Sample records for function insulin sensitivity

  1. Increased lipolysis, diminished adipose tissue insulin sensitivity and impaired B-cell function relative to adipose tissue insulin sensitivity in obese youth with impaired glucose tolerance (IGT)

    USDA-ARS?s Scientific Manuscript database

    Despite evidence of insulin resistance and B-cell dysfunction in glucose metabolism in youth with prediabetes, the relationship between adipose tissue insulin sensitivity (ATIS) and B-cell function remains unknown. We investigated whole-body lipolysis, ATIS and B-cell function relative to ATIS [adip...

  2. Measuring beta-cell function relative to insulin sensitivity in youth: Does the hyperglycemic clamp suffice?

    USDA-ARS?s Scientific Manuscript database

    To compare beta-cell function relative to insulin sensitivity, disposition index (DI), calculated from two clamps (2cDI, insulin sensitivity from the hyperinsulinemic-euglycemic clamp and first-phase insulin from the hyperglycemic clamp) with the DI calculated from the hyperglycemic clamp alone (hcD...

  3. Intranasal insulin enhances brain functional connectivity mediating the relationship between adiposity and subjective feeling of hunger.

    PubMed

    Kullmann, Stephanie; Heni, Martin; Veit, Ralf; Scheffler, Klaus; Machann, Jürgen; Häring, Hans-Ulrich; Fritsche, Andreas; Preissl, Hubert

    2017-05-09

    Brain insulin sensitivity is an important link between metabolism and cognitive dysfunction. Intranasal insulin is a promising tool to investigate central insulin action in humans. We evaluated the acute effects of 160 U intranasal insulin on resting-state brain functional connectivity in healthy young adults. Twenty-five lean and twenty-two overweight and obese participants underwent functional magnetic resonance imaging, on two separate days, before and after intranasal insulin or placebo application. Insulin compared to placebo administration resulted in increased functional connectivity between the prefrontal regions of the default-mode network and the hippocampus as well as the hypothalamus. The change in hippocampal functional connectivity significantly correlated with visceral adipose tissue and the change in subjective feeling of hunger after intranasal insulin. Mediation analysis revealed that the intranasal insulin induced hippocampal functional connectivity increase served as a mediator, suppressing the relationship between visceral adipose tissue and hunger. The insulin-induced hypothalamic functional connectivity change showed a significant interaction with peripheral insulin sensitivity. Only participants with high peripheral insulin sensitivity showed a boost in hypothalamic functional connectivity. Hence, brain insulin action may regulate eating behavior and facilitate weight loss by modifying brain functional connectivity within and between cognitive and homeostatic brain regions.

  4. A model to estimate insulin sensitivity in dairy cows.

    PubMed

    Holtenius, Paul; Holtenius, Kjell

    2007-10-11

    Impairment of the insulin regulation of energy metabolism is considered to be an etiologic key component for metabolic disturbances. Methods for studies of insulin sensitivity thus are highly topical. There are clear indications that reduced insulin sensitivity contributes to the metabolic disturbances that occurs especially among obese lactating cows. Direct measurements of insulin sensitivity are laborious and not suitable for epidemiological studies. We have therefore adopted an indirect method originally developed for humans to estimate insulin sensitivity in dairy cows. The method, "Revised Quantitative Insulin Sensitivity Check Index" (RQUICKI) is based on plasma concentrations of glucose, insulin and free fatty acids (FFA) and it generates good and linear correlations with different estimates of insulin sensitivity in human populations. We hypothesized that the RQUICKI method could be used as an index of insulin function in lactating dairy cows. We calculated RQUICKI in 237 apparently healthy dairy cows from 20 commercial herds. All cows included were in their first 15 weeks of lactation. RQUICKI was not affected by the homeorhetic adaptations in energy metabolism that occurred during the first 15 weeks of lactation. In a cohort of 24 experimental cows fed in order to obtain different body condition at parturition RQUICKI was lower in early lactation in cows with a high body condition score suggesting disturbed insulin function in obese cows. The results indicate that RQUICKI might be used to identify lactating cows with disturbed insulin function.

  5. Relationship between insulin sensitivity index and cognitive function in diet-induced insulin resistant rats.

    PubMed

    Chen, Sisi; Xie, Hao; Wu, Jing; Hong, Hao; Jin, Jianwen; Fang, Jinbo; Huang, Ji; Fu, Ying Zhou; Ji, Hui; Li, Yong Qi; Long, Yan; Xia, Yuan Zheng

    2009-06-01

    Clinical and animal studies have revealed significant cognitive impairment in type II diabetic subjects. However, whether there is a relationship between insulin resistance and cognitive function is poorly understood. In the present study, we used a high fat diet to induce insulin resistance (IR) in rats, insulin sensitivity index (ISI) (= FINS x FPG/22.5) to assess the extent of insulin resistance and the Morris Water Maze Task to judge cognitive function. The relationship between insulin sensitivity index and cognitive function was determined by analysing the correlation between ISI and the time rat spent in targeted quadrant, as well as between ISI and the times the rat swam across the very point where a platform was previously placed, using Pearson's method. Perfect negative correlation between ISI and cognitive function existed when ISI fell within a certain range, which indicates that insulin resistance is associated with cognitive function impairment in some cases where ISI might be an indicator.

  6. Compensation for obesity-induced insulin resistance in dogs: assessment of the effects of leptin, adiponectin, and glucagon-like peptide-1 using path analysis.

    PubMed

    Verkest, K R; Fleeman, L M; Morton, J M; Ishioka, K; Rand, J S

    2011-07-01

    The hormonal mediators of obesity-induced insulin resistance and compensatory hyperinsulinemia in dogs have not been identified. Plasma samples were obtained after a 24-h fast from 104 client-owned lean, overweight, and obese dogs. Plasma glucose and insulin concentrations were used to calculate insulin sensitivity and β-cell function with the use of the homeostasis model assessment (HOMA(insulin sensitivity) and HOMA(β-cell function), respectively). Path analysis with multivariable linear regression was used to identify whether fasting plasma leptin, adiponectin, or glucagon-like peptide-1 concentrations were associated with adiposity, insulin sensitivity, and basal insulin secretion. None of the dogs were hyperglycemic. In the final path model, adiposity was positively associated with leptin (P < 0.01) and glucagon-like peptide-1 (P = 0.04) concentrations. No significant total effect of adiposity on adiponectin in dogs (P = 0.24) was observed. If there is a direct effect of leptin on adiponectin, then our results indicate that this is a positive relationship, which at least partly counters a negative direct relationship between adiposity and adiponectin. Fasting plasma leptin concentration was directly negatively associated with fasting insulin sensitivity (P = 0.01) and positively associated with β-cell function (P < 0.01), but no direct association was observed between adiponectin concentration and either insulin sensitivity or β-cell function (P = 0.42 and 0.11, respectively). We conclude that dogs compensate effectively for obesity-induced insulin resistance. Fasting plasma leptin concentrations appear to be associated with obesity-associated changes in insulin sensitivity and compensatory hyperinsulinemia in naturally occurring obese dogs. Adiponectin does not appear to be involved in the pathophysiology of obesity-associated changes in insulin sensitivity. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Plasma serpinB1 is related to insulin sensitivity but not pancreatic β-Cell function in non-diabetic adults.

    PubMed

    Glicksman, Michael; Asthana, Asha; Abel, Brent S; Walter, Mary F; Skarulis, Monica C; Muniyappa, Ranganath

    2017-03-01

    Pancreatic β -cell dysfunction because of reduced β -cell mass and function is a primary determinant in the progression of diabetes. Increase in β -cell mass and compensatory hyperinsulinaemia is frequently associated with insulin-resistant states. Although the humoral factors mediating this compensatory response are unknown, serpinB1, a protease inhibitor, has recently been proposed to be one such factor. In this study, we examine the relationships between plasma serpinB1, insulin sensitivity, and pancreatic β -cell function in non-diabetic individuals. 117 subjects (women, n  = 50, men, n  = 67; age= 37.6 ± 10.8; BMI=31.1 ± 7.7 kg/m 2 ) underwent an insulin-modified frequently sampled intravenous glucose tolerance test (FSIVGTT) at the NIH Clinical Research Center. Acute insulin response (AIR) and insulin sensitivity index (SI) were obtained from the FSIVGTT with MINMOD analysis. The Quantitative Insulin Sensitivity Check Index (QUICKI) was calculated from fasting insulin and glucose values. Plasma serpinB1 levels were measured using an ELISA assay. Simple linear correlation analyses were performed to evaluate the relationship between serpinB1 and measures of insulin sensitivity and β -cell function. Circulating serpinB1 levels were unrelated to age, sex, race, BMI, or percent body fat. SI but not AIR significantly correlated with circulating serpinB1 levels ( r  = 0.23, P  < 0.05). QUICKI tended to positively correlate with serpinB1 ( r  = 0.16, P  = 0.09). Circulating serpinB1 is directly associated with insulin sensitivity but not β -cell function in non-diabetic adults. Whether this modest association plays a role in insulin sensitivity in humans remains to be clarified. Published [2017]. This article is a U.S. Government work and is in the public domain in the USA.

  8. Insulin Sensitivity and Inflammation Mediate the Impact of Fitness on Cerebrovascular Health in Adolescents.

    PubMed

    Yau, Po Lai; Ross, Naima; Tirsi, Andrew; Arif, Arslan; Ozinci, Zeynep; Convit, Antonio

    2017-06-01

    To investigate in adolescents the relationships between retinal vessel diameter, physical fitness, insulin sensitivity, and systemic inflammation. We evaluated 157 adolescents, 112 with excessive weight and 45 lean, all without type 2 diabetes mellitus. All received detailed evaluations, including measurements of retinal vessel diameter, insulin sensitivity, levels of inflammation, and physical fitness. Overweight/obese adolescents had significantly narrower retinal arteriolar and wider venular diameters, significantly lower insulin sensitivity, and physical fitness. They also had decreased levels of anti-inflammatory and increased levels of proinflammatory markers as well as an overall higher inflammation balance score. Fitness was associated with larger retinal arteriolar and narrower venular diameters and these relationships were mediated by insulin sensitivity. We demonstrate that inflammation also mediates the relationship between fitness and retinal venular, but not arterial diameter; insulin sensitivity and inflammation balance score jointly mediate this relationship with little overlap in their effects. Increasing fitness and insulin sensitivity and reducing inflammation among adolescents carrying excess weight may improve microvascular integrity. Interventions to improve physical fitness and insulin function and reduce inflammation in adolescents, a group likely to benefit from such interventions, may reduce not only cardiovascular disease in middle age, but also improve cerebrovascular function later in life.

  9. The Shape of the Glucose Response Curve During an Oral Glucose Tolerance Test Heralds Biomarkers of Type 2 Diabetes Risk in Obese Youth

    PubMed Central

    Kim, Joon Young; Michaliszyn, Sara F.; Nasr, Alexis; Lee, SoJung; Tfayli, Hala; Hannon, Tamara; Hughan, Kara S.; Bacha, Fida; Arslanian, Silva

    2016-01-01

    OBJECTIVE The shape of the glucose response curve during an oral glucose tolerance test (OGTT), monophasic versus biphasic, identifies physiologically distinct groups of individuals with differences in insulin secretion and sensitivity. We aimed to verify the value of the OGTT-glucose response curve against more sensitive clamp-measured biomarkers of type 2 diabetes risk, and to examine incretin/pancreatic hormones and free fatty acid associations in these curve phenotypes in obese adolescents without diabetes. RESEARCH DESIGN AND METHODS A total of 277 obese adolescents without diabetes completed a 2-h OGTT and were categorized to either a monophasic or a biphasic group. Body composition, abdominal adipose tissue, OGTT-based metabolic parameters, and incretin/pancreatic hormone levels were examined. A subset of 106 participants had both hyperinsulinemic-euglycemic and hyperglycemic clamps to measure in vivo insulin sensitivity, insulin secretion, and β-cell function relative to insulin sensitivity. RESULTS Despite similar fasting and 2-h glucose and insulin concentrations, the monophasic group had significantly higher glucose, insulin, C-peptide, and free fatty acid OGTT areas under the curve compared with the biphasic group, with no differences in levels of glucagon, total glucagon-like peptide 1, glucose-dependent insulinotropic polypeptide, and pancreatic polypeptide. Furthermore, the monophasic group had significantly lower in vivo hepatic and peripheral insulin sensitivity, lack of compensatory first and second phase insulin secretion, and impaired β-cell function relative to insulin sensitivity. CONCLUSIONS In obese youth without diabetes, the risk imparted by the monophasic glucose curve compared with biphasic glucose curve, independent of fasting and 2-h glucose and insulin concentrations, is reflected in lower insulin sensitivity and poorer β-cell function, which are two major pathophysiological biomarkers of type 2 diabetes in youth. PMID:27293201

  10. Loss-of-function myostatin mutation increases insulin sensitivity and browning of white fat in Meishan pigs.

    PubMed

    Cai, Chunbo; Qian, Lili; Jiang, Shengwang; Sun, Youde; Wang, Qingqing; Ma, Dezun; Xiao, Gaojun; Li, Biao; Xie, Shanshan; Gao, Ting; Chen, Yaoxing; Liu, Jie; An, Xiaorong; Cui, Wentao; Li, Kui

    2017-05-23

    Myostatin-deficient mice showed a remarkable hypertrophy of skeletal muscle, with a decreased fat mass and enhanced insulin sensitivity. Currently, it is unclear if the inhibition of myostatin could be used as an approach to treat human obesity and insulin resistance. In this study, we investigated if the inhibition of porcine myostatin has any effect on fat deposition and insulin sensitivity using genetically engineered Meishan pigs containing a myostatin loss-of-function mutation (Mstn -/- ). Our results indicated that, when compared with wild-type pigs, the amount of subcutaneous fat and leaf fat of Mstn -/- pigs were significantly decreased mainly due to the browning of subcutaneous adipose tissue. Additionally, the serum insulin level decreased and the insulin sensitivity increased significantly in Mstn -/- pigs. Moreover, we found a significant increase in levels of insulin receptor and insulin receptor substrate proteins in skeletal muscle of Mstn -/- pigs, which then activating the insulin signaling pathway. Irisin-mediated regulation is not the only pathway for the activation of insulin signal in Mstn -/- skeletal muscle. This study provides valuable insight for the treatment of human obesity and diabetes mellitus.

  11. Value of the intravenous and oral glucose tolerance tests for detecting subtle impairments in insulin sensitivity and beta-cell function in former gestational diabetes.

    PubMed

    Tura, A; Mari, A; Prikoszovich, T; Pacini, G; Kautzky-Willer, A

    2008-08-01

    Women with former gestational diabetes mellitus (fGDM) often show defects in both insulin sensitivity and beta-cell function but it is not clear which defect plays the major role or which appears first. This might be because fGDM women are often studied as a unique group and not divided according to their glucose tolerance. Different findings might also be the result of using different tests. Our aim was to study insulin sensitivity and beta-cell function with two independent glucose tolerance tests in fGDM women divided according to their glucose tolerance. A total of 108 fGDM women divided into normal glucose tolerance (IGT; N = 82), impaired glucose metabolism (IGM; N = 20) and overt type 2 diabetes (T2DM; N = 6) groups, and 38 healthy control women (CNT) underwent intravenous (IVGTT) and oral glucose tolerance tests (OGTT). Measurements Insulin sensitivity and beta-cell function were assessed by both the IVGTT and the OGTT. Both tests revealed impaired insulin sensitivity in the normotolerant group compared to controls (IVGTT: 4.2 +/- 0.3 vs. 5.4 +/- 0.4 10(-4) min(-1) (microU/ml)(-1); OGTT: 440 +/- 7 vs. 472 +/- 9 ml min(-1) m(-2)). Conversely, no difference was found in beta-cell function from the IVGTT. However, some parameters of beta-cell function by OGTT modelling analysis were found to be impaired: glucose sensitivity (106 +/- 5 vs. 124 +/- 7 pmol min(-1) m(-2) mm(-1), P = 0.0407) and insulin secretion at 5 mm glucose (168 +/- 9 vs. 206 +/- 10 pmol min(-1) m(-2), P = 0.003). Both insulin sensitivity and beta-cell function are impaired in normotolerant fGDM but the subtle defect in beta-cell function is disclosed only by OGTT modelling analysis.

  12. Insulin sensitivity and cardiac autonomic function in young male practitioners of yoga.

    PubMed

    Chaya, M S; Ramakrishnan, G; Shastry, S; Kishore, R P; Nagendra, H; Nagarathna, R; Raj, T; Thomas, T; Vaz, M; Kurpad, A V

    2008-01-01

    While yoga is thought to reduce the risk of chronic non-communicable diseases such as diabetes, there are no studies on insulin sensitivity in long term practitioners of yoga. We assessed insulin sensitivity and cardiac autonomic function in long term practitioners of yoga. Fifteen healthy, young, male practitioners of yoga were compared with 15 young, healthy males who did not practice yoga matched for body-mass index. Fasting insulin sensitivity was measured in the fasting state by the hyperinsulinaemic-euglycaemic clamp. There were no significant differences between the groups in their anthropometry or body composition. However, the fasting plasma insulin was significantly lower in the yoga group. The yoga group was also more insulin sensitive (yoga 7.82 [2.29] v. control 4.86 [11.97] (mg/[kg.min])/(microU/ml), p < 0.001). While the body weight and waist circumference were negatively correlated with glucose disposal rate in the controls, there were no similar correlations in the yoga group. The yoga group had significantly higher low-frequency power and lower normalized high-frequency power. Long term yoga practice (for 1 year or more) is associated with increased insulin sensitivity and attenuates the negative relationship between body weight or waist circumference and insulin sensitivity.

  13. Distinctive postprandial modulation of beta cell function and insulin sensitivity by dietary fats: monounsaturated compared with saturated fatty acids.

    PubMed

    López, Sergio; Bermúdez, Beatriz; Pacheco, Yolanda M; Villar, José; Abia, Rocío; Muriana, Francisco J G

    2008-09-01

    Exaggerated and prolonged postprandial triglyceride concentrations are associated with numerous conditions related to insulin resistance, including obesity, type 2 diabetes, and the metabolic syndrome. Although dietary fats profoundly affect postprandial hypertriglyceridemia, limited data exist regarding their effects on postprandial glucose homeostasis. We sought to determine whether postprandial glucose homeostasis is modulated distinctly by high-fat meals enriched in saturated fatty acids (SFAs) or monounsaturated fatty acids (MUFAs). Normotriglyceridemic subjects with normal fasting glucose and normal glucose tolerance were studied. Blood samples were collected over the 8 h after ingestion of a glucose and triglyceride tolerance test meal (GTTTM) in which a panel of dietary fats with a gradual change in the ratio of MUFAs to SFAs was included. On 5 separate occasions, basal and postprandial concentrations of glucose, insulin, triglyceride, and free fatty acids (FFAs) were measured. High-fat meals increased the postprandial concentrations of insulin, triglycerides, and FFAs, and they enhanced postprandial beta cell function while decreasing insulin sensitivity (as assessed with different model-based and empirical indexes: insulinogenic index, insulinogenic index/homeostasis model assessment of insulin resistance, area under the curve for insulin/area under the curve for glucose, homeostasis model assessment for beta cell function, and GTTTM-determined insulin sensitivity, oral glucose insulin sensitivity, and the postprandial Belfiore indexes for glycemia and blood FFAs. These effects were significantly ameliorated, in a direct linear relation, when MUFAs were substituted for SFAs. The data presented here suggest that beta cell function and insulin sensitivity progressively improve in the postprandial state as the proportion of MUFAs with respect to SFAs in dietary fats increases.

  14. Effects of Combined Calcium and Vitamin D Supplementation on Insulin Secretion, Insulin Sensitivity and β-Cell Function in Multi-Ethnic Vitamin D-Deficient Adults at Risk for Type 2 Diabetes: A Pilot Randomized, Placebo-Controlled Trial

    PubMed Central

    Gagnon, Claudia; Daly, Robin M.; Carpentier, André; Lu, Zhong X.; Shore-Lorenti, Catherine; Sikaris, Ken; Jean, Sonia; Ebeling, Peter R.

    2014-01-01

    Objectives To examine whether combined vitamin D and calcium supplementation improves insulin sensitivity, insulin secretion, β-cell function, inflammation and metabolic markers. Design 6-month randomized, placebo-controlled trial. Participants Ninety-five adults with serum 25-hydroxyvitamin D [25(OH)D] ≤55 nmol/L at risk of type 2 diabetes (with prediabetes or an AUSDRISK score ≥15) were randomized. Analyses included participants who completed the baseline and final visits (treatment n = 35; placebo n = 45). Intervention Daily calcium carbonate (1,200 mg) and cholecalciferol [2,000–6,000 IU to target 25(OH)D >75 nmol/L] or matching placebos for 6 months. Measurements Insulin sensitivity (HOMA2%S, Matsuda index), insulin secretion (insulinogenic index, area under the curve (AUC) for C-peptide) and β-cell function (Matsuda index x AUC for C-peptide) derived from a 75 g 2-h OGTT; anthropometry; blood pressure; lipid profile; hs-CRP; TNF-α; IL-6; adiponectin; total and undercarboxylated osteocalcin. Results Participants were middle-aged adults (mean age 54 years; 69% Europid) at risk of type 2 diabetes (48% with prediabetes). Compliance was >80% for calcium and vitamin D. Mean serum 25(OH)D concentration increased from 48 to 95 nmol/L in the treatment group (91% achieved >75 nmol/L), but remained unchanged in controls. There were no significant changes in insulin sensitivity, insulin secretion and β-cell function, or in inflammatory and metabolic markers between or within the groups, before or after adjustment for potential confounders including waist circumference and season of recruitment. In a post hoc analysis restricted to participants with prediabetes, a significant beneficial effect of vitamin D and calcium supplementation on insulin sensitivity (HOMA%S and Matsuda) was observed. Conclusions Daily vitamin D and calcium supplementation for 6 months may not change OGTT-derived measures of insulin sensitivity, insulin secretion and β-cell function in multi-ethnic adults with low vitamin D status at risk of type 2 diabetes. However, in participants with prediabetes, supplementation with vitamin D and calcium may improve insulin sensitivity. Trial Registration Australian New Zealand Clinical Trials Registry ACTRN12609000043235 PMID:25299668

  15. Insulin acutely improves mitochondrial function of rat and human skeletal muscle by increasing coupling efficiency of oxidative phosphorylation.

    PubMed

    Nisr, Raid B; Affourtit, Charles

    2014-02-01

    Insulin is essential for the regulation of fuel metabolism and triggers the uptake of glucose by skeletal muscle. The imported glucose is either stored or broken down, as insulin stimulates glycogenesis and ATP synthesis. The mechanism by which ATP production is increased is incompletely understood at present and, generally, relatively little functional information is available on the effect of insulin on mitochondrial function. In this paper we have exploited extracellular flux technology to investigate insulin effects on the bioenergetics of rat (L6) and human skeletal muscle myoblasts and myotubes. We demonstrate that a 20-min insulin exposure significantly increases (i) the cell respiratory control ratio, (ii) the coupling efficiency of oxidative phosphorylation, and (iii) the glucose sensitivity of anaerobic glycolysis. The improvement of mitochondrial function is explained by an insulin-induced immediate decrease of mitochondrial proton leak. Palmitate exposure annuls the beneficial mitochondrial effects of insulin. Our data improve the mechanistic understanding of insulin-stimulated ATP synthesis, and reveal a hitherto undisclosed insulin sensitivity of cellular bioenergetics that suggests a novel way of detecting insulin responsiveness of cells. © 2013.

  16. Insulin acutely improves mitochondrial function of rat and human skeletal muscle by increasing coupling efficiency of oxidative phosphorylation☆

    PubMed Central

    Nisr, Raid B.; Affourtit, Charles

    2014-01-01

    Insulin is essential for the regulation of fuel metabolism and triggers the uptake of glucose by skeletal muscle. The imported glucose is either stored or broken down, as insulin stimulates glycogenesis and ATP synthesis. The mechanism by which ATP production is increased is incompletely understood at present and, generally, relatively little functional information is available on the effect of insulin on mitochondrial function. In this paper we have exploited extracellular flux technology to investigate insulin effects on the bioenergetics of rat (L6) and human skeletal muscle myoblasts and myotubes. We demonstrate that a 20-min insulin exposure significantly increases (i) the cell respiratory control ratio, (ii) the coupling efficiency of oxidative phosphorylation, and (iii) the glucose sensitivity of anaerobic glycolysis. The improvement of mitochondrial function is explained by an insulin-induced immediate decrease of mitochondrial proton leak. Palmitate exposure annuls the beneficial mitochondrial effects of insulin. Our data improve the mechanistic understanding of insulin-stimulated ATP synthesis, and reveal a hitherto undisclosed insulin sensitivity of cellular bioenergetics that suggests a novel way of detecting insulin responsiveness of cells. PMID:24212054

  17. Developmental Programming: Impact of Gestational Steroid and Metabolic Milieus on Mediators of Insulin Sensitivity in Prenatal Testosterone-Treated Female Sheep.

    PubMed

    Puttabyatappa, Muraly; Andriessen, Victoria; Mesquitta, Makeda; Zeng, Lixia; Pennathur, Subramaniam; Padmanabhan, Vasantha

    2017-09-01

    Prenatal testosterone (T) excess in sheep leads to peripheral insulin resistance (IR), reduced adipocyte size, and tissue-specific changes, with liver and muscle but not adipose tissue being insulin resistant. To determine the basis for the tissue-specific differences in insulin sensitivity, we assessed changes in negative (inflammation, oxidative stress, and lipotoxicity) and positive mediators (adiponectin and antioxidants) of insulin sensitivity in the liver, muscle, and adipose tissues of control and prenatal T-treated sheep. Because T excess leads to maternal hyperinsulinemia, fetal hyperandrogenism, and functional hyperandrogenism and IR in their female offspring, prenatal and postnatal interventions with antiandrogen, flutamide, and the insulin sensitizer rosiglitazone were used to parse out the contribution of androgenic and metabolic pathways in programming and maintaining these defects. Results showed that (1) peripheral IR in prenatal T-treated female sheep is related to increases in triglycerides and 3-nitrotyrosine, which appear to override the increase in high-molecular-weight adiponectin; (2) liver IR is a function of the increase in oxidative stress (3-nitrotyrosine) and lipotoxicity; (3) muscle IR is related to lipotoxicity; and (4) the insulin-sensitive status of visceral adipose tissue appears to be a function of the increase in antioxidants that likely overrides the increase in proinflammatory cytokines, macrophages, and oxidative stress. Prenatal and postnatal intervention with either antiandrogen or insulin sensitizer had partial effects in preventing or ameliorating the prenatal T-induced changes in mediators of insulin sensitivity, suggesting that both pathways are critical for the programming and maintenance of the prenatal T-induced changes and point to potential involvement of estrogenic pathways. Copyright © 2017 Endocrine Society.

  18. Review of methods for measuring β-cell function: Design considerations from the Restoring Insulin Secretion (RISE) Consortium.

    PubMed

    Hannon, Tamara S; Kahn, Steven E; Utzschneider, Kristina M; Buchanan, Thomas A; Nadeau, Kristen J; Zeitler, Philip S; Ehrmann, David A; Arslanian, Silva A; Caprio, Sonia; Edelstein, Sharon L; Savage, Peter J; Mather, Kieren J

    2018-01-01

    The Restoring Insulin Secretion (RISE) study was initiated to evaluate interventions to slow or reverse the progression of β-cell failure in type 2 diabetes (T2D). To design the RISE study, we undertook an evaluation of methods for measurement of β-cell function and changes in β-cell function in response to interventions. In the present paper, we review approaches for measurement of β-cell function, focusing on methodologic and feasibility considerations. Methodologic considerations included: (1) the utility of each technique for evaluating key aspects of β-cell function (first- and second-phase insulin secretion, maximum insulin secretion, glucose sensitivity, incretin effects) and (2) tactics for incorporating a measurement of insulin sensitivity in order to adjust insulin secretion measures for insulin sensitivity appropriately. Of particular concern were the capacity to measure β-cell function accurately in those with poor function, as is seen in established T2D, and the capacity of each method for demonstrating treatment-induced changes in β-cell function. Feasibility considerations included: staff burden, including time and required methodological expertise; participant burden, including time and number of study visits; and ease of standardizing methods across a multicentre consortium. After this evaluation, we selected a 2-day measurement procedure, combining a 3-hour 75-g oral glucose tolerance test and a 2-stage hyperglycaemic clamp procedure, augmented with arginine. © 2017 John Wiley & Sons Ltd.

  19. The disposition index does not reflect β-cell function in IGT subjects treated with pioglitazone.

    PubMed

    DeFronzo, Ralph A; Tripathy, Devjit; Abdul-Ghani, Muhammad; Musi, Nicolas; Gastaldelli, Amalia

    2014-10-01

    The insulin secretion/insulin resistance (IR) (disposition) index (ΔI/ΔG ÷ IR, where Δ is change from baseline, I is insulin, and G is glucose) is commonly used as a measure of β-cell function. This relationship is curvilinear and becomes linear when log transformed. ΔI is determined by 2 variables: insulin secretion rate (ISR) and metabolic clearance of insulin. We postulated that the characteristic curvilinear relationship would be lost if Δ plasma C-peptide (ΔCP) (instead of Δ plasma insulin) was plotted against insulin sensitivity. A total of 441 individuals with impaired glucose tolerance (IGT) from ACT NOW received an oral glucose tolerance test and were randomized to pioglitazone or placebo for 2.4 years. Pioglitazone reduced IGT conversion to diabetes by 72% (P < .0001). ΔI/ΔG vs the Matsuda index of insulin sensitivity showed the characteristic curvilinear relationship. However, when ΔCP/ΔG or ΔISR/ΔG was plotted against the Matsuda index, the curvilinear relationship was completely lost. This discordance was explained by 2 distinct physiologic effects that altered plasma insulin response in opposite directions: 1) increased ISR and 2) augmented metabolic clearance of insulin. The net result was a decline in the plasma insulin response to hyperglycemia during the oral glucose tolerance test. These findings demonstrate a physiologic control mechanism wherein the increase in ISR ensures adequate insulin delivery into the portal circulation to suppress hepatic glucose production while delivering a reduced but sufficient amount of insulin to peripheral tissues to maintain the pioglitazone-mediated improvement in insulin sensitivity without excessive hyperinsulinemia. These results demonstrate the validity of the disposition index when relating the plasma insulin response to insulin sensitivity but underscore the pitfall of this index when drawing conclusions about β-cell function, because insulin secretion declined despite an increase in the plasma insulin response.

  20. Blood pressure is reduced and insulin sensitivity increased in glucose-intolerant, hypertensive subjects after 15 days of consuming high-polyphenol dark chocolate.

    PubMed

    Grassi, Davide; Desideri, Giovambattista; Necozione, Stefano; Lippi, Cristina; Casale, Raffaele; Properzi, Giuliana; Blumberg, Jeffrey B; Ferri, Claudio

    2008-09-01

    Flavanols from chocolate appear to increase nitric oxide bioavailability, protect vascular endothelium, and decrease cardiovascular disease (CVD) risk factors. We sought to test the effect of flavanol-rich dark chocolate (FRDC) on endothelial function, insulin sensitivity, beta-cell function, and blood pressure (BP) in hypertensive patients with impaired glucose tolerance (IGT). After a run-in phase, 19 hypertensives with IGT (11 males, 8 females; 44.8 +/- 8.0 y) were randomized to receive isocalorically either FRDC or flavanol-free white chocolate (FFWC) at 100 g/d for 15 d. After a wash-out period, patients were switched to the other treatment. Clinical and 24-h ambulatory BP was determined by sphygmometry and oscillometry, respectively, flow-mediated dilation (FMD), oral glucose tolerance test, serum cholesterol and C-reactive protein, and plasma homocysteine were evaluated after each treatment phase. FRDC but not FFWC ingestion decreased insulin resistance (homeostasis model assessment of insulin resistance; P < 0.0001) and increased insulin sensitivity (quantitative insulin sensitivity check index, insulin sensitivity index (ISI), ISI(0); P < 0.05) and beta-cell function (corrected insulin response CIR(120); P = 0.035). Systolic (S) and diastolic (D) BP decreased (P < 0.0001) after FRDC (SBP, -3.82 +/- 2.40 mm Hg; DBP, -3.92 +/- 1.98 mm Hg; 24-h SBP, -4.52 +/- 3.94 mm Hg; 24-h DBP, -4.17 +/- 3.29 mm Hg) but not after FFWC. Further, FRDC increased FMD (P < 0.0001) and decreased total cholesterol (-6.5%; P < 0.0001), and LDL cholesterol (-7.5%; P < 0.0001). Changes in insulin sensitivity (Delta ISI - Delta FMD: r = 0.510, P = 0.001; Delta QUICKI - Delta FMD: r = 0.502, P = 0.001) and beta-cell function (Delta CIR(120) - Delta FMD: r = 0.400, P = 0.012) were directly correlated with increases in FMD and inversely correlated with decreases in BP (Delta ISI - Delta 24-h SBP: r = -0.368, P = 0.022; Delta ISI - Delta 24-h DBP r = -0.384, P = 0.017). Thus, FRDC ameliorated insulin sensitivity and beta-cell function, decreased BP, and increased FMD in IGT hypertensive patients. These findings suggest flavanol-rich, low-energy cocoa food products may have a positive impact on CVD risk factors.

  1. Insulin sensitivity and beta-cell function after carbohydrate oral loading in hip replacement surgery: a double-blind, randomised controlled clinical trial.

    PubMed

    Ljunggren, Stefan; Hahn, Robert G; Nyström, Thomas

    2014-06-01

    Surgery initiates a series of physiological stress processes in the body, inducing transient insulin resistance. Preoperative carbohydrate treatment can reduce the latter phenomenon. We investigated the effects of carbohydrate loading on insulin sensitivity and beta-cell function after elective hip replacement. Twenty-three nondiabetic patients (mean age of 68 years) who underwent elective hip replacement surgery participated in this double-blind controlled study. The patients were randomised to a nutrition group, which ingested a carbohydrate-rich fluid (50 kcal/100 ml) (Preop(®)), or a control group (tap water flavoured with lemon) 800 ml + 400 ml before the surgery. The insulin response (beta-cell function) and the insulin sensitivity were measured with an intravenous glucose tolerance test (IVGTT) and a hyperinsulinaemic euglycaemic glucose clamp, respectively, one day before and two days after the surgery. Insulin sensitivity decreased by 51% (median; 25-75th percentiles 35-61) after ingesting Preop(®) and by 39% (21-51) after ingesting in the control group (n.s.). The postoperative IVGTT in the nutrition group was followed by a significantly larger area under the curve (AUC) for plasma insulin (+54% versus the preoperative IVGTT) compared to the control group (+7%). This difference was already apparent during the first phase (0-10 min) of insulin secretion (+20 and -21%, respectively; P < 0.05). The patients randomised to the carbohydrate oral fluid or the water prior to the surgery demonstrated a significant but similar decrease in insulin sensitivity. The carbohydrates increased the beta-cell function as a compensatory response to the disposition index, resulting in a smaller reduction in surgery-induced insulin resistance compared to the tap water. The study was registered at http://www.clinicaltrials.gov (NCT01774084). Copyright © 2013 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  2. Clustering effects on postprandial insulin secretion and sensitivity in response to meals with different fatty acid compositions.

    PubMed

    Bermudez, Beatriz; Ortega-Gomez, Almudena; Varela, Lourdes M; Villar, Jose; Abia, Rocio; Muriana, Francisco J G; Lopez, Sergio

    2014-07-25

    Dietary fatty acids play a role in glucose homeostasis. The aim of this study was to assess the individual relationship between dietary saturated (SFA), monounsaturated (MUFA) and polyunsaturated (PUFA) fatty acids with postprandial β-cell function and insulin sensitivity in subjects with normal and high fasting triglycerides. We assessed postprandial β-cell function (by the insulinogenic index and the ratio of the insulin to glucose areas under the time-concentration curve) and insulin sensitivity (by the oral glucose and the minimal model insulin sensitivity indices) over four nonconsecutive, randomly assigned, high-fat meals containing a panel of SFA (palmitic and stearic acids), MUFA (palmitoleic and oleic acids) and PUFA (linoleic and α-linolenic acids) in 14 subjects with normal and in 14 subjects with high fasting triglycerides. The proportions of each fatty acid in the meals and the values for surrogate measures of postprandial β-cell function and insulin sensitivity were subjected to a Pearson correlation and hierarchical cluster analysis, which revealed two classes of dietary fatty acids for regulating postprandial glucose homeostasis. We successfully discriminated the adverse effects of SFA palmitic acid from the beneficial effects of MUFA oleic acid on postprandial β-cell function (r ≥ 0.84 for SFA palmitic acid and r ≥ -0.71 for MUFA oleic acid; P < 0.05) and insulin sensitivity (r ≥ -0.92 for SFA palmitic acid and r ≥ 0.89 for MUFA oleic acid; P < 0.001) both in subjects with normal and high fasting triglycerides. In conclusion, dietary MUFA oleic acid, in contrast to SFA palmitic acid, favours the tuning towards better postprandial glycaemic control in subjects with normal and high fasting triglycerides.

  3. Adiposity and family history of type 2 diabetes in an admixed population of adolescents: Associations with insulin sensitivity, beta-cell function, and hepatic insulin extraction in BRAMS study.

    PubMed

    Camilo, Daniella F; Vasques, Ana Carolina J; Hayashi, Keila; Tura, Andrea; da Silva, Cleliani de Cassia; Zambon, Mariana P; Antônio, Maria Ângela R de G Monteiro; Geloneze, Bruno

    2018-03-01

    Insulin resistance and beta-cell dysfunction manifest differently across racial/ethnic groups, and there is a lack of knowledge regarding the pathophysiology of type 2 diabetes mellitus (T2DM) for ethnically admixed adolescents. This study aimed to investigate the influence of adiposity and family history (FH) of T2DM on aspects of insulin sensitivity, beta-cell function, and hepatic insulin extraction in Brazilian adolescents. A total of 82 normoglycemic adolescents were assessed. The positive FH of T2DM was defined as the presence of at least one known family member with T2DM. The hyperglycemic clamp test consisted of a 120-min protocol. Insulin secretion and beta-cell function were obtained from C-peptide deconvolution. Analysis of covariance considered pubertal stage as a covariate. Both lean and overweight/obese adolescents had similar glycemic profiles and disposition indexes. Overweight/obese adolescents had about 1/3 the insulin sensitivity of lean adolescents (1.1 ± 0.2 vs. 3.4 ± 0.3 mg·kg·min·pmol ∗ 1000), which was compensated by an increase around 2.5 times in basal (130 ± 7 vs. 52 ± 10 pmol·l·min) and total insulin secretion (130,091 ± 12,230 vs. 59,010 ± 17,522 pmol·l·min), and in the first and second phases of insulin secretion; respectively (p < 0.001). This increase was accompanied by a mean reduction in hepatic insulin extraction of 35%, and a 2.7-time increase in beta-cell glucose sensitivity (p < 0.05). The positive FH of T2DM was not associated with derangements in insulin sensitivity, beta-cell function, and hepatic insulin extraction. In an admixed sample of adolescents, the hyperglycemic clamp test demonstrated that adiposity had a strong influence, and FH of T2DM had no direct influence, in different aspects of glucose metabolism. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Targeted Disruption of Pancreatic-Derived Factor (PANDER, FAM3B) Impairs Pancreatic β-Cell Function

    PubMed Central

    Robert-Cooperman, Claudia E.; Carnegie, Jason R.; Wilson, Camella G.; Yang, Jichun; Cook, Joshua R.; Wu, Jianmei; Young, Robert A.; Wolf, Bryan A.; Burkhardt, Brant R.

    2010-01-01

    OBJECTIVE Pancreatic-derived factor (PANDER, FAM3B) is a pancreatic islet-specific cytokine-like protein that is secreted from β-cells upon glucose stimulation. The biological function of PANDER is unknown, and to address this we generated and characterized a PANDER knockout mouse. RESEARCH DESIGN AND METHODS To generate the PANDER knockout mouse, the PANDER gene was disrupted and its expression was inhibited by homologous recombination via replacement of the first two exons, secretion signal peptide and transcriptional start site, with the neomycin gene. PANDER−/− mice were then phenotyped by a number of in vitro and in vivo tests to evaluate potential effects on glucose regulation, insulin sensitivity, and β-cell morphology and function. RESULTS Glucose tolerance tests demonstrated significantly higher blood glucose levels in PANDER−/− versus wild-type male mice. To identify the mechanism of the glucose intolerance, insulin sensitivity and pancreatic β-cell function were examined. Hyperinsulinemic-euglycemic clamps and insulin tolerance testing showed similar insulin sensitivity for both the PANDER−/− and wild-type mice. The in vivo insulin response following intraperitoneal glucose injection surprisingly produced significantly higher insulin levels in the PANDER−/− mice, whereas insulin release was blunted with arginine administration. Islet perifusion and calcium imaging studies showed abnormal responses of the PANDER−/− islets to glucose stimulation. In contrast, neither islet architecture nor insulin content was impacted by the loss of PANDER. Interestingly, the elevated insulin levels identified in vivo were attributed to decreased hepatic insulin clearance in the PANDER−/− islets. Taken together, these results demonstrated decreased pancreatic β-cell function in the PANDER−/− mouse. CONCLUSIONS These results support a potential role of PANDER in the pancreatic β-cell for regulation or facilitation of insulin secretion. PMID:20566664

  5. Short-Term Exercise Training Does Not Stimulate Skeletal Muscle ATP Synthesis in Relatives of Humans With Type 2 Diabetes

    PubMed Central

    Kacerovsky-Bielesz, Gertrud; Chmelik, Marek; Ling, Charlotte; Pokan, Rochus; Szendroedi, Julia; Farukuoye, Michaela; Kacerovsky, Michaela; Schmid, Albrecht I.; Gruber, Stephan; Wolzt, Michael; Moser, Ewald; Pacini, Giovanni; Smekal, Gerhard; Groop, Leif; Roden, Michael

    2009-01-01

    OBJECTIVE We tested the hypothesis that short-term exercise training improves hereditary insulin resistance by stimulating ATP synthesis and investigated associations with gene polymorphisms. RESEARCH DESIGN AND METHODS We studied 24 nonobese first-degree relatives of type 2 diabetic patients and 12 control subjects at rest and 48 h after three bouts of exercise. In addition to measurements of oxygen uptake and insulin sensitivity (oral glucose tolerance test), ectopic lipids and mitochondrial ATP synthesis were assessed using1H and31P magnetic resonance spectroscopy, respectively. They were genotyped for polymorphisms in genes regulating mitochondrial function, PPARGC1A (rs8192678) and NDUFB6 (rs540467). RESULTS Relatives had slightly lower (P = 0.012) insulin sensitivity than control subjects. In control subjects, ATP synthase flux rose by 18% (P = 0.0001), being 23% higher (P = 0.002) than that in relatives after exercise training. Relatives responding to exercise training with increased ATP synthesis (+19%, P = 0.009) showed improved insulin sensitivity (P = 0.009) compared with those whose insulin sensitivity did not improve. A polymorphism in the NDUFB6 gene from respiratory chain complex I related to ATP synthesis (P = 0.02) and insulin sensitivity response to exercise training (P = 0.05). ATP synthase flux correlated with O2uptake and insulin sensitivity. CONCLUSIONS The ability of short-term exercise to stimulate ATP production distinguished individuals with improved insulin sensitivity from those whose insulin sensitivity did not improve. In addition, the NDUFB6 gene polymorphism appeared to modulate this adaptation. This finding suggests that genes involved in mitochondrial function contribute to the response of ATP synthesis to exercise training. PMID:19265027

  6. Butyrate Improves Insulin Sensitivity and Increases Energy Expenditure in Mice

    PubMed Central

    Gao, Zhanguo; Yin, Jun; Zhang, Jin; Ward, Robert E.; Martin, Roy J.; Lefevre, Michael; Cefalu, William T.; Ye, Jianping

    2009-01-01

    OBJECTIVE We examined the role of butyric acid, a short-chain fatty acid formed by fermentation in the large intestine, in the regulation of insulin sensitivity in mice fed a high-fat diet. RESEARCH DESIGN AND METHODS In dietary-obese C57BL/6J mice, sodium butyrate was administrated through diet supplementation at 5% wt/wt in the high-fat diet. Insulin sensitivity was examined with insulin tolerance testing and homeostasis model assessment for insulin resistance. Energy metabolism was monitored in a metabolic chamber. Mitochondrial function was investigated in brown adipocytes and skeletal muscle in the mice. RESULTS On the high-fat diet, supplementation of butyrate prevented development of insulin resistance and obesity in C57BL/6 mice. Fasting blood glucose, fasting insulin, and insulin tolerance were all preserved in the treated mice. Body fat content was maintained at 10% without a reduction in food intake. Adaptive thermogenesis and fatty acid oxidation were enhanced. An increase in mitochondrial function and biogenesis was observed in skeletal muscle and brown fat. The type I fiber was enriched in skeletal muscle. Peroxisome proliferator–activated receptor-γ coactivator-1α expression was elevated at mRNA and protein levels. AMP kinase and p38 activities were elevated. In the obese mice, supplementation of butyrate led to an increase in insulin sensitivity and a reduction in adiposity. CONCLUSIONS Dietary supplementation of butyrate can prevent and treat diet-induced insulin resistance in mouse. The mechanism of butyrate action is related to promotion of energy expenditure and induction of mitochondria function. PMID:19366864

  7. Metabolomic profiling of amino acids and beta-cell function relative to insulin sensitivity in youth

    USDA-ARS?s Scientific Manuscript database

    In longitudinal studies of adults, elevated amino acid (AA) concentrations predicted future type 2 diabetes mellitus (T2DM). The aim of the present investigation was to examine whether increased plasma AA concentrations are associated with impaired beta-cell function relative to insulin sensitivity ...

  8. Valsartan Improves β-Cell Function and Insulin Sensitivity in Subjects With Impaired Glucose Metabolism

    PubMed Central

    van der Zijl, Nynke J.; Moors, Chantalle C.M.; Goossens, Gijs H.; Hermans, Marc M.H.; Blaak, Ellen E.; Diamant, Michaela

    2011-01-01

    OBJECTIVE Recently, the Nateglinide and Valsartan in Impaired Glucose Tolerance Outcomes Research Trial demonstrated that treatment with the angiotensin receptor blocker (ARB) valsartan for 5 years resulted in a relative reduction of 14% in the incidence of type 2 diabetes in subjects with impaired glucose metabolism (IGM). We investigated whether improvements in β-cell function and/or insulin sensitivity underlie these preventive effects of the ARB valsartan in the onset of type 2 diabetes. RESEARCH DESIGN AND METHODS In this randomized controlled, double-blind, two-center study, the effects of 26 weeks of valsartan (320 mg daily; n = 40) or placebo (n = 39) on β-cell function and insulin sensitivity were assessed in subjects with impaired fasting glucose and/or impaired glucose tolerance, using a combined hyperinsulinemic-euglycemic and hyperglycemic clamp with subsequent arginine stimulation and a 2-h 75-g oral glucose tolerance test (OGTT). Treatment effects were analyzed using ANCOVA, adjusting for center, glucometabolic status, and sex. RESULTS Valsartan increased first-phase (P = 0.028) and second-phase (P = 0.002) glucose-stimulated insulin secretion compared with placebo, whereas the enhanced arginine-stimulated insulin secretion was comparable between groups (P = 0.25). In addition, valsartan increased the OGTT-derived insulinogenic index (representing first-phase insulin secretion after an oral glucose load; P = 0.027). Clamp-derived insulin sensitivity was significantly increased with valsartan compared with placebo (P = 0.049). Valsartan treatment significantly decreased systolic and diastolic blood pressure compared with placebo (P < 0.001). BMI remained unchanged in both treatment groups (P = 0.89). CONCLUSIONS Twenty-six weeks of valsartan treatment increased glucose-stimulated insulin release and insulin sensitivity in normotensive subjects with IGM. These findings may partly explain the beneficial effects of valsartan in the reduced incidence of type 2 diabetes. PMID:21330640

  9. MiR-155 Enhances Insulin Sensitivity by Coordinated Regulation of Multiple Genes in Mice

    PubMed Central

    Lin, Taoyan; Lin, Xia; Chen, Li; Zeng, Hui; Han, Yanjiang; Wu, Lihong; Huang, Shun; Wang, Meng; Huang, Shenhao; Xie, Raoying; Liang, Liqi; Liu, Yu; Liu, Ruiyu; Zhang, Tingting; Li, Jing; Wang, Shengchun; Sun, Penghui; Huang, Wenhua; Yao, Kaitai; Xu, Kang; Du, Tao; Xiao, Dong

    2016-01-01

    miR-155 plays critical roles in numerous physiological and pathological processes, however, its function in the regulation of blood glucose homeostasis and insulin sensitivity and underlying mechanisms remain unknown. Here, we reveal that miR-155 levels are downregulated in serum from type 2 diabetes (T2D) patients, suggesting that miR-155 might be involved in blood glucose control and diabetes. Gain-of-function and loss-of-function studies in mice demonstrate that miR-155 has no effects on the pancreatic β-cell proliferation and function. Global transgenic overexpression of miR-155 in mice leads to hypoglycaemia, improved glucose tolerance and insulin sensitivity. Conversely, miR-155 deficiency in mice causes hyperglycemia, impaired glucose tolerance and insulin resistance. In addition, consistent with a positive regulatory role of miR-155 in glucose metabolism, miR-155 positively modulates glucose uptake in all cell types examined, while mice overexpressing miR-155 transgene show enhanced glycolysis, and insulin-stimulated AKT and IRS-1 phosphorylation in liver, adipose tissue or skeletal muscle. Furthermore, we reveal these aforementioned phenomena occur, at least partially, through miR-155-mediated repression of important negative regulators (i.e. C/EBPβ, HDAC4 and SOCS1) of insulin signaling. Taken together, these findings demonstrate, for the first time, that miR-155 is a positive regulator of insulin sensitivity with potential applications for diabetes treatment. PMID:27711113

  10. Treatment of prediabetes

    PubMed Central

    Kanat, Mustafa; DeFronzo, Ralph A; Abdul-Ghani, Muhammad A

    2015-01-01

    Progression of normal glucose tolerance (NGT) to overt diabetes is mediated by a transition state called impaired glucose tolerance (IGT). Beta cell dysfunction and insulin resistance are the main defects in type 2 diabetes mellitus (type 2 DM) and even normoglycemic IGT patients manifest these defects. Beta cell dysfunction and insulin resistance also contribute to the progression of IGT to type 2 DM. Improving insulin sensitivity and/or preserving functions of beta-cells can be a rational way to normalize the GT and to control transition of IGT to type 2 DM. Loosing weight, for example, improves whole body insulin sensitivity and preserves beta-cell function and its inhibitory effect on progression of IGT to type 2 DM had been proven. But interventions aiming weight loss usually not applicable in real life. Pharmacotherapy is another option to gain better insulin sensitivity and to maintain beta-cell function. In this review, two potential treatment options (lifestyle modification and pharmacologic agents) that limits the IGT-type 2 DM conversion in prediabetic subjects are discussed. PMID:26464759

  11. Possible metabolic impact of Ramadan fasting in healthy men.

    PubMed

    Vardarli, Mustafa Cumhur; Hammes, Hans-Peter; Vardarli, İrfan

    2014-01-01

    Insulin sensitivity and β-cell function during Ramadan fasting in healthy male subjects have not been investigated so far. We assessed the changes of these and other metabolic parameters to judge the potential metabolic benefits of Ramadan fasting. Twenty-four healthy males of Turkish origin living in Germany, with normal glucose tolerance, participated in this study during Ramadan of 2009; 19 who completed fasting were analyzed. Blood was drawn at sunset after a period of fasting lasting approximately 15 h on days 0, 16, and 30 of Ramadan, as well as 7 and 28 days later. Insulin sensitivity (Homeostasis Model Assessment, HOMA), β-cell function, and other parameters were assessed. Ramadan fasting was associated with a significant reduction (-) or increment (+) for the following variables: insulin sensitivity (-20%; P = 0.04), β-cell function (+10%; P = 0.049), high-density lipoprotein cholesterol (-23%; P = 0.0003), low-density lipoprotein cholesterol (+14%; P = 0.007), nonesterified fatty acids (-62%; P < 0.0001), resistin (-20%; P = 0.01), adiponectin (+16%; P = 0.003), and glucagon (-21%; P = 0.01). C-peptide, insulin, leptin, triglyceride, and very low-density lipoprotein cholesterol concentrations were not significantly changed. Ramadan fasting is associated with transiently impaired insulin sensitivity, compensated for by an increased β-cell function. However, the pattern of insulin resistance-mediating adipocytokines suggests a potentially beneficial metabolic effect of Ramadan fasting.

  12. Beneficial role of vitamin K supplementation on insulin sensitivity, glucose metabolism, and the reduced risk of type 2 diabetes: A review.

    PubMed

    Manna, Prasenjit; Kalita, Jatin

    2016-01-01

    Micronutrients are gaining acceptance as an important nutritional therapy for the prevention and/or management of diabetes and its associated health risks. Although a very small quantity of micronutrients are required for specific functions in our bodies, moderate deficiencies can lead to serious health issues. Impaired insulin sensitivity and glucose intolerance play a major role in the development of diabetic pathophysiology. Vitamin K is well known for its function in blood coagulation. Moreover, several human studies reported the beneficial role of vitamin K supplementation in improving insulin sensitivity and glucose tolerance, preventing insulin resistance, and reducing the risk of type 2 diabetes (T2 D). Both animal and human studies have suggested that vitamin K-dependent protein (osteocalcin [OC]), regulation of adipokine levels, antiinflammatory properties, and lipid-lowering effects may mediate the beneficial function of vitamin K in insulin sensitivity and glucose tolerance. This review for the first time provides an overview of the currently available preclinical and clinical evidences on the effect of vitamin K supplementation in the management of insulin sensitivity and glucose tolerance. The outcome of this review will increase understanding for the development of a novel adjuvant therapy to achieve better control of glycemia and improve the lives of diabetic patients. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Vascular Function, Insulin Action and Exercise: An Intricate Interplay

    PubMed Central

    Zheng, Chao; Liu, Zhenqi

    2015-01-01

    Insulin enhances the compliance of conduit arteries, relaxes resistance arterioles to increase tissue blood flow and dilates precapillary arterioles to expand muscle microvascular blood volume. These actions are impaired in the insulin resistant states. Exercise ameliorates endothelial dysfunction and improves insulin responses in insulin resistant patients, but the precise underlying mechanisms remain unclear. The microvasculature critically regulates insulin action in muscle by modulating insulin delivery to the capillaries nurturing the myocytes and trans-endothelial insulin transport. Recent data suggest that exercise may exert its insulin-sensitizing effect via recruiting muscle microvasculature to increase insulin delivery to and action in muscle. The current review focuses on how the interplay among exercise, insulin action and the vasculature contributes to exercise-mediated insulin sensitization in muscle. PMID:25735473

  14. Autophagy Differentially Regulates Insulin Production and Insulin Sensitivity.

    PubMed

    Yamamoto, Soh; Kuramoto, Kenta; Wang, Nan; Situ, Xiaolei; Priyadarshini, Medha; Zhang, Weiran; Cordoba-Chacon, Jose; Layden, Brian T; He, Congcong

    2018-06-12

    Autophagy, a stress-induced lysosomal degradative pathway, has been assumed to exert similar metabolic effects in different organs. Here, we establish a model where autophagy plays different roles in insulin-producing β cells versus insulin-responsive cells, utilizing knockin (Becn1 F121A ) mice manifesting constitutively active autophagy. With a high-fat-diet challenge, the autophagy-hyperactive mice unexpectedly show impaired glucose tolerance, but improved insulin sensitivity, compared to mice with normal autophagy. Autophagy hyperactivation enhances insulin signaling, via suppressing ER stress in insulin-responsive cells, but decreases insulin secretion by selectively sequestrating and degrading insulin granule vesicles in β cells, a process we term "vesicophagy." The reduction in insulin storage, insulin secretion, and glucose tolerance is reversed by transient treatment of autophagy inhibitors. Thus, β cells and insulin-responsive tissues require different autophagy levels for optimal function. To improve insulin sensitivity without hampering secretion, acute or intermittent, rather than chronic, activation of autophagy should be considered in diabetic therapy development. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  15. Effects of Rosiglitazone, Glyburide, and Metformin on β-Cell Function and Insulin Sensitivity in ADOPT

    PubMed Central

    Kahn, Steven E.; Lachin, John M.; Zinman, Bernard; Haffner, Steven M.; Aftring, R. Paul; Paul, Gitanjali; Kravitz, Barbara G.; Herman, William H.; Viberti, Giancarlo; Holman, Rury R.

    2011-01-01

    OBJECTIVE ADOPT (A Diabetes Outcome Progression Trial) demonstrated that initial monotherapy with rosiglitazone provided superior durability of glycemic control compared with metformin and glyburide in patients with recently diagnosed type 2 diabetes. Herein, we examine measures of β-cell function and insulin sensitivity from an oral glucose tolerance test (OGTT) over a 4-year period among the three treatments. RESEARCH DESIGN AND METHODS Recently diagnosed, drug-naïve patients with type 2 diabetes (4,360 total) were treated for a median of 4.0 years with rosiglitazone, metformin, or glyburide and were examined with periodic metabolic testing using an OGTT. RESULTS Measures of β-cell function and insulin sensitivity from an OGTT showed more favorable changes over time with rosiglitazone versus metformin or glyburide. Persistent improvements were seen in those who completed 4 years of monotherapy and marked deterioration of β-cell function in those who failed to maintain adequate glucose control with initial monotherapy. CONCLUSIONS The favorable combined changes in β-cell function and insulin sensitivity over time with rosiglitazone appear to be responsible for its superior glycemic durability over metformin and glyburide as initial monotherapy in type 2 diabetes. PMID:21415383

  16. Effects of rosiglitazone, glyburide, and metformin on β-cell function and insulin sensitivity in ADOPT.

    PubMed

    Kahn, Steven E; Lachin, John M; Zinman, Bernard; Haffner, Steven M; Aftring, R Paul; Paul, Gitanjali; Kravitz, Barbara G; Herman, William H; Viberti, Giancarlo; Holman, Rury R

    2011-05-01

    ADOPT (A Diabetes Outcome Progression Trial) demonstrated that initial monotherapy with rosiglitazone provided superior durability of glycemic control compared with metformin and glyburide in patients with recently diagnosed type 2 diabetes. Herein, we examine measures of β-cell function and insulin sensitivity from an oral glucose tolerance test (OGTT) over a 4-year period among the three treatments. Recently diagnosed, drug-naïve patients with type 2 diabetes (4,360 total) were treated for a median of 4.0 years with rosiglitazone, metformin, or glyburide and were examined with periodic metabolic testing using an OGTT. Measures of β-cell function and insulin sensitivity from an OGTT showed more favorable changes over time with rosiglitazone versus metformin or glyburide. Persistent improvements were seen in those who completed 4 years of monotherapy and marked deterioration of β-cell function in those who failed to maintain adequate glucose control with initial monotherapy. The favorable combined changes in β-cell function and insulin sensitivity over time with rosiglitazone appear to be responsible for its superior glycemic durability over metformin and glyburide as initial monotherapy in type 2 diabetes.

  17. PDE 5 inhibitor improves insulin sensitivity by enhancing mitochondrial function in adipocytes.

    PubMed

    Yu, Hea Min; Chung, Hyo Kyun; Kim, Koon Soon; Lee, Jae Min; Hong, Jun Hwa; Park, Kang Seo

    2017-11-04

    Adipocytes are involved in many metabolic disorders. It was recently reported that phosphodiesterase type 5 (PDE5) is expressed in human adipose tissue. In addition, PDE5 inhibitors have been shown to improve insulin sensitivity in humans. However, the mechanism underlying the role of PDE5 inhibitors as an insulin sensitizer remains largely unknown. The present study was undertaken to investigate the role of the PDE5 inhibitor udenafil in insulin signaling in adipocytes and whether this is mediated through the regulation of mitochondrial function. To study the mechanism underlying the insulin sensitizing action of PDE5 inhibitors, we evaluated quantitative changes in protein or mRNA levels of mitochondrial oxidative phosphorylation (OxPhos) complex, oxygen consumption rate (OCR), and fatty acid oxidation with varying udenafil concentrations in 3T3-L1 cells. Our cell study suggested that udenafil enhanced the insulin signaling pathway in 3T3-L1 cells. Following udenafil treatment, basal mitochondrial OCR, maximal OxPhos capacity, and OxPhos gene expression significantly increased. Finally, we examined whether udenafil can affect the fatty acid oxidation process. Treatment of 3T3-L1 cells with udenafil (10 and 20 μM) significantly increased fatty acid oxidation rate in a dose-dependent manner. In addition, the expression of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) significantly increased. We demonstrated that the PDE5 inhibitor udenafil enhances insulin sensitivity by improving mitochondrial function in 3T3-L1 cells. This might be the mechanism underlying the PDE5 inhibitor-enhanced insulin signaling in adipocytes. This also suggests that udenafil may provide benefit in the treatment of type 2 diabetes and other related cardiovascular diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Effects of Exenatide Plus Rosiglitazone on β-Cell Function and Insulin Sensitivity in Subjects With Type 2 Diabetes on Metformin

    PubMed Central

    DeFronzo, Ralph A.; Triplitt, Curtis; Qu, Yongming; Lewis, Michelle S.; Maggs, David; Glass, Leonard C.

    2010-01-01

    OBJECTIVE Study the effects of exenatide (EXE) plus rosiglitazone (ROSI) on β-cell function and insulin sensitivity using hyperglycemic and euglycemic insulin clamp techniques in participants with type 2 diabetes on metformin. RESEARCH DESIGN AND METHODS In this 20-week, randomized, open-label, multicenter study, participants (mean age, 56 ± 10 years; weight, 93 ± 16 kg; A1C, 7.8 ± 0.7%) continued their metformin regimen and received either EXE 10 μg b.i.d. (n = 45), ROSI 4 mg b.i.d. (n = 45), or EXE 10 μg b.i.d. + ROSI 4 mg b.i.d. (n = 47). Seventy-three participants underwent clamp procedures to quantitate insulin secretion and insulin sensitivity. RESULTS A1C declined in all groups (P < 0.05), but decreased most with EXE+ROSI (EXE+ROSI, −1.3 ± 0.1%; ROSI, −1.0 ± 0.1%, EXE, −0.9 ± 0.1%; EXE+ROSI vs. EXE or ROSI, P < 0.05). ROSI resulted in weight gain, while EXE and EXE+ROSI resulted in weight loss (EXE, −2.8 ± 0.5 kg; EXE+ROSI, −1.2 ± 0.5 kg; ROSI, + 1.5 ± 0.5 kg; P < 0.05 between and within all groups). At week 20, 1st and 2nd phase insulin secretion was significantly higher in EXE and EXE+ROSI versus ROSI (both P < 0.05). Insulin sensitivity (M value) was significantly higher in EXE+ROSI versus EXE (P = 0.014). CONCLUSIONS Therapy with EXE+ROSI offset the weight gain observed with ROSI and elicited an additive effect on glycemic control with significant improvements in β-cell function and insulin sensitivity. PMID:20107105

  19. Glutamic acid decarboxylase autoantibody-positivity post-partum is associated with impaired β-cell function in women with gestational diabetes mellitus.

    PubMed

    Lundberg, T P; Højlund, K; Snogdal, L S; Jensen, D M

    2015-02-01

    To investigate whether the presence of glutamic acid decarboxylase (GAD) autoantibodies post-partum in women with prior gestational diabetes mellitus was associated with changes in metabolic characteristics, including β-cell function and insulin sensitivity. During 1997-2010, 407 women with gestational diabetes mellitus were offered a 3-month post-partum follow-up including anthropometrics, serum lipid profile, HbA1c and GAD autoantibodies, as well as a 2-h oral glucose tolerance test (OGTT) with blood glucose, serum insulin and C-peptide at 0, 30 and 120 min. Indices of insulin sensitivity and insulin secretion were estimated to assess insulin secretion adjusted for insulin sensitivity, disposition index (DI). Twenty-two (5.4%) women were positive for GAD autoantibodies (GAD+ve) and the remainder (94.6%) were negative for GAD autoantibodies (GAD-ve). The two groups had similar age and prevalence of diabetes mellitus. Women who were GAD+ve had significantly higher 2-h OGTT glucose concentrations during their index-pregnancy (10.5 vs. 9.8 mmol/l, P = 0.001), higher fasting glucose (5.2 vs. 5.0 mmol/l, P = 0.02) and higher 2-h glucose (7.8 vs. 7.1 mmol/l, P = 0.05) post-partum. Fasting levels of C-peptide and insulin were lower in GAD+ve women compared with GAD-ve women (520 vs. 761 pmol/l, P = 0.02 and 33 vs. 53 pmol/l, P = 0.05) Indices of insulin sensitivity were similar in GAD+ve and GAD-ve women, whereas all estimates of DI were significantly reduced in GAD+ve women. GAD+ve women had higher glucose levels and impaired insulin secretion adjusted for insulin sensitivity (DI) compared with GAD-ve women. The combination of OGTT and GAD autoantibodies post-partum identify women with impaired β-cell function. These women should be followed with special focus on development of Type 1 diabetes. © 2014 The Authors. Diabetic Medicine © 2014 Diabetes UK.

  20. Weight-loss changes PPAR expression, reduces atherosclerosis and improves cardiovascular function in obese insulin-resistant mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verreth, Wim; Verhamme, Peter; Pelat, Michael

    2003-09-01

    Weight-loss in obese insulin-resistant, but not in insulin-sensitive, persons reduces CHD risk. It is not known to what extent changes in the adipose gene expression profile are important for reducing CHD risk. We studied the effect of diet restriction-induced weight-loss on gene expression in adipose tissue, atherosclerosis and cardiovascular function in mice with combined leptin and LDL-receptor deficiency. Obesity, hypertriglyceridemia and insulin-resistance are associated with hypertension, impaired left ventricle function and accelerated atherosclerosis in those mice. Diet restriction during 12 weeks caused a 45% weight-loss and changes in the gene expression in adipose tissue of PPARa and PPAR? and ofmore » key genes regulating glucose transport and insulin sensitivity, lipid metabolism, oxidative stress and inflammation, most of which are under the transcriptional control of PPARs. These changes were associated with increased insulin-sensitivity, decreased hypertriglyceridemia, reduced mean 24-hour blood pressure and heart rate, restored circadian variations of blood pressure and heart rate, increased ejection fraction, and reduced atherosclerosis. Thus, induction of PPARa and PPAR? in adipose tissue is a key mechanism for reducing atherosclerosis and improving cardiovascular function resulting from weight-loss. Our observations point to the critical role of PPARs in the pathogenesis of cardiovascular features of the metabolic syndrome.« less

  1. Adipose tissue oxygenation is associated with insulin sensitivity independently of adiposity in obese men and women.

    PubMed

    Goossens, Gijs H; Vogel, Max A A; Vink, Roel G; Mariman, Edwin C; van Baak, Marleen A; Blaak, Ellen E

    2018-04-23

    Adipose tissue (AT) dysfunction contributes to the pathophysiology of insulin resistance and type 2 diabetes. Previous studies have shown that altered AT oxygenation affects adipocyte functionality, but it remains to be elucidated whether altered AT oxygenation is more strongly related to obesity or insulin sensitivity. In the present study, we tested the hypothesis that AT oxygenation is associated with insulin sensitivity rather than adiposity in humans. Thirty-five lean and obese individuals (21 men and 14 women, aged 40-65 years) with either normal or impaired glucose metabolism participated in a cross-sectional single-centre study. We measured abdominal subcutaneous AT oxygenation, body composition and insulin sensitivity. AT oxygenation was higher in obese insulin resistant as compared to obese insulin sensitive (IS) individuals with similar age, body mass index and body fat percentage, both in men and women. No significant differences in AT oxygenation were found between obese IS and lean IS men. Moreover, AT oxygenation was positively associated with insulin resistance (r = 0.465; P = .005), even after adjustment for age, sex and body fat percentage (standardized β = 0.479; P = .005). In conclusion, abdominal subcutaneous AT oxygenation is associated with insulin sensitivity both in men and women, independently of adiposity. AT oxygenation may therefore be a promising target to improve insulin sensitivity. © 2018 John Wiley & Sons Ltd.

  2. Modification and Validation of the Triglyceride-to-HDL Cholesterol Ratio as a Surrogate of Insulin Sensitivity in White Juveniles and Adults without Diabetes Mellitus: The Single Point Insulin Sensitivity Estimator (SPISE).

    PubMed

    Paulmichl, Katharina; Hatunic, Mensud; Højlund, Kurt; Jotic, Aleksandra; Krebs, Michael; Mitrakou, Asimina; Porcellati, Francesca; Tura, Andrea; Bergsten, Peter; Forslund, Anders; Manell, Hannes; Widhalm, Kurt; Weghuber, Daniel; Anderwald, Christian-Heinz

    2016-09-01

    The triglyceride-to-HDL cholesterol (TG/HDL-C) ratio was introduced as a tool to estimate insulin resistance, because circulating lipid measurements are available in routine settings. Insulin, C-peptide, and free fatty acids are components of other insulin-sensitivity indices but their measurement is expensive. Easier and more affordable tools are of interest for both pediatric and adult patients. Study participants from the Relationship Between Insulin Sensitivity and Cardiovascular Disease [43.9 (8.3) years, n = 1260] as well as the Beta-Cell Function in Juvenile Diabetes and Obesity study cohorts [15 (1.9) years, n = 29] underwent oral-glucose-tolerance tests and euglycemic clamp tests for estimation of whole-body insulin sensitivity and calculation of insulin sensitivity indices. To refine the TG/HDL ratio, mathematical modeling was applied including body mass index (BMI), fasting TG, and HDL cholesterol and compared to the clamp-derived M-value as an estimate of insulin sensitivity. Each modeling result was scored by identifying insulin resistance and correlation coefficient. The Single Point Insulin Sensitivity Estimator (SPISE) was compared to traditional insulin sensitivity indices using area under the ROC curve (aROC) analysis and χ(2) test. The novel formula for SPISE was computed as follows: SPISE = 600 × HDL-C(0.185)/(TG(0.2) × BMI(1.338)), with fasting HDL-C (mg/dL), fasting TG concentrations (mg/dL), and BMI (kg/m(2)). A cutoff value of 6.61 corresponds to an M-value smaller than 4.7 mg · kg(-1) · min(-1) (aROC, M:0.797). SPISE showed a significantly better aROC than the TG/HDL-C ratio. SPISE aROC was comparable to the Matsuda ISI (insulin sensitivity index) and equal to the QUICKI (quantitative insulin sensitivity check index) and HOMA-IR (homeostasis model assessment-insulin resistance) when calculated with M-values. The SPISE seems well suited to surrogate whole-body insulin sensitivity from inexpensive fasting single-point blood draw and BMI in white adolescents and adults. © 2016 American Association for Clinical Chemistry.

  3. Long-echo time MR spectroscopy for skeletal muscle acetylcarnitine detection.

    PubMed

    Lindeboom, Lucas; Nabuurs, Christine I; Hoeks, Joris; Brouwers, Bram; Phielix, Esther; Kooi, M Eline; Hesselink, Matthijs K C; Wildberger, Joachim E; Stevens, Robert D; Koves, Timothy; Muoio, Deborah M; Schrauwen, Patrick; Schrauwen-Hinderling, Vera B

    2014-11-01

    Animal models suggest that acetylcarnitine production is essential for maintaining metabolic flexibility and insulin sensitivity. Because current methods to detect acetylcarnitine involve biopsy of the tissue of interest, noninvasive alternatives to measure acetylcarnitine concentrations could facilitate our understanding of its physiological relevance in humans. Here, we investigated the use of long-echo time (TE) proton magnetic resonance spectroscopy (1H-MRS) to measure skeletal muscle acetylcarnitine concentrations on a clinical 3T scanner. We applied long-TE 1H-MRS to measure acetylcarnitine in endurance-trained athletes, lean and obese sedentary subjects, and type 2 diabetes mellitus (T2DM) patients to cover a wide spectrum in insulin sensitivity. A long-TE 1H-MRS protocol was implemented for successful detection of skeletal muscle acetylcarnitine in these individuals. There were pronounced differences in insulin sensitivity, as measured by hyperinsulinemic-euglycemic clamp, and skeletal muscle mitochondrial function, as measured by phosphorus-MRS (31P-MRS), across groups. Insulin sensitivity and mitochondrial function were highest in trained athletes and lowest in T2DM patients. Skeletal muscle acetylcarnitine concentration showed a reciprocal distribution, with mean acetylcarnitine concentration correlating with mean insulin sensitivity in each group. These results demonstrate that measuring acetylcarnitine concentrations with 1H-MRS is feasible on clinical MR scanners and support the hypothesis that T2DM patients are characterized by a decreased formation of acetylcarnitine, possibly underlying decreased insulin sensitivity.

  4. Long–echo time MR spectroscopy for skeletal muscle acetylcarnitine detection

    PubMed Central

    Lindeboom, Lucas; Nabuurs, Christine I.; Hoeks, Joris; Brouwers, Bram; Phielix, Esther; Kooi, M. Eline; Hesselink, Matthijs K.C.; Wildberger, Joachim E.; Stevens, Robert D.; Koves, Timothy; Muoio, Deborah M.; Schrauwen, Patrick; Schrauwen-Hinderling, Vera B.

    2014-01-01

    Animal models suggest that acetylcarnitine production is essential for maintaining metabolic flexibility and insulin sensitivity. Because current methods to detect acetylcarnitine involve biopsy of the tissue of interest, noninvasive alternatives to measure acetylcarnitine concentrations could facilitate our understanding of its physiological relevance in humans. Here, we investigated the use of long–echo time (TE) proton magnetic resonance spectroscopy (1H-MRS) to measure skeletal muscle acetylcarnitine concentrations on a clinical 3T scanner. We applied long-TE 1H-MRS to measure acetylcarnitine in endurance-trained athletes, lean and obese sedentary subjects, and type 2 diabetes mellitus (T2DM) patients to cover a wide spectrum in insulin sensitivity. A long-TE 1H-MRS protocol was implemented for successful detection of skeletal muscle acetylcarnitine in these individuals. There were pronounced differences in insulin sensitivity, as measured by hyperinsulinemic-euglycemic clamp, and skeletal muscle mitochondrial function, as measured by phosphorus-MRS (31P-MRS), across groups. Insulin sensitivity and mitochondrial function were highest in trained athletes and lowest in T2DM patients. Skeletal muscle acetylcarnitine concentration showed a reciprocal distribution, with mean acetylcarnitine concentration correlating with mean insulin sensitivity in each group. These results demonstrate that measuring acetylcarnitine concentrations with 1H-MRS is feasible on clinical MR scanners and support the hypothesis that T2DM patients are characterized by a decreased formation of acetylcarnitine, possibly underlying decreased insulin sensitivity. PMID:25271624

  5. Obese but not normal-weight women with polycystic ovary syndrome are characterized by metabolic and microvascular insulin resistance.

    PubMed

    Ketel, Iris J G; Stehouwer, Coen D A; Serné, Erik H; Korsen, Ted J M; Hompes, Peter G A; Smulders, Yvo M; de Jongh, Renate T; Homburg, Roy; Lambalk, Cornelis B

    2008-09-01

    Polycystic ovary syndrome (PCOS) and obesity are associated with diabetes and cardiovascular disease, but it is unclear to what extent PCOS contributes independently of obesity. The objective of the study was to investigate whether insulin sensitivity and insulin's effects on the microcirculation are impaired in normal-weight and obese women with PCOS. Thirty-five women with PCOS (19 normal weight and 16 obese) and 27 age- and body mass index-matched controls (14 normal weight and 13 obese) were included. Metabolic Insulin sensitivity (isoglycemic-hyperinsulinemic clamp) and microvascular insulin sensitivity [endothelium dependent (acetylcholine [ACh])] and endothelium-independent [sodium nitroprusside (SNP)] vasodilation with laser Doppler flowmetry was assessed at baseline and during hyperinsulinemia. Metabolic insulin sensitivity (M/I value) and the area under the response curves to ACh and SNP curves were measured to assess microcirculatory function at baseline and during insulin infusion (microvascular insulin sensitivity). Obese women were more insulin resistant than normal-weight women (P < 0.001), and obese PCOS women were more resistant than obese controls (P = 0.02). In contrast, normal-weight women with PCOS had similar insulin sensitivity, compared with normal-weight women without PCOS. Baseline responses to ACh showed no difference in the four groups. ACh responses during insulin infusion were significantly greater in normal-weight PCOS and controls than in obese PCOS and controls. PCOS per se had no significant influence on ACh responses during insulin infusion. During hyperinsulinemia, SNP-dependent vasodilatation did not significantly increase, compared with baseline in the four groups. PCOS per se was not associated with impaired metabolic insulin sensitivity in normal-weight women but aggravates impairment of metabolic insulin sensitivity in obese women. In obese but not normal-weight women, microvascular and metabolic insulin sensitivity are decreased, independent of PCOS. Therefore, obese PCOS women in particular may be at increased risk of metabolic and cardiovascular diseases.

  6. Adipokines and insulin action: A sensitive issue.

    PubMed

    Knights, Alexander J; Funnell, Alister Pw; Pearson, Richard Cm; Crossley, Merlin; Bell-Anderson, Kim S

    2014-04-01

    Obesity is a major public health concern and a strong risk factor for insulin resistance, type 2 diabetes mellitus (T2DM), and cardiovascular disease. The last two decades have seen a reconsideration of the role of white adipose tissue (WAT) in whole body metabolism and insulin action. Adipose tissue-derived cytokines and hormones, or adipokines, are likely mediators of metabolic function and dysfunction. While several adipokines have been associated with obese and insulin-resistant phenotypes, a select group has been linked with insulin sensitivity, namely leptin, adiponectin, and more recently, adipolin. What is known about these insulin-sensitizing molecules and their effects in healthy and insulin resistant states is the subject of this review. There remains a significant amount of research to do to fully elucidate the mechanisms of action of these adipokines for development of therapeutics in metabolic disease.

  7. Developmental programming: insulin sensitizer treatment improves reproductive function in prenatal testosterone-treated female sheep.

    PubMed

    Veiga-Lopez, Almudena; Lee, James S; Padmanabhan, Vasantha

    2010-08-01

    Prenatal testosterone (T) excess causes reproductive and metabolic disruptions including insulin resistance, attributes of women with polycystic ovary syndrome. This study tested the hypothesis that insulin resistance contributes toward severity of reproductive disruptions in prenatally T-treated females. Pregnant sheep were injected im with 100 mg of T-propionate semiweekly from d 30-90 of gestation. Immediately after the first breeding season, a subset of controls and prenatal T-treated (TR) sheep were administered an insulin sensitizer (rosiglitazone; 8 mg/d) orally for 8 months. Untreated control and prenatal T-treated females (T group) were studied in parallel. Biochemical analyses revealed rosiglitazone to be safe for use in sheep. Glucose tolerance tests performed before and after the insulin sensitizer treatment found that insulin sensitizer decreased cumulative insulin, cumulative insulin/glucose ratio, and insulin area under the curve by about 50% and increased the insulin sensitivity index by about 70% in the TR compared with the T group. Twenty percent of TR females showed a reduced number of cycles in the second relative to first breeding season as opposed to 80% of T group females showing such deterioration. Insulin sensitizer treatment also decreased the number of aberrant cycles (>/=18 d) during the second breeding season in the TR group relative to the first as opposed to the T group females showing an increase in the second breeding season relative to the first. These findings provide evidence that insulin sensitizer treatment prevents further deterioration of the reproductive axis in prenatal T-treated sheep, a finding of translational relevance to women with polycystic ovary syndrome.

  8. Metabolomic Profiling of Amino Acids and β-Cell Function Relative to Insulin Sensitivity in Youth

    PubMed Central

    Michaliszyn, Sara F.; Sjaarda, Lindsey A.; Mihalik, Stephanie J.; Lee, SoJung; Bacha, Fida; Chace, Donald H.; De Jesus, Victor R.; Vockley, Jerry

    2012-01-01

    Context: In longitudinal studies of adults, elevated amino acid (AA) concentrations predicted future type 2 diabetes mellitus (T2DM). Objective: The aim of the present investigation was to examine whether increased plasma AA concentrations are associated with impaired β-cell function relative to insulin sensitivity [i.e. disposition index (DI)], a predictor of T2DM development. Design, Setting, and Participants: Metabolomic analysis for fasting plasma AAs was performed by tandem mass spectrometry in 139 normal-weight and obese adolescents with and without dysglycemia. First-phase insulin secretion was evaluated by a hyperglycemic (∼225 mg/dl) clamp and insulin sensitivity by a hyperinsulinemic-euglycemic clamp. DI was calculated as the product of first-phase insulin and insulin sensitivity. Results: DI was positively associated with branched-chain AAs (leucine/isoleucine and valine; r = 0.27 and 0.29, P = 0.001), neutrally transported AAs (phenylalanine and methionine; r = 0.30 and 0.35, P < 0.001), basic AAs (histidine and arginine; r = 0.28 and 0.23, P ≤ 0.007), serine (r = 0.35, P < 0.001), glycine (r = 0.26, P = 0.002), and branched-chain AAs-derived intermediates C3, C4, and C5 acylcarnitine (range r = 0.18–0.19, P ≤ 0.04). Conclusion: In youth, increased plasma AA concentrations are not associated with a heightened metabolic risk profile for T2DM; rather, they are positively associated with β-cell function relative to insulin sensitivity. These contrasting observations between adults and youth may be a reflection of developmental differences along the lifespan dependent on the combined impact of the aging process together with the impact of progressive obesity. PMID:22977272

  9. Restoration of muscle mitochondrial function and metabolic flexibility in type 2 diabetes by exercise training is paralleled by increased myocellular fat storage and improved insulin sensitivity.

    PubMed

    Meex, Ruth C R; Schrauwen-Hinderling, Vera B; Moonen-Kornips, Esther; Schaart, Gert; Mensink, Marco; Phielix, Esther; van de Weijer, Tineke; Sels, Jean-Pierre; Schrauwen, Patrick; Hesselink, Matthijs K C

    2010-03-01

    Mitochondrial dysfunction and fat accumulation in skeletal muscle (increased intramyocellular lipid [IMCL]) have been linked to development of type 2 diabetes. We examined whether exercise training could restore mitochondrial function and insulin sensitivity in patients with type 2 diabetes. Eighteen male type 2 diabetic and 20 healthy male control subjects of comparable body weight, BMI, age, and VO2max participated in a 12-week combined progressive training program (three times per week and 45 min per session). In vivo mitochondrial function (assessed via magnetic resonance spectroscopy), insulin sensitivity (clamp), metabolic flexibility (indirect calorimetry), and IMCL content (histochemically) were measured before and after training. Mitochondrial function was lower in type 2 diabetic compared with control subjects (P = 0.03), improved by training in control subjects (28% increase; P = 0.02), and restored to control values in type 2 diabetic subjects (48% increase; P < 0.01). Insulin sensitivity tended to improve in control subjects (delta Rd 8% increase; P = 0.08) and improved significantly in type 2 diabetic subjects (delta Rd 63% increase; P < 0.01). Suppression of insulin-stimulated endogenous glucose production improved in both groups (-64%; P < 0.01 in control subjects and -52% in diabetic subjects; P < 0.01). After training, metabolic flexibility in type 2 diabetic subjects was restored (delta respiratory exchange ratio 63% increase; P = 0.01) but was unchanged in control subjects (delta respiratory exchange ratio 7% increase; P = 0.22). Starting with comparable pretraining IMCL levels, training tended to increase IMCL content in type 2 diabetic subjects (27% increase; P = 0.10), especially in type 2 muscle fibers. Exercise training restored in vivo mitochondrial function in type 2 diabetic subjects. Insulin-mediated glucose disposal and metabolic flexibility improved in type 2 diabetic subjects in the face of near-significantly increased IMCL content. This indicates that increased capacity to store IMCL and restoration of improved mitochondrial function contribute to improved muscle insulin sensitivity.

  10. Restoration of Muscle Mitochondrial Function and Metabolic Flexibility in Type 2 Diabetes by Exercise Training Is Paralleled by Increased Myocellular Fat Storage and Improved Insulin Sensitivity

    PubMed Central

    Meex, Ruth C.R.; Schrauwen-Hinderling, Vera B.; Moonen-Kornips, Esther; Schaart, Gert; Mensink, Marco; Phielix, Esther; van de Weijer, Tineke; Sels, Jean-Pierre; Schrauwen, Patrick; Hesselink, Matthijs K.C.

    2010-01-01

    OBJECTIVE Mitochondrial dysfunction and fat accumulation in skeletal muscle (increased intramyocellular lipid [IMCL]) have been linked to development of type 2 diabetes. We examined whether exercise training could restore mitochondrial function and insulin sensitivity in patients with type 2 diabetes. RESEARCH DESIGN AND METHODS Eighteen male type 2 diabetic and 20 healthy male control subjects of comparable body weight, BMI, age, and Vo2max participated in a 12-week combined progressive training program (three times per week and 45 min per session). In vivo mitochondrial function (assessed via magnetic resonance spectroscopy), insulin sensitivity (clamp), metabolic flexibility (indirect calorimetry), and IMCL content (histochemically) were measured before and after training. RESULTS Mitochondrial function was lower in type 2 diabetic compared with control subjects (P = 0.03), improved by training in control subjects (28% increase; P = 0.02), and restored to control values in type 2 diabetic subjects (48% increase; P < 0.01). Insulin sensitivity tended to improve in control subjects (delta Rd 8% increase; P = 0.08) and improved significantly in type 2 diabetic subjects (delta Rd 63% increase; P < 0.01). Suppression of insulin-stimulated endogenous glucose production improved in both groups (−64%; P < 0.01 in control subjects and −52% in diabetic subjects; P < 0.01). After training, metabolic flexibility in type 2 diabetic subjects was restored (delta respiratory exchange ratio 63% increase; P = 0.01) but was unchanged in control subjects (delta respiratory exchange ratio 7% increase; P = 0.22). Starting with comparable pretraining IMCL levels, training tended to increase IMCL content in type 2 diabetic subjects (27% increase; P = 0.10), especially in type 2 muscle fibers. CONCLUSIONS Exercise training restored in vivo mitochondrial function in type 2 diabetic subjects. Insulin-mediated glucose disposal and metabolic flexibility improved in type 2 diabetic subjects in the face of near–significantly increased IMCL content. This indicates that increased capacity to store IMCL and restoration of improved mitochondrial function contribute to improved muscle insulin sensitivity. PMID:20028948

  11. Relationship between hyperglycemia, hormone disturbances, and clinical evolution in severely hyperglycemic post surgery critically ill children: an observational study

    PubMed Central

    2014-01-01

    Background To study hormonal changes associated with severe hyperglycemia in critically ill children and the relationship with prognosis and length of stay in intensive care. Methods Observational study in twenty-nine critically ill children with severe hyperglycemia defined as 2 blood glucose measurements greater than 180 mg/dL. Severity of illness was assessed using pediatric index of mortality (PIM2), pediatric risk of mortality (PRISM) score, and pediatric logistic organ dysfunction (PELOD) scales. Blood glucose, glycosuria, insulin, C-peptide, cortisol, corticotropin, insulinlike growth factor-1, growth hormone, thyrotropin, thyroxine, and treatment with insulin were recorded. β-cell function and insulin sensitivity and resistance were determined on the basis of the homeostatic model assessment (HOMA), using blood glucose and C-peptide levels. Results The initial blood glucose level was 249 mg/dL and fell gradually to 125 mg/dL at 72 hours. Initial β-cell function (49.2%) and insulin sensitivity (13.2%) were low. At the time of diagnosis of hyperglycemia, 50% of the patients presented insulin resistance and β-cell dysfunction, 46% presented isolated insulin resistance, and 4% isolated β-cell dysfunction. β-cell function improved rapidly but insulin resistance persisted. Initial glycemia did not correlate with any other factor, and there was no relationship between glycemia and mortality. Patients who died had higher cortisol and growth hormone levels at diagnosis. Length of stay was correlated by univariate analysis, but not by multivariate analysis, with C-peptide and glycemic control at 24 hours, insulin resistance, and severity of illness scores. Conclusions Critically ill children with severe hyperglycemia initially present decreased β-cell function and insulin sensitivity. Nonsurvivors had higher cortisol and growth hormone levels and developed hyperglycemia later than survivors. PMID:24628829

  12. Insulin, cognition, and dementia

    PubMed Central

    Cholerton, Brenna; Baker, Laura D.; Craft, Suzanne

    2015-01-01

    Cognitive disorders of aging represent a serious threat to the social and economic welfare of current society. It is now widely recognized that pathology related to such conditions, particularly Alzheimer’s disease, likely begins years or decades prior to the onset of clinical dementia symptoms. This revelation has led researchers to consider candidate mechanisms precipitating the cascade of neuropathological events that eventually lead to clinical Alzheimer’s disease. Insulin, a hormone with potent effects in the brain, has recently received a great deal of attention for its potential beneficial and protective role in cognitive function. Insulin resistance, which refers to the reduced sensitivity of target tissues to the favorable effects of insulin, is related to multiple chronic conditions known to impact cognition and increase dementia risk. With insulin resistance-associated conditions reaching epidemic proportions, the prevalence of Alzheimer’s disease and other cognitive disorders will continue to rise exponentially. Fortunately, these chronic insulin-related conditions are amenable to pharmacological intervention. As a result, novel therapeutic strategies that focus on increasing insulin sensitivity in the brain may be an important target for protecting or treating cognitive decline. The following review will highlight our current understanding of the role of insulin in brain, potential mechanisms underlying the link between insulin resistance and dementia, and current experimental therapeutic strategies aimed at improving cognitive function via modifying the brain’s insulin sensitivity. PMID:24070815

  13. Proof of Concept: Matrix metalloproteinase inhibitor decreases inflammation and improves muscle insulin sensitivity in people with type 2 diabetes

    PubMed Central

    2012-01-01

    Background Obesity is a state of subclinical inflammation resulting in loss of function of insulin receptors and decreased insulin sensitivity. Inhibition of the inflammatory enzymes, matrix metalloproteinases (MMPs), for 6 months in rodent models restores insulin receptor function and insulin sensitivity. Methods This 12-week double-blind, randomized, placebo (PL)-controlled proof-of-concept study was performed to determine if the MMP inhibitor (MMPI), doxycycline, decreased global markers of inflammation and enhanced muscle insulin sensitivity in obese people with type 2 diabetes (DM2). The study included non-DM2 controls (n = 15), and DM2 subjects randomized to PL (n = 13) or doxycycline 100 mg twice daily (MMPI; n = 11). All participants were evaluated on Day 1; MMPI and PL groups were also evaluated after 84 days of treatment. Results There was a significant decrease in inflammatory markers C-reactive protein (P < 0.05) and myeloperoxidase (P = 0.01) in the MMPI but not PL group. The MMPI also significantly increased skeletal muscle activated/total insulin signaling mediators: 3’phosphoinositide kinase-1 (PDK1) (p < 0.03), protein kinase B (PKB/Akt) (p < 0.004), and glycogen synthase kinase 3ß (GSK3ß) (p < 0.03). Conclusions This study demonstrated short term treatment of people with diabetes with an MMPI resulted in decreased inflammation and improved insulin sensitivity. Larger, longer studies are warranted to determine if doxycycline can improve glucose control in people with diabetes. Trial Registration Clinicaltrials.gov NCT01375491 PMID:23025537

  14. Does enhanced insulin sensitivity improve sleep measures in patients with obstructive sleep apnea: A randomized, placebo-controlled pilot study

    PubMed Central

    Liu, Alice; Kim, Sun H.; Ariel, Danit; Abbasi, Fahim; Lamendola, Cindy; Cardell, James; Xu, Shiming; Patel, Shailja; Tomasso, Vanessa; Mojaddidi, Hafasa; Grove, Kaylene; Tsao, Philip S.; Kushida, Clete A.; Reaven, Gerald M.

    2016-01-01

    Background High fasting insulin levels have been reported to predict development of observed apneas, suggesting that insulin resistance may contribute to the pathogenesis of obstructive sleep apnea (OSA). The study aim was to determine whether enhancing insulin sensitivity in individuals with OSA would improve sleep measures. Patients/Methods Insulin-resistant, nondiabetic individuals with untreated OSA were randomized (2:1) to pioglitazone (45mg/day) or placebo for 8 weeks in this single-blind study. All individuals had repeat measurements pertaining to sleep (overnight polysomnography and Functional Outcomes of Sleep Questionnaire) and insulin action (insulin suppression test). Results Forty-five overweight/obese men and women with moderate/severe OSA were randomized to pioglitazone (n=30) or placebo (n=15). Although insulin sensitivity increased 31% among pioglitazone-treated as compared to no change among individuals receiving placebo ((p<0.001 for between-group difference), no improvements in quantitative or qualitative sleep measurements were observed. Conclusions Pioglitazone administration increased insulin sensitivity in otherwise untreated individuals with OSA, without any change in polysomnographic sleep measures over an 8-week period. These findings do not support a causal role for insulin resistance in the pathogenesis of OSA. PMID:27544837

  15. A novel function of microRNA 130a-3p in hepatic insulin sensitivity and liver steatosis.

    PubMed

    Xiao, Fei; Yu, Junjie; Liu, Bin; Guo, Yajie; Li, Kai; Deng, Jiali; Zhang, Jin; Wang, Chunxia; Chen, Shanghai; Du, Ying; Lu, Yingli; Xiao, Yuzhong; Zhang, Zhou; Guo, Feifan

    2014-08-01

    MicroRNAs (miRNAs) are endogenous, noncoding, short, single-stranded RNAs that are evolutionarily conserved and believed to play a role in controlling a variety of biological processes. The roles of miRNAs in insulin resistance and liver steatosis, however, are largely unknown. The objective of this study was to evaluate the roles of miR-130a in the regulation of insulin sensitivity and liver steatosis. In our current study, we observed that overexpression of miR-130a-3p increases insulin signaling in both HepG2 cells and primary mouse hepatocytes, and silencing of miR-130a-3p has the opposite effects. However, miR-130a-5p has no effect in the regulation of insulin signaling. Consistently, whole-body and hepatic insulin sensitivity are improved in mice injected with adenoviruses that overexpress miR-130a-3p. Furthermore, we provided evidence showing that growth factor receptor-bound protein 10 is required for miR-130a-3p-regulated insulin sensitivity. On the other hand, we observed that expression of miR-130a-3p is decreased in the livers of db/db mice and that adenovirus-mediated overexpression of miR-130a-3p reverses insulin resistance and liver steatosis, the latter of which is achieved via suppressing fatty acid synthase expression in these mice. This study identifies a novel function for hepatic miR-130a-3p in the regulation of insulin sensitivity and liver steatosis. © 2014 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  16. Insulin sensitivity and beta-cell function in healthy cats: assessment with the use of the hyperglycemic glucose clamp.

    PubMed

    Slingerland, L I; Robben, J H; van Haeften, T W; Kooistra, H S; Rijnberk, A

    2007-05-01

    A hyperglycemic clamp (HGC) was developed for use in conscious cats. In 21 healthy, normal glucose tolerant cats glucose disposal rate (M), insulin sensitivity (ISI (HGC)), and beta-cell response (I) at arterial plasma glucose of 9 mmol.l (-1) were measured. The HGC was tolerated well and steady state glucose infusion was achieved. Compared to values reported for humans, M values for the cats were low, which appeared to relate to both a low ISI (HGC) and a low I. HGC measures correlated with fasting plasma glucose and insulin concentrations as well as with their HOMA (homeostasis model assessment) and QUICKI (quantitative insulin sensitivity check index) counterparts. Also, I and ISI (HGC) correlated with their counterparts derived from intravenous glucose tolerance tests. In conclusion, this is the first report of hyperglycemic glucose clamping in cats. The procedure (HGC) allows for measurements of glucose disposal, beta-cell response and insulin sensitivity. Compared to human data, both insulin sensitivity and insulin secretion appeared to be low in cats. This is compatible with the carnivorous nature of this species, for which insulin resistance would be advantageous during periods of restricted food availability.

  17. Kir6.2 Variant E23K Increases ATP-Sensitive K+ Channel Activity and Is Associated With Impaired Insulin Release and Enhanced Insulin Sensitivity in Adults With Normal Glucose Tolerance

    PubMed Central

    Villareal, Dennis T.; Koster, Joseph C.; Robertson, Heather; Akrouh, Alejandro; Miyake, Kazuaki; Bell, Graeme I.; Patterson, Bruce W.; Nichols, Colin G.; Polonsky, Kenneth S.

    2009-01-01

    OBJECTIVE The E23K variant in the Kir6.2 subunit of the ATP-sensitive K+ channel (KATP channel) is associated with increased risk of type 2 diabetes. The present study was undertaken to increase our understanding of the mechanisms responsible. To avoid confounding effects of hyperglycemia, insulin secretion and action were studied in subjects with the variant who had normal glucose tolerance. RESEARCH DESIGN AND METHODS Nine subjects with the E23K genotype K/K and nine matched subjects with the E/E genotype underwent 5-h oral glucose tolerance tests (OGTTs), graded glucose infusion, and hyperinsulinemic-euglycemic clamp with stable-isotope–labeled tracer infusions to assess insulin secretion, action, and clearance. A total of 461 volunteers consecutively genotyped for the E23K variant also underwent OGTTs. Functional studies of the wild-type and E23K variant potassium channels were conducted. RESULTS Insulin secretory responses to oral and intravenous glucose were reduced by ∼40% in glucose-tolerant subjects homozygous for E23K. Normal glucose tolerance with reduced insulin secretion suggests a change in insulin sensitivity. The hyperinsulinemic-euglycemic clamp revealed that hepatic insulin sensitivity is ∼40% greater in subjects with the E23K variant, and these subjects demonstrate increased insulin sensitivity after oral glucose. The reconstituted E23K channels confirm reduced sensitivity to inhibitory ATP and increase in open probability, a direct molecular explanation for reduced insulin secretion. CONCLUSIONS The E23K variant leads to overactivity of the KATP channel, resulting in reduced insulin secretion. Initially, insulin sensitivity is enhanced, thereby maintaining normal glucose tolerance. Presumably, over time, as insulin secretion falls further or insulin resistance develops, glucose levels rise resulting in type 2 diabetes. PMID:19491206

  18. Coronary vasomotor abnormalities in insulin-resistant individuals.

    PubMed

    Quiñones, Manuel J; Hernandez-Pampaloni, Miguel; Schelbert, Heinrich; Bulnes-Enriquez, Isabel; Jimenez, Xochitl; Hernandez, Gustavo; De La Rosa, Roxana; Chon, Yun; Yang, Huiying; Nicholas, Susanne B; Modilevsky, Tamara; Yu, Katherine; Van Herle, Katja; Castellani, Lawrence W; Elashoff, Robert; Hsueh, Willa A

    2004-05-04

    Insulin resistance is a metabolic spectrum that progresses from hyperinsulinemia to the metabolic syndrome, impaired glucose tolerance, and finally type 2 diabetes mellitus. It is unclear when vascular abnormalities begin in this spectrum of metabolic effects. To evaluate the association of insulin resistance with the presence and reversibility of coronary vasomotor abnormalities in young adults at low cardiovascular risk. Cross-sectional study followed by prospective, open-label treatment study. University hospital. 50 insulin-resistant and 22 insulin-sensitive, age-matched Mexican-American participants without glucose intolerance or traditional risk factors for or evidence of coronary artery disease. 3 months of thiazolidinedione therapy for 25 insulin-resistant patients. Glucose infusion rate in response to insulin infusion was used to define insulin resistance (glucose infusion rate < or = 4.00 mg/kg of body weight per minute [range, 0.90 to 3.96 mg/kg per minute]) and insulin sensitivity (glucose infusion rate > or = 7.50 mg/kg per minute [range, 7.52 to 13.92 mg/kg per minute]). Myocardial blood flow was measured by using positron emission tomography at rest, during cold pressor test (largely endothelium-dependent), and after dipyridamole administration (largely vascular smooth muscle-dependent). Myocardial blood flow responses to dipyridamole were similar in the insulin-sensitive and insulin-resistant groups. However, myocardial blood flow response to cold pressor test increased by 47.6% from resting values in insulin-sensitive patients and by 14.4% in insulin-resistant patients. During thiazolidinedione therapy in a subgroup of insulin-resistant patients, insulin sensitivity improved, fasting plasma insulin levels decreased, and myocardial blood flow responses to cold pressor test normalized. The study was not randomized, and it included only 1 ethnic group. Insulin-resistant patients who do not have hypercholesterolemia or hypertension and do not smoke manifest coronary vasomotor abnormalities. Insulin-sensitizing thiazolidinedione therapy normalized these abnormalities. These results suggest an association between insulin resistance and abnormal coronary vasomotor function, a relationship that requires confirmation in larger studies.

  19. Gastric Inhibitory Peptide Controls Adipose Insulin Sensitivity via Activation of cAMP-response Element-binding Protein and p110β Isoform of Phosphatidylinositol 3-Kinase*

    PubMed Central

    Mohammad, Sameer; Ramos, Lavoisier S.; Buck, Jochen; Levin, Lonny R.; Rubino, Francesco; McGraw, Timothy E.

    2011-01-01

    Gastric inhibitory peptide (GIP) is an incretin hormone secreted in response to food intake. The best known function of GIP is to enhance glucose-dependent insulin secretion from pancreatic β-cells. Extra-pancreatic effects of GIP primarily occur in adipose tissues. Here, we demonstrate that GIP increases insulin-dependent translocation of the Glut4 glucose transporter to the plasma membrane and exclusion of FoxO1 transcription factor from the nucleus in adipocytes, establishing that GIP has a general effect on insulin action in adipocytes. Stimulation of adipocytes with GIP alone has no effect on these processes. Using pharmacologic and molecular genetic approaches, we show that the effect of GIP on adipocyte insulin sensitivity requires activation of both the cAMP/protein kinase A/CREB signaling module and p110β phosphoinositol-3′ kinase, establishing a novel signal transduction pathway modulating insulin action in adipocytes. This insulin-sensitizing effect is specific for GIP because isoproterenol, which elevates adipocyte cAMP and activates PKA/CREB signaling, does not affect adipocyte insulin sensitivity. The insulin-sensitizing activity points to a more central role for GIP in intestinal regulation of peripheral tissue metabolism, an emerging feature of inter-organ communication in the control of metabolism. PMID:22027830

  20. SGLT2-inhibitor and DPP-4 inhibitor improve brain function via attenuating mitochondrial dysfunction, insulin resistance, inflammation, and apoptosis in HFD-induced obese rats.

    PubMed

    Sa-Nguanmoo, Piangkwan; Tanajak, Pongpan; Kerdphoo, Sasiwan; Jaiwongkam, Thidarat; Pratchayasakul, Wasana; Chattipakorn, Nipon; Chattipakorn, Siriporn C

    2017-10-15

    Dipeptidyl peptidase-4 inhibitor (vildagliptin) has been shown to exert beneficial effects on insulin sensitivity and neuroprotection in obese-insulin resistance. Recent studies demonstrated the neuroprotection of the sodium-glucose co-transporter 2 inhibitor (dapagliflozin) in diabetes. However, the comparative effects of both drugs and a combination of two drugs on metabolic dysfunction and brain dysfunction impaired by the obese-insulin resistance have never been investigated. Forty male Wistar rats were divided into two groups, and received either a normal-diet (ND, n=8) or a high-fat diet (HFD, n=32) for 16weeks. At week 13, the HFD-fed rats were divided into four subgroups (n=8/subgroup) to receive either a vehicle, vildagliptin (3mg/kg/day) dapagliflozin (1mg/kg/day) or combined drugs for four weeks. ND rats were given a vehicle for four weeks. Metabolic parameters and brain function were investigated. The results demonstrated that HFD rats developed obese-insulin resistance and cognitive decline. Dapagliflozin had greater efficacy on improved peripheral insulin sensitivity and reduced weight gain than vildagliptin. Single therapy resulted in equally improved brain mitochondrial function, insulin signaling, apoptosis and prevented cognitive decline. However, only dapagliflozin improved hippocampal synaptic plasticity. A combination of the drugs had greater efficacy in improving brain insulin sensitivity and reducing brain oxidative stress than the single drug therapy. These findings suggested that dapagliflozin and vildagliptin equally prevented cognitive decline in the obese-insulin resistance, possibly through some similar mechanisms. Dapagliflozin had greater efficacy than vildagliptin for preserving synaptic plasticity, thus combined drugs could be the best therapeutic approach for neuroprotection in the obese-insulin resistance. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Endothelial function and insulin resistance in polycystic ovary syndrome: the effects of medical therapy.

    PubMed

    Teede, Helena J; Meyer, Caroline; Hutchison, Samantha K; Zoungas, Sophia; McGrath, Barry P; Moran, Lisa J

    2010-01-01

    To assess the interaction between insulin resistance and endothelial function and the optimal treatment strategy addressing cardiovascular risk in polycystic ovary syndrome. Randomized controlled trial. Controlled clinical study. Overweight age- and body mass index-matched women with polycystic ovary syndrome. Six months metformin (1 g two times per day, n = 36) or oral contraceptive pill (OCP) (35 microg ethinyl E(2)-2 mg cytoproterone acetate, n = 30). Fasting and oral glucose tolerance test glucose and insulin levels, endothelial function (flow-mediated dilation, asymmetric dimethylarginine, plasminogen activator inhibitor-1, von Willebrand factor), inflammatory markers (high-sensitivity C-reactive protein), lipids, and hyperandrogenism. The OCP increased levels of glucose and insulin on oral glucose tolerance test, high-sensitivity C-reactive protein, triglycerides, and sex-hormone binding globulin and decreased levels of low-density lipoprotein cholesterol and T. Metformin decreased levels of fasting insulin, oral glucose tolerance test insulin, high-density lipoprotein cholesterol, and high-sensitivity C-reactive protein. Flow-mediated dilation increased only with metformin (+2.2% +/- 4.8%), whereas asymmetric dimethylarginine decreased equivalently for OCP and metformin (-0.3 +/- 0.1 vs. -0.1 +/- 0.1 mmol/L). Greater decreases in plasminogen activator inhibitor-1 occurred for the OCP than for metformin (-1.8 +/- 1.6 vs. -0.7 +/- 1.7 U/mL). In polycystic ovary syndrome, metformin improves insulin resistance, inflammatory markers, and endothelial function. The OCP worsens insulin resistance and glucose homeostasis, inflammatory markers, and triglycerides and has neutral or positive endothelial effects. The effect of the OCP on cardiovascular risk in polycystic ovary syndrome is unclear. Copyright 2010 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  2. Effect of insulin sensitizer therapy on amino acids and their metabolites.

    PubMed

    Irving, Brian A; Carter, Rickey E; Soop, Mattias; Weymiller, Audrey; Syed, Husnain; Karakelides, Helen; Bhagra, Sumit; Short, Kevin R; Tatpati, Laura; Barazzoni, Rocco; Nair, K Sreekumaran

    2015-06-01

    Prior studies have reported that elevated concentrations of several plasma amino acids (AA), particularly branched chain (BCAA) and aromatic AA predict the onset of type 2 diabetes. We sought to test the hypothesis that circulating BCAA, aromatic AA and related AA metabolites decline in response to the use of insulin sensitizing agents in overweight/obese adults with impaired fasting glucose or untreated diabetes. We performed a secondary analysis of a randomized, double-blind, placebo, controlled study conducted in twenty five overweight/obese (BMI ~30kg/m(2)) adults with impaired fasting glucose or untreated diabetes. Participants were randomized to three months of pioglitazone (45mg per day) plus metformin (1000mg twice per day, N=12 participants) or placebo (N=13). We measured insulin sensitivity by the euglycemic-hyperinsulinemic clamp and fasting concentrations of AA and AA metabolites using ultra-pressure liquid chromatography tandem mass spectrometry before and after the three-month intervention. Insulin sensitizer therapy that significantly enhanced insulin sensitivity reduced 9 out of 33 AA and AA metabolites measured compared to placebo treatment. Moreover, insulin sensitizer therapy significantly reduced three functionally clustered AA and metabolite pairs: i) phenylalanine/tyrosine, ii) citrulline/arginine, and iii) lysine/α-aminoadipic acid. Reductions in plasma concentrations of several AA and AA metabolites in response to three months of insulin sensitizer therapy support the concept that reduced insulin sensitivity alters AA and AA metabolites. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Differences in beta-cell function and insulin secretion in Black vs. White obese adolescents: Do incretin hormones play a role?

    USDA-ARS?s Scientific Manuscript database

    Black youth are at higher risk for type 2 diabetes (T2D) than their White peers. Previously we demonstrated that for the same degree of insulin sensitivity, Black youth have an upregulated beta-cell function and insulin hypersecretion, in response to intravenous (IV) glucose, compared with Whites. T...

  4. Blueberries improve endothelial function, but not blood pressure, in adults with metabolic syndrome: a randomized, double-blind, placebo-controlled clinical trial.

    PubMed

    Stull, April J; Cash, Katherine C; Champagne, Catherine M; Gupta, Alok K; Boston, Raymond; Beyl, Robbie A; Johnson, William D; Cefalu, William T

    2015-05-27

    Blueberry consumption has been shown to have various health benefits in humans. However, little is known about the effect of blueberry consumption on blood pressure, endothelial function and insulin sensitivity in humans. The present study investigated the role of blueberry consumption on modifying blood pressure in subjects with metabolic syndrome. In addition, endothelial function and insulin sensitivity (secondary measurements) were also assessed. A double-blind and placebo-controlled study was conducted in 44 adults (blueberry, n = 23; and placebo, n = 21). They were randomized to receive a blueberry or placebo smoothie twice daily for six weeks. Twenty-four-hour ambulatory blood pressure, endothelial function and insulin sensitivity were assessed pre- and post-intervention. The blood pressure and insulin sensitivity did not differ between the blueberry and placebo groups. However, the mean change in resting endothelial function, expressed as reactive hyperemia index (RHI), was improved significantly more in the group consuming the blueberries versus the placebo group (p = 0.024). Even after adjusting for confounding factors, i.e., the percent body fat and gender, the blueberry group still had a greater improvement in endothelial function when compared to their counterpart (RHI; 0.32 ± 0.13 versus -0.33 ± 0.14; p = 0.0023). In conclusion, daily dietary consumption of blueberries did not improve blood pressure, but improved (i.e., increased) endothelial function over six weeks in subjects with metabolic syndrome.

