Science.gov

Sample records for function prediction involved

  1. Radionuclide renography predicts functional changes in patients with renal artery involvement by Takayasu's arteritis

    SciTech Connect

    Cuocolo, A.; McCarthy, K.E.; Sandrock, D.; Miller, D.L.; Neumann, R.D. )

    1989-01-01

    Renovascular hypertension is a major complication of Takayasu's arteritis, which contributes to the high mortality associated with the disease. We studied 5 patients affected by different degrees of Takayasu's arteritis to assess the usefulness of radionuclide renography in evaluating renal perfusion and function, and to predict changes induced by the disease before and after therapeutic interventions. Computer-assisted dynamic renal imaging with Tc-99m diethylenetriaminepentaacetic acid (DPTA) and I-131 orthoiodohippurate (OIH), and renal arteriography were concurrently performed in all patients. Two patients with hemodynamically insignificant renal artery stenosis showed normal perfusion and function by renography. Three patients had significant renal artery stenosis and functional changes on renography. Subsequently, two of these patients had successful therapy (one had bilateral renal artery bypass grafts, and the other had renal artery angioplasty), and both showed functional improvement at renography. Our results demonstrate that radionuclide renography is valuable in the assessment of functional changes induced by Takayasu's arteritis as well as for determining the response to therapeutic interventions.

  2. Molecular clock is involved in predictive circadian adjustment of renal function.

    PubMed

    Zuber, Annie Mercier; Centeno, Gabriel; Pradervand, Sylvain; Nikolaeva, Svetlana; Maquelin, Lionel; Cardinaux, Léonard; Bonny, Olivier; Firsov, Dmitri

    2009-09-22

    Renal excretion of water and major electrolytes exhibits a significant circadian rhythm. This functional periodicity is believed to result, at least in part, from circadian changes in secretion/reabsorption capacities of the distal nephron and collecting ducts. Here, we studied the molecular mechanisms underlying circadian rhythms in the distal nephron segments, i.e., distal convoluted tubule (DCT) and connecting tubule (CNT) and the cortical collecting duct (CCD). Temporal expression analysis performed on microdissected mouse DCT/CNT or CCD revealed a marked circadian rhythmicity in the expression of a large number of genes crucially involved in various homeostatic functions of the kidney. This analysis also revealed that both DCT/CNT and CCD possess an intrinsic circadian timing system characterized by robust oscillations in the expression of circadian core clock genes (clock, bma11, npas2, per, cry, nr1d1) and clock-controlled Par bZip transcriptional factors dbp, hlf, and tef. The clock knockout mice or mice devoid of dbp/hlf/tef (triple knockout) exhibit significant changes in renal expression of several key regulators of water or sodium balance (vasopressin V2 receptor, aquaporin-2, aquaporin-4, alphaENaC). Functionally, the loss of clock leads to a complex phenotype characterized by partial diabetes insipidus, dysregulation of sodium excretion rhythms, and a significant decrease in blood pressure. Collectively, this study uncovers a major role of molecular clock in renal function.

  3. The involvement of proline-rich protein Mus musculus predicted gene 4736 in ocular surface functions

    PubMed Central

    Qi, Xia; Ren, Sheng-Wei; Zhang, Feng; Wang, Yi-Qiang

    2016-01-01

    AIM To research the two homologous predicted proline-rich protein genes, Mus musculus predicted gene 4736 (MP4) and proline-rich protein BstNI subfamily 1 (Prb1) which were significantly upregulated in cultured corneal organs when encountering fungal pathogen preparations. This study was to confirm the expression and potential functions of these two genes in ocular surface. METHODS A Pseudomonas aeruginosa keratitis model was established in Balb/c mice. One day post infection, mRNA level of MP4 was measured using real-time polymerase chain reaction (PCR), and MP4 protein detected by immunohistochemistry (IHC) or Western blot using a customized polyclonal anti-MP4 antibody preparation. Lacrimal glands from normal mice were also subjected to IHC staining for MP4. An online bioinformatics program, BioGPS, was utilized to screen public data to determine other potential locations of MP4. RESULTS One day after keratitis induction, MP4 was upregulated in the corneas at both mRNA level as measured using real-time PCR and protein levels as measured using Western blot and IHC. BioGPS analysis of public data suggested that the MP4 gene was most abundantly expressed in the lacrimal glands, and IHC revealed that normal murine lacrimal glands were positive for MP4 staining. CONCLUSION MP4 and Prb1 are closely related with the physiology and pathological processes of the ocular surface. Considering the significance of ocular surface abnormalities like dry eye, we propose that MP4 and Prb1 contribute to homeostasis of ocular surface, and deserve more extensive functional and disease correlation studies. PMID:27588265

  4. Genome-wide study predicts promoter-G4 DNA motifs regulate selective functions in bacteria: radioresistance of D. radiodurans involves G4 DNA-mediated regulation.

    PubMed

    Beaume, Nicolas; Pathak, Rajiv; Yadav, Vinod Kumar; Kota, Swathi; Misra, Hari S; Gautam, Hemant K; Chowdhury, Shantanu

    2013-01-01

    A remarkable number of guanine-rich sequences with potential to adopt non-canonical secondary structures called G-quadruplexes (or G4 DNA) are found within gene promoters. Despite growing interest, regulatory role of quadruplex DNA motifs in intrinsic cellular function remains poorly understood. Herein, we asked whether occurrence of potential G4 (PG4) DNA in promoters is associated with specific function(s) in bacteria. Using a normalized promoter-PG4-content (PG4(P)) index we analysed >60,000 promoters in 19 well-annotated species for (a) function class(es) and (b) gene(s) with enriched PG4(P). Unexpectedly, PG4-associated functional classes were organism specific, suggesting that PG4 motifs may impart specific function to organisms. As a case study, we analysed radioresistance. Interestingly, unsupervised clustering using PG4(P) of 21 genes, crucial for radioresistance, grouped three radioresistant microorganisms including Deinococcus radiodurans. Based on these predictions we tested and found that in presence of nanomolar amounts of the intracellular quadruplex-binding ligand N-methyl mesoporphyrin (NMM), radioresistance of D. radiodurans was attenuated by ~60%. In addition, important components of the RecF recombinational repair pathway recA, recF, recO, recR and recQ genes were found to harbour promoter-PG4 motifs and were also down-regulated in presence of NMM. Together these results provide first evidence that radioresistance may involve G4 DNA-mediated regulation and support the rationale that promoter-PG4s influence selective functions. PMID:23161683

  5. Fractal calculus involving gauge function

    NASA Astrophysics Data System (ADS)

    Golmankhaneh, Alireza K.; Baleanu, Dumitru

    2016-08-01

    Henstock-Kurzweil integral or gauge integral is the generalization of the Riemann integral. The functions which are not integrable because of singularity in the senses of Lebesgue or Riemann are gauge integrable. In this manuscript, we have generalized Fα-calculus using the gauge integral method for the integrating of the functions on fractal set subset of real-line where they have singularities. The suggested new method leads to the wider class of functions on the fractal subset of real-line that are *Fα-integrable. Using gauge function we define *Fα-derivative of functions their Fα-derivative is not exist. The reported results can be used for generalizing the fundamental theorem of Fα-calculus.

  6. Predicting early adolescent gang involvement from middle school adaptation.

    PubMed

    Dishion, Thomas J; Nelson, Sarah E; Yasui, Miwa

    2005-03-01

    This study examined the role of adaptation in the first year of middle school (Grade 6, age 11) to affiliation with gangs by the last year of middle school (Grade 8, age 13). The sample consisted of 714 European American (EA) and African American (AA) boys and girls. Specifically, academic grades, reports of antisocial behavior, and peer relations in 6th grade were used to predict multiple measures of gang involvement by 8th grade. The multiple measures of gang involvement included self-, peer, teacher, and counselor reports. Unexpectedly, self-report measures of gang involvement did not correlate highly with peer and school staff reports. The results, however, were similar for other and self-report measures of gang involvement. Mean level analyses revealed statistically reliable differences in 8th-grade gang involvement as a function of the youth gender and ethnicity. Structural equation prediction models revealed that peer nominations of rejection, acceptance, academic failure, and antisocial behavior were predictive of gang involvement for most youth. These findings suggest that the youth level of problem behavior and the school ecology (e.g., peer rejection, school failure) require attention in the design of interventions to prevent the formation of gangs among high-risk young adolescents.

  7. Infancy to Age Five: Predicting Fathers' Involvement.

    ERIC Educational Resources Information Center

    Bailey, William T.

    Four years after a study of paternal involvement among intact, middle-class families with an infant, a follow-up was conducted of 26 of the still intact families to determine the stability of paternal involvement and the psychological predictors of fathers' behavior at the time. Paternal involvement was assessed at both times in terms of care,…

  8. Predicting communities from functional traits.

    PubMed

    Cadotte, Marc W; Arnillas, Carlos A; Livingstone, Stuart W; Yasui, Simone-Louise E

    2015-09-01

    Species traits influence where species live and how they interact. While there have been many advances in describing the functional composition and diversity of communities, only recently do researchers have the ability to predict community composition and diversity. This predictive ability can offer fundamental insights into ecosystem resilience and restoration. PMID:26190136

  9. Functional MicroRNA Involved in Endometriosis

    PubMed Central

    Creighton, Chad J.; Han, Derek Y.; Zariff, Azam; Anderson, Matthew L.; Gunaratne, Preethi H.; Matzuk, Martin M.

    2011-01-01

    Endometriosis is a common disease seen by gynecologists. Clinical features involve pelvic pain and unexplained infertility. Although endometriosis is pathologically characterized by endometrial tissue outside the normal uterine location, endometriosis is otherwise not easily explained. Endometriomas, endometriotic cysts of the ovary, typically cause pain and distortion of pelvic anatomy. To begin to understand the pathogenesis of endometriomas, we describe the first transcriptome-microRNAome analysis of endometriomas and eutopic endometrium using next-generation sequencing technology. Using this approach, we generated a total of more than 54 million independent small RNA reads from our 19 clinical samples. At the microRNA level, we found 10 microRNA that were up-regulated (miR-202, 193a-3p, 29c, 708, 509-3-5p, 574-3p, 193a-5p, 485-3p, 100, and 720) and 12 microRNA that were down-regulated (miR-504, 141, 429, 203, 10a, 200b, 873, 200c, 200a, 449b, 375, and 34c-5p) in endometriomas compared with endometrium. Using in silico prediction algorithms, we correlated these microRNA with their corresponding differentially expressed mRNA targets. To validate the functional roles of microRNA, we manipulated levels of miR-29c in an in vitro system of primary cultures of human endometrial stromal fibroblasts. Extracellular matrix genes that were potential targets of miR-29c in silico were significantly down-regulated using this biological in vitro system. In vitro functional studies using luciferase reporter constructs further confirmed that miR-29c directly affects specific extracellular matrix genes that are dysregulated in endometriomas. Thus, miR-29c and other abnormally regulated microRNA appear to play important roles in the pathophysiology of uterine function and dysfunction. PMID:21436257

  10. Serotonin involvement in pituitary-adrenal function

    NASA Technical Reports Server (NTRS)

    Vernikos-Danellis, J.; Kellar, K. J.; Kent, D.; Gonzales, C.; Berger, P. A.; Barchas, J. D.

    1977-01-01

    Experiments clarifying the effects of serotonin (5-HT) in the regulation of the hypothalamic-pituitary-adrenocortical system are surveyed. Lesion experiments which seek to determine functional maps of serotonergic input to areas involved in regulation are reported. Investigations of the effects of 5-HT levels on the plasma ACTH response to stress and the diurnal variation in basal plasma corticosterone are summarized, and the question of whether serotonergic transmission is involved in the regulation of all aspects of pituitary-adrenal function is considered with attention to the stimulatory and inhibitory action of 5-HT.

  11. [Muscular Dystrophies Involving the Retinal Function].

    PubMed

    Jägle, H

    2016-03-01

    Muscular dystrophies are rare disorders, with an incidence of approx. 20 in 100 000. Some dystrophies also affect retinal or optic nerve function. In such cases, the ophthalmological findings may be critical for differential diagnosis or patient counseling. For example in Duchenne muscular dystrophy, where the alteration in retinal function seems to reflect cerebral involvement. Other important forms are mitochondrial and metabolic disorders, such as the Kearns-Sayre syndrome and the Refsum syndrome. Molecular genetic analysis has become a major tool for differential diagnosis, but may be complex and demanding. This article gives an overview of major muscular dystrophies involving retinal function and their genetic origin, in order to guide differential diagnosis.

  12. Year 2 Report: Protein Function Prediction Platform

    SciTech Connect

    Zhou, C E

    2012-04-27

    Upon completion of our second year of development in a 3-year development cycle, we have completed a prototype protein structure-function annotation and function prediction system: Protein Function Prediction (PFP) platform (v.0.5). We have met our milestones for Years 1 and 2 and are positioned to continue development in completion of our original statement of work, or a reasonable modification thereof, in service to DTRA Programs involved in diagnostics and medical countermeasures research and development. The PFP platform is a multi-scale computational modeling system for protein structure-function annotation and function prediction. As of this writing, PFP is the only existing fully automated, high-throughput, multi-scale modeling, whole-proteome annotation platform, and represents a significant advance in the field of genome annotation (Fig. 1). PFP modules perform protein functional annotations at the sequence, systems biology, protein structure, and atomistic levels of biological complexity (Fig. 2). Because these approaches provide orthogonal means of characterizing proteins and suggesting protein function, PFP processing maximizes the protein functional information that can currently be gained by computational means. Comprehensive annotation of pathogen genomes is essential for bio-defense applications in pathogen characterization, threat assessment, and medical countermeasure design and development in that it can short-cut the time and effort required to select and characterize protein biomarkers.

  13. Some completely monotonic functions involving polygamma functions and an application

    NASA Astrophysics Data System (ADS)

    Qi, Feng; Cui, Run-Qing; Chen, Chao-Ping; Guo, Bai-Ni

    2005-10-01

    By using the first Binet's formula the strictly completely monotonic properties of functions involving the psi and polygamma functions are obtainedE As direct consequences, two inequalities are proved. As an application, the best lower and upper bounds of the nth harmonic number are established.

  14. Prediction of police officers' traffic accident involvement using behavioral observations.

    PubMed

    Gully, S M; Whitney, D J; Vanosdall, F E

    1995-06-01

    The current study used scores on the Driver Performance Measurement (DPM) test and data gathered over four years on accident type and frequency from 47 police officers to provide evidence that cognitive-behavioral observations of driving patterns can lead to predictions of subsequent accident involvement. Results indicate that after controlling for age and experience, scores on the DPM test predicted involvement in preventable accidents but not unpreventable accidents. Implications for future research involving the observation of cognitive-behavioral sequences are discussed. PMID:7639919

  15. Functional brain networks involved in reality monitoring.

    PubMed

    Metzak, Paul D; Lavigne, Katie M; Woodward, Todd S

    2015-08-01

    Source monitoring refers to the recollection of variables that specify the context and conditions in which a memory episode was encoded. This process involves using the qualitative and quantitative features of a memory trace to distinguish its source. One specific class of source monitoring is reality monitoring, which involves distinguishing internally generated from externally generated information, that is, memories of imagined events from real events. The purpose of the present study was to identify functional brain networks that underlie reality monitoring, using an alternative type of source monitoring as a control condition. On the basis of previous studies on self-referential thinking, it was expected that a medial prefrontal cortex (mPFC) based network would be more active during reality monitoring than the control condition, due to the requirement to focus on a comparison of internal (self) and external (other) source information. Two functional brain networks emerged from this analysis, one reflecting increasing task-related activity, and one reflecting decreasing task-related activity. The second network was mPFC based, and was characterized by task-related deactivations in areas resembling the default-mode network; namely, the mPFC, middle temporal gyri, lateral parietal regions, and the precuneus, and these deactivations were diminished during reality monitoring relative to source monitoring, resulting in higher activity during reality monitoring. This result supports previous research suggesting that self-referential thinking involves the mPFC, but extends this to a network-level interpretation of reality monitoring.

  16. Vascular function and ocular involvement in sarcoidosis.

    PubMed

    Siasos, Gerasimos; Paraskevopoulos, Theodoros; Gialafos, Elias; Rapti, Aggeliki; Oikonomou, Evangelos; Zaromitidou, Marina; Mourouzis, Konstantinos; Siasou, Georgia; Gouliopoulos, Nikolaos; Tsalamandris, Sotiris; Vlasis, Konstantinos; Stefanadis, Christodoulos; Papavassiliou, Athanasios G; Tousoulis, Dimitris

    2015-07-01

    Ocular involvement occurs in sarcoidosis (Sar) patients mainly in the form of uveitis. This study was designed to determine if uveitis in Sar patients is associated with vascular impairment. We enrolled 82 Sar patients and 77, age and sex matched, control subjects (Cl). Sar patients were divided into those with ocular sarcoidosis (OS) and those without ocular sarcoidosis (WOS). Endothelial function was evaluated by flow-mediated dilation (FMD). Pulse wave velocity (PWV) was measured as an index of aortic stiffness and augmentation index (AIx) as a measure of arterial wave reflections. Although there was no significant difference in sex, age and mean arterial pressure, patients with OS compared to WOS patients and Cl subjects had impaired FMD (p<0.001), increased AIx (p=0.02) and increased PWV (p=0.001). Interestingly, impaired FMD in Sar patients was independently, from possible covariates (age, sex, smoking habits, arterial hypertension, dyslipidemia), associated with increased odds of ocular involvement (odds ratio=1.69, p=0.001). More precisely ROC curve analysis revealed that FMD had a significant diagnostic ability for the detection of OS (AUC=0.77, p<0.001) with a sensitivity of 79% and a specificity of 68% for an FMD value below 6.00%. To conclude in the present study we have shown that ocular involvement in Sar patients is associated with impaired endothelial function and increased arterial stiffness. These results strengthen the vascular theory which considers uveitis a consequence of vascular dysfunction in Sar patients and reveals a possible clinical importance of the use of endothelial function tests.

  17. Fusion excitation functions involving transitional nuclei

    SciTech Connect

    Rehm, K.E.; Jiang, C.L.; Esbensen, H.

    1995-08-01

    Measurements of fusion excitation functions involving transitional nuclei {sup 78}Kr and {sup 100}Mo showed a different behavior at low energies, if compared to measurements with {sup 86}Kr and {sup 92}Mo. This points to a possible influence of nuclear structure on the fusion process. One way to characterize the structure of vibrational nuclei is via their restoring force parameters C{sub 2} which can be calculated from the energy of the lowest 2{sup +} state and the corresponding B(E2) value. A survey of the even-even nuclei between A = 28-150 shows strong variations in C{sub 2} values spanning two orders of magnitude. The lowest values for C{sub 2} are observed for {sup 78}Kr, {sup 104}Ru and {sup 124}Xe followed by {sup 74,76}Ge, {sup 74,76}Se, {sup 100}Mo and {sup 110}Pd. In order to learn more about the influence of {open_quotes}softness{close_quotes} on the sub-barrier fusion enhancement, we measured cross sections for evaporation residue production for the systems {sup 78}Kr + {sup 104}Ru and {sup 78}Kr + {sup 76}Ge with the gas-filled magnet technique. For both systems, fusion excitation functions involving the closed neutron shell nucleus {sup 86}Kr were measured previously. The data are presently being analyzed.

  18. Prediction of Research Self-Efficacy and Future Research Involvement.

    ERIC Educational Resources Information Center

    Bishop, Rosean M.; And Others

    Although graduate programs hope that their students will be committed to research in their careers, most students express ambivalence towards research. Identifying the variables that predict involvement in research thus seems crucial. In this study 136 doctoral students from a wide range of disciplines completed the Research Self-Efficacy Scale…

  19. Predicting protein functions from PPI networks using functional aggregation.

    PubMed

    Hou, Jingyu; Chi, Xiaoxiao

    2012-11-01

    Predicting protein functions computationally from massive protein-protein interaction (PPI) data generated by high-throughput technology is one of the challenges and fundamental problems in the post-genomic era. Although there have been many approaches developed for computationally predicting protein functions, the mutual correlations among proteins in terms of protein functions have not been thoroughly investigated and incorporated into existing prediction methods, especially in voting based prediction methods. In this paper, we propose an innovative method to predict protein functions from PPI data by aggregating the functional correlations among relevant proteins using the Choquet-Integral in fuzzy theory. This functional aggregation measures the real impact of each relevant protein function on the final prediction results, and reduces the impact of repeated functional information on the prediction. Accordingly, a new protein similarity and a new iterative prediction algorithm are proposed in this paper. The experimental evaluations on real PPI datasets demonstrate the effectiveness of our method.

