and arbitrarily large standard deviations satisfy stochastic ordering. We then repeat this simple algorithm for multiple arbitrary pencil-beam-like overlapping sub-volumes; in this manner, each uncertain measurement has multiple (non-independent) 'recovered' redshifts which can be used to estimate a new redshift PDF. We refer to this method as the Stochastic Order Redshift Technique (SORT). We have used a state-of-the-art N-body simulation to test the performance of SORT under simple assumptions and found that it can improve the quality of cosmological redshifts in a robust and efficient manner. Particularly, SORT redshifts (zsort) are able to recover the distinctive features of the so-called 'cosmic web' and can provide unbiased measurement of the two-point correlation function on scales ≳4 h-1Mpc. Given its simplicity, we envision that a method like SORT can be incorporated into more sophisticated algorithms aimed to exploit the full potential of large extragalactic photometric surveys.

  16. High volume production of nanostructured materials

    DOEpatents

    Ripley, Edward B [Knoxville, TN; Morrell, Jonathan S [Knoxville, TN; Seals, Roland D [Oak Ridge, TN; Ludtka, Gerard M [Oak Ridge, TN

    2009-10-13

    A system and method for high volume production of nanoparticles, nanotubes, and items incorporating nanoparticles and nanotubes. Microwave, radio frequency, or infrared energy vaporizes a metal catalyst which, as it condenses, is contacted by carbon or other elements such as silicon, germanium, or boron to form agglomerates. The agglomerates may be annealed to accelerate the production of nanotubes. Magnetic or electric fields may be used to align the nanotubes during their production. The nanotubes may be separated from the production byproducts in aligned or non-aligned configurations. The agglomerates may be formed directly into tools, optionally in compositions that incorporate other materials such as abrasives, binders, carbon-carbon composites, and cermets.

  17. Methods for high volume production of nanostructured materials

    DOEpatents

    Ripley, Edward B [Knoxville, TN; Morrell, Jonathan S [Knoxville, TN; Seals, Roland D [Oak Ridge, TN; Ludtka, Gerald M [Oak Ridge, TN

    2011-03-22

    A system and method for high volume production of nanoparticles, nanotubes, and items incorporating nanoparticles and nanotubes. Microwave, radio frequency, or infrared energy vaporizes a metal catalyst which, as it condenses, is contacted by carbon or other elements such as silicon, germanium, or boron to form agglomerates. The agglomerates may be annealed to accelerate the production of nanotubes. Magnetic or electric fields may be used to align the nanotubes during their production. The nanotubes may be separated from the production byproducts in aligned or non-aligned configurations. The agglomerates may be formed directly into tools, optionally in compositions that incorporate other materials such as abrasives, binders, carbon-carbon composites, and cermets.

  18. Coupling volume-excluding compartment-based models of diffusion at different scales: Voronoi and pseudo-compartment approaches

    PubMed Central

    Taylor, P. R.; Baker, R. E.; Simpson, M. J.; Yates, C. A.

    2016-01-01

    Numerous processes across both the physical and biological sciences are driven by diffusion. Partial differential equations are a popular tool for modelling such phenomena deterministically, but it is often necessary to use stochastic models to accurately capture the behaviour of a system, especially when the number of diffusing particles is low. The stochastic models we consider in this paper are ‘compartment-based’: the domain is discretized into compartments, and particles can jump between these compartments. Volume-excluding effects (crowding) can be incorporated by blocking movement with some probability. Recent work has established the connection between fine- and coarse-grained models incorporating volume exclusion, but only for uniform lattices. In this paper, we consider non-uniform, hybrid lattices that incorporate both fine- and coarse-grained regions, and present two different approaches to describe the interface of the regions. We test both techniques in a range of scenarios to establish their accuracy, benchmarking against fine-grained models, and show that the hybrid models developed in this paper can be significantly faster to simulate than the fine-grained models in certain situations and are at least as fast otherwise. PMID:27383421

  19. Environmental Design Research. Volume Two: Symposia and Workshops. Community Development Series.

    ERIC Educational Resources Information Center

    Preiser, Wolfgang F. E., Ed.

    The contents of this volume represent the invited contributions to the conference and are categorized according to special (invited) addresses, symposia, and workshops. Special addresses were conceptualized to view environmental design research in a holistic way, incorporating changing societal and political conditions. Lynton K. Caldwell spoke on…

  20. Neighborhood Poverty. Policy Implications in Studying Neighborhoods. Volume II.

    ERIC Educational Resources Information Center

    Brooks-Gunn, Jeanne, Ed.; Duncan, Greg J., Ed.; Aber, J. Lawrence, Ed.

    Volume 2 of the "Neighborhood Poverty" series incorporates empirical data on neighborhood poverty into discussions of policy and program development. The chapters are: (1) "Ecological Perspectives on the Neighborhood Context of Urban Poverty: Past and Present" (Robert J. Sampson and Jeffrey D. Morenoff); (2) "The Influence of Neighborhoods on…

  1. Harnessing Linguistic Variation to Improve Education. Rethinking Education. Volume 5

    ERIC Educational Resources Information Center

    Yiakoumetti, Androula, Ed.

    2012-01-01

    This volume brings together research carried out in a variety of geographic and linguistic contexts including Africa, Asia, Australia, Canada, the Caribbean, Europe and the United States and explores efforts to incorporate linguistic diversity into education and to "harness" this diversity for learners' benefit. It challenges the largely…

  2. 30 CFR 250.1202 - Liquid hydrocarbon measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the API MPMS as incorporated by reference in 30 CFR 250.198, when obtaining net standard volume and... (retrograde) condensate volumes as allocated to the individual leases or units. (b) What are the requirements... displacement (pipe) prover, master meter, or tank prover; (iii) A proportional-to-flow sampling device pulsed...

  3. 30 CFR 250.1202 - Liquid hydrocarbon measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... chapters of the API MPMS as incorporated by reference in 30 CFR 250.198, when obtaining net standard volume... pipeline (retrograde) condensate volumes as allocated to the individual leases or units. (b) What are the... displacement (pipe) prover, master meter, or tank prover; (iii) A proportional-to-flow sampling device pulsed...

  4. Sensitivity Analysis and Optimization of Aerodynamic Configurations with Blend Surfaces

    NASA Technical Reports Server (NTRS)

    Thomas, A. M.; Tiwari, S. N.

    1997-01-01

    A novel (geometrical) parametrization procedure using solutions to a suitably chosen fourth order partial differential equation is used to define a class of airplane configurations. Inclusive in this definition are surface grids, volume grids, and grid sensitivity. The general airplane configuration has wing, fuselage, vertical tail and horizontal tail. The design variables are incorporated into the boundary conditions, and the solution is expressed as a Fourier series. The fuselage has circular cross section, and the radius is an algebraic function of four design parameters and an independent computational variable. Volume grids are obtained through an application of the Control Point Form method. A graphic interface software is developed which dynamically changes the surface of the airplane configuration with the change in input design variable. The software is made user friendly and is targeted towards the initial conceptual development of any aerodynamic configurations. Grid sensitivity with respect to surface design parameters and aerodynamic sensitivity coefficients based on potential flow is obtained using an Automatic Differentiation precompiler software tool ADIFOR. Aerodynamic shape optimization of the complete aircraft with twenty four design variables is performed. Unstructured and structured volume grids and Euler solutions are obtained with standard software to demonstrate the feasibility of the new surface definition.

  5. Ethanolic extract of propolis for biodegradable films packaging enhanced with chitosan

    NASA Astrophysics Data System (ADS)

    Ismail, M. I.; Roslan, A.; Saari, N. S.; Hashim, K. H.; Kalamullah, M. R.

    2017-09-01

    The use of industrial organic waste which are chitosan and propolis as materials for the development of biodegradable and active packaging is economical and environmentally appealing. Processing of propolis-chitosan film can minimize waste, and produce low-cost added value biopolymer packaging films for targeted applications. This aims of this research is to develop and characterize a biodegradable films by incorporating chitosan with propolis extract to enhance the functional properties for potential use as active food packaging. The film's moisture content, solubility and antimicrobial activity increase due to increasing volume of propolis extract which are 0 ml, 1.2 ml and 2.4 ml of propolis extract. Propolis-chitosan film with 2.4 ml of propolis extract is more soluble in water compared to propolis-chitosan film with 0 ml of propolis extract and 1.2 ml of propolis extract. The higher the volume of the propolis extract used, the higher the solubility of film in the water. The moisture content also will increase when higher volume of propolis extract used. Characterization of moisture content, solubility and antimicrobial activities revealed the benefits of adding propolis extract into chitosan films and the potential of using the developed film as active food packaging.

  6. Achieving Good Perioperative Outcomes After Pancreaticoduodenectomy in a Low-Volume Setting: A 25-Year Experience

    PubMed Central

    Chedid, Aljamir D.; Chedid, Marcio F.; Winkelmann, Leonardo V.; Filho, Tomaz J. M. Grezzana; Kruel, Cleber D. P.

    2015-01-01

    Perioperative mortality following pancreaticoduodenectomy has improved over time and is lower than 5% in selected high-volume centers. Based on several large literature series on pancreaticoduodenectomy from high-volume centers, some defend that high annual volumes are necessary for good outcomes after pancreaticoduodenectomy. We report here the outcomes of a low annual volume pancreaticoduodenectomy series after incorporating technical expertise from a high-volume center. We included all patients who underwent pancreaticoduodenectomy performed by a single surgeon (ADC.) as treatment for periampullary malignancies from 1981 to 2005. Outcomes of this series were compared to those of 3 high-volume literature series. Additionally, outcomes for first 10 cases in the present series were compared to those of all 37 remaining cases in this series. A total of 47 pancreaticoduodenectomies were performed over a 25-year period. Overall in-hospital mortality was 2 cases (4.3%), and morbidity occurred in 23 patients (48.9%). Both mortality and morbidity were similar to those of each of the three high-volume center comparison series. Comparison of the outcomes for the first 10 to the remaining 37 cases in this series revealed that the latter 37 cases had inferior mortality (20% versus 0%; P = 0.042), less tumor-positive margins (50 versus 13.5%; P = 0.024), less use of intraoperative blood transfusions (90% versus 32.4%; P = 0.003), and tendency to a shorter length of in-hospital stay (20 versus 15.8 days; P = 0.053). Accumulation of surgical experience and incorporation of expertise from high-volume centers may enable achieving satisfactory outcomes after pancreaticoduodenectomy in low-volume settings whenever referral to a high-volume center is limited. PMID:25875555

  7. FluoRender: joint freehand segmentation and visualization for many-channel fluorescence data analysis.

    PubMed

    Wan, Yong; Otsuna, Hideo; Holman, Holly A; Bagley, Brig; Ito, Masayoshi; Lewis, A Kelsey; Colasanto, Mary; Kardon, Gabrielle; Ito, Kei; Hansen, Charles

    2017-05-26

    Image segmentation and registration techniques have enabled biologists to place large amounts of volume data from fluorescence microscopy, morphed three-dimensionally, onto a common spatial frame. Existing tools built on volume visualization pipelines for single channel or red-green-blue (RGB) channels have become inadequate for the new challenges of fluorescence microscopy. For a three-dimensional atlas of the insect nervous system, hundreds of volume channels are rendered simultaneously, whereas fluorescence intensity values from each channel need to be preserved for versatile adjustment and analysis. Although several existing tools have incorporated support of multichannel data using various strategies, the lack of a flexible design has made true many-channel visualization and analysis unavailable. The most common practice for many-channel volume data presentation is still converting and rendering pseudosurfaces, which are inaccurate for both qualitative and quantitative evaluations. Here, we present an alternative design strategy that accommodates the visualization and analysis of about 100 volume channels, each of which can be interactively adjusted, selected, and segmented using freehand tools. Our multichannel visualization includes a multilevel streaming pipeline plus a triple-buffer compositing technique. Our method also preserves original fluorescence intensity values on graphics hardware, a crucial feature that allows graphics-processing-unit (GPU)-based processing for interactive data analysis, such as freehand segmentation. We have implemented the design strategies as a thorough restructuring of our original tool, FluoRender. The redesign of FluoRender not only maintains the existing multichannel capabilities for a greatly extended number of volume channels, but also enables new analysis functions for many-channel data from emerging biomedical-imaging techniques.

  8. Beam-specific planning volumes for scattered-proton lung radiotherapy

    NASA Astrophysics Data System (ADS)

    Flampouri, S.; Hoppe, B. S.; Slopsema, R. L.; Li, Z.

    2014-08-01

    This work describes the clinical implementation of a beam-specific planning treatment volume (bsPTV) calculation for lung cancer proton therapy and its integration into the treatment planning process. Uncertainties incorporated in the calculation of the bsPTV included setup errors, machine delivery variability, breathing effects, inherent proton range uncertainties and combinations of the above. Margins were added for translational and rotational setup errors and breathing motion variability during the course of treatment as well as for their effect on proton range of each treatment field. The effect of breathing motion and deformation on the proton range was calculated from 4D computed tomography data. Range uncertainties were considered taking into account the individual voxel HU uncertainty along each proton beamlet. Beam-specific treatment volumes generated for 12 patients were used: a) as planning targets, b) for routine plan evaluation, c) to aid beam angle selection and d) to create beam-specific margins for organs at risk to insure sparing. The alternative planning technique based on the bsPTVs produced similar target coverage as the conventional proton plans while better sparing the surrounding tissues. Conventional proton plans were evaluated by comparing the dose distributions per beam with the corresponding bsPTV. The bsPTV volume as a function of beam angle revealed some unexpected sources of uncertainty and could help the planner choose more robust beams. Beam-specific planning volume for the spinal cord was used for dose distribution shaping to ensure organ sparing laterally and distally to the beam.

  9. Homogenization via the strong-permittivity-fluctuation theory with nonzero depolarization volume

    NASA Astrophysics Data System (ADS)

    Mackay, Tom G.

    2004-08-01

    The depolarization dyadic provides the scattering response of a single inclusion particle embedded within a homogenous background medium. These dyadics play a central role in formalisms used to estimate the effective constitutive parameters of homogenized composite mediums (HCMs). Conventionally, the inclusion particle is taken to be vanishingly small; this allows the pointwise singularity of the dyadic Green function associated with the background medium to be employed as the depolarization dyadic. A more accurate approach is pursued in this communication by taking into account the nonzero spatial extent of inclusion particles. Depolarization dyadics corresponding to inclusion particles of nonzero volume are incorporated within the strong-permittivity-fluctuation theory (SPFT). The linear dimensions of inclusion particles are assumed to be small relative to the electromagnetic wavelength(s) and the SPFT correlation length. The influence of the size of inclusion particles upon SPFT estimates of the HCM constitutive parameters is investigated for anisotropic dielectric HCMs.In particular, the interplay between correlation length and inclusion size is explored.

  10. Purging of a multilayer insulation with dacron tuft spacer by gas diffusion

    NASA Technical Reports Server (NTRS)

    Sumner, I. E.; Fisk, W. J.

    1976-01-01

    The time and purge gas usage required to purge a multilayer insulation (MLI) panel with gaseous helium by means of gas diffusion to obtain a condensable gas (nitrogen) concentration of less than 1 percent within the panel are stipulated. Two different, flat, rectangular MLI panels, one incorporating a butt joint, were constructed of of 11 double-aluminized Mylar (DAM) radiation shields separated by Dacron tuft spacers. The DAM/Dacron tuft concept is known commercially as Superfloc. The nitrogen gas concentration as a function of time within the MLI panel could be adequately predicted by using a simple, one dimensional gas diffusion model in which the boundary conditions at the edge of the MLI panel were time dependent. The time and purge gas usage required to achieve 1 percent nitrogen gas concentration within the MLI panel varied from 208 to 86 minutes and 34.1 to 56.5 MLI panel purge volumes, respectively, for gaseous helium purge rates from 10 to 40 MLI panel volumes per hour.

  11. Multiple sensor multifrequency eddy current monitor for solidification and growth

    NASA Technical Reports Server (NTRS)

    Wallace, John

    1990-01-01

    A compact cylindrical multisensor eddy current measuring system with integral furnace was develop to monitor II-VI crystal growth to provide interfacial information, solutal segregation, and conductivities of the growth materials. The use of an array of sensors surrounding the furnace element allows one to monitor the volume of interest. Coupling these data with inverse multifrequency analysis allows radial conductivity profiles to be generated at each sensor position. These outputs were incorporated to control the processes within the melt volume. The standard eddy current system functions with materials whose electric conductivities are as low as 2E2 Mhos/m. A need was seen to extend the measurement range to poorly conducting media so the unit was modified to allow measurement of materials conductivities 4 order of magnitude lower and bulk dielectric properties. Typically these included submicron thick films and semiinsulating GaAs. This system was used to monitor complex heat transfer in grey bodies as well as semiconductor and metallic solidification.

  12. MULTIMODAL CLASSIFICATION OF DEMENTIA USING FUNCTIONAL DATA, ANATOMICAL FEATURES AND 3D INVARIANT SHAPE DESCRIPTORS

    PubMed Central

    Mikhno, Arthur; Nuevo, Pablo Martinez; Devanand, Davangere P.; Parsey, Ramin V.; Laine, Andrew F.

    2013-01-01

    Multimodality classification of Alzheimer’s disease (AD) and its prodromal stage, Mild Cognitive Impairment (MCI), is of interest to the medical community. We improve on prior classification frameworks by incorporating multiple features from MRI and PET data obtained with multiple radioligands, fluorodeoxyglucose (FDG) and Pittsburg compound B (PIB). We also introduce a new MRI feature, invariant shape descriptors based on 3D Zernike moments applied to the hippocampus region. Classification performance is evaluated on data from 17 healthy controls (CTR), 22 MCI, and 17 AD subjects. Zernike significantly outperforms volume, accuracy (Zernike to volume): CTR/AD (90.7% to 71.6%), CTR/MCI (76.2% to 60.0%), MCI/AD (84.3% to 65.5%). Zernike also provides comparable and complementary performance to PET. Optimal accuracy is achieved when Zernike and PET features are combined (accuracy, specificity, sensitivity), CTR/AD (98.8%, 99.5%, 98.1%), CTR/MCI (84.3%, 82.9%, 85.9%) and MCI/AD (93.3%, 93.6%, 93.3%). PMID:24576927

  13. MULTIMODAL CLASSIFICATION OF DEMENTIA USING FUNCTIONAL DATA, ANATOMICAL FEATURES AND 3D INVARIANT SHAPE DESCRIPTORS.

    PubMed

    Mikhno, Arthur; Nuevo, Pablo Martinez; Devanand, Davangere P; Parsey, Ramin V; Laine, Andrew F

    2012-01-01

    Multimodality classification of Alzheimer's disease (AD) and its prodromal stage, Mild Cognitive Impairment (MCI), is of interest to the medical community. We improve on prior classification frameworks by incorporating multiple features from MRI and PET data obtained with multiple radioligands, fluorodeoxyglucose (FDG) and Pittsburg compound B (PIB). We also introduce a new MRI feature, invariant shape descriptors based on 3D Zernike moments applied to the hippocampus region. Classification performance is evaluated on data from 17 healthy controls (CTR), 22 MCI, and 17 AD subjects. Zernike significantly outperforms volume, accuracy (Zernike to volume): CTR/AD (90.7% to 71.6%), CTR/MCI (76.2% to 60.0%), MCI/AD (84.3% to 65.5%). Zernike also provides comparable and complementary performance to PET. Optimal accuracy is achieved when Zernike and PET features are combined (accuracy, specificity, sensitivity), CTR/AD (98.8%, 99.5%, 98.1%), CTR/MCI (84.3%, 82.9%, 85.9%) and MCI/AD (93.3%, 93.6%, 93.3%).

  14. Meanings and Functions of Money in Different Cultural Milieus.

    PubMed

    Cohen, Dov; Shin, Faith; Liu, Xi

    2018-06-27

    We explore the psychological meanings of money that parallel its economic functions. We explore money's ability to ascribe value, give autonomy, and provide security for the future, and we show how each of these functions may play out differently in different cultural milieus. In particular, we explore the meanings and uses of money across ethnic groups and at different positions on the socioeconomic ladder, highlighting changes over the last 50 years.We examine the dynamics of redistribution between the individual, the family, and the state in different cultures, and we analyze the gendering of money in the world of high finance and in contexts of economic need. The field of behavioral economics has illustrated how human psychology complicates the process of moving from normative to descriptive models of human behavior; such complexity increases as we incorporate the great diversity within human psychology. Expected final online publication date for the Annual Review of Psychology Volume 70 is January 4, 2019. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

  15. Biosynthesis and function of plant lipids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomson, W.W.; Mudd, J.B.; Gibbs, M.

    The Sixth Annual Symposium in Botany and Plant Physiology was held January 13-15, 1983, at the University of California, Riverside. This volume comprises the papers that were presented. Subjects discussed at the symposium covered a wide range in the field of plant lipids. Biosynthesis of lipids occupied an important fraction of the presentations at the symposium. Subjects included detailed studies of the enzymes of fatty acid synthesis, several discussions of the incorporation of fatty acids into glycerolipids and the further modification of the fatty acids, and the synthesis of glycerolipids and desaturation of fatty acids in both maturing oilseeds andmore » chloroplasts. The physicochemical studies of glycerolipids and sterols in artificial membranes have led to distinct conclusions about their behaviour which must be relevant in the biological membrane. Results on the functional consequences of modifying the galactolipid composition in the chloroplast were an encouraging sign of progress in the attempts to relate membrane lipid composition to physiological function.« less

  16. Persian Basic Course: Volume III, Lessons 29-38.

    ERIC Educational Resources Information Center

    Defense Language Inst., Monterey, CA.

    The third of 10 volumes of a basic course in Persian is presented that is designed for use in the Defense Language Institute's intensive programs for native English speakers. The central feature of the daily lesson is the structured dialogue, which systematically incorporates a number of grammatical features. Grammar is not explained through…

  17. Enrichment of Bread with Nutraceutical-Rich Mushrooms: Impact of Auricularia auricula (Mushroom) Flour Upon Quality Attributes of Wheat Dough and Bread.

    PubMed

    Yuan, Biao; Zhao, Liyan; Yang, Wenjian; McClements, David Julian; Hu, Qiuhui

    2017-09-01

    Edible mushrooms contain a variety of bioactive molecules that may enhance human health and wellbeing. Consequently, there is increasing interest in fortifying functional foods with these nutraceutical-rich substances. However, incorporation of mushroom-based ingredients into foods should not adversely affect the quality attributes of the final product. In this study, the impact of incorporating powdered Auricularia auricula, a widely consumed edible mushroom, into bread products was examined. The rheological and structural properties of wheat dough and bread supplemented with 0% to 10% (w/w) A. auricula flour were measured. Supplementation of wheat doughs with A. auricula flour increased the peak viscosity and enhanced their water holding capacity. Rapid viscosity analysis showed that peak and final viscosities of the blended flour (wheat flour with A. auricula flour) were higher than wheat flour alone. However, dough stability and elastic modulus were reduced by blending wheat flour with A. auricula flour. SEM observation showed that doughs with up to 5% (w/w) A. auricula flour had acceptable gluten network microstructure. Characterization of the quality attributes of bread indicated that incorporation of A. auricula flour at levels >5% negatively impacted bread volume, height, texture, and appearance. © 2017 Institute of Food Technologists®.

  18. Probabilistic models for reactive behaviour in heterogeneous condensed phase media

    NASA Astrophysics Data System (ADS)

    Baer, M. R.; Gartling, D. K.; DesJardin, P. E.

    2012-02-01

    This work presents statistically-based models to describe reactive behaviour in heterogeneous energetic materials. Mesoscale effects are incorporated in continuum-level reactive flow descriptions using probability density functions (pdfs) that are associated with thermodynamic and mechanical states. A generalised approach is presented that includes multimaterial behaviour by treating the volume fraction as a random kinematic variable. Model simplifications are then sought to reduce the complexity of the description without compromising the statistical approach. Reactive behaviour is first considered for non-deformable media having a random temperature field as an initial state. A pdf transport relationship is derived and an approximate moment approach is incorporated in finite element analysis to model an example application whereby a heated fragment impacts a reactive heterogeneous material which leads to a delayed cook-off event. Modelling is then extended to include deformation effects associated with shock loading of a heterogeneous medium whereby random variables of strain, strain-rate and temperature are considered. A demonstrative mesoscale simulation of a non-ideal explosive is discussed that illustrates the joint statistical nature of the strain and temperature fields during shock loading to motivate the probabilistic approach. This modelling is derived in a Lagrangian framework that can be incorporated in continuum-level shock physics analysis. Future work will consider particle-based methods for a numerical implementation of this modelling approach.

  19. The Design, Synthesis, and Study of Solid-State Molecular Rotors: Structure/Function Relationships for Condensed-Phase Anisotropic Dynamics

    NASA Astrophysics Data System (ADS)

    Vogelsberg, Cortnie Sue

    Amphidynamic crystals are an extremely promising platform for the development of artificial molecular machines and stimuli-responsive materials. In analogy to skeletal muscle, their function will rely upon the collective operation of many densely packed molecular machines (i.e. actin-bound myosin) that are self-assembled in a highly organized anisotropic medium. By choosing lattice-forming elements and moving "parts" with specific functionalities, individual molecular machines may be synthesized and self-assembled in order to carry out desirable functions. In recent years, efforts in the design of amphidynamic materials based on molecular gyroscopes and compasses have shown that a certain amount of free volume is essential to facilitate internal rotation and reorientation within a crystal. In order to further establish structure/function relationships to advance the development of increasingly complex molecular machinery, molecular rotors and a molecular "spinning" top were synthesized and incorporated into a variety of solid-state architectures with different degrees of periodicity, dimensionality, and free volume. Specifically, lamellar molecular crystals, hierarchically ordered periodic mesoporous organosilicas, and metal-organic frameworks were targeted for the development of solid-state molecular machines. Using an array of solid-state nuclear magnetic resonance spectroscopy techniques, the dynamic properties of these novel molecular machine assemblies were determined and correlated with their corresponding structural features. It was found that architecture type has a profound influence on functional dynamics. The study of layered molecular crystals, composed of either molecular rotors or "spinning" tops, probed functional dynamics within dense, highly organized environments. From their study, it was discovered that: 1) crystallographically distinct sites may be utilized to differentiate machine function, 2) halogen bonding interactions are sufficiently strong to direct an assembly of molecular machines, 3) the relative flexibility of the crystal environment proximate to a dynamic component may have a significant effect on its function, and, 4) molecular machines, which possess both solid-state photochemical reactivity and dynamics may show complex reaction kinetics if the correlation time of the dynamic process and the lifetime of the excited state occur on the same time scale and the dynamic moiety inherently participates as a reaction intermediate. The study of periodic mesoporous organosilica with hierarchical order probed molecular dynamics within 2D layers of molecular rotors, organized in only one dimension and with ca. 50% exposed to the mesopore free volume. From their study, it was discovered that: 1) molecular rotors, which comprise the layers of the mesopore walls, form a 2D rotational glass, 2) rotator dynamics within the 2D rotational glass undergo a transition to a 2D rotational fluid, and, 3) a 2D rotational glass transition may be exploited to develop hyper-sensitive thermally activated molecular machines. The study of a metal-organic framework assembled from molecular rotors probed dynamics in a periodic three-dimensional free-volume environment, without the presence of close contacts. From the study of this solid-state material, it was determined that: 1) the intrinsic electronic barrier is one of the few factors, which may affect functional dynamics in a true free-volume environment, and, 2) molecular machines with dynamic barriers <

  20. Pressure algorithm for elliptic flow calculations with the PDF method

    NASA Technical Reports Server (NTRS)

    Anand, M. S.; Pope, S. B.; Mongia, H. C.

    1991-01-01

    An algorithm to determine the mean pressure field for elliptic flow calculations with the probability density function (PDF) method is developed and applied. The PDF method is a most promising approach for the computation of turbulent reacting flows. Previous computations of elliptic flows with the method were in conjunction with conventional finite volume based calculations that provided the mean pressure field. The algorithm developed and described here permits the mean pressure field to be determined within the PDF calculations. The PDF method incorporating the pressure algorithm is applied to the flow past a backward-facing step. The results are in good agreement with data for the reattachment length, mean velocities, and turbulence quantities including triple correlations.

  1. Ice pack heat sink subsystem - Phase 1, Volume 1

    NASA Technical Reports Server (NTRS)

    Roebelen, G. J., Jr.

    1973-01-01

    The design, development, fabrication, and test at one-g of a functional laboratory model (non-flight) ice pack heat sink subsystem to be used eventually for astronaut cooling during manned space missions are discussed. In normal use, excess heat in the liquid cooling garment (LCG) coolant is transferred to a reusable/regenerable ice pack heat sink. For emergency operation, or for extension of extravehicular activity mission time after all the ice has melted, water from the ice pack is boiled to vacuum, thereby continuing to remove heat from the LCG coolant. This subsystem incorporates a quick connect/disconnect thermal interface between the ice pack heat sink and the subsystem heat exchanger.

  2. Difference in target definition using three different methods to include respiratory motion in radiotherapy of lung cancer.

    PubMed

    Sloth Møller, Ditte; Knap, Marianne Marquard; Nyeng, Tine Bisballe; Khalil, Azza Ahmed; Holt, Marianne Ingerslev; Kandi, Maria; Hoffmann, Lone

    2017-11-01

    Minimizing the planning target volume (PTV) while ensuring sufficient target coverage during the entire respiratory cycle is essential for free-breathing radiotherapy of lung cancer. Different methods are used to incorporate the respiratory motion into the PTV. Fifteen patients were analyzed. Respiration can be included in the target delineation process creating a respiratory GTV, denoted iGTV. Alternatively, the respiratory amplitude (A) can be measured based on the 4D-CT and A can be incorporated in the margin expansion. The GTV expanded by A yielded GTV + resp, which was compared to iGTV in terms of overlap. Three methods for PTV generation were compared. PTV del (delineated iGTV expanded to CTV plus PTV margin), PTV σ (GTV expanded to CTV and A was included as a random uncertainty in the CTV to PTV margin) and PTV ∑ (GTV expanded to CTV, succeeded by CTV linear expansion by A to CTV + resp, which was finally expanded to PTV ∑ ). Deformation of tumor and lymph nodes during respiration resulted in volume changes between the respiratory phases. The overlap between iGTV and GTV + resp showed that on average 7% of iGTV was outside the GTV + resp implying that GTV + resp did not capture the tumor during the full deformable respiration cycle. A comparison of the PTV volumes showed that PTV σ was smallest and PTV Σ largest for all patients. PTV σ was in mean 14% (31 cm 3 ) smaller than PTV del , while PTV del was 7% (20 cm 3 ) smaller than PTV Σ . PTV σ yields the smallest volumes but does not ensure coverage of tumor during the full respiratory motion due to tumor deformation. Incorporating the respiratory motion in the delineation (PTV del ) takes into account the entire respiratory cycle including deformation, but at the cost, however, of larger treatment volumes. PTV Σ should not be used, since it incorporates the disadvantages of both PTV del and PTV σ .

  3. Elastic transducers incorporating finite-length optical paths

    NASA Astrophysics Data System (ADS)

    Peters, Kara J.; Washabaugh, Peter D.

    1995-08-01

    Frequently, when designing a structure to incorporate integrated sensors, one sacrifices the stiffness of the system to improve sensitivity. However, the use of interferometric displacement sensors that tessellate throughout the volume of a structure has the potential to allow the precision and range of the component measurement to scale with the geometry of the device rather than the maximum strain in the structure. The design of stiff structures that measure all six resultant-load components is described. In addition, an advanced torsion sensor and a linear acceleration transducer are also discussed. Finally, invariant paths are presented that allow the in situ integrity of a structural volume to be monitored with a single pair of displacement sensors.

  4. Increased fMRI Sensitivity at Equal Data Burden Using Averaged Shifted Echo Acquisition

    PubMed Central

    Witt, Suzanne T.; Warntjes, Marcel; Engström, Maria

    2016-01-01

    There is growing evidence as to the benefits of collecting BOLD fMRI data with increased sampling rates. However, many of the newly developed acquisition techniques developed to collect BOLD data with ultra-short TRs require hardware, software, and non-standard analytic pipelines that may not be accessible to all researchers. We propose to incorporate the method of shifted echo into a standard multi-slice, gradient echo EPI sequence to achieve a higher sampling rate with a TR of <1 s with acceptable spatial resolution. We further propose to incorporate temporal averaging of consecutively acquired EPI volumes to both ameliorate the reduced temporal signal-to-noise inherent in ultra-fast EPI sequences and reduce the data burden. BOLD data were collected from 11 healthy subjects performing a simple, event-related visual-motor task with four different EPI sequences: (1) reference EPI sequence with TR = 1440 ms, (2) shifted echo EPI sequence with TR = 700 ms, (3) shifted echo EPI sequence with every two consecutively acquired EPI volumes averaged and effective TR = 1400 ms, and (4) shifted echo EPI sequence with every four consecutively acquired EPI volumes averaged and effective TR = 2800 ms. Both the temporally averaged sequences exhibited increased temporal signal-to-noise over the shifted echo EPI sequence. The shifted echo sequence with every two EPI volumes averaged also had significantly increased BOLD signal change compared with the other three sequences, while the shifted echo sequence with every four EPI volumes averaged had significantly decreased BOLD signal change compared with the other three sequences. The results indicated that incorporating the method of shifted echo into a standard multi-slice EPI sequence is a viable method for achieving increased sampling rate for collecting event-related BOLD data. Further, consecutively averaging every two consecutively acquired EPI volumes significantly increased the measured BOLD signal change and the subsequently calculated activation map statistics. PMID:27932947

  5. The instrument control unit of SPICA SAFARI: a macro-unit to host all the digital control functionalities of the spectrometer

    NASA Astrophysics Data System (ADS)

    Di Giorgio, Anna Maria; Biondi, David; Saggin, Bortolino; Shatalina, Irina; Viterbini, Maurizio; Giusi, Giovanni; Liu, Scige J.; Cerulli-Irelli, Paquale; Van Loon, Dennis; Cara, Christophe

    2012-09-01

    We present the preliminary design of the Instrument Control Unit (ICU) of the SpicA FAR infrared Instrument (SAFARI), an imaging Fourier Transform Spectrometer (FTS) designed to give continuous wavelength coverage in both photometric and spectroscopic modes from around 34 to 210 µm. Due to the stringent requirements in terms of mass and volume, the overall SAFARI warm electronics will be composed by only two main units: Detector Control Unit and ICU. ICU is therefore a macro-unit incorporating the four digital sub-units dedicated to the control of the overall instrument functionalities: the Cooler Control Unit, the Mechanism Control Unit, the Digital processing Unit and the Power Supply Unit. Both the mechanical solution adopted to host the four sub-units and the internal electrical architecture are presented as well as the adopted redundancy approach.

  6. Investigating intracranial tumour growth patterns with multiparametric MRI incorporating Gd‐DTPA and USPIO‐enhanced imaging

    PubMed Central

    Borri, Marco; Jury, Alexa; Popov, Sergey; Box, Gary; Perryman, Lara; Eccles, Suzanne A.; Jones, Chris; Robinson, Simon P.

    2016-01-01

    Abstract High grade and metastatic brain tumours exhibit considerable spatial variations in proliferation, angiogenesis, invasion, necrosis and oedema. Vascular heterogeneity arising from vascular co‐option in regions of invasive growth (in which the blood–brain barrier remains intact) and neoangiogenesis is a major challenge faced in the assessment of brain tumours by conventional MRI. A multiparametric MRI approach, incorporating native measurements and both Gd‐DTPA (Magnevist) and ultrasmall superparamagnetic iron oxide (P904)‐enhanced imaging, was used in combination with histogram and unsupervised cluster analysis using a k‐means algorithm to examine the spatial distribution of vascular parameters, water diffusion characteristics and invasion in intracranially propagated rat RG2 gliomas and human MDA‐MB‐231 LM2–4 breast adenocarcinomas in mice. Both tumour models presented with higher ΔR 1 (the change in transverse relaxation rate R 1 induced by Gd‐DTPA), fractional blood volume (fBV) and apparent diffusion coefficient than uninvolved regions of the brain. MDA‐MB‐231 LM2–4 tumours were less densely cellular than RG2 tumours and exhibited substantial local invasion, associated with oedema, whereas invasion in RG2 tumours was minimal. These additional features were reflected in the more heterogeneous appearance of MDA‐MB‐231 LM2–4 tumours on T 2‐weighted images and maps of functional MRI parameters. Unsupervised cluster analysis separated subregions with distinct functional properties; areas with a low fBV and relatively impermeable blood vessels (low ΔR 1) were predominantly located at the tumour margins, regions of MDA‐MB‐231 LM2–4 tumours with relatively high levels of water diffusion and low vascular permeability and/or fBV corresponded to histologically identified regions of invasion and oedema, and areas of mismatch between vascular permeability and blood volume were identified. We demonstrate that dual contrast MRI and evaluation of tissue diffusion properties, coupled with cluster analysis, allows for the assessment of heterogeneity within invasive brain tumours and the designation of functionally diverse subregions that may provide more informative predictive biomarkers. PMID:27671990

  7. Investigating intracranial tumour growth patterns with multiparametric MRI incorporating Gd-DTPA and USPIO-enhanced imaging.

    PubMed

    Boult, Jessica K R; Borri, Marco; Jury, Alexa; Popov, Sergey; Box, Gary; Perryman, Lara; Eccles, Suzanne A; Jones, Chris; Robinson, Simon P

    2016-11-01

    High grade and metastatic brain tumours exhibit considerable spatial variations in proliferation, angiogenesis, invasion, necrosis and oedema. Vascular heterogeneity arising from vascular co-option in regions of invasive growth (in which the blood-brain barrier remains intact) and neoangiogenesis is a major challenge faced in the assessment of brain tumours by conventional MRI. A multiparametric MRI approach, incorporating native measurements and both Gd-DTPA (Magnevist) and ultrasmall superparamagnetic iron oxide (P904)-enhanced imaging, was used in combination with histogram and unsupervised cluster analysis using a k-means algorithm to examine the spatial distribution of vascular parameters, water diffusion characteristics and invasion in intracranially propagated rat RG2 gliomas and human MDA-MB-231 LM2-4 breast adenocarcinomas in mice. Both tumour models presented with higher ΔR 1 (the change in transverse relaxation rate R 1 induced by Gd-DTPA), fractional blood volume (fBV) and apparent diffusion coefficient than uninvolved regions of the brain. MDA-MB-231 LM2-4 tumours were less densely cellular than RG2 tumours and exhibited substantial local invasion, associated with oedema, whereas invasion in RG2 tumours was minimal. These additional features were reflected in the more heterogeneous appearance of MDA-MB-231 LM2-4 tumours on T 2 -weighted images and maps of functional MRI parameters. Unsupervised cluster analysis separated subregions with distinct functional properties; areas with a low fBV and relatively impermeable blood vessels (low ΔR 1 ) were predominantly located at the tumour margins, regions of MDA-MB-231 LM2-4 tumours with relatively high levels of water diffusion and low vascular permeability and/or fBV corresponded to histologically identified regions of invasion and oedema, and areas of mismatch between vascular permeability and blood volume were identified. We demonstrate that dual contrast MRI and evaluation of tissue diffusion properties, coupled with cluster analysis, allows for the assessment of heterogeneity within invasive brain tumours and the designation of functionally diverse subregions that may provide more informative predictive biomarkers. © 2016 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd.

  8. Deproteinized bovine bone functionalized with the slow delivery of BMP-2 for the repair of critical-sized bone defects in sheep.

    PubMed

    Liu, Tie; Wu, Gang; Wismeijer, Daniel; Gu, Zhiyuan; Liu, Yuelian

    2013-09-01

    As an alternative to an autologous bone graft, deproteinized bovine bone (DBB) is widely used in the clinical dentistry. Although DBB provides an osteoconductive scaffold, it is not capable of enhancing bone regeneration because it is not osteoinductive. In order to render DBB osteoinductive, bone morphogenetic protein 2 (BMP-2) has previously been incorporated into a three dimensional reservoir (a biomimetic calcium phosphate coating) on DBB, which effectively promoted the osteogenic response by the slow delivery of BMP-2. The aim of this study was to investigate the therapeutic effectiveness of such coating on the DBB granules in repairing a large cylindrical bone defect (8 mm diameter, 13 mm depth) in sheep. Eight groups were randomly assigned to the bone defects: (i) no graft material; (ii) autologous bone; (iii) DBB only; (iv) DBB mixed with autologous bone; (v) DBB bearing adsorbed BMP-2; (vi) DBB bearing a coating but no BMP-2; (vii) DBB bearing a coating with adsorbed BMP-2; and (viii) DBB bearing a coating-incorporated depot of BMP-2. 4 and 8 weeks after implantation, samples were withdrawn for a histological and a histomorphometric analysis. Histological results confirmed the excellent biocompatibility and osteoconductivity of all the grafts tested. At 4 weeks, DBB mixed with autologous bone or functionalized with coating-incorporated BMP-2 showed more newly-formed bone than the other groups with DBB. At 8 weeks, the volume of newly-formed bone around DBB that bore a coating-incorporated depot of BMP-2 was greatest among the groups with DBB, and was comparable to the autologous bone group. The use of autologous bone and BMP-2 resulted in more bone marrow formation. Multinucleated giant cells were observed in the resorption process around DBB, whereas histomorphometric analysis revealed no significant degradation of DBB. In conclusion, it was shown that incorporating BMP-2 into the calcium phosphate coating of DBB induced strong bone formation around DBB for repairing a critical-sized bone defect. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Learning curve in transradial cardiac catheterization: procedure-related parameters stratified by operators' transradial volume.

    PubMed

    Kasasbeh, Ehab S; Parvez, Babar; Huang, Robert L; Hasselblad, Michele Marie; Glazer, Mark D; Salloum, Joseph G; Cleator, John H; Zhao, David X

    2012-11-01

    To determine whether radial artery access is associated with a reduction in fluoroscopy time, procedure time, and other procedural variables over a 27-month period during which the radial artery approach was incorporated in a single academic Medical Center. Although previous studies have demonstrated a relationship between increased volume and decreased procedural time, no studies have looked at the integration of radial access over time. Data were collected from consecutive patients who presented to the Vanderbilt University Medical Center cardiac catheterization laboratory from January 1, 2009 to April 1, 2011. Patients who underwent radial access diagnostic catheterization with and without percutaneous coronary intervention were included in this study. A total of 1112 diagnostic cardiac catheterizations through the radial access site were analyzed. High-volume, intermediate-volume, and low-volume operators were grouped based on the percentage of procedures performed through a radial approach. From 2009 to 2011, there was a significant decrease in fluoroscopy time in all operator groups for diagnostic catheterization (P=.035). The high-volume operator group had 1.88 and 3.66 minute reductions in fluoroscopy time compared to the intermediate- and low-volume operator groups, respectively (both P<.001). Likewise, the intermediate-volume operator group had a 1.77 minute improvement compared to the low-volume operator group, but this did not reach statistical significance (P=.102). The improvement in fluoroscopy time and other procedure-related parameters was seen after approximately 25 cases with further improvement after 75 cases. The incorporation of the radial access approach in the cardiac catheterization laboratory led to a decrease in fluoroscopy time for each operator and operator group over the last 3 years. Our data demonstrated that higher-volume radial operators have better procedure, room, and fluoroscopy times when compared to intermediate- and low-volume operators. However, lower-volume operators have a reduction in procedure-related parameters with increased radial cases. Number of procedures needed to become sufficient was demonstrated in the current study.

  10. A method for automatically optimizing medical devices for treating heart failure: designing polymeric injection patterns.

    PubMed

    Wenk, Jonathan F; Wall, Samuel T; Peterson, Robert C; Helgerson, Sam L; Sabbah, Hani N; Burger, Mike; Stander, Nielen; Ratcliffe, Mark B; Guccione, Julius M

    2009-12-01

    Heart failure continues to present a significant medical and economic burden throughout the developed world. Novel treatments involving the injection of polymeric materials into the myocardium of the failing left ventricle (LV) are currently being developed, which may reduce elevated myofiber stresses during the cardiac cycle and act to retard the progression of heart failure. A finite element (FE) simulation-based method was developed in this study that can automatically optimize the injection pattern of the polymeric "inclusions" according to a specific objective function, using commercially available software tools. The FE preprocessor TRUEGRID((R)) was used to create a parametric axisymmetric LV mesh matched to experimentally measured end-diastole and end-systole metrics from dogs with coronary microembolization-induced heart failure. Passive and active myocardial material properties were defined by a pseudo-elastic-strain energy function and a time-varying elastance model of active contraction, respectively, that were implemented in the FE software LS-DYNA. The companion optimization software LS-OPT was used to communicate directly with TRUEGRID((R)) to determine FE model parameters, such as defining the injection pattern and inclusion characteristics. The optimization resulted in an intuitive optimal injection pattern (i.e., the one with the greatest number of inclusions) when the objective function was weighted to minimize mean end-diastolic and end-systolic myofiber stress and ignore LV stroke volume. In contrast, the optimization resulted in a nonintuitive optimal pattern (i.e., 3 inclusions longitudinallyx6 inclusions circumferentially) when both myofiber stress and stroke volume were incorporated into the objective function with different weights.

  11. Clinical knowledge-based inverse treatment planning

    NASA Astrophysics Data System (ADS)

    Yang, Yong; Xing, Lei

    2004-11-01

    Clinical IMRT treatment plans are currently made using dose-based optimization algorithms, which do not consider the nonlinear dose-volume effects for tumours and normal structures. The choice of structure specific importance factors represents an additional degree of freedom of the system and makes rigorous optimization intractable. The purpose of this work is to circumvent the two problems by developing a biologically more sensible yet clinically practical inverse planning framework. To implement this, the dose-volume status of a structure was characterized by using the effective volume in the voxel domain. A new objective function was constructed with the incorporation of the volumetric information of the system so that the figure of merit of a given IMRT plan depends not only on the dose deviation from the desired distribution but also the dose-volume status of the involved organs. The conventional importance factor of an organ was written into a product of two components: (i) a generic importance that parametrizes the relative importance of the organs in the ideal situation when the goals for all the organs are met; (ii) a dose-dependent factor that quantifies our level of clinical/dosimetric satisfaction for a given plan. The generic importance can be determined a priori, and in most circumstances, does not need adjustment, whereas the second one, which is responsible for the intractable behaviour of the trade-off seen in conventional inverse planning, was determined automatically. An inverse planning module based on the proposed formalism was implemented and applied to a prostate case and a head-neck case. A comparison with the conventional inverse planning technique indicated that, for the same target dose coverage, the critical structure sparing was substantially improved for both cases. The incorporation of clinical knowledge allows us to obtain better IMRT plans and makes it possible to auto-select the importance factors, greatly facilitating the inverse planning process. The new formalism proposed also reveals the relationship between different inverse planning schemes and gives important insight into the problem of therapeutic plan optimization. In particular, we show that the EUD-based optimization is a special case of the general inverse planning formalism described in this paper.

  12. Incorporation of air into a snack food reduces energy intake.

    PubMed

    Osterholt, Kathrin M; Roe, Liane S; Rolls, Barbara J

    2007-05-01

    This study investigated how the air content of a familiar snack food affected energy intake and whether varying the method of serving the snack modified intake. We tested two versions of an extruded snack (cheese puffs) that were equal in energy density (5.7 kcal/g), but differed in energy per volume (less-aerated snack: 1.00 kcal/ml; more-aerated snack: 0.45 kcal/ml). In a within-subjects design, 16 women and 12 men consumed the snacks ad libitum in the laboratory during four afternoon sessions. A standard volume (1250 ml) of each snack was served once in a bowl and once in an opaque bag. Results showed significant differences in intake of the two snacks by energy (p=0.0003) and volume (p<0.0001); subjects consumed 21% less weight and energy (70+/-17 kcal) of the more-aerated snack than the less-aerated snack, although they consumed a 73% greater volume of the more-aerated snack (239+/-24 ml). These findings suggest that subjects responded to both the weight and volume of the snack. Despite differences in intake, hunger and fullness ratings did not differ across conditions. The serving method did not significantly affect intake. Results from this study indicate that incorporating air into food provides a strategy to reduce energy intake from energy-dense snacks.

  13. 75 FR 22219 - Update of Revised and Reaffirmed Documents Incorporated by Reference

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-28

    ... Standard 2172-09; Calculation of Gross Heating Value, Relative Density, Compressibility and Theoretical...-Compressibility Factors for Hydrocarbons: 0.350- 0.637 Relative Density (60[deg]F/60[deg]F) and -50[deg]F to 140... Interpretations Volume 55, incorporated by reference at Sec. 250.803(b)(1), (b)(1)(i); and Sec. 250.1629(b)(1), (b...

  14. Assessment of the role of micropore size and N-doping in CO2 capture by porous carbons.

    PubMed

    Sevilla, Marta; Parra, Jose B; Fuertes, Antonio B

    2013-07-10

    The role of micropore size and N-doping in CO2 capture by microporous carbons has been investigated by analyzing the CO2 adsorption properties of two types of activated carbons with analogous textural properties: (a) N-free carbon microspheres and (b) N-doped carbon microspheres. Both materials exhibit a porosity made up exclusively of micropores ranging in size between <0.6 nm in the case of the pristine materials and up to 1.6 nm for the highly activated carbons (47% burnoff). The N-doped carbons possess ~3 wt % of N heteroatoms that are incorporated into several types of functional groups (i.e., pyrrole/pyridone, pyridine, quaternary, and pyridine-N-oxide). Under conventional operation conditions (i.e., T ~ 0-25 °C and P(CO2) ~ 0-1 bar), CO2 adsorption proceeds via a volume-filling mechanism, the size limit for volume-filling being ~0.7-0.8 nm. Under these circumstances, the adsorption of CO2 by nonfunctionalized porous carbons is mainly determined by the volume of the micropores with a size below 0.8 nm. It was also observed that the CO2 capture capacities of undoped and N-doped carbons are analogous which shows that the nitrogen functionalities present in these N-doped samples do not influence CO2 adsorption. Taking into account the temperature invariance of the characteristic curve postulated by the Dubinin theory, we show that CO2 uptakes can be accurately predicted by using the adsorption data measured at just one temperature.