  5. Blueberries Improve Endothelial Function, but Not Blood Pressure, in Adults with Metabolic Syndrome: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial

    PubMed Central

    Stull, April J.; Cash, Katherine C.; Champagne, Catherine M.; Gupta, Alok K.; Boston, Raymond; Beyl, Robbie A.; Johnson, William D.; Cefalu, William T.

    2015-01-01

    Blueberry consumption has been shown to have various health benefits in humans. However, little is known about the effect of blueberry consumption on blood pressure, endothelial function and insulin sensitivity in humans. The present study investigated the role of blueberry consumption on modifying blood pressure in subjects with metabolic syndrome. In addition, endothelial function and insulin sensitivity (secondary measurements) were also assessed. A double-blind and placebo-controlled study was conducted in 44 adults (blueberry, n = 23; and placebo, n = 21). They were randomized to receive a blueberry or placebo smoothie twice daily for six weeks. Twenty-four-hour ambulatory blood pressure, endothelial function and insulin sensitivity were assessed pre- and post-intervention. The blood pressure and insulin sensitivity did not differ between the blueberry and placebo groups. However, the mean change in resting endothelial function, expressed as reactive hyperemia index (RHI), was improved significantly more in the group consuming the blueberries versus the placebo group (p = 0.024). Even after adjusting for confounding factors, i.e., the percent body fat and gender, the blueberry group still had a greater improvement in endothelial function when compared to their counterpart (RHI; 0.32 ± 0.13 versus −0.33 ± 0.14; p = 0.0023). In conclusion, daily dietary consumption of blueberries did not improve blood pressure, but improved (i.e., increased) endothelial function over six weeks in subjects with metabolic syndrome. PMID:26024297

  6. Half-Unit Insulin Pens: Disease Management in Patients With Diabetes Who Are Sensitive to Insulin.

    PubMed

    Klonoff, David C; Nayberg, Irina; Stauder, Udo; Oualali, Hamid; Domenger, Catherine

    2017-05-01

    Insulin pens represent a significant technological advancement in diabetes management. While the vast majority have been designed with 1U-dosing increments, improved accuracy and precision facilitated by half-unit increments may be particularly significant in specific patients who are sensitive to insulin. These include patients with low insulin requirements and in those requiring more precise dose adjustments, such as the pediatric patient population. This review summarized functional characteristics of insulin half-unit pens (HUPs) and their effect on user experience. The literature search was restricted to articles published in English between January 1, 2000, and January 1, 2015. A total of 17 publications met the set criteria and were included in the review. Overall, studies outlined characteristics for 4 insulin HUPs. Based on their functionality, the pens were generally similar and all met the ISO 11608-1 criteria for accuracy. However, some had specific advantageous features in terms of size, weight, design, dialing torque, and injection force. Although limited, the currently available user preference studies in children and adolescents with diabetes and their carers suggest that the selection of an HUP is likely to be influenced by a combination of factors such as these, in addition to the prescribed insulin and dosing regimen. Insulin HUPs are likely to be a key diabetes management tool for patients who are sensitive to insulin; specific pen features may further advance diabetes management in these populations.

  7. β-Cell lipotoxicity after an overnight intravenous lipid challenge and free fatty acid elevation in African American versus American white overweight/obese adolescents.

    PubMed

    Hughan, Kara S; Bonadonna, Riccardo C; Lee, SoJung; Michaliszyn, Sara F; Arslanian, Silva A

    2013-05-01

    Overweight/obese (OW/OB) African American (AA) adolescents have a more diabetogenic insulin secretion/sensitivity pattern compared with their American white (AW) peers. The present study investigated β-cell lipotoxicity to test whether increased free fatty acid (FFA) levels result in greater β-cell dysfunction in AA vs AW OW/OB adolescents. Glucose-stimulated insulin secretion was modeled, from glucose and C-peptide concentrations during a 2-hour hyperglycemic (225 mg/dL) clamp in 22 AA and 24 AW OW/OB adolescents, on 2 occasions after a 12-hour overnight infusion of either normal saline or intralipid (IL) in a random sequence. β-Cell function relative to insulin sensitivity, the disposition index (DI), was examined during normal saline and IL conditions. Substrate oxidation was evaluated with indirect calorimetry and body composition and abdominal adiposity with dual-energy X-ray absorptiometry and magnetic resonance imaging at L4-L5, respectively. Age, sex, body mass index, total and sc adiposity were similar between racial groups, but visceral adiposity was significantly lower in AAs. During IL infusion, FFAs and fat oxidation increased and insulin sensitivity decreased similarly in AAs and AWs. β-Cell glucose sensitivity of first- and second-phase insulin secretion did not change significantly during IL infusion in either group, but DI in each phase decreased significantly and similarly in AAs and AWs. Overweight/obese AA and AW adolescents respond to an overnight fat infusion with significant declines in insulin sensitivity, DI, and β-cell function relative to insulin sensitivity, suggestive of β-cell lipotoxicity. However, contrary to our hypothesis, there does not seem to be a race differential in β-cell lipotoxicity. Longer durations of FFA elevation may unravel such race-related contrasts.

  8. Insulin Sensitivity and Secretion in Obese Type 2 Diabetic Women after Various Bariatric Operations

    PubMed Central

    Vrbikova, Jana; Kunesova, Marie; Kyrou, Ioannis; Tura, Andrea; Hill, Martin; Grimmichova, Tereza; Dvorakova, Katerina; Sramkova, Petra; Dolezalova, Karin; Lischkova, Olga; Vcelak, Josef; Hainer, Vojtech; Bendlova, Bela; Kumar, Sudhesh; Fried, Martin

    2017-01-01

    Objective To compare the effects of biliopancreatic diversion (BPD) and laparoscopic gastric banding (LAGB) on insulin sensitivity and secretion with the effects of laparoscopic gastric plication (P). Methods A total of 52 obese women (age 30-66 years) suffering from type 2 diabetes mellitus (T2DM) were prospectively recruited into three study groups: 16 BPD; 16 LAGB, and 20 P. Euglycemic clamps and mixed meal tolerance tests were performed before, at 1 month and at 6 months after bariatric surgery. Beta cell function derived from the meal test parameters was evaluated using mathematical modeling. Results Glucose disposal per kilogram of fat free mass (a marker of peripheral insulin sensitivity) increased significantly in all groups, especially after 1 month. Basal insulin secretion decreased significantly after all three types of operations, with the most marked decrease after BPD compared with P and LAGB. Total insulin secretion decreased significantly only following the BPD. Beta cell glucose sensitivity did not change significantly post-surgery in any of the study groups. Conclusion We documented similar improvement in insulin sensitivity in obese T2DM women after all three study operations during the 6-month postoperative follow-up. Notably, only BPD led to decreased demand on beta cells (decreased integrated insulin secretion), but without increasing the beta cell glucose sensitivity. PMID:27951535

  9. Association of Androgen Excess with Glucose Intolerance in Women with Polycystic Ovary Syndrome.

    PubMed

    Zhang, Bingjie; Wang, Jing; Shen, Shanmei; Liu, Jiayi; Sun, Jie; Gu, Tianwei; Ye, Xiao; Zhu, Dalong; Bi, Yan

    2018-01-01

    Women with polycystic ovary syndrome (PCOS) show high prevalence of glucose intolerance. This study aimed to investigate the association of androgen excess with glucose intolerance in PCOS. A total of 378 women with PCOS participated in the study. Free androgen index (FAI) was selected as indicator of hyperandrogenism. Insulin sensitivity was assessed by 1/homeostasis model assessment of insulin resistance (1/HOMA-IR) and Matsuda insulin sensitivity index (ISI M ); β -cell function was assessed by disposition index (DI). We found that women with glucose intolerance had higher FAI levels compared to women with normal glucose tolerance (NGT) (prediabetes 6.2, T2DM 7.9 versus NGT 5.0, resp.; p < 0.001). Furthermore, there was a direct association between FAI levels and frequency of glucose intolerance (OR = 2.480, 95% CI 1.387-4.434), even after adjusting for age, BMI, waist circumference, hypertension, fasting insulin, testosterone, SHBG, and family history of diabetes. In addition, with FAI increase, glycosylated hemoglobin (HbA1c), plasma glucose concentrations, and serum insulin levels increased, while insulin sensitivity and β -cell function decreased. Our results suggested that androgen excess indicated by high FAI levels might serve as indicator of glucose intolerance, as it might promote insulin resistance and β -cell dysfunction in women with PCOS.

  10. Metabolic surgery for non-obese type 2 diabetes: incretins, adipocytokines, and insulin secretion/resistance changes in a 1-year interventional clinical controlled study.

    PubMed

    Geloneze, Bruno; Geloneze, Sylka Rodovalho; Chaim, Elinton; Hirsch, Fernanda Filgueira; Felici, Ana Claudia; Lambert, Giselle; Tambascia, Marcos Antonio; Pareja, José Carlos

    2012-07-01

    To compare duodenal-jejunal bypass (DJB) with standard medical care in nonobese patients with type 2 diabetes and evaluate surgically induced endocrine and metabolic changes. Eighteen patients submitted to a DJB procedure met the following criteria: overweight, diabetes diagnosis less than 15 years, current insulin treatment, residual β-cell function, and absence of autoimmunity. Patients who refused surgical treatment received standard medical care (control group). At baseline, 3, 6, and 12 months after surgery, insulin sensitivity and production of glucagon-like peptide-1 and glucose-insulinotropic polypeptide were assessed during a meal tolerance test. Fasting adipocytokines and dipeptidyl-peptidase-4 concentrations were measured. The mean age of the patients was 50 (5) years, time of diagnosis: 9 (2) years, time of insulin usage: 6 (5) months, fasting glucose: 9.9 (2.5) mmol/dL, and HbA1c (glycosylated hemoglobin) level: 8.9% (1.2%). Duodenal-jejunal bypass group showed greater reductions in fasting glucose (22% vs 6% in control group, P < 0.05) and daily insulin requirement (93% vs 15%, P < 0.01). Twelve patients from DJB group stopped using insulin and showed improvements in insulin sensitivity and β-cell function (P < 0.01), and reductions in glucose-insulinotropic polypeptide levels (P < 0.001), glucagon during the first 30 minutes after meal (P < 0.05), and leptin levels (P < 0.05). Dipeptidyl-peptidase-4 levels increased after surgery (P < 0.01), but glucagon-like peptide-1 levels did not change. Duodenal-jejunal bypass improved insulin sensitivity and β-cell function and reduced glucose-insulinotropic polypeptide, leptin, and glucagon production. Hence, DJB resulted in better glycemic control and reduction in insulin requirement but DJB did not result in remission of diabetes.

  11. Switching from high-fat to low-fat diet normalizes glucose metabolism and improves glucose-stimulated insulin secretion and insulin sensitivity but not body weight in C57BL/6J mice.

    PubMed

    Agardh, Carl-David; Ahrén, Bo

    2012-03-01

    Environmental factors such as a high-fat diet contribute to type 2 diabetes and obesity. This study examined glycemia, insulin sensitivity, and β-cell function after switching from a high-fat diet to a low-fat diet in mice. C57BL/6J mice were fed a high-fat diet or low-fat diet for 18 months, after which mice on the high-fat diet either maintained this diet or switched to a low-fat diet for 4 weeks. Body weight and glucose and insulin responses to intraperitoneal glucose were determined. Insulin secretion (insulinogenic index: the 10-minute insulin response divided by the 10-minute glucose level) and insulin sensitivity (1 divided by basal insulin) were determined. After 18 months on a high-fat diet, mice had glucose intolerance, marked hyperinsulinemia, and increased body weight compared to mice on a low-fat diet (P < 0.001). Switching from a high-fat diet to low-fat diet normalized glucose tolerance, reduced but not normalized body weight (P < 0.001), increased insulin secretion (248 ± 39 vs 141 ± 46 pmol/mmol; P = 0.028) and improved but not normalized insulin sensitivity (3.2 ± 0.1 vs 1.0 ± 0.1 [pmol/L]; P = 0.012). Switching from a high-fat diet to low-fat diet normalizes glucose tolerance and improves but not normalizes insulin secretion and insulin sensitivity. These effects are more pronounced than the reduced body weight.

  12. Role for the TRPV1 channel in insulin secretion from pancreatic beta cells.

    PubMed

    Diaz-Garcia, Carlos Manlio; Morales-Lázaro, Sara L; Sánchez-Soto, Carmen; Velasco, Myrian; Rosenbaum, Tamara; Hiriart, Marcia

    2014-06-01

    Transient receptor potential channels have been put forward as regulators of insulin secretion. A role for the TRPV1 ion channel in insulin secretion has been suggested in pancreatic beta cell lines. We explored whether TRPV1 is functionally expressed in RINm5F and primary beta cells from neonate and adult rats. We examined if capsaicin could activate cationic non-selective currents. Our results show that TRPV1 channels are not functional in insulin-secreting cells, since capsaicin did not produce current activation, not even under culture conditions known to induce the expression of other ion channels in these cells. Although TRPV1 channels seem to be irrelevant for the physiology of isolated beta cells, they may play a role in glucose homeostasis acting through the nerve fibers that regulate islet function. At the physiological level, we observed that Trpv1 (-/-) mice presented lower fasting insulin levels than their wild-type littermates, however, we did not find differences between these experimental groups nor in the glucose tolerance test or in the insulin secretion. However, we did find that the Trpv1 (-/-) mice exhibited a higher insulin sensitivity compared to their wild-type counterparts. Our results demonstrate that TRPV1 does not contribute to glucose-induced insulin secretion in beta cells as was previously thought, but it is possible that it may control insulin sensitivity.

  13. Insulin Sensitivity Measured With Euglycemic Clamp Is Independently Associated With Glomerular Filtration Rate in a Community-Based Cohort

    PubMed Central

    Nerpin, Elisabet; Risérus, Ulf; Ingelsson, Erik; Sundström, Johan; Jobs, Magnus; Larsson, Anders; Basu, Samar; Ärnlöv, Johan

    2008-01-01

    OBJECTIVE—To investigate the association between insulin sensitivity and glomerular filtration rate (GFR) in the community, with prespecified subgroup analyses in normoglycemic individuals with normal GFR. RESEARCH DESIGN AND METHODS—We investigated the cross-sectional association between insulin sensitivity (M/I, assessed using euglycemic clamp) and cystatin C–based GFR in a community-based cohort of elderly men (Uppsala Longitudinal Study of Adult Men [ULSAM], n = 1,070). We also investigated whether insulin sensitivity predicted the incidence of renal dysfunction at a follow-up examination after 7 years. RESULTS—Insulin sensitivity was directly related to GFR (multivariable-adjusted regression coefficient for 1-unit higher M/I 1.19 [95% CI 0.69–1.68]; P < 0.001) after adjusting for age, glucometabolic variables (fasting plasma glucose, fasting plasma insulin, and 2-h glucose after an oral glucose tolerance test), cardiovascular risk factors (hypertension, dyslipidemia, and smoking), and lifestyle factors (BMI, physical activity, and consumption of tea, coffee, and alcohol). The positive multivariable-adjusted association between insulin sensitivity and GFR also remained statistically significant in participants with normal fasting plasma glucose, normal glucose tolerance, and normal GFR (n = 443; P < 0.02). In longitudinal analyses, higher insulin sensitivity at baseline was associated with lower risk of impaired renal function (GFR <50 ml/min per 1.73 m2) during follow-up independently of glucometabolic variables (multivariable-adjusted odds ratio for 1-unit higher of M/I 0.58 [95% CI 0.40–0.84]; P < 0.004). CONCLUSIONS—Our data suggest that impaired insulin sensitivity may be involved in the development of renal dysfunction at an early stage, before the onset of diabetes or prediabetic glucose elevations. Further studies are needed in order to establish causality. PMID:18509205

  14. Early alterations in glycemic control and pancreatic endocrine function in non-diabetic patients with chronic pancreatitis

    PubMed Central

    Lundberg, Rachel; Beilman, Gregory J.; Dunn, Ty B.; Pruett, Tim L.; Freeman, Martin L.; Ptacek, Peggy E.; Berry, K. Louise; Robertson, R. Paul; Moran, Antoinette; Bellin, Melena D.

    2015-01-01

    Objectives Diabetes mellitus (DM) is a frequent consequence of chronic pancreatitis (CP). Little is known about pancreatic endocrine function before the development of DM in CP, particularly in females, or those without calcific and/or alcoholic pancreatitis. Methods Twenty-five non-diabetic adult CP patients (19 female, age 34.2 ± 2.4 yrs) were compared to 25 healthy controls matched for age, gender, and BMI. Subjects underwent frequent sample intravenous glucose tolerance testing (FSIVGTT) and mixed meal tolerance testing (MMTT). Results Mean fasting glucose was higher in CP patients (89.5 ±2.3 mg/dL) than in controls (84.4 ±1.2 mg/dL, p=0.04). On MMTT, CP patients had a higher area under the curve (AUC) glucose and AUC glucagon compared to controls (p≤0.01). AUC C-peptide was equivalent (p=0.6) but stimulated C-peptide at 30 minutes was lower in CP patients (p=0.04). Mean insulin sensitivity index calculated from the FSIVGTT was lower in CP group, indicating reduced insulin sensitivity (p≤0.01). Disposition index (insulin secretion adjusted for insulin sensitivity on FSIVGTT) was lower in CP patients (p=0.01). Conclusions CP patients had higher fasting and MMTT glucose levels, without a compensatory increase in insulin secretion suggesting subtle early islet dysfunction. Our cohort had relative hyperglucagonemia and were less insulin sensitive than controls. PMID:26918872

  15. Prolonged Fasting Identifies Skeletal Muscle Mitochondrial Dysfunction as Consequence Rather Than Cause of Human Insulin Resistance

    PubMed Central

    Hoeks, Joris; van Herpen, Noud A.; Mensink, Marco; Moonen-Kornips, Esther; van Beurden, Denis; Hesselink, Matthijs K.C.; Schrauwen, Patrick

    2010-01-01

    OBJECTIVE Type 2 diabetes and insulin resistance have been associated with mitochondrial dysfunction, but it is debated whether this is a primary factor in the pathogenesis of the disease. To test the concept that mitochondrial dysfunction is secondary to the development of insulin resistance, we employed the unique model of prolonged fasting in humans. Prolonged fasting is a physiologic condition in which muscular insulin resistance develops in the presence of increased free fatty acid (FFA) levels, increased fat oxidation and low glucose and insulin levels. It is therefore anticipated that skeletal muscle mitochondrial function is maintained to accommodate increased fat oxidation unless factors secondary to insulin resistance exert negative effects on mitochondrial function. RESEARCH DESIGN AND METHODS While in a respiration chamber, twelve healthy males were subjected to a 60 h fast and a 60 h normal fed condition in a randomized crossover design. Afterward, insulin sensitivity was assessed using a hyperinsulinemic-euglycemic clamp, and mitochondrial function was quantified ex vivo in permeabilized muscle fibers using high-resolution respirometry. RESULTS Indeed, FFA levels were increased approximately ninefold after 60 h of fasting in healthy male subjects, leading to elevated intramuscular lipid levels and decreased muscular insulin sensitivity. Despite an increase in whole-body fat oxidation, we observed an overall reduction in both coupled state 3 respiration and maximally uncoupled respiration in permeabilized skeletal muscle fibers, which could not be explained by changes in mitochondrial density. CONCLUSIONS These findings confirm that the insulin-resistant state has secondary negative effects on mitochondrial function. Given the low insulin and glucose levels after prolonged fasting, hyperglycemia and insulin action per se can be excluded as underlying mechanisms, pointing toward elevated plasma FFA and/or intramuscular fat accumulation as possible causes for the observed reduction in mitochondrial capacity. PMID:20573749

  16. Associations of insulin resistance, inflammation and liver synthetic function with very low-density lipoprotein: The Cardiovascular Health Study.

    PubMed

    Jiang, Z Gordon; de Boer, Ian H; Mackey, Rachel H; Jensen, Majken K; Lai, Michelle; Robson, Simon C; Tracy, Russell; Kuller, Lewis H; Mukamal, Kenneth J

    2016-03-01

    Production of very low-density lipoprotein (VLDL) is increased in states of metabolic syndrome, leading to hypertriglyceridemia. However, metabolic syndrome is often associated with non-alcoholic fatty liver disease, which leads to liver fibrosis and inflammation that may decrease VLDL production. In this study, we aim to determine the interactive impact on VLDL profiles from insulin resistance, impairment in liver synthetic function and inflammation. We examined cross-sectional associations of insulin sensitivity, inflammation, and liver synthetic function with VLDL particle (VLDL-P) concentration and size among 1,850 older adults in the Cardiovascular Health Study. Indices for high insulin sensitivity and low liver synthetic function were associated with lower concentrations of VLDL-P. In addition, insulin resistance preferentially increased concentration of large VLDL and was associated with mean VLDL size. Indices for inflammation however demonstrated a nonlinear relationship with both VLDL-P concentration and VLDL size. When mutually adjusted, one standard deviation (SD) increment in Matsuda index and C-reactive protein (CRP) were associated with 4.9 nmol/L (-8.2 to -1.5, p=0.005) and 6.3 nmol/L (-11.0 to -1.6, p=0.009) lower VLDL-P concentration respectively. In contrast, one-SD increment in factor VII, a marker for liver synthetic function, was associated with 16.9 nmol/L (12.6-21.2, p<0.001) higher VLDL-P concentration. Furthermore, a one-SD increment in the Matsuda index was associated with 1.1 nm (-2.0 to -0.3, p=0.006) smaller mean VLDL size, whereas CRP and factor VII were not associated with VLDL size. Insulin sensitivity, inflammation and markers for liver synthetic function differentially impact VLDL-P concentration and VLDL size. These results underscore the complex effects of insulin resistance and its complications on VLDL production. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Insulin resistance, metabolic syndrome, and lung function in US adolescents with and without asthma.

    PubMed

    Forno, Erick; Han, Yueh-Ying; Muzumdar, Radhika H; Celedón, Juan C

    2015-08-01

    Obesity increases both the risk of asthma and asthma severity and is a well-known risk factor for insulin resistance and the metabolic syndrome (MS) in children and adolescents. We aimed to examine the association among obesity, insulin sensitivity, MS, and lung function in US adolescents with and without asthma. We performed a cross-sectional study of 1429 adolescents aged 12 to 17 years in the 2007-2010 National Health and Nutrition Examination Survey. Adjusted regression was used to assess the relationships among obesity, insulin sensitivity/resistance, MS, and lung function in children with and without asthma. Insulin resistance was negatively associated with FEV1 and forced vital capacity (FVC) in adolescents with and without asthma, whereas MS was associated with lower FEV1/FVC ratios, with a more pronounced decrease found among asthmatic patients; these associations were driven by overweight/obese adolescents. Higher body mass index was associated with a decrease in FEV1/FVC ratios among adolescents with insulin resistance. Compared with healthy participants, adolescents with MS had an approximately 2% decrease in FEV1/FVC ratios, adolescents with asthma had an approximately 6% decrease, and those with MS and asthma had approximately 10% decreased FEV1/FVC ratios (P < .05). Insulin resistance and MS are associated with worsened lung function in overweight/obese adolescents. Asthma and MS synergistically decrease lung function, as do obesity and insulin resistance. These factors might contribute to the pathogenesis of asthma severity in obese patients and warrant further investigation. Copyright © 2015 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  18. Insulin sensitivity and beta-cell function in protease inhibitor-treated and -naive human immunodeficiency virus-infected children.

    PubMed

    Bitnun, Ari; Sochett, Etienne; Dick, Paul T; To, Teresa; Jefferies, Craig; Babyn, Paul; Forbes, Jack; Read, Stanley; King, Susan M

    2005-01-01

    Previous pediatric studies have failed to demonstrate a clear association between protease inhibitor (PI) therapy and abnormal glucose homeostasis in HIV-infected children. To define more precisely the impact of PI therapy on glucose homeostasis in this population, we performed the insulin-modified frequent-sampling iv glucose tolerance test on 33 PI-treated and 15 PI-naive HIV-infected children. Other investigations included fasting serum lipids; glucose, insulin, and C-peptide; single-slice abdominal computed tomography; and, in a subset of PI-treated children, an oral glucose tolerance test. There were no differences between the two groups with respect to fasting serum insulin or C-peptide, homeostatic model assessment insulin resistance, or quantitative insulin sensitivity check index. The mean insulin sensitivity index of PI-treated and PI-naive children was 6.93 +/- 6.37 and 10.58 +/- 12.93 x 10(-4)min(-1) [microU/ml](-1), respectively (P = 0.17). The mean disposition index for the two groups was 1840 +/- 1575 and 3708 +/- 3005 x 10(-4)min(-1) (P = 0.013), respectively. After adjusting for potential confounding variables using multiple regression analysis, the insulin sensitivity index and disposition index of PI-treated children were significantly lower than that of PI-naive children (P = 0.01 for both). In PI-treated but not PI-naive children, insulin sensitivity correlated inversely with visceral adipose tissue area (r = -0.43, P = 0.01) and visceral to sc adipose tissue ratio (r = -0.49, P = 0.004). Mildly impaired glucose tolerance was noted in four of 21 PI-treated subjects tested. Our results demonstrate not only that PI therapy reduces insulin sensitivity in HIV-infected children but also that it impairs the beta-cell response to this reduction in insulin sensitivity and, in a subset of children, leads to the development of impaired glucose tolerance. The presence of insulin resistance, dyslipidemia, and the significant correlation of reduced insulin sensitivity with increased visceral adipose tissue content suggest that PI-containing highly active antiretroviral therapy is associated with the emergence of early features of a metabolic syndrome-like phenotype.

  19. Proteasome inhibitors, including curcumin, improve pancreatic β-cell function and insulin sensitivity in diabetic mice

    PubMed Central

    Weisberg, S; Leibel, R; Tortoriello, D V

    2016-01-01

    Background: Type 2 diabetes stems from obesity-associated insulin resistance, and in the genetically susceptible, concomitant pancreatic β-cell failure can occur, which further exacerbates hyperglycemia. Recent work by our group and others has shown that the natural polyphenol curcumin attenuates the development of insulin resistance and hyperglycemia in mouse models of hyperinsulinemic or compensated type 2 diabetes. Although several potential downstream molecular targets of curcumin exist, it is now recognized to be a direct inhibitor of proteasome activity. We now show that curcumin also prevents β-cell failure in a mouse model of uncompensated obesity-related insulin resistance (Leprdb/db on the Kaliss background). Results: In this instance, dietary supplementation with curcumin prevented hyperglycemia, increased insulin production and lean body mass, and prolonged lifespan. In addition, we show that short-term in vivo treatment with low dosages of two molecularly distinct proteasome inhibitors celastrol and epoxomicin reverse hyperglycemia in mice with β-cell failure by increasing insulin production and insulin sensitivity. Conclusions: These studies suggest that proteasome inhibitors may prove useful for patients with diabetes by improving both β-cell function and relieving insulin resistance. PMID:27110686

  20. Alpha-lipoic acid attenuates endoplasmic reticulum stress-induced insulin resistance by improving mitochondrial function in HepG2 cells.

    PubMed

    Lei, Lin; Zhu, Yiwei; Gao, Wenwen; Du, Xiliang; Zhang, Min; Peng, Zhicheng; Fu, Shoupeng; Li, Xiaobing; Zhe, Wang; Li, Xinwei; Liu, Guowen

    2016-10-01

    Alpha-lipoic acid (ALA) has been reported to have beneficial effects for improving insulin sensitivity. However, the underlying molecular mechanism of the beneficial effects remains poorly understood. Endoplasmic reticulum (ER) stress and mitochondrial dysfunction are considered causal factors that induce insulin resistance. In this study, we investigated the effect of ALA on the modulation of insulin resistance in ER-stressed HepG2 cells, and we explored the potential mechanism of this effect. HepG2 cells were incubated with tunicamycin (Tun) for 6h to establish an ER stress cell model. Tun treatment induced ER stress, mitochondrial dysfunction and insulin resistance. Interestingly, ALA had no significant effect on ER stress signals. Pretreatment of the ER stress cell model with ALA for 24h improved insulin sensitivity, restored the expression levels of mitochondrial oxidative phosphorylation (OXPHOS) complexes and increased intracellular ATP production. Moreover, ALA augmented the β-oxidation capacity of the mitochondria. Importantly, ALA treatment could decrease oligomycin-induced mitochondrial dysfunction and then improved insulin resistance. Taken together, our data suggest that ALA prevents ER stress-induced insulin resistance by enhancing mitochondrial function. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. beta-Cell function and insulin sensitivity in adolescents from an OGTT

    USDA-ARS?s Scientific Manuscript database

    Given the increase in the incidence of insulin resistance, obesity, and type 2 diabetes in children and adolescents, it would be of paramount importance to assess quantitative indices of insulin secretion and action during a physiological perturbation, such as a meal or an oral glucose-tolerance tes...

  2. Genome-Wide Association Study of the Modified Stumvoll Insulin Sensitivity Index Identifies BCL2 and FAM19A2 as Novel Insulin Sensitivity Loci

    PubMed Central

    Gustafsson, Stefan; Rybin, Denis; Stančáková, Alena; Chen, Han; Liu, Ching-Ti; Hong, Jaeyoung; Jensen, Richard A.; Rice, Ken; Morris, Andrew P.; Mägi, Reedik; Tönjes, Anke; Prokopenko, Inga; Kleber, Marcus E.; Delgado, Graciela; Silbernagel, Günther; Jackson, Anne U.; Appel, Emil V.; Grarup, Niels; Lewis, Joshua P.; Montasser, May E.; Landenvall, Claes; Staiger, Harald; Luan, Jian’an; Frayling, Timothy M.; Weedon, Michael N.; Xie, Weijia; Morcillo, Sonsoles; Martínez-Larrad, María Teresa; Biggs, Mary L.; Chen, Yii-Der Ida; Corbaton-Anchuelo, Arturo; Færch, Kristine; Gómez-Zumaquero, Juan Miguel; Goodarzi, Mark O.; Kizer, Jorge R.; Koistinen, Heikki A.; Leong, Aaron; Lind, Lars; Lindgren, Cecilia; Machicao, Fausto; Manning, Alisa K.; Martín-Núñez, Gracia María; Rojo-Martínez, Gemma; Rotter, Jerome I.; Siscovick, David S.; Zmuda, Joseph M.; Zhang, Zhongyang; Serrano-Rios, Manuel; Smith, Ulf; Soriguer, Federico; Hansen, Torben; Jørgensen, Torben J.; Linnenberg, Allan; Pedersen, Oluf; Walker, Mark; Langenberg, Claudia; Scott, Robert A.; Wareham, Nicholas J.; Fritsche, Andreas; Häring, Hans-Ulrich; Stefan, Norbert; Groop, Leif; O’Connell, Jeff R.; Boehnke, Michael; Bergman, Richard N.; Collins, Francis S.; Mohlke, Karen L.; Tuomilehto, Jaakko; März, Winfried; Kovacs, Peter; Stumvoll, Michael; Psaty, Bruce M.; Kuusisto, Johanna; Laakso, Markku; Meigs, James B.; Dupuis, Josée; Ingelsson, Erik; Florez, Jose C.

    2016-01-01

    Genome-wide association studies (GWAS) have found few common variants that influence fasting measures of insulin sensitivity. We hypothesized that a GWAS of an integrated assessment of fasting and dynamic measures of insulin sensitivity would detect novel common variants. We performed a GWAS of the modified Stumvoll Insulin Sensitivity Index (ISI) within the Meta-Analyses of Glucose and Insulin-Related Traits Consortium. Discovery for genetic association was performed in 16,753 individuals, and replication was attempted for the 23 most significant novel loci in 13,354 independent individuals. Association with ISI was tested in models adjusted for age, sex, and BMI and in a model analyzing the combined influence of the genotype effect adjusted for BMI and the interaction effect between the genotype and BMI on ISI (model 3). In model 3, three variants reached genome-wide significance: rs13422522 (NYAP2; P = 8.87 × 10−11), rs12454712 (BCL2; P = 2.7 × 10−8), and rs10506418 (FAM19A2; P = 1.9 × 10−8). The association at NYAP2 was eliminated by conditioning on the known IRS1 insulin sensitivity locus; the BCL2 and FAM19A2 associations were independent of known cardiometabolic loci. In conclusion, we identified two novel loci and replicated known variants associated with insulin sensitivity. Further studies are needed to clarify the causal variant and function at the BCL2 and FAM19A2 loci. PMID:27416945

  3. Rapid development of cardiac dysfunction in a canine model of insulin resistance and moderate obesity.

    PubMed

    Broussard, Josiane L; Nelson, Michael D; Kolka, Cathryn M; Bediako, Isaac Asare; Paszkiewicz, Rebecca L; Smith, Laura; Szczepaniak, Edward W; Stefanovski, Darko; Szczepaniak, Lidia S; Bergman, Richard N

    2016-01-01

    The worldwide incidence of obesity and diabetes continues to rise at an alarming rate. A major cause of the morbidity and mortality associated with obesity and diabetes is heart disease, yet the mechanisms that lead to cardiovascular complications remain unclear. We performed cardiac MRI to assess left ventricular morphology and function during the development of moderate obesity and insulin resistance in a well-established canine model (n = 26). To assess the influence of dietary fat composition, we randomised animals to a traditional lard diet (rich in saturated and monounsaturated fat; n = 12), a salmon oil diet (rich in polyunsaturated fat; n = 8) or a control diet (n = 6). High-fat feeding with lard increased body weight and fasting insulin and markedly reduced insulin sensitivity. Lard feeding also significantly reduced left ventricular function, evidenced by a worsening of circumferential strain and impairment in left ventricular torsion. High-fat feeding with salmon oil increased body weight; however, salmon oil feeding did not impair insulin sensitivity or cardiac function. These data emphasise the importance of dietary fat composition on both metabolic and cardiac function, and have important implications for the relationship between diet and health.

  4. Glucose-induced inhibition of the appetitive brain response to visual food cues in polycystic ovary syndrome patients.

    PubMed

    Van Vugt, Dean A; Krzemien, Alicja; Alsaadi, Hanin; Frank, Tamar C; Reid, Robert L

    2014-04-16

    We postulate that insulin regulation of food intake is compromised when insulin resistance is present. In order to investigate the effect of insulin sensitivity on appetitive brain responses, we conducted functional magnetic resonance imaging studies in a group of women diagnosed with polycystic ovary syndrome (PCOS) in which insulin sensitivity ranged from normal to resistant. Subjects (n=19) were imaged while viewing pictures of high calorie (HC) foods and low calorie (LC) foods after ingesting either 75 g glucose or an equivalent volume of water. The insulin sensitive group showed reduced blood oxygen level dependent (BOLD) signal in response to food pictures following glucose ingestion in numerous corticolimbic brain regions, whereas the insulin resistant group did not. There was a significant interaction between insulin sensitivity (sensitive vs resistant) and condition (water vs glucose). The largest clusters identified included the left insula, bilateral limbic/parahippocampal gyrus/culmen/midbrain, bilateral limbic lobe/precuneus, and left superior/mid temporal gyrus/parietal for HC and LC stimuli combined, the left parahippocampal gyrus/fusiform/pulvinar/midbrain for HC pictures, and the left superior/mid temporal gyrus/parietal and middle/inferior frontal gyrus/orbitofrontal cortex for LC pictures. Furthermore, BOLD signal in the anterior cingulate, medial frontal gyrus, posterior cingulate/precuneus, and parietal cortex during a glucose challenge correlated negatively with insulin sensitivity. We conclude the PCOS women with insulin resistance have an impaired brain response to a glucose challenge. The inability of postprandial hyperinsulinemia to inhibit brain responsiveness to food cues in insulin resistant subjects may lead to greater non-homeostatic eating. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Adipokines and insulin action

    PubMed Central

    Knights, Alexander J; Funnell, Alister PW; Pearson, Richard CM; Crossley, Merlin; Bell-Anderson, Kim S

    2014-01-01

    Obesity is a major public health concern and a strong risk factor for insulin resistance, type 2 diabetes mellitus (T2DM), and cardiovascular disease. The last two decades have seen a reconsideration of the role of white adipose tissue (WAT) in whole body metabolism and insulin action. Adipose tissue-derived cytokines and hormones, or adipokines, are likely mediators of metabolic function and dysfunction. While several adipokines have been associated with obese and insulin-resistant phenotypes, a select group has been linked with insulin sensitivity, namely leptin, adiponectin, and more recently, adipolin. What is known about these insulin-sensitizing molecules and their effects in healthy and insulin resistant states is the subject of this review. There remains a significant amount of research to do to fully elucidate the mechanisms of action of these adipokines for development of therapeutics in metabolic disease. PMID:24719781

  6. Pioglitazone-induced improvements in insulin sensitivity occur without concomitant changes in muscle mitochondrial function.

    PubMed

    Bajpeyi, Sudip; Pasarica, Magdalena; Conley, Kevin E; Newcomer, Bradley R; Jubrias, Sharon A; Gamboa, Cecilia; Murray, Kori; Sereda, Olga; Sparks, Lauren M; Smith, Steven R

    2017-04-01

    Pioglitazone (Pio) is known to improve insulin sensitivity in skeletal muscle. However, the role of Pio in skeletal muscle lipid metabolism and skeletal muscle oxidative capacity is not clear. The aim of this study was to determine the effects of chronic Pio treatment on skeletal muscle mitochondrial activity in individuals with type 2 diabetes (T2D). Twenty-four participants with T2D (13M/11F 53.38±2.1years; BMI 36.47±1.1kg/m 2 ) were randomized to either a placebo (CON, n=8) or a pioglitazone (PIO, n=16) group. Following 12weeks of treatment, we measured insulin sensitivity by hyperinsulinemic-euglycemic clamp (clamp), metabolic flexibility by calculating the change in respiratory quotient (ΔRQ) during the steady state of the clamp, intra- and extra-myocellular lipid content (IMCL and EMCL, respectively) by 1 H magnetic resonance spectroscopy ( 1 H-MRS) and muscle maximal ATP synthetic capacity (ATPmax) by 31 P-MRS. Following 12weeks of PIO treatment, insulin sensitivity (p<0.0005 vs. baseline) and metabolic flexibility (p<0.05 vs. CON) significantly increased. PIO treatment significantly decreased IMCL content and increased EMCL content in gastrocnemius, soleus and tibialis anterior muscles. ATPmax was unaffected by PIO treatment. These results suggest that 12weeks of pioglitazone treatment improves insulin sensitivity, metabolic flexibility and myocellular lipid distribution without any effect on maximal ATP synthetic capacity in skeletal muscle. Consequently, pioglitazone-induced enhancements in insulin responsiveness and fuel utilization are independent of mitochondrial function. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Grizzly bears exhibit augmented insulin sensitivity while obese prior to a reversible insulin resistance during hibernation.

    PubMed

    Nelson, O Lynne; Jansen, Heiko T; Galbreath, Elizabeth; Morgenstern, Kurt; Gehring, Jamie Lauren; Rigano, Kimberly Scott; Lee, Jae; Gong, Jianhua; Shaywitz, Adam J; Vella, Chantal A; Robbins, Charles T; Corbit, Kevin C

    2014-08-05

    The confluence of obesity and diabetes as a worldwide epidemic necessitates the discovery of new therapies. Success in this endeavor requires translatable preclinical studies, which traditionally employ rodent models. As an alternative approach, we explored hibernation where obesity is a natural adaptation to survive months of fasting. Here we report that grizzly bears exhibit seasonal tripartite insulin responsiveness such that obese animals augment insulin sensitivity but only weeks later enter hibernation-specific insulin resistance (IR) and subsequently reinitiate responsiveness upon awakening. Preparation for hibernation is characterized by adiposity coupled to increased insulin sensitivity via modified PTEN/AKT signaling specifically in adipose tissue, suggesting a state of "healthy" obesity analogous to humans with PTEN haploinsufficiency. Collectively, we show that bears reversibly cope with homeostatic perturbations considered detrimental to humans and describe a mechanism whereby IR functions not as a late-stage metabolic adaptation to obesity, but rather a gatekeeper of the fed-fasting transition. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Synthesis of cytochrome c oxidase 1 (SCO1) inhibits insulin sensitivity by decreasing copper levels in adipocytes.

    PubMed

    Wei, Xiang-Bo; Guo, Liang; Liu, Yang; Zhou, Shui-Rong; Liu, Yuan; Dou, Xin; Du, Shao-Yue; Ding, Meng; Peng, Wan-Qiu; Qian, Shu-Wen; Huang, Hai-Yan; Tang, Qi-Qun

    2017-09-23

    Dysregulation of insulin signaling leads to type 2 diabetes mellitus (T2DM) and other metabolic disorders. Obesity is an important contributor to insulin resistance, and although the understanding of this relationship has improved in recent years, the mechanism of obesity-induced insulin resistance is not completely understood. Disorders of copper metabolism tend to accompany the development of obesity, which increases the risk of insulin resistance. Synthesis of cytochrome c oxidase 1 (SCO1) functions in the assembly of cytochrome c oxidase (COX) and cellular copper homeostasis. However, the role of SCO1 in the regulation of metabolism remains unknown. Here, we found that obese mice had higher expression of SCO1 and lower levels of copper in white adipose tissue (WAT) than did the control mice. Overexpression of SCO1 in adipocytes was associated with copper deficiency. Copper increased insulin sensitivity by decreasing the level of phosphatase and tensin homolog (PTEN) protein. Ectopic expression of SCO1 led to insulin resistance and was accompanied by a decrease in intracellular copper level, and addition of copper abolished the inhibitory effect of SCO1 on insulin sensitivity. Our results demonstrated a novel role of SCO1 in modulating insulin sensitivity via the regulation of copper concentration in WAT and suggested a potential therapeutic target for T2DM. Copyright © 2017. Published by Elsevier Inc.

  9. Influence of insulin sensitivity and secretion on glycated albumin and hemoglobin A1c in pregnant women with gestational diabetes mellitus.

    PubMed

    Pan, Jiemin; Zhang, Feng; Zhang, Lei; Bao, Yuqian; Tao, Minfang; Jia, Weiping

    2013-06-01

    To examine the differential effects of insulin sensitivity and secretion on hemoglobin A1c (HbA1c) and glycated albumin (GA) at 24-32weeks of pregnancy in women with gestational diabetes mellitus (GDM). A cross-sectional, sequential case series study was performed in pregnant women with an abnormal 50-g oral glucose-screening test. Hemoglobin A1c and GA measurements were taken during oral glucose tolerance test (OGTT). The homeostasis model assessment of insulin resistance (HOMA-IR) and beta-cell function (HOMA-%β), insulin sensitivity index (ISOGTT), and modified insulinogenic index were calculated to assess insulin sensitivity and secretory function. A total of 713 pregnant women were enrolled. The GDM group had lower ISOGTT and insulinogenic index scores, and a higher HOMA-IR score. Hemoglobin A1c was positively correlated with HOMA-IR. Glycated albumin was negatively correlated with insulinogenic index and HOMA-%β. Multiple regression analysis revealed that HbA1c was independently associated with diastolic pressure, 0- and 120-minute glucose, and HOMA-IR; GA was independently associated with 0- and 120-minute glucose. Compared with HbA1c, GA is more closely correlated with fasting and postprandial glucose, regardless of insulin resistance and blood pressure, and might be a better monitoring index in women with GDM. Copyright © 2013 International Federation of Gynecology and Obstetrics. Published by Elsevier Ireland Ltd. All rights reserved.

  10. β-Cell Lipotoxicity After an Overnight Intravenous Lipid Challenge and Free Fatty Acid Elevation in African American Versus American White Overweight/Obese Adolescents

    PubMed Central

    Hughan, Kara S.; Bonadonna, Riccardo C.; Lee, SoJung; Michaliszyn, Sara F.

    2013-01-01

    Objective: Overweight/obese (OW/OB) African American (AA) adolescents have a more diabetogenic insulin secretion/sensitivity pattern compared with their American white (AW) peers. The present study investigated β-cell lipotoxicity to test whether increased free fatty acid (FFA) levels result in greater β-cell dysfunction in AA vs AW OW/OB adolescents. Research Design and Methods: Glucose-stimulated insulin secretion was modeled, from glucose and C-peptide concentrations during a 2-hour hyperglycemic (225 mg/dL) clamp in 22 AA and 24 AW OW/OB adolescents, on 2 occasions after a 12-hour overnight infusion of either normal saline or intralipid (IL) in a random sequence. β-Cell function relative to insulin sensitivity, the disposition index (DI), was examined during normal saline and IL conditions. Substrate oxidation was evaluated with indirect calorimetry and body composition and abdominal adiposity with dual-energy X-ray absorptiometry and magnetic resonance imaging at L4-L5, respectively. Results: Age, sex, body mass index, total and sc adiposity were similar between racial groups, but visceral adiposity was significantly lower in AAs. During IL infusion, FFAs and fat oxidation increased and insulin sensitivity decreased similarly in AAs and AWs. β-Cell glucose sensitivity of first- and second-phase insulin secretion did not change significantly during IL infusion in either group, but DI in each phase decreased significantly and similarly in AAs and AWs. Conclusions: Overweight/obese AA and AW adolescents respond to an overnight fat infusion with significant declines in insulin sensitivity, DI, and β-cell function relative to insulin sensitivity, suggestive of β-cell lipotoxicity. However, contrary to our hypothesis, there does not seem to be a race differential in β-cell lipotoxicity. Longer durations of FFA elevation may unravel such race-related contrasts. PMID:23526462

  11. The visceral adiposity index is associated with insulin sensitivity and IGF-I levels in adults with growth hormone deficiency.

    PubMed

    Ciresi, Alessandro; Radellini, Stefano; Guarnotta, Valentina; Giordano, Carla

    2017-06-01

    The visceral adiposity index, based on anthropometric and metabolic parameters, has been shown to be related to adipose tissue function and insulin sensitivity. We aimed to evaluate the performance of the visceral adiposity index in adult patients with growth hormone deficiency. We enrolled 52 patients(mean age 51 ± 13 years) with newly diagnosed growth hormone deficiency and 50 matched healthy subjects as controls at baseline. At baseline and after 12 and 24 months of treatment we evaluated anthropometric measures, lipid profile, glucose and insulin during an oral glucose tolerance test, hemoglobin A1c, homeostasis model assessment estimate of insulin resistance, quantitative insulin sensitivity check index, insulin sensitivity index Matsuda, insulin-like growth factor-I and visceral adiposity index. At baseline growth hormone deficiency patients showed higher waist circumference (p < 0.001), low-density lipoprotein cholesterol (p < 0.001) and visceral adiposity index (p = 0.003) with lower insulin sensitivity index (p = 0.007) and high-density lipoprotein cholesterol (p = 0.001) than controls. During growth hormone treatment we observed a significant increase in insulin-like growth factor-I (p < 0.001), high-density lipoprotein (p < 0.001) with a trend toward increase in insulin sensitivity index (p = 0.055) and a significant decrease in total cholesterol (p < 0.001) and visceral adiposity index (p < 0.001), while no significant changes were observed in other clinical and metabolic parameters. The visceral adiposity index was the only parameter that significantly correlated with growth hormone peak at diagnosis (p < 0.001) and with insulin-like growth factor-I and insulin sensitivity index both at diagnosis (p = 0.009 and p < 0.001) and after 12 (p = 0.026 and p = 0.001) and 24 months (p < 0.001 and p = 0.001) of treatment. The visceral adiposity index, which has shown to be associated with both insulin-like growth factor-I and insulin sensitivity, proved to be the most reliable index of metabolic perturbation, among the most common indexes of adiposity assessment and a marker of benefit during treatment in adult growth hormone deficiency patients.

  12. Insulin sensitivity affects corticolimbic brain responses to visual food cues in polycystic ovary syndrome patients.

    PubMed

    Alsaadi, Hanin M; Van Vugt, Dean A

    2015-11-01

    This study examined the effect of insulin sensitivity on the responsiveness of appetite regulatory brain regions to visual food cues. Nineteen participants diagnosed with polycystic ovary syndrome (PCOS) were divided into insulin-sensitive (n=8) and insulin-resistant (n=11) groups based on the homeostatic model assessment of insulin resistance (HOMA2-IR). Subjects underwent functional magnetic resonance imaging (fMRI) while viewing food pictures following water or dextrose consumption. The corticolimbic blood oxygen level dependent (BOLD) responses to high-calorie (HC) or low-calorie (LC) food pictures were compared within and between groups. BOLD responses to food pictures were reduced during a glucose challenge in numerous corticolimbic brain regions in insulin-sensitive but not insulin-resistant subjects. Furthermore, the degree of insulin resistance positively correlated with the corticolimbic BOLD response in the medial prefrontal cortex (mPFC), orbitofrontal cortex (OFC), anterior cingulate and ventral tegmental area (VTA) in response to HC pictures, and in the dorsolateral prefrontal cortex (DLPFC), mPFC, anterior cingulate, and insula in response to LC pictures following a glucose challenge. BOLD signal in the OFC, midbrain, hippocampus, and amygdala following a glucose challenge correlated with HOMA2-IR in response to HC-LC pictures. We conclude that the normal inhibition of corticolimbic brain responses to food pictures during a glucose challenge is compromised in insulin-resistant subjects. The increase in brain responsiveness to food pictures during postprandial hyperinsulinemia may lead to greater non-homeostatic eating and perpetuate obesity in insulin-resistant subjects.

  13. Variation of glucose tolerance in adult patients with cystic fibrosis: What is the potential contribution of insulin sensitivity?

    PubMed

    Boudreau, Valérie; Coriati, Adèle; Hammana, Imane; Ziai, Sophie; Desjardins, Katherine; Berthiaume, Yves; Rabasa-Lhoret, Rémi

    2016-11-01

    Reduced insulin secretion is a key factor to explain high prevalence of glucose intolerance in patients with cystic fibrosis (CF). However, the role of insulin sensitivity remains unclear. The aim of this study is to investigate the association of insulin secretion and sensitivity with the evolution of glucose tolerance. A total of 152 patients without known diabetes from the Montreal CF cohort underwent two 2-h oral glucose tolerance tests (OGTT) at baseline and again after 21.2±5.5months. Pulmonary function and anthropometric measurements were also collected at each visit. At both visits, based on their OGTT results, patients were categorized in glucose tolerance groups (normal glucose tolerance, impaired glucose tolerance or CF-related diabetes) and stratified in 3 groups according to the variation of their glucose tolerance: stable, improved or deteriorated. At baseline, patients in the deteriorated group had a better sensitivity to insulin than those in the improved group (P=0.029). At follow-up glucose tolerance remained stable in 55.3%, improved in 14.5% and deteriorated in 30.3% of patients. During follow-up, insulin secretion remained stable in all 3 groups. While insulin sensitivity remained stable in patients without changes in glucose tolerance it worsened in patients who deteriorated glucose tolerance (P<0.001) and improved in patients who improved their glucose tolerance (P=0.003). In a context of significantly reduced insulin secretion, variations of insulin sensitivity are associated with variations of glucose tolerance in adult patients with CF. Copyright © 2016 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.

  14. Associations of serum adiponectin with skeletal muscle morphology and insulin sensitivity.

    PubMed

    Ingelsson, Erik; Arnlöv, Johan; Zethelius, Björn; Vasan, Ramachandran S; Flyvbjerg, Allan; Frystyk, Jan; Berne, Christian; Hänni, Arvo; Lind, Lars; Sundström, Johan

    2009-03-01

    Skeletal muscle morphology and function are strongly associated with insulin sensitivity. The objective of the study was to test the hypothesis that circulating adiponectin is associated with skeletal muscle morphology and that adiponectin mediates the relation of muscle morphology to insulin sensitivity. This was a cross-sectional investigation of 461 men aged 71 yr, participants of the community-based Uppsala Longitudinal Study of Adult Men study. Measures included serum adiponectin, insulin sensitivity measured with euglycemic insulin clamp technique, and capillary density and muscle fiber composition determined from vastus lateralis muscle biopsies. In multivariable linear regression models (adjusting for age, physical activity, fasting glucose, and pharmacological treatment for diabetes), serum adiponectin levels rose with increasing capillary density (beta, 0.30 per 50 capillaries per square millimeter increase; P = 0.041) and higher proportion of type I muscle fibers (beta, 0.27 per 10% increase; P = 0.036) but declined with a higher proportion of type IIb fibers (beta, -0.39 per 10% increase; P = 0.014). Using bootstrap methods to examine the potential role of adiponectin in associations between muscle morphology and insulin sensitivity and the associations of capillary density (beta difference, 0.041; 95% confidence interval 0.001, 0.085) and proportion of type IIb muscle fibers (beta difference, -0.053; 95% confidence interval -0.107, -0.002) with insulin sensitivity were significantly attenuated when adiponectin was included in the models. Circulating adiponectin concentrations were higher with increasing skeletal muscle capillary density and in individuals with higher proportion of slow oxidative muscle fibers. Furthermore, our results indicate that adiponectin could be a partial mediator of the relations between skeletal muscle morphology and insulin sensitivity.

  15. Prediction of gestational diabetes mellitus in the first trimester: comparison of C-reactive protein, fasting plasma glucose, insulin and insulin sensitivity indices.

    PubMed

    Ozgu-Erdinc, A Seval; Yilmaz, Saynur; Yeral, M Ilkin; Seckin, K Doga; Erkaya, Salim; Danisman, A Nuri

    2015-11-01

    To develop a predictive index based on high sensitivity C-reactive protein (hs-CRP), fasting plasma glucose (FPG) and fasting plasma insulin (FPI) measurements for early diagnosis of gestational diabetes mellitus (GDM). Healthy pregnant women who were screened for GDM during their first antenatal visit were included in this retrospective cohort study. FPG, FPI and serum hs-CRP concentrations were measured between weeks 11 and 14. A two-step glucose challenge test was carried out between gestational weeks 24 and 28. Fasting glucose/insulin ratio (FIGR), Homeostatic Model Assessment Insulin Resistance (HOMA-IR), HOMA-β indices and Quantitative Insulin Sensitivity Check Index (QUICKI) were used to estimate insulin sensitivity and β-cell function. Of the 450 women who were eligible for the study, 49 (11.2%) were diagnosed with GDM at weeks 24-28. The median FPG and hs-CRP levels were higher in the GDM diagnosed women compared to the others. Comparison of accuracy measures resulted in the highest specificity (87.2%; 95% CI 83.5-90.1) and diagnostic odds ratio (3.9; 95% CI 2.1-7.6) for hs-CRP. FPG and hs-CRP in the first trimester are correlated with later development of GDM in the pregnancy. In our study, FPG provided a better sensitivity while hs-CRP exhibited a better specificity for prediction of GDM.

  16. Exercise training reverses the negative effects of chronic L-arginine supplementation on insulin sensitivity.

    PubMed

    Salgueiro, Rafael Barrera; Gerlinger-Romero, Frederico; Guimarães-Ferreira, Lucas; de Castro Barbosa, Thais; Nunes, Maria Tereza

    2017-12-15

    L-Arginine has emerged as an important supplement for athletes and non-athletes in order to improve performance. Arginine has been extensively used as substrate for nitric oxide synthesis, leading to increased vasodilatation and hormonal secretion. However, the chronic consumption of arginine has been shown to impair insulin sensitivity. In the present study, we aimed to evaluate whether chronic arginine supplementation associated with exercise training would have a beneficial impact on insulin sensitivity. We, therefore, treated Wistar rats for 4weeks with arginine, associated or not with exercise training (treadmill). We assessed the somatotropic activation, by evaluating growth hormone (GH) gene expression and protein content in the pituitary, as well is GH concentration in the serum. Additionally, we evaluate whole-body insulin sensitivity, by performing an insulin tolerance test. Skeletal muscle morpho-physiological parameters were also assessed. Insulin sensitivity was impaired in the arginine-treated rats. However, exercise training reversed the negative effects of arginine. Arginine and exercise training increased somatotropic axis function, muscle mass and body weight gain. The combination arginine and exercise training further decreased total fat mass. Our results confirm that chronic arginine supplementation leads to insulin resistance, which can be reversed in the association with exercise training. We provide further evidence that exercise training is an important tool to improve whole-body metabolism. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Aging Impairs Myocardial Fatty Acid and Ketone Oxidation and Modifies Cardiac Functional and Metabolic Responses to Insulin in Mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hyyti, Outi M.; Ledee, Dolena; Ning, Xue-Han

    2010-07-02

    Aging presumably initiates shifts in substrate oxidation mediated in part by changes in insulin sensitivity. Similar shifts occur with cardiac hypertrophy and may contribute to contractile dysfunction. We tested the hypothesis that aging modifies substrate utilization and alters insulin sensitivity in mouse heart when provided multiple substrates. In vivo cardiac function was measured with microtipped pressure transducers in the left ventricle from control (4–6 mo) and aged (22–24 mo) mice. Cardiac function was also measured in isolated working hearts along with substrate and anaplerotic fractional contributions to the citric acid cycle (CAC) by using perfusate containing 13C-labeled free fatty acidsmore » (FFA), acetoacetate, lactate, and unlabeled glucose. Stroke volume and cardiac output were diminished in aged mice in vivo, but pressure development was preserved. Systolic and diastolic functions were maintained in aged isolated hearts. Insulin prompted an increase in systolic function in aged hearts, resulting in an increase in cardiac efficiency. FFA and ketone flux were present but were markedly impaired in aged hearts. These changes in myocardial substrate utilization corresponded to alterations in circulating lipids, thyroid hormone, and reductions in protein expression for peroxisome proliferator-activated receptor (PPAR)α and pyruvate dehydrogenase kinase (PDK)4. Insulin further suppressed FFA oxidation in the aged. Insulin stimulation of anaplerosis in control hearts was absent in the aged. The aged heart shows metabolic plasticity by accessing multiple substrates to maintain function. However, fatty acid oxidation capacity is limited. Impaired insulin-stimulated anaplerosis may contribute to elevated cardiac efficiency, but may also limit response to acute stress through depletion of CAC intermediates.« less

  18. Dynamic insulin sensitivity index: importance in diabetes.

    PubMed

    Pillonetto, Gianluigi; Caumo, Andrea; Cobelli, Claudio

    2010-03-01

    The classical minimal model (MM) index of insulin sensitivity, S(I), does not account for how fast or slow insulin action takes place. In a recent work, we proposed a new dynamic insulin sensitivity index, S(I)(D), which is able to take into account the dynamics of insulin action as well. The new index is a function of two MM parameters, namely S(I) and p(2), the latter parameter governing the speed of rise and decay of insulin action. We have previously shown that in normal glucose tolerant subjects S(I)(D) provides a more comprehensive picture of insulin action on glucose metabolism than S(I). The aim of this study is to show that resorting to S(I)(D) rather S(I) is even more appropriate when studying diabetic patients who have a low and slow insulin action. We analyzed insulin-modified intravenous glucose tolerance test studies performed in 10 diabetic subjects and mixed meal glucose tolerance test studies exploiting the triple tracer technique in 14 diabetic subjects. We derived both S(I) and S(I)(D) resorting to Bayesian and Fisherian identification strategies. The results show that S(I)(D) is estimated more precisely than S(I) when using the Bayesian approach. In addition, the less labor-intensive Fisherian approach can still be used to obtain reliable point estimates of S(I)(D) but not of S(I). These results suggest that S(I)(D) yields a comprehensive, precise, and cost-effective assessment of insulin sensitivity in subjects with impaired insulin action like impaired glucose tolerant subjects or diabetic patients.

  19. Insulin sensitivity and β-cell function in normoglycemic offspring of individuals with type 2 diabetes mellitus: Impact of line of inheritance.

    PubMed

    Praveen, Edavan P; Sahoo, Jayaprakash; Khurana, Madan L; Kulshreshtha, Bindu; Khadgawat, Rajesh; Gupta, Nandita; Dwivedi, Sada Nand; Kumar, Guresh; Prabhakaran, Dorairaj; Ammini, Ariachery C

    2012-01-01

    The aim was to study the effect of family history of type 2 diabetes mellitus (T2DM) on insulin sensitivity and β-cell function in normoglycemic offspring. Offspring of T2DM patients (cases) and individuals without family history of T2DM (controls) were the subjects for this cross-sectional study. All participants underwent 75 g OGTT and samples were collected for plasma insulin, C-peptide, and proinsulin at 0, 30, 60, and 120 minutes. A total of 271 cases (age 22 ± 10 years; 53% males) and 259 controls (28 ± 10 years, 66% males) were enrolled for the study. BMI, plasma insulin, C-peptide, proinsulin, HOMA-IR, and insulinogenic index (0-120) were significantly higher and whole-body insulin sensitivity (WBISI) and disposition index (0-120) [DI 120] were lower in cases compared to controls. After adjusting for BMI, proinsulin at 120 minutes, area under the curve (AUC) of proinsulin (during OGTT) and AUC proinsulin/AUC C-peptide were significantly higher in cases. Cases were subdivided into four groups according to inheritance pattern; paternal DM (PDM), maternal DM (MDM), grandparental DM (GPDM), and both parents DM (BPDM). The magnitude of differences varied with relationship (greater when both parents and grandparents were affected). Mean HOMA-IR was higher by 127% and 50% and DI 120 was lower by 33% and 18% (adjusted for age and gender) in the BPDM and GPDM groups respectively compared to controls. We observed higher BMI, plasma insulin, C-peptide, and proinsulin and lower insulin sensitivity and β-cell compensation in normoglycemic offspring of T2DM subjects compared to controls. Differences were greater when both parents and grandparents had T2DM.

  20. Adiponectin improves insulin sensitivity via activation of autophagic flux.

    PubMed

    Ahlstrom, Penny; Rai, Esther; Chakma, Suharto; Cho, Hee Ho; Rengasamy, Palanivel; Sweeney, Gary

    2017-11-01

    Skeletal muscle insulin resistance is known to play an important role in the pathogenesis of diabetes, and one potential causative cellular mechanism is endoplasmic reticulum (ER) stress. Adiponectin mediates anti-diabetic effects via direct metabolic actions and by improving insulin sensitivity, and we recently demonstrated an important role in stimulation of autophagy by adiponectin. However, there is limited knowledge on crosstalk between autophagy and ER stress in skeletal muscle and in particular how they are regulated by adiponectin. Here, we utilized the model of high insulin/glucose (HIHG)-induced insulin resistance, determined by measuring Akt phosphorylation (T308 and S473) and glucose uptake in L6 skeletal muscle cells. HIHG reduced autophagic flux measured by LC3 and p62 Western blotting and tandem fluorescent RFP/GFP-LC3 immunofluorescence (IF). HIHG also induced ER stress assessed by thioflavin T/KDEL IF, pIRE1, pPERK, peIF2α and ATF6 Western blotting and induction of a GRP78-mCherry reporter. Induction of autophagy by adiponectin or rapamycin attenuated HIHG-induced ER stress and improved insulin sensitivity. The functional significance of enhanced autophagy was validated by demonstrating a lack of improved insulin sensitivity in response to adiponectin in autophagy-deficient cells generated by overexpression of dominant negative mutant of Atg5. In summary, adiponectin-induced autophagy in skeletal muscle cells alleviated HIHG-induced ER stress and insulin resistance. © 2017 Society for Endocrinology.

  1. Supraoptic oxytocin and vasopressin neurons function as glucose and metabolic sensors

    PubMed Central

    Song, Zhilin; Levin, Barry E.; Stevens, Wanida

    2014-01-01

    Neurons in the supraoptic nuclei (SON) produce oxytocin and vasopressin and express insulin receptors (InsR) and glucokinase. Since oxytocin is an anorexigenic agent and glucokinase and InsR are hallmarks of cells that function as glucose and/or metabolic sensors, we evaluated the effect of glucose, insulin, and their downstream effector ATP-sensitive potassium (KATP) channels on calcium signaling in SON neurons and on oxytocin and vasopressin release from explants of the rat hypothalamo-neurohypophyseal system. We also evaluated the effect of blocking glucokinase and phosphatidylinositol 3 kinase (PI3K; mediates insulin-induced mobilization of glucose transporter, GLUT4) on responses to glucose and insulin. Glucose and insulin increased intracellular calcium ([Ca2+]i). The responses were glucokinase and PI3K dependent, respectively. Insulin and glucose alone increased vasopressin release (P < 0.002). Oxytocin release was increased by glucose in the presence of insulin. The oxytocin (OT) and vasopressin (VP) responses to insulin+glucose were blocked by the glucokinase inhibitor alloxan (4 mM; P ≤ 0.002) and the PI3K inhibitor wortmannin (50 nM; OT: P = 0.03; VP: P ≤ 0.002). Inactivating KATP channels with 200 nM glibenclamide increased oxytocin and vasopressin release (OT: P < 0.003; VP: P < 0.05). These results suggest that insulin activation of PI3K increases glucokinase-mediated ATP production inducing closure of KATP channels, opening of voltage-sensitive calcium channels, and stimulation of oxytocin and vasopressin release. The findings are consistent with SON oxytocin and vasopressin neurons functioning as glucose and “metabolic” sensors to participate in appetite regulation. PMID:24477542

  2. Supraoptic oxytocin and vasopressin neurons function as glucose and metabolic sensors.

    PubMed

    Song, Zhilin; Levin, Barry E; Stevens, Wanida; Sladek, Celia D

    2014-04-01

    Neurons in the supraoptic nuclei (SON) produce oxytocin and vasopressin and express insulin receptors (InsR) and glucokinase. Since oxytocin is an anorexigenic agent and glucokinase and InsR are hallmarks of cells that function as glucose and/or metabolic sensors, we evaluated the effect of glucose, insulin, and their downstream effector ATP-sensitive potassium (KATP) channels on calcium signaling in SON neurons and on oxytocin and vasopressin release from explants of the rat hypothalamo-neurohypophyseal system. We also evaluated the effect of blocking glucokinase and phosphatidylinositol 3 kinase (PI3K; mediates insulin-induced mobilization of glucose transporter, GLUT4) on responses to glucose and insulin. Glucose and insulin increased intracellular calcium ([Ca(2+)]i). The responses were glucokinase and PI3K dependent, respectively. Insulin and glucose alone increased vasopressin release (P < 0.002). Oxytocin release was increased by glucose in the presence of insulin. The oxytocin (OT) and vasopressin (VP) responses to insulin+glucose were blocked by the glucokinase inhibitor alloxan (4 mM; P ≤ 0.002) and the PI3K inhibitor wortmannin (50 nM; OT: P = 0.03; VP: P ≤ 0.002). Inactivating K ATP channels with 200 nM glibenclamide increased oxytocin and vasopressin release (OT: P < 0.003; VP: P < 0.05). These results suggest that insulin activation of PI3K increases glucokinase-mediated ATP production inducing closure of K ATP channels, opening of voltage-sensitive calcium channels, and stimulation of oxytocin and vasopressin release. The findings are consistent with SON oxytocin and vasopressin neurons functioning as glucose and "metabolic" sensors to participate in appetite regulation.

  3. Age-related inflammation and insulin resistance: a review of their intricate interdependency.

    PubMed

    Park, Min Hi; Kim, Dae Hyun; Lee, Eun Kyeong; Kim, Nam Deuk; Im, Dong Soon; Lee, Jaewon; Yu, Byung Pal; Chung, Hae Young

    2014-12-01

    Chronic inflammation is a major risk factor underlying aging and the associated diseases of aging; of particular interest is insulin resistance during aging. Chronic inflammation impairs normal lipid accumulation, adipose tissue function, mitochondrial function, and causes endoplasmic reticulum (ER) stress, which lead to insulin resistance. However, some studies show that insulin resistance itself amplifies chronic inflammation. The activity of the insulin-dependent Akt signaling pathway is highlighted because of its decrease in insulin-sensitive organs, like liver and muscle, which may underlie insulin resistance and hyperinsulinemia, and its increased levels in non-metabolic organs, such as kidney and aorta. In that the prevalence of obesity has increased substantially for all age groups in recent years, our review summarizes the data showing the involvement of chronic inflammation in obesity-induced insulin resistance, which perpetuates reciprocal interactions between the chronic inflammatory process and increased adiposity, thereby accelerating the aging process.

  4. Metabolomic analysis of insulin resistance across different mouse strains and diets.

    PubMed

    Stöckli, Jacqueline; Fisher-Wellman, Kelsey H; Chaudhuri, Rima; Zeng, Xiao-Yi; Fazakerley, Daniel J; Meoli, Christopher C; Thomas, Kristen C; Hoffman, Nolan J; Mangiafico, Salvatore P; Xirouchaki, Chrysovalantou E; Yang, Chieh-Hsin; Ilkayeva, Olga; Wong, Kari; Cooney, Gregory J; Andrikopoulos, Sofianos; Muoio, Deborah M; James, David E

    2017-11-24

    Insulin resistance is a major risk factor for many diseases. However, its underlying mechanism remains unclear in part because it is triggered by a complex relationship between multiple factors, including genes and the environment. Here, we used metabolomics combined with computational methods to identify factors that classified insulin resistance across individual mice derived from three different mouse strains fed two different diets. Three inbred ILSXISS strains were fed high-fat or chow diets and subjected to metabolic phenotyping and metabolomics analysis of skeletal muscle. There was significant metabolic heterogeneity between strains, diets, and individual animals. Distinct metabolites were changed with insulin resistance, diet, and between strains. Computational analysis revealed 113 metabolites that were correlated with metabolic phenotypes. Using these 113 metabolites, combined with machine learning to segregate mice based on insulin sensitivity, we identified C22:1-CoA, C2-carnitine, and C16-ceramide as the best classifiers. Strikingly, when these three metabolites were combined into one signature, they classified mice based on insulin sensitivity more accurately than each metabolite on its own or other published metabolic signatures. Furthermore, C22:1-CoA was 2.3-fold higher in insulin-resistant mice and correlated significantly with insulin resistance. We have identified a metabolomic signature composed of three functionally unrelated metabolites that accurately predicts whole-body insulin sensitivity across three mouse strains. These data indicate the power of simultaneous analysis of individual, genetic, and environmental variance in mice for identifying novel factors that accurately predict metabolic phenotypes like whole-body insulin sensitivity. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Very low-calorie diet mimics the early beneficial effect of Roux-en-Y gastric bypass on insulin sensitivity and β-cell Function in type 2 diabetic patients.

    PubMed

    Jackness, Clifton; Karmally, Wahida; Febres, Gerardo; Conwell, Irene M; Ahmed, Leaque; Bessler, Marc; McMahon, Donald J; Korner, Judith

    2013-09-01

    Marked improvement in glycemic control occurs in patients with type 2 diabetes mellitus shortly after Roux-en-Y gastric bypass surgery (RYGB) and before there is major weight loss. The objective of this study was to determine whether the magnitude of this change is primarily due to caloric restriction or is unique to the surgical procedure. We studied eleven subjects who underwent RYGB and fourteen subjects mean-matched for BMI, HbA1c, and diabetes duration who were admitted to our inpatient research unit and given a very low-calorie diet (VLCD) of 500 kcal/day with a macronutrient content similar to that consumed by patients after RYGB. Frequently sampled intravenous glucose tolerance tests were performed before and after interventions. Both groups lost an equivalent amount of weight over a mean study period of 21 days. Insulin sensitivity, acute insulin secretion after intravenous glucose administration, and β-cell function as determined by disposition index improved to a similar extent in both groups. Likewise, changes in fasting glucose and fructosamine levels were similar. Based on these data, VLCD improves insulin sensitivity and β-cell function just as well as RYGB in the short term.

  6. Low dose prednisolone and insulin sensitivity differentially affect arterial stiffness and endothelial function: An open interventional and cross-sectional study.

    PubMed

    Petersons, Carolyn J; Mangelsdorf, Brenda L; Poljak, Anne; Smith, Malcolm D; Greenfield, Jerry R; Thompson, Campbell H; Burt, Morton G

    2017-03-01

    Glucocorticoids could impair vascular function directly, or indirectly by reducing insulin sensitivity. The aim of this study was to determine the direct and indirect effects of acute and chronic low dose prednisolone on arterial stiffness and endothelial function. Twelve subjects with inflammatory arthritis, who had not taken oral glucocorticoids for ≥6 months, and 12 subjects with inflammatory arthritis, taking chronic (>6 months) low dose (6.3 ± 2.2 mg/day) prednisolone, were studied. Patients not on glucocorticoids underwent measurement of arterial stiffness (pulse wave velocity (PWV)) and endothelial function (reactive hyperaemia index (RHI)) before and after 7-10 days of prednisolone (6 mg/day), to assess the acute effects of prednisolone. Baseline data from patients not on glucocorticoids were compared with patients on long-term prednisolone to assess the chronic effects of prednisolone. Hepatic insulin sensitivity was estimated from percentage suppression of endogenous glucose production and peripheral insulin sensitivity as glucose infusion rate (M/I) during a hyperinsulinaemic-euglycaemic clamp. There were no significant changes in PWV with acute (9.2 ± 0.8 vs. 8.9 ± 0.8 m/sec, p = 0.33) or chronic (8.9 ± 0.8 vs. 9.0 ± 0.7 m/sec, p = 0.69) prednisolone. In multiple regression analysis, PWV was negatively associated with M/I during hyperinsulinemic-euglycemic clamp (p = 0.02), but not with suppression of endogenous glucose production (p = 0.15) or glucocorticoid use (p = 0.70). Chronic (2.4 ± 0.2 vs. 1.9 ± 0.1, p = 0.02), but not acute (1.8 ± 0.2 vs. 1.9 ± 0.1, p = 0.24), prednisolone resulted in a higher RHI. Arterial stiffness is not affected by low dose prednisolone per se, but is negatively associated with peripheral insulin sensitivity. Patients with rheumatoid arthritis taking long-term prednisolone had better endothelial function. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Artemisia Extract Improves Insulin Sensitivity in Women With Gestational Diabetes Mellitus by Up-Regulating Adiponectin.

    PubMed

    Sun, Xia; Sun, Hong; Zhang, Jing; Ji, Xianghong

    2016-12-01

    Gestational diabetes mellitus (GDM) has affected a great number of pregnant women worldwide. Artemisia extracts have been found to exhibit a potent antidiabetic effect in the treatment of type 2 diabetes mellitus. We aimed to examine the effects of Artemisia extract on insulin resistance and lipid profiles in pregnant GDM patients. Patients in their second trimester were randomly assigned to the Artemisia extract group (AE) or to a placebo group (PO). They were instructed to consume either AE or PO daily for a period of 10 weeks. Glucose and insulin profiles and adiponectin level were assessed at baseline (week 0) and after the treatment (week 10). Compared to the PO group, fasting plasma glucose, serum insulin levels, homeostasis model of assessment of insulin resistance (HOMA-IR), and β-cell function (HOMA-B) were significantly reduced in the AE group participants. Moreover, levels of circulating adiponectin were also significantly up-regulated in the AE group, which also positively contributed to improved insulin sensitivity. Daily administration of Artemisia extract improves insulin sensitivity by up-regulating adiponectin in women with gestational diabetes mellitus. © 2016, The American College of Clinical Pharmacology.

  8. Adiponectin inhibits insulin function in primary trophoblasts by PPARα-mediated ceramide synthesis.

    PubMed

    Aye, Irving L M H; Gao, Xiaoli; Weintraub, Susan T; Jansson, Thomas; Powell, Theresa L

    2014-04-01

    Maternal adiponectin (ADN) levels are inversely correlated with birth weight, and ADN infusion in pregnant mice down-regulates placental nutrient transporters and decreases fetal growth. In contrast to the insulin-sensitizing effects in adipose tissue and muscle, ADN inhibits insulin signaling in the placenta. However, the molecular mechanisms involved are unknown. We hypothesized that ADN inhibits insulin signaling and insulin-stimulated amino acid transport in primary human trophoblasts by peroxisome proliferator-activated receptor-α (PPARα)-mediated ceramide synthesis. Primary human term trophoblast cells were treated with ADN and/or insulin. ADN increased the phosphorylation of p38 MAPK and PPARα. ADN inhibited insulin signaling and insulin-stimulated amino acid transport. This effect was dependent on PPARα, because activation of PPARα with an agonist (GW7647) inhibited insulin signaling and function, whereas PPARα-small interfering RNA reversed the effects of ADN on the insulin response. ADN increased ceramide synthase expression and stimulated ceramide production. C2-ceramide inhibited insulin signaling and function, whereas inhibition of ceramide synthase (with Fumonisin B1) reversed the effects of ADN on insulin signaling and amino acid transport. These findings are consistent with the model that maternal ADN limits fetal growth mediated by activation of placental PPARα and ceramide synthesis, which inhibits placental insulin signaling and amino acid transport, resulting in reduced fetal nutrient availability.

  9. Skeletal muscle phosphatidylcholine and phosphatidylethanolamine are related to insulin sensitivity and respond to acute exercise in humans.

    PubMed

    Newsom, Sean A; Brozinick, Joseph T; Kiseljak-Vassiliades, Katja; Strauss, Allison N; Bacon, Samantha D; Kerege, Anna A; Bui, Hai Hoang; Sanders, Phil; Siddall, Parker; Wei, Tao; Thomas, Melissa; Kuo, Ming Shang; Nemkov, Travis; D'Alessandro, Angelo; Hansen, Kirk C; Perreault, Leigh; Bergman, Bryan C

    2016-06-01

    Several recent reports indicate that the balance of skeletal muscle phosphatidylcholine (PC) and phosphatidylethanolamine (PE) is a key determinant of muscle contractile function and metabolism. The purpose of this study was to determine relationships between skeletal muscle PC, PE and insulin sensitivity, and whether PC and PE are dynamically regulated in response to acute exercise in humans. Insulin sensitivity was measured via intravenous glucose tolerance in sedentary obese adults (OB; n = 14), individuals with type 2 diabetes (T2D; n = 15), and endurance-trained athletes (ATH; n = 15). Vastus lateralis muscle biopsies were obtained at rest, immediately after 90 min of cycle ergometry at 50% maximal oxygen consumption (V̇o2 max), and 2-h postexercise (recovery). Skeletal muscle PC and PE were measured via infusion-based mass spectrometry/mass spectrometry analysis. ATH had greater levels of muscle PC and PE compared with OB and T2D (P < 0.05), with total PC and PE positively relating to insulin sensitivity (both P < 0.05). Skeletal muscle PC:PE ratio was elevated in T2D compared with OB and ATH (P < 0.05), tended to be elevated in OB vs. ATH (P = 0.07), and was inversely related to insulin sensitivity among the entire cohort (r = -0.43, P = 0.01). Muscle PC and PE were altered by exercise, particularly after 2 h of recovery, in a highly group-specific manner. However, muscle PC:PE ratio remained unchanged in all groups. In summary, total muscle PC and PE are positively related to insulin sensitivity while PC:PE ratio is inversely related to insulin sensitivity in humans. A single session of exercise significantly alters skeletal muscle PC and PE levels, but not PC:PE ratio. Copyright © 2016 the American Physiological Society.

  10. Skeletal muscle phosphatidylcholine and phosphatidylethanolamine are related to insulin sensitivity and respond to acute exercise in humans

    PubMed Central

    Newsom, Sean A.; Brozinick, Joseph T.; Kiseljak-Vassiliades, Katja; Strauss, Allison N.; Bacon, Samantha D.; Kerege, Anna A.; Bui, Hai Hoang; Sanders, Phil; Siddall, Parker; Wei, Tao; Thomas, Melissa; Kuo, Ming Shang; Nemkov, Travis; D'Alessandro, Angelo; Hansen, Kirk C.; Perreault, Leigh

    2016-01-01

    Several recent reports indicate that the balance of skeletal muscle phosphatidylcholine (PC) and phosphatidylethanolamine (PE) is a key determinant of muscle contractile function and metabolism. The purpose of this study was to determine relationships between skeletal muscle PC, PE and insulin sensitivity, and whether PC and PE are dynamically regulated in response to acute exercise in humans. Insulin sensitivity was measured via intravenous glucose tolerance in sedentary obese adults (OB; n = 14), individuals with type 2 diabetes (T2D; n = 15), and endurance-trained athletes (ATH; n = 15). Vastus lateralis muscle biopsies were obtained at rest, immediately after 90 min of cycle ergometry at 50% maximal oxygen consumption (V̇o2 max), and 2-h postexercise (recovery). Skeletal muscle PC and PE were measured via infusion-based mass spectrometry/mass spectrometry analysis. ATH had greater levels of muscle PC and PE compared with OB and T2D (P < 0.05), with total PC and PE positively relating to insulin sensitivity (both P < 0.05). Skeletal muscle PC:PE ratio was elevated in T2D compared with OB and ATH (P < 0.05), tended to be elevated in OB vs. ATH (P = 0.07), and was inversely related to insulin sensitivity among the entire cohort (r = −0.43, P = 0.01). Muscle PC and PE were altered by exercise, particularly after 2 h of recovery, in a highly group-specific manner. However, muscle PC:PE ratio remained unchanged in all groups. In summary, total muscle PC and PE are positively related to insulin sensitivity while PC:PE ratio is inversely related to insulin sensitivity in humans. A single session of exercise significantly alters skeletal muscle PC and PE levels, but not PC:PE ratio. PMID:27032901

  11. Effects of Chronic Consumption of Sugar-Enriched Diets on Brain Metabolism and Insulin Sensitivity in Adult Yucatan Minipigs.

    PubMed

    Ochoa, Melissa; Malbert, Charles-Henri; Meurice, Paul; Val-Laillet, David

    2016-01-01

    Excessive sugar intake might increase the risk to develop eating disorders via an altered reward circuitry, but it remains unknown whether different sugar sources induce different neural effects and whether these effects are dependent from body weight. Therefore, we compared the effects of three high-fat and isocaloric diets varying only in their carbohydrate sources on brain activity of reward-related regions, and assessed whether brain activity is dependent on insulin sensitivity. Twenty-four minipigs underwent 18FDG PET brain imaging following 7-month intake of high-fat diets of which 20% in dry matter weight (36.3% of metabolisable energy) was provided by starch, glucose or fructose (n = 8 per diet). Animals were then subjected to a euglycemic hyperinsulinemic clamp to determine peripheral insulin sensitivity. After a 7-month diet treatment, all groups had substantial increases in body weight (from 36.02±0.85 to 63.33±0.81 kg; P<0.0001), regardless of the diet. All groups presented similar insulin sensitivity index (ISI = 1.39±0.10 mL·min-1·μUI·kg). Compared to starch, chronic exposure to fructose and glucose induced bilateral brain activations, i.e. increased basal cerebral glucose metabolism, in several reward-related brain regions including the anterior and dorsolateral prefrontal cortex, the orbitofrontal cortex, the anterior cingulate cortex, the caudate and putamen. The lack of differences in insulin sensitivity index and body weight suggests that the observed differences in basal brain glucose metabolism are not related to differences in peripheral insulin sensitivity and weight gain. The differences in basal brain metabolism in reward-related brain areas suggest the onset of cerebral functional alterations induced by chronic consumption of dietary sugars. Further studies should explore the underlying mechanisms, such as the availability of intestinal and brain sugar transporter, or the appearance of addictive-like behavioral correlates of these brain functional characteristics.

  12. Brown Adipose Tissue Improves Whole-Body Glucose Homeostasis and Insulin Sensitivity in Humans

    PubMed Central

    Chondronikola, Maria; Volpi, Elena; Børsheim, Elisabet; Porter, Craig; Annamalai, Palam; Enerbäck, Sven; Lidell, Martin E.; Saraf, Manish K.; Labbe, Sebastien M.; Hurren, Nicholas M.; Yfanti, Christina; Chao, Tony; Andersen, Clark R.; Cesani, Fernando; Hawkins, Hal

    2014-01-01

    Brown adipose tissue (BAT) has attracted scientific interest as an antidiabetic tissue owing to its ability to dissipate energy as heat. Despite a plethora of data concerning the role of BAT in glucose metabolism in rodents, the role of BAT (if any) in glucose metabolism in humans remains unclear. To investigate whether BAT activation alters whole-body glucose homeostasis and insulin sensitivity in humans, we studied seven BAT-positive (BAT+) men and five BAT-negative (BAT−) men under thermoneutral conditions and after prolonged (5–8 h) cold exposure (CE). The two groups were similar in age, BMI, and adiposity. CE significantly increased resting energy expenditure, whole-body glucose disposal, plasma glucose oxidation, and insulin sensitivity in the BAT+ group only. These results demonstrate a physiologically significant role of BAT in whole-body energy expenditure, glucose homeostasis, and insulin sensitivity in humans, and support the notion that BAT may function as an antidiabetic tissue in humans. PMID:25056438

  13. Preoperative carbohydrate loading in patients undergoing coronary artery bypass or spinal surgery.

    PubMed

    Tran, Susan; Wolever, Thomas M S; Errett, Lee E; Ahn, Henry; Mazer, C David; Keith, Mary

    2013-08-01

    Surgical stress creates a state of insulin resistance which may contribute to the development of hyperglycemia and, subsequently, postoperative complications. Consumption of an oral carbohydrate supplement before surgery may improve insulin sensitivity and reduce hyperglycemia. In this trial, we investigated the effects of carbohydrate supplementation on insulin resistance in coronary artery bypass graft and spinal decompression and fusion surgical patients. Twenty-six patients undergoing coronary artery bypass graft and 12 undergoing spine surgery were randomized to receive 800 mL of an oral carbohydrate supplement the evening before and 400 mL 2 hours before surgery (CHO) or to fasting per standard hospital protocol (FAST). Baseline and postoperative measurements of insulin sensitivity were assessed using the short insulin tolerance test and homeostasis model assessment (HOMA). Interleukin-6, C-reactive protein, and free fatty acid levels were determined at baseline, postoperatively, and 24, 48, and 72 hours after surgery. Adiponectin was measured at baseline. Subjective feelings of well-being were measured immediately before surgery, and intra- and postoperative outcomes were documented. Postoperative insulin sensitivity did not differ significantly between the FAST and CHO groups whether measured by the short insulin tolerance test (rate of disappearance of blood glucose: 0.29%/min vs 0.38%/min; 99% confidence interval [CI] for difference, -0.17 to 0.32, P = 0.41) or HOMA (insulin resistance at values >1: 2.3 vs 3.3; 99% CI for difference, -0.8 to 2.8, P = 0.14). Circulating blood glucose levels after surgery in the CHO group, 6.2 mmol/L, tended to be lower than the FAST group, 6.9 mmol/L (99% CI for difference, -1.7 to 0.25, P = 0.05) and postoperative β-cell function, measured by HOMA-β (impaired β-cell function at values <100%), tended to be higher in the CHO group, 87%, vs 47.5% in the FAST group (99% CI for difference, -9.4 to 88.4), but these differences were not significant. Adiponectin levels were not different between groups at baseline, and levels of free fatty acid, interleukin-6 and C-reactive protein were not affected by treatment. Preoperative carbohydrate loading did not improve postoperative insulin sensitivity. However, the observed postoperative blood glucose levels and β-cell function as well as secondary outcomes warrant further study to reevaluate traditional fasting practices in surgical patients.

  14. Effects of meals rich in either monounsaturated or saturated fat on lipid concentrations and on insulin secretion and action in subjects with high fasting triglyceride concentrations.

    PubMed

    Lopez, Sergio; Bermudez, Beatriz; Ortega, Almudena; Varela, Lourdes M; Pacheco, Yolanda M; Villar, Jose; Abia, Rocio; Muriana, Francisco J G

    2011-03-01

    The nature of dietary fats and fasting concentrations of triglycerides affect postprandial hypertriglyceridemia and glucose homeostasis. The objectives were to examine the effects of meals enriched in monounsaturated fatty acids (MUFAs) or saturated fatty acids (SFAs) on postprandial lipid, glucose, and insulin concentrations and to examine the extent of β cell function and insulin sensitivity in subjects with high fasting triglyceride concentrations. Fourteen men with fasting hypertriglyceridemia and normal glucose tolerance were given meals (≈10 kcal/kg body weight) containing MUFAs, SFAs, or no fat. Blood samples were collected at baseline and hourly over 8 h for analysis. The high-fat meals significantly increased postprandial concentrations of triglycerides, nonesterified fatty acids, and insulin and postprandial indexes of β cell function. However, postprandial indexes of insulin sensitivity decreased significantly. These effects were significantly attenuated with MUFAs relative to SFAs. MUFAs postprandially buffered β cell hyperactivity and insulin intolerance relative to SFAs in subjects with high fasting triglyceride concentrations. These data suggest that, in contrast with SFAs, MUFA-based strategies may provide cardiovascular benefits to persons at risk by limiting lipid and insulin excursions and may contribute to optimal glycemic control after meal challenges.

  15. Lipoprotein(a) is not related to markers of insulin resistance in pregnancy.

    PubMed

    Todoric, Jelena; Handisurya, Ammon; Leitner, Karoline; Harreiter, Juergen; Hoermann, Gregor; Kautzky-Willer, Alexandra

    2013-10-01

    Dyslipidemia, a major risk factor for cardiovascular disease is a common finding in patients with type 2 diabetes and among women with gestational diabetes. Elevated levels of lipoprotein(a) [Lp(a)] are linked to increased risk of cardiovascular disease. However, its relationship with insulin resistance, type 2 diabetes and gestational diabetes is controversial and unproven. Here we aimed to clarify whether Lp(a) levels are associated with insulin sensitivity in pregnancy. Sixty-four women with gestational diabetes and 165 with normal glucose tolerance were enrolled in the study. Fasting Lp(a) serum levels were measured in all women at 24-28 weeks of gestation. In pregnancy, there was no significant difference in serum Lp(a) concentrations between the two groups. Its level did not correlate with markers of insulin resistance (HOMA-IR), insulin sensitivity (HOMA-S%), pancreatic beta-cell function (HOMA-B%) and insulin sensitivity in dynamic conditions (OGIS). In addition, fasting glucose and insulin levels and those throughout an oral glucose tolerance test were independent of Lp(a) concentrations in our study group. Lp(a) levels in pregnant women do not differ with respect to the presence or absence of gestational diabetes. Although influenced by some components of the lipid profile, such as triglycerides and HDL-C, insulin resistance in pregnancy is not affected by Lp(a).

  16. Progressive deterioration of beta-cell function in obese youth with type 2 diabetes

    USDA-ARS?s Scientific Manuscript database

    In adults, type 2 diabetes (T2DM) is characterized with progressive deterioration in insulin secretion. Data are scanty in youth. We investigated prospectively the change in ß-cell function and in insulin sensitivity in youth with T2DM. Six adolescents with T2DM [hemoglobin A1c (HbA1c) 6.6 +/- 1.0%]...

  17. The differential effect of the phytoestrogen genistein on cardiovascular risk factors in postmenopausal women: relationship with the metabolic status.

    PubMed

    Villa, Paola; Costantini, Barbara; Suriano, Rosanna; Perri, Concetta; Macrì, Francesca; Ricciardi, Luigi; Panunzi, Simona; Lanzone, Antonio

    2009-02-01

    The wide family of the phytoestrogens has become an alternative to the classical hormonal therapy in menopause; nevertheless, some findings are still conflicting. To examine the effect of genistein administration on metabolic parameters and vascular reactivity considering the basal endocrine status of the patients. A randomized placebo controlled study was conducted at a university hospital. Fifty postmenopausal women participated. Thirty subjects (group A) were randomized to receive 54 mg/d genistein while 20 subjects (group B) were treated with the placebo for 24 wk. In group A, we distinguish two subgroups: 14 normoinsulinemic and 12 hyperinsulinemic patients. Anthropometric measures, hormonal and lipid assays, oral glucose tolerance test with glycemic, insulin, and C-peptide evaluation, indexes of insulin sensitivity and endothelial function, and euglycemic-hyperinsulinemic clamps were performed. The insulin basal values significantly decreased in group A, whereas the homeostasis model index of insulin sensitivity and the fasting glucose levels significantly improved compared with placebo group. The genistein administration decreased fasting glucose and area under the curve glucose levels in the normoinsulinemic patients after treatment. In the hyperinsulinemic patients, a significant reduction in fasting insulin, fasting C-peptide, and area under the curve insulin levels as well as an increase in fractional hepatic insulin extraction was shown. In these patients, high-density lipoprotein cholesterol levels were significantly improved. The endothelium-dependent and -independent dilatation improved in the treated group. Normoinsulinemic patients showed both a significantly enhanced flow-mediated and nitrate-mediated dilatation, whereas no significant changes were found in the hyperinsulinemic group. The glycoinsulinemic metabolism and the endothelial function were significantly influenced by genistein. In particular, normoinsulinemic patients showed an improvement in glycemic and vascular reactivity indexes. Conversely, an improvement in the insulin sensitivity indexes was noted in hyperinsulinemic patients.

  18. Decoration of intramyocellular lipid droplets with PLIN5 modulates fasting-induced insulin resistance and lipotoxicity in humans.

    PubMed

    Gemmink, Anne; Bosma, Madeleen; Kuijpers, Helma J H; Hoeks, Joris; Schaart, Gert; van Zandvoort, Marc A M J; Schrauwen, Patrick; Hesselink, Matthijs K C

    2016-05-01

    In contrast to insulin-resistant individuals, insulin-sensitive athletes possess high intramyocellular lipid content (IMCL), good mitochondrial function and high perilipin 5 (PLIN5) levels, suggesting a role for PLIN5 in benign IMCL storage. We hypothesised a role for PLIN5 in modulating fasting-mediated insulin resistance. Twelve men were fasted for 60 h, before and after which muscle biopsies were taken and stained for lipid droplets (LDs), PLIN5 and laminin. Confocal microscopy images were analysed for LD size, number, PLIN5 association and subcellular distribution. Fasting elevated IMCL content 2.8-fold and reduced insulin sensitivity (by 55%). Individuals with the most prominent increase in IMCL showed the least reduction in insulin sensitivity (r = 0.657; p = 0.028) and mitochondrial function (r = 0.896; p = 0.006). During fasting, PLIN5 gene expression or PLIN5 protein content in muscle homogenates was unaffected, microscopy analyses revealed that the fraction of PLIN5 associated with LDs (PLIN5+) increased significantly (+26%) upon fasting, suggesting PLIN5 redistribution. The significant increase in LD number (+23%) and size (+23%) upon fasting was entirely accounted for by PLIN5+ LDs, not by LDs devoid of PLIN5. Also the association between IMCL storage capacity and insulin resistance and mitochondrial dysfunction was only apparent for PLIN5+ LDs. Fasting results in subcellular redistribution of PLIN5 and promotes the capacity to store excess fat in larger and more numerous PLIN5-decorated LDs. This associates with blunting of fasting-induced insulin resistance and mitochondrial dysfunction, suggesting a role for PLIN5 in the modulation of fasting-mediated lipotoxicity. trialregister.nl NTR 2042.

  19. Metabolic effects of intra-abdominal fat in GHRKO mice

    PubMed Central

    Masternak, Michal M.; Bartke, Andrzej; Wang, Feiya; Spong, Adam; Gesing, Adam; Fang, Yimin; Salmon, Adam B.; Hughes, Larry F.; Liberati, Teresa; Boparai, Ravneet; Kopchick, John J.; Westbrook, Reyhan

    2011-01-01

    SUMMARY Mice with targeted deletion of the growth hormone receptor (GHRKO mice) are GH resistant, small, obese, hypoinsulinemic, highly insulin sensitive and remarkably long-lived. To elucidate the unexpected coexistence of adiposity with improved insulin sensitivity and extended longevity, we examined effects of surgical removal of visceral (epididymal and perinephric) fat on metabolic traits related to insulin signaling and longevity. Comparison of results obtained in GHRKO mice and in normal animals from the same strain revealed disparate effects of visceral fat removal (VFR) on insulin and glucose tolerance, adiponectin levels, accumulation of ectopic fat, phosphorylation of insulin signaling intermediates, body temperature and respiratory quotient (RQ). Overall, VFR produced the expected improvements in insulin sensitivity and reduced body temperature and RQ in normal mice and had opposite effects in GHRKO mice. Some of the examined parameters were altered by VFR in opposite directions in GHRKO and normal mice, others were affected in only one genotype or exhibited significant genotype × treatment interactions. Functional differences between visceral fat of GHRKO and normal mice were confirmed by measurements of adipokine secretion, lipolysis and expression of genes related to fat metabolism. We conclude that in the absence of GH signaling the secretory activity of visceral fat is profoundly altered and unexpectedly promotes enhanced insulin sensitivity. The apparent beneficial effects of visceral fat in GHRKO mice may also explain why reducing adiposity by calorie restriction fails to improve insulin signaling or further extend longevity in these animals. PMID:22040032

  20. Modulation of gonadotrophin induced steroidogenic enzymes in granulosa cells by d-chiroinositol.

    PubMed

    Sacchi, Sandro; Marinaro, Federica; Tondelli, Debora; Lui, Jessica; Xella, Susanna; Marsella, Tiziana; Tagliasacchi, Daniela; Argento, Cindy; Tirelli, Alessandra; Giulini, Simone; La Marca, Antonio

    2016-08-31

    d-chiroinositol (DCI) is a inositolphosphoglycan (IPG) involved in several cellular functions that control the glucose metabolism. DCI functions as second messenger in the insulin signaling pathway and it is considered an insulin sensitizer since deficiency in tissue availability of DCI were shown to cause insulin resistance (IR). Polycystic ovary syndrome (PCOS) is a pathological condition that is often accompanied with insulin resistance. DCI can positively affects several aspect of PCOS etiology decreasing the total and free testosterone, lowering blood pressure, improving the glucose metabolism and increasing the ovulation frequency. The purpose of this study was to evaluate the effects of DCI and insulin combined with gonadotrophins namely follicle-stimulating hormone (FSH) and luteinizing hormone (LH) on key steroidogenic enzymes genes regulation, cytochrome P450 family 19 subfamily A member 1 (CYP19A1) and cytochrome P450 side-chain cleavage (P450scc) in primary cultures of human granulosa cells (hGCs). We also investigated whether DCI, being an insulin-sensitizer would be able to counteract the expected stimulator activity of insulin on human granulosa cells (hGCs). The study was conducted on primary cultures of hGCs. Gene expression was evaluated by RT-qPCR method. Statistical analysis was performed applying student t-test, as appropriate (P < 0.05) set for statistical significance. DCI is able to reduce the gene expression of CYP19A1, P450scc and insulin-like growth factor 1 receptor (IGF-1R) in dose-response manner. The presence of DCI impaired the increased expression of steroidogenic enzyme genes generated by the insulin treatment in gonadotrophin-stimulated hGCs. Insulin acts as co-gonadotrophin increasing the expression of steroidogenic enzymes genes in gonadotrophin-stimulated granulosa cells. DCI is an insulin-sensitizer that counteracts this action by reducing the expression of the genes CYP19A1, P450scc and IGF-1R. The ability of DCI to modulate in vitro ovarian activity of insulin could in part explain its beneficial effect when used as treatment for conditions associated to insulin resistance.

  1. Postnatal Pancreatic Islet β Cell Function and Insulin Sensitivity at Different Stages of Lifetime in Rats Born with Intrauterine Growth Retardation

    PubMed Central

    Liu, Cuiping; Xu, Kuanfeng; Mao, Xiaodong; Liu, Chao

    2011-01-01

    Epidemiological studies have linked intrauterine growth retardation (IUGR) to the metabolic diseases, consisting of insulin resistance, type 2 diabetes, obesity and coronary artery disease, during adult life. To determine the internal relationship between IUGR and islet β cell function and insulin sensitivity, we established the IUGR model by maternal nutrition restriction during mid- to late-gestation. Glucose tolerance test and insulin tolerance test(ITT) in vivo and glucose stimulated insulin secretion(GSIS) test in vitro were performed at different stages in IUGR and normal groups. Body weight, pancreas weight and pancreas/body weight of IUGR rats were much lower than those in normal group before 3 weeks of age. While the growth of IUGR rats accelerated after 3 weeks, pancreas weight and pancreas/body weight remained lower till 15 weeks of age. In the newborns, the fasting glucose and insulin levels of IUGR rats were both lower than those of controls, whereas glucose levels at 120 and 180 min after glucose load were significantly higher in IUGR group. Between 3 and 15 weeks of age, both the fasting glucose and insulin levels were elevated and the glucose tolerance was impaired with time in IUGR rats. At age 15 weeks, the area under curve of insulin(AUCi) after glucose load in IUGR rats elevated markedly. Meanwhile, the stimulating index of islets in IUGR group during GSIS test at age 15 weeks was significantly lower than that of controls. ITT showed no significant difference in two groups before 7 weeks of age. However, in 15-week-old IUGR rats, there was a markedly blunted glycemic response to insulin load compared with normal group. These findings demonstrate that IUGR rats had both impaired pancreatic development and deteriorated glucose tolerance and insulin sensitivity, which would be the internal causes why they were prone to develop type 2 diabetes. PMID:22022381

  2. Lower adiponectin levels at first trimester of pregnancy are associated with increased insulin resistance and higher risk of developing gestational diabetes mellitus.

    PubMed

    Lacroix, Marilyn; Battista, Marie-Claude; Doyon, Myriam; Ménard, Julie; Ardilouze, Jean-Luc; Perron, Patrice; Hivert, Marie-France

    2013-06-01

    To evaluate the associations between adiponectin levels and 1) the risk of developing gestational diabetes mellitus (GDM), and 2) insulin resistance/sensitivity, β-cell function, and compensation indices in a prospective cohort representative of the general population of pregnant women. We performed anthropometric measurements and collected blood samples at 1st (6-13 weeks) and 2nd (24-28 weeks) trimesters. Diagnosis of GDM was made at 2nd trimester based on a 75-g oral glucose tolerance test (International Association of the Diabetes and Pregnancy Study Groups criteria). Insulin was measured (ELISA; Luminex) to estimate homeostasis model assessment of insulin resistance (HOMA-IR), β-cell function (HOMA-B), insulin sensitivity (Matsuda index), insulin secretion (AUC(insulin/glucose)), and β-cell compensation (insulin secretion sensitivity index-2). Adiponectin was measured by radioimmunoassay. Among the 445 participants included in this study, 38 women developed GDM. Women who developed GDM had lower 1st-trimester adiponectin levels (9.67 ± 3.84 vs. 11.92 ± 4.59 µg/mL in women with normal glucose tolerance). Lower adiponectin levels were associated with higher risk of developing GDM (OR, 1.12 per 1 µg/mL decrease of adiponectin levels; P = 0.02, adjusted for BMI and HbA1c at 1st trimester). Adiponectin levels at 1st and 2nd trimesters were associated with HOMA-IR (both: r = -0.22, P < 0.0001) and Matsuda index (r = 0.28, P < 0.0001, and r = 0.29, P < 0.0001). After adjustment for confounding factors, we found no significant association with HOMA-B and AUC(insulin/glucose). Pregnant women with lower adiponectin levels at 1st trimester have higher levels of insulin resistance and are more likely to develop GDM independently of adiposity or glycemic measurements.

  3. Intensive insulin therapy improves insulin sensitivity and mitochondrial function in severely burned children.

    PubMed

    Fram, Ricki Y; Cree, Melanie G; Wolfe, Robert R; Mlcak, Ronald P; Qian, Ting; Chinkes, David L; Herndon, David N

    2010-06-01

    To institute intensive insulin therapy protocol in an acute pediatric burn unit and study the mechanisms underlying its benefits. Prospective, randomized study. An acute pediatric burn unit in a tertiary teaching hospital. Children, 4-18 yrs old, with total body surface area burned > or =40% and who arrived within 1 wk after injury were enrolled in the study. Patients were randomized to one of two groups. Intensive insulin therapy maintained blood glucose levels between 80 and 110 mg/dL. Conventional insulin therapy maintained blood glucose < or =215 mg/dL. Twenty patients were included in the data analysis consisting of resting energy expenditure, whole body and liver insulin sensitivity, and skeletal muscle mitochondrial function. Studies were performed at 7 days postburn (pretreatment) and at 21 days postburn (posttreatment). Resting energy expenditure significantly increased posttreatment (1476 +/- 124 to 1925 +/- 291 kcal/m(2) x day; p = .02) in conventional insulin therapy as compared with a decline in intensive insulin therapy. Glucose infusion rate was identical between groups before treatment (6.0 +/- 0.8 conventional insulin therapy vs. 6.8 +/- 0.9 mg/kg x min intensive insulin therapy; p = .5). Intensive insulin therapy displayed a significantly higher glucose clamp infusion rate posttreatment (9.1 +/- 1.3 intensive insulin therapy versus 4.8 +/- 0.6 mg/kg x min conventional insulin therapy, p = .005). Suppression of hepatic glucose release was significantly greater in the intensive insulin therapy after treatment compared with conventional insulin therapy (5.0 +/- 0.9 vs. 2.5 +/- 0.6 mg/kg x min; intensive insulin therapy vs. conventional insulin therapy; p = .03). States 3 and 4 mitochondrial oxidation of palmitate significantly improved in intensive insulin therapy (0.9 +/- 0.1 to 1.7 +/- 0.1 microm O(2)/CS/mg protein/min for state 3, p = .004; and 0.7 +/- 0.1 to 1.3 +/- 0.1 microm O(2)/CS/mg protein/min for state 4, p < .002), whereas conventional insulin therapy remained at the same level of activity (0.9 +/- 0.1 to 0.8 +/- 0.1 microm O(2)/CS/mg protein/min for state 3, p = .4; 0.6 +/- 0.03 to 0.7 +/- 0.1 microm O(2)/CS/mg protein/min, p = .6). Controlling blood glucose levels < or =120 mg/dL using an intensive insulin therapy protocol improves insulin sensitivity and mitochondrial oxidative capacity while decreasing resting energy expenditure in severely burned children.

  4. Beta-blocking agents in patients with insulin resistance: effects of vasodilating beta-blockers.

    PubMed

    Jacob, S; Balletshofer, B; Henriksen, E J; Volk, A; Mehnert, B; Löblein, K; Häring, H U; Rett, K

    1999-01-01

    Essential hypertension is--at least in many subjects--associated with a decrease in insulin sensitivity, while glycaemic control is (still) normal. It seems that in hypertensive patients, two major functions of insulin are impaired: there is insulin resistance of peripheral glucose uptake (primarily skeletal muscle) and insulin resistance of insulin-stimulated vasodilation. In view of some retrospective data and meta-analyses, which showed a less than expected reduction in coronary events (coronary paradox), the metabolic side effects of the antihypertensive treatment have received more attention. Many groups have shown that conventional antihypertensive treatment, both with beta-blockers and/or diuretics, decreases insulin sensitivity by various mechanisms. While low-dose diuretics seem to be free of these metabolic effects, there is no evidence for this in the beta-adrenergic blockers. However, recent metabolic studies evaluated the effects of vasodilating beta-blockers, such as dilevalol, carvedilol and celiprolol, on insulin sensitivity and the atherogenic risk factors. None of them decreased insulin sensitivity, as has been described for the beta-blockers with and without beta1 selectivity. This supports the idea that peripheral vascular resistance and peripheral blood flow play a central role in mediating the metabolic side effects of the beta-blocking agents, as the vasodilating action (either via beta2 stimulation or alpha1-blockade) seems to more than offset the detrimental effects of the blockade of beta (or beta1) receptors. Further studies are needed to elucidate the relevance of the radical scavenging properties of these agents and their connection to their metabolic effects. Therefore, the beneficial characteristics of these newer beta-adrenoreceptor blockers suggest that the vasodilating beta-blocking agents could be advantageous for hypertensive patients with insulin resistance or type 2 diabetes.

  5. Four days of simulated shift work reduces insulin sensitivity in humans.

    PubMed

    Bescos, R; Boden, M J; Jackson, M L; Trewin, A J; Marin, E C; Levinger, I; Garnham, A; Hiam, D S; Falcao-Tebas, F; Conte, F; Owens, J A; Kennaway, D J; McConell, G K

    2018-06-01

    The aim of this study was to investigate the effects of 4 consecutive simulated night shifts on glucose homeostasis, mitochondrial function and central and peripheral rhythmicities compared with a simulated day shift schedule. Seventeen healthy adults (8M:9F) matched for sleep, physical activity and dietary/fat intake participated in this study (night shift work n = 9; day shift work n = 8). Glucose tolerance and insulin sensitivity before and after 4 nights of shift work were measured by an intravenous glucose tolerance test and a hyperinsulinaemic euglycaemic clamp respectively. Muscles biopsies were obtained to determine insulin signalling and mitochondrial function. Central and peripheral rhythmicities were assessed by measuring salivary melatonin and expression of circadian genes from hair samples respectively. Fasting plasma glucose increased (4.4 ± 0.1 vs. 4.6 ± 0.1 mmol L -1 ; P = .001) and insulin sensitivity decreased (25 ± 7%, P < .05) following the night shift, with no changes following the day shift. Night shift work had no effect on skeletal muscle protein expression (PGC1α, UCP3, TFAM and mitochondria Complex II-V) or insulin-stimulated pAkt Ser473, pTBC1D4Ser318 and pTBC1D4Thr642. Importantly, the metabolic changes after simulated night shifts occurred despite no changes in the timing of melatonin rhythmicity or hair follicle cell clock gene expression across the wake period (Per3, Per1, Nr1d1 and Nr1d2). Only 4 days of simulated night shift work in healthy adults is sufficient to reduce insulin sensitivity which would be expected to increase the risk of T2D. © 2018 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  6. Developmental Programming: Insulin Sensitizer Prevents the GnRH-Stimulated LH Hypersecretion in a Sheep Model of PCOS

    PubMed Central

    Cardoso, Rodolfo C.; Burns, Ashleigh; Moeller, Jacob; Skinner, Donal C.

    2016-01-01

    Prenatal testosterone (T) treatment recapitulates the reproductive and metabolic phenotypes of polycystic ovary syndrome in female sheep. At the neuroendocrine level, prenatal T treatment results in disrupted steroid feedback on gonadotropin release, increased pituitary sensitivity to GnRH, and subsequent LH hypersecretion. Because prenatal T-treated sheep manifest functional hyperandrogenism and hyperinsulinemia, gonadal steroids and/or insulin may play a role in programming and/or maintaining these neuroendocrine defects. Here, we investigated the effects of prenatal and postnatal treatments with an androgen antagonist (flutamide [F]) or an insulin sensitizer (rosiglitazone [R]) on GnRH-stimulated LH secretion in prenatal T-treated sheep. As expected, prenatal T treatment increased the pituitary responsiveness to GnRH leading to LH hypersecretion. Neither prenatal interventions nor postnatal F treatment normalized the GnRH-stimulated LH secretion. Conversely, postnatal R treatment completely normalized the GnRH-stimulated LH secretion. At the tissue level, gestational T increased pituitary LHβ, androgen receptor, and insulin receptor-β, whereas it reduced estrogen receptor (ER)α protein levels. Although postnatal F normalized pituitary androgen receptor and insulin receptor-β, it failed to prevent an increase in LHβ expression. Contrarily, postnatal R treatment restored ERα and partially normalized LHβ pituitary levels. Immunohistochemical findings confirmed changes in pituitary ERα expression to be specific to gonadotropes. In conclusion, these findings indicate that increased pituitary responsiveness to GnRH in prenatal T-treated sheep is likely a function of reduced peripheral insulin sensitivity. Moreover, results suggest that restoration of ERα levels in the pituitary may be one mechanism by which R prevents GnRH-stimulated LH hypersecretion in this sheep model of polycystic ovary syndrome-like phenotype. PMID:27792406

  7. Developmental Programming: Insulin Sensitizer Prevents the GnRH-Stimulated LH Hypersecretion in a Sheep Model of PCOS.