  20. PREDICTION OF NONLINEAR SPATIAL FUNCTIONALS. (R827257)

    EPA Science Inventory

    Spatial statistical methodology can be useful in the arena of environmental regulation. Some regulatory questions may be addressed by predicting linear functionals of the underlying signal, but other questions may require the prediction of nonlinear functionals of the signal. ...

  1. Protein Function Prediction: Problems and Pitfalls.

    PubMed

    Pearson, William R

    2015-01-01

    The characterization of new genomes based on their protein sets has been revolutionized by new sequencing technologies, but biologists seeking to exploit new sequence information are often frustrated by the challenges associated with accurately assigning biological functions to newly identified proteins. Here, we highlight some of the challenges in functional inference from sequence similarity. Investigators can improve the accuracy of function prediction by (1) being conservative about the evolutionary distance to a protein of known function; (2) considering the ambiguous meaning of "functional similarity," and (3) being aware of the limitations of annotations in functional databases. Protein function prediction does not offer "one-size-fits-all" solutions. Prediction strategies work better when the idiosyncrasies of function and functional annotation are better understood. PMID:26334923

  2. Protein Function Prediction: Problems and Pitfalls.

    PubMed

    Pearson, William R

    2015-01-01

    The characterization of new genomes based on their protein sets has been revolutionized by new sequencing technologies, but biologists seeking to exploit new sequence information are often frustrated by the challenges associated with accurately assigning biological functions to newly identified proteins. Here, we highlight some of the challenges in functional inference from sequence similarity. Investigators can improve the accuracy of function prediction by (1) being conservative about the evolutionary distance to a protein of known function; (2) considering the ambiguous meaning of "functional similarity," and (3) being aware of the limitations of annotations in functional databases. Protein function prediction does not offer "one-size-fits-all" solutions. Prediction strategies work better when the idiosyncrasies of function and functional annotation are better understood.

  3. Myeloperoxidase levels predict executive function.

    PubMed

    Haslacher, H; Perkmann, T; Lukas, I; Barth, A; Ponocny-Seliger, E; Michlmayr, M; Scheichenberger, V; Wagner, O; Winker, R

    2012-12-01

    The main purpose of the study was to investigate whether baseline myeloperoxidase (MPO) levels are associated with executive cognitive function in individuals with high physical activity. Baseline serum MPO levels of 56 elderly marathon runners and 58 controls were assessed by ELISA. Standardized tests were applied to survey domain-specific cognitive functions. Changes in brain morphology were visualized by magnetic resonance imaging (MRI). High baseline serum MPO levels correlated with worse outcome in tests assessing executive cognitive function in athletes but not in the control group (NAI maze test p<0.05, Trail Making Test ratio p<0.01). In control participants, subcortical white matter hyperintensities were associated with higher scores on the Geriatric Depression Scale (p<0.05), whereas athletes seem to be protected from this effect. During strenuous exercising, MPO as well as its educts may be elevated due to increased oxygen intake and excretion of pro-inflammatory mediators inducing host tissue damage via oxidative stress. This outweighs the potential benefits of physical activity on cognitive function.

  4. Myeloperoxidase levels predict executive function.

    PubMed

    Haslacher, H; Perkmann, T; Lukas, I; Barth, A; Ponocny-Seliger, E; Michlmayr, M; Scheichenberger, V; Wagner, O; Winker, R

    2012-12-01

    The main purpose of the study was to investigate whether baseline myeloperoxidase (MPO) levels are associated with executive cognitive function in individuals with high physical activity. Baseline serum MPO levels of 56 elderly marathon runners and 58 controls were assessed by ELISA. Standardized tests were applied to survey domain-specific cognitive functions. Changes in brain morphology were visualized by magnetic resonance imaging (MRI). High baseline serum MPO levels correlated with worse outcome in tests assessing executive cognitive function in athletes but not in the control group (NAI maze test p<0.05, Trail Making Test ratio p<0.01). In control participants, subcortical white matter hyperintensities were associated with higher scores on the Geriatric Depression Scale (p<0.05), whereas athletes seem to be protected from this effect. During strenuous exercising, MPO as well as its educts may be elevated due to increased oxygen intake and excretion of pro-inflammatory mediators inducing host tissue damage via oxidative stress. This outweighs the potential benefits of physical activity on cognitive function. PMID:22855218

  5. Integrating multiple networks for protein function prediction

    PubMed Central

    2015-01-01

    Background High throughput techniques produce multiple functional association networks. Integrating these networks can enhance the accuracy of protein function prediction. Many algorithms have been introduced to generate a composite network, which is obtained as a weighted sum of individual networks. The weight assigned to an individual network reflects its benefit towards the protein functional annotation inference. A classifier is then trained on the composite network for predicting protein functions. However, since these techniques model the optimization of the composite network and the prediction tasks as separate objectives, the resulting composite network is not necessarily optimal for the follow-up protein function prediction. Results We address this issue by modeling the optimization of the composite network and the prediction problems within a unified objective function. In particular, we use a kernel target alignment technique and the loss function of a network based classifier to jointly adjust the weights assigned to the individual networks. We show that the proposed method, called MNet, can achieve a performance that is superior (with respect to different evaluation criteria) to related techniques using the multiple networks of four example species (yeast, human, mouse, and fly) annotated with thousands (or hundreds) of GO terms. Conclusion MNet can effectively integrate multiple networks for protein function prediction and is robust to the input parameters. Supplementary data is available at https://sites.google.com/site/guoxian85/home/mnet. The Matlab code of MNet is available upon request. PMID:25707434

  6. Hierarchical Ensemble Methods for Protein Function Prediction

    PubMed Central

    2014-01-01

    Protein function prediction is a complex multiclass multilabel classification problem, characterized by multiple issues such as the incompleteness of the available annotations, the integration of multiple sources of high dimensional biomolecular data, the unbalance of several functional classes, and the difficulty of univocally determining negative examples. Moreover, the hierarchical relationships between functional classes that characterize both the Gene Ontology and FunCat taxonomies motivate the development of hierarchy-aware prediction methods that showed significantly better performances than hierarchical-unaware “flat” prediction methods. In this paper, we provide a comprehensive review of hierarchical methods for protein function prediction based on ensembles of learning machines. According to this general approach, a separate learning machine is trained to learn a specific functional term and then the resulting predictions are assembled in a “consensus” ensemble decision, taking into account the hierarchical relationships between classes. The main hierarchical ensemble methods proposed in the literature are discussed in the context of existing computational methods for protein function prediction, highlighting their characteristics, advantages, and limitations. Open problems of this exciting research area of computational biology are finally considered, outlining novel perspectives for future research. PMID:25937954

  7. Does sociability predict civic involvement and political participation?

    PubMed

    Foschi, Renato; Lauriola, Marco

    2014-02-01

    In contemporary history as well as in political science, a strong associational life known as sociability is thought to explain the roots of modern democracy by establishing a link between the increasing availability of free time to the middle classes, increasing willingness to gather with others in circles or associations, and increasing social capital. In personality psychology, sociability is related to prosocial behavior (i.e., the need for affiliation, agreeableness, openness, and extraversion), whose importance in different political behaviors is increasingly recognized. In the present article, we carried out 5 studies (N = 1,429) that showed that political and associative sociability (a) can be reliably assessed, can have cross-cultural validity, and are properly associated with general social interest measures and personality domains and facets in the five-factor model; (b) do not overlap with similar concepts used in political psychology to account for political participation (political expertise, political interest, political self-efficacy); and (c) predicted political and nonpolitical group membership as well as observable choices in decision-making tasks with political and nonpolitical outcomes. The results are discussed, taking into consideration the extent to which specific facets of sociability can mediate between general personality traits and measures of civic involvement and political participation in a holistic model of political behavior.

  8. Biological cluster evaluation for gene function prediction.

    PubMed

    Klie, Sebastian; Nikoloski, Zoran; Selbig, Joachim

    2014-06-01

    Recent advances in high-throughput omics techniques render it possible to decode the function of genes by using the "guilt-by-association" principle on biologically meaningful clusters of gene expression data. However, the existing frameworks for biological evaluation of gene clusters are hindered by two bottleneck issues: (1) the choice for the number of clusters, and (2) the external measures which do not take in consideration the structure of the analyzed data and the ontology of the existing biological knowledge. Here, we address the identified bottlenecks by developing a novel framework that allows not only for biological evaluation of gene expression clusters based on existing structured knowledge, but also for prediction of putative gene functions. The proposed framework facilitates propagation of statistical significance at each of the following steps: (1) estimating the number of clusters, (2) evaluating the clusters in terms of novel external structural measures, (3) selecting an optimal clustering algorithm, and (4) predicting gene functions. The framework also includes a method for evaluation of gene clusters based on the structure of the employed ontology. Moreover, our method for obtaining a probabilistic range for the number of clusters is demonstrated valid on synthetic data and available gene expression profiles from Saccharomyces cerevisiae. Finally, we propose a network-based approach for gene function prediction which relies on the clustering of optimal score and the employed ontology. Our approach effectively predicts gene function on the Saccharomyces cerevisiae data set and is also employed to obtain putative gene functions for an Arabidopsis thaliana data set.

  9. Monotonicity and Logarithmic Concavity of Two Functions Involving Exponential Function

    ERIC Educational Resources Information Center

    Liu, Ai-Qi; Li, Guo-Fu; Guo, Bai-Ni; Qi, Feng

    2008-01-01

    The function 1 divided by "x"[superscript 2] minus "e"[superscript"-x"] divided by (1 minus "e"[superscript"-x"])[superscript 2] for "x" greater than 0 is proved to be strictly decreasing. As an application of this monotonicity, the logarithmic concavity of the function "t" divided by "e"[superscript "at"] minus "e"[superscript"(a-1)""t"] for "a"…

  10. Quantitative assessment of protein function prediction programs.

    PubMed

    Rodrigues, B N; Steffens, M B R; Raittz, R T; Santos-Weiss, I C R; Marchaukoski, J N

    2015-12-21

    Fast prediction of protein function is essential for high-throughput sequencing analysis. Bioinformatic resources provide cheaper and faster techniques for function prediction and have helped to accelerate the process of protein sequence characterization. In this study, we assessed protein function prediction programs that accept amino acid sequences as input. We analyzed the classification, equality, and similarity between programs, and, additionally, compared program performance. The following programs were selected for our assessment: Blast2GO, InterProScan, PANTHER, Pfam, and ScanProsite. This selection was based on the high number of citations (over 500), fully automatic analysis, and the possibility of returning a single best classification per sequence. We tested these programs using 12 gold standard datasets from four different sources. The gold standard classification of the databases was based on expert analysis, the Protein Data Bank, or the Structure-Function Linkage Database. We found that the miss rate among the programs is globally over 50%. Furthermore, we observed little overlap in the correct predictions from each program. Therefore, a combination of multiple types of sources and methods, including experimental data, protein-protein interaction, and data mining, may be the best way to generate more reliable predictions and decrease the miss rate.

  11. Quantitative assessment of protein function prediction programs.

    PubMed

    Rodrigues, B N; Steffens, M B R; Raittz, R T; Santos-Weiss, I C R; Marchaukoski, J N

    2015-01-01

    Fast prediction of protein function is essential for high-throughput sequencing analysis. Bioinformatic resources provide cheaper and faster techniques for function prediction and have helped to accelerate the process of protein sequence characterization. In this study, we assessed protein function prediction programs that accept amino acid sequences as input. We analyzed the classification, equality, and similarity between programs, and, additionally, compared program performance. The following programs were selected for our assessment: Blast2GO, InterProScan, PANTHER, Pfam, and ScanProsite. This selection was based on the high number of citations (over 500), fully automatic analysis, and the possibility of returning a single best classification per sequence. We tested these programs using 12 gold standard datasets from four different sources. The gold standard classification of the databases was based on expert analysis, the Protein Data Bank, or the Structure-Function Linkage Database. We found that the miss rate among the programs is globally over 50%. Furthermore, we observed little overlap in the correct predictions from each program. Therefore, a combination of multiple types of sources and methods, including experimental data, protein-protein interaction, and data mining, may be the best way to generate more reliable predictions and decrease the miss rate. PMID:26782400

  12. Prediction processes during multiple object tracking (MOT): involvement of dorsal and ventral premotor cortices

    PubMed Central

    Atmaca, Silke; Stadler, Waltraud; Keitel, Anne; Ott, Derek V M; Lepsien, Jöran; Prinz, Wolfgang

    2013-01-01

    Background The multiple object tracking (MOT) paradigm is a cognitive task that requires parallel tracking of several identical, moving objects following nongoal-directed, arbitrary motion trajectories. Aims The current study aimed to investigate the employment of prediction processes during MOT. As an indicator for the involvement of prediction processes, we targeted the human premotor cortex (PM). The PM has been repeatedly implicated to serve the internal modeling of future actions and action effects, as well as purely perceptual events, by means of predictive feedforward functions. Materials and methods Using functional magnetic resonance imaging (fMRI), BOLD activations recorded during MOT were contrasted with those recorded during the execution of a cognitive control task that used an identical stimulus display and demanded similar attentional load. A particular effort was made to identify and exclude previously found activation in the PM-adjacent frontal eye fields (FEF). Results We replicated prior results, revealing occipitotemporal, parietal, and frontal areas to be engaged in MOT. Discussion The activation in frontal areas is interpreted to originate from dorsal and ventral premotor cortices. The results are discussed in light of our assumption that MOT engages prediction processes. Conclusion We propose that our results provide first clues that MOT does not only involve visuospatial perception and attention processes, but prediction processes as well. PMID:24363971

  13. Enzyme function prediction with interpretable models.

    PubMed

    Syed, Umar; Yona, Golan

    2009-01-01

    Enzymes play central roles in metabolic pathways, and the prediction of metabolic pathways in newly sequenced genomes usually starts with the assignment of genes to enzymatic reactions. However, genes with similar catalytic activity are not necessarily similar in sequence, and therefore the traditional sequence similarity-based approach often fails to identify the relevant enzymes, thus hindering efforts to map the metabolome of an organism.Here we study the direct relationship between basic protein properties and their function. Our goal is to develop a new tool for functional prediction (e.g., prediction of Enzyme Commission number), which can be used to complement and support other techniques based on sequence or structure information. In order to define this mapping we collected a set of 453 features and properties that characterize proteins and are believed to be related to structural and functional aspects of proteins. We introduce a mixture model of stochastic decision trees to learn the set of potentially complex relationships between features and function. To study these correlations, trees are created and tested on the Pfam classification of proteins, which is based on sequence, and the EC classification, which is based on enzymatic function. The model is very effective in learning highly diverged protein families or families that are not defined on the basis of sequence. The resulting tree structures highlight the properties that are strongly correlated with structural and functional aspects of protein families, and can be used to suggest a concise definition of a protein family.

  14. Protein function prediction based on data fusion and functional interrelationship.

    PubMed

    Meng, Jun; Wekesa, Jael-Sanyanda; Shi, Guan-Li; Luan, Yu-Shi

    2016-04-01

    One of the challenging tasks of bioinformatics is to predict more accurate and confident protein functions from genomics and proteomics datasets. Computational approaches use a variety of high throughput experimental data, such as protein-protein interaction (PPI), protein sequences and phylogenetic profiles, to predict protein functions. This paper presents a method that uses transductive multi-label learning algorithm by integrating multiple data sources for classification. Multiple proteomics datasets are integrated to make inferences about functions of unknown proteins and use a directed bi-relational graph to assign labels to unannotated proteins. Our method, bi-relational graph based transductive multi-label function annotation (Bi-TMF) uses functional correlation and topological PPI network properties on both the training and testing datasets to predict protein functions through data fusion of the individual kernel result. The main purpose of our proposed method is to enhance the performance of classifier integration for protein function prediction algorithms. Experimental results demonstrate the effectiveness and efficiency of Bi-TMF on multi-sources datasets in yeast, human and mouse benchmarks. Bi-TMF outperforms other recently proposed methods. PMID:26869536

  15. Disseminated scar sarcoidosis may predict pulmonary involvement in sarcoidosis.

    PubMed

    Su, Ozlem; Onsun, Nahide; Topukçu, Buğçe; Ozçelik, Hatice Kutbay; Cakıter, Alkım Unal; Büyükpınarbaşılı, Nur

    2013-09-01

    Sarcoidosis is a chronic, inflammatory, multi-organ disease of unknown origin that is characterized by non-caseating granuloma formation in affected organs. Cutaneous involvement is reported in 25% of patients with sarcoidosis. Scar sarcoidosis is rare but is clinically specific for skin sarcoidosis. Systemic involvement is seen in most patients with scar sarcoidosis. We present a case of scar sarcoidosis in a 30-year-old male that developed infiltrated nodules on old scars, including on his penile shaft, which is rare, and that also had pulmonary involvement. Scar sarcoidosis should be considered in the differential diagnosis of changes in all scar areas and should be investigated for systemic involvement.

  16. On some unified integrals involving Fox's H-function

    NASA Astrophysics Data System (ADS)

    Ali, Shoukat

    2013-06-01

    In a recent paper [On Some Unified Integrals, Advances in Comput. Math. and Its Applications, Vol. 1, No. 3, PP. 151-153 (2012)], the author has evaluated three very interesting integrals involving hypergeometric function in terms of gamma function. In this paper, three new unified integrals involving Fox's H-function have been evaluated. By specializing the parameters, we can easily obtain a large number of new and known integrals including one obtained earlier by Garg and Mittal. The results established in this paper are simple, interesting, easily established and may be useful.

  17. Predicting Protein Function Using Multiple Kernels.

    PubMed

    Yu, Guoxian; Rangwala, Huzefa; Domeniconi, Carlotta; Zhang, Guoji; Zhang, Zili

    2015-01-01

    High-throughput experimental techniques provide a wide variety of heterogeneous proteomic data sources. To exploit the information spread across multiple sources for protein function prediction, these data sources are transformed into kernels and then integrated into a composite kernel. Several methods first optimize the weights on these kernels to produce a composite kernel, and then train a classifier on the composite kernel. As such, these approaches result in an optimal composite kernel, but not necessarily in an optimal classifier. On the other hand, some approaches optimize the loss of binary classifiers and learn weights for the different kernels iteratively. For multi-class or multi-label data, these methods have to solve the problem of optimizing weights on these kernels for each of the labels, which are computationally expensive and ignore the correlation among labels. In this paper, we propose a method called Predicting Protein Function using Multiple Kernels (ProMK). ProMK iteratively optimizes the phases of learning optimal weights and reduces the empirical loss of multi-label classifier for each of the labels simultaneously. ProMK can integrate kernels selectively and downgrade the weights on noisy kernels. We investigate the performance of ProMK on several publicly available protein function prediction benchmarks and synthetic datasets. We show that the proposed approach performs better than previously proposed protein function prediction approaches that integrate multiple data sources and multi-label multiple kernel learning methods. The codes of our proposed method are available at https://sites.google.com/site/guoxian85/promk.

  18. Parental Education Predicts Corticostriatal Functionality in Adulthood

    PubMed Central

    Manuck, Stephen B.; Sheu, Lei K.; Kuan, Dora C. H.; Votruba-Drzal, Elizabeth; Craig, Anna E.; Hariri, Ahmad R.