  15. Incorporating geometric ray tracing to generate initial conditions for intensity modulated arc therapy optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oliver, Mike; Gladwish, Adam; Craig, Jeff

    2008-07-15

    Purpose and background: Intensity modulated arc therapy (IMAT) is a rotational variant of Intensity modulated radiation therapy (IMRT) that is achieved by allowing the multileaf collimator (MLC) positions to vary as the gantry rotates around the patient. This work describes a method to generate an IMAT plan through the use of a fast ray tracing technique based on dosimetric and geometric information for setting initial MLC leaf positions prior to final IMAT optimization. Methods and materials: Three steps were used to generate an IMAT plan. The first step was to generate arcs based on anatomical contours. The second step wasmore » to generate ray importance factor (RIF) maps by ray tracing the dose distribution inside the planning target volume (PTV) to modify the MLC leaf positions of the anatomical arcs to reduce the maximum dose inside the PTV. The RIF maps were also segmented to create a new set of arcs to improve the dose to low dose voxels within the PTV. In the third step, the MLC leaf positions from all arcs were put through a leaf position optimization (LPO) algorithm and brought into a fast Monte Carlo dose calculation engine for a final dose calculation. The method was applied to two phantom cases, a clinical prostate case and the Radiological Physics Center (RPC)'s head and neck phantom. The authors assessed the plan improvements achieved by each step and compared plans with and without using RIF. They also compared the IMAT plan with an IMRT plan for the RPC phantom. Results: All plans that incorporated RIF and LPO had lower objective function values than those that incorporated LPO only. The objective function value was reduced by about 15% after the generation of RIF arcs and 52% after generation of RIF arcs and leaf position optimization. The IMAT plan for the RPC phantom had similar dose coverage for PTV1 and PTV2 (the same dose volume histogram curves), however, slightly lower dose to the normal tissues compared to a six-field IMRT plan. Conclusion: The use of a ray importance factor can generate initial IMAT arcs efficiently for further MLC leaf position optimization to obtain more favorable IMAT plan.« less

  16. Smart nanogels at the air/water interface: structural studies by neutron reflectivity

    NASA Astrophysics Data System (ADS)

    Zielińska, Katarzyna; Sun, Huihui; Campbell, Richard A.; Zarbakhsh, Ali; Resmini, Marina

    2016-02-01

    The development of effective transdermal drug delivery systems based on nanosized polymers requires a better understanding of the behaviour of such nanomaterials at interfaces. N-Isopropylacrylamide-based nanogels synthesized with different percentages of N,N'-methylenebisacrylamide as cross-linker, ranging from 10 to 30%, were characterized at physiological temperature at the air/water interface, using neutron reflectivity (NR), with isotopic contrast variation, and surface tension measurements; this allowed us to resolve the adsorbed amount and the volume fraction of nanogels at the interface. A large conformational change for the nanogels results in strong deformations at the interface. As the percentage of cross-linker incorporated in the nanogels becomes higher, more rigid matrices are obtained, although less deformed, and the amount of adsorbed nanogels is increased. The data provide the first experimental evidence of structural changes of nanogels as a function of the degree of cross-linking at the air/water interface.The development of effective transdermal drug delivery systems based on nanosized polymers requires a better understanding of the behaviour of such nanomaterials at interfaces. N-Isopropylacrylamide-based nanogels synthesized with different percentages of N,N'-methylenebisacrylamide as cross-linker, ranging from 10 to 30%, were characterized at physiological temperature at the air/water interface, using neutron reflectivity (NR), with isotopic contrast variation, and surface tension measurements; this allowed us to resolve the adsorbed amount and the volume fraction of nanogels at the interface. A large conformational change for the nanogels results in strong deformations at the interface. As the percentage of cross-linker incorporated in the nanogels becomes higher, more rigid matrices are obtained, although less deformed, and the amount of adsorbed nanogels is increased. The data provide the first experimental evidence of structural changes of nanogels as a function of the degree of cross-linking at the air/water interface. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr07538f

  17. Entanglement entropies and fermion signs of critical metals

    NASA Astrophysics Data System (ADS)

    Kaplis, N.; Krüger, F.; Zaanen, J.

    2017-04-01

    The fermion sign problem is often viewed as a sheer inconvenience that plagues numerical studies of strongly interacting electron systems. Only recently has it been suggested that fermion signs are fundamental for the universal behavior of critical metallic systems and crucially enhance their degree of quantum entanglement. In this work we explore potential connections between emergent scale invariance of fermion sign structures and scaling properties of bipartite entanglement entropies. Our analysis is based on a wave-function Ansatz that incorporates collective, long-range backflow correlations into fermionic Slater determinants. Such wave functions mimic the collapse of a Fermi liquid at a quantum critical point. Their nodal surfaces, a representation of the fermion sign structure in many-particle configurations space, show fractal behavior up to a length scale ξ that diverges at a critical backflow strength. We show that the Hausdorff dimension of the fractal nodal surface depends on ξ , the number of fermions and the exponent of the backflow. For the same wave functions we numerically calculate the second Rényi entanglement entropy S2. Our results show a crossover from volume scaling, S2˜ℓθ (θ =2 in d =2 dimensions), to the characteristic Fermi-liquid behavior S2˜ℓ lnℓ on scales larger than ξ . We find that volume scaling of the entanglement entropy is a robust feature of critical backflow fermions, independent of the backflow exponent and hence the fractal dimension of the scale invariant sign structure.

  18. Equation of State for Solid Phase I of Carbon Dioxide Valid for Temperatures up to 800 K and Pressures up to 12 GPa

    NASA Astrophysics Data System (ADS)

    Martin Trusler, J. P.

    2011-12-01

    The available thermodynamic-property data for solid phase I of carbon dioxide ("dry ice") are reviewed and used to determine the parameters of a new fundamental equation of state constructed in the form of a Helmholtz energy function with temperature and molar volume as the independent variables. The experimental data considered include the pressure, molar volume, and isobaric heat capacity along the sublimation curve, the melting-pressure curve, and molar volume in the compressed solid at temperatures from 295 to 764 K and pressures up to 12 GPa. The equation of state is based on the quasi-harmonic approximation, incorporating a Debye oscillator distribution for the vibrons, two discrete modes for the librons and a further three distinct modes for the internal vibrations of the CO2 molecule. A small anharmonic correction term is included, which is significant mainly in the region of the triple point. The estimated relative uncertainty of molar volume at specified temperature and pressure calculated from the equation of state is 0.02% on the sublimation curve and 1.5% in the compressed solid; for isobaric heat capacity on the sublimation curve, the uncertainty varies from 5.0% to 0.5% between 2 and 195 K. Auxiliary equations for the pressure and molar volume on the sublimation and melting curves are given. The equation of state is valid at temperatures from 0 to 800 K and at pressures from the solid-fluid phase boundary to 12 GPa.

  19. Overexpression of avenin-like b proteins in bread wheat (Triticum aestivum L.) improves dough mixing properties by their incorporation into glutenin polymers.

    PubMed

    Ma, Fengyun; Li, Miao; Li, Tingting; Liu, Wei; Liu, Yunyi; Li, Yin; Hu, Wei; Zheng, Qian; Wang, Yaqiong; Li, Kexiu; Chang, Junli; Chen, Mingjie; Yang, Guangxiao; Wang, Yuesheng; He, Guangyuan

    2013-01-01

    Avenin-like b proteins are a small family of wheat storage proteins, each containing 18 or 19 cysteine residues. The role of these proteins, with high numbers of cysteine residues, in determining the functional properties of wheat flour is unclear. In the present study, two transgenic lines of the bread wheat overexpressing avenin-like b gene were generated to investigate the effects of Avenin-like b proteins on dough mixing properties. Sodium dodecyl sulfate sedimentation (SDSS) test and Mixograph analysis of these lines demonstrated that overexpression of Avenin-like b proteins in both transgenic wheat lines significantly increased SDSS volume and improved dough elasticity, mixing tolerance and resistance to extension. These changes were associated with the increased proportion of polymeric proteins due to the incorporation of overexpressed Avenin-like b proteins into the glutenin polymers. The results of this study were critical to confirm the hypothesis that Avenin-like b proteins could be integrated into glutenin polymers by inter-chain disulphide bonds, which could help understand the mechanism behind strengthening wheat dough strength.

  20. Overexpression of Avenin-Like b Proteins in Bread Wheat (Triticum aestivum L.) Improves Dough Mixing Properties by Their Incorporation into Glutenin Polymers

    PubMed Central

    Ma, Fengyun; Li, Miao; Li, Tingting; Liu, Wei; Liu, Yunyi; Li, Yin; Hu, Wei; Zheng, Qian; Wang, Yaqiong; Li, Kexiu; Chang, Junli; Chen, Mingjie; Yang, Guangxiao; Wang, Yuesheng; He, Guangyuan

    2013-01-01

    Avenin-like b proteins are a small family of wheat storage proteins, each containing 18 or 19 cysteine residues. The role of these proteins, with high numbers of cysteine residues, in determining the functional properties of wheat flour is unclear. In the present study, two transgenic lines of the bread wheat overexpressing avenin-like b gene were generated to investigate the effects of Avenin-like b proteins on dough mixing properties. Sodium dodecyl sulfate sedimentation (SDSS) test and Mixograph analysis of these lines demonstrated that overexpression of Avenin-like b proteins in both transgenic wheat lines significantly increased SDSS volume and improved dough elasticity, mixing tolerance and resistance to extension. These changes were associated with the increased proportion of polymeric proteins due to the incorporation of overexpressed Avenin-like b proteins into the glutenin polymers. The results of this study were critical to confirm the hypothesis that Avenin-like b proteins could be integrated into glutenin polymers by inter-chain disulphide bonds, which could help understand the mechanism behind strengthening wheat dough strength. PMID:23843964

  1. MINIVER upgrade for the AVID system. Volume 1: LANMIN user's manual

    NASA Technical Reports Server (NTRS)

    Engel, C. D.; Praharaj, S. C.

    1983-01-01

    The successful design of thermal protection systems for vehicles operating in atmosphere and near space environments requires accurate analyses of heating rate and temperature histories encountered along a trajectory. For preliminary design calculations, however, the requirement for accuracy must be tempered by the need for speed and versatility in computational tools used to determine thermal environments and structural thermal response. The MINIVER program has been found to provide the proper balance between versatility, speed and accuracy for an aerothermal prediction tool. The advancement in computer aided design concepts at Langley Research Center (LaRC) in the past few years has made it desirable to incorporate the MINIVER program into the LaRC Advanced Vehicle Integrated Design, AVID, system. In order to effectively incorporate MINIVER into the AVID system, several changes to MINIVER were made. The thermal conduction options in MINIVER were removed and a new Explicit Interactive Thermal Structures (EXITS) code was developed. Many upgrades to the MINIVER code were made and a new Langley version of MINIVER called LANMIN was created. The theoretical methods and subroutine functions used in LANMIN are described.

  2. Transition-Metal-Catalyzed Laboratory-Scale Carbon–Carbon Bond-Forming Reactions of Ethylene

    PubMed Central

    Saini, Vaneet; Stokes, Benjamin J.; Sigman, Matthew S.

    2014-01-01

    Ethylene, the simplest alkene, is the most abundantly synthesized organic molecule by volume. It is readily incorporated into transitionmetal–catalyzed carbon-carbon bond-forming reactions through migratory insertions into alkylmetal intermediates. Because of its D2h symmetry, only one insertion outcome is possible. This limits byproduct formation and greatly simplifies analysis. As described within this Minireview, many carbon–carbon bond-forming reactions incorporate a molecule (or more) of ethylene at ambient pressure and temperature. In many cases, a useful substituted alkene is incorporated into the product. PMID:24105881

  3. Correlation between differential renal function estimation using CT-based functional renal parenchymal volume and (99m)Tc - DTPA renal scan.

    PubMed

    Sarma, Debanga; Barua, Sasanka K; Rajeev, T P; Baruah, Saumar J

    2012-10-01

    Nuclear renal scan is currently the gold standard imaging study to determine differential renal function. We propose helical CT as single modality for both the anatomical and functional evaluation of kidney with impaired function. In the present study renal parenchymal volume is measured and percent total renal volume is used as a surrogate marker for differential renal function. The objective of this study is to correlate between differential renal function estimation using CT-based renal parenchymal volume measurement with differential renal function estimation using (99m)TC - DTPA renal scan. Twenty-one patients with unilateral obstructive uropathy were enrolled in this prospective comparative study. They were subjected to (99m)Tc - DTPA renal scan and 64 slice helical CT scan which estimates the renal volume depending on the reconstruction of arterial phase images followed by volume rendering and percent renal volume was calculated. Percent renal volume was correlated with percent renal function, as determined by nuclear renal scan using Pearson coefficient. RESULTS AND OBSERVATION: A strong correlation is observed between percent renal volume and percent renal function in obstructed units (r = 0.828, P < 0.001) as well as in nonobstructed units (r = 0.827, P < 0.001). There is a strong correlation between percent renal volume determined by CT scan and percent renal function determined by (99m)TC - DTPA renal scan both in obstructed and in normal units. CT-based percent renal volume can be used as a single radiological tests for both functional and anatomical assessment of impaired renal units.

  4. Multitasking mesoporous nanomaterials for biorefinery applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kandel, Kapil

    2013-01-01

    Mesoporous silica nanoparticles (MSNs) have attracted great interest for last two decades due to their unique and advantageous structural properties, such as high surface area, pore volume, stable mesostructure, tunable pore size and controllable particle morphology. The robust silica framework provides sites for organic modifications, making MSNs ideal platforms for adsorbents and supported organocatalysts. In addition, the pores of MSNs provide cavities/ channels for incorporation of metal and metal oxide nanoparticle catalysts. These supported metal nanoparticle catalysts benefit from confined local environments to enhance their activity and selectivity for various reactions. Biomass is considered as a sustainable feedstock with potentialmore » to replace diminishing fossil fuels for the production of biofuels. Among several strategies, one of the promising methods of biofuel production from biomass is to reduce the oxygen content of the feedstock in order to improve the energy density. This can be achieved by creating C-C bonds between biomass derived intermediates to increase the molecular weight of the final hydrocarbon molecules. In this context, pore size and organic functionality of MSNs are varied to obtain the ideal catalyst for a C-C bond forming reaction: the aldol condensation. The mechanistic aspects of this reaction in supported heterogeneous catalysts are explored. The modification of supported organocatalyst and the effect of solvent on the reaction are rationalized. The significance of two functional surfaces of MSNs is exploited by enzyme immobilization on the external surface and organo catalyst functionalization on the internal surface. Using this bifunctional catalyst, the tandem conversion of small chain alcohols into longer chain hydrocarbon molecules is demonstrated. The ability to incorporate metal and metal oxide nanoparticles in the pores and subsequent functionalization led to develop organic modified magnetic MSNs (OM-MSNs) for applications in microalgae biorefinery. Two different integrated biorefinery systems are highlighted. (i) OM-MSNs are used to harvest microalgae and selectively sequester free fatty acids (FFAs). (ii) OM-MSNs are shown to selectively sequester FFAs and convert them into diesel-range liquid hydrocarbon fuels. A similar MSN supported metal nanoparticle catalyst is demonstrated to transform FFAs into green diesel with even greater activity and selectivity. The incorporation of a different organic functional group into MSN provides a selective adsorbent for separation and purification of α-tocopherol from microalgae oil. The functional group with electron deficient aromatic rings demonstrated high sequestration capacity and selectivity of {alpha}-tocopherol.« less

  5. Dealing with uncertainty in the probability of overtopping of a flood mitigation dam

    NASA Astrophysics Data System (ADS)

    Michailidi, Eleni Maria; Bacchi, Baldassare

    2017-05-01

    In recent years, copula multivariate functions were used to model, probabilistically, the most important variables of flood events: discharge peak, flood volume and duration. However, in most of the cases, the sampling uncertainty, from which small-sized samples suffer, is neglected. In this paper, considering a real reservoir controlled by a dam as a case study, we apply a structure-based approach to estimate the probability of reaching specific reservoir levels, taking into account the key components of an event (flood peak, volume, hydrograph shape) and of the reservoir (rating curve, volume-water depth relation). Additionally, we improve information about the peaks from historical data and reports through a Bayesian framework, allowing the incorporation of supplementary knowledge from different sources and its associated error. As it is seen here, the extra information can result in a very different inferred parameter set and consequently this is reflected as a strong variability of the reservoir level, associated with a given return period. Most importantly, the sampling uncertainty is accounted for in both cases (single-site and multi-site with historical information scenarios), and Monte Carlo confidence intervals for the maximum water level are calculated. It is shown that water levels of specific return periods in a lot of cases overlap, thus making risk assessment, without providing confidence intervals, deceiving.

  6. Functional characterization of steam jet-cooked buckwheat flour as a fat replacer in cake-baking.

    PubMed

    Min, Bockki; Lee, Seung Mi; Yoo, Sang-Ho; Inglett, George E; Lee, Suyong

    2010-10-01

    With rising consumer awareness of obesity, the food industry has a market-driven impetus to develop low-fat or fat-free foods with acceptable taste and texture. Fancy buckwheat flour was thus subjected to steam jet-cooking and the performance of the resulting product in cake-baking was evaluated as a fat replacer. Steam jet-cooking caused structural breakdown and starch gelatinization of buckwheat flour, thus increasing its water hydration properties. In the pasting measurements, steam jet-cooked buckwheat flour exhibited high initial viscosity, while no peak viscosity was observed. Also, the suspensions of steam jet-cooked buckwheat flour exhibited shear-thinning behaviors, which were well characterized by the power law model. When shortening in cakes was replaced with steam jet-cooked buckwheat gels, the specific gravity of cake batters significantly increased, consequently affecting cake volume after baking. However, shortening replacement with steam jet-cooked buckwheat up to 20% by weight appeared to be effective in producing cakes as soft as the control without volume loss. When buckwheat flour was thermomechanically modified by steam jet-cooking, it was successfully incorporated into cake formulations for shortening up to 20% by weight, producing low-fat cakes with comparable volume and textural properties to the control. Copyright © 2010 Society of Chemical Industry.

  7. Validation of sea ice models using an uncertainty-based distance metric for multiple model variables: NEW METRIC FOR SEA ICE MODEL VALIDATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Urrego-Blanco, Jorge R.; Hunke, Elizabeth C.; Urban, Nathan M.

    Here, we implement a variance-based distance metric (D n) to objectively assess skill of sea ice models when multiple output variables or uncertainties in both model predictions and observations need to be considered. The metric compares observations and model data pairs on common spatial and temporal grids improving upon highly aggregated metrics (e.g., total sea ice extent or volume) by capturing the spatial character of model skill. The D n metric is a gamma-distributed statistic that is more general than the χ 2 statistic commonly used to assess model fit, which requires the assumption that the model is unbiased andmore » can only incorporate observational error in the analysis. The D n statistic does not assume that the model is unbiased, and allows the incorporation of multiple observational data sets for the same variable and simultaneously for different variables, along with different types of variances that can characterize uncertainties in both observations and the model. This approach represents a step to establish a systematic framework for probabilistic validation of sea ice models. The methodology is also useful for model tuning by using the D n metric as a cost function and incorporating model parametric uncertainty as part of a scheme to optimize model functionality. We apply this approach to evaluate different configurations of the standalone Los Alamos sea ice model (CICE) encompassing the parametric uncertainty in the model, and to find new sets of model configurations that produce better agreement than previous configurations between model and observational estimates of sea ice concentration and thickness.« less

  8. Validation of sea ice models using an uncertainty-based distance metric for multiple model variables: NEW METRIC FOR SEA ICE MODEL VALIDATION

    DOE PAGES

    Urrego-Blanco, Jorge R.; Hunke, Elizabeth C.; Urban, Nathan M.; ...

    2017-04-01

    Here, we implement a variance-based distance metric (D n) to objectively assess skill of sea ice models when multiple output variables or uncertainties in both model predictions and observations need to be considered. The metric compares observations and model data pairs on common spatial and temporal grids improving upon highly aggregated metrics (e.g., total sea ice extent or volume) by capturing the spatial character of model skill. The D n metric is a gamma-distributed statistic that is more general than the χ 2 statistic commonly used to assess model fit, which requires the assumption that the model is unbiased andmore » can only incorporate observational error in the analysis. The D n statistic does not assume that the model is unbiased, and allows the incorporation of multiple observational data sets for the same variable and simultaneously for different variables, along with different types of variances that can characterize uncertainties in both observations and the model. This approach represents a step to establish a systematic framework for probabilistic validation of sea ice models. The methodology is also useful for model tuning by using the D n metric as a cost function and incorporating model parametric uncertainty as part of a scheme to optimize model functionality. We apply this approach to evaluate different configurations of the standalone Los Alamos sea ice model (CICE) encompassing the parametric uncertainty in the model, and to find new sets of model configurations that produce better agreement than previous configurations between model and observational estimates of sea ice concentration and thickness.« less

  9. Prediction of soil stress-strain response incorporates mobilised shear strength envelope of granitic residual soil

    NASA Astrophysics Data System (ADS)

    Rahman, Abdul Samad Abdul; Noor, Mohd Jamaludin Md; Ahmad, Juhaizad Bin; Sidek, Norbaya

    2017-10-01

    The concept of effective stress has been the principal concept in characterizing soil volume change behavior in soil mechanics, the settlement models developed using this concept have been empirical in nature. However, there remain certain unexplained soil volume change behaviors that cannot be explained using the effective stress concept, one such behaviour is the inundation settlement. Studies have begun to indicate the inevitable role of shear strength as a critical element to be incorporated in models to unravel the unexplained soil behaviours. One soil volume change model that applies the concept of effective stress and the shear strength interaction is the Rotational Multiple Yield Surface Framework (RMYSF) model. This model has been developed from the soil-strain behavior under anisotropic stress condition. Hence, the RMYSF actually measure the soil actual elasto-plastic response to stress rather than assuming it to be fully elastic or plastic as normally perceived by the industry. The frameworks measures the increase in the mobilize shear strength when the soil undergo anisotropic settlement.

  10. Minerals yearbook: Mineral industries of Europe and central Eurasia. Volume 3. 1992 international review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-01-01

    Volume III, Minerals Yearbook -- International Review contains the latest available mineral data on more than 175 foreign countries and discusses the importance of minerals to the economies of these nations. Since the 1989 International Review, the volume has been presented as six reports. The report presents the Mineral Industries of Europe and Central Eurasia. The report incorporates location maps, industry structure tables, and an outlook section previously incorporated in the authors' Minerals Perspectives Series quinquennial regional books, which are being discontinued. This section of the Minerals Yearbook reviews the minerals industries of 45 countries: the 12 nations of themore » European Community (EC); 6 of the 7 nations of the European Free Trade Association (EFTA); Malta; the 11 Eastern European economies in transition (Albania, Bosnia and Hercegovina, Bulgaria, Croatia, Czechoslovakia, Hungary, Macedonia, Poland, Romania, Serbia and Montenegro, and Slovenia); and the countries of Central Eurasia (Armenia, Azerbaijan, Belarus, Estonia, Georgia, Kazakhstan, Kyrgystan, Latvia, Lithuania, Moldova, Russia, Tajikistan, Turkmenistan, Ukraine, and Uzbekistan).« less

  11. Pollutant Assessments Group procedures manual: Volume 2, Technical procedures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-03-01

    This is volume 2 of the manuals that describes the technical procedures currently in use by the Pollution Assessments Group. This manual incorporates new developments in hazardous waste assessment technology and administrative policy. Descriptions of the equipment, procedures and operations of such things as radiation detection, soil sampling, radionuclide monitoring, and equipment decontamination are included in this manual. (MB)

  12. Manufacturing and quality control of interconnecting wire harnesses, Volume 4

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The document covers interconnecting wire harnesses defined in the design standard, including type 8, flat conductor cable. Volume breadth covers installations of groups of harnesses in a major assembly and the associated post installation inspections and electrical tests. Knowledge gained through experience on the Saturn 5 program coupled with recent advances in techniques, materials, and processes was incorporated into this document.

  13. Using quality function deployment to capture the voice of the customer and translate it into the voice of the provider.

    PubMed

    Chaplin, E; Bailey, M; Crosby, R; Gorman, D; Holland, X; Hippe, C; Hoff, T; Nawrocki, D; Pichette, S; Thota, N

    1999-06-01

    Health care has a number of historical barriers to capturing the voice of the customer and to incorporating customer wants into health care services, whether the customer is a patient, an insurer, or a community. Quality function deployment (QFD) is a set of tools and practices that can help overcome these barriers to form a process for the planning and design or redesign of products and services. The goal of the project was to increase referral volume and to improve a rehabilitation hospital's capacity to provide comprehensive medical and/or legal evaluations for people with complex and catastrophic injuries or illnesses. HIGH-LEVEL VIEW OF QFD AS A PROCESS: The steps in QFD are as follows: capture of the voice of the customer, quality deployment, functions deployment, failure mode deployment, new process deployment, and task deployment. The output of each step becomes the input to a matrix tool or table of the next step of the process. In 3 1/2 months a nine-person project team at Continental Rehabilitation Hospital (San Diego) used QFD tools to capture the voice of the customer, use these data as the basis for a questionnaire on important qualities of service from the customer's perspective, obtain competitive data on how the organization was perceived to be meeting the demanded qualities, identify measurable dimensions and targets of these qualities, and incorporate the functions and tasks into the delivery of service which are necessary to meet the demanded qualities. The future of providing health care services will belong to organizations that can adapt to a rapidly changing environment and to demands for new products and services that are produced and delivered in new ways.

  14. Technical support package: Large, easily deployable structures. NASA Tech Briefs, Fall 1982, volume 7, no. 1

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Design and test data for packaging, deploying, and assembling structures for near term space platform systems, were provided by testing light type hardware in the Neutral Buoyancy Simulator. An optimum or near optimum structural configuration for varying degrees of deployment utilizing different levels of EVA and RMS was achieved. The design of joints and connectors and their lock/release mechanisms were refined to improve performance and operational convenience. The incorporation of utilities into structural modules to determine their effects on packaging and deployment was evaluated. By simulation tests, data was obtained for stowage, deployment, and assembly of the final structural system design to determine construction timelines, and evaluate system functioning and techniques.

  15. Sizing a rainwater harvesting cistern by minimizing costs

    NASA Astrophysics Data System (ADS)

    Pelak, Norman; Porporato, Amilcare

    2016-10-01

    Rainwater harvesting (RWH) has the potential to reduce water-related costs by providing an alternate source of water, in addition to relieving pressure on public water sources and reducing stormwater runoff. Existing methods for determining the optimal size of the cistern component of a RWH system have various drawbacks, such as specificity to a particular region, dependence on numerical optimization, and/or failure to consider the costs of the system. In this paper a formulation is developed for the optimal cistern volume which incorporates the fixed and distributed costs of a RWH system while also taking into account the random nature of the depth and timing of rainfall, with a focus on RWH to supply domestic, nonpotable uses. With rainfall inputs modeled as a marked Poisson process, and by comparing the costs associated with building a cistern with the costs of externally supplied water, an expression for the optimal cistern volume is found which minimizes the water-related costs. The volume is a function of the roof area, water use rate, climate parameters, and costs of the cistern and of the external water source. This analytically tractable expression makes clear the dependence of the optimal volume on the input parameters. An analysis of the rainfall partitioning also characterizes the efficiency of a particular RWH system configuration and its potential for runoff reduction. The results are compared to the RWH system at the Duke Smart Home in Durham, NC, USA to show how the method could be used in practice.

  16. Fully automatized renal parenchyma volumetry using a support vector machine based recognition system for subject-specific probability map generation in native MR volume data

    NASA Astrophysics Data System (ADS)

    Gloger, Oliver; Tönnies, Klaus; Mensel, Birger; Völzke, Henry

    2015-11-01

    In epidemiological studies as well as in clinical practice the amount of produced medical image data strongly increased in the last decade. In this context organ segmentation in MR volume data gained increasing attention for medical applications. Especially in large-scale population-based studies organ volumetry is highly relevant requiring exact organ segmentation. Since manual segmentation is time-consuming and prone to reader variability, large-scale studies need automatized methods to perform organ segmentation. Fully automatic organ segmentation in native MR image data has proven to be a very challenging task. Imaging artifacts as well as inter- and intrasubject MR-intensity differences complicate the application of supervised learning strategies. Thus, we propose a modularized framework of a two-stepped probabilistic approach that generates subject-specific probability maps for renal parenchyma tissue, which are refined subsequently by using several, extended segmentation strategies. We present a three class-based support vector machine recognition system that incorporates Fourier descriptors as shape features to recognize and segment characteristic parenchyma parts. Probabilistic methods use the segmented characteristic parenchyma parts to generate high quality subject-specific parenchyma probability maps. Several refinement strategies including a final shape-based 3D level set segmentation technique are used in subsequent processing modules to segment renal parenchyma. Furthermore, our framework recognizes and excludes renal cysts from parenchymal volume, which is important to analyze renal functions. Volume errors and Dice coefficients show that our presented framework outperforms existing approaches.

  17. Development of volume-stable adipose tissue constructs using polycaprolactone-based polyurethane scaffolds and fibrin hydrogels.

    PubMed

    Wittmann, Katharina; Storck, Katharina; Muhr, Christian; Mayer, Helena; Regn, Sybille; Staudenmaier, Rainer; Wiese, Hinrich; Maier, Gerhard; Bauer-Kreisel, Petra; Blunk, Torsten

    2016-10-01

    Adipose tissue engineering aims at the restoration of soft tissue defects and the correction of contour deformities. It is therefore crucial to provide functional adipose tissue implants with appropriate volume stability. Here, we investigate two different fibrin formulations, alone or in combination with biodegradable polyurethane (PU) scaffolds as additional support structures, with regard to their suitability to generate volume-stable adipose tissue constructs. Human adipose-derived stem cells (ASCs) were incorporated in a commercially available fibrin sealant as well as a stable fibrin hydrogel previously developed by our group. The composite constructs made from the commercially available fibrin and porous poly(ε-caprolactone)-based polyurethane scaffolds exhibited increased volume stability as compared to fibrin gels alone; however, only constructs using the stable fibrin gels completely maintained their size and weight for 21 days. Adipogenesis of ASCs was not impaired by the additional PU scaffold. After induction with a common hormonal cocktail, for constructs with either fibrin formulation, strong adipogenic differentiation of ASCs was observed after 21 days in vitro. Furthermore, upregulation of adipogenic marker genes was demonstrated at mRNA (PPARγ, C/EBPα, GLUT4 and aP2; qRT-PCR) and protein (leptin; ELISA) levels. Stable fibrin/PU constructs were further evaluated in a pilot in vivo study, resulting in areas of well-vascularized adipose tissue within the implants after only 5 weeks. Copyright © 2013 John Wiley & Sons, Ltd. Copyright © 2013 John Wiley & Sons, Ltd.

  18. Fully automatized renal parenchyma volumetry using a support vector machine based recognition system for subject-specific probability map generation in native MR volume data.

    PubMed

    Gloger, Oliver; Tönnies, Klaus; Mensel, Birger; Völzke, Henry

    2015-11-21

    In epidemiological studies as well as in clinical practice the amount of produced medical image data strongly increased in the last decade. In this context organ segmentation in MR volume data gained increasing attention for medical applications. Especially in large-scale population-based studies organ volumetry is highly relevant requiring exact organ segmentation. Since manual segmentation is time-consuming and prone to reader variability, large-scale studies need automatized methods to perform organ segmentation. Fully automatic organ segmentation in native MR image data has proven to be a very challenging task. Imaging artifacts as well as inter- and intrasubject MR-intensity differences complicate the application of supervised learning strategies. Thus, we propose a modularized framework of a two-stepped probabilistic approach that generates subject-specific probability maps for renal parenchyma tissue, which are refined subsequently by using several, extended segmentation strategies. We present a three class-based support vector machine recognition system that incorporates Fourier descriptors as shape features to recognize and segment characteristic parenchyma parts. Probabilistic methods use the segmented characteristic parenchyma parts to generate high quality subject-specific parenchyma probability maps. Several refinement strategies including a final shape-based 3D level set segmentation technique are used in subsequent processing modules to segment renal parenchyma. Furthermore, our framework recognizes and excludes renal cysts from parenchymal volume, which is important to analyze renal functions. Volume errors and Dice coefficients show that our presented framework outperforms existing approaches.

  19. Control volume based hydrocephalus research; analysis of human data

    NASA Astrophysics Data System (ADS)

    Cohen, Benjamin; Wei, Timothy; Voorhees, Abram; Madsen, Joseph; Anor, Tomer

    2010-11-01

    Hydrocephalus is a neuropathophysiological disorder primarily diagnosed by increased cerebrospinal fluid volume and pressure within the brain. To date, utilization of clinical measurements have been limited to understanding of the relative amplitude and timing of flow, volume and pressure waveforms; qualitative approaches without a clear framework for meaningful quantitative comparison. Pressure volume models and electric circuit analogs enforce volume conservation principles in terms of pressure. Control volume analysis, through the integral mass and momentum conservation equations, ensures that pressure and volume are accounted for using first principles fluid physics. This approach is able to directly incorporate the diverse measurements obtained by clinicians into a simple, direct and robust mechanics based framework. Clinical data obtained for analysis are discussed along with data processing techniques used to extract terms in the conservation equation. Control volume analysis provides a non-invasive, physics-based approach to extracting pressure information from magnetic resonance velocity data that cannot be measured directly by pressure instrumentation.

  20. Exceptionally Stable Fluorous Emulsions for the Intravenous Delivery of Volatile General Anesthetics

    PubMed Central

    Jee, Jun-Pil; Parlato, Maria C.; Perkins, Mark G.; Mecozzi, Sandro; Pearce, Robert A.

    2012-01-01

    Background Intravenous delivery of volatile fluorinated anesthetics has a number of potential advantages when compared to the current inhalation method of administration. We reported previously that the IV delivery of sevoflurane can be achieved through an emulsion composed of a linear fluorinated diblock copolymer, a stabilizer, and the anesthetic. However, this original emulsion was subject to particle size growth that would limit its potential clinical utility. We hypothesized that the use of bulkier fluorous groups and smaller poly(ethylene glycol) moieties in the polymer design would result in improved emulsion stability while maintaining anesthetic functionality. Methods The authors prepared emulsions incorporating sevoflurane, perfluorooctyl bromide as a stabilizing agent, and combinations of linear fluorinated diblock copolymer and a novel dibranched fluorinated diblock copolymer. Emulsion stability was assessed using dynamic light scattering. The ability of the emulsions to induce anesthesia was tested in vivo by administering them intravenously to fifteen male Sprague-Dawley rats and measuring loss of the forepaw righting reflex. Results 20% (volume/volume) sevoflurane emulsions incorporating mixtures of dibranched- and linear diblock copolymers had improved stability, with those containing an excess of the dibranched polymers displaying stability of particle size for over one year. The ED50s for loss of forepaw righting reflex were all similar, and ranged between 0.55 and 0.60 ml/kg body weight. Conclusions Hemifluorinated dibranched polymers can be used to generate exceptionally stable sevoflurane nanoemulsions, as required of formulations intended for clinical use. Intravenous delivery of the emulsion in rats resulted in induction of anesthesia with rapid onset and smooth and rapid recovery. PMID:22354241

  1. Hydrodynamic trapping for rapid assembly and in situ electrical characterization of droplet interface bilayer arrays

    DOE PAGES

    Nguyen, Mary -Anne; Srijanto, Bernadeta; Collier, C. Patrick; ...

    2016-08-02

    The droplet interface bilayer (DIB) is a modular technique for assembling planar lipid membranes between water droplets in oil. The DIB method thus provides a unique capability for developing digital, droplet-based membrane platforms for rapid membrane characterization, drug screening and ion channel recordings. This paper demonstrates a new, low-volume microfluidic system that automates droplet generation, sorting, and sequential trapping in designated locations to enable the rapid assembly of arrays of DIBs. The channel layout of the device is guided by an equivalent circuit model, which predicts that a serial arrangement of hydrodynamic DIB traps enables sequential droplet placement and minimizesmore » the hydrodynamic pressure developed across filled traps to prevent squeeze-through of trapped droplets. Furthermore, the incorporation of thin-film electrodes fabricated via evaporation metal deposition onto the glass substrate beneath the channels allows for the first time in situ, simultaneous electrical interrogation of multiple DIBs within a sealed device. Combining electrical measurements with imaging enables measurements of membrane capacitance and resistance and bilayer area, and our data show that DIBs formed in different trap locations within the device exhibit similar sizes and transport properties. Simultaneous, single channel recordings of ion channel gating in multiple membranes are obtained when alamethicin peptides are incorporated into the captured droplets, qualifying the thin-film electrodes as a means for measuring stimuli-responsive functions of membrane-bound biomolecules. Furthermore, this novel microfluidic-electrophysiology platform provides a reproducible, high throughput method for performing electrical measurements to study transmembrane proteins and biomembranes in low-volume, droplet-based membranes.« less

  2. Hydrodynamic trapping for rapid assembly and in situ electrical characterization of droplet interface bilayer arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Mary -Anne; Srijanto, Bernadeta; Collier, C. Patrick

    The droplet interface bilayer (DIB) is a modular technique for assembling planar lipid membranes between water droplets in oil. The DIB method thus provides a unique capability for developing digital, droplet-based membrane platforms for rapid membrane characterization, drug screening and ion channel recordings. This paper demonstrates a new, low-volume microfluidic system that automates droplet generation, sorting, and sequential trapping in designated locations to enable the rapid assembly of arrays of DIBs. The channel layout of the device is guided by an equivalent circuit model, which predicts that a serial arrangement of hydrodynamic DIB traps enables sequential droplet placement and minimizesmore » the hydrodynamic pressure developed across filled traps to prevent squeeze-through of trapped droplets. Furthermore, the incorporation of thin-film electrodes fabricated via evaporation metal deposition onto the glass substrate beneath the channels allows for the first time in situ, simultaneous electrical interrogation of multiple DIBs within a sealed device. Combining electrical measurements with imaging enables measurements of membrane capacitance and resistance and bilayer area, and our data show that DIBs formed in different trap locations within the device exhibit similar sizes and transport properties. Simultaneous, single channel recordings of ion channel gating in multiple membranes are obtained when alamethicin peptides are incorporated into the captured droplets, qualifying the thin-film electrodes as a means for measuring stimuli-responsive functions of membrane-bound biomolecules. Furthermore, this novel microfluidic-electrophysiology platform provides a reproducible, high throughput method for performing electrical measurements to study transmembrane proteins and biomembranes in low-volume, droplet-based membranes.« less

  3. Brain tissue volumes in relation to cognitive function and risk of dementia.

    PubMed

    Ikram, M Arfan; Vrooman, Henri A; Vernooij, Meike W; den Heijer, Tom; Hofman, Albert; Niessen, Wiro J; van der Lugt, Aad; Koudstaal, Peter J; Breteler, Monique M B

    2010-03-01

    We investigated in a population-based cohort study the association of global and lobar brain tissue volumes with specific cognitive domains and risk of dementia. Participants (n=490; 60-90 years) were non-demented at baseline (1995-1996). From baseline brain MRI-scans we obtained global and lobar volumes of CSF, GM, normal WM, white matter lesions and hippocampus. We performed neuropsychological testing at baseline to assess information processing speed, executive function, memory function and global cognitive function. Participants were followed for incident dementia until January 1, 2005. Larger volumes of CSF and WML were associated with worse performance on all neuropsychological tests, and an increased risk of dementia. Smaller WM volume was related to poorer information processing speed and executive function. In contrast, smaller GM volume was associated with worse memory function and increased risk of dementia. When investigating lobar GM volumes, we found that hippocampal volume and temporal GM volume were most strongly associated with risk of dementia, even in persons without objective and subjective cognitive deficits at baseline, followed by frontal and parietal GM volumes. Copyright 2008 Elsevier Inc. All rights reserved.

  4. Systematic Tuning and Multifunctionalization of Covalent Organic Polymers for Enhanced Carbon Capture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiang, Zhonghua; Mercado, Rocio; Huck, Johanna M.

    Porous covalent polymers are attracting increasing interest in the fields of gas adsorption, gas separation, and catalysis due to their fertile synthetic polymer chemistry, large internal surface areas, and ultrahigh hydrothermal stabilities. While precisely manipulating the porosities of porous organic materials for targeted applications remains challenging, we show how a large degree of diversity can be achieved in covalent organic polymers by incorporating multiple functionalities into a single framework, as is done for crystalline porous materials. Here, we synthesized 17 novel porous covalent organic polymers (COPs) with finely tuned porosities, a wide range of Brunauer–Emmett–Teller (BET) specific surface areas ofmore » 430–3624 m2 g–1, and a broad range of pore volumes of 0.24–3.50 cm3 g–1, all achieved by tailoring the length and geometry of building blocks. Furthermore, we are the first to successfully incorporate more than three distinct functional groups into one phase for porous organic materials, which has been previously demonstrated in crystalline metal–organic frameworks (MOFs). COPs decorated with multiple functional groups in one phase can lead to enhanced properties that are not simply linear combinations of the pure component properties. For instance, in the dibromobenzene-lined frameworks, the bi- and multifunctionalized COPs exhibit selectivities for carbon dioxide over nitrogen twice as large as any of the singly functionalized COPs. These multifunctionalized frameworks also exhibit a lower parasitic energy cost for carbon capture at typical flue gas conditions than any of the singly functionalized frameworks. Despite the significant improvement, these frameworks do not yet outperform the current state-of-art technology for carbon capture. Nonetheless, the tuning strategy presented here opens up avenues for the design of novel catalysts, the synthesis of functional sensors from these materials, and the improvement in the performance of existing covalent organic polymers by multifunctionalization.« less

  5. A software communication tool for the tele-ICU.

    PubMed

    Pimintel, Denise M; Wei, Shang Heng; Odor, Alberto

    2013-01-01

    The Tele Intensive Care Unit (tele-ICU) supports a high volume, high acuity population of patients. There is a high-volume of incoming and outgoing calls, especially during the evening and night hours, through the tele-ICU hubs. The tele-ICU clinicians must be able to communicate effectively to team members in order to support the care of complex and critically ill patients while supporting and maintaining a standard to improve time to intervention. This study describes a software communication tool that will improve the time to intervention, over the paper-driven communication format presently used in the tele-ICU. The software provides a multi-relational database of message instances to mine information for evaluation and quality improvement for all entities that touch the tele-ICU. The software design incorporates years of critical care and software design experience combined with new skills acquired in an applied Health Informatics program. This software tool will function in the tele-ICU environment and perform as a front-end application that gathers, routes, and displays internal communication messages for intervention by priority and provider.

  6. A semi-analytical description of protein folding that incorporates detailed geometrical information

    PubMed Central

    Suzuki, Yoko; Noel, Jeffrey K.; Onuchic, José N.

    2011-01-01

    Much has been done to study the interplay between geometric and energetic effects on the protein folding energy landscape. Numerical techniques such as molecular dynamics simulations are able to maintain a precise geometrical representation of the protein. Analytical approaches, however, often focus on the energetic aspects of folding, including geometrical information only in an average way. Here, we investigate a semi-analytical expression of folding that explicitly includes geometrical effects. We consider a Hamiltonian corresponding to a Gaussian filament with structure-based interactions. The model captures local features of protein folding often averaged over by mean-field theories, for example, loop contact formation and excluded volume. We explore the thermodynamics and folding mechanisms of beta-hairpin and alpha-helical structures as functions of temperature and Q, the fraction of native contacts formed. Excluded volume is shown to be an important component of a protein Hamiltonian, since it both dominates the cooperativity of the folding transition and alters folding mechanisms. Understanding geometrical effects in analytical formulae will help illuminate the consequences of the approximations required for the study of larger proteins. PMID:21721664

  7. Design considerations of a hollow microneedle-optofluidic biosensing platform incorporating enzyme-linked assays

    NASA Astrophysics Data System (ADS)

    Ranamukhaarachchi, Sahan A.; Padeste, Celestino; Häfeli, Urs O.; Stoeber, Boris; Cadarso, Victor J.

    2018-02-01

    A hollow metallic microneedle is integrated with microfluidics and photonic components to form a microneedle-optofluidic biosensor suitable for therapeutic drug monitoring (TDM) in biological fluids, like interstitial fluid, that can be collected in a painless and minimally-invasive manner. The microneedle inner lumen surface is bio-functionalized to trap and bind target analytes on-site in a sample volume as small as 0.6 nl, and houses an enzyme-linked assay on its 0.06 mm2 wall. The optofluidic components are designed to rapidly quantify target analytes present in the sample and collected in the microneedle using a simple and sensitive absorbance scheme. This contribution describes how the biosensor components were optimized to detect in vitro streptavidin-horseradish peroxidase (Sav-HRP) as a model analyte over a large detection range (0-7.21 µM) and a very low limit of detection (60.2 nM). This biosensor utilizes the lowest analyte volume reported for TDM with microneedle technology, and presents significant avenues to improve current TDM methods for patients, by potentially eliminating blood draws for several drug candidates.

  8. Rapid analysis of ultraviolet filters using dispersive liquid-liquid microextraction coupled to headspace gas chromatography and mass spectrometry.

    PubMed

    Pierson, Stephen A; Trujillo-Rodríguez, María J; Anderson, Jared L

    2018-05-29

    An ionic-liquid-based in situ dispersive liquid-liquid microextraction method coupled to headspace gas chromatography and mass spectrometry was developed for the rapid analysis of ultraviolet filters. The chemical structures of five ionic liquids were specifically designed to incorporate various functional groups for the favorable extraction of the target analytes. Extraction parameters including ionic liquid mass, molar ratio of ionic liquid to metathesis reagent, vortex time, ionic strength, pH, and total sample volume were studied and optimized. The effect of the headspace temperature and volume during the headspace sampling step was also evaluated to increase the sensitivity of the method. The optimized procedure is fast as it only required ∼7-10 min per extraction and allowed for multiple extractions to be performed simultaneously. In addition, the method exhibited high precision, good linearity, and low limits of detection for six ultraviolet filters in aqueous samples. The developed method was applied to both pool and lake water samples attaining acceptable relative recovery values. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. BSM Delta Qualification 2, volume 2

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This report, presented in three volumes, provides the results of a two-motor Delta Qualification 2 program conducted in 1993 to certify the following enhancements for incorporation into booster separation motor (BSM) flight hardware: vulcanized-in-place nozzle aft closure insulation; new iso-static ATJ bulk graphite throat insert material; adhesive EA 9394 for bonding the nozzle throat, igniter grain rod/centering insert/igniter case; deletion of the igniter adapter insulator ring; deletion of the igniter adapter/igniter case interface RTV; and deletion of loctite from igniter retainer plate threads. The enhancements above directly resulted from (1) the BSM total quality management (TQM) team initiatives to enhance the BSM producibility, and (2) the necessity to qualify new throat insert and adhesive systems to replace existing materials that will not be available. Testing was completed at both the component and motor levels. Component testing was accomplished to screen candidate materials (e.g., throat materials, adhesive systems) and to optimize processes (e.g., aft closure insulator vulcanization approach) prior to their incorporation into the test motors. Motor tests -- consisting of two motors, randomly selected by USBI's on-site quality personnel from production lot AAY, which were modified to accept the enhancements -- were completed to provide the final qualification of the enhancements for incorporation into flight hardware. Volume 2 details the environmental testing (vibration and shock) conducted at Marshall Space Flight Center (MSFC) to which the motors were subjected prior to static tests.

  10. Vapor Compression Distillation Subsystem (VCDS) component enhancement, testing and expert fault diagnostics development, volume 1

    NASA Technical Reports Server (NTRS)

    Kovach, L. S.; Zdankiewicz, E. M.

    1987-01-01

    Vapor compression distillation technology for phase change recovery of potable water from wastewater has evolved as a technically mature approach for use aboard the Space Station. A program to parametrically test an advanced preprototype Vapor Compression Distillation Subsystem (VCDS) was completed during 1985 and 1986. In parallel with parametric testing, a hardware improvement program was initiated to test the feasibility of incorporating several key improvements into the advanced preprototype VCDS following initial parametric tests. Specific areas of improvement included long-life, self-lubricated bearings, a lightweight, highly-efficient compressor, and a long-life magnetic drive. With the exception of the self-lubricated bearings, these improvements are incorporated. The advanced preprototype VCDS was designed to reclaim 95 percent of the available wastewater at a nominal water recovery rate of 1.36 kg/h achieved at a solids concentration of 2.3 percent and 308 K condenser temperature. While this performance was maintained for the initial testing, a 300 percent improvement in water production rate with a corresponding lower specific energy was achieved following incorporation of the improvements. Testing involved the characterization of key VCDS performance factors as a function of recycle loop solids concentration, distillation unit temperature and fluids pump speed. The objective of this effort was to expand the VCDS data base to enable defining optimum performance characteristics for flight hardware development.

  11. Incorporation of air into a snack food reduces energy intake

    PubMed Central

    Osterholt, Kathrin M.; Roe, Liane S.

    2007-01-01

    This study investigated how the air content of a familiar snack food affected energy intake and whether varying the method of serving the snack modified intake. We tested two versions of an extruded snack (cheese puffs) that were equal in energy density (5.7 kcal/g), but differed in energy per volume (less-aerated snack: 1.00 kcal/ml; more- aerated snack: 0.45 kcal/ml). In a within-subjects design, 16 women and 12 men consumed the snacks ad libitum in the laboratory during four afternoon sessions. A standard volume (1250 ml) of each snack was served once in a bowl and once in an opaque bag. Results showed that intake of the two snacks differed significantly by energy (p=0.0003) and volume (p<0.0001); subjects consumed 21% less weight and energy (70±17 kcal) of the more-aerated snack than the less-aerated snack, although they consumed a 73% greater volume of the more-aerated snack (239±24 ml). These findings suggest that subjects responded to both the weight and volume of the snack. Despite differences in intake, hunger and fullness ratings did not differ across conditions. The serving method did not significantly affect intake. Results from this study indicate that incorporating air into food provides a strategy to reduce energy intake from energy-dense snacks. PMID:17188782

  12. The influence of carbohydrate-based fat replacers with and without emulsifiers on the quality characteristics of lowfat cake.

    PubMed

    Khalil, A H

    1998-01-01

    Physical and sensory characteristics of cakes prepared with either the carbohydrate-based fat replacers N-Flate, Paselli MD 10 and Litesse (0, 25, 50 and 75% of fat weight) or fat replacers plus emulsifier (mono- and diglycerides; 0 and 3% of flour weight) were studied. Specific gravity of the batter was significantly (p < or = 0.05) improved by using the carbohydrate-based fat replacers, especially at the 25 and 50% replacement levels. The combination of the emulsifier with either Paselli MD 10 or Litesse also enhanced the specific gravity. Cakes prepared with fat replacers at the 25 and 50% levels had higher volumes, specific volume and standing heights than those of the control. Cakes prepared with fat replacers at the 25, 50 and 75% levels were more compressible than the control. Cakes prepared with Paselli MD 10 had the highest volumes, specific volume, standing heights and compressibilities. Incorporation of emulsifier with fat replacers improved cake volumes, standing heights and compressibilities. Cakes prepared with fat replacers exhibited higher crust and crumb color values compared to the control. Cakes prepared with 25 or 50% fat replacers had higher mean scores for flavor, softness and eating quality than the control. Incorporation of emulsifier with fat replacers did not affect the crust color, crumb color and flavor, but significantly (p < or = 0.05) improved softness and eating quality.

  13. Motion-aware stroke volume quantification in 4D PC-MRI data of the human aorta.

    PubMed

    Köhler, Benjamin; Preim, Uta; Grothoff, Matthias; Gutberlet, Matthias; Fischbach, Katharina; Preim, Bernhard

    2016-02-01

    4D PC-MRI enables the noninvasive measurement of time-resolved, three-dimensional blood flow data that allow quantification of the hemodynamics. Stroke volumes are essential to assess the cardiac function and evolution of different cardiovascular diseases. The calculation depends on the wall position and vessel orientation, which both change during the cardiac cycle due to the heart muscle contraction and the pumped blood. However, current systems for the quantitative 4D PC-MRI data analysis neglect the dynamic character and instead employ a static 3D vessel approximation. We quantify differences between stroke volumes in the aorta obtained with and without consideration of its dynamics. We describe a method that uses the approximating 3D segmentation to automatically initialize segmentation algorithms that require regions inside and outside the vessel for each temporal position. This enables the use of graph cuts to obtain 4D segmentations, extract vessel surfaces including centerlines for each temporal position and derive motion information. The stroke volume quantification is compared using measuring planes in static (3D) vessels, planes with fixed angulation inside dynamic vessels (this corresponds to the common 2D PC-MRI) and moving planes inside dynamic vessels. Seven datasets with different pathologies such as aneurysms and coarctations were evaluated in close collaboration with radiologists. Compared to the experts' manual stroke volume estimations, motion-aware quantification performs, on average, 1.57% better than calculations without motion consideration. The mean difference between stroke volumes obtained with the different methods is 7.82%. Automatically obtained 4D segmentations overlap by 85.75% with manually generated ones. Incorporating motion information in the stroke volume quantification yields slight but not statistically significant improvements. The presented method is feasible for the clinical routine, since computation times are low and essential parts run fully automatically. The 4D segmentations can be used for other algorithms as well. The simultaneous visualization and quantification may support the understanding and interpretation of cardiac blood flow.