    PubMed

    Cardoso, Rodolfo C; Burns, Ashleigh; Moeller, Jacob; Skinner, Donal C; Padmanabhan, Vasantha

    2016-12-01

    Prenatal testosterone (T) treatment recapitulates the reproductive and metabolic phenotypes of polycystic ovary syndrome in female sheep. At the neuroendocrine level, prenatal T treatment results in disrupted steroid feedback on gonadotropin release, increased pituitary sensitivity to GnRH, and subsequent LH hypersecretion. Because prenatal T-treated sheep manifest functional hyperandrogenism and hyperinsulinemia, gonadal steroids and/or insulin may play a role in programming and/or maintaining these neuroendocrine defects. Here, we investigated the effects of prenatal and postnatal treatments with an androgen antagonist (flutamide [F]) or an insulin sensitizer (rosiglitazone [R]) on GnRH-stimulated LH secretion in prenatal T-treated sheep. As expected, prenatal T treatment increased the pituitary responsiveness to GnRH leading to LH hypersecretion. Neither prenatal interventions nor postnatal F treatment normalized the GnRH-stimulated LH secretion. Conversely, postnatal R treatment completely normalized the GnRH-stimulated LH secretion. At the tissue level, gestational T increased pituitary LHβ, androgen receptor, and insulin receptor-β, whereas it reduced estrogen receptor (ER)α protein levels. Although postnatal F normalized pituitary androgen receptor and insulin receptor-β, it failed to prevent an increase in LHβ expression. Contrarily, postnatal R treatment restored ERα and partially normalized LHβ pituitary levels. Immunohistochemical findings confirmed changes in pituitary ERα expression to be specific to gonadotropes. In conclusion, these findings indicate that increased pituitary responsiveness to GnRH in prenatal T-treated sheep is likely a function of reduced peripheral insulin sensitivity. Moreover, results suggest that restoration of ERα levels in the pituitary may be one mechanism by which R prevents GnRH-stimulated LH hypersecretion in this sheep model of polycystic ovary syndrome-like phenotype.

  8. Heat Shock Proteins Are Important Mediators of Skeletal Muscle Insulin Sensitivity

    PubMed Central

    Geiger, Paige C.; Gupte, Anisha A.

    2013-01-01

    Endogenous heat shock proteins (HSP) are decreased in disease states associated with insulin resistance and aging. Induction of HSPs has been shown to decrease oxidative stress, inhibit inflammatory pathways, and enhance metabolic characteristics in skeletal muscle. As such, HSPs have the potential to function as an important defense system against the development of insulin resistance and type 2 diabetes. PMID:21088604

  9. Hypoglycemic depression of RES function.

    PubMed

    Buchanan, B J; Filkins, J P

    1976-07-01

    The intravascular removal rates of colloidal carbon and of biologically active endotoxin by the reticuloendothelial system (RES) were evaluated as a function of blood-glucose levels. There was a significant negative correlation of carbon clearance half time on blood glucose in both saline-treated and insulin-treated rats. Insulin hypoglycemia depressed RES carbon clearance with the maximal effect occurring at blood glucose values below 30 mg/dl. Insulin hypoglycemia also severely impaired the intravascular removal of endotoxin as evaluated by lethality bioassay in lead-sensitized rats. It is concluded that blood glucose may modulate RES phagocytic function and that the hypoglycemia of endotoxin shock may augment the shock state due to impairment of RES host defense clearance functions.

  10. Role of the Transcription Factor Sox4 in Insulin Secretion and Impaired Glucose Tolerance

    PubMed Central

    Goldsworthy, Michelle; Hugill, Alison; Freeman, Helen; Horner, Emma; Shimomura, Kenju; Bogani, Debora; Pieles, Guido; Mijat, Vesna; Arkell, Ruth; Bhattacharya, Shoumo; Ashcroft, Frances M.; Cox, Roger D.

    2008-01-01

    OBJECTIVES— To identify, map, clone, and functionally validate a novel mouse model for impaired glucose tolerance and insulin secretion. RESEARCH DESIGN AND METHODS— Haploinsufficiency of the insulin receptor and associated mild insulin resistance has been used to sensitize an N-ethyl-N-nitrosourea (ENU) screen to identify novel mutations resulting in impaired glucose tolerance and diabetes. The new impaired glucose tolerance 4 (IGT4) model was selected using an intraperitoneal glucose tolerance test and inheritance of the phenotype confirmed by generation of backcross progeny. Segregation of the phenotype was correlated with genotype information to map the location of the gene and candidates sequenced for mutations. The function of the SRY-related high mobility group (HMG)-box 4 (Sox4) gene in insulin secretion was tested using another ENU allele and by small interfering RNA silencing in insulinoma cells. RESULTS— We describe two allelic autosomal dominant mutations in the highly conserved HMG box of the transcription factor Sox4. Previously associated with pancreas development, Sox4 mutations in the adult mouse result in an insulin secretory defect, which exhibits impaired glucose tolerance in association with insulin receptor+/−–induced insulin resistance. Elimination of the Sox4 transcript in INS1 and Min6 cells resulted in the abolition of glucose-stimulated insulin release similar to that observed for silencing of the key metabolic enzyme glucokinase. Intracellular calcium measurements in treated cells indicate that this defect lies downstream of the ATP-sensitive K+ channel (KATP channel) and calcium influx. CONCLUSIONS— IGT4 represents a novel digenic model of insulin resistance coupled with an insulin secretory defect. The Sox4 gene has a role in insulin secretion in the adult β-cell downstream of the KATP channel. PMID:18477811

  11. β-Arrestin2 plays a key role in the modulation of the pancreatic beta cell mass in mice.

    PubMed

    Ravier, Magalie A; Leduc, Michele; Richard, Joy; Linck, Nathalie; Varrault, Annie; Pirot, Nelly; Roussel, Morgane M; Bockaert, Joël; Dalle, Stéphane; Bertrand, Gyslaine

    2014-03-01

    Beta cell failure due to progressive secretory dysfunction and limited expansion of beta cell mass is a key feature of type 2 diabetes. Beta cell function and mass are controlled by glucose and hormones/neurotransmitters that activate G protein-coupled receptors or receptor tyrosine kinases. We have investigated the role of β-arrestin (ARRB)2, a scaffold protein known to modulate such receptor signalling, in the modulation of beta cell function and mass, with a specific interest in glucagon-like peptide-1 (GLP-1), muscarinic and insulin receptors. β-arrestin2-knockout mice and their wild-type littermates were fed a normal or a high-fat diet (HFD). Glucose tolerance, insulin sensitivity and insulin secretion were assessed in vivo. Beta cell mass was evaluated in pancreatic sections. Free cytosolic [Ca(2+)] and insulin secretion were determined using perifused islets. The insulin signalling pathway was evaluated by western blotting. Arrb2-knockout mice exhibited impaired glucose tolerance and insulin secretion in vivo, but normal insulin sensitivity compared with wild type. Surprisingly, the absence of ARRB2 did not affect glucose-stimulated insulin secretion or GLP-1- and acetylcholine-mediated amplifications from perifused islets, but it decreased the islet insulin content and beta cell mass. Additionally, there was no compensatory beta cell mass expansion through proliferation in response to the HFD. Furthermore, Arrb2 deletion altered the islet insulin signalling pathway. ARRB2 is unlikely to be involved in the regulation of insulin secretion, but it is required for beta cell mass plasticity. Additionally, we provide new insights into the mechanisms involved in insulin signalling in beta cells.

  12. Insulin sensitivity and its relation to hormones in adolescent boys and girls.

    PubMed

    Aldhoon-Hainerová, Irena; Zamrazilová, Hana; Hill, Martin; Hainer, Vojtěch

    2017-02-01

    A subset of obese individuals lacks cardiometabolic impairment. We aimed to analyze hormonal profiles of insulin-sensitive obese (ISO) and insulin-resistant obese (IRO) adolescents and determine hormonal predictors of homeostasis model of insulin resistance (HOMA-IR). A threshold of 3.16 of HOMA-IR was used to classify ISO (<3.16) IRO (≥3.16). In 702 individuals aged 13-18years (55.8% girls) anthropometric and laboratory [blood glucose, insulin, thyrotropin (TSH), free thyroxine (fT4), free triiodothyronine (fT3), sex hormone-binding globulin (SHBG), steroid hormones, luteinizing hormone, follicle stimulating hormone, prolactin, ghrelin, glucose-dependent insulinotropic polypeptide, glucagon-like-peptide 1glucagon, leptin, resistin, visfatin, leptin, adiponectin and adipsin] assessments were performed. Orthogonal projections to latent structures and Mann-Whitney tests with Bonferroni correction were applied for statistical analysis. 52.6% girls and 42.9% boys were insulin sensitive. In the predictive model of HOMA-IR thyroid function tests, adiponectin, ghrelin and leptin concentrations played an important role in both genders. Prolactin, testosterone and glucagon contributed to the model only in boys, while progesterone and dehydroepiandrosterone sulfate levels only in girls. After Bonferroni correction levels of leptin, adiponectin, leptin/adiponectin ratio, SHBG and fT4/TSH ratio in both genders, testosterone and glucagon levels in boys and levels of TSH and fT3 in girls were related to insulin sensitivity. Metabolic health defined by HOMA-IR is partly predicted by various hormones. Some of them are gender specific. Free T4/TSH and leptin/adiponectin ratios are related to insulin sensitivity in both genders. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Metabolic Effects of Chronic Cannabis Smoking

    PubMed Central

    Muniyappa, Ranganath; Sable, Sara; Ouwerkerk, Ronald; Mari, Andrea; Gharib, Ahmed M.; Walter, Mary; Courville, Amber; Hall, Gail; Chen, Kong Y.; Volkow, Nora D.; Kunos, George; Huestis, Marilyn A.; Skarulis, Monica C.

    2013-01-01

    OBJECTIVE We examined if chronic cannabis smoking is associated with hepatic steatosis, insulin resistance, reduced β-cell function, or dyslipidemia in healthy individuals. RESEARCH DESIGN AND METHODS In a cross-sectional, case-control study, we studied cannabis smokers (n = 30; women, 12; men, 18; 27 ± 8 years) and control subjects (n = 30) matched for age, sex, ethnicity, and BMI (27 ± 6). Abdominal fat depots and intrahepatic fat content were quantified by magnetic resonance imaging and proton magnetic resonance spectroscopy, respectively. Insulin-sensitivity indices and various aspects of β-cell function were derived from oral glucose tolerance tests (OGTT). RESULTS Self-reported cannabis use was: 9.5 (2–38) years; joints/day: 6 (3–30) [median (range)]. Carbohydrate intake and percent calories from carbohydrates, but not total energy intake, were significantly higher in cannabis smokers. There were no group differences in percent total body fat, or hepatic fat, but cannabis smokers had a higher percent abdominal visceral fat (18 ± 9 vs. 12 ± 5%; P = 0.004). Cannabis smokers had lower plasma HDL cholesterol (49 ± 14 vs. 55 ± 13 mg/dL; P = 0.02), but fasting levels of glucose, insulin, total cholesterol, LDL cholesterol, triglycerides, or free fatty acids (FFA) were not different. Adipocyte insulin resistance index and percent FFA suppression during an OGTT was lower (P < 0.05) in cannabis smokers. However, oral glucose insulin sensitivity index, measures of β-cell function, or incretin concentrations did not differ between the groups. CONCLUSIONS Chronic cannabis smoking was associated with visceral adiposity and adipose tissue insulin resistance but not with hepatic steatosis, insulin insensitivity, impaired pancreatic β-cell function, or glucose intolerance. PMID:23530011

  14. Trajectories of glycaemia, insulin sensitivity, and insulin secretion before diagnosis of type 2 diabetes: an analysis from the Whitehall II study.

    PubMed

    Tabák, Adam G; Jokela, Markus; Akbaraly, Tasnime N; Brunner, Eric J; Kivimäki, Mika; Witte, Daniel R

    2009-06-27

    Little is known about the timing of changes in glucose metabolism before occurrence of type 2 diabetes. We aimed to characterise trajectories of fasting and postload glucose, insulin sensitivity, and insulin secretion in individuals who develop type 2 diabetes. We analysed data from our prospective occupational cohort study (Whitehall II study) of 6538 (71% male and 91% white) British civil servants without diabetes mellitus at baseline. During a median follow-up period of 9.7 years, 505 diabetes cases were diagnosed (49.1% on the basis of oral glucose tolerance test). We assessed retrospective trajectories of fasting and 2-h postload glucose, homoeostasis model assessment (HOMA) insulin sensitivity, and HOMA beta-cell function from up to 13 years before diabetes diagnosis (diabetic group) or at the end of follow-up (non-diabetics). Multilevel models adjusted for age, sex, and ethnic origin confirmed that all metabolic measures followed linear trends in the group of non-diabetics (10,989 measurements), except for insulin secretion that did not change during follow-up. In the diabetic group (801 measurements), a linear increase in fasting glucose was followed by a steep quadratic increase (from 5.79 mmol/L to 7.40 mmol/L) starting 3 years before diagnosis of diabetes. 2-h postload glucose showed a rapid increase starting 3 years before diagnosis (from 7.60 mmol/L to 11.90 mmol/L), and HOMA insulin sensitivity decreased steeply during the 5 years before diagnosis (to 86.7%). HOMA beta-cell function increased between years 4 and 3 before diagnosis (from 85.0% to 92.6%) and then decreased until diagnosis (to 62.4%). In this study, we show changes in glucose concentrations, insulin sensitivity, and insulin secretion as much as 3-6 years before diagnosis of diabetes. The description of biomarker trajectories leading to diabetes diagnosis could contribute to more-accurate risk prediction models that use repeated measures available for patients through regular check-ups. Medical Research Council (UK); Economic and Social Research Council (UK); British Heart Foundation (UK); Health and Safety Executive (UK); Department of Health (UK); National Institute of Health (USA); Agency for Health Care Policy Research (USA); the John D and Catherine T MacArthur Foundation (USA); and Academy of Finland (Finland).

  15. Soluble CD14 inhibits contractile function and insulin action in primary adult rat cardiomyocytes.

    PubMed

    Overhagen, Sabrina; Blumensatt, Marcel; Fahlbusch, Pia; Herzfeld de Wiza, Daniella; Müller, Heidi; Maxhera, Bujar; Akhyari, Payam; Ouwens, D Margriet

    2017-02-01

    Epicardial adipose tissue (EAT) from patients with type 2 diabetes (T2D) is characterized by monocyte infiltrations and displays an elevated release of the monocyte marker soluble cluster of differentiation 14 (sCD14) versus EAT from patients without T2D. We propose that an increased abundance of sCD14 in EAT from patients with T2D may impair the function and insulin sensitivity of the adjacent cardiomyocytes. To examine this, primary adult rat cardiomyocytes were incubated with increasing concentrations of sCD14 in the presence and absence of the co-receptor lipopolysaccharide (LPS), and analyzed for effects on determinants of contractile function, activation of inflammation signalling and insulin action. Exposing cardiomyocytes to sCD14 increased the phosphorylation of the stress kinases p38 and extracellular-signal regulated kinase (ERK). In contrast, insulin-mediated phosphorylation of Akt on Thr308 and Ser473 was inhibited. Furthermore, sCD14 impaired sarcomere shortening and cytosolic Ca 2+ -fluxes. All responses were concentration-dependent and became significant at 1ng/ml sCD14. LPS, either alone or in complex with sCD14, did not affect contractile function or the activation of stress kinases and insulin signalling pathways. Similar data on protein phosphorylation were obtained when exposing human umbilical vein endothelial cells to sCD14. Finally, pharmacological inhibition of p38 reversed the detrimental effects of sCD14 on contractile function, but not on sCD14-induced insulin resistance. Collectively, these data show that sCD14 impairs the function and insulin sensitivity of cardiomyocytes, suggesting that an enhanced sCD14 release from EAT in patients with T2D may contribute to the pathogenesis of diabetes-related cardiometabolic complications. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Reactive hypoglycemia in lean young women with PCOS and correlations with insulin sensitivity and with beta cell function.

    PubMed

    Altuntas, Yuksel; Bilir, Muammer; Ucak, Sema; Gundogdu, Sadi

    2005-04-01

    Reactive hypoglycemia (RH), which is a postprandial hypoglycemic state, occurs within 2-5 h after food intake. It is classified as idiopathic, alimentary, or diabetic reactive hypoglycemia. We studied the incidence of reactive hypoglycemia and looked for any correlations between it and the presence of insulin sensitivity and/or beta cell function in young lean polycystic ovary syndrome (PCOS) patients. This study was designed as a cross-sectional study in 64 lean young women with PCOS (BMI < or = 25 kg/m2). Various indices of insulin sensitivity and beta cell function derived from the oral glucose tolerance test (OGTT) results were used. We found the rate of RH to be 50% in lean young women with PCOS. DHEA-S and PRL levels were found to be lower in subjects with RH (P < 0.05 and P > 0.05, respectively). Beta cell function indices such as the insulinogenic index (at 120 min), CIR (at 120 min) and HOMA beta cell index were found to be insignificantly higher in the RH group than the nonreactive hypoglycemia (NRH) group. The 4 h glucose level, but not the 3 h glucose level, was significantly correlated with insulin resistance indices, such as fasting insulin level, HOMA-IR, Quicky index, and FIRI in the RH group. Significantly decreased DHEA-S levels were an interesting finding. In conclusion, there is an urgent need to investigate RH in lean young women with PCOS. Our results indicate that more definite insulin resistance occurs in subjects with RH in the fourth hour of the OGTT than those with RH in the third hour. In addition, RH in the fourth hour together with a low DHEA-S level may be predictive of future diabetes in young women with PCOS even when they are not obese.

  17. Adiponectin Inhibits Insulin Function in Primary Trophoblasts by PPARα-Mediated Ceramide Synthesis

    PubMed Central

    Gao, Xiaoli; Weintraub, Susan T.; Jansson, Thomas; Powell, Theresa L.

    2014-01-01

    Maternal adiponectin (ADN) levels are inversely correlated with birth weight, and ADN infusion in pregnant mice down-regulates placental nutrient transporters and decreases fetal growth. In contrast to the insulin-sensitizing effects in adipose tissue and muscle, ADN inhibits insulin signaling in the placenta. However, the molecular mechanisms involved are unknown. We hypothesized that ADN inhibits insulin signaling and insulin-stimulated amino acid transport in primary human trophoblasts by peroxisome proliferator-activated receptor-α (PPARα)-mediated ceramide synthesis. Primary human term trophoblast cells were treated with ADN and/or insulin. ADN increased the phosphorylation of p38 MAPK and PPARα. ADN inhibited insulin signaling and insulin-stimulated amino acid transport. This effect was dependent on PPARα, because activation of PPARα with an agonist (GW7647) inhibited insulin signaling and function, whereas PPARα-small interfering RNA reversed the effects of ADN on the insulin response. ADN increased ceramide synthase expression and stimulated ceramide production. C2-ceramide inhibited insulin signaling and function, whereas inhibition of ceramide synthase (with Fumonisin B1) reversed the effects of ADN on insulin signaling and amino acid transport. These findings are consistent with the model that maternal ADN limits fetal growth mediated by activation of placental PPARα and ceramide synthesis, which inhibits placental insulin signaling and amino acid transport, resulting in reduced fetal nutrient availability. PMID:24606127

  18. Sleep duration and sleep quality are associated differently with alterations of glucose homeostasis.

    PubMed

    Byberg, S; Hansen, A-L S; Christensen, D L; Vistisen, D; Aadahl, M; Linneberg, A; Witte, D R

    2012-09-01

    Studies suggest that inadequate sleep duration and poor sleep quality increase the risk of impaired glucose regulation and diabetes. However, associations with specific markers of glucose homeostasis are less well explained. The objective of this study was to explore possible associations of sleep duration and sleep quality with markers of glucose homeostasis and glucose tolerance status in a healthy population-based study sample. The study comprised 771 participants from the Danish, population-based cross-sectional 'Health2008' study. Sleep duration and sleep quality were measured by self-report. Markers of glucose homeostasis were derived from a 3-point oral glucose tolerance test and included fasting plasma glucose, 2-h plasma glucose, HbA(1c), two measures of insulin sensitivity (the insulin sensitivity index(0,120) and homeostasis model assessment of insulin sensitivity), the homeostasis model assessment of β-cell function and glucose tolerance status. Associations of sleep duration and sleep quality with markers of glucose homeostasis and tolerance were analysed by multiple linear and logistic regression. A 1-h increment in sleep duration was associated with a 0.3 mmol/mol (0.3%) decrement in HbA(1c) and a 25% reduction in the risk of having impaired glucose regulation. Further, a 1-point increment in sleep quality was associated with a 2% increase in both the insulin sensitivity index(0,120) and homeostasis model assessment of insulin sensitivity, as well as a 1% decrease in homeostasis model assessment of β-cell function. In the present study, shorter sleep duration was mainly associated with later alterations in glucose homeostasis, whereas poorer sleep quality was mainly associated with earlier alterations in glucose homeostasis. Thus, adopting healthy sleep habits may benefit glucose metabolism in healthy populations. © 2012 The Authors. Diabetic Medicine © 2012 Diabetes UK.

  19. Optical control of insulin release using a photoswitchable sulfonylurea.

    PubMed

    Broichhagen, Johannes; Schönberger, Matthias; Cork, Simon C; Frank, James A; Marchetti, Piero; Bugliani, Marco; Shapiro, A M James; Trapp, Stefan; Rutter, Guy A; Hodson, David J; Trauner, Dirk

    2014-10-14

    Sulfonylureas are widely prescribed for the treatment of type 2 diabetes mellitus (T2DM). Through their actions on ATP-sensitive potassium (KATP) channels, sulfonylureas boost insulin release from the pancreatic beta cell mass to restore glucose homeostasis. A limitation of these compounds is the elevated risk of developing hypoglycemia and cardiovascular disease, both potentially fatal complications. Here, we describe the design and development of a photoswitchable sulfonylurea, JB253, which reversibly and repeatedly blocks KATP channel activity following exposure to violet-blue light. Using in situ imaging and hormone assays, we further show that JB253 bestows light sensitivity upon rodent and human pancreatic beta cell function. Thus, JB253 enables the optical control of insulin release and may offer a valuable research tool for the interrogation of KATP channel function in health and T2DM.

  20. Insulin sensitivity and brain reward activation in overweight Hispanic girls: a pilot study

    PubMed Central

    Adam, Tanja C.; Tsao, Sinchai; Page, Kathleen A.; Hu, Houchun; Hasson, Rebecca E.; Goran, Michael I.

    2014-01-01

    Background Insulin resistance is a link between obesity and the associated disease risk. In addition to its role as an energy regulatory signal to the hypothalamus, insulin also modulates food reward. Objective To examine the relationship of insulin sensitivity (SI) and fasting insulin with cerebral activation in response to food and non-food cues in children. Methods Twelve overweight Hispanic girls (age: 8–11) participated in two study visits, a frequently sampled intravenous glucose tolerance test and a functional neuroimaging (fMRI) session (GE HDxt 3.0Tesla)) with visual stimulation tasks. Blocks of images (high calorie (HC), low calorie (LC) and non-food (NF)) were presented in randomized order. Results Comparing HC with NF, SI was inversely associated with activation in the anterior cingulate (r2 = 0.65; p < 0.05), the insula (r2 = 0.69; p < 0.05), the orbitofrontal cortex (r2 = 0.74; p < 0.05), and the frontal and rolandic operculum (r2 = 0.76; p < 0.001). Associations remained significant after adjustment for BMI. Association of fasting insulin and cerebral activation dissapeared after adjustment for waist circumference. Conclusion In addition to weight loss insulin sensitivity may pose an important target to regulate neural responses to food cues in the prevention of excessive weight gain. PMID:24357646

  1. Intake of vinegar beverage is associated with restoration of ovulatory function in women with polycystic ovary syndrome.

    PubMed

    Wu, Di; Kimura, Fuminori; Takashima, Akiko; Shimizu, Yoshihiko; Takebayashi, Akie; Kita, Nobuyuki; Zhang, Guangmei; Murakami, Takashi

    2013-05-01

    Polycystic ovary syndrome (PCOS) is one of major causes of irregular menstruation. It is defined as a condition involving the combination of hyperandrogenism and chronic oligomenorrhea or anovulation, and is thought to have a variety of etiologies. Insulin resistance (impaired insulin sensitivity) has been suggested to be one of the etiologies of PCOS. PCOS patients often need to take medication to treat anovulation and infertility. Therefore, it would be beneficial to patients if simple non-pharmacological treatments can be developed. Recently the efficacy of vinegar to improve insulin resistance has been reported. To study the effect of vinegar on metabolic and hormonal indices and ovulatory function in PCOS, seven patients seeking a non-pharmacological treatment for PCOS took a beverage containing 15 g of apple vinegar daily for 90 to 110 days. Ovulation, the menstrual interval, fasting serum glucose level, fasting serum insulin level, luteinizing hormone (LH), follicle stimulating hormone (FSH), and testosterone were compared before and after intake of the vinegar beverage. Intake of the vinegar beverage resulted in a decrease of the homeostasis model assessment insulin resistance index (HOMA-R) in six patients, as well as a decrease of the LH/FSH ratio in five of seven patients. Ovulatory menstruation was observed within 40 day in four of seven patients. These findings suggest the possibility of vinegar to restore ovulatory function through improving insulin sensitivity in PCOS patients, thus, avoiding pharmacological treatment. Intake of vinegar might reduce medical cost and treatment time for insulin resistance, anovulation, and infertility in patients with PCOS.

  2. Immunohistochemical expression of insulin, glucagon, and somatostatin in pancreatic islets of horses with and without insulin resistance.

    PubMed

    Newkirk, Kim M; Ehrensing, Gordon; Odoi, Agricola; Boston, Raymond C; Frank, Nicholas

    2018-02-01

    OBJECTIVE To assess insulin, glucagon, and somatostatin expression within pancreatic islets of horses with and without insulin resistance. ANIMALS 10 insulin-resistant horses and 13 insulin-sensitive horses. PROCEDURES For each horse, food was withheld for at least 10 hours before a blood sample was collected for determination of serum insulin concentration. Horses with a serum insulin concentration < 20 μU/mL were assigned to the insulin-sensitive group, whereas horses with a serum insulin concentration > 20 μU/mL underwent a frequently sampled IV glucose tolerance test to determine sensitivity to insulin by minimal model analysis. Horses with a sensitivity to insulin < 1.0 × 10 -4 L•min -1 •mU -1 were assigned to the insulin-resistant group. All horses were euthanized with a barbiturate overdose, and pancreatic specimens were harvested and immunohistochemically stained for determination of insulin, glucagon, and somatostatin expression in pancreatic islets. Islet hormone expression was compared between insulin-resistant and insulin-sensitive horses. RESULTS Cells expressing insulin, glucagon, and somatostatin made up approximately 62%, 12%, and 7%, respectively, of pancreatic islet cells in insulin-resistant horses and 64%, 18%, and 9%, respectively, of pancreatic islet cells in insulin-sensitive horses. Expression of insulin and somatostatin did not differ between insulin-resistant and insulin-sensitive horses, but the median percentage of glucagon-expressing cells in the islets of insulin-resistant horses was significantly less than that in insulin-sensitive horses. CONCLUSIONS AND CLINICAL RELEVANCE Results suggested that, in insulin-resistant horses, insulin secretion was not increased but glucagon production might be downregulated as a compensatory response to hyperinsulinemia.

  3. The role of the endocrine system in feeding-induced tissue-specific circadian entrainment.

    PubMed

    Sato, Miho; Murakami, Mariko; Node, Koichi; Matsumura, Ritsuko; Akashi, Makoto

    2014-07-24

    The circadian clock is entrained to environmental cycles by external cue-mediated phase adjustment. Although the light input pathway has been well defined, the mechanism of feeding-induced phase resetting remains unclear. The tissue-specific sensitivity of peripheral entrainment to feeding suggests the involvement of multiple pathways, including humoral and neuronal signals. Previous in vitro studies with cultured cells indicate that endocrine factors may function as entrainment cues for peripheral clocks. However, blood-borne factors that are well characterized in actual feeding-induced resetting have yet to be identified. Here, we report that insulin may be involved in feeding-induced tissue-type-dependent entrainment in vivo. In ex vivo culture experiments, insulin-induced phase shift in peripheral clocks was dependent on tissue type, which was consistent with tissue-specific insulin sensitivity, and peripheral entrainment in insulin-sensitive tissues involved PI3K- and MAPK-mediated signaling pathways. These results suggest that insulin may be an immediate early factor in feeding-mediated tissue-specific entrainment. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Decreased Genetic Dosage of Hepatic Yin Yang 1 Causes Diabetic-Like Symptoms

    PubMed Central

    Verdeguer, Francisco; Blättler, Sharon M.; Cunningham, John T.; Hall, Jessica A.; Chim, Helen

    2014-01-01

    Insulin sensitivity in liver is characterized by the ability of insulin to efficiently inhibit glucose production and fatty acid oxidation as well as promote de novo lipid biosynthesis. Specific dysregulation of glucose and lipid metabolism in liver is sufficient to cause insulin resistance and type 2 diabetes; this is seen by a selective inability of insulin to suppress glucose production while remaining insulin-sensitive to de novo lipid biosynthesis. We have previously shown that the transcription factor Yin Yang 1 (YY1) controls diabetic-linked glucose and lipid metabolism gene sets in skeletal muscle, but whether liver YY1-targeted metabolic genes impact a diabetic phenotype is unknown. Here we show that decreased genetic dosage of YY1 in liver causes insulin resistance, hepatic lipid accumulation, and dyslipidemia. Indeed, YY1 liver-specific heterozygous mice exhibit blunted activation of hepatic insulin signaling in response to insulin. Mechanistically, YY1, through direct recruitment to promoters, functions as a suppressor of genes encoding for metabolic enzymes of the gluconeogenic and lipogenic pathways and as an activator of genes linked to fatty acid oxidation. These counterregulatory transcriptional activities make targeting hepatic YY1 an attractive approach for treating insulin-resistant diabetes. PMID:24467246

  5. ROLE OF CENTRAL NERVOUS SYSTEM INSULIN RESISTANCE IN FETAL ALCOHOL SPECTRUM DISORDERS

    PubMed Central

    de la Monte, Suzanne M; Wands, Jack R

    2011-01-01

    Fetal alcohol spectrum disorder (FASD) is the most common preventable cause of mental retardation in the USA. Ethanol impairs neuronal survival and function by two major mechanisms: 1) it inhibits insulin signaling required for viability, metabolism, synapse formation, and acetylcholine production; and 2) it functions as a neurotoxicant, causing oxidative stress, DNA damage and mitochondrial dysfunction. Ethanol inhibition of insulin signaling is mediated at the insulin receptor (IR) level and caused by both impaired receptor binding and increased activation of phosphatases that reverse IR tyrosine kinase activity. As a result, insulin activation of PI3K-Akt, which mediates neuronal survival, motility, energy metabolism, and plasticity, is impaired. The neurotoxicant effects of ethanol promote DNA damage, which could contribute to mitochondrial dysfunction and oxidative stress. Therefore, chronic in utero ethanol exposure produces a dual state of CNS insulin resistance and oxidative stress, which we postulate plays a major role in ethanol neurobehavioral teratogenesis. We propose that many of the prominent adverse effects of chronic prenatal exposure to ethanol on CNS development and function may be prevented or reduced by treatment with peroxisome-proliferated activated receptor (PPAR) agonists which enhance insulin sensitivity by increasing expression and function of insulin-responsive genes, and reducing cellular oxidative stress. PMID:21063035

  6. Targeting VEGF-B as a novel treatment for insulin resistance and type 2 diabetes.

    PubMed

    Hagberg, Carolina E; Mehlem, Annika; Falkevall, Annelie; Muhl, Lars; Fam, Barbara C; Ortsäter, Henrik; Scotney, Pierre; Nyqvist, Daniel; Samén, Erik; Lu, Li; Stone-Elander, Sharon; Proietto, Joseph; Andrikopoulos, Sofianos; Sjöholm, Ake; Nash, Andrew; Eriksson, Ulf

    2012-10-18

    The prevalence of type 2 diabetes is rapidly increasing, with severe socioeconomic impacts. Excess lipid deposition in peripheral tissues impairs insulin sensitivity and glucose uptake, and has been proposed to contribute to the pathology of type 2 diabetes. However, few treatment options exist that directly target ectopic lipid accumulation. Recently it was found that vascular endothelial growth factor B (VEGF-B) controls endothelial uptake and transport of fatty acids in heart and skeletal muscle. Here we show that decreased VEGF-B signalling in rodent models of type 2 diabetes restores insulin sensitivity and improves glucose tolerance. Genetic deletion of Vegfb in diabetic db/db mice prevented ectopic lipid deposition, increased muscle glucose uptake and maintained normoglycaemia. Pharmacological inhibition of VEGF-B signalling by antibody administration to db/db mice enhanced glucose tolerance, preserved pancreatic islet architecture, improved β-cell function and ameliorated dyslipidaemia, key elements of type 2 diabetes and the metabolic syndrome. The potential use of VEGF-B neutralization in type 2 diabetes was further elucidated in rats fed a high-fat diet, in which it normalized insulin sensitivity and increased glucose uptake in skeletal muscle and heart. Our results demonstrate that the vascular endothelium can function as an efficient barrier to excess muscle lipid uptake even under conditions of severe obesity and type 2 diabetes, and that this barrier can be maintained by inhibition of VEGF-B signalling. We propose VEGF-B antagonism as a novel pharmacological approach for type 2 diabetes, targeting the lipid-transport properties of the endothelium to improve muscle insulin sensitivity and glucose disposal.

  7. Insulin-independent role of adiponectin receptor signaling in Drosophila germline stem cell maintenance.

    PubMed

    Laws, Kaitlin M; Sampson, Leesa L; Drummond-Barbosa, Daniela

    2015-03-15

    Adipocytes have key endocrine roles, mediated in large part by secreted protein hormones termed adipokines. The adipokine adiponectin is well known for its role in sensitizing peripheral tissues to insulin, and several lines of evidence suggest that adiponectin might also modulate stem cells/precursors. It remains unclear, however, how adiponectin signaling controls stem cells and whether this role is secondary to its insulin-sensitizing effects or distinct. Drosophila adipocytes also function as an endocrine organ and, although no obvious adiponectin homolog has been identified, Drosophila AdipoR encodes a well-conserved homolog of mammalian adiponectin receptors. Here, we generate a null AdipoR allele and use clonal analysis to demonstrate an intrinsic requirement for AdipoR in germline stem cell (GSC) maintenance in the Drosophila ovary. AdipoR null GSCs are not fully responsive to bone morphogenetic protein ligands from the niche and have a slight reduction in E-cadherin levels at the GSC-niche junction. Conversely, germline-specific overexpression of AdipoR inhibits natural GSC loss, suggesting that reduction in adiponectin signaling might contribute to the normal decline in GSC numbers observed over time in wild-type females. Surprisingly, AdipoR is not required for insulin sensitization of the germline, leading us to speculate that insulin sensitization is a more recently acquired function than stem cell regulation in the evolutionary history of adiponectin signaling. Our findings establish Drosophila female GSCs as a new system for future studies addressing the molecular mechanisms whereby adiponectin receptor signaling modulates stem cell fate. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. The deleterious effects of physical inactivity on elements of insulin resistance and metabolic syndrome in Central Africans at high cardiovascular risk.

    PubMed

    Longo-Mbenza, Benjamin; Nkongo Mvindu, Huguette; Kasiam On'kin, Jean Bosco; Bikuku, Nkakudulu; Kianu Phanzu, Bernard; Nge Okwe, Augustin; Kabangu, Nelly

    2011-01-01

    We aimed to describe the physical activity and to investigate the association between classical hypertension, obesity, diabetes, and new inflammation, IDF-defined metabolic syndrome, insulin resistance CV risk factors. This was a cross-sectional study based on interviews and physical and biochemistry measurements among Central African patients. Waist circumference (WC), blood pressure, weight and height to calculate body mass index (BMI), fasting glucose, CRP, ERS, uric acid, cholesterol (C), LDL-C, HDL-C, triglycerides, elements of homeostatic model assessment (HOMA) including insulin, HOMA index, QUICKI, insulin sensitivity (%S), beta-cell function (%β) and insulin resistance (IR). Of the 60 patients included, 30 (50%) were physically inactive versus 30 (50%) active. In pooled analyses, in men and in women, there was significant and positive correlation between WC and seating/laying down position (WC=92.41+1.49 seating time in hours, R(2)=0.11; P<0.0001). The mean value of CRP and ERS were higher and those of all indices of HOMA were lower in inactive patients. The discriminant function for physical activity was Z (score=barycentre)=-7.36+1.013 HOMA index where -1.4 was the barycentre for active and +1.4 for inactive. HOMA index >2.42 was the optimal cut-off value to detect physically inactive patients: sensitivity=93.3%, specificity=100%, area under ROC=0.991±0.01 95%=0.975-1.0; P<0.0001. The association between low-grade inflammation markers, insulin resistance and physical inactivity favours the hypothesis that a low-grade inflammatory status and enhanced insulin, sensitivity may constitute a part of the CV benefits from physical activity. Crown Copyright © 2010. Published by Elsevier Ltd. All rights reserved.

  9. Elevated fasting plasma C-peptide occurs in non-diabetic individuals with fatty liver, irrespective of insulin resistance.

    PubMed

    Perseghin, G; Caumo, A; Lattuada, G; De Cobelli, F; Ntali, G; Esposito, A; Belloni, E; Canu, T; Ragogna, F; Scifo, P; Del Maschio, A; Luzi, L

    2009-09-01

    Studies have pointed to insulin resistance as a pathogenic factor in fatty liver. Although pancreatic B-cell function is believed to be involved, its role is unclear. This study was undertaken to test whether fasting C-peptide, an index of fasting B-cell function, was related to intra-hepatic fat (IHF) content in non-diabetic humans. We assessed, retrospectively, fasting plasma C-peptide concentration in 31 patients with fatty liver and 62 individuals without fatty liver. The IHF content was measured by proton magnetic resonance spectroscopy ((1)H-MRS), while insulin sensitivity was estimated based on fasting plasma glucose and insulin with the homestasis model assessment (HOMA) 2 method. Age, sex and body mass index (BMI) were not different between groups. Patients with fatty liver had higher fasting insulin (P < 0.01), C-peptide (P < 0.005) and lower insulin sensitivity (HOMA2-%S). Fasting insulin alone explained 14% of the IHF content variability (P < 0.001); inclusion of fasting C-peptide in multivariate regression explained up to 32% (P < 0.001). A subgroup analysis was performed by matching 1 : 1 for HOMA2-%S. These data were analysed by conditional logistic regression which showed that, when HOMA2-%S was matched between groups, fasting C-peptide remained the only significant predictor of fatty liver. Non-diabetic individuals with fatty liver are characterized by increased fasting plasma C-peptide concentration, irrespective of their insulin resistant state.

  10. A Family with Severe Insulin Resistance and Diabetes Mellitus due to a Missense Mutation in AKT2

    PubMed Central

    George, Stella; Rochford, Justin J.; Wolfrum, Christian; Gray, Sarah L.; Schinner, Sven; Wilson, Jenny C.; Soos, Maria A.; Murgatroyd, Peter R.; Williams, Rachel M.; Acerini, Carlo L.; Dunger, David B.; Barford, David; Umpleby, A. Margot; Wareham, Nicholas J.; Davies, Huw Alban; Schafer, Alan J.; Stoffel, Markus; O’Rahilly, Stephen; Barroso, Ines

    2008-01-01

    Inherited defects in signaling pathways downstream of the insulin receptor have long been suggested to contribute to human Type 2 diabetes mellitus. Here we describe a mutation in the gene encoding the protein kinase AKT2/PKBβ in a family that shows autosomal dominant inheritance of severe insulin resistance and diabetes mellitus. Expression of the mutant kinase in cultured cells disrupted insulin signaling to metabolic end-points and inhibited the function of co-expressed, wild type AKT. These findings demonstrate the central importance of AKT signaling to insulin sensitivity in humans. PMID:15166380

  11. [Associations of insulin resistance and pancreatic beta-cell function with plasma glucose level in type 2 diabetes].

    PubMed

    Nian, Xiaoping; Sun, Gaisheng; Dou, Chunmei; Hou, Hongbo; Fan, Xiuping; Yu, Hongmei; Ma, Ling; He, Bingxian

    2002-06-10

    To investigate the influence of insulin resistance and pancreatic beta-cell function on plasma glucose level in type 2 diabetes so as to provide theoretical basis for reasonable selection of hypoglycemic agents. The plasma non-specific insulin (NSINS), true insulin (TI) and glucose in eight-one type 2 diabetics, 38 males and 43 females, with a mean age of 53 years, were examined 0, 30, 60 and 120 minutes after they had 75 grams of instant noodles. The patients were divided into two groups according to their fasting plasma glucose (FPG): group A (FPG < 8.89 mmol/L) and group B (FPG> = 8.89 mmol/L). The insulin resistance was evaluated by HOMA-IR, the beta-cell function was evaluated by HOMA-beta formula and the formula deltaI(30)/deltaG(30) = (deltaI(30)-deltaI(0))/(deltaG(30)-deltaG(0)). The insulin area under curve (INSAUC) was evaluated by the formula INSAUC=FINS/2+INS(30)+INS(60)+INS(120)/2. The mean FPG was 6.23 mmol/L in group A and 12.6 mmol/L in group B. PG2H was 11.7 mmol/L in group A and 19.2 mmol/L in group B. The TI levels in group B at 0, 30, 60, 120 min during standard meal test were significantly higher than those in group A: 6.15 +/- 1.06 vs 4.77 +/- 1.06, 9.76 +/- 1.1 vs 5.88 +/- 1.1,14.68 +/- 1.11 vs 6.87 +/- 1.1 and 17.13 +/- 1.12 vs 8.0 +/- 1.1 microU/dl (all P< 0.01). The NSINS showed the same trend. The insulin resistance in group B was 1.5 times that in group A. With the insulin resistance adjusted, the beta cell function in group A was 5 to 6 times that in group B. The INSAUC in group A was 1.66 times larger than that in group B, especially the INSAUC for true insulin (2 times larger). The contribution of insulin resistance and beta cell function to PG2H was half by half in group A and 1:8 in group B. beta cell function calculated by insulin (Homa-beta) explained 41% of the plasma glucose changes in group A and 54% of the plasma glucose changes in group B. The contribution of insulin deficiency to plasma glocose was 3.3.times that of insulin resistance in group A and was 9.5 times that of insulin resistance in group B. Insulin sensitivity explained 12% of the plasma glucose changes in group A, and only 5.7% of the plasma glucose changes in group B. Diabetics with FPG greater than 8.89 mmol/L have both higher insulin resistance and poorer beta-cell function, their hyperglycemia being caused mainly by beta-cell failure, The combined use of insulin sensitizer and insulin or insulintropic agents during the initial stage of treatment is effective.

  12. Insulin's acute effects on glomerular filtration rate correlate with insulin sensitivity whereas insulin's acute effects on proximal tubular sodium reabsorption correlation with salt sensitivity in normal subjects.

    PubMed

    ter Maaten, J C; Bakker, S J; Serné, E H; ter Wee, P M; Donker, A J; Gans, R O

    1999-10-01

    Insulin induces sodium retention by increasing distal tubular sodium reabsorption. Opposite effects of insulin to offset insulin-induced sodium retention are supposedly increases in glomerular filtration rate (GFR) and decreases in proximal tubular sodium reabsorption. Defects in these opposing effects could link insulin resistance to blood-pressure elevation and salt sensitivity. We assessed the relationship between the effects of sequential physiological and supraphysiological insulin dosages (50 and 150 mU/kg/h) on renal sodium handling, and insulin sensitivity and salt sensitivity using the euglycaemic clamp technique and clearances of [131I]hippuran, [125I]iothalamate, sodium, and lithium in 20 normal subjects displaying a wide range of insulin sensitivity. Time-control experiments were performed in the same subjects. Salt sensitivity was determined using a diet method. During the successive insulin infusions, GFR increased by 5.9% (P = 0.003) and 10.9% (P<0.001), while fractional sodium excretion decreased by 34 and 50% (both P<0.001). Distal tubular sodium reabsorption increased and proximal tubular sodium reabsorption decreased. Insulin sensitivity correlated with changes in GFR during physiological (r = 0.60, P = 0.005) and supraphysiological (r = 0.58, P = 0.007) hyperinsulinaemia, but not with changes in proximal tubular sodium reabsorption. Salt sensitivity correlated with changes in proximal tubular sodium reabsorption (r = 0.49, P = 0.028), but not in GFR, during physiological hyperinsulinaemia. Neither insulin sensitivity or salt sensitivity correlated with changes in overall fractional sodium excretion. Insulin sensitivity and salt sensitivity correlate with changes in different elements of renal sodium handling, but not with overall sodium excretion, during insulin infusion. The relevance for blood pressure regulation remains to be proved.

  13. Shared Genetic Control of Brain Activity During Sleep and Insulin Secretion: A Laboratory-Based Family Study.

    PubMed

    Morselli, Lisa L; Gamazon, Eric R; Tasali, Esra; Cox, Nancy J; Van Cauter, Eve; Davis, Lea K

    2018-01-01

    Over the past 20 years, a large body of experimental and epidemiologic evidence has linked sleep duration and quality to glucose homeostasis, although the mechanistic pathways remain unclear. The aim of the current study was to determine whether genetic variation influencing both sleep and glucose regulation could underlie their functional relationship. We hypothesized that the genetic regulation of electroencephalographic (EEG) activity during non-rapid eye movement sleep, a highly heritable trait with fingerprint reproducibility, is correlated with the genetic control of metabolic traits including insulin sensitivity and β-cell function. We tested our hypotheses through univariate and bivariate heritability analyses in a three-generation pedigree with in-depth phenotyping of both sleep EEG and metabolic traits in 48 family members. Our analyses accounted for age, sex, adiposity, and the use of psychoactive medications. In univariate analyses, we found significant heritability for measures of fasting insulin sensitivity and β-cell function, for time spent in slow-wave sleep, and for EEG spectral power in the delta, theta, and sigma ranges. Bivariate heritability analyses provided the first evidence for a shared genetic control of brain activity during deep sleep and fasting insulin secretion rate. © 2017 by the American Diabetes Association.

  14. Adipolin/C1qdc2/CTRP12 protein functions as an adipokine that improves glucose metabolism.

    PubMed

    Enomoto, Takashi; Ohashi, Koji; Shibata, Rei; Higuchi, Akiko; Maruyama, Sonomi; Izumiya, Yasuhiro; Walsh, Kenneth; Murohara, Toyoaki; Ouchi, Noriyuki

    2011-10-07

    Obesity is a major risk factor for the development of insulin resistance and type 2 diabetes. Adipose tissue secretes various bioactive molecules, referred to as adipokines, whose dysregulation can mediate changes in glucose homeostasis and inflammatory responses. Here, we identify C1qdc2/CTRP12 as an insulin-sensitizing adipokine that is abundantly expressed by fat tissues and designate this adipokine as adipolin (adipose-derived insulin-sensitizing factor). Adipolin expression in adipose tissue and plasma was reduced in rodent models of obesity. Adipolin expression was also decreased in cultured 3T3-L1 adipocytes by treatment with inducers of endoplasmic reticulum stress and inflammation. Systemic administration of adipolin ameliorated glucose intolerance and insulin resistance in diet-induced obese mice. Adipolin administration also reduced macrophage accumulation and proinflammatory gene expression in the adipose tissue of obese mice. Conditioned medium from adipolin-expressing cells diminished the expression of proinflammatory cytokines in response to stimulation with LPS or TNFα in cultured macrophages. These data suggest that adipolin functions as an anti-inflammatory adipokine that exerts beneficial actions on glucose metabolism. Therefore, adipolin represents a new target molecule for the treatment of insulin resistance and diabetes.

  15. Adipolin/C1qdc2/CTRP12 Protein Functions as an Adipokine That Improves Glucose Metabolism*

    PubMed Central

    Enomoto, Takashi; Ohashi, Koji; Shibata, Rei; Higuchi, Akiko; Maruyama, Sonomi; Izumiya, Yasuhiro; Walsh, Kenneth; Murohara, Toyoaki; Ouchi, Noriyuki

    2011-01-01

    Obesity is a major risk factor for the development of insulin resistance and type 2 diabetes. Adipose tissue secretes various bioactive molecules, referred to as adipokines, whose dysregulation can mediate changes in glucose homeostasis and inflammatory responses. Here, we identify C1qdc2/CTRP12 as an insulin-sensitizing adipokine that is abundantly expressed by fat tissues and designate this adipokine as adipolin (adipose-derived insulin-sensitizing factor). Adipolin expression in adipose tissue and plasma was reduced in rodent models of obesity. Adipolin expression was also decreased in cultured 3T3-L1 adipocytes by treatment with inducers of endoplasmic reticulum stress and inflammation. Systemic administration of adipolin ameliorated glucose intolerance and insulin resistance in diet-induced obese mice. Adipolin administration also reduced macrophage accumulation and proinflammatory gene expression in the adipose tissue of obese mice. Conditioned medium from adipolin-expressing cells diminished the expression of proinflammatory cytokines in response to stimulation with LPS or TNFα in cultured macrophages. These data suggest that adipolin functions as an anti-inflammatory adipokine that exerts beneficial actions on glucose metabolism. Therefore, adipolin represents a new target molecule for the treatment of insulin resistance and diabetes. PMID:21849507

  16. The effect of growth hormone treatment on metabolic and cardiovascular risk factors is similar in preterm and term short, small for gestational age children.

    PubMed

    de Kort, Sandra W K; Willemsen, Ruben H; van der Kaay, Danielle C M; Hokken-Koelega, Anita C S

    2009-07-01

    We previously reported that short, small for gestational age (SGA) children who were born preterm have a lower body fat percentage and a higher blood pressure, insulin secretion and disposition index than short SGA children born at term. Whether preterm birth also influences these parameters during GH treatment is unknown. To compare blood pressure, insulin sensitivity, beta-cell function and body composition during 4 years of GH treatment, between preterm and term short SGA children. A total of 404 prepubertal non-GH-deficient short SGA children were divided into 143 preterm (< 36 weeks) and 261 term children. Height, blood pressure (n = 404), body composition measured by dual energy X-ray absorptiometry (DXA) (n = 138) and insulin sensitivity and beta-cell function calculated from a frequent sampling intravenous glucose tolerance test (FSIGT) with tolbutamide (n = 74) or from the homeostasis model assessment of insulin resistance (HOMA-IR) (n = 204). In preterm and term children, GH treatment resulted in a similar decrease in systolic and diastolic blood pressure, body fat percentage, limb fat/total fat ratio and insulin sensitivity, and a similar increase in insulin secretion and disposition index. Lean body mass (LBM) corrected for gender and height increased in term children and did not change in preterm children. Multiple regression analysis revealed that this difference in GH effect on LBM was not associated with gestational age. The effect of GH treatment on metabolic and cardiovascular risk factors is similar in preterm and term short, SGA children.

  17. Obese First-Degree Relatives of Patients with Type 2 Diabetes with Elevated Triglyceride Levels Exhibit Increased β-Cell Function

    PubMed Central

    Torres-Rasgado, Enrique; Porchia, Leonardo M.; Ruiz-Vivanco, Guadalupe; Gonzalez-Mejia, M. Elba; Báez-Duarte, Blanca G.; Pulido-Pérez, Patricia; Rivera, Alicia; Romero, Jose R.

    2015-01-01

    Abstract Background: Type 2 diabetes mellitus (T2DM) is characterized as a disease continuum that is marked by metabolic changes that are present for several years, sometimes well before frank diagnosis of T2DM. Genetic predisposition, ethnicity, geography, alterations in BMI, and lipid profile are considered important markers for the pathogenesis of T2DM through mechanisms that remain unresolved and controversial. The aim of this study was to investigate the relationship between triglycerides (TGs) and β-cell function, insulin resistance (IR), and insulin sensitivity (IS) in obese first-degree relatives of patients with T2DM (FDR-T2DM) among subjects from central Mexico with normal glucose tolerance (NGT). Methods: We studied 372 FDR-T2DM subjects (ages,18–65) and determined body mass index (BMI), fasting plasma glucose (FPG), oral glucose tolerance test (OGTT), insulin, and TGs levels. Subjects were categorized based on glycemic control [NGT, prediabetes (PT2DM), or T2DM]. NGT subjects were further categorized by BMI [normal weight (Ob−) or obese (Ob+)] and TGs levels (TG−, <150 mg/dL, or TG+, ≥150 mg/dL). β-cell function, IR, and IS were determined by the homeostasis model assessment of β-cell function (HOMA2-β), homeostasis model assessment of insulin resistance (HOMA2-IR), and Quantitative Insulin Sensitivity Check Index (QUICKI) indices, respectively. Results: The obese subjects with elevated TGs levels had 21%–60% increased β-cell function when compared to all groups (P<0.05). In addition, this group had insulin levels, IS, and IR similar to PT2DM. Furthermore, only in obese subjects did TGs correlate with β-cell function (ρ=0.502, P<0.001). Conclusion: We characterized FDR-T2DM subjects from central Mexico with NGT and revealed a class of obese subjects with elevated TGs and β-cell function, which may precede PT2DM. PMID:25423015

  18. Aldosterone Is Not Associated With Metabolic and Microvascular Insulin Sensitivity in Abdominally Obese Men.

    PubMed

    Schütten, Monica T J; Kusters, Yvo H A M; Houben, Alfons J H M; Scheijen, Jean L J M; van de Waarenburg, Marjo P H; Schalkwijk, Casper G; Joris, Peter J; Plat, Jogchum; Mensink, Ronald P; de Leeuw, Peter W; Stehouwer, Coen D A

    2018-02-01

    Impaired insulin-mediated muscle microvascular recruitment (IMMR) may add to the development of insulin resistance and hypertension. Increased aldosterone levels have been linked to these obesity-related complications in severely to morbidly obese individuals and to impaired microvascular function in experimental studies. To investigate whether aldosterone levels are associated with IMMR, insulin sensitivity, and blood pressure in lean and moderately abdominally obese men, and to study the effect of weight loss. In 25 lean and 53 abdominally obese men, 24-hour blood pressure measurement was performed, and aldosterone levels were measured using ultra-performance liquid chromatography tandem mass spectrometry. Insulin sensitivity was assessed by determining whole-body glucose disposal during a hyperinsulinemic clamp. IMMR in forearm skeletal muscle was measured with contrast-enhanced ultrasonography. These assessments were repeated in the abdominally obese men following an 8-week weight loss or weight stable period. Sodium excretion and aldosterone levels were similar in lean and abdominally obese participants, but sodium excretion was inversely associated with aldosterone concentration only in the lean individuals [lean, β/100 mmol sodium excretion (adjusted for age and urinary potassium excretion) = -0.481 (95% confidence interval, -0.949 to -0.013); abdominally obese, β/100 mmol sodium excretion = -0.081 (95% confidence interval, -0.433 to 0.271); P for interaction = 0.02]. Aldosterone was not associated with IMMR, insulin sensitivity, or blood pressure and was unaffected by weight loss. In moderately abdominally obese men, the inverse relationship between sodium excretion and aldosterone concentration is less than that in lean men but does not translate into higher aldosterone levels. The absolute aldosterone level does not explain differences in microvascular and metabolic insulin sensitivity and blood pressure between lean and moderately abdominally obese men. Copyright © 2017 Endocrine Society

  19. Insulin-induced redistribution of GLUT4 glucose carriers in the muscle fiber. In search of GLUT4 trafficking pathways.

    PubMed

    Zorzano, A; Muñoz, P; Camps, M; Mora, C; Testar, X; Palacín, M

    1996-01-01

    Insulin rapidly stimulates glucose transport in muscle fiber. This process controls the utilization of glucose in skeletal muscle, and it is deficient in various insulin-resistant states, such as non-insulin-dependent diabetes mellitus. The effect of insulin on muscle glucose transport is mainly due to the recruitment of GLUT4 glucose carriers to the cell surface of the muscle fiber. There is increasing evidence that the recruitment of GLUT4 carriers triggered by insulin affects selective domains of sarcolemma and transverse tubules. In contrast, GLUT1 is located mainly in sarcolemma and is absent in transverse tubules, and insulin does not alter its cellular distribution in muscle fiber. The differential distribution of GLUT1 and GLUT4 in the cell surface raises new questions regarding the precise endocytic and exocytic pathways that are functional in the muscle fiber. The current view of insulin-induced GLUT4 translocation is based mainly on studies performed in adipocytes. These studies have proposed the existence of intracellular compartments of GLUT4 that respond to insulin in a highly homogeneous manner. However, studies performed in skeletal muscle have identified insulin-sensitive as well as insulin-insensitive intracellular GLUT4-containing membranes. These data open a new perspective on the dynamics of intracellular GLUT4 compartments in insulin-sensitive cells.

  20. Targeting density-enhanced phosphatase-1 (DEP-1) with antisense oligonucleotides improves the metabolic phenotype in high-fat diet-fed mice

    PubMed Central

    2013-01-01

    Background Insulin signaling is tightly controlled by tyrosine dephosphorylation of the insulin receptor through protein-tyrosine-phosphatases (PTPs). DEP-1 is a PTP dephosphorylating tyrosine residues in a variety of receptor tyrosine kinases. Here, we analyzed whether DEP-1 activity is differentially regulated in liver, skeletal muscle and adipose tissue under high-fat diet (HFD), examined the role of DEP-1 in insulin resistance in vivo, and its function in insulin signaling. Results Mice were fed an HFD for 10 weeks to induce obesity-associated insulin resistance. Thereafter, HFD mice were subjected to systemic administration of specific antisense oligonucleotides (ASOs), highly accumulating in hepatic tissue, against DEP-1 or control ASOs. Targeting DEP-1 led to improvement of insulin sensitivity, reduced basal glucose level, and significant reduction of body weight. This was accompanied by lower insulin and leptin serum levels. Suppression of DEP-1 in vivo also induced hyperphosphorylation in the insulin signaling cascade of the liver. Moreover, DEP-1 physically associated with the insulin receptor in situ, and recombinant DEP-1 dephosphorylated the insulin receptor in vitro. Conclusions These results indicate that DEP-1 acts as an endogenous antagonist of the insulin receptor, and downregulation of DEP-1 results in an improvement of insulin sensitivity. DEP-1 may therefore represent a novel target for attenuation of metabolic diseases. PMID:23889985

  1. Differential effects of the circadian system and circadian misalignment on insulin sensitivity and insulin secretion in humans.

    PubMed

    Qian, Jingyi; Dalla Man, Chiara; Morris, Christopher J; Cobelli, Claudio; Scheer, Frank Ajl

    2018-06-04

    Glucose tolerance is lower at night and higher in the morning. Shift workers, who often eat at night and experience circadian misalignment (i.e., misalignment between the central circadian pacemaker and the environmental/behavioral cycle), have an increased risk of type 2 diabetes. To determine the separate and relative impacts of the circadian system, behavioral/environmental cycles, and their interaction (i.e., circadian misalignment) on insulin sensitivity and β-cell function, we used the oral minimal model to quantitatively assess the major determinants of glucose control in 14 healthy adults, using a randomized, cross-over design with two 8-day laboratory protocols. Both protocols involved 3 baseline inpatient days with habitual sleep/wake cycle, followed by 4 inpatient days with same nocturnal bedtime (circadian alignment) or with 12-h inverted behavioral/environmental cycles (circadian misalignment). Our data showed that circadian phase and circadian misalignment affect glucose tolerance through different mechanisms. While the circadian system reduces glucose tolerance in the biological evening compared to the biological morning mainly by decreasing both dynamic and static β-cell responsivity, circadian misalignment reduced glucose tolerance mainly by lowering insulin sensitivity, not by affecting β-cell function. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  2. Dysregulation of glucose metabolism even in Chinese PCOS women with normal glucose tolerance.

    PubMed

    Li, Weiping; Li, Qifu

    2012-01-01

    To clarify the necessity of improving glucose metabolism in polycystic ovary syndrome (PCOS) women as early as possible, 111 PCOS women with normal glucose tolerance and 92 healthy age-matched controls were recruited to investigate glucose levels distribution, insulin sensitivity and β cell function. 91 PCOS women and 33 controls underwent hyperinsulinemic-euglycemic clamp to assess their insulin sensitivity, which was expressed as M value. β cell function was estimated by homeostatic model assessment (HOMA)-β index after adjusting insulin sensitivity (HOMA-βad index). Compared with lean controls, lean PCOS women had similar fasting plasma glucose (FPG), higher postprandial plasma glucose (PPG) (6.03±1.05 vs. 5.44±0.97 mmol/L, P<0.05), lower M value but similar HOMA-βad index, while overweight/obese PCOS women had higher levels of both FPG (5.24±0.58 vs. 4.90±0.39, P<0.05) and PPG (6.15±0.84 vs. 5.44±0.97 mmol/L, P<0.05), and lower levels of both M value and HOMA-βad index. Linear regression and ROC analysis found BMI was independently associated with M value and HOMA-βad index in PCOS women separately, and the cutoff of BMI indicating impaired β cell function of PCOS women was 25.545kg/m². In conclusion, insulin resistance and dysregulation of glucose metabolism were common in Chinese PCOS women with normal glucose tolerance. BMI ≥ 25.545kg/m² indicated impaired β cell function in PCOS women with normal glucose tolerance.

  3. Validation of simple indexes to assess insulin sensitivity during pregnancy in Wistar and Sprague-Dawley rats.

    PubMed

    Cacho, J; Sevillano, J; de Castro, J; Herrera, E; Ramos, M P

    2008-11-01

    Insulin resistance plays a role in the pathogenesis of diabetes, including gestational diabetes. The glucose clamp is considered the gold standard for determining in vivo insulin sensitivity, both in human and in animal models. However, the clamp is laborious, time consuming and, in animals, requires anesthesia and collection of multiple blood samples. In human studies, a number of simple indexes, derived from fasting glucose and insulin levels, have been obtained and validated against the glucose clamp. However, these indexes have not been validated in rats and their accuracy in predicting altered insulin sensitivity remains to be established. In the present study, we have evaluated whether indirect estimates based on fasting glucose and insulin levels are valid predictors of insulin sensitivity in nonpregnant and 20-day-pregnant Wistar and Sprague-Dawley rats. We have analyzed the homeostasis model assessment of insulin resistance (HOMA-IR), the quantitative insulin sensitivity check index (QUICKI), and the fasting glucose-to-insulin ratio (FGIR) by comparing them with the insulin sensitivity (SI(Clamp)) values obtained during the hyperinsulinemic-isoglycemic clamp. We have performed a calibration analysis to evaluate the ability of these indexes to accurately predict insulin sensitivity as determined by the reference glucose clamp. Finally, to assess the reliability of these indexes for the identification of animals with impaired insulin sensitivity, performance of the indexes was analyzed by receiver operating characteristic (ROC) curves in Wistar and Sprague-Dawley rats. We found that HOMA-IR, QUICKI, and FGIR correlated significantly with SI(Clamp), exhibited good sensitivity and specificity, accurately predicted SI(Clamp), and yielded lower insulin sensitivity in pregnant than in nonpregnant rats. Together, our data demonstrate that these indexes provide an easy and accurate measure of insulin sensitivity during pregnancy in the rat.

  4. Adiponectin supplementation in pregnant mice prevents the adverse effects of maternal obesity on placental function and fetal growth.

    PubMed

    Aye, Irving L M H; Rosario, Fredrick J; Powell, Theresa L; Jansson, Thomas

    2015-10-13

    Mothers with obesity or gestational diabetes mellitus have low circulating levels of adiponectin (ADN) and frequently deliver large babies with increased fat mass, who are susceptible to perinatal complications and to development of metabolic syndrome later in life. It is currently unknown if the inverse correlation between maternal ADN and fetal growth reflects a cause-and-effect relationship. We tested the hypothesis that ADN supplementation in obese pregnant dams improves maternal insulin sensitivity, restores normal placental insulin/mechanistic target of rapamycin complex 1 (mTORC1) signaling and nutrient transport, and prevents fetal overgrowth. Compared with dams on a control diet, female C57BL/6J mice fed an obesogenic diet before mating and throughout gestation had increased fasting serum leptin, insulin, and C-peptide, and reduced high-molecular-weight ADN at embryonic day (E) 18.5. Placental insulin and mTORC1 signaling was activated, peroxisome proliferator-activated receptor-α (PPARα) phosphorylation was reduced, placental transport of glucose and amino acids in vivo was increased, and fetal weights were 29% higher in obese dams. Maternal ADN infusion in obese dams from E14.5 to E18.5 normalized maternal insulin sensitivity, placental insulin/mTORC1 and PPARα signaling, nutrient transport, and fetal growth without affecting maternal fat mass. Using a mouse model with striking similarities to obese pregnant women, we demonstrate that ADN functions as an endocrine link between maternal adipose tissue and fetal growth by regulating placental function. Importantly, maternal ADN supplementation reversed the adverse effects of maternal obesity on placental function and fetal growth. Improving maternal ADN levels may serve as an effective intervention strategy to prevent fetal overgrowth caused by maternal obesity.

  5. Adiponectin supplementation in pregnant mice prevents the adverse effects of maternal obesity on placental function and fetal growth

    PubMed Central

    Aye, Irving L. M. H.; Rosario, Fredrick J.; Powell, Theresa L.; Jansson, Thomas

    2015-01-01

    Mothers with obesity or gestational diabetes mellitus have low circulating levels of adiponectin (ADN) and frequently deliver large babies with increased fat mass, who are susceptible to perinatal complications and to development of metabolic syndrome later in life. It is currently unknown if the inverse correlation between maternal ADN and fetal growth reflects a cause-and-effect relationship. We tested the hypothesis that ADN supplementation in obese pregnant dams improves maternal insulin sensitivity, restores normal placental insulin/mechanistic target of rapamycin complex 1 (mTORC1) signaling and nutrient transport, and prevents fetal overgrowth. Compared with dams on a control diet, female C57BL/6J mice fed an obesogenic diet before mating and throughout gestation had increased fasting serum leptin, insulin, and C-peptide, and reduced high-molecular-weight ADN at embryonic day (E) 18.5. Placental insulin and mTORC1 signaling was activated, peroxisome proliferator-activated receptor-α (PPARα) phosphorylation was reduced, placental transport of glucose and amino acids in vivo was increased, and fetal weights were 29% higher in obese dams. Maternal ADN infusion in obese dams from E14.5 to E18.5 normalized maternal insulin sensitivity, placental insulin/mTORC1 and PPARα signaling, nutrient transport, and fetal growth without affecting maternal fat mass. Using a mouse model with striking similarities to obese pregnant women, we demonstrate that ADN functions as an endocrine link between maternal adipose tissue and fetal growth by regulating placental function. Importantly, maternal ADN supplementation reversed the adverse effects of maternal obesity on placental function and fetal growth. Improving maternal ADN levels may serve as an effective intervention strategy to prevent fetal overgrowth caused by maternal obesity. PMID:26417088

  6. The effects of aerobic, resistance, and combination training on insulin sensitivity and secretion in overweight adults from STRRIDE AT/RT: a randomized trial.

    PubMed

    AbouAssi, Hiba; Slentz, Cris A; Mikus, Catherine R; Tanner, Charles J; Bateman, Lori A; Willis, Leslie H; Shields, A Tamlyn; Piner, Lucy W; Penry, Lorrie E; Kraus, Erik A; Huffman, Kim M; Bales, Connie W; Houmard, Joseph A; Kraus, William E

    2015-06-15

    Most health organizations recommend a combination of aerobic training (AT) and resistance training (RT), yet few studies have compared their acute (within 24 h of the last exercise bout) and sustained (after 14 days of no exercise training) effects alone and in combination on glucose metabolism. The present study (Studies Targeting Risk Reduction Interventions through Defined Exercise-Aerobic Training and/or Resistance Training) compared the effects of AT, RT, and the combination (AT/RT) on insulin action at both acute and sustained phases. Subjects (N = 196) were 18-70 yr old (mean age = 50 yr), overweight (mean body mass index = 30 kg/m2), sedentary with moderate dyslipidemia, and were randomized into one of three 8-mo exercise groups: 1) RT: 3 days/wk, 8 exercises, 3 sets/exercise, 8-12 repetitions/set; 2) AT: equivalent to ∼19.2 km/wk (12 miles/wk) at 75% peak O2 consumption; 3) AT/RT: the combination of AT and RT. One hundred forty-four subjects completed the intervention. Eighty-eight subjects completed all pre- and postintervention testing visits. Insulin sensitivity, glucose effectiveness, and disposition index were measured via a frequently sampled intravenous glucose tolerance test with subsequent minimal model analyses. AT/RT resulted in greater improvements in insulin sensitivity, β-cell function (disposition index), and glucose effectiveness than either AT or RT alone (all P < 0.05). Approximately 52% of the improvement in insulin sensitivity by AT/RT was retained 14 days after the last exercise training bout. Neither AT or RT led to acute or chronic improvement in sensitivity index. In summary, only AT/RT (which required twice as much time as either alone) led to significant acute and sustained benefits in insulin sensitivity

  7. Vitamin E and vitamin C do not reduce insulin sensitivity but inhibit mitochondrial protein expression in exercising obese rats

    USDA-ARS?s Scientific Manuscript database

    Controversy exists as to whether supplementation with the antioxidants vitamin E (VE) and vitamin C (VC) blocks adaptation to exercise. Exercise is a first-line means to treat obesity and its complications. While diet-induced obesity alters mitochondrial (MT) function and induces insulin resistance ...

  8. β-arrestin-2 is an essential regulator of pancreatic β-cell function under physiological and pathophysiological conditions.

    PubMed

    Zhu, Lu; Almaça, Joana; Dadi, Prasanna K; Hong, Hao; Sakamoto, Wataru; Rossi, Mario; Lee, Regina J; Vierra, Nicholas C; Lu, Huiyan; Cui, Yinghong; McMillin, Sara M; Perry, Nicole A; Gurevich, Vsevolod V; Lee, Amy; Kuo, Bryan; Leapman, Richard D; Matschinsky, Franz M; Doliba, Nicolai M; Urs, Nikhil M; Caron, Marc G; Jacobson, David A; Caicedo, Alejandro; Wess, Jürgen

    2017-02-01

    β-arrestins are critical signalling molecules that regulate many fundamental physiological functions including the maintenance of euglycemia and peripheral insulin sensitivity. Here we show that inactivation of the β-arrestin-2 gene, barr2, in β-cells of adult mice greatly impairs insulin release and glucose tolerance in mice fed with a calorie-rich diet. Both glucose and KCl-induced insulin secretion and calcium responses were profoundly reduced in β-arrestin-2 (barr2) deficient β-cells. In human β-cells, barr2 knockdown abolished glucose-induced insulin secretion. We also show that the presence of barr2 is essential for proper CAMKII function in β-cells. Importantly, overexpression of barr2 in β-cells greatly ameliorates the metabolic deficits displayed by mice consuming a high-fat diet. Thus, our data identify barr2 as an important regulator of β-cell function, which may serve as a new target to improve β-cell function.

  9. Lower Adiponectin Levels at First Trimester of Pregnancy Are Associated With Increased Insulin Resistance and Higher Risk of Developing Gestational Diabetes Mellitus

    PubMed Central

    Lacroix, Marilyn; Battista, Marie-Claude; Doyon, Myriam; Ménard, Julie; Ardilouze, Jean-Luc; Perron, Patrice; Hivert, Marie-France

    2013-01-01

    OBJECTIVE To evaluate the associations between adiponectin levels and 1) the risk of developing gestational diabetes mellitus (GDM), and 2) insulin resistance/sensitivity, β-cell function, and compensation indices in a prospective cohort representative of the general population of pregnant women. RESEARCH DESIGN AND METHODS We performed anthropometric measurements and collected blood samples at 1st (6–13 weeks) and 2nd (24–28 weeks) trimesters. Diagnosis of GDM was made at 2nd trimester based on a 75-g oral glucose tolerance test (International Association of the Diabetes and Pregnancy Study Groups criteria). Insulin was measured (ELISA; Luminex) to estimate homeostasis model assessment of insulin resistance (HOMA-IR), β-cell function (HOMA-B), insulin sensitivity (Matsuda index), insulin secretion (AUCinsulin/glucose), and β-cell compensation (insulin secretion sensitivity index-2). Adiponectin was measured by radioimmunoassay. RESULTS Among the 445 participants included in this study, 38 women developed GDM. Women who developed GDM had lower 1st-trimester adiponectin levels (9.67 ± 3.84 vs. 11.92 ± 4.59 µg/mL in women with normal glucose tolerance). Lower adiponectin levels were associated with higher risk of developing GDM (OR, 1.12 per 1 µg/mL decrease of adiponectin levels; P = 0.02, adjusted for BMI and HbA1c at 1st trimester). Adiponectin levels at 1st and 2nd trimesters were associated with HOMA-IR (both: r = −0.22, P < 0.0001) and Matsuda index (r = 0.28, P < 0.0001, and r = 0.29, P < 0.0001). After adjustment for confounding factors, we found no significant association with HOMA-B and AUCinsulin/glucose. CONCLUSIONS Pregnant women with lower adiponectin levels at 1st trimester have higher levels of insulin resistance and are more likely to develop GDM independently of adiposity or glycemic measurements. PMID:23300287

  10. Basal plasma insulin and homeostasis model assessment (HOMA) are indicators of insulin sensitivity in cats.

    PubMed

    Appleton, D J; Rand, J S; Sunvold, G D

    2005-06-01

    The objective of this study was to compare simpler indices of insulin sensitivity with the minimal model-derived insulin sensitivity index to identify a simple and reliable alternative method for assessing insulin sensitivity in cats. In addition, we aimed to determine whether this simpler measure or measures showed consistency of association across differing body weights and glucose tolerance levels. Data from glucose tolerance and insulin sensitivity tests performed in 32 cats with varying body weights (underweight to obese), including seven cats with impaired glucose tolerance, were used to assess the relationship between Bergman's minimal model-derived insulin sensitivity index (S(I)), and various simpler measures of insulin sensitivity. The most useful overall predictors of insulin sensitivity were basal plasma insulin concentrations and the homeostasis model assessment (HOMA), which is the product of basal glucose and insulin concentrations divided by 22.5. It is concluded that measurement of plasma insulin concentrations in cats with food withheld for 24 h, in conjunction with HOMA, could be used in clinical research projects and by practicing veterinarians to screen for reduced insulin sensitivity in cats. Such cats may be at increased risk of developing impaired glucose tolerance and type 2 diabetes mellitus. Early detection of these cats would enable preventative intervention programs such as weight reduction, increased physical activity and dietary modifications to be instigated.

  11. Insulin-Stimulated Cardiac Glucose Oxidation Is Increased in High-Fat Diet–Induced Obese Mice Lacking Malonyl CoA Decarboxylase

    PubMed Central

    Ussher, John R.; Koves, Timothy R.; Jaswal, Jagdip S.; Zhang, Liyan; Ilkayeva, Olga; Dyck, Jason R.B.; Muoio, Deborah M.; Lopaschuk, Gary D.

    2009-01-01

    OBJECTIVE Whereas an impaired ability to oxidize fatty acids is thought to contribute to intracellular lipid accumulation, insulin resistance, and cardiac dysfunction, high rates of fatty acid oxidation could also impair glucose metabolism and function. We therefore determined the effects of diet-induced obesity (DIO) in wild-type (WT) mice and mice deficient for malonyl CoA decarboxylase (MCD−/−; an enzyme promoting mitochondrial fatty acid oxidation) on insulin-sensitive cardiac glucose oxidation. RESEARCH DESIGN AND METHODS WT and MCD−/− mice were fed a low- or high-fat diet for 12 weeks, and intramyocardial lipid metabolite accumulation was assessed. A parallel feeding study was performed to assess myocardial function and energy metabolism (nanomoles per gram of dry weight per minute) in isolated working hearts (+/– insulin). RESULTS DIO markedly reduced insulin-stimulated glucose oxidation compared with low fat–fed WT mice (167 ± 31 vs. 734 ± 125; P < 0.05). MCD−/− mice subjected to DIO displayed a more robust insulin-stimulated glucose oxidation (554 ± 82 vs. 167 ± 31; P < 0.05) and less incomplete fatty acid oxidation, evidenced by a decrease in long-chain acylcarnitines compared with WT counterparts. MCD−/− mice had long-chain acyl CoAs similar to those of WT mice subjected to DIO but had increased triacylglycerol levels (10.92 ± 3.72 vs. 3.29 ± 0.62 μmol/g wet wt; P < 0.05). CONCLUSIONS DIO does not impair cardiac fatty acid oxidation or function, and there exists disassociation between myocardial lipid accumulation and insulin sensitivity. Our results suggest that MCD deficiency is not detrimental to the heart in obesity. PMID:19478144

  12. The ΔF508 Mutation in the Cystic Fibrosis Transmembrane Conductance Regulator Is Associated With Progressive Insulin Resistance and Decreased Functional β-Cell Mass in Mice.

    PubMed

    Fontés, Ghislaine; Ghislain, Julien; Benterki, Isma; Zarrouki, Bader; Trudel, Dominique; Berthiaume, Yves; Poitout, Vincent

    2015-12-01

    Cystic fibrosis (CF) is the result of mutations in the cystic fibrosis transmembrane conductance regulator (CFTR). CF-related diabetes affects 50% of adult CF patients. How CFTR deficiency predisposes to diabetes is unknown. Herein, we examined the impact of the most frequent cftr mutation in humans, deletion of phenylalanine at position 508 (ΔF508), on glucose homeostasis in mice. We compared ΔF508 mutant mice with wild-type (WT) littermates. Twelve-week-old male ΔF508 mutants had lower body weight, improved oral glucose tolerance, and a trend toward higher insulin tolerance. Glucose-induced insulin secretion was slightly diminished in ΔF508 mutant islets, due to reduced insulin content, but ΔF508 mutant islets were not more sensitive to proinflammatory cytokines than WT islets. Hyperglycemic clamps confirmed an increase in insulin sensitivity with normal β-cell function in 12- and 18-week-old ΔF508 mutants. In contrast, 24-week-old ΔF508 mutants exhibited insulin resistance and reduced β-cell function. β-Cell mass was unaffected at 11 weeks of age but was significantly lower in ΔF508 mutants versus controls at 24 weeks. This was not associated with gross pancreatic pathology. We conclude that the ΔF508 CFTR mutation does not lead to an intrinsic β-cell secretory defect but is associated with insulin resistance and a β-cell mass deficit in aging mutants. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  13. Insulin signalling and glucose transport in the ovary and ovarian function during the ovarian cycle

    PubMed Central

    Dupont, Joëlle; Scaramuzzi, Rex J.

    2016-01-01

    Data derived principally from peripheral tissues (fat, muscle and liver) show that insulin signals via diverse interconnecting intracellular pathways and that some of the major intersecting points (known as critical nodes) are the IRSs (insulin receptor substrates), PI3K (phosphoinositide kinase)/Akt and MAPK (mitogen-activated protein kinase). Most of these insulin pathways are probably also active in the ovary and their ability to interact with each other and also with follicle-stimulating hormone (FSH) and luteinizing hormone (LH) signalling pathways enables insulin to exert direct modulating influences on ovarian function. The present paper reviews the intracellular actions of insulin and the uptake of glucose by ovarian tissues (granulosa, theca and oocyte) during the oestrous/menstrual cycle of some rodent, primate and ruminant species. Insulin signals through diverse pathways and these are discussed with specific reference to follicular cell types (granulosa, theca and oocyte). The signalling pathways for FSH in granulosa cells and LH in granulosa and theca cells are summarized. The roles of glucose and of insulin-mediated uptake of glucose in folliculogenesis are discussed. It is suggested that glucose in addition to its well-established role of providing energy for cellular function may also have insulin-mediated signalling functions in ovarian cells, involving AMPK (AMP-dependent protein kinase) and/or hexosamine. Potential interactions of insulin signalling with FSH or LH signalling at critical nodes are identified and the available evidence for such interactions in ovarian cells is discussed. Finally the action of the insulin-sensitizing drugs metformin and the thiazolidinedione rosiglitazone on follicular cells is reviewed. PMID:27234585

  14. Acute exercise alters skeletal muscle mitochondrial respiration and H2O2 emission in response to hyperinsulinemic-euglycemic clamp in middle-aged obese men

    PubMed Central

    Trewin, Adam J.; Levinger, Itamar; Parker, Lewan; Shaw, Christopher S.; Serpiello, Fabio R.; Anderson, Mitchell J.; McConell, Glenn K.; Hare, David L.

    2017-01-01

    Obesity, sedentary lifestyle and aging are associated with mitochondrial dysfunction and impaired insulin sensitivity. Acute exercise increases insulin sensitivity in skeletal muscle; however, whether mitochondria are involved in these processes remains unclear. The aim of this study was to investigate the effects of insulin stimulation at rest and after acute exercise on skeletal muscle mitochondrial respiratory function (JO2) and hydrogen peroxide emission (JH2O2), and the associations with insulin sensitivity in obese, sedentary men. Nine men (means ± SD: 57 ± 6 years; BMI 33 ± 5 kg.m2) underwent hyperinsulinemic-euglycemic clamps in two separate trials 1–3 weeks apart: one under resting conditions, and another 1 hour after high-intensity exercise (4x4 min cycling at 95% HRpeak). Muscle biopsies were obtained at baseline, and pre/post clamp to measure JO2 with high-resolution respirometry and JH2O2 via Amplex UltraRed from permeabilized fibers. Post-exercise, both JO2 and JH2O2 during ADP stimulated state-3/OXPHOS respiration were lower compared to baseline (P<0.05), but not after subsequent insulin stimulation. JH2O2 was lower post-exercise and after subsequent insulin stimulation compared to insulin stimulation in the rest trial during succinate supported state-4/leak respiration (P<0.05). In contrast, JH2O2 increased during complex-I supported leak respiration with insulin after exercise compared with resting conditions (P<0.05). Resting insulin sensitivity and JH2O2 during complex-I leak respiration were positively correlated (r = 0.77, P<0.05). We conclude that in obese, older and sedentary men, acute exercise modifies skeletal muscle mitochondrial respiration and H2O2 emission responses to hyperinsulinemia in a respiratory state-specific manner, which may have implications for metabolic diseases involving insulin resistance. PMID:29161316

  15. β-Cell lipotoxicity in response to free fatty acid elevation in prepubertal youth: African American versus Caucasian contrast.

    PubMed

    Michaliszyn, Sara F; Bonadonna, Riccardo C; Sjaarda, Lindsey A; Lee, Sojung; Farchoukh, Lama; Arslanian, Silva A

    2013-08-01

    Prepubertal African American (AA) youth compared with their Caucasian (C) peers have higher insulin secretion, which correlates positively with free fatty acid (FFA) concentration. In our continued efforts to explain the racial disparity in insulinemia, and because FFAs modulate insulin secretion, we hypothesized that AA youth would have a greater response to FFA-induced β-cell insulin secretion than C youth. We compared the short-term effects of FFA elevation on fasting and glucose-stimulated C-peptide-modeled insulin secretion in prepubertal normal-weight AA versus C peers during a 2-h hyperglycemic clamp (12.5 mmol/L) on two occasions: 1) infusion of normal saline and 2) infusion of 20% intralipid (IL). During IL infusion, insulin sensitivity (IS) declined comparably in AA and C youth. Glucose sensitivity of first- and second-phase insulin secretion showed a significant condition × race interaction being higher in AA youth. Disposition index, β-cell function relative to IS, declined with IL infusion in AA and C youth, with a significantly greater decrease in Cs compared with AAs. In conclusion, AA and C prepubertal youth both demonstrated a decline in β-cell function relative to IS during IL infusion, indicative of acute lipotoxicity. The greater decline in C youth compared with AAs may suggest that C youth are more susceptible to β-cell lipotoxicity than AA youth, or alternatively, that AA youth are hypersensitive to FFA stimulation of β-cell insulin secretion, consistent with our theory.

  16. Metformin improves glucose effectiveness, not insulin sensitivity: predicting treatment response in women with polycystic ovary syndrome in an open-label, interventional study.

    PubMed

    Pau, Cindy T; Keefe, Candace; Duran, Jessica; Welt, Corrine K

    2014-05-01

    Although metformin is widely used to improve insulin resistance in women with polycystic ovary syndrome (PCOS), its mechanism of action is complex, with inconsistent effects on insulin sensitivity and variability in treatment response. The aim of the study was to delineate the effect of metformin on glucose and insulin parameters, determine additional treatment outcomes, and predict patients with PCOS who will respond to treatment. We conducted an open-label, interventional study at an academic medical center. Women with PCOS (n = 36) diagnosed by the National Institutes of Health criteria participated in the study. Subjects underwent fasting blood sampling, an IV glucose tolerance test, dual-energy x-ray absorptiometry scan, transvaginal ultrasound, and measurement of human chorionic gonadotropin-stimulated androgen levels before and after 12 weeks of treatment with metformin extended release 1500 mg/d. Interval visits were performed to monitor anthropometric measurements and menstrual cycle parameters. Changes in glucose and insulin parameters, androgen levels, anthropometric measurements, and ovulatory menstrual cycles were evaluated. Insulin sensitivity did not change despite weight loss. Glucose effectiveness (P = .002) and the acute insulin response to glucose (P = .002) increased, and basal glucose levels (P = .001) decreased after metformin treatment. T levels also decreased. Women with improved ovulatory function (61%) had lower baseline T levels and lower baseline and stimulated T and androstenedione levels after metformin treatment (all P < .05). Using an IV glucose tolerance test, which distinguishes improvements in glucose effectiveness and insulin sensitivity, metformin does not improve insulin sensitivity in women with PCOS but does improve glucose effectiveness. The improvement in glucose effectiveness may be partially mediated by decreased glucose levels. T levels also decreased with metformin treatment. Ovulation during metformin treatment was associated with lower baseline T levels and greater T and androstenedione decreases during treatment, but not with insulin or LH levels. Thus, the action of metformin in PCOS primarily affects glucose levels and steroidogenesis, which may be mediated by mechanisms that affect both pathways, such as inhibition of mitochondrial complex I.

  17. Metformin Improves Glucose Effectiveness, Not Insulin Sensitivity: Predicting Treatment Response in Women With Polycystic Ovary Syndrome in an Open-Label, Interventional Study

    PubMed Central

    Pau, Cindy T.; Keefe, Candace; Duran, Jessica

    2014-01-01

    Context: Although metformin is widely used to improve insulin resistance in women with polycystic ovary syndrome (PCOS), its mechanism of action is complex, with inconsistent effects on insulin sensitivity and variability in treatment response. Objective: The aim of the study was to delineate the effect of metformin on glucose and insulin parameters, determine additional treatment outcomes, and predict patients with PCOS who will respond to treatment. Design and Setting: We conducted an open-label, interventional study at an academic medical center. Subjects: Women with PCOS (n = 36) diagnosed by the National Institutes of Health criteria participated in the study. Interventions: Subjects underwent fasting blood sampling, an IV glucose tolerance test, dual-energy x-ray absorptiometry scan, transvaginal ultrasound, and measurement of human chorionic gonadotropin-stimulated androgen levels before and after 12 weeks of treatment with metformin extended release 1500 mg/d. Interval visits were performed to monitor anthropometric measurements and menstrual cycle parameters. Main Outcome Measures: Changes in glucose and insulin parameters, androgen levels, anthropometric measurements, and ovulatory menstrual cycles were evaluated. Results: Insulin sensitivity did not change despite weight loss. Glucose effectiveness (P = .002) and the acute insulin response to glucose (P = .002) increased, and basal glucose levels (P = .001) decreased after metformin treatment. T levels also decreased. Women with improved ovulatory function (61%) had lower baseline T levels and lower baseline and stimulated T and androstenedione levels after metformin treatment (all P < .05). Conclusions: Using an IV glucose tolerance test, which distinguishes improvements in glucose effectiveness and insulin sensitivity, metformin does not improve insulin sensitivity in women with PCOS but does improve glucose effectiveness. The improvement in glucose effectiveness may be partially mediated by decreased glucose levels. T levels also decreased with metformin treatment. Ovulation during metformin treatment was associated with lower baseline T levels and greater T and androstenedione decreases during treatment, but not with insulin or LH levels. Thus, the action of metformin in PCOS primarily affects glucose levels and steroidogenesis, which may be mediated by mechanisms that affect both pathways, such as inhibition of mitochondrial complex I. PMID:24606093

  18. The effect of high-dose sodium salicylate on chronically elevated plasma nonesterified fatty acid-induced insulin resistance and β-cell dysfunction in overweight and obese nondiabetic men.

    PubMed

    Xiao, Changting; Giacca, Adria; Lewis, Gary F

    2009-11-01

    Prolonged elevation of plasma nonesterified fatty acids (NEFA) induces insulin resistance and impairs pancreatic β-cell adaptation to insulin resistance. Studies in rodents suggest that inflammation may play a role in this "lipotoxicity." We studied the effects of sodium salicylate, an anti-inflammatory agent, on lipid-induced alterations in β-cell function and insulin sensitivity in six overweight and obese nondiabetic men. Each subject underwent four separate studies, 4-6 wk apart, in random order: 1) SAL, 1-wk placebo followed by intravenous (iv) infusion of saline for 48 h; 2) IH, 1-wk placebo followed by iv infusion of intralipid plus heparin for 48 h to raise plasma NEFA approximately twofold; 3) IH + SS, 1-wk sodium salicylate (4.5 g/day) followed by 48-h IH infusion; and 4) SS, 1-wk oral sodium salicylate followed by 48-h saline infusion. After 48-h saline or lipid infusion, insulin secretion and sensitivity were assessed by hyperglycemic clamp and euglycemic hyperinsulinemic clamp, respectively, in sequential order. Insulin sensitivity was reduced by lipid infusion (IH = 67% of SAL) and was not improved by salicylate (IH + SS = 56% of SAL). Lipid infusion also reduced the disposition index (P < 0.05), which was not prevented by sodium salicylate. Salicylate reduced insulin clearance. These data suggest that oral sodium salicylate at this dose impairs insulin clearance but does not ameliorate lipid-induced insulin resistance and β-cell dysfunction in overweight and obese nondiabetic men.

  19. Insulin Resistance and Mitochondrial Dysfunction.

    PubMed

    Gonzalez-Franquesa, Alba; Patti, Mary-Elizabeth

    2017-01-01

    Insulin resistance precedes and predicts the onset of type 2 diabetes (T2D) in susceptible humans, underscoring its important role in the complex pathogenesis of this disease. Insulin resistance contributes to multiple tissue defects characteristic of T2D, including reduced insulin-stimulated glucose uptake in insulin-sensitive tissues, increased hepatic glucose production, increased lipolysis in adipose tissue, and altered insulin secretion. Studies of individuals with insulin resistance, both with established T2D and high-risk individuals, have consistently demonstrated a diverse array of defects in mitochondrial function (i.e., bioenergetics, biogenesis and dynamics). However, it remains uncertain whether mitochondrial dysfunction is primary (critical initiating defect) or secondary to the subtle derangements in glucose metabolism, insulin resistance, and defective insulin secretion present early in the course of disease development. In this chapter, we will present the evidence linking mitochondrial dysfunction and insulin resistance, and review the potential for mitochondrial targets as a therapeutic approach for T2D.

  20. Oral administration of soybean peptide Vglycin normalizes fasting glucose and restores impaired pancreatic function in Type 2 diabetic Wistar rats.

    PubMed

    Jiang, Hua; Feng, Jueping; Du, Zhongxia; Zhen, Hui; Lin, Mei; Jia, Shaohui; Li, Tao; Huang, Xinyuan; Ostenson, Claes-Goran; Chen, Zhengwang

    2014-09-01

    Vglycin, a natural 37-residue polypeptide isolated from pea seeds in which six half-cysteine residues are embedded in three pairs of disulfide bonds, is resistant to digestive enzymes and has antidiabetic potential. To investigate the pharmacological activity of Vglycin in vivo and to examine the mechanisms involved, the therapeutic effect of Vglycin in diabetic rats was examined. Diabetes was induced in Wistar rats by high-fat diet and multiple streptozotocin intraperitoneal injections. Diabetic rats were treated daily with Vglycin for 4 weeks. Body weight, food intake, fasting plasma glucose and insulin levels were assayed weekly. Glucose and insulin tolerance tests were conducted on Day 29. Subsequently, levels of p-Akt in the liver and pancreas and cleaved PARP, Pdx-1 and insulin in the pancreas were detected by immunoblotting. The morphology of the pancreas and the insulin expression in the pancreas were analyzed by hematoxylin-eosin staining and immunohistochemistry, respectively. Furthermore, human liver-derived cell lines were used to explore the in vitro effects of Vglycin on insulin sensitivity and glucose uptake. Chronic treatment with Vglycin normalized fasting glucose levels in diabetic rats. The improvement in glucose homeostasis and the increased insulin sensitivity mediated by restored insulin signaling likely contributed to decreased food intake and reduced body weight. Vglycin protected pancreatic cells from damage by streptozotocin. Although insulin synthesis and secretion in impaired β-cell were not significantly elevated, islets morphology was improved in the Vglycin-treated groups. These results suggest that Vglycin could be useful in Type 2 diabetes for restoring impaired insulin signaling, glucose tolerance and pancreatic function. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Hepatic TRAF2 Regulates Glucose Metabolism Through Enhancing Glucagon Responses

    PubMed Central

    Chen, Zheng; Sheng, Liang; Shen, Hong; Zhao, Yujun; Wang, Shaomeng; Brink, Robert; Rui, Liangyou

    2012-01-01

    Obesity is associated with intrahepatic inflammation that promotes insulin resistance and type 2 diabetes. Tumor necrosis factor receptor–associated factor (TRAF)2 is a key adaptor molecule that is known to mediate proinflammatory cytokine signaling in immune cells; however, its metabolic function remains unclear. We examined the role of hepatic TRAF2 in the regulation of insulin sensitivity and glucose metabolism. TRAF2 was deleted specifically in hepatocytes using the Cre/loxP system. The mutant mice were fed a high-fat diet (HFD) to induce insulin resistance and hyperglycemia. Hepatic glucose production (HGP) was examined using pyruvate tolerance tests, 2H nuclear magnetic resonance spectroscopy, and in vitro HGP assays. The expression of gluconeogenic genes was measured by quantitative real-time PCR. Insulin sensitivity was analyzed using insulin tolerance tests and insulin-stimulated phosphorylation of insulin receptors and Akt. Glucagon action was examined using glucagon tolerance tests and glucagon-stimulated HGP, cAMP-responsive element–binding (CREB) phosphorylation, and expression of gluconeogenic genes in the liver and primary hepatocytes. Hepatocyte-specific TRAF2 knockout (HKO) mice exhibited normal body weight, blood glucose levels, and insulin sensitivity. Under HFD conditions, blood glucose levels were significantly lower (by >30%) in HKO than in control mice. Both insulin signaling and the hypoglycemic response to insulin were similar between HKO and control mice. In contrast, glucagon signaling and the hyperglycemic response to glucagon were severely impaired in HKO mice. In addition, TRAF2 overexpression significantly increased the ability of glucagon or a cAMP analog to stimulate CREB phosphorylation, gluconeogenic gene expression, and HGP in primary hepatocytes. These results suggest that the hepatic TRAF2 cell autonomously promotes hepatic gluconeogenesis by enhancing the hyperglycemic response to glucagon and other factors that increase cAMP levels, thus contributing to hyperglycemia in obesity. PMID:22315325

  2. Glucose response curve and type 2 diabetes risk in Latino adolescents.

    PubMed

    Kim, Joon Young; Coletta, Dawn K; Mandarino, Lawrence J; Shaibi, Gabriel Q

    2012-09-01

    In adults, the shape of the glucose response during an oral glucose tolerance test (OGTT) prospectively and independently predicts type 2 diabetes. However, no reports have described the utility of this indicator in younger populations. The purpose of this study was to compare type 2 diabetes risk factors in Latino adolescents characterized by either a monophasic or biphasic glucose response during an OGTT. A total of 156 nondiabetic Latino adolescents completed a 2-h OGTT. Monophasic and biphasic groups were compared for the following type 2 diabetes risk factors: fasting and 2-h glucose, HbA(1c), glucose area under the curve (AUC), insulin sensitivity (Matsuda index), insulin secretion (insulinogenic index), and β-cell function as measured by the disposition index (insulin sensitivity × insulin secretion). Of the participants, 107 youth were categorized as monophasic and 49 were biphasic. Compared with the monophasic group, participants with a biphasic response exhibited lower HbA(1c) (5.4 ± 0.3 vs. 5.6 ± 0.3%, P < 0.01) and lower glucose AUC (14,205 ± 2,382 vs. 16,230 ± 2,537 mg ⋅ dL(-1) ⋅ h(-1), P < 0.001) with higher insulin sensitivity (5.4 ± 3.2 vs. 4.6 ± 3.4, P ≤ 0.05), higher insulin secretion (2.1 ± 1.3 vs. 1.8 ± 1.3, P = 0.05), and better β-cell function (10.3 ± 7.8 vs. 6.0 ± 3.6, P < 0.001). Differences persisted after adjusting for age, sex, and BMI. These data suggest that the glycemic response to an OGTT may differentiate risk for type 2 diabetes in youth. This response may be an early marker of type 2 diabetes risk among high-risk youth.

  3. Effects of exercise training on glucose control, lipid metabolism, and insulin sensitivity in hypertriglyceridemia and non-insulin dependent diabetes mellitus.

    PubMed

    Lampman, R M; Schteingart, D E

    1991-06-01

    Exercise training has potential benefits for patients with hyperlipidemia and/or non-insulin dependent diabetes mellitus. In nondiabetic, nonobese subjects with hypertriglyceridemia, exercise training alone increased insulin sensitivity, improved glucose tolerance, and lowered serum triglyceride and cholesterol levels. These improvements did not occur when exercise training alone was given to similar patients with impaired glucose tolerance. In severely obese (X = 125 kg) subjects without diabetes melitus, a 600 calorie diet alone decreased glucose and insulin concentrations and improved glucose tolerance but did not increase insulin sensitivity. The addition of exercise training improved insulin sensitivity. Obese, non-insulin dependent diabetes mellitus subjects on sulfonylurea therapy alone increased insulin levels but failed to improve insulin sensitivity or glucose levels. In contrast, the addition of exercise training to this medication resulted in improved insulin sensitivity and lowered glucose levels. We conclude that exercise training has major effects on lowering triglyceride levels in hyperlipidemic subjects and can potentiate the effect of diet or drug therapy on glucose metabolism in patients with non-insulin dependent diabetes mellitus.

  4. Associations of lipid profiles with insulin resistance and β cell function in adults with normal glucose tolerance and different categories of impaired glucose regulation.

    PubMed

    Zheng, Shuang; Xu, Hua; Zhou, Huan; Ren, Xingxing; Han, Tingting; Chen, Yawen; Qiu, Huiying; Wu, Peihong; Zheng, Jun; Wang, Lihua; Liu, Wei; Hu, Yaomin

    2017-01-01

    To investigate the associations of dyslipidemia with insulin resistance and β cell function in individuals with normal glucose tolerance (NGT) and different categories of impaired glucose regulation (IGR). 544 subjects (365 with dyslipidemia and/or IGR and 179 with normal lipid and glucose tolerance) were enrolled in the study. All subjects underwent oral glucose tolerance test (OGTT). HOMA-IR was used to evaluate insulin sensitivity. Disposition index (DI) was used to evaluate β cell function. Multiple linear regression analysis was performed to assess correlations among lipid profiles, insulin resistance and β cell function. Among subjects with NGT, those with dyslipidemia had higher level of HOMA-IR but lower level of DI. While among subjects with different categories of IGR, those with dyslipidemia and CGI had significantly decreased DI. No obvious differences of insulin resistance or β cell function were found in IFG or IGT subjects with or without dyslipidemia. TG and HDL-C were correlated with HOMA-IR (β = 0.79, p <0.001; β = -0.38, p = 0.027, respectively, compared with subjects in the low level groups). Moreover, TG and TC were negatively correlated with DI (β = -2.17, p = 0.013; β = -2.01, p = 0.034 respectively, compared with subjects in the low level groups) after adjusting for confounding parameters. Dyslipidemia induces insulin resistance and impaired β cell response to insulin resistance in individuals with NGT. Furthermore, dyslipidemia diminishes β cell function in subjects with CGI. TG and HDL-C were correlated with insulin resistance, and TG, TC were negatively correlated with β cell response to insulin resistance in non-diabetic individuals.

  5. Associations of lipid profiles with insulin resistance and β cell function in adults with normal glucose tolerance and different categories of impaired glucose regulation

    PubMed Central

    Ren, Xingxing; Han, Tingting; Chen, Yawen; Qiu, Huiying; Wu, Peihong; Zheng, Jun; Wang, Lihua; Liu, Wei; Hu, Yaomin

    2017-01-01

    Aims To investigate the associations of dyslipidemia with insulin resistance and β cell function in individuals with normal glucose tolerance (NGT) and different categories of impaired glucose regulation (IGR). Methods 544 subjects (365 with dyslipidemia and/or IGR and 179 with normal lipid and glucose tolerance) were enrolled in the study. All subjects underwent oral glucose tolerance test (OGTT). HOMA-IR was used to evaluate insulin sensitivity. Disposition index (DI) was used to evaluate β cell function. Multiple linear regression analysis was performed to assess correlations among lipid profiles, insulin resistance and β cell function. Results Among subjects with NGT, those with dyslipidemia had higher level of HOMA-IR but lower level of DI. While among subjects with different categories of IGR, those with dyslipidemia and CGI had significantly decreased DI. No obvious differences of insulin resistance or β cell function were found in IFG or IGT subjects with or without dyslipidemia. TG and HDL-C were correlated with HOMA-IR (β = 0.79, p <0.001; β = -0.38, p = 0.027, respectively, compared with subjects in the low level groups). Moreover, TG and TC were negatively correlated with DI (β = -2.17, p = 0.013; β = -2.01, p = 0.034 respectively, compared with subjects in the low level groups) after adjusting for confounding parameters. Conclusions Dyslipidemia induces insulin resistance and impaired β cell response to insulin resistance in individuals with NGT. Furthermore, dyslipidemia diminishes β cell function in subjects with CGI. TG and HDL-C were correlated with insulin resistance, and TG, TC were negatively correlated with β cell response to insulin resistance in non-diabetic individuals. PMID:28199386

  6. Insulin Sensitivity as a Key Mediator of Growth Hormone Actions on Longevity

    PubMed Central

    Panici, Jacob A.; Bonkowski, Michael S.; Hughes, Larry F.; Bartke, Andrzej

    2009-01-01

    Reduced insulin sensitivity and glucose intolerance have been long suspected of having important involvement in aging. Here we report that in studies of calorie restriction (CR) effects in mutant (Prop1df and growth hormone receptor knockout [GHRKO]) and normal mice, insulin sensitivity was strongly associated with longevity. Of particular interest was enhancement of the already increased insulin sensitivity in CR df/df mice in which longevity was also further extended and the lack of changes in insulin sensitivity in calorically restricted GHRKO mice in which there was no further increase in average life span. We suggest that enhanced insulin sensitivity, in conjunction with reduced insulin levels, may represent an important (although almost certainly not exclusive) mechanism of increased longevity in hypopituitary, growth hormone (GH)-resistant, and calorie-restricted animals. We also report that the effects of GH treatment on insulin sensitivity may be limited to the period of GH administration. PMID:19304940

  7. Genetic disruption of SOD1 gene causes glucose intolerance and impairs β-cell function.

    PubMed

    Muscogiuri, Giovanna; Salmon, Adam B; Aguayo-Mazzucato, Cristina; Li, Mengyao; Balas, Bogdan; Guardado-Mendoza, Rodolfo; Giaccari, Andrea; Reddick, Robert L; Reyna, Sara M; Weir, Gordon; Defronzo, Ralph A; Van Remmen, Holly; Musi, Nicolas

    2013-12-01

    Oxidative stress has been associated with insulin resistance and type 2 diabetes. However, it is not clear whether oxidative damage is a cause or a consequence of the metabolic abnormalities present in diabetic subjects. The goal of this study was to determine whether inducing oxidative damage through genetic ablation of superoxide dismutase 1 (SOD1) leads to abnormalities in glucose homeostasis. We studied SOD1-null mice and wild-type (WT) littermates. Glucose tolerance was evaluated with intraperitoneal glucose tolerance tests. Peripheral and hepatic insulin sensitivity was quantitated with the euglycemic-hyperinsulinemic clamp. β-Cell function was determined with the hyperglycemic clamp and morphometric analysis of pancreatic islets. Genetic ablation of SOD1 caused glucose intolerance, which was associated with reduced in vivo β-cell insulin secretion and decreased β-cell volume. Peripheral and hepatic insulin sensitivity were not significantly altered in SOD1-null mice. High-fat diet caused glucose intolerance in WT mice but did not further worsen the glucose intolerance observed in standard chow-fed SOD1-null mice. Our findings suggest that oxidative stress per se does not play a major role in the pathogenesis of insulin resistance and demonstrate that oxidative stress caused by SOD1 ablation leads to glucose intolerance secondary to β-cell dysfunction.

  8. Genetic Disruption of SOD1 Gene Causes Glucose Intolerance and Impairs β-Cell Function

    PubMed Central

    Muscogiuri, Giovanna; Salmon, Adam B.; Aguayo-Mazzucato, Cristina; Li, Mengyao; Balas, Bogdan; Guardado-Mendoza, Rodolfo; Giaccari, Andrea; Reddick, Robert L.; Reyna, Sara M.; Weir, Gordon; DeFronzo, Ralph A.; Van Remmen, Holly; Musi, Nicolas

    2013-01-01

    Oxidative stress has been associated with insulin resistance and type 2 diabetes. However, it is not clear whether oxidative damage is a cause or a consequence of the metabolic abnormalities present in diabetic subjects. The goal of this study was to determine whether inducing oxidative damage through genetic ablation of superoxide dismutase 1 (SOD1) leads to abnormalities in glucose homeostasis. We studied SOD1-null mice and wild-type (WT) littermates. Glucose tolerance was evaluated with intraperitoneal glucose tolerance tests. Peripheral and hepatic insulin sensitivity was quantitated with the euglycemic-hyperinsulinemic clamp. β-Cell function was determined with the hyperglycemic clamp and morphometric analysis of pancreatic islets. Genetic ablation of SOD1 caused glucose intolerance, which was associated with reduced in vivo β-cell insulin secretion and decreased β-cell volume. Peripheral and hepatic insulin sensitivity were not significantly altered in SOD1-null mice. High-fat diet caused glucose intolerance in WT mice but did not further worsen the glucose intolerance observed in standard chow–fed SOD1-null mice. Our findings suggest that oxidative stress per se does not play a major role in the pathogenesis of insulin resistance and demonstrate that oxidative stress caused by SOD1 ablation leads to glucose intolerance secondary to β-cell dysfunction. PMID:24009256

  9. Fish oil, insulin sensitivity, insulin secretion and glucose tolerance in healthy people: is there any effect of fish oil supplementation in relation to the type of background diet and habitual dietary intake of n-6 and n-3 fatty acids?

    PubMed

    Giacco, Rosalba; Cuomo, Vincenzo; Vessby, Bengt; Uusitupa, Matti; Hermansen, Kjeld; Meyer, Barbara J; Riccardi, Gabriele; Rivellese, Angela A

    2007-10-01

    To evaluate whether a moderate supplementation of long-chain n-3 fatty acids is able to modulate insulin sensitivity, insulin secretion, beta-cell function and glucose tolerance in healthy individuals consuming a diet rich in either saturated or monounsaturated fat, also in relation to their habitual dietary intake of n-6 and n-3 fatty acid. One hundred and sixty-two healthy individuals were randomly assigned to follow either one of two isoenergetic diets for 3 months, one rich in monounsaturated fats and the other rich in saturated fats. Within each group there was a second randomisation to fish oil (n-3 fatty acids 3.6 g/day) or placebo. At the beginning and at the end of the treatment periods insulin sensitivity (SI), first phase insulin response (FPIR) and glucose tolerance (K(G)-value) were evaluated by the intravenous glucose tolerance test (IVGTT). Fish oil did not have any effect on SI, FPIR, K(G)-value and disposition index in either diet. Even after dividing subjects according to the median value of n-6/n-3 ratio of serum phospholipids at baseline, there was no change in SI (Delta SI 0.42+/-0.34 on fish oil vs 0.14+/-0.23 on placebo for those with n-6/n-3 <4.85; -1.03+/-0.47 on fish oil vs -0.27+/-0.32 on placebo for those with n-6/n-3 >4.85) (M+/-SE), FPIR (Delta FPIR 135.9+/-78.9 vs 157.2+/-157.5 pmol/L; 38.8+/-181.7 vs 357.1+/-181.7 pmol/L), K(G)-value (Delta K(G) 0.14+/-0.15 vs 0.12+/-0.11; -0.32+/-0.16 vs 0.15+/-0.15) or disposition index (Delta disposition index 1465.4+/-830.4 vs 953.8+/-690.0; -1641.6+/-1034.3 vs 446.6+/-905.1). Considering the 75th percentile of n-6/n-3 ratio (5.82) the results on insulin sensitivity, insulin secretion and disposition index were confirmed, while, in this more extreme situation, n-3 fatty acid supplementation induced a significant deterioration of K(G)-value (p=0.02). In healthy individuals a moderate supplementation of fish oil does not affect insulin sensitivity, insulin secretion, beta-cell function or glucose tolerance. The same is true even when the habitual dietary intake of n-6 and n-3 fatty acids is taken into account.

  10. Alternative translation initiation of Caveolin-2 desensitizes insulin signaling through dephosphorylation of insulin receptor by PTP1B and causes insulin resistance.