    2011-01-01

    Socioeconomic disadvantage experienced in early development predicts ill health in adulthood. However, the neurobiological pathways linking early disadvantage to adult health remain unclear. Lower parental education—a presumptive indicator of early socioeconomic disadvantage—predicts health-impairing adult behaviors, including tobacco and alcohol dependencies. These behaviors depend, in part, on the functionality of corticostriatal brain systems that 1) show developmental plasticity and early vulnerability, 2) process reward-related information, and 3) regulate impulsive decisions and actions. Hence, corticostriatal functionality in adulthood may covary directly with indicators of early socioeconomic disadvantage, particularly lower parental education. Here, we tested the covariation between parental education and corticostriatal activation and connectivity in 76 adults without confounding clinical syndromes. Corticostriatal activation and connectivity were assessed during the processing of stimuli signaling monetary gains (positive feedback [PF]) and losses (negative feedback). After accounting for participants’ own education and other explanatory factors, lower parental education predicted reduced activation in anterior cingulate and dorsomedial prefrontal cortices during PF, along with reduced connectivity between these cortices and orbitofrontal and striatal areas implicated in reward processing and impulse regulation. In speculation, adult alterations in corticostriatal functionality may represent facets of a neurobiological endophenotype linked to socioeconomic conditions of early development. PMID:20810623

  19. Teachers' Self-Efficacy vs. Parental Involvement: Prediction and Implementation

    ERIC Educational Resources Information Center

    Fisher, Yael; Kostelitz, Yifat

    2015-01-01

    This research examines the influence of teachers' views regarding parental involvement on their perception of self-efficacy. Data were collected from a sample of 319 Israeli elementary schools teachers. A path analysis procedure was employed to test the mediating effect of personal background and organizational variables and perceived parental…

  20. Scoring function to predict solubility mutagenesis

    PubMed Central

    2010-01-01

    Background Mutagenesis is commonly used to engineer proteins with desirable properties not present in the wild type (WT) protein, such as increased or decreased stability, reactivity, or solubility. Experimentalists often have to choose a small subset of mutations from a large number of candidates to obtain the desired change, and computational techniques are invaluable to make the choices. While several such methods have been proposed to predict stability and reactivity mutagenesis, solubility has not received much attention. Results We use concepts from computational geometry to define a three body scoring function that predicts the change in protein solubility due to mutations. The scoring function captures both sequence and structure information. By exploring the literature, we have assembled a substantial database of 137 single- and multiple-point solubility mutations. Our database is the largest such collection with structural information known so far. We optimize the scoring function using linear programming (LP) methods to derive its weights based on training. Starting with default values of 1, we find weights in the range [0,2] so that predictions of increase or decrease in solubility are optimized. We compare the LP method to the standard machine learning techniques of support vector machines (SVM) and the Lasso. Using statistics for leave-one-out (LOO), 10-fold, and 3-fold cross validations (CV) for training and prediction, we demonstrate that the LP method performs the best overall. For the LOOCV, the LP method has an overall accuracy of 81%. Availability Executables of programs, tables of weights, and datasets of mutants are available from the following web page: http://www.wsu.edu/~kbala/OptSolMut.html. PMID:20929563

  1. Computations involving differential operators and their actions on functions

    NASA Technical Reports Server (NTRS)

    Crouch, Peter E.; Grossman, Robert; Larson, Richard

    1991-01-01

    The algorithms derived by Grossmann and Larson (1989) are further developed for rewriting expressions involving differential operators. The differential operators involved arise in the local analysis of nonlinear dynamical systems. These algorithms are extended in two different directions: the algorithms are generalized so that they apply to differential operators on groups and the data structures and algorithms are developed to compute symbolically the action of differential operators on functions. Both of these generalizations are needed for applications.

  2. Consistent probabilistic outputs for protein function prediction

    PubMed Central

    Obozinski, Guillaume; Lanckriet, Gert; Grant, Charles; Jordan, Michael I; Noble, William Stafford

    2008-01-01

    In predicting hierarchical protein function annotations, such as terms in the Gene Ontology (GO), the simplest approach makes predictions for each term independently. However, this approach has the unfortunate consequence that the predictor may assign to a single protein a set of terms that are inconsistent with one another; for example, the predictor may assign a specific GO term to a given protein ('purine nucleotide binding') but not assign the parent term ('nucleotide binding'). Such predictions are difficult to interpret. In this work, we focus on methods for calibrating and combining independent predictions to obtain a set of probabilistic predictions that are consistent with the topology of the ontology. We call this procedure 'reconciliation'. We begin with a baseline method for predicting GO terms from a collection of data types using an ensemble of discriminative classifiers. We apply the method to a previously described benchmark data set, and we demonstrate that the resulting predictions are frequently inconsistent with the topology of the GO. We then consider 11 distinct reconciliation methods: three heuristic methods; four variants of a Bayesian network; an extension of logistic regression to the structured case; and three novel projection methods - isotonic regression and two variants of a Kullback-Leibler projection method. We evaluate each method in three different modes - per term, per protein and joint - corresponding to three types of prediction tasks. Although the principal goal of reconciliation is interpretability, it is important to assess whether interpretability comes at a cost in terms of precision and recall. Indeed, we find that many apparently reasonable reconciliation methods yield reconciled probabilities with significantly lower precision than the original, unreconciled estimates. On the other hand, we find that isotonic regression usually performs better than the underlying, unreconciled method, and almost never performs worse

  3. Prediction of Metabolic Pathway Involvement in Prokaryotic UniProtKB Data by Association Rule Mining

    PubMed Central

    Hoehndorf, Robert; Martin, Maria J.; Solovyev, Victor

    2016-01-01

    The widening gap between known proteins and their functions has encouraged the development of methods to automatically infer annotations. Automatic functional annotation of proteins is expected to meet the conflicting requirements of maximizing annotation coverage, while minimizing erroneous functional assignments. This trade-off imposes a great challenge in designing intelligent systems to tackle the problem of automatic protein annotation. In this work, we present a system that utilizes rule mining techniques to predict metabolic pathways in prokaryotes. The resulting knowledge represents predictive models that assign pathway involvement to UniProtKB entries. We carried out an evaluation study of our system performance using cross-validation technique. We found that it achieved very promising results in pathway identification with an F1-measure of 0.982 and an AUC of 0.987. Our prediction models were then successfully applied to 6.2 million UniProtKB/TrEMBL reference proteome entries of prokaryotes. As a result, 663,724 entries were covered, where 436,510 of them lacked any previous pathway annotations. PMID:27390860

  4. Children on the Autism Spectrum: Grandmother Involvement and Family Functioning

    ERIC Educational Resources Information Center

    Sullivan, Alison; Winograd, Greta; Verkuilen, Jay; Fish, Marian C.

    2012-01-01

    Background: This study investigated associations between the presence of a child with autism or Asperger's disorder in the family, family functioning and grandmother experiences with the goal of better understanding grandparent involvement in the lives of grandchildren on the autism spectrum and their families. Methods: Mothers and grandmothers of…

  5. [Research progress on banana functional genomics involved in fruit quality].

    PubMed

    Liu, Ju-Hua; Xu, Bi-Yu; Zhang, Jing; Wang, Jia-Shui; Jia, Cai-Hong; Zhang, Jian-Bin; Jin, Zhi-Qiang

    2012-04-01

    Banana is one of the most important tropical fruits and main economical resource for tropical people. Banana quality is always becoming a focus for people to follow with interest. Here, we reviewed recent research progresses on isolation and identification of banana genes involved in fruit quality such as ripening, softening, glycometabolism, and scent, which will help us explore their functions and facilitate banana quality improvement. PMID:22522158

  6. Integration of biological data by kernels on graph nodes allows prediction of new genes involved in mitotic chromosome condensation.

    PubMed

    Hériché, Jean-Karim; Lees, Jon G; Morilla, Ian; Walter, Thomas; Petrova, Boryana; Roberti, M Julia; Hossain, M Julius; Adler, Priit; Fernández, José M; Krallinger, Martin; Haering, Christian H; Vilo, Jaak; Valencia, Alfonso; Ranea, Juan A; Orengo, Christine; Ellenberg, Jan

    2014-08-15

    The advent of genome-wide RNA interference (RNAi)-based screens puts us in the position to identify genes for all functions human cells carry out. However, for many functions, assay complexity and cost make genome-scale knockdown experiments impossible. Methods to predict genes required for cell functions are therefore needed to focus RNAi screens from the whole genome on the most likely candidates. Although different bioinformatics tools for gene function prediction exist, they lack experimental validation and are therefore rarely used by experimentalists. To address this, we developed an effective computational gene selection strategy that represents public data about genes as graphs and then analyzes these graphs using kernels on graph nodes to predict functional relationships. To demonstrate its performance, we predicted human genes required for a poorly understood cellular function-mitotic chromosome condensation-and experimentally validated the top 100 candidates with a focused RNAi screen by automated microscopy. Quantitative analysis of the images demonstrated that the candidates were indeed strongly enriched in condensation genes, including the discovery of several new factors. By combining bioinformatics prediction with experimental validation, our study shows that kernels on graph nodes are powerful tools to integrate public biological data and predict genes involved in cellular functions of interest. PMID:24943848

  7. Functional limitations due to foot involvement in spondyloarthritis

    PubMed Central

    Ozaras, Nihal; Havan, Nuri; Poyraz, Emine; Rezvanı, Aylin; Aydın, Teoman

    2016-01-01

    [Purpose] Spondyloarthritis is a major inflammatory disease followed-up in the rheumatology clinics, foot involvement in spodyloarthritis is common. The functional states of patients with spondyloarthritis are usually evaluated globally. The aim of this study was to assess the foot involvement-related functional limitations in patients with spondyloarthritis. [Subjects and Methods] Patients with ankylosing spondylitis and psoriatic arthritis with foot pain more than 4 weeks who underwent anteroposterior and lateral feet radiography were enrolled into the study. A “clinical findings score” was calculated by assigning 1 point for every finding of swelling, redness, and tenderness. C-reactive protein and erythrocyte sedimentation rate were used as serum markers for disease activity. Foot radiograms were evaluated using the spondyloarthropathy tarsal radiographic index and the foot-related functional state of patients was determined by the Turkish version of the Foot and Ankle Outcome Score. [Results] There were no relationships between Foot and Ankle Outcome Score subscales and clinical findings score, serum markers, or radiologic score. Pain and symptoms subscale scores were result positively correlated with activity of daily living, sport and recreation, and quality of life subscale scores. [Conclusion] Pain and symptoms are the main determinants of foot-related functional limitations in spondyloarthritis. PMID:27512252

  8. Functional limitations due to foot involvement in spondyloarthritis.

    PubMed

    Ozaras, Nihal; Havan, Nuri; Poyraz, Emine; Rezvanı, Aylin; Aydın, Teoman

    2016-07-01

    [Purpose] Spondyloarthritis is a major inflammatory disease followed-up in the rheumatology clinics, foot involvement in spodyloarthritis is common. The functional states of patients with spondyloarthritis are usually evaluated globally. The aim of this study was to assess the foot involvement-related functional limitations in patients with spondyloarthritis. [Subjects and Methods] Patients with ankylosing spondylitis and psoriatic arthritis with foot pain more than 4 weeks who underwent anteroposterior and lateral feet radiography were enrolled into the study. A "clinical findings score" was calculated by assigning 1 point for every finding of swelling, redness, and tenderness. C-reactive protein and erythrocyte sedimentation rate were used as serum markers for disease activity. Foot radiograms were evaluated using the spondyloarthropathy tarsal radiographic index and the foot-related functional state of patients was determined by the Turkish version of the Foot and Ankle Outcome Score. [Results] There were no relationships between Foot and Ankle Outcome Score subscales and clinical findings score, serum markers, or radiologic score. Pain and symptoms subscale scores were result positively correlated with activity of daily living, sport and recreation, and quality of life subscale scores. [Conclusion] Pain and symptoms are the main determinants of foot-related functional limitations in spondyloarthritis. PMID:27512252

  9. Identification of Resting State Networks Involved in Executive Function.

    PubMed

    Connolly, Joanna; McNulty, Jonathan P; Boran, Lorraine; Roche, Richard A P; Delany, David; Bokde, Arun L W

    2016-06-01

    The structural networks in the human brain are consistent across subjects, and this is reflected also in that functional networks across subjects are relatively consistent. These findings are not only present during performance of a goal oriented task but there are also consistent functional networks during resting state. It suggests that goal oriented activation patterns may be a function of component networks identified using resting state. The current study examines the relationship between resting state networks measured and patterns of neural activation elicited during a Stroop task. The association between the Stroop-activated networks and the resting state networks was quantified using spatial linear regression. In addition, we investigated if the degree of spatial association of resting state networks with the Stroop task may predict performance on the Stroop task. The results of this investigation demonstrated that the Stroop activated network can be decomposed into a number of resting state networks, which were primarily associated with attention, executive function, visual perception, and the default mode network. The close spatial correspondence between the functional organization of the resting brain and task-evoked patterns supports the relevance of resting state networks in cognitive function. PMID:26935902

  10. Identification of Resting State Networks Involved in Executive Function.

    PubMed

    Connolly, Joanna; McNulty, Jonathan P; Boran, Lorraine; Roche, Richard A P; Delany, David; Bokde, Arun L W

    2016-06-01

    The structural networks in the human brain are consistent across subjects, and this is reflected also in that functional networks across subjects are relatively consistent. These findings are not only present during performance of a goal oriented task but there are also consistent functional networks during resting state. It suggests that goal oriented activation patterns may be a function of component networks identified using resting state. The current study examines the relationship between resting state networks measured and patterns of neural activation elicited during a Stroop task. The association between the Stroop-activated networks and the resting state networks was quantified using spatial linear regression. In addition, we investigated if the degree of spatial association of resting state networks with the Stroop task may predict performance on the Stroop task. The results of this investigation demonstrated that the Stroop activated network can be decomposed into a number of resting state networks, which were primarily associated with attention, executive function, visual perception, and the default mode network. The close spatial correspondence between the functional organization of the resting brain and task-evoked patterns supports the relevance of resting state networks in cognitive function.

  11. Integration of biological data by kernels on graph nodes allows prediction of new genes involved in mitotic chromosome condensation

    PubMed Central

    Hériché, Jean-Karim; Lees, Jon G.; Morilla, Ian; Walter, Thomas; Petrova, Boryana; Roberti, M. Julia; Hossain, M. Julius; Adler, Priit; Fernández, José M.; Krallinger, Martin; Haering, Christian H.; Vilo, Jaak; Valencia, Alfonso; Ranea, Juan A.; Orengo, Christine; Ellenberg, Jan

    2014-01-01

    The advent of genome-wide RNA interference (RNAi)–based screens puts us in the position to identify genes for all functions human cells carry out. However, for many functions, assay complexity and cost make genome-scale knockdown experiments impossible. Methods to predict genes required for cell functions are therefore needed to focus RNAi screens from the whole genome on the most likely candidates. Although different bioinformatics tools for gene function prediction exist, they lack experimental validation and are therefore rarely used by experimentalists. To address this, we developed an effective computational gene selection strategy that represents public data about genes as graphs and then analyzes these graphs using kernels on graph nodes to predict functional relationships. To demonstrate its performance, we predicted human genes required for a poorly understood cellular function—mitotic chromosome condensation—and experimentally validated the top 100 candidates with a focused RNAi screen by automated microscopy. Quantitative analysis of the images demonstrated that the candidates were indeed strongly enriched in condensation genes, including the discovery of several new factors. By combining bioinformatics prediction with experimental validation, our study shows that kernels on graph nodes are powerful tools to integrate public biological data and predict genes involved in cellular functions of interest. PMID:24943848

  12. Predicting involvement in prison gang activity: street gang membership, social and psychological factors.

    PubMed

    Wood, Jane L; Alleyne, Emma; Mozova, Katarina; James, Mark

    2014-06-01

    The aim of this study was to examine whether street gang membership, psychological factors, and social factors such as preprison experiences could predict young offenders' involvement in prison gang activity. Data were collected via individual interviews with 188 young offenders held in a Young Offenders Institution in the United Kingdom. Results showed that psychological factors such as the value individuals attached to social status, a social dominance orientation, and antiauthority attitudes were important in predicting young offenders' involvement in prison gang activity. Further important predictors included preimprisonment events such as levels of threat, levels of individual delinquency, and levels of involvement in group crime. Longer current sentences also predicted involvement in prison gang activity. However, street gang membership was not an important predictor of involvement in prison gang activity. These findings have implications for identifying prisoners involved in prison gang activity and for considering the role of psychological factors and group processes in gang research.

  13. Origin and Functional Prediction of Pollen Allergens in Plants.

    PubMed

    Chen, Miaolin; Xu, Jie; Devis, Deborah; Shi, Jianxin; Ren, Kang; Searle, Iain; Zhang, Dabing

    2016-09-01

    Pollen allergies have long been a major pandemic health problem for human. However, the evolutionary events and biological function of pollen allergens in plants remain largely unknown. Here, we report the genome-wide prediction of pollen allergens and their biological function in the dicotyledonous model plant Arabidopsis (Arabidopsis thaliana) and the monocotyledonous model plant rice (Oryza sativa). In total, 145 and 107 pollen allergens were predicted from rice and Arabidopsis, respectively. These pollen allergens are putatively involved in stress responses and metabolic processes such as cell wall metabolism during pollen development. Interestingly, these putative pollen allergen genes were derived from large gene families and became diversified during evolution. Sequence analysis across 25 plant species from green alga to angiosperms suggest that about 40% of putative pollen allergenic proteins existed in both lower and higher plants, while other allergens emerged during evolution. Although a high proportion of gene duplication has been observed among allergen-coding genes, our data show that these genes might have undergone purifying selection during evolution. We also observed that epitopes of an allergen might have a biological function, as revealed by comprehensive analysis of two known allergens, expansin and profilin. This implies a crucial role of conserved amino acid residues in both in planta biological function and allergenicity. Finally, a model explaining how pollen allergens were generated and maintained in plants is proposed. Prediction and systematic analysis of pollen allergens in model plants suggest that pollen allergens were evolved by gene duplication and then functional specification. This study provides insight into the phylogenetic and evolutionary scenario of pollen allergens that will be helpful to future characterization and epitope screening of pollen allergens. PMID:27436829

  14. Dynamic functional brain networks involved in simple visual discrimination learning.

    PubMed

    Fidalgo, Camino; Conejo, Nélida María; González-Pardo, Héctor; Arias, Jorge Luis

    2014-10-01

    Visual discrimination tasks have been widely used to evaluate many types of learning and memory processes. However, little is known about the brain regions involved at different stages of visual discrimination learning. We used cytochrome c oxidase histochemistry to evaluate changes in regional brain oxidative metabolism during visual discrimination learning in a water-T maze at different time points during training. As compared with control groups, the results of the present study reveal the gradual activation of cortical (prefrontal and temporal cortices) and subcortical brain regions (including the striatum and the hippocampus) associated to the mastery of a simple visual discrimination task. On the other hand, the brain regions involved and their functional interactions changed progressively over days of training. Regions associated with novelty, emotion, visuo-spatial orientation and motor aspects of the behavioral task seem to be relevant during the earlier phase of training, whereas a brain network comprising the prefrontal cortex was found along the whole learning process. This study highlights the relevance of functional interactions among brain regions to investigate learning and memory processes. PMID:24937013

  15. Prediction of functional regulatory SNPs in monogenic and complex disease

    PubMed Central

    Zhao, Yiqiang; Clark, Wyatt T.; Mort, Matthew; Cooper, David N.; Radivojac, Predrag; Mooney, Sean D.

    2013-01-01

    Next-Generation Sequencing (NGS) technologies are yielding ever-higher volumes of human genome sequence data. Given this large amount of data, it has become both a possibility and a priority to determine how disease-causing single nucleotide polymorphisms (SNPs) detected within gene regulatory regions (rSNPs) exert their effects on gene expression. Recently, several studies have explored whether disease-causing polymorphisms have attributes that can distinguish them from those that are neutral, attaining moderate success at discriminating between functional and putatively neutral regulatory SNPs. Here, we have extended this work by assessing the utility of both SNP-based features (those associated only with the polymorphism site and the surrounding DNA) and Gene-based features (those derived from the associated gene in whose regulatory region the SNP lies) in the identification of functional regulatory polymorphisms involved in either monogenic or complex disease. Gene-based features were found to be capable of both augmenting and enhancing the utility of SNP-based features in the prediction of known regulatory mutations. Adopting this approach, we achieved an AUC of 0.903 for predicting regulatory SNPs. Finally, our tool predicted 225 new regulatory SNPs with a high degree of confidence, with 105 of the 225 falling into linkage disequilibrium blocks of reported disease-associated GWAS SNPs. PMID:21796725

  16. Resting-state functional connectivity predicts longitudinal change in autistic traits and adaptive functioning in autism.

    PubMed

    Plitt, Mark; Barnes, Kelly Anne; Wallace, Gregory L; Kenworthy, Lauren; Martin, Alex

    2015-12-01

    Although typically identified in early childhood, the social communication symptoms and adaptive behavior deficits that are characteristic of autism spectrum disorder (ASD) persist throughout the lifespan. Despite this persistence, even individuals without cooccurring intellectual disability show substantial heterogeneity in outcomes. Previous studies have found various behavioral assessments [such as intelligence quotient (IQ), early language ability, and baseline autistic traits and adaptive behavior scores] to be predictive of outcome, but most of the variance in functioning remains unexplained by such factors. In this study, we investigated to what extent functional brain connectivity measures obtained from resting-state functional connectivity MRI (rs-fcMRI) could predict the variance left unexplained by age and behavior (follow-up latency and baseline autistic traits and adaptive behavior scores) in two measures of outcome--adaptive behaviors and autistic traits at least 1 y postscan (mean follow-up latency = 2 y, 10 mo). We found that connectivity involving the so-called salience network (SN), default-mode network (DMN), and frontoparietal task control network (FPTCN) was highly predictive of future autistic traits and the change in autistic traits and adaptive behavior over the same time period. Furthermore, functional connectivity involving the SN, which is predominantly composed of the anterior insula and the dorsal anterior cingulate, predicted reliable improvement in adaptive behaviors with 100% sensitivity and 70.59% precision. From rs-fcMRI data, our study successfully predicted heterogeneity in outcomes for individuals with ASD that was unaccounted for by simple behavioral metrics and provides unique evidence for networks underlying long-term symptom abatement.