  14. Incorporation of Condensation Heat Transfer in a Flow Network Code

    NASA Technical Reports Server (NTRS)

    Anthony, Miranda; Majumdar, Alok

    2002-01-01

    Pure water is distilled from waste water in the International Space Station. The distillation assembly consists of an evaporator, a compressor and a condenser. Vapor is periodically purged from the condenser to avoid vapor accumulation. Purged vapor is condensed in a tube by coolant water prior to entering the purge pump. The paper presents a condensation model of purged vapor in a tube. This model is based on the Finite Volume Method. In the Finite Volume Method, the flow domain is discretized into multiple control volumes and a simultaneous analysis is performed.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Y.; Hughes, J; Rakovan, J

    According to our calculation, the volume of the Ca2 polyhedron increases by about 5.8% from fluorapatite to chlorapatite, but that of Ca1 polyhedron increases by only 0.59%. We speculate that the much greater size of the Ca2 polyhedron in chlorapatite may diminish the selectivity of this position for U and Th. The incorporation of U and Th into fluorapatite results in a decrease in the size of both Ca polyhedra, but the incorporation of U and Th into chlorapatite results in an increase in the volume of both Ca polyhedra. We suggest that the preference of U and Th formore » both Ca sites in chlorapatite is attributable to the large increase in size and distortion of the Ca2 polyhedron upon substitution of Cl for F.« less

  16. Age, Sex, and Blood Pressure-Related Influences on Reference Values of Left Atrial Deformation and Mechanics From a Large-Scale Asian Population.

    PubMed

    Liao, Jo-Nan; Chao, Tze-Fan; Kuo, Jen-Yuan; Sung, Kuo-Tzu; Tsai, Jui-Peng; Lo, Chi-In; Lai, Yau-Huei; Su, Cheng-Huang; Hung, Chung-Lieh; Yeh, Hung-I; Chen, Shih-Ann

    2017-10-01

    Left atrial (LA) function is tightly linked to several cardiovascular diseases and confers key prognostic information. Speckle tracking-based deformation as a feasible and sensitive LA mechanical assessment has proven its clinical significance beyond volume measures; however, the reference values remain largely unknown. We studied 4042 participants undergoing annual cardiovascular survey. Among them, 2812 healthy participants (65% men; mean age, 47.4±9.9 years) were eligible for speckle tracking analysis. Peak atrial longitudinal systolic strain and strain rate (SR) at systolic (SRs), early diastolic (SRe), and late diastolic atrial contraction phases (SRa) were analyzed by dedicated software (EchoPAC, GE) and compared in terms of age, sex, and blood pressure. Overall, women demonstrated higher peak atrial longitudinal systolic strain (39.34±7.99% versus 37.95±7.96%; P<0.001) and showed age-dependent more pronounced peak atrial longitudinal systolic strain functional decay than those of men (P value for interaction, <0.05), with men showing higher SRs and SRa, although lower SRe (all P<0.001). Both increasing age and higher blood pressure were independently associated with deteriorated peak atrial longitudinal systolic strain, SRs, and SRe, although augmented LA SRa, even after accounting for baseline clinical covariates in multivariable models that incorporated LA volume, NT-proBNP (N-terminal pro-B-type natriuretic peptide), or left ventricular E/e' (all P<0.001). Our findings suggest LA mechanical functional decays in association with increasing age and higher blood pressure, which seem to be compensated for by augmentation of atrial pump function. We have also provided age- and sex-stratified reference values for strain and SR based on a large-scale Asian population. © 2017 American Heart Association, Inc.

  17. Optimized Design and Analysis of Sparse-Sampling fMRI Experiments

    PubMed Central

    Perrachione, Tyler K.; Ghosh, Satrajit S.

    2013-01-01

    Sparse-sampling is an important methodological advance in functional magnetic resonance imaging (fMRI), in which silent delays are introduced between MR volume acquisitions, allowing for the presentation of auditory stimuli without contamination by acoustic scanner noise and for overt vocal responses without motion-induced artifacts in the functional time series. As such, the sparse-sampling technique has become a mainstay of principled fMRI research into the cognitive and systems neuroscience of speech, language, hearing, and music. Despite being in use for over a decade, there has been little systematic investigation of the acquisition parameters, experimental design considerations, and statistical analysis approaches that bear on the results and interpretation of sparse-sampling fMRI experiments. In this report, we examined how design and analysis choices related to the duration of repetition time (TR) delay (an acquisition parameter), stimulation rate (an experimental design parameter), and model basis function (an analysis parameter) act independently and interactively to affect the neural activation profiles observed in fMRI. First, we conducted a series of computational simulations to explore the parameter space of sparse design and analysis with respect to these variables; second, we validated the results of these simulations in a series of sparse-sampling fMRI experiments. Overall, these experiments suggest the employment of three methodological approaches that can, in many situations, substantially improve the detection of neurophysiological response in sparse fMRI: (1) Sparse analyses should utilize a physiologically informed model that incorporates hemodynamic response convolution to reduce model error. (2) The design of sparse fMRI experiments should maintain a high rate of stimulus presentation to maximize effect size. (3) TR delays of short to intermediate length can be used between acquisitions of sparse-sampled functional image volumes to increase the number of samples and improve statistical power. PMID:23616742

  18. Optimized design and analysis of sparse-sampling FMRI experiments.

    PubMed

    Perrachione, Tyler K; Ghosh, Satrajit S

    2013-01-01

    Sparse-sampling is an important methodological advance in functional magnetic resonance imaging (fMRI), in which silent delays are introduced between MR volume acquisitions, allowing for the presentation of auditory stimuli without contamination by acoustic scanner noise and for overt vocal responses without motion-induced artifacts in the functional time series. As such, the sparse-sampling technique has become a mainstay of principled fMRI research into the cognitive and systems neuroscience of speech, language, hearing, and music. Despite being in use for over a decade, there has been little systematic investigation of the acquisition parameters, experimental design considerations, and statistical analysis approaches that bear on the results and interpretation of sparse-sampling fMRI experiments. In this report, we examined how design and analysis choices related to the duration of repetition time (TR) delay (an acquisition parameter), stimulation rate (an experimental design parameter), and model basis function (an analysis parameter) act independently and interactively to affect the neural activation profiles observed in fMRI. First, we conducted a series of computational simulations to explore the parameter space of sparse design and analysis with respect to these variables; second, we validated the results of these simulations in a series of sparse-sampling fMRI experiments. Overall, these experiments suggest the employment of three methodological approaches that can, in many situations, substantially improve the detection of neurophysiological response in sparse fMRI: (1) Sparse analyses should utilize a physiologically informed model that incorporates hemodynamic response convolution to reduce model error. (2) The design of sparse fMRI experiments should maintain a high rate of stimulus presentation to maximize effect size. (3) TR delays of short to intermediate length can be used between acquisitions of sparse-sampled functional image volumes to increase the number of samples and improve statistical power.

  19. Evaluation of a 3D local multiresolution algorithm for the correction of partial volume effects in positron emission tomography.

    PubMed

    Le Pogam, Adrien; Hatt, Mathieu; Descourt, Patrice; Boussion, Nicolas; Tsoumpas, Charalampos; Turkheimer, Federico E; Prunier-Aesch, Caroline; Baulieu, Jean-Louis; Guilloteau, Denis; Visvikis, Dimitris

    2011-09-01

    Partial volume effects (PVEs) are consequences of the limited spatial resolution in emission tomography leading to underestimation of uptake in tissues of size similar to the point spread function (PSF) of the scanner as well as activity spillover between adjacent structures. Among PVE correction methodologies, a voxel-wise mutual multiresolution analysis (MMA) was recently introduced. MMA is based on the extraction and transformation of high resolution details from an anatomical image (MR/CT) and their subsequent incorporation into a low-resolution PET image using wavelet decompositions. Although this method allows creating PVE corrected images, it is based on a 2D global correlation model, which may introduce artifacts in regions where no significant correlation exists between anatomical and functional details. A new model was designed to overcome these two issues (2D only and global correlation) using a 3D wavelet decomposition process combined with a local analysis. The algorithm was evaluated on synthetic, simulated and patient images, and its performance was compared to the original approach as well as the geometric transfer matrix (GTM) method. Quantitative performance was similar to the 2D global model and GTM in correlated cases. In cases where mismatches between anatomical and functional information were present, the new model outperformed the 2D global approach, avoiding artifacts and significantly improving quality of the corrected images and their quantitative accuracy. A new 3D local model was proposed for a voxel-wise PVE correction based on the original mutual multiresolution analysis approach. Its evaluation demonstrated an improved and more robust qualitative and quantitative accuracy compared to the original MMA methodology, particularly in the absence of full correlation between anatomical and functional information.

  20. Evaluation of a 3D local multiresolution algorithm for the correction of partial volume effects in positron emission tomography

    PubMed Central

    Le Pogam, Adrien; Hatt, Mathieu; Descourt, Patrice; Boussion, Nicolas; Tsoumpas, Charalampos; Turkheimer, Federico E.; Prunier-Aesch, Caroline; Baulieu, Jean-Louis; Guilloteau, Denis; Visvikis, Dimitris

    2011-01-01

    Purpose Partial volume effects (PVE) are consequences of the limited spatial resolution in emission tomography leading to under-estimation of uptake in tissues of size similar to the point spread function (PSF) of the scanner as well as activity spillover between adjacent structures. Among PVE correction methodologies, a voxel-wise mutual multi-resolution analysis (MMA) was recently introduced. MMA is based on the extraction and transformation of high resolution details from an anatomical image (MR/CT) and their subsequent incorporation into a low resolution PET image using wavelet decompositions. Although this method allows creating PVE corrected images, it is based on a 2D global correlation model which may introduce artefacts in regions where no significant correlation exists between anatomical and functional details. Methods A new model was designed to overcome these two issues (2D only and global correlation) using a 3D wavelet decomposition process combined with a local analysis. The algorithm was evaluated on synthetic, simulated and patient images, and its performance was compared to the original approach as well as the geometric transfer matrix (GTM) method. Results Quantitative performance was similar to the 2D global model and GTM in correlated cases. In cases where mismatches between anatomical and functional information were present the new model outperformed the 2D global approach, avoiding artefacts and significantly improving quality of the corrected images and their quantitative accuracy. Conclusions A new 3D local model was proposed for a voxel-wise PVE correction based on the original mutual multi-resolution analysis approach. Its evaluation demonstrated an improved and more robust qualitative and quantitative accuracy compared to the original MMA methodology, particularly in the absence of full correlation between anatomical and functional information. PMID:21978037

  1. Sea-State Dependence of Aerosol Concentration in the Marine Atmospheric Boundary Layer

    NASA Astrophysics Data System (ADS)

    Lenain, L.; Melville, W. K.

    2016-02-01

    While sea spray aerosols represent a large portion of the aerosols present in the marine environment, and despite evidence of the importance of surface wave and wave-breaking related processes in the coupling of the ocean with the atmosphere, sea spray source generation functions are traditionally parameterized by the wind speed at 10m. It is clear that unless the wind and wave field are fully developed, the source function will be a function of both wind and wave parameters. In this study, we report on an air-sea interaction experiment, the ONR phase-resolved High-Resolution Air-Sea Interaction experiments (HIRES), conducted off the coast of Northern California in June 2010. Detailed measurements of aerosol number concentration in the Marine Atmospheric Boundary Layer (MABL), at altitudes ranging from as low as 30m and up to 800m AMSL over a broad range of environmental conditions (significant wave height, Hs, of 2 to 4.5m and wind speed at 10m height, U10, of 10 to 18 m/s) collected from an instrumented research aircraft, are presented. Aerosol number densities and volume are computed over a range of particle diameters from 0.1 to 200 µm, while the surface conditions, i.e. significant wave height, moments of the breaker length distribution Λ(c), and wave breaking dissipation, were measured by a suite of electro-optical sensors that included the NASA Airborne Topographic Mapper (ATM). The sea-state dependence of the aerosol concentration in the MABL is evident, ultimately stressing the need to incorporate wave and wave kinematics in the spray source generation functions that are traditionally primarily parameterized by surface winds. A scaling of the measured aerosol volume distribution by wave and atmospheric state variables is proposed.

  2. Proximal Femoral Varus Derotation Osteotomy in Children with Cerebral Palsy: The Effect of Age, Gross Motor Function Classification System Level, and Surgeon Volume on Surgical Success.

    PubMed

    Shore, Benjamin J; Zurakowski, David; Dufreny, Chantal; Powell, Dustin; Matheney, Travis H; Snyder, Brian D

    2015-12-16

    The purpose of this study was to evaluate mid-term results of proximal femoral varus derotation osteotomy (VDRO) in children with cerebral palsy and determine what effect age, Gross Motor Function Classification System (GMFCS) level, and surgeon volume had on surgical success. We analyzed a cohort of children with cerebral palsy who underwent VDRO for hip displacement at a tertiary-level pediatric hospital between 1994 and 2007. Age, sex, GMFCS level, preoperative radiographic parameters, previous botulinum toxin administration or soft-tissue release, adjunctive pelvic osteotomy, the performance of bilateral surgery at the index VDRO, and surgeon volume (the number of procedures performed) were recorded. Results were analyzed via univariate and multivariate analyses for association with the need for revision hip surgery. Kaplan-Meier survivorship curves were generated, determining the time from index surgery to failure (defined as the need for subsequent surgical procedures on the hip and/or pelvis, or a hip migration percentage of >50% at the time of final follow-up), and were further stratified according to osseous versus soft-tissue revision. A total of 567 VDROs were performed in 320 children (mean age [and standard deviation], 8.2 ± 3.8 years). The mean follow-up was 8.3 years (range, three to eighteen years). Of the initial 320 patients, 117 (37%) were considered to have had failure. Multivariate Cox regression analysis confirmed that younger age at surgery (p < 0.001), increased GMFCS level (p = 0.01), and lower annual surgical hip volume (p = 0.02) were significant independent predictors of any type of surgical revision. Furthermore, soft-tissue release at VDRO was protective against revision (p = 0.02). Five-year survivorship analysis revealed a 92% success rate for children classified as GMFCS levels I and II compared with a 76% success rate for those of GMFCS level V (p < 0.01). This study demonstrated a 37% failure rate after VDRO in children with cerebral palsy. Older age, lower GMFCS level, and increased surgeon volume were strong predictors of surgical success. Copyright © 2015 by The Journal of Bone and Joint Surgery, Incorporated.

  3. Three-dimensional transvaginal sonographic assessment of uterine volume as preoperative predictor of need to morcellate in women undergoing laparoscopic hysterectomy.

    PubMed

    Gerges, B; Mongelli, M; Casikar, I; Bignardi, T; Condous, G

    2017-08-01

    In light of recent statements from the United States Food and Drug Administration warning against the use of power morcellation of uterine leiomyomas during laparoscopy, we sought to evaluate the use of preoperative two- (2D) and three- (3D) dimensional transvaginal ultrasound (US) assessment of uterine volume to predict the need for morcellation in women undergoing laparoscopic hysterectomy (LH). This was a prospective observational study performed between October 2008 and November 2011 in a tertiary referral laparoscopic unit. All women scheduled to undergo LH were included and underwent detailed preoperative transvaginal US. Uterine volumes were calculated using 2D-US measurements (ellipsoid formula), and using Virtual Organ Computer-aided AnaLysis (VOCAL™) having acquired 3D-US volumes of the uterus. Age, parity, need to morcellate and final uterine dry weight at histology were recorded. The estimated uterine volumes were then incorporated into a previously published logistic regression model to predict the need to morcellate for both nulliparous and parous women. The probability threshold cut-off of 0.14 (95% sensitivity) was evaluated in terms of sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and likelihood ratios (LRs). The performance of the models incorporating 2D- and 3D-US calculations were compared with 2D- and 3D-US-generated volumes alone, using receiver-operating characteristics (ROC) curves. Of 76 women who underwent LH during the study period, 79% (n = 60) had complete background and 3D-US data. Their mean age was 43.7 years, 91.7% were parous and 35% underwent morcellation. The greatest uterine volume that did not require morcellation was 404 mL estimated using 3D-US, which corresponded to a uterine volume of 688.8 mL using 2D-US. The smallest uterine volume that required morcellation was 118.9 mL using 3D-US, which corresponded to a uterine volume of 123.4 mL using 2D-US. The 3D-US uterine volume for parous women with a sensitivity of 95% based on ROC-curve analysis was approximately 120 mL, which equated to a predicted probability of morcellation cut-off of 0.14. For this cut-off, specificity was 55.00%, PPV was 51.35%, NPV was 95.65%, LR+ was 2.11 and LR- was 0.09. Areas under the ROC curves for the morcellation logistic regression model were 0.769 (95% CI, 0.653-0.886) and 0.586 (95% CI, 0.419-0.753) using uterine volumes obtained by 3D-US and by 2D-US, respectively, and they were 0.938 (95% CI, 0.879-0.996) and 0.815 (95% CI, 0.681-0.948) using 3D-US and 2D-US volumes alone. The need to morcellate can be predicted preoperatively using 3D-US uterine volumes obtained by transvaginal US with a fair degree of accuracy. Uteri with volumes smaller than 120 mL at 3D-US are very unlikely to require morcellation. The incorporation of 3D-US-estimated uterine volume into the previously published logistic regression model does not seem to confer any significant improvement when compared with 3D-US uterine volume alone to predict the need to morcellate in women undergoing total LH. Copyright © 2016 ISUOG. Published by John Wiley & Sons Ltd. Copyright © 2016 ISUOG. Published by John Wiley & Sons Ltd.

  4. Velocity and Density Models Incorporating the Cascadia Subduction Zone for 3D Earthquake Ground Motion Simulations

    USGS Publications Warehouse

    Stephenson, William J.

    2007-01-01

    In support of earthquake hazards and ground motion studies in the Pacific Northwest, three-dimensional P- and S-wave velocity (3D Vp and Vs) and density (3D rho) models incorporating the Cascadia subduction zone have been developed for the region encompassed from about 40.2°N to 50°N latitude, and from about -122°W to -129°W longitude. The model volume includes elevations from 0 km to 60 km (elevation is opposite of depth in model coordinates). Stephenson and Frankel (2003) presented preliminary ground motion simulations valid up to 0.1 Hz using an earlier version of these models. The version of the model volume described here includes more structural and geophysical detail, particularly in the Puget Lowland as required for scenario earthquake simulations in the development of the Seattle Urban Hazards Maps (Frankel and others, 2007). Olsen and others (in press) used the model volume discussed here to perform a Cascadia simulation up to 0.5 Hz using a Sumatra-Andaman Islands rupture history. As research from the EarthScope Program (http://www.earthscope.org) is published, a wealth of important detail can be added to these model volumes, particularly to depths of the upper-mantle. However, at the time of development for this model version, no EarthScope-specific results were incorporated. This report is intended to be a reference for colleagues and associates who have used or are planning to use this preliminary model in their research. To this end, it is intended that these models will be considered a beginning template for a community velocity model of the Cascadia region as more data and results become available.

  5. BSM Delta Qualification 2, volume 3, book 2

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This report, presented in three volumes, provides the results of a two-motor Delta Qualification 2 program conducted in 1993 to certify the following enhancements for incorporation into booster separation motor (BSM0 flight hardware: vulcanized-in-place nozzle aft closure insulation; new iso-static ATJ bulk graphite throat insert material, adhesive EA9394 for bonding the nozzle throat, igniter grain rod/centering insert/igniter case; deletion of the igniter adapter insulator ring; deletion of the igniter adapter/igniter case interface RTV; and deletion of loctite from igniter retainer plate threads. The enhancements above directly resulted from (1) the BSM total quality management (TQM) team initiatives to enhance the BSM producibility, and (2) the necessity to qualify new throat insert and adhesive systems to replace existing materials that will not be available. Testing was completed at both the component and motor levels. Component testing was accomplished to screen candidate materials (e.g., throat materials, adhesive systems) and to optimize processes (e.g., aft closure insulator vulcanization approach) prior to their incorporation into the test motors. Motor testing--consisting of two motors, randomly selected by USBI's on-site quality personnel from production lot AAY, which were modified to accept the enhancements -- was completed to provide the final qualification of the enhancements for incorporation into flight hardware. Volume 3, Book 2 provides various supporting documentation to the previous volumes with regards to the testing of the two Delta qualification units: data acceptance records, thermal conditioning analysis, igniter adapter thermal flake analysis, laboratory adhesive (EA-9394) qualification report, throat insert thermal/structural analysis, Delta Qualification Nonconformance Reports (NCR's), O-ring seating tests, and interim test report for vulcanization process qualification.

  6. Gas chromatograph sample-transfer valve

    NASA Technical Reports Server (NTRS)

    Wang, W. S.; Wright, H. W., Jr.

    1971-01-01

    Slide-type gate valve incorporates sampling volume and transfer passageway for guiding a metered quantity of gas from pressurized test cell to gas chromatograph. Gate is moved by pneumatic bellows-type actuator.

  7. Transportation statistics annual report 1995

    DOT National Transportation Integrated Search

    1995-01-01

    The summary of transportation statistics : programs and many of the tables and : graphs pioneered in last years Transportation : Statistics Annual Report have : been incorporated into the companion volume, : National Transportation Statistics. The...

  8. Runout and fine-sediment deposits of axisymmetric turbidity currents

    NASA Astrophysics Data System (ADS)

    Dade, W. Brian; Huppert, Herbert E.

    1995-09-01

    We develop a model that describes the runout behavior and resulting deposit of a radially spreading, suspension-driven gravity current on a surface of negligible slope. Our analysis considers the separate cases of constant-volume and constant-flux sources. It incorporates expressions for the conservation of volume, a Froude number condition at the current front, and the evolution of the driving suspension due to settling of particles to the underlying bed. The model captures the key features of a range of experimental observations. The analysis also provides important scaling relationships between the geometry of a deposit and the source conditions for the deposit-forming flow, as well as explicit expressions for flow speed and deposit thickness as functions of radial distance from the source. Among the results of our study we find that, in the absence of information regarding flow history, the geometries of relatively well-sorted deposits generated by flows with source conditions of constant volume or constant flux are virtually indistinguishable. The results of our analysis can be used by geologists in the interpretation of some geologically important gravity-surge deposits. Using our analytical results, we consider three previously studied, radially symmetric turbidites of the Hispaniola-Caicos basin in the western Atlantic Ocean. From gross geometry and grain size of the turbidites alone we estimate for the respective deposit-forming events that upon entry into the basin the initial sediment concentrations were approximately 3% by volume and the total volumes were roughly between 30 km3 and 100 km3. Each of the suspension-driven flows is inferred to have spread into the basin with a characteristic speed of 3-5 m s-1, and reached its ultimate runout length of about 60-75 km while laying down a deposit over a period of about 10-12 hours.

  9. Extraction of diffuse correlation spectroscopy flow index by integration of Nth-order linear model with Monte Carlo simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shang, Yu; Lin, Yu; Yu, Guoqiang, E-mail: guoqiang.yu@uky.edu

    2014-05-12

    Conventional semi-infinite solution for extracting blood flow index (BFI) from diffuse correlation spectroscopy (DCS) measurements may cause errors in estimation of BFI (αD{sub B}) in tissues with small volume and large curvature. We proposed an algorithm integrating Nth-order linear model of autocorrelation function with the Monte Carlo simulation of photon migrations in tissue for the extraction of αD{sub B}. The volume and geometry of the measured tissue were incorporated in the Monte Carlo simulation, which overcome the semi-infinite restrictions. The algorithm was tested using computer simulations on four tissue models with varied volumes/geometries and applied on an in vivo strokemore » model of mouse. Computer simulations shows that the high-order (N ≥ 5) linear algorithm was more accurate in extracting αD{sub B} (errors < ±2%) from the noise-free DCS data than the semi-infinite solution (errors: −5.3% to −18.0%) for different tissue models. Although adding random noises to DCS data resulted in αD{sub B} variations, the mean values of errors in extracting αD{sub B} were similar to those reconstructed from the noise-free DCS data. In addition, the errors in extracting the relative changes of αD{sub B} using both linear algorithm and semi-infinite solution were fairly small (errors < ±2.0%) and did not rely on the tissue volume/geometry. The experimental results from the in vivo stroke mice agreed with those in simulations, demonstrating the robustness of the linear algorithm. DCS with the high-order linear algorithm shows the potential for the inter-subject comparison and longitudinal monitoring of absolute BFI in a variety of tissues/organs with different volumes/geometries.« less

  10. Urinary Biomarkers at Early ADPKD Disease Stage

    PubMed Central

    Petzold, Katja; Poster, Diane; Krauer, Fabienne; Spanaus, Katharina; Andreisek, Gustav; Nguyen-Kim, Thi Dan Linh; Pavik, Ivana; Ho, Thien Anh; Serra, Andreas L.; Rotar, Laura

    2015-01-01

    Background Autosomal dominant polycystic kidney disease (ADPKD) is characterized by a decline in renal function at late disease stage when the majority of functional renal parenchyma is replaced by cystic tissue. Thus, kidney function, assessed by estimated glomerular filtration rate (eGFR) does not well represent disease burden in early disease. Here, we investigated various urinary markers for tubular injury and their association with disease burden in ADPKD patients at early disease course. Methods ADPKD patients between 18 and 40 years with an eGFR greater or equal to 70 ml per min per 1.73m2 were eligible for this cross-sectional study. Urinary Neutrophil Gelatinase-Associated Lipocalin (NGAL), Kidney Injury Molecule-1 (KIM-1), and Uromodulin (UMOD) were investigated by Enzyme-Linked Immunosorbent Assay. Clara Cell Protein 16 (CC16) was investigated by Latex Immuno Assay. Cryoscopy was performed to assess urine osmolality and Urinary Albumin-to-Creatinine Ratio (UACR) was calculated. The association and the predictive properties of the markers on eGFR and height adjusted total kidney volume (htTKV) was evaluated using multiple regression analysis, incorporating different control variables for adjustment. Internal bootstrapping validated the obtained results. Results In 139 ADPKD patients (age 31 ±7 years, mean eGFR of 93 ± 19 ml per min per 1.73 m2) the total kidney volume was negatively correlated with eGFR and UMOD and positive associated with age, UACR, KIM-1 and urine osmolality after adjustment for possible confounders. Urine osmolality and htTKV were also associated with eGFR, whereas no association of CC16, NGAL and UMOD with eGFR or htTKV was found. Conclusion UACR and urinary KIM-1 are independently associated with kidney size but not with renal function in our study population. Urine osmolality was associated with eGFR and kidney volume following adjustment for multiple confounders. Despite statistical significance, the clinical value of our results is not yet conceivable. Further studies are needed to evaluate the property of the aforementioned biomarkers to assess disease state at early ADPKD stage. PMID:25875363

  11. 3D models as a platform for urban analysis and studies on human perception of space

    NASA Astrophysics Data System (ADS)

    Fisher-Gewirtzman, D.

    2012-10-01

    The objective of this work is to develop an integrated visual analysis and modelling for environmental and urban systems in respect to interior space layout and functionality. This work involves interdisciplinary research efforts that focus primarily on architecture design discipline, yet incorporates experts from other and different disciplines, such as Geoinformatics, computer sciences and environment-behavior studies. This work integrates an advanced Spatial Openness Index (SOI) model within realistic geovisualized Geographical Information System (GIS) environment and assessment using subjective residents' evaluation. The advanced SOI model measures the volume of visible space at any required view point practically, for every room or function. This model enables accurate 3D simulation of the built environment regarding built structure and surrounding vegetation. This paper demonstrates the work on a case study. A 3D model of Neve-Shaanan neighbourhood in Haifa was developed. Students that live in this neighbourhood had participated in this research. Their apartments were modelled in details and inserted into a general model, representing topography and the volumes of buildings. The visual space for each room in every apartment was documented and measured and at the same time the students were asked to answer questions regarding their perception of space and view from their residence. The results of this research work had shown potential contribution to professional users, such as researchers, designers and city planners. This model can be easily used by professionals and by non-professionals such as city dwellers, contractors and developers. This work continues with additional case studies having different building typologies and functions variety, using virtual reality tools.

  12. Comparing surgical trays with redundant instruments with trays with reduced instruments: a cost analysis

    PubMed Central

    John-Baptiste, A.; Sowerby, L.J.; Chin, C.J.; Martin, J.; Rotenberg, B.W.

    2016-01-01

    Background: When prearranged standard surgical trays contain instruments that are repeatedly unused, the redundancy can result in unnecessary health care costs. Our objective was to estimate potential savings by performing an economic evaluation comparing the cost of surgical trays with redundant instruments with surgical trays with reduced instruments ("reduced trays"). Methods: We performed a cost-analysis from the hospital perspective over a 1-year period. Using a mathematical model, we compared the direct costs of trays containing redundant instruments to reduced trays for 5 otolaryngology procedures. We incorporated data from several sources including local hospital data on surgical volume, the number of instruments on redundant and reduced trays, wages of personnel and time required to pack instruments. From the literature, we incorporated instrument depreciation costs and the time required to decontaminate an instrument. We performed 1-way sensitivity analyses on all variables, including surgical volume. Costs were estimated in 2013 Canadian dollars. Results: The cost of redundant trays was $21 806 and the cost of reduced trays was $8803, for a 1-year cost saving of $13 003. In sensitivity analyses, cost savings ranged from $3262 to $21 395, based on the surgical volume at the institution. Variation in surgical volume resulted in a wider range of estimates, with a minimum of $3253 for low-volume to a maximum of $52 012 for high-volume institutions. Interpretation: Our study suggests moderate savings may be achieved by reducing surgical tray redundancy and, if applied to other surgical specialties, may result in savings to Canadian health care systems. PMID:27975045

  13. Comparing surgical trays with redundant instruments with trays with reduced instruments: a cost analysis.

    PubMed

    John-Baptiste, A; Sowerby, L J; Chin, C J; Martin, J; Rotenberg, B W

    2016-01-01

    When prearranged standard surgical trays contain instruments that are repeatedly unused, the redundancy can result in unnecessary health care costs. Our objective was to estimate potential savings by performing an economic evaluation comparing the cost of surgical trays with redundant instruments with surgical trays with reduced instruments ("reduced trays"). We performed a cost-analysis from the hospital perspective over a 1-year period. Using a mathematical model, we compared the direct costs of trays containing redundant instruments to reduced trays for 5 otolaryngology procedures. We incorporated data from several sources including local hospital data on surgical volume, the number of instruments on redundant and reduced trays, wages of personnel and time required to pack instruments. From the literature, we incorporated instrument depreciation costs and the time required to decontaminate an instrument. We performed 1-way sensitivity analyses on all variables, including surgical volume. Costs were estimated in 2013 Canadian dollars. The cost of redundant trays was $21 806 and the cost of reduced trays was $8803, for a 1-year cost saving of $13 003. In sensitivity analyses, cost savings ranged from $3262 to $21 395, based on the surgical volume at the institution. Variation in surgical volume resulted in a wider range of estimates, with a minimum of $3253 for low-volume to a maximum of $52 012 for high-volume institutions. Our study suggests moderate savings may be achieved by reducing surgical tray redundancy and, if applied to other surgical specialties, may result in savings to Canadian health care systems.

  14. Teaching Mathematics in New Times, Proceedings of the Annual Conference of the Mathematics Education Research Group of Australasia Incorporated, Volume 1. (21st, Gold Coast, Australia, July 5-8, 1998).

    ERIC Educational Resources Information Center

    Kanes, Clive, Ed.; Goos, Merrilyn, Ed.; Warren, Elizabeth, Ed.

    The first volume of this proceedings contains the papers presented at the 21st annual meeting of the Mathematics Education Research Group of Australasia. Papers include: (1) "Research, Rhetoric and Reality" (Lyn English); (2) "I Keep Six Honest Serving Men" (Peter Galbraith); (3) "The Intension/Intention of Teaching…

  15. Laser-induced fluorescence imaging of subsurface tissue structures with a volume holographic spatial-spectral imaging system.

    PubMed

    Luo, Yuan; Gelsinger-Austin, Paul J; Watson, Jonathan M; Barbastathis, George; Barton, Jennifer K; Kostuk, Raymond K

    2008-09-15

    A three-dimensional imaging system incorporating multiplexed holographic gratings to visualize fluorescence tissue structures is presented. Holographic gratings formed in volume recording materials such as a phenanthrenquinone poly(methyl methacrylate) photopolymer have narrowband angular and spectral transmittance filtering properties that enable obtaining spatial-spectral information within an object. We demonstrate this imaging system's ability to obtain multiple depth-resolved fluorescence images simultaneously.

  16. Teaching Mathematics in New Times, Proceedings of the Annual Conference of the Mathematics Education Research Group of Australasia Incorporated, Volume 2. (21st, Gold Coast, Australia, July 5-8, 1998).

    ERIC Educational Resources Information Center

    Kanes, Clive, Ed.; Goos, Merrilyn, Ed.; Warren, Elizabeth, Ed.

    The second volume of this proceedings contains the papers presented at the 21st annual meeting of the Mathematics Education Research Group of Australasia. Full papers include: (1) "Teachers Interpreting Algebra: Teachers' Views about the Nature of Algebra" (Brenda Menzel and David Clarke); (2) "Long Odds: Longitudinal Development of…

  17. 77 FR 518 - Self-Regulatory Organizations; Chicago Board Options Exchange, Incorporated; Notice of Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-05

    ... two monthly login IDs (so, $600 for one), or a fee of $2,400 for a higher- volume user.\\6\\ The NASDAQ... a minimum of two monthly login IDs and does not have a separate fee for a higher-volume user. See.... 78f(b)(4). The proposed changes to increase the fees assessed for CMI Login IDs and FIX Login IDs are...

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khoo, Eric L.H., E-mail: eric.khoo@roq.net.au; Schick, Karlissa; Plank, Ashley W.

    Purpose: To assess whether an education program on CT and MRI prostate anatomy would reduce inter- and intraobserver prostate contouring variation among experienced radiation oncologists. Methods and Materials: Three patient CT and MRI datasets were selected. Five radiation oncologists contoured the prostate for each patient on CT first, then MRI, and again between 2 and 4 weeks later. Three education sessions were then conducted. The same contouring process was then repeated with the same datasets and oncologists. The observer variation was assessed according to changes in the ratio of the encompassing volume to intersecting volume (volume ratio [VR]), across setsmore » of target volumes. Results: For interobserver variation, there was a 15% reduction in mean VR with CT, from 2.74 to 2.33, and a 40% reduction in mean VR with MRI, from 2.38 to 1.41 after education. A similar trend was found for intraobserver variation, with a mean VR reduction for CT and MRI of 9% (from 1.51 to 1.38) and 16% (from 1.37 to 1.15), respectively. Conclusion: A well-structured education program has reduced both inter- and intraobserver prostate contouring variations. The impact was greater on MRI than on CT. With the ongoing incorporation of new technologies into routine practice, education programs for target contouring should be incorporated as part of the continuing medical education of radiation oncologists.« less

  19. The effect of a slow mode of BMP-2 delivery on the inflammatory response provoked by bone-defect-filling polymeric scaffolds.

    PubMed

    Wu, Gang; Liu, Yuelian; Iizuka, Tateyuki; Hunziker, Ernst Bruno

    2010-10-01

    We investigated the inflammatory response to, and the osteoinductive efficacies of, four polymers (collagen, Ethisorb, PLGA and Polyactive) that bore either an adsorbed (fast-release kinetics) or a calcium-phosphate-coating-incorporated (slow-release kinetics) depot of BMP-2. Titanium-plate-supported discs of each polymer (n = 6 per group) were implanted at an ectopic (subcutaneous) ossification site in rats (n = 48). Five weeks later, they were retrieved for a histomorphometric analysis of the volumes of ectopic bone and foreign-body giant cells (a gauge of inflammatory reactivity), and the degree of polymer degradation. For each polymer, the osteoinductive efficacy of BMP-2 was higher when it was incorporated into a coating than when it was directly adsorbed onto the material. This mode of BMP-2 carriage was consistently associated with an attenuation of the inflammatory response. For coated materials, the volume density of foreign-body giant cells was inversely correlated with the volume density of bone (r(2) = 0.96), and the volume density of bone was directly proportional to the surface-area density of the polymer (r(2) = 0.97). Following coating degradation, other competitive factors, such as the biocompatibility and the biodegradability of the polymer itself, came into play. 2010 Elsevier Ltd. All rights reserved.

  20. Defect tolerance and the effect of structural inhomogeneity in plasmonic DNA-nanoparticle superlattices

    DOE PAGES

    Ross, Michael B.; Ku, Jessie C.; Blaber, Martin G.; ...

    2015-08-03

    Bottom-up assemblies of plasmonic nanoparticles exhibit unique optical effects such as tunable reflection, optical cavity modes, and tunable photonic resonances. In this paper, we compare detailed simulations with experiment to explore the effect of structural inhomogeneity on the optical response in DNA-gold nanoparticle superlattices. In particular, we explore the effect of background environment, nanoparticle polydispersity (>10%), and variation in nanoparticle placement (~5%). At volume fractions less than 20% Au, the optical response is insensitive to particle size, defects, and inhomogeneity in the superlattice. At elevated volume fractions (20% and 25%), structures incorporating different sized nanoparticles (10-, 20-, and 40-nm diameter)more » each exhibit distinct far-field extinction and near-field properties. These optical properties are most pronounced in lattices with larger particles, which at fixed volume fraction have greater plasmonic coupling than those with smaller particles. Moreover, the incorporation of experimentally informed inhomogeneity leads to variation in far-field extinction and inconsistent electric-field intensities throughout the lattice, demonstrating that volume fraction is not sufficient to describe the optical properties of such structures. Finally, these data have important implications for understanding the role of particle and lattice inhomogeneity in determining the properties of plasmonic nanoparticle lattices with deliberately designed optical properties.« less

  1. Confinement and Ordering of Au Nanorods in Polymer Films

    NASA Astrophysics Data System (ADS)

    Hore, Michael J. A.; Mills, Eric; Liu, Yu; Composto, Russell J.

    2009-03-01

    Ordered arrays of gold nanorods (Au NRs) possess interesting optical properties that might be utilized in future devices. Au NRs functionalized with a poly(ethylene glycol)-thiol brush are incorporated into homopolymer or block copolymer (BCP) films. NR distribution and orientational correlations are studied as a function of nanorod concentration and spacial confinement via Rutherford backscattering spectrometry (RBS) and transmission electron microscopy, respectively. In particular, differences in the degree of nanorod ordering are presented for PMMA homopolymer films (d ˜ 45 nm) versus PS-b-PMMA BCP films (L/2 ˜ 40 nm), where higher ordering is seen in the case of BCP films. At moderate volume fractions of NRs, φ = 1% to 10%, the degree of ordering is moderate, and increases with increasing φ . However, coexistence between regions of higher ordering and isotropic orientations is observed. In addition to the planar confinement considered above, orientation of Au NRs confined to cylindrical P2VP domains is studied in PS-b-P2VP BCP films.

  2. 3D Oxidized Graphene Frameworks for Efficient Nano Sieving

    PubMed Central

    Pawar, Pranav Bhagwan; Saxena, Sumit; Badhe, Dhanashree Kamlesh; Chaudhary, Raghvendra Pratap; Shukla, Shobha

    2016-01-01

    The small size of Na+ and Cl− ions provides a bottleneck in desalination and is a challenge in providing alternatives for continuously depleting fresh water resources. Graphene by virtue of its structural properties has the potential to address this issue. Studies have indicated that use of monolayer graphene can be used to filter micro volumes of saline solution. Unfortunately it is extremely difficult, resource intensive and almost impractical with current technology to fabricate operational devices using mono-layered graphene. Nevertheless, graphene based devices still hold the key to solve this problem due to its nano-sieving ability. Here we report synthesis of oxidized graphene frameworks and demonstrate a functional device to desalinate and purify seawater from contaminants including Na+ and Cl− ions, dyes and other microbial pollutants. Micro-channels in these frameworks help in immobilizing larger suspended solids including bacteria, while nano-sieving through graphene enables the removal of dissolved ions (e.g. Cl−). Nano-sieving incorporated with larger frameworks has been used in filtering Na+ and Cl− ions in functional devices. PMID:26892277

  3. Linear and nonlinear ARMA model parameter estimation using an artificial neural network

    NASA Technical Reports Server (NTRS)

    Chon, K. H.; Cohen, R. J.

    1997-01-01

    This paper addresses parametric system identification of linear and nonlinear dynamic systems by analysis of the input and output signals. Specifically, we investigate the relationship between estimation of the system using a feedforward neural network model and estimation of the system by use of linear and nonlinear autoregressive moving-average (ARMA) models. By utilizing a neural network model incorporating a polynomial activation function, we show the equivalence of the artificial neural network to the linear and nonlinear ARMA models. We compare the parameterization of the estimated system using the neural network and ARMA approaches by utilizing data generated by means of computer simulations. Specifically, we show that the parameters of a simulated ARMA system can be obtained from the neural network analysis of the simulated data or by conventional least squares ARMA analysis. The feasibility of applying neural networks with polynomial activation functions to the analysis of experimental data is explored by application to measurements of heart rate (HR) and instantaneous lung volume (ILV) fluctuations.

  4. Bloodless surgery in a pediatric Jehovah's Witness.

    PubMed

    Allen, Jerry; Berrios, Lindsay; Solimine, Mike; Knott-Craig, Christopher J

    2013-12-01

    Pediatric cardiac surgery in Jehovah's Witness patients who refuse the use of blood products remains a challenge because of the extreme hemodilution caused by priming the circuit and subsequent cardiopulmonary bypass. We report our successful strategy for reducing the prime volume for a 2-year-old Jehovah's Witness patient who required open heart surgery. We modified our conventional bypass circuit requirements for this size child by incorporating a lower prime oxygenator and reducing the size of the venous line and circuit, which decreased the circuit prime volume. We managed to reduce our initial sanguineous prime volume from 315 to 210 mL. The prime was further reduced to 160 mL by minimizing circuit length at the field and with venous prime sequestration prebypass. The postbypass hematocrit was 31%. Bloodless pediatric cardiac surgery in Jehovah's Witness patients can be performed safely. Incorporating a lower prime oxygenator into a revised circuit alleviated the need for blood transfusion and allowed us to achieve our calculated flow rate of 2.6 L/min/m2 while maintaining a hematocrit of 31%.

  5. Unperturbed volume transition of thermosensitive poly-(N-isopropylacrylamide) microgel particles embedded in a hydrogel matrix.

    PubMed

    Musch, Judith; Schneider, Stefanie; Lindner, Peter; Richtering, Walter

    2008-05-22

    The thermoresponsive behavior of poly-(N-isopropylacrylamide) (PNiPAM) microgels embedded in a covalently cross-linked polyacrylamide hydrogel matrix was investigated using ultraviolet-visible (UV-vis) spectroscopy, small-angle neutron scattering (SANS), and confocal laser scanning microscopy. The hydrogel synthesis was performed at two different temperatures, below and above the volume phase transition temperature of PNiPAM, resulting in highly swollen or fully collapsed PNiPAM microgel particles during the incorporation step. UV-vis spectroscopy experiments verify that the incorporation of thermosensitive microgels leads to temperature-sensitive optical properties of the composite materials. SANS measurements at different temperatures show that the thermosensitive swelling behavior of the PNiPAM microgels is fully retained in the composite material. Volume and structure criteria of the embedded microgel particles are compared to those of the free microgels in acrylamide solution. To visualize the temperature responsive behavior of larger PNiPAM particles, confocal fluorescence microscopy images of PNiPAM beads, of 40-microm size, were taken at two different temperatures. The micrographs also demonstrate the retained temperature sensitivity of the embedded microgels.

  6. 46 CFR 131.530 - Abandon-ship training and drills.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... volumes, or audiovisual training aids, or both. (1) The material must contain instructions and information.... If audiovisual aids are used, they must be incorporated in the training sessions aboard under...

  7. Correlation between pulmonary function and brain volume in healthy elderly subjects.

    PubMed

    Taki, Yasuyuki; Kinomura, Shigeo; Ebihara, Satoru; Thyreau, Benjamin; Sato, Kazunori; Goto, Ryoi; Kakizaki, Masako; Tsuji, Ichiro; Kawashima, Ryuta; Fukuda, Hiroshi

    2013-06-01

    Cigarette smoking decreases brain regional gray matter volume and is related to chronic obstructive lung disease (COPD). COPD leads to decreased pulmonary function, which is represented by forced expiratory volume in one second percentage (FEV1.0 %); however, it is unclear if decreased pulmonary function is directly related to brain gray matter volume decline. Because there is a link between COPD and cognitive decline, revealing a direct relationship between pulmonary function and brain structure is important to better understand how pulmonary function affects brain structure and cognitive function. Therefore, the purpose of this study was to analyze whether there were significant correlations between FEV1.0 % and brain regional gray and white matter volumes using brain magnetic resonance (MR) image data from 109 community-dwelling healthy elderly individuals. Brain MR images were processed with voxel-based morphometry using a custom template by applying diffeomorphic anatomical registration using the exponentiated lie algebra procedure. We found a significant positive correlation between the regional white matter volume of the cerebellum and FEV1.0 % after adjusting for age, sex, and intracranial volume. Our results suggest that elderly individuals who have a lower FEV1.0 % have decreased regional white matter volume in the cerebellum. Therefore, preventing decreased pulmonary function is important for cerebellar white matter volume in the healthy elderly population.

  8. A grid generation system for multi-disciplinary design optimization

    NASA Technical Reports Server (NTRS)

    Jones, William T.; Samareh-Abolhassani, Jamshid

    1995-01-01

    A general multi-block three-dimensional volume grid generator is presented which is suitable for Multi-Disciplinary Design Optimization. The code is timely, robust, highly automated, and written in ANSI 'C' for platform independence. Algebraic techniques are used to generate and/or modify block face and volume grids to reflect geometric changes resulting from design optimization. Volume grids are generated/modified in a batch environment and controlled via an ASCII user input deck. This allows the code to be incorporated directly into the design loop. Generated volume grids are presented for a High Speed Civil Transport (HSCT) Wing/Body geometry as well a complex HSCT configuration including horizontal and vertical tails, engine nacelles and pylons, and canard surfaces.

  9. Feasibility study for a numerical aerodynamic simulation facility. Volume 3: FMP language specification/user manual

    NASA Technical Reports Server (NTRS)

    Kenner, B. G.; Lincoln, N. R.

    1979-01-01

    The manual is intended to show the revisions and additions to the current STAR FORTRAN. The changes are made to incorporate an FMP (Flow Model Processor) for use in the Numerical Aerodynamic Simulation Facility (NASF) for the purpose of simulating fluid flow over three-dimensional bodies in wind tunnel environments and in free space. The FORTRAN programming language for the STAR-100 computer contains both CDC and unique STAR extensions to the standard FORTRAN. Several of the STAR FORTRAN extensions to standard FOR-TRAN allow the FORTRAN user to exploit the vector processing capabilities of the STAR computer. In STAR FORTRAN, vectors can be expressed with an explicit notation, functions are provided that return vector results, and special call statements enable access to any machine instruction.

  10. Network localization of neurological symptoms from focal brain lesions

    PubMed Central

    Prasad, Sashank; Liu, Hesheng; Liu, Qi; Pascual-Leone, Alvaro; Caviness, Verne S.; Fox, Michael D.

    2015-01-01

    A traditional and widely used approach for linking neurological symptoms to specific brain regions involves identifying overlap in lesion location across patients with similar symptoms, termed lesion mapping. This approach is powerful and broadly applicable, but has limitations when symptoms do not localize to a single region or stem from dysfunction in regions connected to the lesion site rather than the site itself. A newer approach sensitive to such network effects involves functional neuroimaging of patients, but this requires specialized brain scans beyond routine clinical data, making it less versatile and difficult to apply when symptoms are rare or transient. In this article we show that the traditional approach to lesion mapping can be expanded to incorporate network effects into symptom localization without the need for specialized neuroimaging of patients. Our approach involves three steps: (i) transferring the three-dimensional volume of a brain lesion onto a reference brain; (ii) assessing the intrinsic functional connectivity of the lesion volume with the rest of the brain using normative connectome data; and (iii) overlapping lesion-associated networks to identify regions common to a clinical syndrome. We first tested our approach in peduncular hallucinosis, a syndrome of visual hallucinations following subcortical lesions long hypothesized to be due to network effects on extrastriate visual cortex. While the lesions themselves were heterogeneously distributed with little overlap in lesion location, 22 of 23 lesions were negatively correlated with extrastriate visual cortex. This network overlap was specific compared to other subcortical lesions (P < 10−5) and relative to other cortical regions (P < 0.01). Next, we tested for generalizability of our technique by applying it to three additional lesion syndromes: central post-stroke pain, auditory hallucinosis, and subcortical aphasia. In each syndrome, heterogeneous lesions that themselves had little overlap showed significant network overlap in cortical areas previously implicated in symptom expression (P < 10−4). These results suggest that (i) heterogeneous lesions producing similar symptoms share functional connectivity to specific brain regions involved in symptom expression; and (ii) publically available human connectome data can be used to incorporate these network effects into traditional lesion mapping approaches. Because the current technique requires no specialized imaging of patients it may prove a versatile and broadly applicable approach for localizing neurological symptoms in the setting of brain lesions. PMID:26264514

  11. Modeling Complex Workflow in Molecular Diagnostics

    PubMed Central

    Gomah, Mohamed E.; Turley, James P.; Lu, Huimin; Jones, Dan

    2010-01-01

    One of the hurdles to achieving personalized medicine has been implementing the laboratory processes for performing and reporting complex molecular tests. The rapidly changing test rosters and complex analysis platforms in molecular diagnostics have meant that many clinical laboratories still use labor-intensive manual processing and testing without the level of automation seen in high-volume chemistry and hematology testing. We provide here a discussion of design requirements and the results of implementation of a suite of lab management tools that incorporate the many elements required for use of molecular diagnostics in personalized medicine, particularly in cancer. These applications provide the functionality required for sample accessioning and tracking, material generation, and testing that are particular to the evolving needs of individualized molecular diagnostics. On implementation, the applications described here resulted in improvements in the turn-around time for reporting of more complex molecular test sets, and significant changes in the workflow. Therefore, careful mapping of workflow can permit design of software applications that simplify even the complex demands of specialized molecular testing. By incorporating design features for order review, software tools can permit a more personalized approach to sample handling and test selection without compromising efficiency. PMID:20007844

  12. Glucose metabolism in different regions of the rat brain under hypokinetic stress influence

    NASA Technical Reports Server (NTRS)

    Konitzer, K.; Voigt, S.