    PubMed

    Kwon, Hayeong; Jang, Donghwan; Choi, Moonjeong; Lee, Jaewoong; Jeong, Kyuho; Pak, Yunbae

    2018-06-01

    Insulin resistance, defined as attenuated sensitivity responding to insulin, impairs insulin action. Direct causes and molecular mechanisms of insulin resistance have thus far remained elusive. Here we show that alternative translation initiation (ATI) of Caveolin-2 (Cav-2) regulates insulin sensitivity. Cav-2β isoform yielded by ATI desensitizes insulin receptor (IR) via dephosphorylation by protein-tyrosine phosphatase 1B (PTP1B), and subsequent endocytosis and lysosomal degradation of IR, causing insulin resistance. Blockage of Cav-2 ATI protects against insulin resistance by preventing Cav-2β-PTP1B-directed IR desensitization, thereby normalizing insulin sensitivity and glucose uptake. Our findings show that Cav-2β is a negative regulator of IR signaling, and identify a mechanism causing insulin resistance through control of insulin sensitivity via Cav-2 ATI. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Early Mitochondrial Adaptations in Skeletal Muscle to Diet-Induced Obesity Are Strain Dependent and Determine Oxidative Stress and Energy Expenditure But Not Insulin Sensitivity

    PubMed Central

    Sena, Sandra; Sloan, Crystal; Tebbi, Ali; Han, Yong Hwan; O'Neill, Brian T.; Cooksey, Robert C.; Jones, Deborah; Holland, William L.; McClain, Donald A.; Abel, E. Dale

    2012-01-01

    This study sought to elucidate the relationship between skeletal muscle mitochondrial dysfunction, oxidative stress, and insulin resistance in two mouse models with differential susceptibility to diet-induced obesity. We examined the time course of mitochondrial dysfunction and insulin resistance in obesity-prone C57B and obesity-resistant FVB mouse strains in response to high-fat feeding. After 5 wk, impaired insulin-mediated glucose uptake in skeletal muscle developed in both strains in the absence of any impairment in proximal insulin signaling. Impaired mitochondrial oxidative capacity preceded the development of insulin resistant glucose uptake in C57B mice in concert with increased oxidative stress in skeletal muscle. By contrast, mitochondrial uncoupling in FVB mice, which prevented oxidative stress and increased energy expenditure, did not prevent insulin resistant glucose uptake in skeletal muscle. Preventing oxidative stress in C57B mice treated systemically with an antioxidant normalized skeletal muscle mitochondrial function but failed to normalize glucose tolerance and insulin sensitivity. Furthermore, high fat-fed uncoupling protein 3 knockout mice developed increased oxidative stress that did not worsen glucose tolerance. In the evolution of diet-induced obesity and insulin resistance, initial but divergent strain-dependent mitochondrial adaptations modulate oxidative stress and energy expenditure without influencing the onset of impaired insulin-mediated glucose uptake. PMID:22510273

  12. Insulin sensitizer prevents and ameliorates experimental type 1 diabetes.

    PubMed

    Valitsky, Michael; Hoffman, Amnon; Unterman, Terry; Bar-Tana, Jacob

    2017-12-01

    Insulin-dependent type-1 diabetes (T1D) is driven by autoimmune β-cell failure, whereas systemic resistance to insulin is considered the hallmark of insulin-independent type-2 diabetes (T2D). In contrast to this canonical dichotomy, insulin resistance appears to precede the overt diabetic stage of T1D and predict its progression, implying that insulin sensitizers may change the course of T1D. However, previous attempts to ameliorate T1D in animal models or patients by insulin sensitizers have largely failed. Sensitization to insulin by MEthyl-substituted long-chain DICArboxylic acid (MEDICA) analogs in T2D animal models surpasses that of current insulin sensitizers, thus prompting our interest in probing MEDICA in the T1D context. MEDICA efficacy in modulating the course of T1D was verified in streptozotocin (STZ) diabetic rats and autoimmune nonobese diabetic (NOD) mice. MEDICA treatment normalizes overt diabetes in STZ diabetic rats when added on to subtherapeutic insulin, and prevents/delays autoimmune T1D in NOD mice. MEDICA treatment does not improve β-cell insulin content or insulitis score, but its efficacy is accounted for by pronounced total body sensitization to insulin. In conclusion, potent insulin sensitizers may counteract genetic predisposition to autoimmune T1D and amplify subtherapeutic insulin into an effective therapeutic measure for the treatment of overt T1D. Copyright © 2017 the American Physiological Society.

  13. IRS-1: essential for insulin- and IL-4-stimulated mitogenesis in hematopoietic cells.

    PubMed

    Wang, L M; Myers, M G; Sun, X J; Aaronson, S A; White, M; Pierce, J H

    1993-09-17

    Although several interleukin-3 (IL-3)-dependent cell lines proliferate in response to IL-4 or insulin, the 32D line does not. Insulin and IL-4 sensitivity was restored to 32D cells by expression of IRS-1, the principal substrate of the insulin receptor. Although 32D cells possessed receptors for both factors, they lacked the IRS-1--related protein, 4PS, which becomes phosphorylated by tyrosine in insulin- or IL-4--responsive lines after stimulation. These results indicate that factors that bind unrelated receptors can use similar mitogenic signaling pathways in hematopoietic cells and that 4PS and IRS-1 are functionally similar proteins that are essential for insulin- and IL-4--induced proliferation.

  14. Assessment of insulin sensitivity from measurements in fasting state and during an oral glucose tolerance test in obese children.

    PubMed

    Atabek, Mehmet Emre; Pirgon, Ozgur

    2007-02-01

    Few previous studies have examined the validity of the fasting glucose-to-insulin ratio (FGIR), homeostasis model assessment of insulin resistance (HOMA-IR) and quantitative insulin-sensitivity check index (QUICKI) in pediatric populations. To compare simple indices of insulin resistance calculated from fasting glucose and insulin levels with insulin sensitivity indices (area under the response curve [AUCinsulin], insulin sensitivity index [ISI-compositeL) determined by oral glucose tolerance testing (OGTT) in obese children. One hundred and forty-eight obese children and adolescents (86 girls and 62 boys, mean age: 10.86 +/- 3.08 years, mean body mass index (BMI): 27.7 +/- 4.2) participated in the study. OGTT was performed in all participants. After glucose and insulin measurements from OGTT, the children were divided into two groups according to the presence or absence of insulin resistance. Insulin sensitivity indices obtained from the OGTT were compared between the groups. The total plasma glucose response and insulin secretion were evaluated from the AUC estimated by the trapezoid rule. Cut-off points, and sensitivity and specificity calculations were based on insulin resistance with receiver operating characteristic curve (ROC) analysis. The prevalence of insulin resistance, glucose intolerance and dyslipidemia was 37.1%, 24.3% and 54% in obese children, respectively. The groups consisted of 93 children without insulin resistance (54 girls and 39 boys; mean age: 10.5 +/- 3.3 years; mean BMI: 27.0 +/- 4.2) and 55 children with insulin resistance (32 girls and 23 boys; mean age: 11.4 +/- 2.5 years; mean BMI: 27.9 +/- 3.9). There were significant differences in mean FGIR (10.0 +/- 7.2 vs 5.6 +/- 2.8, p < 0.001), HOMA-IR (3.2 +/- 2.3 vs 4.9 +/- 2.3, p < 0.001) and QUICKI (0.33 +/- 0.03 vs 0.30 +/- 0.02, p < 0.001) between the groups. The cut-off points for diagnosis of insulin resistance were < 5.6 for FGIR (sensitivity 61.8, specificity 76.3), > 2.7 for HOMA-IR (sensitivity 80, specificity 59.1), and < 0.328 for QUICKI (sensitivity 80, specificity 60.2). Indices derived from fasting samples for diagnosis of insulin sensitivity are reliable criteria in obese children and adolescents. HOMA-IR and QUICKI appeared to have similar sensitivity and specificity and to have higher sensitivity than FGIR.

  15. Vitamin D deficiency in childhood obesity is associated with high levels of circulating inflammatory mediators, and low insulin sensitivity.

    PubMed

    Reyman, M; Verrijn Stuart, A A; van Summeren, M; Rakhshandehroo, M; Nuboer, R; de Boer, F K; van den Ham, H J; Kalkhoven, E; Prakken, B; Schipper, H S

    2014-01-01

    Childhood obesity is accompanied by low-grade systemic inflammation, which contributes to the development of insulin resistance and cardiovascular complications later in life. As vitamin D exhibits profound immunomodulatory functions and vitamin D deficiency is highly prevalent in childhood obesity, we hypothesized that vitamin D deficiency in childhood obesity coincides with enhanced systemic inflammation and reduced insulin sensitivity. In a cross-sectional study of 64 obese and 32 healthy children aged 6-16 years, comprehensive profiling of 32 circulating inflammatory mediators was performed, together with assessment of 25-hydroxyvitamin D (25(OH)D) levels and measures for insulin sensitivity. Severe vitamin D insufficiency, which is further referred to as vitamin D deficiency, was defined as a 25(OH)D level ≤37.5 nmol l(-1), and was highly prevalent in obese (56%) versus healthy control children (16%). Throughout the study, 25(OH)D-deficient children were compared with the other children, including 25(OH)D insufficient (37.5-50 nmol l(-1)) and 25(OH)D sufficient children (≥50 nmol l(-1)). First, 25(OH)D-deficient obese children showed a lower insulin sensitivity than other obese children, as measured by a lower quantitative insulin sensitivity check index. Second, the association between 25(OH)D deficiency and insulin resistance in childhood obesity was confirmed with multiple regression analysis. Third, 25(OH)D-deficient obese children showed higher levels of the inflammatory mediators cathepsin S, chemerin and soluble vascular adhesion molecule (sVCAM), compared with the other obese children. Finally, hierarchical cluster analysis revealed an over-representation of 25(OH)D deficiency in obese children expressing inflammatory mediator clusters with high levels of cathepsin S, sVCAM and chemerin. 25(OH)D deficiency in childhood obesity was associated with enhanced systemic inflammation and reduced insulin sensitivity. The high cathepsin S and sVCAM levels may reflect activation of a pro-inflammatory, pro-diabetic and atherogenic pathway, which could be inhibited by vitamin D supplementation.

  16. Metabolites related to gut bacterial metabolism, peroxisome proliferator-activated receptor-alpha activation, and insulin sensitivity are associated with physical function in functionally-limited older adults

    PubMed Central

    Lustgarten, Michael S; Price, Lori L; Chalé, Angela; Fielding, Roger A

    2014-01-01

    Identification of mechanisms underlying physical function will be important for addressing the growing challenge that health care will face with physical disablement in the expanding aging population. Therefore, the goals of the current study were to use metabolic profiling to provide insight into biologic mechanisms that may underlie physical function by examining the association between baseline and the 6-month change in serum mass spectrometry-obtained amino acids, fatty acids, and acylcarnitines with baseline and the 6-month change in muscle strength (leg press one repetition maximum divided by total lean mass, LP/Lean), lower extremity function [short physical performance battery (SPPB)], and mobility (400 m gait speed, 400-m), in response to 6 months of a combined resistance exercise and nutritional supplementation (whey protein or placebo) intervention in functionally-limited older adults (SPPB ≤ 10; 70–85 years, N = 73). Metabolites related to gut bacterial metabolism (cinnamoylglycine, phenol sulfate, p-cresol sulfate, 3-indoxyl sulfate, serotonin, N-methylproline, hydrocinnamate, dimethylglycine, trans-urocanate, valerate) that are altered in response to peroxisome proliferator-activated receptor-alpha (PPAR-α) activation (α-hydroxyisocaproate, α-hydroxyisovalerate, 2-hydroxy-3-methylvalerate, indolelactate, serotonin, 2-hydroxypalmitate, glutarylcarnitine, isobutyrylcarnitine, cinnamoylglycine) and that are related to insulin sensitivity (monounsaturated fatty acids: 5-dodecenoate, myristoleate, palmitoleate; γ-glutamylamino acids: γ-glutamylglutamine, γ-glutamylalanine, γ-glutamylmethionine, γ-glutamyltyrosine; branched-chain amino acids: leucine, isoleucine, valine) were associated with function at baseline, with the 6-month change in function or were identified in backward elimination regression predictive models. Collectively, these data suggest that gut microbial metabolism, PPAR-α activation, and insulin sensitivity may be involved in mechanisms that underlie physical function in functionally-limited older adults. PMID:25041144

  17. Intermittent Hypoxia Impairs Glucose Homeostasis in C57BL6/J Mice: Partial Improvement with Cessation of the Exposure

    PubMed Central

    Polak, Jan; Shimoda, Larissa A.; Drager, Luciano F.; Undem, Clark; McHugh, Holly; Polotsky, Vsevolod Y.; Punjabi, Naresh M.

    2013-01-01

    Objectives: Obstructive sleep apnea is associated with insulin resistance, glucose intolerance, and type 2 diabetes mellitus. Although several studies have suggested that intermittent hypoxia in obstructive sleep apnea may induce abnormalities in glucose homeostasis, it remains to be determined whether these abnormalities improve after discontinuation of the exposure. The objective of this study was to delineate the effects of intermittent hypoxia on glucose homeostasis, beta cell function, and liver glucose metabolism and to investigate whether the impairments improve after the hypoxic exposure is discontinued. Interventions: C57BL6/J mice were exposed to 14 days of intermittent hypoxia, 14 days of intermittent air, or 7 days of intermittent hypoxia followed by 7 days of intermittent air (recovery paradigm). Glucose and insulin tolerance tests were performed to estimate whole-body insulin sensitivity and calculate measures of beta cell function. Oxidative stress in pancreatic tissue and glucose output from isolated hepatocytes were also assessed. Results: Intermittent hypoxia increased fasting glucose levels and worsened glucose tolerance by 67% and 27%, respectively. Furthermore, intermittent hypoxia exposure was associated with impairments in insulin sensitivity and beta cell function, an increase in liver glycogen, higher hepatocyte glucose output, and an increase in oxidative stress in the pancreas. While fasting glucose levels and hepatic glucose output normalized after discontinuation of the hypoxic exposure, glucose intolerance, insulin resistance, and impairments in beta cell function persisted. Conclusions: Intermittent hypoxia induces insulin resistance, impairs beta cell function, enhances hepatocyte glucose output, and increases oxidative stress in the pancreas. Cessation of the hypoxic exposure does not fully reverse the observed changes in glucose metabolism. Citation: Polak J; Shimoda LA; Drager LF; Undem C; McHugh H; Polotsky VY; Punjabi NM. Intermittent hypoxia impairs glucose homeostasis in C57BL6/J mice: partial improvement with cessation of the exposure. SLEEP 2013;36(10):1483-1490. PMID:24082307

  18. One week treatment with the IL-1 receptor antagonist anakinra leads to a sustained improvement in insulin sensitivity in insulin resistant patients with type 1 diabetes mellitus.

    PubMed

    van Asseldonk, Edwin J P; van Poppel, Pleun C M; Ballak, Dov B; Stienstra, Rinke; Netea, Mihai G; Tack, Cees J

    2015-10-01

    Inflammation associated with obesity is involved in the development of insulin resistance. We hypothesized that anti-inflammatory treatment with the Interleukin-1 receptor antagonist anakinra would improve insulin sensitivity. In an open label proof-of-concept study, we included overweight patients diagnosed with type 1 diabetes with an HbA1c level over 7.5%. Selecting insulin resistant patients with longstanding type 1 diabetes allowed us to study the effects of anakinra on insulin sensitivity. Patients were treated with 100mg anakinra daily for one week. Insulin sensitivity, insulin need and blood glucose profiles were measured before, after one week and after four weeks of follow-up. Fourteen patients completed the study. One week of anakinra treatment led to an improvement of insulin sensitivity, an effect that was sustained for four weeks. Similarly, glucose profiles, HbA1c levels and insulin needs improved. In conclusion, one week of treatment with anakinra improves insulin sensitivity in patients with type 1 diabetes. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Prevention of diabetes with pioglitazone in ACT NOW: physiologic correlates.

    PubMed

    Defronzo, Ralph A; Tripathy, Devjit; Schwenke, Dawn C; Banerji, Maryann; Bray, George A; Buchanan, Thomas A; Clement, Stephen C; Gastaldelli, Amalia; Henry, Robert R; Kitabchi, Abbas E; Mudaliar, Sunder; Ratner, Robert E; Stentz, Frankie B; Musi, Nicolas; Reaven, Peter D

    2013-11-01

    We examined the metabolic characteristics that attend the development of type 2 diabetes (T2DM) in 441 impaired glucose tolerance (IGT) subjects who participated in the ACT NOW Study and had complete end-of-study metabolic measurements. Subjects were randomized to receive pioglitazone (PGZ; 45 mg/day) or placebo and were observed for a median of 2.4 years. Indices of insulin sensitivity (Matsuda index [MI]), insulin secretion (IS)/insulin resistance (IR; ΔI0-120/ΔG0-120, ΔIS rate [ISR]0-120/ΔG0-120), and β-cell function (ΔI/ΔG × MI and ΔISR/ΔG × MI) were calculated from plasma glucose, insulin, and C-peptide concentrations during oral glucose tolerance tests at baseline and study end. Diabetes developed in 45 placebo-treated vs. 15 PGZ-treated subjects (odds ratio [OR] 0.28 [95% CI 0.15-0.49]; P < 0.0001); 48% of PGZ-treated subjects reverted to normal glucose tolerance (NGT) versus 28% of placebo-treated subjects (P < 0.005). Higher final glucose tolerance status (NGT > IGT > T2DM) was associated with improvements in insulin sensitivity (OR 0.61 [95% CI 0.54-0.80]), IS (OR 0.61 [95% CI 0.50-0.75]), and β-cell function (ln IS/IR index and ln ISR/IR index) (OR 0.26 [95% CI 0.19-0.37]; all P < 0.0001). Of the factors measured, improved β-cell function was most closely associated with final glucose tolerance status.

  20. Drosophila Insulin receptor regulates the persistence of injury-induced nociceptive sensitization

    PubMed Central

    Patel, Atit A.

    2018-01-01

    ABSTRACT Diabetes-associated nociceptive hypersensitivity affects diabetic patients with hard-to-treat chronic pain. Because multiple tissues are affected by systemic alterations in insulin signaling, the functional locus of insulin signaling in diabetes-associated hypersensitivity remains obscure. Here, we used Drosophila nociception/nociceptive sensitization assays to investigate the role of Insulin receptor (Insulin-like receptor, InR) in nociceptive hypersensitivity. InR mutant larvae exhibited mostly normal baseline thermal nociception (absence of injury) and normal acute thermal hypersensitivity following UV-induced injury. However, their acute thermal hypersensitivity persists and fails to return to baseline, unlike in controls. Remarkably, injury-induced persistent hypersensitivity is also observed in larvae that exhibit either type 1 or type 2 diabetes. Cell type-specific genetic analysis indicates that InR function is required in multidendritic sensory neurons including nociceptive class IV neurons. In these same nociceptive sensory neurons, only modest changes in dendritic morphology were observed in the InRRNAi-expressing and diabetic larvae. At the cellular level, InR-deficient nociceptive sensory neurons show elevated calcium responses after injury. Sensory neuron-specific expression of InR rescues the persistent thermal hypersensitivity of InR mutants and constitutive activation of InR in sensory neurons ameliorates the hypersensitivity observed with a type 2-like diabetic state. Our results suggest that a sensory neuron-specific function of InR regulates the persistence of injury-associated hypersensitivity. It is likely that this new system will be an informative genetically tractable model of diabetes-associated hypersensitivity. PMID:29752280

  1. Involvement of insulin resistance in D-galactose-induced age-related dementia in rats: Protective role of metformin and saxagliptin

    PubMed Central

    Kenawy, Sara; Hassan, Azza; El-Shenawy, Siham; Gomaa, Nawal; Zaki, Hala; Attia, Amina

    2017-01-01

    Age-related dementia is one of the most devastating disorders affecting the elderly. Recently, emerging data suggest that impaired insulin signaling is the major contributor in the development of Alzheimer’s dementia (AD), which is the most common type of senile dementia. In the present study, we investigated the potential therapeutic effects of metformin (Met) and saxagliptin (Saxa), as insulin sensitizing agents, in a rat model of brain aging and AD using D-galactose (D-gal, 150 mg/kg/day, s.c. for 90 successive days). Six groups of adult male Wistar rats were used: normal, D-gal, Met (500 mg/kg/day, p.o), and Saxa (1 mg/kg/day, p.o) control groups, as well as D-gal/Met and D-gal/Sax treated groups. Impaired learning and memory function was observed in rats treated with D-gal using Morris water maze test. Biochemical and histopathological findings also revealed some characteristic changes of AD in the brain that include the increased content of acetylcholine, glutamate, and phosphorelated tau, as well as deposition of amyloid plaques and neurofibrillary tangles. Induction of insulin resistance in experimentally aged rats was evidenced by increased blood glycated hemoglobin, brain contents of insulin and receptors for advanced glycated end-products, as well as decreased brain insulin receptor level. Elevation of oxidative stress markers and TNF-α brain content was also demonstrated. Met and Saxa, with a preference to Met, restored the normal memory and learning functions in rats, improved D-gal-induced state of insulin resistance, oxidative stress and inflammation, and ameliorated the AD biochemical and histopathological alterations in brain tissues. Our findings suggest that D-gal model of aging results in a diminishing of learning and memory function by producing a state of impaired insulin signaling that causes a cascade of deleterious events like oxidative stress, inflammation, and tau hyper-phosphorylation. Reversing of these harmful effects by the use of insulin-sensitizing drugs like Met and Saxa suggests their involvement in alleviation insulin resistance as the underlying pathology of AD and hence their potential use as anti-dementia drugs. PMID:28832656

  2. Identification and validation of N-acetyltransferase 2 as an insulin sensitivity gene.

    PubMed

    Knowles, Joshua W; Xie, Weijia; Zhang, Zhongyang; Chennamsetty, Indumathi; Chennemsetty, Indumathi; Assimes, Themistocles L; Paananen, Jussi; Hansson, Ola; Pankow, James; Goodarzi, Mark O; Carcamo-Orive, Ivan; Morris, Andrew P; Chen, Yii-Der I; Mäkinen, Ville-Petteri; Ganna, Andrea; Mahajan, Anubha; Guo, Xiuqing; Abbasi, Fahim; Greenawalt, Danielle M; Lum, Pek; Molony, Cliona; Lind, Lars; Lindgren, Cecilia; Raffel, Leslie J; Tsao, Philip S; Schadt, Eric E; Rotter, Jerome I; Sinaiko, Alan; Reaven, Gerald; Yang, Xia; Hsiung, Chao A; Groop, Leif; Cordell, Heather J; Laakso, Markku; Hao, Ke; Ingelsson, Erik; Frayling, Timothy M; Weedon, Michael N; Walker, Mark; Quertermous, Thomas

    2015-04-01

    Decreased insulin sensitivity, also referred to as insulin resistance (IR), is a fundamental abnormality in patients with type 2 diabetes and a risk factor for cardiovascular disease. While IR predisposition is heritable, the genetic basis remains largely unknown. The GENEticS of Insulin Sensitivity consortium conducted a genome-wide association study (GWAS) for direct measures of insulin sensitivity, such as euglycemic clamp or insulin suppression test, in 2,764 European individuals, with replication in an additional 2,860 individuals. The presence of a nonsynonymous variant of N-acetyltransferase 2 (NAT2) [rs1208 (803A>G, K268R)] was strongly associated with decreased insulin sensitivity that was independent of BMI. The rs1208 "A" allele was nominally associated with IR-related traits, including increased fasting glucose, hemoglobin A1C, total and LDL cholesterol, triglycerides, and coronary artery disease. NAT2 acetylates arylamine and hydrazine drugs and carcinogens, but predicted acetylator NAT2 phenotypes were not associated with insulin sensitivity. In a murine adipocyte cell line, silencing of NAT2 ortholog Nat1 decreased insulin-mediated glucose uptake, increased basal and isoproterenol-stimulated lipolysis, and decreased adipocyte differentiation, while Nat1 overexpression produced opposite effects. Nat1-deficient mice had elevations in fasting blood glucose, insulin, and triglycerides and decreased insulin sensitivity, as measured by glucose and insulin tolerance tests, with intermediate effects in Nat1 heterozygote mice. Our results support a role for NAT2 in insulin sensitivity.

  3. Olive (Olea europaea L.) leaf polyphenols improve insulin sensitivity in middle-aged overweight men: a randomized, placebo-controlled, crossover trial.

    PubMed

    de Bock, Martin; Derraik, José G B; Brennan, Christine M; Biggs, Janene B; Morgan, Philip E; Hodgkinson, Steven C; Hofman, Paul L; Cutfield, Wayne S

    2013-01-01

    Olive plant leaves (Olea europaea L.) have been used for centuries in folk medicine to treat diabetes, but there are very limited data examining the effects of olive polyphenols on glucose homeostasis in humans. To assess the effects of supplementation with olive leaf polyphenols (51.1 mg oleuropein, 9.7 mg hydroxytyrosol per day) on insulin action and cardiovascular risk factors in middle-aged overweight men. Randomized, double-blinded, placebo-controlled, crossover trial in New Zealand. 46 participants (aged 46.4 ± 5.5 years and BMI 28.0 ± 2.0 kg/m(2)) were randomized to receive capsules with olive leaf extract (OLE) or placebo for 12 weeks, crossing over to other treatment after a 6-week washout. Primary outcome was insulin sensitivity (Matsuda method). Secondary outcomes included glucose and insulin profiles, cytokines, lipid profile, body composition, 24-hour ambulatory blood pressure, and carotid intima-media thickness. Treatment evaluations were based on the intention-to-treat principle. All participants took >96% of prescribed capsules. OLE supplementation was associated with a 15% improvement in insulin sensitivity (p = 0.024) compared to placebo. There was also a 28% improvement in pancreatic β-cell responsiveness (p = 0.013). OLE supplementation also led to increased fasting interleukin-6 (p = 0.014), IGFBP-1 (p = 0.024), and IGFBP-2 (p = 0.015) concentrations. There were however, no effects on interleukin-8, TNF-α, ultra-sensitive CRP, lipid profile, ambulatory blood pressure, body composition, carotid intima-media thickness, or liver function. Supplementation with olive leaf polyphenols for 12 weeks significantly improved insulin sensitivity and pancreatic β-cell secretory capacity in overweight middle-aged men at risk of developing the metabolic syndrome.

  4. Clinical characteristics and beta cell function in Chinese patients with newly diagnosed type 2 diabetes mellitus with different levels of serum triglyceride.

    PubMed

    Zheng, Shuang; Zhou, Huan; Han, Tingting; Li, Yangxue; Zhang, Yao; Liu, Wei; Hu, Yaomin

    2015-04-29

    To explore clinical characteristics and beta cell function in Chinese patients with newly diagnosed drug naive type 2 diabetes mellitus (T2DM) with different levels of serum triglyceride (TG). Patients with newly diagnosed T2DM (n = 624) were enrolled and divided into different groups according to levels of serum TG. All patients underwent oral glucose tolerance tests and insulin releasing tests. Demographic data, lipid profiles, glucose levels, and insulin profiles were compared between different groups. Basic insulin secretion function index (homeostasis model assessment for beta cell function index, HOMA-β), modified beta cell function index (MBCI), glucose disposition indices (DI), and early insulin secretion function index (insulinogenic index, IGI) were used to evaluate the beta cell function. Patients of newly diagnosed T2DM with hypertriglyceridemia were younger, fatter and had worse lipid profiles, glucose profiles, and high insulin levels than those with normal TG. There is no difference in early phase insulin secretion among groups of newly diagnosed T2DM patients with different TG levels. The basal beta cell function (HOMA-β and MBCI) initially increased along rising TG levels and then decreased as the TG levels rose further. The insulin sensitivity was relatively high in patients with a low level of TG and low with a high level of TG. Hypertriglyceridemia influences clinical characteristics and β cell function of Chinese patients with newly diagnosed T2DM. A better management of dyslipidemia may, to some extent, reduce the effect of lipotoxicity, thereby improving glucose homeostasis in patients with newly diagnosed T2DM.

  5. Effect of trans-fatty acid intake on insulin sensitivity and intramuscular lipids--a randomized trial in overweight postmenopausal women.

    PubMed

    Bendsen, Nathalie T; Haugaard, Steen B; Larsen, Thomas M; Chabanova, Elizaveta; Stender, Steen; Astrup, Arne

    2011-07-01

    Intake of industrially produced trans-fatty acids (TFA) has been linked to increased risk of type 2 diabetes mellitus in observational studies. We investigated the causality of this association by examining if a high intake of TFA impairs measures of glucose homeostasis and induces intramuscular lipid deposition in abdominally obese women. In a double-blind, parallel dietary intervention study, 52 healthy but overweight postmenopausal women were randomized to receive either partially hydrogenated soybean oil (15 g/d TFA) or a control oil (mainly oleic and palmitic acid) for 16 weeks. Three markers of glucose homeostasis and 4 markers of lipolysis were derived from glucose, insulin, C-peptide, nonesterified fatty acid, and glycerol concentrations during a 3-hour frequent sampling oral glucose tolerance test. Intramuscular lipids were assessed by magnetic resonance spectroscopy. Forty-nine women completed the study. Insulin sensitivity (assessed by ISI(composite)), β-cell function (the disposition index), and the metabolic clearance rate of insulin were not significantly affected by the dietary intervention. Neither was the ability of insulin to suppress plasma nonesterified fatty acid and glycerol during oral glucose ingestion nor the intramuscular lipid deposition. In conclusion, high TFA intake did not affect glucose metabolism over 16 weeks in postmenopausal overweight women. A study population with a stronger predisposition to insulin resistance and/or a longer duration of exposure may be required for insulin sensitivity to be affected by intake of industrial TFA. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Ambient Air Pollutants Have Adverse Effects on Insulin and Glucose Homeostasis in Mexican Americans

    PubMed Central

    Chen, Zhanghua; Salam, Muhammad T.; Toledo-Corral, Claudia; Watanabe, Richard M.; Xiang, Anny H.; Buchanan, Thomas A.; Habre, Rima; Bastain, Theresa M.; Lurmann, Fred; Wilson, John P.; Trigo, Enrique

    2016-01-01

    OBJECTIVE Recent studies suggest that air pollution plays a role in type 2 diabetes (T2D) incidence and mortality. The underlying physiological mechanisms have yet to be established. We hypothesized that air pollution adversely affects insulin sensitivity and secretion and serum lipid levels. RESEARCH DESIGN AND METHODS Participants were selected from BetaGene (n = 1,023), a study of insulin resistance and pancreatic β-cell function in Mexican Americans. All participants underwent DXA and oral and intravenous glucose tolerance tests and completed dietary and physical activity questionnaires. Ambient air pollutant concentrations (NO2, O3, and PM2.5) for short- and long-term periods were assigned by spatial interpolation (maximum interpolation radius of 50 km) of data from air quality monitors. Traffic-related air pollution from freeways (TRAP) was estimated using the dispersion model as NOx. Variance component models were used to analyze individual and multiple air pollutant associations with metabolic traits. RESULTS Short-term (up to 58 days cumulative lagged averages) exposure to PM2.5 was associated with lower insulin sensitivity and HDL-to-LDL cholesterol ratio and higher fasting glucose and insulin, HOMA-IR, total cholesterol, and LDL cholesterol (LDL-C) (all P ≤ 0.036). Annual average PM2.5 was associated with higher fasting glucose, HOMA-IR, and LDL-C (P ≤ 0.043). The effects of short-term PM2.5 exposure on insulin sensitivity were largest among obese participants. No statistically significant associations were found between TRAP and metabolic outcomes. CONCLUSIONS Exposure to ambient air pollutants adversely affects glucose tolerance, insulin sensitivity, and blood lipid concentrations. Our findings suggest that ambient air pollutants may contribute to the pathophysiology in the development of T2D and related sequelae. PMID:26868440

  7. Proximity to Delivery Alters Insulin Sensitivity and Glucose Metabolism in Pregnant Mice.

    PubMed

    Musial, Barbara; Fernandez-Twinn, Denise S; Vaughan, Owen R; Ozanne, Susan E; Voshol, Peter; Sferruzzi-Perri, Amanda N; Fowden, Abigail L

    2016-04-01

    In late pregnancy, maternal insulin resistance occurs to support fetal growth, but little is known about insulin-glucose dynamics close to delivery. This study measured insulin sensitivity in mice in late pregnancy at day 16 (D16) and near term at D19. Nonpregnant (NP) and pregnant mice were assessed for metabolite and hormone concentrations, body composition by DEXA, tissue insulin signaling protein abundance by Western blotting, glucose tolerance and utilization, and insulin sensitivity using acute insulin administration and hyperinsulinemic-euglycemic clamps with [(3)H]glucose infusion. Whole-body insulin resistance occurred in D16 pregnant dams in association with basal hyperinsulinemia, insulin-resistant endogenous glucose production, and downregulation of several proteins in hepatic and skeletal muscle insulin signaling pathways relative to NP and D19 values. Insulin resistance was less pronounced at D19, with restoration of NP insulin concentrations, improved hepatic insulin sensitivity, and increased abundance of hepatic insulin signaling proteins. At D16, insulin resistance at whole-body, tissue, and molecular levels will favor fetal glucose acquisition, while improved D19 hepatic insulin sensitivity will conserve glucose for maternal use in anticipation of lactation. Tissue sensitivity to insulin, therefore, alters differentially with proximity to delivery in pregnant mice, with implications for human and other species. © 2016 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  8. Left ventricular function impairment in patients with normal-weight obesity: contribution of abdominal fat deposition, profibrotic state, reduced insulin sensitivity, and proinflammatory activation.

    PubMed

    Kosmala, Wojciech; Jedrzejuk, Diana; Derzhko, Roksolana; Przewlocka-Kosmala, Monika; Mysiak, Andrzej; Bednarek-Tupikowska, Grazyna

    2012-05-01

    Obesity predisposes to left ventricular (LV) dysfunction and heart failure; however, the risk of these complications has not been assessed in patients with a normal body mass index (BMI) but increased body fat content (normal-weight obesity, NWO). We hypothesized that LV performance in NWO may be impaired and sought to investigate potential contributors to cardiac functional abnormalities. One hundred sixty-eight subjects (age, 38±7 years) with BMI <25kg/m(2) and no history of any disease affecting the myocardium were classified on the basis of body fat content into 2 groups: with NWO and without NWO. Echocardiographic indices of LV systolic and diastolic function, including myocardial velocities and deformation, serological fibrosis markers, indicators of proinflammatory activation, and metabolic control, were evaluated. Subjects with NWO demonstrated impaired LV systolic and diastolic function, increased fibrosis intensity (assessed by procollagen type I carboxy-terminal propeptide [PICP]), impaired insulin sensitivity, and increased proinflammatory activation as compared with individuals with normal body fat. The independent correlates of LV systolic and diastolic function variables were as follows: for strain, IL-18 (β=-0.17, P<0.006), C-reactive protein (β=-0.20, P<0.002) and abdominal fat deposit (β=-0.20, P<0.003); for tissue S velocity, PICP (β=-0.21, P<0.002) and abdominal fat deposit (β=-0.43, P<0.0001); for tissue E velocity, abdominal fat deposit (β=-0.30, P<0.0001), PICP (β=-0.31, P<0.0001) and homeostasis model assessment of insulin resistance index (HOMA IR; β=-0.20, P<0.002); and for E/e'-PICP, IL-18 (both β=0.18, P<0.01) and HOMA IR (β=0.16, P<0.04). In patients with NWO, subclinical disturbances of LV function are independently associated with the extent of abdominal fat deposit, profibrotic state (as reflected by circulating PICP), reduced insulin sensitivity, and proinflammatory activation.

  9. Sucralose Affects Glycemic and Hormonal Responses to an Oral Glucose Load

    PubMed Central

    Pepino, M. Yanina; Tiemann, Courtney D.; Patterson, Bruce W.; Wice, Burton M.; Klein, Samuel

    2013-01-01

    OBJECTIVE Nonnutritive sweeteners (NNS), such as sucralose, have been reported to have metabolic effects in animal models. However, the relevance of these findings to human subjects is not clear. We evaluated the acute effects of sucralose ingestion on the metabolic response to an oral glucose load in obese subjects. RESEARCH DESIGN AND METHODS Seventeen obese subjects (BMI 42.3 ± 1.6 kg/m2) who did not use NNS and were insulin sensitive (based on a homeostasis model assessment of insulin resistance score ≤2.6) underwent a 5-h modified oral glucose tolerance test on two separate occasions preceded by consuming either sucralose (experimental condition) or water (control condition) 10 min before the glucose load in a randomized crossover design. Indices of β-cell function, insulin sensitivity (SI), and insulin clearance rates were estimated by using minimal models of glucose, insulin, and C-peptide kinetics. RESULTS Compared with the control condition, sucralose ingestion caused 1) a greater incremental increase in peak plasma glucose concentrations (4.2 ± 0.2 vs. 4.8 ± 0.3 mmol/L; P = 0.03), 2) a 20 ± 8% greater incremental increase in insulin area under the curve (AUC) (P < 0.03), 3) a 22 ± 7% greater peak insulin secretion rate (P < 0.02), 4) a 7 ± 4% decrease in insulin clearance (P = 0.04), and 5) a 23 ± 20% decrease in SI (P = 0.01). There were no significant differences between conditions in active glucagon-like peptide 1, glucose-dependent insulinotropic polypeptide, glucagon incremental AUC, or indices of the sensitivity of the β-cell response to glucose. CONCLUSIONS These data demonstrate that sucralose affects the glycemic and insulin responses to an oral glucose load in obese people who do not normally consume NNS. PMID:23633524

  10. Insulin-Sensitizing Effects of Omega-3 Fatty Acids: Lost in Translation?

    PubMed Central

    Lalia, Antigoni Z.; Lanza, Ian R.

    2016-01-01

    Omega-3 polyunsaturated fatty acids (n-3 PUFA) of marine origin, eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA), have been long studied for their therapeutic potential in the context of type 2 diabetes, insulin resistance, and glucose homeostasis. Glaring discordance between observations in animal and human studies precludes, to date, any practical application of n-3 PUFA as nutritional therapeutics against insulin resistance in humans. Our objective in this review is to summarize current knowledge and provide an up-to-date commentary on the therapeutic value of EPA and DHA supplementation for improving insulin sensitivity in humans. We also sought to discuss potential mechanisms of n-3 PUFA action in target tissues, in specific skeletal muscle, based on our recent work, as well as in liver and adipose tissue. We conducted a literature search to include all preclinical and clinical studies performed within the last two years and to comment on representative studies published earlier. Recent studies support a growing consensus that there are beneficial effects of n-3 PUFA on insulin sensitivity in rodents. Observational studies in humans are encouraging, however, the vast majority of human intervention studies fail to demonstrate the benefit of n-3 PUFA in type 2 diabetes or insulin-resistant non-diabetic people. Nevertheless, there are still several unanswered questions regarding the potential impact of n-3 PUFA on metabolic function in humans. PMID:27258299

  11. Fuel-induced amplification of insulin secretion in mouse pancreatic islets exposed to a high sulfonylurea concentration: role of the NADPH/NADP+ ratio.

    PubMed

    Panten, U; Rustenbeck, I

    2008-01-01

    The aim of this study was to examine whether the cytosolic NADPH/NADP+ ratio of beta cells serves as an amplifying signal in fuel-induced insulin secretion and whether such a function is mediated by cytosolic alpha-ketoglutarate. Pancreatic islets and islet cells were isolated from albino mice by collagenase digestion. Insulin secretion of incubated or perifused islets was measured by ELISA. The NADPH and NADP+ content of incubated islets was determined by enzymatic cycling. The cytosolic Ca2+ concentration ([Ca2+]c) in islets was measured by microfluorimetry and the activity of ATP-sensitive K+ channels in islet cells by patch-clamping. Both 30 mmol/l glucose and 10 mmol/l alpha-ketoisocaproate stimulated insulin secretion and elevated the NADPH/NADP+ ratio of islets preincubated in the absence of fuel. The increase in the NADPH/NADP+ ratio was abolished in the presence of 2.7 micromol/l glipizide (closing all ATP-sensitive K+ channels). However, alpha-ketoisocaproate, but not glucose, still stimulated insulin secretion. That glipizide did not inhibit alpha-ketoisocaproate-induced insulin secretion was not the result of elevated [Ca2+]c, as glucose caused a more marked [Ca2+]c increase. Insulin release triggered by glipizide alone was moderately amplified by dimethyl alpha-ketoglutarate (which is cleaved to produce cytosolic alpha-ketoglutarate), but there was no indication of a signal function of cytosolic alpha-ketoglutarate. The results strongly suggest that the NADPH/NADP+ ratio in the beta cell cytosol does not serve as an amplifying signal in fuel-induced insulin release. The study supports the view that amplification results from the intramitochondrial production of citrate by citrate synthase and from the associated export of citrate into the cytosol.

  12. Effect of rosiglitazone on insulin resistance, growth factors, and reproductive disturbances in women with polycystic ovary syndrome.

    PubMed

    Belli, Susana H; Graffigna, Mabel N; Oneto, Adriana; Otero, Patricia; Schurman, Leon; Levalle, Oscar A

    2004-03-01

    To evaluate the effects of rosiglitazone on insulin resistance, growth factors, and reproductive disturbances in women with polycystic ovary syndrome (PCOS). Prospective study. Women with PCOS attending as outpatients of the Endocrine Division, Hospital Durand, Buenos Aires. Twenty-four insulin-resistant women with PCOS. Hormonal evaluations and a standardized oral glucose tolerance test before and after a 3-month trial of 4 mg of rosiglitazone daily. Serum LH, FSH, T, IGF-1, IGFBP-1, IGFBP-3, leptin, 17alpha-hydroxyprogesterone, insulin, and glucose concentrations. The area under insulin curve (AUC-insulin), the HOMA index (insulin resistance), the QUICKI index (insulin sensitivity), and the beta-cell function were calculated. Body mass index (BMI) and the waist/hip ratio were evaluated. A significant decrease was observed in serum fasting insulin, AUC insulin, HOMA index, beta-cell function, IGF-1, LH, and waist/hip ratio. The QUICKI index and IGFBP-1 increased significantly. Serum sex hormone-binding globulin, androgens, leptin, IGFBP-3, and BMI remained unchanged. Twenty-two of 23 females had their menses restored, and three patients became pregnant. One patient was excluded because she became pregnant at the second month. Associated with the decrease in LH, rosiglitazone improved insulin-resistance parameters and normalized the menstrual cycle, which suggests that this drug could improve the endocrine-reproductive condition in insulin-resistant women with PCOS.

  13. Loss of BIM increases mitochondrial oxygen consumption and lipid oxidation, reduces adiposity and improves insulin sensitivity in mice.

    PubMed

    Wali, Jibran A; Galic, Sandra; Tan, Christina Yr; Gurzov, Esteban N; Frazier, Ann E; Connor, Timothy; Ge, Jingjing; Pappas, Evan G; Stroud, David; Varanasi, L Chitra; Selck, Claudia; Ryan, Michael T; Thorburn, David R; Kemp, Bruce E; Krishnamurthy, Balasubramanian; Kay, Thomas Wh; McGee, Sean L; Thomas, Helen E

    2018-01-01

    BCL-2 proteins are known to engage each other to determine the fate of a cell after a death stimulus. However, their evolutionary conservation and the many other reported binding partners suggest an additional function not directly linked to apoptosis regulation. To identify such a function, we studied mice lacking the BH3-only protein BIM. BIM -/- cells had a higher mitochondrial oxygen consumption rate that was associated with higher mitochondrial complex IV activity. The consequences of increased oxygen consumption in BIM -/- mice were significantly lower body weights, reduced adiposity and lower hepatic lipid content. Consistent with reduced adiposity, BIM -/- mice had lower fasting blood glucose, improved insulin sensitivity and hepatic insulin signalling. Lipid oxidation was increased in BIM -/- mice, suggesting a mechanism for their metabolic phenotype. Our data suggest a role for BIM in regulating mitochondrial bioenergetics and metabolism and support the idea that regulation of metabolism and cell death are connected.

  14. Fasting insulin sensitivity indices are not better than routine clinical variables at predicting insulin sensitivity among Black Africans: a clamp study in sub-Saharan Africans

    PubMed Central

    2014-01-01

    Background We aimed to evaluate the predictive utility of common fasting insulin sensitivity indices, and non-laboratory surrogates [BMI, waist circumference (WC) and waist-to-height ratio (WHtR)] in sub-Saharan Africans without diabetes. Methods We measured fasting glucose and insulin, and glucose uptake during 80/mU/m2/min euglycemic clamp in 87 Cameroonians (51 men) aged (SD) 34.6 (11.4) years. We derived insulin sensitivity indices including HOMA-IR, quantitative insulin sensitivity check index (QUICKI), fasting insulin resistance index (FIRI) and glucose-to-insulin ratio (GIR). Indices and clinical predictors were compared to clamp using correlation tests, robust linear regressions and agreement of classification by sex-specific thirds. Results The mean insulin sensitivity was M = 10.5 ± 3.2 mg/kg/min. Classification across thirds of insulin sensitivity by clamp matched with non-laboratory surrogates in 30-48% of participants, and with fasting indices in 27-51%, with kappa statistics ranging from −0.10 to 0.26. Fasting indices correlated significantly with clamp (/r/=0.23-0.30), with GIR performing less well than fasting insulin and HOMA-IR (both p < 0.02). BMI, WC and WHtR were equal or superior to fasting indices (/r/=0.38-0.43). Combinations of fasting indices and clinical predictors explained 25-27% of variation in clamp values. Conclusion Fasting insulin sensitivity indices are modest predictors of insulin sensitivity measured by euglycemic clamp, and do not perform better than clinical surrogates in this population. PMID:25106496

  15. Validation of different measures of insulin sensitivity of glucose metabolism in dairy cows using the hyperinsulinemic euglycemic clamp test as the gold standard.

    PubMed

    De Koster, J; Hostens, M; Hermans, K; Van den Broeck, W; Opsomer, G

    2016-10-01

    The aim of the present research was to compare different measures of insulin sensitivity in dairy cows at the end of the dry period. To do so, 10 clinically healthy dairy cows with a varying body condition score were selected. By performing hyperinsulinemic euglycemic clamp (HEC) tests, we previously demonstrated a negative association between the insulin sensitivity and insulin responsiveness of glucose metabolism and the body condition score of these animals. In the same animals, other measures of insulin sensitivity were determined and the correlation with the HEC test, which is considered as the gold standard, was calculated. Measures derived from the intravenous glucose tolerance test (IVGTT) are based on the disappearance of glucose after an intravenous glucose bolus. Glucose concentrations during the IVGTT were used to calculate the area under the curve of glucose and the clearance rate of glucose. In addition, glucose and insulin data from the IVGTT were fitted in the minimal model to derive the insulin sensitivity parameter, Si. Based on blood samples taken before the start of the IVGTT, basal concentrations of glucose, insulin, NEFA, and β-hydroxybutyrate were determined and used to calculate surrogate indices for insulin sensitivity, such as the homeostasis model of insulin resistance, the quantitative insulin sensitivity check index, the revised quantitative insulin sensitivity check index and the revised quantitative insulin sensitivity check index including β-hydroxybutyrate. Correlation analysis revealed no association between the results obtained by the HEC test and any of the surrogate indices for insulin sensitivity. For the measures derived from the IVGTT, the area under the curve for the first 60 min of the test and the Si derived from the minimal model demonstrated good correlation with the gold standard. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Insulin sensitivity deteriorates after short-term lifestyle intervention in the insulin sensitive phenotype of obesity.

    PubMed

    Gilardini, Luisa; Vallone, Luciana; Cottafava, Raffaella; Redaelli, Gabriella; Croci, Marina; Conti, Antonio; Pasqualinotto, Lucia; Invitti, Cecilia

    2012-01-01

    To investigate the effects of a 3-month lifestyle intervention on insulin sensitivity and its related cardiometabolic factors in obese patients. Anthropometry, body composition, oral glucose tolerance test, lipids, alanine aminotransferase, insulin sensitivity (insulinogenic index (ISI), homeostasis model assessment, β-cell performance (disposition index)) were evaluated in 263 obese women and 93 obese men before and after 3 months of hypocaloric low fat/high protein diet associated with physical activity 30 min/day. Patients were divided into 3 groups according to the intervention-induced ISI changes: group 1 (decrease), group 2 (stability) and group 3 (increase). Insulin sensitivity and the disposition index were significantly higher before the intervention in group 1 than in group 3. BMI, waist circumference, and fat mass significantly decreased in groups 1 and 3 in both sexes. β-cell performance decreased in group 1 and increased in group 3. Metabolic variables improved in group 3, whereas glucose levels increased in women of group 1. The post-intervention insulin sensitivity was lower in group 1 than in group 3. Lifestyle intervention induces changes in insulin sensitivity and metabolic factors that depend on the pre-intervention degree of insulin sensitivity. Weight loss leads to metabolic benefits in insulin-resistant, obese patients, whereas it may paradoxically worsen the metabolic conditions in the insulin-sensitive phenotype of obesity. Copyright © 2012 S. Karger GmbH, Freiburg.

  17. Caffeic Acid Phenethyl Ester Regulates PPAR's Levels in Stem Cells-Derived Adipocytes

    PubMed Central

    Vanella, Luca; Tibullo, Daniele; Godos, Justyna; Pluchinotta, Francesca Romana; Di Giacomo, Claudia; Sorrenti, Valeria; Acquaviva, Rosaria; Russo, Alessandra; Li Volti, Giovanni; Barbagallo, Ignazio

    2016-01-01

    Hypertrophic obesity inhibits activation of peroxisome proliferators-activated receptor gamma (PPARγ), considered the key mediator of the fully differentiated and insulin sensitive adipocyte phenotype. We examined the effects of Caffeic Acid Phenethyl Ester (Cape), isolated from propolis, a honeybee hive product, on Adipose Stem Cells (ASCs) differentiation to the adipocyte lineage. Finally we tested the effects of Cape on insulin-resistant adipocytes. Quantification of Oil Red O-stained cells showed that lipid droplets decreased following Cape treatment as well as radical oxygen species formation. Additionally, exposure of ASC to high glucose levels decreased adiponectin and increased proinflammatory cytokines mRNA levels, which were reversed by Cape-mediated increase of insulin sensitivity. Cape treatment resulted in decreased triglycerides synthesis and increased beta-oxidation. Exposure of ASCs to Lipopolysaccharide (LPS) induced a reduction of PPARγ, an increase of IL-6 levels associated with a well-known stimulation of lipolysis; Cape partially attenuated the LPS-mediated effects. These observations reveal the main role of PPARγ in the adipocyte function and during ASC differentiation. As there is now substantial interest in functional food and nutraceutical products, the observed therapeutic value of Cape in insulin-resistance related diseases should be taken into consideration. PMID:26904104

  18. Microbial translocation and skeletal muscle in young and old vervet monkeys.

    PubMed

    Kavanagh, Kylie; Brown, Richelle N; Davis, Ashley T; Uberseder, Beth; Floyd, Edison; Pfisterer, Bianca; Shively, Carol A

    2016-06-01

    Intestinal barrier dysfunction leads to microbial translocation (MT) and inflammation in vertebrate and invertebrate animal models. Age is recently recognized as a factor leading to MT, and in some human and animal model studies, MT was associated with physical function. We evaluated sarcopenia, inflammation, MT biomarkers, and muscle insulin sensitivity in healthy female vervet monkeys (6-27 years old). Monkeys were fed consistent diets and had large and varied environments to facilitate physical activity, and stable social conditions. Aging led to sarcopenia as indicated by reduced walking speeds and muscle mass, but general metabolic health was similar in older monkeys (n = 25) as compared to younger ones (n = 26). When older monkeys were physically active, their MT burden approximated that in young monkeys; however, when older monkeys were sedentary, MT burden was dramatically increased. MT levels were positively associated with inflammatory burden and negatively associated with skeletal muscle insulin sensitivity. Time spent being active was positively associated with insulin sensitivity as expected, but this relationship was specifically modified by the individual monkey's MT, not inflammatory burden. Our data supports clinical observations that MT interacts with physical function as a factor in healthy aging.

  19. Endothelial function varies according to insulin resistance disease type.

    PubMed

    Beckman, Joshua A; Goldfine, Allison B; Dunaif, Andrea; Gerhard-Herman, Marie; Creager, Mark A

    2007-05-01

    We examined the relationship between insulin resistance and vascular function in three insulin-resistant states (type 2 diabetes, non-HIV lipodystrophic diabetes, and nondiabetic polycystic ovary syndrome [PCOS]) and in healthy control subjects. The population included 12 women with type 2 diabetes, 6 with lipodystrophic diabetes, 10 with PCOS, and 19 healthy female subjects. Metabolic measures included insulin sensitivity by the homeostasis model assessment, lipids, free fatty acids, and adiponectin. High-resolution B-mode ultrasound was used to determine endothelium-dependent and -independent vasodilation. Type 2 diabetic, liposdystrophic, and PCOS subjects were insulin resistant compared with control subjects (P = 0.001). Flow-mediated vasodilation was reduced in diabetic (3.4 +/- 1.3%) compared with control (7.3 +/- 1.1%) subjects but not in lipodystrophic (7.7 +/- 1.2%) or PCOS (9.9 +/- 0.7%) subjects (P = 0.005). Nitroglycerin-mediated vasodilation was attenuated in both diabetic (15.2 +/- 2.0%) and lipodystrophic (16.7 +/- 3.6%) subjects compared with healthy control (24.6 +/- 2.4%) and PCOS (23.2 +/- 1.8%) subjects (P = 0.019). Insulin resistance, free fatty acids, adiponectin, or C-reactive protein did not associate with vascular dysfunction. Among these different types of patients with insulin resistance, we found abnormal endothelium-dependent vasodilation only in the patients with type 2 diabetes. We postulate that variations in the mechanism of insulin resistance may affect endothelial function differently than glucose homeostasis.

  20. Dissecting the relationship between obesity and hyperinsulinemia: Role of insulin secretion and insulin clearance.

    PubMed

    Kim, Mee Kyoung; Reaven, Gerald M; Kim, Sun H

    2017-02-01

    The aim of this study was to better delineate the complex interrelationship among insulin resistance (IR), secretion rate (ISR), and clearance rate (ICR) to increase plasma insulin concentrations in obesity. Healthy volunteers (92 nondiabetic individuals) had an insulin suppression test to measure IR and graded-glucose infusion test to measure ISR and ICR. Obesity was defined as a body mass index (BMI) ≥30 kg/m 2 , and IR was defined as steady-state plasma glucose (SSPG) ≥10 mmol/L during the insulin suppression test. Plasma glucose and insulin concentrations, ISR, and ICR were compared in three groups: insulin sensitive/overweight; insulin sensitive/obesity; and insulin resistant/obesity. Compared with the insulin-sensitive/overweight group, the insulin-sensitive/obesity had significantly higher insulin area under the curve (AUC) and ISR AUC during the graded-glucose infusion test (P < 0.001). Glucose AUC and ICR were similar. The insulin-resistant/obesity group had higher insulin AUC and ISR AUC compared with the insulin-sensitive/obesity but also had higher glucose AUC and decreased ICR (P < 0.01). In multivariate analysis, both BMI and SSPG were significantly associated with ISR. Plasma insulin concentration and ISR are increased in individuals with obesity, irrespective of degree of IR, but a decrease in ICR is confined to the subset of individuals with IR. © 2016 The Obesity Society.

  1. Effect of body weight gain on insulin sensitivity after retirement from exercise training

    NASA Technical Reports Server (NTRS)

    Dolkas, Constantine B.; Rodnick, Kenneth J.; Mondon, Carl E.

    1990-01-01

    The effect of the body-weight gain after retirement from an exercise-training program on the retained increase in insulin sensitivity elicited by the training was investigated in exercise-trained (ET) rats. Insulin sensitivity was assessed by oral glucose tolerance and insulin suppression tests immediately after training and during retirement. Results show that, compared with sedentary controls, exercise training enhanced insulin-induced glucose uptake, but the enhanced sensitivity was gradually lost with the end of running activity until after seven days of retirement, when it became equal to that of controls. This loss of enhanced sensitivity to insulin was associated with an accelerated gain in body weight beginning one day after the start of retirement. However, those animals that gained weight only at rates similar to those of control rats, retained their enhanced sensitivity to insulin.

  2. Dietary fats and prevention of type 2 diabetes.

    PubMed

    Risérus, Ulf; Willett, Walter C; Hu, Frank B

    2009-01-01

    Although type 2 diabetes is determined primarily by lifestyle and genes, dietary composition may affect both its development and complications. Dietary fat is of particular interest because fatty acids influence glucose metabolism by altering cell membrane function, enzyme activity, insulin signaling, and gene expression. This paper focuses on the prevention of type 2 diabetes and summarizes the epidemiologic literature on associations between types of dietary fat and diabetes risk. It also summarizes controlled feeding studies on the effects of dietary fats on metabolic mediators, such as insulin resistance. Taken together, the evidence suggests that replacing saturated fats and trans fatty acids with unsaturated (polyunsaturated and/or monounsaturated) fats has beneficial effects on insulin sensitivity and is likely to reduce risk of type 2 diabetes. Among polyunsaturated fats, linoleic acid from the n-6 series improves insulin sensitivity. On the other hand, long-chain n-3 fatty acids do not appear to improve insulin sensitivity or glucose metabolism. In dietary practice, foods rich in vegetable oils, including non-hydrogenated margarines, nuts, and seeds, should replace foods rich in saturated fats from meats and fat-rich dairy products. Consumption of partially hydrogenated fats should be minimized. Additional controlled, long-term studies are needed to improve our knowledge on the optimal proportion of different types of fats to prevent diabetes.

  3. The role of G-protein-coupled receptors in mediating the effect of fatty acids on inflammation and insulin sensitivity.

    PubMed

    Oh, Da Young; Lagakos, William S

    2011-07-01

    Chronic activation of inflammatory pathways mediates the pathogenesis of insulin resistance, and the macrophage/adipocyte nexus provides a key mechanism underlying decreased insulin sensitivity. Free fatty acids are important in the pathogenesis of insulin resistance, although their precise mechanisms of action have yet to be fully elucidated. Recently, a family of G-protein-coupled receptors has been identified that exhibits high affinity for fatty acids. This review summarizes recent findings on six of these receptors, their ligands, and their potential physiological functions in vivo. Upon activation, the free fatty acid receptors affect inflammation, glucose metabolism, and insulin sensitivity. Genetic deletion of GPR40 and GPR41, receptors for long-chain and short-chain fatty acids, respectively, results in resistance to diet-induced obesity. Deletion of GPR43 and GPR84 exacerbates inflammation, and deletion of the long-chain fatty acid receptors GPR119 and GPR120 reduces or is predicted to reduce glucose tolerance. These studies provide a new understanding of the general biology of gastric motility and also shed valuable insight into some potentially beneficial therapeutic targets. Furthermore, highly selective agonists or antagonists for the free fatty acid receptors have been developed and look promising for treating various metabolic diseases.

  4. Acupuncture does not ameliorate metabolic disturbances in the P450 aromatase inhibitor-induced rat model of polycystic ovary syndrome.

    PubMed

    Maliqueo, Manuel; Benrick, Anna; Marcondes, Rodrigo Rodrigues; Johansson, Julia; Sun, Miao; Stener-Victorin, Elisabet

    2017-01-01

    What is the central question of this study? The effectiveness of low-frequency electroacupuncture in the treatment of metabolic disorders associated with polycystic ovary syndrome (PCOS), an endocrine-metabolic disorder characterized by an imbalance in sex steroid production, is controversial. What is the main finding and its importance? In a rat model of PCOS induced by the inhibition of P450 aromatase, low-frequency electroacupuncture increased low-density lipoprotein-cholesterol but did not improve the insulin resistance or the adipose tissue dysfunction, suggesting that a balance of sex steroids is needed to restore the metabolic function in this rat model of PCOS. Low-frequency electroacupuncture restores sex steroid synthesis and sympathetic activity in women with polycystic ovary syndrome, which may ameliorate its metabolic disturbances, probably by modulating sympathetic nerve activity or sex steroid synthesis. We investigated whether low-frequency electroacupuncture regulates the metabolic function to the same extent as treatment with estradiol or β-adrenergic blocking in a rat model of polycystic ovary syndrome induced by a P450 aromatase inhibitor (letrozole). Letrozole (200 μg day -1 ) or placebo pellets were implanted in prepubertal Wistar rats. Six weeks thereafter, rats were treated for 5-6 weeks with the following: low-frequency electroacupuncture (5 days per week); a β-adrenergic blocker (propranolol hydrochloride, 0.1 mg kg -1 , 5 days per week); or 17β-estradiol (2.0 μg) every fourth day. Body weight development, body composition, locomotor activity, insulin sensitivity, tissue-specific glucose uptake, lipid profile, adipocyte size, serum concentrations of adiponectin and insulin, and gene expression in inguinal fat were measured. All treatments increased circulating levels of low-density lipoprotein-cholesterol. Estradiol treatment restored locomotor activity and increased insulin sensitivity but did not modify the glucose uptake in muscle and fat. An upregulation of genes related to insulin sensitivity and downregulation of genes related to adipogenesis were observed in subcutaneous adipose tissue from rats exposed to letrozole. Only estradiol treatment normalized the expression of these genes. In conclusion, low-frequency electroacupuncture increased low-density lipoprotein-cholesterol without affecting insulin sensitivity or adipose tissue function, which could suggest effects on hepatic lipid regulation, probably mediated by the action of estradiol or the β-adrenergic pathway. © 2016 The Authors. Experimental Physiology © 2016 The Physiological Society.

  5. Insulin resistance in obesity can be reliably identified from fasting plasma insulin.

    PubMed

    ter Horst, K W; Gilijamse, P W; Koopman, K E; de Weijer, B A; Brands, M; Kootte, R S; Romijn, J A; Ackermans, M T; Nieuwdorp, M; Soeters, M R; Serlie, M J

    2015-12-01

    Insulin resistance is the major contributor to cardiometabolic complications of obesity. We aimed to (1) establish cutoff points for insulin resistance from euglycemic hyperinsulinemic clamps (EHCs), (2) identify insulin-resistant obese subjects and (3) predict insulin resistance from routinely measured variables. We assembled data from non-obese (n=112) and obese (n=100) men who underwent two-step EHCs using [6,6-(2)H2]glucose as tracer (insulin infusion dose 20 and 60 mU m(-2) min(-1), respectively). Reference ranges for hepatic and peripheral insulin sensitivity were calculated from healthy non-obese men. Based on these reference values, obese men with preserved insulin sensitivity or insulin resistance were identified. Cutoff points for insulin-mediated suppression of endogenous glucose production (EGP) and insulin-stimulated glucose disappearance rate (Rd) were 46.5% and 37.3 μmol kg(-)(1) min(-)(1), respectively. Most obese men (78%) had EGP suppression within the reference range, whereas only 12% of obese men had Rd within the reference range. Obese men with Rd <37.3 μmol kg(-1) min(-1) did not differ from insulin-sensitive obese men in age, body mass index (BMI), body composition, fasting glucose or cholesterol, but did have higher fasting insulin (110±49 vs 63±29 pmol l(-1), P<0.001) and homeostasis model assessment of insulin resistance (HOMA-IR) (4.5±2.2 vs 2.7±1.4, P=0.004). Insulin-resistant obese men could be identified with good sensitivity (80%) and specificity (75%) from fasting insulin >74 pmol l(-1). Most obese men have hepatic insulin sensitivity within the range of non-obese controls, but below-normal peripheral insulin sensitivity, that is, insulin resistance. Fasting insulin (>74 pmol l(-1) with current insulin immunoassay) may be used for identification of insulin-resistant (or metabolically unhealthy) obese men in research and clinical settings.

  6. Prokineticin Receptor‐1 Is a New Regulator of Endothelial Insulin Uptake and Capillary Formation to Control Insulin Sensitivity and Cardiovascular and Kidney Functions

    PubMed Central

    Dormishian, Mojdeh; Turkeri, Gulen; Urayama, Kyoji; Nguyen, Thu Lan; Boulberdaa, Mounia; Messaddeq, Nadia; Renault, Gilles; Henrion, Daniel; Nebigil, Canan G.

    2013-01-01

    Background Reciprocal relationships between endothelial dysfunction and insulin resistance result in a vicious cycle of cardiovascular, renal, and metabolic disorders. The mechanisms underlying these impairments are unclear. The peptide hormones prokineticins exert their angiogenic function via prokineticin receptor‐1 (PKR1). We explored the extent to which endothelial PKR1 contributes to expansion of capillary network and the transcapillary passage of insulin into the heart, kidney, and adipose tissues, regulating organ functions and metabolism in a specific mice model. Methods and Results By combining cellular studies and studies in endothelium‐specific loss‐of‐function mouse model (ec‐PKR1−/−), we showed that a genetically induced PKR1 loss in the endothelial cells causes the impaired capillary formation and transendothelial insulin delivery, leading to insulin resistance and cardiovascular and renal disorders. Impaired insulin delivery in endothelial cells accompanied with defective expression and activation of endothelial nitric oxide synthase in the ec‐PKR1−/− aorta, consequently diminishing endothelium‐dependent relaxation. Despite having a lean body phenotype, ec‐PKR1−/− mice exhibited polyphagia, polydipsia, polyurinemia, and hyperinsulinemia, which are reminiscent of human lipodystrophy. High plasma free fatty acid levels and low leptin levels further contribute to the development of insulin resistance at the later age. Peripheral insulin resistance and ectopic lipid accumulation in mutant skeletal muscle, heart, and kidneys were accompanied by impaired insulin‐mediated Akt signaling in these organs. The ec‐PKR1−/− mice displayed myocardial fibrosis, low levels of capillary formation, and high rates of apoptosis, leading to diastolic dysfunction. Compact fibrotic glomeruli and high levels of phosphate excretion were found in mutant kidneys. PKR1 restoration in ec‐PKR1−/− mice reversed the decrease in capillary recruitment and insulin uptake and improved heart and kidney function and insulin resistance. Conclusions We show a novel role for endothelial PKR1 signaling in cardiac, renal, and metabolic functions by regulating transendothelial insulin uptake and endothelial cell proliferation. Targeting endothelial PKR1 may serve as a therapeutic strategy for ameliorating these disorders. PMID:24152983

  7. The metabolic phenotype of Prader-Willi syndrome (PWS) in childhood: heightened insulin sensitivity relative to body mass index.

    PubMed

    Haqq, Andrea M; Muehlbauer, Michael J; Newgard, Christopher B; Grambow, Steven; Freemark, Michael

    2011-01-01

    Insulin sensitivity is higher in patients with Prader-Willi syndrome (PWS) than in body mass index-matched obese controls (OCs). Factors contributing to the heightened insulin sensitivity of PWS remain obscure. We compared the fasting levels of various hormones, cytokines, lipids, and liver function tests in 14 PWS patients and 14 OCs with those in 14 age- and gender-matched lean children (LC). We hypothesized that metabolic profiles of children with PWS are comparable with those of LC, but different from those of OCs. Leptin levels were comparable in PWS patients and OCs, suggesting comparable degrees of adiposity. Glucose levels were comparable among groups. However, fasting insulin concentrations and homeostasis model assessment insulin resistance index were lower in PWS patients than in OCs (P < 0.05) and similar to LC. Moreover, high-density lipoprotein levels were lower and triglycerides higher in OCs (P < 0.05) but not PWS patients. Total adiponectin, high-molecular-weight (HMW) adiponectin and the HMW to total adiponectin ratio were higher in PWS patients (P < 0.05) than in OCs and similar to LC. High-sensitivity C-reactive protein and IL-6 levels were higher in OCs than in PWS patients or LC (P < 0.05). Nevertheless, PAI-1 levels were elevated in both OC and PWS patients. There were no group differences in glucagon-like peptide-1, macrophage chemoattractant protein-1, TNFα, IL-2, IL-8, IL-10, IL-12p40, IL-18, resistin, total or low-density lipoprotein cholesterol, aspartate aminotransferase, or alanine aminotransferase. The heightened insulin sensitivity of PWS patients relative to OCs is associated with higher levels of adiponectin and lower levels of high-sensitivity C-reactive protein and IL-6. Future studies will determine whether PWS children are protected from obesity comorbidities such as type 2 diabetes, hyperlipidemia, and nonalcoholic fatty liver disease.

  8. Basal measures of insulin sensitivity and insulin secretion and simplified glucose tolerance tests in dogs.

    PubMed

    Verkest, K R; Fleeman, L M; Rand, J S; Morton, J M

    2010-10-01

    There is need for simple, inexpensive measures of glucose tolerance, insulin sensitivity, and insulin secretion in dogs. The aim of this study was to estimate the closeness of correlation between fasting and dynamic measures of insulin sensitivity and insulin secretion, the precision of fasting measures, and the agreement between results of standard and simplified glucose tolerance tests in dogs. A retrospective descriptive study using 6 naturally occurring obese and 6 lean dogs was conducted. Data from frequently sampled intravenous glucose tolerance tests (FSIGTTs) in 6 obese and 6 lean client-owned dogs were used to calculate HOMA, QUICKI, fasting glucose and insulin concentrations. Fasting measures of insulin sensitivity and secretion were compared with MINMOD analysis of FSIGTTs using Pearson correlation coefficients, and they were evaluated for precision by the discriminant ratio. Simplified sampling protocols were compared with standard FSIGTTs using Lin's concordance correlation coefficients, limits of agreement, and Pearson correlation coefficients. All fasting measures except fasting plasma glucose concentration were moderately correlated with MINMOD-estimated insulin sensitivity (|r| = 0.62-0.80; P < 0.03), and those that combined fasting insulin and glucose were moderately closely correlated with MINMOD-estimated insulin secretion (r = 0.60-0.79; P < 0.04). HOMA calculated using the nonlinear formulae had the closest estimated correlation (r = 0.77 and 0.74) and the best discrimination for insulin sensitivity and insulin secretion (discriminant ratio 4.4 and 3.4, respectively). Simplified sampling protocols with half as many samples collected over 3 h had close agreement with the full sampling protocol. Fasting measures and simplified intravenous glucose tolerance tests reflect insulin sensitivity and insulin secretion derived from frequently sampled glucose tolerance tests with MINMOD analysis in dogs. Copyright 2010 Elsevier Inc. All rights reserved.

  9. Human adipose tissue expresses intrinsic circadian rhythm in insulin sensitivity.

    PubMed

    Carrasco-Benso, Maria P; Rivero-Gutierrez, Belen; Lopez-Minguez, Jesus; Anzola, Andrea; Diez-Noguera, Antoni; Madrid, Juan A; Lujan, Juan A; Martínez-Augustin, Olga; Scheer, Frank A J L; Garaulet, Marta

    2016-09-01

    In humans, insulin sensitivity varies according to time of day, with decreased values in the evening and at night. Mechanisms responsible for the diurnal variation in insulin sensitivity are unclear. We investigated whether human adipose tissue (AT) expresses intrinsic circadian rhythms in insulin sensitivity that could contribute to this phenomenon. Subcutaneous and visceral AT biopsies were obtained from extremely obese participants (body mass index, 41.8 ± 6.3 kg/m(2); 46 ± 11 y) during gastric-bypass surgery. To assess the rhythm in insulin signaling, AKT phosphorylation was determined every 4 h over 24 h in vitro in response to different insulin concentrations (0, 1, 10, and 100 nM). Data revealed that subcutaneous AT exhibited robust circadian rhythms in insulin signaling (P < 0.00001). Insulin sensitivity reached its maximum (acrophase) around noon, being 54% higher than during midnight (P = 0.009). The amplitude of the rhythm was positively correlated with in vivo sleep duration (r = 0.53; P = 0.023) and negatively correlated with in vivo bedtime (r = -0.54; P = 0.020). No circadian rhythms were detected in visceral AT (P = 0.643). Here, we demonstrate the relevance of the time of the day for how sensitive AT is to the effects of insulin. Subcutaneous AT shows an endogenous circadian rhythm in insulin sensitivity that could provide an underlying mechanism for the daily rhythm in systemic insulin sensitivity.-Carrasco-Benso, M. P., Rivero-Gutierrez, B., Lopez-Minguez, J., Anzola, A., Diez-Noguera, A., Madrid, J. A., Lujan, J. A., Martínez-Augustin, O., Scheer, F. A. J. L., Garaulet, M. Human adipose tissue expresses intrinsic circadian rhythm in insulin sensitivity. © FASEB.

  10. Disruption of growth hormone receptor gene causes diminished pancreatic islet size and increased insulin sensitivity in mice.

    PubMed

    Liu, Jun-Li; Coschigano, Karen T; Robertson, Katie; Lipsett, Mark; Guo, Yubin; Kopchick, John J; Kumar, Ujendra; Liu, Ye Lauren

    2004-09-01

    Growth hormone, acting through its receptor (GHR), plays an important role in carbohydrate metabolism and in promoting postnatal growth. GHR gene-deficient (GHR(-/-)) mice exhibit severe growth retardation and proportionate dwarfism. To assess the physiological relevance of growth hormone actions, GHR(-/-) mice were used to investigate their phenotype in glucose metabolism and pancreatic islet function. Adult GHR(-/-) mice exhibited significant reductions in the levels of blood glucose and insulin, as well as insulin mRNA accumulation. Immunohistochemical analysis of pancreatic sections revealed normal distribution of the islets despite a significantly smaller size. The average size of the islets found in GHR(-/-) mice was only one-third of that in wild-type littermates. Total beta-cell mass was reduced 4.5-fold in GHR(-/-) mice, significantly more than their body size reduction. This reduction in pancreatic islet mass appears to be related to decreases in proliferation and cell growth. GHR(-/-) mice were different from the human Laron syndrome in serum insulin level, insulin responsiveness, and obesity. We conclude that growth hormone signaling is essential for maintaining pancreatic islet size, stimulating islet hormone production, and maintaining normal insulin sensitivity and glucose homeostasis.

  11. The transcription factor Prep1 controls hepatic insulin sensitivity and gluconeogenesis by targeting nuclear localization of FOXO1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kulebyakin, Konstantin; Penkov, Dmitry; IFOM – the FIRC Institute of Molecular Oncology, Via Adamello 16, Milan, 20139

    Liver plays a key role in controlling body carbohydrate homeostasis by switching between accumulation and production of glucose and this way maintaining constant level of glucose in blood. Increased blood glucose level triggers release of insulin from pancreatic β-cells. Insulin represses hepatic glucose production and increases glucose accumulation. Insulin resistance is the main cause of type 2 diabetes and hyperglycemia. Currently thiazolidinediones (TZDs) targeting transcriptional factor PPARγ are used as insulin sensitizers for treating patients with type 2 diabetes. However, TZDs are reported to be associated with cardiovascular and liver problems and stimulate obesity. Thus, it is necessary to searchmore » new approaches to improve insulin sensitivity. A promising candidate is transcriptional factor Prep1, as it was shown earlier it could affect insulin sensitivity in variety of insulin-sensitive tissues. The aim of the present study was to evaluate a possible involvement of transcriptional factor Prep1 in control of hepatic glucose accumulation and production. We created mice with liver-specific Prep1 knockout and discovered that hepatocytes derived from these mice are much more sensitive to insulin, comparing to their WT littermates. Incubation of these cells with 100 nM insulin results in almost complete inhibition of gluconeogenesis, while in WT cells this repression is only partial. However, Prep1 doesn't affect gluconeogenesis in the absence of insulin. Also, we observed that nuclear content of gluconeogenic transcription factor FOXO1 was greatly reduced in Prep1 knockout hepatocytes. These findings suggest that Prep1 may control hepatic insulin sensitivity by targeting FOXO1 nuclear stability. - Highlights: • A novel model of liver-specific Prep1 knockout is established. • Ablation of Prep1 in hepatocytes increases insulin sensitivity. • Prep1 controls hepatic insulin sensitivity by regulating localization of FOXO1. • Prep1 regulates localization of FOXO1 via Wnt/β-catenin signaling pathway.« less

  12. Limited predictive ability of surrogate indices of insulin sensitivity/resistance in Asian-Indian men.

    PubMed

    Muniyappa, Ranganath; Irving, Brian A; Unni, Uma S; Briggs, William M; Nair, K Sreekumaran; Quon, Michael J; Kurpad, Anura V

    2010-12-01

    Insulin resistance is highly prevalent in Asian Indians and contributes to worldwide public health problems, including diabetes and related disorders. Surrogate measurements of insulin sensitivity/resistance are used frequently to study Asian Indians, but these are not formally validated in this population. In this study, we compared the ability of simple surrogate indices to accurately predict insulin sensitivity as determined by the reference glucose clamp method. In this cross-sectional study of Asian-Indian men (n = 70), we used a calibration model to assess the ability of simple surrogate indices for insulin sensitivity [quantitative insulin sensitivity check index (QUICKI), homeostasis model assessment (HOMA2-IR), fasting insulin-to-glucose ratio (FIGR), and fasting insulin (FI)] to predict an insulin sensitivity index derived from the reference glucose clamp method (SI(Clamp)). Predictive accuracy was assessed by both root mean squared error (RMSE) of prediction as well as leave-one-out cross-validation-type RMSE of prediction (CVPE). QUICKI, FIGR, and FI, but not HOMA2-IR, had modest linear correlations with SI(Clamp) (QUICKI: r = 0.36; FIGR: r = -0.36; FI: r = -0.27; P < 0.05). No significant differences were noted among CVPE or RMSE from any of the surrogate indices when compared with QUICKI. Surrogate measurements of insulin sensitivity/resistance such as QUICKI, FIGR, and FI are easily obtainable in large clinical studies, but these may only be useful as secondary outcome measurements in assessing insulin sensitivity/resistance in clinical studies of Asian Indians.

  13. The insulin sensitizing effect of topiramate involves KATP channel activation in the central nervous system.

    PubMed

    Coomans, C P; Geerling, J J; van den Berg, S A A; van Diepen, H C; Garcia-Tardón, N; Thomas, A; Schröder-van der Elst, J P; Ouwens, D M; Pijl, H; Rensen, P C N; Havekes, L M; Guigas, B; Romijn, J A

    2013-10-01

    Topiramate improves insulin sensitivity, in addition to its antiepileptic action. However, the underlying mechanism is unknown. Therefore, the present study was aimed at investigating the mechanism of the insulin-sensitizing effect of topiramate both in vivo and in vitro. Male C57Bl/6J mice were fed a run-in high-fat diet for 6 weeks, before receiving topiramate or vehicle mixed in high-fat diet for an additional 6 weeks. Insulin sensitivity was assessed by hyperinsulinaemic-euglycaemic clamp. The extent to which the insulin sensitizing effects of topiramate were mediated through the CNS were determined by concomitant i.c.v. infusion of vehicle or tolbutamide, an inhibitor of ATP-sensitive potassium channels in neurons. The direct effects of topiramate on insulin signalling and glucose uptake were assessed in vivo and in cultured muscle cells. In hyperinsulinaemic-euglycaemic clamp conditions, therapeutic plasma concentrations of topiramate (∼4 μg·mL(-1) ) improved insulin sensitivity (glucose infusion rate + 58%). Using 2-deoxy-D-[(3) H]glucose, we established that topiramate improved the insulin-mediated glucose uptake by heart (+92%), muscle (+116%) and adipose tissue (+586%). Upon i.c.v. tolbutamide, the insulin-sensitizing effect of topiramate was completely abrogated. Topiramate did not directly affect glucose uptake or insulin signalling neither in vivo nor in cultured muscle cells. In conclusion, topiramate stimulates insulin-mediated glucose uptake in vivo through the CNS. These observations illustrate the possibility of pharmacological modulation of peripheral insulin resistance through a target in the CNS. © 2013 The British Pharmacological Society.

  14. Plasma glycosylphosphatidylinositol-specific phospholipase D predicts the change in insulin sensitivity in response to a low-fat but not a low-carbohydrate diet in obese women.

    PubMed

    Gray, Dona L; O'Brien, Kevin D; D'Alessio, David A; Brehm, Bonnie J; Deeg, Mark A

    2008-04-01

    Although circulating glycosylphosphatidylinositol-specific phospholipase D (GPI-PLD), a minor high-density lipoprotein-associated protein, is elevated in patients with insulin resistance or high triglycerides, no information is available on the effect of weight loss or changes in insulin sensitivity on circulating GPI-PLD levels. The objective of the study was to determine the effect of weight loss and changes in insulin sensitivity on plasma GPI-PLD levels. Forty-two nondiabetic obese women were included in the study, which involved a 3-month dietary intervention randomizing patients to a low-fat or a low-carbohydrate diet. The study's main outcome measures were plasma GPI-PLD levels and insulin sensitivity as estimated by the homeostasis model assessment. The very low carbohydrate diet group lost more weight after 3 months (-7.6 +/- 3.2 vs -4.2 +/- 3.5 kg, P < .01), although the decrease in insulin resistance was similar between groups. Weight loss with either diet did not alter plasma GPI-PLD levels. However, baseline GPI-PLD levels correlated with the change in insulin sensitivity in response to the low-fat diet, whereas baseline insulin sensitivity correlated with the change in insulin sensitivity in response to the low-carbohydrate diet. Plasma GPI-PLD may serve as a clinical tool to determine the effect of a low-fat diet on insulin sensitivity.

  15. PATHOPHYSIOLOGY AND TREATMENT OF TYPE 2 DIABETES: PERSPECTIVES ON THE PAST, PRESENT AND FUTURE

    PubMed Central

    Kahn, Steven E.; Cooper, Mark E.; Del Prato, Stefano

    2014-01-01

    Normal regulation of glucose metabolism is determined by a feedback loop involving the islet β-cell and insulin-sensitive tissues in which tissue sensitivity to insulin determines the magnitude of the β-cell response. When insulin resistance is present, the β-cell maintains normal glucose tolerance by increasing insulin output. It is only when the β-cell is incapable of releasing sufficient insulin in the presence of insulin resistance that glucose levels rise. While β-cell dysfunction has a clear genetic component, environmental changes play a vital role. Modern approaches have also informed regarding the importance of hexoses, amino acids and fatty acids in determining insulin resistance and β-cell dysfunction as well as the potential role of alterations in the microbiome. A number of new treatment approaches have been developed, but more effective therapies that slow the progressive loss of β-cell function are needed. Recent clinical trials have provided important information regarding approaches to prevent and treat type 2 diabetes as well as some of the adverse effects of these interventions. However, additional long-term studies of medications and bariatric surgery are required in order to identify novel approaches to prevention and treatment, thereby reducing the deleterious impact of type 2 diabetes. PMID:24315620

  16. Counterregulation of insulin by leptin as key component of autonomic regulation of body weight

    PubMed Central

    Borer, Katarina T

    2014-01-01

    A re-examination of the mechanism controlling eating, locomotion, and metabolism prompts formulation of a new explanatory model containing five features: a coordinating joint role of the (1) autonomic nervous system (ANS); (2) the suprachiasmatic (SCN) master clock in counterbalancing parasympathetic digestive and absorptive functions and feeding with sympathetic locomotor and thermogenic energy expenditure within a circadian framework; (3) interaction of the ANS/SCN command with brain substrates of reward encompassing dopaminergic projections to ventral striatum and limbic and cortical forebrain. These drive the nonhomeostatic feeding and locomotor motivated behaviors in interaction with circulating ghrelin and lateral hypothalamic neurons signaling through melanin concentrating hormone and orexin-hypocretin peptides; (4) counterregulation of insulin by leptin of both gastric and adipose tissue origin through: potentiation by leptin of cholecystokinin-mediated satiation, inhibition of insulin secretion, suppression of insulin lipogenesis by leptin lipolysis, and modulation of peripheral tissue and brain sensitivity to insulin action. Thus weight-loss induced hypoleptimia raises insulin sensitivity and promotes its parasympathetic anabolic actions while obesity-induced hyperleptinemia supresses insulin lipogenic action; and (5) inhibition by leptin of bone mineral accrual suggesting that leptin may contribute to the maintenance of stability of skeletal, lean-body, as well as adipose tissue masses. PMID:25317239

  17. Enhanced insulin sensitivity in prepubertal children with constitutional delay of growth and development.

    PubMed

    Wilson, Dyanne A; Hofman, Paul L; Miles, Harriet L; Sato, Tim A; Billett, Nathalie E; Robinson, Elizabeth M; Cutfield, Wayne S

    2010-02-01

    To test the hypothesis that prepubertal children with presumed constitutional delay of growth and development (CDGD) have enhanced insulin sensitivity and, therefore, insulin sensitivity is associated with later onset of puberty. Twenty-one prepubertal children with presumed CDGD and 23 prepubertal control children, underwent a frequently sampled intravenous glucose tolerance test to evaluate insulin sensitivity and other markers of insulin, glucose, and growth regulation. Children in the CDGD group were shorter and leaner than control subjects. Children with presumed CDGD were 40% more insulin sensitive (17.0 x 10(-4) min(-1)/[mU/L] versus 12.1 x 10(-4) min(-1)/[mU/L]; P = .0006) and had reduced acute insulin response, thus maintaining euglycemia (216 mU/L versus 330 mU/L; P = .02) compared with control subjects. In addition, the CDGD group had lower serum insulin-like growth factor binding protein 3 levels (3333 ng/mL versus 3775 ng/mL; P = .0004) and a trend toward lower serum insulin-like growth factor-II levels (794 ng/mL versus 911 ng/mL; P = .06). Prepubertal children with presumed CDGD have enhanced insulin sensitivity, supporting the hypothesis that insulin sensitivity is associated with timing of puberty. It may signify long-term biological advantages with lower risk of metabolic syndrome and malignancy. Copyright 2010 Mosby, Inc. All rights reserved.

  18. AMP-activated Protein Kinase (AMPK): Does This Master Regulator of Cellular Energy State Distinguish Insulin Sensitive from Insulin Resistant Obesity?

    PubMed Central

    Valentine, Rudy J.; Ruderman, Neil B.

    2014-01-01

    Although a correlation exists between obesity and insulin resistance, roughly 25 % of obese individuals are insulin sensitive. AMP-activated protein kinase (AMPK) is a cellular energy sensor that among its many actions, integrates diverse physiological signals to restore energy balance. In addition, in many situations it also increases insulin sensitivity. In this context, AMPK activity is decreased in very obese individuals undergoing bariatric surgery who are insulin resistant compared to equally obese patients who are insulin sensitive. In this review, we will both explore what distinguishes these individuals, and evaluate the evidence that diminished AMPK is associated with insulin resistance and metabolic syndrome-associated disorders in other circumstances. PMID:24891985

  19. An FGF21-adiponectin-ceramide axis controls energy expenditure and insulin action in mice.

    PubMed

    Holland, William L; Adams, Andrew C; Brozinick, Joseph T; Bui, Hai H; Miyauchi, Yukiko; Kusminski, Christine M; Bauer, Steven M; Wade, Mark; Singhal, Esha; Cheng, Christine C; Volk, Katherine; Kuo, Ming-Shang; Gordillo, Ruth; Kharitonenkov, Alexei; Scherer, Philipp E

    2013-05-07

    FGF21, a member of the fibroblast growth factor (FGF) superfamily, has recently emerged as a regulator of metabolism and energy utilization. However, the exact mechanism(s) whereby FGF21 mediates its actions have not been elucidated. There is considerable evidence that insulin resistance may arise from aberrant accumulation of intracellular lipids in insulin-responsive tissues due to lipotoxicity. In particular, the sphingolipid ceramide has been implicated in this process. Here, we show that FGF21 rapidly and robustly stimulates adiponectin secretion in rodents while diminishing accumulation of ceramides in obese animals. Importantly, adiponectin-knockout mice are refractory to changes in energy expenditure and ceramide-lowering effects evoked by FGF21 administration. Moreover, FGF21 lowers blood glucose levels and enhances insulin sensitivity in diabetic Lep(ob/ob) mice and diet-induced obese (DIO) mice only when adiponectin is functionally present. Collectively, these data suggest that FGF21 is a potent regulator of adiponectin secretion and that FGF21 critically depends on adiponectin to exert its glycemic and insulin sensitizing effects. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Loss of PPAR gamma in immune cells impairs the ability of abscisic acid to improve insulin sensitivity by suppressing monocyte chemoattractant protein-1 expression and macrophage infiltration into white adipose tissue.

    PubMed

    Guri, Amir J; Hontecillas, Raquel; Ferrer, Gerardo; Casagran, Oriol; Wankhade, Umesh; Noble, Alexis M; Eizirik, Decio L; Ortis, Fernanda; Cnop, Miriam; Liu, Dongmin; Si, Hongwei; Bassaganya-Riera, Josep

    2008-04-01

    Abscisic acid (ABA) is a natural phytohormone and peroxisome proliferator-activated receptor gamma (PPARgamma) agonist that significantly improves insulin sensitivity in db/db mice. Although it has become clear that obesity is associated with macrophage infiltration into white adipose tissue (WAT), the phenotype of adipose tissue macrophages (ATMs) and the mechanisms by which insulin-sensitizing compounds modulate their infiltration remain unknown. We used a loss-of-function approach to investigate whether ABA ameliorates insulin resistance through a mechanism dependent on immune cell PPARgamma. We characterized two phenotypically distinct ATM subsets in db/db mice based on their surface expression of F4/80. F4/80(hi) ATMs were more abundant and expressed greater concentrations of chemokine receptor (CCR) 2 and CCR5 when compared to F4/80(lo) ATMs. ABA significantly decreased CCR2(+) F4/80(hi) infiltration into WAT and suppressed monocyte chemoattractant protein-1 (MCP-1) expression in WAT and plasma. Furthermore, the deficiency of PPARgamma in immune cells, including macrophages, impaired the ability of ABA to suppress the infiltration of F4/80(hi) ATMs into WAT, to repress WAT MCP-1 expression and to improve glucose tolerance. We provide molecular evidence in vivo demonstrating that ABA improves insulin sensitivity and obesity-related inflammation by inhibiting MCP-1 expression and F4/80(hi) ATM infiltration through a PPARgamma-dependent mechanism.

  1. Prevention of Diabetes With Pioglitazone in ACT NOW

    PubMed Central

    DeFronzo, Ralph A.; Tripathy, Devjit; Schwenke, Dawn C.; Banerji, MaryAnn; Bray, George A.; Buchanan, Thomas A.; Clement, Stephen C.; Gastaldelli, Amalia; Henry, Robert R.; Kitabchi, Abbas E.; Mudaliar, Sunder; Ratner, Robert E.; Stentz, Frankie B.; Musi, Nicolas; Reaven, Peter D.

    2013-01-01

    We examined the metabolic characteristics that attend the development of type 2 diabetes (T2DM) in 441 impaired glucose tolerance (IGT) subjects who participated in the ACT NOW Study and had complete end-of-study metabolic measurements. Subjects were randomized to receive pioglitazone (PGZ; 45 mg/day) or placebo and were observed for a median of 2.4 years. Indices of insulin sensitivity (Matsuda index [MI]), insulin secretion (IS)/insulin resistance (IR; ΔI0–120/ΔG0–120, ΔIS rate [ISR]0–120/ΔG0–120), and β-cell function (ΔI/ΔG × MI and ΔISR/ΔG × MI) were calculated from plasma glucose, insulin, and C-peptide concentrations during oral glucose tolerance tests at baseline and study end. Diabetes developed in 45 placebo-treated vs. 15 PGZ-treated subjects (odds ratio [OR] 0.28 [95% CI 0.15–0.49]; P < 0.0001); 48% of PGZ-treated subjects reverted to normal glucose tolerance (NGT) versus 28% of placebo-treated subjects (P < 0.005). Higher final glucose tolerance status (NGT > IGT > T2DM) was associated with improvements in insulin sensitivity (OR 0.61 [95% CI 0.54–0.80]), IS (OR 0.61 [95% CI 0.50–0.75]), and β-cell function (ln IS/IR index and ln ISR/IR index) (OR 0.26 [95% CI 0.19–0.37]; all P < 0.0001). Of the factors measured, improved β-cell function was most closely associated with final glucose tolerance status. PMID:23863810

  2. Enhanced skeletal muscle lipid oxidative efficiency in insulin-resistant vs insulin-sensitive nondiabetic, nonobese humans.

    PubMed

    Galgani, Jose E; Vasquez, Karla; Watkins, Guillermo; Dupuy, Aude; Bertrand-Michel, Justine; Levade, Thierry; Moro, Cedric

    2013-04-01

    Skeletal muscle insulin resistance is proposed to result from impaired skeletal muscle lipid oxidative capacity. However, there is no evidence indicating that muscle lipid oxidative capacity is impaired in healthy otherwise insulin-resistant individuals. The objective of the study was to assess muscle lipid oxidative capacity in young, nonobese, glucose-tolerant, insulin-resistant vs insulin-sensitive individuals. In 13 insulin-sensitive [by Matsuda index (MI) (22.6 ± 0.6 [SE] kg/m(2)); 23 ± 1 years; MI 5.9 ± 0.1] and 13 insulin-resistant (23.2 ± 0.6 kg/m(2); 23 ± 3 years; MI 2.2 ± 0.1) volunteers, skeletal muscle biopsy, blood extraction before and after an oral glucose load, and dual-energy x-ray absorptiometry were performed. Skeletal muscle mitochondrial to nuclear DNA ratio, oxidative phosphorylation protein content, and citrate synthase and β-hydroxyacyl-CoA dehydrogenase activities were assessed. Muscle lipids and palmitate oxidation ((14)CO2 and (14)C-acid soluble metabolites production) at 4 [1-(14)C]palmitate concentrations (45-520 μM) were also measured. None of the muscle mitochondrial measures showed differences between groups, except for a higher complex V protein content in insulin-resistant vs insulin-sensitive volunteers (3.5 ± 0.4 vs 2.2 ± 0.4; P = .05). Muscle ceramide content was significantly increased in insulin-resistant vs insulin-sensitive individuals (P = .04). Total palmitate oxidation showed a similar concentration-dependent response in both groups (P = .69). However, lipid oxidative efficiency (CO2 to (14)C-acid soluble metabolites ratio) was enhanced in insulin-resistant vs insulin-sensitive individuals, particularly at the highest palmitate concentration (0.24 ± 0.04 vs 0.12 ± 0.02; P = .02). We found no evidence of impaired muscle mitochondrial oxidative capacity in young, nonobese, glucose-tolerant, otherwise insulin-resistant vs insulin-sensitive individuals. Enhanced muscle lipid oxidative efficiency in insulin resistance could be a potential mechanism to prevent further lipotoxicity.

  3. Preoperative β-cell function in patients with type 2 diabetes is important for the outcome of Roux-en-Y gastric bypass surgery

    PubMed Central

    Lund, Michael Taulo; Hansen, Merethe; Skaaby, Stinna; Dalby, Sina; Støckel, Mikael; Floyd, Andrea Karen; Bech, Karsten; Helge, Jørn Wulff; Holst, Jens Juul; Dela, Flemming

    2015-01-01

    The majority of the patients with type 2 diabetes (T2DM) show remission after Roux-en-Y gastric bypass (RYGB). This is the result of increased postoperative insulin sensitivity and β-cell secretion. The aim of the present study was to elucidate the importance of the preoperative β-cell function in T2DM for the chance of remission after RYGB. Fifteen patients with and 18 without T2DM had 25 g oral (OGTT) and intravenous (IVGTT) glucose tolerance tests performed at inclusion, after a diet-induced weight loss, and 4 and 18 months after RYGB. Postoperative first phase insulin secretion rate (ISR) during the IVGTT and β-cell glucose sensitivity during the OGTT increased in T2DM. Postoperative insulin sensitivity and the disposition index (DI) markedly increased in both groups. By stratifying the T2DM into two groups according to highest (T2DMhigh) and lowest (T2DMlow) baseline DI, a restoration of first phase ISR and β-cell glucose sensitivity were seen only in T2DMhigh. Remission of type 2 diabetes was 71 and 38% in T2DMhigh and T2DMlow, respectively. Postoperative postprandial GLP-1 concentrations increased markedly, but did not differ between the groups. Our findings emphasize the importance of the preoperative of β-cell function for remission of diabetes after RYGB. Key points Roux-en-Y gastric bypass surgery leads to remission of type 2 diabetes in the majority of patients suffering from the disease. The gut hormone glucagon-like peptide-1 is believed to be of major importance for the remission process. The present project demonstrates a marked difference in the chance of remission of type 2 diabetes in patients with low or high preoperative β-cell function in spite of a similar post-surgery increase in postprandial glucagon-like peptide-1 release. Furthermore, post-surgery intravenous glucose administration, which does not stimulate release of glucagon-like peptide-1, leads to increased insulin secretion in the patients with the best preoperative β-cell function. Together the present findings indicate that patients with type 2 diabetes with high preoperative β-cell function experience a glucagon-like peptide-1-independent increase in β-cell function after gastric bypass surgery. PMID:25867961

  4. Insulin Resistance and the Polycystic Ovary Syndrome Revisited: An Update on Mechanisms and Implications

    PubMed Central

    Diamanti-Kandarakis, Evanthia

    2012-01-01

    Polycystic ovary syndrome (PCOS) is now recognized as an important metabolic as well as reproductive disorder conferring substantially increased risk for type 2 diabetes. Affected women have marked insulin resistance, independent of obesity. This article summarizes the state of the science since we last reviewed the field in the Endocrine Reviews in 1997. There is general agreement that obese women with PCOS are insulin resistant, but some groups of lean affected women may have normal insulin sensitivity. There is a post-binding defect in receptor signaling likely due to increased receptor and insulin receptor substrate-1 serine phosphorylation that selectively affects metabolic but not mitogenic pathways in classic insulin target tissues and in the ovary. Constitutive activation of serine kinases in the MAPK-ERK pathway may contribute to resistance to insulin's metabolic actions in skeletal muscle. Insulin functions as a co-gonadotropin through its cognate receptor to modulate ovarian steroidogenesis. Genetic disruption of insulin signaling in the brain has indicated that this pathway is important for ovulation and body weight regulation. These insights have been directly translated into a novel therapy for PCOS with insulin-sensitizing drugs. Furthermore, androgens contribute to insulin resistance in PCOS. PCOS may also have developmental origins due to androgen exposure at critical periods or to intrauterine growth restriction. PCOS is a complex genetic disease, and first-degree relatives have reproductive and metabolic phenotypes. Several PCOS genetic susceptibility loci have been mapped and replicated. Some of the same susceptibility genes contribute to disease risk in Chinese and European PCOS populations, suggesting that PCOS is an ancient trait. PMID:23065822

  5. Motor function is associated with 1,25(OH)(2)D and indices of insulin-glucose dynamics in non-diabetic older adults.

    PubMed

    Justice, Jamie N; Pierpoint, Lauren A; Mani, Diba; Schwartz, Robert S; Enoka, Roger M

    2014-06-01

    Advancing age is accompanied by changes in metabolic characteristics, such as reduced insulin sensitivity and low levels of vitamin D, which may exacerbate age-related declines in physical function. The aim of the present study was to determine the associations between insulin-glucose dynamics, vitamin D metabolites, and performance on a battery of motor tasks in healthy, non-diabetic older adults. Sixty-nine community-dwelling men and women (65-90 years) were recruited. Insulin-glucose dynamics were determined by an intravenous glucose tolerance test, and vitamin D metabolites were measured. Motor function was characterized by the time to walk 500 m, chair-rise time, lower body strength, dorsiflexor steadiness and endurance time, and muscle coactivation. Significant unadjusted correlations were found between insulin-glucose dynamics and 1,25-dihydroxyvitamin D [1,25(OH)2D] with walk time, strength, steadiness, endurance time, and muscle activation (p < 0.05). A significant amount of the variance in walking endurance was explained by the sex of the individual, 1,25(OH)2D, and fasting blood insulin (R (2) = 0.36, p < 0.001). Strength could be partially explained by age, body fatness, and fasting glucose (R (2) = 0.55, p < 0.001). Poor motor function in non-diabetic older men and women was associated with indices of insulin-glucose dynamics and the bio-active vitamin D metabolite 1,25(OH)2D. Walking endurance and strength were explained by 1,25(OH)2D and fasting blood glucose and insulin, even after adjusting for age, sex, and body fat. Motor function in a relatively small sample of non-diabetic older men and women was associated with metabolic factors that increase in prevalence with aging.

  6. Deletion of the alpha-arrestin protein Txnip in mice promotes adiposity and adipogenesis while preserving insulin sensitivity.

    PubMed

    Chutkow, William A; Birkenfeld, Andreas L; Brown, Jonathan D; Lee, Hui-Young; Frederick, David W; Yoshioka, Jun; Patwari, Parth; Kursawe, Romy; Cushman, Samuel W; Plutzky, Jorge; Shulman, Gerald I; Samuel, Varman T; Lee, Richard T

    2010-06-01

    Thioredoxin interacting protein (Txnip), a regulator of cellular oxidative stress, is induced by hyperglycemia and inhibits glucose uptake into fat and muscle, suggesting a role for Txnip in type 2 diabetes pathogenesis. Here, we tested the hypothesis that Txnip-null (knockout) mice are protected from insulin resistance induced by a high-fat diet. Txnip gene-deleted (knockout) mice and age-matched wild-type littermate control mice were maintained on a standard chow diet or subjected to 4 weeks of high-fat feeding. Mice were assessed for body composition, fat development, energy balance, and insulin responsiveness. Adipogenesis was measured from ex vivo fat preparations, and in mouse embryonic fibroblasts (MEFs) and 3T3-L1 preadipocytes after forced manipulation of Txnip expression. Txnip knockout mice gained significantly more adipose mass than controls due to a primary increase in both calorie consumption and adipogenesis. Despite increased fat mass, Txnip knockout mice were markedly more insulin sensitive than controls, and augmented glucose transport was identified in both adipose and skeletal muscle. RNA interference gene-silenced preadipocytes and Txnip(-/-) MEFs were markedly adipogenic, whereas Txnip overexpression impaired adipocyte differentiation. As increased adipogenesis and insulin sensitivity suggested aspects of augmented peroxisome proliferator-activated receptor-gamma (PPARgamma) response, we investigated Txnip's regulation of PPARgamma function; manipulation of Txnip expression directly regulated PPARgamma expression and activity. Txnip deletion promotes adiposity in the face of high-fat caloric excess; however, loss of this alpha-arrestin protein simultaneously enhances insulin responsiveness in fat and skeletal muscle, revealing Txnip as a novel mediator of insulin resistance and a regulator of adipogenesis.

  7. Central versus peripheral impact of estradiol on the impaired glucose metabolism in ovariectomized mice on a high-fat diet.

    PubMed

    Yonezawa, Rika; Wada, Tsutomu; Matsumoto, Natsumi; Morita, Mayuko; Sawakawa, Kanae; Ishii, Yoko; Sasahara, Masakiyo; Tsuneki, Hiroshi; Saito, Shigeru; Sasaoka, Toshiyasu

    2012-08-15

    Age-related loss of ovarian function promotes adiposity and insulin resistance in women. Estrogen (E(2)) directly enhances insulin sensitivity and suppresses lipogenesis in peripheral tissues. Recently, the central actions of E(2) in the regulation of energy homeostasis are becoming clearer; however, the functional relevance and degree of contribution of the central vs. peripheral actions of E(2) are currently unknown. Therefore, we prepared and analyzed four groups of mice. 1) CONTROL: sham-operated mice fed a regular diet, 2) OVX-HF: ovariectomized (OVX) mice fed a 60% high-fat diet (HF), 3) E2-SC: OVX-HF mice subcutaneously treated with E(2), and 4) E2-ICV: OVX-HF mice treated with E(2) intracerebroventricularly. OVX-HF mice showed increased body weight with both visceral and subcutaneous fat volume enlargement, glucose intolerance, and insulin resistance. Both E2-SC and E2-ICV equally ameliorated these abnormalities. Although the size of adipocytes and number of CD11c-positive macrophages in perigonadal fat in OVX-HF were reduced by both E(2) treatments, peripherally administered E(2) decreased the expression of TNFα, lipoprotein lipase, and fatty acid synthase in the white adipose tissue (WAT) of OVX-HF. In contrast, centrally administered E(2) increased hormone-sensitive lipase in WAT, decreased the hepatic expression of gluconeogenic enzymes, and elevated core body temperature and energy expenditure with marked upregulation of uncoupling proteins in the brown adipose tissue. These results suggest that central and peripheral actions of E(2) regulate insulin sensitivity and glucose metabolism via different mechanisms, and their coordinated effects may be important to prevent the development of obesity and insulin resistance in postmenopausal women.

  8. Low glycaemic index diet and disposition index in type 2 diabetes (the Canadian trial of carbohydrates in diabetes): a randomised controlled trial.

    PubMed

    Wolever, T M S; Mehling, C; Chiasson, J-L; Josse, R G; Leiter, L A; Maheux, P; Rabasa-Lhoret, R; Rodger, N W; Ryan, E A

    2008-09-01

    We recently found that oral glucose tolerance over 1 year in type 2 diabetic patients declined to a significantly lesser degree on a low-glycaemic-index than on a reduced-carbohydrate diet. Here, we examined whether that finding was associated with an improvement in disposition index, an index of beta cell function defined as the product of insulin sensitivity and insulin secretion. Since this is a report of secondary analysis on a previously published trial, the results should be considered as hypothesis-generating. Type 2 diabetic patients treated by diet alone (n = 162) were randomised by computer to high-carbohydrate/high-glycaemic index (High-GI, n = 52), high-carbohydrate/low-glycaemic index (Low-GI, n = 56) or low-carbohydrate/high-monounsaturated-fat (Low-CHO, n = 54) diets for 1 year in a multi-centre, parallel-design clinical trial conducted at University teaching hospitals. At baseline and at 3, 6 and 12 months participants underwent 75 g OGTTs; 27 participants dropped out or were excluded. Indices of insulin sensitivity, insulin secretion and disposition index, derived from the OGTT, were compared among diets. Those assessing the outcomes were blinded to group assignment. Neither muscle insulin sensitivity index nor insulinogenic index differed significantly among diets. However, a significant time x diet interaction existed for disposition index (muscle insulin sensitivity index x insulinogenic index) (p = 0.036). After 3 months, disposition index tended to be higher on Low-CHO than on Low-GI diets, namely by 0.07 h(-1) (95% CI -0.04, 0.18). However, by 12 months this reversed and disposition index became higher on Low-GI than on Low-CHO, namely by 0.12 h(-1) (0.01, 0.23; p < 0.05, baseline disposition index 0.23 h(-1)). There were no important adverse effects associated with the treatments. These results suggest that, in patients with type 2 diabetes on diet alone, a Low-GI diet for 1 year increases disposition index, an index of beta cell function, compared with a Low-CHO diet.

  9. The Effect of Piceatannol from Passion Fruit (Passiflora edulis) Seeds on Metabolic Health in Humans

    PubMed Central

    Kitada, Munehiro; Ogura, Yoshio; Sai, Masahiko; Suzuki, Taeko; Kanasaki, Keizo; Hara, Yuna; Seto, Hiromi; Kuroshima, Yuka; Monno, Itaru; Koya, Daisuke

    2017-01-01

    Animal studies have shown the beneficial effects of piceatannol on metabolic health; however, there is a lack of human studies designed to examine these effects. The objective of this study was to investigate the effects of piceatannol on metabolic health in humans. This randomized, placebo-controlled study was conducted on 39 subjects, including 10 overweight men and 9 overweight women (BMI ≥ 25), as well as 10 non-overweight men and 10 non-overweight women (BMI < 25). Subjects received piceatannol (20 mg/day) or placebo capsules for eight weeks in a random order. The primary outcome was the effect of piceatannol on glucose-metabolism, including insulin sensitivity. The secondary outcomes were the effects on other parameters, including blood pressure (BP), heart rate (HR), endothelial function, lipids, inflammation, oxidative stress, mood status, and Sirt1 and phospho-AMP-activated kinase (p-AMPK) expression in isolated peripheral blood mononuclear cells (PBMNCs). Supplementation with piceatannol in overweight men reduced serum insulin levels, HOMA-IR, BP and HR. Other groups, including non-overweight men, as well as overweight and non-overweight women, showed no beneficial effects on insulin sensitivity, BP and HR. Furthermore, piceatannol is not associated with other data, including body weight (BW), body composition, endothelial function, lipids, inflammation, oxidative stress, mood status, and Sirt1/p-AMPK expression in PBMNCs. In conclusion, supplementation with piceatannol can improve metabolic health, including insulin sensitivity, BP and HR, in overweight men. PMID:29057795

  10. The Effect of Piceatannol from Passion Fruit (Passiflora edulis) Seeds on Metabolic Health in Humans.

    PubMed

    Kitada, Munehiro; Ogura, Yoshio; Maruki-Uchida, Hiroko; Sai, Masahiko; Suzuki, Taeko; Kanasaki, Keizo; Hara, Yuna; Seto, Hiromi; Kuroshima, Yuka; Monno, Itaru; Koya, Daisuke

    2017-10-18

    Animal studies have shown the beneficial effects of piceatannol on metabolic health; however, there is a lack of human studies designed to examine these effects. The objective of this study was to investigate the effects of piceatannol on metabolic health in humans. This randomized, placebo-controlled study was conducted on 39 subjects, including 10 overweight men and 9 overweight women (BMI ≥ 25), as well as 10 non-overweight men and 10 non-overweight women (BMI < 25). Subjects received piceatannol (20 mg/day) or placebo capsules for eight weeks in a random order. The primary outcome was the effect of piceatannol on glucose-metabolism, including insulin sensitivity. The secondary outcomes were the effects on other parameters, including blood pressure (BP), heart rate (HR), endothelial function, lipids, inflammation, oxidative stress, mood status, and Sirt1 and phospho-AMP-activated kinase (p-AMPK) expression in isolated peripheral blood mononuclear cells (PBMNCs). Supplementation with piceatannol in overweight men reduced serum insulin levels, HOMA-IR, BP and HR. Other groups, including non-overweight men, as well as overweight and non-overweight women, showed no beneficial effects on insulin sensitivity, BP and HR. Furthermore, piceatannol is not associated with other data, including body weight (BW), body composition, endothelial function, lipids, inflammation, oxidative stress, mood status, and Sirt1/p-AMPK expression in PBMNCs. In conclusion, supplementation with piceatannol can improve metabolic health, including insulin sensitivity, BP and HR, in overweight men.