  17. Functional involvement of human discs large tumor suppressor in cytokinesis

    SciTech Connect

    Unno, Kenji; Hanada, Toshihiko; Chishti, Athar H.

    2008-10-15

    Cytokinesis is the final step of cell division that completes the separation of two daughter cells. We found that the human discs large (hDlg) tumor suppressor homologue is functionally involved in cytokinesis. The guanylate kinase (GUK) domain of hDlg mediates the localization of hDlg to the midbody during cytokinesis, and over-expression of the GUK domain in U2OS and HeLa cells impaired cytokinesis. Mouse embryonic fibroblasts (MEFs) derived from dlg mutant mice contained an increased number of multinucleated cells and showed reduced proliferation in culture. A kinesin-like motor protein, GAKIN, which binds directly to the GUK domain of hDlg, exhibited a similar intracellular distribution pattern with hDlg throughout mitosis and localized to the midbody during cytokinesis. However, the targeting of hDlg and GAKIN to the midbody appeared to be independent of each other. The midbody localization of GAKIN required its functional kinesin-motor domain. Treatment of cells with the siRNA specific for hDlg and GAKIN caused formation of multinucleated cells and delayed cytokinesis. Together, these results suggest that hDlg and GAKIN play functional roles in the maintenance of midbody architecture during cytokinesis.

  18. Functional involvement of human discs large tumor suppressor in cytokinesis

    PubMed Central

    Unno, Kenji; Hanada, Toshihiko; Chishti, Athar H.

    2008-01-01

    Cytokinesis is the final step of cell division that completes the separation of two daughter cells. We found that the human discs large (hDlg) tumor suppressor homologue is functionally involved in cytokinesis. The guanylate kinase (GUK) domain of hDlg mediates the localization of hDlg to the midbody during cytokinesis, and over-expression of the GUK domain in U2OS and HeLa cells impaired cytokinesis. Mouse embryonic fibroblasts (MEFs) derived from dlg mutant mice contained an increased number of multinucleated cells and showed reduced proliferation in culture. A kinesin-like motor protein, GAKIN, which binds directly to the GUK domain of hDlg, exhibited a similar intracellular distribution pattern with hDlg throughout mitosis and localized to the midbody during cytokinesis. However, the targeting of hDlg and GAKIN to the midbody appeared to be independent of each other. The midbody localization of GAKIN required its functional kinesin-motor domain. Treatment of cells with the siRNA specific for hDlg and GAKIN caused formation of multinucleated cells and delayed cytokinesis. Together, these results suggest that hDlg and GAKIN play functional roles in the maintenance of midbody architecture during cytokinesis. PMID:18760273

  19. A Prediction Model of the Capillary Pressure J-Function

    PubMed Central

    Xu, W. S.; Luo, P. Y.; Sun, L.; Lin, N.

    2016-01-01

    The capillary pressure J-function is a dimensionless measure of the capillary pressure of a fluid in a porous medium. The function was derived based on a capillary bundle model. However, the dependence of the J-function on the saturation Sw is not well understood. A prediction model for it is presented based on capillary pressure model, and the J-function prediction model is a power function instead of an exponential or polynomial function. Relative permeability is calculated with the J-function prediction model, resulting in an easier calculation and results that are more representative. PMID:27603701

  20. A Prediction Model of the Capillary Pressure J-Function.

    PubMed

    Xu, W S; Luo, P Y; Sun, L; Lin, N

    2016-01-01

    The capillary pressure J-function is a dimensionless measure of the capillary pressure of a fluid in a porous medium. The function was derived based on a capillary bundle model. However, the dependence of the J-function on the saturation Sw is not well understood. A prediction model for it is presented based on capillary pressure model, and the J-function prediction model is a power function instead of an exponential or polynomial function. Relative permeability is calculated with the J-function prediction model, resulting in an easier calculation and results that are more representative. PMID:27603701

  1. Template-based prediction of protein function.

    PubMed

    Petrey, Donald; Chen, T Scott; Deng, Lei; Garzon, Jose Ignacio; Hwang, Howook; Lasso, Gorka; Lee, Hunjoong; Silkov, Antonina; Honig, Barry

    2015-06-01

    We discuss recent approaches for structure-based protein function annotation. We focus on template-based methods where the function of a query protein is deduced from that of a template for which both the structure and function are known. We describe the different ways of identifying a template. These are typically based on sequence analysis but new methods based on purely structural similarity are also being developed that allow function annotation based on structural relationships that cannot be recognized by sequence. The growing number of available structures of known function, improved homology modeling techniques and new developments in the use of structure allow template-based methods to be applied on a proteome-wide scale and in many different biological contexts. This progress significantly expands the range of applicability of structural information in function annotation to a level that previously was only achievable by sequence comparison.

  2. Which Working Memory Functions Predict Intelligence?

    ERIC Educational Resources Information Center

    Oberauer, Klaus; Sub, Heinz-Martin; Wilhelm, Oliver; Wittmann, Werner W.

    2008-01-01

    Investigates the relationship between three factors of working memory (storage and processing, relational integration, and supervision) and four factors of intelligence (reasoning, speed, memory, and creativity) using structural equation models. Relational integration predicted reasoning ability at least as well as the storage-and-processing…

  3. Father involvement: Identifying and predicting family members' shared and unique perceptions.

    PubMed

    Dyer, W Justin; Day, Randal D; Harper, James M

    2014-08-01

    Father involvement research has typically not recognized that reports of involvement contain at least two components: 1 reflecting a view of father involvement that is broadly recognized in the family, and another reflecting each reporter's unique perceptions. Using a longitudinal sample of 302 families, this study provides a first examination of shared and unique views of father involvement (engagement and warmth) from the perspectives of fathers, children, and mothers. This study also identifies influences on these shared and unique perspectives. Father involvement reports were obtained when the child was 12 and 14 years old. Mother reports overlapped more with the shared view than father or child reports. This suggests the mother's view may be more in line with broadly recognized father involvement. Regarding antecedents, for fathers' unique view, a compensatory model partially explains results; that is, negative aspects of family life were positively associated with fathers' unique view. Children's unique view of engagement may partially reflect a sentiment override with father antisocial behaviors being predictive. Mothers' unique view of engagement was predicted by father and mother work hours and her unique view of warmth was predicted by depression and maternal gatekeeping. Taken, together finding suggests a far more nuanced view of father involvement should be considered. PMID:25000130

  4. Father involvement: Identifying and predicting family members' shared and unique perceptions.

    PubMed

    Dyer, W Justin; Day, Randal D; Harper, James M

    2014-08-01

    Father involvement research has typically not recognized that reports of involvement contain at least two components: 1 reflecting a view of father involvement that is broadly recognized in the family, and another reflecting each reporter's unique perceptions. Using a longitudinal sample of 302 families, this study provides a first examination of shared and unique views of father involvement (engagement and warmth) from the perspectives of fathers, children, and mothers. This study also identifies influences on these shared and unique perspectives. Father involvement reports were obtained when the child was 12 and 14 years old. Mother reports overlapped more with the shared view than father or child reports. This suggests the mother's view may be more in line with broadly recognized father involvement. Regarding antecedents, for fathers' unique view, a compensatory model partially explains results; that is, negative aspects of family life were positively associated with fathers' unique view. Children's unique view of engagement may partially reflect a sentiment override with father antisocial behaviors being predictive. Mothers' unique view of engagement was predicted by father and mother work hours and her unique view of warmth was predicted by depression and maternal gatekeeping. Taken, together finding suggests a far more nuanced view of father involvement should be considered.

  5. Prediction of functional phosphorylation sites by incorporating evolutionary information.

    PubMed

    Niu, Shen; Wang, Zhen; Ge, Dongya; Zhang, Guoqing; Li, Yixue

    2012-09-01

    Protein phosphorylation is a ubiquitous protein post-translational modification, which plays an important role in cellular signaling systems underlying various physiological and pathological processes. Current in silico methods mainly focused on the prediction of phosphorylation sites, but rare methods considered whether a phosphorylation site is functional or not. Since functional phosphorylation sites are more valuable for further experimental research and a proportion of phosphorylation sites have no direct functional effects, the prediction of functional phosphorylation sites is quite necessary for this research area. Previous studies have shown that functional phosphorylation sites are more conserved than non-functional phosphorylation sites in evolution. Thus, in our method, we developed a web server by integrating existing phosphorylation site prediction methods, as well as both absolute and relative evolutionary conservation scores to predict the most likely functional phosphorylation sites. Using our method, we predicted the most likely functional sites of the human, rat and mouse proteomes and built a database for the predicted sites. By the analysis of overall prediction results, we demonstrated that protein phosphorylation plays an important role in all the enriched KEGG pathways. By the analysis of protein-specific prediction results, we demonstrated the usefulness of our method for individual protein studies. Our method would help to characterize the most likely functional phosphorylation sites for further studies in this research area.

  6. New bioactive angiotensins formation pathways and functional involvements.

    PubMed

    Haulică, I; Petrescu, G; Slătineanu, Simona Mihaela; Bild, W; Mihaila, C N; Ioniţă, T

    2004-01-01

    After a brief review of the actual knowledge concerning the circulating and tissue Renin-Angiotensin System (RAS) as a unitary hormonal system, the cognitive acquisitions regarding the formation and action mechanisms of the new biologically active angiotensins will be presented. The review of the enzymatic pathways for their synthesis and inactivation, as metabolism products of angiotensin II (1-8), will be followed by the presentation of the main physio-pharmacological actions of angiotensin III (2-8), angiotensin IV (3-8) and angiotensin (1-7). The functional involvements of the cerebral angiotensin IV in what concerns its possible participation in the normal neurochemical processes of memory and in the neurodegenerative processes of Alzheimer disease will be exposed, together with the vasodilating effects of angiotensin (1-7) as counteracting factor for the constricting effects of angiotensin II. The data concerning the bioactive fragments of angiotensin II will be accompanied by those regarding its implication in the cardiovascular modeling and the induction of oxidative stress, inflammation, atherogenesis, etc. In their turn, personal researches bring new experimental evidences in favor of interactions between angiotensin (1-7) and angiotensin II within the rat thoracic aorta. Biphasic, dose-dependent effects were observed for angiotensin (1-7), induced both through nitric oxide, kinins and prostaglandin release for counteracting the vasoconstricting effects of angiotensin II and the modulation of its own vasodilator action. PMID:15529593

  7. MASS FUNCTION PREDICTIONS BEYOND {Lambda}CDM

    SciTech Connect

    Bhattacharya, Suman; Lukic, Zarija; Habib, Salman; Heitmann, Katrin; White, Martin; Wagner, Christian

    2011-05-10

    The statistics of dark matter halos is an essential component of precision cosmology. The mass distribution of halos, as specified by the halo mass function, is a key input for several cosmological probes. The sizes of N-body simulations are now such that, for the most part, results need no longer be statistics-limited, but are still subject to various systematic uncertainties. Discrepancies in the results of simulation campaigns for the halo mass function remain in excess of statistical uncertainties and of roughly the same size as the error limits set by near-future observations; we investigate and discuss some of the reasons for these differences. Quantifying error sources and compensating for them as appropriate, we carry out a high-statistics study of dark matter halos from 67 N-body simulations to investigate the mass function and its evolution for a reference {Lambda}CDM cosmology and for a set of wCDM cosmologies. For the reference {Lambda}CDM cosmology (close to WMAP5), we quantify the breaking of universality in the form of the mass function as a function of redshift, finding an evolution of as much as 10% away from the universal form between redshifts z = 0 and z = 2. For cosmologies very close to this reference we provide a fitting formula to our results for the (evolving) {Lambda}CDM mass function over a mass range of 6 x 10{sup 11}-3 x 10{sup 15} M{sub sun} to an estimated accuracy of about 2%. The set of wCDM cosmologies is taken from the Coyote Universe simulation suite. The mass functions from this suite (which includes a {Lambda}CDM cosmology and others with w {approx_equal} -1) are described by the fitting formula for the reference {Lambda}CDM case at an accuracy level of 10%, but with clear systematic deviations. We argue that, as a consequence, fitting formulae based on a universal form for the mass function may have limited utility in high-precision cosmological applications.

  8. Mass Function Predictions Beyond ΛCDM

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Suman; Heitmann, Katrin; White, Martin; Lukić, Zarija; Wagner, Christian; Habib, Salman

    2011-05-01

    The statistics of dark matter halos is an essential component of precision cosmology. The mass distribution of halos, as specified by the halo mass function, is a key input for several cosmological probes. The sizes of N-body simulations are now such that, for the most part, results need no longer be statistics-limited, but are still subject to various systematic uncertainties. Discrepancies in the results of simulation campaigns for the halo mass function remain in excess of statistical uncertainties and of roughly the same size as the error limits set by near-future observations; we investigate and discuss some of the reasons for these differences. Quantifying error sources and compensating for them as appropriate, we carry out a high-statistics study of dark matter halos from 67 N-body simulations to investigate the mass function and its evolution for a reference ΛCDM cosmology and for a set of wCDM cosmologies. For the reference ΛCDM cosmology (close to WMAP5), we quantify the breaking of universality in the form of the mass function as a function of redshift, finding an evolution of as much as 10% away from the universal form between redshifts z = 0 and z = 2. For cosmologies very close to this reference we provide a fitting formula to our results for the (evolving) ΛCDM mass function over a mass range of 6 × 1011-3 × 1015 M sun to an estimated accuracy of about 2%. The set of wCDM cosmologies is taken from the Coyote Universe simulation suite. The mass functions from this suite (which includes a ΛCDM cosmology and others with w ~= -1) are described by the fitting formula for the reference ΛCDM case at an accuracy level of 10%, but with clear systematic deviations. We argue that, as a consequence, fitting formulae based on a universal form for the mass function may have limited utility in high-precision cosmological applications.

  9. Early executive function predicts reasoning development.

    PubMed

    Richland, Lindsey E; Burchinal, Margaret R

    2013-01-01

    Analogical reasoning is a core cognitive skill that distinguishes humans from all other species and contributes to general fluid intelligence, creativity, and adaptive learning capacities. Yet its origins are not well understood. In the study reported here, we analyzed large-scale longitudinal data from the Study of Early Child Care and Youth Development to test predictors of growth in analogical-reasoning skill from third grade to adolescence. Our results suggest an integrative resolution to the theoretical debate regarding contributory factors arising from smaller-scale, cross-sectional experiments on analogy development. Children with greater executive-function skills (both composite and inhibitory control) and vocabulary knowledge in early elementary school displayed higher scores on a verbal analogies task at age 15 years, even after adjusting for key covariates. We posit that knowledge is a prerequisite to analogy performance, but strong executive-functioning resources during early childhood are related to long-term gains in fundamental reasoning skills.

  10. Time's up! Involvement of metamemory knowledge, executive functions, and time monitoring in children's prospective memory performance.

    PubMed

    Geurten, Marie; Lejeune, Caroline; Meulemans, Thierry

    2016-01-01

    This study examined time-based prospective memory (PM) in children and explored the possible involvement of metamemory knowledge and executive functions in the use of an appropriate time-monitoring strategy depending on the ongoing task's difficulty. Specifically, a sample of 72 typically developing children aged 4, 6, and 9 years old were given an original PM paradigm composed of both an ongoing procedural activity and a PM task. Half of the participants (expert group) were trained in the ongoing activity before the prospective test. As expected, results show that time monitoring had a positive effect on children's PM performance. Furthermore, mediation analyses reveal that strategic time monitoring was predicted by metamemory knowledge in the expert group but only by executive functions in the novice group. Overall, these findings provide interesting avenues to explain how metamemory knowledge, strategy use, and executive functions interact to improve PM performance during childhood.

  11. Improving structure-based function prediction using molecular dynamics

    PubMed Central

    Glazer, Dariya S.; Radmer, Randall J.; Altman, Russ B.

    2009-01-01

    Summary The number of molecules with solved three-dimensional structure but unknown function is increasing rapidly. Particularly problematic are novel folds with little detectable similarity to molecules of known function. Experimental assays can determine the functions of such molecules, but are time-consuming and expensive. Computational approaches can identify potential functional sites; however, these approaches generally rely on single static structures and do not use information about dynamics. In fact, structural dynamics can enhance function prediction: we coupled molecular dynamics simulations with structure-based function prediction algorithms that identify Ca2+ binding sites. When applied to 11 challenging proteins, both methods showed substantial improvement in performance, revealing 22 more sites in one case and 12 more in the other, with a modest increase in apparent false positives. Thus, we show that treating molecules as dynamic entities improves the performance of structure-based function prediction methods. PMID:19604472

  12. Functional prediction of hypothetical proteins in human adenoviruses.

    PubMed

    Dorden, Shane; Mahadevan, Padmanabhan

    2015-01-01

    Assigning functional information to hypothetical proteins in virus genomes is crucial for gaining insight into their proteomes. Human adenoviruses are medium sized viruses that cause a range of diseases. Their genomes possess proteins with uncharacterized function known as hypothetical proteins. Using a wide range of protein function prediction servers, functional information was obtained about these hypothetical proteins. A comparison of functional information obtained from these servers revealed that some of them produced functional information, while others provided little functional information about these human adenovirus hypothetical proteins. The PFP, ESG, PSIPRED, 3d2GO, and ProtFun servers produced the most functional information regarding these hypothetical proteins. PMID:26664031

  13. Sexual abuse predicts functional somatic symptoms: an adolescent population study.

    PubMed

    Bonvanie, Irma J; van Gils, Anne; Janssens, Karin A M; Rosmalen, Judith G M

    2015-08-01

    The main aim of this study was to investigate the effect of childhood sexual abuse on medically not well explained or functional somatic symptoms (FSSs) in adolescents. We hypothesized that sexual abuse predicts higher levels of FSSs and that anxiety and depression contribute to this relationship. In addition, we hypothesized that more severe abuse is associated with higher levels of FSSs and that sexual abuse is related to gastrointestinal FSSs in particular. This study was part of the Tracking Adolescents' Individual Lives Survey (TRAILS): a general population cohort which started in 2001 (N=2,230; 50.8% girls, mean age 11.1 years). The current study uses data of 1,680 participants over four assessment waves (75% of baseline, mean duration of follow-up: 8 years). FSSs were measured by the Somatic Complaints subscale of the Youth Self-Report at all waves. Sexual abuse before the age of sixteen was assessed retrospectively with a questionnaire at T4. To test the hypotheses linear mixed models were used adjusted for age, sex, socioeconomic status, anxiety and depression. Sexual abuse predicted higher levels of FSSs after adjustment for age sex and socioeconomic status (B=.06) and after additional adjustment for anxiety and depression (B=.03). While sexual abuse involving physical contact significantly predicted the level of FSSs (assault; B=.08, rape; B=.05), non-contact sexual abuse was not significantly associated with FSSs (B=.04). Sexual abuse was not a stronger predictor of gastrointestinal FSSs (B=.06) than of all FSSs. Further research is needed to clarify possible mechanisms underlying relationship between sexual abuse and FSSs. PMID:26142915

  14. Gesture Performance in Schizophrenia Predicts Functional Outcome After 6 Months

    PubMed Central

    Walther, Sebastian; Eisenhardt, Sarah; Bohlhalter, Stephan; Vanbellingen, Tim; Müri, René; Strik, Werner; Stegmayer, Katharina

    2016-01-01

    The functional outcome of schizophrenia is heterogeneous and markers of the course are missing. Functional outcome is associated with social cognition and negative symptoms. Gesture performance and nonverbal social perception are critically impaired in schizophrenia. Here, we tested whether gesture performance or nonverbal social perception could predict functional outcome and the ability to adequately perform relevant skills of everyday function (functional capacity) after 6 months. In a naturalistic longitudinal study, 28 patients with schizophrenia completed tests of nonverbal communication at baseline and follow-up. In addition, functional outcome, social and occupational functioning, as well as functional capacity at follow-up were assessed. Gesture performance and nonverbal social perception at baseline predicted negative symptoms, functional outcome, and functional capacity at 6-month follow-up. Gesture performance predicted functional outcome beyond the baseline measure of functioning. Patients with gesture deficits at baseline had stable negative symptoms and experienced a decline in social functioning. While in patients without gesture deficits, negative symptom severity decreased and social functioning remained stable. Thus, a simple test of hand gesture performance at baseline may indicate favorable outcomes in short-term follow-up. The results further support the importance of nonverbal communication skills in subjects with schizophrenia. PMID:27566843

  15. A predictive index of axillary nodal involvement in operable breast cancer.

    PubMed Central

    De Laurentiis, M.; Gallo, C.; De Placido, S.; Perrone, F.; Pettinato, G.; Petrella, G.; Carlomagno, C.; Panico, L.; Delrio, P.; Bianco, A. R.