    1980-01-01

    Glucose metabolism in rats kept under long term hypokinetic stress was studied in 7 brain regions. Determination was made of the regional levels of glucose, lactate, glutamate, glutamine, aspartate, gamma-aminobutyrate and the incorporation of C-14 from plasma glucose into these metabolites, in glycogen and protein. From the content and activity data the regional glucose flux was approximated quantitatively. Under normal conditions the activity gradient cortex and frontal pole cerebellum, thalamus and mesencephalon, hypothalamus and pons and medulla is identical with that of the regional blood supply (measured with I131 serum albumin as the blood marker). Within the first days of immobilization a functional hypoxia occurred in all brain regions and the utilization of cycle amino acids for protein synthesis was strongly diminished. After the first week of stress the capillary volumes of all regions increased, aerobic glucose metabolism was enhanced (factors 1.3 - 2.0) and the incorporation of glucose C-14 via cycle amino acids into protein was considerably potentiated. The metabolic parameters normalized between the 7th and 11th week of stress. Blood supply and metabolic rate increased most in the hypothalamus.

  13. Vapor-Compression Heat Pumps for Operation Aboard Spacecraft

    NASA Technical Reports Server (NTRS)

    Ruemmele, Warren; Ungar, Eugene; Cornwell, John

    2006-01-01

    Vapor-compression heat pumps (including both refrigerators and heat pumps) of a proposed type would be capable of operating in microgravity and would be safe to use in enclosed environments like those of spacecraft. The designs of these pumps would incorporate modifications of, and additions to, vapor-compression cycles of heat pumps now used in normal Earth gravitation, in order to ensure efficiency and reliability during all phases of operation, including startup, shutdown, nominal continuous operation, and peak operation. Features of such a design might include any or all of the following: (1) Configuring the compressor, condenser, evaporator, valves, capillary tubes (if any), and controls to function in microgravitation; (2) Selection of a working fluid that satisfies thermodynamic requirements and is safe to use in a closed crew compartment; (3) Incorporation of a solenoid valve and/or a check valve to prevent influx of liquid to the compressor upon startup (such influx could damage the compressor); (4) Use of a diode heat pipe between the cold volume and the evaporator to limit the influx of liquid to the compressor upon startup; and (5) Use of a heated block to vaporize any liquid that arrives at the compressor inlet.

  14. Effect of Incorporating Adaptive Functioning Scores on the Prevalence of Intellectual Disability

    ERIC Educational Resources Information Center

    Obi, Obianuju; Braun, Kim Van Naarden; Baio, Jon; Drews-Botsch, Carolyn; Devine, Owen; Yeargin-Allsopp, Marshalyn

    2011-01-01

    Surveillance and epidemiologic research on intellectual disability often do not incorporate adaptive functioning (AF) data. Exclusion of AF data leads to overestimation of the prevalence of intellectual disability, the extent of which is not known. In this study, the authors evaluated the effect of incorporating AF data on overall intellectual…

  15. Simultaneous Determination of Fluid Shifts during Thermal Stress in a Small Animal Model,

    DTIC Science & Technology

    1985-09-01

    extracellular fluid voitmie (BCF) was measured using a single injection c- inulin , technique, and plasma voilme (PV) was determined by ca.rdio--yreen dye...using tritiated water, extracell1ular fluid volume (ECF) was measured using a single injection C- inulin technique, and plasma volume (PV) was...space. However, inulin (10) has several advantages over the aforementioned because it Is not metabolized, stored, or incorporated by cells or

  16. Woodbridge Research Facility Remedial Investigation/Feasibility Study; Focused Feasibility Study for Operable Unit One

    DTIC Science & Technology

    1997-11-01

    by minimizing leachate . Alternatives 1 and 2 affect no changes in toxicity, mobility, or volume. Short-Term Effectiveness Short-term effectiveness...result of contaminant interactions with other in situ chemicals. • Phytoremediation uses existing plants and trees to incorporate contaminants into... leachate is minimized. Alternatives 1 and 2 effect no changes in toxicity, mobility, or volume. 8.3.6 Short-Term Effectiveness Short-term effectiveness is

  17. BSM Delta qualification 2, volume 1

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This report, presented in three volumes, provides the results of a two-motor Delta Qualification 2 program conducted in 1993 to certify the following enhancements for incorporation into Booster Separation Motor (BSM) flight hardware: (1) vulcanized-in-place nozzle aft closure insulation; (2) new isostatic ATJ bulk graphite throat insert material; (3) adhesive EA 9394 for bonding the nozzle throat, igniter grain rod/centering insert/igniter case; (4) deletion of the igniter adapter insulator ring; (5) deletion of igniter adapter/igniter case interface RTV; and (6) deletion of Loctite from igniter retainer plate threads. The enhancements above directly resulted from (1) the BSM Total Quality Management (TQM) Team initiatives to enhance the BSM producibility, and (2) the necessity to qualify new throat insert and adhesive systems to replace existing materials that will not be available. Testing was completed at both the component and motor levels. Component testing was accomplished to screen candidate materials (e.g., throat materials, adhesive systems) and to optimize processes (e.g., aft closure insulator vulcanization approach) prior to their incorporation into the test motors. Motor testing - consisting of two motors, randomly selected by USBI's onsite quality personnel from production lot AAY, which were modified to accept the enhancements - were completed to provide the final qualification of the enhancements for incorporation into flight hardware. It is concluded that all of the enhancements herein tested are qualified to be incorporated into flight hardware for the BSM.

  18. Field Method for Measuring the Shrinkage/Swelling Dynamics of Cracks Using a Low-Cost ``Crack-o-meter''

    NASA Astrophysics Data System (ADS)

    Stewart, R. D.; Abou Najm, M. R.; Rupp, D. E.; Selker, J. S.

    2010-12-01

    Shrinking/swelling soils are characterized by transient crack networks which function as dominant controls on the partitioning of surface and subsurface flow, the rate and depth of percolation, and evaporation rates. For such soils, understanding the dynamics of cracks is critical to accurately quantify their influence on groundwater recharge, stream-flow generation, and solute transport, among other component of a site’s hydrology. We propose a low-cost method for measuring transient crack-volume using a sealed plastic bag connected by a hose to a PVC standpipe. The empty bag is placed into the crack, and then water is added via the standpipe, until the bag has expanded to the boundaries of the crack and some water remains in the standpipe. As the crack shrinks or swells, its volume changes, causing water displacement within the bag, which is measured as a corresponding change in water level in the standpipe. An automated level logger within the standpipe is used to record changes in water level, which are converted to volumetric changes from the known internal cross-sectional area of the standpipe. The volume of water filling the bag is accurately measured at the start and completion of the experiment (to check for leakage). Adding the startup volume to the cumulative temporal volumetric change in the standpipe provides a simple and accurate method for monitoring transient crack volume. Currently, the design is undergoing preliminary testing in a field site in Ninhue, Chile, and field and laboratory testing in Corvallis, Oregon. Initial results from the Chilean field site suggest that the crack-o-meters are responding to the closing of cracks, but further effort is needed to calibrate and validate the results. We hope that these low-cost “crack-o-meters” will become useful and simple tools for researchers to quantify temporal changes in crack volume with the objective of incorporating these results into hydrological modeling efforts.

  19. Comparison study of portable bladder scanner versus cone-beam CT scan for measuring bladder volumes in post-prostatectomy patients undergoing radiotherapy.

    PubMed

    Ung, K A; White, R; Mathlum, M; Mak-Hau, V; Lynch, R

    2014-01-01

    In post-prostatectomy radiotherapy to the prostatic bed, consistent bladder volume is essential to maintain the position of treatment target volume. We assessed the differences between bladder volume readings from a portable bladder scanner (BS-V) and those obtained from planning CT (CT-V) or cone-beam CT (CBCT-V). Interfraction bladder volume variation was also determined. BS-V was recorded before and after planning CT or CBCT. The percentage differences between the readings using the two imaging modalities, standard deviations and 95% confidence intervals were determined. Data were analysed for the whole patient cohort and separately for the older BladderScan™ BVI3000 and newer BVI9400 model. Interfraction bladder volume variation was determined from the percentage difference between the CT-V and CBCT-V. Treatment duration, incorporating the time needed for BS and CBCT, was recorded. Fourteen patients were enrolled, producing 133 data sets for analysis. BS-V was taken using the BVI9400 in four patients (43 data sets). The mean BS-V was 253.2 mL, and the mean CT-V or CBCT-V was 199 cm(3). The mean percentage difference between the two modalities was 19.7% (SD 42.2; 95%CI 12.4 to 26.9). The BVI9400 model produced more consistent readings, with a mean percentage difference of -6.2% (SD 27.8; 95% CI -14.7 to -2.4%). The mean percentage difference between CT-V and CBCT-V was 31.3% (range -48% to 199.4%). Treatment duration from time of first BS reading to CBCT was, on average, 12 min (range 6-27). The BS produces bladder volume readings of an average 19.7% difference from CT-V or CBCT-V and can potentially be used to screen for large interfraction bladder volume variations in radiotherapy to prostatic bed. The observed interfraction bladder volume variation suggests the need to improve bladder volume consistency. Incorporating the BS into practice is feasible. © 2014 The Royal Australian and New Zealand College of Radiologists.

  20. Westinghouse Small Modular Reactor balance of plant and supporting systems design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Memmott, M. J.; Stansbury, C.; Taylor, C.

    2012-07-01

    The Westinghouse Small Modular Reactor (SMR) is an 800 MWt (>225 MWe) integral pressurized water reactor (iPWR), in which all of the components typically associated with the nuclear steam supply system (NSSS) of a nuclear power plant are incorporated within a single reactor pressure vessel. This paper is the second in a series of four papers which describe the design and functionality of the Westinghouse SMR. It focuses, in particular, upon the supporting systems and the balance of plant (BOP) designs of the Westinghouse SMR. Several Westinghouse SMR systems are classified as safety, and are critical to the safe operationmore » of the Westinghouse SMR. These include the protection and monitoring system (PMS), the passive core cooling system (PXS), and the spent fuel cooling system (SFS) including pools, valves, and piping. The Westinghouse SMR safety related systems include the instrumentation and controls (I and C) as well as redundant and physically separated safety trains with batteries, electrical systems, and switch gears. Several other incorporated systems are non-safety related, but provide functions for plant operations including defense-in-depth functions. These include the chemical volume control system (CVS), heating, ventilation and cooling (HVAC) systems, component cooling water system (CCS), normal residual heat removal system (RNS) and service water system (SWS). The integrated performance of the safety-related and non-safety related systems ensures the safe and efficient operation of the Westinghouse SMR through various conditions and transients. The turbine island consists of the turbine, electric generator, feedwater and steam systems, moisture separation systems, and the condensers. The BOP is designed to minimize assembly time, shipping challenges, and on-site testing requirements for all structures, systems, and components. (authors)« less

  1. Endotoxin and gender modify lung function recovery after occupational organic dust exposure: a 30-year study.

    PubMed

    Lai, Peggy S; Hang, Jing-Qing; Valeri, Linda; Zhang, Feng-Ying; Zheng, Bu-Yong; Mehta, Amar J; Shi, Jing; Su, Li; Brown, Dan; Eisen, Ellen A; Christiani, David C

    2015-08-01

    The purpose of this study is to determine the trajectory of lung function change after exposure cessation to occupational organic dust exposure, and to identify factors that modify improvement. The Shanghai Textile Worker Study is a longitudinal study of 447 cotton workers exposed to endotoxin-containing dust and 472 silk workers exposed to non-endotoxin-containing dust. Spirometry was performed at 5-year intervals. Air sampling was performed to estimate individual cumulative exposures. The effect of work cessation on forced expiratory volume in 1 s (FEV1) was modelled using generalised additive mixed effects models to identify the trajectory of FEV1 recovery. Linear mixed effects models incorporating interaction terms were used to identify modifiers of FEV1 recovery. Loss to follow-up was accounted for with inverse probability of censoring weights. 74.2% of the original cohort still alive participated in 2011. Generalised additive mixed models identified a non-linear improvement in FEV1 for all workers after exposure cessation, with no plateau noted 25 years after retirement. Linear mixed effects models incorporating interaction terms identified prior endotoxin exposure (p=0.01) and male gender (p=0.002) as risk factors for impaired FEV1 improvement after exposure cessation. After adjusting for gender, smoking delayed the onset of FEV1 gain but did not affect the overall magnitude of change. Lung function improvement after cessation of exposure to organic dust is sustained. Endotoxin exposure and male gender are risk factors for less FEV1 improvement. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  2. Impact of Volume Management on Volume Overload and Rehospitalization in CAPD Patients.

    PubMed

    Xu, Yi; Yang, Shen-Min; Wang, Xiao-Hua; Wang, Hai-Fang; Niu, Mei-E; Yang, Yi-Qun; Lu, Guo-Yuan; Pang, Jian-Hong; Wang, Fei; Li, Lin

    2018-05-01

    Heart failure due to volume overload is a major reason for rehospitalization in continuous ambulatory peritoneal dialysis patients. Strict volume control provides better cardiac functions and blood pressure in this population. Volume management, which is a volume control strategy, may decrease volume overload and related complications. Using a quasi-experimental design, 66 continuous ambulatory peritoneal dialysis patients were randomly assigned to the intervention group ( n = 34) and control group ( n = 32). The patients were followed up for 6 months with scheduled clinic and/or telephone visits; the intervention group adopted volume management strategy, while the control group adopted conventional care. Volume overload and cardiac function were compared between the two groups at the baseline and at 6 months. At Month 6, the intervention group resulted in significant improvement in volume overloaded status, cardiac function, and volume-overload-related rehospitalization. Volume management strategy allows for better control of volume overload and is associated with fewer volume-related readmissions.

  3. Spacelab software development and integration concepts study report. Volume 2: Appendices

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Software considerations were developed for incorporation in the spacelab systems design, and include management concepts for top-down structured programming, composite designs for modular programs, and team management methods for production programming.

  4. Factors Influencing the Stability of Au-Incorporated Metal-Oxide Supported Thin Films for Optical Gas Sensing

    DOE PAGES

    Baltrus, John P.; Holcomb, Gordon R.; Tylczak, Joseph H.; ...

    2017-02-24

    There is interest in using Au-nanoparticle incorporated oxide films as functional sensor layers for high-temperature applications in optical-based sensors for measurements in both highly-oxidizing and highly-reducing atmospheres at temperatures approaching 900°C-1000°C because of a relatively high melting temperature combined with the inert nature of Au nanoparticles. This study includes a systematic series of experiments and theoretical calculations targeted at further understanding stability of Au-nanoparticle incorporated TiO 2 films as archetype sensing materials. A combination of thermodynamic modeling and long-term exposure tests were utilized to unambiguously determine that gas stream composition-dependent reactive evaporation of Au (to form predominately Au(g) or AuH(g),more » depending upon the environment) at the surface of the nanoparticles is the dominant mechanism for mass loss of Au. Primary factors dictating the rate of reactive evaporation, and hence the associated film stability, were determined to be the gas stream temperature and the concentration of H 2, with the former playing a more significant role over the ranges of temperatures (700°C - 800°C) and H 2 concentrations (1% to 29% H 2 by volume) explored. The mitigation of Au-mass loss through reactive evaporation was also successfully demonstrated by depositing a SiO 2 overlayer on the Au-nanoparticle embedded films to prevent direct Au-nanoparticle/vapor-phase contact.« less

  5. Factors Influencing the Stability of Au-Incorporated Metal-Oxide Supported Thin Films for Optical Gas Sensing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baltrus, John P.; Holcomb, Gordon R.; Tylczak, Joseph H.

    There is interest in using Au-nanoparticle incorporated oxide films as functional sensor layers for high-temperature applications in optical-based sensors for measurements in both highly-oxidizing and highly-reducing atmospheres at temperatures approaching 900°C-1000°C because of a relatively high melting temperature combined with the inert nature of Au nanoparticles. This study includes a systematic series of experiments and theoretical calculations targeted at further understanding stability of Au-nanoparticle incorporated TiO 2 films as archetype sensing materials. A combination of thermodynamic modeling and long-term exposure tests were utilized to unambiguously determine that gas stream composition-dependent reactive evaporation of Au (to form predominately Au(g) or AuH(g),more » depending upon the environment) at the surface of the nanoparticles is the dominant mechanism for mass loss of Au. Primary factors dictating the rate of reactive evaporation, and hence the associated film stability, were determined to be the gas stream temperature and the concentration of H 2, with the former playing a more significant role over the ranges of temperatures (700°C - 800°C) and H 2 concentrations (1% to 29% H 2 by volume) explored. The mitigation of Au-mass loss through reactive evaporation was also successfully demonstrated by depositing a SiO 2 overlayer on the Au-nanoparticle embedded films to prevent direct Au-nanoparticle/vapor-phase contact.« less

  6. Incorporating big data into treatment plan evaluation: Development of statistical DVH metrics and visualization dashboards.

    PubMed

    Mayo, Charles S; Yao, John; Eisbruch, Avraham; Balter, James M; Litzenberg, Dale W; Matuszak, Martha M; Kessler, Marc L; Weyburn, Grant; Anderson, Carlos J; Owen, Dawn; Jackson, William C; Haken, Randall Ten

    2017-01-01

    To develop statistical dose-volume histogram (DVH)-based metrics and a visualization method to quantify the comparison of treatment plans with historical experience and among different institutions. The descriptive statistical summary (ie, median, first and third quartiles, and 95% confidence intervals) of volume-normalized DVH curve sets of past experiences was visualized through the creation of statistical DVH plots. Detailed distribution parameters were calculated and stored in JavaScript Object Notation files to facilitate management, including transfer and potential multi-institutional comparisons. In the treatment plan evaluation, structure DVH curves were scored against computed statistical DVHs and weighted experience scores (WESs). Individual, clinically used, DVH-based metrics were integrated into a generalized evaluation metric (GEM) as a priority-weighted sum of normalized incomplete gamma functions. Historical treatment plans for 351 patients with head and neck cancer, 104 with prostate cancer who were treated with conventional fractionation, and 94 with liver cancer who were treated with stereotactic body radiation therapy were analyzed to demonstrate the usage of statistical DVH, WES, and GEM in a plan evaluation. A shareable dashboard plugin was created to display statistical DVHs and integrate GEM and WES scores into a clinical plan evaluation within the treatment planning system. Benchmarking with normal tissue complication probability scores was carried out to compare the behavior of GEM and WES scores. DVH curves from historical treatment plans were characterized and presented, with difficult-to-spare structures (ie, frequently compromised organs at risk) identified. Quantitative evaluations by GEM and/or WES compared favorably with the normal tissue complication probability Lyman-Kutcher-Burman model, transforming a set of discrete threshold-priority limits into a continuous model reflecting physician objectives and historical experience. Statistical DVH offers an easy-to-read, detailed, and comprehensive way to visualize the quantitative comparison with historical experiences and among institutions. WES and GEM metrics offer a flexible means of incorporating discrete threshold-prioritizations and historic context into a set of standardized scoring metrics. Together, they provide a practical approach for incorporating big data into clinical practice for treatment plan evaluations.

  7. Brain volume and cognitive function in patients with revascularized coronary artery disease.

    PubMed

    Ottens, Thomas H; Hendrikse, Jeroen; Nathoe, Hendrik M; Biessels, Geert Jan; van Dijk, Diederik

    2017-03-01

    The pathogenesis of cognitive dysfunction in patients with CAD remains unclear. CAD is associated with brain atrophy and specific lesions. Detailed knowledge about the association of brain volume measured with MRI, and cognitive function in patients with CAD is lacking. We therefore investigated brain volume and cognitive function in patients with revascularized coronary artery disease (CAD), and controls without CAD. Brain MRI scans and cognitive tests from patients with CAD were compared with data from control subjects without CAD. Cognitive performance was assessed with the Rey Auditory Verbal Learning (short term memory) and Trailmaking (divided attention) tests. Multivariable regression analysis was used to study associations between CAD, brain volume and cognitive function. A total of 102 patients with CAD and 48 control subjects were included. Level of education and age were comparable between the groups. Compared with controls, patients with CAD had smaller total brain volume (expressed as fraction of intracranial volume) [%ICV, mean (SD), 0.78 (0.03) vs 0.80 (0.02), P=0.001] and larger volume of non-ventricular cerebrospinal fluid [%ICV, median (IQR) 0.19 (0.18 to 0.21) vs 0.18 (0.17 to 0.20), P=0.001]. Patients in the CAD group had poorer cognitive function [mean (SD) Z-score -0.16 (0.72) vs 0.41 (0.69), P<0.01]. Multivariable regression showed that CAD, higher age, lower level of education and greater cerebrospinal fluid volume were independent predictors of poorer cognitive function. CAD patients had a smaller total brain volume and poorer cognitive function than controls. Greater volume of cerebrospinal fluid was an independent predictor of poorer cognitive function. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. Development of a theoretical framework for analyzing cerebrospinal fluid dynamics

    PubMed Central

    Cohen, Benjamin; Voorhees, Abram; Vedel, Søren; Wei, Timothy

    2009-01-01

    Background To date hydrocephalus researchers acknowledge the need for rigorous but utilitarian fluid mechanics understanding and methodologies in studying normal and hydrocephalic intracranial dynamics. Pressure volume models and electric circuit analogs introduced pressure into volume conservation; but control volume analysis enforces independent conditions on pressure and volume. Previously, utilization of clinical measurements has been limited to understanding of the relative amplitude and timing of flow, volume and pressure waveforms; qualitative approaches without a clear framework for meaningful quantitative comparison. Methods Control volume analysis is presented to introduce the reader to the theoretical background of this foundational fluid mechanics technique for application to general control volumes. This approach is able to directly incorporate the diverse measurements obtained by clinicians to better elucidate intracranial dynamics and progression to disorder. Results Several examples of meaningful intracranial control volumes and the particular measurement sets needed for the analysis are discussed. Conclusion Control volume analysis provides a framework to guide the type and location of measurements and also a way to interpret the resulting data within a fundamental fluid physics analysis. PMID:19772652

  9. Correlation of 68Ga Ventilation-Perfusion PET/CT with Pulmonary Function Test Indices for Assessing Lung Function.

    PubMed

    Le Roux, Pierre-Yves; Siva, Shankar; Steinfort, Daniel P; Callahan, Jason; Eu, Peter; Irving, Lou B; Hicks, Rodney J; Hofman, Michael S

    2015-11-01

    Pulmonary function tests (PFTs) are routinely used to assess lung function, but they do not provide information about regional pulmonary dysfunction. We aimed to assess correlation of quantitative ventilation-perfusion (V/Q) PET/CT with PFT indices. Thirty patients underwent V/Q PET/CT and PFT. Respiration-gated images were acquired after inhalation of (68)Ga-carbon nanoparticles and administration of (68)Ga-macroaggregated albumin. Functional volumes were calculated by dividing the volume of normal ventilated and perfused (%NVQ), unmatched and matched defects by the total lung volume. These functional volumes were correlated with forced expiratory volume in 1 s (FEV1), forced vital capacity (FVC), FEV1/FVC, and diffusing capacity for carbon monoxide (DLCO). All functional volumes were significantly different in patients with chronic obstructive pulmonary disease (P < 0.05). FEV1/FVC and %NVQ had the highest correlation (r = 0.82). FEV1 was also best correlated with %NVQ (r = 0.64). DLCO was best correlated with the volume of unmatched defects (r = -0.55). Considering %NVQ only, a cutoff value of 90% correctly categorized 28 of 30 patients with or without significant pulmonary function impairment. Our study demonstrates strong correlations between V/Q PET/CT functional volumes and PFT parameters. Because V/Q PET/CT is able to assess regional lung function, these data support the feasibility of its use in radiation therapy and preoperative planning and assessing pulmonary dysfunction in a variety of respiratory diseases. © 2015 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  10. Polarization selective phase-change nanomodulator

    PubMed Central

    Appavoo, Kannatassen; Haglund Jr., Richard F.

    2014-01-01

    Manipulating optical signals below the diffraction limit is crucial for next-generation data-storage and telecommunication technologies. Although controlling the flow of light around nanoscale waveguides was achieved over a decade ago, modulating optical signals at terahertz frequencies within nanoscale volumes remains a challenge. Since the physics underlying any modulator relies on changes in dielectric properties, the incorporation of strongly electron-correlated materials (SECMs) has been proposed because they can exhibit orders of magnitude changes in electrical and optical properties with modest thermal, electrical or optical trigger signals. Here we demonstrate a hybrid nanomodulator of deep sub-wavelength dimensions with an active volume of only 0.002 µm3 by spatially confining light on the nanometre length scale using a plasmonic nanostructure while simultaneously controlling the reactive near-field environment at its optical focus with a single, precisely positioned SECM nanostructure. Since the nanomodulator functionality hinges on this near-field electromagnetic interaction, the modulation is also selectively responsive to polarization. This architecture suggests one path for designing reconfigurable optoelectronic building blocks with responses that can be tailored with exquisite precision by varying size, geometry, and the intrinsic materials properties of the hybrid elements. PMID:25346427

  11. Polarization selective phase-change nanomodulator

    DOE PAGES

    Appavoo, Kannatassen; Haglund Jr., Richard F.

    2014-10-27

    Manipulating optical signals below the diffraction limit is crucial for next-generation data-storage and telecommunication technologies. Although controlling the flow of light around nanoscale waveguides was achieved over a decade ago, modulating optical signals at terahertz frequencies within nanoscale volumes remains a challenge. Since the physics underlying any modulator relies on changes in dielectric properties, the incorporation of strongly electron-correlated materials (SECMs) has been proposed because they can exhibit orders of magnitude changes in electrical and optical properties with modest thermal, electrical or optical trigger signals. Here we demonstrate a hybrid nanomodulator of deep sub-wavelength dimensions with an active volume ofmore » only 0.002 µm 3 by spatially confining light on the nanometre length scale using a plasmonic nanostructure while simultaneously controlling the reactive near-field environment at its optical focus with a single, precisely positioned SECM nanostructure. Since the nanomodulator functionality hinges on this near-field electromagnetic interaction, the modulation is also selectively responsive to polarization. Lastly, this architecture suggests one path for designing reconfigurable optoelectronic building blocks with responses that can be tailored with exquisite precision by varying size, geometry, and the intrinsic materials properties of the hybrid elements.« less

  12. [Molecular organization of glutamate-sensitive chemoexcitable membranes of nerve cells. Function of glutamate-binding proteins of the central nervous system when incorporated into liposomes].

    PubMed

    Besedin, V I; Kuznetsov, A S; Dambinova, S A

    1985-03-01

    The functioning of the glutamate-binding protein of rat brain cortex synaptic membranes was studied by its incorporation into liposomes. The optimal conditions for the receptor protein incorporation were established and the kinetics of 22Na+ and 86Rb+ incorporation into the liposomes in the presence of L-glutamate were analyzed. Modelling of the CNS glutamate receptor functions was found to be dependent on the lipid composition and amount of the incorporated membrane protein. The selective transport of 22Na+ into the liposomes was stimulated in the presence of 10(-4) M glutamate. Addition of monoclonal antibodies against glutamate-binding proteins blocked the incorporation of Na+ into the liposomes. The experimental results are suggestive of the nativity of the liposome-incorporated membrane protein, which is capable of binding glutamate and regulating selective transport of Na+. It was assumed that the glutamate receptor macromolecule represents an integral complex made up of several low molecular weight subunits of glucoprotein nature that form a selective ionic channel.

  13. Taper Functions for Predicting Product Volumes in Natural Shortleaf Pines

    Treesearch

    Robert M. Farrar; Paul A. Murphy

    1987-01-01

    Taper (stem-profile) functions are presented for natural shortleaf pine (Pinus echinata Mill.) trees growing in the West Gulf area. These functions, when integrated, permit the prediction of volume between any two heights on a stem and, conversely by iteration, the volume between any two diameters on a stem. Examples are given of use of the functions...

  14. Eigenvalue Detonation of Combined Effects Aluminized Explosives

    NASA Astrophysics Data System (ADS)

    Capellos, Christos; Baker, Ernest; Balas, Wendy; Nicolich, Steven; Stiel, Leonard

    2007-06-01

    This paper reports on the development of theory and performance for recently developed combined effects aluminized explosives. Traditional high energy explosives used for metal pushing incorporate high loading percentages of HMX or RDX, whereas blast explosives incorporate some percentage of aluminum. However, the high blast explosives produce increased blast energies, with reduced metal pushing capability due to late time aluminum reaction. Metal pushing capability refers to the early volume expansion work produced during the first few volume expansions associated with cylinder wall velocities and Gurney energies. Our Recently developed combined effects aluminized explosives (PAX-29C, PAX-30, PAX-42) are capable of achieving excellent metal pushing and high blast energies. Traditional Chapman-Jouguet detonation theory does not explain the observed detonation states achieved by these combined effects explosives. This work demonstrates, with the use of cylinder expansion data and thermochemical code calculations (JAGUAR and CHEETAH), that eigenvalue detonation theory explains the observed behavior.

  15. Fatigue criterion to system design, life and reliability

    NASA Technical Reports Server (NTRS)

    Zaretsky, E. V.

    1985-01-01

    A generalized methodology to structural life prediction, design, and reliability based upon a fatigue criterion is advanced. The life prediction methodology is based in part on work of W. Weibull and G. Lundberg and A. Palmgren. The approach incorporates the computed life of elemental stress volumes of a complex machine element to predict system life. The results of coupon fatigue testing can be incorporated into the analysis allowing for life prediction and component or structural renewal rates with reasonable statistical certainty.

  16. A Safety and Health Guide for Vocational Educators. Incorporating Requirements of the Occupational Safety and Health Act of 1970, Relevant Pennsylvania Requirements with Particular Emphasis for Those Concerned with Cooperative Education and Work Study Programs. Volume 15. Number 1.

    ERIC Educational Resources Information Center

    Wahl, Ray

    Intended as a guide for vocational educators to incorporate the requirements of the Occupational Safety and Health Act (1970) and the requirements of various Pennsylvania safety and health regulations with their cooperative vocational programs, the first chapter of this document presents the legal implications of these safety and health…

  17. Method of enhancing the electronic properties of an undoped and/or N-type hydrogenated amorphous silicon film

    DOEpatents

    Carlson, David E.

    1980-01-01

    The dark conductivity and photoconductivity of an N-type and/or undoped hydrogenated amorphous silicon layer fabricated by an AC or DC proximity glow discharge in silane can be increased through the incorporation of argon in an amount from 10 to about 90 percent by volume of the glow discharge atmosphere which contains a silicon-hydrogen containing compound in an amount of from about 90 to about 10 volume percent.

  18. Looking for scaling laws, or physics with nuts and shells

    NASA Astrophysics Data System (ADS)

    Sheets, H. David; Lauffenburger, James C.

    1999-09-01

    Scaling laws relating the volume of a class of objects to a characteristic dimension of the object appear commonly in physics, chemistry, and biology. In this laboratory exercise for an introductory physics course scaling laws are derived for machine nuts and clam shells. In addition to covering a standard problem in physics, determining volume of the object by measuring the buoyant force on it, the biologically interesting idea of scaling laws are incorporated into the same lab.

  19. The Archaeology of Coralville Lake, Iowa. Volume 2. Evolution of Holocene Landscapes.

    DTIC Science & Technology

    1986-01-01

    Distribution Unlimited *I THE ARCHAEOLOGY OF CORALVILLE LAKE, IOWA VOLUME II: -bhN9f EVOLUTION OA 1,4o04CE AM7-SCOPKS ,?96 DTIC Prepared By: Jeffrey D...report detailing the archaeological resources of Coralville Lake, Iowa and the planning process for managing those resources. The narrative and data...adjacent to Coralville Lake) of the Iowa River valley and its adjoining tributary valleys. Results of the investigation were to incorporate: (1) a

  20. Three-Dimensional Eutrophication Model of Chesapeake Bay. Volume 1: Main Report.

    DTIC Science & Technology

    1994-05-01

    c.d.g (4-68) - Krpon RPON - WSr 5 RPON Nitrate NO 3 = [ (PNx - 1)PxANCxBx x=c, d ,g (4-69) + NT - ANDC Denit DOC Silica The model incorporates two siliceous...Dimensional Eutrophication Model of Chesapeake Bay Volume I: Main Report D TIC by Carl F. Cerco, Thomas M. Cole ELECTE• JUN 2 810,94U Approved For...Approach ................................... 15-13 Comparison of Analytical and Empirical Results ............... 15-19 D iscussion

  1. Upper Extremity Muscle Volumes and Functional Strength After Resistance Training in Older Adults

    PubMed Central

    Daly, Melissa; Vidt, Meghan E.; Eggebeen, Joel D.; Simpson, W. Greg; Miller, Michael E.; Marsh, Anthony P.; Saul, Katherine R.

    2014-01-01

    Aging leads to a decline in strength and an associated loss of independence. The authors examined changes in muscle volume, maximum isometric joint moment, functional strength, and 1-repetition maximum (1RM) after resistance training (RT) in the upper extremity of older adults. They evaluated isometric joint moment and muscle volume as predictors of functional strength. Sixteen healthy older adults (average age 75 ± 4.3 yr) were randomized to a 6-wk upper extremity RT program or control group. The RT group increased 1RM significantly (p < .01 for all exercises). Compared with controls, randomization to RT led to greater functional pulling strength (p = .003), isometric shoulder-adduction moment (p = .041), elbow-flexor volume (p = .017), and shoulder-adductor volume (p = .009). Shoulder-muscle volumes and isometric moments were good predictors of functional strength. The authors conclude that shoulder strength is an important factor for performing functional reaching and pulling tasks and a key target for upper extremity RT interventions. PMID:22952203

  2. Immediate and delayed incorporations of events into dreams: further replication and implications for dream function.

    PubMed

    Nielsen, Tore A; Kuiken, Don; Alain, Geneviève; Stenstrom, Philippe; Powell, Russell A

    2004-12-01

    The incorporation of memories into dreams is characterized by two types of temporal effects: the day-residue effect, involving immediate incorporations of events from the preceding day, and the dream-lag effect, involving incorporations delayed by about a week. This study was designed to replicate these two effects while controlling several prior methodological problems and to provide preliminary information about potential functions of delayed event incorporations. Introductory Psychology students were asked to recall dreams at home for 1 week. Subsequently, they were instructed to select a single dream and to retrieve past events related to it that arose from one of seven randomly determined days prior to the dream (days 1-7). They then rated both their confidence in recall of events and the extent of correspondence between events and dreams. Judges evaluated qualities of the reported events using scales derived from theories about the function of delayed incorporations. Average ratings of correspondences between dreams and events were high for predream days 1 and 2, low for days 3 and 4 and high again for days 5-7, but only for participants who rated their confidence in recall of events as high and only for females. Delayed incorporations were more likely than immediate incorporations to refer to events characterized by interpersonal interactions, spatial locations, resolved problems and positive emotions. The findings are consistent with the possibility that processes with circaseptan (about 7 days) morphology underlie dream incorporation and that these processes subserve the functions of socio-emotional adaptation and memory consolidation.

  3. Lung vessel segmentation in CT images using graph-cuts

    NASA Astrophysics Data System (ADS)

    Zhai, Zhiwei; Staring, Marius; Stoel, Berend C.

    2016-03-01

    Accurate lung vessel segmentation is an important operation for lung CT analysis. Filters that are based on analyzing the eigenvalues of the Hessian matrix are popular for pulmonary vessel enhancement. However, due to their low response at vessel bifurcations and vessel boundaries, extracting lung vessels by thresholding the vesselness is not sufficiently accurate. Some methods turn to graph-cuts for more accurate segmentation, as it incorporates neighbourhood information. In this work, we propose a new graph-cuts cost function combining appearance and shape, where CT intensity represents appearance and vesselness from a Hessian-based filter represents shape. Due to the amount of voxels in high resolution CT scans, the memory requirement and time consumption for building a graph structure is very high. In order to make the graph representation computationally tractable, those voxels that are considered clearly background are removed from the graph nodes, using a threshold on the vesselness map. The graph structure is then established based on the remaining voxel nodes, source/sink nodes and the neighbourhood relationship of the remaining voxels. Vessels are segmented by minimizing the energy cost function with the graph-cuts optimization framework. We optimized the parameters used in the graph-cuts cost function and evaluated the proposed method with two manually labeled sub-volumes. For independent evaluation, we used 20 CT scans of the VESSEL12 challenge. The evaluation results of the sub-volume data show that the proposed method produced a more accurate vessel segmentation compared to the previous methods, with F1 score 0.76 and 0.69. In the VESSEL12 data-set, our method obtained a competitive performance with an area under the ROC curve of 0.975, especially among the binary submissions.

  4. Food-web models predict species abundances in response to habitat change.

    PubMed

    Gotelli, Nicholas J; Ellison, Aaron M

    2006-10-01

    Plant and animal population sizes inevitably change following habitat loss, but the mechanisms underlying these changes are poorly understood. We experimentally altered habitat volume and eliminated top trophic levels of the food web of invertebrates that inhabit rain-filled leaves of the carnivorous pitcher plant Sarracenia purpurea. Path models that incorporated food-web structure better predicted population sizes of food-web constituents than did simple keystone species models, models that included only autecological responses to habitat volume, or models including both food-web structure and habitat volume. These results provide the first experimental confirmation that trophic structure can determine species abundances in the face of habitat loss.

  5. Control of volume resistivity in inorganic organic separators

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W.; Manzo, M. A.

    1979-01-01

    Control of resistivity in NASA inorganic-organic separators is achieved by incorporating small percentages of high surface area, fine particle silica with other ingredients in the separator coating. The volume resistivity is predictable from the surface area of filler particles in the coating. The approach is applied to two polymer- plasticizer -filler coating systems, where the filler content of each is below the generally acknowledged critical pigment volume concentration of the coating. Application of these coating systems to 0.0254 cm thick (10-mil) fuel cell grade asbestos sheet produces inexpensive, flexible, microporous separators that perform as well as the original inorganic-organic concept, the Astropower separator.

  6. BSA Delta Qualification 2, volume 3, book 1

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This report, presented in three volumes, provides the results of a two-motor Delta Qualification 2 program conducted in 1993 to certify the following enhancements for incorporation into booster separation motor (BSM) flight hardware: vulcanized-in-place nozzle aft closure insulation; new iso-static ATJ bulk graphite throat insert material; adhesive EA 9394 for bonding the nozzle throat, igniter grain rod/centering insert/igniter case; deletion of the igniter adapter insulator ring; deletion of the igniter adapter/igniter case interface RTV; and deletion of Loctite from igniter retainer plate threads. The enhancements above directly resulted from (1) the BSM total quality management (TQM) team initiatives to enhance the BSM producibility, and (2) the necessity to qualify new throat insert and adhesive systems to replace existing materials that will not be available. Testing was completed at both the component and motor levels. Component testing was accomplished to screen candidate materials (e.g., throat materials, adhesive systems) and to optimize processes (e.g., aft closure insulator vulcanization approach) prior to their incorporation into the test motors. Motor tests -- consisting of two motors, randomly selected by USBI's on-site quality personnel from production lot AAY, which were modified to accept the enhancements -- were completed to provide the final qualification of the enhancements for incorporation into flight hardware. Volume 3 book 1 provides supporting documentation to the analyses and plans of testing the two Delta Qualification units including thermal cycling planning/data acceptance records, environmental test procedures and pretest temperature conditioning history, Delta Qualification test plan, and specification SE0837 -- mix acceptance test specification.

  7. Stress and Strain in Silicon Electrode Models

    DOE PAGES

    Higa, Kenneth; Srinivasan, Venkat

    2015-03-24

    While the high capacity of silicon makes it an attractive negative electrode for Li-ion batteries, the associated large volume change results in fracture and capacity fade. Composite electrodes incorporating silicon have additional complexity, as active material is attached to surrounding material which must likewise experience significant volume change. In this paper, a finite-deformation model is used to explore, for the first time, mechanical interactions between a silicon particle undergoing lithium insertion, and attached binder material. Simulations employ an axisymmetric model system in which solutions vary in two spatial directions and shear stresses develop at interfaces between materials. The mechanical responsemore » of the amorphous active material is dependent on lithium concentration, and an equation of state incorporating reported volume expansion data is used. Simulations explore the influence of active material size and binder stiffness, and suggest delamination as an additional mode of material damage. Computed strain energies and von Mises equivalent stresses are in physically-relevant ranges, comparable to reported yield stresses and adhesion energies, and predicted trends are largely consistent with reported experimental results. It is hoped that insights from this work will support the design of more robust silicon composite electrodes.« less

  8. Comparison of Methods for Characterizing Nonideal Solute Self-Association by Sedimentation Equilibrium

    PubMed Central

    Scott, David J.; Winzor, Donald J.

    2009-01-01

    Abstract We have examined in detail analytical solutions of expressions for sedimentation equilibrium in the analytical ultracentrifuge to describe self-association under nonideal conditions. We find that those containing the radial dependence of total solute concentration that incorporate the Adams-Fujita assumption for composition-dependence of activity coefficients reveal potential shortcomings for characterizing such systems. Similar deficiencies are shown in the use of the NONLIN software incorporating the same assumption about the interrelationship between activity coefficients for monomer and polymer species. These difficulties can be overcome by iterative analyses incorporating expressions for the composition-dependence of activity coefficients predicted by excluded volume considerations. A recommendation is therefore made for the replacement of current software packages by programs that incorporate rigorous statistical-mechanical allowance for thermodynamic nonideality in sedimentation equilibrium distributions reflecting solute self-association. PMID:19651047

  9. Users manual for the NASA Lewis three-dimensional ice accretion code (LEWICE 3D)

    NASA Technical Reports Server (NTRS)

    Bidwell, Colin S.; Potapczuk, Mark G.

    1993-01-01

    A description of the methodology, the algorithms, and the input and output data along with an example case for the NASA Lewis 3D ice accretion code (LEWICE3D) has been produced. The manual has been designed to help the user understand the capabilities, the methodologies, and the use of the code. The LEWICE3D code is a conglomeration of several codes for the purpose of calculating ice shapes on three-dimensional external surfaces. A three-dimensional external flow panel code is incorporated which has the capability of calculating flow about arbitrary 3D lifting and nonlifting bodies with external flow. A fourth order Runge-Kutta integration scheme is used to calculate arbitrary streamlines. An Adams type predictor-corrector trajectory integration scheme has been included to calculate arbitrary trajectories. Schemes for calculating tangent trajectories, collection efficiencies, and concentration factors for arbitrary regions of interest for single droplets or droplet distributions have been incorporated. A LEWICE 2D based heat transfer algorithm can be used to calculate ice accretions along surface streamlines. A geometry modification scheme is incorporated which calculates the new geometry based on the ice accretions generated at each section of interest. The three-dimensional ice accretion calculation is based on the LEWICE 2D calculation. Both codes calculate the flow, pressure distribution, and collection efficiency distribution along surface streamlines. For both codes the heat transfer calculation is divided into two regions, one above the stagnation point and one below the stagnation point, and solved for each region assuming a flat plate with pressure distribution. Water is assumed to follow the surface streamlines, hence starting at the stagnation zone any water that is not frozen out at a control volume is assumed to run back into the next control volume. After the amount of frozen water at each control volume has been calculated the geometry is modified by adding the ice at each control volume in the surface normal direction.

  10. CT-based renal volume and graft function after living-donor kidney transplantation: Is there a volume threshold to avoid?

    PubMed

    Dias, Jorge; Malheiro, Jorge; Almeida, Manuela; Dias, Leonídio; Silva-Ramos, Miguel; Martins, La Salete; Xambre, Luís; Castro-Henriques, António

    2015-05-01

    Donated kidney volume influences post-transplant outcomes and graft survival. We evaluated the relationship between living-donor kidney volume and recipient graft function at 12 months post-transplantation, exploring a volume threshold for a suboptimal graft function, and compared two different formulas of volume estimation. A retrospective analysis of 82 pairs of living-donor kidney transplants was conducted. Donor renal volumes were estimated from computerized tomography scans using the ellipsoid formula and the voxel counting technique. Linear and restricted cubic regression spline was used to analyze the association of volume with graft function. Additionally, we determined the correlation between the two volume estimation formulas and established a correction factor for the ellipsoid formula. Renal volume (adjusted to recipient BSA) had the strongest independent effect (B = 1.65 per 10 ml/m(2) increase, p value <0.001) on graft function at 12 months. The eGFR at 12 months was 52.5, 63.6 and 67.6 ml/min/1.73 m(2) for the low, medium and high volume ratio terciles, respectively (p value <0.001). The odds of a GFR <50 ml/min became significantly reduced with volumes above 145 cc/1.73 m(2). A strong positive correlation between the two formulas was identified (R(2) = 0.705), but the optimal correction factor for our cohort was 0.566. In a Caucasian population, higher donor kidney volumes estimated from preoperative CT scans are associated with higher recipient eGFRs at 12 months after live-donor transplantation. Using this criterion, transplant teams can potentially improve selection of living donors if multiple donors are available. However, the need for precise estimation of donor kidney volumes should not be overlooked.

  11. Locomotive cab design development. Volume 4 : recommended design

    DOT National Transportation Integrated Search

    1978-11-01

    This report presents a synopsis of the background analyses leading : to the design of a line haul locomotive crew compartment. The : design was incorporated into a full scale mockup which was : evaluated by a nationwide representation of locomotive e...

  12. Computer-based guidelines for concrete pavements : volume III, technical appendices.

    DOT National Transportation Integrated Search

    2006-01-01

    This report documents enhancements incorporated in the (HIgh PERformance PAVing) HIPERPAV II software. Enhancements made : within this project include the addition of two major modules: a module to predict the performance of JPCP as affected by early...

  13. Traffic analysis toolbox volume XI : weather and traffic analysis, modeling and simulation.

    DOT National Transportation Integrated Search

    2010-12-01

    This document presents a weather module for the traffic analysis tools program. It provides traffic engineers, transportation modelers and decisions makers with a guide that can incorporate weather impacts into transportation system analysis and mode...

  14. Cellular pressure and volume regulation and implications for cell mechanics

    NASA Astrophysics Data System (ADS)

    Jiang, Hongyuan; Sun, Sean

    2013-03-01

    In eukaryotic cells, small changes in cell volume can serve as important signals for cell proliferation, death and migration. Volume and shape regulation also directly impacts the mechanics of the cell and multi-cellular tissues. Recent experiments found that during mitosis, eukaryotic cells establish a preferred steady volume and pressure, and the steady volume and pressure can robustly adapt to large osmotic shocks. Here we develop a mathematical model of cellular pressure and volume regulation, incorporating essential elements such as water permeation, mechano-sensitive channels, active ion pumps and active stresses in the actomyosin cortex. The model can fully explain the available experimental data, and predicts the cellular volume and pressure for several models of cell cortical mechanics. Furthermore, we show that when cells are subjected to an externally applied load, such as in an AFM indentation experiment, active regulation of volume and pressure leads to complex cellular response. We found the cell stiffness highly depends on the loading rate, which indicates the transport of water and ions might contribute to the observed viscoelasticity of cells.

  15. Harvest: a web-based biomedical data discovery and reporting application development platform.

    PubMed

    Italia, Michael J; Pennington, Jeffrey W; Ruth, Byron; Wrazien, Stacey; Loutrel, Jennifer G; Crenshaw, E Bryan; Miller, Jeffrey; White, Peter S

    2013-01-01

    Biomedical researchers share a common challenge of making complex data understandable and accessible. This need is increasingly acute as investigators seek opportunities for discovery amidst an exponential growth in the volume and complexity of laboratory and clinical data. To address this need, we developed Harvest, an open source framework that provides a set of modular components to aid the rapid development and deployment of custom data discovery software applications. Harvest incorporates visual representations of multidimensional data types in an intuitive, web-based interface that promotes a real-time, iterative approach to exploring complex clinical and experimental data. The Harvest architecture capitalizes on standards-based, open source technologies to address multiple functional needs critical to a research and development environment, including domain-specific data modeling, abstraction of complex data models, and a customizable web client.

  16. An SCR inverter with an integral battery charger for electric vehicles

    NASA Technical Reports Server (NTRS)

    Thimmeach, D.

    1983-01-01

    The feasibility of incorporating an onboard battery charger into the inverter previously developed under a NASA contract is successfully demonstrated. The rated output power of the resulting isolated battery charger is 3.6 kW at 220 Vac with an 86 percent efficiency and a 95 percent power factor. Also achieved are improved inverter efficiency (from 90 to 93 percent at 15 kW motor shaft power), inverter peak power capability (from 26 to 34 kW), and reduced weight and volume of the combined inverter/charger package (47 kg, 49 x 44 x 24 cm). Some major conclusions are that using the inverter commutation circuitry to perform the battery charging function is advantageous, and that the input-commutated thyristor inverter has the potential to be an excellent inverter and battery charger for use in electric vehicle applications.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waterman, Michael R.

    Our understanding of the classification, function, mechanism, and structure of the enzymes which incorporate atoms of oxygen from atmospheric molecular oxygen during catalysis is based on the thoughtful and technically challenging experiments of two giants in the field of Biochemistry, Howard Mason and Osamu Hayaishi. This volume celebrates the 50th anniversary of the discovery and characterization of these 'oxygenase' enzymes and provides a broad view of how far this area of research has advanced. Professor Hayaishi describes herein his perspective on the background and major discoveries which led to the development of this field. Regrettably Howard Mason passed away atmore » age 88 in 2003. I am indeed fortunate to have been a Ph.D. student with Howard and to have the opportunity to briefly review his role in the development of this field for this special commemorative issue of BBRC.« less

  18. Performance of new automated transthoracic three-dimensional echocardiographic software for left ventricular volumes and function assessment in routine clinical practice: Comparison with 3 Tesla cardiac magnetic resonance.

    PubMed

    Levy, Franck; Dan Schouver, Elie; Iacuzio, Laura; Civaia, Filippo; Rusek, Stephane; Dommerc, Carinne; Marechaux, Sylvestre; Dor, Vincent; Tribouilloy, Christophe; Dreyfus, Gilles

    2017-11-01

    Three-dimensional (3D) transthoracic echocardiography (TTE) is superior to two-dimensional Simpson's method for assessment of left ventricular (LV) volumes and LV ejection fraction (LVEF). Nevertheless, 3D TTE is not incorporated into everyday practice, as current LV chamber quantification software products are time-consuming. To evaluate the feasibility, accuracy and reproducibility of new fully automated fast 3D TTE software (HeartModel A.I. ; Philips Healthcare, Andover, MA, USA) for quantification of LV volumes and LVEF in routine practice; to compare the 3D LV volumes and LVEF obtained with a cardiac magnetic resonance (CMR) reference; and to optimize automated default border settings with CMR as reference. Sixty-three consecutive patients, who had comprehensive 3D TTE and CMR examinations within 24hours, were eligible for inclusion. Nine patients (14%) were excluded because of insufficient echogenicity in the 3D TTE. Thus, 54 patients (40 men; mean age 63±13 years) were prospectively included into the study. The inter- and intraobserver reproducibilities of 3D TTE were excellent (coefficient of variation<10%) for end-diastolic volume (EDV), end-systolic volume (ESV) and LVEF. Despite a slight underestimation of EDV using 3D TTE compared with CMR (bias=-22±34mL; P<0.0001), a significant correlation was found between the two measurements (r=0.93; P=0.0001). Enlarging default border detection settings leads to frequent volume overestimation in the general population, but improved agreement with CMR in patients with LVEF≤50%. Correlations between 3D TTE and CMR for ESV and LVEF were excellent (r=0.93 and r=0.91, respectively; P<0.0001). 3D TTE using new-generation fully automated software is a feasible, fast, reproducible and accurate imaging modality for LV volumetric quantification in routine practice. Optimization of border detection settings may increase agreement with CMR for EDV assessment in dilated ventricles. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  19. Incorporating Descriptive Assessment Results into the Design of a Functional Analysis: A Case Example Involving a Preschooler's Hand Mouthing

    ERIC Educational Resources Information Center

    Tiger, Jeffrey H.; Hanley, Gregory P.; Bessette, Kimberly K.