  11. Bayesian functional integral method for inferring continuous data from discrete measurements.

    PubMed

    Heuett, William J; Miller, Bernard V; Racette, Susan B; Holloszy, John O; Chow, Carson C; Periwal, Vipul

    2012-02-08

    Inference of the insulin secretion rate (ISR) from C-peptide measurements as a quantification of pancreatic β-cell function is clinically important in diseases related to reduced insulin sensitivity and insulin action. ISR derived from C-peptide concentration is an example of nonparametric Bayesian model selection where a proposed ISR time-course is considered to be a "model". An inferred value of inaccessible continuous variables from discrete observable data is often problematic in biology and medicine, because it is a priori unclear how robust the inference is to the deletion of data points, and a closely related question, how much smoothness or continuity the data actually support. Predictions weighted by the posterior distribution can be cast as functional integrals as used in statistical field theory. Functional integrals are generally difficult to evaluate, especially for nonanalytic constraints such as positivity of the estimated parameters. We propose a computationally tractable method that uses the exact solution of an associated likelihood function as a prior probability distribution for a Markov-chain Monte Carlo evaluation of the posterior for the full model. As a concrete application of our method, we calculate the ISR from actual clinical C-peptide measurements in human subjects with varying degrees of insulin sensitivity. Our method demonstrates the feasibility of functional integral Bayesian model selection as a practical method for such data-driven inference, allowing the data to determine the smoothing timescale and the width of the prior probability distribution on the space of models. In particular, our model comparison method determines the discrete time-step for interpolation of the unobservable continuous variable that is supported by the data. Attempts to go to finer discrete time-steps lead to less likely models. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  12. Comparison of β-Cell Function Between Overweight/Obese Adults and Adolescents Across the Spectrum of Glycemia.

    PubMed

    Chen, Melinda E; Chandramouli, Aaditya G; Considine, Robert V; Hannon, Tamara S; Mather, Kieren J

    2018-02-01

    Type 2 diabetes is a growing health problem among both adults and adolescents. To better understand the differences in the pathogenesis of diabetes between these groups, we examined differences in β-cell function along the spectrum of glucose tolerance. We evaluated 89 adults and 50 adolescents with normal glucose tolerance (NGT), dysglycemia, or type 2 diabetes. Oral glucose tolerance test results were used for C-peptide and insulin/glucose minimal modeling. Model-derived and direct measures of insulin secretion and insulin sensitivity were compared across glycemic stages and between age-groups at each stage. In adolescents with dysglycemia, there was marked insulin resistance (insulin sensitivity index: adolescents, median [interquartile range] 1.8 [1.1-2.4] × 10 -4 ; adults, 5.0 [2.3-9.9]; P = 0.01). The nature of β-cell dysfunction across stages of dysglycemia differed between the groups. We observed higher levels of secretion among adolescents than adults (total insulin secretion: NGT, 143 [103-284] × 10 -9 /min adolescent vs. 106 [71-127], P = 0.001); adults showed stepwise impairments in static insulin secretion (NGT, 7.5 [4.0-10.3] × 10 -9 /min; dysglycemia, 5.0 [2.3-9.9]; type 2 diabetes, 0.7 [0.1-2.45]; P = 0.003), whereas adolescents showed diabetes-related impairment in dynamic secretion (NGT, 1,905 [1,630-3,913] × 10 -9 ; dysglycemia, 2,703 [1,323-3,637]; type 2 diabetes, 1,189 [269-1,410]; P = 0.001). Adults and adolescents differ in the underlying defects leading to dysglycemia, and in the nature of β-cell dysfunction across stages of dysglycemia. These results may suggest different approaches to diabetes prevention in youths versus adults. © 2017 by the American Diabetes Association.

  13. Redox Signal-mediated Enhancement of the Temperature Sensitivity of Transient Receptor Potential Melastatin 2 (TRPM2) Elevates Glucose-induced Insulin Secretion from Pancreatic Islets.

    PubMed

    Kashio, Makiko; Tominaga, Makoto

    2015-05-08

    Transient receptor potential melastatin 2 (TRPM2) is a thermosensitive Ca(2+)-permeable cation channel expressed by pancreatic β cells where channel function is constantly affected by body temperature. We focused on the physiological functions of redox signal-mediated TRPM2 activity at body temperature. H2O2, an important molecule in redox signaling, reduced the temperature threshold for TRPM2 activation in pancreatic β cells of WT mice but not in TRPM2KO cells. TRPM2-mediated [Ca(2+)]i increases were likely caused by Ca(2+) influx through the plasma membrane because the responses were abolished in the absence of extracellular Ca(2+). In addition, TRPM2 activation downstream from the redox signal plus glucose stimulation enhanced glucose-induced insulin secretion. H2O2 application at 37 °C induced [Ca(2+)]i increases not only in WT but also in TRPM2KO β cells. This was likely due to the effect of H2O2 on KATP channel activity. However, the N-acetylcysteine-sensitive fraction of insulin secretion by WT islets was increased by temperature elevation, and this temperature-dependent enhancement was diminished significantly in TRPM2KO islets. These data suggest that endogenous redox signals in pancreatic β cells elevate insulin secretion via TRPM2 sensitization and activity at body temperature. The results in this study could provide new therapeutic approaches for the regulation of diabetic conditions by focusing on the physiological function of TRPM2 and redox signals. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Plasma glycosylphosphatidylinositol-specific phospholipase D predicts the change in insulin sensitivity in response to a low fat but not a low carbohydrate diet in obese women

    PubMed Central

    Gray, Dona L.; O’Brien, Kevin D.; D’Alessio, David A.; Brehm, Bonnie J.; Deeg, Mark A.

    2013-01-01

    Context Although circulating glycosylphosphatidylinositol-specific phospholipase D, a minor high density lipoprotein-associated protein, is elevated in patients with insulin resistance or high triglycerides, no information is available on the effect of weight loss or changes in insulin sensitivity on circulating glycosylphosphatidylinositol-specific phospholipase D levels. Objective Determine the effect of weight loss and changes in insulin sensitivity on plasma glycosylphosphatidylinositol-specific phospholipase D levels. Participants Forty two non-diabetic obese women. Intervention Three month dietary intervention randomizing patients to a low fat or a low carbohydrate diet. Main outcome measures Plasma glycosylphosphatidylinositol-specific phospholipase D levels and insulin sensitivity as estimated by the homeostasis model assessment. Results The very low carbohydrate diet group lost more weight after 3 months (−7.6 ± 3.2 vs. −4.2 ± 3.5 kg, P < 0.01) although the decrease in insulin resistance was similar between groups. Weight loss with either diet did not alter plasma glycosylphosphatidylinositol-specific phospholipase D levels. However, baseline glycosylphosphatidylinositol-specific phospholipase D levels correlated with the change in insulin sensitivity in response to the low fat diet while baseline insulin sensitivity correlated the change in insulin sensitivity in response to the low carbohydrate diet. Conclusions Plasma GPI-PLD may serve as a clinical tool to determine the effect of a low fat diet on insulin sensitivity. PMID:18328347

  15. Effect of hypothyroidism on insulin sensitivity and glucose tolerance in dogs.

    PubMed

    Hofer-Inteeworn, Natalie; Panciera, David L; Monroe, William E; Saker, Korinn E; Davies, Rebecca Hegstad; Refsal, Kent R; Kemnitz, Joseph W

    2012-04-01

    To determine the effects of hypothyroidism on insulin sensitivity, glucose tolerance, and concentrations of hormones counter-regulatory to insulin in dogs. 8 anestrous mixed-breed bitches with experimentally induced hypothyroidism and 8 euthyroid control dogs. The insulin-modified frequently sampled IV glucose tolerance test and minimal model analysis were used to determine basal plasma insulin and glucose concentrations, acute insulin response to glucose, insulin sensitivity, glucose effectiveness, and disposition index. Growth hormone response was assessed by stimulation and suppression tests. Additionally, basal serum growth hormone (GH) and insulin-like growth factor-1 (IGF-1) concentrations and urine cortisol-to-creatinine concentration ratios were measured and dual energy x-ray absorptiometry was performed to evaluate body composition. Insulin sensitivity was lower in the hypothyroid group than in the euthyroid group, whereas acute insulin response to glucose was higher. Glucose effectiveness and disposition index were not different between groups. Basal serum GH and IGF-1 concentrations as well as abdominal fat content were high in hypothyroid dogs, but urine cortisol-to-creatinine concentration ratios were unchanged. Hypothyroidism appeared to negatively affect glucose homeostasis by inducing insulin resistance, but overall glucose tolerance was maintained by increased insulin secretion in hypothyroid dogs. Possible factors affecting insulin sensitivity are high serum GH and IGF-1 concentrations and an increase in abdominal fat. In dogs with diseases involving impaired insulin secretion such as diabetes mellitus, concurrent hypothyroidism can have important clinical implications.

  16. Growth factors, nutrient signaling, and cardiovascular aging.

    PubMed

    Fontana, Luigi; Vinciguerra, Manlio; Longo, Valter D

    2012-04-13

    Growth factors regulated by specific macronutrients have been shown to promote aging and accelerate mortality in the majority of the organisms studied. In particular, the enzymes activated by growth hormone, insulin, and insulin-like growth factor-1 in mammals and their orthologs in simple model organisms represent perhaps the best-understood proteins involved in the aging process. Dietary restriction, which reduces the level of insulin-like growth factor-1 and of other growth factors, has been associated with protection from diabetes, cancer, and cardiovascular diseases, and deficiencies in growth hormone signaling and insulin-like growth factor-1 are strongly associated with protection from cancer and diabetes in both mice and humans; however, their role in cardiac function and cardiovascular diseases is controversial. Here, we review the link between growth factors, cardiac function, and heart disease with focus on the cardioprotective and sensitizing effect of growth factors in both model organisms and humans.

  17. Targeting Insulin Signaling for the Treatment of Alzheimer's Disease.

    PubMed

    Chen, Yanxing; Zhang, Jianfang; Zhang, Baorong; Gong, Cheng-Xin

    2016-01-01

    Sporadic Alzheimer's disease (AD) is caused by multiple etiological factors, among which impaired brain insulin signaling and decreased brain glucose metabolism are important metabolic factors. Contrary to previous belief that insulin would not act in the brain, studies in the last three decades have proven important roles of insulin and insulin signaling in various biological functions in the brain. Impaired brain insulin signaling or brain insulin resistance and its role in the molecular pathogenesis of sporadic AD have been demonstrated. Thus, targeting brain insulin signaling for the treatment of cognitive impairment and AD has now attracted much attention in the field of AD drug discovery. This article reviews recent studies that target brain insulin signaling, especially those investigations on intranasal insulin administration and drugs that improve insulin sensitivity, including incretins, dipeptidyl peptidase IV inhibitors, thiazolidinediones, and metformin. These drugs have been previously approved for the treatment of diabetes mellitus, which could expedite their development for the treatment of AD. Although larger clinical trials are needed for validating their efficacy for the treatment of cognitive impairment and AD, results of animal studies and clinical trials available to date are encouraging.

  18. The Effects of Carbohydrate, Unsaturated Fat, and Protein Intake on Measures of Insulin Sensitivity

    PubMed Central

    Gadgil, Meghana D.; Appel, Lawrence J.; Yeung, Edwina; Anderson, Cheryl A.M.; Sacks, Frank M.; Miller, Edgar R.

    2013-01-01

    OBJECTIVE Impaired insulin sensitivity increases the risk of cardiovascular disease. Although calorie restriction and weight loss increase insulin sensitivity, the effects of modifying macronutrient composition on insulin sensitivity are uncertain. The purpose of this study is to determine the effects on insulin sensitivity of a carbohydrate-rich diet (CARB; similar to the Dietary Approaches to Stop Hypertension [DASH] diet), a protein-rich diet (PROT; protein predominantly from plant sources), and an unsaturated fat–rich diet (UNSAT; predominantly monounsaturated). RESEARCH DESIGN AND METHODS This study was a randomized, controlled, three-period, crossover feeding study. The study participants were 164 individuals with prehypertension or stage 1 hypertension without diabetes. Diets were administered for 6 weeks each, with a washout period between diets of 2–4 weeks. Weight was held constant throughout the study. For our primary outcome, we calculated the quantitative insulin sensitivity check index (QUICKI) using the end-of-period fasting serum glucose and insulin. QUICKI is a validated measure of insulin sensitivity. The primary analyses used generalized estimating equations. RESULTS At baseline, mean (SD) BMI was 30.2 (6.1) kg/m2, and mean (SD) QUICKI was 0.35 (0.04). The UNSAT diet increased QUICKI by 0.005, more than the CARB diet (P = 0.04). PROT had no significant effect compared with CARB. CONCLUSIONS A diet that partially replaces carbohydrate with unsaturated fat may improve insulin sensitivity in a population at risk for cardiovascular disease. Given the well-recognized challenges of sustaining weight loss, our results suggest an alternative approach for improving insulin sensitivity. PMID:23223345

  19. Shorter Sleep Duration is Associated with Decreased Insulin Sensitivity in Healthy White Men

    PubMed Central

    Wong, Patricia M.; Manuck, Stephen B.; DiNardo, Monica M.; Korytkowski, Mary; Muldoon, Matthew F.

    2015-01-01

    Study Objective: Short sleep has been linked to increased risk for type 2 diabetes and incident cardiovascular disease and acute sleep restriction impairs insulin-mediated glucose disposal. Here, we examined whether indices of glucose metabolism vary with naturally occurring differences in sleep duration. Design and Measures: Subjects were midlife, nondiabetic community volunteers (N = 224; mean age 44.5 ± 6.6 y [range: 30–54]; 52% female; 89% white). Laboratory measures of insulin sensitivity (Si) and acute secretion (AIRg), glucose effectiveness (Sg), and disposition index (Di) were obtained from a 180-min, intravenous glucose tolerance test. Results: Shorter self-reported sleep duration (in hours) was associated with lower Si (P = 0.043), although an interaction of sleep duration with participant race (β = −0.81, P = 0.002) showed this association significant only in whites. Moreover, sex-stratified analyses revealed that shorter sleep duration predicted lower Si in white men (β = 0.29, P = 0.003) but not in white women (P = 0.22). Findings were similar for AIRg. The relationship between sleep duration and AIRg was moderated by race as well as sex, such that shorter sleep duration associated with greater insulin release only in white men (β = −0.28, P = 0.004). Sleep duration was unrelated to Sg and Di (P's > 0.05). Conclusions: Our findings suggest that shorter sleep duration may impair insulin sensitivity and beta-cell function in nondiabetic white men, possibly contributing to later type 2 diabetes and cardiovascular disease. Citation: Wong PM, Manuck SB, DiNardo MM, Korytkowski M, Muldoon MF. Shorter sleep duration is associated with decreased insulin sensitivity in healthy white men. SLEEP 2015;38(2):223–231. PMID:25325485

  20. Role of insulin in the hyperandrogenemia of lean women with polycystic ovary syndrome and normal insulin sensitivity.

    PubMed

    Baillargeon, Jean-Patrice; Carpentier, André

    2007-10-01

    To determine the effect of reducing insulin secretion on hyperandrogenemia in lean normoinsulinemic women with polycystic ovary syndrome (PCOS) and normal metabolic insulin sensitivity. Transversal assessment at baseline and prospective follow-up of lean PCOS group after 8 days of diazoxide, which reduces insulin secretion, and 1 month of leuprolide, which suppresses LH. Clinical research center of an academic hospital. Nine lean women (body mass index

  1. Early growth response-1 negative feedback regulates skeletal muscle postprandial insulin sensitivity via activating Ptp1b transcription.

    PubMed

    Wu, Jing; Tao, Wei-Wei; Chong, Dan-Yang; Lai, Shan-Shan; Wang, Chuang; Liu, Qi; Zhang, Tong-Yu; Xue, Bin; Li, Chao-Jun

    2018-03-15

    Postprandial insulin desensitization plays a critical role in maintaining whole-body glucose homeostasis by avoiding the excessive absorption of blood glucose; however, the detailed mechanisms that underlie how the major player, skeletal muscle, desensitizes insulin action remain to be elucidated. Herein, we report that early growth response gene-1 ( Egr-1) is activated by insulin in skeletal muscle and provides feedback inhibition that regulates insulin sensitivity after a meal. The inhibition of the transcriptional activity of Egr-1 enhanced the phosphorylation of the insulin receptor (InsR) and Akt, thus increasing glucose uptake in L6 myotubes after insulin stimulation, whereas overexpression of Egr-1 decreased insulin sensitivity. Furthermore, deletion of Egr-1 in the skeletal muscle improved systemic insulin sensitivity and glucose tolerance, which resulted in lower blood glucose levels after refeeding. Mechanistic analysis demonstrated that EGR-1 inhibited InsR phosphorylation and glucose uptake in skeletal muscle by binding to the proximal promoter region of protein tyrosine phosphatase-1B (PTP1B) and directly activating transcription. PTP1B knockdown largely restored insulin sensitivity and enhanced glucose uptake, even under conditions of EGR-1 overexpression. Our results indicate that EGR-1/PTP1B signaling negatively regulates postprandial insulin sensitivity and suggest a potential therapeutic target for the prevention and treatment of excessive glucose absorption.-Wu, J., Tao, W.-W., Chong, D.-Y., Lai, S.-S., Wang, C., Liu, Q., Zhang, T.-Y., Xue, B., Li, C.-J. Early growth response-1 negative feedback regulates skeletal muscle postprandial insulin sensitivity via activating Ptp1b transcription.

  2. Developmental Programming: Impact of Prenatal Testosterone Excess on Insulin Sensitivity, Adiposity, and Free Fatty Acid Profile in Postpubertal Female Sheep

    PubMed Central

    Veiga-Lopez, A.; Moeller, J.; Patel, D.; Ye, W.; Pease, A.; Kinns, J.

    2013-01-01

    Prenatal T excess causes reproductive and metabolic disruptions including insulin resistance, attributes of women with polycystic ovary syndrome. This study tested whether increases in visceral adiposity, adipocyte size, and total free fatty acids underlie the insulin resistance seen in prenatal T-treated female sheep. At approximately 16 months of age, insulin resistance and adipose tissue partitioning were determined via hyperinsulinemic euglycemic clamp and computed tomography, respectively, in control and prenatal T-treated females. Three months later, adipocyte size and free fatty acid composition were determined. Results revealed that at the postpubertal time points tested, insulin sensitivity was increased, visceral adiposity and adipocyte size in both the sc and the visceral compartments were reduced, and circulating palmitic acid was increased in prenatal T-treated females relative to controls. In parallel studies, 20-month-old prenatal T-treated females tended to have increased basal insulin to glucose ratio. Relative to earlier findings of reduced insulin sensitivity of prenatal T-treated females during early life and adulthood, these findings of increased insulin sensitivity and reduced adiposity postpubertally are suggestive of a period of developmental adaptation. The disruption observed in free fatty acid metabolism a few months later correspond to a time point when the insulin sensitivity indices of prenatal T-treated animals appear to shift toward insulin resistance. In summary, current findings of improved insulin sensitivity and reduced visceral adiposity in postpubertal prenatal T-treated sheep relative to our earlier findings of reduced insulin sensitivity during early postnatal life and adulthood are indicative of a period of developmental adaptation. PMID:23525243

  3. O-GlcNAcase deficiency suppresses skeletal myogenesis and insulin sensitivity in mice through the modulation of mitochondrial homeostasis.

    PubMed

    Wang, Xun; Feng, Zhihui; Wang, Xueqiang; Yang, Liang; Han, Shujun; Cao, Ke; Xu, Jie; Zhao, Lin; Zhang, Yong; Liu, Jiankang

    2016-06-01

    O-GlcNAcylation is implicated in modulating mitochondrial function, which is closely involved in regulating muscle metabolism. The presence of O-GlcNAcase (OGA), the enzyme involved in the removal of O-GlcNAc, in mitochondria was recently confirmed in rats. In the present study, we investigated the regulation of myogenesis and muscle insulin sensitivity to OGA in mice, with a focus on mitochondria. C57BL/6J mice fed a high-fat diet for 4 months were used to observe mitochondrial density, activity and O-GlcNAcylation in muscle. Small interfering RNA and overexpression vectors were used to modulate protein content in vitro. High-fat feeding decreased the OGA level and largely increased mitochondrial O-GlcNAcylation in mouse skeletal muscle that was accompanied by decreased levels of peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), decreased mitochondrial density and disrupted mitochondrial complex activities. Knockdown of OGA in C2C12 myoblasts promoted PGC-1α degradation, resulting in the suppression of mitochondrial biogenesis and myogenesis, whereas neither knockdown of O-GlcNAc transferase nor overexpression of OGA had significant effects on myogenesis. Mitochondrial dysfunction as evidenced by decreased ATP content and increased reactive oxygen species production, and increased lipid and protein oxidation was observed in both myoblasts and myotubes after OGA knockdown. Meanwhile, elevated O-GlcNAcylation through either OGA knockdown or treatment with the OGA inhibitor PUGNAc and the O-GlcNAc transferase substrate D-GlcNAc suppressed myotube insulin signalling transduction and glucose uptake. OGA overexpression had no significant effect on insulin sensitivity but sufficiently improved the insulin resistance induced by D-GlcNAc treatment. These data suggest that OGA can modulate mitochondrial density via PGC-1α and mitochondrial function via protein O-GlcNAcylation. In this manner, OGA appears to play a key role in myogenesis and the development of muscle insulin resistance.

  4. Apolipoprotein A-I interactions with insulin secretion and production.

    PubMed

    Rye, Kerry-Anne; Barter, Philip J; Cochran, Blake J

    2016-02-01

    Human population studies have established that an elevated plasma high-density lipoprotein cholesterol (HDL-C) level is associated with a decreased risk of developing cardiovascular disease. In addition to having several potentially cardioprotective functions, HDLs and apolipoprotein (apo)A-I, the main HDL apolipoprotein, also have antidiabetic properties. Interventions that elevate plasma HDL-C and apoA-I levels improve glycemic control in people with type 2 diabetes mellitus by enhancing pancreatic β-cell function and increasing insulin sensitivity. This review is concerned with recent advances in understanding the mechanisms by which HDLs and apoA-I improve pancreatic β-cell function. HDLs and apoA-I increase insulin synthesis and secretion in pancreatic β cells. The underlying mechanism of this effect is similar to what has been reported for intestinally derived incretins, such as glucagon-like peptide-1 and glucose-dependent insulinotropic polypeptide, which both increase β-cell insulin secretion under high glucose conditions. This involves the activation of a heterotrimeric G protein Gαs subunit on the β-cell surface that leads to induction of a transmembrane adenylyl cyclase, increased intracellular cyclic adenosine monophosphate and Ca levels, and activation of protein kinase A. Protein kinase A increases insulin synthesis by excluding FoxO1 from the β-cell nucleus and derepressing transcription of the insulin gene.

  5. Effect of tadalafil administration on insulin secretion and insulin sensitivity in obese men.

    PubMed

    González-Ortiz, Manuel; Martínez-Abundis, Esperanza; Hernández-Corona, Diana M; Ramírez-Rodríguez, Alejandra M

    2017-10-01

    To evaluate the effect of tadalafil administration on insulin secretion and insulin sensitivity in obese men without diabetes. A randomized, double-blind, placebo-controlled clinical trial was carried out in obese male patients between 30 and 50 years of age. Eighteen subjects were randomly assigned to two groups of nine patients each. During a 28-day period, subjects received 5 mg orally of tadalafil or placebo each night. Patients were evaluated before and after the intervention. Total insulin secretion and first phase of insulin secretion were calculated by insulinogenic index and Stumvoll index, respectively, and insulin sensitivity was calculated using the Matsuda index. Tolerability and compliance were evaluated permanently throughout the study. There were no significant differences after administration of tadalafil in total insulin secretion (0.82 ± 0.45 vs. 0.61 ± 0.27, p = 0.594), first phase of insulin secretion (1332 ± 487 vs. 1602 ± 800, p = 0.779) and insulin sensitivity (4.6 ± 1.2 vs. 4.9 ± 2.5, p = 0.779). No significant differences were shown in other measurements. Tadalafil administration for 28 days did not modify insulin secretion or insulin sensitivity in obese men.

  6. Utility of C-peptide for a reliable estimate of insulin secretion in children with growth hormone deficiency.

    PubMed

    Ciresi, Alessandro; Cicciò, Floriana; Radellini, Stefano; Giordano, Carla

    2016-08-01

    GH treatment (GHT) can lead to glucose metabolism impairment through decreased insulin sensitivity and impaired pancreatic β-cell function, which are the two key components of the pathogenesis of diabetes. Therefore, in addition to insulin sensitivity, during GHT it is very important to perform a reliable evaluation of insulin secretion. However, conflicting data exist regarding the insulin secretion in children during GHT. C-peptide provides a more reliable estimate of β-cell function than insulin, but few studies evaluated it during GHT. Our aim was to assess the usefulness of C-peptide in the evaluation of insulin secretion in GH deficiency (GHD) children. In 48 GHD children, at baseline and after 12 and 24months of GHT, and in 56 healthy subjects we evaluated fasting and glucagon-stimulated (AUCCpep) C-peptide levels in addition to other commonly used secretion indexes, such as fasting and oral glucose tolerance test-stimulated insulin levels (AUCINS), Homa-β, and insulinogenic index. The main outcomes were the change in C-peptide during GHT and its correlation with the auxological and hormonal parameters. At baseline GHD children showed a significant lower AUCCpep (p=0.006), while no difference was found for the other indexes. Both fasting C-peptide (beta 0.307, p=0.016) and AUCCpep (beta 0.379, p=0.002) were independently correlated with IGF-I SDS, while no correlation was found for all other indexes. After 12months an increase in Homa-β (p<0.001), fasting C-peptide (p=0.002) and AUCCpep (p<0.001) was found. At multivariate analysis, only fasting C-peptide (beta 0.783, p=0.001) and AUCCpep (beta 0.880, p<0.001) were independently correlated with IGF-I SDS. C-peptide, rather than the insulin-derived indexes, has proved to be the most useful marker of insulin secretion correlated to IGF-I levels in GHD children. Therefore, we suggest the use of glucagon test both as diagnostic test for the GH assessment and as a useful tool for the evaluation of insulin secretion during GHT in children. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Increased insulin sensitivity in intrauterine growth retarded newborns--do thyroid hormones play a role?

    PubMed

    Setia, Sajita; Sridhar, M G; Koner, B C; Bobby, Zachariah; Bhat, Vishnu; Chaturvedula, Lata

    2007-02-01

    Thyroid hormones are necessary for normal brain development. We studied thyroid hormone profile and insulin sensitivity in intrauterine growth retarded (IUGR) newborns to find correlation between insulin sensitivity and thyroid status in IUGR newborns. Fifty IUGR and fifty healthy control infants were studied at birth. Cord blood was collected for determination of T(3), T(4), TSH, glucose and insulin levels. IUGR newborns had significantly lower insulin, mean+/-S.D., 5.25+/-2.81 vs. 11.02+/-1.85microU/ml, but significantly higher insulin sensitivity measured as glucose to insulin ratio (G/I), 9.80+/-2.91 vs. 6.93+/-1.08 compared to healthy newborns. TSH was also significantly higher 6.0+/-2.70 vs. 2.99+/-1.05microU/ml with significantly lower T(4), 8.65+/-1.95 vs. 9.77+/-2.18microg/dl, but similar T(3) levels, 100.8+/-24.36 vs. 101.45+/-23.45ng/dl. On stepwise linear regression analysis in IUGR infants, insulin sensitivity was found to have a significant negative association with T(4) and significant positive association with TSH. Thyroid hormones may play a role in increased insulin sensitivity at birth in IUGR.

  8. Review: Adiponectin – The Missing Link between Maternal Adiposity, Placental Transport and Fetal Growth?

    PubMed Central

    Aye, Irving L. M. H.; Powell, Theresa L.; Jansson, Thomas

    2012-01-01

    Adiponectin has well-established insulin-sensitizing effects in non-pregnant individuals. Pregnant women who are obese or have gestational diabetes typically have low circulating levels of adiponectin, which is associated with increased fetal growth. Lean women, on the other hand, have high circulating levels of adiponectin. As a result, maternal serum adiponectin is inversely correlated to fetal growth across the full range of birth weights, suggesting that maternal adiponectin may limit fetal growth. In the mother, adiponectin is predicted to promote insulin sensitivity and stimulate glucose uptake in maternal skeletal muscle thereby reducing nutrient availability for placental transfer. Adiponectin prevents insulin-stimulated amino acid uptake in cultured primary human trophoblast cells by modulating insulin receptor substrate phosphorylation. Furthermore, chronic administration of adiponectin to pregnant mice inhibits placental insulin and mammalian target of rapamycin complex 1 (mTORC1) signaling, down-regulates the activity and expression of key placental nutrient transporters and decreases fetal growth. Preliminary findings indicate that adiponectin binds to the adiponectin receptor-2 on the trophoblast cell and activates p38 MAPK and PPAR-α, which inhibits the insulin/IGF-1 signaling pathway. In contrast to maternal adiponectin, recent reports suggest that fetal adiponectin may promote expansion of adipose tissue and stimulate fetal growth. Regulation of placental function by adiponectin constitutes a novel physiological mechanism by which the endocrine functions of maternal adipose tissue influence fetal growth. These findings may help us better understand the factors determining birth weight in normal pregnancies and in pregnancy complications associated with altered maternal adiponectin levels such as obesity and gestational diabetes. PMID:23245987

  9. Elevated Glucose Oxidation, Reduced Insulin Secretion, and a Fatty Heart May Be Protective Adaptions in Ischemic CAD.

    PubMed

    Hannukainen, J C; Lautamäki, R; Mari, A; Pärkkä, J P; Bucci, M; Guzzardi, M A; Kajander, S; Tuokkola, T; Knuuti, J; Iozzo, P

    2016-07-01

    Insulin resistance, β-cell dysfunction, and ectopic fat deposition have been implicated in the pathogenesis of coronary artery disease (CAD) and type 2 diabetes, which is common in CAD patients. We investigated whether CAD is an independent predictor of these metabolic abnormalities and whether this interaction is influenced by superimposed myocardial ischemia. We studied CAD patients with (n = 8) and without (n = 14) myocardial ischemia and eight non-CAD controls. Insulin sensitivity and secretion and substrate oxidation were measured during fasting and oral glucose tolerance testing. We used magnetic resonance imaging/spectroscopy, positron emission and computerized tomography to characterize CAD, cardiac function, pericardial and abdominal adipose tissue, and myocardial, liver, and pancreatic triglyceride contents. Ischemic CAD was characterized by elevated oxidative glucose metabolism and a proportional decline in β-cell insulin secretion and reduction in lipid oxidation. Cardiac function was preserved in CAD groups, whereas cardiac fat depots were elevated in ischemic CAD compared to non-CAD subjects. Liver and pancreatic fat contents were similar in all groups and related with surrounding adipose masses or systemic insulin sensitivity. In ischemic CAD patients, glucose oxidation is enhanced and correlates inversely with insulin secretion. This can be seen as a mechanism to prevent glucose lowering because glucose is required in oxygen-deprived tissues. On the other hand, the accumulation of cardiac triglycerides may be a physiological adaptation to the limited fatty acid oxidative capacity. Our results underscore the urgent need of clinical trials that define the optimal/safest glycemic range in situations of myocardial ischemia.

  10. Elevated Glucose Oxidation, Reduced Insulin Secretion, and a Fatty Heart May Be Protective Adaptions in Ischemic CAD

    PubMed Central

    Hannukainen, J. C.; Lautamäki, R.; Mari, A.; Pärkkä, J. P.; Bucci, M.; Guzzardi, M. A.; Kajander, S.; Tuokkola, T.; Knuuti, J.

    2016-01-01

    Background: Insulin resistance, β-cell dysfunction, and ectopic fat deposition have been implicated in the pathogenesis of coronary artery disease (CAD) and type 2 diabetes, which is common in CAD patients. We investigated whether CAD is an independent predictor of these metabolic abnormalities and whether this interaction is influenced by superimposed myocardial ischemia. Methods and Results: We studied CAD patients with (n = 8) and without (n = 14) myocardial ischemia and eight non-CAD controls. Insulin sensitivity and secretion and substrate oxidation were measured during fasting and oral glucose tolerance testing. We used magnetic resonance imaging/spectroscopy, positron emission and computerized tomography to characterize CAD, cardiac function, pericardial and abdominal adipose tissue, and myocardial, liver, and pancreatic triglyceride contents. Ischemic CAD was characterized by elevated oxidative glucose metabolism and a proportional decline in β-cell insulin secretion and reduction in lipid oxidation. Cardiac function was preserved in CAD groups, whereas cardiac fat depots were elevated in ischemic CAD compared to non-CAD subjects. Liver and pancreatic fat contents were similar in all groups and related with surrounding adipose masses or systemic insulin sensitivity. Conclusions: In ischemic CAD patients, glucose oxidation is enhanced and correlates inversely with insulin secretion. This can be seen as a mechanism to prevent glucose lowering because glucose is required in oxygen-deprived tissues. On the other hand, the accumulation of cardiac triglycerides may be a physiological adaptation to the limited fatty acid oxidative capacity. Our results underscore the urgent need of clinical trials that define the optimal/safest glycemic range in situations of myocardial ischemia. PMID:27045985

  11. Liver fat, visceral adiposity, and sleep disturbances contribute to the development of insulin resistance and glucose intolerance in nondiabetic dialysis patients.

    PubMed

    Sakkas, Giorgos K; Karatzaferi, Christina; Zintzaras, Elias; Giannaki, Christoforos D; Liakopoulos, Vassilios; Lavdas, Eleftherios; Damani, Eleni; Liakos, Nikos; Fezoulidis, Ioannis; Koutedakis, Yiannis; Stefanidis, Ioannis

    2008-12-01

    Hemodialysis patients exhibit insulin resistance (IR) in target organs such as liver, muscles, and adipose tissue. The aim of this study was to identify contributors to IR and to develop a model for predicting glucose intolerance in nondiabetic hemodialysis patients. After a 2-h, 75-g oral glucose tolerance test (OGTT), 34 hemodialysis patients were divided into groups with normal (NGT) and impaired glucose tolerance (IGT). Indices of insulin sensitivity were derived from OGTT data. Measurements included liver and muscle fat infiltration and central adiposity by computed tomography scans, body composition by dual energy X-ray absorptiometer, sleep quality by full polysomnography, and functional capacity and quality of life (QoL) by a battery of exercise tests and questionnaires. Cut-off points, as well as sensitivity and specificity calculations were based on IR (insulin sensitivity index by Matsuda) using a receiver operator characteristics (ROC) curve analysis. Fifteen patients were assigned to the IGT, and 19 subjects to the NGT group. Intrahepatic fat content and visceral adiposity were significantly higher in the IGT group. IR indices strongly correlated with sleep disturbances, visceral adiposity, functional capacity, and QoL. Visceral adiposity, O2 desaturation during sleep, intrahepatic fat content, and QoL score fitted into the model for predicting glucose intolerance. A ROC curve analysis identified an intrahepatic fat content of > 3.97% (sensitivity, 100; specificity, 35.7) as the best cutoff point for predicting IR. Visceral and intrahepatic fat content, as well as QoL and sleep seemed to be involved at some point in the development of glucose intolerance in hemodialysis patients. Means of reducing fat depots in the liver and splachnic area might prove promising in combating IR and cardiovascular risk in hemodialysis patients.

  12. Dimethylarginine Dimethylaminohydrolase Overexpression enhances Insulin Sensitivity

    PubMed Central

    Sydow, Karsten; Mondon, Carl E.; Schrader, Joerg; Konishi, Hakuoh; Cooke, John P.

    2011-01-01

    Objective Previous studies suggest that nitric oxide (NO) may modulate insulin-induced uptake of glucose in insulin-sensitive tissues. Asymmetric dimethylarginine (ADMA) is an endogenous inhibitor of NO synthase (NOS). We hypothesized that a reduction in endogenous ADMA would increase NO synthesis and thereby enhance insulin sensitivity. Methods and Results To test this hypothesis we employed a transgenic mouse in which we overexpressed human dimethylarginine dimethylaminohydrolase (DDAH-I). The DDAH-I mice had lower plasma ADMA at all ages (22–70 weeks) by comparison to wild-type (WT) littermates. With a glucose challenge, WT mice showed a prompt increase in ADMA, whereas DDAH-I mice had a blunted response. Furthermore, DDAH-I mice had a blunted increase in plasma insulin and glucose levels after glucose challenge, with a 50% reduction in the insulin resistence index, consistent with enhanced sensitivity to insulin. In liver, we observed an increased Akt phosphorylation in the DDAH-I mice after i.p. glucose challenge. Incubation of skeletal muscle from WT mice ex vivo with ADMA (2μM) markedly suppressed insulin-induced glycogen synthesis in fast-twitch but not slow-twitch muscle. Conclusions These findings suggest that the endogenous NOS inhibitor ADMA reduces insulin sensitivity, consistent with previous observations that NO plays a role in insulin sensitivity. PMID:18239148

  13. Quantification of β-cell insulin secretory function using a graded glucose infusion with C-peptide deconvolution in dysmetabolic, and diabetic cynomolgus monkeys.

    PubMed

    Wang, Xiaoli; Hansen, Barbara C; Shi, Da; Fang, Yupeng; Du, Fenglai; Wang, Bingdi; Chen, Yaxiong Michael; Gregoire, Francine M; Wang, Yi-Xin Jim

    2013-07-25

    Quantitation of β-cell function is critical in better understanding of the dynamic interactions of insulin secretion, clearance and action at different phases in the progression of diabetes. The present study aimed to quantify β-cell secretory function independently of insulin sensitivity in the context of differential metabolic clearance rates of insulin (MCRI) in nonhuman primates (NHPs). Insulin secretion rate (ISR) was derived from deconvolution of serial C-peptide concentrations measured during a 5 stage graded glucose infusion (GGI) in 12 nondiabetic (N), 8 prediabetic or dysmetabolic (DYS) and 4 overtly diabetic (DM) cynomolgus monkeys. The characterization of the monkeys was based on the fasting glucose and insulin concentrations, glucose clearance rate measured by intravenous glucose tolerance test, and insulin resistance indices measured in separate experiments. The molar ratio of C-peptide/insulin (C/I) was used as a surrogate index of hepatic MCRI. Compared to the N monkeys, the DYS with normal glycemia and hyperinsulinemia had significantly higher basal and GGI-induced elevation of insulin and C-peptide concentrations and lower C/I, however, each unit of glucose-stimulated ISR increment was not significantly different from that in the N monkeys. In contrast, the DM monkeys with β-cell failure and hyperglycemia had a depressed GGI-stimulated ISR response and elevated C/I. The present data demonstrated that in addition to β-cell hypersecretion of insulin, reduced hepatic MCRI may also contribute to the development of hyperinsulinemia in the DYS monkeys. On the other hand, hyperinsulinemia may cause the saturation of hepatic insulin extraction capacity, which in turn reduced MCRI in the DYS monkeys. The differential contribution of ISR and MCRI in causing hyperinsulinemia provides a new insight into the trajectory of β-cell dysfunction in the development of diabetes. The present study was the first to use the GGI and C-peptide deconvolution method to quantify the β-cell function in NHPs.

  14. PPAR-γ in the Cardiovascular System

    PubMed Central

    Duan, Sheng Zhong; Ivashchenko, Christine Y.; Usher, Michael G.; Mortensen, Richard M.

    2008-01-01

    Peroxisome proliferator-activated receptor-γ (PPAR-γ), an essential transcriptional mediator of adipogenesis, lipid metabolism, insulin sensitivity, and glucose homeostasis, is increasingly recognized as a key player in inflammatory cells and in cardiovascular diseases (CVD) such as hypertension, cardiac hypertrophy, congestive heart failure, and atherosclerosis. PPAR-γ agonists, the thiazolidinediones (TZDs), increase insulin sensitivity, lower blood glucose, decrease circulating free fatty acids and triglycerides, lower blood pressure, reduce inflammatory markers, and reduce atherosclerosis in insulin-resistant patients and animal models. Human genetic studies on PPAR-γ have revealed that functional changes in this nuclear receptor are associated with CVD. Recent controversial clinical studies raise the question of deleterious action of PPAR-γ agonists on the cardiovascular system. These complex interactions of metabolic responsive factors and cardiovascular disease promise to be important areas of focus for the future. PMID:18288291

  15. Homeostasis model assessment of insulin resistance in relation to the poor functional outcomes in nondiabetic patients with ischemic stroke

    PubMed Central

    Li, Siou; Yin, Changhao; Zhao, Weina; Zhu, Haifu; Xu, Dan; Xu, Qing; Jiao, Yang; Wang, Xue; Qiao, Hong

    2018-01-01

    Whether insulin resistance (IR) predicts worse functional outcome in ischemic stroke is still a matter of debate. The aim of the present study is to determine the association between IR and risk of poor outcome in 173 Chinese nondiabetic patients with acute ischemic stroke. This is a prospective, population-based cohort study. Insulin sensitivity, expressed by the homeostasis model assessment (HOMA) of insulin sensitivity (HOMA index = (fasting insulin × fasting glucose)/22.5). IR was defined by HOMA-IR index in the top quartile (Q4). Functional impairment was evaluated at discharge using the modified Rankin scale (mRS). The median (interquartile range) HOMA-IR was 2.14 (1.17–2.83), and Q4 was at least 2.83. There was a significantly positive correlation between HOMA-IR and National Institutes of Health Stroke Scale (r = 0.408; P<0.001). In multivariate analyses, patients in IR group were associated with a higher risk of poor functional outcome (odds ratio (OR) = 3.23; 95% confidence interval (CI) = 1.75–5.08; P=0.001). In multivariate models comparing the third and fourth quartiles against the first quartile of the HOMA-IR, levels of HOMA-IR were associated with poor outcome, and the adjusted risk of poor outcome increased by 207% (OR = 3.05 (95% CI 1.70–4.89), P=0.006) and 429% (5.29 (3.05–9.80), P<0.001). In a receiver operating characteristic curve (ROC) analysis of poor outcome, the area under the curve (AUC) increased from 0.80 to 0.84 (95% CI: 0.79–0.88) by adding HOMA-IR to clinical examination variables (P=0.02). High HOMA-IR index is associated with a poor functional outcome in nondiabetic patients with acute ischemic stroke. PMID:29588341

  16. Troglitazone, an antidiabetic drug, improves left ventricular mass and diastolic function in normotensive diabetic patients.

    PubMed

    Hirayama, H; Sugano, M; Abe, N; Yonemoch, H; Makino, N

    2001-01-01

    Patients with NIDDM have excessive cardiovascular morbidity and mortality, even in the absence of hypertension. Left ventricular hypertrophy (LVH), which is an ominous prognostic sign and an independent risk factor for cardiac events, is often present in NIDDM patients. NIDDM male patients with (n=10) and without (n=12) hypertension, all of whom had been diagnosed over 10 years ago, were examined in the present study. Normotensive NIDDM patients had not received any anti-hypertensive drugs. All patients were classified according to the left ventricular mass (LVM) index by using M-mode echocardiography and were assessed regarding their systolic (fractional shortening) and diastolic function, which included the maximal early flow velocity (MFV), the mitral valve deceleration time (DT), and the isovolumic relaxation time (IRT) as determined by Doppler indices. Troglitazone (TRO), an antidiabetic drug, was administered to both groups at a dose of 400 mg/day for 6 months. After TRO treatment, a reduction in the LVM index and an improvement in the diastolic function were observed in the normotensive but not in the hypertensive patients. The TRO treatment was sensitive for cardiac regression in those normotensive patients. These results suggest that LVH and the diastolic function in NIDDM patients without hypertension may be associated with elevated insulin resistance because TRO has a pharmacological function to increase the insulin sensitivity and to decrease insulin resistance.

  17. Leptin-induced basal Akt phosphorylation and its implication in exercise-mediated improvement of insulin sensitivity.

    PubMed

    Zheng, Xianjie; Niu, Sen

    2018-01-29

    Physical exercise is an efficient therapeutical tool in the management of insulin resistance (IR) and related metabolic diseases. Leptin, the well-known obesity hormone and the absence of which leads to IR, showed controversial effects on IR as research continues. Thus, in this study, a detailed investigation of the effect of leptin on exercise-mediated improvement of insulin sensitivity and its underlying mechanism was carried out. Using a rat model of chronic or acute swimming exercise training, we found that serum leptin increased 1 h after either acute exercise or the last session of chronic exercise, when impaired insulin action was observed in previous reports. However, chronic exercise reducd basal serum leptin levels and promoted insulin sensitivity compared with sedentary controls or rats subjected to one bout of aerobic exercise. Our animal results indicated the potential linkage between leptin and insulin sensitivity, which is further investigated in the skeletal muscle L6 cells. Leptin treatment in L6 cells promoted the basal levels of insulin signaling as well as glucose uptake, while blocking JAK2 signaling with either pharmacological intervention (JAK2 inhibitor AG490) or genetic manipulation (siRNA knockdown) decreased the basal levels of insulin signaling. Furthermore, leptin treatment inhibited insulin-stimulated insulin signaling and glucose uptake, while blocking JAK2 signaling restored leptin-attenuated insulin sensitivity. Taken together, our results demonstrated that reduced serum leptin, at least in part, contributes to exercise-mediated improvement of insulin sensitivity, indicating JAK2 as a potent therapeutical target of insulin resistance. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Use of dark chocolate for diabetic patients: a review of the literature and current evidence.

    PubMed

    Shah, Syed Raza; Alweis, Richard; Najim, Najla Issa; Dharani, Amin Muhammad; Jangda, Muhammad Ahmed; Shahid, Maira; Kazi, Ahmed Nabeel; Shah, Syed Arbab

    2017-10-01

    Dietary changes are a major lifestyle factor that can influence the progression of chronic diseases such as diabetes. Recently, flavanols, a subgroup of plant-derived phytochemicals called flavonoids, have gained increasing attention, due to studies showing an inverse correlation between dietary intake of flavanols and incidence of diabetes. Flavanoids in the cocoa plant may ameliorate insulin resistance by improving endothelial function, altering glucose metabolism, and reducing oxidative stress. Oxidative stress has been proposed as the main culprit for insulin resistance. The well-established effects of cocoa on endothelial function also points to a possible effect on insulin sensitivity. The relationship between insulin resistance and endothelial function is a reciprocal one. Overall, the evidence from these studies suggests that cocoa may be useful in slowing the progression to type 2 diabetes and ameliorating insulin resistance in metabolic syndrome. Additionally, results from several small studies indicate that cocoa may also have therapeutic potential in preventing cardiovascular complications in diabetic patients. Studies highlighting the potential of cocoa-containing diets, in large-randomized controlled trials should be performed which might give us a better opportunity to analyze the potential health-care benefit for reducing the risk of complications in diabetic patients at molecular level.

  19. Long-term exposure to abnormal glucose levels alters drug metabolism pathways and insulin sensitivity in primary human hepatocytes

    NASA Astrophysics Data System (ADS)

    Davidson, Matthew D.; Ballinger, Kimberly R.; Khetani, Salman R.

    2016-06-01

    Hyperglycemia in type 2 diabetes mellitus has been linked to non-alcoholic fatty liver disease, which can progress to inflammation, fibrosis/cirrhosis, and hepatocellular carcinoma. Understanding how chronic hyperglycemia affects primary human hepatocytes (PHHs) can facilitate the development of therapeutics for these diseases. Conversely, elucidating the effects of hypoglycemia on PHHs may provide insights into how the liver adapts to fasting, adverse diabetes drug reactions, and cancer. In contrast to declining PHH monocultures, micropatterned co-cultures (MPCCs) of PHHs and 3T3-J2 murine embryonic fibroblasts maintain insulin-sensitive glucose metabolism for several weeks. Here, we exposed MPCCs to hypo-, normo- and hyperglycemic culture media for ~3 weeks. While albumin and urea secretion were not affected by glucose level, hypoglycemic MPCCs upregulated CYP3A4 enzyme activity as compared to other glycemic states. In contrast, hyperglycemic MPCCs displayed significant hepatic lipid accumulation in the presence of insulin, while also showing decreased sensitivity to insulin-mediated inhibition of glucose output relative to a normoglycemic control. In conclusion, we show for the first time that PHHs exposed to hypo- and hyperglycemia can remain highly functional, but display increased CYP3A4 activity and selective insulin resistance, respectively. In the future, MPCCs under glycemic states can aid in novel drug discovery and mechanistic investigations.

  20. Olive (Olea europaea L.) Leaf Polyphenols Improve Insulin Sensitivity in Middle-Aged Overweight Men: A Randomized, Placebo-Controlled, Crossover Trial

    PubMed Central

    de Bock, Martin; Derraik, José G. B.; Brennan, Christine M.; Biggs, Janene B.; Morgan, Philip E.; Hodgkinson, Steven C.; Hofman, Paul L.; Cutfield, Wayne S.

    2013-01-01

    Background Olive plant leaves (Olea europaea L.) have been used for centuries in folk medicine to treat diabetes, but there are very limited data examining the effects of olive polyphenols on glucose homeostasis in humans. Objective To assess the effects of supplementation with olive leaf polyphenols (51.1 mg oleuropein, 9.7 mg hydroxytyrosol per day) on insulin action and cardiovascular risk factors in middle-aged overweight men. Design Randomized, double-blinded, placebo-controlled, crossover trial in New Zealand. 46 participants (aged 46.4±5.5 years and BMI 28.0±2.0 kg/m2) were randomized to receive capsules with olive leaf extract (OLE) or placebo for 12 weeks, crossing over to other treatment after a 6-week washout. Primary outcome was insulin sensitivity (Matsuda method). Secondary outcomes included glucose and insulin profiles, cytokines, lipid profile, body composition, 24-hour ambulatory blood pressure, and carotid intima-media thickness. Results Treatment evaluations were based on the intention-to-treat principle. All participants took >96% of prescribed capsules. OLE supplementation was associated with a 15% improvement in insulin sensitivity (p = 0.024) compared to placebo. There was also a 28% improvement in pancreatic β-cell responsiveness (p = 0.013). OLE supplementation also led to increased fasting interleukin-6 (p = 0.014), IGFBP-1 (p = 0.024), and IGFBP-2 (p = 0.015) concentrations. There were however, no effects on interleukin-8, TNF-α, ultra-sensitive CRP, lipid profile, ambulatory blood pressure, body composition, carotid intima-media thickness, or liver function. Conclusions Supplementation with olive leaf polyphenols for 12 weeks significantly improved insulin sensitivity and pancreatic β-cell secretory capacity in overweight middle-aged men at risk of developing the metabolic syndrome. Trial Registration Australian New Zealand Clinical Trials Registry #336317. PMID:23516412

  1. Leucine Supplementation Protects from Insulin Resistance by Regulating Adiposity Levels

    PubMed Central

    Binder, Elke; Bermúdez-Silva, Francisco J.; André, Caroline; Elie, Melissa; Romero-Zerbo, Silvana Y.; Leste-Lasserre, Thierry; Belluomo, llaria; Duchampt, Adeline; Clark, Samantha; Aubert, Agnes; Mezzullo, Marco; Fanelli, Flaminia; Pagotto, Uberto; Layé, Sophie; Mithieux, Gilles; Cota, Daniela

    2013-01-01

    Background Leucine supplementation might have therapeutic potential in preventing diet-induced obesity and improving insulin sensitivity. However, the underlying mechanisms are at present unclear. Additionally, it is unclear whether leucine supplementation might be equally efficacious once obesity has developed. Methodology/Principal Findings Male C57BL/6J mice were fed chow or a high-fat diet (HFD), supplemented or not with leucine for 17 weeks. Another group of HFD-fed mice (HFD-pairfat group) was food restricted in order to reach an adiposity level comparable to that of HFD-Leu mice. Finally, a third group of mice was exposed to HFD for 12 weeks before being chronically supplemented with leucine. Leucine supplementation in HFD-fed mice decreased body weight and fat mass by increasing energy expenditure, fatty acid oxidation and locomotor activity in vivo. The decreased adiposity in HFD-Leu mice was associated with increased expression of uncoupling protein 3 (UCP-3) in the brown adipose tissue, better insulin sensitivity, increased intestinal gluconeogenesis and preservation of islets of Langerhans histomorphology and function. HFD-pairfat mice had a comparable improvement in insulin sensitivity, without changes in islets physiology or intestinal gluconeogenesis. Remarkably, both HFD-Leu and HFD-pairfat mice had decreased hepatic lipid content, which likely helped improve insulin sensitivity. In contrast, when leucine was supplemented to already obese animals, no changes in body weight, body composition or glucose metabolism were observed. Conclusions/Significance These findings suggest that leucine improves insulin sensitivity in HFD-fed mice by primarily decreasing adiposity, rather than directly acting on peripheral target organs. However, beneficial effects of leucine on intestinal gluconeogenesis and islets of Langerhans's physiology might help prevent type 2 diabetes development. Differently, metabolic benefit of leucine supplementation is lacking in already obese animals, a phenomenon possibly related to the extent of the obesity before starting the supplementation. PMID:24086364

  2. SIRT1 enhances glucose tolerance by potentiating brown adipose tissue function

    PubMed Central

    Boutant, Marie; Joffraud, Magali; Kulkarni, Sameer S.; García-Casarrubios, Ester; García-Roves, Pablo M.; Ratajczak, Joanna; Fernández-Marcos, Pablo J.; Valverde, Angela M.; Serrano, Manuel; Cantó, Carles

    2014-01-01

    Objective SIRT1 has been proposed to be a key signaling node linking changes in energy metabolism to transcriptional adaptations. Although SIRT1 overexpression is protective against diverse metabolic complications, especially in response to high-fat diets, studies aiming to understand the etiology of such benefits are scarce. Here, we aimed to identify the key tissues and mechanisms implicated in the beneficial effects of SIRT1 on glucose homeostasis. Methods We have used a mouse model of moderate SIRT1 overexpression, under the control of its natural promoter, to evaluate glucose homeostasis and thoroughly characterize how different tissues could influence insulin sensitivity. Results Mice with moderate overexpression of SIRT1 exhibit better glucose tolerance and insulin sensitivity even on a low fat diet. Euglycemic-hyperinsulinemic clamps and in-depth tissue analyses revealed that enhanced insulin sensitivity was achieved through a higher brown adipose tissue activity and was fully reversed by housing the mice at thermoneutrality. SIRT1 did not influence brown adipocyte differentiation, but dramatically enhanced the metabolic transcriptional responses to β3-adrenergic stimuli in differentiated adipocytes. Conclusions Our work demonstrates that SIRT1 improves glucose homeostasis by enhancing BAT function. This is not consequent to an alteration in the brown adipocyte differentiation process, but as a result of potentiating the response to β3-adrenergic stimuli. PMID:25685699

  3. SIRT1 Gain of Function Does Not Mimic or Enhance the Adaptations to Intermittent Fasting.

    PubMed

    Boutant, Marie; Kulkarni, Sameer S; Joffraud, Magali; Raymond, Frédéric; Métairon, Sylviane; Descombes, Patrick; Cantó, Carles

    2016-03-08

    Caloric restriction (CR) has been shown to prevent the onset of insulin resistance and to delay age-related physiological decline in mammalian organisms. SIRT1, a NAD(+)-dependent deacetylase enzyme, has been suggested to mediate the adaptive responses to CR, leading to the speculation that SIRT1 activation could be therapeutically used as a CR-mimetic strategy. Here, we used a mouse model of moderate SIRT1 overexpression to test whether SIRT1 gain of function could mimic or boost the metabolic benefits induced by every-other-day feeding (EODF). Our results indicate that SIRT1 transgenesis does not affect the ability of EODF to decrease adiposity and improve insulin sensitivity. Transcriptomic analyses revealed that SIRT1 transgenesis and EODF promote very distinct adaptations in individual tissues, some of which can be even be metabolically opposite, as in brown adipose tissue. Therefore, whereas SIRT1 overexpression and CR both improve glucose metabolism and insulin sensitivity, the etiologies of these benefits are largely different. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Polyphenol-rich diets improve glucose metabolism in people at high cardiometabolic risk: a controlled randomised intervention trial.

    PubMed

    Bozzetto, Lutgarda; Annuzzi, Giovanni; Pacini, Giovanni; Costabile, Giuseppina; Vetrani, Claudia; Vitale, Marilena; Griffo, Ettore; Giacco, Angela; De Natale, Claudia; Cocozza, Sara; Della Pepa, Giuseppe; Tura, Andrea; Riccardi, Gabriele; Rivellese, Angela A

    2015-07-01

    Dietary polyphenols and long chain n-3 polyunsaturated fatty acids (LCn3) are associated with lower cardiovascular risk. This may relate to their influence on glucose metabolism and diabetes risk. We evaluated the effects of diets naturally rich in polyphenols and/or LCn3 of marine origin on glucose metabolism in people at high cardiometabolic risk. According to a 2 × 2 factorial design, individuals with high waist circumference and at least one more component of the metabolic syndrome were recruited at the obesity outpatient clinic. Eighty-six participants were randomly assigned by MINIM software to an isoenergetic diet: (1) control, low in LCn3 and polyphenol (analysed n = 20); (2) rich in LCn3 (n = 19); (3) rich in polyphenols (n = 19); or (4) rich in LCn3 and polyphenols (n = 19). The assigned diets were known for the participants and blinded for people doing measurements. Before and after the 8 week intervention, participants underwent a 3 h OGTT and a test meal with a similar composition as the assigned diet for the evaluation of plasma glucose, insulin and glucagon-like peptide 1 (GLP-1) concentrations, and indices of insulin sensitivity and beta cell function. During OGTT, polyphenols significantly reduced plasma glucose total AUC (p = 0.038) and increased early insulin secretion (p = 0.048), while LCn3 significantly reduced beta cell function (p = 0.031) (two-factor ANOVA). Moreover, polyphenols improved post-challenge oral glucose insulin sensitivity (OGIS; p = 0.05 vs control diet by post hoc ANOVA). At test meal, LCn3 significantly reduced GLP-1 total postprandial AUC (p < 0.001; two-factor ANOVA). Diets naturally rich in polyphenols reduce blood glucose response, likely by increasing early insulin secretion and insulin sensitivity. These effects may favourably influence diabetes and cardiovascular risk. The implications of the decrease in insulin secretion and postprandial GLP-1 observed with diets rich in marine LCn3 need further clarification. ClinicalTrials.gov NCT01154478. The trial was funded by European Community's Seventh Framework Programme FP7/2009-2012 under grant agreement FP7-KBBE-222639, Etherpaths Project and 'Ministero Istruzione Università e Ricerca' PRIN 2010-2011 - 2010JCWWKM.

  5. The transcription factor Prep1 controls hepatic insulin sensitivity and gluconeogenesis by targeting nuclear localization of FOXO1.

    PubMed

    Kulebyakin, Konstantin; Penkov, Dmitry; Blasi, Francesco; Akopyan, Zhanna; Tkachuk, Vsevolod

    2016-12-02

    Liver plays a key role in controlling body carbohydrate homeostasis by switching between accumulation and production of glucose and this way maintaining constant level of glucose in blood. Increased blood glucose level triggers release of insulin from pancreatic β-cells. Insulin represses hepatic glucose production and increases glucose accumulation. Insulin resistance is the main cause of type 2 diabetes and hyperglycemia. Currently thiazolidinediones (TZDs) targeting transcriptional factor PPARγ are used as insulin sensitizers for treating patients with type 2 diabetes. However, TZDs are reported to be associated with cardiovascular and liver problems and stimulate obesity. Thus, it is necessary to search new approaches to improve insulin sensitivity. A promising candidate is transcriptional factor Prep1, as it was shown earlier it could affect insulin sensitivity in variety of insulin-sensitive tissues. The aim of the present study was to evaluate a possible involvement of transcriptional factor Prep1 in control of hepatic glucose accumulation and production. We created mice with liver-specific Prep1 knockout and discovered that hepatocytes derived from these mice are much more sensitive to insulin, comparing to their WT littermates. Incubation of these cells with 100 nM insulin results in almost complete inhibition of gluconeogenesis, while in WT cells this repression is only partial. However, Prep1 doesn't affect gluconeogenesis in the absence of insulin. Also, we observed that nuclear content of gluconeogenic transcription factor FOXO1 was greatly reduced in Prep1 knockout hepatocytes. These findings suggest that Prep1 may control hepatic insulin sensitivity by targeting FOXO1 nuclear stability. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Skeletal Muscle Triglycerides, Diacylglycerols, and Ceramides in Insulin Resistance

    PubMed Central

    Amati, Francesca; Dubé, John J.; Alvarez-Carnero, Elvis; Edreira, Martin M.; Chomentowski, Peter; Coen, Paul M.; Switzer, Galen E.; Bickel, Perry E.; Stefanovic-Racic, Maja; Toledo, Frederico G.S.; Goodpaster, Bret H.

    2011-01-01

    OBJECTIVE Chronic exercise and obesity both increase intramyocellular triglycerides (IMTGs) despite having opposing effects on insulin sensitivity. We hypothesized that chronically exercise-trained muscle would be characterized by lower skeletal muscle diacylglycerols (DAGs) and ceramides despite higher IMTGs and would account for its higher insulin sensitivity. We also hypothesized that the expression of key skeletal muscle proteins involved in lipid droplet hydrolysis, DAG formation, and fatty-acid partitioning and oxidation would be associated with the lipotoxic phenotype. RESEARCH DESIGN AND METHODS A total of 14 normal-weight, endurance-trained athletes (NWA group) and 7 normal-weight sedentary (NWS group) and 21 obese sedentary (OBS group) volunteers were studied. Insulin sensitivity was assessed by glucose clamps. IMTGs, DAGs, ceramides, and protein expression were measured in muscle biopsies. RESULTS DAG content in the NWA group was approximately twofold higher than in the OBS group and ~50% higher than in the NWS group, corresponding to higher insulin sensitivity. While certain DAG moieties clearly were associated with better insulin sensitivity, other species were not. Ceramide content was higher in insulin-resistant obese muscle. The expression of OXPAT/perilipin-5, adipose triglyceride lipase, and stearoyl-CoA desaturase protein was higher in the NWA group, corresponding to a higher mitochondrial content, proportion of type 1 myocytes, IMTGs, DAGs, and insulin sensitivity. CONCLUSIONS Total myocellular DAGs were markedly higher in highly trained athletes, corresponding with higher insulin sensitivity, and suggest a more complex role for DAGs in insulin action. Our data also provide additional evidence in humans linking ceramides to insulin resistance. Finally, this study provides novel evidence supporting a role for specific skeletal muscle proteins involved in intramyocellular lipids, mitochondrial oxidative capacity, and insulin resistance. PMID:21873552

  7. Ubiquitinated CD36 sustains insulin-stimulated Akt activation by stabilizing insulin receptor substrate 1 in myotubes.

    PubMed

    Sun, Shishuo; Tan, Pengcheng; Huang, Xiaoheng; Zhang, Wei; Kong, Chen; Ren, Fangfang; Su, Xiong

    2018-02-16

    Both the magnitude and duration of insulin signaling are important in executing its cellular functions. Insulin-induced degradation of insulin receptor substrate 1 (IRS1) represents a key negative feedback loop that restricts insulin signaling. Moreover, high concentrations of fatty acids (FAs) and glucose involved in the etiology of obesity-associated insulin resistance also contribute to the regulation of IRS1 degradation. The scavenger receptor CD36 binds many lipid ligands, and its contribution to insulin resistance has been extensively studied, but the exact regulation of insulin sensitivity by CD36 is highly controversial. Herein, we found that CD36 knockdown in C2C12 myotubes accelerated insulin-stimulated Akt activation, but the activated signaling was sustained for a much shorter period of time as compared with WT cells, leading to exacerbated insulin-induced insulin resistance. This was likely due to enhanced insulin-induced IRS1 degradation after CD36 knockdown. Overexpression of WT CD36, but not a ubiquitination-defective CD36 mutant, delayed IRS1 degradation. We also found that CD36 functioned through ubiquitination-dependent binding to IRS1 and inhibiting its interaction with cullin 7, a key component of the multisubunit cullin-RING E3 ubiquitin ligase complex. Moreover, dissociation of the Src family kinase Fyn from CD36 by free FAs or Fyn knockdown/inhibition accelerated insulin-induced IRS1 degradation, likely due to disrupted IRS1 interaction with CD36 and thus enhanced binding to cullin 7. In summary, we identified a CD36-dependent FA-sensing pathway that plays an important role in negative feedback regulation of insulin activation and may open up strategies for preventing or managing type 2 diabetes mellitus. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Intranasal insulin to improve developmental delay in children with 22q13 deletion syndrome: an exploratory clinical trial.

    PubMed

    Schmidt, H; Kern, W; Giese, R; Hallschmid, M; Enders, A

    2009-04-01

    The 22q13 deletion syndrome (Phelan-McDermid syndrome) is characterised by a global developmental delay, absent or delayed speech, generalised hypotonia, autistic behaviour and characteristic phenotypic features. Intranasal insulin has been shown to improve declarative memory in healthy adult subjects and in patients with Alzheimer disease. To assess if intranasal insulin is also able to improve the developmental delay in children with 22q13 deletion syndrome. We performed exploratory clinical trials in six children with 22q13 deletion syndrome who received intranasal insulin over a period of 1 year. Short-term (during the first 6 weeks) and long-term effects (after 12 months of treatment) on motor skills, cognitive functions, or autonomous functions, speech and communication, emotional state, social behaviour, behavioural disorders, independence in daily living and education were assessed. The children showed marked short-term improvements in gross and fine motor activities, cognitive functions and educational level. Positive long-term effects were found for fine and gross motor activities, nonverbal communication, cognitive functions and autonomy. Possible side effects were found in one patient who displayed changes in balance, extreme sensitivity to touch and general loss of interest. One patient complained of intermittent nose bleeding. We conclude that long-term administration of intranasal insulin may benefit motor development, cognitive functions and spontaneous activity in children with 22q13 deletion syndrome.

  9. [Co-administration of intranasally delivered insulin and proinsulin C-peptide to rats with the types 1 and 2 diabetes mellitus restores their metabolic parameters.

    PubMed

    Derkach, K V; Bondareva, V M; Shpakov, A O

    2017-01-01

    The C-peptide, the product of proinsulin proteolysis, not only is a signal molecule, but also, forming a complex with insulin, is able to modulate the signaling functions of insulin. The signaling systems sensitive to insulin in the hypothalamus and other brain areas are among the targets of insulin. We hypothesized that in systemic deficiency of insulin and C-peptide in the type 1 diabetes mellitus (DM) and in severe forms of the type 2 DM, the increase in the level of C-peptide in the CNS will improve central effects of insulin, including its influence on peripheral metabolism. To verify this, the influence of separate and co-administration of intranasal insulin (II) and C-peptide (IP) on their metabolic parameters and sensitivity to insulin in rats with acute and mild type 1 DM induced by the treatment with streptozotocin at the doses of 60 and 35 mg/kg and in rats with neonatal type 2 DM corresponding to severe long-term form of type 2 DM in human was studied. The treatment of animals with II and IP was carried out for 7 days in the daily doses of 20 and 10 μg/rat, respectively. The co-administration of II and IP leading to an increase of insulin and C-peptide levels in the brain was most effective. In rats with type 1 DM treated with the combination of II plus IP, hyperglycemia was decreased and weight loss was prevented. In rats with type 2 DM, co-administration of II and IP led to the normalization of glucose homeostasis and the increase in insulin sensitivity, as shown by glucose-tolerance and insulin-glucose tolerance tests, and to improvement of lipid metabolism, as demonstrated by the decrease in the atherogenic index. The effectiveness of monotherapy with II was lower than in the case of a combination of II+IP, while monotherapy with C-peptide had little effect on the indicators studied. Thus, the simultaneous increase of insulin and C-peptide levels in the brain in the conditions of their deficiency in diabetic pathology can be considered as one of the promising approaches to restore the central insulin-dependent regulation of peripheral metabolism and to improve the utilization of glucose in different forms of DM.

  10. Baseline adiponectin levels do not influence the response to pioglitazone in ACT NOW.

    PubMed

    Tripathy, Devjit; Clement, Stephen C; Schwenke, Dawn C; Banerji, MaryAnn; Bray, George A; Buchanan, Thomas A; Gastaldelli, Amalia; Henry, Robert R; Kitabchi, Abbas E; Mudaliar, Sunder; Ratner, Robert E; Stentz, Frankie B; Musi, Nicolas; Reaven, Peter D; DeFronzo, Ralph A

    2014-06-01

    Plasma adiponectin levels are reduced in type 2 diabetes mellitus (T2DM) and other insulin-resistant states. We examined whether plasma adiponectin levels at baseline and after pioglitazone treatment in impaired glucose tolerance (IGT) subjects were associated with improved insulin sensitivity (SI) and glucose tolerance status. A total of 602 high-risk IGT subjects in ACT NOW were randomized to receive pioglitazone or placebo with a median follow-up of 2.4 years. Pioglitazone reduced IGT conversion to diabetes by 72% in association with improved β-cell function by 64% (insulin secretion/insulin resistance index) and increased tissue sensitivity by 88% (Matsuda index). In pioglitazone-treated subjects, plasma adiponectin concentration increased threefold from 13 ± 0.5 to 38 ± 2.5 μg/mL (P < 0.001) and was strongly correlated with the improvement in SI (r = 0.436, P < 0.001) and modestly correlated with glucose area under the curve during oral glucose tolerance test (r = 0.238, P < 0.005) and insulin secretion/insulin resistance index (r = 0.306, P < 0.005). The increase in adiponectin was a strong predictor of reversion to normal glucose tolerance and prevention of T2DM. In the placebo group, plasma adiponectin did not change and was not correlated with changes in glucose levels. There was an inverse association between baseline plasma adiponectin concentration and progression to diabetes in the placebo group but not in the pioglitazone group. Baseline adiponectin does not predict the response to pioglitazone. The increase in plasma adiponectin concentration after pioglitazone therapy in IGT subjects is strongly related to improved glucose tolerance status and enhanced tissue sensitivity to insulin. © 2014 by the American Diabetes Association.

  11. Baseline Adiponectin Levels Do Not Influence the Response to Pioglitazone in ACT NOW

    PubMed Central

    Tripathy, Devjit; Clement, Stephen C.; Schwenke, Dawn C.; Banerji, MaryAnn; Bray, George A.; Buchanan, Thomas A.; Gastaldelli, Amalia; Henry, Robert R.; Kitabchi, Abbas E.; Mudaliar, Sunder; Ratner, Robert E.; Stentz, Frankie B.; Musi, Nicolas; Reaven, Peter D.

    2014-01-01

    OBJECTIVE Plasma adiponectin levels are reduced in type 2 diabetes mellitus (T2DM) and other insulin-resistant states. We examined whether plasma adiponectin levels at baseline and after pioglitazone treatment in impaired glucose tolerance (IGT) subjects were associated with improved insulin sensitivity (SI) and glucose tolerance status. RESEARCH DESIGN AND METHODS A total of 602 high-risk IGT subjects in ACT NOW were randomized to receive pioglitazone or placebo with a median follow-up of 2.4 years. RESULTS Pioglitazone reduced IGT conversion to diabetes by 72% in association with improved β-cell function by 64% (insulin secretion/insulin resistance index) and increased tissue sensitivity by 88% (Matsuda index). In pioglitazone-treated subjects, plasma adiponectin concentration increased threefold from 13 ± 0.5 to 38 ± 2.5 μg/mL (P < 0.001) and was strongly correlated with the improvement in SI (r = 0.436, P < 0.001) and modestly correlated with glucose area under the curve during oral glucose tolerance test (r = 0.238, P < 0.005) and insulin secretion/insulin resistance index (r = 0.306, P < 0.005). The increase in adiponectin was a strong predictor of reversion to normal glucose tolerance and prevention of T2DM. In the placebo group, plasma adiponectin did not change and was not correlated with changes in glucose levels. There was an inverse association between baseline plasma adiponectin concentration and progression to diabetes in the placebo group but not in the pioglitazone group. CONCLUSIONS Baseline adiponectin does not predict the response to pioglitazone. The increase in plasma adiponectin concentration after pioglitazone therapy in IGT subjects is strongly related to improved glucose tolerance status and enhanced tissue sensitivity to insulin. PMID:24705615

  12. Heart Rate Variability, Insulin Resistance, and Insulin Sensitivity in Japanese Adults: The Toon Health Study

    PubMed Central

    Saito, Isao; Hitsumoto, Shinichi; Maruyama, Koutatsu; Nishida, Wataru; Eguchi, Eri; Kato, Tadahiro; Kawamura, Ryoichi; Takata, Yasunori; Onuma, Hiroshi; Osawa, Haruhiko; Tanigawa, Takeshi

    2015-01-01

    Background Although impaired cardiac autonomic function is associated with an increased risk of type 2 diabetes in Caucasians, evidence in Asian populations with a lower body mass index is limited. Methods Between 2009–2012, the Toon Health Study recruited 1899 individuals aged 30–79 years who were not taking medication for diabetes. A 75-g oral glucose tolerance test was used to diagnose type 2 diabetes, and fasting and 2-h-postload glucose and insulin concentrations were measured. We assessed the homeostasis model assessment index for insulin resistance (HOMA-IR) and Gutt’s insulin sensitivity index (ISI). Pulse was recorded for 5 min, and time-domain heart rate variability (HRV) indices were calculated: the standard deviation of normal-to-normal intervals (SDNN) and the root mean square of successive difference (RMSSD). Power spectral analysis provided frequency domain measures of HRV: high frequency (HF) power, low frequency (LF) power, and the LF:HF ratio. Results Multivariate-adjusted logistic regression models showed decreased SDNN, RMSSD, and HF, and increased LF:HF ratio were associated significantly with increased HOMA-IR and decreased ISI. When stratified by overweight status, the association of RMSSD, HF, and LF:HF ratio with decreased ISI was also apparent in non-overweight individuals. The interaction between LF:HF ratio and decreased ISI in overweight individuals was significant, with the odds ratio for decreased ISI in the highest quartile of LF:HF ratio in non-overweight individuals being 2.09 (95% confidence interval, 1.41–3.10). Conclusions Reduced HRV was associated with insulin resistance and lower insulin sensitivity. Decreased ISI was linked with parasympathetic dysfunction, primarily in non-overweight individuals. PMID:26277879

  13. Alterations of the Lipid Metabolome in Dairy Cows Experiencing Excessive Lipolysis Early Postpartum

    PubMed Central

    Humer, Elke; Khol-Parisini, Annabella; Metzler-Zebeli, Barbara U.; Gruber, Leonhard; Zebeli, Qendrim

    2016-01-01

    A decrease in insulin sensitivity enhances adipose tissue lipolysis helping early lactation cows counteracting their energy deficit. However, excessive lipolysis poses serious health risks for cows, and its underlying mechanisms are not clearly understood. The present study used targeted ESI-LC-MS/MS-based metabolomics and indirect insulin sensitivity measurements to evaluate metabolic alterations in the serum of dairy cows of various parities experiencing variable lipolysis early postpartum. Thirty (12 primiparous and 18 multiparous) cows of Holstein Friesian and Simmental breeds, fed the same diet and kept under the same management conditions, were sampled at d 21 postpartum and classified as low (n = 10), medium (n = 8), and high (n = 12) lipolysis groups, based on serum concentration of nonesterified fatty acids. Overall, excessive lipolysis in the high group came along with impaired estimated insulin sensitivity and characteristic shifts in acylcarnitine, sphingomyelin, phosphatidylcholine and lysophospholipid metabolome profiles compared to the low group. From the detected phosphatidylcholines mainly those with diacyl-residues showed differences among lipolysis groups. Furthermore, more than half of the detected sphingomyelins were increased in cows experiencing high lipomobilization. Additionally, strong differences in serum acylcarnitines were noticed among lipolysis groups. The study suggests an altered serum phospholipidome in dairy cows associated with an increase in certain long-chain sphingomyelins and the progression of disturbed insulin function. In conclusion, the present study revealed 37 key metabolites as part of alterations in the synthesis or breakdown of sphingolipids and phospholipids associated with lowered estimated insulin sensitivity and excessive lipolysis in early-lactating cows. PMID:27383746

  14. Alterations of the Lipid Metabolome in Dairy Cows Experiencing Excessive Lipolysis Early Postpartum.

    PubMed

    Humer, Elke; Khol-Parisini, Annabella; Metzler-Zebeli, Barbara U; Gruber, Leonhard; Zebeli, Qendrim

    2016-01-01

    A decrease in insulin sensitivity enhances adipose tissue lipolysis helping early lactation cows counteracting their energy deficit. However, excessive lipolysis poses serious health risks for cows, and its underlying mechanisms are not clearly understood. The present study used targeted ESI-LC-MS/MS-based metabolomics and indirect insulin sensitivity measurements to evaluate metabolic alterations in the serum of dairy cows of various parities experiencing variable lipolysis early postpartum. Thirty (12 primiparous and 18 multiparous) cows of Holstein Friesian and Simmental breeds, fed the same diet and kept under the same management conditions, were sampled at d 21 postpartum and classified as low (n = 10), medium (n = 8), and high (n = 12) lipolysis groups, based on serum concentration of nonesterified fatty acids. Overall, excessive lipolysis in the high group came along with impaired estimated insulin sensitivity and characteristic shifts in acylcarnitine, sphingomyelin, phosphatidylcholine and lysophospholipid metabolome profiles compared to the low group. From the detected phosphatidylcholines mainly those with diacyl-residues showed differences among lipolysis groups. Furthermore, more than half of the detected sphingomyelins were increased in cows experiencing high lipomobilization. Additionally, strong differences in serum acylcarnitines were noticed among lipolysis groups. The study suggests an altered serum phospholipidome in dairy cows associated with an increase in certain long-chain sphingomyelins and the progression of disturbed insulin function. In conclusion, the present study revealed 37 key metabolites as part of alterations in the synthesis or breakdown of sphingolipids and phospholipids associated with lowered estimated insulin sensitivity and excessive lipolysis in early-lactating cows.

  15. Hydrogen peroxide production regulates the mitochondrial function in insulin resistant muscle cells: effect of catalase overexpression.

    PubMed

    Barbosa, Marina R; Sampaio, Igor H; Teodoro, Bruno G; Sousa, Thais A; Zoppi, Claudio C; Queiroz, André L; Passos, Madla A; Alberici, Luciane C; Teixeira, Felipe R; Manfiolli, Adriana O; Batista, Thiago M; Cappelli, Ana Paula Gameiro; Reis, Rosana I; Frasson, Danúbia; Kettelhut, Isis C; Parreiras-e-Silva, Lucas T; Costa-Neto, Claudio M; Carneiro, Everardo M; Curi, Rui; Silveira, Leonardo R

    2013-10-01

    The mitochondrial redox state plays a central role in the link between mitochondrial overloading and insulin resistance. However, the mechanism by which the ROS induce insulin resistance in skeletal muscle cells is not completely understood. We examined the association between mitochondrial function and H2O2 production in insulin resistant cells. Our hypothesis is that the low mitochondrial oxygen consumption leads to elevated ROS production by a mechanism associated with reduced PGC1α transcription and low content of phosphorylated CREB. The cells were transfected with either the encoded sequence for catalase overexpression or the specific siRNA for catalase inhibition. After transfection, myotubes were incubated with palmitic acid (500μM) and the insulin response, as well as mitochondrial function and fatty acid metabolism, was determined. The low mitochondrial oxygen consumption led to elevated ROS production by a mechanism associated with β-oxidation of fatty acids. Rotenone was observed to reduce the ratio of ROS production. The elevated H2O2 production markedly decreased the PGC1α transcription, an effect that was accompanied by a reduced phosphorylation of Akt and CREB. The catalase transfection prevented the reduction in the phosphorylated level of Akt and upregulated the levels of phosphorylated CREB. The mitochondrial function was elevated and H2O2 production reduced, thus increasing the insulin sensitivity. The catalase overexpression improved mitochondrial respiration protecting the cells from fatty acid-induced, insulin resistance. This effect indicates that control of hydrogen peroxide production regulates the mitochondrial respiration preventing the insulin resistance in skeletal muscle cells by a mechanism associated with CREB phosphorylation and β-oxidation of fatty acids. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Pioglitazone Improves Cognitive Function via Increasing Insulin Sensitivity and Strengthening Antioxidant Defense System in Fructose-Drinking Insulin Resistance Rats

    PubMed Central

    Yin, Qing-Qing; Pei, Jin-Jing; Xu, Song; Luo, Ding-Zhen; Dong, Si-Qing; Sun, Meng-Han; You, Li; Sun, Zhi-Jian; Liu, Xue-Ping

    2013-01-01

    Insulin resistance (IR) links Alzheimer’s disease (AD) with oxidative damage, cholinergic deficit, and cognitive impairment. Peroxisome proliferator-activated receptor γ (PPARγ) agonist pioglitazone previously used to treat type 2 diabetes mellitus (T2DM) has also been demonstrated to be effective in anti-inflammatory reaction and anti-oxidative stress in the animal models of AD and other neuroinflammatory diseases. Here, we investigated the effect of pioglitazone on learning and memory impairment and the molecular events that may cause it in fructose-drinking insulin resistance rats. We found that long-term fructose-drinking causes insulin resistance, oxidative stress, down-regulated activity of cholinergic system, and cognitive deficit, which could be ameliorated by pioglitazone administration. The results from the present study provide experimental evidence for using pioglitazone in the treatment of brain damage caused by insulin resistance. PMID:23527159

  17. Peroxisome proliferator-activated receptor-gamma agonist rosiglitazone reverses the adverse effects of diet-induced obesity on oocyte quality.

    PubMed

    Minge, Cadence E; Bennett, Brenton D; Norman, Robert J; Robker, Rebecca L

    2008-05-01

    Obesity and its physiological consequences are increasingly prevalent among women of reproductive age and are associated with infertility. To investigate, female mice were fed a high-fat diet until the onset of insulin resistance, followed by assessments of ovarian gene expression, ovulation, fertilization, and oocyte developmental competence. We report defects to ovarian function associated with diet-induced obesity (DIO) that result in poor oocyte quality, subsequently reduced blastocyst survival rates, and abnormal embryonic cellular differentiation. To identify critical cellular mediators of ovarian responses to obesity induced insulin resistance, DIO females were treated for 4 d before mating with an insulin-sensitizing pharmaceutical: glucose and lipid-lowering AMP kinase activator, 5-aminoimidazole 4-carboxamide-riboside, 30 mg/kg.d; sodium salicylate, IkappaK inhibitor that reverses insulin resistance, 50 mg/kg.d; or peroxisome proliferator activated receptor-gamma agonist rosiglitazone, 10 mg/kg.d. 5-aminoimidazole 4-carboxamide-riboside or sodium salicylate treatment did not have significant effects on the reproductive parameters examined. However, embryonic development to the blastocyst stage was significantly improved when DIO mice were treated with rosiglitazone, effectively repairing development rates. Rosiglitazone also normalized DIO-associated abnormal blastomere allocation to the inner cell mass. Such improvements to oocyte quality were coupled with weight loss, improved glucose metabolism, and changes in ovarian mRNA expression of peroxisome proliferator activated receptor-regulated genes, Cd36, Scarb1, and Fabp4 cholesterol transporters. These studies demonstrate that peri-conception treatment with select insulin-sensitizing pharmaceuticals can directly influence ovarian functions and ultimately exert positive effects on oocyte developmental competence. Improved blastocyst quality in obese females treated with rosiglitazone before mating indicates that peroxisome proliferator activated receptor-gamma is a key target for metabolic regulation of ovarian function and oocyte quality.

  18. Longitudinal associations of serum fatty acid composition with type 2 diabetes risk and markers of insulin secretion and sensitivity in the Finnish Diabetes Prevention Study.

    PubMed

    Takkunen, Markus J; Schwab, Ursula S; de Mello, Vanessa D F; Eriksson, Johan G; Lindström, Jaana; Tuomilehto, Jaakko; Uusitupa, Matti I J

    2016-04-01

    To examine the longitudinal associations of serum fatty acid composition with type 2 diabetes, insulin secretion and insulin sensitivity over several years. We conducted a prospective cohort study derived from the randomized Finnish Diabetes Prevention Study. Total serum fatty acid composition was measured using gas chromatography in 407 overweight, middle-aged people with impaired glucose tolerance at baseline (1993-1998) and annually during the intervention period (1994-2000). Longitudinal associations of 20 fatty acids and three desaturase activities (Δ5 (20:4n-6/20:3n-6, D5D), Δ6 (18:3n-6/18:2n-6, D6D), stearoyl-CoA desaturase-1 (16:1n-7/16:0, SCD-1)) with type 2 diabetes incidence, and estimates of insulin sensitivity (Matsuda), secretion (ratio of insulin and glucose concentrations) and β-cell function (disposition index) by an oral glucose tolerance test were analyzed using Cox regression and linear mixed models. We validated estimated D5D and D6D using a known FADS1 gene variant, rs174550. The baseline proportions of 20:5n-3, 22:5n-3 and 22:6n-3, and D5D were associated with lower incidence of type 2 diabetes during a median follow-up of 11 years (HR per 1SD: 0.72, 0.74, 0.73, 0.78, respectively, P ≤ 0.01). These long-chain omega-3 fatty acids and D5D were associated with higher insulin sensitivity in subsequent years but not with disposition index. Saturated, monounsaturated and trans fatty acids and 18:3n-3, 18:2n-6, SCD-1 and D6D were inconsistently associated with type 2 diabetes or related traits. Serum long-chain omega-3 fatty acids and D5D predicted lower type 2 diabetes incidence in people at a high risk of diabetes attending to an intervention study; a putative mechanism behind these associations was higher insulin sensitivity.

  19. Temperature optimum of insulin-stimulated 2-deoxy-D-glucose uptake in rat adipocytes. Correlation of cellular transport with membrane spin-label and fluorescence-label data.

    PubMed Central

    Hyslop, P A; Kuhn, C E; Sauerheber, R D

    1984-01-01

    The effects of temperature alterations between 22 degrees C and 48 degrees C on basal and insulin-stimulated 2-deoxy-D-[1-14C]glucose uptake were examined in isolated rat adipocytes. A distinct optimum was found near physiological temperature for uptake in the presence of maximally effective insulin concentrations where insulin stimulation and hexose uptake were both conducted at each given assay temperature. Basal uptake was only subtly affected. Control and maximally insulin-stimulated cells incubated at 35 degrees C subsequently exhibited minimal temperature-sensitivity of uptake measured between 30 and 43 degrees C. The data are mostly consistent with the concept that insulin-sensitive glucose transporters are, after stimulation by insulin, functionally similar to basal transporters. Adipocyte plasma membranes were labelled with various spin- and fluorescence-label probes in lipid structural studies. The temperature-dependence of the order parameter S calculated from membranes labelled with 5-nitroxide stearate indicated the presence of a lipid phase change at approx. 33 degrees C. Membranes labelled with the fluorescence label 1,6-diphenylhexa-1,3,5-triene, or the cholesterol-like spin label nitroxide cholestane, reveal sharp transitions at lower temperatures. We suggest that a thermotropic lipid phase separation occurs in the adipocyte membrane that may be correlated with the temperature-dependence of hexose transport and insulin action in the intact cells. PMID:6324752

  20. Improvement of insulin sensitivity and beta-cell function by nateglinide and repaglinide in type 2 diabetic patients - a randomized controlled double-blind and double-dummy multicentre clinical trial.

    PubMed

    Li, J; Tian, H; Li, Q; Wang, N; Wu, T; Liu, Y; Ni, Z; Yu, H; Liang, J; Luo, R; Li, Y; Huang, L

    2007-07-01

    To evaluate the efficacy of nateglinide vs. repaglinide in blood glucose (BG) control and the effect on insulin resistance and beta-Cell function in patients with type 2 diabetes. A randomized controlled double-blind and double-dummy multicentre clinical trial was conducted. A total of 230 Chinese patients with type 2 diabetes were enrolled in five clinical centres. The patients were divided randomly into group A [repaglinide 1.0 mg three times daily (t.i.d.), n = 115] or group B (nateglinide 90 mg t.i.d., n = 115). At baseline and end of the 12-week clinical trial, standard mixed meal tolerance tests were performed. A total of 223 patients (96.9%) completed the trial. There was no significant difference between repaglinide and nateglinide groups in the effects of reducing fasting blood glucose (FBG), 30-, 60- and 120-min BG during 12 weeks (p > 0.05). At week 12, no significant difference was shown between the two groups in BG or haemoglobin A(1c) (HbA(1c)) (p > 0.05). However, the effect on HbA(1c) in repaglinide group was stronger than that in nateglinide group (p < 0.05). After 12-week treatment, area under the curve (AUC) of BG decreased (p < 0.05), and AUC of insulin and C-peptide (CP) increased in both groups (p < 0.05). The effects of nateglinide on AUC of BG, insulin and CP were similar to that of repaglinide (p > 0.05). There was no significant difference between the two groups in AUC of BG, insulin or CP in week 12 (p > 0.05). Furthermore, homeostasis model assessment of insulin resistance (HOMA-IR) and beta-cell function indexes measured by HOMA-beta, DeltaI(30)/DeltaG(30) and (DeltaI(30)/DeltaG(30))/HOMA-IR were improved significantly in both groups during 12 weeks (p < 0.05). The effects of improving HOMA-IR and beta-cell function indexes in nateglinide group were comparable with that of repaglinide group (p > 0.05). The efficacy of repaglinide and nateglinide in FBG, postprandial glucose excursion and early-phase insulin secretion is similar. But the effect of repaglinide 1.0 mg t.i.d. on HbA(1c) is stronger than that of nateglinide 90 mg t.i.d.. This trial had shown that nateglinide and repaglinide could comparably improve insulin sensitivity and beta-cell function.

  1. New twist on neuronal insulin receptor signaling in health, disease, and therapeutics.

    PubMed

    Wada, Akihiko; Yokoo, Hiroki; Yanagita, Toshihiko; Kobayashi, Hideyuki

    2005-10-01

    Long after the pioneering studies documenting the existence of insulin (year 1967) and insulin receptor (year 1978) in brain, the last decade has witnessed extraordinary progress in the understanding of brain region-specific multiple roles of insulin receptor signalings in health and disease. In the hypothalamus, insulin regulates food intake, body weight, peripheral fat deposition, hepatic gluconeogenesis, reproductive endocrine axis, and compensatory secretion of counter-regulatory hormones to hypoglycemia. In the hippocampus, insulin promotes learning and memory, independent of the glucoregulatory effect of insulin. Defective insulin receptor signalings are associated with the dementia in normal aging and patients with age-related neurodegenerative diseases (e.g., Alzheimer's disease); the cognitive impairment can be reversed with systemic administration of insulin in the euglycemic condition. Intranasal administration of insulin enhances memory and mood and decreases body weight in healthy humans, without causing hypoglycemia. In the hypothalamus, insulin-induced activation of the phosphoinositide 3-kinase pathway followed by opening of ATP-sensitive K+ channel has been shown to be related to multiple effects of insulin. However, the precise molecular mechanisms of insulin's pleiotropic effects still remain obscure. More importantly, much remains unknown about the quality control mechanisms ensuring correct conformational maturation of the insulin receptor, and the cellular mechanisms regulating density of cell surface functional insulin receptors.

  2. Effect of confinement in small space flight size cages on insulin sensitivity of exercise-trained rats

    NASA Technical Reports Server (NTRS)

    Mondon, C. E.; Dolkas, C. B.; Reaven, G. M.

    1983-01-01

    The effect of confinement in small cages (simulating the size to be used in future space Shuttle missions) on insulin sensitivity was studied in rats having an increased insulin sensitivity due to exercise training prior to confinement. Oral glucose tolerance tests (OGTT) were given to both control and exercise-trained rats before and after placement in the small cages for 7 days. The insulin resistance was assessed by the product of the area of the insulin and glucose curves of the OGTT (IG index). Results show that the values obtained before confinement were one-half as high in exercise-trained rats as those in control rats, reflecting an increased sensitivity to insulin with exercise training. After 7 days confinement, the IG index was found to be not significantly different from initial values for both control and exercise-trained rats. These findings suggest that increased insulin sensitivity in exercise-trained rats persists 7 days after cessation of running activity. The data also indicate that exercise training, before flight, may be beneficial in minimizing the loss of insulin sensitivity expected with decreased use of gravity dependent muscles during exposure to hypogravity in space flight.

  3. The Oral Minimal Model Method

    PubMed Central

    Cobelli, Claudio; Dalla Man, Chiara; Toffolo, Gianna; Basu, Rita; Vella, Adrian; Rizza, Robert

    2014-01-01

    The simultaneous assessment of insulin action, secretion, and hepatic extraction is key to understanding postprandial glucose metabolism in nondiabetic and diabetic humans. We review the oral minimal method (i.e., models that allow the estimation of insulin sensitivity, β-cell responsivity, and hepatic insulin extraction from a mixed-meal or an oral glucose tolerance test). Both of these oral tests are more physiologic and simpler to administer than those based on an intravenous test (e.g., a glucose clamp or an intravenous glucose tolerance test). The focus of this review is on indices provided by physiological-based models and their validation against the glucose clamp technique. We discuss first the oral minimal model method rationale, data, and protocols. Then we present the three minimal models and the indices they provide. The disposition index paradigm, a widely used β-cell function metric, is revisited in the context of individual versus population modeling. Adding a glucose tracer to the oral dose significantly enhances the assessment of insulin action by segregating insulin sensitivity into its glucose disposal and hepatic components. The oral minimal model method, by quantitatively portraying the complex relationships between the major players of glucose metabolism, is able to provide novel insights regarding the regulation of postprandial metabolism. PMID:24651807

  4. Leptin's Role in Lipodystrophic and Nonlipodystrophic Insulin-Resistant and Diabetic Individuals

    PubMed Central

    Moon, Hyun-Seuk; Dalamaga, Maria; Kim, Sang-Yong; Polyzos, Stergios A.; Hamnvik, Ole-Petter; Magkos, Faidon; Paruthi, Jason

    2013-01-01

    Leptin is an adipocyte-secreted hormone that has been proposed to regulate energy homeostasis as well as metabolic, reproductive, neuroendocrine, and immune functions. In the context of open-label uncontrolled studies, leptin administration has demonstrated insulin-sensitizing effects in patients with congenital lipodystrophy associated with relative leptin deficiency. Leptin administration has also been shown to decrease central fat mass and improve insulin sensitivity and fasting insulin and glucose levels in HIV-infected patients with highly active antiretroviral therapy (HAART)-induced lipodystrophy, insulin resistance, and leptin deficiency. On the contrary, the effects of leptin treatment in leptin-replete or hyperleptinemic obese individuals with glucose intolerance and diabetes mellitus have been minimal or null, presumably due to leptin tolerance or resistance that impairs leptin action. Similarly, experimental evidence suggests a null or a possibly adverse role of leptin treatment in nonlipodystrophic patients with nonalcoholic fatty liver disease. In this review, we present a description of leptin biology and signaling; we summarize leptin's contribution to glucose metabolism in animals and humans in vitro, ex vivo, and in vivo; and we provide insights into the emerging clinical applications and therapeutic uses of leptin in humans with lipodystrophy and/or diabetes. PMID:23475416

  5. Protection against the synaptic targeting and toxicity of Alzheimer's-associated Aβ oligomers by insulin mimetic chiro-inositols

    PubMed Central

    Pitt, Jason; Thorner, Michael; Brautigan, David; Larner, Joseph; Klein, William L.

    2013-01-01

    Alzheimer's disease (AD) is a progressive dementia that correlates highly with synapse loss. This loss appears due to the synaptic accumulation of toxic Aβ oligomers (ADDLs), which damages synapse structure and function. Although it has been reported that oligomer binding and toxicity can be prevented by stimulation of neuronal insulin signaling with PPARγ agonists, these agonists have problematic side effects. We therefore investigated the therapeutic potential of chiro-inositols, insulin-sensitizing compounds safe for human consumption. Chiro-inositols have been studied extensively for treatment of diseases associated with peripheral insulin resistance, but their insulin mimetic function in memory-relevant central nervous system (CNS) cells is unknown. Here we demonstrate that mature cultures of hippocampal neurons respond to d-chiro-inositol (DCI), pinitol (3-O-methyl DCI), and the inositol glycan INS-2 (pinitol β-1-4 galactosamine) with increased phosphorylation in key upstream components in the insulin-signaling pathway (insulin receptor, insulin receptor substrate-1, and Akt). Consistent with insulin stimulation, DCI treatment promotes rapid withdrawal of dendritic insulin receptors. With respect to neuroprotection, DCI greatly enhances the ability of insulin to prevent ADDL-induced synapse damage (EC50 of 90 nM). The mechanism comprises inhibition of oligomer binding at synapses and requires insulin/IGF signaling. DCI showed no effects on Aβ oligomerization. We propose that inositol glycans and DCI, a compound already established as safe for human consumption, have potential as AD therapeutics by protecting CNS synapses against Aβ oligomers through their insulin mimetic activity.—Pitt, J., Thorner, M., Brautigan, D., Larner, J., Klein, W. L. Protection against the synaptic targeting and toxicity of Alzheimer's-associated Aβ oligomers by insulin mimetic chiro-inositols. PMID:23073831

  6. Arsenic Exposure and Calpain-10 Polymorphisms Impair the Function of Pancreatic Beta-Cells in Humans: A Pilot Study of Risk Factors for T2DM

    PubMed Central

    Díaz-Villaseñor, Andrea; Cruz, Laura; Cebrián, Arturo; Hernández-Ramírez, Raúl U.; Hiriart, Marcia; García-Vargas, Gonzálo; Bassol, Susana; Sordo, Monserrat; Gandolfi, A. Jay; Klimecki, Walter T.; López-Carillo, Lizbeth; Cebrián, Mariano E.; Ostrosky-Wegman, Patricia

    2013-01-01

    The incidence of type 2 diabetes mellitus (T2DM) is increasing worldwide and diverse environmental and genetic risk factors are well recognized. Single nucleotide polymorphisms (SNPs) in the calpain-10 gene (CAPN-10), which encodes a protein involved in the secretion and action of insulin, and chronic exposure to inorganic arsenic (iAs) through drinking water have been independently associated with an increase in the risk for T2DM. In the present work we evaluated if CAPN-10 SNPs and iAs exposure jointly contribute to the outcome of T2DM. Insulin secretion (beta-cell function) and insulin sensitivity were evaluated indirectly through validated indexes (HOMA2) in subjects with and without T2DM who have been exposed to a gradient of iAs in their drinking water in northern Mexico. The results were analyzed taking into account the presence of the risk factor SNPs SNP-43 and -44 in CAPN-10. Subjects with T2DM had significantly lower beta-cell function and insulin sensitivity. An inverse association was found between beta-cell function and iAs exposure, the association being more pronounced in subjects with T2DM. Subjects without T2DM who were carriers of the at-risk genotype SNP-43 or -44, also had significantly lower beta-cell function. The association of SNP-43 with beta-cell function was dependent on iAs exposure, age, gender and BMI, whereas the association with SNP-44 was independent of all of these factors. Chronic exposure to iAs seems to be a risk factor for T2DM in humans through the reduction of beta-cell function, with an enhanced effect seen in the presence of the at-risk genotype of SNP-43 in CAPN-10. Carriers of CAPN-10 SNP-44 have also shown reduced beta-cell function. PMID:23349674

  7. Body fat distribution modulates insulin sensitivity in post-menopausal overweight and obese women: a MONET study.

    PubMed

    Tousignant, B; Faraj, M; Conus, F; Garrel, D; Brochu, M; Rabasa-Lhoret, R; Coderre, L

    2008-11-01

    Central fat mass (CFM) correlates with insulin resistance and increases the risk of type 2 diabetes and cardiovascular complications. On the other hand, increased peripheral fat mass (PFM) is associated with higher insulin sensitivity. Thus, we examined the contribution of adipose tissue distribution, as assessed by the PFM/CFM ratio, to insulin sensitivity in overweight and obese postmenopausal women. A total of 124 nondiabetic overweight and obese postmenopausal women underwent an oral glucose tolerance test (OGTT) and a hyperinsulinemic/euglycemic (HI) clamp. Body composition was determined using computed tomography for visceral adipose tissue (VAT) and dual X-ray absorptiometry for fat mass, lean body mass and their respective proportions. Participants were divided by tertiles of the PFM/CFM ratio. Participants with preferential CFM (group 1) had higher fasting insulin levels and insulin area under the curve (AUC) during OGTT, as well as lower glucose infusion rates during the HI clamp, whether it was expressed per kg of body weight (M) or per kg of fat-free mass (Mm), compared with the other two groups. The PFM/CFM ratio also correlated significantly with fasting insulin (r=-0.32, P<0.001), the insulin AUC (r=-0.42 P<0.001), M (r=0.39 P<0.001) and Mm (r=0.37 P<0.001). Using hierarchical regression, we demonstrated that the PFM/CFM ratio was an independent predictor of insulin AUC, M and Mm and that its sequential addition to CFM and VAT improved significantly the predictive value of the model for insulin sensitivity for all variables except fasting insulin. The PFM/CFM ratio, which integrates the antagonistic effects of both central and peripheral depots on insulin sensitivity, added substantially to the prediction of insulin sensitivity over VAT and CFM alone.

  8. Insulin sensitizers prevent fine particulate matter-induced vascular insulin resistance and changes in endothelial progenitor cell homeostasis

    PubMed Central

    McCracken, James P.; Bhatnagar, Aruni; Conklin, Daniel J.

    2016-01-01

    Exposure to fine particular matter (PM2.5) increases the risk of developing cardiovascular disease and Type 2 diabetes. Because blood vessels are sensitive targets of air pollutant exposure, we examined the effects of concentrated ambient PM2.5 (CAP) on vascular insulin sensitivity and circulating levels of endothelial progenitor cells (EPCs), which reflect cardiovascular health. We found that CAP exposure for 9 days decreased insulin-stimulated Akt phosphorylation in the aorta of mice maintained on control diet. This change was accompanied by the induction of IL-1β and increases in the abundance of cleaved IL-18 and p10 subunit of Casp-1, consistent with the activation of the inflammasome pathway. CAP exposure also suppressed circulating levels of EPCs (Flk-1+/Sca-1+ cells), while enhancing the bone marrow abundance of these cells. Although similar changes in vascular insulin signaling and EPC levels were observed in mice fed high-fat diet, CAP exposure did not exacerbate diet-induced changes in vascular insulin resistance or EPC homeostasis. Treatment with an insulin sensitizer, metformin or rosiglitazone, prevented CAP-induced vascular insulin resistance and NF-κB and inflammasome activation and restored peripheral blood and bone marrow EPC levels. These findings suggest that PM2.5 exposure induces diet-independent vascular insulin resistance and inflammation and prevents EPC mobilization, and that this EPC mobilization defect could be mediated by vascular insulin resistance. Impaired vascular insulin sensitivity may be an important mechanism underlying PM2.5-induced vascular injury, and pharmacological sensitization to insulin action could potentially prevent deficits in vascular repair and mitigate vascular inflammation due to exposure to elevated levels of ambient air pollution. Listen to this article's corresponding podcast at http://ajpheart.podbean.com/e/particulate-matter-induced-vascular-insulin-resistance/. PMID:27016579

  9. Pancreatic beta cell function following liraglutide-augmented weight loss in individuals with prediabetes: analysis of a randomised, placebo-controlled study

    PubMed Central

    Liu, Alice; Ariel, Danit; Abbasi, Fahim; Lamendola, Cindy; Grove, Kaylene; Tomasso, Vanessa; Reaven, Gerald

    2016-01-01

    Aims/hypothesis Liraglutide can modulate insulin secretion by directly stimulating beta cells or indirectly through weight loss and enhanced insulin sensitivity. Recently, we showed that liraglutide treatment in overweight individuals with prediabetes (impaired fasting glucose and/or impaired glucose tolerance) led to greater weight loss (−7.7% vs −3.9%) and improvement in insulin resistance compared with placebo. The current study evaluates the effects on beta cell function of weight loss augmented by liraglutide compared with weight loss alone. Methods This was a parallel, randomised study conducted in a single academic centre. Both participants and study administrators were blinded to treatment assignment. Individuals who were 40–70 years old, overweight (BMI 27–40 kg/m2) and with prediabetes were randomised (via a computerised system) to receive liraglutide (n = 35) or matching placebo (n = 33), and 49 participants were analysed. All were instructed to follow an energy-restricted diet. Primary outcome was insulin secretory function, which was evaluated in response to graded infusions of glucose and day-long mixed meals. Results Liraglutide treatment (n = 24) significantly (p ≤0.03) increased the insulin secretion rate (% mean change [95% CI]; 21% [12, 31] vs −4% [−11, 3]) and pancreatic beta cell sensitivity to intravenous glucose (229% [161, 276] vs −0.5% (−15, 14]), and decreased insulin clearance rate (−3.5% [−11, 4] vs 8.2 [0.2, 16]) as compared with placebo (n = 25). The liraglutide-treated group also had significantly (p ≤0.03) lower day-long glucose (−8.2% [−11, −6] vs −0.1 [−3, 2]) and NEFA concentrations (−14 [−20, −8] vs −2.1 [−10, 6]) following mixed meals, whereas day-long insulin concentrations did not significantly differ as compared with placebo. In a multivariate regression analysis, weight loss was associated with a decrease in insulin secretion rate and day-long glucose and insulin concentrations in the placebo group (p ≤0.05), but there was no association with weight loss in the liraglutide group. The most common side effect of liraglutide was nausea. Conclusions/interpretation A direct stimulatory effect on beta cell function was the predominant change in liraglutide-augmented weight loss. These changes appear to be independent of weight loss. Trial registration ClinicalTrials.gov NCT01784965 PMID:24326527

  10. Fenofibrate Decreases Insulin Clearance and Insulin Secretion to Maintain Insulin Sensitivity*

    PubMed Central

    Ramakrishnan, Sadeesh K.; Russo, Lucia; Ghanem, Simona S.; Patel, Payal R.; Oyarce, Ana Maria; Heinrich, Garrett; Najjar, Sonia M.

    2016-01-01

    High fat diet reduces the expression of CEACAM1 (carcinoembryonic antigen-related cell adhesion molecule 1), a transmembrane glycoprotein that promotes insulin clearance and down-regulates fatty acid synthase activity in the liver upon its phosphorylation by the insulin receptor. Because peroxisome proliferator-activated receptor α (PPARα) transcriptionally suppresses CEACAM1 expression, we herein examined whether high fat down-regulates CEACAM1 expression in a PPARα-dependent mechanism. By activating PPARα, the lipid-lowering drug fenofibrate reverses dyslipidemia and improves insulin sensitivity in type 2 diabetes in part by promoting fatty acid oxidation. Despite reducing glucose-stimulated insulin secretion, fenofibrate treatment does not result in insulin insufficiency. To examine whether this is mediated by a parallel decrease in CEACAM1-dependent hepatic insulin clearance pathways, we fed wild-type and Pparα−/− null mice a high fat diet supplemented with either fenofibrate or Wy14643, a selective PPARα agonist, and examined their effect on insulin metabolism and action. We demonstrated that the decrease in insulin secretion by fenofibrate and Wy14643 is accompanied by reduction in insulin clearance in wild-type but not Pparα−/− mice, thereby maintaining normoinsulinemia and insulin sensitivity despite continuous high fat intake. Intact insulin secretion in L-CC1 mice with protected hepatic insulin clearance and CEACAM1 levels provides in vivo evidence that insulin secretion responds to changes in insulin clearance to maintain physiologic insulin and glucose homeostasis. These results also emphasize the relevant role of hepatic insulin extraction in regulating insulin sensitivity. PMID:27662905

  11. Parental history and risk of type 2 diabetes in overweight Latino adolescents: a longitudinal analysis.

    PubMed

    Kelly, Louise A; Lane, Christianne J; Weigensberg, Marc J; Koebnick, Corinna; Roberts, Christian K; Davis, Jaimie N; Toledo-Corral, Claudia M; Shaibi, Gabriel Q; Goran, Michael I

    2007-10-01

    The purpose of this article was to examine metabolic risk factors for type 2 diabetes in children and adolescents as a function of maternal versus paternal family history of type 2 diabetes and to examine whether differences in these risk factors emerge during adolescent growth. A total of 247 overweight Latino children (baseline age = 11.1 +/- 1.7 years) with a parental history of type 2 diabetes were followed annually for 5 years (2.2 +/- 1.2 observations/child) with measures of insulin sensitivity, acute insulin response to glucose, and disposition index. Longitudinal linear mixed-effects modeling was used to evaluate the influence of maternal versus paternal family history of type 2 diabetes on changes in diabetes risk factors over age. Insulin sensitivity and the disposition index decreased over age (beta = -0.052 and beta = -0.033, P < 0 0.01). Acute insulin response to glucose and fasting and 2-h glucose increased (beta = 0.019, beta = 0.002, and beta = 0.003, P < 0.01). Declines in insulin sensitivity were significantly greater in participants whose maternal grandmothers had a history of type 2 diabetes (beta = -0.03, P = 0.03). Declines in the disposition index (beta = -0.02, P = 0.04) and increases in fasting glucose were significantly influenced by a maternal history of type 2 diabetes (beta = 0.60, P < 0.05). Maternal but not paternal family history for diabetes may have a significant impact on insulin dynamics, becoming more pronounced during growth in overweight Latino adolescents. Further research is clearly warranted.

  12. HOMA-IR and QUICKI: decide on a general standard instead of making further comparisons.

    PubMed

    Rössner, Sophia M; Neovius, Martin; Mattsson, Anna; Marcus, Claude; Norgren, Svante

    2010-11-01

    To limit further comparisons between the two fasting indices Homeostasis Model Assessment for Insulin Resistance (HOMA-IR) and Quantitative Insulin Sensitivity Check Index (QUICKI), and to examine their robustness in assessing insulin sensitivity. A total of 191 obese children and adolescents (age 13.9 ± 2.9 years, BMI SDS 6.1 ± 1.6), who had undergone a Frequently Sampled Intravenous Glucose Tolerance Test (FSIVGTT), were included. Receiver operating characteristic curve (ROC) analysis was used to compare indices in detecting insulin resistance and Bland-Altman plots to investigate agreement between three consecutive fasting samples when compared to using single samples. ROC analysis showed that the diagnostic accuracy was identical for QUICKI and HOMA-IR [area under the curve (AUC) boys 0.80, 95%CI 0.70-0.89; girls 0.80, 0.71-0.88], while insulin had a nonsignificantly lower AUC (boys 0.76, 0.66-0.87; girls 0.75, 0.66-0.84). Glucose did not perform better than chance as a diagnostic test (boys 0.47, 0.34-0.60; girls 0.57, 0.46-0.68). Indices varied with consecutive sampling, mainly attributable to fasting insulin variations (mean maximum difference in HOMA-IR -0.8; -0.9 to -0.7). Using both HOMA-IR and QUICKI in further studies is superfluous as these indices function equally well as predictors of the FSIVGTT sensitivity index. Focus should be on establishing a general standard for research and clinical purposes. © 2010 The Author(s)/Journal Compilation © 2010 Foundation Acta Paediatrica.

  13. Effects of short-term chromium supplementation on insulin sensitivity and body composition in overweight children: randomized, double-blind, placebo-controlled study.