    1996-01-01

    We investigated the association between pathological characteristics of primary breast cancer and degree of axillary nodal involvement and obtained a predictive index of the latter from the former. In 2076 cases, 17 histological features, including primary tumour and local invasion variables, were recorded. The whole sample was randomly split in a training (75% of cases) and a test sample. Simple and multiple correspondence analysis were used to select the variables to enter in a multinomial logit model to build an index predictive of the degree of nodal involvement. The response variable was axillary nodal status coded in four classes (N0, N1-3, N4-9, N > or = 10). The predictive index was then evaluated by testing goodness-of-fit and classification accuracy. Covariates significantly associated with nodal status were tumour size (P < 0.0001), tumour type (P < 0.0001), type of border (P = 0.048), multicentricity (P = 0.003), invasion of lymphatic and blood vessels (P < 0.0001) and nipple invasion (P = 0.006). Goodness-of-fit was validated by high concordance between observed and expected number of cases in each decile of predicted probability in both training and test samples. Classification accuracy analysis showed that true node-positive cases were well recognised (84.5%), but there was no clear distinction among the classes of node-positive cases. However, 10 year survival analysis showed a superimposible prognostic behaviour between predicted and observed nodal classes. Moreover, misclassified node-negative patients (i.e. those who are predicted positive) showed an outcome closer to patients with 1-3 metastatic nodes than to node-negative ones. In conclusion, the index cannot completely substitute for axillary node information, but it is a predictor of prognosis as accurate as nodal involvement and identifies a subgroup of node-negative patients with unfavourable prognosis. PMID:8630286

  16. Dopamine neurons share common response function for reward prediction error

    PubMed Central

    Eshel, Neir; Tian, Ju; Bukwich, Michael; Uchida, Naoshige

    2016-01-01

    Dopamine neurons are thought to signal reward prediction error, or the difference between actual and predicted reward. How dopamine neurons jointly encode this information, however, remains unclear. One possibility is that different neurons specialize in different aspects of prediction error; another is that each neuron calculates prediction error in the same way. We recorded from optogenetically-identified dopamine neurons in the lateral ventral tegmental area (VTA) while mice performed classical conditioning tasks. Our tasks allowed us to determine the full prediction error functions of dopamine neurons and compare them to each other. We found striking homogeneity among individual dopamine neurons: their responses to both unexpected and expected rewards followed the same function, just scaled up or down. As a result, we could describe both individual and population responses using just two parameters. Such uniformity ensures robust information coding, allowing each dopamine neuron to contribute fully to the prediction error signal. PMID:26854803

  17. Dopamine neurons share common response function for reward prediction error.

    PubMed

    Eshel, Neir; Tian, Ju; Bukwich, Michael; Uchida, Naoshige

    2016-03-01

    Dopamine neurons are thought to signal reward prediction error, or the difference between actual and predicted reward. How dopamine neurons jointly encode this information, however, remains unclear. One possibility is that different neurons specialize in different aspects of prediction error; another is that each neuron calculates prediction error in the same way. We recorded from optogenetically identified dopamine neurons in the lateral ventral tegmental area (VTA) while mice performed classical conditioning tasks. Our tasks allowed us to determine the full prediction error functions of dopamine neurons and compare them to each other. We found marked homogeneity among individual dopamine neurons: their responses to both unexpected and expected rewards followed the same function, just scaled up or down. As a result, we were able to describe both individual and population responses using just two parameters. Such uniformity ensures robust information coding, allowing each dopamine neuron to contribute fully to the prediction error signal. PMID:26854803

  18. Dopamine neurons share common response function for reward prediction error.

    PubMed

    Eshel, Neir; Tian, Ju; Bukwich, Michael; Uchida, Naoshige

    2016-03-01

    Dopamine neurons are thought to signal reward prediction error, or the difference between actual and predicted reward. How dopamine neurons jointly encode this information, however, remains unclear. One possibility is that different neurons specialize in different aspects of prediction error; another is that each neuron calculates prediction error in the same way. We recorded from optogenetically identified dopamine neurons in the lateral ventral tegmental area (VTA) while mice performed classical conditioning tasks. Our tasks allowed us to determine the full prediction error functions of dopamine neurons and compare them to each other. We found marked homogeneity among individual dopamine neurons: their responses to both unexpected and expected rewards followed the same function, just scaled up or down. As a result, we were able to describe both individual and population responses using just two parameters. Such uniformity ensures robust information coding, allowing each dopamine neuron to contribute fully to the prediction error signal.

  19. Treatment of Overweight Children as a Function of Parental Involvement.

    ERIC Educational Resources Information Center

    Bindewald, Richard A.; And Others

    Research related to the importance of involving parents directly in treatment programming for childhood obesity has provided inconclusive results because of methodological problems and relatively short treatment duration periods. The effectiveness of an extended behavioral weight control program was evaluated during a 10-week treatment phase and…

  20. A new protein structure representation for efficient protein function prediction.

    PubMed

    Maghawry, Huda A; Mostafa, Mostafa G M; Gharib, Tarek F

    2014-12-01

    One of the challenging problems in bioinformatics is the prediction of protein function. Protein function is the main key that can be used to classify different proteins. Protein function can be inferred experimentally with very small throughput or computationally with very high throughput. Computational methods are sequence based or structure based. Structure-based methods produce more accurate protein function prediction. In this article, we propose a new protein structure representation for efficient protein function prediction. The representation is based on three-dimensional patterns of protein residues. In the analysis, we used protein function based on enzyme activity through six mechanistically diverse enzyme superfamilies: amidohydrolase, crotonase, haloacid dehalogenase, isoprenoid synthase type I, and vicinal oxygen chelate. We applied three different classification methods, naïve Bayes, k-nearest neighbors, and random forest, to predict the enzyme superfamily of a given protein. The prediction accuracy using the proposed representation outperforms a recently introduced representation method that is based only on the distance patterns. The results show that the proposed representation achieved prediction accuracy up to 98%, with improvement of about 10% on average.

  1. Early involvement in friendships predicts later plasma concentrations of oxytocin and vasopressin in juvenile rhesus macaques (Macaca mulatta)

    PubMed Central

    Weinstein, Tamara A. R.; Bales, Karen L.; Maninger, Nicole; Hostetler, Caroline M.; Capitanio, John P.

    2014-01-01

    The neuropeptides oxytocin (OT) and arginine vasopressin (AVP) are involved in social bonding in attachment relationships, but their role in friendship is poorly understood. We investigated whether rhesus macaques’ (Macaca mulatta) friendships at age one predicted plasma OT and AVP at two later time points. Subjects were 54 rhesus macaques at the California National Primate Research Center (CNPRC). Blood was drawn during a brief capture-and-release in the home cage, and plasma assayed for OT and AVP using an enzyme immunoassay (EIA). Separate linear mixed models for each sex tested the effects of dominance rank, age, sampling time point, housing condition, parturition status, two blood draw timing measures, and five friendship types: proximity friendships, play friendships, reciprocal friendships (a preference for a peer that also preferred the subject), multiplex friendships (friendships displayed in more than one behavioral domain), and total number of friendships. Females’ number of reciprocal and play friendships at age one significantly predicted later OT; additionally, these two friendship types interacted with rank, such that high-ranking females with the fewest friendships had the highest OT concentrations. Friendship did not predict later OT levels in males, however proximity, play, reciprocal, and total number of friendships predicted males’ plasma AVP. Play and total number of friendships also tended to predict AVP in females. Our results show that peripheral measures of neuroendocrine functioning in juvenile rhesus monkeys are influenced by early involvement in friendships. Friendships have an especially strong impact on an individual’s psychosocial development, and our data suggest OT and AVP as potential underlying mechanisms. Moreover, sex differences in the functioning of the OT and AVP systems, and their relation to friendship, may have important clinical implications for the use of OT as a therapeutic, as well as informing the social

  2. Predicting Pelvic Lymph Node Involvement in Current-Era Prostate Cancer

    SciTech Connect

    Rahman, Sophia; Cosmatos, Harry; Dave, Giatri; Williams, Stephen; Tome, Michael

    2012-02-01

    Purpose: The Roach formula [2/3 Multiplication-Sign prostate-specific antigen + (Gleason score - 6) Multiplication-Sign 10], derived in 1993 during the early prostate specific antigen (PSA) screening era, has been used to predict the risk of pelvic lymph node involvement in patients with prostate cancer. In the current era of widespread PSA screening with a shift to earlier disease stages, there is evidence to suggest that the Roach score overestimates risk of nodal metastasis. This study retrospectively reviews the validity of this formula as a prediction tool. Methods and Materials: We conducted a retrospective institutional review including men with clinical T1c-T3 prostate cancer, with baseline PSA levels and biopsy-obtained Gleason scores who underwent radical prostatectomy with pelvic node dissection from 2001 through 2009 (N = 1,022). The predicted risk of nodal involvement was calculated for each patient using the Roach formula and then compared with actual rates following surgery. Results: The study included 1,022 patients; 99.6% had clinical T1c/T2 disease, with a mean of 10.3 lymph nodes surgically evaluated. Overall, 42 patients (4.1%) had nodal metastasis. For every range of scores, the Roach formula overestimates the risk of nodal involvement. Observed nodal positivity was 1%, 6.3%, 10%, 15.2%, and 16.7% for Roach scores {<=}10%, >10%-20%, >20%-30%, >30%-40%, and >40%, respectively. The Roach score overestimates the risk by approximately 4.5-fold in patients with scores {<=}10%, by 2.5-fold for all scores between 10% and 40%, and by 4-fold for scores >40%. Conclusion: The Roach formula overpredicts the risk of pelvic nodal involvement in current-era prostate cancer patients undergoing regular PSA screening and with mainly T1c/T2 disease. Contemporary patients are much less likely to have nodal involvement for a given PSA and Gleason score.

  3. Adaptive bandwidth measurements of importance functions for speech intelligibility prediction

    PubMed Central

    Whitmal, Nathaniel A.; DeRoy, Kristina

    2011-01-01

    The Articulation Index (AI) and Speech Intelligibility Index (SII) predict intelligibility scores from measurements of speech and hearing parameters. One component in the prediction is the “importance function,” a weighting function that characterizes contributions of particular spectral regions of speech to speech intelligibility. Previous work with SII predictions for hearing-impaired subjects suggests that prediction accuracy might improve if importance functions for individual subjects were available. Unfortunately, previous importance function measurements have required extensive intelligibility testing with groups of subjects, using speech processed by various fixed-bandwidth low-pass and high-pass filters. A more efficient approach appropriate to individual subjects is desired. The purpose of this study was to evaluate the feasibility of measuring importance functions for individual subjects with adaptive-bandwidth filters. In two experiments, ten subjects with normal-hearing listened to vowel-consonant-vowel (VCV) nonsense words processed by low-pass and high-pass filters whose bandwidths were varied adaptively to produce specified performance levels in accordance with the transformed up-down rules of Levitt [(1971). J. Acoust. Soc. Am. 49, 467–477]. Local linear psychometric functions were fit to resulting data and used to generate an importance function for VCV words. Results indicate that the adaptive method is reliable and efficient, and produces importance function data consistent with that of the corresponding AI/SII importance function. PMID:22225057

  4. A Survey of Computational Intelligence Techniques in Protein Function Prediction

    PubMed Central

    Tiwari, Arvind Kumar; Srivastava, Rajeev

    2014-01-01

    During the past, there was a massive growth of knowledge of unknown proteins with the advancement of high throughput microarray technologies. Protein function prediction is the most challenging problem in bioinformatics. In the past, the homology based approaches were used to predict the protein function, but they failed when a new protein was different from the previous one. Therefore, to alleviate the problems associated with homology based traditional approaches, numerous computational intelligence techniques have been proposed in the recent past. This paper presents a state-of-the-art comprehensive review of various computational intelligence techniques for protein function predictions using sequence, structure, protein-protein interaction network, and gene expression data used in wide areas of applications such as prediction of DNA and RNA binding sites, subcellular localization, enzyme functions, signal peptides, catalytic residues, nuclear/G-protein coupled receptors, membrane proteins, and pathway analysis from gene expression datasets. This paper also summarizes the result obtained by many researchers to solve these problems by using computational intelligence techniques with appropriate datasets to improve the prediction performance. The summary shows that ensemble classifiers and integration of multiple heterogeneous data are useful for protein function prediction. PMID:25574395

  5. A Unitary Executive Function Predicts Intelligence in Children

    ERIC Educational Resources Information Center

    Brydges, Christopher R.; Reid, Corinne L.; Fox, Allison M.; Anderson, Mike

    2012-01-01

    Executive functions (EF) and intelligence are of critical importance to success in many everyday tasks. Working memory, or updating, which is one latent variable identified in confirmatory factor analytic models of executive functions, predicts intelligence (both fluid and crystallised) in adults, but inhibition and shifting do not (Friedman et…

  6. Rapid Catalytic Template Searching as an Enzyme Function Prediction Procedure

    PubMed Central

    Nilmeier, Jerome P.; Kirshner, Daniel A.; Wong, Sergio E.; Lightstone, Felice C.

    2013-01-01

    We present an enzyme protein function identification algorithm, Catalytic Site Identification (CatSId), based on identification of catalytic residues. The method is optimized for highly accurate template identification across a diverse template library and is also very efficient in regards to time and scalability of comparisons. The algorithm matches three-dimensional residue arrangements in a query protein to a library of manually annotated, catalytic residues – The Catalytic Site Atlas (CSA). Two main processes are involved. The first process is a rapid protein-to-template matching algorithm that scales quadratically with target protein size and linearly with template size. The second process incorporates a number of physical descriptors, including binding site predictions, in a logistic scoring procedure to re-score matches found in Process 1. This approach shows very good performance overall, with a Receiver-Operator-Characteristic Area Under Curve (AUC) of 0.971 for the training set evaluated. The procedure is able to process cofactors, ions, nonstandard residues, and point substitutions for residues and ions in a robust and integrated fashion. Sites with only two critical (catalytic) residues are challenging cases, resulting in AUCs of 0.9411 and 0.5413 for the training and test sets, respectively. The remaining sites show excellent performance with AUCs greater than 0.90 for both the training and test data on templates of size greater than two critical (catalytic) residues. The procedure has considerable promise for larger scale searches. PMID:23675414

  7. Rapid catalytic template searching as an enzyme function prediction procedure.

    PubMed

    Nilmeier, Jerome P; Kirshner, Daniel A; Wong, Sergio E; Lightstone, Felice C

    2013-01-01

    We present an enzyme protein function identification algorithm, Catalytic Site Identification (CatSId), based on identification of catalytic residues. The method is optimized for highly accurate template identification across a diverse template library and is also very efficient in regards to time and scalability of comparisons. The algorithm matches three-dimensional residue arrangements in a query protein to a library of manually annotated, catalytic residues--The Catalytic Site Atlas (CSA). Two main processes are involved. The first process is a rapid protein-to-template matching algorithm that scales quadratically with target protein size and linearly with template size. The second process incorporates a number of physical descriptors, including binding site predictions, in a logistic scoring procedure to re-score matches found in Process 1. This approach shows very good performance overall, with a Receiver-Operator-Characteristic Area Under Curve (AUC) of 0.971 for the training set evaluated. The procedure is able to process cofactors, ions, nonstandard residues, and point substitutions for residues and ions in a robust and integrated fashion. Sites with only two critical (catalytic) residues are challenging cases, resulting in AUCs of 0.9411 and 0.5413 for the training and test sets, respectively. The remaining sites show excellent performance with AUCs greater than 0.90 for both the training and test data on templates of size greater than two critical (catalytic) residues. The procedure has considerable promise for larger scale searches.

  8. MOLECULAR MECHANISMS INVOLVED IN PROGESTERONE RECEPTOR REGULATION OF UTERINE FUNCTION

    PubMed Central

    Lee, K.; Jeong, J.; Tsai, M.-J.; Tsai, S.; Lydon, J. P.; DeMayo, F. J.

    2007-01-01

    The ovarian steroid hormone progesterone is a major regulator of uterine function. The actions of this hormone is mediated through its cognate receptor, the progesterone receptor, Pgr. Ablation of the Pgr has shown that this receptor is critical for all female reproductive functions including the ability of the uterus to support and maintain the development of the implanting mouse embryo. High density DNA microarray analysis has identified direct and indirect targets of Pgr action. One of the targets of Pgr action is a member of the Hedgehog morphogen Indian hedgehog, Ihh. Ihh and members of the Hh signaling cascade show a coordinate expression pattern in the mouse uterus during the preimplantation period of pregnancy. The expression of Ihh and its receptor Patched-1, Ptc1, as well as, down stream targets of Ihh-Ptch1 signaling, such as the orphan nuclear receptor COUP-TF II show that this morphogen pathway mediates communication between the uterine epithelial and stromal compartments. The members of the Ihh signaling axis may function to coordinate the proliferation, vascularization and differentiation of the uterine stroma during pregnancy. This analysis demonstrates that progesterone regulates uterine function in the mouse by coordinating the signals from the uterine epithelium to stroma in the preimplantation mouse uterus. PMID:17067792

  9. Protein Structure and Function Prediction Using I-TASSER.

    PubMed

    Yang, Jianyi; Zhang, Yang

    2015-01-01

    I-TASSER is a hierarchical protocol for automated protein structure prediction and structure-based function annotation. Starting from the amino acid sequence of target proteins, I-TASSER first generates full-length atomic structural models from multiple threading alignments and iterative structural assembly simulations followed by atomic-level structure refinement. The biological functions of the protein, including ligand-binding sites, enzyme commission number, and gene ontology terms, are then inferred from known protein function databases based on sequence and structure profile comparisons. I-TASSER is freely available as both an on-line server and a stand-alone package. This unit describes how to use the I-TASSER protocol to generate structure and function prediction and how to interpret the prediction results, as well as alternative approaches for further improving the I-TASSER modeling quality for distant-homologous and multi-domain protein targets.

  10. Prospective prediction of functional difficulties among recently separated veterans.

    PubMed

    Larson, Gerald E; Norman, Sonya B

    2014-01-01

    Reports of functional problems are common among Veterans who served post-9/11 (more than 25% report functional difficulties in at least one domain). However, little prospective work has examined the risk and protective factors for functional difficulties among Veterans. In a sample of recently separated Marines, we used stepwise logistic and multiple regressions to identify predictors of functional impairment, including work-related problems, financial problems, unlawful behavior, activity limitations due to mental health symptoms, and perceived difficulty reintegrating into civilian life. Posttraumatic stress disorder symptoms assessed both before and after military separation significantly predicted functional difficulties across all domains except unlawful behavior. Certain outcomes, such as unlawful behavior and activity limitations due to mental health symptoms, were predicted by other or additional predictors. Although several forms of functioning were examined, the list was not exhaustive. The results highlight a number of areas where targeted interventions may facilitate the reintegration of military servicemembers into civilian life.

  11. STRIPAK complexes: structure, biological function, and involvement in human diseases.

    PubMed

    Hwang, Juyeon; Pallas, David C

    2014-02-01

    The mammalian striatin family consists of three proteins, striatin, S/G2 nuclear autoantigen, and zinedin. Striatin family members have no intrinsic catalytic activity, but rather function as scaffolding proteins. Remarkably, they organize multiple diverse, large signaling complexes that participate in a variety of cellular processes. Moreover, they appear to be regulatory/targeting subunits for the major eukaryotic serine/threonine protein phosphatase 2A. In addition, striatin family members associate with germinal center kinase III kinases as well as other novel components, earning these assemblies the name striatin-interacting phosphatase and kinase (STRIPAK) complexes. Recently, there has been a great increase in functional and mechanistic studies aimed at identifying and understanding the roles of STRIPAK and STRIPAK-like complexes in cellular processes of multiple organisms. These studies have identified novel STRIPAK and STRIPAK-like complexes and have explored their roles in specific signaling pathways. Together, the results of these studies have sparked increased interest in striatin family complexes because they have revealed roles in signaling, cell cycle control, apoptosis, vesicular trafficking, Golgi assembly, cell polarity, cell migration, neural and vascular development, and cardiac function. Moreover, STRIPAK complexes have been connected to clinical conditions, including cardiac disease, diabetes, autism, and cerebral cavernous malformation. In this review, we discuss the expression, localization, and protein domain structure of striatin family members. Then we consider the diverse complexes these proteins and their homologs form in various organisms, emphasizing what is known regarding function and regulation. Finally, we explore possible roles of striatin family complexes in disease, especially cerebral cavernous malformation.