    2006-01-01

    Functional analysis methodology has become the hallmark of behavioral assessment, yielding a determination of behavioral function in roughly 96% of the cases published (Hanley, Iwata, & McCord, 2003). Some authors have suggested that incorporating the results of a descriptive assessment into the design of a functional analysis may be useful in…

  20. Structural and functional connectional fingerprints in mild cognitive impairment and Alzheimer's disease patients.

    PubMed

    Son, Seong-Jin; Kim, Jonghoon; Park, Hyunjin

    2017-01-01

    Regional volume atrophy and functional degeneration are key imaging hallmarks of Alzheimer's disease (AD) in structural and functional magnetic resonance imaging (MRI), respectively. We jointly explored regional volume atrophy and functional connectivity to better characterize neuroimaging data of AD and mild cognitive impairment (MCI). All data were obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. We compared regional volume atrophy and functional connectivity in 10 subcortical regions using structural MRI and resting-state functional MRI (rs-fMRI). Neuroimaging data of normal controls (NC) (n = 35), MCI (n = 40), and AD (n = 30) were compared. Significant differences of regional volumes and functional connectivity measures between groups were assessed using permutation tests in 10 regions. The regional volume atrophy and functional connectivity of identified regions were used as features for the random forest classifier to distinguish among three groups. The features of the identified regions were also regarded as connectional fingerprints that could distinctively separate a given group from the others. We identified a few regions with distinctive regional atrophy and functional connectivity patterns for NC, MCI, and AD groups. A three label classifier using the information of regional volume atrophy and functional connectivity of identified regions achieved classification accuracy of 53.33% to distinguish among NC, MCI, and AD. We identified distinctive regional atrophy and functional connectivity patterns that could be regarded as a connectional fingerprint.

  1. Structural and functional connectional fingerprints in mild cognitive impairment and Alzheimer’s disease patients

    PubMed Central

    Son, Seong-Jin; Kim, Jonghoon

    2017-01-01

    Regional volume atrophy and functional degeneration are key imaging hallmarks of Alzheimer’s disease (AD) in structural and functional magnetic resonance imaging (MRI), respectively. We jointly explored regional volume atrophy and functional connectivity to better characterize neuroimaging data of AD and mild cognitive impairment (MCI). All data were obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. We compared regional volume atrophy and functional connectivity in 10 subcortical regions using structural MRI and resting-state functional MRI (rs-fMRI). Neuroimaging data of normal controls (NC) (n = 35), MCI (n = 40), and AD (n = 30) were compared. Significant differences of regional volumes and functional connectivity measures between groups were assessed using permutation tests in 10 regions. The regional volume atrophy and functional connectivity of identified regions were used as features for the random forest classifier to distinguish among three groups. The features of the identified regions were also regarded as connectional fingerprints that could distinctively separate a given group from the others. We identified a few regions with distinctive regional atrophy and functional connectivity patterns for NC, MCI, and AD groups. A three label classifier using the information of regional volume atrophy and functional connectivity of identified regions achieved classification accuracy of 53.33% to distinguish among NC, MCI, and AD. We identified distinctive regional atrophy and functional connectivity patterns that could be regarded as a connectional fingerprint. PMID:28333946

  2. Anatomical pulmonary magnetic resonance imaging segmentation for regional structure-function measurements of asthma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, F.; Graduate Program in Biomedical Engineering, University of Western Ontario, London, Ontario N6A 5B9; Svenningsen, S.

    Purpose: Pulmonary magnetic-resonance-imaging (MRI) and x-ray computed-tomography have provided strong evidence of spatially and temporally persistent lung structure-function abnormalities in asthmatics. This has generated a shift in their understanding of lung disease and supports the use of imaging biomarkers as intermediate endpoints of asthma severity and control. In particular, pulmonary {sup 1}H MRI can be used to provide quantitative lung structure-function measurements longitudinally and in response to treatment. However, to translate such biomarkers of asthma, robust methods are required to segment the lung from pulmonary {sup 1}H MRI. Therefore, their objective was to develop a pulmonary {sup 1}H MRI segmentationmore » algorithm to provide regional measurements with the precision and speed required to support clinical studies. Methods: The authors developed a method to segment the left and right lung from {sup 1}H MRI acquired in 20 asthmatics including five well-controlled and 15 severe poorly controlled participants who provided written informed consent to a study protocol approved by Health Canada. Same-day spirometry and plethysmography measurements of lung function and volume were acquired as well as {sup 1}H MRI using a whole-body radiofrequency coil and fast spoiled gradient-recalled echo sequence at a fixed lung volume (functional residual capacity + 1 l). We incorporated the left-to-right lung volume proportion prior based on the Potts model and derived a volume-proportion preserved Potts model, which was approximated through convex relaxation and further represented by a dual volume-proportion preserved max-flow model. The max-flow model led to a linear problem with convex and linear equality constraints that implicitly encoded the proportion prior. To implement the algorithm, {sup 1}H MRI was resampled into ∼3 × 3 × 3 mm{sup 3} isotropic voxel space. Two observers placed seeds on each lung and on the background of 20 pulmonary {sup 1}H MR images in a randomized dataset, on five occasions, five consecutive days in a row. Segmentation accuracy was evaluated using the Dice-similarity-coefficient (DSC) of the segmented thoracic cavity with comparison to five-rounds of manual segmentation by an expert observer. The authors also evaluated the root-mean-squared-error (RMSE) of the Euclidean distance between lung surfaces, the absolute, and percent volume error. Reproducibility was measured using the coefficient of variation (CoV) and intraclass correlation coefficient (ICC) for two observers who repeated segmentation measurements five-times. Results: For five well-controlled asthmatics, forced expiratory volume in 1 s (FEV{sub 1})/forced vital capacity (FVC) was 83% ± 7% and FEV{sub 1} was 86 ± 9%{sub pred}. For 15 severe, poorly controlled asthmatics, FEV{sub 1}/FV C = 66% ± 17% and FEV{sub 1} = 72 ± 27%{sub pred}. The DSC for algorithm and manual segmentation was 91% ± 3%, 92% ± 2% and 91% ± 2% for the left, right, and whole lung, respectively. RMSE was 4.0 ± 1.0 mm for each of the left, right, and whole lung. The absolute (percent) volume errors were 0.1 l (∼6%) for each of right and left lung and ∼0.2 l (∼6%) for whole lung. Intra- and inter-CoV (ICC) were <0.5% (>0.91%) for DSC and <4.5% (>0.93%) for RMSE. While segmentation required 10 s including ∼6 s for user interaction, the smallest detectable difference was 0.24 l for algorithm measurements which was similar to manual measurements. Conclusions: This lung segmentation approach provided the necessary and sufficient precision and accuracy required for research and clinical studies.« less

  3. Lift cruise fan V/STOL aircraft conceptual design study T-39 modification. Volume 1: Technical report

    NASA Technical Reports Server (NTRS)

    Elliott, D. W.

    1976-01-01

    The conversion of two T-39 aircraft into lift cruise fan research and technology vehicles is discussed. The concept is based upon modifying the T-39A (NA265-40) Sabreliner airframe into a V/STOL configuration by incorporating two LCF-459 lift cruise fans and three YJ-97 gas generators. The propulsion concept provides the thrust for horizontal flight or lift for vertical flight by deflection of bifurcated nozzles while maintaining engine out safety throughout the flight envelope. The configuration meets all the study requirements specified for the design with control powers in VTOL and conversion in excess of the requirement making it an excellent vehicle for research and development. The study report consists of two volumes; Volume 1 (Reference a) contains background data detailed description and technical substantiation of the aircraft. Volume 2 includes cost data, scheduling and program planning not addressed in Volume 1.

  4. High internal free volume compositions for low-k dielectric and other applications

    NASA Technical Reports Server (NTRS)

    Bouffard, Jean (Inventor); Swager, Timothy M. (Inventor)

    2010-01-01

    The present invention provides materials, devices, and methods involving new heterocyclic, shape-persistent monomeric units with internal free volume. In some cases, materials the present invention may comprise monomers, oligomers, or polymers that incorporate a heterocyclic, shape-persistent iptycene. The present invention may provide materials having low dielectric constants and improved stability at high operating temperatures due to the electron-poor character of materials. In addition, compositions of the invention may be easily synthesized and readily modified to suit a particular application.

  5. Space Station Systems Analysis Study. Volume 2: Program options, book 1, parts 1 and 2

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Program options are defined and requirements are determined for integrating crew, mass, volume, and electrical power for a space construction base which incorporates the space shuttle external tanks. Orbits, stabilization, flight control hardware, as well as modules and aids for orbital assembly and servicing are considered. The effectiveness of various program options for life science and radio astronomy missions, for the solar terrestrial observatory, and for public service platforms is assessed. Technology development items are identified and costs are estimated.

  6. A Study of the Effectiveness of the Army’s National Advertising Expenditures. Volume 1. Executive Summary.

    DTIC Science & Technology

    1981-08-31

    AD-A39 993 A STUDY OF THE EFFECTIVENESS OF THE RRMY’S NATIONAL 1/1 ADVERTISING EXPENDITURES VOLUME I EXECUTIVE SUNMARY(U) AYER (N W) INC NEW YORK 31... Advertising Expenditures ExecLtwe Summary N W AYER INCORPORATED :: ,AUGUST1981 DTIC OkEECTE Approved for Public Release 12 I’ Distribution Unlimited A...reverse side it necesary &-d Identify by block number) ADVERTISING , ACCESSIONS,* CONTRACTS, ACCESSIONS AS CONTRACTED, ARMY, RECRUITING, EFECTIVENESS

  7. The application of finite volume methods for modelling three-dimensional incompressible flow on an unstructured mesh

    NASA Astrophysics Data System (ADS)

    Lonsdale, R. D.; Webster, R.

    This paper demonstrates the application of a simple finite volume approach to a finite element mesh, combining the economy of the former with the geometrical flexibility of the latter. The procedure is used to model a three-dimensional flow on a mesh of linear eight-node brick (hexahedra). Simulations are performed for a wide range of flow problems, some in excess of 94,000 nodes. The resulting computer code ASTEC that incorporates these procedures is described.

  8. Study of cavitating inducer instabilities

    NASA Technical Reports Server (NTRS)

    Young, W. E.; Murphy, R.; Reddecliff, J. M.

    1972-01-01

    An analytic and experimental investigation into the causes and mechanisms of cavitating inducer instabilities was conducted. Hydrofoil cascade tests were performed, during which cavity sizes were measured. The measured data were used, along with inducer data and potential flow predictions, to refine an analysis for the prediction of inducer blade suction surface cavitation cavity volume. Cavity volume predictions were incorporated into a linearized system model, and instability predictions for an inducer water test loop were generated. Inducer tests were conducted and instability predictions correlated favorably with measured instability data.

  9. Mathematics Education in the South Pacific. Proceedings of the Annual Conference of the Mathematics Education Research Group of Australasia Incorporated (25th, Auckland, New Zealand, July 7-10, 2002). Volume I [and] Volume II.

    ERIC Educational Resources Information Center

    Barton, Bill, Ed.; Irwin, Kathryn C., Ed.; Pfannkuch, Maxine, Ed.; Thomas, Michael O. J., Ed.

    This document contains the proceedings of the 25th annual conference of the Mathematics Education Research Group of Australia (MERGA) held at the University of Auckland, New Zealand. The focus of this meeting is mathematics education in the South Pacific. Presentations are centered around the topic of numeracy in primary or elementary school.…

  10. Dependence of particle volume fraction on sound velocity and attenuation of EPDM composites.

    PubMed

    Kim, K S; Lee, K I; Kim, H Y; Yoon, S W; Hong, S H

    2007-05-01

    The sound velocity and the attenuation coefficient of EPDM (Ethylene-propylene Diene Monomer) composites incorporated with Silicon Carbide particles (SiCp's) of various volume fractions (0-40%) were experimentally and theoretically investigated. For the experiment a through-transmission technique was used. For the theoretical prediction, some mechanical property models such as Reuss model and Coherent Potential Approximation (CPA) model etc. were employed. The experimental results showed that the sound velocity decreased with the increase of the SiCp volume fraction up to 30% and then increased with the 40 vol% specimen. The attenuation coefficient was increased with the increasing SiCp volume fractions. The modified Reuss model with a longitudinal elastic modulus predicted most well the experimental sound velocity and elastic modulus results.

  11. Assessment of left atrial volume and function: a comparative study between echocardiography, magnetic resonance imaging and multi slice computed tomography.

    PubMed

    Kühl, J Tobias; Lønborg, Jacob; Fuchs, Andreas; Andersen, Mads J; Vejlstrup, Niels; Kelbæk, Henning; Engstrøm, Thomas; Møller, Jacob E; Kofoed, Klaus F

    2012-06-01

    Measurement of left atrial (LA) maximal volume (LA(max)) using two-dimensional transthoracic echocardiography (TTE) provides prognostic information in several cardiac diseases. However, the relationship between LA(max) and LA function is poorly understood and TTE is less well suited for measuring dynamic LA volume changes. Conversely, cardiac magnetic resonance imaging (CMR) and multi-slice computed tomography (MSCT) appears more appropriate for such measures. We sought to determine the relationship between LA size assessed with TTE and LA size and function assessed with CMR and MSCT. Fifty-four patients were examined 3 months post myocardial infarction with echocardiography, CMR and MSCT. Left atrial volumes and LA reservoir function were assessed by TTE. LA time-volume curves were determined and LA reservoir function (cyclic change and fractional change), passive emptying function (reservoir volume) and pump function (left atrial ejection fraction-LAEF) were derived using CMR and MSCT. Left atrial fractional change and left atrial ejection fraction (LAEF) determined with CMR and MSCT were unrelated to LA(max) enlargement by echocardiography (P = NS). There was an overall good agreement between CMR and MSCT, with a small to moderate bias in LA(max) (4.9 ± 10.4 ml), CC (3.1 ± 9.1 ml) and reservoir volume (3.4 ± 9.1 ml). TTE underestimates LA(max) with up to 32% compared with CMR and MSCT (P < 0.001). Left atrial function assessed with MSCT and CMR as LA fractional change and LAEF is not significantly related to LA(max) measured by TTE. TTE systematically underestimated LA volumes, whereas there are good agreements between MSCT and CMR for volumetric and functional properties.

  12. Pulmonary function tests correlated with thoracic volumes in adolescent idiopathic scoliosis.

    PubMed

    Ledonio, Charles Gerald T; Rosenstein, Benjamin E; Johnston, Charles E; Regelmann, Warren E; Nuckley, David J; Polly, David W

    2017-01-01

    Scoliosis deformity has been linked with deleterious changes in the thoracic cavity that affect pulmonary function. The causal relationship between spinal deformity and pulmonary function has yet to be fully defined. It has been hypothesized that deformity correction improves pulmonary function by restoring both respiratory muscle efficiency and increasing the space available to the lungs. This research aims to correlate pulmonary function and thoracic volume before and after scoliosis correction. Retrospective correlational analysis between thoracic volume modeling from plain x-rays and pulmonary function tests was conducted. Adolescent idiopathic scoliosis patients enrolled in a multicenter database were sorted by pre-operative Total Lung Capacities (TLC) % predicted values from their Pulmonary Function Tests (PFT). Ten patients with the best and ten patients with the worst TLC values were included. Modeled thoracic volume and TLC values were compared before and 2 years after surgery. Scoliosis correction resulted in an increase in the thoracic volume for patients with the worst initial TLCs (11.7%) and those with the best initial TLCs (12.5%). The adolescents with the most severe pulmonary restriction prior to surgery strongly correlated with post-operative change in total lung capacity and thoracic volume (r 2  = 0.839; p < 0.001). The mean increase in thoracic volume in this group was 373.1 cm 3 (11.7%) which correlated with a 21.2% improvement in TLC. Scoliosis correction in adolescents was found to increase thoracic volume and is strongly correlated with improved TLC in cases with severe restrictive pulmonary function, but no correlation was found in cases with normal pulmonary function. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:175-182, 2017. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  13. Clinical application of calculated split renal volume using computed tomography-based renal volumetry after partial nephrectomy: Correlation with technetium-99m dimercaptosuccinic acid renal scan data.

    PubMed

    Lee, Chan Ho; Park, Young Joo; Ku, Ja Yoon; Ha, Hong Koo

    2017-06-01

    To evaluate the clinical application of computed tomography-based measurement of renal cortical volume and split renal volume as a single tool to assess the anatomy and renal function in patients with renal tumors before and after partial nephrectomy, and to compare the findings with technetium-99m dimercaptosuccinic acid renal scan. The data of 51 patients with a unilateral renal tumor managed by partial nephrectomy were retrospectively analyzed. The renal cortical volume of tumor-bearing and contralateral kidneys was measured using ImageJ software. Split estimated glomerular filtration rate and split renal volume calculated using this renal cortical volume were compared with the split renal function measured with technetium-99m dimercaptosuccinic acid renal scan. A strong correlation between split renal function and split renal volume of the tumor-bearing kidney was observed before and after surgery (r = 0.89, P < 0.001 and r = 0.94, P < 0.001). The preoperative and postoperative split estimated glomerular filtration rate of the operated kidney showed a moderate correlation with split renal function (r = 0.39, P = 0.004 and r = 0.49, P < 0.001). The correlation between reductions in split renal function and split renal volume of the operated kidney (r = 0.87, P < 0.001) was stronger than that between split renal function and percent reduction in split estimated glomerular filtration rate (r = 0.64, P < 0.001). The split renal volume calculated using computed tomography-based renal volumetry had a strong correlation with the split renal function measured using technetium-99m dimercaptosuccinic acid renal scan. Computed tomography-based split renal volume measurement before and after partial nephrectomy can be used as a single modality for anatomical and functional assessment of the tumor-bearing kidney. © 2017 The Japanese Urological Association.

  14. Left atrial volume and function in dogs with naturally occurring myxomatous mitral valve disease.

    PubMed

    Höllmer, M; Willesen, J L; Tolver, A; Koch, J

    2017-02-01

    Myxomatous mitral valve disease (MMVD) induces progressive left atrial (LA) enlargement. The LA modulates left ventricular filling and performance through its reservoir, conduit, and contractile function. Assessment of LA size and function may provide valuable information on the level of cardiac compensation. Left atrial function in dogs with naturally occurring MMVD remains largely unexplored. The objective of this study was to evaluate LA volume and function in dogs with naturally occurring MMVD. This prospective study included 205 client-owned dogs of different breeds, 114 healthy dogs, and 91 dogs with MMVD of different disease severities. Using two-dimensional echocardiography, the biplane area-length method was applied to assess LA volume and calculate volumetric indices of LA reservoir, conduit, and contractile function. Left atrial volume and LA stroke volume increased, whereas LA reservoir and contractile function decreased with increasing disease severity. A maximal LA volume <2.25mL/kg was the optimal cut off identified for excluding congestive heart failure in dogs with chronic MMVD with a sensitivity of 96% and a specificity of 100%. An active LA emptying fraction <24% and/or a LA expansion index <126% were suggestive of congestive heart failure in dogs with chronic MMVD with a sensitivity of 77% and a specificity of 89% and a sensitivity of 82% and a specificity of 82%, respectively. Dogs with MMVD appear to have larger LA volumes with poorer LA function. Deteriorating LA function, characterized by a decreasing reservoir and active contractile function, was evident in dogs with MMVD with increasing disease severity. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Structural effects due to the incorporation of Ar atoms in the lattice of ZrO 2 thin films prepared by ion beam assisted deposition

    NASA Astrophysics Data System (ADS)

    Holgado, J. P.; Escobar Galindo, R.; van Veen, A.; Schut, H.; de Hosson, J. Th. M.; González-Elipe, A. R.

    2002-09-01

    Two sets of ZrO 2 thin films have been prepared at room temperature by ion beam induced chemical vapour deposition and subsequently annealed up to 1323 K. The two sets of samples have been prepared by using either O 2+ or mixtures of (O 2++Ar +) ions for the decomposition of a volatile metallorganic precursor of zirconium. The structure and microstructure of these two sets of samples have been determined by means of X-ray diffraction, Fourier transform infrared spectroscopy and positron beam analysis (PBA). The samples were very compact and dense and had a very low-surface roughness. After annealing in air at T⩾573 K both sets of films were transparent and showed similar refraction indexes. For the (O 2++Ar +)-ZrO 2 thin films it is shown by X-ray photoelectron spectroscopy and Rutherford back scattering that a certain amount of incorporated Ar (5-6 at.%) remains incorporated within the oxide lattice. No changes were detected in the amount of incorporated Ar even after annealing at T=773 K. For higher annealing temperatures ( T>1073 K), the amount of Ar starts to decrease, and at T=1223 K only residual amounts of Ar (<0.4%) remain within the lattice. It has been found that as far as Ar atoms remain incorporated within the ZrO 2 network, the (O 2+-Ar +)-ZrO 2 films present a cubic/tetragonal phase. When the amount of "embedded" Ar decreases, the crystalline phase reverts to monoclinic, the majority phase observed for the (O 2+)-ZrO 2 films after any annealing treatments. The microstructure of the films after different annealing treatments has been investigated by PBA. The presence of Ar ions and the initial amorphous state of the layers were detected by this technique. An increase of the open volume was observed after annealing up to 773 K in both sets of samples. For higher annealing temperatures the samples showed a progressive crystallisation resulting in a decrease of the open volume. During this sintering the samples without embedded Ar present a higher concentration of open volume defects. After the release of Ar occurs ( T⩾1223 K) both samples approach to a similar defect free state. The incorporation of Ar within the ZrO 2 thin film structure, is proposed as the main factor contributing to the stabilisation of the cubic/tetragonal phase of ZrO 2 at room temperature.

  16. Creosote treated timber in the Alaskan marine environment : volume ii.

    DOT National Transportation Integrated Search

    2010-02-01

    ADOT&PF is responsible for many structures that incorporate wood pilings and other timber in Alaska waters. Most are treated with preservative to inhibit marine borers : that will quickly destroy unprotected wood. Creosote is generally the most econo...

  17. Creosote treated timber in the Alaskan marine environment : Volume I.

    DOT National Transportation Integrated Search

    2010-02-01

    ADOT&PF is responsible for many structures that incorporate wood pilings and other timber in Alaska waters. Most are treated with preservative to inhibit marine borers : that will quickly destroy unprotected wood. Creosote is generally the most econo...

  18. Computer program optimizes design of nuclear radiation shields

    NASA Technical Reports Server (NTRS)

    Lahti, G. P.

    1971-01-01

    Computer program, OPEX 2, determines minimum weight, volume, or cost for shields. Program incorporates improved coding, simplified data input, spherical geometry, and an expanded output. Method is capable of altering dose-thickness relationship when a shield layer has been removed.

  19. Teaching for Thinking.

    ERIC Educational Resources Information Center

    Keefe, James W., Ed.; Walberg, Herbert J., Ed.

    This volume represents a variety of current efforts to incorporate thought-provoking methods into teaching. There are three sections. "Curriculum Developments" defines key curricular terms and offers a framework and general examples of teaching tactics. In this section, Barbara Presseisen distinguishes thinking from other cognitive…

  20. Validation of equations for pleural effusion volume estimation by ultrasonography.

    PubMed

    Hassan, Maged; Rizk, Rana; Essam, Hatem; Abouelnour, Ahmed

    2017-12-01

    To validate the accuracy of previously published equations that estimate pleural effusion volume using ultrasonography. Only equations using simple measurements were tested. Three measurements were taken at the posterior axillary line for each case with effusion: lateral height of effusion ( H ), distance between collapsed lung and chest wall ( C ) and distance between lung and diaphragm ( D ). Cases whose effusion was aspirated to dryness were included and drained volume was recorded. Intra-class correlation coefficient (ICC) was used to determine the predictive accuracy of five equations against the actual volume of aspirated effusion. 46 cases with effusion were included. The most accurate equation in predicting effusion volume was ( H  +  D ) × 70 (ICC 0.83). The simplest and yet accurate equation was H  × 100 (ICC 0.79). Pleural effusion height measured by ultrasonography gives a reasonable estimate of effusion volume. Incorporating distance between lung base and diaphragm into estimation improves accuracy from 79% with the first method to 83% with the latter.

  1. The influence of kyphosis correction surgery on pulmonary function and thoracic volume.

    PubMed

    Zeng, Yan; Chen, Zhongqiang; Ma, Desi; Guo, Zhaoqing; Qi, Qiang; Li, Weishi; Sun, Chuiguo; Liu, Ning; White, Andrew P

    2014-10-01

    A clinical study. To measure the changes in pulmonary function and thoracic volume associated with surgical correction of kyphotic deformities. No prior study has focused on the pulmonary function and thoracic cavity volume before and after corrective surgery for kyphosis. Thirty-four patients with kyphosis underwent posterior deformity correction with instrumented fusion. Preoperative and postoperative pulmonary function was measured, and pulmonary function grade was evaluated as mild, significant, or severe. The change in preoperative to postoperative pulmonary function was analyzed, using 6 comparative subgroupings of patients on the basis of age, severity of kyphosis, location of kyphosis apex, length of follow-up time after surgery, degree of kyphosis correction, and number of segments fused. A second group of 19 patients also underwent posterior surgical correction of kyphosis, which had thoracic volume measured preoperatively and postoperatively with computed tomographic scanning. All of the pulmonary impairments were found to be restrictive. After surgery, most of the patients had improvement of the pulmonary function. Before surgery, the pulmonary function differences were found to be significant based on both severity of preoperative kyphosis (<60° vs. >60°) and location of the kyphosis apex (above T10 vs. below T10). Younger patients (younger than 35 yr) were more likely to exhibit statistically significant improvements in pulmonary function after surgery. However, thoracic volume was not significantly related to pulmonary function parameters. After surgery, average thoracic volume had no significant change. The major pulmonary impairment caused by kyphosis was found to be restrictive. Patients with kyphosis angle of 60° or greater or with kyphosis apex above T10 had more severe pulmonary dysfunction. Patients' age was significantly related to change in pulmonary function after surgery. However, the average thoracic volume had no significant change after surgery. 3.

  2. An Accurate and Dynamic Computer Graphics Muscle Model

    NASA Technical Reports Server (NTRS)

    Levine, David Asher

    1997-01-01

    A computer based musculo-skeletal model was developed at the University in the departments of Mechanical and Biomedical Engineering. This model accurately represents human shoulder kinematics. The result of this model is the graphical display of bones moving through an appropriate range of motion based on inputs of EMGs and external forces. The need existed to incorporate a geometric muscle model in the larger musculo-skeletal model. Previous muscle models did not accurately represent muscle geometries, nor did they account for the kinematics of tendons. This thesis covers the creation of a new muscle model for use in the above musculo-skeletal model. This muscle model was based on anatomical data from the Visible Human Project (VHP) cadaver study. Two-dimensional digital images from the VHP were analyzed and reconstructed to recreate the three-dimensional muscle geometries. The recreated geometries were smoothed, reduced, and sliced to form data files defining the surfaces of each muscle. The muscle modeling function opened these files during run-time and recreated the muscle surface. The modeling function applied constant volume limitations to the muscle and constant geometry limitations to the tendons.

  3. Label-Free Optofluidic Nanobiosensor Enables Real-Time Analysis of Single-Cell Cytokine Secretion.

    PubMed

    Li, Xiaokang; Soler, Maria; Szydzik, Crispin; Khoshmanesh, Khashayar; Schmidt, Julien; Coukos, George; Mitchell, Arnan; Altug, Hatice

    2018-06-01

    Single-cell analysis of cytokine secretion is essential to understand the heterogeneity of cellular functionalities and develop novel therapies for multiple diseases. Unraveling the dynamic secretion process at single-cell resolution reveals the real-time functional status of individual cells. Fluorescent and colorimetric-based methodologies require tedious molecular labeling that brings inevitable interferences with cell integrity and compromises the temporal resolution. An innovative label-free optofluidic nanoplasmonic biosensor is introduced for single-cell analysis in real time. The nanobiosensor incorporates a novel design of a multifunctional microfluidic system with small volume microchamber and regulation channels for reliable monitoring of cytokine secretion from individual cells for hours. Different interleukin-2 secretion profiles are detected and distinguished from single lymphoma cells. The sensor configuration combined with optical spectroscopic imaging further allows us to determine the spatial single-cell secretion fingerprints in real time. This new biosensor system is anticipated to be a powerful tool to characterize single-cell signaling for basic and clinical research. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Foldover-free shape deformation for biomedicine.

    PubMed

    Yu, Hongchuan; Zhang, Jian J; Lee, Tong-Yee

    2014-04-01

    Shape deformation as a fundamental geometric operation underpins a wide range of applications, from geometric modelling, medical imaging to biomechanics. In medical imaging, for example, to quantify the difference between two corresponding images, 2D or 3D, one needs to find the deformation between both images. However, such deformations, particularly deforming complex volume datasets, are prone to the problem of foldover, i.e. during deformation, the required property of one-to-one mapping no longer holds for some points. Despite numerous research efforts, the construction of a mathematically robust foldover-free solution subject to positional constraints remains open. In this paper, we address this challenge by developing a radial basis function-based deformation method. In particular we formulate an effective iterative mechanism which ensures the foldover-free property is satisfied all the time. The experimental results suggest that the resulting deformations meet the internal positional constraints. In addition to radial basis functions, this iterative mechanism can also be incorporated into other deformation approaches, e.g. B-spline based FFDs, to develop different deformable approaches for various applications. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.

  5. Morphology and Surface Energy of a Si Containing Semifluorinated Di-block Copolymer Thin Films.

    NASA Astrophysics Data System (ADS)

    Shrestha, Umesh; Clarson, Stephen; Perahia, Dvora

    2013-03-01

    The structure and composition of an interface influence stability, adhesiveness and response to external stimuli of thin polymeric films. Incorporation of fluorine affects interfacial energy as well as thermal and chemical stability of the layers. The incompatibility between the fluorinated and non-fluorinated blocks induces segregation that leads to long range correlations where the tendency of the fluorine to migrate to interfaces impacts the surface tension of the films. Concurrently Si in a polymeric backbone enhances the flexibility of polymeric chains. Our previous studies of poly trifluoro propyl methyl siloxane-polystyrene thin films with SiF fraction 0.03-0.5 as a function of temperature have shown that the SiF block drives layering parallel to the surface of the diblock. Here in we report the structure and interfacial energies of SiF-PS in the plane of the films, as a function of the volume fraction of the SiF block obtained from Atomic Force microscopy and contact angle measurement studies. This work is supported by NSF DMR - 0907390

  6. Multilayer Brain Networks

    NASA Astrophysics Data System (ADS)

    Vaiana, Michael; Muldoon, Sarah Feldt

    2018-01-01

    The field of neuroscience is facing an unprecedented expanse in the volume and diversity of available data. Traditionally, network models have provided key insights into the structure and function of the brain. With the advent of big data in neuroscience, both more sophisticated models capable of characterizing the increasing complexity of the data and novel methods of quantitative analysis are needed. Recently, multilayer networks, a mathematical extension of traditional networks, have gained increasing popularity in neuroscience due to their ability to capture the full information of multi-model, multi-scale, spatiotemporal data sets. Here, we review multilayer networks and their applications in neuroscience, showing how incorporating the multilayer framework into network neuroscience analysis has uncovered previously hidden features of brain networks. We specifically highlight the use of multilayer networks to model disease, structure-function relationships, network evolution, and link multi-scale data. Finally, we close with a discussion of promising new directions of multilayer network neuroscience research and propose a modified definition of multilayer networks designed to unite and clarify the use of the multilayer formalism in describing real-world systems.

  7. Multifunctional mesoporous silica nanoparticles for combined therapeutic, diagnostic and targeted action in cancer treatment.

    PubMed

    Rosenholm, Jessica M; Sahlgren, Cecilia; Lindén, Mika

    2011-07-01

    The main objective in the development of nanomedicine is to obtain delivery platforms for targeted delivery of drugs or imaging agents for improved therapeutic efficacy, reduced side effects and increased diagnostic sensitivity. A (nano)material class that has been recognized for its controllable properties on many levels is ordered mesoporous inorganic materials, typically in the form of amorphous silica (SiO2). Characteristics for this class of materials include mesoscopic order, tunable pore dimensions in the (macro)molecular size range, a high pore volume and surface area, the possibility for selective surface functionality as well as morphology control. The robust but biodegradable ceramic matrix moreover provides shelter for incorporated agents (drugs, proteins, imaging agents, photosensitizers) leaving the outer particle surface free for further modification. The unique features make these materials particularly amenable to modular design, whereby functional moieties and features may be interchanged or combined to produce multifunctional nanodelivery systems combining targeting, diagnostic, and therapeutic actions. This review covers the latest developments related to the use of mesoporous silica nanoparticles (MSNs) as nanocarriers in biomedical applications, with special focus on cancer therapy and diagnostics.

  8. Quantifying Standing Dead Tree Volume and Structural Loss with Voxelized Terrestrial Lidar Data

    NASA Astrophysics Data System (ADS)

    Popescu, S. C.; Putman, E.

    2017-12-01

    Standing dead trees (SDTs) are an important forest component and impact a variety of ecosystem processes, yet the carbon pool dynamics of SDTs are poorly constrained in terrestrial carbon cycling models. The ability to model wood decay and carbon cycling in relation to detectable changes in tree structure and volume over time would greatly improve such models. The overall objective of this study was to provide automated aboveground volume estimates of SDTs and automated procedures to detect, quantify, and characterize structural losses over time with terrestrial lidar data. The specific objectives of this study were: 1) develop an automated SDT volume estimation algorithm providing accurate volume estimates for trees scanned in dense forests; 2) develop an automated change detection methodology to accurately detect and quantify SDT structural loss between subsequent terrestrial lidar observations; and 3) characterize the structural loss rates of pine and oak SDTs in southeastern Texas. A voxel-based volume estimation algorithm, "TreeVolX", was developed and incorporates several methods designed to robustly process point clouds of varying quality levels. The algorithm operates on horizontal voxel slices by segmenting the slice into distinct branch or stem sections then applying an adaptive contour interpolation and interior filling process to create solid reconstructed tree models (RTMs). TreeVolX estimated large and small branch volume with an RMSE of 7.3% and 13.8%, respectively. A voxel-based change detection methodology was developed to accurately detect and quantify structural losses and incorporated several methods to mitigate the challenges presented by shifting tree and branch positions as SDT decay progresses. The volume and structural loss of 29 SDTs, composed of Pinus taeda and Quercus stellata, were successfully estimated using multitemporal terrestrial lidar observations over elapsed times ranging from 71 - 753 days. Pine and oak structural loss rates were characterized by estimating the amount of volumetric loss occurring in 20 equal-interval height bins of each SDT. Results showed that large pine snags exhibited more rapid structural loss in comparison to medium-sized oak snags in this study.

  9. Left ventricular function during lower body negative pressure

    NASA Technical Reports Server (NTRS)

    Ahmad, M.; Blomqvist, C. G.; Mullins, C. B.; Willerson, J. T.

    1977-01-01

    The response of the human left ventricle to lower body negative pressure (LBNP) and the relation between left ventricular function and hemodynamic response were investigated. Ventricular function curves relating stroke volume to end-diastolic volume were obtained in 12 normal men. Volume data were derived from echocardiographic measurements of left ventricular end-systolic and end-diastolic diameters at rest and during lower body negative pressure (LBNP) at minus 40 mm Hg. End-diastolic volume decreased by 19% and stroke volume by 22%. There were no significant changes in heart rate, arterial blood pressure, or end-systolic volume. Thus, moderate levels of LBNP significantly reduce preload and stroke volume without affecting contractile state. The absence of significant changes in heart rate and arterial blood pressure in the presence of a significant reduction in stroke volume is consistent with an increase in systemic peripheral resistance mediated by low-pressure baroreceptors.

  10. Charged Polymer Brushes: Counterion Incorporation and Scaling Relations

    NASA Astrophysics Data System (ADS)

    Ahrens, Heiko; Förster, Stephan; Helm, Christiane A.

    1998-11-01

    Amphiphilic block copolymers consisting of a fluid hydrophobic and a polyelectrolyte part form monolayers at the air/water interface. With x-ray reflectivity it is shown that the hydrophobic block is a nm-thick melt, while the polyelectrolyte forms an osmotically swollen brush of constant thickness, independent of grafting density and with stochiometric counter ion incorporation. Only at high salt conditions (above 0.1 M), the brush shrinks and the thickness scales with the molecular area and the salt concentration (corrected for excluded volume interactions) with an exponent -1/3.

  11. Understanding the effect of emulsifiers on bread aeration during breadmaking.

    PubMed

    Garzón, Raquel; Hernando, Isabel; Llorca, Empar; Rosell, Cristina M

    2018-04-24

    Much research has been done to explain the action of emulsifiers during breadmaking, but there is still plenty unknown to elucidate their functionality despite their diverse chemical structure. The aim of the present study was to provide some light on the role of emulsifiers on air incorporation into the dough and gas bubbles progress during baking and their relationship with bread features. Emulsifiers like diacetyl tartaric acid ester of monoglycerides (DATEM), sodium stearoyl lactylate (SSL), distilled monoglyceride (DMG-45 and DMG-75), lecithin and polyglycerol esters of fatty acids (PGEF) were tested in very hydrated doughs. Emulsifiers increase the maximum dough volume during proofing. Emulsifiers increase the number of bubbles incorporated during mixing, observing higher number of bubbles, particularly with PGEF. Major changes in dough occurred at 70 K when bubble size augmented, becoming more heterogeneous. DMG-75 produced the biggest bubbles. As a consequence, emulsifiers tend to increase the number of gas cells with lower size in the bread crumb, but led to greater crumb firmness, which suggested different interactions between emulsifiers and gluten, affecting protein polymerization during baking. The progress of the bubbles during baking allowed the differentiation of emulsifiers, which could explain their performance in breadmaking. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  12. Gradient plasticity for thermo-mechanical processes in metals with length and time scales

    NASA Astrophysics Data System (ADS)

    Voyiadjis, George Z.; Faghihi, Danial

    2013-03-01

    A thermodynamically consistent framework is developed in order to characterize the mechanical and thermal behavior of metals in small volume and on the fast transient time. In this regard, an enhanced gradient plasticity theory is coupled with the application of a micromorphic approach to the temperature variable. A physically based yield function based on the concept of thermal activation energy and the dislocation interaction mechanisms including nonlinear hardening is taken into consideration in the derivation. The effect of the material microstructural interface between two materials is also incorporated in the formulation with both temperature and rate effects. In order to accurately address the strengthening and hardening mechanisms, the theory is developed based on the decomposition of the mechanical state variables into energetic and dissipative counterparts which endowed the constitutive equations to have both energetic and dissipative gradient length scales for the bulk material and the interface. Moreover, the microstructural interaction effect in the fast transient process is addressed by incorporating two time scales into the microscopic heat equation. The numerical example of thin film on elastic substrate or a single phase bicrystal under uniform tension is addressed here. The effects of individual counterparts of the framework on the thermal and mechanical responses are investigated. The model is also compared with experimental results.

  13. Active shape models incorporating isolated landmarks for medical image annotation

    NASA Astrophysics Data System (ADS)

    Norajitra, Tobias; Meinzer, Hans-Peter; Stieltjes, Bram; Maier-Hein, Klaus H.

    2014-03-01

    Apart from their robustness in anatomic surface segmentation, purely surface based 3D Active Shape Models lack the ability to automatically detect and annotate non-surface key points of interest. However, annotation of anatomic landmarks is desirable, as it yields additional anatomic and functional information. Moreover, landmark detection might help to further improve accuracy during ASM segmentation. We present an extension of surface-based 3D Active Shape Models incorporating isolated non-surface landmarks. Positions of isolated and surface landmarks are modeled conjoint within a point distribution model (PDM). Isolated landmark appearance is described by a set of haar-like features, supporting local landmark detection on the PDM estimates using a kNN-Classi er. Landmark detection was evaluated in a leave-one-out cross validation on a reference dataset comprising 45 CT volumes of the human liver after shape space projection. Depending on the anatomical landmark to be detected, our experiments have shown in about 1/4 up to more than 1/2 of all test cases a signi cant improvement in detection accuracy compared to the position estimates delivered by the PDM. Our results encourage further research with regard to the combination of shape priors and machine learning for landmark detection within the Active Shape Model Framework.

  14. Food-Web Models Predict Species Abundances in Response to Habitat Change

    PubMed Central

    Gotelli, Nicholas J; Ellison, Aaron M

    2006-01-01

    Plant and animal population sizes inevitably change following habitat loss, but the mechanisms underlying these changes are poorly understood. We experimentally altered habitat volume and eliminated top trophic levels of the food web of invertebrates that inhabit rain-filled leaves of the carnivorous pitcher plant Sarracenia purpurea. Path models that incorporated food-web structure better predicted population sizes of food-web constituents than did simple keystone species models, models that included only autecological responses to habitat volume, or models including both food-web structure and habitat volume. These results provide the first experimental confirmation that trophic structure can determine species abundances in the face of habitat loss. PMID:17002518

  15. An adaptive maneuvering logic computer program for the simulation of one-on-one air-to-air combat. Volume 1: General description

    NASA Technical Reports Server (NTRS)

    Burgin, G. H.; Fogel, L. J.; Phelps, J. P.

    1975-01-01

    A technique for computer simulation of air combat is described. Volume 1 decribes the computer program and its development in general terms. Two versions of the program exist. Both incorporate a logic for selecting and executing air combat maneuvers with performance models of specific fighter aircraft. In the batch processing version the flight paths of two aircraft engaged in interactive aerial combat and controlled by the same logic are computed. The realtime version permits human pilots to fly air-to-air combat against the adaptive maneuvering logic (AML) in Langley Differential Maneuvering Simulator (DMS). Volume 2 consists of a detailed description of the computer programs.

  16. Sample preparation system for microfluidic applications

    DOEpatents

    Mosier, Bruce P [San Francisco, CA; Crocker, Robert W [Fremont, CA; Patel, Kamlesh D [Dublin, CA; Harnett, Cindy K [Livermore, CA

    2007-05-08

    An apparatus that couples automated injection with flow feedback to provide nanoliter accuracy in controlling microliter volumes. The apparatus comprises generally a source of hydraulic fluid pressure, a fluid isolator joined to the outlet of the hydraulic pressure source and a flow sensor to provide pressure-driven analyte metering. For operation generally and particularly in microfluidic systems the hydraulic pressure source is typically an electrokinetic (EK) pump that incorporates gasless electrodes. The apparatus is capable of metering sub-microliter volumes at flowrates of 1 100 .mu.L/min into microsystem load pressures of up to 1000 50 psi, respectively. Flowrates can be specified within 0.5 .mu.L/min and volumes as small as 80 nL can be metered.

  17. Wisdom within: unlocking the potential of big data for nursing regulators.

    PubMed

    Blumer, L; Giblin, C; Lemermeyer, G; Kwan, J A

    2017-03-01

    This paper explores the potential for incorporating big data in nursing regulators' decision-making and policy development. Big data, commonly described as the extensive volume of information that individuals and agencies generate daily, is a concept familiar to the business community but is only beginning to be explored by the public sector. Using insights gained from a recent research project, the College and Association of Registered Nurses of Alberta, in Canada is creating an organizational culture of data-driven decision-making throughout its regulatory and professional functions. The goal is to enable the organization to respond quickly and profoundly to nursing issues in a rapidly changing healthcare environment. The evidence includes a review of the Learning from Experience: Improving the Process of Internationally Educated Nurses' Applications for Registration (LFE) research project (2011-2016), combined with a literature review on data-driven decision-making within nursing and healthcare settings, and the incorporation of big data in the private and public sectors, primarily in North America. This paper discusses experience and, more broadly, how data can enhance the rigour and integrity of nursing and health policy. Nursing regulatory bodies have access to extensive data, and the opportunity to use these data to inform decision-making and policy development by investing in how it is captured, analysed and incorporated into decision-making processes. Understanding and using big data is a critical part of developing relevant, sound and credible policy. Rigorous collection and analysis of big data supports the integrity of the evidence used by nurse regulators in developing nursing and health policy. © 2016 International Council of Nurses.

  18. Use of Computed X-ray Tomographic Data for Analyzing the Thermodynamics of a Dissociating Porous Sand/Hydrate Mixture

    DOE R&D Accomplishments Database

    Freifeld, Barry M.; Kneafsey, Timothy J.; Tomutsa, Liviu; Stern, Laura A.; Kirby, Stephen H.

    2002-02-28

    X-ray computed tomography (CT) is a method that has been used extensively in laboratory experiments for measuring rock properties and fluid transport behavior. More recently, CT scanning has been applied successfully to detect the presence and study the behavior of naturally occurring hydrates. In this study, we used a modified medical CT scanner to image and analyze the progression of a dissociation front in a synthetic methane hydrate/sand mixture. The sample was initially scanned under conditions at which the hydrate is stable (atmospheric pressure and liquid nitrogen temperature, 77 K). The end of the sample holder was then exposed to the ambient air, and the core was continuously scanned as dissociation occurred in response to the rising temperature. CT imaging captured the advancing dissociation front clearly and accurately. The evolved gas volume was monitored as a function of time. Measured by CT, the advancing hydrate dissociation front was modeled as a thermal conduction problem explicitly incorporating the enthalpy of dissociation, using the Stefan moving-boundary-value approach. The assumptions needed to perform the analysis consisted of temperatures at the model boundaries. The estimated value for thermal conductivity of 2.6 W/m K for the remaining water ice/sand mixture is higher than expected based on conduction alone; this high value may represent a lumped parameter that incorporates the processes of heat conduction, methane gas convection, and any kinetic effects that occur during dissociation. The technique presented here has broad implications for future laboratory and field testing that incorporates geophysical techniques to monitor gas hydrate dissociation.

  19. Estimation of liquid volume fraction using ultrasound transit time spectroscopy

    NASA Astrophysics Data System (ADS)

    Al-Qahtani, Saeed M.; Langton, Christian M.

    2016-12-01

    It has recently been proposed that the propagation of an ultrasound wave through complex structures, consisting of two-materials of differing ultrasound velocity, may be considered as an array of parallel ‘sonic rays’, the transit time of each determined by their relative proportion; being a minimum (t min) in entire higher velocity material, and a maximum (t max) in entire lower velocity material. An ultrasound transit time spectrum (UTTS) describes the proportion of sonic rays at an individual transit time. It has previously been demonstrated that the solid volume fraction of a solid:liquid composite, specifically acrylic step-wedges immersed in water, may be reliably estimated from the UTTS. The aim of this research was to investigate the hypothesis that the volume fraction of a two-component liquid mixture, of unequal ultrasound velocity, may also be estimated by UTTS. A through-transmission technique incorporating two 1 MHz ultrasound transducers within a horizontally-aligned cylindrical tube-housing was utilised, the proportion of silicone oil to water being varied from 0% to 100%. The liquid volume fraction was estimated from the UTTS at each composition, the coefficient of determination (R 2%) being 98.9  ±  0.7%. The analysis incorporated a novel signal amplitude normalisation technique to compensate for absorption within the silicone oil. It is therefore envisaged that the parallel sonic ray concept and the derived UTTS may be further applied to the quantification of liquid mixture composition assessment.

  20. Pedagogy Journal, 1994.

    ERIC Educational Resources Information Center

    Marashio Paul, Ed.; And Others

    1994-01-01

    This annual serial volume contains 20 articles offering practical pedagogical ideas from faculty at New Hampshire technical colleges. Section I, "Knowing a Thing," includes "A Rider Teaches Writing: Thoroughbreds and Freshmen," by Barbara Dimmick; "Some Thoughts on How To Incorporate Multimedia in Your Course," by Joyce Schneider; "Community…

  1. 78 FR 68494 - Self-Regulatory Organizations; Chicago Board Options Exchange, Incorporated; Notice of Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-14

    ... Exchange does not wish to remove the concept of the Select Symbols (and corresponding fees structure) from... volume in the Removed Symbols. Finally, these fees for the Removed Symbols will be the same as for all...

  2. Manufacturing and quality control of interconnecting wire harnesses, Volume 2

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Interconnecting wire harnesses defined in the design standard are considered, including type 4, open bundle (not enclosed). Knowledge gained through experience on the Saturn 5 program coupled with recent advances in techniques, materials, and processes was incorporated into the document.

  3. Vortex flow and cavitation in diesel injector nozzles

    NASA Astrophysics Data System (ADS)

    Andriotis, A.; Gavaises, M.; Arcoumanis, C.

    Flow visualization as well as three-dimensional cavitating flow simulations have been employed for characterizing the formation of cavitation inside transparent replicas of fuel injector valves used in low-speed two-stroke diesel engines. The designs tested have incorporated five-hole nozzles with cylindrical as well as tapered holes operating at different fixed needle lift positions. High-speed images have revealed the formation of an unsteady vapour structure upstream of the injection holes inside the nozzle volume, which is referred to as . Computation of the flow distribution and combination with three-dimensional reconstruction of the location of the strings inside the nozzle volume has revealed that strings are found at the core of recirculation zones; they originate either from pre-existing cavitation sites forming at sharp corners inside the nozzle where the pressure falls below the vapour pressure of the flowing liquid, or even from suction of outside air downstream of the hole exit. Processing of the acquired images has allowed estimation of the mean location and probability of appearance of the cavitating strings in the three-dimensional space as a function of needle lift, cavitation and Reynolds number. The frequency of appearance of the strings has been correlated with the Strouhal number of the vortices developing inside the sac volume; the latter has been found to be a function of needle lift and hole shape. The presence of strings has significantly affected the flow conditions at the nozzle exit, influencing the injected spray. The cavitation structures formed inside the injection holes are significantly altered by the presence of cavitation strings and are jointly responsible for up to 10% variation in the instantaneous fuel injection quantity. Extrapolation using model predictions for real-size injectors operating at realistic injection pressures indicates that cavitation strings are expected to appear within the time scales of typical injection events, implying significant hole-to-hole and cycle-to-cycle variations during the corresponding spray development.