    PubMed

    Kim, Chan-Won; Kim, Bom-Taeck; Park, Kyung-Hee; Kim, Kwang-Min; Lee, Duck-Joo; Yang, Sung-Won; Joo, Nam-Seok

    2011-11-01

    Excessive body weight is inversely associated with insulin sensitivity in children and adults. Chromium supplementation produces modest improvement in insulin sensitivity in adults. The aim of this study was to examine the beneficial effects of chromium supplementation on insulin sensitivity and body composition in overweight children simultaneously modifying lifestyle. Twenty-five overweight children aged 9-12 years were randomized to receive either 400 μg of chromium chloride or placebo in double-blind fashion, during a 6-week lifestyle modification regimen that included nutritional education and 3×90 min of aerobic physical activity weekly. Insulin sensitivity was demonstrated using homeostasis model assessment-insulin resistance and quantitative insulin sensitivity check index (QUICKI). Changes in body mass index (BMI; kg/m(2)), BMI Z-score, waist circumference, body composition and fasting plasma glucose were measured. Although no significant benefit of chromium supplementation over placebo was evident for BMI, BMI Z-score and fasting insulin level, children who received chromium chloride demonstrated more positive changes versus the placebo group in HOMA (-1.84±1.07 vs. 0.05±0.42, P=.05), QUICKI (0.02±0.01 vs. -0.002±0.01, P=.05), lean body mass (2.43±0.68 kg vs. 1.36±1.61 kg, P=.02) and percentage body fat (-3.32±1.29% vs. 0.65±1.05%, P=.04). The desirable effects of chromium supplementation on insulin sensitivity and body composition were more apparent in pre-pubertal children. These results suggest that short-term chromium supplementation can improve insulin sensitivity and body composition in overweight children. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Influence of moderate chronic wine consumption on insulin sensitivity and other correlates of syndrome X in moderately obese women.

    PubMed

    Cordain, L; Melby, C L; Hamamoto, A E; O'Neill, D S; Cornier, M A; Barakat, H A; Israel, R G; Hill, J O

    2000-11-01

    Epidemiologic studies indicate that alcohol consumption is associated with improved insulin sensitivity; however, scant experimental evidence confirms this observation. To determine the effects of regular moderate wine consumption on insulin sensitivity, 20 overweight women (body mass index [BMI], 29.8 +/- 2.2 kg/m2) participated in a 20-week free-living randomized crossover trial. The subjects, serving as their own controls, consumed wine (190 mL red wine, 13% vol/vol ethanol, 5 days per week) for 10 weeks and abstained for 10 weeks or vice versa. The dependent variables (body weight, BMI, percent body fat, blood pressure, fasting blood glucose and insulin, blood lipids, dietary intake, and insulin sensitivity by intravenous glucose tolerance test [IVGTT]) were measured at the pretest, at the 10-week crossover, and at the 20-week completion of the study. Data were analyzed at the pretest and at completion of the wine drinking and abstention periods of the study using ANOVA by order of treatment. Fasting glucose remained unchanged (mean +/- SD; P > .05) throughout the experiment (pretest, drinking, and abstention, 91.1 +/- 9.2, 91.6 +/- 9.1, and 88.5 +/- 11.2 mg/dL), as did the measures of insulin sensitivity, fasting insulin (pretest, drinking, and abstention, 8.6 +/- 3.3, 8.6 +/- 4.1, and 9.1 +/- 4.7 microU/mg) and the insulin sensitivity index (3.60 +/- 2.96, 3.25 +/- 2.17, and 3.30 +/- 1.84). Body composition and blood lipids also remained unchanged (P > .05) during treatment. Moderate wine consumption at this dose in overweight women did not improve or impair insulin sensitivity, nor did it change any of the known correlates of insulin sensitivity, including body weight and composition, blood lipids, and blood pressure.

  15. Detection of Independent Associations of Plasma Lipidomic Parameters with Insulin Sensitivity Indices Using Data Mining Methodology.

    PubMed

    Kopprasch, Steffi; Dheban, Srirangan; Schuhmann, Kai; Xu, Aimin; Schulte, Klaus-Martin; Simeonovic, Charmaine J; Schwarz, Peter E H; Bornstein, Stefan R; Shevchenko, Andrej; Graessler, Juergen

    2016-01-01

    Glucolipotoxicity is a major pathophysiological mechanism in the development of insulin resistance and type 2 diabetes mellitus (T2D). We aimed to detect subtle changes in the circulating lipid profile by shotgun lipidomics analyses and to associate them with four different insulin sensitivity indices. The cross-sectional study comprised 90 men with a broad range of insulin sensitivity including normal glucose tolerance (NGT, n = 33), impaired glucose tolerance (IGT, n = 32) and newly detected T2D (n = 25). Prior to oral glucose challenge plasma was obtained and quantitatively analyzed for 198 lipid molecular species from 13 different lipid classes including triacylglycerls (TAGs), phosphatidylcholine plasmalogen/ether (PC O-s), sphingomyelins (SMs), and lysophosphatidylcholines (LPCs). To identify a lipidomic signature of individual insulin sensitivity we applied three data mining approaches, namely least absolute shrinkage and selection operator (LASSO), Support Vector Regression (SVR) and Random Forests (RF) for the following insulin sensitivity indices: homeostasis model of insulin resistance (HOMA-IR), glucose insulin sensitivity index (GSI), insulin sensitivity index (ISI), and disposition index (DI). The LASSO procedure offers a high prediction accuracy and and an easier interpretability than SVR and RF. After LASSO selection, the plasma lipidome explained 3% (DI) to maximal 53% (HOMA-IR) variability of the sensitivity indexes. Among the lipid species with the highest positive LASSO regression coefficient were TAG 54:2 (HOMA-IR), PC O- 32:0 (GSI), and SM 40:3:1 (ISI). The highest negative regression coefficient was obtained for LPC 22:5 (HOMA-IR), TAG 51:1 (GSI), and TAG 58:6 (ISI). Although a substantial part of lipid molecular species showed a significant correlation with insulin sensitivity indices we were able to identify a limited number of lipid metabolites of particular importance based on the LASSO approach. These few selected lipids with the closest connection to sensitivity indices may help to further improve disease risk prediction and disease and therapy monitoring.

  16. Serum 25-hydroxyvitamin D and parathyroid hormone are independent determinants of whole-body insulin sensitivity in women and may contribute to lower insulin sensitivity in African Americans123

    PubMed Central

    Alvarez, Jessica A; Ashraf, Ambika P; Hunter, Gary R; Gower, Barbara A

    2010-01-01

    Background: Circulating 25-hydroxyvitamin D [25(OH)D] and parathyroid hormone (PTH) concentrations have been shown to be associated with insulin sensitivity; however, adiposity may confound this relation. Furthermore, African Americans (AAs) have lower insulin sensitivity and 25(OH)D concentrations than do European Americans (EAs); whether these differences are associated in a cause-and-effect manner has not been determined. Objectives: The objectives of this study were to examine the relation of 25(OH)D and PTH concentrations with whole-body insulin sensitivity and to determine whether lower 25(OH)D concentrations in AAs compared with EAs contribute to the lower insulin sensitivity of AAs relative to that of EAs. Design: This was a cross-sectional study of 25 AA and 25 EA women. We determined the whole-body insulin sensitivity index (SI) with an intravenous glucose tolerance test and minimal modeling. Percentage body fat was determined with dual-energy X-ray absorptiometry, and intraabdominal adipose tissue (IAAT) was determined with computed tomography. Results: Multiple linear regression analysis indicated that 25(OH)D and PTH concentrations were independent determinants of SI [standardized β = 0.24 (P = 0.04) and −0.36 (P = 0.002), respectively] after adjustment for age, race, and IAAT. The mean ethnic difference in SI decreased from 2.70 [· 10−4 · min−1/(μIU/mL)] after adjustment for IAAT and percentage body fat to 1.80 [· 10−4 · min−1/(μIU/mL)] after further adjustment for 25(OH)D and PTH concentrations. Conclusions: 25(OH)D and PTH concentrations were independently associated with whole-body insulin sensitivity in a cohort of healthy women, which suggested that these variables may influence insulin sensitivity through independent mechanisms. Furthermore, ethnic differences in 25(OH)D concentrations may contribute to ethnic differences in insulin sensitivity. PMID:20861177

  17. AMPK and Exercise: Glucose Uptake and Insulin Sensitivity

    PubMed Central

    2013-01-01

    AMPK is an evolutionary conserved sensor of cellular energy status that is activated during exercise. Pharmacological activation of AMPK promotes glucose uptake, fatty acid oxidation, mitochondrial biogenesis, and insulin sensitivity; processes that are reduced in obesity and contribute to the development of insulin resistance. AMPK deficient mouse models have been used to provide direct genetic evidence either supporting or refuting a role for AMPK in regulating these processes. Exercise promotes glucose uptake by an insulin dependent mechanism involving AMPK. Exercise is important for improving insulin sensitivity; however, it is not known if AMPK is required for these improvements. Understanding how these metabolic processes are regulated is important for the development of new strategies that target obesity-induced insulin resistance. This review will discuss the involvement of AMPK in regulating skeletal muscle metabolism (glucose uptake, glycogen synthesis, and insulin sensitivity). PMID:23441028

  18. Loss of α2δ-1 Calcium Channel Subunit Function Increases the Susceptibility for Diabetes.

    PubMed

    Mastrolia, Vincenzo; Flucher, Sylvia M; Obermair, Gerald J; Drach, Mathias; Hofer, Helene; Renström, Erik; Schwartz, Arnold; Striessnig, Jörg; Flucher, Bernhard E; Tuluc, Petronel

    2017-04-01

    Reduced pancreatic β-cell function or mass is the critical problem in developing diabetes. Insulin release from β-cells depends on Ca 2+ influx through high voltage-gated Ca 2+ channels (HVCCs). Ca 2+ influx also regulates insulin synthesis and insulin granule priming and contributes to β-cell electrical activity. The HVCCs are multisubunit protein complexes composed of a pore-forming α 1 and auxiliary β and α 2 δ subunits. α 2 δ is a key regulator of membrane incorporation and function of HVCCs. Here we show that genetic deletion of α 2 δ-1, the dominant α 2 δ subunit in pancreatic islets, results in glucose intolerance and diabetes without affecting insulin sensitivity. Lack of the α 2 δ-1 subunit reduces the Ca 2+ currents through all HVCC isoforms expressed in β-cells equally in male and female mice. The reduced Ca 2+ influx alters the kinetics and amplitude of the global Ca 2+ response to glucose in pancreatic islets and significantly reduces insulin release in both sexes. The progression of diabetes in males is aggravated by a selective loss of β-cell mass, while a stronger basal insulin release alleviates the diabetes symptoms in most α 2 δ-1 -/- female mice. Together, these findings demonstrate that the loss of the Ca 2+ channel α 2 δ-1 subunit function increases the susceptibility for developing diabetes in a sex-dependent manner. © 2017 by the American Diabetes Association.

  19. A Plant-Based Dietary Intervention Improves Beta-Cell Function and Insulin Resistance in Overweight Adults: A 16-Week Randomized Clinical Trial.

    PubMed

    Kahleova, Hana; Tura, Andrea; Hill, Martin; Holubkov, Richard; Barnard, Neal D

    2018-02-09

    The aim of this study was to test the effect of a plant-based dietary intervention on beta-cell function in overweight adults with no history of diabetes. Participants ( n = 75) were randomized to follow a low-fat plant-based diet ( n = 38) or to make no diet changes ( n = 37) for 16 weeks. At baseline and 16 weeks, beta-cell function was quantified with a mathematical model. Using a standard meal test, insulin secretory rate was calculated by C-peptide deconvolution. The Homeostasis Model Assessment (HOMA-IR) index was used to assess insulin resistance while fasting. A marked increase in meal-stimulated insulin secretion was observed in the intervention group compared with controls (interaction between group and time, Gxt, p < 0.001). HOMA-IR index fell significantly ( p < 0.001) in the intervention group (treatment effect -1.0 (95% CI, -1.2 to -0.8); Gxt, p = 0.004). Changes in HOMA-IR correlated positively with changes in body mass index (BMI) and visceral fat volume ( r = 0.34; p = 0.009 and r = 0.42; p = 0.001, respectively). The latter remained significant after adjustment for changes in BMI ( r = 0.41; p = 0.002). Changes in glucose-induced insulin secretion correlated negatively with BMI changes ( r = -0.25; p = 0.04), but not with changes in visceral fat. Beta-cell function and insulin sensitivity were significantly improved through a low-fat plant-based diet in overweight adults.

  20. Mechanical stress regulates insulin sensitivity through integrin-dependent control of insulin receptor localization.

    PubMed

    Kim, Jung; Bilder, David; Neufeld, Thomas P

    2018-01-15

    Insulin resistance, the failure to activate insulin signaling in the presence of ligand, leads to metabolic diseases, including type 2 diabetes. Physical activity and mechanical stress have been shown to protect against insulin resistance, but the molecular mechanisms remain unclear. Here, we address this relationship in the Drosophila larval fat body, an insulin-sensitive organ analogous to vertebrate adipose tissue and livers. We found that insulin signaling in Drosophila fat body cells is abolished in the absence of physical activity and mechanical stress even when excess insulin is present. Physical movement is required for insulin sensitivity in both intact larvae and fat bodies cultured ex vivo. Interestingly, the insulin receptor and other downstream components are recruited to the plasma membrane in response to mechanical stress, and this membrane localization is rapidly lost upon disruption of larval or tissue movement. Sensing of mechanical stimuli is mediated in part by integrins, whose activation is necessary and sufficient for mechanical stress-dependent insulin signaling. Insulin resistance develops naturally during the transition from the active larval stage to the immotile pupal stage, suggesting that regulation of insulin sensitivity by mechanical stress may help coordinate developmental programming with metabolism. © 2018 Kim et al.; Published by Cold Spring Harbor Laboratory Press.

  1. Effects of a docosahexaenoic acid-rich microalgae nutritional product on insulin sensitivity after prolonged dexamethasone treatment in healthy mature horses.

    PubMed

    Brennan, Kristen M; Graugnard, Daniel E; Spry, Malinda L; Brewster-Barnes, Tammy; Smith, Allison C; Schaeffer, Rachel E; Urschel, Kristine L

    2015-10-01

    To determine effects of a microalgae nutritional product on insulin sensitivity in horses. 8 healthy mature horses. PROCEDURES :Horses (n = 4/group) received a basal diet without (control diet) or with docosahexaenoic acid-rich microalgae meal (150 g/d) for 49 days (day 0 = first day of diet). On day 28, an isoglycemic hyperinsulinemic clamp procedure was performed. Horses then received dexamethasone (0.04 mg/kg/d) for 21 days. On day 49, the clamp procedure was repeated. After a 60-day washout, horses received the alternate diet, and procedures were repeated. Plasma fatty acid, glucose, and insulin concentrations and glucose and insulin dynamics during the clamp procedure were measured on days 28 and 49. Two estimates of insulin sensitivity (reciprocal of the square root of the insulin concentration and the modified insulin-to-glucose ratio for ponies) were calculated. Baseline glucose and insulin concentrations or measures of insulin sensitivity on day 28 did not differ between horses when fed the control diet or the basal diet plus microalgae meal. On day 49 (ie, after dexamethasone administration), the microalgae meal was associated with lower baseline insulin and glucose concentrations and an improved modified insulin-to-glucose ratio for ponies, compared with results for the control diet. Although the microalgae meal had no effect on clamp variables following dexamethasone treatment, it was associated with improved plasma glucose and insulin concentrations and insulin sensitivity estimates. A role for microalgae in the nutritional management of insulin-resistant horses warrants investigation.

  2. Bioactives in blueberries improve insulin sensitivity in obese, insulin-resistant men and women.

    PubMed

    Stull, April J; Cash, Katherine C; Johnson, William D; Champagne, Catherine M; Cefalu, William T

    2010-10-01

    Dietary supplementation with whole blueberries in a preclinical study resulted in a reduction in glucose concentrations over time. We sought to evaluate the effect of daily dietary supplementation with bioactives from blueberries on whole-body insulin sensitivity in men and women. A double-blinded, randomized, and placebo-controlled clinical study design was used. After screening to resolve study eligibility, baseline (wk 0) insulin sensitivity was measured on 32 obese, nondiabetic, and insulin-resistant subjects using a high-dose hyperinsulinemic-euglycemic clamp (insulin infusion of 120 mU(861 pmol)⋅m(-2)⋅min(-1)). Serum inflammatory biomarkers and adiposity were measured at baseline. At the end of the study, insulin sensitivity, inflammatory biomarkers, and adiposity were reassessed. Participants were randomized to consume either a smoothie containing 22.5 g blueberry bioactives (blueberry group, n = 15) or a smoothie of equal nutritional value without added blueberry bioactives (placebo group, n = 17) twice daily for 6 wk. Both groups were instructed to maintain their body weight by reducing ad libitum intake by an amount equal to the energy intake of the smoothies. Participants' body weights were evaluated weekly and 3-d food records were collected at baseline, the middle, and end of the study. The mean change in insulin sensitivity improved more in the blueberry group (1.7 ± 0.5 mg⋅kg FFM(-1)⋅min(-1)) than in the placebo group (0.4 ± 0.4 mg⋅kg FFM(-1)⋅min(-1)) (P = 0.04). Insulin sensitivity was enhanced in the blueberry group at the end of the study without significant changes in adiposity, energy intake, and inflammatory biomarkers. In conclusion, daily dietary supplementation with bioactives from whole blueberries improved insulin sensitivity in obese, nondiabetic, and insulin-resistant participants.

  3. Bioactives in Blueberries Improve Insulin Sensitivity in Obese, Insulin-Resistant Men and Women1234

    PubMed Central

    Stull, April J.; Cash, Katherine C.; Johnson, William D.; Champagne, Catherine M.; Cefalu, William T.

    2010-01-01

    Dietary supplementation with whole blueberries in a preclinical study resulted in a reduction in glucose concentrations over time. We sought to evaluate the effect of daily dietary supplementation with bioactives from blueberries on whole-body insulin sensitivity in men and women. A double-blinded, randomized, and placebo-controlled clinical study design was used. After screening to resolve study eligibility, baseline (wk 0) insulin sensitivity was measured on 32 obese, nondiabetic, and insulin-resistant subjects using a high-dose hyperinsulinemic-euglycemic clamp (insulin infusion of 120 mU(861 pmol)⋅m−2⋅min−1). Serum inflammatory biomarkers and adiposity were measured at baseline. At the end of the study, insulin sensitivity, inflammatory biomarkers, and adiposity were reassessed. Participants were randomized to consume either a smoothie containing 22.5 g blueberry bioactives (blueberry group, n = 15) or a smoothie of equal nutritional value without added blueberry bioactives (placebo group, n = 17) twice daily for 6 wk. Both groups were instructed to maintain their body weight by reducing ad libitum intake by an amount equal to the energy intake of the smoothies. Participants’ body weights were evaluated weekly and 3-d food records were collected at baseline, the middle, and end of the study. The mean change in insulin sensitivity improved more in the blueberry group (1.7 ± 0.5 mg⋅kg FFM−1⋅min−1) than in the placebo group (0.4 ± 0.4 mg⋅kg FFM−1⋅min−1) (P = 0.04). Insulin sensitivity was enhanced in the blueberry group at the end of the study without significant changes in adiposity, energy intake, and inflammatory biomarkers. In conclusion, daily dietary supplementation with bioactives from whole blueberries improved insulin sensitivity in obese, nondiabetic, and insulin-resistant participants. PMID:20724487

  4. Antidiabetogenic Effects of Chromium Mitigate Hyperinsulinemia-Induced Cellular Insulin Resistance via Correction of Plasma Membrane Cholesterol Imbalance

    PubMed Central

    Horvath, Emily M.; Tackett, Lixuan; McCarthy, Alicia M.; Raman, Priya; Brozinick, Joseph T.; Elmendorf, Jeffrey S.

    2008-01-01

    Previously, we found that a loss of plasma membrane (PM) phosphatidylinositol 4,5-bisphosphate (PIP2)-regulated filamentous actin (F-actin) structure contributes to insulin-induced insulin resistance. Interestingly, we also demonstrated that chromium picolinate (CrPic), a dietary supplement thought to improve glycemic status in insulin-resistant individuals, augments insulin-regulated glucose transport in insulin-sensitive 3T3-L1 adipocytes by lowering PM cholesterol. Here, to gain mechanistic understanding of these separate observations, we tested the prediction that CrPic would protect against insulin-induced insulin resistance by improving PM features important in cytoskeletal structure and insulin sensitivity. We found that insulin-induced insulin-resistant adipocytes display elevated PM cholesterol with a reciprocal decrease in PM PIP2. This lipid imbalance and insulin resistance was corrected by the cholesterol-lowering action of CrPic. The PM lipid imbalance did not impair insulin signaling, nor did CrPic amplify insulin signal transduction. In contrast, PM analyses corroborated cholesterol and PIP2 interactions influencing cytoskeletal structure. Because extensive in vitro study documents an essential role for cytoskeletal capacity in insulin-regulated glucose transport, we next evaluated intact skeletal muscle from obese, insulin-resistant Zucker (fa/fa) rats. Because insulin resistance in these animals likely involves multiple mechanisms, findings that cholesterol-lowering restored F-actin cytoskeletal structure and insulin sensitivity to that witnessed in lean control muscle were striking. Also, experiments using methyl-β-cyclodextrin to shuttle cholesterol into or out of membranes respectively recapitulated the insulin-induced insulin-resistance and protective effects of CrPic on membrane/cytoskeletal interactions and insulin sensitivity. These data predict a PM cholesterol basis for hyperinsulinemia-associated insulin resistance and importantly highlight the reversible nature of this abnormality. PMID:18165437

  5. The influence of major dietary fatty acids on insulin secretion and action.

    PubMed

    López, Sergio; Bermúdez, Beatriz; Abia, Rocío; Muriana, Francisco J G

    2010-02-01

    To briefly summarize recent advances towards understanding the influence of major dietary fatty acids on beta-cell function and evaluate their implications for insulin resistance. Studies in humans have shown that beta-cell function and insulin sensitivity improve progressively in the postprandial period as the proportion of monounsaturated fatty acids (MUFAs) with respect to saturated fatty acids (SFAs) in dietary fats increases. However, cell-culture experiments have revealed a dichotomy in the ability of fatty acids to moderate hyperactivity of, and induce lipotoxicity in, beta-cells. There are also some novel findings regarding the ability of HDL to protect beta-cells against oxidized LDL-induced apoptosis in vitro and of reconstituted HDL to attenuate insulin resistance in vivo. These findings raise new questions regarding the contribution of dietary fatty acids to insulin secretion and action. These new findings point to a critical role for major dietary fatty acids in the etiology and pathogenesis of diabetes, which appears to be of particular relevance during postprandial periods and mainly depends on the fatty acid type. This underscores the importance of dietary fatty acids in standard diabetes management.

  6. [Changes of insulin resistance and islet beta cells function in subjects with high-normal blood pressure].

    PubMed

    Xu, Ling-Ling; Xiang, Hong-Ding; Zhang, Li-Hong; Chen, Wei; Fang, Jing-Hui

    2009-08-01

    To investigate the changes of insulin resistance and islet beta cells function in subjects with euglycemia and high-normal blood pressure. Total 423 subjects were divided into normal blood pressure group and high-normal blood pressure group. Body height, weight, waist and hip circumference, and biochemical data were measured. Homeostasis model assessment of insulin resistance (HOMA-IR), insulin sensitivity index (ISI)-composite, and first-phase (1 PH) Stumvoll index were calculated. Results Waist circumference, total cholesterol, triglyceride, low-density lipoprotein cholesterol, HOMA-IR were significantly higher and IPH Stumvoll index and ISI-composite were significantly lower in high-normal blood pressure group than in normal blood pressure group (P < 0.05). Systolic blood pressure (SBP) was positively correlated with HOMA-IR (r = 0.122) and negatively correlated with 1PH Stumvoll index (r = -0. 159) and ISI-composite (r = -0.131) (P < 0.05). SBP and triglyceride were independent factors for IPH Stumvoll index. Insulin resistance and islet dysfunction may exist in subjects with high-normal blood pressure.

  7. Regulation of dendritic cell function by insulin/IGF-1/PI3K/Akt signaling through klotho expression.

    PubMed

    Xuan, Nguyen Thi; Hoang, Nguyen Huy; Nhung, Vu Phuong; Duong, Nguyen Thuy; Ha, Nguyen Hai; Hai, Nong Van

    2017-06-01

    Insulin or insulin-like growth factor 1 (IGF-1) promotes the activation of phosphoinositide 3 kinase (PI3K)/Akt signaling in immune cells including dendritic cells (DCs), the most potent professional antigen-presenting cells for naive T cells. Klotho, an anti-aging protein, participates in the regulation of the PI3K/Akt signaling, thus the Ca 2+ -dependent migration is reduced in klotho-deficient DCs. The present study explored the effects of insulin/IGF-1 on DC function through klotho expression. To this end, the mouse bone marrow cells were isolated and cultured with GM-CSF to attain bone marrow-derived DCs (BMDCs). Cells were treated with insulin or IGF-1 and followed by stimulating with lipopolysaccharides (LPS). Tumor necrosis factor (TNF)-α formation was examined by enzyme-linked immunosorbent assay (ELISA). Phagocytosis was analyzed by FITC-dextran uptake assay. The expression of klotho was determined by quantitative PCR, immunoprecipitation and western blotting. As a result, treatment of the cells with insulin/IGF-1 resulted in reducing the klotho expression as well as LPS-stimulated TNF-α release and increasing the FITC-dextran uptake but unaltering reactive oxygen species (ROS) production in BMDCs. The effects were abolished by using pharmacological inhibition of PI3K/Akt with LY294002 and paralleled by transfecting DCs with klotho siRNA. In conclusion, the regulation of klotho sensitive DC function by IGF-1 or insulin is mediated through PI3K/Akt signaling pathway in BMDCs.

  8. Comparison between Surrogate Indexes of Insulin Sensitivity/Resistance and Hyperinsulinemic Euglycemic Glucose Clamps in Rhesus Monkeys

    PubMed Central

    Lee, Ho-Won; Muniyappa, Ranganath; Yan, Xu; Yue, Lilly Q.; Linden, Ellen H.; Chen, Hui; Hansen, Barbara C.

    2011-01-01

    The euglycemic glucose clamp is the reference method for assessing insulin sensitivity in humans and animals. However, clamps are ill-suited for large studies because of extensive requirements for cost, time, labor, and technical expertise. Simple surrogate indexes of insulin sensitivity/resistance including quantitative insulin-sensitivity check index (QUICKI) and homeostasis model assessment (HOMA) have been developed and validated in humans. However, validation studies of QUICKI and HOMA in both rats and mice suggest that differences in metabolic physiology between rodents and humans limit their value in rodents. Rhesus monkeys are a species more similar to humans than rodents. Therefore, in the present study, we evaluated data from 199 glucose clamp studies obtained from a large cohort of 86 monkeys with a broad range of insulin sensitivity. Data were used to evaluate simple surrogate indexes of insulin sensitivity/resistance (QUICKI, HOMA, Log HOMA, 1/HOMA, and 1/Fasting insulin) with respect to linear regression, predictive accuracy using a calibration model, and diagnostic performance using receiver operating characteristic. Most surrogates had modest linear correlations with SIClamp (r ≈ 0.4–0.64) with comparable correlation coefficients. Predictive accuracy determined by calibration model analysis demonstrated better predictive accuracy of QUICKI than HOMA and Log HOMA. Receiver operating characteristic analysis showed equivalent sensitivity and specificity of most surrogate indexes to detect insulin resistance. Thus, unlike in rodents but similar to humans, surrogate indexes of insulin sensitivity/resistance including QUICKI and log HOMA may be reasonable to use in large studies of rhesus monkeys where it may be impractical to conduct glucose clamp studies. PMID:21209021

  9. Linking mitochondrial bioenergetics to insulin resistance via redox biology

    PubMed Central

    Fisher-Wellman, Kelsey H.; Neufer, P. Darrell

    2012-01-01

    Chronic overnutrition and physical inactivity are major risk factors for insulin resistance and type 2 diabetes. Recent research indicates that overnutrition generates an increase in hydrogen peroxide (H2O2) emission from mitochondria, serving as a release valve to relieve the reducing pressure created by fuel overload, as well as a primary signal to ultimately decrease insulin sensitivity. H2O2 is a major input to cellular redox circuits that link to cysteine residues throughout the entire proteome to regulate cell function. Here we review the principles of mitochondrial bioenergetics and redox systems biology and offer new insight as to how H2O2 emission may be linked via redox biology to the etiology of insulin resistance. PMID:22305519

  10. Detailed Physiologic Characterization Reveals Diverse Mechanisms for Novel Genetic Loci Regulating Glucose and Insulin Metabolism in Humans

    PubMed Central

    Ingelsson, Erik; Langenberg, Claudia; Hivert, Marie-France; Prokopenko, Inga; Lyssenko, Valeriya; Dupuis, Josée; Mägi, Reedik; Sharp, Stephen; Jackson, Anne U.; Assimes, Themistocles L.; Shrader, Peter; Knowles, Joshua W.; Zethelius, Björn; Abbasi, Fahim A.; Bergman, Richard N.; Bergmann, Antje; Berne, Christian; Boehnke, Michael; Bonnycastle, Lori L.; Bornstein, Stefan R.; Buchanan, Thomas A.; Bumpstead, Suzannah J.; Böttcher, Yvonne; Chines, Peter; Collins, Francis S.; Cooper, Cyrus C.; Dennison, Elaine M.; Erdos, Michael R.; Ferrannini, Ele; Fox, Caroline S.; Graessler, Jürgen; Hao, Ke; Isomaa, Bo; Jameson, Karen A.; Kovacs, Peter; Kuusisto, Johanna; Laakso, Markku; Ladenvall, Claes; Mohlke, Karen L.; Morken, Mario A.; Narisu, Narisu; Nathan, David M.; Pascoe, Laura; Payne, Felicity; Petrie, John R.; Sayer, Avan A.; Schwarz, Peter E. H.; Scott, Laura J.; Stringham, Heather M.; Stumvoll, Michael; Swift, Amy J.; Syvänen, Ann-Christine; Tuomi, Tiinamaija; Tuomilehto, Jaakko; Tönjes, Anke; Valle, Timo T.; Williams, Gordon H.; Lind, Lars; Barroso, Inês; Quertermous, Thomas; Walker, Mark; Wareham, Nicholas J.; Meigs, James B.; McCarthy, Mark I.; Groop, Leif; Watanabe, Richard M.; Florez, Jose C.

    2010-01-01

    OBJECTIVE Recent genome-wide association studies have revealed loci associated with glucose and insulin-related traits. We aimed to characterize 19 such loci using detailed measures of insulin processing, secretion, and sensitivity to help elucidate their role in regulation of glucose control, insulin secretion and/or action. RESEARCH DESIGN AND METHODS We investigated associations of loci identified by the Meta-Analyses of Glucose and Insulin-related traits Consortium (MAGIC) with circulating proinsulin, measures of insulin secretion and sensitivity from oral glucose tolerance tests (OGTTs), euglycemic clamps, insulin suppression tests, or frequently sampled intravenous glucose tolerance tests in nondiabetic humans (n = 29,084). RESULTS The glucose-raising allele in MADD was associated with abnormal insulin processing (a dramatic effect on higher proinsulin levels, but no association with insulinogenic index) at extremely persuasive levels of statistical significance (P = 2.1 × 10−71). Defects in insulin processing and insulin secretion were seen in glucose-raising allele carriers at TCF7L2, SCL30A8, GIPR, and C2CD4B. Abnormalities in early insulin secretion were suggested in glucose-raising allele carriers at MTNR1B, GCK, FADS1, DGKB, and PROX1 (lower insulinogenic index; no association with proinsulin or insulin sensitivity). Two loci previously associated with fasting insulin (GCKR and IGF1) were associated with OGTT-derived insulin sensitivity indices in a consistent direction. CONCLUSIONS Genetic loci identified through their effect on hyperglycemia and/or hyperinsulinemia demonstrate considerable heterogeneity in associations with measures of insulin processing, secretion, and sensitivity. Our findings emphasize the importance of detailed physiological characterization of such loci for improved understanding of pathways associated with alterations in glucose homeostasis and eventually type 2 diabetes. PMID:20185807

  11. Changes in subcutaneous fat cell volume and insulin sensitivity after weight loss.

    PubMed

    Andersson, Daniel P; Eriksson Hogling, Daniel; Thorell, Anders; Toft, Eva; Qvisth, Veronica; Näslund, Erik; Thörne, Anders; Wirén, Mikael; Löfgren, Patrik; Hoffstedt, Johan; Dahlman, Ingrid; Mejhert, Niklas; Rydén, Mikael; Arner, Erik; Arner, Peter

    2014-07-01

    Large subcutaneous fat cells associate with insulin resistance and high risk of developing type 2 diabetes. We investigated if changes in fat cell volume and fat mass correlate with improvements in the metabolic risk profile after bariatric surgery in obese patients. Fat cell volume and number were measured in abdominal subcutaneous adipose tissue in 62 obese women before and 2 years after Roux-en-Y gastric bypass (RYGB). Regional body fat mass by dual-energy X-ray absorptiometry; insulin sensitivity by hyperinsulinemic-euglycemic clamp; and plasma glucose, insulin, and lipid profile were assessed. RYGB decreased body weight by 33%, which was accompanied by decreased adipocyte volume but not number. Fat mass in the measured regions decreased and all metabolic parameters were improved after RYGB (P < 0.0001). Whereas reduced subcutaneous fat cell size correlated strongly with improved insulin sensitivity (P = 0.0057), regional changes in fat mass did not, except for a weak correlation between changes in visceral fat mass and insulin sensitivity and triglycerides. The curve-linear relationship between fat cell size and fat mass was altered after weight loss (P = 0.03). After bariatric surgery in obese women, a reduction in subcutaneous fat cell volume associates more strongly with improvement of insulin sensitivity than fat mass reduction per se. An altered relationship between adipocyte size and fat mass may be important for improving insulin sensitivity after weight loss. Fat cell size reduction could constitute a target to improve insulin sensitivity. © 2014 by the American Diabetes Association.

  12. Downregulation of lipin-1 induces insulin resistance by increasing intracellular ceramide accumulation in C2C12 myotubes

    PubMed Central

    Huang, Shujuan; Huang, Suling; Wang, Xi; Zhang, Qingli; Liu, Jia; Leng, Ying

    2017-01-01

    Dysregulation of lipid metabolism in skeletal muscle is involved in the development of insulin resistance. Mutations in lipin-1, a key lipid metabolism regulator leads to significant systemic insulin resistance in fld mice. However, the function of lipin-1 on lipid metabolism and insulin sensitivity in skeletal muscle is still unclear. Herein we demonstrated that downregulation of lipin-1 in C2C12 myotubes by siRNA transfection suppressed insulin action, characterized by reduced insulin stimulated Akt phosphorylation and glucose uptake. Correspondingly, decreased lipin-1 expression was observed in palmitate-induced insulin resistance in C2C12 myotubes, suggested that lipin-1 might play a role in the etiology of insulin resistance in skeletal muscle. The insulin resistance induced by lipin-1 downregulation was related to the disturbance of lipid homeostasis. Lipin-1 silencing reduced intracellular DAG and TAG levels, but elevated ceramide accumulation in C2C12 myotubes. Moreover, the impaired insulin stimulated Akt phosphorylation and glucose uptake caused by lipin-1 silencing could be blocked by the pretreatment with SPT inhibitor myriocin, ceramide synthase inhibitor FB1, or PP2A inhibitor okadaic acid, suggested that the increased ceramide accumulation might be responsible for the development of insulin resistance induced by lipin-1 silencing in C2C12 myotubes. Meanwhile, decreased lipin-1 expression also impaired mitochondrial function in C2C12 myotubes. Therefore, our study suggests that lipin-1 plays an important role in lipid metabolism and downregulation of lipin-1 induces insulin resistance by increasing intracellular ceramide accumulation in C2C12 myotubes. These results offer a molecular insight into the role of lipin-1 in the development of insulin resistance in skeletal muscle. PMID:28123341

  13. Downregulation of lipin-1 induces insulin resistance by increasing intracellular ceramide accumulation in C2C12 myotubes.

    PubMed

    Huang, Shujuan; Huang, Suling; Wang, Xi; Zhang, Qingli; Liu, Jia; Leng, Ying

    2017-01-01

    Dysregulation of lipid metabolism in skeletal muscle is involved in the development of insulin resistance. Mutations in lipin-1, a key lipid metabolism regulator leads to significant systemic insulin resistance in fld mice. However, the function of lipin-1 on lipid metabolism and insulin sensitivity in skeletal muscle is still unclear. Herein we demonstrated that downregulation of lipin-1 in C2C12 myotubes by siRNA transfection suppressed insulin action, characterized by reduced insulin stimulated Akt phosphorylation and glucose uptake. Correspondingly, decreased lipin-1 expression was observed in palmitate-induced insulin resistance in C2C12 myotubes, suggested that lipin-1 might play a role in the etiology of insulin resistance in skeletal muscle. The insulin resistance induced by lipin-1 downregulation was related to the disturbance of lipid homeostasis. Lipin-1 silencing reduced intracellular DAG and TAG levels, but elevated ceramide accumulation in C2C12 myotubes. Moreover, the impaired insulin stimulated Akt phosphorylation and glucose uptake caused by lipin-1 silencing could be blocked by the pretreatment with SPT inhibitor myriocin, ceramide synthase inhibitor FB1, or PP2A inhibitor okadaic acid, suggested that the increased ceramide accumulation might be responsible for the development of insulin resistance induced by lipin-1 silencing in C2C12 myotubes. Meanwhile, decreased lipin-1 expression also impaired mitochondrial function in C2C12 myotubes. Therefore, our study suggests that lipin-1 plays an important role in lipid metabolism and downregulation of lipin-1 induces insulin resistance by increasing intracellular ceramide accumulation in C2C12 myotubes. These results offer a molecular insight into the role of lipin-1 in the development of insulin resistance in skeletal muscle.

  14. Impaired Insulin Secretion and Enhanced Insulin Sensitivity in Cholecystokinin-Deficient Mice

    PubMed Central

    Lo, Chun-Min; Obici, Silvana; Dong, H. Henry; Haas, Michael; Lou, Dawnwen; Kim, Dae Hyun; Liu, Min; D’Alessio, David; Woods, Stephen C.; Tso, Patrick

    2011-01-01

    OBJECTIVE Cholecystokinin (CCK) is released in response to lipid intake and stimulates insulin secretion. We hypothesized that CCK deficiency would alter the regulation of insulin secretion and glucose homeostasis. RESEARCH DESIGN AND METHODS We used quantitative magnetic resonance imaging to determine body composition and studied plasma glucose and insulin secretion of CCK gene knockout (CCK-KO) mice and their wild-type controls using intraperitoneal glucose and arginine infusions. The area of anti-insulin staining in pancreatic islets was measured by immunohistochemistry. Insulin sensitivity was assessed with euglycemic-hyperinsulemic clamps. RESULTS CCK-KO mice fed a low-fat diet had a reduced acute insulin response to glucose but a normal response to arginine and normal glucose tolerance, associated with a trend toward greater insulin sensitivity. However, when fed a high-fat diet (HFD) for 10 weeks, CCK-KO mice developed glucose intolerance despite increased insulin sensitivity that was associated with low insulin secretion in response to both glucose and arginine. The deficiency of insulin secretion in CCK-KO mice was not associated with changes in β-cell or islet size. CONCLUSIONS CCK is involved in regulating insulin secretion and glucose tolerance in mice eating an HFD. The impaired insulin response to intraperitoneal stimuli that do not typically elicit CCK release suggests that this hormone has chronic effects on β-cell adaptation to diet in addition to acute incretin actions. PMID:21602512

  15. Diurnal Variation in Vascular and Metabolic Function in Diet-Induced Obesity

    PubMed Central

    Prasai, Madhu J.; Mughal, Romana S.; Wheatcroft, Stephen B.; Kearney, Mark T.; Grant, Peter J.; Scott, Eleanor M.

    2013-01-01

    Circadian rhythms are integral to the normal functioning of numerous physiological processes. Evidence from human and mouse studies suggests that loss of rhythm occurs in obesity and cardiovascular disease and may be a neglected contributor to pathophysiology. Obesity has been shown to impair the circadian clock mechanism in liver and adipose tissue but its effect on cardiovascular tissues is unknown. We investigated the effect of diet-induced obesity in C57BL6J mice upon rhythmic transcription of clock genes and diurnal variation in vascular and metabolic systems. In obesity, clock gene function and physiological rhythms were preserved in the vasculature but clock gene transcription in metabolic tissues and rhythms of glucose tolerance and insulin sensitivity were blunted. The most pronounced attenuation of clock rhythm occurred in adipose tissue, where there was also impairment of clock-controlled master metabolic genes and both AMPK mRNA and protein. Across tissues, clock gene disruption was associated with local inflammation but diverged from impairment of insulin signaling. We conclude that vascular tissues are less sensitive to pathological disruption of diurnal rhythms during obesity than metabolic tissues and suggest that cellular disruption of clock gene rhythmicity may occur by mechanisms shared with inflammation but distinct from those leading to insulin resistance. PMID:23382450

  16. Insulin sensitizers prevent fine particulate matter-induced vascular insulin resistance and changes in endothelial progenitor cell homeostasis.

    PubMed

    Haberzettl, Petra; McCracken, James P; Bhatnagar, Aruni; Conklin, Daniel J

    2016-06-01

    Exposure to fine particular matter (PM2.5) increases the risk of developing cardiovascular disease and Type 2 diabetes. Because blood vessels are sensitive targets of air pollutant exposure, we examined the effects of concentrated ambient PM2.5 (CAP) on vascular insulin sensitivity and circulating levels of endothelial progenitor cells (EPCs), which reflect cardiovascular health. We found that CAP exposure for 9 days decreased insulin-stimulated Akt phosphorylation in the aorta of mice maintained on control diet. This change was accompanied by the induction of IL-1β and increases in the abundance of cleaved IL-18 and p10 subunit of Casp-1, consistent with the activation of the inflammasome pathway. CAP exposure also suppressed circulating levels of EPCs (Flk-1(+)/Sca-1(+) cells), while enhancing the bone marrow abundance of these cells. Although similar changes in vascular insulin signaling and EPC levels were observed in mice fed high-fat diet, CAP exposure did not exacerbate diet-induced changes in vascular insulin resistance or EPC homeostasis. Treatment with an insulin sensitizer, metformin or rosiglitazone, prevented CAP-induced vascular insulin resistance and NF-κB and inflammasome activation and restored peripheral blood and bone marrow EPC levels. These findings suggest that PM2.5 exposure induces diet-independent vascular insulin resistance and inflammation and prevents EPC mobilization, and that this EPC mobilization defect could be mediated by vascular insulin resistance. Impaired vascular insulin sensitivity may be an important mechanism underlying PM2.5-induced vascular injury, and pharmacological sensitization to insulin action could potentially prevent deficits in vascular repair and mitigate vascular inflammation due to exposure to elevated levels of ambient air pollution. Copyright © 2016 the American Physiological Society.

  17. Insulin sensitivity is reduced in children with high body-fat regardless of BMI.

    PubMed

    Fairchild, Timothy J; Klakk, Heidi; Heidemann, Malene; Grøntved, Anders; Wedderkopp, Niels

    2018-02-23

    To examine the association between insulin sensitivity and adiposity in children stratified according to their body mass index (BMI: normal weight, NW; overweight or obese, OW/OB) and body-fat percentage (BF%: adipose or NonAdipose), and determine whether cardiorespiratory fitness (CRF) ameliorates any deleterious associations. This prospective cohort study comprises a cross-sectional and longitudinal analyses of data collected at baseline and 2 years later on children (7.7-13.4 years) attending public school in Denmark. Levels of CRF were measured using the Andersen test, whereas BF% was measured by dual-energy X-ray absorptiometry (DXA). Fasting plasma glucose and insulin concentrations were measured and the homoeostatic model assessment of insulin resistance (HOMA-IR) used to assess insulin sensitivity. Approximately 8% of children classified as normal weight by BMI had high BF% (NW + Adipose). Children with high BF% had significantly higher insulin (NW + adipose: 32.3%; OW/OB + Adipose: 52.2%) and HOMA-IR scores (NW + Adipose: 32.3%; OW/OB + Adipose: 55.3%) than children classified as NW without high BF% (reference group; NW + NonAdipose). Adjusting for CRF reduced this difference, but did not completely ameliorate these associations. Longitudinally, children with high BF% (OW/OB + Adipose or NW + Adipose) had significantly worse insulin sensitivity 2 years later than NW + NonAdipose children (All p < 0.001). The few children (n = 14) who improved their BMI or BF% during the 2 years follow-up, no longer had significantly worse insulin sensitivity than children with NW + NonAdipose. High BF% in children is associated with significantly lower insulin sensitivity even when BMI is considered NW. Longitudinally, insulin sensitivity is lower in children with high BF% with or without high BMI. The CRF was a significant covariate in these models, but CRF did not completely ameliorate the effects of high BF% on insulin sensitivity.

  18. Insulin sensitivity and metabolic flexibility following exercise training among different obese insulin-resistant phenotypes.

    PubMed

    Malin, Steven K; Haus, Jacob M; Solomon, Thomas P J; Blaszczak, Alecia; Kashyap, Sangeeta R; Kirwan, John P

    2013-11-15

    Impaired fasting glucose (IFG) blunts the reversal of impaired glucose tolerance (IGT) after exercise training. Metabolic inflexibility has been implicated in the etiology of insulin resistance; however, the efficacy of exercise on peripheral and hepatic insulin sensitivity or substrate utilization in adults with IFG, IGT, or IFG + IGT is unknown. Twenty-four older (66.7 ± 0.8 yr) obese (34.2 ± 0.9 kg/m(2)) adults were categorized as IFG (n = 8), IGT (n = 8), or IFG + IGT (n = 8) according to a 75-g oral glucose tolerance test (OGTT). Subjects underwent 12-wk of exercise (60 min/day for 5 days/wk at ∼85% HRmax) and were instructed to maintain a eucaloric diet. A euglycemic hyperinsulinemic clamp (40 mU·m(2)·min(-1)) with [6,6-(2)H]glucose was used to determine peripheral and hepatic insulin sensitivity. Nonoxidative glucose disposal and metabolic flexibility [insulin-stimulated respiratory quotient (RQ) minus fasting RQ] were also assessed. Glucose incremental area under the curve (iAUCOGTT) was calculated from the OGTT. Exercise increased clamp-derived peripheral and hepatic insulin sensitivity more in adults with IFG or IGT alone than with IFG + IGT (P < 0.05). Exercise reduced glucose iAUCOGTT in IGT only (P < 0.05), and the decrease in glucose iAUCOGTT was inversely correlated with the increase in peripheral but not hepatic insulin sensitivity (P < 0.01). Increased clamp-derived peripheral insulin sensitivity was also correlated with enhanced metabolic flexibility, reduced fasting RQ, and higher nonoxidative glucose disposal (P < 0.05). Adults with IFG + IGT had smaller gains in clamp-derived peripheral insulin sensitivity and metabolic flexibility, which was related to blunted improvements in postprandial glucose. Additional work is required to assess the molecular mechanism(s) by which chronic hyperglycemia modifies insulin sensitivity following exercise training.

  19. Insulin secretion and insulin resistance in Korean women with gestational diabetes mellitus and impaired glucose tolerance.

    PubMed

    Yang, Sae Jeong; Kim, Tae Nyun; Baik, Sei Hyun; Kim, Tae Sun; Lee, Kwan Woo; Nam, Moonsuk; Park, Yong Soo; Woo, Jeong-Teak; Kim, Young Seol; Kim, Sung-Hoon

    2013-05-01

    The aim was to compare the insulin sensitivity and secretion index of pregnant Korean women with normal glucose tolerance (NGT), gestational impaired glucose tolerance (GIGT; only one abnormal value according to the Carpenter and Coustan criteria), and gestational diabetes mellitus (GDM). A cross-sectional study was performed with 1,163 pregnant women with positive (1-hour plasma glucose ≥ 7.2 mmol/L) in a 50-g oral glucose challenge test (OGCT). The 100-g oral glucose tolerance test (OGTT) was used to stratify the participants into three groups: NGT (n = 588), GIGT (n = 294), and GDM (n = 281). The GDM group had higher homeostasis model assessment of insulin resistance and lower insulin sensitivity index (ISOGTT), quantitative insulin sensitivity check index, homeostasis model assessment for estimation of index β-cell secretion (HOMA-B), first and second phase insulin secretion, and insulin secretion-sensitivity index (ISSI) than the NGT group (p ≤ 0.001 for all). Moreover, the GIGT group had lower ISOGTT, HOMA-B, first and second phase insulin secretion, and ISSI than the NGT group (p < 0.001 for all). Among the GIGT subjects, the 1-hour plasma glucose abnormal levels group showed significantly greater weight gain during pregnancy and higher values in the 50-g OGCT than the other two groups. Moreover, the 1-hour and 2-hour abnormal levels groups had poorer insulin secretion status than the 3-hour abnormal levels group. Korean women with GDM show impairments of both insulin secretion and insulin sensitivity. In addition, GIGT is associated with both β-cell dysfunction and insulin resistance.

  20. The Effect of Regular Exercise on Insulin Sensitivity in Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis

    PubMed Central

    Hackett, Daniel A.; Baker, Michael K.

    2016-01-01

    The purpose of this study was to examine the effect of regular exercise training on insulin sensitivity in adults with type 2 diabetes mellitus (T2DM) using the pooled data available from randomised controlled trials. In addition, we sought to determine whether short-term periods of physical inactivity diminish the exercise-induced improvement in insulin sensitivity. Eligible trials included exercise interventions that involved ≥3 exercise sessions, and reported a dynamic measurement of insulin sensitivity. There was a significant pooled effect size (ES) for the effect of exercise on insulin sensitivity (ES, –0.588; 95% confidence interval [CI], –0.816 to –0.359; P<0.001). Of the 14 studies included for meta-analyses, nine studies reported the time of data collection from the last exercise bout. There was a significant improvement in insulin sensitivity in favour of exercise versus control between 48 and 72 hours after exercise (ES, –0.702; 95% CI, –1.392 to –0.012; P=0.046); and this persisted when insulin sensitivity was measured more than 72 hours after the last exercise session (ES, –0.890; 95% CI, –1.675 to –0.105; P=0.026). Regular exercise has a significant benefit on insulin sensitivity in adults with T2DM and this may persist beyond 72 hours after the last exercise session. PMID:27535644

  1. A Novel Membrane-Based Anti-Diabetic Action of Atorvastatin

    PubMed Central

    Horvath, Emily M.; Tackett, Lixuan; Elmendorf, Jeffrey S.

    2008-01-01

    We recently found that chromium picolinate (CrPic), a nutritional supplement thought to improve insulin sensitivity in individuals with impaired glucose tolerance, enhances insulin action by lowering plasma membrane (PM) cholesterol. Recent in vivo studies suggest that cholesterol-lowering statin drugs benefit insulin sensitivity in insulin-resistant patients, yet a mechanism is unknown. We report here that atorvastatin (ATV) diminished PM cholesterol by 22% (P<0.05) in 3T3-L1 adipocytes. As documented for CrPic, this small reduction in PM cholesterol enhanced insulin action. Replenishment of cholesterol mitigated the positive effects of ATV on insulin sensitivity. Co-treatment with CrPic and ATV did not amplify the extent of PM cholesterol loss or insulin sensitivity gain. In addition, analyses of insulin signal transduction suggest a non-signaling basis of both therapies. Our data reveal an unappreciated beneficial non-hepatic effect of statin action and highlight a novel mechanistic similarity between two recently recognized therapies of impaired glucose tolerance. PMID:18514061

  2. N-acetylcysteine Counteracts Adipose Tissue Macrophage Infiltration and Insulin Resistance Elicited by Advanced Glycated Albumin in Healthy Rats.

    PubMed

    da Silva, Karolline S; Pinto, Paula R; Fabre, Nelly T; Gomes, Diego J; Thieme, Karina; Okuda, Ligia S; Iborra, Rodrigo T; Freitas, Vanessa G; Shimizu, Maria H M; Teodoro, Walcy R; Marie, Suely K N; Woods, Tom; Brimble, Margaret A; Pickford, Russell; Rye, Kerry-Anne; Okamoto, Maristela; Catanozi, Sergio; Correa-Giannela, Maria L; Machado, Ubiratan F; Passarelli, Marisa

    2017-01-01

    Background: Advanced glycation endproducts elicit inflammation. However, their role in adipocyte macrophage infiltration and in the development of insulin resistance, especially in the absence of the deleterious biochemical pathways that coexist in diabetes mellitus, remains unknown. We investigated the effect of chronic administration of advanced glycated albumin (AGE-albumin) in healthy rats, associated or not with N-acetylcysteine (NAC) treatment, on insulin sensitivity, adipose tissue transcriptome and macrophage infiltration and polarization. Methods: Male Wistar rats were intraperitoneally injected with control (C) or AGE-albumin alone, or, together with NAC in the drinking water. Biochemical parameters, lipid peroxidation, gene expression and protein contents were, respectively, determined by enzymatic techniques, reactive thiobarbituric acid substances, RT-qPCR and immunohistochemistry or immunoblot. Carboxymethyllysine (CML) and pyrraline (PYR) were determined by LC/mass spectrometry (LC-MS/MS) and ELISA. Results: CML and PYR were higher in AGE-albumin as compared to C. Food consumption, body weight, systolic blood pressure, plasma lipids, glucose, hepatic and renal function, adipose tissue relative weight and adipocyte number were similar among groups. In AGE-treated animals, insulin resistance, adipose macrophage infiltration and Col12a1 mRNA were increased with no changes in M1 and M2 phenotypes as compared to C-albumin-treated rats. Total GLUT4 content was reduced by AGE-albumin as compared to C-albumin. NAC improved insulin sensitivity, reduced urine TBARS, adipose macrophage number and Itgam and Mrc mRNA and increased Slc2a4 and Ppara . CD11b, CD206, Ager, Ddost, Cd36, Nfkb1, Il6, Tnf , Adipoq, Retn, Arg, and Il12 expressions were similar among groups. Conclusions: AGE-albumin sensitizes adipose tissue to inflammation due to macrophage infiltration and reduces GLUT4, contributing to insulin resistance in healthy rats. NAC antagonizes AGE-albumin and prevents insulin resistance. Therefore, it may be a useful tool in the prevention of AGE action on insulin resistance and long-term complications of DM.

  3. Effects of dietary energy allowance and decline in dry matter intake during the dry period on responses to glucose and insulin in transition dairy cows.

    PubMed

    Salin, S; Vanhatalo, A; Elo, K; Taponen, J; Boston, R C; Kokkonen, T

    2017-07-01

    We assessed whether high energy intake during the early dry period [144% of metabolizable energy (ME) requirements/d] followed by a gradual restriction of energy intake in the close-up dry period (119% of ME/d; HEI) impaired whole-body insulin sensitivity compared with a controlled energy intake (100% of ME/d; CEI) throughout the 6-wk dry period. Multiparous Ayrshire dairy cows (n = 16) were blocked by body weight, body condition score, and expected date of parturition and were used in a randomized complete block design until 10 d after parturition. Cows were fed either HEI or CEI diets based on grass silage during the first 3 wk of the dry period and grass silage supplemented with a commercial concentrate (30% of ME intake) during the final 3 wk of gestation. After calving, all cows were fed grass silage ad libitum and an increasing amount of commercial concentrate (maximum 9 kg at d 10 postpartum). Intravenous glucose tolerance tests (IVGTT) and intravenous insulin challenges were performed -10 ± 5 d (n = 15) and +10 ± 1 d (n = 14) relative to parturition. Following glucose injection, we did not find any treatment effects on glucose and insulin responses. The prepartal nonesterified fatty acid (NEFA) response of the HEI group was blunted, basal NEFA and the decrement of NEFA were smaller, and the area under the response curve (AUC) of NEFA was less negative in HEI cows than in CEI cows. The NEFA response reversed after parturition; the NEFA AUC of the HEI group was more negative than that of the CEI group. We did not find similar responses after insulin injection. Across the treatments, NEFA AUC correlated strongly with the basal NEFA concentration during the IVGTT pre- and postpartum. Calculated and model-based indices characterizing the overall glucose tolerance and β-cell function and the insulin sensitivity were higher after parturition than during the dry period. Consistent with the lower basal insulin, the acute insulin release after the glucose infusion was smaller in postpartal IVGTT than in prepartal IVGTT. The results suggest that whole-body insulin sensitivity of the cows increased after parturition. However, the role of peripheral insulin sensitivity in the regulation of glucose partitioning seems to be minor relative to the major change in insulin secretion and clearance during the periparturient period. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  4. Effects of myo-inositol in women with PCOS: a systematic review of randomized controlled trials.

    PubMed

    Unfer, V; Carlomagno, G; Dante, G; Facchinetti, F

    2012-07-01

    Polycystic ovary syndrome (PCOS) affects 5%-10% of women in reproductive age, and it is the most common cause of infertility due to ovarian dysfunction and menstrual irregularity. Several studies have reported that insulin resistance is common in PCOS women, regardless of the body mass index. The importance of insulin resistance in PCOS is also suggested by the fact that insulin-sensitizing compounds have been proposed as putative treatments to solve the hyperinsulinemia-induced dysfunction of ovarian response to endogenous gonadotropins. Rescuing the ovarian response to endogenous gonadotropins reduces hyperandrogenemia and re-establishes menstrual cyclicity and ovulation, increasing the chance of a spontaneous pregnancy. Among the insulin-sensitizing compounds, there is myo-inosiol (MYO). Previous studies have demonstrated that MYO is capable of restoring spontaneous ovarian activity, and consequently fertility, in most patients with PCOS. With the present review, we aim to provide an overview on the clinical outcomes of the MYO use as a treatment to improve ovarian function and metabolic and hormonal parameters in women with PCOS.

  5. Interaction of growth hormone receptor/binding protein gene disruption and caloric restriction for insulin sensitivity and attenuated aging

    PubMed Central

    Arum, Oge; Saleh, Jamal; Boparai, Ravneet; Turner, Jeremy; Kopchick, John; Khardori, Romesh; Bartke, Andrzej

    2014-01-01

    The correlation of physiological sensitivity to insulin ( vis-à-vis glycemic regulation) and longevity is extensively established, creating a justifiable gerontological interest on whether insulin sensitivity is causative, or even predictive, of some or all phenotypes of slowed senescence (including longevity). The growth hormone receptor/ binding protein gene-disrupted (GHR-KO) mouse is the most extensively investigated insulin-sensitive, attenuated aging model. It was reported that, in a manner divergent from similar mutants, GHR-KO mice fail to respond to caloric restriction (CR) by altering their insulin sensitivity. We hypothesized that maximized insulin responsiveness is what causes GHR-KO mice to exhibit a suppressed survivorship response to dietary (including caloric) restriction; and attempted to refute this hypothesis by assessing the effects of CR on GHR-KO mice for varied slow-aging-associated phenotypes. In contrast to previous reports, we found GHR-KO mice on CR to be less responsive than their ad libitum (A.L.) counterparts to the hypoglycemia-inducing effects of insulin. Further, CR had negligible effects on the metabolism or cognition of GHR-KO mice. Therefore, our data suggest that the effects of CR on the insulin sensitivity of GHR-KO mice do not concur with the effects of CR on the aging of GHR-KO mice. PMID:25789159

  6. Beyond the morphology of the glucose curve following an oral glucose tolerance test in obese youth.

    PubMed

    Nolfe, Giuseppe; Spreghini, Maria Rita; Sforza, Rita Wietrzycowska; Morino, Giuseppe; Manco, Melania

    2012-01-01

    To describe the morphology of glucose curve during the oral glucose tolerance test (OGTT) and any association with glucose tolerance, insulin action and secretion in obese youth. Cross-sectional. OGTT data of 553 patients were analysed. Subjects were divided in groups based on the morphology (i.e. monophasic, biphasic, triphasic and upward monotonous) of glucose curve. Insulin action was estimated by the homeostasis model assessment of insulin resistance, the insulin sensitivity, the muscle insulin sensitivity and the hepatic insulin resistance indexes (HIRI), and the oral glucose insulin sensitivity (OGIS). Insulin secretion was estimated by the insulinogenic index (IGI). Disposition index, including the insulin secretion-sensitivity index-2, and areas under glucose (AUC(G)) and insulin (AUC(I)) curves were computed. In patients with normal glucose tolerance (n=522), prevalent morphology of the glucose curve was monophasic (n=285, 54%). Monophasic morphology was associated with the highest concentration of 1 h plasma glucose (P<0.0001) and AUC(G) (P<0.0001); biphasic morphology with better insulin sensitivity as estimated by OGIS (P<0.03) and lower AUC(I) (P<0.0001); triphasic morphology with the highest values of HIRI (P<0.02) and IGI (P<0.007). By combining morphologies of glucose and insulin curves or time of the glucose peak, a deeper characterisation of different phenotypes of glucose metabolism emerged. Morphologies of the glucose curve seem reflecting different metabolic phenotypes of insulin action and secretion, particularly when combined with morphologies of insulin curve or time of glucose peak. Such findings may deserve validation in cohort study, in which glucose metabolism would be estimated by using gold standard techniques.

  7. Deficiency of a beta-arrestin-2 signal complex contributes to insulin resistance.

    PubMed

    Luan, Bing; Zhao, Jian; Wu, Haiya; Duan, Baoyu; Shu, Guangwen; Wang, Xiaoying; Li, Dangsheng; Jia, Weiping; Kang, Jiuhong; Pei, Gang

    2009-02-26

    Insulin resistance, a hallmark of type 2 diabetes, is a defect of insulin in stimulating insulin receptor signalling, which has become one of the most serious public health threats. Upon stimulation by insulin, insulin receptor recruits and phosphorylates insulin receptor substrate proteins, leading to activation of the phosphatidylinositol-3-OH kinase (PI(3)K)-Akt pathway. Activated Akt phosphorylates downstream kinases and transcription factors, thus mediating most of the metabolic actions of insulin. Beta-arrestins mediate biological functions of G-protein-coupled receptors by linking activated receptors with distinct sets of accessory and effecter proteins, thereby determining the specificity, efficiency and capacity of signals. Here we show that in diabetic mouse models, beta-arrestin-2 is severely downregulated. Knockdown of beta-arrestin-2 exacerbates insulin resistance, whereas administration of beta-arrestin-2 restores insulin sensitivity in mice. Further investigation reveals that insulin stimulates the formation of a new beta-arrestin-2 signal complex, in which beta-arrestin-2 scaffolds Akt and Src to insulin receptor. Loss or dysfunction of beta-arrestin-2 results in deficiency of this signal complex and disturbance of insulin signalling in vivo, thereby contributing to the development of insulin resistance and progression of type 2 diabetes. Our findings provide new insight into the molecular pathogenesis of insulin resistance, and implicate new preventive and therapeutic strategies against insulin resistance and type 2 diabetes.

  8. Shorter sleep duration is associated with decreased insulin sensitivity in healthy white men.

    PubMed

    Wong, Patricia M; Manuck, Stephen B; DiNardo, Monica M; Korytkowski, Mary; Muldoon, Matthew F

    2015-02-01

    Short sleep has been linked to increased risk for type 2 diabetes and incident cardiovascular disease and acute sleep restriction impairs insulin-mediated glucose disposal. Here, we examined whether indices of glucose metabolism vary with naturally occurring differences in sleep duration. Subjects were midlife, nondiabetic community volunteers (N = 224; mean age 44.5 ± 6.6 y [range: 30-54]; 52% female; 89% white). Laboratory measures of insulin sensitivity (Si) and acute secretion (AIRg), glucose effectiveness (Sg), and disposition index (Di) were obtained from a 180-min, intravenous glucose tolerance test. Shorter self-reported sleep duration (in hours) was associated with lower Si (P = 0.043), although an interaction of sleep duration with participant race (β = -0.81, P = 0.002) showed this association significant only in whites. Moreover, sex-stratified analyses revealed that shorter sleep duration predicted lower Si in white men (β = 0.29, P = 0.003) but not in white women (P = 0.22). Findings were similar for AIRg. The relationship between sleep duration and AIRg was moderated by race as well as sex, such that shorter sleep duration associated with greater insulin release only in white men (β = -0.28, P = 0.004). Sleep duration was unrelated to Sg and Di (P's > 0.05). Our findings suggest that shorter sleep duration may impair insulin sensitivity and beta-cell function in nondiabetic white men, possibly contributing to later type 2 diabetes and cardiovascular disease. © 2015 Associated Professional Sleep Societies, LLC.

  9. Effect of vitamin D supplementation on oral glucose tolerance in individuals with low vitamin D status and increased risk for developing type 2 diabetes (EVIDENCE): A double-blind, randomized, placebo-controlled clinical trial.

    PubMed

    Moreira-Lucas, Tracy S; Duncan, Alison M; Rabasa-Lhoret, Rémi; Vieth, Reinhold; Gibbs, Alison L; Badawi, Alaa; Wolever, Thomas M S

    2017-01-01

    Low serum 25-hydroxyvitamin-D (25(OH)D) concentrations are associated with insulin resistance, β-cell dysfunction and type 2 diabetes. We conducted a 24-week double-blind, randomized, placebo-controlled trial to examine the effect of 28 000 IU of vitamin D 3 once weekly on plasma glucose after a 2 hour-75 g oral glucose tolerance test (2hrPC glucose), insulin sensitivity and β-cell function. A total of 71 participants with serum 25(OH)D ≤65 nmol/L, impaired fasting glucose and elevated glycated hemoglobin were randomly assigned to receive 28 000 IU of vitamin D 3 (VitD; n = 35) or placebo (n = 36) in cheese once weekly for 24 weeks. The primary outcome was the change in 2hPC glucose. Secondary outcomes were fasting glucose, fasting and postprandial insulin, indices of insulin sensitivity and β-cell function, glycated hemoglobin and lipid profile. Participants underwent an oral glucose tolerance test to determine 2hPC glucose. Mean baseline serum 25(OH)D was 48.1 and 47.6 nmol/L in the VitD and placebo groups, respectively. Serum 25(OH)D significantly increased to 98.7 nmol/L (51 nmol/L increase; P < .0001) in the VitD group. No significant differences in fasting ( P = .42) or 2hPC glucose ( P = .55) or other indices of glucose metabolism, including β-cell function and insulin sensitivity, were observed between groups. A subgroup analysis of individuals with 25(OH)D < 50 nmol/L and prediabetes did not change these results. The VitD group exhibited a significant reduction in LDL cholesterol (-0.27 vs 0.01 mmol/L, P = .03). Weekly doses of vitamin D 3 in individuals with suboptimal vitamin D levels who were at risk for type 2 diabetes did not improve oral glucose tolerance or markers of glycaemic status. © 2016 John Wiley & Sons Ltd.

  10. Insulin resistance in dairy cows.

    PubMed

    De Koster, Jenne D; Opsomer, Geert

    2013-07-01

    Glucose is the molecule that drives milk production, and insulin plays a pivotal role in the glucose metabolism of dairy cows. The effect of insulin on the glucose metabolism is regulated by the secretion of insulin by the pancreas and the insulin sensitivity of the skeletal muscles, the adipose tissue, and the liver. Insulin resistance may develop as part of physiologic (pregnancy and lactation) and pathologic processes, which may manifest as decreased insulin sensitivity or decreased insulin responsiveness. A good knowledge of the normal physiology of insulin is needed to measure the in vivo insulin resistance of dairy cows. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. International Congress for the Assessment of Stress Intensity and Stress Compatibility in Large Groups. Held in Bad Radkersburg, Austria on November 25-27, 1999

    DTIC Science & Technology

    1999-11-01

    comparison between their products , whereby increased stress upon the diagnostical value of magnesium dynamics could be helpful. Such an agreement would...as sudden cardiac death when magnesium (Mg) deficiency exists. The stress hormones mediate release and utilization of substrates for production of...would be increased [28]. Since insulin sensitivity relates to mi- crovascular function, the presence of insulin resistance during space flights

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou Jun; Huang Kaixun, E-mail: hxxzrf@mail.hust.edu.c

    Accumulating evidence suggests that peroxynitrite (ONOO{sup -}) is involved in the pathogenesis of insulin resistance. In the current study, we investigated whether insulin resistance in vivo could be mediated by nitration of proteins involved in the early steps of the insulin signal transduction pathway. Exogenous peroxynitrite donated by 3-morpholinosydnonimine hydrochloride (SIN-1) induced in vivo nitration of the insulin receptor beta subunit (IRbeta), insulin receptor substrate (IRS)-1, and protein kinase B/Akt (Akt) in skeletal muscle of mice and dramatically reduced whole-body insulin sensitivity and muscle insulin signaling. Moreover, in high-fat diet (HFD)-fed insulin-resistant mice, we observed enhanced nitration of IRbeta andmore » IRS-1 in skeletal muscle, in parallel with impaired whole-body insulin sensitivity and muscle insulin signaling. Reversal of nitration of these proteins by treatment with the peroxynitrite decomposition catalyst FeTPPS yielded an improvement in whole-body insulin sensitivity and muscle insulin signaling in HFD-fed mice. Taken together, these findings provide new mechanistic insights for the involvement of peroxynitrite in the development of insulin resistance and suggest that nitration of proteins involved in the early steps of insulin signal transduction is a novel molecular mechanism of HFD-induced muscle insulin resistance.« less

  13. Methods for quantifying adipose tissue insulin resistance in overweight/obese humans.

    PubMed

    Ter Horst, K W; van Galen, K A; Gilijamse, P W; Hartstra, A V; de Groot, P F; van der Valk, F M; Ackermans, M T; Nieuwdorp, M; Romijn, J A; Serlie, M J

    2017-08-01

    Insulin resistance of adipose tissue is an important feature of obesity-related metabolic disease. However, assessment of lipolysis in humans requires labor-intensive and expensive methods, and there is limited validation of simplified measurement methods. We aimed to validate simplified methods for the quantification of adipose tissue insulin resistance against the assessment of insulin sensitivity of lipolysis suppression during hyperinsulinemic-euglycemic clamp studies. We assessed the insulin-mediated suppression of lipolysis by tracer-dilution of [1,1,2,3,3- 2 H 5 ]glycerol during hyperinsulinemic-euglycemic clamp studies in 125 overweight or obese adults (85 men, 40 women; age 50±11 years; body mass index 38±7 kg m -2 ). Seven indices of adipose tissue insulin resistance were validated against the reference measurement method. Low-dose insulin infusion resulted in suppression of the glycerol rate of appearance ranging from 4% (most resistant) to 85% (most sensitive), indicating a good range of adipose tissue insulin sensitivity in the study population. The reference method correlated with (1) insulin-mediated suppression of plasma glycerol concentrations (r=0.960, P<0.001), (2) suppression of plasma non-esterified fatty acid (NEFA) concentrations (r=0.899, P<0.001), (3) the Adipose tissue Insulin Resistance (Adipo-IR) index (fasting plasma insulin-NEFA product; r=-0.526, P<0.001), (4) the fasting plasma insulin-glycerol product (r=-0.467, P<0.001), (5) the Adipose Tissue Insulin Resistance Index (fasting plasma insulin-basal lipolysis product; r=0.460, P<0.001), (6) the Quantitative Insulin Sensitivity Check Index (QUICKI)-NEFA index (r=0.621, P<0.001), and (7) the QUICKI-glycerol index (r=0.671, P<0.001). Bland-Altman plots showed no systematic errors for the suppression indices but proportional errors for all fasting indices. Receiver-operator characteristic curves confirmed that all indices were able to detect adipose tissue insulin resistance (area under the curve ⩾0.801, P<0.001). Adipose tissue insulin sensitivity (that is, the antilipolytic action of insulin) can be reliably quantified in overweight and obese humans by simplified index methods. The sensitivity and specificity of the Adipo-IR index and the fasting plasma insulin-glycerol product, combined with their simplicity and acceptable agreement, suggest that these may be most useful in clinical practice.

  14. Ethnic differences in beta-cell function, dietary intake and expression of the metabolic syndrome among UK adults of South Asian, black African-Caribbean and white-European origin at high risk of metabolic syndrome.

    PubMed

    Goff, Louise M; Griffin, Bruce A; Lovegrove, Julie A; Sanders, Tom A; Jebb, Susan A; Bluck, Les J; Frost, Gary S

    2013-07-01

    A cross-sectional analysis of ethnic differences in dietary intake, insulin sensitivity and beta-cell function, using the intravenous glucose tolerance test (IVGTT), was conducted on 497 healthy adult participants of the 'Reading, Imperial, Surrey, Cambridge, and Kings' (RISCK) study. Insulin sensitivity (Si) was significantly lower in African-Caribbean (AC) and South Asian (SA) participants [IVGTT-Si; AC: 2.13 vs SA: 2.25 vs white-European (WE): 2.84 (×10(-4) mL µU min)(2), p < 0.001]. AC participants had a higher prevalence of anti-hypertensive therapy (AC: 19.7% vs SA: 7.5%), the most cardioprotective lipid profile [total:high-density lipoprotein (HDL); AC: 3.52 vs SA: 4.08 vs WE: 3.83, p = 0.03] and more pronounced hyperinsulinaemia [IVGTT-acute insulin response (AIR)] [AC: 575 vs SA: 428 vs WE: 344 mL/µU/min)(2), p = 0.002], specifically in female participants. Intake of saturated fat and carbohydrate was lower and higher in AC (10.9% and 50.4%) and SA (11.1% and 52.3%), respectively, compared to WE (13.6% and 43.8%, p < 0.001). Insulin resistance in ACs is characterised by 'normal' lipid profiles but high rates of hypertension and pronounced hyperinsulinaemia.

  15. Use of dark chocolate for diabetic patients: a review of the literature and current evidence

    PubMed Central

    Shah, Syed Raza; Alweis, Richard; Najim, Najla Issa; Dharani, Amin Muhammad; Jangda, Muhammad Ahmed; Shahid, Maira; Kazi, Ahmed Nabeel; Shah, Syed Arbab

    2017-01-01

    ABSTRACT Dietary changes are a major lifestyle factor that can influence the progression of chronic diseases such as diabetes. Recently, flavanols, a subgroup of plant-derived phytochemicals called flavonoids, have gained increasing attention, due to studies showing an inverse correlation between dietary intake of flavanols and incidence of diabetes. Flavanoids in the cocoa plant may ameliorate insulin resistance by improving endothelial function, altering glucose metabolism, and reducing oxidative stress. Oxidative stress has been proposed as the main culprit for insulin resistance. The well-established effects of cocoa on endothelial function also points to a possible effect on insulin sensitivity. The relationship between insulin resistance and endothelial function is a reciprocal one. Overall, the evidence from these studies suggests that cocoa may be useful in slowing the progression to type 2 diabetes and ameliorating insulin resistance in metabolic syndrome. Additionally, results from several small studies indicate that cocoa may also have therapeutic potential in preventing cardiovascular complications in diabetic patients. Studies highlighting the potential of cocoa-containing diets, in large-randomized controlled trials should be performed which might give us a better opportunity to analyze the potential health-care benefit for reducing the risk of complications in diabetic patients at molecular level. PMID:29181133

  16. Evaluation of beta-cell sensitivity to glucose and first-phase insulin secretion in obese dogs.

    PubMed

    Verkest, Kurt R; Fleeman, Linda M; Rand, Jacquie S; Morton, John M

    2011-03-01

    To compare beta-cell sensitivity to glucose, first-phase insulin secretion, and glucose tolerance between dogs with naturally occurring obesity of > 2 years' duration and lean dogs. 17 client-owned obese or lean dogs. Frequently sampled IV glucose tolerance tests were performed with minimal model analysis on 6 obese dogs and matched controls. Glucagon stimulation tests were performed on 5 obese dogs and matched controls. Obese dogs were half as sensitive to the effects of insulin as lean dogs. Plasma glucose concentrations after food withholding did not differ significantly between groups; plasma insulin concentrations were 3 to 4 times as great in obese as in lean dogs. Obese dogs had plasma insulin concentrations twice those of lean dogs after administration of glucose and 4 times as great after administration of glucagon. First-phase insulin secretion was greater in obese dogs. Obese dogs compensated for obesity-induced insulin resistance by secreting more insulin. First-phase insulin secretion and beta-cell glucose sensitivity were not lost despite years of obesity-induced insulin resistance and compensatory hyperinsulinemia. These findings help explain why dogs, unlike cats and humans, have not been documented to develop type 2 diabetes mellitus.

  17. Skeletal muscle phosphatidylcholine fatty acids and insulin sensitivity in normal humans.

    PubMed

    Clore, J N; Li, J; Gill, R; Gupta, S; Spencer, R; Azzam, A; Zuelzer, W; Rizzo, W B; Blackard, W G

    1998-10-01

    The fatty acid composition of skeletal muscle membrane phospholipids (PL) is known to influence insulin responsiveness in humans. However, the contribution of the major PL of the outer (phosphatidylcholine, PC) and inner (phosphatidylethanolamine, PE) layers of the sarcolemma to insulin sensitivity is not known. Fatty acid composition of PC and PE from biopsies of vastus lateralis from 27 normal men and women were correlated with insulin sensitivity determined by the hyperinsulinemic euglycemic clamp technique at insulin infusion rates of 0.4, 1.0, and 10.0 mU . kg-1 . min-1. Significant variation in the half-maximal insulin concentration (ED50) was observed in the normal volunteers (range 24.0-146.0 microU/ml), which correlated directly with fasting plasma insulin (r = 0.75, P < 0.0001). ED50 was inversely correlated with the degree of membrane unsaturation (C20-C22 polyunsaturated fatty acids; r = 0. 58, P < 0.01) and directly correlated with fatty acid elongation (ratio of 16:0 to 18:0, r = 0.45, P < 0.05) in PC. However, no relationship between fatty acid composition and insulin sensitivity was observed in PE (NS). These studies suggest that the fatty acid composition of PC may be of particular importance in the relationship between fatty acids and insulin sensitivity in normal humans.

  18. The effect of Chinese Jinzhida recipe on the hippocampus in a rat model of diabetes-associated cognitive decline

    PubMed Central

    2013-01-01

    Background To investigate the effects of treatment with Multi component Chinese Medicine Jinzhida (JZD) on behavioral deficits in diabetes-associated cognitive decline (DACD) rats and verify our hypothesis that JZD treatment improves cognitive function by suppressing the endoplasmic reticulum stress (ERS) and improving insulin signaling transduction in the rats’ hippocampus. Methods A rat model of type 2 diabetes mellitus (T2DM) was established using high fat diet and streptozotocin (30 mg/kg, ip). Insulin sensitivity was evaluated by the oral glucose tolerance test and the insulin tolerance test. After 7 weeks, the T2DM rats were treated with JZD. The step-down test and Morris water maze were used to evaluate behavior in T2DM rats after 5 weeks of treatment with JZD. Levels of phosphorylated proteins involved in the ERS and in insulin signaling transduction pathways were assessed by Western blot for T2DM rats’ hippocampus. Results Compared to healthy control rats, T2DM rats initially showed insulin resistance and had declines in acquisition and retrieval processes in the step-down test and in spatial memory in the Morris water maze after 12 weeks. Performance on both the step-down test and Morris water maze tasks improved after JZD treatment. In T2DM rats, the ERS was activated, and then inhibited the insulin signal transduction pathways through the Jun NH2-terminal kinases (JNK) mediated. JZD treatment suppressed the ERS, increased insulin signal transduction, and improved insulin resistance in the rats’ hippocampus. Conclusions Treatment with JZD improved cognitive function in the T2DM rat model. The possible mechanism for DACD was related with ERS inducing the insulin signal transduction dysfunction in T2DM rats’ hippocampus. The JZD could reduce ERS and improve insulin signal transduction and insulin resistance in T2DM rats’ hippocampus and as a result improved the cognitive function. PMID:23829668

  19. A common variant upstream of the PAX6 gene influences islet function in man.

    PubMed

    Ahlqvist, E; Turrini, F; Lang, S T; Taneera, J; Zhou, Y; Almgren, P; Hansson, O; Isomaa, B; Tuomi, T; Eriksson, K; Eriksson, J G; Lyssenko, V; Groop, L

    2012-01-01

    Impaired glucose tolerance and impaired insulin secretion have been reported in families with PAX6 mutations and it is suggested that they result from defective proinsulin processing due to lack of prohormone convertase 1/3, encoded by PCSK1. We investigated whether a common PAX6 variant would mimic these findings and explored in detail its effect on islet function in man. A PAX6 candidate single nucleotide polymorphism (rs685428) was associated with fasting insulin levels in the Diabetes Genetics Initiative genome-wide association study. We explored its potential association with glucose tolerance and insulin processing and secretion in three Scandinavian cohorts (N = 8,897 individuals). In addition, insulin secretion and the expression of PAX6 and transcriptional target genes were studied in human pancreatic islets. rs685428 G allele carriers had lower islet mRNA expression of PAX6 (p = 0.01) and PCSK1 (p = 0.001) than AA homozygotes. The G allele was associated with increased fasting insulin (p (replication) = 0.02, p (all) = 0.0008) and HOMA-insulin resistance (p (replication) = 0.02, p (all) = 0.001) as well as a lower fasting proinsulin/insulin ratio (p (all) = 0.008) and lower fasting glucagon (p = 0.04) and gastric inhibitory peptide (GIP) (p = 0.05) concentrations. Arginine-stimulated (p = 0.02) insulin secretion was reduced in vivo, which was further reflected by a reduction of glucose- and potassium-stimulated insulin secretion (p = 0.002 and p = 0.04, respectively) in human islets in vitro. A common variant in PAX6 is associated with reduced PAX6 and PCSK1 expression in human islets and reduced insulin response, as well as decreased glucagon and GIP concentrations and decreased insulin sensitivity. These findings emphasise the central role of PAX6 in the regulation of islet function and glucose metabolism in man.

  20. Active and passive exposure to tobacco smoke in relation to insulin sensitivity and pancreatic β-cell function in Japanese subjects.

    PubMed

    Oba, S; Suzuki, E; Yamamoto, M; Horikawa, Y; Nagata, C; Takeda, J

    2015-04-01

    Several studies have suggested that cigarette-smoking affects insulin sensitivity in Western populations. The present study evaluated glucose tolerance, pancreatic β-cell function and insulin sensitivity in relation to active and passive smoking among the Japanese. A total of 411 men and 586 women were recruited into a community-based cross-sectional study in Gifu, Japan. Diabetes, impaired glucose tolerance (IGT) and impaired fasting glucose (IFG) were screened for by a 75g oral glucose tolerance test. HOMA and insulinogenic (ΔI0-30/ΔG0-30) indexes were used to estimate insulin secretion and sensitivity. To assess the possible association of self-reported smoking status and parameters of glucose metabolism, logistic regression was applied after adjusting for potential confounders. Currently smoking women were more likely to have diabetes, IGT or IFG compared with never-smoking women (OR: 2.26, 95% CI: 1.05-4.84). Heavy-smoking men (≥25 cigarettes/day) were likely to be in the lowest tertile group of ΔI0-30/ΔG0-30 compared with never-smoking men (OR: 2.64, 95% CI: 1.05-6.68, Ptrend=0.04). The number of cigarettes/day was borderline significantly associated with diabetes in men. Also with borderline significance, never-smoking women with smoking husbands were more likely to have diabetes, IGT or IFG (OR: 1.62, 95% CI: 1.00-2.62) and significantly more likely to have lower HOMA-β (OR: 2.17, 95% CI: 1.36-3.48) than those without smoking husbands. The greater the number of cigarettes smoked per day appears to be associated with diabetes among men whereas, among women, both active and passive smoking appear to be associated with diabetic states, including IGT and IFG. An association between smoking status and insulin secretion is also suggested, whereas no significant association was observed with HOMA-IR in this Japanese subjects, suggesting that the influence of smoking on glucose metabolism may differ among races. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  1. AgRP Neurons Control Systemic Insulin Sensitivity via Myostatin Expression in Brown Adipose Tissue.

    PubMed

    Steculorum, Sophie M; Ruud, Johan; Karakasilioti, Ismene; Backes, Heiko; Engström Ruud, Linda; Timper, Katharina; Hess, Martin E; Tsaousidou, Eva; Mauer, Jan; Vogt, Merly C; Paeger, Lars; Bremser, Stephan; Klein, Andreas C; Morgan, Donald A; Frommolt, Peter; Brinkkötter, Paul T; Hammerschmidt, Philipp; Benzing, Thomas; Rahmouni, Kamal; Wunderlich, F Thomas; Kloppenburg, Peter; Brüning, Jens C

    2016-03-24

    Activation of Agouti-related peptide (AgRP) neurons potently promotes feeding, and chronically altering their activity also affects peripheral glucose homeostasis. We demonstrate that acute activation of AgRP neurons causes insulin resistance through impairment of insulin-stimulated glucose uptake into brown adipose tissue (BAT). AgRP neuron activation acutely reprograms gene expression in BAT toward a myogenic signature, including increased expression of myostatin. Interference with myostatin activity improves insulin sensitivity that was impaired by AgRP neurons activation. Optogenetic circuitry mapping reveals that feeding and insulin sensitivity are controlled by both distinct and overlapping projections. Stimulation of AgRP → LHA projections impairs insulin sensitivity and promotes feeding while activation of AgRP → anterior bed nucleus of the stria terminalis (aBNST)vl projections, distinct from AgRP → aBNSTdm projections controlling feeding, mediate the effect of AgRP neuron activation on BAT-myostatin expression and insulin sensitivity. Collectively, our results suggest that AgRP neurons in mice induce not only eating, but also insulin resistance by stimulating expression of muscle-related genes in BAT, revealing a mechanism by which these neurons rapidly coordinate hunger states with glucose homeostasis. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Chronic subordination stress selectively downregulates the insulin signaling pathway in liver and skeletal muscle but not in adipose tissue of male mice

    PubMed Central

    Sanghez, Valentina; Cubuk, Cankut; Sebastián-Leon, Patricia; Carobbio, Stefania; Dopazo, Joaquin; Vidal-Puig, Antonio; Bartolomucci, Alessandro

    2016-01-01

    Abstract Chronic stress has been associated with obesity, glucose intolerance, and insulin resistance. We developed a model of chronic psychosocial stress (CPS) in which subordinate mice are vulnerable to obesity and the metabolic-like syndrome while dominant mice exhibit a healthy metabolic phenotype. Here we tested the hypothesis that the metabolic difference between subordinate and dominant mice is associated with changes in functional pathways relevant for insulin sensitivity, glucose and lipid homeostasis. Male mice were exposed to CPS for four weeks and fed either a standard diet or a high-fat diet (HFD). We first measured, by real-time PCR candidate genes, in the liver, skeletal muscle, and the perigonadal white adipose tissue (pWAT). Subsequently, we used a probabilistic analysis approach to analyze different ways in which signals can be transmitted across the pathways in each tissue. Results showed that subordinate mice displayed a drastic downregulation of the insulin pathway in liver and muscle, indicative of insulin resistance, already on standard diet. Conversely, pWAT showed molecular changes suggestive of facilitated fat deposition in an otherwise insulin-sensitive tissue. The molecular changes in subordinate mice fed a standard diet were greater compared to HFD-fed controls. Finally, dominant mice maintained a substantially normal metabolic and molecular phenotype even when fed a HFD. Overall, our data demonstrate that subordination stress is a potent stimulus for the downregulation of the insulin signaling pathway in liver and muscle and a major risk factor for the development of obesity, insulin resistance, and type 2 diabetes mellitus. PMID:26946982

  3. Neural correlates of stress- and food cue-induced food craving in obesity: association with insulin levels.

    PubMed

    Jastreboff, Ania M; Sinha, Rajita; Lacadie, Cheryl; Small, Dana M; Sherwin, Robert S; Potenza, Marc N

    2013-02-01

    Obesity is associated with alterations in corticolimbic-striatal brain regions involved in food motivation and reward. Stress and the presence of food cues may each motivate eating and engage corticolimibic-striatal neurocircuitry. It is unknown how these factors interact to influence brain responses and whether these interactions are influenced by obesity, insulin levels, and insulin sensitivity. We hypothesized that obese individuals would show greater responses in corticolimbic-striatal neurocircuitry after exposure to stress and food cues and that brain activations would correlate with subjective food craving, insulin levels, and HOMA-IR. Fasting insulin levels were assessed in obese and lean subjects who were exposed to individualized stress and favorite-food cues during functional MRI. Obese, but not lean, individuals exhibited increased activation in striatal, insular, and hypothalamic regions during exposure to favorite-food and stress cues. In obese but not lean individuals, food craving, insulin, and HOMA-IR levels correlated positively with neural activity in corticolimbic-striatal brain regions during favorite-food and stress cues. The relationship between insulin resistance and food craving in obese individuals was mediated by activity in motivation-reward regions including the striatum, insula, and thalamus. These findings demonstrate that obese, but not lean, individuals exhibit increased corticolimbic-striatal activation in response to favorite-food and stress cues and that these brain responses mediate the relationship between HOMA-IR and food craving. Improving insulin sensitivity and in turn reducing corticolimbic-striatal reactivity to food cues and stress may diminish food craving and affect eating behavior in obesity.

  4. Statin Intake Is Associated With Decreased Insulin Sensitivity During Cardiac Surgery

    PubMed Central

    Sato, Hiroaki; Carvalho, George; Sato, Tamaki; Hatzakorzian, Roupen; Lattermann, Ralph; Codere-Maruyama, Takumi; Matsukawa, Takashi; Schricker, Thomas

    2012-01-01

    OBJECTIVE Surgical trauma impairs intraoperative insulin sensitivity and is associated with postoperative adverse events. Recently, preprocedural statin therapy is recommended for patients with coronary artery disease. However, statin therapy is reported to increase insulin resistance and the risk of new-onset diabetes. Thus, we investigated the association between preoperative statin therapy and intraoperative insulin sensitivity in nondiabetic, dyslipidemic patients undergoing coronary artery bypass grafting. RESEARCH DESIGN AND METHODS In this prospective, nonrandomized trial, patients taking lipophilic statins were assigned to the statin group and hypercholesterolemic patients not receiving any statins were allocated to the control group. Insulin sensitivity was assessed by the hyperinsulinemic-normoglycemic clamp technique during surgery. The mean, SD of blood glucose, and the coefficient of variation (CV) after surgery were calculated for each patient. The association between statin use and intraoperative insulin sensitivity was tested by multiple regression analysis. RESULTS We studied 120 patients. In both groups, insulin sensitivity gradually decreased during surgery with values being on average ∼20% lower in the statin than in the control group. In the statin group, the mean blood glucose in the intensive care unit was higher than in the control group (153 ± 20 vs. 140 ± 20 mg/dL; P < 0.001). The oscillation of blood glucose was larger in the statin group (SD, P < 0.001; CV, P = 0.001). Multiple regression analysis showed that statin use was independently associated with intraoperative insulin sensitivity (β = −0.16; P = 0.03). CONCLUSIONS Preoperative use of lipophilic statins is associated with increased insulin resistance during cardiac surgery in nondiabetic, dyslipidemic patients. PMID:22829524

  5. Selective Insulin Resistance in the Kidney

    PubMed Central

    Horita, Shoko; Nakamura, Motonobu; Suzuki, Masashi; Satoh, Nobuhiko; Suzuki, Atsushi; Seki, George

    2016-01-01

    Insulin resistance has been characterized as attenuation of insulin sensitivity at target organs and tissues, such as muscle and fat tissues and the liver. The insulin signaling cascade is divided into major pathways such as the PI3K/Akt pathway and the MAPK/MEK pathway. In insulin resistance, however, these pathways are not equally impaired. For example, in the liver, inhibition of gluconeogenesis by the insulin receptor substrate (IRS) 2 pathway is impaired, while lipogenesis by the IRS1 pathway is preserved, thus causing hyperglycemia and hyperlipidemia. It has been recently suggested that selective impairment of insulin signaling cascades in insulin resistance also occurs in the kidney. In the renal proximal tubule, insulin signaling via IRS1 is inhibited, while insulin signaling via IRS2 is preserved. Insulin signaling via IRS2 continues to stimulate sodium reabsorption in the proximal tubule and causes sodium retention, edema, and hypertension. IRS1 signaling deficiency in the proximal tubule may impair IRS1-mediated inhibition of gluconeogenesis, which could induce hyperglycemia by preserving glucose production. In the glomerulus, the impairment of IRS1 signaling deteriorates the structure and function of podocyte and endothelial cells, possibly causing diabetic nephropathy. This paper mainly describes selective insulin resistance in the kidney, focusing on the proximal tubule. PMID:27247938

  6. Assessment of insulin sensitivity/resistance and their relations with leptin concentrations and anthropometric measures in a pregnant population with and without gestational diabetes mellitus.

    PubMed

    Yilmaz, Ozgur; Kucuk, Mert; Ilgin, Aydin; Dagdelen, Muride

    2010-01-01

    Fifty-six pregnant women with gestational diabetes mellitus (GDM) and 42 normal glucose tolerant (NGT) pregnant women between 26 and 36 gestational weeks were included in the study prospectively. The body fat percentage (BFP) was calculated using the Siri formula from skinfold thickness (SFT) measurements. Both groups were comparable for gestational age, height, weight, and body mass index (P>.05). Insulin resistance assessed by homeostasis model assessment for insulin resistance (HOMA-IR) method was significantly higher in GDM patients compared to their NGT weight-matched control group. In contrast, the insulin sensitivity calculated from quantitative insulin sensitivity check index (QUICKI-IS) equation was significantly lower in GDM group. Calculated lean body mass was found to be similar in between both groups. Body fat percentage derived from SFT parameters was significantly higher in women with GDM. Women with GDM had significantly higher levels of serum insulin and leptin concentrations when compared with the NGT group. All SFT measurements were higher in GDM group when compared to those in NGT women. We did not find any correlation between leptin levels and insulin resistance; we found negative correlation between leptin levels and insulin sensitivity. Thus, we observed that leptin may contribute development of GDM by decreasing insulin sensitivity but not increasing insulin resistance. Also, we observed that the BFP estimated by the Siri formula from SFT measurements correlated significantly with HOMA-IR and QUICKI-IS and leptin concentrations in pregnant women. We suggest that by simply evaluating SFT, we may hold a view about BFP and leptin concentrations and insulin sensitivity in pregnant women.

  7. Chromium effects on glucose tolerance and insulin sensitivity in persons at risk for diabetes mellitus.

    PubMed

    Ali, Ather; Ma, Yingying; Reynolds, Jesse; Wise, John Pierce; Inzucchi, Silvio E; Katz, David L

    2011-01-01

    To investigate the effects of daily chromium picolinate supplementation on serum measures of glucose tolerance and insulin sensitivity in patients at high risk for type 2 diabetes mellitus. We conducted a randomized, double-blind, placebo-controlled, modified cross-over clinical trial with 6-month sequences of intervention and placebo followed by a 6-month postintervention assessment. Adult patients with impaired fasting glucose, impaired glucose tolerance, or metabolic syndrome were enrolled. Participants received 6-month sequences of chromium picolinate or placebo at 1 of 2 dosages (500 or 1000 mcg daily). Primary outcome measures were change in fasting plasma glucose, 2-hour plasma glucose during oral glucose tolerance testing, fasting and 2-hour insulin, and homeostasis model assessment of insulin resistance (HOMA-IR). Secondary outcomes included anthropometric measures, blood pressure, endothelial function, hemoglobin A1c, lipids, and urinary microalbumin. Fifty-nine participants were enrolled. No changes were seen in glucose level, insulin level, or HOMA-IR (all P>.05) after 6 months of chromium at either dosage level (500 mcg or 1000 mcg daily) when compared with placebo. None of the secondary outcomes improved with either chromium dosage compared with placebo (P>.05). Chromium supplementation does not appear to ameliorate insulin resistance or impaired glucose metabolism in patients at risk for type 2 diabetes and thus is unlikely to attenuate diabetes risk.

  8. Adipose extracellular matrix remodelling in obesity and insulin resistance☆

    PubMed Central

    Lin, De; Chun, Tae-Hwa; Kang, Li

    2016-01-01

    The extracellular matrix (ECM) of adipose tissues undergoes constant remodelling to allow adipocytes and their precursor cells to change cell shape and function in adaptation to nutritional cues. Abnormal accumulation of ECM components and their modifiers in adipose tissues has been recently demonstrated to cause obesity-associated insulin resistance, a hallmark of type 2 diabetes. Integrins and other ECM receptors (e.g. CD44) that are expressed in adipose tissues have been shown to regulate insulin sensitivity. It is well understood that a hypoxic response is observed in adipose tissue expansion during obesity progression and that hypoxic response accelerates fibrosis and inflammation in white adipose tissues. The expansion of adipose tissues should require angiogenesis; however, the excess deposition of ECM limits the angiogenic response of white adipose tissues in obesity. While recent studies have focused on the metabolic consequences and the mechanisms of adipose tissue expansion and remodelling, little attention has been paid to the role played by the interaction between peri-adipocyte ECM and their cognate cell surface receptors. This review will address what is currently known about the roles played by adipose ECM, their modifiers, and ECM receptors in obesity and insulin resistance. Understanding how excess ECM deposition in the adipose tissue deteriorates insulin sensitivity would provide us hints to develop a new therapeutic strategy for the treatment of insulin resistance and type 2 diabetes. PMID:27179976

  9. Momordica charantia Administration Improves Insulin Secretion in Type 2 Diabetes Mellitus.

    PubMed

    Cortez-Navarrete, Marisol; Martínez-Abundis, Esperanza; Pérez-Rubio, Karina G; González-Ortiz, Manuel; Villar, Miriam Méndez-Del

    2018-02-12

    An improvement in parameters of glycemic control has been observed with Momordica charantia in patients with type 2 diabetes mellitus (T2DM). It is unknown whether this improvement is through a modification of insulin secretion, insulin sensitivity, or both. We hypothesized that M. charantia administration can improve insulin secretion and/or insulin sensitivity in patients with T2DM, without pharmacological treatment. The objective of the study was to evaluate the effect of M. charantia administration on insulin secretion and sensitivity. A randomized, double-blinded, placebo-controlled, clinical trial was carried out in 24 patients who received M. charantia (2000 mg/day) or placebo for 3 months. A 2-h oral glucose tolerance test (OGTT) was done before and after the intervention to calculate areas under the curve (AUC) of glucose and insulin, total insulin secretion (insulinogenic index), first phase of insulin secretion (Stumvoll index), and insulin sensitivity (Matsuda index). In the M. charantia group, there were significant decreases in weight, body mass index (BMI), fat percentage, waist circumference (WC), glycated hemoglobin A1c (A1C), 2-h glucose in OGTT, and AUC of glucose. A significant increase in insulin AUC (56,562 ± 36,078 vs. 65,256 ± 42,720 pmol/L/min, P = .043), in total insulin secretion (0.29 ± 0.18 vs. 0.41 ± 0.29, P = .028), and during the first phase of insulin secretion (557.8 ± 645.6 vs. 1135.7 ± 725.0, P = .043) was observed after M. charantia administration. Insulin sensitivity was not modified with any intervention. In conclusion, M. charantia administration reduced A1C, 2-h glucose, glucose AUC, weight, BMI, fat percentage, and WC, with an increment of insulin AUC, first phase and total insulin secretion.

  10. Early impaired β-cell function in chinese women with polycystic ovary syndrome.

    PubMed

    Tao, Tao; Li, Shengxian; Zhao, Aimin; Mao, Xiuyin; Liu, Wei

    2012-01-01

    The pathogenic factors that account for the development of diabetes condition in Chinese women with polycystic ovary syndrome (PCOS) remain elusive. To clarify the pathogenic features by evaluating the levels of insulin sensitivity and β cell function in these women with PCOS, either separately or by using of a disposition indexes (DIs). Cross-sectional study involving 137 Chinese women with PCOS and 123 normal women were examined by anthropometry, lipid profile, sex hormone, high-sensitivity C reactive protein, oral glucose tolerance tests and insulin tolerance tests. After controlling for BMI status, the Matsuda Index was significantly lower in women with PCOS in comparison to those of normal women (p<0.000). The early phase of insulin secretion (insulinogenic index) remained significantly lower in lean women with PCOS(LP) than those of both lean and obese women of control group (p=0.007, and p = 0.01, respectively). The mean HOMA-F values were significantly lower (p =0.045) in obese women with PCOS (OP) than those of BMI-matched women. Further, all DIs derived from non-fasting state indexes in women with PCOS were significantly lower than those of BMI-matched control women (p<0.001 for all). Lastly, DIs derived from fasting states indexes in OP were significantly lower than those of LP. Early impaired β cell function was detected in both LP and OP. However, more serious primary defect in insulin action was detected in LP compared to OP. These findings imply that early screening and intervention for PCOS would be therapeutic for Chinese women.

  11. Physical activity into the meal glucose-insulin model of type 1 diabetes: in silico studies.

    PubMed

    Man, Chiara Dalla; Breton, Marc D; Cobelli, Claudio

    2009-01-01

    A simulation model of a glucose-insulin system accounting for physical activity is needed to reliably simulate normal life conditions, thus accelerating the development of an artificial pancreas. In fact, exercise causes a transient increase of insulin action and may lead to hypoglycemia. However, physical activity is difficult to model. In the past, it was described indirectly as a rise in insulin. Recently, a new parsimonious model of exercise effect on glucose homeostasis has been proposed that links the change in insulin action and glucose effectiveness to heart rate (HR). The aim of this study was to plug this exercise model into our recently proposed large-scale simulation model of glucose metabolism in type 1 diabetes to better describe normal life conditions. The exercise model describes changes in glucose-insulin dynamics in two phases: a rapid on-and-off change in insulin-independent glucose clearance and a rapid-on/slow-off change in insulin sensitivity. Three candidate models of glucose effectiveness and insulin sensitivity as a function of HR have been considered, both during exercise and recovery after exercise. By incorporating these three models into the type 1 diabetes model, we simulated different levels (from mild to moderate) and duration of exercise (15 and 30 minutes), both in steady-state (e.g., during euglycemic-hyperinsulinemic clamp) and in nonsteady state (e.g., after a meal) conditions. One candidate exercise model was selected as the most reliable. A type 1 diabetes model also describing physical activity is proposed. The model represents a step forward to accurately describe glucose homeostasis in normal life conditions; however, further studies are needed to validate it against data. © Diabetes Technology Society

  12. Insulin secretion and insulin resistance in Korean women with gestational diabetes mellitus and impaired glucose tolerance

    PubMed Central

    Yang, Sae Jeong; Kim, Tae Nyun; Baik, Sei Hyun; Kim, Tae Sun; Lee, Kwan Woo; Nam, Moonsuk; Park, Yong Soo; Woo, Jeong-Teak; Kim, Young Seol

    2013-01-01

    Background/Aims The aim was to compare the insulin sensitivity and secretion index of pregnant Korean women with normal glucose tolerance (NGT), gestational impaired glucose tolerance (GIGT; only one abnormal value according to the Carpenter and Coustan criteria), and gestational diabetes mellitus (GDM). Methods A cross-sectional study was performed with 1,163 pregnant women with positive (1-hour plasma glucose ≥ 7.2 mmol/L) in a 50-g oral glucose challenge test (OGCT). The 100-g oral glucose tolerance test (OGTT) was used to stratify the participants into three groups: NGT (n = 588), GIGT (n = 294), and GDM (n = 281). Results The GDM group had higher homeostasis model assessment of insulin resistance and lower insulin sensitivity index (ISOGTT), quantitative insulin sensitivity check index, homeostasis model assessment for estimation of index β-cell secretion (HOMA-B), first and second phase insulin secretion, and insulin secretion-sensitivity index (ISSI) than the NGT group (p ≤ 0.001 for all). Moreover, the GIGT group had lower ISOGTT, HOMA-B, first and second phase insulin secretion, and ISSI than the NGT group (p < 0.001 for all). Among the GIGT subjects, the 1-hour plasma glucose abnormal levels group showed significantly greater weight gain during pregnancy and higher values in the 50-g OGCT than the other two groups. Moreover, the 1-hour and 2-hour abnormal levels groups had poorer insulin secretion status than the 3-hour abnormal levels group. Conclusions Korean women with GDM show impairments of both insulin secretion and insulin sensitivity. In addition, GIGT is associated with both β-cell dysfunction and insulin resistance. PMID:23682224

  13. Use of the hyperinsulinemic euglycemic clamp to assess insulin sensitivity in guinea pigs: dose response, partitioned glucose metabolism, and species comparisons.

    PubMed

    Horton, Dane M; Saint, David A; Owens, Julie A; Gatford, Kathryn L; Kind, Karen L

    2017-07-01

    The guinea pig is an alternate small animal model for the study of metabolism, including insulin sensitivity. However, only one study to date has reported the use of the hyperinsulinemic euglycemic clamp in anesthetized animals in this species, and the dose response has not been reported. We therefore characterized the dose-response curve for whole body glucose uptake using recombinant human insulin in the adult guinea pig. Interspecies comparisons with published data showed species differences in maximal whole body responses (guinea pig ≈ human < rat < mouse) and the insulin concentrations at which half-maximal insulin responses occurred (guinea pig > human ≈ rat > mouse). In subsequent studies, we used concomitant d-[3- 3 H]glucose infusion to characterize insulin sensitivities of whole body glucose uptake, utilization, production, storage, and glycolysis in young adult guinea pigs at human insulin doses that produced approximately half-maximal (7.5 mU·min -1 ·kg -1 ) and near-maximal whole body responses (30 mU·min -1 ·kg -1 ). Although human insulin infusion increased rates of glucose utilization (up to 68%) and storage and, at high concentrations, increased rates of glycolysis in females, glucose production was only partially suppressed (~23%), even at high insulin doses. Fasting glucose, metabolic clearance of insulin, and rates of glucose utilization, storage, and production during insulin stimulation were higher in female than in male guinea pigs ( P < 0.05), but insulin sensitivity of these and whole body glucose uptake did not differ between sexes. This study establishes a method for measuring partitioned glucose metabolism in chronically catheterized conscious guinea pigs, allowing studies of regulation of insulin sensitivity in this species. Copyright © 2017 the American Physiological Society.

  14. Effects of resistance training on insulin sensitivity in overweight Latino adolescent males.

    PubMed

    Shaibi, Gabriel Q; Cruz, Martha L; Ball, Geoff D C; Weigensberg, Marc J; Salem, George J; Crespo, Noe C; Goran, Michael I

    2006-07-01

    Insulin resistance is thought to be a core defect in the pathophysiology of obesity-related comorbidities in children, such as type 2 diabetes. Exercise training is known to improve insulin resistance and reduce the risk of type 2 diabetes in adults. However, very little is known regarding the effects of exercise on insulin resistance in youth. Therefore, we examined the effects of a 16-wk resistance training exercise intervention on insulin sensitivity in youth at high risk for developing type 2 diabetes. Twenty-two overweight Latino adolescent males were randomly assigned to either a twice-per-week resistance training group (RT=11) or a nonexercising control group (C=11) for 16 wk. Strength was assessed by one-repetition maximum, body composition was quantified by dual-energy x-ray absorptiometry, and insulin sensitivity was determined by the frequently sampled intravenous glucose tolerance test with minimal modeling. Significant increases in upper- and lower-body strength were observed in the RT compared with the C group. The RT group significantly increased insulin sensitivity compared with the C group (P<0.05), and this increase remained significant after adjustment for changes in total fat mass and total lean tissue mass (P<0.05). Compared with baseline values, insulin sensitivity increased 45.1+/-7.3% in the RT group versus -0.9+/-12.9% in controls (P<0.01). A twice-per-week 16-wk resistance training program can significantly increase insulin sensitivity in overweight Latino adolescent males independent of changes in body composition.

  15. Cutaneous microvascular perfusion responses to insulin iontophoresis are differentially affected by insulin resistance after spinal cord injury.