  12. STRIPAK Complexes: structure, biological function, and involvement in human diseases

    PubMed Central

    Hwang, Juyeon; Pallas, David C.

    2014-01-01

    The mammalian striatin family consists of three proteins, striatin, S/G2 nuclear autoantigen, and zinedin. Striatin family members have no intrinsic catalytic activity, but rather function as scaffolding proteins. Remarkably, they organize multiple diverse, large signaling complexes that participate in a variety of cellular processes. Moreover, they appear to be regulatory/targeting subunits for the major eukaryotic serine/threonine protein phosphatase 2A. In addition, striatin family members associate with germinal center kinase III kinases as well as other novel components, earning these assemblies the name striatin-interacting phosphatase and kinase (STRIPAK) complexes. Recently, there has been a great increase in functional and mechanistic studies aimed at identifying and understanding the roles of STRIPAK–like complexes in cellular processes of multiple organisms. These studies have identified novel STRIPAK or STRIPAK-like complexes and have explored their roles in specific signaling pathways. Together, the results of these studies have sparked increased interest in striatin family complexes because they have revealed roles in signaling, cell cycle control, apoptosis, vesicular trafficking, Golgi assembly, cell polarity, cell migration, neural and vascular development, and cardiac function. Moreover, STRIPAK complexes have been connected to clinical conditions, including cardiac disease, diabetes, autism, and cerebral cavernous malformation. In this review, we discuss the expression, localization, and protein domain structure of striatin family members. Then we consider the diverse complexes these proteins and their homologs form in various organisms, emphasizing what is known regarding function and regulation. Finally, we will explore possible roles of striatin family complexes in disease, especially cerebral cavernous malformation. PMID:24333164

  13. Involvement of local lamellipodia in endothelial barrier function.

    PubMed

    Breslin, Jerome W; Zhang, Xun E; Worthylake, Rebecca A; Souza-Smith, Flavia M

    2015-01-01

    Recently we observed that endothelial cells cultured in tightly confluent monolayers display frequent local lamellipodia, and that thrombin, an agent that increases endothelial permeability, reduces lamellipodia protrusions. This led us to test the hypothesis that local lamellipodia contribute to endothelial barrier function. Movements of subcellular structures containing GFP-actin or VE-cadherin-GFP expressed in endothelial cells were recorded using time-lapse microscopy. Transendothelial electrical resistance (TER) served as an index of endothelial barrier function. Changes in both lamellipodia dynamics and TER were assessed during baseline and after cells were treated with either the barrier-disrupting agent thrombin, or the barrier-stabilizing agent sphingosine-1-phosphate (S1P). The myosin II inhibitor blebbistatin was used to selectively block lamellipodia formation, and was used to test their role in the barrier function of endothelial cell monolayers and isolated, perfused rat mesenteric venules. Myosin light chain (MLC) phosphorylation was assessed by immunofluorescence microscopy. Rac1 and RhoA activation were evaluated using G-LISA assays. The role of Rac1 was tested with the specific inhibitor NSC23766 or by expressing wild-type or dominant negative GFP-Rac1. The results show that thrombin rapidly decreased both TER and the lamellipodia protrusion frequency. S1P rapidly increased TER in association with increased protrusion frequency. Blebbistatin nearly abolished local lamellipodia protrusions while cortical actin fibers and stress fibers remained intact. Blebbistatin also significantly decreased TER of cultured endothelial cells and increased permeability of isolated rat mesenteric venules. Both thrombin and S1P increased MLC phosphorylation and activation of RhoA. However, thrombin and S1P had differential impacts on Rac1, correlating with the changes in TER and lamellipodia protrusion frequency. Overexpression of Rac1 elevated, while NSC23766 and

  14. Enhanced functional connectivity involving the ventromedial hypothalamus following methamphetamine exposure.

    PubMed

    Zuloaga, Damian G; Iancu, Ovidiu D; Weber, Sydney; Etzel, Desiree; Marzulla, Tessa; Stewart, Blair; Allen, Charles N; Raber, Jacob

    2015-01-01

    Methamphetamine (MA) consumption causes disruption of many biological rhythms including the sleep-wake cycle. This circadian effect is seen shortly following MA exposure and later in life following developmental MA exposure. MA phase shifts, entrains the circadian clock and can also alter the entraining effect of light by currently unknown mechanisms. We analyzed and compared immunoreactivity of the immediate early gene c-Fos, a marker of neuronal activity, to assess neuronal activation 2 h following MA exposure in the light and dark phases. We used network analyses of correlation patterns derived from global brain immunoreactivity patterns of c-Fos, to infer functional connectivity between brain regions. There were five distinct patterns of neuronal activation. In several brain areas, neuronal activation following exposure to MA was stronger in the light than the dark phase, highlighting the importance of considering circadian periods of increased effects of MA in defining experimental conditions and understanding the mechanisms underlying detrimental effects of MA exposure to brain function. Functional connectivity between the ventromedial hypothalamus (VMH) and other brain areas, including the paraventricular nucleus of the hypothalamus and basolateral and medial amygdala, was enhanced following MA exposure, suggesting a role for the VMH in the effects of MA on the brain.

  15. Involvement of Local Lamellipodia in Endothelial Barrier Function

    PubMed Central

    Breslin, Jerome W.; Zhang, Xun E.; Worthylake, Rebecca A.; Souza-Smith, Flavia M.

    2015-01-01

    Recently we observed that endothelial cells cultured in tightly confluent monolayers display frequent local lamellipodia, and that thrombin, an agent that increases endothelial permeability, reduces lamellipodia protrusions. This led us to test the hypothesis that local lamellipodia contribute to endothelial barrier function. Movements of subcellular structures containing GFP-actin or VE-cadherin-GFP expressed in endothelial cells were recorded using time-lapse microscopy. Transendothelial electrical resistance (TER) served as an index of endothelial barrier function. Changes in both lamellipodia dynamics and TER were assessed during baseline and after cells were treated with either the barrier-disrupting agent thrombin, or the barrier-stabilizing agent sphingosine-1-phosphate (S1P). The myosin II inhibitor blebbistatin was used to selectively block lamellipodia formation, and was used to test their role in the barrier function of endothelial cell monolayers and isolated, perfused rat mesenteric venules. Myosin light chain (MLC) phosphorylation was assessed by immunofluorescence microscopy. Rac1 and RhoA activation were evaluated using G-LISA assays. The role of Rac1 was tested with the specific inhibitor NSC23766 or by expressing wild-type or dominant negative GFP-Rac1. The results show that thrombin rapidly decreased both TER and the lamellipodia protrusion frequency. S1P rapidly increased TER in association with increased protrusion frequency. Blebbistatin nearly abolished local lamellipodia protrusions while cortical actin fibers and stress fibers remained intact. Blebbistatin also significantly decreased TER of cultured endothelial cells and increased permeability of isolated rat mesenteric venules. Both thrombin and S1P increased MLC phosphorylation and activation of RhoA. However, thrombin and S1P had differential impacts on Rac1, correlating with the changes in TER and lamellipodia protrusion frequency. Overexpression of Rac1 elevated, while NSC23766 and

  16. Involvement of local lamellipodia in endothelial barrier function.

    PubMed

    Breslin, Jerome W; Zhang, Xun E; Worthylake, Rebecca A; Souza-Smith, Flavia M

    2015-01-01

    Recently we observed that endothelial cells cultured in tightly confluent monolayers display frequent local lamellipodia, and that thrombin, an agent that increases endothelial permeability, reduces lamellipodia protrusions. This led us to test the hypothesis that local lamellipodia contribute to endothelial barrier function. Movements of subcellular structures containing GFP-actin or VE-cadherin-GFP expressed in endothelial cells were recorded using time-lapse microscopy. Transendothelial electrical resistance (TER) served as an index of endothelial barrier function. Changes in both lamellipodia dynamics and TER were assessed during baseline and after cells were treated with either the barrier-disrupting agent thrombin, or the barrier-stabilizing agent sphingosine-1-phosphate (S1P). The myosin II inhibitor blebbistatin was used to selectively block lamellipodia formation, and was used to test their role in the barrier function of endothelial cell monolayers and isolated, perfused rat mesenteric venules. Myosin light chain (MLC) phosphorylation was assessed by immunofluorescence microscopy. Rac1 and RhoA activation were evaluated using G-LISA assays. The role of Rac1 was tested with the specific inhibitor NSC23766 or by expressing wild-type or dominant negative GFP-Rac1. The results show that thrombin rapidly decreased both TER and the lamellipodia protrusion frequency. S1P rapidly increased TER in association with increased protrusion frequency. Blebbistatin nearly abolished local lamellipodia protrusions while cortical actin fibers and stress fibers remained intact. Blebbistatin also significantly decreased TER of cultured endothelial cells and increased permeability of isolated rat mesenteric venules. Both thrombin and S1P increased MLC phosphorylation and activation of RhoA. However, thrombin and S1P had differential impacts on Rac1, correlating with the changes in TER and lamellipodia protrusion frequency. Overexpression of Rac1 elevated, while NSC23766 and

  17. Prediction of Erectile Function Following Treatment for Prostate Cancer

    PubMed Central

    Alemozaffar, Mehrdad; Regan, Meredith M.; Cooperberg, Matthew R.; Wei, John T.; Michalski, Jeff M.; Sandler, Howard M.; Hembroff, Larry; Sadetsky, Natalia; Saigal, Christopher S.; Litwin, Mark S.; Klein, Eric; Kibel, Adam S.; Hamstra, Daniel A.; Pisters, Louis L.; Kuban, Deborah A.; Kaplan, Irving D.; Wood, David P.; Ciezki, Jay; Dunn, Rodney L.; Carroll, Peter R.; Sanda, Martin G.

    2013-01-01

    Context Sexual function is the health-related quality of life (HRQOL) domain most commonly impaired after prostate cancer treatment; however, validated tools to enable personalized prediction of erectile dysfunction after prostate cancer treatment are lacking. Objective To predict long-term erectile function following prostate cancer treatment based on individual patient and treatment characteristics. Design Pretreatment patient characteristics, sexual HRQOL, and treatment details measured in a longitudinal academic multicenter cohort (Prostate Cancer Outcomes and Satisfaction With Treatment Quality Assessment; enrolled from 2003 through 2006), were used to develop models predicting erectile function 2 years after treatment. A community-based cohort (community-based Cancer of the Prostate Strategic Urologic Research Endeavor [CaPSURE]; enrolled 1995 through 2007) externally validated model performance. Patients in US academic and community-based practices whose HRQOL was measured pretreatment (N = 1201) underwent follow-up after prostatectomy, external radiotherapy, or brachytherapy for prostate cancer. Sexual outcomes among men completing 2 years’ follow-up (n = 1027) were used to develop models predicting erectile function that were externally validated among 1913 patients in a community-based cohort. Main Outcome Measures Patient-reported functional erections suitable for intercourse 2 years following prostate cancer treatment. Results Two years after prostate cancer treatment, 368 (37% [95% CI, 34%–40%]) of all patients and 335 (48% [95% CI, 45%–52%]) of those with functional erections prior to treatment reported functional erections; 531 (53% [95% CI, 50%–56%]) of patients without penile prostheses reported use of medications or other devices for erectile dysfunction. Pretreatment sexual HRQOL score, age, serum prostate-specific antigen level, race/ethnicity, body mass index, and intended treatment details were associated with functional erections 2

  18. Evolution and cellular function of monothiol glutaredoxins: involvement in iron-sulphur cluster assembly.

    PubMed

    Vilella, Felipe; Alves, Rui; Rodríguez-Manzaneque, María Teresa; Bellí, Gemma; Swaminathan, Swarna; Sunnerhagen, Per; Herrero, Enrique

    2004-01-01

    A number of bacterial species, mostly proteobacteria, possess monothiol glutaredoxins homologous to the Saccharomyces cerevisiae mitochondrial protein Grx5, which is involved in iron-sulphur cluster synthesis. Phylogenetic profiling is used to predict that bacterial monothiol glutaredoxins also participate in the iron-sulphur cluster (ISC) assembly machinery, because their phylogenetic profiles are similar to the profiles of the bacterial homologues of yeast ISC proteins. High evolutionary co-occurrence is observed between the Grx5 homologues and the homologues of the Yah1 ferredoxin, the scaffold proteins Isa1 and Isa2, the frataxin protein Yfh1 and the Nfu1 protein. This suggests that a specific functional interaction exists between these ISC machinery proteins. Physical interaction analyses using low-definition protein docking predict the formation of strong and specific complexes between Grx5 and several components of the yeast ISC machinery. Two-hybrid analysis has confirmed the in vivo interaction between Grx5 and Isa1. Sequence comparison techniques and cladistics indicate that the other two monothiol glutaredoxins of S. cerevisiae, Grx3 and Grx4, have evolved from the fusion of a thioredoxin gene with a monothiol glutaredoxin gene early in the eukaryotic lineage, leading to differential functional specialization. While bacteria do not contain these chimaeric glutaredoxins, in many eukaryotic species Grx5 and Grx3/4-type monothiol glutaredoxins coexist in the cell. PMID:18629168

  19. Evolution and Cellular Function of Monothiol Glutaredoxins: Involvement in Iron-Sulphur Cluster Assembly

    PubMed Central

    Vilella, Felipe; Alves, Rui; Rodríguez-Manzaneque, María Teresa; Bellí, Gemma; Swaminathan, Swarna; Sunnerhagen, Per

    2004-01-01

    A number of bacterial species, mostly proteobacteria, possess monothiol glutaredoxins homologous to the Saccharomyces cerevisiae mitochondrial protein Grx5, which is involved in iron–sulphur cluster synthesis. Phylogenetic profiling is used to predict that bacterial monothiol glutaredoxins also participate in the iron–sulphur cluster (ISC) assembly machinery, because their phylogenetic profiles are similar to the profiles of the bacterial homologues of yeast ISC proteins. High evolutionary co-occurrence is observed between the Grx5 homologues and the homologues of the Yah1 ferredoxin, the scaffold proteins Isa1 and Isa2, the frataxin protein Yfh1 and the Nfu1 protein. This suggests that a specific functional interaction exists between these ISC machinery proteins. Physical interaction analyses using low-definition protein docking predict the formation of strong and specific complexes between Grx5 and several components of the yeast ISC machinery. Two-hybrid analysis has confirmed the in vivo interaction between Grx5 and Isa1. Sequence comparison techniques and cladistics indicate that the other two monothiol glutaredoxins of S. cerevisiae, Grx3 and Grx4, have evolved from the fusion of a thioredoxin gene with a monothiol glutaredoxin gene early in the eukaryotic lineage, leading to differential functional specialization. While bacteria do not contain these chimaeric glutaredoxins, in many eukaryotic species Grx5 and Grx3/4-type monothiol glutaredoxins coexist in the cell. PMID:18629168

  20. PredictProtein—an open resource for online prediction of protein structural and functional features

    PubMed Central

    Yachdav, Guy; Kloppmann, Edda; Kajan, Laszlo; Hecht, Maximilian; Goldberg, Tatyana; Hamp, Tobias; Hönigschmid, Peter; Schafferhans, Andrea; Roos, Manfred; Bernhofer, Michael; Richter, Lothar; Ashkenazy, Haim; Punta, Marco; Schlessinger, Avner; Bromberg, Yana; Schneider, Reinhard; Vriend, Gerrit; Sander, Chris; Ben-Tal, Nir; Rost, Burkhard

    2014-01-01

    PredictProtein is a meta-service for sequence analysis that has been predicting structural and functional features of proteins since 1992. Queried with a protein sequence it returns: multiple sequence alignments, predicted aspects of structure (secondary structure, solvent accessibility, transmembrane helices (TMSEG) and strands, coiled-coil regions, disulfide bonds and disordered regions) and function. The service incorporates analysis methods for the identification of functional regions (ConSurf), homology-based inference of Gene Ontology terms (metastudent), comprehensive subcellular localization prediction (LocTree3), protein–protein binding sites (ISIS2), protein–polynucleotide binding sites (SomeNA) and predictions of the effect of point mutations (non-synonymous SNPs) on protein function (SNAP2). Our goal has always been to develop a system optimized to meet the demands of experimentalists not highly experienced in bioinformatics. To this end, the PredictProtein results are presented as both text and a series of intuitive, interactive and visually appealing figures. The web server and sources are available at http://ppopen.rostlab.org. PMID:24799431

  1. Functional involvement of cerebral cortex in adult sleepwalking.

    PubMed

    Oliviero, A; Della Marca, G; Tonali, P A; Pilato, F; Saturno, E; Dileone, M; Rubino, M; Di Lazzaro, V

    2007-08-01

    The pathophysiology of adult sleepwalking is still poorly understood. However, it is widely accepted that sleepwalking is a disorder of arousal. Arousal circuits widely project to the cortex, including motor cortex. We hypothesized that functional abnormality of these circuits could lead to changes in cortical excitability in sleepwalkers, even during wakefulness. We used transcranial magnetic stimulation (TMS) to examine the excitability of the human motor cortex during wakefulness in a group of adult sleepwalkers. When compared with the healthy control group, short interval intracortical inhibition (SICI), cortical silent period (CSP) duration, and short latency afferent inhibition (SAI) were reduced in adult sleepwalkers during wakefulness. Mean CSP duration was shorter in patients than in controls (80.9 +/- 41 ms vs. 139.4 +/- 37 ms; p = 0.0040). Mean SICI was significantly reduced in patients than in controls (73.5 +/- 38.4% vs. 36.7 +/- 13.1%; p = 0.0061). Mean SAI was also significantly reduced in patients than in controls (65.8 +/- 14.2% vs. 42.8 +/- 16.9%; p = 0.0053). This neurophysiological study suggests that there are alterations in sleepwalkers consistent with an impaired efficiency of inhibitory circuits during wakefulness. This inhibitory impairment could represent the neurophysiological correlate of brain "abnormalities" of sleepwalkers like "immaturity" of some neural circuits, synapses, or receptors. PMID:17351721

  2. Functional involvement of cerebral cortex in adult sleepwalking.

    PubMed

    Oliviero, A; Della Marca, G; Tonali, P A; Pilato, F; Saturno, E; Dileone, M; Rubino, M; Di Lazzaro, V

    2007-08-01

    The pathophysiology of adult sleepwalking is still poorly understood. However, it is widely accepted that sleepwalking is a disorder of arousal. Arousal circuits widely project to the cortex, including motor cortex. We hypothesized that functional abnormality of these circuits could lead to changes in cortical excitability in sleepwalkers, even during wakefulness. We used transcranial magnetic stimulation (TMS) to examine the excitability of the human motor cortex during wakefulness in a group of adult sleepwalkers. When compared with the healthy control group, short interval intracortical inhibition (SICI), cortical silent period (CSP) duration, and short latency afferent inhibition (SAI) were reduced in adult sleepwalkers during wakefulness. Mean CSP duration was shorter in patients than in controls (80.9 +/- 41 ms vs. 139.4 +/- 37 ms; p = 0.0040). Mean SICI was significantly reduced in patients than in controls (73.5 +/- 38.4% vs. 36.7 +/- 13.1%; p = 0.0061). Mean SAI was also significantly reduced in patients than in controls (65.8 +/- 14.2% vs. 42.8 +/- 16.9%; p = 0.0053). This neurophysiological study suggests that there are alterations in sleepwalkers consistent with an impaired efficiency of inhibitory circuits during wakefulness. This inhibitory impairment could represent the neurophysiological correlate of brain "abnormalities" of sleepwalkers like "immaturity" of some neural circuits, synapses, or receptors.

  3. Prediction of Postchemotherapy Ovarian Function Using Markers of Ovarian Reserve

    PubMed Central

    Xia, Rong; Schott, Anne F.; McConnell, Daniel; Banerjee, Mousumi; Hayes, Daniel F.