  4. Isotropic enhancement in the critical current density of YBCO thin films incorporating nanoscale Y2BaCuO5 inclusions

    NASA Astrophysics Data System (ADS)

    Jha, Alok K.; Matsumoto, Kaname; Horide, Tomoya; Saini, Shrikant; Mele, Paolo; Ichinose, Ataru; Yoshida, Yutaka; Awaji, Satoshi

    2017-09-01

    The effect of incorporation of nanoscale Y2BaCuO5 (Y211) inclusions on the vortex pinning properties of YBa2Cu3O7-δ (YBCO or Y123) superconducting thin films is investigated in detail on the basis of variation of critical current density (JC) with applied magnetic field and also with the orientation of the applied magnetic field at two different temperatures: 77 K and 65 K. Surface modified target approach is employed to incorporate nanoscale Y211 inclusions into the superconducting YBCO matrix. The efficiency of Y211 nanoinclusions in reducing the angular anisotropy of critical current density is found to be significant. The observed angular dependence of the critical current density is discussed on the basis of mutually occupied volume by a vortex and spherical and/or planar defect. A dip in JC near the ab-plane is also observed which has been analyzed on the basis of variation of pinning potential corresponding to a spherical (3-D) or planar (2-D) pinning center and has been attributed to a reduced interaction volume of the vortices with a pinning center and competing nature of the potentials due to spherical and planar defects.

  5. Dissociable contributions of MRI volume reductions of superior temporal and fusiform gyri to symptoms and neuropsychology in schizophrenia.

    PubMed

    Nestor, Paul G; Onitsuka, Toshiaki; Gurrera, Ronald J; Niznikiewicz, Margaret; Frumin, Melissa; Shenton, Martha E; McCarley, Robert W

    2007-03-01

    We sought to identify the functional correlates of reduced magnetic resonance imaging (MRI) volumes of the superior temporal gyrus (STG) and the fusiform gyrus (FG) in patients with chronic schizophrenia. MRI volumes, positive/negative symptoms, and neuropsychological tests of facial memory and executive functioning were examined within the same subjects. The results indicated two distinct, dissociable brain structure-function relationships: (1) reduced left STG volume-positive symptoms-executive deficits; (2) reduced left FG-negative symptoms-facial memory deficits. STG and FG volume reductions may each make distinct contributions to symptoms and cognitive deficits of schizophrenia.

  6. Impulsive-antisocial psychopathic traits linked to increased volume and functional connectivity within prefrontal cortex

    PubMed Central

    Korponay, Cole; Pujara, Maia; Deming, Philip; Philippi, Carissa; Decety, Jean; Kosson, David S.; Kiehl, Kent A.

    2017-01-01

    Abstract Psychopathy is a personality disorder characterized by callous lack of empathy, impulsive antisocial behavior, and criminal recidivism. Studies of brain structure and function in psychopathy have frequently identified abnormalities in the prefrontal cortex. However, findings have not yet converged to yield a clear relationship between specific subregions of prefrontal cortex and particular psychopathic traits. We performed a multimodal neuroimaging study of prefrontal cortex volume and functional connectivity in psychopathy, using a sample of adult male prison inmates (N = 124). We conducted volumetric analyses in prefrontal subregions, and subsequently assessed resting-state functional connectivity in areas where volume was related to psychopathy severity. We found that overall psychopathy severity and Factor 2 scores (which index the impulsive/antisocial traits of psychopathy) were associated with larger prefrontal subregion volumes, particularly in the medial orbitofrontal cortex and dorsolateral prefrontal cortex. Furthermore, Factor 2 scores were also positively correlated with functional connectivity between several areas of the prefrontal cortex. The results were not attributable to age, race, IQ, substance use history, or brain volume. Collectively, these findings provide evidence for co-localized increases in prefrontal cortex volume and intra-prefrontal functional connectivity in relation to impulsive/antisocial psychopathic traits. PMID:28402565

  7. Modeling of oxygen incorporation in Th, ThC, and ThN by density functional theory calculations

    NASA Astrophysics Data System (ADS)

    Pérez Daroca, D.; Llois, A. M.; Mosca, H. O.

    2017-12-01

    Oxygen incorporation in nuclear fuel materials is an important issue deserving investigation due to its influence on thermophysical and structural properties. Even if there has been a renewed interest in thorium and thorium compounds in the last years, there is still not much research done on this topic. In this work, we study, by means of density functional theory calculations, the incorporation of oxygen in Th, ThC, and ThN. We analyze the electronic structure finding a characteristic peak to be attributed to oxygen incorporation. We also calculate incorporation and solution energies and obtain migration energies of oxygen through different paths finding that migration through vacancy sites is more energetically favorable than through interstitial ones.

  8. Network localization of neurological symptoms from focal brain lesions.

    PubMed

    Boes, Aaron D; Prasad, Sashank; Liu, Hesheng; Liu, Qi; Pascual-Leone, Alvaro; Caviness, Verne S; Fox, Michael D

    2015-10-01

    A traditional and widely used approach for linking neurological symptoms to specific brain regions involves identifying overlap in lesion location across patients with similar symptoms, termed lesion mapping. This approach is powerful and broadly applicable, but has limitations when symptoms do not localize to a single region or stem from dysfunction in regions connected to the lesion site rather than the site itself. A newer approach sensitive to such network effects involves functional neuroimaging of patients, but this requires specialized brain scans beyond routine clinical data, making it less versatile and difficult to apply when symptoms are rare or transient. In this article we show that the traditional approach to lesion mapping can be expanded to incorporate network effects into symptom localization without the need for specialized neuroimaging of patients. Our approach involves three steps: (i) transferring the three-dimensional volume of a brain lesion onto a reference brain; (ii) assessing the intrinsic functional connectivity of the lesion volume with the rest of the brain using normative connectome data; and (iii) overlapping lesion-associated networks to identify regions common to a clinical syndrome. We first tested our approach in peduncular hallucinosis, a syndrome of visual hallucinations following subcortical lesions long hypothesized to be due to network effects on extrastriate visual cortex. While the lesions themselves were heterogeneously distributed with little overlap in lesion location, 22 of 23 lesions were negatively correlated with extrastriate visual cortex. This network overlap was specific compared to other subcortical lesions (P < 10(-5)) and relative to other cortical regions (P < 0.01). Next, we tested for generalizability of our technique by applying it to three additional lesion syndromes: central post-stroke pain, auditory hallucinosis, and subcortical aphasia. In each syndrome, heterogeneous lesions that themselves had little overlap showed significant network overlap in cortical areas previously implicated in symptom expression (P < 10(-4)). These results suggest that (i) heterogeneous lesions producing similar symptoms share functional connectivity to specific brain regions involved in symptom expression; and (ii) publically available human connectome data can be used to incorporate these network effects into traditional lesion mapping approaches. Because the current technique requires no specialized imaging of patients it may prove a versatile and broadly applicable approach for localizing neurological symptoms in the setting of brain lesions. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Genetic Incorporation of Twelve meta-Substituted Phenylalanine Derivatives Using A Single Pyrrolysyl-tRNA Synthetase

    PubMed Central

    Wang, Yane-Shih; Fang, Xinqiang; Chen, Hsueh-Ying; Wu, Bo; Wang, Zhiyong U.; Hilty, Christian; Liu, Wenshe R.

    2012-01-01

    When coexpressed with its cognate amber suppressing tRNACUAPyl, a pyrrolysyl-tRNA synthetase mutant N346A/C348A is able to genetically incorporate twelve meta-substituted phenylalanine derivatives into proteins site-specifically at amber mutation sites in Escherichia coli. These genetically encoded noncanonical amino acids resemble phenylalanine in size and contain diverse bioorthogonal functional groups such as halide, trifluoromethyl, nitrile, nitro, ketone, alkyne, and azide moieties. The genetic installation of these functional groups in proteins provides multiple ways to site-selectively label proteins with biophysical and biochemical probes for their functional investigations. We demonstrate that a genetically incorporated trifluoromethyl group can be used as a sensitive 19F NMR probe to study protein folding/unfolding, and that genetically incorporated reactive functional groups such as ketone, alkyne, and azide moieties can be applied to site-specifically label proteins with florescent probes. This critical discovery allows the synthesis of proteins with diverse bioorthogonal functional groups for a variety of basic studies and biotechnology development using a single recombinant expression system. PMID:23138887

  10. Lung function in North American Indian children: reference standards for spirometry, maximal expiratory flow volume curves, and peak expiratory flow.

    PubMed

    Wall, M A; Olson, D; Bonn, B A; Creelman, T; Buist, A S

    1982-02-01

    Reference standards of lung function was determined in 176 healthy North American Indian children (94 girls, 82 boys) 7 to 18 yr of age. Spirometry, maximal expiratory flow volume curves, and peak expiratory flow rate were measured using techniques and equipment recommended by the American Thoracic Society. Standing height was found to be an accurate predictor of lung function, and prediction equations for each lung function variable are presented using standing height as the independent variable. Lung volumes and expiratory flow rates in North American Indian children were similar to those previously reported for white and Mexican-American children but were greater than those in black children. In both boys and girls, lung function increased in a curvilinear fashion. Volume-adjusted maximal expiratory flow rates after expiring 50 or 75% of FVC tended to decrease in both sexes as age and height increased. Our maximal expiratory flow volume curve data suggest that as North American Indian children grow, lung volume increases at a slightly faster rate than airway size does.

  11. Regional brain volumes and cognition in childhood epilepsy: does size really matter?

    PubMed

    Zelko, Frank A; Pardoe, Heath R; Blackstone, Sarah R; Jackson, Graeme D; Berg, Anne T

    2014-05-01

    Recent studies have correlated neurocognitive function and regional brain volumes in children with epilepsy. We tested whether brain volume differences between children with and without epilepsy explained differences in neurocognitive function. The study sample included 108 individuals with uncomplicated non-syndromic epilepsy (NSE) and 36 healthy age- and gender-matched controls. Participants received a standardized cognitive battery. Whole brain T1-weighted MRI was obtained and volumes analyzed with FreeSurfer (TM). Total brain volume (TBV) was significantly smaller in cases. After adjustment for TBV, cases had significantly larger regional grey matter volumes for total, frontal, parietal, and precentral cortex. Cases had poorer performance on neurocognitive indices of intelligence and variability of sustained attention. In cases, TBV showed small associations with intellectual indices of verbal and perceptual ability, working memory, and overall IQ. In controls, TBV showed medium associations with working memory and variability of sustained attention. In both groups, small associations were seen between some TBV-adjusted regional brain volumes and neurocognitive indices, but not in a consistent pattern. Brain volume differences did not account for cognitive differences between the groups. Patients with uncomplicated NSE have smaller brains than controls but areas of relative grey matter enlargement. That this relative regional enlargement occurs in the context of poorer overall neurocognitive functioning suggests that it is not adaptive. However, the lack of consistent associations between case-control differences in brain volumes and cognitive functioning suggests that brain volumes have limited explanatory value for cognitive functioning in childhood epilepsy. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. TNT Metabolites in Animal Tissues

    DTIC Science & Technology

    1991-06-01

    bonded to the silica surface contained both a C18 (reversed-phase function) and a secondary amine (anioni exchange function) incorporated into a single ...contains both a C18, (reversed-phase function) and a secondary amine, (anion exchange function) incorporated into a single ligand in a 1:1 ratio. The...and store at 4°C. 4. Dosing of Mice with [14CITNT Young adult mice (Swiss Webster outbred strain) of both sexes weighing approximately 30 grams each

  13. TEMPERATURE CORRECTION FORMULAE FOR ADJUSTING ESTIMATES OF EMISSIONS FROM AUTOMOBILES. VOLUME I

    EPA Science Inventory

    This report describes an analysis of the effects of temperature on the emissions of hydrocarbons, carbon monoxide, and oxides of nitrogen from autombiles. The analysis was conducted by Vector Research, Incorporated, (VRI) For the Environmental Protection Agency (EPA). The analysi...

  14. Direct Volume Rendering with Shading via Three-Dimensional Textures

    NASA Technical Reports Server (NTRS)

    VanGelder, Allen; Kim, Kwansik

    1996-01-01

    A new and easy-to-implement method for direct volume rendering that uses 3D texture maps for acceleration, and incorporates directional lighting, is described. The implementation, called Voltx, produces high-quality images at nearly interactive speeds on workstations with hardware support for three-dimensional texture maps. Previously reported methods did not incorporate a light model, and did not address issues of multiple texture maps for large volumes. Our research shows that these extensions impact performance by about a factor of ten. Voltx supports orthographic, perspective, and stereo views. This paper describes the theory and implementation of this technique, and compares it to the shear-warp factorization approach. A rectilinear data set is converted into a three-dimensional texture map containing color and opacity information. Quantized normal vectors and a lookup table provide efficiency. A new tesselation of the sphere is described, which serves as the basis for normal-vector quantization. A new gradient-based shading criterion is described, in which the gradient magnitude is interpreted in the context of the field-data value and the material classification parameters, and not in isolation. In the rendering phase, the texture map is applied to a stack of parallel planes, which effectively cut the texture into many slabs. The slabs are composited to form an image.

  15. Development of construction materials using nano-silica and aggregates recycled from construction and demolition waste.

    PubMed

    Mukharjee, Bibhuti Bhusan; Barai, Sudhirkumar V

    2015-06-01

    The present work addresses the development of novel construction materials utilising commercial grade nano-silica and recycled aggregates retrieved from construction and demolition waste. For this, experimental work has been carried out to examine the influence of nano-silica and recycled aggregates on compressive strength, modulus of elasticity, water absorption, density and volume of voids of concrete. Fully natural and recycled aggregate concrete mixes are designed by replacing cement with three levels (0.75%, 1.5% and 3%) of nano-silica. The results of the present investigation depict that improvement in early days compressive strength is achieved with the incorporation of nano-silica in addition to the restoration of reduction in compressive strength of recycled aggregate concrete mixes caused owing to the replacement of natural aggregates by recycled aggregates. Moreover, the increase in water absorption and volume of voids with a reduction of bulk density was detected with the incorporation of recycled aggregates in place of natural aggregates. However, enhancement in density and reduction in water absorption and volume of voids of recycled aggregate concrete resulted from the addition of nano-silica. In addition, the results of the study reveal that nano-silica has no significant effect on elastic modulus of concrete. © The Author(s) 2015.

  16. Multiscale Modeling of Angiogenesis and Predictive Capacity

    NASA Astrophysics Data System (ADS)

    Pillay, Samara; Byrne, Helen; Maini, Philip

    Tumors induce the growth of new blood vessels from existing vasculature through angiogenesis. Using an agent-based approach, we model the behavior of individual endothelial cells during angiogenesis. We incorporate crowding effects through volume exclusion, motility of cells through biased random walks, and include birth and death-like processes. We use the transition probabilities associated with the discrete model and a discrete conservation equation for cell occupancy to determine collective cell behavior, in terms of partial differential equations (PDEs). We derive three PDE models incorporating single, multi-species and no volume exclusion. By fitting the parameters in our PDE models and other well-established continuum models to agent-based simulations during a specific time period, and then comparing the outputs from the PDE models and agent-based model at later times, we aim to determine how well the PDE models predict the future behavior of the agent-based model. We also determine whether predictions differ across PDE models and the significance of those differences. This may impact drug development strategies based on PDE models.

  17. Increased gray-matter volume in medication-naive high-functioning children with autism spectrum disorder.

    PubMed

    Palmen, Saskia J M C; Hulshoff Pol, Hilleke E; Kemner, Chantal; Schnack, Hugo G; Durston, Sarah; Lahuis, Bertine E; Kahn, René S; Van Engeland, Herman

    2005-04-01

    To establish whether high-functioning children with autism spectrum disorder (ASD) have enlarged brains in later childhood, and if so, whether this enlargement is confined to the gray and/or to the white matter and whether it is global or more prominent in specific brain regions. Brain MRI scans were acquired from 21 medication-naive, high-functioning children with ASD between 7 and 15 years of age and 21 comparison subjects matched for gender, age, IQ, height, weight, handedness, and parental education, but not pubertal status. Patients showed a significant increase of 6% in intracranium, total brain, cerebral gray matter, cerebellum, and of more than 40% in lateral and third ventricles compared to controls. The cortical gray-matter volume was evenly affected in all lobes. After correction for brain volume, ventricular volumes remained significantly larger in patients. High-functioning children with ASD showed a global increase in gray-matter, but not white-matter and cerebellar volume, proportional to the increase in brain volume, and a disproportional increase in ventricular volumes, still present after correction for brain volume. Advanced pubertal development in the patients compared to the age-matched controls may have contributed to the findings reported in the present study.

  18. Recent technology and usage of plastic lenses in image taking objectives

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Susumu; Sato, Hiroshi; Mori, Nobuyoshi; Kiriki, Toshihiko

    2005-09-01

    Recently, plastic lenses produced by injection molding are widely used in image taking objectives for digital cameras, camcorders, and mobile phone cameras, because of their suitability for volume production and ease of obtaining an advantage of aspherical surfaces. For digital camera and camcorder objectives, it is desirable that there is no image point variation with the temperature change in spite of employing several plastic lenses. At the same time, due to the shrinking pixel size of solid-state image sensor, there is now a requirement to assemble lenses with high accuracy. In order to satisfy these requirements, we have developed 16 times compact zoom objective for camcorder and 3 times class folded zoom objectives for digital camera, incorporating cemented plastic doublet consisting of a positive lens and a negative lens. Over the last few years, production volumes of camera-equipped mobile phones have increased substantially. Therefore, for mobile phone cameras, the consideration of productivity is more important than ever. For this application, we have developed a 1.3-mega pixels compact camera module with macro function utilizing the advantage of a plastic lens that can be given mechanically functional shape to outer flange part. Its objective consists of three plastic lenses and all critical dimensions related to optical performance can be determined by high precise optical elements. Therefore this camera module is manufactured without optical adjustment in automatic assembling line, and achieves both high productivity and high performance. Reported here are the constructions and the technical topics of image taking objectives described above.

  19. An apparatus for altering the mechanical load of the respiratory system.

    PubMed

    Younes, M; Bilan, D; Jung, D; Kroker, H

    1987-06-01

    We describe an apparatus for altering the mechanical load against which the respiratory muscles operate in humans. A closed system incorporates a rolling seal spirometer. The spirometer piston shaft is coupled to a fast-responding linear actuator that develops force in proportion to desired command signals. The command signal may be flow (resistive loading or unloading), volume (elastic loading or unloading), constant voltage (continuous positive or negative pressure), or any external function. Combinations of loads can be applied. Logic circuits permit application of the load at specific times during the respiratory cycle, and the magnitude of the loads is continuously adjustable. Maximum pressure output is +/- 20 cmH2O. The apparatus permits loading or unloading over a range of ventilation extending from resting levels to those observed during high levels of exercise (over 100 l/min). In response to a square-wave input, pressure rises exponentially with a time constant of 20 ms.

  20. Aging, training, and the brain: A review and future directions

    PubMed Central

    Lustig, Cindy; Shah, Priti; Seidler, Rachael; Reuter-Lorenz, Patricia A.

    2010-01-01

    As the population ages, the need for effective methods to maintain or even improve older adults’ cognitive performance becomes increasingly pressing. Here we provide a brief review of the major intervention approaches that have been the focus of past research with healthy older adults (strategy training, multi-modal interventions, cardiovascular exercise, and process-based training), and new approaches that incorporate neuroimaging. As outcome measures, neuroimaging data on intervention-related changes in volume, structural integrity, and functional activation can provide important insights into the nature and duration of an intervention's effects. Perhaps even more intriguingly, several recent studies have used neuroimaging data as a guide to identify core cognitive processes that can be trained in one task with effective transfer to other tasks that share the same underlying processes. Although many open questions remain, this research has greatly increased our understanding of how to promote successful aging of cognition and the brain. PMID:19876740

  1. In vivo label-free lymphangiography of cutaneous lymphatic vessels in human burn scars using optical coherence tomography

    PubMed Central

    Gong, Peijun; Es’haghian, Shaghayegh; Harms, Karl-Anton; Murray, Alexandra; Rea, Suzanne; Wood, Fiona M.; Sampson, David D.; McLaughlin, Robert A.

    2016-01-01

    We present an automated, label-free method for lymphangiography of cutaneous lymphatic vessels in humans in vivo using optical coherence tomography (OCT). This method corrects for the variation in OCT signal due to the confocal function and sensitivity fall-off of a spectral-domain OCT system and utilizes a single-scattering model to compensate for A-scan signal attenuation to enable reliable thresholding of lymphatic vessels. A segment-joining algorithm is then incorporated into the method to mitigate partial-volume effects with small vessels. The lymphatic vessel images are augmented with images of the blood vessel network, acquired from the speckle decorrelation with additional weighting to differentiate blood vessels from the observed high decorrelation in lymphatic vessels. We demonstrate the method with longitudinal scans of human burn scar patients undergoing ablative fractional laser treatment, showing the visualization of the cutaneous lymphatic and blood vessel networks. PMID:28018713

  2. Closed ecological systems: From test tubes to Earth's biosphere

    NASA Technical Reports Server (NTRS)

    Frye, Robert J.; Mignon, George

    1992-01-01

    Artificially constructed closed ecological systems (CES) have been researched both experimentally and theoretically for over 25 years. The size of these systems have varied from less than one liter to many thousands of cubic meters in volume. The diversity of the included components has a similarly wide range from purely aquatic systems to soil based systems that incorporate many aspects of Earth's biosphere. While much has been learned about the functioning of these closed systems, much remains to be learned. In this paper, we compare and contrast the behavior of closed ecological systems of widely different sizes through an analysis of their atmospheric composition. In addition, we will compare the performance of relatively small CES with the behavior of Earth's biosphere. We address the applicability of small CES as replicable analogs for planetary biospheres and discuss the use of small CES as an experimental milieu for an examination of the evolution of extra-terrestrial colonies.

  3. MANTLE: A finite element program for the thermal-mechanical analysis of mantle convection. A user's manual with examples

    NASA Technical Reports Server (NTRS)

    Thompson, E.

    1979-01-01

    A finite element computer code for the analysis of mantle convection is described. The coupled equations for creeping viscous flow and heat transfer can be solved for either a transient analysis or steady-state analysis. For transient analyses, either a control volume or a control mass approach can be used. Non-Newtonian fluids with viscosities which have thermal and spacial dependencies can be easily incorporated. All material parameters may be written as function statements by the user or simply specified as constants. A wide range of boundary conditions, both for the thermal analysis and the viscous flow analysis can be specified. For steady-state analyses, elastic strain rates can be included. Although this manual was specifically written for users interested in mantle convection, the code is equally well suited for analysis in a number of other areas including metal forming, glacial flows, and creep of rock and soil.

  4. Automation of Hessian-Based Tubularity Measure Response Function in 3D Biomedical Images.

    PubMed

    Dzyubak, Oleksandr P; Ritman, Erik L

    2011-01-01

    The blood vessels and nerve trees consist of tubular objects interconnected into a complex tree- or web-like structure that has a range of structural scale 5 μm diameter capillaries to 3 cm aorta. This large-scale range presents two major problems; one is just making the measurements, and the other is the exponential increase of component numbers with decreasing scale. With the remarkable increase in the volume imaged by, and resolution of, modern day 3D imagers, it is almost impossible to make manual tracking of the complex multiscale parameters from those large image data sets. In addition, the manual tracking is quite subjective and unreliable. We propose a solution for automation of an adaptive nonsupervised system for tracking tubular objects based on multiscale framework and use of Hessian-based object shape detector incorporating National Library of Medicine Insight Segmentation and Registration Toolkit (ITK) image processing libraries.

  5. Making microenvironments: A look into incorporating macromolecular crowding into in vitro experiments, to generate biomimetic microenvironments which are capable of directing cell function for tissue engineering applications.

    PubMed

    Benny, Paula; Raghunath, Michael

    2017-01-01

    Biomimetic microenvironments are key components to successful cell culture and tissue engineering in vitro. One of the most accurate biomimetic microenvironments is that made by the cells themselves. Cell-made microenvironments are most similar to the in vivo state as they are cell-specific and produced by the actual cells which reside in that specific microenvironment. However, cell-made microenvironments have been challenging to re-create in vitro due to the lack of extracellular matrix composition, volume and complexity which are required. By applying macromolecular crowding to current cell culture protocols, cell-made microenvironments, or cell-derived matrices, can be generated at significant rates in vitro. In this review, we will examine the causes and effects of macromolecular crowding and how it has been applied in several in vitro systems including tissue engineering.

  6. SCORE-EVET: a computer code for the multidimensional transient thermal-hydraulic analysis of nuclear fuel rod arrays. [BWR; PWR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benedetti, R. L.; Lords, L. V.; Kiser, D. M.

    1978-02-01

    The SCORE-EVET code was developed to study multidimensional transient fluid flow in nuclear reactor fuel rod arrays. The conservation equations used were derived by volume averaging the transient compressible three-dimensional local continuum equations in Cartesian coordinates. No assumptions associated with subchannel flow have been incorporated into the derivation of the conservation equations. In addition to the three-dimensional fluid flow equations, the SCORE-EVET code ocntains: (a) a one-dimensional steady state solution scheme to initialize the flow field, (b) steady state and transient fuel rod conduction models, and (c) comprehensive correlation packages to describe fluid-to-fuel rod interfacial energy and momentum exchange. Velocitymore » and pressure boundary conditions can be specified as a function of time and space to model reactor transient conditions such as a hypothesized loss-of-coolant accident (LOCA) or flow blockage.« less

  7. Vertical solidification of dendritic binary alloys

    NASA Technical Reports Server (NTRS)

    Heinrich, J. C.; Felicelli, S.; Poirier, D. R.

    1991-01-01

    Three numerical techniques are employed to analyze the influence of thermosolutal convection on defect formation in directionally solidified (DS) alloys. The finite-element models are based on the Boussinesq approximation and include the plane-front model and two plane-front models incorporating special dendritic regions. In the second model the dendritic region has a time-independent volume fraction of liquid, and in the last model the dendritic region evolves as local conditions dictate. The finite-element models permit the description of nonlinear thermosolutal convection by treating the dendritic regions as porous media with variable porosities. The models are applied to lead-tin alloys including DS alloys, and severe segregation phenomena such as freckles and channels are found to develop in the DS alloys. The present calculations and the permeability functions selected are shown to predict behavior in the dendritic regions that qualitatively matches that observed experimentally.

  8. Vacuum-assisted cell loading enables shear-free mammalian microfluidic culture

    PubMed Central

    Kolnik, Martin; Tsimring, Lev S; Hasty, Je

    2012-01-01

    Microfluidic perfusion cultures for mammalian cells provide a novel means for probing single-cell behavior but require the management of culture parameters such as flow-induced shear stress. Methods to eliminate shear stress generally focus on capturing cells in regions with high resistance to fluid flow. Here, we present a novel trapping design to easily and reliably load a high density of cells into culture chambers that are extremely isolated from potentially damaging flow effects. We utilize a transient on-chip vacuum to remove air from the culture chambers and rapidly replace the volume with a liquid cell suspension. We demonstrate the ability of this simple and robust method to load and culture three commonly used cell lines. We show how the incorporation of an on-chip function generator can be used for dynamic stimulation of cells during long-term continuous perfusion culture. PMID:22961584

  9. Concurrent Image Processing Executive (CIPE). Volume 2: Programmer's guide

    NASA Technical Reports Server (NTRS)

    Williams, Winifred I.

    1990-01-01

    This manual is intended as a guide for application programmers using the Concurrent Image Processing Executive (CIPE). CIPE is intended to become the support system software for a prototype high performance science analysis workstation. In its current configuration CIPE utilizes a JPL/Caltech Mark 3fp Hypercube with a Sun-4 host. CIPE's design is capable of incorporating other concurrent architectures as well. CIPE provides a programming environment to applications' programmers to shield them from various user interfaces, file transactions, and architectural complexities. A programmer may choose to write applications to use only the Sun-4 or to use the Sun-4 with the hypercube. A hypercube program will use the hypercube's data processors and optionally the Weitek floating point accelerators. The CIPE programming environment provides a simple set of subroutines to activate user interface functions, specify data distributions, activate hypercube resident applications, and to communicate parameters to and from the hypercube.

  10. Heat Transfer Measurements during DC Casting of Aluminium Part I: Measurement Technique

    NASA Astrophysics Data System (ADS)

    Bakken, J. A.; Bergström, T.

    A method for determination of surface heat transfer to the cooling water and mould based on in-situ temperature measurements in the DC cast ingot has been developed. Three or more steel mantled coaxial thermocouples (0.5 mm diam.) are mounted on a wire frame called a "harp". Allowing the "harp" to freeze into the solid ingots during the casting time-temperature plots T1 (t), T2(t), T3 (t) are obtained for three moving points positioned typically 3, 7 and 11 mm from the ingot surface. From these measurements surface temperature, heat flux and heat transfer coefficients are computed as functions of vertical distance. The computer program is based on steady-state two-dimensional heat balances with convective terms for two fixed volume elements: one around thermocouple T1 and one surface element. A special numerical smoothing procedure is incorporated. The heat of solidification is taken into account.

  11. Equation of state for shock compression of distended solids

    NASA Astrophysics Data System (ADS)

    Grady, Dennis; Fenton, Gregg; Vogler, Tracy

    2014-05-01

    Shock Hugoniot data for full-density and porous compounds of boron carbide, silicon dioxide, tantalum pentoxide, uranium dioxide and playa alluvium are investigated for the purpose of equation-of-state representation of intense shock compression. Complications of multivalued Hugoniot behavior characteristic of highly distended solids are addressed through the application of enthalpy-based equations of state of the form originally proposed by Rice and Walsh in the late 1950's. Additive measures of cold and thermal pressure intrinsic to the Mie-Gruneisen EOS framework is replaced by isobaric additive functions of the cold and thermal specific volume components in the enthalpy-based formulation. Additionally, experimental evidence reveals enhancement of shock-induced phase transformation on the Hugoniot with increasing levels of initial distension for silicon dioxide, uranium dioxide and possibly boron carbide. Methods for addressing this experimentally observed feature of the shock compression are incorporated into the EOS model.

  12. Optical and Thermo-optical Properties of Polyimide-Single-Walled Carbon Nanotube Films: Experimental Results and Empirical Equations

    NASA Technical Reports Server (NTRS)

    Smith, Joseph G., Jr.; Connell, John W.; Watson, Kent A.; Danehy, Paul M.

    2005-01-01

    The incorporation of single-walled carbon nanotubes (SWNTs) into the bulk of space environmentally durable polymers at loading levels greater than or equal to 0.05 wt % has afforded thin films with surface and volume resistivities sufficient for electrostatic charge mitigation. However, the optical transparency at 500 nm decreased and the thermo-optical properties (solar absorptivity and thermal emissivity) increased with increaed SWNT loading. These properties were also dependent on film thickness. The absorbance characteristics of the films as a function of SWNT loading and film thickness were measured and determined to follow the classical Beer-Lambert law. Based on these results, an empirical relationship was derived and molar absorptivities determined for both the SWNTs and polymer matrix to provide a predictive approximation of these properties. The molar absorptivity determined for SWNTs dispersed in the polymer was comparable to reported solution determined values for HiPco SWNTs.

  13. Development of an Amine-based System for Combined Carbon Dioxide, Humidity, and Trace Contaminant Control

    NASA Technical Reports Server (NTRS)

    Nalette, Tim; Reiss, Julie; Filburn, Tom; Seery, Thomas; Smith, Fred; Perry, Jay

    2005-01-01

    A number of amine-based carbon dioxide (CO2) removal systems have been developed for atmosphere revitalization in closed loop life support systems. Most recently, Hamilton Sundstrand developed an amine-based sorbent, designated SA9T, possessing approximately 2-fold greater capacity compared to previous formulations. This new formulation has demonstrated applicability for controlling CO2 levels within vehicles and habitats as well as during extravehicular activity (EVA). System volume is competitive with existing technologies. Further enhancements in system performance can be realized by incorporating humidity and trace contaminant control functions within an amine-based atmosphere revitalization system. A 3-year effort to develop prototype hardware capable of removing CO2, H2O, and trace contaminants from a cabin atmosphere has been initiated. Progress pertaining to defining system requirements and identifying alternative amine formulations and substrates is presented.

  14. Software for Experimental Air-Ground Data Link Volume I : Functional Description and Flowcharts.

    DOT National Transportation Integrated Search

    1975-10-01

    Experimental Data Link System which was implemented for flight test during the Air-Ground Data Link Development Program (FAA-TSC Project Number FA-13). : The software development is presented in three volumes as follows: : Volume I: -- Functional Des...

  15. Quality evaluation of physical properties, antinutritional factors, and antioxidant activity of bread fortified with germinated horse gram (Dolichus uniflorus) flour.

    PubMed

    Moktan, Karishma; Ojha, Pravin

    2016-09-01

    Horse gram was germinated at 90% RH at 25°C for 72 h after 24 h soaking and then grinded to pass through 150 μm mesh size screens. The germination of horse gram result in increased protein, fiber, total polyphenol content, and antioxidant activity of horse gram flour whereas fat, ash, carbohydrate, iron, calcium, tannin, phytate, and oxalate were reduced due to germination. Bread was prepared by the incorporation of (2%, 4%, 6%, and 8%) germinated horse gram flour (GHF) by a straight dough method. The loaf volume and specific volume decreased with an increased use of percentage of GHF. The sensory evaluation revealed that the incorporation of GHF up to 6% was acceptable. The protein (% db), fiber (% db), ash (% db), iron (mg/100 g), calcium (mg/100 g), tannin (mg/g), phytate (mg/g), oxalate (mg/g), total polyphenol content (GAE/g), and antioxidant activity (DPPH % inhibition) was found to be 9.08 ± 0.01, 1.23 ± 0.15, 1.36 ± 0.11, 4.07 ± 0.03, 128 ± 0.26, 2.06 ± 0.15, 2.46 ± 0.15, 0.7 ± 0.1, 12.44 ± 0.40, and 31.13 ± 0.25, respectively, in 6% GHF incorporated bread. The research concludes that 6% GHF incorporation in bread enhance the polyphenol content and antioxidant properties.

  16. Effect of prolonged space flight on cardiac function and dimensions

    NASA Technical Reports Server (NTRS)

    Henry, W. L.; Epstein, S. E.; Griffith, J. M.; Goldstein, R. E.; Redwood, D. R.

    1974-01-01

    Echocardiographic studies were performed preflight 5 days before launch and on recovery day and 1, 2, 4, 11, 31 and 68 days postflight. From these echocardiograms measurements were made. From these primary measurements, left ventricular end-diastolic volume, end-systolic volume, stroke volume, and mass were derived using the accepted assumptions. Findings in the Scientist Pilot and Pilot resemble those seen in trained distance runners. Wall thickness measurements were normal in all three crewmembers preflight. Postflight basal studies were unchanged in the Commander on recovery day through 68 days postflight in both the Scientist Pilot and Pilot, however, the left ventricular end-diastolic volume, stroke volume, and mass were decreased slightly. Left ventricular function curves were constructed for the Commander and Pilot by plotting stroke volume versus end-diastolic volume. In both astronauts, preflight and postflight data fell on the same straight line demonstrating that no deterioration in cardiac function had occurred. These data indicate that the cardiovascular system adapts well to prolonged weightlessness and suggest that alterations in cardiac dimensions and function are unlikely to limit man's future in space.

  17. Automatic delineation of functional lung volumes with 68Ga-ventilation/perfusion PET/CT.

    PubMed

    Le Roux, Pierre-Yves; Siva, Shankar; Callahan, Jason; Claudic, Yannis; Bourhis, David; Steinfort, Daniel P; Hicks, Rodney J; Hofman, Michael S

    2017-10-10

    Functional volumes computed from 68 Ga-ventilation/perfusion (V/Q) PET/CT, which we have shown to correlate with pulmonary function test parameters (PFTs), have potential diagnostic utility in a variety of clinical applications, including radiotherapy planning. An automatic segmentation method would facilitate delineation of such volumes. The aim of this study was to develop an automated threshold-based approach to delineate functional volumes that best correlates with manual delineation. Thirty lung cancer patients undergoing both V/Q PET/CT and PFTs were analyzed. Images were acquired following inhalation of Galligas and, subsequently, intravenous administration of 68 Ga-macroaggreted-albumin (MAA). Using visually defined manual contours as the reference standard, various cutoff values, expressed as a percentage of the maximal pixel value, were applied. The average volume difference and Dice similarity coefficient (DSC) were calculated, measuring the similarity of the automatic segmentation and the reference standard. Pearson's correlation was also calculated to compare automated volumes with manual volumes, and automated volumes optimized to PFT indices. For ventilation volumes, mean volume difference was lowest (- 0.4%) using a 15%max threshold with Pearson's coefficient of 0.71. Applying this cutoff, median DSC was 0.93 (0.87-0.95). Nevertheless, limits of agreement in volume differences were large (- 31.0 and 30.2%) with differences ranging from - 40.4 to + 33.0%. For perfusion volumes, mean volume difference was lowest and Pearson's coefficient was highest using a 15%max threshold (3.3% and 0.81, respectively). Applying this cutoff, median DSC was 0.93 (0.88-0.93). Nevertheless, limits of agreement were again large (- 21.1 and 27.8%) with volume differences ranging from - 18.6 to + 35.5%. Using the 15%max threshold, moderate correlation was demonstrated with FEV1/FVC (r = 0.48 and r = 0.46 for ventilation and perfusion images, respectively). No correlation was found between other PFT indices. To automatically delineate functional volumes with 68 Ga-V/Q PET/CT, the most appropriate cutoff was 15%max for both ventilation and perfusion images. However, using this unique threshold systematically provided unacceptable variability compared to the reference volume and relatively poor correlation with PFT parameters. Accordingly, a visually adapted semi-automatic method is favored, enabling rapid and quantitative delineation of lung functional volumes with 68 Ga-V/Q PET/CT.

  18. Performance characteristics of a suite of volume phase holographic gratings produced for the Subaru prime focus spectrograph

    NASA Astrophysics Data System (ADS)

    Arns, James A.

    2016-08-01

    The Subaru Prime Focus Spectrograph[1] (PFS) requires a suite of volume phase holographic (VPH) gratings that parse the observational spectrum into three sub-spectral regions. In addition, the red region has a second, higher resolution arm that includes a VPH grating that will eventually be incorporated into a grism. This paper describes the specifications of the four grating types, gives the theoretical performances of diffraction efficiency for the production designs and presents the measured performances on the gratings produced to date.

  19. FAA Air Traffic Control Operations Concepts. Volume 7. ATCT (Airport Traffic Control Towers) Tower Controllers

    DTIC Science & Technology

    1989-04-21

    kift rIn FAA AIR TRAFFIC CONTROL OPERATIONS CONCEPTS V olum e V iI:.................... ATCT Tower Controllers AmELECTE JUL 2 11989 21 April 1989 A...01 022.3013209-87-B 11 a FAA AIR TRAFFIC CONTROL OPERATIONS CONCEPTS VOLUME VII: ATCT TOWER CONTROLLERS CDRL Bl 12, VOL. VII CONTRACT DTF-AO1-85-Y...INCORPORATED 7150 Campus Drive, Suite 100 Colorado Springs, CO 80920 (719) 590-5100 DOT/FAA/AP-87-0i (VOL#7) 21 April 1989 FAA AIR TRAFFIC CONTROL OPERATIONS

  20. Influence of stapling the intersegmental planes on lung volume and function after segmentectomy.

    PubMed

    Tao, Hiroyuki; Tanaka, Toshiki; Hayashi, Tatsuro; Yoshida, Kumiko; Furukawa, Masashi; Yoshiyama, Koichi; Okabe, Kazunori

    2016-10-01

    Dividing the intersegmental planes with a stapler during pulmonary segmentectomy leads to volume loss in the remnant segment. The aim of this study was to assess the influence of segment division methods on preserved lung volume and pulmonary function after segmentectomy. Using image analysis software on computed tomography (CT) images of 41 patients, the ratio of remnant segment and ipsilateral lung volume to their preoperative values (R-seg and R-ips) was calculated. The ratio of postoperative actual forced expiratory volume in 1 s (FEV1) and forced vital capacity (FVC) per those predicted values based on three-dimensional volumetry (R-FEV1 and R-FVC) was also calculated. Differences in actual/predicted ratios of lung volume and pulmonary function for each of the division methods were analysed. We also investigated the correlations of the actual/predicted ratio of remnant lung volume with that of postoperative pulmonary function. The intersegmental planes were divided by either electrocautery or with a stapler in 22 patients and with a stapler alone in 19 patients. Mean values of R-seg and R-ips were 82.7 (37.9-140.2) and 104.9 (77.5-129.2)%, respectively. The mean values of R-FEV1 and R-FVC were 103.9 (83.7-135.1) and 103.4 (82.2-125.1)%, respectively. There were no correlations between the actual/predicted ratio of remnant lung volume and pulmonary function based on the division method. Both R-FEV1 and R-FVC were correlated not with R-seg, but with R-ips. Stapling does not lead to less preserved volume or function than electrocautery in the division of the intersegmental planes. © The Author 2016. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  1. Conformation and Dynamics of a Flexible Sheet in Solvent Media by Monte Carlo Simulations

    NASA Astrophysics Data System (ADS)

    Pandey, Ras; Anderson, Kelly; Heinz, Hendrik; Farmer, Barry

    2005-03-01

    Flexibility of the clay sheet is limited even in the ex-foliated state in some solvent media. A coarse grained model is used to investigate dynamics and conformation of a flexible sheet to model such a clay platelet in an effective solvent medium on a cubic lattice of size L^3 with lattice constant a. The undeformed sheet is described by a square lattice of size Ls^2, where, each node of the sheet is represented by the unit cube of the cubic lattice and 2a is the minimum distance between the nearest neighbor nodes to incorporate the excluded volume constraints. Additionally, each node interacts with neighboring nodes and solvent (empty) sites within a range ri. Each node execute their stochastic motion with the Metropolis algorithm subject to bond length fluctuation and excluded volume constraints. Mean square displacements of the center node and that of its center of mass are investigated as a function of time step for a set of these parameters. The radius of gyration (Rg) is also examined concurrently to understand its relaxation. Multi-scale segmental dynamics of the sheet is studied by identifying the power-law dependence in various time regimes. Relaxation of Rg and its dependence of temperature are planned to be discussed.

  2. Cosmological perturbations in teleparallel Loop Quantum Cosmology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haro, Jaime, E-mail: jaime.haro@upc.edu

    2013-11-01

    Cosmological perturbations in Loop Quantum Cosmology (LQC) are usually studied incorporating either holonomy corrections, where the Ashtekar connection is replaced by a suitable sinus function in order to have a well-defined quantum analogue, or inverse-volume corrections coming from the eigenvalues of the inverse-volume operator. In this paper we will develop an alternative approach to calculate cosmological perturbations in LQC based on the fact that, holonomy corrected LQC in the flat Friedmann-Lemaître-Robertson-Walker (FLRW) geometry could be also obtained as a particular case of teleparallel F(T) gravity (teleparallel LQC). The main idea of our approach is to mix the simple bounce providedmore » by holonomy corrections in LQC with the non-singular perturbation equations given by F(T) gravity, in order to obtain a matter bounce scenario as a viable alternative to slow-roll inflation. In our study, we have obtained an scale invariant power spectrum of cosmological perturbations. However, the ratio of tensor to scalar perturbations is of order 1, which does not agree with the current observations. For this reason, we suggest a model where a transition from the matter domination to a quasi de Sitter phase is produced in order to enhance the scalar power spectrum.« less

  3. USAF bioenvironmental noise data handbook. Volume 172: Hush-noise suppressor (Aero Systems Engineering, Incorporated) far-field noise

    NASA Astrophysics Data System (ADS)

    Lee, R. A.; Rau, T. H.; Jones, C.

    1982-07-01

    The hush-house noise suppressor was made by Aero Systems Engineering of Texas, Inc. for acoustical suppression of various AF fighter/trainer aircraft during ground runup operations. This report provides measured and extrapolated data defining the bioacoustic environments produced by several aircraft/engines operating in the hush-house suppressor for various engine power configurations. Far-field data measured at 20 locations are normalized to standard meteorological conditions and extrapolated from 75-8000 meters to derive sets of equal-value contours for seven acoustic measures as function of angle and distance from the source. Refer to Volume 1 of this handbook, 'USAF Bioenvironmental Noise Data Handbook, Vol 1: Organization, Content and Application,' AMRL-TR-75(1) 1975, for discussion of the objective and design of the handbook, the types of data presented, measurement procedures, instrumentation, data processing, definitions of quantities, symbols, equations, applications, limitations, etc. Data are presented for the following aircraft/engines operating in the hush-house noise suppressor: F-4, F-15, F-16, F-105, F-106, F-111F and T-38 aircraft and the TF41-A-1, J79-GE-15, F100-PW-100, J75-P19, J-75-P-17 and TF30-P-100 engines.

  4. 'The surface management system' (SuMS) database: a surface-based database to aid cortical surface reconstruction, visualization and analysis

    NASA Technical Reports Server (NTRS)

    Dickson, J.; Drury, H.; Van Essen, D. C.

    2001-01-01

    Surface reconstructions of the cerebral cortex are increasingly widely used in the analysis and visualization of cortical structure, function and connectivity. From a neuroinformatics perspective, dealing with surface-related data poses a number of challenges. These include the multiplicity of configurations in which surfaces are routinely viewed (e.g. inflated maps, spheres and flat maps), plus the diversity of experimental data that can be represented on any given surface. To address these challenges, we have developed a surface management system (SuMS) that allows automated storage and retrieval of complex surface-related datasets. SuMS provides a systematic framework for the classification, storage and retrieval of many types of surface-related data and associated volume data. Within this classification framework, it serves as a version-control system capable of handling large numbers of surface and volume datasets. With built-in database management system support, SuMS provides rapid search and retrieval capabilities across all the datasets, while also incorporating multiple security levels to regulate access. SuMS is implemented in Java and can be accessed via a Web interface (WebSuMS) or using downloaded client software. Thus, SuMS is well positioned to act as a multiplatform, multi-user 'surface request broker' for the neuroscience community.

  5. Adsorption of sulfur dioxide on ammonia-treated activated carbon fibers

    USGS Publications Warehouse

    Mangun, C.L.; DeBarr, J.A.; Economy, J.

    2001-01-01

    A series of activated carbon fibers (ACFs) and ammonia-treated ACFs prepared from phenolic fiber precursors have been studied to elucidate the role of pore size, pore volume, and pore surface chemistry on adsorption of sulfur dioxide and its catalytic conversion to sulfuric acid. As expected, the incorporation of basic functional groups into the ACFs was shown as an effective method for increasing adsorption of sulfur dioxide. The adsorption capacity for dry SO2 did not follow specific trends; however the adsorption energies calculated from the DR equation were found to increase linearly with nitrogen content for each series of ACFs. Much higher adsorption capacities were achieved for SO2 in the presence of oxygen and water due to its catalytic conversion to H2SO4. The dominant factor for increasing adsorption of SO2 from simulated flue gas for each series of fibers studied was the weight percent of basic nitrogen groups present. In addition, the adsorption energies calculated for dry SO2 were shown to be linearly related to the adsorption capacity of H2SO4 from this flue gas for all fibers. It was shown that optimization of this parameter along with the pore volume results in higher adsorption capacities for removal of SO2 from flue gases. ?? 2001 Elsevier Science Ltd. All rights reserved.

  6. Holographic Adaptive Laser Optics System (HALOS): Fast, Autonomous Aberration Correction

    NASA Astrophysics Data System (ADS)

    Andersen, G.; MacDonald, K.; Gelsinger-Austin, P.

    2013-09-01

    We present an adaptive optics system which uses a multiplexed hologram to deconvolve the phase aberrations in an input beam. This wavefront characterization is extremely fast as it is based on simple measurements of the intensity of focal spots and does not require any computations. Furthermore, the system does not require a computer in the loop and is thus much cheaper, less complex and more robust as well. A fully functional, closed-loop prototype incorporating a 32-element MEMS mirror has been constructed. The unit has a footprint no larger than a laptop but runs at a bandwidth of 100kHz over an order of magnitude faster than comparable, conventional systems occupying a significantly larger volume. Additionally, since the sensing is based on parallel, all-optical processing, the speed is independent of actuator number running at the same bandwidth for one actuator as for a million. We are developing the HALOS technology with a view towards next-generation surveillance systems for extreme adaptive optics applications. These include imaging, lidar and free-space optical communications for unmanned aerial vehicles and SSA. The small volume is ideal for UAVs, while the high speed and high resolution will be of great benefit to the ground-based observation of space-based objects.

  7. Coupled gel spreading and diffusive transport models describing microbicidal drug delivery

    NASA Astrophysics Data System (ADS)

    Funke, Claire; MacMillan, Kelsey; Ham, Anthony S.; Szeri, Andrew J.; Katz, David F.

    2016-11-01

    Gels are a drug delivery platform being evaluated for application of active pharmaceutical ingredients, termed microbicides, that act topically against infection by sexually transmitted HIV. Despite success in one Phase IIb trial of a vaginal gel delivering tenofovir, problems of user adherence to designed gel application regimen compromised results in two other trials. The microbicide field is responding to this issue by simultaneously analyzing behavioral determinants of adherence and pharmacological determinants of drug delivery. Central to both user adherence and mucosal drug delivery are gel properties (e.g. rheology) and applied volume. The specific problem to be solved here is to develop a model for how gel rheology and volume, interacting with loaded drug concentration, govern the transport of the microbicide drug tenofovir into the vaginal mucosa to its stromal layer. The analysis here builds upon our current understanding of vaginal gel deployment and drug delivery, incorporating key features of the gel's environment, fluid production and subsequent gel dilution, and vaginal wall elasticity. We consider the microbicide drug tenofovir as it is the most completely studied drug, in both in vitroand in vivostudies, for use in vaginal gel application. Our goal is to contribute to improved pharmacological understanding of gel functionality, providing a computational tool that can be used in future vaginal microbicide gel design.

  8. Relationship of Temporal Lobe Volumes to Neuropsychological Test Performance in Healthy Children

    PubMed Central

    Wells, Carolyn T.; Matson, Melissa A.; Kates, Wendy R.; Hay, Trisha; Horska, Alena

    2008-01-01

    Ecological validity of neuropsychological assessment includes the ability of tests to predict real-world functioning and/or covary with brain structures. Studies have examined the relationship between adaptive skills and test performance, with less focus on the association between regional brain volumes and neurobehavioral function in healthy children. The present study examined the relationship between temporal lobe gray matter volumes and performance on two neuropsychological tests hypothesized to measure temporal lobe functioning (Visual Perception-VP; Peabody Picture Vocabulary Test, Third Edition-PPVT-III) in 48 healthy children ages 5-18 years. After controlling for age and gender, left and right temporal and left occipital volumes were significant predictors of VP. Left and right frontal and temporal volumes were significant predictors of PPVT-III. Temporal volume emerged as the strongest lobar correlate with both tests. These results provide convergent and discriminant validity supporting VP as a measure of the “what” system; but suggest the PPVT-III as a complex measure of receptive vocabulary, potentially involving executive function demands. PMID:18513844

  9. The Voronoi volume and molecular representation of molar volume: equilibrium simple fluids.

    PubMed

    Hunjan, Jagtar Singh; Eu, Byung Chan

    2010-04-07

    The Voronoi volume of simple fluids was previously made use of in connection with volume transport phenomena in nonequilibrium simple fluids. To investigate volume transport phenomena, it is important to develop a method to compute the Voronoi volume of fluids in nonequilibrium. In this work, as a first step to this goal, we investigate the equilibrium limit of the nonequilibrium Voronoi volume together with its attendant related molar (molal) and specific volumes. It is proved that the equilibrium Voronoi volume is equivalent to the molar (molal) volume. The latter, in turn, is proved equivalent to the specific volume. This chain of equivalences provides an alternative procedure of computing the equilibrium Voronoi volume from the molar volume/specific volume. We also show approximate methods of computing the Voronoi and molar volumes from the information on the pair correlation function. These methods may be employed for their quick estimation, but also provide some aspects of the fluid structure and its relation to the Voronoi volume. The Voronoi volume obtained from computer simulations is fitted to a function of temperature and pressure in the region above the triple point but below the critical point. Since the fitting function is given in terms of reduced variables for the Lennard-Jones (LJ) model and the kindred volumes (i.e., specific and molar volumes) are in essence equivalent to the equation of state, the formula obtained is a reduced equation state for simple fluids obeying the LJ model potential in the range of temperature and pressure examined and hence can be used for other simple fluids.