    PubMed

    La Fountaine, Michael F; Cirnigliaro, Christopher M; Azarelo, Frank; Hobson, Joshua C; Tascione, Oriana; Swonger, Kirsten N; Dyson-Hudson, Trevor; Bauman, William A

    2017-09-01

    What is the central question of this study? What impact does insulin resistance have on cutaneous perfusion responses to insulin iontophoresis in vascular beds with markedly reduced or functionally ablated sympathetic nervous system vasomotor function resulting from spinal cord injury? What is the main finding and its importance? Persons with spinal cord injury have sublesional microvascular endothelial dysfunction, as indicated by a blunted cutaneous perfusion response to acetylcholine iontophoresis, and the presence of insulin resistance has a further confounding effect on endothelium-mediated changes to cutaneous perfusion in the lower extremities. Endothelium-mediated mechanisms that regulate skin blood flow might play an integral role in optimizing skin perfusion in vascular beds with sympathetic nervous system vasomotor impairment, such as in spinal cord injury (SCI). Insulin is a vasoactive hormone and second messenger of nitric oxide that facilitates endothelium-mediated dilatation. The effects of insulin resistance (IR) on sublesional cutaneous perfusion responses to insulin provocation have yet to be described in persons with SCI. Persons with SCI and an able-bodied (AB) cohort were divided into subgroups based upon fasting plasma insulin concentration cut-offs for IR (≥13.13 mIU ml -1 ) or insulin sensitivity (IS; <13.13 mIU ml -1 ), as follows: AB, IS (ABIS, n = 21); SCI, IS (SCIS, n = 21); AB, IR (ABIR, n = 9); and SCI, IR (SCIR, n = 11). Laser Doppler flowmetry characterized peak blood perfusion unit (BPU) responses (percentage change from baseline) to insulin, acetylcholine or placebo iontophoresis in the lower extremities; BPU responses were log 10 transformed to facilitate comparisons, and the net insulin response (NetIns) BPU response was calculated (insulin minus placebo BPU response). The NetIns was significantly greater in both IS groups compared with their corresponding IR group. The acetylcholine-mediated BPU responses in the SCI subgroups were significantly lower than those in the ABIS group. The proportional BPU responses of NetIns to acetylcholine in the IS cohorts (i.e. ABIS and SCIS) were significantly greater (P < 0.05) than that of each IR subgroup. The presence of IR has a confounding effect on sublesional microvascular endothelium-mediated cutaneous perfusion responses to provocation. Preservation of endothelial sensitivity to its agonists appears to be an important modifiable risk factor to optimize cutaneous perfusion in the lower extremities of persons with SCI. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  16. A Central Role for GRB10 in Regulation of Islet Function in Man

    PubMed Central

    Prasad B, Rashmi; Salehi, S. Albert; Almgren, Peter; Osmark, Peter; Bouatia-Naji, Nabila; Wierup, Nils; Fall, Tove; Stančáková, Alena; Barker, Adam; Lagou, Vasiliki; Osmond, Clive; Xie, Weijia; Lahti, Jari; Jackson, Anne U.; Cheng, Yu-Ching; Liu, Jie; O'Connell, Jeffrey R.; Blomstedt, Paul A.; Fadista, Joao; Alkayyali, Sami; Dayeh, Tasnim; Ahlqvist, Emma; Taneera, Jalal; Lecoeur, Cecile; Kumar, Ashish; Hansson, Ola; Hansson, Karin; Voight, Benjamin F.; Kang, Hyun Min; Levy-Marchal, Claire; Vatin, Vincent; Palotie, Aarno; Syvänen, Ann-Christine; Mari, Andrea; Weedon, Michael N.; Loos, Ruth J. F.; Ong, Ken K.; Nilsson, Peter; Isomaa, Bo; Tuomi, Tiinamaija; Wareham, Nicholas J.; Stumvoll, Michael; Widen, Elisabeth; Lakka, Timo A.; Langenberg, Claudia; Tönjes, Anke; Rauramaa, Rainer; Kuusisto, Johanna; Frayling, Timothy M.; Froguel, Philippe; Walker, Mark; Eriksson, Johan G.; Ling, Charlotte; Kovacs, Peter; Ingelsson, Erik; McCarthy, Mark I.; Shuldiner, Alan R.; Silver, Kristi D.; Laakso, Markku; Groop, Leif; Lyssenko, Valeriya

    2014-01-01

    Variants in the growth factor receptor-bound protein 10 (GRB10) gene were in a GWAS meta-analysis associated with reduced glucose-stimulated insulin secretion and increased risk of type 2 diabetes (T2D) if inherited from the father, but inexplicably reduced fasting glucose when inherited from the mother. GRB10 is a negative regulator of insulin signaling and imprinted in a parent-of-origin fashion in different tissues. GRB10 knock-down in human pancreatic islets showed reduced insulin and glucagon secretion, which together with changes in insulin sensitivity may explain the paradoxical reduction of glucose despite a decrease in insulin secretion. Together, these findings suggest that tissue-specific methylation and possibly imprinting of GRB10 can influence glucose metabolism and contribute to T2D pathogenesis. The data also emphasize the need in genetic studies to consider whether risk alleles are inherited from the mother or the father. PMID:24699409

  17. Fish oil supplementation and insulin sensitivity: a systematic review and meta-analysis.

    PubMed

    Gao, Huanqing; Geng, Tingting; Huang, Tao; Zhao, Qinghua

    2017-07-03

    Fish oil supplementation has been shown to be associated with a lower risk of metabolic syndrome and benefit a wide range of chronic diseases, such as cardiovascular disease, type 2 diabetes and several types of cancers. However, the evidence of fish oil supplementation on glucose metabolism and insulin sensitivity is still controversial. This meta-analysis summarized the exist evidence of the relationship between fish oil supplementation and insulin sensitivity and aimed to evaluate whether fish oil supplementation could improve insulin sensitivity. We searched the Cochrane Library, PubMed, Embase database for the relevant studies update to Dec 2016. Two researchers screened the literature independently by the selection and exclusion criteria. Studies were pooled using random effect models to estimate a pooled SMD and corresponding 95% CI. This meta-analysis was performed by Stata 13.1 software. A total of 17 studies with 672 participants were included in this meta-analysis study after screening from 498 published articles found after the initial search. In a pooled analysis, fish oil supplementation had no effects on insulin sensitivity compared with the placebo (SMD 0.17, 95%CI -0.15 to 0.48, p = 0.292). In subgroup analysis, fish oil supplementation could benefit insulin sensitivity among people who were experiencing at least one symptom of metabolic disorders (SMD 0.53, 95% CI 0.17 to 0.88, p < 0.001). Similarly, there were no significant differences between subgroups of methods of insulin sensitivity, doses of omega-3 polyunsaturated fatty acids (n-3 PUFA) of fish oil supplementation or duration of the intervention. The sensitivity analysis indicated that the results were robust. Short-term fish oil supplementation is associated with increasing the insulin sensitivity among those people with metabolic disorders.

  18. Central GLP-2 enhances hepatic insulin sensitivity via activating PI3K signaling in POMC neurons

    USDA-ARS?s Scientific Manuscript database

    Glucagon-like peptides (GLP-1/GLP-2) are coproduced and highlighted as key modulators to improve glucose homeostasis and insulin sensitivity after bariatric surgery. However, it is unknown if CNS GLP-2 plays any physiological role in the control of glucose homeostasis and insulin sensitivity. We sho...

  19. Validation of insulin sensitivity and secretion indices derived from the liquid meal tolerance test.

    PubMed

    Maki, Kevin C; Kelley, Kathleen M; Lawless, Andrea L; Hubacher, Rachel L; Schild, Arianne L; Dicklin, Mary R; Rains, Tia M

    2011-06-01

    A liquid meal tolerance test (LMTT) has been proposed as a useful alternative to more labor-intensive methods of assessing insulin sensitivity and secretion. This substudy, conducted at the conclusion of a randomized, double-blind crossover trial, compared insulin sensitivity indices from a LMTT (Matsuda insulin sensitivity index [MISI] and LMTT disposition index [LMTT-DI]) with indices derived from minimal model analysis of results from the insulin-modified intravenous glucose tolerance test (IVGTT) (insulin sensitivity index [S(I)] and disposition index [DI]). Participants included men (n = 16) and women (n = 8) without diabetes but with increased abdominal adiposity (waist circumference ≥102 cm and ≥89 cm, respectively) and mean age of 48.9 years. The correlation between S(I) and the MISI was 0.776 (P < 0.0001). The respective associations between S(I) and MISI with waist circumference (r = -0.445 and -0.554, both P < 0.05) and body mass index were similar (r = -0.500 and -0.539, P < 0.05). The correlation between DI and LMTT-DI was 0.604 (P = 0.002). These results indicate that indices of insulin sensitivity and secretion derived from the LMTT correlate well with those from the insulin-modified IVGTT with minimal model analysis, suggesting that they may be useful for application in clinical and population studies of glucose homeostasis.

  20. Long-term obestatin treatment of mice type 2 diabetes increases insulin sensitivity and improves liver function.

    PubMed

    Kołodziejski, Paweł A; Pruszyńska-Oszmałek, Ewa; Strowski, Mathias Z; Nowak, Krzysztof W

    2017-06-01

    Obestatin and ghrelin are peptides encoded by the preproghrelin gene. Obestatin inhibits food intake, in addition to regulation of glucose and lipid metabolism. Here, we test the ability of obestatin at improving metabolic control and liver function in type 2 diabetic animals (type 2 diabetes mellitus). The effects of chronic obestatin treatment of mice with experimentally induced type 2 diabetes mellitus on serum levels of glucose and lipids, and insulin sensitivity are characterized. In addition, alterations of hepatic lipid and glycogen contents are evaluated. Obestatin reduced body weight and decreased serum glucose, fructosamine, and β-hydroxybutyrate levels, as well as total and low-density lipoprotein fractions of cholesterol. In addition, obestatin increased high-density lipoproteins cholesterol levels and enhanced insulin sensitivity in mice with type 2 diabetes mellitus. Moreover, obestatin diminished liver mass, hepatic triglycerides and cholesterol contents, while glycogen content was higher in livers of healthy and mice with type 2 diabetes mellitus treated with obestatin. These changes were accompanied by reduction of increased alanine aminotransferase, aspartate aminotransferase, and gamma glutamyl transpeptidase in T2DM mice with type 2 diabetes mellitus. Obestatin increased adiponectin levels and reduced leptin concentration. Obestatin influenced the expression of genes involved in lipid and carbohydrate metabolism by increasing Fabp5 and decreasing G6pc, Pepck, Fgf21 mRNA in the liver. Obestatin increased both, AKT and AMPK phosphorylation, and sirtuin 1 (SIRT1) protein levels as well as mRNA expression in the liver. Obestatin improves metabolic abnormalities in type 2 diabetes mellitus, restores hepatic lipid contents and decreases hepatic enzymes. Therefore, obestatin could potentially have a therapeutic relevance in treating of insulin resistance and metabolic dysfunctions in type 2 diabetes mellitus.

  1. Exercise Promotes Healthy Aging of Skeletal Muscle

    PubMed Central

    Cartee, Gregory D.; Hepple, Russell T.; Bamman, Marcas M.; Zierath, Juleen R.

    2016-01-01

    Primary aging is the progressive and inevitable process of bodily deterioration during adulthood. In skeletal muscle, primary aging causes defective mitochondrial energetics, and reduced muscle mass. Secondary aging refers to additional deleterious structural and functional age-related changes caused by diseases and lifestyle factors. Secondary aging can exacerbate deficits in mitochondrial function and muscle mass, concomitant with the development of skeletal muscle insulin resistance. Exercise opposes deleterious effects of secondary aging by preventing the decline in mitochondrial respiration, mitigating aging-related loss of muscle mass and enhancing insulin sensitivity. This review focuses on mechanisms by which exercise promotes “healthy aging” by inducing modifications in skeletal muscle. PMID:27304505

  2. The Brain–to–Pancreatic Islet Neuronal Map Reveals Differential Glucose Regulation From Distinct Hypothalamic Regions

    PubMed Central

    Rosario, Wilfredo; Singh, Inderroop; Wautlet, Arnaud; Patterson, Christa; Flak, Jonathan; Becker, Thomas C.; Ali, Almas; Tamarina, Natalia; Philipson, Louis H.; Enquist, Lynn W.; Myers, Martin G.

    2016-01-01

    The brain influences glucose homeostasis, partly by supplemental control over insulin and glucagon secretion. Without this central regulation, diabetes and its complications can ensue. Yet, the neuronal network linking to pancreatic islets has never been fully mapped. Here, we refine this map using pseudorabies virus (PRV) retrograde tracing, indicating that the pancreatic islets are innervated by efferent circuits that emanate from the hypothalamus. We found that the hypothalamic arcuate nucleus (ARC), ventromedial nucleus (VMN), and lateral hypothalamic area (LHA) significantly overlap PRV and the physiological glucose-sensing enzyme glucokinase. Then, experimentally lowering glucose sensing, specifically in the ARC, resulted in glucose intolerance due to deficient insulin secretion and no significant effect in the VMN, but in the LHA it resulted in a lowering of the glucose threshold that improved glucose tolerance and/or improved insulin sensitivity, with an exaggerated counter-regulatory response for glucagon secretion. No significant effect on insulin sensitivity or metabolic homeostasis was noted. Thus, these data reveal novel direct neuronal effects on pancreatic islets and also render a functional validation of the brain-to-islet neuronal map. They also demonstrate that distinct regions of the hypothalamus differentially control insulin and glucagon secretion, potentially in partnership to help maintain glucose homeostasis and guard against hypoglycemia. PMID:27207534

  3. The Brain-to-Pancreatic Islet Neuronal Map Reveals Differential Glucose Regulation From Distinct Hypothalamic Regions.

    PubMed

    Rosario, Wilfredo; Singh, Inderroop; Wautlet, Arnaud; Patterson, Christa; Flak, Jonathan; Becker, Thomas C; Ali, Almas; Tamarina, Natalia; Philipson, Louis H; Enquist, Lynn W; Myers, Martin G; Rhodes, Christopher J

    2016-09-01

    The brain influences glucose homeostasis, partly by supplemental control over insulin and glucagon secretion. Without this central regulation, diabetes and its complications can ensue. Yet, the neuronal network linking to pancreatic islets has never been fully mapped. Here, we refine this map using pseudorabies virus (PRV) retrograde tracing, indicating that the pancreatic islets are innervated by efferent circuits that emanate from the hypothalamus. We found that the hypothalamic arcuate nucleus (ARC), ventromedial nucleus (VMN), and lateral hypothalamic area (LHA) significantly overlap PRV and the physiological glucose-sensing enzyme glucokinase. Then, experimentally lowering glucose sensing, specifically in the ARC, resulted in glucose intolerance due to deficient insulin secretion and no significant effect in the VMN, but in the LHA it resulted in a lowering of the glucose threshold that improved glucose tolerance and/or improved insulin sensitivity, with an exaggerated counter-regulatory response for glucagon secretion. No significant effect on insulin sensitivity or metabolic homeostasis was noted. Thus, these data reveal novel direct neuronal effects on pancreatic islets and also render a functional validation of the brain-to-islet neuronal map. They also demonstrate that distinct regions of the hypothalamus differentially control insulin and glucagon secretion, potentially in partnership to help maintain glucose homeostasis and guard against hypoglycemia. © 2016 by the American Diabetes Association.

  4. Polycystic ovary syndrome: insight into pathogenesis and a common association with insulin resistance.

    PubMed

    Barber, Thomas M; Dimitriadis, George K; Andreou, Avgi; Franks, Stephen

    2016-06-01

    Polycystic ovary syndrome (PCOS) is a common condition that typically develops in reproductive-age women. The cardinal clinical and biochemical characteristics of PCOS include reproductive dysfunction and hyperandrogenic features. PCOS is also strongly associated with obesity based on data from epidemiological and genetic studies. Accordingly, PCOS often becomes manifest in those women who carry a genetic predisposition to its development, and who also gain weight. The role of weight gain and obesity in the development of PCOS is mediated at least in part, through worsening of insulin resistance. Compensatory hyperinsulinaemia that develops in this context disrupts ovarian function, with enhanced androgen production and arrest of ovarian follicular development. Insulin resistance also contributes to the strong association of PCOS with adverse metabolic risk, including dysglycaemia, dyslipidaemia and fatty liver. Conversely, modest weight loss of just 5% body weight with improvement in insulin sensitivity, frequently results in clinically meaningful improvements in hyperandrogenic, reproductive and metabolic features. Future developments of novel therapies for obese women with PCOS should focus on promotion of weight loss and improvement in insulin sensitivity. In this context, therapies that complement lifestyle changes such as dietary modification and exercise, particularly during the maintenance phase of weight loss are important. Putative novel targets for therapy in PCOS include human brown adipose tissue. © 2016 Royal College of Physicians.

  5. Microcirculatory Improvement Induced by Laparoscopic Sleeve Gastrectomy Is Related to Insulin Sensitivity Retrieval.

    PubMed

    Ministrini, Stefano; Fattori, Chiara; Ricci, Maria Anastasia; Bianconi, Vanessa; Paltriccia, Rita; Boni, Marcello; Paganelli, Maria Teresa; Vaudo, Gaetano; Lupattelli, Graziana; Pasqualini, Leonella

    2018-05-12

    Microvascular dysfunction is a potential factor explaining the association of obesity, insulin resistance, and vascular damage in morbidly obese subjects. The purpose of the study was to evaluate possible determinants of microcirculatory improvement 1 year after laparoscopic sleeve gastrectomy (LSG) intervention. Thirty-seven morbidly obese subjects eligible for bariatric surgery were included in the study. Post-occlusive reactive hyperemia (PORH) of the forearm skin was measured as area of hyperemia (AH) by laser-Doppler flowmetry before LSG and after a 1-year follow-up. After intervention, we observed a significant reduction in BMI, HOMA index, HbA1c, and a significant increase of AH in all patients after surgery; this variation was significant only in those patients having insulin resistance or prediabetes/diabetes. Although significant correlation between the increase of AH and the reduction of both BMI, HOMA index, and HbA1c was observed, BMI was the only independent predictor of AH variation after LSG at the linear regression analysis. Our study shows that LSG intervention is correlated with a significant improvement in the microvascular function of morbidly obese subjects; this improvement seems to be related to the baseline degree of insulin-resistance and to the retrieval of insulin-sensitivity post-intervention.

  6. Top single nucleotide polymorphisms affecting carbohydrate metabolism in metabolic syndrome: from the LIPGENE study.

    PubMed

    Delgado-Lista, Javier; Perez-Martinez, Pablo; Solivera, Juan; Garcia-Rios, Antonio; Perez-Caballero, A I; Lovegrove, Julie A; Drevon, Christian A; Defoort, Catherine; Blaak, Ellen E; Dembinska-Kieć, Aldona; Risérus, Ulf; Herruzo-Gomez, Ezequiel; Camargo, Antonio; Ordovas, Jose M; Roche, Helen; Lopez-Miranda, José

    2014-02-01

    Metabolic syndrome (MetS) is a high-prevalence condition characterized by altered energy metabolism, insulin resistance, and elevated cardiovascular risk. Although many individual single nucleotide polymorphisms (SNPs) have been linked to certain MetS features, there are few studies analyzing the influence of SNPs on carbohydrate metabolism in MetS. A total of 904 SNPs (tag SNPs and functional SNPs) were tested for influence on 8 fasting and dynamic markers of carbohydrate metabolism, by performance of an intravenous glucose tolerance test in 450 participants in the LIPGENE study. From 382 initial gene-phenotype associations between SNPs and any phenotypic variables, 61 (16% of the preselected variables) remained significant after bootstrapping. Top SNPs affecting glucose metabolism variables were as follows: fasting glucose, rs26125 (PPARGC1B); fasting insulin, rs4759277 (LRP1); C-peptide, rs4759277 (LRP1); homeostasis assessment of insulin resistance, rs4759277 (LRP1); quantitative insulin sensitivity check index, rs184003 (AGER); sensitivity index, rs7301876 (ABCC9), acute insulin response to glucose, rs290481 (TCF7L2); and disposition index, rs12691 (CEBPA). We describe here the top SNPs linked to phenotypic features in carbohydrate metabolism among approximately 1000 candidate gene variations in fasting and postprandial samples of 450 patients with MetS from the LIPGENE study.

  7. Novel hepato-preferential basal insulin peglispro (BIL) does not differentially affect insulin sensitivity compared with insulin glargine in patients with type 1 and type 2 diabetes.

    PubMed

    Porksen, Niels; Linnebjerg, Helle; Garhyan, Parag; Lam, Eric C Q; Knadler, Mary P; Jacober, Scott J; Hoevelmann, Ulrike; Plum-Moerschel, Leona; Watkins, Elaine; Gastaldelli, Amalia; Heise, Tim

    2017-04-01

    Basal insulin peglispro (BIL) is a novel PEGylated basal insulin with a flat pharmacokinetic and glucodynamic profile and reduced peripheral effects, which results in a hepato-preferential action. In Phase 3 trials, patients with T1DM treated with BIL had lower prandial insulin requirements, yet improved prandial glucose control, relative to insulin glargine (GL). We hypothesized that this may be because of an enhanced sensitivity to prandial insulin with BIL resulting from lower chronic peripheral insulin action. Two open-label, randomized, 2-period crossover clinical studies were conducted in 28 patients with T1DM and 24 patients with T2DM. In each study period, patients received once-daily, individualized, stable, subcutaneous doses of BIL or GL for 5 weeks before a euglycaemic 2-step hyperinsulinemic clamp procedure (with [6,6- 2 H 2 ]-glucose in 12 of the patients with T1DM). M-values were derived from the clamp procedure for all patients, with rate of glucose appearance (Ra) and disappearance (Rd) and insulin sensitivity index (SI) determined from the clamps with [6,6- 2 H 2 ]-glucose. There were no statistically significant differences between BIL and GL in key measures of hepatic (% Ra suppression during the low-dose insulin infusion; 78.7% with BIL, 81.8% with GL) or peripheral (M-value and M/I during the high-dose insulin infusion, Rd and SI) insulin sensitivity in patients with T1DM or T2DM. The need to reduce prandial insulin observed with BIL during phase 3 trials cannot be explained by the differential effects of BIL and GL on sensitivity to prandial insulin in either T1DM or T2DM. © 2016 John Wiley & Sons Ltd.

  8. Double-stranded RNA-activated protein kinase is a key modulator of insulin sensitivity in physiological conditions and in obesity in mice.

    PubMed

    Carvalho-Filho, M A; Carvalho, B M; Oliveira, A G; Guadagnini, D; Ueno, M; Dias, M M; Tsukumo, D M; Hirabara, S M; Reis, L F; Curi, R; Carvalheira, J B C; Saad, Mario J A

    2012-11-01

    The molecular integration of nutrient- and pathogen-sensing pathways has become of great interest in understanding the mechanisms of insulin resistance in obesity. The double-stranded RNA-dependent protein kinase (PKR) is one candidate molecule that may provide cross talk between inflammatory and metabolic signaling. The present study was performed to determine, first, the role of PKR in modulating insulin action and glucose metabolism in physiological situations, and second, the role of PKR in insulin resistance in obese mice. We used Pkr(-/-) and Pkr(+/+) mice to investigate the role of PKR in modulating insulin sensitivity, glucose metabolism, and insulin signaling in liver, muscle, and adipose tissue in response to a high-fat diet. Our data show that in lean Pkr(-/-) mice, there is an improvement in insulin sensitivity, and in glucose tolerance, and a reduction in fasting blood glucose, probably related to a decrease in protein phosphatase 2A activity and a parallel increase in insulin-induced thymoma viral oncogene-1 (Akt) phosphorylation. PKR is activated in tissues of obese mice and can induce insulin resistance by directly binding to and inducing insulin receptor substrate (IRS)-1 serine307 phosphorylation or indirectly through modulation of c-Jun N-terminal kinase and inhibitor of κB kinase β. Pkr(-/-) mice were protected from high-fat diet-induced insulin resistance and glucose intolerance and showed improved insulin signaling associated with a reduction in c-Jun N-terminal kinase and inhibitor of κB kinase β phosphorylation in insulin-sensitive tissues. PKR may have a role in insulin sensitivity under normal physiological conditions, probably by modulating protein phosphatase 2A activity and serine-threonine kinase phosphorylation, and certainly, this kinase may represent a central mechanism for the integration of pathogen response and innate immunity with insulin action and metabolic pathways that are critical in obesity.

  9. Insulin-mediated signaling promotes proliferation and survival of glioblastoma through Akt activation

    PubMed Central

    Gong, Yuanying; Ma, Yufang; Sinyuk, Maksim; Loganathan, Sudan; Thompson, Reid C.; Sarkaria, Jann N.; Chen, Wenbiao; Lathia, Justin D.; Mobley, Bret C.; Clark, Stephen W.; Wang, Jialiang

    2016-01-01

    Background Metabolic complications such as obesity, hyperglycemia, and type 2 diabetes are associated with poor outcomes in patients with glioblastoma. To control peritumoral edema, use of chronic high-dose steroids in glioblastoma patients is common, which can result in de novo diabetic symptoms. These metabolic complications may affect tumors via profound mechanisms, including activation of insulin receptor (InsR) and the related insulin-like growth factor 1 receptor (IGF1R) in malignant cells. Methods In the present study, we assessed expression of InsR in glioblastoma surgical specimens and glioblastoma response to insulin at physiologically relevant concentrations. We further determined whether genetic or pharmacological targeting of InsR affected oncogenic functions of glioblastoma in vitro and in vivo. Results We showed that InsR was commonly expressed in glioblastoma surgical specimens and xenograft tumor lines, with mitogenic isoform-A predominating. Insulin at physiologically relevant concentrations promoted glioblastoma cell growth and survival, potentially via Akt activation. Depletion of InsR impaired cellular functions and repressed orthotopic tumor growth. The absence of InsR compromised downstream Akt activity, but yet stimulated IGF1R expression. Targeting both InsR and IGF1R with dual kinase inhibitors resulted in effective blockade of downstream signaling, loss of cell viability, and repression of xenograft tumor growth. Conclusions Taken together, our work suggests that glioblastoma is sensitive to the mitogenic functions of insulin, thus significant insulin exposure imposes risks to glioblastoma patients. Additionally, dual inhibition of InsR and IGF1R exhibits promise for treating glioblastoma. PMID:26136493

  10. The Impact of Genetic Variants for Different Physiological Characterization of Type 2 Diabetes Loci on Gestational Insulin Signaling in Nondiabetic Pregnant Chinese Women.

    PubMed

    Liao, Shunyao; Liu, Yunqiang; Chen, Xiaojuan; Tan, Yuande; Mei, Jie; Song, Wenzhong; Gan, Lu; Wang, Hailian; Yin, Shi; Dong, Xianjue; Chi, Shu; Deng, Shaoping

    2015-11-01

    We investigate the impact of genetic variants on transiently upregulated gestational insulin signaling. We recruited 1152 unrelated nondiabetic pregnant Han Chinese women (age 28.5 ± 4.1 years; body mass index [BMI] 21.4 ± 2.6 kg/m(2)) and gave them oral glucose tolerance tests. Matsuda index of insulin sensitivity, homeostatic model assessment of insulin resistance, indices of insulin disposition, early-phase insulin release, fasting state, and 0 to 120 minute's proinsulin to insulin conversion were used to dissect insulin physiological characterization. Several variants related to β-cell function were genotyped. The genetic impacts were analyzed using logistic regression under an additive model. By adjusting for maternal age, BMI, and the related interactions, the genetic variants in ABCC8, CDKAL1, CDKN2A, HNF1B, KCNJ11, and MTNR1B were detected to impact gestational insulin signaling through heterogeneous mechanisms; however, compared with that in nonpregnant metabolism, the genetic effects seem to be eminently and heavily influenced by maternal age and BMI, indicating possible particular mechanisms underlying gestational metabolism and diabetic pathogenesis. © The Author(s) 2015.

  11. The effects of muscle contraction and recombinant osteocalcin on insulin sensitivity ex vivo.

    PubMed

    Levinger, I; Lin, X; Zhang, X; Brennan-Speranza, T C; Volpato, B; Hayes, A; Jerums, G; Seeman, E; McConell, G

    2016-02-01

    We tested whether GPRC6A, the putative receptor of undercarboxylated osteocalcin (ucOC), is present in mouse muscle and whether ucOC increases insulin sensitivity following ex vivo muscle contraction. GPPRC6A is expressed in mouse muscle and in the mouse myotubes from a cell line. ucOC potentiated the effect of ex vivo contraction on insulin sensitivity. Acute exercise increases skeletal muscle insulin sensitivity. In humans, exercise increases circulating ucOC, a hormone that increases insulin sensitivity in rodents. We tested whether GPRC6A, the putative receptor of ucOC, is present in mouse muscle and whether recombinant ucOC increases insulin sensitivity in both C2C12 myotubes and whole mouse muscle following ex vivo muscle contraction. Glucose uptake was examined in C2C12 myotubes that express GPRC6A following treatment with insulin alone or with insulin and increasing ucOC concentrations (0.3, 3, 10 and 30 ng/ml). In addition, glucose uptake, phosphorylated (p-)AKT and p-AS160 were examined ex vivo in extensor digitorum longus (EDL) dissected from C57BL/6J wild-type mice, at rest, following insulin alone, after muscle contraction followed by insulin and after muscle contraction followed by recombinant ucOC then insulin exposure. We observed protein expression of the likely receptor for ucOC, GPRC6A, in whole muscle sections and differentiated mouse myotubes. We observed reduced GPRC6A expression following siRNA transfection. ucOC significantly increased insulin-stimulated glucose uptake dose-dependently up to 10 ng/ml, in differentiated mouse C2C12 myotubes. Insulin increased EDL glucose uptake (∼30 %, p < 0.05) and p-AKT and p-AKT/AKT compared with rest (all p < 0.05). Contraction prior to insulin increased muscle glucose uptake (∼25 %, p < 0.05), p-AKT, p-AKT/AKT, p-AS160 and p-AS160/AS160 compared with contraction alone (all p < 0.05). ucOC after contraction increased insulin-stimulated muscle glucose uptake (∼12 % p < 0.05) and p-AS160 (<0.05) more than contraction plus insulin alone but without effect on p-AKT. In the absence of insulin and/or of contraction, ucOC had no significant effect on muscle glucose uptake. GPRC6A, the likely receptor of osteocalcin (OC), is expressed in mouse muscle. ucOC treatment augments insulin-stimulated skeletal muscle glucose uptake in C2C12 myotubes and following ex vivo muscle contraction. ucOC may partly account for the insulin sensitizing effect of exercise.

  12. APPL1 potentiates insulin sensitivity by facilitating the binding of IRS1/2 to the insulin receptor.

    PubMed

    Ryu, Jiyoon; Galan, Amanda K; Xin, Xiaoban; Dong, Feng; Abdul-Ghani, Muhammad A; Zhou, Lijun; Wang, Changhua; Li, Cuiling; Holmes, Bekke M; Sloane, Lauren B; Austad, Steven N; Guo, Shaodong; Musi, Nicolas; DeFronzo, Ralph A; Deng, Chuxia; White, Morris F; Liu, Feng; Dong, Lily Q

    2014-05-22

    Binding of insulin receptor substrate proteins 1 and 2 (IRS1/2) to the insulin receptor (IR) is essential for the regulation of insulin sensitivity and energy homeostasis. However, the mechanism of IRS1/2 recruitment to the IR remains elusive. Here, we identify adaptor protein APPL1 as a critical molecule that promotes IRS1/2-IR interaction. APPL1 forms a complex with IRS1/2 under basal conditions, and this complex is then recruited to the IR in response to insulin or adiponectin stimulation. The interaction between APPL1 and IR depends on insulin- or adiponectin-stimulated APPL1 phosphorylation, which is greatly reduced in insulin target tissues in obese mice. appl1 deletion in mice consistently leads to systemic insulin resistance and a significant reduction in insulin-stimulated IRS1/2, but not IR, tyrosine phosphorylation, indicating that APPL1 sensitizes insulin signaling by acting at a site downstream of the IR. Our study uncovers a mechanism regulating insulin signaling and crosstalk between the insulin and adiponectin pathways. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  13. The Role of PTP1B O-GlcNAcylation in Hepatic Insulin Resistance.

    PubMed

    Zhao, Yun; Tang, Zhuqi; Shen, Aiguo; Tao, Tao; Wan, Chunhua; Zhu, Xiaohui; Huang, Jieru; Zhang, Wanlu; Xia, Nana; Wang, Suxin; Cui, Shiwei; Zhang, Dongmei

    2015-09-22

    Protein tyrosine phosphatase 1B (PTP1B), which can directly dephosphorylate both the insulin receptor and insulin receptor substrate 1 (IRS-1), thereby terminating insulin signaling, reportedly plays an important role in insulin resistance. Accumulating evidence has demonstrated that O-GlcNAc modification regulates functions of several important components of insulin signal pathway. In this study, we identified that PTP1B is modified by O-GlcNAcylation at three O-GlcNAc sites (Ser104, Ser201, and Ser386). Palmitate acid (PA) impaired the insulin signaling, indicated by decreased phosphorylation of both serine/threonine-protein kinase B (Akt) and glycogen synthase kinase 3 beta (GSK3β) following insulin administration, and upregulated PTP1B O-GlcNAcylation in HepG2 cells. Compared with the wild-type, intervention PTP1B O-GlcNAcylation by site-directed gene mutation inhibited PTP1B phosphatase activity, resulted in a higher level of phosphorylated Akt and GSK3β, recovered insulin sensitivity, and improved lipid deposition in HepG2 cells. Taken together, our research showed that O-GlcNAcylation of PTP1B can influence insulin signal transduction by modulating its own phosphatase activity, which participates in the process of hepatic insulin resistance.

  14. Differential Effects of Nebivolol and Metoprolol on Insulin Sensitivity and Plasminogen Activator Inhibitor in the Metabolic Syndrome

    PubMed Central

    Ayers, Katie; Byrne, Loretta M.; DeMatteo, Anthony; Brown, Nancy J.

    2012-01-01

    Early generation β-blockers lower blood pressure and reduce cardiovascular morality in coronary artery disease and congestive heart failure, but worsen glucose homeostasis and fibrinolytic balance. Nebivolol is a third-generation β-blocker which increases the bioavailability of nitric oxide. We compared the effect of nebivolol (5mg/d) and the β1-selective antagonist metoprolol (100mg/d) on glucose homeostasis and markers of fibrinolysis in 46 subjects with metabolic syndrome. Subjects underwent a frequently sampled intravenous glucose tolerance test after 3-week washout and placebo treatment, and following randomized treatment with study drug. After 12-week treatment, nebivolol and metoprolol equivalently decreased systolic blood pressure, diastolic blood pressure, and heart rate. Neither drug affected beta cell function, disposition index, or acute insulin response to glucose. Metoprolol significantly decreased the insulin sensitivity index. In contrast, nebivolol did not affect insulin sensitivity, and the decrease in sensitivity was significantly greater following metoprolol than nebivolol (-1.5±2.5 × 10-4 × min-1 per mU/L versus 0.04±2.19 × 10-4 × min-1 per mU/L after nebivolol, P=0.03). Circulating plasminogen activator inhibitor also increased following treatment with metoprolol (from 9.8±6.8 to 12.3±7.8 ng/mL), but not nebivolol (from 10.8±7.8 to 10.5±6.2 ng/mL, P=0.05 versus metoprolol). Metoprolol, but not nebivolol, increased F2-isoprostane concentrations. In summary, treatment with metoprolol decreased insulin sensitivity and increased oxidative stress and the antifibrinolytic plasminogen activator inhibitor-1in patients with metabolic syndrome, whereas nebivolol lacked detrimental metabolic effects. Large clinical trials are needed to compare effects of nebivolol and the β1 receptor antagonist metoprolol on clinical outcomes in patients with hypertension and the metabolic syndrome. PMID:22353614

  15. Abdominal fat and insulin resistance in normal and overweight women: Direct measurements reveal a strong relationship in subjects at both low and high risk of NIDDM.

    PubMed

    Carey, D G; Jenkins, A B; Campbell, L V; Freund, J; Chisholm, D J

    1996-05-01

    Insulin resistance appears to be central to obesity, NIDDM, hyperlipidemia, and cardiovascular disease. While obese women with abdominal (android) fat distribution are more insulin resistant than those with peripheral (gynecoid) obesity, in nonobese women, the relationship between abdominal fat and insulin resistance is unknown. By measuring regional adiposity with dual-energy X-ray absorptiometry and insulin sensitivity by euglycemic-hyperinsulinemic clamp in 22 healthy women, with a mean +/- SE body BMI of 26.7 +/- 0.9 kg/m2 and differing risk factors for NIDDM, we found a strong negative relationship between central abdominal (intra-abdominal plus abdominal subcutaneous) fat and whole-body insulin sensitivity (r = -0.89, P < 0.0001) and nonoxidative glucose disposal (r = -0.77, P < 0.001), independent of total adiposity, family history of NIDDM, and past gestational diabetes. There was a large variation in insulin sensitivity, with a similar variation in central fat, even in those whose BMI was <25 kg/m2. Abdominal fat had a significantly stronger relationship with insulin sensitivity than peripheral nonabdominal fat (r2 = 0.79 vs. 0.44), and higher levels were associated with increased fasting nonesterified fatty acids, lipid oxidation, and hepatic glucose output. Because 79% of the variance in insulin sensitivity in this heterogeneous population was accounted for by central fat, abdominal adiposity appears to be a strong marker and may be a major determinant of insulin resistance in women.

  16. Mechanism of action of hypoglycemic effects of an intestine-specific inhibitor of microsomal triglyceride transfer protein (MTP) in obese rats.

    PubMed

    Sakata, Shohei; Katsumi, Sohei; Mera, Yasuko; Kuroki, Yukiharu; Nashida, Reiko; Kakutani, Makoto; Ohta, Takeshi

    2015-01-01

    Diminished insulin sensitivity in the peripheral tissues and failure of pancreatic beta cells to secrete insulin are known major determinants of type 2 diabetes mellitus. JTT-130, an intestine-specific microsomal transfer protein inhibitor, has been shown to suppress high fat-induced obesity and ameliorate impaired glucose tolerance while enhancing glucagon-like peptide-1 (GLP-1) secretion. We investigated the effects of JTT-130 on glucose metabolism and elucidated the mechanism of action, direct effects on insulin sensitivity and glucose-stimulated insulin secretion in a high fat diet-induced obesity rat model. Male Sprague Dawley rats fed a high-fat diet were treated with a single administration of JTT-130. Glucose tolerance, hyperglycemic clamp and hyperinsulinemic-euglycemic testing were performed to assess effects on insulin sensitivity and glucose-stimulated insulin secretion, respectively. Plasma GLP-1 and tissue triglyceride content were also determined under the same conditions. A single administration of JTT-130 suppressed plasma glucose elevations after oral glucose loading and increased the disposition index while elevating GLP-1. JTT-130 also enhanced glucose-stimulated insulin secretion in hyperglycemic clamp tests, whereas increased insulin sensitivity was observed in hyperinsulinemic-euglycemic clamp tests. Single-dose administration of JTT-130 decreased lipid content in the liver and skeletal muscle. JTT-130 demonstrated acute and direct hypoglycemic effects by enhancing insulin secretion and/or insulin sensitivity. Copyright © 2014 Japanese Pharmacological Society. Production and hosting by Elsevier B.V. All rights reserved.

  17. Evidence in obese children: contribution of hyperlipidemia, obesity-inflammation, and insulin sensitivity.

    PubMed

    Chang, Chi-Jen; Jian, Deng-Yuan; Lin, Ming-Wei; Zhao, Jun-Zhi; Ho, Low-Tone; Juan, Chi-Chang

    2015-01-01

    Evidence shows a high incidence of insulin resistance, inflammation and dyslipidemia in adult obesity. The aim of this study was to assess the relevance of inflammatory markers, circulating lipids, and insulin sensitivity in overweight/obese children. We enrolled 45 male children (aged 6 to 13 years, lean control = 16, obese = 19, overweight = 10) in this study. The plasma total cholesterol, HDL cholesterol, triglyceride, glucose and insulin levels, the circulating levels of inflammatory factors, such as TNF-α, IL-6, and MCP-1, and the high-sensitive CRP level were determined using quantitative colorimetric sandwich ELISA kits. Compared with the lean control subjects, the obese subjects had obvious insulin resistance, abnormal lipid profiles, and low-grade inflammation. The overweight subjects only exhibited significant insulin resistance and low-grade inflammation. Both TNF-α and leptin levels were higher in the overweight/obese subjects. A concurrent correlation analysis showed that body mass index (BMI) percentile and fasting insulin were positively correlated with insulin resistance, lipid profiles, and inflammatory markers but negatively correlated with adiponectin. A factor analysis identified three domains that explained 74.08% of the total variance among the obese children (factor 1: lipid, 46.05%; factor 2: obesity-inflammation, 15.38%; factor 3: insulin sensitivity domains, 12.65%). Our findings suggest that lipid, obesity-inflammation, and insulin sensitivity domains predominantly exist among obese children. These factors might be applied to predict the outcomes of cardiovascular diseases in the future.

  18. One-year metreleptin improves insulin secretion in patients with diabetes linked to genetic lipodystrophic syndromes.

    PubMed

    Vatier, C; Fetita, S; Boudou, P; Tchankou, C; Deville, L; Riveline, Jp; Young, J; Mathivon, L; Travert, F; Morin, D; Cahen, J; Lascols, O; Andreelli, F; Reznik, Y; Mongeois, E; Madelaine, I; Vantyghem, Mc; Gautier, Jf; Vigouroux, C

    2016-07-01

    Recombinant methionyl human leptin (metreleptin) therapy was shown to improve hyperglycaemia, dyslipidaemia and insulin sensitivity in patients with lipodystrophic syndromes, but its effects on insulin secretion remain controversial. We used dynamic intravenous (i.v.) clamp procedures to measure insulin secretion, adjusted to insulin sensitivity, at baseline and after 1 year of metreleptin therapy, in 16 consecutive patients with lipodystrophy, diabetes and leptin deficiency. Patients, with a mean [± standard error of the mean (s.e.m.)] age of 39.2 (±4) years, presented with familial partial lipodystrophy (n = 11, 10 women) or congenital generalized lipodystrophy (n = 5, four women). Their mean (± s.e.m.) BMI (23.9 ± 0.7 kg/m(2) ), glycated haemoglobin levels (8.5 ± 0.4%) and serum triglycerides levels (4.6 ± 0.9 mmol/l) significantly decreased within 1 month of metreleptin therapy, then remained stable. Insulin sensitivity (from hyperglycaemic or euglycaemic-hyperinsulinaemic clamps, n = 4 and n = 12, respectively), insulin secretion during graded glucose infusion (n = 12), and acute insulin response to i.v. glucose adjusted to insulin sensitivity (disposition index, n = 12), significantly increased after 1 year of metreleptin therapy. The increase in disposition index was related to a decrease in percentage of total and trunk body fat. Metreleptin therapy improves not only insulin sensitivity, but also insulin secretion in patients with diabetes attributable to genetic lipodystrophies. © 2015 John Wiley & Sons Ltd.

  19. Higher serum levels of uric acid are associated with a reduced insulin clearance in non-diabetic individuals.

    PubMed

    Fiorentino, Teresa Vanessa; Sesti, Franz; Succurro, Elena; Pedace, Elisabetta; Andreozzi, Francesco; Sciacqua, Angela; Hribal, Marta Letizia; Perticone, Francesco; Sesti, Giorgio

    2018-05-17

    Decreased insulin clearance has been reported to be associated with insulin resistance-related disorders and incident type 2 diabetes. The aim of this study was to evaluate whether higher levels of uric acid (UA), a known risk factor of type 2 diabetes, are associated with a reduced insulin clearance. 440 non-diabetic individuals were stratified in tertiles according to serum UA levels. Insulin clearance and skeletal muscle insulin sensitivity were assessed by euglycemic hyperinsulinemic clamp. Hepatic insulin resistance was estimated by the liver IR index. Subjects with higher levels of UA displayed an unfavorable metabolic phenotype with a worse lipid profile, increased levels of 2-h post-load glucose levels, fasting, and 2-h post-load insulin levels, hsCRP, liver IR index, and lower levels of eGFR and skeletal muscle insulin sensitivity, in comparison to individuals with lower UA levels. Moreover, subjects with higher UA concentrations exhibited decreased levels of insulin clearance even after adjustment for age, gender, BMI, eGFR, and skeletal muscle insulin sensitivity. In a multivariate regression analysis model including several confounding factors, UA concentration was an independent predictor of insulin clearance (β = - 0.145; P = 0.03). However, when liver IR index was included in the model, the independent association between UA levels and insulin clearance was not retained. Accordingly, in a mediation analysis, liver IR index was a mediator of the negative effects of UA levels on insulin clearance (t = - 2.55, P = 0.01). Higher serum levels of UA may affect insulin clearance by impairing hepatic insulin sensitivity.

  20. Subchronic sleep restriction causes tissue-specific insulin resistance.

    PubMed

    Rao, Madhu N; Neylan, Thomas C; Grunfeld, Carl; Mulligan, Kathleen; Schambelan, Morris; Schwarz, Jean-Marc

    2015-04-01

    Short sleep duration is associated with an increased risk of type 2 diabetes. Subchronic sleep restriction (SR) causes insulin resistance, but the mechanisms and roles of specific tissues are unclear. The purpose of this article was to determine whether subchronic SR altered (1) hepatic insulin sensitivity, (2) peripheral insulin sensitivity, and (3) substrate utilization. This was a randomized crossover study in which 14 subjects underwent 2 admissions separated by a washout period. Each admission had 2 acclimatization nights followed by 5 nights of either SR (4 hours time in bed) or normal sleep (8 hours time in bed). MAIN OUTCOME MEASURE/METHODS: Insulin sensitivity (measured by hyperinsulinemic-euglycemic clamp) and hepatic insulin sensitivity (measured by stable isotope techniques) were measured. In addition, we assayed stress hormone (24-hour urine free cortisol, metanephrine, and normetanephrine), nonesterified fatty acid (NEFA), and β-hydroxybutyrate (β-OH butyrate) levels. Resting energy expenditure (REE) and respiratory quotient (RQ) were measured by indirect calorimetry. Compared to normal sleep, whole-body insulin sensitivity decreased by 25% (P = .008) with SR and peripheral insulin sensitivity decreased by 29% (P = .003). Whereas hepatic insulin sensitivity (endogenous glucose production) did not change significantly, percent gluconeogenesis increased (P = .03). Stress hormones increased modestly (cortisol by 21%, P = .04; metanephrine by 8%, P = .014; normetanephrine by 18%, P = .002). Fasting NEFA and β-OH butyrate levels increased substantially (62% and 55%, respectively). REE did not change (P = 0.98), but RQ decreased (0.81 ± .02 vs 0.75 ± 0.02, P = .045). Subchronic SR causes unique metabolic disturbances characterized by peripheral, but not hepatic, insulin resistance; this was associated with a robust increase in fasting NEFA levels (indicative of increased lipolysis), decreased RQ, and increased β-OH butyrate levels (indicative of whole-body and hepatic fat oxidation, respectively). We postulate that elevated NEFA levels are partially responsible for the decrease in peripheral sensitivity and modulation of hepatic metabolism (ie, increase in gluconeogenesis without increase in endogenous glucose production). Elevated cortisol and metanephrine levels may contribute to insulin resistance by increasing lipolysis and NEFA levels.

  1. Effects of hypothyroidism on the sensitivity of glycolysis and glycogen synthesis to insulin in the soleus muscle of the rat.

    PubMed Central

    Dimitriadis, G D; Leighton, B; Parry-Billings, M; West, D; Newsholme, E A

    1989-01-01

    1. The effects of hypothyroidism on the sensitivity of glycolysis and glycogen synthesis to insulin were investigated in the isolated, incubated soleus muscle of the rat. 2. Hypothyroidism, which was induced by administration of propylthiouracil to the rats, decreased fasting plasma levels of free fatty acids and increased plasma levels of glucose but did not significantly change plasma levels of insulin. 3. The sensitivity of the rates of glycogen synthesis to insulin was increased at physiological, but decreased at supraphysiological, concentrations of insulin. 4. The rates of glycolysis in the hypothyroid muscles were decreased at all insulin concentrations studied and the EC50 for insulin was increased more than 8-fold; the latter indicates decreased sensitivity of this process to insulin. However, at physiological concentrations of insulin, the rates of glucose phosphorylation in the soleus muscles of hypothyroid rats were not different from controls. This suggests that hypothyroidism affects glucose metabolism in muscle not by affecting glucose transport but by decreasing the rate of glucose 6-phosphate conversion to lactate and increasing the rate of conversion of glucose 6-phosphate to glycogen. 5. The rates of glucose oxidation were decreased in the hypothyroid muscles at all insulin concentrations. PMID:2649073

  2. Variable reliability of surrogate measures of insulin sensitivity after Roux-en-Y gastric bypass.

    PubMed

    Bojsen-Møller, Kirstine N; Dirksen, Carsten; Svane, Maria S; Jørgensen, Nils B; Holst, Jens J; Richter, Erik A; Madsbad, Sten

    2017-05-01

    Roux-en-Y gastric bypass (RYGB) induces weight loss and improves insulin sensitivity when evaluated by the hyperinsulinemic-euglycemic clamp (HEC). Surrogate indices of insulin sensitivity calculated from insulin and glucose concentrations at fasting or after an oral glucose tolerance test (OGTT) are frequently used, but have not been validated after RYGB. Our aim was to evaluate whether surrogate indices reliably estimate changes in insulin sensitivity after RYGB. Four fasting surrogates (inverse-HOMA-IR, HOMA2-%S, QUICKI, revised-QUICKI) and three OGTT-derived surrogates (Matsuda, Gutt, OGIS) were compared with HEC-estimated peripheral insulin sensitivity ( R d or R d /I, depending on how the index was originally validated) and the tracer-determined hepatic insulin sensitivity index (HISI) in patients with preoperative type 2 diabetes ( n = 10) and normal glucose tolerance ( n = 10) 1 wk, 3 mo, and 1 yr postoperatively. Post-RYGB changes in inverse-HOMA-IR and HOMA2-%S did not correlate with changes in R d at any visit, but were comparable to changes in HISI at 1 wk. Changes in QUICKI and revised-QUICKI correlated with R d /I after surgery. Changes in the Matsuda and Gutt indices did not correlate with changes in R d /I and R d , respectively, whereas OGIS changes correlated with R d changes at 1 yr post-RYGB. In conclusion, surrogate measures of insulin sensitivity may not reflect results obtained with gold standard methodology after RYGB, underscoring the importance of critical reflection when surrogate endpoints are used. Fasting surrogate indices may be particularly affected by post-RYGB changes in insulin clearance, whereas the validity of OGTT-derived surrogates may be compromised by surgical rearrangements of the gut. Copyright © 2017 the American Physiological Society.

  3. Sleep Restriction for 1 Week Reduces Insulin Sensitivity in Healthy Men

    PubMed Central

    Buxton, Orfeu M.; Pavlova, Milena; Reid, Emily W.; Wang, Wei; Simonson, Donald C.; Adler, Gail K.

    2010-01-01

    OBJECTIVE Short sleep duration is associated with impaired glucose tolerance and an increased risk of diabetes. The effects of sleep restriction on insulin sensitivity have not been established. This study tests the hypothesis that decreasing nighttime sleep duration reduces insulin sensitivity and assesses the effects of a drug, modafinil, that increases alertness during wakefulness. RESEARCH DESIGN AND METHODS This 12-day inpatient General Clinical Research Center study included 20 healthy men (age 20–35 years and BMI 20–30 kg/m2). Subjects spent 10 h/night in bed for ≥8 nights including three inpatient nights (sleep-replete condition), followed by 5 h/night in bed for 7 nights (sleep-restricted condition). Subjects received 300 mg/day modafinil or placebo during sleep restriction. Diet and activity were controlled. On the last 2 days of each condition, we assessed glucose metabolism by intravenous glucose tolerance test (IVGTT) and euglycemic-hyperinsulinemic clamp. Salivary cortisol, 24-h urinary catecholamines, and neurobehavioral performance were measured. RESULTS IVGTT-derived insulin sensitivity was reduced by (means ± SD) 20 ± 24% after sleep restriction (P = 0.001), without significant alterations in the insulin secretory response. Similarly, insulin sensitivity assessed by clamp was reduced by 11 ± 5.5% (P < 0.04) after sleep restriction. Glucose tolerance and the disposition index were reduced by sleep restriction. These outcomes were not affected by modafinil treatment. Changes in insulin sensitivity did not correlate with changes in salivary cortisol (increase of 51 ± 8% with sleep restriction, P < 0.02), urinary catecholamines, or slow wave sleep. CONCLUSIONS Sleep restriction (5 h/night) for 1 week significantly reduces insulin sensitivity, raising concerns about effects of chronic insufficient sleep on disease processes associated with insulin resistance. PMID:20585000

  4. Characterization of the Metabolic and Physiologic Response from Chromium Supplementation in Subjects with Type 2 Diabetes

    PubMed Central

    Cefalu, William T; Rood, Jennifer; Pinsonat, Patricia; Qin, Jianhua; Sereda, Olga; Levitan, Lilian; Anderson, Richard; Zhang, Xian H; Martin, Julie M; Martin, Corby; Wang, Zhong Q; Newcomer, Bradley

    2014-01-01

    OBJECTIVE To provide a comprehensive evaluation of chromium (Cr) supplementation on metabolic parameters in a cohort of Type 2 DM subjects representing a wide phenotype range and to evaluate changes in “responders” and “non-responders”. DESIGN After pre-intervention testing to assess glycemia, insulin sensitivity (assessed by euglycemic clamps), Cr status, body composition, subjects were randomized in a double-blind fashion to placebo or 1,000 μg Cr. A sub-study was performed to evaluate 24 hour energy balance/substrate oxidation and myocellular/intra-hepatic lipid content. RESULTS There was not a consistent effect of chromium supplementation to improve insulin action across all phenotypes. Insulin sensitivity was negatively correlated to soleus and tibialis muscle intramyocellular lipids and intra-hepatic lipid content. Myocellular lipids were significantly lower in subjects randomized to Cr. At pre-intervention, “responders”, defined as insulin sensitivity change from baseline > 10%, had significantly lower insulin sensitivity and higher fasting glucose and A1c when compared to placebo and “non-responders”, i.e. insulin sensitivity change from baseline < 10%. Clinical response was significantly correlated (p < 0.001) to the baseline insulin sensitivity, fasting glucose and A1c. There was no difference in Cr status between “responders”, and “non-responders”. CONCLUSIONS Clinical response to chromium is more likely in insulin resistant subjects who have more elevated fasting glucose and A1c levels. Cr may reduce myocellular lipids and enhance insulin sensitivity in subjects with type 2 DM independent of effects on weight or hepatic glucose production. Thus, modulation of lipid metabolism by Cr in peripheral tissues may represent a novel mechanism of action. PMID:20022616

  5. A novel insulin resistance index to monitor changes in insulin sensitivity and glucose tolerance: the ACT NOW study.

    PubMed

    Tripathy, Devjit; Cobb, Jeff E; Gall, Walter; Adam, Klaus-Peter; George, Tabitha; Schwenke, Dawn C; Banerji, MaryAnn; Bray, George A; Buchanan, Thomas A; Clement, Stephen C; Henry, Robert R; Kitabchi, Abbas E; Mudaliar, Sunder; Ratner, Robert E; Stentz, Frankie B; Reaven, Peter D; Musi, Nicolas; Ferrannini, Ele; DeFronzo, Ralph A

    2015-05-01

    The objective was to test the clinical utility of Quantose M(Q) to monitor changes in insulin sensitivity after pioglitazone therapy in prediabetic subjects. Quantose M(Q) is derived from fasting measurements of insulin, α-hydroxybutyrate, linoleoyl-glycerophosphocholine, and oleate, three nonglucose metabolites shown to correlate with insulin-stimulated glucose disposal. Participants were 428 of the total of 602 ACT NOW impaired glucose tolerance (IGT) subjects randomized to pioglitazone (45 mg/d) or placebo and followed for 2.4 years. At baseline and study end, fasting plasma metabolites required for determination of Quantose, glycated hemoglobin, and oral glucose tolerance test with frequent plasma insulin and glucose measurements to calculate the Matsuda index of insulin sensitivity were obtained. Pioglitazone treatment lowered IGT conversion to diabetes (hazard ratio = 0.25; 95% confidence interval = 0.13-0.50; P < .0001). Although glycated hemoglobin did not track with insulin sensitivity, Quantose M(Q) increased in pioglitazone-treated subjects (by 1.45 [3.45] mg·min(-1)·kgwbm(-1)) (median [interquartile range]) (P < .001 vs placebo), as did the Matsuda index (by 3.05 [4.77] units; P < .0001). Quantose M(Q) correlated with the Matsuda index at baseline and change in the Matsuda index from baseline (rho, 0.85 and 0.79, respectively; P < .0001) and was progressively higher across closeout glucose tolerance status (diabetes, IGT, normal glucose tolerance). In logistic models including only anthropometric and fasting measurements, Quantose M(Q) outperformed both Matsuda and fasting insulin in predicting incident diabetes. In IGT subjects, Quantose M(Q) parallels changes in insulin sensitivity and glucose tolerance with pioglitazone therapy. Due to its strong correlation with improved insulin sensitivity and its ease of use, Quantose M(Q) may serve as a useful clinical test to identify and monitor therapy in insulin-resistant patients.

  6. A Novel Insulin Resistance Index to Monitor Changes in Insulin Sensitivity and Glucose Tolerance: the ACT NOW Study

    PubMed Central

    Tripathy, Devjit; Cobb, Jeff E.; Gall, Walter; Adam, Klaus-Peter; George, Tabitha; Schwenke, Dawn C.; Banerji, MaryAnn; Bray, George A.; Buchanan, Thomas A.; Clement, Stephen C.; Henry, Robert R.; Kitabchi, Abbas E.; Mudaliar, Sunder; Ratner, Robert E.; Stentz, Frankie B.; Reaven, Peter D.; Musi, Nicolas; Ferrannini, Ele

    2015-01-01

    Objective: The objective was to test the clinical utility of Quantose MQ to monitor changes in insulin sensitivity after pioglitazone therapy in prediabetic subjects. Quantose MQ is derived from fasting measurements of insulin, α-hydroxybutyrate, linoleoyl-glycerophosphocholine, and oleate, three nonglucose metabolites shown to correlate with insulin-stimulated glucose disposal. Research Design and Methods: Participants were 428 of the total of 602 ACT NOW impaired glucose tolerance (IGT) subjects randomized to pioglitazone (45 mg/d) or placebo and followed for 2.4 years. At baseline and study end, fasting plasma metabolites required for determination of Quantose, glycated hemoglobin, and oral glucose tolerance test with frequent plasma insulin and glucose measurements to calculate the Matsuda index of insulin sensitivity were obtained. Results: Pioglitazone treatment lowered IGT conversion to diabetes (hazard ratio = 0.25; 95% confidence interval = 0.13–0.50; P < .0001). Although glycated hemoglobin did not track with insulin sensitivity, Quantose MQ increased in pioglitazone-treated subjects (by 1.45 [3.45] mg·min−1·kgwbm−1) (median [interquartile range]) (P < .001 vs placebo), as did the Matsuda index (by 3.05 [4.77] units; P < .0001). Quantose MQ correlated with the Matsuda index at baseline and change in the Matsuda index from baseline (rho, 0.85 and 0.79, respectively; P < .0001) and was progressively higher across closeout glucose tolerance status (diabetes, IGT, normal glucose tolerance). In logistic models including only anthropometric and fasting measurements, Quantose MQ outperformed both Matsuda and fasting insulin in predicting incident diabetes. Conclusions: In IGT subjects, Quantose MQ parallels changes in insulin sensitivity and glucose tolerance with pioglitazone therapy. Due to its strong correlation with improved insulin sensitivity and its ease of use, Quantose MQ may serve as a useful clinical test to identify and monitor therapy in insulin-resistant patients. PMID:25603459

  7. The Relationship between 25-hydroxyvitamin D Levels, Insulin Sensitivity and Insulin Secretion in Women 3 Years after Delivery.

    PubMed

    Tänczer, Tímea; Magenheim, Rita; Fürst, Ágnes; Domján, Beatrix; Janicsek, Zsófia; Szabó, Eszter; Ferencz, Viktória; Tabák, Ádám G

    2017-12-01

    There is a direct correlation between 25-hydroxyvitamin D (25[OH]D) levels and insulin sensitivity. Furthermore, women with gestational diabetes (GDM) may have lower levels of 25(OH)D compared to controls. The present study intended to investigate 25(OH)D levels and their association with insulin sensitivity and insulin secretion in women with prior GDM and in controls 3.2 years after delivery. A total of 87 patients with prior GDM and 45 randomly selected controls (age range, 22 to 44 years) with normal glucose tolerance during pregnancy nested within a cohort of all deliveries at Saint Margit Hospital, Budapest, between January 1 2005, and December 31 2006, were examined. Their 25(OH) D levels were measured by radioimmunoassay. Insulin sensitivity and fasting insulin secretion were estimated using the homeostasis model asssessment (HOMA) calculator and early insulin secretion by the insulinogenic index based on a 75 g oral glucose tolerance test. There was no significant difference in 25(OH)D levels between cases and controls (27.2±13.1 [±SD] vs. 26.9±9.8 ng/L). There was a positive association between HOMA insulin sensitivity and 25(OH)D levels (beta = 0.017; 95% CI 0.001 to 0.034/1 ng/mL) that was robust to adjustment for age and body mass index. There was a nonsignificant association between HOMA insulin secretion and 25(OH)D (p=0.099), while no association was found with the insulinogenic index. Prior GDM status was not associated with 25(OH)D levels; however, 25(OH) D levels were associated with HOMA insulin sensitivity. It is hypothesized that the association between HOMA insulin secretion and 25(OH)D levels is related to the autoregulation of fasting glucose levels because no association between 25(OH)D and insulinogenic index was found. Copyright © 2017 Diabetes Canada. Published by Elsevier Inc. All rights reserved.

  8. Prediction of diabetes based on baseline metabolic characteristics in individuals at high risk.

    PubMed

    Defronzo, Ralph A; Tripathy, Devjit; Schwenke, Dawn C; Banerji, Maryann; Bray, George A; Buchanan, Thomas A; Clement, Stephen C; Henry, Robert R; Kitabchi, Abbas E; Mudaliar, Sunder; Ratner, Robert E; Stentz, Frankie B; Musi, Nicolas; Reaven, Peter D; Gastaldelli, Amalia

    2013-11-01

    Individuals with impaired glucose tolerance (IGT) are at high risk for developing type 2 diabetes mellitus (T2DM). We examined which characteristics at baseline predicted the development of T2DM versus maintenance of IGT or conversion to normal glucose tolerance. We studied 228 subjects at high risk with IGT who received treatment with placebo in ACT NOW and who underwent baseline anthropometric measures and oral glucose tolerance test (OGTT) at baseline and after a mean follow-up of 2.4 years. In a univariate analysis, 45 of 228 (19.7%) IGT individuals developed diabetes. After adjusting for age, sex, and center, increased fasting plasma glucose, 2-h plasma glucose, G0-120 during OGTT, HbA1c, adipocyte insulin resistance index, ln fasting plasma insulin, and ln I0-120, as well as family history of diabetes and presence of metabolic syndrome, were associated with increased risk of diabetes. At baseline, higher insulin secretion (ln [I0-120/G0-120]) during the OGTT was associated with decreased risk of diabetes. Higher β-cell function (insulin secretion/insulin resistance or disposition index; ln [I0-120/G0-120 × Matsuda index of insulin sensitivity]; odds ratio 0.11; P < 0.0001) was the variable most closely associated with reduced risk of diabetes. In a stepwise multiple-variable analysis, only HbA1c and β-cell function (ln insulin secretion/insulin resistance index) predicted the development of diabetes (r = 0.49; P < 0.0001).

  9. Skeletal muscle phosphatidylcholine and phosphatidylethanolamine respond to exercise and influence insulin sensitivity in men.

    PubMed

    Lee, Sindre; Norheim, Frode; Gulseth, Hanne L; Langleite, Torgrim M; Aker, Andreas; Gundersen, Thomas E; Holen, Torgeir; Birkeland, Kåre I; Drevon, Christian A

    2018-04-25

    Phosphatidylcholine (PC) and phosphatidylethanolamine (PE) composition in skeletal muscle have been linked to insulin sensitivity. We evaluated the relationships between skeletal muscle PC:PE, physical exercise and insulin sensitivity. We performed lipidomics and measured PC and PE in m. vastus lateralis biopsies obtained from 13 normoglycemic normal weight men and 13 dysglycemic overweight men at rest, immediately after 45 min of cycling at 70% maximum oxygen uptake, and 2 h post-exercise, before as well as after 12 weeks of combined endurance- and strength-exercise intervention. Insulin sensitivity was monitored by euglycemic-hyperinsulinemic clamp. RNA-sequencing was performed on biopsies, and mitochondria and lipid droplets were quantified on electron microscopic images. Exercise intervention for 12 w enhanced insulin sensitivity by 33%, skeletal muscle levels of PC by 21%, PE by 42%, and reduced PC:PE by 16%. One bicycle session reduced PC:PE by 5%. PC:PE correlated negatively with insulin sensitivity (β = -1.6, P < 0.001), percent area of mitochondria (ρ = -0.52, P = 0.035), and lipid droplet area (ρ = 0.55, P = 0.017) on EM pictures, and negatively with oxidative phosphorylation and mTOR based on RNA-sequencing. In conclusion, PC and PE contents of skeletal muscle respond to exercise, and PC:PE is inversely related to insulin sensitivity.

  10. Triglyceride/high-density lipoprotein cholesterol (TG/HDL-C) index as a reference criterion of risk for metabolic syndrome (MetS) and low insulin sensitivity in apparently healthy subjects.

    PubMed

    Baez-Duarte, Blanca Guadalupe; Zamora-Gínez, Irma; González-Duarte, Ramiro; Torres-Rasgado, Enrique; Ruiz-Vivanco, Guadalupe; Pérez-Fuentes, Ricardo; Celis, The Multidisciplinary Research Group Of Diabetes

    To evaluate if the TG/HDL-C index can be considered as a reference criterion of MetS and low insulin sensitivity in apparently healthy subjects. The subjects were Mexican mestizos who resided in Puebla City, Mexico, who were anthropometrically, biochemically, and clinically characterized. The TG/HDL-C index was calculated by dividing triglyceride (TG) levels by HDL-C levels. MetS was diagnosed by the Third Report from the Adult Treatment Panel-National Cholesterol Education Program (ATP-III NCEP) criteria, while insulin sensitivity was evaluated by the Quantitative Insulin sensitivity Check Index (QUICKI). The study included 813 subjects, with an average age of 38.6 ± 12.1 years, of which 564 were women and 249 men. An association was found between high TG/HDL-C index and low insulin sensitivity (Odds ratio [OR]: 4.09; p < 0.01) and with MetS (OR: 15.29; p < 0.01). A correlation was found between the TG/HDL-C index and QUICKI (rho: -0.4989; p < 0.01) and with MetS (rho: 0.6581; p < 0.01). The results indicate that the TG/HDL-C index is associated with low insulin sensitivity and MetS in apparently healthy subjects, suggesting this index as a reference criterion of risk for low insulin sensitivity and MetS.

  11. Insulin Resistance in Alzheimer's Disease

    PubMed Central

    Dineley, Kelly T; Jahrling, Jordan B; Denner, Larry

    2014-01-01

    Insulin is a key hormone regulating metabolism. Insulin binding to cell surface insulin receptors engages many signaling intermediates operating in parallel and in series to control glucose, energy, and lipids while also regulating mitogenesis and development. Perturbations in the function of any of these intermediates, which occur in a variety of diseases, cause reduced sensitivity to insulin and insulin resistance with consequent metabolic dysfunction. Chronic inflammation ensues which exacerbates compromised metabolic homeostasis. Since insulin has a key role in learning and memory as well as directly regulating ERK, a kinase required for the type of learning and memory compromised in early Alzheimer's disease (AD), insulin resistance has been identified as a major risk factor for the onset of AD. Animal models of AD or insulin resistance or both demonstrate that AD pathology and impaired insulin signaling form a reciprocal relationship. Of note are human and animal model studies geared toward improving insulin resistance that have led to the identification of the nuclear receptor and transcription factor, peroxisome proliferator-activated receptor gamma (PPARγ) as an intervention tool for early AD. Strategic targeting of alternate nodes within the insulin signaling network has revealed disease-stage therapeutic windows in animal models that coalesce with previous and ongoing clinical trial approaches. Thus, exploiting the connection between insulin resistance and AD provides powerful opportunities to delineate therapeutic interventions that slow or block the pathogenesis of AD. PMID:25237037

  12. Characterization of the insulin sensitivity of ghrelin receptor KO mice using glycemic clamps

    PubMed Central

    2011-01-01

    Background We and others have demonstrated previously that ghrelin receptor (GhrR) knock out (KO) mice fed a high fat diet (HFD) have increased insulin sensitivity and metabolic flexibility relative to WT littermates. A striking feature of the HFD-fed GhrR KO mouse is the dramatic decrease in hepatic steatosis. To characterize further the underlying mechanisms of glucose homeostasis in GhrR KO mice, we conducted both hyperglycemic (HG) and hyperinsulinemic-euglycemic (HI-E) clamps. Additionally, we investigated tissue glucose uptake and specifically examined liver insulin sensitivity. Results Consistent with glucose tolerance-test data, in HG clamp experiments, GhrR KO mice showed a reduction in glucose-stimulated insulin release relative to WT littermates. Nevertheless, a robust 1st phase insulin secretion was still achieved, indicating that a healthy β-cell response is maintained. Additionally, GhrR KO mice demonstrated both a significantly increased glucose infusion rate and significantly reduced insulin requirement for maintenance of the HG clamp, consistent with their relative insulin sensitivity. In HI-E clamps, both LFD-fed and HFD-fed GhrR KO mice showed higher peripheral insulin sensitivity relative to WT littermates as indicated by a significant increase in insulin-stimulated glucose disposal (Rd), and decreased hepatic glucose production (HGP). HFD-fed GhrR KO mice showed a marked increase in peripheral tissue glucose uptake in a variety of tissues, including skeletal muscle, brown adipose tissue and white adipose tissue. GhrR KO mice fed a HFD also showed a modest, but significant decrease in conversion of pyruvate to glucose, as would be anticipated if these mice displayed increased liver insulin sensitivity. Additionally, the levels of UCP2 and UCP1 were reduced in the liver and BAT, respectively, in GhrR KO mice relative to WT mice. Conclusions These results indicate that improved glucose homeostasis of GhrR KO mice is characterized by robust improvements of glucose disposal in both normal and metabolically challenged states, relative to WT controls. GhrR KO mice have an intact 1st phase insulin response but require significantly less insulin for glucose disposal. Our experiments reveal that the insulin sensitivity of GhrR KO mice is due to both BW independent and dependent factors. We also provide several lines of evidence that a key feature of the GhrR KO mouse is maintenance of hepatic insulin sensitivity during metabolic challenge. PMID:21211044

  13. Evaluation of insulin secretion and action in New World camelids.

    PubMed

    Firshman, Anna M; Cebra, Christopher K; Schanbacher, Barbara J; Seaquist, Elizabeth R

    2013-01-01

    To measure and compare insulin secretion and sensitivity in healthy alpacas and llamas via glucose clamping techniques. 8 llamas and 8 alpacas. Hyperinsulinemic euglycemic clamping (HEC) and hyperglycemic clamping (HGC) were performed on each camelid in a crossover design with a minimum 48-hour washout period between clamping procedures. The HEC technique was performed to measure insulin sensitivity. Insulin was infused IV at 6 mU/min/kg for 4 hours, and an IV infusion of glucose was adjusted to maintain blood glucose concentration at 150 mg/dL. Concentrations of blood glucose and plasma insulin were determined throughout. The HGC technique was performed to assess insulin secretion in response to exogenous glucose infusion. An IV infusion of glucose was administered to maintain blood glucose concentration at 320 mg/dL for 3 hours, and concentrations of blood glucose and plasma insulin were determined throughout. Alpacas and llamas were not significantly different with respect to whole-body insulin sensitivity during HEC or in pancreatic β-cell response during HGC. Alpacas and llamas had markedly lower insulin sensitivity during HEC and markedly lower pancreatic β-cell response during HGC, in comparison with many other species. New World camelids had lower glucose-induced insulin secretion and marked insulin resistance in comparison with other species. This likely contributes to the disorders of fat and glucose metabolism that are common to camelids.

  14. High-Protein Intake during Weight Loss Therapy Eliminates the Weight-Loss-Induced Improvement in Insulin Action in Obese Postmenopausal Women.

    PubMed

    Smith, Gordon I; Yoshino, Jun; Kelly, Shannon C; Reeds, Dominic N; Okunade, Adewole; Patterson, Bruce W; Klein, Samuel; Mittendorfer, Bettina

    2016-10-11

    High-protein (HP) intake during weight loss (WL) therapy is often recommended because it reduces the loss of lean tissue mass. However, HP intake could have adverse effects on metabolic function, because protein ingestion reduces postprandial insulin sensitivity. In this study, we compared the effects of ∼10% WL with a hypocaloric diet containing 0.8 g protein/kg/day and a hypocaloric diet containing 1.2 g protein/kg/day on muscle insulin action in postmenopausal women with obesity. We found that HP intake reduced the WL-induced decline in lean tissue mass by ∼45%. However, HP intake also prevented the WL-induced improvements in muscle insulin signaling and insulin-stimulated glucose uptake, as well as the WL-induced adaptations in oxidative stress and cell structural biology pathways. Our data demonstrate that the protein content of a WL diet can have profound effects on metabolic function and underscore the importance of considering dietary macronutrient composition during WL therapy for people with obesity. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  15. Combination of exercise training and diet restriction normalizes limited exercise capacity and impaired skeletal muscle function in diet-induced diabetic mice.

    PubMed

    Suga, Tadashi; Kinugawa, Shintaro; Takada, Shingo; Kadoguchi, Tomoyasu; Fukushima, Arata; Homma, Tsuneaki; Masaki, Yoshihiro; Furihata, Takaaki; Takahashi, Masashige; Sobirin, Mochamad A; Ono, Taisuke; Hirabayashi, Kagami; Yokota, Takashi; Tanaka, Shinya; Okita, Koichi; Tsutsui, Hiroyuki

    2014-01-01

    Exercise training (EX) and diet restriction (DR) are essential for effective management of obesity and insulin resistance in diabetes mellitus. However, whether these interventions ameliorate the limited exercise capacity and impaired skeletal muscle function in diabetes patients remains unexplored. Therefore, we investigated the effects of EX and/or DR on exercise capacity and skeletal muscle function in diet-induced diabetic mice. Male C57BL/6J mice that were fed a high-fat diet (HFD) for 8 weeks were randomly assigned for an additional 4 weeks to 4 groups: control, EX, DR, and EX+DR. A lean group fed with a normal diet was also studied. Obesity and insulin resistance induced by a HFD were significantly but partially improved by EX or DR and completely reversed by EX+DR. Although exercise capacity decreased significantly with HFD compared with normal diet, it partially improved with EX and DR and completely reversed with EX+DR. In parallel, the impaired mitochondrial function and enhanced oxidative stress in the skeletal muscle caused by the HFD were normalized only by EX+DR. Although obesity and insulin resistance were completely reversed by DR with an insulin-sensitizing drug or a long-term intervention, the exercise capacity and skeletal muscle function could not be normalized. Therefore, improvement in impaired skeletal muscle function, rather than obesity and insulin resistance, may be an important therapeutic target for normalization of the limited exercise capacity in diabetes. In conclusion, a comprehensive lifestyle therapy of exercise and diet normalizes the limited exercise capacity and impaired muscle function in diabetes mellitus.

  16. Growth-Blocking Peptides As Nutrition-Sensitive Signals for Insulin Secretion and Body Size Regulation

    PubMed Central

    Koyama, Takashi; Mirth, Christen K.

    2016-01-01

    In Drosophila, the fat body, functionally equivalent to the mammalian liver and adipocytes, plays a central role in regulating systemic growth in response to nutrition. The fat body senses intracellular amino acids through Target of Rapamycin (TOR) signaling, and produces an unidentified humoral factor(s) to regulate insulin-like peptide (ILP) synthesis and/or secretion in the insulin-producing cells. Here, we find that two peptides, Growth-Blocking Peptide (GBP1) and CG11395 (GBP2), are produced in the fat body in response to amino acids and TOR signaling. Reducing the expression of GBP1 and GBP2 (GBPs) specifically in the fat body results in smaller body size due to reduced growth rate. In addition, we found that GBPs stimulate ILP secretion from the insulin-producing cells, either directly or indirectly, thereby increasing insulin and insulin-like growth factor signaling activity throughout the body. Our findings fill an important gap in our understanding of how the fat body transmits nutritional information to the insulin producing cells to control body size. PMID:26928023

  17. Hyperinsulinemia and Insulin Resistance in Dopamine β-Hydroxylase Deficiency

    PubMed Central

    Arnold, Amy C.; Garland, Emily M.; Celedonio, Jorge E.; Raj, Satish R.; Abumrad, Naji N.; Biaggioni, Italo; Robertson, David; Luther, James M.

    2017-01-01

    Context: Dopamine β-hydroxylase (DBH) deficiency is a rare genetic disorder characterized by failure to convert dopamine to norepinephrine. DBH-deficient patients lack sympathetic adrenergic function and are therefore predisposed to orthostatic hypotension. DBH-deficient mice exhibit hyperinsulinemia, lower plasma glucose levels, and insulin resistance due to loss of tonic sympathetic inhibition of insulin secretion. The impact of DBH deficiency on glucose homeostasis in humans is unknown. Case Description: We describe the metabolic profile of an adolescent female DBH-deficient patient. The patient underwent genetic testing, cardiovascular autonomic function testing, and evaluation of insulin secretion and sensitivity with hyperglycemic clamp under treatment-naive conditions. All procedures were repeated after 1 year of treatment with the norepinephrine prodrug droxidopa (300 mg, 3 times a day). Genetic testing showed a homozygous mutation in the DBH gene (rs74853476). Under treatment-naive conditions, she had undetectable plasma epinephrine and norepinephrine levels, resulting in sympathetic noradrenergic failure and orthostatic hypotension (−32 mm Hg supine to seated). She had high adiposity (41%) and fasting plasma insulin levels (25 μU/mL), with normal glucose (91 mg/dL). Hyperglycemic clamp revealed increased glucose-stimulated insulin secretion and insulin resistance. Droxidopa restored plasma norepinephrine and improved orthostatic tolerance, with modest effects on glucose homeostasis. Conclusions: We provide evidence for impairment in cardiovascular autonomic regulation, hyperinsulinemia, enhanced glucose-stimulated insulin secretion, and insulin resistance in a DBH-deficient patient. These metabolic derangements were not corrected by chronic droxidopa treatment. These findings provide insight into the pathophysiology and treatment of DBH deficiency and into the importance of catecholaminergic mechanisms to resting metabolism. PMID:27778639

  18. Hyperinsulinemia and Insulin Resistance in Dopamine β-Hydroxylase Deficiency.

    PubMed

    Arnold, Amy C; Garland, Emily M; Celedonio, Jorge E; Raj, Satish R; Abumrad, Naji N; Biaggioni, Italo; Robertson, David; Luther, James M; Shibao, Cyndya A

    2017-01-01

    Dopamine β-hydroxylase (DBH) deficiency is a rare genetic disorder characterized by failure to convert dopamine to norepinephrine. DBH-deficient patients lack sympathetic adrenergic function and are therefore predisposed to orthostatic hypotension. DBH-deficient mice exhibit hyperinsulinemia, lower plasma glucose levels, and insulin resistance due to loss of tonic sympathetic inhibition of insulin secretion. The impact of DBH deficiency on glucose homeostasis in humans is unknown. We describe the metabolic profile of an adolescent female DBH-deficient patient. The patient underwent genetic testing, cardiovascular autonomic function testing, and evaluation of insulin secretion and sensitivity with hyperglycemic clamp under treatment-naive conditions. All procedures were repeated after 1 year of treatment with the norepinephrine prodrug droxidopa (300 mg, 3 times a day). Genetic testing showed a homozygous mutation in the DBH gene (rs74853476). Under treatment-naive conditions, she had undetectable plasma epinephrine and norepinephrine levels, resulting in sympathetic noradrenergic failure and orthostatic hypotension (-32 mm Hg supine to seated). She had high adiposity (41%) and fasting plasma insulin levels (25 μU/mL), with normal glucose (91 mg/dL). Hyperglycemic clamp revealed increased glucose-stimulated insulin secretion and insulin resistance. Droxidopa restored plasma norepinephrine and improved orthostatic tolerance, with modest effects on glucose homeostasis. We provide evidence for impairment in cardiovascular autonomic regulation, hyperinsulinemia, enhanced glucose-stimulated insulin secretion, and insulin resistance in a DBH-deficient patient. These metabolic derangements were not corrected by chronic droxidopa treatment. These findings provide insight into the pathophysiology and treatment of DBH deficiency and into the importance of catecholaminergic mechanisms to resting metabolism. Copyright © 2017 by the Endocrine Society

  19. Gender Specific Association of Serum Leptin and Insulinemic Indices with Nonalcoholic Fatty Liver Disease in Prediabetic Subjects

    PubMed Central

    Akter, Salima; Rahman, Mohammad Khalilur

    2015-01-01

    Adipose tissue-derived hormone leptin plays a functional role in glucose tolerance through its effects on insulin secretion and insulin sensitivity which also represent the risk factors for nonalcoholic fatty liver disease (NAFLD). The present study explored the gender specific association of serum leptin and insulinemic indices with NAFLD in Bangladeshi prediabetic subjects. Under a cross-sectional analytical design a total of 110 ultrasound examined prediabetic subjects, aged 25–68 years consisting of 57.3% male (55.6% non NAFLD and 44.4% NAFLD) and 42.7% female (57.4% non NAFLD and 42.6% NAFLD), were investigated. Insulin secretory function (HOMA%B) and insulin sensitivity (HOMA%S) were calculated from homeostasis model assessment (HOMA). Serum leptin showed significant positive correlation with fasting insulin (r = 0.530, P = 0.004), postprandial insulin (r = 0.384, P = 0.042) and HOMA-IR (r = 0.541, P = 0.003) as well as significant negative correlation with HOMA%S (r = -0.388, P = 0.046) and HOMA%B (r = -0.356, P = 0.039) in male prediabetic subjects with NAFLD. In multiple linear regression analysis, log transformed leptin showed significant positive association with HOMA-IR (β = 0.706, P <0.001) after adjusting the effects of body mass index (BMI), triglyceride (TG) and HOMA%B in male subjects with NAFLD. In binary logistic regression analysis, only log leptin [OR 1.29 95% (C.I) (1.11–1.51), P = 0.001] in male subjects as well as HOMA%B [OR 0.94 95% (C.I) (0.89–0.98), P = 0.012], HOMA-IR [OR 3.30 95% (C.I) (0.99–10.95), P = 0.049] and log leptin [OR 1.10 95% (C.I) (1.01–1.20), P = 0.026] in female subjects were found to be independent determinants of NAFLD after adjusting the BMI and TG. Serum leptin seems to have an association with NAFLD both in male and female prediabetic subjects and this association in turn, is mediated by insulin secretory dysfunction and insulin resistance among these subjects. PMID:26569494

  20. GSK-3β Function in Bone Regulates Skeletal Development, Whole-Body Metabolism, and Male Life Span

    PubMed Central

    Gillespie, J. R.; Bush, J. R.; Bell, G. I.; Aubrey, L. A.; Dupuis, H.; Ferron, M.; Kream, B.; DiMattia, G.; Patel, S.; Woodgett, J. R.; Karsenty, G.; Hess, D. A.; Beier, F.

    2016-01-01

    Glycogen synthase kinase 3 β (GSK-3β) is an essential negative regulator or “brake” on many anabolic-signaling pathways including Wnt and insulin. Global deletion of GSK-3β results in peri-natal lethality and various skeletal defects. The goal of our research was to determine GSK-3β cell-autonomous effects and postnatal roles in the skeleton. We used the 3.6-kb Col1a1 promoter to inactivate the Gsk3b gene (Col1a1-Gsk3b knockout) in skeletal cells. Mutant mice exhibit decreased body fat and postnatal bone growth, as well as delayed development of several skeletal elements. Surprisingly, the mutant mice display decreased circulating glucose and insulin levels despite normal expression of GSK-3β in metabolic tissues. We showed that these effects are due to an increase in global insulin sensitivity. Most of the male mutant mice died after weaning. Prior to death, blood glucose changed from low to high, suggesting a possible switch from insulin sensitivity to resistance. These male mice die with extremely large bladders that are preceded by damage to the urogenital tract, defects that are also seen type 2 diabetes. Our data suggest that skeletal-specific deletion of GSK-3β affects global metabolism and sensitizes male mice to developing type 2 diabetes. PMID:23904355

  1. 1,5-anhydroglucitol is associated with early-phase insulin secretion in chinese patients with newly diagnosed type 2 diabetes mellitus.

    PubMed

    Ma, Xiaojing; Hao, Yaping; Hu, Xiang; Luo, Yuqi; Deng, Zixuan; Zhou, Jian; Bao, Yuqian; Jia, Weiping

    2015-05-01

    The goal of the present study was to explore the correlations of 1,5-anhydroglucitol (l,5-AG), glycated hemoglobin (HbA1c), and glycated albumin (GA) with insulin sensitivity and secretion. In total, 302 patients with newly diagnosed type 2 diabetes mellitus (166 men, 136 women) were enrolled in this study. The homeostasis model assessment for insulin resistance (HOMA-IR) and homeostasis model assessment for β-cell function (HOMA-β) were calculated to determine the basal insulin sensitivity and secretion. The insulinogenic index (IGI) was used to evaluate early-phase insulin secretion. 1,5-AG and GA were assayed via the enzymatic method, and HbA1c was detected by high-pressure liquid chromatography. Among all 302 subjects, the serum 1,5-AG level was 13.1±7.2 μg/mL, and the HbA1c and GA levels [median (interquartile range)] were 6.7% (6.2-7.3%) and 17.7% (16.0-19.5%), respectively. Increased 1,5-AG quartiles were accompanied by trends toward a decreased HOMA-IR and an increased HOMA-β and IGI (for all trends, P<0.001). 1,5-AG was negatively associated with HOMA-IR (r=-0.200, P<0.001) and positively associated with HOMA-β and IGI (r=0.210 and 0.413, respectively; both P<0.001). 1,5-AG was independently related to HOMA-IR and HOMA-β and exhibited an independent positive association with IGI (standardized β=0.242, P<0.001). Additionally, both HbA1c and GA were independently correlated with HOMA-IR and HOMA-β. 1,5-AG is not only correlated with basal insulin sensitivity and secretion, but also closely associated with early-phase insulin secretion in Chinese patients with newly diagnosed type 2 diabetes mellitus.

  2. An injectable particle-hydrogel hybrid system for glucose-regulatory insulin delivery.

    PubMed

    Zhao, Fuli; Wu, Di; Yao, Dan; Guo, Ruiwei; Wang, Weiwei; Dong, Anjie; Kong, Deling; Zhang, Jianhua

    2017-12-01

    Long-term and daily subcutaneous injections of insulin for the treatment of insulin-dependent diabetic patients often lead to poor patient compliance and undesired complications. Phenylboronic acid (PBA)-based polymeric hydrogels have been widely considered as one of the most promising insulin delivery system to replace the frequent insulin injections. However, their applications are limited by clinically irrelevant glucose-responsive range, slow response rate, low tissue-adhesiveness and poor biodegradability, undesirable leakage at normoglycemic state. Herein, we report a novel implantable insulin hydrogel for glucose-regulated delivery of insulin based on a unique particle-hydrogel hybrid platform featuring fast glucose responsiveness at physiological pH, shear-thinning behavior for injection, tissue-adhesive function for long-lasting adherence, and full biodegradability for safe use. The system was thoroughly characterized both in vitro and in vivo and was demonstrated to hold these unique functions. Using streptozotocin-induced diabetic mice as a model, it was shown that a single subcutaneous injection of the insulin-loaded particle-hydrogel formulation led to quasi-steady-state blood glucose levels within the normal range for about two weeks. In addition, the preparation of the formulation only involved simple mixing and self-assembling processes, and thus it had great scalability and reproducibility for practical use. The highly feasible preparation, excellent performance, inherent biocompatibility and biodegradability make this novel composite hydrogel promising platform for diabetes therapy. Phenylboronic acid (PBA)-based polymeric hydrogels have been widely considered as one of the most promising insulin delivery system to replace the frequent insulin injections. However, these hydrogels, mostly based on a variety of PBA-containing acrylamide monomers, are still far from clinical reality. Building upon a unique particle-hydrogel hybrid platform, herein we report a novel implantable insulin storage and delivery system with multifunctionalities including fast glucose-sensitiveness at physiological pH, shear-thinning behavior for injection, tissue-adhesive function for long-lasting adherence, biodegradable materials for safe use and well-controlled insulin release. These unique functions were demonstrated through research both in vitro and in vivo. In addition, the preparation of the formulation was simple, and thus it had great scalability and reproducibility for practical use. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  3. Acupuncture treatment for insulin sensitivity of women with polycystic ovary syndrome and insulin resistance: a study protocol for a randomized controlled trial.

    PubMed

    Li, Juan; Ng, Ernest Hung Yu; Stener-Victorin, Elisabet; Hu, Zhenxing; Shao, Xiaoguang; Wang, Haiyan; Li, Meifang; Lai, Maohua; Xie, Changcai; Su, Nianjun; Yu, Chuyi; Liu, Jia; Wu, Taixiang; Ma, Hongxia

    2017-03-09

    Our prospective pilot study of acupuncture affecting insulin sensitivity on polycystic ovary syndrome (PCOS) combined with insulin resistance (IR) showed that acupuncture had a significant effect on improving the insulin sensitivity of PCOS. But there is still no randomized controlled trial to determine the effect of acupuncture on the insulin sensitivity in women with PCOS and IR. In this article, we present the protocol of a randomized controlled trial to compare the effect of true acupuncture on the insulin sensitivity of these patients compared with metformin and sham acupuncture. Acupuncture may be an effective therapeutic alternative that is superior to metformin and sham acupuncture in improving the insulin sensitivity of PCOS combined with IR. This study is a multi-center, controlled, double-blind, and randomized clinical trial aiming to evaluate the effect of acupuncture on the insulin sensitivity in PCOS combined with IR. In total 342 patients diagnosed with PCOS and IR will be enrolled. Participants will be randomized to one of the three groups: (1) true acupuncture + metformin placebo; (2) sham acupuncture + metformin, and (3) sham acupuncture + metformin placebo. Participants and assessors will be blinded. The acupuncture intervention will be given 3 days per week for a total of 48 treatment sessions during 4 months. Metformin (0.5 g per pill) or placebo will be given, three times per day, and for 4 months. Primary outcome measures are changes in homeostasis model assessment of insulin resistance (HOMA-IR) and improvement rate of HOMA-IR by oral glucose tolerance test (OGTT) and insulin releasing test (Ins). Secondary outcome measures are homeostasis model assessment-β (HOMA-β), area under the curve for glucose and insulin, frequency of regular menstrual cycles and ovulation, body composition, metabolic profile, hormonal profile, questionnaires, side effect profile, and expectation and credibility of treatment. Outcome measures are collected at baseline, at the end of treatments, and 3 months after the last acupuncture treatment. On completion of the screening visit, randomization will be conducted using a central randomization system. This study will investigate the effects of acupuncture on the insulin sensitivity of PCOS and IR women compared with metformin and sham acupuncture. We will test whether true acupuncture with needles placed in skeletal muscles and stimulated manually and by electrical stimulation is more effective than metformin and sham acupuncture with superficial needle placement with no manual or electrical stimulation in improving the insulin sensitivity in PCOS women with IR. ClinicalTrials.gov, NCT02491333 ; Chinese Clinical Trial Registry, ChiCTR-ICR-15006639. Registered on 24 June 2015.

  4. Chromium supplementation in non-obese non-diabetic subjects is associated with a decline in insulin sensitivity

    PubMed Central

    2012-01-01

    Background The use of chromium supplements is widespread for the prevention and treatment of diabetes mellitus but there are conflicting reports on efficacy, possibly reflecting discrepant effects across different populations. In the present studies, we test the hypothesis that chromium supplementation raises serum chromium levels and correspondingly improves insulin sensitivity. Methods A double blind placebo-controlled randomized trial was conducted on 31 non-obese, normoglycemic subjects. After baseline studies, the subjects were randomized to placebo or chromium picolinate 500 μg twice a day. The primary endpoint was change in insulin sensitivity as measured by euglycemic hyperinsulinemic clamp. Pre-specified secondary endpoints included fasting lipids, blood pressure, weight, body composition measured by DXA scan. Results After 16 weeks of chromium picolinate therapy there was no significant change in insulin sensitivity between groups (p=0.83). There was, however, a strong association between serum chromium and change in insulin resistance (β = -0.83, p=0.01), where subjects with the highest serum chromium had a worsening of insulin sensitivity. This effect could not be explained by changes in physiological parameters such as body weight, truncal fat and serum lipids with chromium therapy. Conclusions Chromium therapy did not improve insulin sensitivity in non-obese normoglycemic individuals. Further, subjects who have high serum chromium levels paradoxically had a decline in insulin sensitivity. Caution therefore should be exercised in recommending the use of this supplement. Trial registration The study was registered on the NIH registry (clinicaltrials.gov) and the identifier is NCT00846248 PMID:23194380

  5. Muscle-specific inflammation induced by MCP-1 overexpression does not affect whole-body insulin sensitivity in mice.

    PubMed

    Evers-van Gogh, Inkie J A; Oteng, Antwi-Boasiako; Alex, Sheril; Hamers, Nicole; Catoire, Milene; Stienstra, Rinke; Kalkhoven, Eric; Kersten, Sander

    2016-03-01

    Obesity is associated with a state of chronic low-grade inflammation that is believed to contribute to the development of skeletal muscle insulin resistance. However, the extent to which local and systemic elevation of cytokines, such as monocyte chemoattractant protein 1 (MCP-1), interferes with the action of insulin and promotes insulin resistance and glucose intolerance in muscle remains unclear. Here, we aim to investigate the effect of muscle-specific overexpression of MCP-1 on insulin sensitivity and glucose tolerance in lean and obese mice. We used Mck-Mcp-1 transgenic (Tg) mice characterised by muscle-specific overexpression of Mcp-1 (also known as Ccl2) and elevated plasma MCP-1 levels. Mice were fed either chow or high-fat diet for 10 weeks. Numerous metabolic variables were measured, including glucose and insulin tolerance tests, muscle insulin signalling and plasma NEFA, triacylglycerol, cholesterol, glucose and insulin. Despite clearly promoting skeletal muscle inflammation, muscle-specific overexpression of Mcp-1 did not influence glucose tolerance or insulin sensitivity in either lean chow-fed or diet-induced obese mice. In addition, plasma NEFA, triacylglycerol, cholesterol, glucose and insulin were not affected by MCP-1 overexpression. Finally, in vivo insulin-induced Akt phosphorylation in skeletal muscle did not differ between Mcp-1-Tg and wild-type mice. We show that increased MCP-1 production in skeletal muscle and concomitant elevated MCP-1 levels in plasma promote inflammation in skeletal muscle but do not influence insulin signalling and have no effect on insulin resistance and glucose tolerance in lean and obese mice. Overall, our data argue against MCP-1 promoting insulin resistance in skeletal muscle and raise questions about the impact of inflammation on insulin sensitivity in muscle.

  6. Zinc in Pancreatic Islet Biology, Insulin Sensitivity, and Diabetes

    PubMed Central

    Maret, Wolfgang

    2017-01-01

    About 20 chemical elements are nutritionally essential for humans with defined molecular functions. Several essential and nonessential biometals are either functional nutrients with antidiabetic actions or can be diabetogenic. A key question remains whether changes in the metabolism of biometals and biominerals are a consequence of diabetes or are involved in its etiology. Exploration of the roles of zinc (Zn) in this regard is most revealing because 80 years of scientific discoveries link zinc and diabetes. In pancreatic β- and α-cells, zinc has specific functions in the biochemistry of insulin and glucagon. When zinc ions are secreted during vesicular exocytosis, they have autocrine, paracrine, and endocrine roles. The membrane protein ZnT8 transports zinc ions into the insulin and glucagon granules. ZnT8 has a risk allele that predisposes the majority of humans to developing diabetes. In target tissues, increased availability of zinc enhances the insulin response by inhibiting protein tyrosine phosphatase 1B, which controls the phosphorylation state of the insulin receptor and hence downstream signalling. Inherited diseases of zinc metabolism, environmental exposures that interfere with the control of cellular zinc homeostasis, and nutritional or conditioned zinc deficiency influence the patho-biochemistry of diabetes. Accepting the view that zinc is one of the many factors in multiple gene-environment interactions that cause the functional demise of β-cells generates an immense potential for treating and perhaps preventing diabetes. Personalized nutrition, bioactive food, and pharmaceuticals targeting the control of cellular zinc in precision medicine are among the possible interventions. PMID:28401081

  7. Anti-inflammatory salicylate treatment alters the metabolic adaptations to lactation in dairy cattle

    PubMed Central

    Farney, Jaymelynn K.; Mamedova, Laman K.; Coetzee, Johann F.; KuKanich, Butch; Sordillo, Lorraine M.; Stoakes, Sara K.; Minton, J. Ernest; Hollis, Larry C.

    2013-01-01

    Adapting to the lactating state requires metabolic adjustments in multiple tissues, especially in the dairy cow, which must meet glucose demands that can exceed 5 kg/day in the face of negligible gastrointestinal glucose absorption. These challenges are met through the process of homeorhesis, the alteration of metabolic setpoints to adapt to a shift in physiological state. To investigate the role of inflammation-associated pathways in these homeorhetic adaptations, we treated cows with the nonsteroidal anti-inflammatory drug sodium salicylate (SS) for the first 7 days of lactation. Administration of SS decreased liver TNF-α mRNA and marginally decreased plasma TNF-α concentration, but plasma eicosanoids and liver NF-κB activity were unaltered during treatment. Despite the mild impact on these inflammatory markers, SS clearly altered metabolic function. Plasma glucose concentration was decreased by SS, but this was not explained by a shift in hepatic gluconeogenic gene expression or by altered milk lactose secretion. Insulin concentrations decreased in SS-treated cows on day 7 compared with controls, which was consistent with the decline in plasma glucose concentration. The revised quantitative insulin sensitivity check index (RQUICKI) was then used to assess whether altered insulin sensitivity may have influenced glucose utilization rate with SS. The RQUICKI estimate of insulin sensitivity was significantly elevated by SS on day 7, coincident with the decline in plasma glucose concentration. Salicylate prevented postpartum insulin resistance, likely causing excessive glucose utilization in peripheral tissues and hypoglycemia. These results represent the first evidence that inflammation-associated pathways are involved in homeorhetic adaptations to lactation. PMID:23678026

  8. Resistant starch can improve insulin sensitivity independently of the gut microbiota.

    PubMed

    Bindels, Laure B; Segura Munoz, Rafael R; Gomes-Neto, João Carlos; Mutemberezi, Valentin; Martínez, Inés; Salazar, Nuria; Cody, Elizabeth A; Quintero-Villegas, Maria I; Kittana, Hatem; de Los Reyes-Gavilán, Clara G; Schmaltz, Robert J; Muccioli, Giulio G; Walter, Jens; Ramer-Tait, Amanda E

    2017-02-07

    Obesity-related diseases, including type 2 diabetes and cardiovascular disease, have reached epidemic proportions in industrialized nations, and dietary interventions for their prevention are therefore important. Resistant starches (RS) improve insulin sensitivity in clinical trials, but the mechanisms underlying this health benefit remain poorly understood. Because RS fermentation by the gut microbiota results in the formation of physiologically active metabolites, we chose to specifically determine the role of the gut microbiota in mediating the metabolic benefits of RS. To achieve this goal, we determined the effects of RS when added to a Western diet on host metabolism in mice with and without a microbiota. RS feeding of conventionalized mice improved insulin sensitivity and redressed some of the Western diet-induced changes in microbiome composition. However, parallel experiments in germ-free littermates revealed that RS-mediated improvements in insulin levels also occurred in the absence of a microbiota. RS reduced gene expression of adipose tissue macrophage markers and altered cecal concentrations of several bile acids in both germ-free and conventionalized mice; these effects were strongly correlated with the metabolic benefits, providing a potential microbiota-independent mechanism to explain the physiological effects of RS. This study demonstrated that some metabolic benefits exerted by dietary RS, especially improvements in insulin levels, occur independently of the microbiota and could involve alterations in the bile acid cycle and adipose tissue immune modulation. This work also sets a precedent for future mechanistic studies aimed at establishing the causative role of the gut microbiota in mediating the benefits of bioactive compounds and functional foods.

  9. Phenotypic Characterization of Mice Carrying Homozygous Deletion of KLF11, a Gene in Which Mutations Cause Human Neonatal and MODY VII Diabetes

    PubMed Central

    Mathison, Angela; Escande, Carlos; Calvo, Ezequiel; Seo, Seungmae; White, Thomas; Salmonson, Ann; Faubion, William A.; Buttar, Navtej; Iovanna, Juan; Lomberk, Gwen; Chini, Eduardo N.

    2015-01-01

    We have previously shown that amino acid changes in the human Kruppel-Like Factor (KLF) 11 protein is associated with the development of maturity onset diabetes of the young VII, whereas complete inactivation of this pathway by the −331 human insulin mutation causes neonatal diabetes mellitus. Here, we report that Klf11−/− mice have decreased circulating insulin levels, alterations in the control of blood glucose and body weight, as well as serum dyslipidemia, but do not develop diabetes. Functional assays using ex vivo liver tissue sections demonstrate that Klf11−/− mice display increased insulin sensitivity. Genome-wide experiments validated by pathway-specific quantitative PCR arrays reveal that the Klf11−/− phenotype associates to alterations in the regulation of gene networks involved in lipid metabolism, in particular those regulated by peroxisome proliferator-activated receptor-γ. Combined, these results demonstrate that the major phenotype given by the whole-body deletion of Klf11 in mouse is not diabetes but increased insulin sensitivity, likely due to altered transcriptional regulation in target tissues. The absence of diabetes in the Klf11−/− mouse either indicates an interspecies difference for the role of this transcription factor in metabolic homeostasis between mouse and humans, or potentially highlights the fact that other molecular factors can compensate for its absence. Nevertheless, the data of this study, gathered at the whole-organism level, further support a role for KLF11 in metabolic processes like insulin sensitivity, which regulation is critical in several forms of diabetes. PMID:26248217

  10. Glucose Metabolism After Renal Transplantation

    PubMed Central

    Hecking, Manfred; Kainz, Alexander; Werzowa, Johannes; Haidinger, Michael; Döller, Dominik; Tura, Andrea; Karaboyas, Angelo; Hörl, Walter H.; Wolzt, Michael; Sharif, Adnan; Roden, Michael; Moro, Ermanno; Pacini, Giovanni; Port, Friedrich K.; Säemann, Marcus D.

    2013-01-01

    OBJECTIVE We determined prevalence, risk factors, phenotype, and pathophysiological mechanism of new-onset diabetes after transplantation (NODAT) to generate strategies for optimal pharmacological management of hyperglycemia in NODAT patients. RESEARCH DESIGN AND METHODS Retrospective cohort study comparing demographics, laboratory data, and oral glucose tolerance test (OGTT)-derived metabolic parameters from kidney transplant recipients versus subjects not receiving transplants. RESULTS Among 1,064 stable kidney transplant recipients (≥6 months posttransplantation), 113 (11%) had a history of NODAT and 132 (12%) had pretransplant diabetes. In the remaining patients, randomly assigned OGTTs showed a high prevalence of abnormal glucose metabolism (11% diabetes; 32% impaired fasting glucose, impaired glucose tolerance, or both), predominantly in older patients who received tacrolimus as the primary immunosuppressant. Compared with 1,357 nontransplant subjects, stable kidney transplant recipients had lower basal glucose, higher glycated hemoglobin, lower insulin secretion, and greater insulin sensitivity in each of the three subgroups, defined by OGTT 2-h glucose (<140, 140–199, ≥200 mg/dL). These findings were reinforced in linear spline interpolation models of insulin secretion and sensitivity (all P < 0.001) and in another regression model in which the estimated oral glucose insulin sensitivity index was substantially higher (by 79–112 mL/min m2) for transplant versus nontransplant subjects despite adjustments for age, sex, and BMI (all P < 0.001). CONCLUSIONS Glucose metabolism differs substantially between kidney transplant recipients and nontransplant controls. Because impaired insulin secretion appears to be the predominant pathophysiological feature after renal transplantation, early therapeutic interventions that preserve, maintain, or improve β-cell function are potentially beneficial in this population. PMID:23656979

  11. Influence of cattle temperament on blood serum fatty acid content

    USDA-ARS?s Scientific Manuscript database

    Cattle temperament has been reported to influence blood metabolites. Specifically, temperament was related with increased circulation of serum NEFA, decreased blood urea nitrogen, and reduced insulin sensitivity. Metabolic alterations such as these may impact cattle immune function, performance trai...

  12. Insulin restores neuronal nitric oxide synthase expression and function that is lost in diabetic gastropathy

    PubMed Central

    Watkins, Crystal C.; Sawa, Akira; Jaffrey, Samie; Blackshaw, Seth; Barrow, Roxanne K.; Snyder, Solomon H.; Ferris, Christopher D.

    2000-01-01

    Gastrointestinal dysfunction is common in diabetic patients. In genetic (nonobese diabetic) and toxin-elicited (streptozotocin) models of diabetes in mice, we demonstrate defects in gastric emptying and nonadrenergic, noncholinergic relaxation of pyloric muscle, which resemble defects in mice harboring a deletion of the neuronal nitric oxide synthase gene (nNOS). The diabetic mice manifest pronounced reduction in pyloric nNOS protein and mRNA. The decline of nNOS in diabetic mice does not result from loss of myenteric neurons. nNOS expression and pyloric function are restored to normal levels by insulin treatment. Thus diabetic gastropathy in mice reflects an insulin-sensitive reversible loss of nNOS. In diabetic animals, delayed gastric emptying can be reversed with a phosphodiesterase inhibitor, sildenafil. These findings have implications for novel therapeutic approaches and may clarify the etiology of diabetic gastropathy. PMID:10930440

  13. Potential benefits of weight loss in coronary heart disease.

    PubMed

    Ades, Philip A; Savage, Patrick D

    2014-01-01

    The prevalence of overweight, obesity and insulin resistance in patients with coronary heart disease (CHD) exceeds that of the general population. Obesity is associated with a constellation of coronary risk factors that predispose to the development and progression of CHD. Intentional weight loss, accomplished through behavioral weight loss and exercise, improves insulin sensitivity and associated cardio-metabolic risk factors such as lipid measures, blood pressure, measures of inflammation and vascular function both in healthy individuals and patients with CHD. Additionally, physical fitness, physical function and quality of life all improve. There is evidence that intentional weight loss prevents the onset of CHD in high risk overweight individuals. While weight loss associated improvements in insulin resistance, fitness and related risk factors strongly supports favorable prognostic effects in individuals with established CHD, further study is needed to determine if long-term clinical outcomes are improved. © 2014.

  14. Temporal Adaptive Changes in Contractility and Fatigability of Diaphragm Muscles from Streptozotocin-Diabetic Rats

    PubMed Central

    Brotto, Marco; Brotto, Leticia; Jin, J.-P.; Nosek, Thomas M.; Romani, Andrea

    2010-01-01

    Diabetes is characterized by ventilatory depression due to decreased diaphragm (DPH) function. This study investigated the changes in contractile properties of rat DPH muscles over a time interval encompassing from 4 days to 14 weeks after the onset of streptozotocin-induced diabetes, with and without insulin treatment for 2 weeks. Maximum tetanic force in intact DPH muscle strips and recovery from fatiguing stimulation were measured. An early (4-day) depression in contractile function in diabetic DPH was followed by gradual improvement in muscle function and fatigue recovery (8 weeks). DPH contractile function deteriorated again at 14 weeks, a process that was completely reversed by insulin treatment. Maximal contractile force and calcium sensitivity assessed in Triton-skinned DPH fibers showed a similar bimodal pattern and the same beneficial effect of insulin treatment. While an extensive analysis of the isoforms of the contractile and regulatory proteins was not conducted, Western blot analysis of tropomyosin suggests that the changes in diabetic DPH response depended, at least in part, on a switch in fiber type. PMID:20467472

  15. Temporal adaptive changes in contractility and fatigability of diaphragm muscles from streptozotocin-diabetic rats.

    PubMed

    Brotto, Marco; Brotto, Leticia; Jin, J-P; Nosek, Thomas M; Romani, Andrea

    2010-01-01

    Diabetes is characterized by ventilatory depression due to decreased diaphragm (DPH) function. This study investigated the changes in contractile properties of rat DPH muscles over a time interval encompassing from 4 days to 14 weeks after the onset of streptozotocin-induced diabetes, with and without insulin treatment for 2 weeks. Maximum tetanic force in intact DPH muscle strips and recovery from fatiguing stimulation were measured. An early (4-day) depression in contractile function in diabetic DPH was followed by gradual improvement in muscle function and fatigue recovery (8 weeks). DPH contractile function deteriorated again at 14 weeks, a process that was completely reversed by insulin treatment. Maximal contractile force and calcium sensitivity assessed in Triton-skinned DPH fibers showed a similar bimodal pattern and the same beneficial effect of insulin treatment. While an extensive analysis of the isoforms of the contractile and regulatory proteins was not conducted, Western blot analysis of tropomyosin suggests that the changes in diabetic DPH response depended, at least in part, on a switch in fiber type.

  16. In vitro responsiveness of human muscle cell peroxisome proliferator-activated receptor δ reflects donors' insulin sensitivity in vivo.

    PubMed

    Ordelheide, Anna-Maria; Heni, Martin; Thamer, Claus; Machicao, Fausto; Fritsche, Andreas; Stefan, Norbert; Häring, Hans-Ulrich; Staiger, Harald

    2011-12-01

    Peroxisome proliferator-activated receptor δ (PPARδ) activation enhances muscular fatty acid oxidation and oxidative phosphorylation, and muscle's oxidative capacity positively associates with whole-body insulin sensitivity. Therefore, we asked here whether human muscle cell PPARD expression is a determinant of donors' insulin sensitivity. Skeletal muscle cells derived from 38 nondiabetic donors were differentiated in vitro to myotubes, and gene (mRNA) expression was quantified by real-time RT-PCR. Donors' insulin sensitivity was calculated from plasma insulin and glucose levels during oral glucose tolerance test (OGTT) and hyperinsulinemic-euglycemic clamp. Basal myotube PPARD expression was closely related to the expression of its target genes PDK4 and ANGPTL4 (P = 0·0312 and P = 0·0003, respectively). Basal PPARD, PDK4 and ANGPTL4 expression levels were not associated with donors' insulin sensitivity (P > 0·2, all). Treatment of myotubes with a selective high-affinity PPARδ agonist (GW501516) did not change mean PPARD, but enhanced mean PDK4 and ANGPTL4 expression 13- and 16-fold, respectively (P < 0·0001, both). The individual PDK4 and ANGPTL4 expression levels reached upon GW501516 treatment were associated with donors' insulin sensitivity neither (P > 0·2, both). However, GW501516-mediated fold increments in PDK4 and ANGPTL4 expression, reflecting PPARδ responsiveness, were positively associated with donors' insulin sensitivity derived from OGTT (P = 0·0182 and P = 0·0231, respectively) and hyperinsulinemic-euglycemic clamp (P = 0·0046 and P = 0·0258, respectively). Using a highly selective pharmacological tool, we show here that the individual responsiveness of human muscle cell PPARδ, rather than the absolute PPARD expression level, represents a major determinant of insulin sensitivity. © 2011 The Authors. European Journal of Clinical Investigation © 2011 Stichting European Society for Clinical Investigation Journal Foundation.

  17. Strength Exercise Improves Muscle Mass and Hepatic Insulin Sensitivity in Obese Youth

    PubMed Central

    van der Heijden, Gert-Jan; Wang, Zhiyue J.; Chu, Zili; Toffolo, Gianna; Manesso, Erica; Sauer, Pieter J.J.; Sunehag, Agneta L.