    2014-01-01

    Background. Reproductive-aged women frequently receive both chemotherapy and endocrine therapy as part of their treatment regimen for early stage hormone receptor-positive breast cancer. Chemotherapy results in transient or permanent ovarian failure in the majority of women. The difficulty in determining which patients will recover ovarian function has implications for adjuvant endocrine therapy decision making. We hypothesized that pretreatment serum anti-Müllerian hormone (AMH) and inhibin B concentrations would predict for ovarian function following chemotherapy. Methods. Pre- and perimenopausal women aged 25–50 years with newly diagnosed breast cancer were enrolled. Subjects underwent phlebotomy for assessment of serum AMH, inhibin B, follicle-stimulating hormone, and estradiol prior to chemotherapy and 1 month and 1 year following completion of treatment. Associations among hormone concentrations, clinical factors, and biochemically assessed ovarian function were assessed. Results. Twenty-seven subjects were evaluable for the primary endpoint. Median age was 41. Twenty subjects (74.1%) experienced recovery of ovarian function within 18 months. Of the 26 evaluable subjects assessed prior to chemotherapy, 19 (73.1%) had detectable serum concentrations of AMH. The positive predictive value of a detectable baseline serum AMH concentration for recovery of ovarian function was 94.7%, and the negative predictive value was 85.7%. On univariate analysis, younger age and detectable serum AMH concentration at chemotherapy initiation were predictive of increased likelihood of recovery of ovarian function. Conclusion. Prechemotherapy assessment of serum AMH may be useful for predicting postchemotherapy ovarian function. This finding has implications for decision making about adjuvant endocrine therapy in premenopausal women treated with chemotherapy. PMID:24319018

  4. Borderline personality traits and disorder: predicting prospective patient functioning

    PubMed Central

    Hopwood, Christopher J.; Zanarini, Mary C.

    2011-01-01

    Objective Decisions about the composition of personality assessment in DSM-V will be heavily influenced by the clinical utility of candidate constructs. This study addressed one aspect of clinical utility by testing the incremental validity of five-factor model personality traits and Borderline Personality Disorder (BPD) symptoms for predicting prospective patient functioning. Method Five-factor personality traits and BPD features were correlated with one another and predicted 2, 4, 6, 8, and 10-year psychosocial functioning scores for 362 personality-disordered patients. Results Traits and symptom domains related significantly and pervasively to one another and to prospective functioning. FFM extraversion and agreeableness tended to be most incrementally predictive of psychosocial functioning across all intervals; cognitive and impulse action features of BPD features incremented FFM traits in some models. Conclusions These data suggest that BPD symptoms and personality traits are important long-term indicators of clinical functioning that both overlap with and increment one another in clinical predictions. Results support the integration of personality traits and disorders in DSM-V. PMID:20658814

  5. Predicting real-world functional milestones in schizophrenia.

    PubMed

    Olsson, Anna-Karin; Hjärthag, Fredrik; Helldin, Lars

    2016-08-30

    Schizophrenia is a severe disorder that often causes impairments in major areas of functioning, and most patients do not achieve expected real-world functional milestones. The aim of this study was to identify which variables of demography, illness activity, and functional capacity predict patients' ability to attain real-world functional milestones. Participants were 235 outpatients, 149 men and 86 women, diagnosed with schizophrenia spectrum disorder. Our results showed that younger patients managed to achieve a higher level of functioning in educational level, marital status, and social contacts. Patients' functional capacity was primarily associated with educational level and housing situation. We also found that women needed less support regarding housing and obtained a higher level of marital status as compared with men. Our findings demonstrate the importance of considering current symptoms, especially negative symptoms, and remission stability over time, together with age, duration of illness, gender, educational level, and current functional capacity, when predicting patients' future real-world functioning. We also conclude that there is an advantage in exploring symptoms divided into positive, negative, and general domains considering their probable impact on functional achievements.

  6. Functional structure of biological communities predicts ecosystem multifunctionality.

    PubMed

    Mouillot, David; Villéger, Sébastien; Scherer-Lorenzen, Michael; Mason, Norman W H

    2011-01-01

    The accelerating rate of change in biodiversity patterns, mediated by ever increasing human pressures and global warming, demands a better understanding of the relationship between the structure of biological communities and ecosystem functioning (BEF). Recent investigations suggest that the functional structure of communities, i.e. the composition and diversity of functional traits, is the main driver of ecological processes. However, the predictive power of BEF research is still low, the integration of all components of functional community structure as predictors is still lacking, and the multifunctionality of ecosystems (i.e. rates of multiple processes) must be considered. Here, using a multiple-processes framework from grassland biodiversity experiments, we show that functional identity of species and functional divergence among species, rather than species diversity per se, together promote the level of ecosystem multifunctionality with a predictive power of 80%. Our results suggest that primary productivity and decomposition rates, two key ecosystem processes upon which the global carbon cycle depends, are primarily sustained by specialist species, i.e. those that hold specialized combinations of traits and perform particular functions. Contrary to studies focusing on single ecosystem functions and considering species richness as the sole measure of biodiversity, we found a linear and non-saturating effect of the functional structure of communities on ecosystem multifunctionality. Thus, sustaining multiple ecological processes would require focusing on trait dominance and on the degree of community specialization, even in species-rich assemblages.

  7. 3D-Fun: predicting enzyme function from structure.

    PubMed

    von Grotthuss, Marcin; Plewczynski, Dariusz; Vriend, Gert; Rychlewski, Leszek

    2008-07-01

    The 'omics' revolution is causing a flurry of data that all needs to be annotated for it to become useful. Sequences of proteins of unknown function can be annotated with a putative function by comparing them with proteins of known function. This form of annotation is typically performed with BLAST or similar software. Structural genomics is nowadays also bringing us three dimensional structures of proteins with unknown function. We present here software that can be used when sequence comparisons fail to determine the function of a protein with known structure but unknown function. The software, called 3D-Fun, is implemented as a server that runs at several European institutes and is freely available for everybody at all these sites. The 3D-Fun servers accept protein coordinates in the standard PDB format and compare them with all known protein structures by 3D structural superposition using the 3D-Hit software. If structural hits are found with proteins with known function, these are listed together with their function and some vital comparison statistics. This is conceptually very similar in 3D to what BLAST does in 1D. Additionally, the superposition results are displayed using interactive graphics facilities. Currently, the 3D-Fun system only predicts enzyme function but an expanded version with Gene Ontology predictions will be available soon. The server can be accessed at http://3dfun.bioinfo.pl/ or at http://3dfun.cmbi.ru.nl/.

  8. Bayesian Markov Random Field analysis for protein function prediction based on network data.

    PubMed

    Kourmpetis, Yiannis A I; van Dijk, Aalt D J; Bink, Marco C A M; van Ham, Roeland C H J; ter Braak, Cajo J F

    2010-02-24

    Inference of protein functions is one of the most important aims of modern biology. To fully exploit the large volumes of genomic data typically produced in modern-day genomic experiments, automated computational methods for protein function prediction are urgently needed. Established methods use sequence or structure similarity to infer functions but those types of data do not suffice to determine the biological context in which proteins act. Current high-throughput biological experiments produce large amounts of data on the interactions between proteins. Such data can be used to infer interaction networks and to predict the biological process that the protein is involved in. Here, we develop a probabilistic approach for protein function prediction using network data, such as protein-protein interaction measurements. We take a Bayesian approach to an existing Markov Random Field method by performing simultaneous estimation of the model parameters and prediction of protein functions. We use an adaptive Markov Chain Monte Carlo algorithm that leads to more accurate parameter estimates and consequently to improved prediction performance compared to the standard Markov Random Fields method. We tested our method using a high quality S. cereviciae validation network with 1622 proteins against 90 Gene Ontology terms of different levels of abstraction. Compared to three other protein function prediction methods, our approach shows very good prediction performance. Our method can be directly applied to protein-protein interaction or coexpression networks, but also can be extended to use multiple data sources. We apply our method to physical protein interaction data from S. cerevisiae and provide novel predictions, using 340 Gene Ontology terms, for 1170 unannotated proteins and we evaluate the predictions using the available literature.

  9. Childhood bullying involvement predicts low-grade systemic inflammation into adulthood.

    PubMed

    Copeland, William E; Wolke, Dieter; Lereya, Suzet Tanya; Shanahan, Lilly; Worthman, Carol; Costello, E Jane

    2014-05-27

    Bullying is a common childhood experience that involves repeated mistreatment to improve or maintain one's status. Victims display long-term social, psychological, and health consequences, whereas bullies display minimal ill effects. The aim of this study is to test how this adverse social experience is biologically embedded to affect short- or long-term levels of C-reactive protein (CRP), a marker of low-grade systemic inflammation. The prospective population-based Great Smoky Mountains Study (n = 1,420), with up to nine waves of data per subject, was used, covering childhood/adolescence (ages 9-16) and young adulthood (ages 19 and 21). Structured interviews were used to assess bullying involvement and relevant covariates at all childhood/adolescent observations. Blood spots were collected at each observation and assayed for CRP levels. During childhood and adolescence, the number of waves at which the child was bullied predicted increasing levels of CRP. Although CRP levels rose for all participants from childhood into adulthood, being bullied predicted greater increases in CRP levels, whereas bullying others predicted lower increases in CRP compared with those uninvolved in bullying. This pattern was robust, controlling for body mass index, substance use, physical and mental health status, and exposures to other childhood psychosocial adversities. A child's role in bullying may serve as either a risk or a protective factor for adult low-grade inflammation, independent of other factors. Inflammation is a physiological response that mediates the effects of both social adversity and dominance on decreases in health.

  10. Prediction and validation of promoters involved in the abscisic acid response in Physcomitrella patens.

    PubMed

    Timmerhaus, Gerrit; Hanke, Sebastian T; Buchta, Karl; Rensing, Stefan A

    2011-07-01

    Detection of cis-regulatory elements, such as transcription factor binding sites (TFBS), through utilization of ortholog conservation is possible only if genomic data from closely related organisms are available. An alternative approach is the detection of TFBS based on their overrepresentation in promoters of co-regulated genes. However, this approach usually suffers from a high rate of false-positive prediction. Here, we have conducted a case study using promoters of genes known to be strongly induced by the phytohormone abscisic acid (ABA) in the model plant Physcomitrella patens, a moss. Putative TFBS were detected using three de novo motif detection tools in a strict consensus approach. The resulting motifs were validated using data from microarray expression profiling and were able to predict ABA-induced genes with high specificity (90.48%) at mediocre sensitivity (33.33%). In addition, 27 genes predicted to contain ABA-responsive TFBS were validated using real-time PCR. Here, a total of 37% of the genes could be shown to be induced upon ABA treatment, while 70% were found to be regulated by ABA. We conclude that the consensus approach for motif detection using co-regulation information can be used to identify genes that are regulated under a given stimulus. In terms of evolution, we find that the ABA response has apparently been conserved since the first land plants on the level of families involved in transcriptional regulation.

  11. Protein side chain conformation predictions with an MMGBSA energy function.

    PubMed

    Gaillard, Thomas; Panel, Nicolas; Simonson, Thomas

    2016-06-01

    The prediction of protein side chain conformations from backbone coordinates is an important task in structural biology, with applications in structure prediction and protein design. It is a difficult problem due to its combinatorial nature. We study the performance of an "MMGBSA" energy function, implemented in our protein design program Proteus, which combines molecular mechanics terms, a Generalized Born and Surface Area (GBSA) solvent model, with approximations that make the model pairwise additive. Proteus is not a competitor to specialized side chain prediction programs due to its cost, but it allows protein design applications, where side chain prediction is an important step and MMGBSA an effective energy model. We predict the side chain conformations for 18 proteins. The side chains are first predicted individually, with the rest of the protein in its crystallographic conformation. Next, all side chains are predicted together. The contributions of individual energy terms are evaluated and various parameterizations are compared. We find that the GB and SA terms, with an appropriate choice of the dielectric constant and surface energy coefficients, are beneficial for single side chain predictions. For the prediction of all side chains, however, errors due to the pairwise additive approximation overcome the improvement brought by these terms. We also show the crucial contribution of side chain minimization to alleviate the rigid rotamer approximation. Even without GB and SA terms, we obtain accuracies comparable to SCWRL4, a specialized side chain prediction program. In particular, we obtain a better RMSD than SCWRL4 for core residues (at a higher cost), despite our simpler rotamer library. Proteins 2016; 84:803-819. © 2016 Wiley Periodicals, Inc.

  12. Polymorphisms in Genes Involved in EGFR Turnover Are Predictive for Cetuximab Efficacy in Colorectal Cancer.

    PubMed

    Stintzing, Sebastian; Zhang, Wu; Heinemann, Volker; Neureiter, Daniel; Kemmerling, Ralf; Kirchner, Thomas; Jung, Andreas; Folwaczny, Matthias; Yang, Dongyun; Ning, Yan; Sebio, Ana; Stremitzer, Stefan; Sunakawa, Yu; Matsusaka, Satoshi; Yamauchi, Shinichi; Loupakis, Fotios; Cremolini, Chiara; Falcone, Alfredo; Lenz, Heinz-Josef

    2015-10-01

    Transmembrane receptors, such as the EGFR, are regulated by their turnover, which is dependent on the ubiquitin-proteasome system. We tested in two independent study cohorts whether SNPs in genes involved in EGFR turnover predict clinical outcome in cetuximab-treated metastatic colorectal cancer (mCRC) patients. The following SNPs involved in EGFR degradation were analyzed in a screening cohort of 108 patients treated with cetuximab in the chemorefractory setting: c-CBL (rs7105971; rs4938637; rs4938638; rs251837), EPS15 (rs17567; rs7308; rs1065754), NAE1 (rs363169; rs363170; rs363172), SH3KBP1 (rs7051590; rs5955820; rs1017874; rs11795873), SGIP1 (rs604737; rs6570808; rs7526812), UBE2M (rs895364; rs895374), and UBE2L3 (rs5754216). SNPs showing an association with response or survival were analyzed in BRAF and RAS wild-type samples from the FIRE-3 study. One hundred and fifty-three FOLFIRI plus cetuximab-treated patients served as validation set, and 168 patients of the FOLFIRI plus bevacizumab arm served as controls. EGFR FISH was done in 138 samples to test whether significant SNPs were associated with EGFR expression. UBE2M rs895374 was significantly associated with progression-free survival (log-rank P = 0.005; HR, 0.60) within cetuximab-treated patients. No association with bevacizumab-treated patients (n = 168) could be established (P = 0.56; HR, 0.90). rs895374 genotype did not affect EGFR FISH measurements. EGFR recycling is an interesting mechanism of secondary resistance to cetuximab in mCRC. This is the first report suggesting that germline polymorphisms in the degradation process predict efficacy of cetuximab in patients with mCRC. Genes involved in EGFR turnover may be new targets in the treatment of mCRC.

  13. Polymorphisms in genes involved in EGFR-turnover are predictive for cetuximab efficacy in colorectal cancer

    PubMed Central

    Stintzing, Sebastian; Zhang, Wu; Heinemann, Volker; Neureiter, Daniel; Kemmerling, Ralf; Kirchner, Thomas; Jung, Andreas; Folwaczny, Matthias; Yang, Dongyun; Ning, Yan; Sebio, Ana; Stremitzer, Stefan; Sunakawa, Yu; Matsusaka, Satoshi; Yamauchi, Shinichi; Loupakis, Fotios; Cremolini, Chiara; Falcone, Alfredo; Lenz, Heinz-Josef

    2015-01-01

    Transmembrane receptors such as the epidermal growth factor receptor (EGFR) are regulated by their turnover, which is dependent on the ubiquitin-proteasome-system (UPS). We tested in two independent study cohorts whether single nucleotide polymorphisms (SNPs) in genes involved in EGFR turnover predict clinical outcome in cetuximab treated metastatic colorectal cancer patients. The following SNPs involved in EGFR degradation were analyzed in a screening cohort of 108 patients treated with cetuximab in the chemorefractory setting: c-CBL (rs7105971; rs4938637; rs4938638; rs251837), EPS15 (rs17567; rs7308; rs1065754), NAE1 (rs363169; rs363170; rs363172); SH3KBP1 (rs7051590; rs5955820; rs1017874; rs11795873); SGIP1 (rs604737; rs6570808; rs7526812); UBE2M (rs895364; rs895374); UBE2L3 (rs5754216). SNPs showing an association with response or survival were analyzed in BRAF and RAS wild-type samples from the FIRE-3 study. 153 FOLFIRI plus cetuximab treated patients served as validation set, 168 patients of the FOLFIRI plus bevacizumab arm served as controls. EGFR FISH was done in 138 samples to test whether significant SNPs were associated with EGFR expression. UBE2M rs895374 was significantly associated with PFS (logrank-p = 0.005; HR 0.60) within cetuximab treated patients. No association with bevacizumab treated patients (n=168) could be established (p= 0.56, HR: 0.90). rs895374 genotype did not affect EGFR FISH measurements. EGFR recycling is an interesting mechanism of secondary resistance to cetuximab in mCRC. This is the first report suggesting that germline polymorphisms in the degradation process predict efficacy of cetuximab in patients with mCRC. Genes involved in EGFR turnover may be new targets in the treatment of mCRC. PMID:26206335

  14. Predicting early clinical function after hip or knee arthroplasty

    PubMed Central

    Poitras, S.; Wood, K. S.; Savard, J.; Dervin, G. F.; Beaule, P. E.

    2015-01-01

    Objectives Patient function after arthroplasty should ideally quickly improve. It is not known which peri-operative function assessments predict length of stay (LOS) and short-term functional recovery. The objective of this study was to identify peri-operative functions assessments predictive of hospital LOS and short-term function after hospital discharge in hip or knee arthroplasty patients. Methods In total, 108 patients were assessed peri-operatively with the timed-up-and-go (TUG), Iowa level of assistance scale, post-operative quality of recovery scale, readiness for hospital discharge scale, and the Western Ontario and McMaster Osteoarthritis Index (WOMAC). The older Americans resources and services activities of daily living (ADL) questionnaire (OARS) was used to assess function two weeks after discharge. Results Following multiple regressions, the pre- and post-operative day two TUG was significantly associated with LOS and OARS score, while the pre-operative WOMAC function subscale was associated with the OARS score. Pre-operatively, a cut-off TUG time of 11.7 seconds for LOS and 10.3 seconds for short-term recovery yielded the highest sensitivity and specificity, while a cut-off WOMAC function score of 48.5/100 yielded the highest sensitivity and specificity. Post-operatively, a cut-off day two TUG time of 31.5 seconds for LOS and 30.9 seconds for short-term function yielded the highest sensitivity and specificity. Conclusions The pre- and post-operative day two TUG can indicate hospital LOS and short-term functional capacities, while the pre-operative WOMAC function subscale can indicate short-term functional capacities. Cite this article: Bone Joint Res 2015;4:145–151. PMID:26336897

  15. The Prediction of Key Cytoskeleton Components Involved in Glomerular Diseases Based on a Protein-Protein Interaction Network

    PubMed Central

    Ju, Wenjun; Li, Xuejuan; Li, Shao; Ding, Jie

    2016-01-01

    Maintenance of the physiological morphologies of different types of cells and tissues is essential for the normal functioning of each system in the human body. Dynamic variations in cell and tissue morphologies depend on accurate adjustments of the cytoskeletal system. The cytoskeletal system in the glomerulus plays a key role in the normal process of kidney filtration. To enhance the understanding of the possible roles of the cytoskeleton in glomerular diseases, we constructed the Glomerular Cytoskeleton Network (GCNet), which shows the protein-protein interaction network in the glomerulus, and identified several possible key cytoskeletal components involved in glomerular diseases. In this study, genes/proteins annotated to the cytoskeleton were detected by Gene Ontology analysis, and glomerulus-enriched genes were selected from nine available glomerular expression datasets. Then, the GCNet was generated by combining these two sets of information. To predict the possible key cytoskeleton components in glomerular diseases, we then examined the common regulation of the genes in GCNet in the context of five glomerular diseases based on their transcriptomic data. As a result, twenty-one cytoskeleton components as potential candidate were highlighted for consistently down- or up-regulating in all five glomerular diseases. And then, these candidates were examined in relation to existing known glomerular diseases and genes to determine their possible functions and interactions. In addition, the mRNA levels of these candidates were also validated in a puromycin aminonucleoside(PAN) induced rat nephropathy model and were also matched with existing Diabetic Nephropathy (DN) transcriptomic data. As a result, there are 15 of 21 candidates in PAN induced nephropathy model were consistent with our predication and also 12 of 21 candidates were matched with differentially expressed genes in the DN transcriptomic data. By providing a novel interaction network and prediction, GCNet

  16. Protein function prediction using guilty by association from interaction networks.

    PubMed

    Piovesan, Damiano; Giollo, Manuel; Ferrari, Carlo; Tosatto, Silvio C E

    2015-12-01

    Protein function prediction from sequence using the Gene Ontology (GO) classification is useful in many biological problems. It has recently attracted increasing interest, thanks in part to the Critical Assessment of Function Annotation (CAFA) challenge. In this paper, we introduce Guilty by Association on STRING (GAS), a tool to predict protein function exploiting protein-protein interaction networks without sequence similarity. The assumption is that whenever a protein interacts with other proteins, it is part of the same biological process and located in the same cellular compartment. GAS retrieves interaction partners of a query protein from the STRING database and measures enrichment of the associated functional annotations to generate a sorted list of putative functions. A performance evaluation based on CAFA metrics and a fair comparison with optimized BLAST similarity searches is provided. The consensus of GAS and BLAST is shown to improve overall performance. The PPI approach is shown to outperform similarity searches for biological process and cellular compartment GO predictions. Moreover, an analysis of the best practices to exploit protein-protein interaction networks is also provided.