  10. Biliary drainage strategy of unresectable malignant hilar strictures by computed tomography volumetry.

    PubMed

    Takahashi, Ei; Fukasawa, Mitsuharu; Sato, Tadashi; Takano, Shinichi; Kadokura, Makoto; Shindo, Hiroko; Yokota, Yudai; Enomoto, Nobuyuki

    2015-04-28

    To identify criteria for predicting successful drainage of unresectable malignant hilar biliary strictures (UMHBS) because no ideal strategy currently exists. We examined 78 patients with UMHBS who underwent biliary drainage. Drainage was considered effective when the serum bilirubin level decreased by ≥ 50% from the value before stent placement within 2 wk after drainage, without additional intervention. Complications that occurred within 7 d after stent placement were considered as early complications. Before drainage, the liver volume of each section (lateral and medial sections of the left liver and anterior and posterior sections of the right liver) was measured using computed tomography (CT) volumetry. Drained liver volume was calculated based on the volume of each liver section and the type of bile duct stricture (according to the Bismuth classification). Tumor volume, which was calculated by using CT volumetry, was excluded from the volume of each section. Receiver operating characteristic (ROC) analysis was performed to identify the optimal cutoff values for drained liver volume. In addition, factors associated with the effectiveness of drainage and early complications were evaluated. Multivariate analysis showed that drained liver volume [odds ratio (OR) = 2.92, 95%CI: 1.648-5.197; P < 0.001] and impaired liver function (with decompensated liver cirrhosis) (OR = 0.06, 95%CI: 0.009-0.426; P = 0.005) were independent factors contributing to the effectiveness of drainage. ROC analysis for effective drainage showed cutoff values of 33% of liver volume for patients with preserved liver function (with normal liver or compensated liver cirrhosis) and 50% for patients with impaired liver function (with decompensated liver cirrhosis). The sensitivity and specificity of these cutoff values were 82% and 80% for preserved liver function, and 100% and 67% for impaired liver function, respectively. Among patients who met these criteria, the rate of effective drainage among those with preserved liver function and impaired liver function was 90% and 80%, respectively. The rates of effective drainage in both groups were significantly higher than in those who did not fulfill these criteria (P < 0.001 and P = 0.02, respectively). Drainage-associated cholangitis occurred in 9 patients (12%). A smaller drained liver volume was associated with drainage-associated cholangitis (P < 0.01). Liver volume drainage ≥ 33% in patients with preserved liver function and ≥ 50% in patients with impaired liver function correlates with effective biliary drainage in UMHBS.

  11. Delay functions in trip assignment for transport planning process

    NASA Astrophysics Data System (ADS)

    Leong, Lee Vien

    2017-10-01

    In transportation planning process, volume-delay and turn-penalty functions are the functions needed in traffic assignment to determine travel time on road network links. Volume-delay function is the delay function describing speed-flow relationship while turn-penalty function is the delay function associated to making a turn at intersection. The volume-delay function used in this study is the revised Bureau of Public Roads (BPR) function with the constant parameters, α and β values of 0.8298 and 3.361 while the turn-penalty functions for signalized intersection were developed based on uniform, random and overflow delay models. Parameters such as green time, cycle time and saturation flow were used in the development of turn-penalty functions. In order to assess the accuracy of the delay functions, road network in areas of Nibong Tebal, Penang and Parit Buntar, Perak was developed and modelled using transportation demand forecasting software. In order to calibrate the models, phase times and traffic volumes at fourteen signalised intersections within the study area were collected during morning and evening peak hours. The prediction of assigned volumes using the revised BPR function and the developed turn-penalty functions show close agreement to actual recorded traffic volume with the lowest percentage of accuracy, 80.08% and the highest, 93.04% for the morning peak model. As for the evening peak model, they were 75.59% and 95.33% respectively for lowest and highest percentage of accuracy. As for the yield left-turn lanes, the lowest percentage of accuracy obtained for the morning and evening peak models were 60.94% and 69.74% respectively while the highest percentage of accuracy obtained for both models were 100%. Therefore, can be concluded that the development and utilisation of delay functions based on local road conditions are important as localised delay functions can produce better estimate of link travel times and hence better planning for future scenarios.

  12. Multifunctional recombinant phycobiliprotein-based fluorescent constructs and phycobilisome display

    DOEpatents

    Glazer, Alexander N.; Cai, Yuping

    2007-01-30

    The invention provides multifunctional fusion constructs which are rapidly incorporated into a macromolecular structure such as a phycobilisome such that the fusion proteins are separated from one another and unable to self-associate. The invention provides methods and compositions for displaying a functional polypeptide domain on an oligomeric phycobiliprotein, including fusion proteins comprising a functional displayed domain and a functional phycobiliprotein domain incorporated in a functional oligomeric phycobiliprotein. The fusion proteins provide novel specific labeling reagents.

  13. Multifunctional recombinant phycobiliprotein-based fluorescent constructs and phycobilisome display

    DOEpatents

    Glazer, Alexander N.; Cai, Yuping

    2007-02-13

    The invention provides multifunctional fusion constructs which are rapidly incorporated into a macromolecular structure such as a phycobilisome such that the fusion proteins are separated from one another and unable to self-associate. The invention provides methods and compositions for displaying a functional polypeptide domain on an oligomeric phycobiliprotein. including fusion proteins comprising a functional displayed domain and a functional phycobiliprotein domain incorporated in a functional oligomeric phycobiliprotein. The fusion proteins provide novel specific labeling reagents.

  14. Multifunctional recombinant phycobiliprotein-based fluorescent constructs and phycobilisome display

    DOEpatents

    Glazer, Alexander N.; Cai, Yuping

    2003-11-18

    The invention provides multifunctional fusion constructs which are rapidly incorporated into a macromolecular structure such as a phycobilisome such that the fusion proteins are separated from one another and unable to self-associate. The invention provides methods and compositions for displaying a functional polypeptide domain on an oligomeric phycobiliprotein, including fusion proteins comprising a functional displayed domain and a functional phycobiliprotein domain incorporated in a functional oligomeric phycobiliprotein. The fusion proteins provide novel specific labeling reagents.

  15. The rapid manufacture of uniform composite multicellular-biomaterial micropellets, their assembly into macroscopic organized tissues, and potential applications in cartilage tissue engineering.

    PubMed

    Babur, Betul Kul; Kabiri, Mahboubeh; Klein, Travis Jacob; Lott, William B; Doran, Michael Robert

    2015-01-01

    We and others have published on the rapid manufacture of micropellet tissues, typically formed from 100-500 cells each. The micropellet geometry enhances cellular biological properties, and in many cases the micropellets can subsequently be utilized as building blocks to assemble complex macrotissues. Generally, micropellets are formed from cells alone, however when replicating matrix-rich tissues such as cartilage it would be ideal if matrix or biomaterials supplements could be incorporated directly into the micropellet during the manufacturing process. Herein we describe a method to efficiently incorporate donor cartilage matrix into tissue engineered cartilage micropellets. We lyophilized bovine cartilage matrix, and then shattered it into microscopic pieces having average dimensions < 10 μm diameter; we termed this microscopic donor matrix "cartilage dust (CD)". Using a microwell platform, we show that ~0.83 μg CD can be rapidly and efficiently incorporated into single multicellular aggregates formed from 180 bone marrow mesenchymal stem/stromal cells (MSC) each. The microwell platform enabled the rapid manufacture of thousands of replica composite micropellets, with each micropellet having a material/CD core and a cellular surface. This micropellet organization enabled the rapid bulking up of the micropellet core matrix content, and left an adhesive cellular outer surface. This morphological organization enabled the ready assembly of the composite micropellets into macroscopic tissues. Generically, this is a versatile method that enables the rapid and uniform integration of biomaterials into multicellular micropellets that can then be used as tissue building blocks. In this study, the addition of CD resulted in an approximate 8-fold volume increase in the micropellets, with the donor matrix functioning to contribute to an increase in total cartilage matrix content. Composite micropellets were readily assembled into macroscopic cartilage tissues; the incorporation of CD enhanced tissue size and matrix content, but did not enhance chondrogenic gene expression.

  16. The Rapid Manufacture of Uniform Composite Multicellular-Biomaterial Micropellets, Their Assembly into Macroscopic Organized Tissues, and Potential Applications in Cartilage Tissue Engineering

    PubMed Central

    Kul Babur, Betul; Kabiri, Mahboubeh; Klein, Travis Jacob; Lott, William B.; Doran, Michael Robert

    2015-01-01

    We and others have published on the rapid manufacture of micropellet tissues, typically formed from 100–500 cells each. The micropellet geometry enhances cellular biological properties, and in many cases the micropellets can subsequently be utilized as building blocks to assemble complex macrotissues. Generally, micropellets are formed from cells alone, however when replicating matrix-rich tissues such as cartilage it would be ideal if matrix or biomaterials supplements could be incorporated directly into the micropellet during the manufacturing process. Herein we describe a method to efficiently incorporate donor cartilage matrix into tissue engineered cartilage micropellets. We lyophilized bovine cartilage matrix, and then shattered it into microscopic pieces having average dimensions < 10 μm diameter; we termed this microscopic donor matrix “cartilage dust (CD)”. Using a microwell platform, we show that ~0.83 μg CD can be rapidly and efficiently incorporated into single multicellular aggregates formed from 180 bone marrow mesenchymal stem/stromal cells (MSC) each. The microwell platform enabled the rapid manufacture of thousands of replica composite micropellets, with each micropellet having a material/CD core and a cellular surface. This micropellet organization enabled the rapid bulking up of the micropellet core matrix content, and left an adhesive cellular outer surface. This morphological organization enabled the ready assembly of the composite micropellets into macroscopic tissues. Generically, this is a versatile method that enables the rapid and uniform integration of biomaterials into multicellular micropellets that can then be used as tissue building blocks. In this study, the addition of CD resulted in an approximate 8-fold volume increase in the micropellets, with the donor matrix functioning to contribute to an increase in total cartilage matrix content. Composite micropellets were readily assembled into macroscopic cartilage tissues; the incorporation of CD enhanced tissue size and matrix content, but did not enhance chondrogenic gene expression. PMID:26020956

  17. 75 FR 72761 - Production Measurement Documents Incorporated by Reference

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-26

    ... of crude oil, refined products, or lubricating oils. Natural gas liquids and liquid petroleum gases... standards into the regulations governing oil, gas, and sulphur operations in the Outer Continental Shelf... oil and gas production volumes. This will result in more efficient measurement of oil and gas...

  18. 77 FR 18916 - Production Measurement Documents Incorporated by Reference

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-29

    ... products, or lubricating oils. Natural gas liquids and liquid petroleum gases are excluded from this... into the regulations governing oil, gas, and sulphur operations in the Outer Continental Shelf... measuring oil and gas production volumes. This rule will result in more accurate and efficient measurement...

  19. Estimation of gas and tissue lung volumes by MRI: functional approach of lung imaging.

    PubMed

    Qanadli, S D; Orvoen-Frija, E; Lacombe, P; Di Paola, R; Bittoun, J; Frija, G

    1999-01-01

    The purpose of this work was to assess the accuracy of MRI for the determination of lung gas and tissue volumes. Fifteen healthy subjects underwent MRI of the thorax and pulmonary function tests [vital capacity (VC) and total lung capacity (TLC)] in the supine position. MR examinations were performed at inspiration and expiration. Lung volumes were measured by a previously validated technique on phantoms. Both individual and total lung volumes and capacities were calculated. MRI total vital capacity (VC(MRI)) was compared with spirometric vital capacity (VC(SP)). Capacities were correlated to lung volumes. Tissue volume (V(T)) was estimated as the difference between the total lung volume at full inspiration and the TLC. No significant difference was seen between VC(MRI) and VC(SP). Individual capacities were well correlated (r = 0.9) to static volume at full inspiration. The V(T) was estimated to be 836+/-393 ml. This preliminary study demonstrates that MRI can accurately estimate lung gas and tissue volumes. The proposed approach appears well suited for functional imaging of the lung.

  20. Macro-meso-microsystems integration in LTCC : LDRD report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Smet, Dennis J.; Nordquist, Christopher Daniel; Turner, Timothy Shawn

    2007-03-01

    Low Temperature Cofired Ceramic (LTCC) has proven to be an enabling medium for microsystem technologies, because of its desirable electrical, physical, and chemical properties coupled with its capability for rapid prototyping and scalable manufacturing of components. LTCC is viewed as an extension of hybrid microcircuits, and in that function it enables development, testing, and deployment of silicon microsystems. However, its versatility has allowed it to succeed as a microsystem medium in its own right, with applications in non-microelectronic meso-scale devices and in a range of sensor devices. Applications include silicon microfluidic ''chip-and-wire'' systems and fluid grid array (FGA)/microfluidic multichip modulesmore » using embedded channels in LTCC, and cofired electro-mechanical systems with moving parts. Both the microfluidic and mechanical system applications are enabled by sacrificial volume materials (SVM), which serve to create and maintain cavities and separation gaps during the lamination and cofiring process. SVMs consisting of thermally fugitive or partially inert materials are easily incorporated. Recognizing the premium on devices that are cofired rather than assembled, we report on functional-as-released and functional-as-fired moving parts. Additional applications for cofired transparent windows, some as small as an optical fiber, are also described. The applications described help pave the way for widespread application of LTCC to biomedical, control, analysis, characterization, and radio frequency (RF) functions for macro-meso-microsystems.« less

  1. Modelling runoff in the northern boreal forest using SLURP with snow ripening and frozen ground

    NASA Astrophysics Data System (ADS)

    St. Laurent, M. E.; Valeo, C.

    2003-04-01

    Northern Manitoba is rich in water resources and the management of this water resource is affected by the hydrological processes taking place in the primarily Boreal forested, flat landscape of the region. This work provides insight into large-scale hydrological modelling in this area using the SLURP hydrological model while incorporating the effects of ripening snow and frozen ground. SLURP was applied to two large watersheds in northern Manitoba. The Taylor River watershed (800 square-km) and the Burntwood River watershed (7000 square-km) were used as study boundaries for the calibration and validation of the original SLURP model (version 12.2) and a modified version that incorporated frozen ground and ripening snow. Digital Elevation Models were derived with ARC/INFO's TOPOGRID function, and in conjunction with digital land cover data, ASAs and their associated physiographic data were derived using SLURPView. A thorough literature review of boreal forest hydrology provided initial parameter estimates. Daily data from 1984 to 1998 were used to calibrate and verify the original model under a variety of meteorological conditions. Calibration on the Taylor River watershed produced respectable results, and model verification efficiencies over the 15 year period were quite good. Verification performance of the Taylor parameter set on the Burntwood River watershed was not acceptable, but only modifications to the evapotranspiration parameters were required to bring model performance up to acceptable levels. Comparisons between observed and computed hydrographs identified problems with spring snowmelt timing, peak and volume prediction. This may be attributed to a lack of consideration for frozen ground in the model, and the use of the temperature index method for snowmelt. Simulations that incorporated a widely used frozen ground infiltration model into SLURP did not improve model performance. However, when SLURP's snowmelt routine was modified to consider the effects of snow ripening in the snowmelt process, model predictions of spring freshet volume and timing were greatly improved. The modified SLURP model depleted the snowpack over shorter periods of time and thus, significantly raised model efficiencies in the snowmelt period for 12 of the 15 years. Snowmelt accumulation curves developed for the original and modified model were found to be landcover dependent. The Muskeg and Coniferous landcovers were found to have the smallest changes in snow depletion periods between the original and modified SLURP models.

  2. Control of volume resistivity in inorganic-organic separators. [for alkaline batteries

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W.; Manzo, M. A.

    1980-01-01

    Control of resistivity in NASA inorganic-organic separators is achieved by incorporating small percentages of high surface area, fine-particle silica with other ingredients in the separator coating. The volume resistivity appears to be predictable from coating composition, that is, from the surface area of filler particles in the coating. The approach has been applied to two polymer-'plasticizer'-filler coating systems, where the filler content of each is below the generally acknowledged critical pigment volume concentration of the coating. Application of these coating systems to 0.0254 cm thick (10 mil) fuel-cell grade asbestos sheet produces inexpensive, flexible, microporous separators that perform at least as well as the original inorganic-organic concept, the Astropower separator.

  3. The Nimbus 6 data catalog, volume 12: Data orbits 9227 through 10043

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Nimbus 6 was successfully launched from the Western Test Range, Vandenberg Air Force Base, California at 08 hr. 12 min. 00 sec. GMT on 12 June 1975. The orbit was nearly circular at 1093 x 1105 km. Satellite operations from launch through 14 July (orbit 425) consisted of engineering evaluation of all spacecraft systems. As a result of that effort, data reception, accountability and processing were intermittent during that period. This volume reflects the operational changes that occurred to each individual subsystem on a bi-monthly basis. Also this volume incorporates significant findings and various subsystem summaries as detailed by the respective experimenter. During orbit 9793 (12 June 1977) Nimbus 6 successfully completed two years of operations.

  4. Relations between brain volumes, neuropsychological assessment and parental questionnaire in prematurely born children.

    PubMed

    Lind, Annika; Haataja, Leena; Rautava, Liisi; Väliaho, Anniina; Lehtonen, Liisa; Lapinleimu, Helena; Parkkola, Riitta; Korkman, Marit

    2010-05-01

    The objective of this study is to assess the relationship between brain volumes at term equivalent age and neuropsychological functions at 5 years of age in very low birth weight (VLBW) children, and to compare the results from a neuropsychological assessment and a parental questionnaire at 5 years of age. The study group included a regional cohort of 97 VLBW children and a control group of 161 children born at term. At term equivalent age, brain magnetic resonance imaging (MRI) was performed on the VLBW children, and analysed for total and regional brain volumes. At 5 years of age, a psychologist assessed the neuropsychological performance with NEPSY II, and parents completed the Five to fifteen (FTF) questionnaire on development and behaviour. The results of the control group were used to give the age-specific reference values. No significant associations were found between the brain volumes and the NEPSY II domains. As for the FTF, significant associations were found between a smaller total brain tissue volume and poorer executive functions, between a smaller cerebellar volume and both poorer executive functions and motor skills, and, surprisingly, between a larger volume of brainstem and poorer language functions. Even after adjustment for total brain tissue volume, the two associations between the cerebellar volume and the FTF domains remained borderline significant (P = 0.05). The NEPSY II domains Executive Functioning, Language and Motor Skills were significantly associated with the corresponding FTF domains. In conclusion, altered brain volumes at term equivalent age appear to affect development still at 5 years of age. The FTF seems to be a good instrument when used in combination with other neuropsychological assessment.

  5. Altered hippocampal volume and functional connectivity in males with Internet gaming disorder comparing to those with alcohol use disorder.

    PubMed

    Yoon, Eun Jin; Choi, Jung-Seok; Kim, Heejung; Sohn, Bo Kyung; Jung, Hee Yeon; Lee, Jun-Young; Kim, Dai-Jin; Park, Sun-Won; Kim, Yu Kyeong

    2017-07-18

    Internet gaming disorder (IGD) has been conceptualized as a behavioral addiction and shares clinical, neuropsychological, and personality characteristics with alcohol use disorder (AUD), but IGD dose not entail brain exposure to toxic agents, which renders it different from AUD. To achieve a clear understanding of the neurobiological features of IGD, we aimed to identify morphological and functional changes in IGD and compare them with those in AUD. Individuals with IGD showed larger volume in the hippocampus/amygdala and precuneus than healthy controls (HCs). The volume in the hippocampus positively correlated with the symptom severity of IGD. Moreover, functional connectivity analysis with the hippocampus/amygdala cluster revealed that the left ventromedial prefrontal cortex showed stronger functional connectivity in individuals with IGD compared to those with AUD. In contrast, individuals with AUD exhibited the smaller cerebellar volume and thinner medial frontal cortex than HCs. The volume in the cerebellum correlated with impaired working memory function as well as duration of illness in AUD group. Findings suggested that altered volume and functional connectivity in the hippocampus/amygdala in IGD might be associated with abnormally enhanced memory process of gaming-related cues, while abnormal cortical changes and cognitive impairments in AUD might be associated with neurotoxic effects of alcohol.

  6. No effect of artificial gravity on lung function with exercise training during head-down bed rest

    NASA Astrophysics Data System (ADS)

    Su, Longxiang; Guo, Yinghua; Wang, Yajuan; Wang, Delong; Liu, Changting

    2016-04-01

    The aim of this study is to explore the effectiveness of microgravity simulated by head-down bed rest (HDBR) and artificial gravity (AG) with exercise on lung function. Twenty-four volunteers were randomly divided into control and exercise countermeasure (CM) groups for 96 h of 6° HDBR. Comparisons of pulse rate, pulse oxygen saturation (SpO2) and lung function were made between these two groups at 0, 24, 48, 72, 96 h. Compared with the sitting position, inspiratory capacity and respiratory reserve volume were significantly higher than before HDBR (0° position) (P < 0.05). Vital capacity, expiratory reserve volume, forced vital capacity, forced expiratory volume in 1 s, forced inspiratory vital capacity, forced inspiratory volume in 1 s, forced expiratory flow at 25, 50, and 75%, maximal mid-expiratory flow and peak expiratory flow were all significantly lower than those before HDBR (P < 0.05). Neither control nor CM groups showed significant differences in pulse rate, SpO2, pulmonary volume and pulmonary ventilation function over the HDBR observation time. Postural changes can lead to variation in lung volume and ventilation function, but a HDBR model induced no changes in pulmonary function and therefore should not be used to study AG countermeasures.

  7. Impulsive-antisocial psychopathic traits linked to increased volume and functional connectivity within prefrontal cortex.

    PubMed

    Korponay, Cole; Pujara, Maia; Deming, Philip; Philippi, Carissa; Decety, Jean; Kosson, David S; Kiehl, Kent A; Koenigs, Michael

    2017-07-01

    Psychopathy is a personality disorder characterized by callous lack of empathy, impulsive antisocial behavior, and criminal recidivism. Studies of brain structure and function in psychopathy have frequently identified abnormalities in the prefrontal cortex. However, findings have not yet converged to yield a clear relationship between specific subregions of prefrontal cortex and particular psychopathic traits. We performed a multimodal neuroimaging study of prefrontal cortex volume and functional connectivity in psychopathy, using a sample of adult male prison inmates (N = 124). We conducted volumetric analyses in prefrontal subregions, and subsequently assessed resting-state functional connectivity in areas where volume was related to psychopathy severity. We found that overall psychopathy severity and Factor 2 scores (which index the impulsive/antisocial traits of psychopathy) were associated with larger prefrontal subregion volumes, particularly in the medial orbitofrontal cortex and dorsolateral prefrontal cortex. Furthermore, Factor 2 scores were also positively correlated with functional connectivity between several areas of the prefrontal cortex. The results were not attributable to age, race, IQ, substance use history, or brain volume. Collectively, these findings provide evidence for co-localized increases in prefrontal cortex volume and intra-prefrontal functional connectivity in relation to impulsive/antisocial psychopathic traits. © The Author (2017). Published by Oxford University Press.

  8. Extended parametric representation of compressor fans and turbines. Volume 2: Part user's manual (parametric turbine)

    NASA Technical Reports Server (NTRS)

    Coverse, G. L.

    1984-01-01

    A turbine modeling technique has been developed which will enable the user to obtain consistent and rapid off-design performance from design point input. This technique is applicable to both axial and radial flow turbine with flow sizes ranging from about one pound per second to several hundred pounds per second. The axial flow turbines may or may not include variable geometry in the first stage nozzle. A user-specified option will also permit the calculation of design point cooling flow levels and corresponding changes in efficiency for the axial flow turbines. The modeling technique has been incorporated into a time-sharing program in order to facilitate its use. Because this report contains a description of the input output data, values of typical inputs, and example cases, it is suitable as a user's manual. This report is the second of a three volume set. The titles of the three volumes are as follows: (1) Volume 1 CMGEN USER's Manual (Parametric Compressor Generator); (2) Volume 2 PART USER's Manual (Parametric Turbine); (3) Volume 3 MODFAN USER's Manual (Parametric Modulation Flow Fan).

  9. Patient-reported ejaculatory function and satisfaction in men with lower urinary tract symptoms/benign prostatic hyperplasia.

    PubMed

    Cho, Min Chul; Kim, Jung Kwon; Song, Sang Hoon; Cho, Sung Yong; Lee, Sang Wook; Kim, Soo Woong; Paick, Jae-Seung

    2018-01-01

    This study aimed to investigate perceived ejaculatory function/satisfaction before treatment for lower urinary tract symptoms (LUTS)/benign prostatic hyperplasia (BPH) and to identify associations between specific categories of ejaculatory dysfunctions (EjDs) and LUTS. A total of 1574 treatment-naïve men with LUTS/BPH were included in this study. All patients underwent routine evaluation for LUTS/BPH including the International Index of Erectile Function and a 5-item questionnaire developed to assess ejaculatory volume/force/pain/satisfaction/latency time. Patients who had sexual intercourse over the past 4 weeks were classified as sexually active group. A total of 783 patients were categorized as sexually active group. Decreased ejaculatory volume and force were reported by 53.4% and 55.7% of 783 sexually active men, respectively. There was a strong correlation between ejaculatory volume and force. Ejaculatory pain/discomfort, premature ejaculation (PE), and delayed ejaculation (DE) were reported in 41.0%, 16.3%, and 41.4% of the patients, respectively. Over 40.0% of men without decreased ejaculation volume/force were satisfied with ejaculatory function, whereas approximately 6.0% of men with decreased volume/force were satisfied with ejaculatory function. About 30.0% of men with decreased volume/force had orgasmic dysfunction, while approximately 10.0% of men without decreased volume/force did. Decreased ejaculatory volume or force was associated with LUTS severity after adjusting for other influential factors including testosterone level, erectile function, and prostate size on ultrasonography, but PE or DE or ejaculatory pain/discomfort was not. In conclusion, a considerable portion of men with LUTS/BPH appear to have a variety of EjDs. Ejaculatory volume/force and satisfaction/orgasm do not always appear to be concordant. Ejaculatory volume or force is independently associated with LUTS severity, whereas PE or DE or ejaculatory pain/discomfort is not.

  10. Olfactory bulb volume in Taiwanese patients with posttraumatic anosmia.

    PubMed

    Jiang, Rong-San; Chai, Jyh-Wen; Chen, Wen-Hsien; Fuh, Wen-Bin; Chiang, Chin-Ming; Chen, Clayton Chi-Chang

    2009-01-01

    Olfactory bulb (OB) volume has been shown to be an indicator of olfactory function. However, few studies have been done in Asia to investigate the influence of different disorders on OB volume. Data from patients with posttraumatic anosmia were collected in our department. Their olfactory thresholds were assessed by the phenyl ethyl alcohol threshold test. They were treated with a course of high-dose steroid, and followed up for at least 3 months without any olfactory improvement. Magnetic resonance imaging was subsequently used to measure patients' OB volumes. Subjects who self-reported their olfactory function was normal were also included in the control group for comparison. Fifty-four patients with posttraumatic anosmia and 30 subjects who self-reported their olfactory function was normal were enrolled in this study. The mean right OB volume was 45.2 mm3, and the mean left OB volume was 46.3 mm3 in patients with posttraumatic anosmia. The mean right OB volume was 59.7 mm3, and the mean left OB volume was 66.0 mm3 in control subjects. The OB volumes were significantly lower in patients with posttraumatic anosmia. OB volumes were significantly lower in Taiwanese patients with posttraumatic anosmia.

  11. Longitudinal changes in kidney parenchymal volume associated with renal artery stenting.

    PubMed

    Modrall, J Gregory; Timaran, Carlos H; Rosero, Eric B; Chung, Jayer; Plummer, Mitchell; Valentine, R James; Trimmer, Clayton

    2012-03-01

    This study assessed the longitudinal changes in renal volume after renal artery stenting (RAS) to determine if renal mass is preserved by stenting. The study cohort consisted of 38 patients with longitudinal imaging available for renal volume quantification before and after RAS. Renal volume was estimated as (kidney length) × (width) × (depth/2) based on preoperative renal imaging. For each patient, the clinical response of blood pressure (BP) and renal function to RAS was categorized according to modified American Heart Association guidelines. Changes in renal volume were assessed using paired nonparametric analyses. The cohort was a median age of 69 years (interquartile range [IQR], 60-74 years). A favorable BP response was observed in 11 of 38 patients (28.9%). At a median interval between imaging studies of 21 months (IQR, 13-32 months), ipsilateral renal volume was significantly increased from baseline (146.8 vs 133.8 cm(3);P = .02). This represents a 6.9% relative increase in ipsilateral kidney volume from baseline. A significant negative correlation between preoperative renal volume and the relative change in renal volume postoperatively (r = -0.42; P = .0055) suggests that smaller kidneys experienced the greatest gains in renal volume after stenting. It is noteworthy that the 25 patients with no change in BP or renal function-clinical failures using traditional definitions-experienced a 12% relative increase in ipsilateral renal volume after RAS. Multivariate analysis determined that stable or improved renal volume after stenting was an independent predictor of stable or improved long-term renal function (odds ratio, 0.008; 95% confidence interval, 0.000-0.206; P = .004). These data lend credence to the belief that RAS preserves renal mass in some patients. This benefit of RAS even extends to those patients who would be considered treatment failures by traditional definitions. Patients with stable or increased renal volume after RAS had more stable renal function during long-term follow-up, whereas patients with renal volume loss after stenting were prone to deterioration of renal function. Published by Mosby, Inc.

  12. Design integration and noise studies for jet STOL aircraft. Task 7A: Augmentor wing cruise blowing valveless system. Volume 1: System design and test integration

    NASA Technical Reports Server (NTRS)

    Roepcke, F. A.; Nickson, T. B.

    1973-01-01

    Exploratory design studies conducted to establish the configuration of an augmentor wing vruise blowing (valveless) system in a 150-passenger STOL airplane were reported in NASA CR-114570. Those studies have been updated to incorporate the results of static rig, flow duct, and wind tunnel tests. Minor adjustments in duct flow velocity, flap length, and blowing nozzle geometry were incorporated to provide airplane characteristics that minimize takeoff gross weight and achieve sideline noise objectives for an advanced commercial STOL airplane.

  13. Los Angeles Area Permit Holder Estimated Trash Load Reduction

    EPA Pesticide Factsheets

    The Los Angeles River has been designated as an impaired waterbody due to the large volume of trash it receives from the watershed. To address this problem a Total Maximum Daily Load (TMDL), which establishes baseline trash loads to the river from the watershed, has been incorporated into the area stormwater permit. The permit requires each permittee to implement trash reduction measures for discharges through the storm drain system with an emphasis on the installation of full capture devices. The stormwater permit incorporates progressive reductions in trash discharges to the Los Angeles River, reaching a zero level in 2016.

  14. Effect of Ge atoms on crystal structure and optoelectronic properties of hydrogenated Si-Ge films

    NASA Astrophysics Data System (ADS)

    Li, Tianwei; Zhang, Jianjun; Ma, Ying; Yu, Yunwu; Zhao, Ying

    2017-07-01

    Optoelectronic and structural properties of hydrogenated microcrystalline silicon-germanium (μc-Si1-xGex:H) alloys prepared by radio-frequency plasma-enhanced chemical vapor deposition (RF-PECVD) were investigated. When the Ge atoms were predominantly incorporated in amorphous matrix, the dark and photo-conductivity decreased due to the reduced crystalline volume fraction of the Si atoms (XSi-Si) and the increased Ge dangling bond density. The photosensitivity decreased monotonously with Ge incorporation under higher hydrogen dilution condition, which was attributed to the increase in both crystallization of Ge and the defect density.

  15. Unrecoverable bi-products of drilling titanium alloy and tantalum metal implants: a pilot study.

    PubMed

    Skowronek, Paweł; Olszewski, Paweł; Święszkowski, Wojciech; Synder, Marek; Sibiński, Marcin; Mazek, Jacek

    2018-05-01

    Trabecular metal implants with a porous architecture that allows for the incorporation of bone into the implant during healing are gaining popularity in alloplastic revision procedures. The bi-products of drilling titanium alloy (Ti) and tantalum (Ta) implants have not been previously assessed. Four holes were drilled in each of two spatially porous trabecular implants, one Ta and the other Ti alloy (Ti-6Al-7Nb), for this pilot in vitro study. The particles were flushed out with a continuous flow of saline. The particles' weight and the volume were then measured using a Radwag XA 110/2X (USA) laboratory balance. The total volume of the obtained metal fines was measured by titration using a 10 mm 3 measurement system. A cobalt carbide bit was used since the holes could not be made with a standard bone drill. Each Ti and Ta implant lost 1.26 g and 2.48 g of mass, respectively. The volume of free particles recovered after each stage was 280 mm 3 and 149 mm 3 , respectively. Approximately 0.6% of the total implant mass was not recovered after drilling (roughly 2% of the mass of the particles created by drilling), despite the use of 5 µm filters. It is technically difficult to drill holes in Ti and Ta implants using standard surgical tools. The drilling process creates a considerable amount of metal particles, which cannot be recovered despite intensive flushing. This may have an adverse influence on the bio-functionality (survival) of the endoprosthesis and present deleterious systemic consequences.

  16. Galaxy two-point covariance matrix estimation for next generation surveys

    NASA Astrophysics Data System (ADS)

    Howlett, Cullan; Percival, Will J.

    2017-12-01

    We perform a detailed analysis of the covariance matrix of the spherically averaged galaxy power spectrum and present a new, practical method for estimating this within an arbitrary survey without the need for running mock galaxy simulations that cover the full survey volume. The method uses theoretical arguments to modify the covariance matrix measured from a set of small-volume cubic galaxy simulations, which are computationally cheap to produce compared to larger simulations and match the measured small-scale galaxy clustering more accurately than is possible using theoretical modelling. We include prescriptions to analytically account for the window function of the survey, which convolves the measured covariance matrix in a non-trivial way. We also present a new method to include the effects of super-sample covariance and modes outside the small simulation volume which requires no additional simulations and still allows us to scale the covariance matrix. As validation, we compare the covariance matrix estimated using our new method to that from a brute-force calculation using 500 simulations originally created for analysis of the Sloan Digital Sky Survey Main Galaxy Sample. We find excellent agreement on all scales of interest for large-scale structure analysis, including those dominated by the effects of the survey window, and on scales where theoretical models of the clustering normally break down, but the new method produces a covariance matrix with significantly better signal-to-noise ratio. Although only formally correct in real space, we also discuss how our method can be extended to incorporate the effects of redshift space distortions.

  17. Malignant induction probability maps for radiotherapy using X-ray and proton beams.

    PubMed

    Timlin, C; Houston, M; Jones, B

    2011-12-01

    The aim of this study was to display malignant induction probability (MIP) maps alongside dose distribution maps for radiotherapy using X-ray and charged particles such as protons. Dose distributions for X-rays and protons are used in an interactive MATLAB® program (MathWorks, Natick, MA). The MIP is calculated using a published linear quadratic model, which incorporates fractionation effects, cell killing and cancer induction as a function of dose, as well as relative biological effect. Two virtual situations are modelled: (a) a tumour placed centrally in a cubic volume of normal tissue and (b) the same tumour placed closer to the skin surface. The MIP is calculated for a variety of treatment field options. The results show that, for protons, the MIP increases with field numbers. In such cases, proton MIP can be higher than that for X-rays. Protons produce the lowest MIPs for superficial targets because of the lack of exit dose. The addition of a dose bath to all normal tissues increases the MIP by up to an order of magnitude. This exploratory study shows that it is possible to achieve three-dimensional displays of carcinogenesis risk. The importance of treatment geometry, including the length and volume of tissue traversed by each beam, can all influence MIP. Reducing the volume of tissue irradiated is advantageous, as reducing the number of cells at risk reduces the total MIP. This finding lends further support to the use of treatment gantries as well as the use of simpler field arrangements for particle therapy provided normal tissue tolerances are respected.

  18. Epoxidized Natural Rubber/Chitosan Network Binder for Silicon Anode in Lithium-Ion Battery.

    PubMed

    Lee, Sang Ha; Lee, Jeong Hun; Nam, Dong Ho; Cho, Misuk; Kim, Jaehoon; Chanthad, Chalathorn; Lee, Youngkwan

    2018-05-16

    Polymeric binder is extremely important for Si-based anode in lithium-ion batteries due to large volume variation during charging/discharging process. Here, natural rubber-incorporated chitosan networks were designed as a binder material to obtain both adhesion and elasticity. Chitosan could strongly anchor Si particles through hydrogen bonding, while the natural rubber could stretch reversibly during the volume variation of Si particles, resulting in high cyclic performance. The prepared electrode exhibited the specific capacities of 1350 mAh/g after 1600 cycles at the current density of 8 A/g and 2310 mAh/g after 500 cycles at the current density of 1 A/g. Furthermore, the cycle test with limiting lithiation capacity was conducted to study the optimal binder properties at varying degree of the volume expansion of silicon, and it was found that the elastic property of binder material was strongly required when the large volume expansion of Si occurred.

  19. Direct Capture of Functional Proteins from Mammalian Plasma Membranes into Nanodiscs.

    PubMed

    Roy, Jahnabi; Pondenis, Holly; Fan, Timothy M; Das, Aditi

    2015-10-20

    Mammalian plasma membrane proteins make up the largest class of drug targets yet are difficult to study in a cell free system because of their intransigent nature. Herein, we perform direct encapsulation of plasma membrane proteins derived from mammalian cells into a functional nanodisc library. Peptide fingerprinting was used to analyze the proteome of the incorporated proteins in nanodiscs and to further demonstrate that the lipid composition of the nanodiscs directly affects the class of protein that is incorporated. Furthermore, the functionality of the incorporated membrane proteome was evaluated by measuring the activity of membrane proteins: Na(+)/K(+)-ATPase and receptor tyrosine kinases. This work is the first report of the successful establishment and characterization of a cell free functional library of mammalian membrane proteins into nanodiscs.

  20. Onondaga Noun Incorporation: Some Notes on the Interdependence of Syntax and Semantics

    ERIC Educational Resources Information Center

    Woodbury, Hanni

    1975-01-01

    In Onondaga and all northern Iroquoian languages, nouns can be incorporated into verbs. The function of this is semantic as well as syntactic. It is semantic in that the sense of an incorporated noun will be narrower than its unincorporated counterpart regardless of modifiers. Incorporation changes the transformational structure of the sentence.…

  1. Hypoxemia, hypercapnia, and breathing pattern in patients with chronic obstructive pulmonary disease.

    PubMed

    Parot, S; Miara, B; Milic-Emili, J; Gautier, H

    1982-11-01

    The results of lung function tests (total and functional residual capacities, residual volume/total lung capacity ratio, forced expiratory volume in one second) breathing patterns and arterial PO2 and PCO2 were studied in 651 ambulatory male patients with chronic obstructive pulmonary disease, functionally and clinically stable. Function tests were only loosely correlated with gas tensions: abnormalities in mechanics and in gas exchange are not necessarily related. In patients matched for the degree of obstruction, the breathing pattern depended upon both PaO2 and PaCO2. Isolated hypoxemia was accompanied by increased respiratory frequency without any variation in tidal volume: this suggests that the chemoreceptive systems still responded to changes in PaO2. Isolated hypercapnia was accompanied by a decrease in tidal volume and an increase in respiratory frequency. Consequently, the dead space/tidal volume ratio increased, leading to a drop in alveolar ventilation and to CO2 retention.

  2. Hybrid Functional Study of Sodium and Potassium Incorporation in Cu2ZnSnS4

    NASA Astrophysics Data System (ADS)

    Tse, Kin Fai; Wong, Manhoi; Zhang, Yiou; Zhang, Jingzhao; Zhu, Junyi

    The thermodynamics of Na and K incorporation and its effects in Cu2ZnSnS4 (CZTS) is studied using density functional theory with hybrid functional. The allowed chemical potential of Na/K in CZTS is established. Formation energy calculations shows that Na can be significantly incorporated as both substitutional defects and interstitial defects, and incorporation of K related defects are generally less favorable. Transition energy calculations is performed showing that both Na and K exhibit benign defect properties and act as a p-type dopant. The qualitative disagreement between GGA with rigid band edge shifting and HSE calculations, formation of defect complexes, and implications in experiment will also be discussed. The understandings on the defect properties of Na and K provides an essential knowledge to further understand the surfactant effects of Na and K observed in experiments. This work is supported by General Research Fund Ref. No: 14319416.

  3. The Resource Consumption Principle: Attention and Memory in Volumes of Neural Tissue

    NASA Astrophysics Data System (ADS)

    Montague, P. Read

    1996-04-01

    In the cerebral cortex, the small volume of the extracellular space in relation to the volume enclosed by synapses suggests an important functional role for this relationship. It is well known that there are atoms and molecules in the extracellular space that are absolutely necessary for synapses to function (e.g., calcium). I propose here the hypothesis that the rapid shift of these atoms and molecules from extracellular to intrasynaptic compartments represents the consumption of a shared, limited resource available to local volumes of neural tissue. Such consumption results in a dramatic competition among synapses for resources necessary for their function. In this paper, I explore a theory in which this resource consumption plays a critical role in the way local volumes of neural tissue operate. On short time scales, this principle of resource consumption permits a tissue volume to choose those synapses that function in a particular context and thereby helps to integrate the many neural signals that impinge on a tissue volume at any given moment. On longer time scales, the same principle aids in the stable storage and recall of information. The theory provides one framework for understanding how cerebral cortical tissue volumes integrate, attend to, store, and recall information. In this account, the capacity of neural tissue to attend to stimuli is intimately tied to the way tissue volumes are organized at fine spatial scales.

  4. Childhood Cumulative Risk Exposure and Adult Amygdala Volume and Function

    PubMed Central

    Evans, Gary W.; Swain, James E.; King, Anthony P.; Wang, Xin; Javanbakht, Arash; Ho, S. Shaun; Angstadt, Michael; Phan, K. Luan; Xie, Hong; Liberzon, Israel

    2015-01-01

    Considerable work indicates that early cumulative risk exposure is aversive to human development, but very little research has examined neurological underpinnings of these robust findings. We investigated amygdala volume and reactivity to facial stimuli among adults (M = 23.7 years, n = 54) as a function of cumulative risk exposure during childhood (ages 9 and 13). In addition, we tested whether expected, cumulative risk elevations in amygdala volume would mediate functional reactivity of the amygdala during socio-emotional processing. Risks included substandard housing quality, noise, crowding, family turmoil, child separation from family, and violence. Total and left hemisphere adult amygdala volumes, respectively were positively related to cumulative risk exposure during childhood. The links between childhood cumulative risk exposure and elevated amygdala responses to emotionally neutral facial stimuli in adulthood were mediated by the respective amygdala volumes. Cumulative risk exposure in later adolescence (17 years), however, was unrelated to subsequent, adult amygdala volume or function. Physical and socioemotional risk exposures early in life appear to alter amygdala development, rendering adults more reactive to ambiguous stimuli such as neutral faces. These stress-related differences in childhood amygdala development might contribute to well-documented psychological distress as a function of early risk exposure. PMID:26469872

  5. COMPARATIVE EFFECTIVENESS OF AN ADJUSTABLE TRANSFEMORAL PROSTHETIC INTERFACE ACCOMMODATING VOLUME FLUCTUATION: CASE STUDY

    PubMed Central

    Kahle, Jason T.; Klenow, Tyler D.; Highsmith, M. Jason

    2016-01-01

    The socket-limb interface is vital for functionality and provides stability and mobility for the amputee. Volume fluctuation can lead to compromised fit and function. Current socket technology does not accommodate for volume fluctuation. An adjustable interface may improve function and comfort by filling this technology gap. The purpose of this study was to compare the effectiveness of the standard of care (SOC) ischial ramus containment to an adjustable transfemoral prosthetic interface socket in the accommodation of volume fluctuation. A prospective experimental case study using repeated measures of subjective and performance outcome measures between socket conditions was employed. In the baseline volume condition, the adjustable socket improved subjective and performance measures 19% to 37% over SOC, whereas the two-minute walk test demonstrated equivalence. In the volume loss condition, the adjustable socket improved all subjective and performance measures 22% to 93%. All aggregated data improved 16% to 50% compared with the SOC. In simulated volume gain, the SOC socket failed, while the subject was able to complete the protocol using the adjustable socket. In this case study, the SOC socket was inferior to the comparative adjustable transfemoral amputation interface in subjective and performance outcomes. There is a lack of clinical trials and evidence comparing socket functional outcomes related to volume fluctuation. PMID:28066526

  6. Screened hybrid density functionals for solid-state chemistry and physics.

    PubMed

    Janesko, Benjamin G; Henderson, Thomas M; Scuseria, Gustavo E

    2009-01-21

    Density functional theory incorporating hybrid exchange-correlation functionals has been extraordinarily successful in providing accurate, computationally tractable treatments of molecular properties. However, conventional hybrid functionals can be problematic for solids. Their nonlocal, Hartree-Fock-like exchange term decays slowly and incorporates unphysical features in metals and narrow-bandgap semiconductors. This article provides an overview of our group's work on designing hybrid functionals for solids. We focus on the Heyd-Scuseria-Ernzerhof screened hybrid functional [J. Chem. Phys. 2003, 118, 8207], its applications to the chemistry and physics of solids and surfaces, and our efforts to build upon its successes.

  7. Decreased Regional Cerebral Perfusion in Moderate-Severe Obstructive Sleep Apnoea during Wakefulness.

    PubMed

    Innes, Carrie R H; Kelly, Paul T; Hlavac, Michael; Melzer, Tracy R; Jones, Richard D

    2015-05-01

    To investigate gray matter volume and concentration and cerebral perfusion in people with untreated obstructive sleep apnea (OSA) while awake. Voxel-based morphometry to quantify gray matter concentration and volume. Arterial spin labeling perfusion imaging to quantify cerebral perfusion. Lying supine in a 3-T magnetic resonance imaging scanner in the early afternoon. 19 people with OSA (6 females, 13 males; mean age 56.7 y, range 41-70; mean AHI 18.5, range 5.2-52.8) and 19 controls (13 females, 6 males; mean age: 50.0 y, range 41-81). N/A. There were no differences in regional gray matter concentration or volume between participants with OSA and controls. Neither was there any difference in regional perfusion between controls and people with mild OSA (n = 11). However, compared to controls, participants with moderate-severe OSA (n = 8) had decreased perfusion (while awake) in three clusters. The largest cluster incorporated, bilaterally, the paracingulate gyrus, anterior cingulate gyrus, and subcallosal cortex, and the left putamen and left frontal orbital cortex. The second cluster was right-lateralized, incorporating the posterior temporal fusiform cortex, parahippocampal gyrus, and hippocampus. The third cluster was located in the right thalamus. There is decreased regional perfusion during wakefulness in participants with moderate-severe obstructive sleep apnea, and these are in brain regions which have shown decreased regional gray matter volume in previous studies in people with severe OSA. Thus, we hypothesize that cerebral perfusion changes are evident before (and possibly underlie) future structural changes. © 2015 Associated Professional Sleep Societies, LLC.

  8. Space Construction Experiment Definition Study (SCEDS), part 2. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1982-01-01

    A baseline Space Construction Experiment (SCE) concept is defined. Five characteristics were incorporated: (1) large space system (LSS) element test, (2) shuttle mission payload of opportunity, (3) attachment to Orbiter with jettison capability, (4) Orbiter flight control capabilities, and (5) LSS construction and assembly operations.

  9. Internationalizing the U.S. Classroom: Japan as a Model.

    ERIC Educational Resources Information Center

    Wojtan, Linda S., Ed.; Spence, Donald, Ed.

    This collection of essays presents a rationale for incorporating teaching about Japan in the K-12 curriculum. The volume provides practical examples and guidelines about how to achieve this goal. The essays are organized into three main categories--professional development, curriculum design and enhancement, and exchange. The essays include:…

  10. Incorporating spatial context into the analysis of salmonid-habitat relationships

    EPA Science Inventory

    In this response to the chapter by Lapointe (this volume), we discuss the question of why it is so difficult to predict salmonid–habitat relationships in gravel-bed rivers and streams. We acknowledge that this cannot be an exhaustive treatment of the subject and, thus, identify ...

  11. Cognitive Theory. Volume 1.

    ERIC Educational Resources Information Center

    Restle, Frank, Ed.; And Others

    The 13 chapters in this book are based on papers presented at the 1974 Indiana Cognitive/Mathematical Psychology Conference, at which contributors were asked to emphasize the relatively broad theoretical significance of their work, to incorporate the work of others, and to speculate about future developments. Topics covered include the nature and…

  12. Metabolsim of a-and y~Hexabromocylododecane and Enantioselective Fractions of a-, B-, y-Isomers in Mice.

    EPA Science Inventory

    Hexabromocyclododecane (HBCD) is the third-highest production volume brominated flame retardant (BFR). It is incorporated into expanded polystyrene foam used in thermal insulation of buildings, and currently is the only suitable BFR for this application. HBCD is an additive flame...

  13. Active Learning Improves Student Performance in a Respiratory Physiology Lab

    ERIC Educational Resources Information Center

    Wolf, Alex M.; Liachovitzky, Carlos; Abdullahi, Abass S.

    2015-01-01

    This study assessed the effectiveness of the introduction of active learning exercises into the anatomy and physiology curriculum in a community college setting. Specifically, the incorporation of a spirometry-based respiratory physiology lab resulted in improved student performance in two concepts (respiratory volumes and the hallmarks of…

  14. 1 CFR 51.1 - Policy.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... thereby is deemed published in the Federal Register when incorporated by reference therein with the approval of the Director of the Federal Register.” (b) The Director will interpret and apply the language... volume entitled “CFR Index and Finding Aids.”) (c) The Director will assume in carrying out the...

  15. Education & Technology: Reflections on Computing in Classrooms.

    ERIC Educational Resources Information Center

    Fisher, Charles, Ed.; Dwyer, David C., Ed.; Yocam, Keith, Ed.

    This volume examines learning in the age of technology, describes changing practices in technology-rich classrooms, and proposes new ways to support teachers as they incorporate technology into their work. It commemorates the eleventh anniversary of the Apple Classrooms of Tomorrow (ACOT) Project, when Apple Computer, Inc., in partnership with a…

  16. Drug Abuse Montgomery County Pennsylvania.

    ERIC Educational Resources Information Center

    Montgomery County Drug Commission, Norristown, PA.

    This is a research report and survey on drug abuse in Montgomery County, Norristown, Pennsylvania, conducted by the Montgomery County Drug Commission. The nine-month study is incorporated into a single volume. An analysis of the results of the drug survey points out that many variables which had heretofore been regarded as being significantly…

  17. 10 CFR 431.105 - Materials incorporated by reference.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AND INDUSTRIAL EQUIPMENT Commercial Water Heaters, Hot Water Supply Boilers and Unfired Hot Water... Water Supply Boilers, and Unfired Hot Water Storage Tanks,” Docket No. EE-RM/TP-99-480, Forrestal... Water Heaters, Volume III, Storage Water Heaters with Input Ratings above 75,000 Btu per Hour...