    2010-01-01

    Introduction Data are limited on the metabolic effects of resistance exercise (strength training) in adolescents. Purpose The objective of this study was to determine whether a controlled resistance exercise program without dietary intervention or weight loss, reduces body fat accumulation, increases lean body mass, and improves insulin sensitivity and glucose metabolism in sedentary obese Hispanic adolescents. Methods Twelve obese adolescents (15.5±0.5y; 35.3 ±0.8kg/m2;40.8±1.5% body fat), completed a 12 wk resistance exercise program (2×1h/wk, exercising all major muscle groups). At baseline and completion of the program, body composition was measured by DXA, abdominal fat distribution by Magnetic Resonance Imaging, hepatic and intramyocellular fat by Magnetic Resonance Spectroscopy, peripheral insulin sensitivity by the Stable Labeled IV Glucose Tolerance Test and hepatic insulin sensitivity by the Hepatic Insulin Sensitivity Index =1000/(GPR*fasting insulin). Glucose production rate (GPR), gluconeogenesis and glycogenolysis were quantified using Stable Isotope-Gas Chromatography/Mass Spectrometry techniques. Results All participants were normoglycemic. The exercise program resulted in significant strength gain in both upper and lower body muscle groups. Body weight increased from 97.0±3.8 to 99.6±4.2 kg (p<0.01). The major part (~80%) was accounted for by increased lean body mass (55.7±2.8 to 57.9±3.0 kg; p≤0.01).Total, visceral, hepatic and intramyocellular fat content remained unchanged. Hepatic insulin sensitivity increased by 24±9% (p<0.05), while peripheral insulin sensitivity did not change significantly. GPR decreased by 8±1% (p<0.01) due to a 12±5% decrease in glycogenolysis (p<0.05). Conclusion We conclude that a controlled resistance exercise program without weight loss increases strength and lean body mass, improves hepatic insulin sensitivity and decreases GPR without affecting total fat mass or visceral, hepatic and intramyocellular fat content. PMID:20351587

  18. Acute activation of GLP-1-expressing neurons promotes glucose homeostasis and insulin sensitivity.

    PubMed

    Shi, Xuemei; Chacko, Shaji; Li, Feng; Li, Depei; Burrin, Douglas; Chan, Lawrence; Guan, Xinfu

    2017-11-01

    Glucagon-like peptides are co-released from enteroendocrine L cells in the gut and preproglucagon (PPG) neurons in the brainstem. PPG-derived GLP-1/2 are probably key neuroendocrine signals for the control of energy balance and glucose homeostasis. The objective of this study was to determine whether activation of PPG neurons per se modulates glucose homeostasis and insulin sensitivity in vivo. We generated glucagon (Gcg) promoter-driven Cre transgenic mice and injected excitatory hM3Dq-mCherry AAV into their brainstem NTS. We characterized the metabolic impact of PPG neuron activation on glucose homeostasis and insulin sensitivity using stable isotopic tracers coupled with hyperinsulinemic euglycemic clamp. We showed that after ip injection of clozapine N-oxide, Gcg-Cre lean mice transduced with hM3Dq in the brainstem NTS downregulated basal endogenous glucose production and enhanced glucose tolerance following ip glucose tolerance test. Moreover, acute activation of PPG neurons NTS enhanced whole-body insulin sensitivity as indicated by increased glucose infusion rate as well as augmented insulin-suppression of endogenous glucose production and gluconeogenesis. In contrast, insulin-stimulation of glucose disposal was not altered significantly. We conclude that acute activation of PPG neurons in the brainstem reduces basal glucose production, enhances intraperitoneal glucose tolerance, and augments hepatic insulin sensitivity, suggesting an important physiological role of PPG neurons-mediated circuitry in promoting glycemic control and insulin sensitivity. Copyright © 2017 The Authors. Published by Elsevier GmbH.. All rights reserved.

  19. Protein-restriction diet during the suckling phase programs rat metabolism against obesity and insulin resistance exacerbation induced by a high-fat diet in adulthood.

    PubMed

    Martins, Isabela Peixoto; de Oliveira, Júlio Cezar; Pavanello, Audrei; Matiusso, Camila Cristina Ianoni; Previate, Carina; Tófolo, Laize Peron; Ribeiro, Tatiane Aparecida; da Silva Franco, Claudinéia Conationi; Miranda, Rosiane Aparecida; Prates, Kelly Valério; Alves, Vander Silva; Francisco, Flávio Andrade; de Moraes, Ana Maria Praxedes; de Freitas Mathias, Paulo Cezar; Malta, Ananda

    2018-04-03

    Protein restriction during the suckling phase can malprogram rat offspring to a lean phenotype associated with metabolic dysfunctions later in life. We tested whether protein-caloric restriction during lactation can exacerbate the effect of a high-fat (HF) diet at adulthood. To test this hypothesis, we fed lactating Wistar dams with a low-protein (LP; 4% protein) diet during the first 2 weeks of lactation or a normal-protein (NP; 23% protein) diet throughout lactation. Rat offspring from NP and LP mothers received a normal-protein diet until 60 days old. At this time, a batch of animals from both groups was fed an HF (35% fat) diet, while another received an NF (7% fat) diet. Maternal protein-caloric restriction provoked lower body weight and fat pad stores, hypoinsulinemia, glucose intolerance, higher insulin sensitivity, reduced insulin secretion and altered autonomic nervous system (ANS) function in adult rat offspring. At 90 days old, NP rats fed an HF diet in adulthood displayed obesity, impaired glucose homeostasis and altered insulin secretion and ANS activity. Interestingly, the LP/HF group also presented fat pad and body weight gain, altered glucose homeostasis, hyperleptinemia and impaired insulin secretion but at a smaller magnitude than the NP-HF group. In addition, LP/HF rats displayed elevated insulin sensitivity. We concluded that protein-caloric restriction during the first 14 days of life programs the rat metabolism against obesity and insulin resistance exacerbation induced by an obesogenic HF diet. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Neural Correlates of Stress- and Food Cue–Induced Food Craving in Obesity

    PubMed Central

    Jastreboff, Ania M.; Sinha, Rajita; Lacadie, Cheryl; Small, Dana M.; Sherwin, Robert S.; Potenza, Marc N.

    2013-01-01

    OBJECTIVE Obesity is associated with alterations in corticolimbic-striatal brain regions involved in food motivation and reward. Stress and the presence of food cues may each motivate eating and engage corticolimibic-striatal neurocircuitry. It is unknown how these factors interact to influence brain responses and whether these interactions are influenced by obesity, insulin levels, and insulin sensitivity. We hypothesized that obese individuals would show greater responses in corticolimbic-striatal neurocircuitry after exposure to stress and food cues and that brain activations would correlate with subjective food craving, insulin levels, and HOMA-IR. RESEARCH DESIGN AND METHODS Fasting insulin levels were assessed in obese and lean subjects who were exposed to individualized stress and favorite-food cues during functional MRI. RESULTS Obese, but not lean, individuals exhibited increased activation in striatal, insular, and hypothalamic regions during exposure to favorite-food and stress cues. In obese but not lean individuals, food craving, insulin, and HOMA-IR levels correlated positively with neural activity in corticolimbic-striatal brain regions during favorite-food and stress cues. The relationship between insulin resistance and food craving in obese individuals was mediated by activity in motivation-reward regions including the striatum, insula, and thalamus. CONCLUSIONS These findings demonstrate that obese, but not lean, individuals exhibit increased corticolimbic-striatal activation in response to favorite-food and stress cues and that these brain responses mediate the relationship between HOMA-IR and food craving. Improving insulin sensitivity and in turn reducing corticolimbic-striatal reactivity to food cues and stress may diminish food craving and affect eating behavior in obesity. PMID:23069840

  1. Low intensity exercise prevents disturbances in rat cardiac insulin signaling and endothelial nitric oxide synthase induced by high fructose diet.

    PubMed

    Stanišić, Jelena; Korićanac, Goran; Ćulafić, Tijana; Romić, Snježana; Stojiljković, Mojca; Kostić, Milan; Pantelić, Marija; Tepavčević, Snežana

    2016-01-15

    Increase in fructose consumption together with decrease in physical activity contributes to the development of metabolic syndrome and consequently cardiovascular diseases. The current study examined the preventive role of exercise on defects in cardiac insulin signaling and function of endothelial nitric oxide synthase (eNOS) in fructose fed rats. Male Wistar rats were divided into control, sedentary fructose (received 10% fructose for 9 weeks) and exercise fructose (additionally exposed to low intensity exercise) groups. Concentration of triglycerides, glucose, insulin and visceral adipose tissue weight were determined to estimate metabolic syndrome development. Expression and/or phosphorylation of cardiac insulin receptor (IR), insulin receptor substrate 1 (IRS1), tyrosine-specific protein phosphatase 1B (PTP1B), Akt, extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) and eNOS were evaluated. Fructose overload increased visceral adipose tissue, insulin concentration and homeostasis model assessment index. Exercise managed to decrease visceral adiposity and insulin level and to increase insulin sensitivity. Fructose diet increased level of cardiac PTP1B and pIRS1 (Ser307), while levels of IR and ERK1/2, as well as pIRS1 (Tyr 632), pAkt (Ser473, Thr308) and pERK1/2 were decreased. These disturbances were accompanied by reduced phosphorylation of eNOS at Ser1177. Exercise managed to prevent most of the disturbances in insulin signaling caused by fructose diet (except phosphorylation of IRS1 at Tyr 632 and phosphorylation and protein expression of ERK1/2) and consequently restored function of eNOS. Low intensity exercise could be considered as efficient treatment of cardiac insulin resistance induced by fructose diet. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  2. Impact of Vitamin D Replacement on Markers of Glucose Metabolism and Cardio-Metabolic Risk in Women with Former Gestational Diabetes--A Double-Blind, Randomized Controlled Trial.

    PubMed

    Yeow, Toh Peng; Lim, Shueh Lin; Hor, Chee Peng; Khir, Amir S; Wan Mohamud, Wan Nazaimoon; Pacini, Giovanni

    2015-01-01

    Gestational Diabetes Mellitus (GDM) and vitamin D deficiency are related to insulin resistance and impaired beta cell function, with heightened risk for future development of diabetes. We evaluated the impact of vitamin D supplementation on markers of glucose metabolism and cardio metabolic risk in Asian women with former GDM and hypovitaminosis D. In this double blind, randomized controlled trial, 26 participants were randomized to receive either daily 4000 IU vitamin D3 or placebo capsules. 75 g Oral Glucose Tolerance Test (OGTT) and biochemistry profiles were performed at baseline and 6 month visits. Mathematical models, using serial glucose, insulin and C peptide measurements from OGTT, were employed to calculate insulin sensitivity and beta cell function. Thirty three (76%) women with former GDM screened had vitamin D level of <50 nmol/L at baseline. Supplementation, when compared with placebo, resulted in increased vitamin D level (+51.1 nmol/L vs 0.2 nmol/L, p<0.001) and increased fasting insulin (+20% vs 18%, p = 0.034). The vitamin D group also demonstrated a 30% improvement in disposition index and an absolute 0.2% (2 mmol/mol) reduction in HbA1c. There was no clear change in insulin sensitivity or markers of cardio metabolic risk. This study highlighted high prevalence of vitamin D deficiency among Asian women with former GDM. Six months supplementation with 4000 IU of vitamin D3 safely restored the vitamin D level, improved basal pancreatic beta-cell function and ameliorated the metabolic state. There was no effect on markers of cardio metabolic risk. Further mechanistic studies exploring the role of vitamin D supplementation on glucose homeostasis among different ethnicities may be needed to better inform future recommendations for these women with former GDM at high risk of both hypovitaminosis D and future diabetes.

  3. Are we optimizing gestational diabetes treatment with glyburide? The pharmacologic basis for better clinical practice

    PubMed Central

    Hebert, MF; Ma, X; Naraharisetti, SB; Krudys, KM; Umans, JG; Hankins, GDV; Caritis, SN; Miodovnik, M; Mattison, DR; Unadkat, JD; Kelly, EJ; Blough, D; Cobelli, C; Ahmed, MS; Snodgrass, WR; Carr, DB; Easterling, TR; Vicini, P

    2009-01-01

    Glyburide’s PK and PD have not been studied in women with gestational diabetes mellitus (GDM). The objective was to assess steady-state PK of glyburide as well as insulin sensitivity, beta-cell responsivity and overall disposition indices following a mixed meal tolerance test (MMTT) in GDM (n=40), non-pregnant type 2 diabetic (T2DM) (n=26) and healthy pregnant (n=40, MMTT only) women. At equivalent doses, glyburide plasma concentrations were ~50% lower in pregnancy compared to non-pregnant women. Average glyburide umbilical cord to maternal plasma concentration ratio at the time of delivery was 0.7 ± 0.4. Insulin sensitivity was ~5-fold lower in women with GDM compared to healthy pregnancy. Despite comparable beta-cell responsivity index, average beta-cell function corrected for insulin resistance was >3.5- fold lower in women with glyburide-treated GDM than healthy pregnancy. Women with GDM that fail glyburide may benefit from alternate medication selection or dosage escalation, though fetal safety should be considered. PMID:19295505

  4. Insulin sensitivity and diabetic kidney disease in children and adolescents with type 2 diabetes: an observational analysis of data from the today clinical trial

    USDA-ARS?s Scientific Manuscript database

    Diabetic kidney disease is a major cause of premature mortality in type 2 diabetes mellitus (T2DM). Worsening insulin sensitivity independent of glycemic control may contribute to the development of diabetic kidney disease. We investigated the longitudinal association of insulin sensitivity with hyp...

  5. Insulin-like growth factor-I and insulin-like growth factor binding protein-3 cotreatment versus insulin-like growth factor-I alone in two brothers with growth hormone insensitivity syndrome: effects on insulin sensitivity, body composition and linear growth.

    PubMed

    Ekström, Klas; Carlsson-Skwirut, Christine; Ritzén, E Martin; Bang, Peter

    2011-01-01

    Growth hormone insensitivity syndrome (GHIS) is caused by a defective growth hormone receptor (GHR) and is associated with insulin-like growth factor-I (IGF-I) deficiency, severely short stature and, from adolescence, fasting hyperglycemia and obesity. We studied the effects of treatment with IGF-I in either a 1:1 molar complex with IGFBP-3 (IGF-I/BP-3-Tx) or with IGF-I alone (IGF-I-Tx) on metabolism and linear growth. Two brothers, compound heterozygous for a GHR gene defect, were studied. After 8 months without treatment, we examined the short- and long-term effects of IGF-I/BP-3-Tx and, subsequently, IGF-I-Tx on 12-hour overnight levels of IGF-I, GH, insulin, IGFBP-1, insulin sensitivity by hyperinsulinemic euglycemic clamp, body composition by dual-energy X-ray absorptiometry and linear growth. Mean overnight levels of insulin decreased and IGFBP-1, a measure of hepatic insulin sensitivity, increased on both regimens, but was more pronounced on IGF-I-Tx. Insulin sensitivity by clamp showed no consistent changes. Lean body mass increased and abdominal fat mass decreased in both subjects on IGF-I-Tx. However, the changes were inconsistent during IGF-I/BP-3-Tx. Height velocity was low without treatment, increased slightly on IGF-I/BP-3-Tx and doubled on IGF-I-Tx. Both modalities of IGF-I improved determinants of hepatic insulin sensitivity, body composition and linear growth rate; however, IGF-I alone seemed to be more efficient. Copyright © 2011 S. Karger AG, Basel.

  6. Common Genetic Variation in the Human FNDC5 Locus, Encoding the Novel Muscle-Derived ‘Browning’ Factor Irisin, Determines Insulin Sensitivity

    PubMed Central

    Staiger, Harald; Böhm, Anja; Scheler, Mika; Berti, Lucia; Machann, Jürgen; Schick, Fritz; Machicao, Fausto; Fritsche, Andreas; Stefan, Norbert; Weigert, Cora; Krook, Anna; Häring, Hans-Ulrich; de Angelis, Martin Hrabě

    2013-01-01

    Aims/hypothesis Recently, the novel myokine irisin was described to drive adipose tissue ‘browning’, to increase energy expenditure, and to improve obesity and insulin resistance in high fat-fed mice. Here, we assessed whether common single nucleotide polymorphisms (SNPs) in the FNDC5 locus, encoding the irisin precursor, contribute to human prediabetic phenotypes (overweight, glucose intolerance, insulin resistance, impaired insulin release). Methods A population of 1,976 individuals was characterized by oral glucose tolerance tests and genotyped for FNDC5 tagging SNPs. Subgroups underwent hyperinsulinaemic-euglycaemic clamps, magnetic resonance imaging/spectroscopy, and intravenous glucose tolerance tests. From 37 young and 14 elderly participants recruited in two different centres, muscle biopsies were obtained for the preparation of human myotube cultures. Results After appropriate adjustment and Bonferroni correction for the number of tested variants, SNPs rs16835198 and rs726344 were associated with in vivo measures of insulin sensitivity. Via interrogation of publicly available data from the Meta-Analyses of Glucose and Insulin-related traits Consortium, rs726344’s effect on insulin sensitivity was replicated. Moreover, novel data from human myotubes revealed a negative association between FNDC5 expression and appropriately adjusted in vivo measures of insulin sensitivity in young donors. This finding was replicated in myotubes from elderly men. Conclusions/interpretation This study provides evidence that the FNDC5 gene, encoding the novel myokine irisin, determines insulin sensitivity in humans. Our gene expression data point to an unexpected insulin-desensitizing effect of irisin. PMID:23637927

  7. Developmental Programming: Impact of Gestational Steroid and Metabolic Milieus on Adiposity and Insulin Sensitivity in Prenatal Testosterone-Treated Female Sheep.

    PubMed

    Cardoso, Rodolfo C; Veiga-Lopez, Almudena; Moeller, Jacob; Beckett, Evan; Pease, Anthony; Keller, Erica; Madrigal, Vanessa; Chazenbalk, Gregorio; Dumesic, Daniel; Padmanabhan, Vasantha

    2016-02-01

    Prenatally testosterone (T)-treated sheep present metabolic disruptions similar to those seen in women with polycystic ovary syndrome. These females exhibit an increased ratio of small to large adipocytes, which may be the earliest event in the development of adult insulin resistance. Additionally, our longitudinal studies suggest the existence of a period of compensatory adaptation during development. This study tested whether 1) in utero cotreatment of prenatally T-treated sheep with androgen antagonist (flutamide) or insulin sensitizer (rosiglitazone) prevents juvenile insulin resistance and adult changes in adipocyte size; and 2) visceral adiposity and insulin sensitivity are both unaltered during early adulthood, confirming the predicted developmental trajectory in this animal model. Insulin sensitivity was tested during juvenile development and adipose tissue distribution, adipocyte size, and concentrations of adipokines were determined during early adulthood. Prenatal T-treated females manifested juvenile insulin resistance, which was prevented by prenatal rosiglitazone cotreatment. Neither visceral adiposity nor insulin sensitivity differed between groups during early adulthood. Prenatal T-treated sheep presented an increase in the relative proportion of small adipocytes, which was not substantially prevented by either prenatal intervention. A large effect size was observed for increased leptin concentrations in prenatal T-treated sheep compared with controls, which was prevented by prenatal rosiglitazone. In conclusion, gestational alterations in insulin-glucose homeostasis likely play a role in programming insulin resistance, but not adipocyte size distribution, in prenatal T-treated sheep. Furthermore, these results support the notion that a period of compensatory adaptation of the metabolic system to prenatal T exposure occurs between puberty and adulthood.

  8. Artemisia scoparia Enhances Adipocyte Development and Endocrine Function In Vitro and Enhances Insulin Action In Vivo

    PubMed Central

    Richard, Allison J.; Fuller, Scott; Fedorcenco, Veaceslav; Beyl, Robbie; Burris, Thomas P.; Mynatt, Randall; Ribnicky, David M.; Stephens, Jacqueline M.

    2014-01-01

    Background Failure of adipocytes to expand during periods of energy excess can result in undesirable metabolic consequences such as ectopic fat accumulation and insulin resistance. Blinded screening studies have indicated that Artemisia scoparia (SCO) extracts can enhance adipocyte differentiation and lipid accumulation in cultured adipocytes. The present study tested the hypothesis that SCO treatment modulates fat cell development and function in vitro and insulin sensitivity in adipose tissue in vivo. Methods In vitro experiments utilized a Gal4-PPARγ ligand binding domain (LBD) fusion protein-luciferase reporter assay to examine PPARγ activation. To investigate the ability of SCO to modulate adipogenesis and mature fat cell function in 3T3-L1 cells, neutral lipid accumulation, gene expression, and protein secretion were measured by Oil Red O staining, qRT-PCR, and immunoblotting, respectively. For the in vivo experiments, diet-induced obese (DIO) C57BL/6J mice were fed a high-fat diet (HFD) or HFD containing 1% w/w SCO for four weeks. Body weight and composition, food intake, and fasting glucose and insulin levels were measured. Phospho-activation and expression of insulin-sensitizing proteins in epididymal adipose tissue (eWAT) were measured by immunoblotting. Results Ethanolic extracts of A. scoparia significantly activated the PPARγ LBD and enhanced lipid accumulation in differentiating 3T3-L1 cells. SCO increased the transcription of several PPARγ target genes in differentiating 3T3-L1 cells and rescued the negative effects of tumor necrosis factor α on production and secretion of adiponectin and monocyte chemoattractant protein-1 in fully differentiated fat cells. DIO mice treated with SCO had elevated adiponectin levels and increased phosphorylation of AMPKα in eWAT when compared to control mice. In SCO-treated mice, these changes were also associated with decreased fasting insulin and glucose levels. Conclusion SCO has metabolically beneficial effects on adipocytes in vitro and adipose tissue in vivo, highlighting its potential as a metabolically favorable botanical supplement. PMID:24915004

  9. Anti-Diabetic Potential of Ocimum gratissimum Leaf Fractions in Fortified Diet-Fed Streptozotocin Treated Rat Model of Type-2 Diabetes

    PubMed Central

    Umar, Isamila A.; James, Dorcas B.; Inuwa, Hajiya M.

    2017-01-01

    Background: Ocimum gratissimum (OG) is used in the traditional management of diabetes in Nigeria. This study investigated the anti-diabetic potential of OG leaf fractions (OGLF) in a rat model of Type-2 diabetes (T2D). Methods: Methanol crude extract of OG leaf was fractionated with solvents of increasing order of polarity (n-hexane, chloroform, ethyl-acetate, n-butanol and water). The anti-diabetic potential of the fractions was evaluated in vivo. T2D was induced in Albino Wistar rats and treated with OGLF. Results: The T2D rats showed significant elevation in serum levels of fasting blood glucose (FBG), liver and kidney function biomarkers. At 4-week of intervention with OGLF, the untreated diabetic control group maintained severe hyperglycaemia in the presence of 61.7% serum insulin, 17.3% pancreatic β-cell function (HOMA-β) and 51.5% Insulin sensitivity. The glucose tolerance ability was enhanced in the n-butanol-fraction (OGb) treated group. With 74.8% available serum insulin and 38.6% improvement in insulin sensitivity, the OGb treated group had a 63.5% reduction in FBG and it was found to be most effective as it ameliorates a majority of the changes caused in the studied parameters in diabetic rats. Conclusions: The data from this study suggest that OGb fraction is a potential candidate for the development of an effective drug for the management of T2D. PMID:29019956

  10. [THE CHANGES OF NOCICEPTIVE THRESHOLD AND ACTIVITY OF THE ADENYLYL CYCLASE SYSTEM IN THE SKELETAL MUSCLES OF RATS WITH ACUTE AND MILD TYPE 1 DIABETES MELLITUS ].

    PubMed

    Shipilov, V N; Trost, A M; Chistyakova, O V; Derkach, K V; Shpakov, A O

    2016-02-01

    Diabetic peripheral neuropathy (DPN) is one of the most common complications of the type 1 diabetes mellitus (DM1). The aim of the work was to study the dynamics of a painful DPN and functional state of the hormone-sensitive ACSS in the skeletal muscles of rats with the models of acute and mild DM1, as well as the study of impact on them of insulin therapy with different ways of hormone delivery - intranasal and peripheral. In both models of DM1, the level of nociceptive threshold in rats decreased and the stimulatory effects of guanine nucleotides (GppNHp) and adrenergic agonists (isoproterenol, BRL-37344) on adenylyl cyclase (AC) activity were attenuated. The AC stimulating effect of relaxin decreased in animals with acute DM1, but in mild DM1, the decrease was insignificant. Peripheral administration of insulin in rats with acute DM1 increased the nociceptive threshold and partially restored the AC effect of ß 3-agonist BRL-37344. Intranasal administration of insulin in rats with DM1 also increased the nociceptive threshold and partially restored the basal and BRL-37344-stimulated AC activity in the skeletal muscles of diabetic animals. Thus, in the skeletal muscles of rats with acute and mild DM1 the nociceptive sensitivity and the functions of ACSS were disturbed, and they were partially restored by the treatment with peripheral (acute DM1) or intranasal (mild DM1) insulin.

  11. Anti-Diabetic Potential of Ocimum gratissimum Leaf Fractions in Fortified Diet-Fed Streptozotocin Treated Rat Model of Type-2 Diabetes.

    PubMed

    Okoduwa, Stanley I R; Umar, Isamila A; James, Dorcas B; Inuwa, Hajiya M

    2017-10-11

    Background : Ocimum gratissimum (OG) is used in the traditional management of diabetes in Nigeria. This study investigated the anti-diabetic potential of OG leaf fractions (OGLF) in a rat model of Type-2 diabetes (T2D). Method : Methanol crude extract of OG leaf was fractionated with solvents of increasing order of polarity ( n -hexane, chloroform, ethyl-acetate, n -butanol and water). The anti-diabetic potential of the fractions was evaluated in vivo. T2D was induced in Albino Wistar rats and treated with OGLF. Result : The T2D rats showed significant elevation in serum levels of fasting blood glucose (FBG), liver and kidney function biomarkers. At 4-weeks of intervention with OGLF, the untreated diabetic control group maintained severe hyperglycaemia in the presence of 61.7% serum insulin, 17.3% pancreatic β-cell function (HOMA-β) and 51.5% Insulin sensitivity. The glucose tolerance ability was enhanced in the n -butanol-fraction (OGb) treated group. With 74.8% available serum insulin and 38.6% improvement in insulin sensitivity, the OGb treated group had a 63.5% reduction in FBG and it was found to be most effective as it ameliorates a majority of the changes caused in the studied parameters in diabetic rats. Conclusions : The data from this study suggest that OGb fraction is a potential candidate for the development of an effective drug for the management of T2D.

  12. Effect of high protein vs high carbohydrate intake on insulin sensitivity, body weight, hemoglobin A1c, and blood pressure in patients with type 2 diabetes mellitus.

    PubMed

    Sargrad, Karin R; Homko, Carol; Mozzoli, Maria; Boden, Guenther

    2005-04-01

    Extremely low carbohydrate/high protein diets are popular methods of weight loss. Compliance with these diets is poor and long-term effectiveness and the safety of these diets for patients with type 2 diabetes is not known. The objective of the current study was to evaluate effects of less extreme changes in carbohydrate or protein diets on weight, insulin sensitivity, glycemic control, cardiovascular risk factors (blood pressure, lipid levels), and renal function in obese inner-city patients with type 2 diabetes. Study patients were admitted to the General Clinical Research Center for 24 hours for initial tests including a hyperinsulinemic-euglycemic clamp (for measurement of insulin sensitivity), bioelectrical impedance analysis (BIA) and anthropometric measurements (for assessment of body composition), indirect calorimetry (for measurement of REE), electronic blood pressure monitoring, and blood chemistries to measure blood lipids levels along with renal and hepatic functions. Six patients with type 2 diabetes (five women and one man) were randomly assigned to the high-protein diet (40% carbohydrate, 30% protein, 30% fat) and six patients (four women and two men) to the high-carbohydrate diet (55% carbohydrate, 15% protein, 30% fat). All patients returned to the General Clinical Research Center weekly for monitoring of food records; dietary compliance; and measurements of body weight, blood pressure, and blood glucose. After 8 weeks on these diets, all patients were readmitted to the General Clinical Research Center for the same series of tests. Twelve study patients were taught to select either the high-protein or high-carbohydrate diet and were followed for 8 weeks. Insulin sensitivity, hemoglobin A1c, weight, and blood pressure were measured. Statistical significance was assessed using two-tailed Student's t tests and two-way repeated measures analysis of variance. Both the high-carbohydrate and high-protein groups lost weight (-2.2+/-0.9 kg, -2.5+/-1.6 kg, respectively, P <.05) and the difference between the groups was not significant (P =.9). In the high-carbohydrate group, hemoglobin A1c decreased (from 8.2% to 6.9%, P <.03), fasting plasma glucose decreased (from 8.8 to 7.2 mmol/L, P <.02), and insulin sensitivity increased (from 12.8 to 17.2 micromol/kg/min, P <.03). No significant changes in these parameters occurred in the high-protein group, instead systolic and diastolic blood pressures decreased (-10.5+/-2.3 mm Hg, P =.003 and -18+/-9.0 mm Hg, P <.05, respectively). After 2 months on these hypocaloric diets, each diet had either no or minimal effects on lipid levels (total cholesterol, low-density lipoprotein, high-density lipoprotein), renal (blood urea nitrogen, serum creatinine), or hepatic function (aspartate aminotransferase, alanine aminotransferase, bilirubin).

  13. Consumption of a Mango Fruit Powder Protects Mice from High-Fat Induced Insulin Resistance and Hepatic Fat Accumulation.

    PubMed

    Sabater, Agustín G; Ribot, Joan; Priego, Teresa; Vazquez, Itxaso; Frank, Sonja; Palou, Andreu; Buchwald-Werner, Sybille

    2017-01-01

    The aim of this study was to gain more insight into the beneficial effects of mango fruit powder on the early metabolic adverse effects of a high-fat diet. The progressive dose-response effects of mango fruit powder on body composition, circulating parameters, and the expression of genes related to fatty acid oxidation and insulin sensitivity in key tissues were studied in mice fed a moderate (45%) high-fat diet. Findings suggest that mango fruit powder exerts physiological protective effects in the initial steps of insulin resistance and hepatic lipid accumulation induced by a high-fat diet in mice. Moreover, AMPK and SIRT1 appear as key regulators of the observed improvement in fatty acid oxidation capacity, as well as of the improved insulin sensitivity and the increased glucose uptake and metabolism through the glycolytic pathway capacity in liver and skeletal muscle. In summary, this study provides evidence that the functional food ingredient (CarelessTM) from mango fruit prevents early metabolic alterations caused by a high-fat diet in the initial stages of the metabolic syndrome. © 2017 The Author(s). Published by S. Karger AG, Basel.

  14. Intracellular and extracellular adenosine triphosphate in regulation of insulin secretion from pancreatic β cells (β).

    PubMed

    Wang, Chunjiong; Geng, Bin; Cui, Qinghua; Guan, Youfei; Yang, Jichun

    2014-03-01

    Adenosine triphosphate (ATP) synthesis and release in mitochondria play critical roles in regulating insulin secretion in pancreatic β cells. Mitochondrial dysfunction is mainly characterized by a decrease in ATP production, which is a central event in the progression of pancreatic β cell dysfunction and diabetes. ATP has been demonstrated to regulate insulin secretion via several pathways: (i) Intracellular ATP directly closes ATP-sensitive potassium channel to open L-type calcium channel, leading to an increase in free cytosolic calcium levels and exocytosis of insulin granules; (ii) A decrease in ATP production is always associated with an increase in production of reactive oxygen species, which exerts deleterious effects on pancreatic β cell survival and insulin secretion; and (iii) ATP can be co-secreted with insulin from pancreatic β cells, and the released ATP functions as an autocrine signal to modulate insulin secretory process via P2 receptors on the cell membrane. In this review, the recent findings regarding the role and mechanism of ATP synthesis and release in regulation of insulin secretion from pancreatic β cells will be summarized and discussed. © 2013 Ruijin Hospital, Shanghai Jiaotong University School of Medicine and Wiley Publishing Asia Pty Ltd.

  15. Increased risk of diabetes with statin treatment is associated with impaired insulin sensitivity and insulin secretion: a 6 year follow-up study of the METSIM cohort.

    PubMed

    Cederberg, Henna; Stančáková, Alena; Yaluri, Nagendra; Modi, Shalem; Kuusisto, Johanna; Laakso, Markku

    2015-05-01

    The aim of this work was to investigate the mechanisms underlying the risk of type 2 diabetes associated with statin treatment in the population-based Metabolic Syndrome in Men (METSIM) cohort. A total of 8,749 non-diabetic participants, aged 45-73 years, were followed up for 5.9 years. New diabetes was diagnosed in 625 men by means of an OGTT, HbA1c ≥6.5% (48 mmol/mol) or glucose-lowering medication started during the follow-up. Insulin sensitivity and secretion were evaluated with OGTT-derived indices. Participants on statin treatment (N = 2,142) had a 46% increased risk of type 2 diabetes (adjusted HR 1.46 [95% CI 1.22, 1.74]). The risk was dose dependent for simvastatin and atorvastatin. Statin treatment significantly increased 2 h glucose (2hPG) and glucose AUC of an OGTT at follow-up, with a nominally significant increase in fasting plasma glucose (FPG). Insulin sensitivity was decreased by 24% and insulin secretion by 12% in individuals on statin treatment (at FPG and 2hPG <5.0 mmol/l) compared with individuals without statin treatment (p < 0.01). Decreases in insulin sensitivity and insulin secretion were dose dependent for simvastatin and atorvastatin. Statin treatment increased the risk of type 2 diabetes by 46%, attributable to decreases in insulin sensitivity and insulin secretion.

  16. Pressure to be Thin and Insulin Sensitivity among Adolescents

    PubMed Central

    Schvey, Natasha A.; Shomaker, Lauren B.; Kelly, Nichole R.; Pickworth, Courtney K.; Cassidy, Omni; Galescu, Ovidiu; Demidowich, Andrew P.; Brady, Sheila M.; Tanofsky-Kraff, Marian; Yanovski, Jack A.

    2015-01-01

    Purpose Extant research indicates that some of the comorbidities associated with adult obesity may be adversely affected by the stress resulting from negative body image and weight-related teasing. This study examined the association between weight-related pressure and insulin sensitivity in adolescents, who are vulnerable to both weight-based teasing and the onset of metabolic dysregulation. Methods Participants were 215 adolescent healthy volunteers (55% female; 59% White; 35% overweight/obese; M±SD age = 15.4±1.4y), who completed a self-report measure of pressure to be thin from parents, friends, and romantic partners. Fasting blood samples were obtained to assess serum insulin and glucose, which were used to calculate insulin sensitivity; fat mass (kg) and fat-free mass (%) were measured with air displacement plethysmography. Pubertal stage was determined by physical examination. Results Pressure to be thin was positively associated with fasting insulin (p = .01) and negatively associated with insulin sensitivity (p = .02), after controlling for pubertal stage, sex, race, height, fat-free mass, and adiposity. Pressure to be thin was associated with a greater odds of having hyperinsulinemia (fasting insulin ≥ 15 µIU/mL; Odds Ratio (95% CI): 1.65 (1.08–2.50), p = .02), adjusting for the same covariates. Conclusions Results indicate that adolescents perceiving more pressure to be thin have greater elevations of fasting insulin and poorer insulin sensitivity above and beyond the effect of fat mass. Future research is warranted to elucidate the mechanisms responsible for this relationship. PMID:26707232

  17. Reduced Socs3 expression in adipose tissue protects female mice against obesity-induced insulin resistance.

    PubMed

    Palanivel, R; Fullerton, M D; Galic, S; Honeyman, J; Hewitt, K A; Jorgensen, S B; Steinberg, G R

    2012-11-01

    Inflammation in obesity increases the levels of the suppressor of cytokine signalling-3 (SOCS3) protein in adipose tissue, but the physiological importance of this protein in regulating whole-body insulin sensitivity in obesity is not known. We generated Socs3 floxed (wild-type, WT) and Socs3 aP2 (also known as Fabp4)-Cre null (Socs3 AKO) mice. Mice were maintained on either a regular chow or a high-fat diet (HFD) for 16 weeks during which time body mass, adiposity, glucose homeostasis and insulin sensitivity were assessed. The HFD increased SOCS3 levels in adipose tissue of WT but not Socs3 AKO mice. WT and Socs3 AKO mice had similar body mass and adiposity, assessed using computed tomography (CT) imaging, irrespective of diet or sex. On a control chow diet there were no differences in insulin sensitivity or glucose tolerance. When fed a HFD, female but not male Socs3 AKO mice had improved glucose tolerance as well as lower fasting glucose and insulin levels compared with WT littermates. Hyperinsulinaemic-euglycaemic clamps and positron emission tomography (PET) imaging demonstrated that improved insulin sensitivity was due to elevated adipose tissue glucose uptake. Increased insulin-stimulated glucose uptake in adipose tissue was associated with enhanced levels and activating phosphorylation of insulin receptor substrate-1 (IRS1). These data demonstrate that inhibiting SOCS3 production in adipose tissue of female mice is effective for improving whole-body insulin sensitivity in obesity.

  18. Alterations in glucose and protein metabolism in animals subjected to simulated microgravity

    NASA Technical Reports Server (NTRS)

    Mondon, C. E.; Rodnick, K. J.; Azhar, S.; Reaven, G. M.; Dolkas, C. B.

    1992-01-01

    Reduction of physical activity due to disease or environmental restraints, such as total bed rest or exposure to spaceflight, leads to atrophy of skeletal muscle and is frequently accompanied by alterations in food intake and the concentration of metabolic regulatory hormones such as insulin. Hindlimb suspension of laboratory rats, as a model for microgravity, also shows marked atrophy of gravity-dependent muscles along with a reduced gain in body weight. Suspended rats exhibit enhanced sensitivity to insulin-induced glucose uptake when compared with normal control rats and resistance to insulin action when compared with control rats matched similarly for reduced body weight gain. These changes are accompanied by decreased insulin binding and tyrosine kinase activity in soleus but not plantaris muscle, unchanged glucose uptake by perfused hindlimb and decreased sensitivity but not responsiveness to insulin-induced suppression of net proteolysis in hindlimb skeletal muscle. These findings suggest that loss of insulin sensitivity during muscle atrophy is associated with decreased insulin binding and tyrosine kinase activity in atrophied soleus muscle along with decreased sensitivity to the effects of insulin on suppressing net protein breakdown but not on enhancing glucose uptake by perfused hindlimb.

  19. Alterations in glucose and protein metabolism in animals subjected to simulated microgravity

    NASA Astrophysics Data System (ADS)

    Mondon, C. E.; Rodnick, K. J.; Dolkas, C. B.; Azhar, S.; Reaven, G. M.

    1992-09-01

    Reduction of physical activity due to disease or environmental restraints, such as total bed rest or exposure to spaceflight, leads to atrophy of skeletal muscle and is frequently accompanied by alterations in food intake and the concentration of metabolic regulatory hormones such as insulin. Hindlimb suspension of laboratory rats, as a model for microgravity, also shows marked atrophy of gravity dependent muscles along with a reduced gain in body weight. Suspended rats exhibit enhanced sensitivity to insulin-induced glucose uptake when compared with normal control rats and resistance to insulin action when compared with control rats matched similarly for reduced body weight gain. These changes are accompanied by decreased insulin binding and tyrosine kinase activity in soleus but not plantaris muscle, unchanged glucose uptake by perfused hindlimb and decreased sensitivity but not responsiveness to insulin-induced suppression of net proteolysis in hindlimb skeletal muscle. These findings suggest that loss of insulin sensitivity during muscle atrophy is associated with decreased insulin binding and tyrosine kinase activity in atrophied soleus muscle along with decreased sensitivity to the effects of insulin on suppressing net protein breakdown but not on enhancing glucose uptake by perfused hindlimb.

  20. Thyroid hormone improves insulin signaling and reduces the activation of neurodegenerative pathway in the hippocampus of diabetic adult male rats.

    PubMed

    Prieto-Almeida, Fernanda; Panveloski-Costa, Ana Carolina; Crunfli, Fernanda; da Silva Teixeira, Silvania; Nunes, Maria Tereza; Torrão, Andréada Silva

    2018-01-01

    Diabetes mellitus (DM) and impairments of glucose metabolism and insulin resistance in the brain have been suggested as a likely etiology of Alzheimer's disease (AD). Studies have shown that thyroid hormones (THs) improve insulin sensitivity in DM rats and act as mediators of the plasticity of the nervous system altering behavior and cognitive function. Based on these findings, this study aimed to evaluate the effects of diabetes and triiodothyronine (T3) treatment upon proteins associated with DM and AD in the central nervous system. Euglycemic and Diabetic (alloxan-induced) male Wistar rats were daily treated with T3 (1.5μg/100g body weight) or vehicle (saline) for a 4-week period and subdivided into the following groups: euglycemic treated with saline (Control=C); diabetic treated with saline (Diabetic=D); euglycemic treated with T3 (T3); diabetic treated with T3 (DT3). The expression of insulin signaling, neurodegenerative and neuron survival markers was evaluated in the hippocampus by immunoblotting, ELISA, and RT-PCR. T3 treatment decreased glycemia, restored the insulin signaling and reduced the activation of glycogen synthase kinase 3 (GSK3) and tau proteins content in the hippocampus of diabetic rats. The present data provide evidence that T3 treatment of diabetic rats is able to improve insulin sensitivity and reduce the activation of the neurodegenerative pathway in the brain, which might provide neuroprotection in this experimental model. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. The effects of abdominal lipectomy in metabolic syndrome components and insulin sensitivity in females: A systematic review and meta-analysis.

    PubMed

    Seretis, Konstantinos; Goulis, Dimitrios G; Koliakos, Georgios; Demiri, Efterpi

    2015-12-01

    Adipose tissue is an endocrine organ, which is implicated in the pathogenesis of obesity, metabolic syndrome and diabetes. Lipectomy offers a unique opportunity to permanently reduce the absolute number of fat cells, though its functional role remains unclear. This systematic and meta-analysis review aims to assess the effect of abdominal lipectomy on metabolic syndrome components and insulin sensitivity in women. A predetermined protocol, established according to the Cochrane Handbook's recommendations, was used. An electronic search in MEDLINE, Scopus, the Cochrane Library and CENTRAL electronic databases was conducted from inception to May 14, 2015. This search was supplemented by a review of reference lists of potentially eligible studies and a manual search of key journals in the field of plastic surgery. Eligible studies were prospective studies with ≥1month of follow-up that included females only who underwent abdominal lipectomy and reported on parameters of metabolic syndrome and insulin sensitivity. The systematic review included 11 studies with a total of 271 individuals. Conflicting results were revealed, though most studies showed no significant metabolic effects after lipectomy. The meta-analysis included 4 studies with 140 subjects. No significant changes were revealed between lipectomy and control groups. This meta-analysis provides evidence that abdominal lipectomy in females does not affect significantly the components of metabolic syndrome and insulin sensitivity. Further high quality studies are needed to elucidate the potential metabolic effects of abdominal lipectomy. Systematic review registration PROSPERO CRD42015017564 (www.crd.york.ac.uk/PROSPERO). Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Oncostatin M (OSM) protects against cardiac ischaemia/reperfusion injury in diabetic mice by regulating apoptosis, mitochondrial biogenesis and insulin sensitivity.

    PubMed

    Sun, Dongdong; Li, Shuang; Wu, Hao; Zhang, Mingming; Zhang, Xiaotian; Wei, Liping; Qin, Xing; Gao, Erhe

    2015-06-01

    Oncostatin M (OSM) exhibits many unique biological activities by activating Oβ receptor. However, its role in myocardial I/R injury in diabetic mice remains unknown. The involvement of OSM was assessed in diabetic mice which underwent myocardial I/R injury by OSM treatment or genetic deficiency of OSM receptor Oβ. Its mechanism on cardiomyocyte apoptosis, mitochondrial biogenesis and insulin sensitivity were further studied. OSM alleviated cardiac I/R injury by inhibiting cardiomyocyte apoptosis through inhibition of inositol pyrophosphate 7 (IP7) production, thus activating PI3K/Akt/BAD pathway, decreasing Bax expression while up-regulating Bcl-2 expression and decreasing the ratio of Bax to Bcl-2 in db/db mice. OSM enhanced mitochondrial biogenesis and mitochondrial function in db/db mice subjected to cardiac I/R injury. On the contrary, OSM receptor Oβ knockout exacerbated cardiac I/R injury, increased IP7 production, enhanced cardiomyocyte apoptosis, impaired mitochondrial biogenesis, glucose homoeostasis and insulin sensitivity in cardiac I/R injured diabetic mice. Inhibition of IP7 production by TNP (IP6K inhibitor) exerted similar effects of OSM. The mechanism of OSM on cardiac I/R injury in diabetic mice is partly associated with IP7/Akt and adenine mononucleotide protein kinase/PGC-1α pathway. OSM protects against cardiac I/R Injury by regulating apoptosis, insulin sensitivity and mitochondrial biogenesis in diabetic mice through inhibition of IP7 production. © 2015 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  3. Rosiglitazone Improves Insulin Sensitivity and Baroreflex Gain in Rats with Diet-Induced Obesity

    PubMed Central

    Zhao, Ding; McCully, Belinda H.

    2012-01-01

    Obesity decreases baroreflex gain (BRG); however, the mechanisms are unknown. We tested the hypothesis that impaired BRG is related to the concurrent insulin resistance, and, therefore, BRG would be improved after treatment with the insulin-sensitizing drug rosiglitazone. Male rats fed a high-fat diet diverged into obesity-prone (OP) and obesity-resistant (OR) groups after 2 weeks. Then, OP and OR rats, as well as control (CON) rats fed a standard diet, were treated daily for 2 to 3 weeks with rosiglitazone (3 or 6 mg/kg) or its vehicle by gavage. Compared with OR and CON rats, conscious OP rats exhibited reductions in BRG (OP, 2.9 ± 0.1 bpm/mm Hg; OR, 4.0 ± 0.2 bpm/mm Hg; CON, 3.9 ± 0.2 bpm/mm Hg; P < 0.05) and insulin sensitivity (hyperinsulinemic euglycemic clamp; OP, 6.8 ± 0.9 mg/kg · min; OR, 22.2 ± 1.2 mg/kg · min; CON, 17.7 ± 0.8 mg/kg · min; P < 0.05), which were well correlated (r2 = 0.49; P < 0.01). In OP rats, rosiglitazone dose-dependently improved (P < 0.05) insulin sensitivity (12.8 ± 0.6 mg/kg · min at 3 mg/kg; 16.0 ± 1.5 mg/kg · min at 6 mg/kg) and BRG (3.8 ± 0.4 bpm/mm Hg at 3 mg/kg; 5.3 ± 0.7 bpm/mm Hg at 6 mg/kg). However, 6 mg/kg rosiglitazone also increased BRG in OR rats without increasing insulin sensitivity, disrupted the correlation between BRG and insulin sensitivity (r2 = 0.08), and, in OP and OR rats, elevated BRG relative to insulin sensitivity (analysis of covariance; P < 0.05). Moreover, in OP rats, stimulation of the aortic depressor nerve, to activate central baroreflex pathways, elicited markedly reduced decreases in heart rate and arterial pressure, but these responses were not improved by rosiglitazone. In conclusion, diet-induced obesity impairs BRG via a central mechanism that is related to the concurrent insulin resistance. Rosiglitazone normalizes BRG, but not by improving brain baroreflex processing or insulin sensitivity. PMID:22815534

  4. Peri-muscular adipose tissue may play a unique role in determining insulin sensitivity/resistance in women with polycystic ovary syndrome.

    PubMed

    Morrison, Shannon A; Goss, Amy M; Azziz, Ricardo; Raju, Dheeraj A; Gower, Barbara A

    2017-01-01

    Do the determinants of insulin sensitivity/resistance differ in women with and without polycystic ovary syndrome (PCOS)? Peri-muscular thigh adipose tissue is uniquely associated with insulin sensitivity/resistance in women with PCOS, whereas adiponectin and thigh subcutaneous adipose are the main correlates of insulin sensitivity/resistance in women without PCOS. In subject populations without PCOS, insulin sensitivity/resistance is determined by body fat distribution and circulating concentrations of hormones and pro-inflammatory mediators. Specifically, visceral (intra-abdominal) adipose tissue mass is adversely associated with insulin sensitivity, whereas thigh subcutaneous adipose appears protective against metabolic disease. Adiponectin is an insulin-sensitizing hormone produced by healthy subcutaneous adipose that may mediate the protective effect of thigh subcutaneous adipose. Testosterone, which is elevated in PCOS, may have an adverse effect on insulin sensitivity/resistance. Cross-sectional study of 30 women with PCOS and 38 women without PCOS; data were collected between 2007 and 2011. Participants were group-matched for obesity, as reflected in BMI (Mean ± SD; PCOS: 31.8 ± 6.0 kg/m 2 ; without PCOS: 31.5 ± 5.0 kg/m 2 ). The whole-body insulin sensitivity index (WBISI) was assessed using a mixed-meal tolerance test; Homeostasis Model Assessment-Insulin resistance (HOMA-IR) was determined from fasting insulin and glucose values. Adipose tissue distribution was determined by computed tomography (CT) scan. Partial correlation analysis, adjusting for total fat mass, was used to identify correlates of WBISI and HOMA-IR within each group of women from measures of body composition, body fat distribution, reproductive-endocrine hormones and adipokines/cytokines. Stepwise multiple linear regression analysis was used to identify the variables that best predicted WBISI and HOMA-IR. Among women with PCOS, both WBISI and HOMA-IR were best predicted by peri-muscular adipose tissue cross-sectional area. Among women without PCOS, both WBISI and HOMA-IR were best predicted by adiponectin and thigh subcutaneous adipose tissue. Small sample size, group matching for BMI and age, and the use of surrogate measures of insulin sensitivity/resistance. Because insulin resistance is the root cause of obesity and comorbidities in PCOS, determining its cause could lead to potential therapies. Present results suggest that peri-muscular adipose tissue may play a unique role in determining insulin sensitivity/resistance in women with PCOS. Interventions such as restriction of dietary carbohydrates that have been shown to selectively reduce fatty infiltration of skeletal muscle may decrease the risk for type 2 diabetes in women with PCOS. The study was supported by National Institutes of Health grants R01HD054960, R01DK67538, P30DK56336, P60DK079626, M014RR00032 and UL1RR025777. The authors have no conflicts of interest. NCT00726908. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Glutathione depletion prevents diet-induced obesity and enhances insulin sensitivity.

    PubMed

    Findeisen, Hannes M; Gizard, Florence; Zhao, Yue; Qing, Hua; Jones, Karrie L; Cohn, Dianne; Heywood, Elizabeth B; Bruemmer, Dennis

    2011-12-01

    Excessive accumulation of reactive oxygen species (ROS) in adipose tissue has been implicated in the development of insulin resistance and type 2 diabetes. However, emerging evidence suggests a physiologic role of ROS in cellular signaling and insulin sensitivity. In this study, we demonstrate that pharmacologic depletion of the antioxidant glutathione in mice prevents diet-induced obesity, increases energy expenditure and locomotor activity, and enhances insulin sensitivity. These observations support a beneficial role of ROS in glucose homeostasis and warrant further research to define the regulation of metabolism and energy balance by ROS.

  6. Altered K+ fluxes and insulin release in pancreatic islets from omega3 fatty acid-depleted rats.

    PubMed

    Sener, Abdullah; Zhang, Ying; Louchami, Karim; Oguzhan, Berrin; Courtois, Philippe; Portois, Laurence; Chardigny, Jean-Michel; Carpentier, Yvon A; Malaisse, Willy J

    2006-10-01

    A low intake of long-chain polyunsaturated omega3 fatty acid often prevails in Western populations. Its consequences in terms of the control of fuel homeostasis led us to explore functional events in pancreatic islets isolated from either normal or omega3-depleted rats (second generation). In the latter rats, the inflow of K+ by both ouabain-sensitive and ouabain-resistant modalities was decreased, this coinciding with an impaired insulin secretory response to ouabain. The intravenous injection of a medium-chain triglyceride:fish oil emulsion to omega3-depleted rats 2 h before sacrifice restored a normal value for the inflow of K+ by the ouabainsensitive modality, i.e., that linked to the activity of the Na,K-ATPase, but failed to correct the entry of K+ by the ouabain-resistant modality and the defect of the insulin secretory response to ouabain. In conclusion, an impaired activity of the Na,K-ATPase in insulin-producing cells apparently represents a key determinant of altered islet function in omega3-depleted rats.

  7. Genetic variants associated with glycine metabolism and their role in insulin sensitivity and type 2 diabetes.

    PubMed

    Xie, Weijia; Wood, Andrew R; Lyssenko, Valeriya; Weedon, Michael N; Knowles, Joshua W; Alkayyali, Sami; Assimes, Themistocles L; Quertermous, Thomas; Abbasi, Fahim; Paananen, Jussi; Häring, Hans; Hansen, Torben; Pedersen, Oluf; Smith, Ulf; Laakso, Markku; Dekker, Jacqueline M; Nolan, John J; Groop, Leif; Ferrannini, Ele; Adam, Klaus-Peter; Gall, Walter E; Frayling, Timothy M; Walker, Mark

    2013-06-01

    Circulating metabolites associated with insulin sensitivity may represent useful biomarkers, but their causal role in insulin sensitivity and diabetes is less certain. We previously identified novel metabolites correlated with insulin sensitivity measured by the hyperinsulinemic-euglycemic clamp. The top-ranking metabolites were in the glutathione and glycine biosynthesis pathways. We aimed to identify common genetic variants associated with metabolites in these pathways and test their role in insulin sensitivity and type 2 diabetes. With 1,004 nondiabetic individuals from the RISC study, we performed a genome-wide association study (GWAS) of 14 insulin sensitivity-related metabolites and one metabolite ratio. We replicated our results in the Botnia study (n = 342). We assessed the association of these variants with diabetes-related traits in GWAS meta-analyses (GENESIS [including RISC, EUGENE2, and Stanford], MAGIC, and DIAGRAM). We identified four associations with three metabolites-glycine (rs715 at CPS1), serine (rs478093 at PHGDH), and betaine (rs499368 at SLC6A12; rs17823642 at BHMT)-and one association signal with glycine-to-serine ratio (rs1107366 at ALDH1L1). There was no robust evidence for association between these variants and insulin resistance or diabetes. Genetic variants associated with genes in the glycine biosynthesis pathways do not provide consistent evidence for a role of glycine in diabetes-related traits.

  8. Gut Microbiota Interacts with Markers of Adipose Tissue Browning, Insulin Action and Plasma Acetate in Morbid Obesity.

    PubMed

    Moreno-Navarrete, José María; Serino, Matteo; Blasco-Baque, Vincent; Azalbert, Vincent; Barton, Richard H; Cardellini, Marina; Latorre, Jèssica; Ortega, Francisco; Sabater-Masdeu, Mònica; Burcelin, Rémy; Dumas, Marc-Emmanuel; Ricart, Wifredo; Federici, Massimo; Fernández-Real, José Manuel

    2018-02-01

    To examine the potential relationship among gene expression markers of adipose tissue browning, gut microbiota, and insulin sensitivity in humans. Gut microbiota composition and gene markers of browning are analyzed in subcutaneous (SAT) and visceral (VAT) adipose tissue from morbidly obese subjects (n = 34). Plasma acetate is measured through 1 H NMR and insulin sensitivity using euglycemic hyperinsulinemic clamp. Subjects with insulin resistance show an increase in the relative abundance (RA) of the phyla Bacteroidetes and Proteobacteria while RA of Firmicutes is decreased. In all subjects, Firmicutes RA is negatively correlated with HbA 1c and fasting triglycerides, whereas Proteobacteria RA was negatively correlated with insulin sensitivity. Firmicutes RA is positively associated with markers of brown adipocytes (PRDM16, UCP1, and DIO2) in SAT, but not in VAT. Multivariate regression analysis indicates that Firmicutes RA contributes significantly to SAT PRDM16, UCP1, and DIO2 mRNA variance after controlling for age, BMI, HbA 1c , or insulin sensitivity. Interestingly, Firmicutes RA, specifically those bacteria belonging to the Ruminococcaceae family, is positively associated with plasma acetate levels, which are also linked to SAT PRDM16 mRNA and insulin sensitivity. Gut microbiota composition is linked to adipose tissue browning and insulin action in morbidly obese subjects, possibly through circulating acetate. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Prevention of insulin resistance in adolescents at risk for type 2 diabetes with depressive symptoms: 1-year follow-up of a randomized trial.

    PubMed

    Shomaker, Lauren B; Kelly, Nichole R; Radin, Rachel M; Cassidy, Omni L; Shank, Lisa M; Brady, Sheila M; Demidowich, Andrew P; Olsen, Cara H; Chen, Kong Y; Stice, Eric; Tanofsky-Kraff, Marian; Yanovski, Jack A

    2017-10-01

    Depression is associated with poor insulin sensitivity. We evaluated the long-term effects of a cognitive behavioral therapy (CBT) program for prevention of depression on insulin sensitivity in adolescents at risk for type 2 diabetes (T2D) with depressive symptoms. One-hundred nineteen adolescent females with overweight/obesity, T2D family history, and mild-to-moderate depressive symptoms were randomized to a 6-week CBT group (n = 61) or 6-week health education (HE) control group (n = 58). At baseline, posttreatment, and 1 year, depressive symptoms were assessed, and whole body insulin sensitivity (WBISI) was estimated from oral glucose tolerance tests. Dual energy X-ray absorptiometry assessed fat mass at baseline and 1 year. Primary outcomes were 1-year changes in depression and insulin sensitivity, adjusting for adiposity and other relevant covariates. Secondary outcomes were fasting and 2-hr insulin and glucose. We also evaluated the moderating effect of baseline depressive symptom severity. Depressive symptoms decreased in both groups (P < .001). Insulin sensitivity was stable in CBT and HE (ΔWBISI: .1 vs. .3) and did not differ between groups (P = .63). However, among girls with greater (moderate) baseline depressive symptoms (N = 78), those in CBT developed lower 2-hr insulin than those in HE (Δ-16 vs. 16 μIU/mL, P < .05). Additional metabolic benefits of CBT were seen for this subgroup in post hoc analyses of posttreatment to 1-year change. Adolescent females at risk for T2D decreased depressive symptoms and stabilized insulin sensitivity 1 year following brief CBT or HE. Further studies are required to determine if adolescents with moderate depression show metabolic benefits after CBT. © 2017 Wiley Periodicals, Inc.

  10. Insulin-induced enhancement of MCF-7 breast cancer cell response to 5-fluorouracil and cyclophosphamide.

    PubMed

    Agrawal, Siddarth; Łuc, Mateusz; Ziółkowski, Piotr; Agrawal, Anil Kumar; Pielka, Ewa; Walaszek, Kinga; Zduniak, Krzysztof; Woźniak, Marta

    2017-06-01

    The study was designed to evaluate the potential use of insulin for cancer-specific treatment. Insulin-induced sensitivity of MCF-7 breast cancer cells to chemotherapeutic agents 5-fluorouracil and cyclophosphamide was evaluated. To investigate and establish the possible mechanisms of this phenomenon, we assessed cell proliferation, induction of apoptosis, activation of apoptotic and autophagic pathways, expression of glucose transporters 1 and 3, formation of reactive oxygen species, and wound-healing assay. Additionally, we reviewed the literature regarding theuse of insulin in cancer-specific treatment. We found that insulin increases the cytotoxic effect of 5-fluorouracil and cyclophosphamide in vitro up to two-fold. The effect was linked to enhancement of apoptosis, activation of apoptotic and autophagic pathways, and overexpression of glucose transporters 1 and 3 as well as inhibition of cell proliferation and motility. We propose a model for insulin-induced sensitization process. Insulin acts as a sensitizer of cancer cells to cytotoxic therapy through various mechanisms opening a possibility for metronomic insulin-based treatments.

  11. Dietary Anthocyanins and Insulin Resistance: When Food Becomes a Medicine.

    PubMed

    Belwal, Tarun; Nabavi, Seyed Fazel; Nabavi, Seyed Mohammad; Habtemariam, Solomon

    2017-10-12

    Insulin resistance is an abnormal physiological state that occurs when insulin from pancreatic β-cells is unable to trigger a signal transduction pathway in target organs such as the liver, muscles and adipose tissues. The loss of insulin sensitivity is generally associated with persistent hyperglycemia (diabetes), hyperinsulinemia, fatty acids and/or lipid dysregulation which are often prevalent under obesity conditions. Hence, insulin sensitizers are one class of drugs currently employed to treat diabetes and associated metabolic disorders. A number of natural products that act through multiple mechanisms have also been identified to enhance insulin sensitivity in target organs. One group of such compounds that gained interest in recent years are the dietary anthocyanins. Data from their in vitro, in vivo and clinical studies are scrutinized in this communication to show their potential health benefit through ameliorating insulin resistance. Specific mechanism of action ranging from targeting specific signal transduction receptors/enzymes to the general antioxidant and anti-inflammatory mechanisms of insulin resistance are presented.

  12. The IL-6 Paradox: Context Dependent Interplay of SOCS3 and AMPK

    PubMed Central

    Sarvas, Jessica L; Khaper, Neelam; Lees, Simon J

    2013-01-01

    Insulin resistance is the principle step towards the progression of type 2 diabetes, and has been linked to increased circulating levels of cytokines, leading to chronic low-grade inflammation. Specifically, in chronic disease states increased IL-6 is thought to play a critical role in the regulation of insulin resistance in the peripheral tissues, and has been used as a marker of insulin resistance. There is also an endogenous up-regulation of IL-6 in response to exercise, which has been linked to improved insulin sensitivity. This leads to the question “how can elevated IL-6 lead to the development of insulin resistance, and yet also lead to increased insulin sensitivity?” Resolving the dual role of IL-6 in regulating insulin resistance/sensitivity is critical to the development of potential therapeutic interventions. This review summarizes the literature on the seemingly paradoxical role of elevated IL-6 on insulin signalling, including the activation of AMPK and the involvement of leptin and SOCS3. PMID:24244888

  13. Omega-3 fatty acid therapy dose-dependently and significantly decreased triglycerides and improved flow-mediated dilation, however, did not significantly improve insulin sensitivity in patients with hypertriglyceridemia.

    PubMed

    Oh, Pyung Chun; Koh, Kwang Kon; Sakuma, Ichiro; Lim, Soo; Lee, Yonghee; Lee, Seungik; Lee, Kyounghoon; Han, Seung Hwan; Shin, Eak Kyun

    2014-10-20

    Experimental studies demonstrate that higher intake of omega-3 fatty acids (n-3 FA) improves insulin sensitivity, however, we reported that n-3 FA 2g therapy, most commonly used dosage did not significantly improve insulin sensitivity despite reducing triglycerides by 21% in patients. Therefore, we investigated the effects of different dosages of n-3 FA in patients with hypertriglyceridemia. This was a randomized, single-blind, placebo-controlled, parallel study. Age, sex, and body mass index were matched among groups. All patients were recommended to maintain a low fat diet. Forty-four patients (about 18 had metabolic syndrome/type 2 diabetes mellitus) in each group were given placebo, n-3 FA 1 (O1), 2 (O2), or 4 g (O4), respectively daily for 2 months. n-3 FA therapy dose-dependently and significantly decreased triglycerides and triglycerides/HDL cholesterol and improved flow-mediated dilation, compared with placebo (by ANOVA). However, each n-3 FA therapy did not significantly decrease high-sensitivity C-reactive protein and fibrinogen, compared with placebo. O1 significantly increased insulin levels and decreased insulin sensitivity (determined by QUICKI) and O2 significantly decreased plasma adiponectin levels relative to baseline measurements. Of note, when compared with placebo, each n-3 FA therapy did not significantly change insulin, glucose, adiponectin, glycated hemoglobin levels and insulin sensitivity (by ANOVA). We observed similar results in a subgroup of patients with the metabolic syndrome. n-3 FA therapy dose-dependently and significantly decreased triglycerides and improved flow-mediated dilation. Nonetheless, n-3 FA therapy did not significantly improve acute-phase reactants and insulin sensitivity in patients with hypertriglyceridemia, regardless of dosages. Copyright © 2014. Published by Elsevier Ireland Ltd.

  14. In vivo effects of polyunsaturated, monounsaturated, and saturated fatty acids on hepatic and peripheral insulin sensitivity.

    PubMed

    Pereira, Sandra; Breen, Danna M; Naassan, Anthony E; Wang, Penny Y T; Uchino, Hiroshi; Fantus, I George; Carpentier, André C; Gutierrez-Juarez, Roger; Brindley, David N; Lam, Tony K T; Giacca, Adria

    2015-02-01

    Free fatty acids (FFAs) cause insulin resistance and are often elevated in obesity. Chronic ingestion of diets rich in saturated fat induces more insulin resistance than diets rich in unsaturated fat, however, it remains unclear whether different FFAs cause distinct levels of insulin resistance in the short-term, which is relevant to the feeding and fasting cycle. Protein kinase C (PKC)-δ is implicated in hepatic insulin resistance. Therefore, we investigated the effects of short-term elevation of fatty acids with different degrees of unsaturation on hepatic insulin action and liver PKC-δ membrane translocation, a marker of activation. Triglyceride emulsions of Soybean Oil+Heparin (polyunsaturated (POLY)), Olive Oil+Heparin (monounsaturated (MONO)), Lard Oil+Heparin (saturated (SATU)), or saline (SAL) were infused intravenously for 7h to elevate plasma FFA concentrations ~3-4 fold in rats. During the last 2h of infusion, a hyperinsulinemic-euglycemic clamp with tritiated glucose methodology was performed to examine hepatic and peripheral insulin sensitivity. Surprisingly, SATU, MONO, and POLY impaired peripheral insulin sensitivity (glucose utilization divided by insulin) to a similar extent. Furthermore, all lipids induced a similar degree of hepatic insulin resistance compared to SAL. Although there were changes in hepatic content of lipid metabolites, there were no significant differences in liver PKC-δ membrane translocation across fat groups. In summary, in the short-term, FFAs with different degrees of unsaturation impair peripheral insulin sensitivity and induce hepatic insulin resistance as well as hepatic PKC-δ translocation to the same extent. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Insulin response in individual tissues of control and gold thioglucose-obese mice in vivo with (1-/sup 14/C)2-deoxyglucose

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cooney, G.J.; Astbury, L.D.; Williams, P.F.

    The dose-response characteristics of several glucose-utilizing tissues (brain, heart, white adipose tissue, brown adipose tissue, and quadriceps muscle) to a single injection of insulin have been compared in control mice and mice made obese with a single injection of gold thioglucose (GTG). Tissue content of (1-/sup 14/C)2-deoxyglucose 6-phosphate and blood disappearance rate of (1-/sup 14/C)2-deoxyglucose (2-DG) were measured at nine different insulin doses and used to calculate rates of 2-DG uptake and phosphorylation in tissues from control and obese mice. The insulin sensitivity of tissues reflected in the ED50 of insulin response varied widely, and brown adipose tissue was themore » most insulin-sensitive tissue studied. In GTG-obese mice, heart, quadriceps, and brown adipose tissue were insulin resistant (demonstrated by increased ED50), whereas in white adipose tissue, 2-DG phosphorylation was more sensitive to insulin. Brain 2-DG phosphorylation was insulin independent in control and obese animals. The largest decrease in insulin sensitivity in GTG-obese mice was observed in brown adipose tissue. The loss of diet-induced thermogenesis in brown adipose tissue as a result of the hypothalamic lesion in GTG-obese mice could be a major cause of insulin resistance in brown adipose tissue. Because brown adipose tissue can make a major contribution to whole-body glucose utilization, insulin resistance in this tissue may have a significant effect on whole-animal glucose homeostasis in GTG-obese mice.« less

  16. N-acetylcysteine Counteracts Adipose Tissue Macrophage Infiltration and Insulin Resistance Elicited by Advanced Glycated Albumin in Healthy Rats

    PubMed Central

    da Silva, Karolline S.; Pinto, Paula R.; Fabre, Nelly T.; Gomes, Diego J.; Thieme, Karina; Okuda, Ligia S.; Iborra, Rodrigo T.; Freitas, Vanessa G.; Shimizu, Maria H. M.; Teodoro, Walcy R.; Marie, Suely K. N.; Woods, Tom; Brimble, Margaret A.; Pickford, Russell; Rye, Kerry-Anne; Okamoto, Maristela; Catanozi, Sergio; Correa-Giannela, Maria L.; Machado, Ubiratan F.; Passarelli, Marisa

    2017-01-01

    Background: Advanced glycation endproducts elicit inflammation. However, their role in adipocyte macrophage infiltration and in the development of insulin resistance, especially in the absence of the deleterious biochemical pathways that coexist in diabetes mellitus, remains unknown. We investigated the effect of chronic administration of advanced glycated albumin (AGE-albumin) in healthy rats, associated or not with N-acetylcysteine (NAC) treatment, on insulin sensitivity, adipose tissue transcriptome and macrophage infiltration and polarization. Methods: Male Wistar rats were intraperitoneally injected with control (C) or AGE-albumin alone, or, together with NAC in the drinking water. Biochemical parameters, lipid peroxidation, gene expression and protein contents were, respectively, determined by enzymatic techniques, reactive thiobarbituric acid substances, RT-qPCR and immunohistochemistry or immunoblot. Carboxymethyllysine (CML) and pyrraline (PYR) were determined by LC/mass spectrometry (LC-MS/MS) and ELISA. Results: CML and PYR were higher in AGE-albumin as compared to C. Food consumption, body weight, systolic blood pressure, plasma lipids, glucose, hepatic and renal function, adipose tissue relative weight and adipocyte number were similar among groups. In AGE-treated animals, insulin resistance, adipose macrophage infiltration and Col12a1 mRNA were increased with no changes in M1 and M2 phenotypes as compared to C-albumin-treated rats. Total GLUT4 content was reduced by AGE-albumin as compared to C-albumin. NAC improved insulin sensitivity, reduced urine TBARS, adipose macrophage number and Itgam and Mrc mRNA and increased Slc2a4 and Ppara. CD11b, CD206, Ager, Ddost, Cd36, Nfkb1, Il6, Tnf, Adipoq, Retn, Arg, and Il12 expressions were similar among groups. Conclusions: AGE-albumin sensitizes adipose tissue to inflammation due to macrophage infiltration and reduces GLUT4, contributing to insulin resistance in healthy rats. NAC antagonizes AGE-albumin and prevents insulin resistance. Therefore, it may be a useful tool in the prevention of AGE action on insulin resistance and long-term complications of DM. PMID:29018354

  17. Functional high intensity exercise training ameliorates insulin resistance and cardiometabolic risk factors in type 2 diabetes.

    PubMed

    Fealy, Ciarán E; Nieuwoudt, Stephan; Foucher, Julie A; Scelsi, Amanda R; Malin, Steve K; Pagadala, Mangesh; Cruz, Lauren A; Li, Miranda; Rocco, Michael; Burguera, Bartolome; Kirwan, John P

    2018-05-15

    Functional high intensity training (F-HIT) is a novel fitness paradigm that integrates simultaneous aerobic and resistance training in sets of constantly varied movements, based on real-world situational exercises, performed at high intensity in workouts that range from ∼8-20 min/session. We hypothesized that F-HIT would be an effective exercise mode for reducing insulin resistance in type 2 diabetes (T2D). We recruited 13 overweight/obese adults (5 males, 8 females; 53 ± 7 years; BMI 34.5 ± 3.6 kg•m -2 , Mean ± SD) with T2D to participate in a 6 week (3d/wk) supervised F-HIT program. An oral glucose tolerance test was used to derive measures of insulin sensitivity. F-HIT significantly reduced fat mass (43.8 ± 83.8 vs 41.6 ± 7.9 kg; P < 0.01), diastolic blood pressure (80.2 ± 7.1 vs 74.5 ± 5.8; P < 0.01), blood lipids (triglyceride and VLDL, both P < 0.05) and metabolic syndrome z-score (6.4 ± 4.5 vs -0.2 ± 5.2 AU; P < 0.001), and increased basal fat oxidation (FOX: 0.08 ± 0.03 vs 0.10 ± 0.04 g•min -1 ; P = 0.05), and HMW adiponectin (214.4 ± 88.9 vs 288.8 ± 127.4 ng•mL -1 ; P < 0.01). Importantly, F-HIT also increased insulin sensitivity (0.037 ± 0.010 vs 0.042 ± 0.010 AU; P < 0.05). Increases in HMW adiponectin and FOX correlated with the change in insulin sensitivity (rho: 0.75; P < 0.05, rho: 0.81; P < 0.01, respectively). Compliance with the training program was > 95% and no injuries or adverse events were reported. These data suggest that F-HIT may be an effective exercise mode for managing T2D. The increase in insulin sensitivity addresses a key defect in T2D and is consistent with improvements observed after more traditional aerobic exercise programs in overweight/obese adults with T2D. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  18. Exercise Promotes Healthy Aging of Skeletal Muscle.

    PubMed

    Cartee, Gregory D; Hepple, Russell T; Bamman, Marcas M; Zierath, Juleen R

    2016-06-14

    Primary aging is the progressive and inevitable process of bodily deterioration during adulthood. In skeletal muscle, primary aging causes defective mitochondrial energetics and reduced muscle mass. Secondary aging refers to additional deleterious structural and functional age-related changes caused by diseases and lifestyle factors. Secondary aging can exacerbate deficits in mitochondrial function and muscle mass, concomitant with the development of skeletal muscle insulin resistance. Exercise opposes deleterious effects of secondary aging by preventing the decline in mitochondrial respiration, mitigating aging-related loss of muscle mass and enhancing insulin sensitivity. This review focuses on mechanisms by which exercise promotes "healthy aging" by inducing modifications in skeletal muscle. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Therapeutic response to metformin in an underweight patient with polycystic ovarian syndrome.

    PubMed

    Al-Ozairi, Ebaa; Quinton, Richard; Advani, Andrew

    2008-10-01

    To report a case where insulin sensitization restored menses in an underweight woman with polycystic ovarian syndrome (PCOS). Case report. Tertiary care center. A 19-year-old woman with a body mass index of 16.9 kg/m(2), severe hirsutism, and oligomenorrhea. Insulin sensitization with metformin. Impact of metformin therapy on menstrual cycle and serum T and fasting insulin levels. Metformin, without weight loss or increased physical activity, resulted in restoration of menstrual cycle, reduction in serum T, and improvement in insulin resistance (IR). This case highlights the contribution of PCOS-related IR, distinct from visceral adiposity, and demonstrates the effectiveness of pharmacological insulin-sensitization independent of weight loss or lifestyle adjustments.

  20. Polyphenol-Rich Extract of Syzygium cumini Leaf Dually Improves Peripheral Insulin Sensitivity and Pancreatic Islet Function in Monosodium L-Glutamate-Induced Obese Rats

    PubMed Central

    Sanches, Jonas R.; França, Lucas M.; Chagas, Vinicyus T.; Gaspar, Renato S.; dos Santos, Kayque A.; Gonçalves, Luciana M.; Sloboda, Deborah M.; Holloway, Alison C.; Dutra, Richard P.; Carneiro, Everardo M.; Cappelli, Ana Paula G.; Paes, Antonio Marcus de A.

    2016-01-01

    Syzygium cumini (L.) Skeels (Myrtaceae) has been traditionally used to treat a number of illnesses. Ethnopharmacological studies have particularly addressed antidiabetic and metabolic-related effects of extracts prepared from its different parts, especially seed, and pulp-fruit, however. there is a lack of studies on phytochemical profile and biological properties of its leaf. As there is considerable interest in bioactive compounds to treat metabolic syndrome and its clustered risk factors, we sought to characterize the metabolic effects of hydroethanolic extract of S. cumini leaf (HESc) on lean and monosodium L-glutamate (MSG)-induced obese rats. HPLC-MS/MS characterization of the HESc polyphenolic profile, at 254 nm, identified 15 compounds pertaining to hydrolysable tannin and flavanol subclasses. At 60 days of age, both groups were randomly assigned to receive HESc (500 mg/kg) or vehicle for 30 days. At the end of treatment, obese+HESc exhibited significantly lower body weight gain, body mass index, and white adipose tissue mass, compared to obese rats receiving vehicle. Obese rats treated with HESc showed a twofold increase in lipolytic activity in the periepididymal fat pad, as well as, brought triglyceride levels in serum, liver and skeletal muscle back to levels close those found in lean animals. Furthermore, HESc also improved hyperinsulinemia and insulin resistance in obese+HESc rats, which resulted in partial reversal of glucose intolerance, as compared to obese rats. HESc had no effect in lean rats. Assessment of ex vivo glucose-stimulated insulin secretion showed HESc potentiated pancreatic function in islets isolated from both lean and obese rats treated with HESc. In addition, HESc (10–1000 μg/mL) increased glucose stimulated insulin secretion from both isolated rat islets and INS-1E β-cells. These data demonstrate that S. cumini leaf improved peripheral insulin sensitivity via stimulating/modulating β-cell insulin release, which was associated with improvements in metabolic outcomes in MSG-induced obese rats. PMID:27014062

  1. Polyphenol-Rich Extract of Syzygium cumini Leaf Dually Improves Peripheral Insulin Sensitivity and Pancreatic Islet Function in Monosodium L-Glutamate-Induced Obese Rats.

    PubMed

    Sanches, Jonas R; França, Lucas M; Chagas, Vinicyus T; Gaspar, Renato S; Dos Santos, Kayque A; Gonçalves, Luciana M; Sloboda, Deborah M; Holloway, Alison C; Dutra, Richard P; Carneiro, Everardo M; Cappelli, Ana Paula G; Paes, Antonio Marcus de A

    2016-01-01

    Syzygium cumini (L.) Skeels (Myrtaceae) has been traditionally used to treat a number of illnesses. Ethnopharmacological studies have particularly addressed antidiabetic and metabolic-related effects of extracts prepared from its different parts, especially seed, and pulp-fruit, however. there is a lack of studies on phytochemical profile and biological properties of its leaf. As there is considerable interest in bioactive compounds to treat metabolic syndrome and its clustered risk factors, we sought to characterize the metabolic effects of hydroethanolic extract of S. cumini leaf (HESc) on lean and monosodium L-glutamate (MSG)-induced obese rats. HPLC-MS/MS characterization of the HESc polyphenolic profile, at 254 nm, identified 15 compounds pertaining to hydrolysable tannin and flavanol subclasses. At 60 days of age, both groups were randomly assigned to receive HESc (500 mg/kg) or vehicle for 30 days. At the end of treatment, obese+HESc exhibited significantly lower body weight gain, body mass index, and white adipose tissue mass, compared to obese rats receiving vehicle. Obese rats treated with HESc showed a twofold increase in lipolytic activity in the periepididymal fat pad, as well as, brought triglyceride levels in serum, liver and skeletal muscle back to levels close those found in lean animals. Furthermore, HESc also improved hyperinsulinemia and insulin resistance in obese+HESc rats, which resulted in partial reversal of glucose intolerance, as compared to obese rats. HESc had no effect in lean rats. Assessment of ex vivo glucose-stimulated insulin secretion showed HESc potentiated pancreatic function in islets isolated from both lean and obese rats treated with HESc. In addition, HESc (10-1000 μg/mL) increased glucose stimulated insulin secretion from both isolated rat islets and INS-1E β-cells. These data demonstrate that S. cumini leaf improved peripheral insulin sensitivity via stimulating/modulating β-cell insulin release, which was associated with improvements in metabolic outcomes in MSG-induced obese rats.

  2. Aerobic exercise increases peripheral and hepatic insulin sensitivity in sedentary adolescents

    USDA-ARS?s Scientific Manuscript database

    Data are limited on the effects of controlled aerobic exercise programs (without weight loss) on insulin sensitivity and glucose metabolism in children and adolescents. To determine whether a controlled aerobic exercise program (without weight loss) improves peripheral and hepatic insulin sensitivi...

  3. Preoperative oral carbohydrate treatment attenuates immediate postoperative insulin resistance.

    PubMed

    Soop, M; Nygren, J; Myrenfors, P; Thorell, A; Ljungqvist, O

    2001-04-01

    Postoperative insulin resistance is a well-characterized metabolic state that has been shown to correlate with the length of postoperative stay in hospital. Preoperative intravenous or oral carbohydrate treatment has been shown to attenuate the development of postoperative insulin resistance measured 1 day after surgery. To study the effects of preoperative oral carbohydrate treatment on postoperative changes in insulin resistance and substrate utilization, in the absence of postoperative confounding factors, 15 patients were double-blindly treated with either a carbohydrate-rich beverage (12.5%) (n = 8) or placebo (n = 7) before undergoing total hip replacement surgery. Insulin sensitivity, endogenous glucose release, and substrate oxidation rates were measured before and immediately after surgery. Whole body insulin sensitivity decreased by 18% in the treatment group vs. 43% in the placebo group (P < 0.05, Student's t-test for unpaired data). In both groups, the major mechanism of insulin resistance was an inhibition of insulin-induced nonoxidative glucose disposal after surgery. The better preservation of insulin sensitivity in the treatment group was attributable to a less reduced glucose disposal in peripheral tissues and increased glucose oxidation rates.

  4. Increased TET1 Expression in Inflammatory Microenvironment of Hyperinsulinemia Enhances the Response of Endometrial Cancer to Estrogen by Epigenetic Modulation of GPER

    PubMed Central

    Lv, Qiao-Ying; Xie, Bing-Ying; Yang, Bing-Yi; Ning, Cheng-Cheng; Shan, Wei-Wei; Gu, Chao; Luo, Xue-Zhen; Chen, Xiao-Jun; Zhang, Zhen-Bo; Feng, You-Ji

    2017-01-01

    Background: Insulin resistance (IR) has been well studied in the initiation and development of endometrial endometrioid carcinoma (EEC). As yet, it has been largely neglected for estrogen sensitivity in local endometrium in hyperinsulinemia-induced systemic microenvironment. The aim of this study was to investigate the role of insulin in regulating estrogen sensitivity and explore the potential mechanisms in insulin-driven inflammatory microenvironment. Methods: We first investigated the effect of insulin on estradiol-driven endometrial cancer cells proliferation in vitro to address the roles of insulin in modulating estrogen sensitivity. Then GPER, ERα and TET1 in EEC samples with or without insulin resistance were screened by immunohistochemistry to confirm whether insulin resistance regulates estrogen receptors. Further mechanism analysis was carried out to address whether TET1 was mediated epigenetic modulation of GPER in insulin-induced microenvironment. Results: Insulin enhanced estradiol-driven endometrial cancer cells proliferation by up-regulating G-protein-coupled estrogen receptor (GPER) expression, but not ERα or ERβ. Immunohistochemistry of EEC tissues showed that GPER expression was greatly increased in endometrial tissues from EEC subjects with insulin resistance and was positively correlated with Ten-eleven-translocation 1 (TET1) expression. Mechanistically, insulin up-regulates TET1 expression, and the latter, an important DNA hydroxymethylase, could up-regulate GPER expression through epigenetic modulation. Conclusion: This study identified TET1 as the upstream regulator of GPER expression and provides a possible mechanism that insulin-induced positive regulation of estrogen sensitivity in endometrial cancer cells. Increasing expression of GPER through TET1-mediated epigenetic modulation may emerge as the main regulator to enhance the response of endometrial cancer to estrogen in insulin-driven inflammatory microenvironment. PMID:28382153

  5. Increased TET1 Expression in Inflammatory Microenvironment of Hyperinsulinemia Enhances the Response of Endometrial Cancer to Estrogen by Epigenetic Modulation of GPER.

    PubMed

    Lv, Qiao-Ying; Xie, Bing-Ying; Yang, Bing-Yi; Ning, Cheng-Cheng; Shan, Wei-Wei; Gu, Chao; Luo, Xue-Zhen; Chen, Xiao-Jun; Zhang, Zhen-Bo; Feng, You-Ji

    2017-01-01

    Background: Insulin resistance (IR) has been well studied in the initiation and development of endometrial endometrioid carcinoma (EEC). As yet, it has been largely neglected for estrogen sensitivity in local endometrium in hyperinsulinemia-induced systemic microenvironment. The aim of this study was to investigate the role of insulin in regulating estrogen sensitivity and explore the potential mechanisms in insulin-driven inflammatory microenvironment. Methods: We first investigated the effect of insulin on estradiol-driven endometrial cancer cells proliferation in vitro to address the roles of insulin in modulating estrogen sensitivity. Then GPER, ERα and TET1 in EEC samples with or without insulin resistance were screened by immunohistochemistry to confirm whether insulin resistance regulates estrogen receptors. Further mechanism analysis was carried out to address whether TET1 was mediated epigenetic modulation of GPER in insulin-induced microenvironment. Results: Insulin enhanced estradiol-driven endometrial cancer cells proliferation by up-regulating G-protein-coupled estrogen receptor (GPER) expression, but not ERα or ERβ. Immunohistochemistry of EEC tissues showed that GPER expression was greatly increased in endometrial tissues from EEC subjects with insulin resistance and was positively correlated with Ten-eleven-translocation 1 (TET1) expression. Mechanistically, insulin up-regulates TET1 expression, and the latter, an important DNA hydroxymethylase, could up-regulate GPER expression through epigenetic modulation. Conclusion: This study identified TET1 as the upstream regulator of GPER expression and provides a possible mechanism that insulin-induced positive regulation of estrogen sensitivity in endometrial cancer cells. Increasing expression of GPER through TET1-mediated epigenetic modulation may emerge as the main regulator to enhance the response of endometrial cancer to estrogen in insulin-driven inflammatory microenvironment.

  6. Detecting insulin resistance in polycystic ovary syndrome: purposes and pitfalls.

    PubMed

    Legro, Richard S; Castracane, V Daniel; Kauffman, Robert P

    2004-02-01

    Approximately 50% to 70% of all women with polycystic ovary syndrome (PCOS) have some degree of insulin resistance, and this hormone insensitivity probably contributes to the hyperandrogenism that is responsible for the signs and symptoms of PCOS. Although uncertainty exists, early detection and treatment of insulin resistance in this population could ultimately reduce the incidence or severity of diabetes mellitus, dyslipidemia, hypertension, and cardiovascular disease. Even if that proves to be the case, there are still several problems with our current approach to insulin sensitivity assessment in PCOS, including the apparent lack of consensus on what defines PCOS and "normal" insulin sensitivity, ethnic and genetic variability, the presence of other factors contributing to insulin resistance such as obesity, stress, and aging, and concern about whether simplified models of insulin sensitivity have the precision to predict treatment needs, responses, and future morbidity. Although the hyperinsulinemic-euglycemic clamp technique is the gold standard for measuring insulin sensitivity, it is too expensive, time-consuming, and labor-intensive to be of practical use in an office setting. Homeostatic measurements (fasting glucose/insulin ratio or homeostatic model assessment [HOMA] value) and minimal model tests (particularly the oral glucose tolerance test [OGTT]) represent the easiest office-based assessments of insulin resistance in the PCOS patient. The OGTT is probably the best simple, office-based method to assess women with PCOS because it provides information about both insulin resistance and glucose intolerance. The diagnosis of glucose intolerance holds greater prognostic and treatment implications. All obese women with PCOS should be screened for the presence of insulin resistance by looking for other stigmata of the insulin resistance syndrome such as hypertension, dyslipidemia, central obesity, and glucose intolerance.

  7. Acute effects of different diet compositions on skeletal muscle insulin signalling in obese individuals during caloric restriction

    PubMed Central

    Wang, Cecilia C.L.; Adochio, Rebecca L.; Leitner, J. Wayne; Abeyta, Ian M.; Draznin, Boris; Cornier, Marc-Andre

    2012-01-01

    Objective The cellular effects of restricting fat versus carbohydrate during a low-calorie diet are unclear. The aim of this study was to examine acute effects of energy and macronutrient restriction on skeletal muscle insulin signalling in obesity. Materials/Methods Eighteen obese individuals without diabetes underwent euglycemic-hyperinsulinemic clamp and skeletal muscle biopsy after: (a) 5 days of eucaloric diet (30% fat, 50% carbohydrate), and (b) 5 days of a 30% calorie-restricted diet, either low fat/high carbohydrate (LF/HC: 20% fat, 60% carbohydrate) or high-fat/low carbohydrate (HF/LC: 50% fat, 30% carbohydrate). Results Weight, body composition, and insulin sensitivity were similar between groups after eucaloric diet. Weight loss was similar between groups after hypocaloric diet, 1.3 ± 1.3 kg (p<0.0001 compared with eucaloric). Whole-body insulin sensitivity was unchanged after calorie restriction and similar between groups. However, ex vivo skeletal muscle insulin signalling differed depending on macronutrient composition of calorie-restricted diet. Skeletal muscle of the LF/HC group had increased insulin-stimulated tyrosine phosphorylation of IRS-1, decreased insulin-stimulated Ser 307 phosphorylation of IRS-1, and increased IRS-1-associated phosphatidylinositol (PI)3-kinase activity. Conversely, insulin stimulation of tyrosine phosphorylated IRS-1 was absent and serine 307 phosphorylation of IRS-1 was increased on HF/LC, with blunting of IRS-1-associated PI3-kinase activity. Conclusion Acute caloric restriction with a LF/HC diet alters skeletal muscle insulin signalling in a way that improves insulin sensitivity, while acute caloric restriction with a HF/LC diet induces changes compatible with insulin resistance. In both cases, ex vivo changes in skeletal muscle insulin signalling appear prior to changes in whole body insulin sensitivity. PMID:23174405

  8. Influence of upper and lower body adipose tissue on insulin sensitivity in South Asian men.

    PubMed

    Balakrishnan, Preetha; Grundy, Scott M; Islam, Arsalla; Dunn, Fredrick; Vega, Gloria Lena

    2012-10-01

    South Asians have a high prevalence of insulin resistance, which predisposes to type 2 diabetes. In the current study, we examined whether insulin sensitivity in South Asian men and men of European descent (Europids) relates to truncal and lower body fat, number of adipocytes, and cell size distribution. Fifteen South Asian men and 15 Europid young men with comparable body mass indexes completed assessments of insulin sensitivity, body composition analysis by dual-energy x-ray absorptiometry, and measurement of adipocyte cellularity in the subcutaneous abdominal (truncal) and gluteal (lower body) adipose tissue. The South Asians and the Europids had similar total body fat and fat contents in truncal and lower body regions. Compared to the Europids, the South Asians had a greater insulin resistance shown by fasting insulin, area-under-the-curve for postprandial insulin, oral glucose insulin sensitivity, homeostatic model assessment of insulin resistance, β-cell index, and triglyceride-to-high-density lipoprotein ratio. The South Asians had similar number of adipocytes to the Europids, but the South Asians had significantly higher ratios of small-to-larger adipocytes. The South Asians further had a higher fraction of very large adipocytes. In both South Asians and Europids, truncal fat was positively associated with insulin resistance. In the South Asians but not in the Europids, lower body fat was associated with severity of insulin resistance. The results suggest first, a higher ratio of small-to-larger adipocytes in the South Asians consistent with a lesser lipid storage capacity of adipose tissue; and second, the positive association of lower body fat with insulin resistance in the South Asians implies that fat in their lower body worsens insulin resistance. This association was not observed in the Europids.

  9. Preoperative oral carbohydrates and postoperative insulin resistance.

    PubMed

    Nygren, J; Soop, M; Thorell, A; Sree Nair, K; Ljungqvist, O

    1999-04-01

    Infusions of carbohydrates before surgery have been shown to reduce postoperative insulin resistance. Presently, we investigated the effects of a carbohydrate drink, given shortly before surgery, on postoperative insulin sensitivity. Insulin sensitivity and glucose turnover ([6, 6,(2)H(2)]-D-glucose) were measured using hyper-insulinemic, normoglycemic clamps before and after elective surgery. Sixteen patients undergoing total hip replacement were randomly assigned to preoperative oral carbohydrate administration (CHO-H, n = 8) or the same amount of a placebo drink (placebo, n = 8) before surgery. Insulin sensitivity was measured before and immediately after surgery. Patients undergoing elective colorectal surgery were studied before surgery and 24 h postoperatively (CHO-C (n = 7), and fasted (n = 7), groups). The fasted group underwent surgery after an overnight fast. In both studies, the CHO groups received 800 ml of an isoosmolar carbohydrate rich beverage the evening before the operation (100g carbohydrates), as well as another 400 ml (50g carbohydrates) 2 h before the initiation of anesthesia. Immediately after surgery, insulin sensitivity was reduced 37% in the placebo group (P < 0.05 vs. preoperatively) while no significant change was found in the CHO-H group (-16%, p = NS). During clamps performed 24h postoperatively, insulin sensitivity and whole-body glucose disposal was reduced in both groups, but the reduction was greater compared to that in the CHO-C group (-49 +/- 6% vs. -26 +/- 8%, P> 0.05 fasted vs. CHO-C). Patients given a carbohydrate drink shortly before elective surgery displayed less reduced insulin sensitivity after surgery as compared to patients undergoing surgery after an overnight fast. Copyright 1999 Harcourt Publishers Ltd.

  10. Histone methyltransferase G9a modulates hepatic insulin signaling via regulating HMGA1.

    PubMed

    Xue, Weili; Huang, Jin; Chen, Hong; Zhang, Yu; Zhu, Xiuqin; Li, Jianshuang; Zhang, Wenquan; Yuan, Yangmian; Wang, Yan; Zheng, Ling; Huang, Kun

    2018-02-01

    Hepatic insulin sensitivity is critical for glucose homeostasis, and insulin resistance is a fundamental syndrome found in various metabolic disorders, including obesity and type 2 diabetes. Despite considerable studies on the mechanisms of hepatic insulin resistance, the link between epigenetic regulation and the development of insulin resistance remains elusive. Here, we reported that G9a/EHMT2, a histone methyltransferase, was markedly decreased in the liver of db/db mice and high-fat diet (HFD)-fed mice. In cultured hepatic cells, G9a knockdown resulted in downregulation of insulin receptor, p-AKT and p-GSK3β; while upon upregulation, G9a prevented the palmitic acid- or glucosamine-induced insulin resistance by preserving the normal level of insulin receptor and integrity of insulin signaling. Further mechanistic study suggested that G9a regulated the expression level of high mobility group AT-hook 1 (HMGA1), a key regulator responsible for the transcription of insulin receptor (INSR) gene. Overexpression of HMGA1 normalized the impaired insulin signaling in G9a knockdown hepatic cells. Importantly, in db/db mice, restoring the expression level of G9a not only upregulated HMGA1 level and improved the impaired hepatic insulin signaling, but also alleviated hyperglycemia and hyperinsulinemia. Together, our results revealed a novel role for G9a in modulating insulin signaling, at least in part, depending on its regulatory function on HMGA1. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Polycystic ovary syndrome: insight into pathogenesis and a common association with insulin resistance.

    PubMed

    Barber, Thomas M; Dimitriadis, George K; Andreou, Avgi; Franks, Stephen

    2015-12-01

    Polycystic ovary syndrome (PCOS) is a common condition that typically develops in reproductive-age women. The cardinal clinical and biochemical characteristics of PCOS include reproductive dysfunction and hyperandrogenic features. PCOS is also strongly associated with obesity based on data from epidemiological and genetic studies. Accordingly, PCOS often becomes manifest in those women who carry a genetic predisposition to its development, and who also gain weight. The role of weight gain and obesity in the development of PCOS is mediated at least in part, through worsening of insulin resistance. Compensatory hyperinsulinaemia that develops in this context disrupts ovarian function, with enhanced androgen production and arrest of ovarian follicular development. Insulin resistance also contributes to the strong association of PCOS with adverse metabolic risk, including dysglycaemia, dyslipidaemia and fatty liver. Conversely, modest weight loss of just 5% body weight with improvement in insulin sensitivity, frequently results in clinically meaningful improvements in hyperandrogenic, reproductive and metabolic features. Future developments of novel therapies for obese women with PCOS should focus on promotion of weight loss and improvement in insulin sensitivity. In this context, therapies that complement lifestyle changes such as dietary modification and exercise, particularly during the maintenance phase of weight loss are important. Putative novel targets for therapy in PCOS include human brown adipose tissue. © Royal College of Physicians 2015. All rights reserved.

  12. Strong and persistent effect on liver fat with a Paleolithic diet during a two-year intervention.

    PubMed

    Otten, J; Mellberg, C; Ryberg, M; Sandberg, S; Kullberg, J; Lindahl, B; Larsson, C; Hauksson, J; Olsson, T

    2016-05-01

    Our objective was to investigate changes in liver fat and insulin sensitivity during a 2-year diet intervention. An ad libitum Paleolithic diet (PD) was compared with a conventional low-fat diet (LFD). Seventy healthy, obese, postmenopausal women were randomized to either a PD or a conventional LFD. Diet intakes were ad libitum. Liver fat was measured with proton magnetic resonance spectroscopy. Insulin sensitivity was evaluated with oral glucose tolerance tests and calculated as homeostasis model assessment-insulin resistance (HOMA-IR)/liver insulin resistance (Liver IR) index for hepatic insulin sensitivity and oral glucose insulin sensitivity (OGIS)/Matsuda for peripheral insulin sensitivity. All measurements were performed at 0, 6 and 24 months. Forty-one women completed the examinations for liver fat and were included. Liver fat decreased after 6 months by 64% (95% confidence interval: 54-74%) in the PD group and by 43% (27-59%) in the LFD group (P<0.01 for difference between groups). After 24 months, liver fat decreased 50% (25-75%) in the PD group and 49% (27-71%) in the LFD group. Weight reduction between baseline and 6 months was correlated to liver fat improvement in the LFD group (rs=0.66, P<0.01) but not in the PD group (rs=0.07, P=0.75). Hepatic insulin sensitivity improved during the first 6 months in the PD group (P<0.001 for Liver IR index and HOMA-IR), but deteriorated between 6 and 24 months without association with liver fat changes. A PD with ad libitum intake had a significant and persistent effect on liver fat and differed significantly from a conventional LFD at 6 months. This difference may be due to food quality, for example, a higher content of mono- and polyunsaturated fatty acids in the PD. Changes in liver fat did not associate with alterations in insulin sensitivity.

  13. Fructose-rich diet-induced abdominal adipose tissue endocrine dysfunction in normal male rats.

    PubMed

    Alzamendi, Ana; Giovambattista, Andrés; Raschia, Agustina; Madrid, Viviana; Gaillard, Rolf C; Rebolledo, Oscar; Gagliardino, Juan J; Spinedi, Eduardo

    2009-04-01

    We have currently studied the changes induced by administration of a fructose-rich diet (FRD) to normal rats in the mass and the endocrine function of abdominal (omental) adipose tissue (AAT). Rats were fed ad libitum a standard commercial chow and tap water, either alone (control diet, CD) or containing fructose (10%, w/vol) (FRD). Three weeks after treatment, circulating metabolic markers and leptin release from adipocytes of AAT were measured. Plasma free fatty acids (FFAs), leptin, adiponectin, and plasminogen activator inhibitor-1 (PAI-1) levels were significantly higher in FRD than in CD rats. AAT mass was greater in FRD than in CD rats and their adipocytes were larger, they secreted more leptin and showed impaired insulin sensitivity. While leptin mRNA expression increased in AAT from FRD rats, gene expression of insulin receptor substrate, IRS1 and IRS2 was significantly reduced. Our study demonstrates that administration of a FRD significantly affects insulin sensitivity and several AAT endocrine/metabolic functions. These alterations could be part of a network of interacting abnormalities triggered by FRD-induced oxidative stress at the AAT level. In view of the impaired glucose tolerance observed in FRD rats, these alterations could play a key role in both the development of metabolic syndrome (MS) and beta-cell failure.

  14. Characterization of lipid metabolism in insulin-sensitive adipocytes differentiated from immortalized human mesenchymal stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prawitt, Janne; Niemeier, Andreas; Kassem, Moustapha

    2008-02-15

    There is a great demand for cell models to study human adipocyte function. Here we describe the adipogenic differentiation of a telomerase-immortalized human mesenchymal stem cell line (hMSC-Tert) that maintains numerous features of terminally differentiated adipocytes even after prolonged withdrawal of the peroxisome proliferator activated receptor {gamma} (PPAR{gamma}) agonist rosiglitazone. Differentiated hMSC-Tert developed the characteristic monolocular phenotype of mature adipocytes. The expression of adipocyte specific markers was highly increased during differentiation. Most importantly, the presence of the PPAR{gamma} agonist rosiglitazone was not required for the stable expression of lipoprotein lipase, adipocyte fatty acid binding protein and perilipin on mRNA andmore » protein levels. Adiponectin expression was post-transcriptionally down-regulated in the absence of rosiglitazone. Insulin sensitivity as measured by insulin-induced phosphorylation of Akt and S6 ribosomal protein was also independent of rosiglitazone. In addition to commonly used adipogenic markers, we investigated further PPAR{gamma}-stimulated proteins with a role in lipid metabolism. We observed an increase of lipoprotein receptor (VLDLR, LRP1) and apolipoprotein E expression during differentiation. Despite this increased expression, the receptor-mediated endocytosis of lipoproteins was decreased in differentiated adipocytes, suggesting that these proteins may have an additional function in adipose tissue beyond lipoprotein uptake.« less

  15. Evaluation of Four Diagnostic Tests for Insulin Dysregulation in Adult Light-Breed Horses.

    PubMed

    Dunbar, L K; Mielnicki, K A; Dembek, K A; Toribio, R E; Burns, T A

    2016-05-01

    Several tests have been evaluated in horses for quantifying insulin dysregulation to support a diagnosis of equine metabolic syndrome. Comparing the performance of these tests in the same horses will provide clarification of their accuracy in the diagnosis of equine insulin dysregulation. The aim of this study was to evaluate the agreement between basal serum insulin concentrations (BIC), the oral sugar test (OST), the combined glucose-insulin test (CGIT), and the frequently sampled insulin-modified intravenous glucose tolerance test (FSIGTT). Twelve healthy, light-breed horses. Randomized, prospective study. Each of the above tests was performed on 12 horses. Minimal model analysis of the FSIGTT was considered the reference standard and classified 7 horses as insulin resistant (IR) and 5 as insulin sensitive (IS). In contrast, BIC and OST assessment using conventional cut-off values classified all horses as IS. Kappa coefficients, measuring agreement among BIC, OST, CGIT, and FSIGTT were poor to fair. Sensitivity of the CGIT (positive phase duration of the glucose curve >45 minutes) was 85.7% and specificity was 40%, whereas CGIT ([insulin]45 >100 μIU/mL) sensitivity and specificity were 28.5% and 100%, respectively. Area under the glucose curve (AUCg0-120 ) was significantly correlated among the OST, CGIT, and FSIGTT, but Bland-Altman method and Lin's concordance coefficient showed a lack of agreement. Current criteria for diagnosis of insulin resistance using BIC and the OST are highly specific but lack sensitivity. The CGIT displayed better sensitivity and specificity, but modifications may be necessary to improve agreement with minimal model analysis. Copyright © 2016 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  16. Treatment with an SSRI antidepressant restores hippocampo-hypothalamic corticosteroid feedback and reverses insulin resistance in low-birth-weight rats.

    PubMed

    Buhl, Esben S; Jensen, Thomas Korgaard; Jessen, Niels; Elfving, Betina; Buhl, Christian S; Kristiansen, Steen B; Pold, Rasmus; Solskov, Lasse; Schmitz, Ole; Wegener, Gregers; Lund, Sten; Petersen, Kitt Falck

    2010-05-01

    Low birth weight (LBW) is associated with type 2 diabetes and depression, which may be related to prenatal stress and insulin resistance as a result of chronic hypothalamic-pituitary-adrenal (HPA) axis hyperactivity. We examined whether treatment with a selective serotonin reuptake inhibitor [escitalopram (ESC)] could downregulate HPA axis activity and restore insulin sensitivity in LBW rats. After 4-5 wk of treatment, ESC-exposed LBW (SSRI-LBW) and saline-treated control and LBW rats (Cx and LBW) underwent an oral glucose tolerance test or a hyperinsulinemic euglycemic clamp to assess whole body insulin sensitivity. Hepatic phosphoenolpyruvate carboxykinase (PEPCK) mRNA expression and red skeletal muscle PKB Ser(473) phosphorylation were used to assess tissue-specific insulin sensitivity. mRNA expression of the hypothalamic mineralocorticoid receptor was fivefold upregulated in LBW (P < 0.05 vs. Cx), accompanied by increased corticosterone release during restraint stress and total 24-h urinary excretion (P < 0.05 vs. Cx), whole body insulin resistance (P < 0.001 vs. Cx), and impaired insulin suppression of hepatic PEPCK mRNA expression (P < 0.05 vs. Cx). Additionally, there was a tendency for reduced red muscle PKB Ser(473) phosphorylation. The ESC treatment normalized corticosterone secretion (P < 0.05 vs. LBW), whole body insulin sensitivity (P < 0.01) as well as postprandial suppression of hepatic mRNA PEPCK expression (P < 0.05), and red muscle PKB Ser(473) phosphorylation (P < 0.01 vs. LBW). We conclude that these data suggest that the insulin resistance and chronic HPA axis hyperactivity in LBW rats can be reversed by treatment with an ESC, which downregulates HPA axis activity, lowers glucocorticoid exposure, and restores insulin sensitivity in LBW rats.

  17. Eradicating hepatitis C virus ameliorates insulin resistance without change in adipose depots.

    PubMed

    Milner, K-L; Jenkins, A B; Trenell, M; Tid-Ang, J; Samocha-Bonet, D; Weltman, M; Xu, A; George, J; Chisholm, D J

    2014-05-01

    Chronic hepatitis C (CHC) is associated with lipid-related changes and insulin resistance; the latter predicts response to antiviral therapy, liver disease progression and the risk of diabetes. We sought to determine whether insulin sensitivity improves following CHC viral eradication after antiviral therapy and whether this is accompanied by changes in fat depots or adipokine levels. We compared 8 normoglycaemic men with CHC (genotype 1 or 3) before and at least 6 months post viral eradication and 15 hepatitis C antibody negative controls using an intravenous glucose tolerance test and two-step hyperinsulinaemic-euglycaemic clamp with [6,6-(2) H2 ] glucose to assess peripheral and hepatic insulin sensitivity. Magnetic resonance imaging and spectroscopy quantified abdominal fat compartments, liver and intramyocellular lipid. Peripheral insulin sensitivity improved (glucose infusion rate during high-dose insulin increased from 10.1 ± 1.6 to 12 ± 2.1 mg/kg/min/, P = 0.025), with no change in hepatic insulin response following successful viral eradication, without any accompanying change in muscle, liver or abdominal fat depots. There was corresponding improvement in incremental glycaemic response to intravenous glucose (pretreatment: 62.1 ± 8.3 vs post-treatment: 56.1 ± 8.5 mm, P = 0.008). Insulin sensitivity after viral clearance was comparable to matched controls without CHC. Post therapy, liver enzyme levels decreased but, interestingly, levels of glucagon, fatty acid-binding protein and lipocalin-2 remained elevated. Eradication of the hepatitis C virus improves insulin sensitivity without alteration in fat depots, adipokine or glucagon levels, consistent with a direct link of the virus with insulin resistance. © 2013 John Wiley & Sons Ltd.

  18. A comparison between the minimal model and the glucose clamp in the assessment of insulin sensitivity across the spectrum of glucose tolerance. Insulin Resistance Atherosclerosis Study.

    PubMed

    Saad, M F; Anderson, R L; Laws, A; Watanabe, R M; Kades, W W; Chen, Y D; Sands, R E; Pei, D; Savage, P J; Bergman, R N

    1994-09-01

    An insulin-modified frequently sampled intravenous glucose tolerance test (FSIGTT) with minimal model analysis was compared with the glucose clamp in 11 subjects with normal glucose tolerance (NGT), 20 with impaired glucose tolerance (IGT), and 24 with non-insulin-dependent diabetes mellitus (NIDDM). The insulin sensitivity index (SI) was calculated from FSIGTT using 22- and 12-sample protocols (SI(22) and SI(12), respectively). Insulin sensitivity from the clamp was expressed as SI(clamp) and SIP(clamp). Minimal model parameters were similar when calculated with SI(22) and SI(12). SI could not be distinguished from 0 in approximately 50% of diabetic patients with either protocol. SI(22) correlated significantly with SI(clamp) in the whole group (r = 0.62), and in the NGT (r = 0.53), IGT (r = 0.48), and NIDDM (r = 0.41) groups (P < 0.05 for each). SI(12) correlated significantly with SI(clamp) in the whole group (r = 0.55, P < 0.001) and in the NGT (r = 0.53, P = 0.046) and IGT (r = 0.58, P = 0.008) but not NIDDM (r = 0.30, P = 0.085) groups. When SI(22), SI(clamp), and SIP(clamp) were expressed in the same units, SI(22) was 66 +/- 5% (mean +/- SE) and 50 +/- 8% lower than SI(clamp) and SIP(clamp), respectively. Thus, minimal model analysis of the insulin-modified FSIGTT provides estimates of insulin sensitivity that correlate significantly with those from the glucose clamp. The correlation was weaker, however, in NIDDM. The insulin-modified FSIGTT can be used as a simple test for assessment of insulin sensitivity in population studies involving nondiabetic subjects. Additional studies are needed before using this test routinely in patients with NIDDM.

  19. P21-activated kinase 2 (PAK2) regulates glucose uptake and insulin sensitivity in neuronal cells.

    PubMed

    Varshney, Pallavi; Dey, Chinmoy Sankar

    2016-07-05

    P21-activated kinases (PAKs) are recently reported as important players of insulin signaling and glucose homeostasis in tissues like muscle, pancreas and liver. However, their role in neuronal insulin signaling is still unknown. Present study reports the involvement of PAK2 in neuronal insulin signaling, glucose uptake and insulin resistance. Irrespective of insulin sensitivity, insulin stimulation decreased PAK2 activity. PAK2 downregulation displayed marked enhancement of GLUT4 translocation with increase in glucose uptake whereas PAK2 over-expression showed its reduction. Treatment with Akti-1/2 and wortmannin suggested that Akt and PI3K are mediators of insulin effect on PAK2 and glucose uptake. Rac1 inhibition demonstrated decreased PAK2 activity while inhibition of PP2A resulted in increased PAK2 activity, with corresponding changes in glucose uptake. Taken together, present study demonstrates an inhibitory role of insulin signaling (via PI3K-Akt) and PP2A on PAK2 activity and establishes PAK2 as a Rac1-dependent negative regulator of neuronal glucose uptake and insulin sensitivity. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. Does bariatric surgery improve adipose tissue function?

    PubMed Central

    Frikke-Schmidt, H.; O’Rourke, R. W.; Lumeng, C. N.; Sandoval, D. A.; Seeley, R. J.

    2017-01-01

    Summary Bariatric surgery is currently the most effective treatment for obesity. Not only do these types of surgeries produce significant weight loss but also they improve insulin sensitivity and whole body metabolic function. The aim of this review is to explore how altered physiology of adipose tissue may contribute to the potent metabolic effects of some of these procedures. This includes specific effects on various fat depots, the function of individual adipocytes and the interaction between adipose tissue and other key metabolic tissues. Besides a dramatic loss of fat mass, bariatric surgery shifts the distribution of fat from visceral to the subcutaneous compartment favoring metabolic improvement. The sensitivity towards lipolysis controlled by insulin and catecholamines is improved, adipokine secretion is altered and local adipose inflammation as well as systemic inflammatory markers decreases. Some of these changes have been shown to be weight loss independent, and novel hypothesis for these effects includes include changes in bile acid metabolism, gut microbiota and central regulation of metabolism. In conclusion bariatric surgery is capable of improving aspects of adipose tissue function and do so in some cases in ways that are not entirely explained by the potent effect of surgery. PMID:27272117

Top