  18. Think First: Addressing Aggressive Behavior in Secondary Schools

    ERIC Educational Resources Information Center

    Larson, Jim

    2005-01-01

    This highly practical book presents a complete anger and aggression management training program for middle and high school students. The volume incorporates a newly revised version of the author's proven "Think First" manual, which includes step-by-step skills training guidelines and 20 reproducible handouts and forms. Also provided are…

  19. Manufacture and quality control of interconnecting wire harnesses, Volume 3

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The document covers interconnecting wire harnesses defined in the design standard, including type 6, enclosed in TFE heat shrink tubing; and type 7, flexible armored. Knowledge gained through experience on the Saturn 5 program coupled with recent advances in techniques, materials, and processes was incorporated into this document.

  20. 76 FR 82332 - Self-Regulatory Organizations; Chicago Board Options Exchange, Incorporated; Notice of Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-30

    .... Moreover, the competitive pressures from other exchanges in electronic orders and different business model... electronic business and compete with other exchanges for such business. The business models surrounding...). The specific volume thresholds of the Program's tiers were set based upon business determinations and...

  1. Incorporating deep learning into the analysis of diverse livestock data

    USDA-ARS?s Scientific Manuscript database

    Technological advances in high-throughput phenotyping and multiple omics fields have led to an explosion in the volume of data across the whole spectrum of biology, allowing researchers to integrate data of different types to inform hypotheses and expand the scope of their research questions. Howeve...

  2. Ease into Writing. Volume 2.

    ERIC Educational Resources Information Center

    Lott, Carolyn, Ed.; Stone, Janet, Ed.

    Addressing the expressed needs of the writing community, this book presents writing lessons for intermediate, middle school, and secondary school students that incorporate the 5-step writing process into content areas as a natural part of the curriculum. The 30 lessons in this book involve students in large and small groups and in individual…

  3. Volume V: a framework for sustainable-ecosystem management.

    Treesearch

    Bernard T. Bormann; Martha H. Brookes; E. David Ford; A. Ross Kiester; Chadwick D. Oliver; James F. Weigand

    1994-01-01

    Principles for sustainable-ecosystem management are derived by integrating fundamental, societal, and scientific premises. Ecosystem science is applied in the design of a system of management focused on building overlap between what people collectively want and what is ecologically possible. We conclude that management must incorporate more science and societal...

  4. 77 FR 67847 - Self-Regulatory Organizations; Chicago Board Options Exchange, Incorporated; Notice of Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-14

    ... ex-dividend.\\5\\ Dividend strategy transactions are only executed by Market-Makers. The Exchange... Sliding Scale volume thresholds. However, because only Market- Makers execute dividend strategy trades and... from the list of strategy executions for which fee caps apply. Under the Exchange's current Fees...

  5. MARINE PROCESSES, THEIR RELATIONSHIP TO POLLUTION AND A FRAMEWORK FOR WASTE MANAGEMENT

    EPA Science Inventory

    The transport and transformation processes which influence th way in which waste materials are dispersed and incorporated into the marine environment are reviewed and summarized as a preface for appreciation of the technical papers which follow in this volume. n a similar vein th...

  6. Making a Difference for Students at Risk. Trends and Alternatives.

    ERIC Educational Resources Information Center

    Wang, Margaret C., Ed.; Reynolds, Maynard C., Ed.

    Papers in this collection were commissioned for a conference entitled, "Making a Difference for Students at Risk," to serve as springboards for discussion. Discussions and recommendations from conferees were incorporated into the versions presented in this volume. The two topics that dominated discussion at the conference were: basic…

  7. 24 CFR 200.933 - Changes in minimum property standards.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Register. As the changes are made, they will be incorporated into the volumes of the Minimum Property... 24 Housing and Urban Development 2 2010-04-01 2010-04-01 false Changes in minimum property... Changes in minimum property standards. Changes in the Minimum Property Standards will generally be made...

  8. 24 CFR 200.933 - Changes in minimum property standards.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Register. As the changes are made, they will be incorporated into the volumes of the Minimum Property... 24 Housing and Urban Development 2 2011-04-01 2011-04-01 false Changes in minimum property... Changes in minimum property standards. Changes in the Minimum Property Standards will generally be made...

  9. Reduced functional connectivity within and between ‘social’ resting state networks in autism spectrum conditions

    PubMed Central

    Stoyanova, Raliza S.; Baron-Cohen, Simon; Calder, Andrew J.

    2013-01-01

    Individuals with Autism Spectrum Conditions (ASC) have difficulties in social interaction and communication, which is reflected in hypoactivation of brain regions engaged in social processing, such as medial prefrontal cortex (mPFC), amygdala and insula. Resting state studies in ASC have identified reduced connectivity of the default mode network (DMN), which includes mPFC, suggesting that other resting state networks incorporating ‘social’ brain regions may also be abnormal. Using Seed-based Connectivity and Group Independent Component Analysis (ICA) approaches, we looked at resting functional connectivity in ASC between specific ‘social’ brain regions, as well as within and between whole networks incorporating these regions. We found reduced functional connectivity within the DMN in individuals with ASC, using both ICA and seed-based approaches. Two further networks identified by ICA, the salience network, incorporating the insula and a medial temporal lobe network, incorporating the amygdala, showed reduced inter-network connectivity. This was underlined by reduced seed-based connectivity between the insula and amygdala. The results demonstrate significantly reduced functional connectivity within and between resting state networks incorporating ‘social’ brain regions. This reduced connectivity may result in difficulties in communication and integration of information across these networks, which could contribute to the impaired processing of social signals in ASC. PMID:22563003

  10. Validation of Functional Reaching Volume as an Outcome Measure across the Spectrum of Abilities in Muscular Dystrophy

    DTIC Science & Technology

    2017-09-01

    interactive video game regardless of ambulatory status. The objective of this project is to produce a trial ready outcome measure that will enable clinical...custom-designed video game using the Microsoft Kinect camera, measures functional reaching volume (FRV) across the spectrum of the disease in DMD...Kinect, video game , clinical trial readiness, neuromuscular disease, Soliton, functional reaching volume 3. ACCOMPLISHMENTS: The PI is reminded

  11. Development of a High Reliability Compact Air Independent PEMFC Power System

    NASA Technical Reports Server (NTRS)

    Vasquez, Arturo; Wynne, Bob

    2013-01-01

    Autonomous Underwater Vehicles (AUV's) have received increasing attention in recent years as military and commercial users look for means to maintain a mobile and persistent presence in the undersea world. Compact, neutrally buoyant power systems are needed for both small and large vehicles. Historically, batteries have been employed in these applications, but the energy density and therefore mission duration are limited with current battery technologies. Vehicles with stored energy requirements greater than approximately 10 kWh have an alternate means to get long duration power. High efficiency Proton Exchange Membrane (PEM) fuel cell systems utilizing pure hydrogen and oxygen reactants show the potential for an order of magnitude energy density improvement over batteries as long as the subsystems are compact. One key aspect to achieving a compact and energy dense system is the design of the fuel cell balance of plant (BOP). Recent fuel cell work, initially focused on NASA applications requiring high reliability, has developed systems that can meet target power and energy densities. Passive flow through systems using ejector driven reactant (EDR) circulation have been developed to provide high reactant flow and water management within the stack, with minimal parasitic losses compared to blowers. The ejectors and recirculation loops, along with valves and other BOP instrumentation, have been incorporated within the stack end plate. In addition, components for water management and reactant conditioning have been incorporated within the stack to further minimize the BOP. These BOP systems are thermally and functionally integrated into the stack hardware and fit into the small volumes required for AUV and future NASA applications to maximize the volume available for reactants. These integrated systems provide a compact solution for the fuel cell BOP and maximize the efficiency and reliability of the system. Designs have been developed for multiple applications ranging from less than 1 kWe to 70 kWe. These systems occupy a very small portion of the overall energy system, allowing most of the system volume to be used for reactants. The fuel cell systems have been optimized to use reactants efficiently with high stack efficiency and low parasitic losses. The resulting compact, highly efficient fuel cell system provides exceptional reactant utilization and energy density. Key design variables and supporting test data are presented. Future development activities are described.

  12. Charged Covalent Triazine Frameworks for CO2 Capture and Conversion.

    PubMed

    Buyukcakir, Onur; Je, Sang Hyun; Talapaneni, Siddulu Naidu; Kim, Daeok; Coskun, Ali

    2017-03-01

    The quest for the development of new porous materials addressing both CO 2 capture from various sources and its conversion into useful products is a very active research area and also critical in order to develop a more sustainable and environmentally-friendly society. Here, we present the first charged covalent triazine framework (cCTF) prepared by simply heating nitrile functionalized dicationic viologen derivatives under ionothermal reaction conditions using ZnCl 2 as both solvent and trimerization catalyst. It has been demonstrated that the surface area, pore volume/size of cCTFs can be simply controlled by varying the synthesis temperature and the ZnCl 2 content. Specifically, increasing the reaction temperature led to controlled increase in the mesopore content and facilitated the formation of hierarchical porosity, which is critical to ensure efficient mass transport within porous materials. The resulting cCTFs showed high specific surface areas up to 1247 m 2 g -1 , and high physicochemical stability. The incorporation of ionic functional moieties to porous organic polymers improved substantially their CO 2 affinity (up to 133 mg g -1 , at 1 bar and 273 K) and transformed them into hierarchically porous organocatalysts for CO 2 conversion. More importantly, the ionic nature of cCTFs, homogeneous charge distribution together with hierarchical porosity offered a perfect platform for the catalytic conversion of CO 2 into cyclic carbonates in the presence of epoxides through an atom economy reaction in high yields and exclusive product selectivity. These results clearly demonstrate the promising aspect of incorporation of charged units into the porous organic polymers for the development of highly efficient porous organocatalysts for CO 2 capture and fixation.

  13. Investigating the properties and interaction mechanism of nano-silica in polyvinyl alcohol/polyacrylamide blends at an atomic level.

    PubMed

    Wei, Qinghua; Wang, Yanen; Wang, Shuzhi; Zhang, Yingfeng; Chen, Xiongbiao

    2017-11-01

    The nano-silica can be incorporated into polymers for improved mechanical properties. Notably, the interaction between nano-silica and polymer is of a microscopic phenomenon and thus, hard to observe and study by using experimental methods. Based on molecular dynamics, this paper presents a study on the properties and the interaction mechanism of nano-silica in the polyvinyl alcohol (PVA)/polyacrylamide (PAM) blends at an atomic level. Specifically, six blends of PVA/PAM with varying concentrations of nano-silica (0-13wt%) and two interfacial interaction models of polymers on the silica surface were designed and analyzed at an atomic level in terms of concentration profile, mechanical properties, fractional free volume (FFV), dynamic properties of polymers and X-ray diffraction patterns. The concentration profile results and micromorphologies of equilibrium models suggest PAM molecular chains are easier to be adsorbed on the silica surface than PVA molecular chains in blends. The incorporation of nano-silica into the PVA/PAM blends can increase the blend mechanical properties, densities, and semicrystalline character. Meanwhile, the FFV and the mobility of polymer chain decrease with the silica concentration, which agrees with the results of mechanical properties, densities, and semicrystalline character. Our results also illustrate that an analysis of binding energies and pair correlation functions (PCF) allows for the discovery of the interaction mechanism of nano-silica in PVA/PAM blends; and that hydrogen bond interactions between polar functional groups of polymer molecular chains and the hydroxyl groups of the silica surface are involved in adsorption of the polymers on the silica surface, thus affecting the interaction mechanism of nano-silica in PVA/PAM blend systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Incorporation of high amounts of Na in ringwoodite: Possible implications for transport of alkali into lower mantle

    DOE PAGES

    Bindi, Luca; Tamarova, Anastasia; Bobrov, Andrey V.; ...

    2016-02-02

    In this study, we report on the coexistence between Na-rich ringwoodite and bridgmanite in the system MgSiO 3-Na 2CO 3-Al 2O 3 at 24 GPa and 1700 °C. In our experiments ringwoodite incorporates up to 4.4 wt% Na 2O, with Na entering the octahedral site together with Si, according to the mechanism: Mg 2+ → 2/3Na + + 1/3Si 4+. The volume of the unit cell increases along with the Na content. A similar behavior is observed for the unit-cell volume of Na-bearing bridgmanite, although the mechanism of Na incorporation into this structure remains unknown because of the lack ofmore » sufficient crystallographic data. Na 2O is compatible in ringwoodite relative to bridgmanite with a partition coefficient (D) of 5 (+5/-4), but is incompatible in ringwoodite relative to carbonate-rich melt/fluid, with the D value ranging between 0.5 and 0.1. Al is highly enriched in bridgmanite relative to the other coexisting phases. Carbonatitic melt metasomatism in the deep transition zone may lead to local Na-enrichment, and ringwoodite may be an important host for Na in the deep transition zone. Subsequent convection or subduction of metasomatized mantle may lead to enrichment of alkaline elements in the upper and lower mantle.« less

  15. Reduced Gray Matter Volume Is Associated With Poorer Instrumental Activities of Daily Living Performance in Heart Failure.

    PubMed

    Alosco, Michael L; Brickman, Adam M; Spitznagel, Mary Beth; Narkhede, Atul; Griffith, Erica Y; Cohen, Ronald; Sweet, Lawrence H; Josephson, Richard; Hughes, Joel; Gunstad, John

    2016-01-01

    Heart failure patients require assistance with instrumental activities of daily living in part because of the high rates of cognitive impairment in this population. Structural brain insult (eg, reduced gray matter volume) is theorized to underlie cognitive dysfunction in heart failure, although no study has examined the association among gray matter, cognition, and instrumental activities of daily living in heart failure. The aim of this study was to investigate the associations among gray matter volume, cognitive function, and functional ability in heart failure. A total of 81 heart failure patients completed a cognitive test battery and the Lawton-Brody self-report questionnaire to assess instrumental activities of daily living. Participants underwent magnetic resonance imaging to quantify total gray matter and subcortical gray matter volume. Impairments in instrumental activities of daily living were common in this sample of HF patients. Regression analyses controlling for demographic and medical confounders showed that smaller total gray matter volume predicted decreased scores on the instrumental activities of daily living composite, with specific associations noted for medication management and independence in driving. Interaction analyses showed that reduced total gray matter volume interacted with worse attention/executive function and memory to negatively impact instrumental activities of daily living. Smaller gray matter volume is associated with greater impairment in instrumental activities of daily living in persons with heart failure, possibly via cognitive dysfunction. Prospective studies are needed to clarify the utility of clinical correlates of gray matter volume (eg, cognitive dysfunction) in identifying heart failure patients at risk for functional decline and determine whether interventions that target improved brain and cognitive function can preserve functional independence in this high-risk population.

  16. Amyloid fibrils as a nanoscaffold for enzyme immobilization.

    PubMed

    Pilkington, Sarah M; Roberts, Sarah J; Meade, Susie J; Gerrard, Juliet A

    2010-01-01

    Amyloid fibrils are a misfolded state, formed by many proteins when subjected to denaturing conditions. Their constituent amino acids make them ideally suited as a readily functionalized nanoscaffold for enzyme immobilization and their strength, stability, and nanometer size are attractive features for exploitation in the creation of new bionanomaterials. We report successful functionalization of amyloid fibrils by conjugation to glucose oxidase (GOD) using glutaraldehyde. GOD retained activity upon attachment and successful cross-linking was determined using electrophoresis, centrifugation, sucrose gradient centrifugation, and TEM. The resulting functionalized enzyme scaffold was then incorporated into a model poly(vinyl alcohol) (PVOH) film, to create a new bionanomaterial. The antibacterial effect of the functionalized film was then tested on E. coli, the growth of which was inhibited, demonstrating the incorporation of GOD antibacterial activity into the PVOH film. The incorporation of the GOD-functionalized amyloid fibrils into PVOH provides an excellent 'proof of concept' model for the creation of a new bionanomaterial using a functionalized amyloid fibril scaffold.

  17. Validating and improving CT ventilation imaging by correlating with ventilation 4D-PET/CT using {sup 68}Ga-labeled nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kipritidis, John, E-mail: john.kipritidis@sydney.edu.au; Keall, Paul J.; Siva, Shankar

    Purpose: CT ventilation imaging is a novel functional lung imaging modality based on deformable image registration. The authors present the first validation study of CT ventilation using positron emission tomography with{sup 68}Ga-labeled nanoparticles (PET-Galligas). The authors quantify this agreement for different CT ventilation metrics and PET reconstruction parameters. Methods: PET-Galligas ventilation scans were acquired for 12 lung cancer patients using a four-dimensional (4D) PET/CT scanner. CT ventilation images were then produced by applying B-spline deformable image registration between the respiratory correlated phases of the 4D-CT. The authors test four ventilation metrics, two existing and two modified. The two existing metricsmore » model mechanical ventilation (alveolar air-flow) based on Hounsfield unit (HU) change (V{sub HU}) or Jacobian determinant of deformation (V{sub Jac}). The two modified metrics incorporate a voxel-wise tissue-density scaling (ρV{sub HU} and ρV{sub Jac}) and were hypothesized to better model the physiological ventilation. In order to assess the impact of PET image quality, comparisons were performed using both standard and respiratory-gated PET images with the former exhibiting better signal. Different median filtering kernels (σ{sub m} = 0 or 3 mm) were also applied to all images. As in previous studies, similarity metrics included the Spearman correlation coefficient r within the segmented lung volumes, and Dice coefficient d{sub 20} for the (0 − 20)th functional percentile volumes. Results: The best agreement between CT and PET ventilation was obtained comparing standard PET images to the density-scaled HU metric (ρV{sub HU}) with σ{sub m} = 3 mm. This leads to correlation values in the ranges 0.22 ⩽ r ⩽ 0.76 and 0.38 ⩽ d{sub 20} ⩽ 0.68, with r{sup ¯}=0.42±0.16 and d{sup ¯}{sub 20}=0.52±0.09 averaged over the 12 patients. Compared to Jacobian-based metrics, HU-based metrics lead to statistically significant improvements in r{sup ¯} and d{sup ¯}{sub 20} (p < 0.05), with density scaled metrics also showing higher r{sup ¯} than for unscaled versions (p < 0.02). r{sup ¯} and d{sup ¯}{sub 20} were also sensitive to image quality, with statistically significant improvements using standard (as opposed to gated) PET images and with application of median filtering. Conclusions: The use of modified CT ventilation metrics, in conjunction with PET-Galligas and careful application of image filtering has resulted in improved correlation compared to earlier studies using nuclear medicine ventilation. However, CT ventilation and PET-Galligas do not always provide the same functional information. The authors have demonstrated that the agreement can improve for CT ventilation metrics incorporating a tissue density scaling, and also with increasing PET image quality. CT ventilation imaging has clear potential for imaging regional air volume change in the lung, and further development is warranted.« less

  18. Analyzing multimodality tomographic images and associated regions of interest with MIDAS

    NASA Astrophysics Data System (ADS)

    Tsui, Wai-Hon; Rusinek, Henry; Van Gelder, Peter; Lebedev, Sergey

    2001-07-01

    This paper outlines the design and features incorporated in a software package for analyzing multi-modality tomographic images. The package MIDAS has been evolving for the past 15 years and is in wide use by researchers at New York University School of Medicine and a number of collaborating research sites. It was written in the C language and runs on Sun workstations and Intel PCs under the Solaris operating system. A unique strength of the MIDAS package lies in its ability to generate, manipulate and analyze a practically unlimited number of regions of interest (ROIs). These regions are automatically saved in an efficient data structure and linked to associated images. A wide selection of set theoretical (e.g. union, xor, difference), geometrical (e.g. move, rotate) and morphological (grow, peel) operators can be applied to an arbitrary selection of ROIs. ROIs are constructed as a result of image segmentation algorithms incorporated in MIDAS; they also can be drawn interactively. These ROI editing operations can be applied in either 2D or 3D mode. ROI statistics generated by MIDAS include means, standard deviations, centroids and histograms. Other image manipulation tools incorporated in MIDAS are multimodality and within modality coregistration methods (including landmark matching, surface fitting and Woods' correlation methods) and image reformatting methods (using nearest-neighbor, tri-linear or sinc interpolation). Applications of MIDAS include: (1) neuroanatomy research: marking anatomical structures in one orientation, reformatting marks to another orientation; (2) tissue volume measurements: brain structures (PET, MRI, CT), lung nodules (low dose CT), breast density (MRI); (3) analysis of functional (SPECT, PET) experiments by overlaying corresponding structural scans; (4) longitudinal studies: regional measurement of atrophy.

  19. Cirrus cloud model parameterizations: Incorporating realistic ice particle generation

    NASA Technical Reports Server (NTRS)

    Sassen, Kenneth; Dodd, G. C.; Starr, David OC.

    1990-01-01

    Recent cirrus cloud modeling studies have involved the application of a time-dependent, two dimensional Eulerian model, with generalized cloud microphysical parameterizations drawn from experimental findings. For computing the ice versus vapor phase changes, the ice mass content is linked to the maintenance of a relative humidity with respect to ice (RHI) of 105 percent; ice growth occurs both with regard to the introduction of new particles and the growth of existing particles. In a simplified cloud model designed to investigate the basic role of various physical processes in the growth and maintenance of cirrus clouds, these parametric relations are justifiable. In comparison, the one dimensional cloud microphysical model recently applied to evaluating the nucleation and growth of ice crystals in cirrus clouds explicitly treated populations of haze and cloud droplets, and ice crystals. Although these two modeling approaches are clearly incompatible, the goal of the present numerical study is to develop a parametric treatment of new ice particle generation, on the basis of detailed microphysical model findings, for incorporation into improved cirrus growth models. For example, the relation between temperature and the relative humidity required to generate ice crystals from ammonium sulfate haze droplets, whose probability of freezing through the homogeneous nucleation mode are a combined function of time and droplet molality, volume, and temperature. As an example of this approach, the results of cloud microphysical simulations are presented showing the rather narrow domain in the temperature/humidity field where new ice crystals can be generated. The microphysical simulations point out the need for detailed CCN studies at cirrus altitudes and haze droplet measurements within cirrus clouds, but also suggest that a relatively simple treatment of ice particle generation, which includes cloud chemistry, can be incorporated into cirrus cloud growth.

  20. Physiologic Basis for Improved Pulmonary Function after Lung Volume Reduction

    PubMed Central

    Fessler, Henry E.; Scharf, Steven M.; Ingenito, Edward P.; McKenna, Robert J.; Sharafkhaneh, Amir

    2008-01-01

    It is not readily apparent how pulmonary function could be improved by resecting portions of the lung in patients with emphysema. In emphysema, elevation in residual volume relative to total lung capacity reduces forced expiratory volumes, increases inspiratory effort, and impairs inspiratory muscle mechanics. Lung volume reduction surgery (LVRS) better matches the size of the lungs to the size of the thorax containing them. This restores forced expiratory volumes and the mechanical advantage of the inspiratory muscles. In patients with heterogeneous emphysema, LVRS may also allow space occupied by cysts to be reclaimed by more normal lung. Newer, bronchoscopic methods for lung volume reduction seek to achieve similar ends by causing localized atelectasis, but may be hindered by the low collateral resistance of emphysematous lung. Understanding of the mechanisms of improved function after LVRS can help select patients more likely to benefit from this approach. PMID:18453348

  1. Prospective and Episodic Memory in Relation to Hippocampal Volume in Adults with Spina Bifida Myelomeningocele

    PubMed Central

    Treble-Barna, Amery; Juranek, Jenifer; Stuebing, Karla K.; Cirino, Paul T.; Dennis, Maureen; Fletcher, Jack M.

    2014-01-01

    The present study examined prospective and episodic memory in relation to age, functional independence, and hippocampal volume in younger to middle-aged adults with spina bifida myelomeningocele (SBM) and typically developing (TD) adults. Prospective and episodic memory, as well as hippocampal volume, were reduced in adults with SBM relative to TD adults. Neither memory performance nor hippocampal volume showed greater decrements in older adults. Lower hippocampal volume was associated with reduced prospective memory in adults with SBM, and this relation was specific to the hippocampus and not to a contrast structure, the amygdala. Prospective memory mediated the relation between hippocampal volume and functional independence in adults with SBM. The results add to emerging evidence for reduced memory function in adults with SBM, and provide quantitative evidence for compromised hippocampal macrostructure as a neural correlate of reduced memory in this population. PMID:25068670

  2. A bio-telemetric device for measurement of left ventricular pressure-volume loops using the admittance technique in conscious, ambulatory rats.

    PubMed

    Raghavan, Karthik; Feldman, Marc D; Porterfield, John E; Larson, Erik R; Jenkins, J Travis; Escobedo, Daniel; Pearce, John A; Valvano, Jonathan W

    2011-06-01

    This paper presents the design, construction and testing of a device to measure pressure-volume loops in the left ventricle of conscious, ambulatory rats. Pressure is measured with a standard sensor, but volume is derived from data collected from a tetrapolar electrode catheter using a novel admittance technique. There are two main advantages of the admittance technique to measure volume. First, the contribution from the adjacent muscle can be instantaneously removed. Second, the admittance technique incorporates the nonlinear relationship between the electric field generated by the catheter and the blood volume. A low power instrument weighing 27 g was designed, which takes pressure-volume loops every 2 min and runs for 24 h. Pressure-volume data are transmitted wirelessly to a base station. The device was first validated on 13 rats with an acute preparation with 2D echocardiography used to measure true volume. From an accuracy standpoint, the admittance technique is superior to both the conductance technique calibrated with hypertonic saline injections, and calibrated with cuvettes. The device was then tested on six rats with 24 h chronic preparation. Stability of animal preparation and careful calibration are important factors affecting the success of the device.

  3. Bio-telemetric device for measurement of left ventricular pressure-volume loops using the admittance technique in conscious, ambulatory rats

    PubMed Central

    Raghavan, Karthik; Feldman, Marc D; Porterfield, John E; Larson, Erik R; Jenkins, J Travis; Escobedo, Daniel; Pearce, John A

    2011-01-01

    This paper presents the design, construction and testing of a device to measure pressure volume loops in the left ventricle of conscious, ambulatory rats. Pressure is measured with a standard sensor, but volume is derived from data collected from a tetrapolar electrode catheter using a novel admittance technique. There are two main advantages of the admittance technique to measure volume. First, the contribution from the adjacent muscle can be instantaneously removed. Second, the admittance technique incorporates the nonlinear relationship between the electric field generated by the catheter and the blood volume. A low power instrument weighing 27 g was designed, which takes pressure-volume loops every 2 minutes and runs for 24 hours. Pressure-volume data are transmitted wirelessly to a base station. The device was first validated in thirteen rats with an acute preparation with 2-D echocardiography used to measure true volume. From an accuracy standpoint, the admittance technique is superior to both the conductance technique calibrated with hypertonic saline injections, and calibrated with cuvettes. The device was then tested in six rats with a 24-hour chronic preparation. Stability of the animal preparation and careful calibration are important factors affecting the success of the device. PMID:21606560

  4. Simultaneous pressure-volume measurements using optical sensors and MRI for left ventricle function assessment during animal experiment.

    PubMed

    Abi-Abdallah Rodriguez, Dima; Durand, Emmanuel; de Rochefort, Ludovic; Boudjemline, Younes; Mousseaux, Elie

    2015-01-01

    Simultaneous pressure and volume measurements enable the extraction of valuable parameters for left ventricle function assessment. Cardiac MR has proven to be the most accurate method for volume estimation. Nonetheless, measuring pressure simultaneously during MRI acquisitions remains a challenge given the magnetic nature of the widely used pressure transducers. In this study we show the feasibility of simultaneous in vivo pressure-volume acquisitions with MRI using optical pressure sensors. Pressure-volume loops were calculated while inducing three inotropic states in a sheep and functional indices were extracted, using single beat loops, to characterize systolic and diastolic performance. Functional indices evolved as expected in response to positive inotropic stimuli. The end-systolic elastance, representing the contractility index, the diastolic myocardium compliance, and the cardiac work efficiency all increased when inducing inotropic state enhancement. The association of MRI and optical pressure sensors within the left ventricle successfully enabled pressure-volume loop analysis after having respective data simultaneously recorded during the experimentation without the need to move the animal between each inotropic state. Copyright © 2014 IPEM. Published by Elsevier Ltd. All rights reserved.

  5. Comparison of Diaphragmatic Breathing Exercise, Volume and Flow Incentive Spirometry, on Diaphragm Excursion and Pulmonary Function in Patients Undergoing Laparoscopic Surgery: A Randomized Controlled Trial

    PubMed Central

    Anand, R.

    2016-01-01

    Objective. To evaluate the effects of diaphragmatic breathing exercises and flow and volume-oriented incentive spirometry on pulmonary function and diaphragm excursion in patients undergoing laparoscopic abdominal surgery. Methodology. We selected 260 patients posted for laparoscopic abdominal surgery and they were block randomization as follows: 65 patients performed diaphragmatic breathing exercises, 65 patients performed flow incentive spirometry, 65 patients performed volume incentive spirometry, and 65 patients participated as a control group. All of them underwent evaluation of pulmonary function with measurement of Forced Vital Capacity (FVC), Forced Expiratory Volume in the first second (FEV1), Peak Expiratory Flow Rate (PEFR), and diaphragm excursion measurement by ultrasonography before the operation and on the first and second postoperative days. With the level of significance set at p < 0.05. Results. Pulmonary function and diaphragm excursion showed a significant decrease on the first postoperative day in all four groups (p < 0.001) but was evident more in the control group than in the experimental groups. On the second postoperative day pulmonary function (Forced Vital Capacity) and diaphragm excursion were found to be better preserved in volume incentive spirometry and diaphragmatic breathing exercise group than in the flow incentive spirometry group and the control group. Pulmonary function (Forced Vital Capacity) and diaphragm excursion showed statistically significant differences between volume incentive spirometry and diaphragmatic breathing exercise group (p < 0.05) as compared to that flow incentive spirometry group and the control group. Conclusion. Volume incentive spirometry and diaphragmatic breathing exercise can be recommended as an intervention for all patients pre- and postoperatively, over flow-oriented incentive spirometry for the generation and sustenance of pulmonary function and diaphragm excursion in the management of laparoscopic abdominal surgery. PMID:27525116

  6. Comparison of Diaphragmatic Breathing Exercise, Volume and Flow Incentive Spirometry, on Diaphragm Excursion and Pulmonary Function in Patients Undergoing Laparoscopic Surgery: A Randomized Controlled Trial.

    PubMed

    Alaparthi, Gopala Krishna; Augustine, Alfred Joseph; Anand, R; Mahale, Ajith

    2016-01-01

    Objective. To evaluate the effects of diaphragmatic breathing exercises and flow and volume-oriented incentive spirometry on pulmonary function and diaphragm excursion in patients undergoing laparoscopic abdominal surgery. Methodology. We selected 260 patients posted for laparoscopic abdominal surgery and they were block randomization as follows: 65 patients performed diaphragmatic breathing exercises, 65 patients performed flow incentive spirometry, 65 patients performed volume incentive spirometry, and 65 patients participated as a control group. All of them underwent evaluation of pulmonary function with measurement of Forced Vital Capacity (FVC), Forced Expiratory Volume in the first second (FEV1), Peak Expiratory Flow Rate (PEFR), and diaphragm excursion measurement by ultrasonography before the operation and on the first and second postoperative days. With the level of significance set at p < 0.05. Results. Pulmonary function and diaphragm excursion showed a significant decrease on the first postoperative day in all four groups (p < 0.001) but was evident more in the control group than in the experimental groups. On the second postoperative day pulmonary function (Forced Vital Capacity) and diaphragm excursion were found to be better preserved in volume incentive spirometry and diaphragmatic breathing exercise group than in the flow incentive spirometry group and the control group. Pulmonary function (Forced Vital Capacity) and diaphragm excursion showed statistically significant differences between volume incentive spirometry and diaphragmatic breathing exercise group (p < 0.05) as compared to that flow incentive spirometry group and the control group. Conclusion. Volume incentive spirometry and diaphragmatic breathing exercise can be recommended as an intervention for all patients pre- and postoperatively, over flow-oriented incentive spirometry for the generation and sustenance of pulmonary function and diaphragm excursion in the management of laparoscopic abdominal surgery.

  7. Assessment of the relationship between renal volume and renal function after minimally-invasive partial nephrectomy: the role of computed tomography and nuclear renal scan.

    PubMed

    Bertolo, Riccardo; Fiori, Cristian; Piramide, Federico; Amparore, Daniele; Barrera, Monica; Sardo, Diego; Veltri, Andrea; Porpiglia, Francesco

    2018-05-14

    To evaluate the correlation between the loss of renal function as assessed by Tc99MAG-3 renal scan and the loss of renal volume as calculated by volumetric assessment on CT-scan in patients who underwent minimally-invasive partial nephrectomy (PN). PN prospectively-maintained database was retrospectively queried for patients who underwent minimally-invasive PN (2012-2017) for renal mass

  8. [Interpretation and use of routine pulmonary function tests: Spirometry, static lung volumes, lung diffusion, arterial blood gas, methacholine challenge test and 6-minute walk test].

    PubMed

    Bokov, P; Delclaux, C

    2016-02-01

    Resting pulmonary function tests (PFT) include the assessment of ventilatory capacity: spirometry (forced expiratory flows and mobilisable volumes) and static volume assessment, notably using body plethysmography. Spirometry allows the potential definition of obstructive defect, while static volume assessment allows the potential definition of restrictive defect (decrease in total lung capacity) and thoracic hyperinflation (increase in static volumes). It must be kept in mind that this evaluation is incomplete and that an assessment of ventilatory demand is often warranted, especially when facing dyspnoea: evaluation of arterial blood gas (searching for respiratory insufficiency) and measurement of the transfer coefficient of the lung, allowing with the measurement of alveolar volume to calculate the diffusing capacity of the lung for CO (DLCO: assessment of alveolar-capillary wall and capillary blood volume). All these pulmonary function tests have been the subject of an Americano-European Task force (standardisation of lung function testing) published in 2005, and translated in French in 2007. Interpretative strategies for lung function tests have been recommended, which define abnormal lung function tests using the 5th and 95th percentiles of predicted values (lower and upper limits of normal values). Thus, these recommendations need to be implemented in all pulmonary function test units. A methacholine challenge test will only be performed in the presence of an intermediate pre-test probability for asthma (diagnostic uncertainty), which is an infrequent setting. The most convenient exertional test is the 6-minute walk test that allows the assessment of walking performance, the search for arterial desaturation and the quantification of dyspnoea complaint. Copyright © 2015 Société nationale française de médecine interne (SNFMI). Published by Elsevier SAS. All rights reserved.

  9. Impact of Strategically Located White Matter Hyperintensities on Cognition in Memory Clinic Patients with Small Vessel Disease.

    PubMed

    Biesbroek, J Matthijs; Weaver, Nick A; Hilal, Saima; Kuijf, Hugo J; Ikram, Mohammad Kamran; Xu, Xin; Tan, Boon Yeow; Venketasubramanian, Narayanaswamy; Postma, Albert; Biessels, Geert Jan; Chen, Christopher P L H

    2016-01-01

    Studies on the impact of small vessel disease (SVD) on cognition generally focus on white matter hyperintensity (WMH) volume. The extent to which WMH location relates to cognitive performance has received less attention, but is likely to be functionally important. We examined the relation between WMH location and cognition in a memory clinic cohort of patients with sporadic SVD. A total of 167 patients with SVD were recruited from memory clinics. Assumption-free region of interest-based analyses based on major white matter tracts and voxel-wise analyses were used to determine the association between WMH location and executive functioning, visuomotor speed and memory. Region of interest-based analyses showed that WMHs located particularly within the anterior thalamic radiation and forceps minor were inversely associated with both executive functioning and visuomotor speed, independent of total WMH volume. Memory was significantly associated with WMH volume in the forceps minor, independent of total WMH volume. An independent assumption-free voxel-wise analysis identified strategic voxels in these same tracts. Region of interest-based analyses showed that WMH volume within the anterior thalamic radiation explained 6.8% of variance in executive functioning, compared to 3.9% for total WMH volume; WMH volume within the forceps minor explained 4.6% of variance in visuomotor speed and 4.2% of variance in memory, compared to 1.8% and 1.3% respectively for total WMH volume. Our findings identify the anterior thalamic radiation and forceps minor as strategic white matter tracts in which WMHs are most strongly associated with cognitive impairment in memory clinic patients with SVD. WMH volumes in individual tracts explained more variance in cognition than total WMH burden, emphasizing the importance of lesion location when addressing the functional consequences of WMHs.

  10. Inpatient Rehabilitation Volume and Functional Outcomes in Stroke, Lower Extremity Fracture, and Lower Extremity Joint Replacement

    PubMed Central

    Graham, James E.; Deutsch, Anne; O’Connell, Ann A.; Karmarkar, Amol M.; Granger, Carl V.; Ottenbacher, Kenneth J.

    2013-01-01

    Background It is unclear if volume-outcome relationships exist in inpatient rehabilitation. Objectives Assess associations between facility volumes and two patient-centered outcomes in the three most common diagnostic groups in inpatient rehabilitation. Research Design We used hierarchical linear and generalized linear models to analyze administrative assessment data from patients receiving inpatient rehabilitation services for stroke (n=202,423), lower extremity fracture (n=132,194), or lower extremity joint replacement (n=148,068) between 2006 and 2008 in 717 rehabilitation facilities across the U.S. Facilities were assigned to quintiles based on average annual diagnosis-specific patient volumes. Measures Discharge functional status (FIM instrument) and probability of home discharge. Results Facility-level factors accounted for 6–15% of the variance in discharge FIM total scores and 3–5% of the variance in home discharge probability across the 3 diagnostic groups. We used the middle volume quintile (Q3) as the reference group for all analyses and detected small, but statistically significant (p < .01) associations with discharge functional status in all three diagnosis groups. Only the highest volume quintile (Q5) reached statistical significance, displaying higher functional status ratings than Q3 each time. The largest effect was observed in FIM total scores among fracture patients, with only a 3.6-point difference in Q5 and Q3 group means. Volume was not independently related to home discharge. Conclusions Outcome-specific volume effects ranged from small (functional status) to none (home discharge) in all three diagnostic groups. Patients with these conditions can be treated locally rather than at higher-volume regional centers. Further regionalization of inpatient rehabilitation services is not needed for these conditions. PMID:23579350

  11. Inpatient rehabilitation volume and functional outcomes in stroke, lower extremity fracture, and lower extremity joint replacement.

    PubMed

    Graham, James E; Deutsch, Anne; O'Connell, Ann A; Karmarkar, Amol M; Granger, Carl V; Ottenbacher, Kenneth J

    2013-05-01

    It is unclear if volume-outcome relationships exist in inpatient rehabilitation. Assess associations between facility volumes and 2 patient-centered outcomes in the 3 most common diagnostic groups in inpatient rehabilitation. We used hierarchical linear and generalized linear models to analyze administrative assessment data from patients receiving inpatient rehabilitation services for stroke (n=202,423), lower extremity fracture (n=132,194), or lower extremity joint replacement (n=148,068) between 2006 and 2008 in 717 rehabilitation facilities across the United States. Facilities were assigned to quintiles based on average annual diagnosis-specific patient volumes. Discharge functional status (FIM instrument) and probability of home discharge. Facility-level factors accounted for 6%-15% of the variance in discharge FIM total scores and 3%-5% of the variance in home discharge probability across the 3 diagnostic groups. We used the middle volume quintile (Q3) as the reference group for all analyses and detected small, but statistically significant (P<0.01) associations with discharge functional status in all 3 diagnosis groups. Only the highest volume quintile (Q5) reached statistical significance, displaying higher functional status ratings than Q3 each time. The largest effect was observed in FIM total scores among fracture patients, with only a 3.6-point difference in Q5 and Q3 group means. Volume was not independently related to home discharge. Outcome-specific volume effects ranged from small (functional status) to none (home discharge) in all 3 diagnostic groups. Patients with these conditions can be treated locally rather than at higher volume regional centers. Further regionalization of inpatient rehabilitation services is not needed for these conditions.

  12. Advanced On-The-Job Training System: User’s Handbook (Sections 7-9). Volume 2

    DTIC Science & Technology

    1990-05-01

    for iiormat a 12IS Down .Highwa. Suite 1204, ArlingtOn. VA 22202-430, a to the Ufice of Management and Sudket. Pofr Reduction Prolect (07040 10...the various training levels (trainee, supervisor, training manager , etc.) can use the AOTS functions to perform their on-the-job training (OJT...and reviewing data, as well as trainee and trainer/evaluator functions. Volume III explains OJT functions for supervisors and managers , and Volume IV

  13. Influence of the volume and density functions within geometric models for estimating trunk inertial parameters.

    PubMed

    Wicke, Jason; Dumas, Genevieve A

    2010-02-01

    The geometric method combines a volume and a density function to estimate body segment parameters and has the best opportunity for developing the most accurate models. In the trunk, there are many different tissues that greatly differ in density (e.g., bone versus lung). Thus, the density function for the trunk must be particularly sensitive to capture this diversity, such that accurate inertial estimates are possible. Three different models were used to test this hypothesis by estimating trunk inertial parameters of 25 female and 24 male college-aged participants. The outcome of this study indicates that the inertial estimates for the upper and lower trunk are most sensitive to the volume function and not very sensitive to the density function. Although it appears that the uniform density function has a greater influence on inertial estimates in the lower trunk region than in the upper trunk region, this is likely due to the (overestimated) density value used. When geometric models are used to estimate body segment parameters, care must be taken in choosing a model that can accurately estimate segment volumes. Researchers wanting to develop accurate geometric models should focus on the volume function, especially in unique populations (e.g., pregnant or obese individuals).

  14. Regional frontal gray matter volume associated with executive function capacity as a risk factor for vehicle crashes in normal aging adults.

    PubMed

    Sakai, Hiroyuki; Takahara, Miwa; Honjo, Naomi F; Doi, Shun'ichi; Sadato, Norihiro; Uchiyama, Yuji

    2012-01-01

    Although low executive functioning is a risk factor for vehicle crashes among elderly drivers, the neural basis of individual differences in this cognitive ability remains largely unknown. Here we aimed to examine regional frontal gray matter volume associated with executive functioning in normal aging individuals, using voxel-based morphometry (VBM). To this end, 39 community-dwelling elderly volunteers who drove a car on a daily basis participated in structural magnetic resonance imaging, and completed two questionnaires concerning executive functioning and risky driving tendencies in daily living. Consequently, we found that participants with low executive function capacity were prone to risky driving. Furthermore, VBM analysis revealed that lower executive function capacity was associated with smaller gray matter volume in the supplementary motor area (SMA). Thus, the current data suggest that SMA volume is a reliable predictor of individual differences in executive function capacity as a risk factor for vehicle crashes among elderly persons. The implication of our results is that regional frontal gray matter volume might underlie the variation in driving tendencies among elderly drivers. Therefore, detailed driving behavior assessments might be able to detect early neurodegenerative changes in the frontal lobe in normal aging adults.

  15. Prediction of forced expiratory volume in pulmonary function test using radial basis neural networks and k-means clustering.

    PubMed

    Manoharan, Sujatha C; Ramakrishnan, Swaminathan

    2009-10-01

    In this work, prediction of forced expiratory volume in pulmonary function test, carried out using spirometry and neural networks is presented. The pulmonary function data were recorded from volunteers using commercial available flow volume spirometer in standard acquisition protocol. The Radial Basis Function neural networks were used to predict forced expiratory volume in 1 s (FEV1) from the recorded flow volume curves. The optimal centres of the hidden layer of radial basis function were determined by k-means clustering algorithm. The performance of the neural network model was evaluated by computing their prediction error statistics of average value, standard deviation, root mean square and their correlation with the true data for normal, restrictive and obstructive cases. Results show that the adopted neural networks are capable of predicting FEV1 in both normal and abnormal cases. Prediction accuracy was more in obstructive abnormality when compared to restrictive cases. It appears that this method of assessment is useful in diagnosing the pulmonary abnormalities with incomplete data and data with poor recording.

  16. Comparison of Rectal and Esophageal Sensitivity in Women With Functional Heartburn.

    PubMed

    Freede, Margaret; Leasure, A Renee; Proskin, Howard M; Hatch, Daniel; Edwards, Karethy; Pascucci, MaryAnn; Smith, Patsy R

    2016-01-01

    This study tested the primary hypothesis that there is a correlation of maximum pain threshold (MPT) in the esophagus and rectum in persons with functional heartburn. Secondary aims evaluated correlations with initial perception threshold (IPT) and pain threshold (PT). This study explored objective sensory endpoints of IPT, PT, and MPT in the esophagus and rectum of 14 females with functional heartburn to determine whether visceral hypersensitivity is generalized or organ-specific. Data on volume and pressure measurements at IPT, PT, and MPT with esophageal and rectal barostat distention were collected. The relationship of sensation and pain to volume, pressure, and compliance was analyzed. Esophageal and rectal IPT balloon volume scores were highly and significantly correlated (r = .61, p = .02). Esophageal and rectal PT balloon volume scores were highly and significantly correlated (r = .6, p = .02). Esophageal and rectal MPT balloon volume scores were not correlated (r = .35, p = .26). The correlation of visceral sensitivity in the esophagus and rectum in persons with functional heartburn supports the hypothesis that visceral sensory changes in functional gastrointestinal disorders are not organ specific.

  17. Childhood-Onset Asthma in Smokers. Association between CT Measures of Airway Size, Lung Function, and Chronic Airflow Obstruction

    PubMed Central

    Hardin, Megan E.; Come, Carolyn E.; San José Estépar, Raúl; Ross, James C.; Kurugol, Sila; Okajima, Yuka; Han, MeiLan K.; Kim, Victor; Ramsdell, Joe; Silverman, Edwin K.; Crapo, James D.; Lynch, David A.; Make, Barry; Barr, R. Graham; Hersh, Craig P.; Washko, George R.

    2014-01-01

    Rationale and Objectives: Asthma is associated with chronic airflow obstruction. Our goal was to assess the association of computed tomographic measures of airway wall volume and lumen volume with the FEV1 and chronic airflow obstruction in smokers with childhood-onset asthma. Methods: We analyzed clinical, lung function, and volumetric computed tomographic airway volume data from 7,266 smokers, including 590 with childhood-onset asthma. Small wall volume and small lumen volume of segmental airways were defined as measures 1 SD below the mean. We assessed the association between small wall volume, small lumen volume, FEV1, and chronic airflow obstruction (post-bronchodilator FEV1/FVC ratio < 0.7) using linear and logistic models. Measurements and Main Results: Compared with subjects without childhood-onset asthma, those with childhood-onset asthma had smaller wall volume and lumen volume (P < 0.0001) of segmental airways. Among subjects with childhood-onset asthma, those with the smallest wall volume and lumen volume had the lowest FEV1 and greatest odds of chronic airflow obstruction. A similar tendency was seen in those without childhood-onset asthma. When comparing these two groups, both small wall volume and small lumen volume were more strongly associated with FEV1 and chronic airflow obstruction among subjects with childhood-asthma in multivariate models. Conclusion: In smokers with childhood-onset asthma, smaller airways are associated with reduced lung function and chronic airflow obstruction. Clinical trial registered with www.clinicaltrials.gov (NCT00608764). PMID:25296268

  18. Childhood-onset asthma in smokers. association between CT measures of airway size, lung function, and chronic airflow obstruction.

    PubMed

    Diaz, Alejandro A; Hardin, Megan E; Come, Carolyn E; San José Estépar, Raúl; Ross, James C; Kurugol, Sila; Okajima, Yuka; Han, MeiLan K; Kim, Victor; Ramsdell, Joe; Silverman, Edwin K; Crapo, James D; Lynch, David A; Make, Barry; Barr, R Graham; Hersh, Craig P; Washko, George R

    2014-11-01

    Asthma is associated with chronic airflow obstruction. Our goal was to assess the association of computed tomographic measures of airway wall volume and lumen volume with the FEV1 and chronic airflow obstruction in smokers with childhood-onset asthma. We analyzed clinical, lung function, and volumetric computed tomographic airway volume data from 7,266 smokers, including 590 with childhood-onset asthma. Small wall volume and small lumen volume of segmental airways were defined as measures 1 SD below the mean. We assessed the association between small wall volume, small lumen volume, FEV1, and chronic airflow obstruction (post-bronchodilator FEV1/FVC ratio < 0.7) using linear and logistic models. Compared with subjects without childhood-onset asthma, those with childhood-onset asthma had smaller wall volume and lumen volume (P < 0.0001) of segmental airways. Among subjects with childhood-onset asthma, those with the smallest wall volume and lumen volume had the lowest FEV1 and greatest odds of chronic airflow obstruction. A similar tendency was seen in those without childhood-onset asthma. When comparing these two groups, both small wall volume and small lumen volume were more strongly associated with FEV1 and chronic airflow obstruction among subjects with childhood-asthma in multivariate models. In smokers with childhood-onset asthma, smaller airways are associated with reduced lung function and chronic airflow obstruction. Clinical trial registered with www.clinicaltrials.gov (NCT00608764).

  19. Lunar Architecture Team - Phase 2 Habitat Volume Estimation: "Caution When Using Analogs"

    NASA Technical Reports Server (NTRS)

    Rudisill, Marianne; Howard, Robert; Griffin, Brand; Green, Jennifer; Toups, Larry; Kennedy, Kriss

    2008-01-01

    The lunar surface habitat will serve as the astronauts' home on the moon, providing a pressurized facility for all crew living functions and serving as the primary location for a number of crew work functions. Adequate volume is required for each of these functions in addition to that devoted to housing the habitat systems and crew consumables. The time constraints of the LAT-2 schedule precluded the Habitation Team from conducting a complete "bottoms-up" design of a lunar surface habitation system from which to derive true volumetric requirements. The objective of this analysis was to quickly derive an estimated total pressurized volume and pressurized net habitable volume per crewmember for a lunar surface habitat, using a principled, methodical approach in the absence of a detailed design. Five "heuristic methods" were used: historical spacecraft volumes, human/spacecraft integration standards and design guidance, Earth-based analogs, parametric "sizing" tools, and conceptual point designs. Estimates for total pressurized volume, total habitable volume, and volume per crewmember were derived using these methods. All method were found to provide some basis for volume estimates, but values were highly variable across a wide range, with no obvious convergence of values. Best current assumptions for required crew volume were provided as a range. Results of these analyses and future work are discussed.

  20. The structural studies of vanadium substituted lithium-bismuth-boro-tellurite glass

    NASA Astrophysics Data System (ADS)

    Madhu, A.; Eraiah, B.

    2018-05-01

    The structural studies of vanadium substituted lithium-bismuth-boro-tellurite glass is successfully prepared and certain analysis like XRD,FTIR,DTA/TGA with density, molar volume are done. The amorphous phase has been identified based on X-ray diffraction analysis. The vanadium oxide plays the role as a glass-modifier and influences on BO3 ↔ BO4 conversion. The observed nonlinear variation in Tg with vanadium oxide increase, it reflects structural changes. The nonlinear variation of density and molar volume can be attributed to vanadium oxide incorporation have increased the number of Non-bridging oxygen (NBO'S).

Top