  17. Disorganized symptoms and executive functioning predict impaired social functioning in subjects at risk for psychosis.

    PubMed

    Eslami, Ali; Jahshan, Carol; Cadenhead, Kristin S

    2011-01-01

    Predictors of social functioning deficits were assessed in 22 individuals "at risk" for psychosis. Disorganized symptoms and executive functioning predicted social functioning at follow-up. Early intervention efforts that focus on social and cognitive skills are indicated in this vulnerable population.

  18. Pattern recognition methods for protein functional site prediction.

    PubMed

    Yang, Zheng Rong; Wang, Lipo; Young, Natasha; Trudgian, Dave; Chou, Kuo-Chen

    2005-10-01

    Protein functional site prediction is closely related to drug design, hence to public health. In order to save the cost and the time spent on identifying the functional sites in sequenced proteins in biology laboratory, computer programs have been widely used for decades. Many of them are implemented using the state-of-the-art pattern recognition algorithms, including decision trees, neural networks and support vector machines. Although the success of this effort has been obvious, advanced and new algorithms are still under development for addressing some difficult issues. This review will go through the major stages in developing pattern recognition algorithms for protein functional site prediction and outline the future research directions in this important area. PMID:16248799

  19. Predicting plants -modeling traits as a function of environment

    NASA Astrophysics Data System (ADS)

    Franklin, Oskar

    2016-04-01

    A central problem in understanding and modeling vegetation dynamics is how to represent the variation in plant properties and function across different environments. Addressing this problem there is a strong trend towards trait-based approaches, where vegetation properties are functions of the distributions of functional traits rather than of species. Recently there has been enormous progress in in quantifying trait variability and its drivers and effects (Van Bodegom et al. 2012; Adier et al. 2014; Kunstler et al. 2015) based on wide ranging datasets on a small number of easily measured traits, such as specific leaf area (SLA), wood density and maximum plant height. However, plant function depends on many other traits and while the commonly measured trait data are valuable, they are not sufficient for driving predictive and mechanistic models of vegetation dynamics -especially under novel climate or management conditions. For this purpose we need a model to predict functional traits, also those not easily measured, and how they depend on the plants' environment. Here I present such a mechanistic model based on fitness concepts and focused on traits related to water and light limitation of trees, including: wood density, drought response, allocation to defense, and leaf traits. The model is able to predict observed patterns of variability in these traits in relation to growth and mortality, and their responses to a gradient of water limitation. The results demonstrate that it is possible to mechanistically predict plant traits as a function of the environment based on an eco-physiological model of plant fitness. References Adier, P.B., Salguero-Gómez, R., Compagnoni, A., Hsu, J.S., Ray-Mukherjee, J., Mbeau-Ache, C. et al. (2014). Functional traits explain variation in plant lifehistory strategies. Proc. Natl. Acad. Sci. U. S. A., 111, 740-745. Kunstler, G., Falster, D., Coomes, D.A., Hui, F., Kooyman, R.M., Laughlin, D.C. et al. (2015). Plant functional traits

  20. A Prediction Model for Functional Outcomes in Spinal Cord Disorder Patients Using Gaussian Process Regression.

    PubMed

    Lee, Sunghoon Ivan; Mortazavi, Bobak; Hoffman, Haydn A; Lu, Derek S; Li, Charles; Paak, Brian H; Garst, Jordan H; Razaghy, Mehrdad; Espinal, Marie; Park, Eunjeong; Lu, Daniel C; Sarrafzadeh, Majid

    2016-01-01

    Predicting the functional outcomes of spinal cord disorder patients after medical treatments, such as a surgical operation, has always been of great interest. Accurate posttreatment prediction is especially beneficial for clinicians, patients, care givers, and therapists. This paper introduces a prediction method for postoperative functional outcomes by a novel use of Gaussian process regression. The proposed method specifically considers the restricted value range of the target variables by modeling the Gaussian process based on a truncated Normal distribution, which significantly improves the prediction results. The prediction has been made in assistance with target tracking examinations using a highly portable and inexpensive handgrip device, which greatly contributes to the prediction performance. The proposed method has been validated through a dataset collected from a clinical cohort pilot involving 15 patients with cervical spinal cord disorder. The results show that the proposed method can accurately predict postoperative functional outcomes, Oswestry disability index and target tracking scores, based on the patient's preoperative information with a mean absolute error of 0.079 and 0.014 (out of 1.0), respectively. PMID:25423659

  1. Hallucinogen use predicts reduced recidivism among substance-involved offenders under community corrections supervision.

    PubMed

    Hendricks, Peter S; Clark, C Brendan; Johnson, Matthew W; Fontaine, Kevin R; Cropsey, Karen L

    2014-01-01

    Hallucinogen-based interventions may benefit substance use populations, but contemporary data informing the impact of hallucinogens on addictive behavior are scarce. Given that many individuals in the criminal justice system engage in problematic patterns of substance use, hallucinogen treatments also may benefit criminal justice populations. However, the relationship between hallucinogen use and criminal recidivism is unknown. In this longitudinal study, we examined the relationship between naturalistic hallucinogen use and recidivism among individuals under community corrections supervision with a history of substance involvement (n=25,622). We found that hallucinogen use predicted a reduced likelihood of supervision failure (e.g. noncompliance with legal requirements including alcohol and other drug use) while controlling for an array of potential confounding factors (odds ratio (OR)=0.60 (0.46, 0.79)). Our results suggest that hallucinogens may promote alcohol and other drug abstinence and prosocial behavior in a population with high rates of recidivism. PMID:24399338

  2. Hallucinogen use predicts reduced recidivism among substance-involved offenders under community corrections supervision.

    PubMed

    Hendricks, Peter S; Clark, C Brendan; Johnson, Matthew W; Fontaine, Kevin R; Cropsey, Karen L

    2014-01-01

    Hallucinogen-based interventions may benefit substance use populations, but contemporary data informing the impact of hallucinogens on addictive behavior are scarce. Given that many individuals in the criminal justice system engage in problematic patterns of substance use, hallucinogen treatments also may benefit criminal justice populations. However, the relationship between hallucinogen use and criminal recidivism is unknown. In this longitudinal study, we examined the relationship between naturalistic hallucinogen use and recidivism among individuals under community corrections supervision with a history of substance involvement (n=25,622). We found that hallucinogen use predicted a reduced likelihood of supervision failure (e.g. noncompliance with legal requirements including alcohol and other drug use) while controlling for an array of potential confounding factors (odds ratio (OR)=0.60 (0.46, 0.79)). Our results suggest that hallucinogens may promote alcohol and other drug abstinence and prosocial behavior in a population with high rates of recidivism.

  3. Identification and prediction of abiotic stress responsive transcription factors involved in abiotic stress signaling in soybean.

    PubMed

    Tran, Lam-Son Phan; Mochida, Keiichi

    2010-03-01

    Abiotic stresses such as extreme temperature, drought, high salinity, cold and waterlogging often result in significant losses to the yields of economically important crops such as soybean (Glycine max L.). Transcription factors (TFs) which bind to DNA through specific cis-regulatory sequences either activate or repress gene transcription have been reported to act as control switches in stress signaling. Recent completion of the soybean genomic sequence has open wide opportunities for large-scale identification and annotations of regulatory TFs in soybean for functional studies. Within the soybean genome, we identified 5,035 TF models which grouped into 61 families. Detailed annotations of soybean TF genes can be accessed at SoybeanTFDB (soybeantfdb.psc.riken.jp). Moreover, we have reported a new idea of high throughput prediction and selection of abiotic stress responsive TFs based on the existence of known stress responsive cis-element(s) located in the promoter regions of respective TFs and GO annotations. We, therefore, have provided a basic platform for the genome-wide analysis of regulatory mechanisms underlying abiotic stress responses and a reliable tool for prediction and selection of stress responsive TFs for further functional studies and genetic engineering.

  4. Towards computational prediction of microRNA function and activity

    PubMed Central

    Ulitsky, Igor; Laurent, Louise C.; Shamir, Ron

    2010-01-01

    While it has been established that microRNAs (miRNAs) play key roles throughout development and are dysregulated in many human pathologies, the specific processes and pathways regulated by individual miRNAs are mostly unknown. Here, we use computational target predictions in order to automatically infer the processes affected by human miRNAs. Our approach improves upon standard statistical tools by addressing specific characteristics of miRNA regulation. Our analysis is based on a novel compendium of experimentally verified miRNA-pathway and miRNA-process associations that we constructed, which can be a useful resource by itself. Our method also predicts novel miRNA-regulated pathways, refines the annotation of miRNAs for which only crude functions are known, and assigns differential functions to miRNAs with closely related sequences. Applying our approach to groups of co-expressed genes allows us to identify miRNAs and genomic miRNA clusters with functional importance in specific stages of early human development. A full list of the predicted mRNA functions is available at http://acgt.cs.tau.ac.il/fame/. PMID:20576699

  5. Gender as a Moderator in Predicting Re-arrest Among Treated Drug-Involved Offenders

    PubMed Central

    Yang, Y.; Knight, K.; Joe, G.W.; Rowan, G.A.; Lehman, W. E.K.; Flynn, P.M.

    2016-01-01

    The primary aim of the current study is to explore gender differences on the relationships of pre-treatment risk factors (i.e., substance use severity and criminal history) and psychosocial functioning (i.e., decision making, risk taking, self-esteem, social support, and peer support) with time to re-arrest following termination from prison. With gender as a moderator variable, survival analysis was used to model time to re-arrest in terms of pre-treatment risk factors and psychosocial functioning. The sample consisted of 697 participants (384 males and 313 females) who were admitted to four prison-based substance abuse treatment programs. Female inmates experienced a longer time to re-arrest than male inmates. Better decision making and more peer support were associated with lower levels of re-arrest for males. Males with higher self-esteem were more likely to be re-arrested than their counterparts. Females with more self-reported criminal involvements had a higher rate of re-arrest than those with less criminal involvement. In contrast to males, females with relatively high self-reported self-esteem had a lower rate of re-arrest than their counterparts. Clinical implications include the importance of enhancing decision-making ability and peer support for males and self-esteem for females. PMID:25216813

  6. Identifying functional sites based on prediction of charged group behavior.

    PubMed

    Ondrechen, Mary Jo

    2004-09-01

    This protocol describes the implementation and interpretation of THEMATICS, a simple computational predictor of functional information for proteins from the three-dimensional structure. This method is based on the computation of the electrical potential function for the protein and the calculation of the predicted titration curves for each of the titratable groups in the protein. While most of the titratable residues in a protein have predicted titration behavior that fits the Henderson-Hasselbalch equation, the ionizable residues in the active site generally deviate dramatically from the typical behavior. From the calculated titration curves, one identifies those residues that deviate significantly from Henderson-Hasselbalch behavior. A cluster of two or more of such deviant titratable residues in physical proximity is a reliable predictor of active-site location.

  7. Plant functional traits predict green roof ecosystem services.

    PubMed

    Lundholm, Jeremy; Tran, Stephanie; Gebert, Luke

    2015-02-17

    Plants make important contributions to the services provided by engineered ecosystems such as green roofs. Ecologists use plant species traits as generic predictors of geographical distribution, interactions with other species, and ecosystem functioning, but this approach has been little used to optimize engineered ecosystems. Four plant species traits (height, individual leaf area, specific leaf area, and leaf dry matter content) were evaluated as predictors of ecosystem properties and services in a modular green roof system planted with 21 species. Six indicators of ecosystem services, incorporating thermal, hydrological, water quality, and carbon sequestration functions, were predicted by the four plant traits directly or indirectly via their effects on aggregate ecosystem properties, including canopy density and albedo. Species average height and specific leaf area were the most useful traits, predicting several services via effects on canopy density or growth rate. This study demonstrates that easily measured plant traits can be used to select species to optimize green roof performance across multiple key services.

  8. Plant functional traits predict green roof ecosystem services.

    PubMed

    Lundholm, Jeremy; Tran, Stephanie; Gebert, Luke

    2015-02-17

    Plants make important contributions to the services provided by engineered ecosystems such as green roofs. Ecologists use plant species traits as generic predictors of geographical distribution, interactions with other species, and ecosystem functioning, but this approach has been little used to optimize engineered ecosystems. Four plant species traits (height, individual leaf area, specific leaf area, and leaf dry matter content) were evaluated as predictors of ecosystem properties and services in a modular green roof system planted with 21 species. Six indicators of ecosystem services, incorporating thermal, hydrological, water quality, and carbon sequestration functions, were predicted by the four plant traits directly or indirectly via their effects on aggregate ecosystem properties, including canopy density and albedo. Species average height and specific leaf area were the most useful traits, predicting several services via effects on canopy density or growth rate. This study demonstrates that easily measured plant traits can be used to select species to optimize green roof performance across multiple key services. PMID:25599106

  9. Prediction of protein complexes using empirical free energy functions.

    PubMed Central

    Weng, Z.; Vajda, S.; Delisi, C.

    1996-01-01

    A long sought goal in the physical chemistry of macromolecular structure, and one directly relevant to understanding the molecular basis of biological recognition, is predicting the geometry of bimolecular complexes from the geometries of their free monomers. Even when the monomers remain relatively unchanged by complex formation, prediction has been difficult because the free energies of alternative conformations of the complex have been difficult to evaluate quickly and accurately. This has forced the use of incomplete target functions, which typically do no better than to provide tens of possible complexes with no way of choosing between them. Here we present a general framework for empirical free energy evaluation and report calculations, based on a relatively complete and easily executable free energy function, that indicate that the structures of complexes can be predicted accurately from the structures of monomers, including close sequence homologues. The calculations also suggest that the binding free energies themselves may be predicted with reasonable accuracy. The method is compared to an alternative formulation that has also been applied recently to the same data set. Both approaches promise to open new opportunities in macromolecular design and specificity modification. PMID:8845751

  10. Expression and functional studies of genes involved in transport and metabolism of glycerol in Pachysolen tannophilus

    PubMed Central

    2013-01-01

    Background Pachysolen tannophilus is a non-conventional yeast, which can metabolize many of the carbon sources found in low cost feedstocks including glycerol and xylose. The xylose utilisation pathways have been extensively studied in this organism. However, the mechanism behind glycerol metabolism is poorly understood. Using the recently published genome sequence of P. tannophilus CBS4044, we searched for genes with functions in glycerol transport and metabolism by performing a BLAST search using the sequences of the relevant genes from Saccharomyces cerevisiae as queries. Results Quantitative real-time PCR was performed to unveil the expression patterns of these genes during growth of P. tannophilus on glycerol and glucose as sole carbon sources. The genes predicted to be involved in glycerol transport in P. tannophilus were expressed in S. cerevisiae to validate their function. The S. cerevisiae strains transformed with heterologous genes showed improved growth and glycerol consumption rates with glycerol as the sole carbon source. Conclusions P. tannophilus has characteristics relevant for a microbial cell factory to be applied in a biorefinery setting, i.e. its ability to utilise the carbon sources such as xylose and glycerol. However, the strain is not currently amenable to genetic modification and transformation. Heterologous expression of the glycerol transporters from P. tannophilus, which has a relatively high growth rate on glycerol, could be used as an approach for improving the efficiency of glycerol assimilation in other well characterized and applied cell factories such as S. cerevisiae. PMID:23514356

  11. High Precision Prediction of Functional Sites in Protein Structures

    PubMed Central

    Buturovic, Ljubomir; Wong, Mike; Tang, Grace W.; Altman, Russ B.; Petkovic, Dragutin

    2014-01-01

    We address the problem of assigning biological function to solved protein structures. Computational tools play a critical role in identifying potential active sites and informing screening decisions for further lab analysis. A critical parameter in the practical application of computational methods is the precision, or positive predictive value. Precision measures the level of confidence the user should have in a particular computed functional assignment. Low precision annotations lead to futile laboratory investigations and waste scarce research resources. In this paper we describe an advanced version of the protein function annotation system FEATURE, which achieved 99% precision and average recall of 95% across 20 representative functional sites. The system uses a Support Vector Machine classifier operating on the microenvironment of physicochemical features around an amino acid. We also compared performance of our method with state-of-the-art sequence-level annotator Pfam in terms of precision, recall and localization. To our knowledge, no other functional site annotator has been rigorously evaluated against these key criteria. The software and predictive models are incorporated into the WebFEATURE service at http://feature.stanford.edu/wf4.0-beta. PMID:24632601

  12. Predicting functional decline in behavioural variant frontotemporal dementia.

    PubMed

    Josephs, Keith A; Whitwell, Jennifer L; Weigand, Stephen D; Senjem, Matthew L; Boeve, Bradley F; Knopman, David S; Smith, Glenn E; Ivnik, Robert J; Jack, Clifford R; Petersen, Ronald C

    2011-02-01

    Behavioural variant frontotemporal dementia is characterized by a change in comportment. It is associated with considerable functional decline over the course of the illness albeit with sometimes dramatic variability among patients. It is unknown whether any baseline features, or combination of features, could predict rate of functional decline in behavioural variant frontotemporal dementia. The aim of this study was to investigate the effects of different baseline clinical, neuropsychological, neuropsychiatric, genetic and anatomic predictors on the rate of functional decline as measured by the Clinical Dementia Rating Sum of Boxes scale. We identified 86 subjects with behavioural variant frontotemporal dementia that had multiple serial Clinical Dementia Rating Sum of Boxes assessments (mean 4, range 2-18). Atlas-based parcellation was used to generate volumes for specific regions of interest at baseline. Volumes were utilized to classify subjects into different anatomical subtypes using the advanced statistical technique of cluster analysis and were assessed as predictor variables. Composite scores were generated for the neuropsychological domains of executive, language, memory and visuospatial function. Behaviours from the brief questionnaire form of the Neuropsychiatric Inventory were assessed. Linear mixed-effects regression modelling was used to determine which baseline features predict rate of future functional decline. Rates of functional decline differed across the anatomical subtypes of behavioural variant frontotemporal dementia, with faster rates observed in the frontal dominant and frontotemporal subtypes. In addition, subjects with poorer performance on neuropsychological tests of executive, language and visuospatial function, less disinhibition, agitation/aggression and night-time behaviours at presentation, and smaller medial, lateral and orbital frontal lobe volumes showed faster rates of decline. In many instances, the effect of the predictor

  13. Predictions of Geospace Drivers By the Probability Distribution Function Model

    NASA Astrophysics Data System (ADS)

    Bussy-Virat, C.; Ridley, A. J.

    2014-12-01

    Geospace drivers like the solar wind speed, interplanetary magnetic field (IMF), and solar irradiance have a strong influence on the density of the thermosphere and the near-Earth space environment. This has important consequences on the drag on satellites that are in low orbit and therefore on their position. One of the basic problems with space weather prediction is that these drivers can only be measured about one hour before they affect the environment. In order to allow for adequate planning for some members of the commercial, military, or civilian communities, reliable long-term space weather forecasts are needed. The study presents a model for predicting geospace drivers up to five days in advance. This model uses the same general technique to predict the solar wind speed, the three components of the IMF, and the solar irradiance F10.7. For instance, it uses Probability distribution functions (PDFs) to relate the current solar wind speed and slope to the future solar wind speed, as well as the solar wind speed to the solar wind speed one solar rotation in the future. The PDF Model has been compared to other models for predictions of the speed. It has been found that it is better than using the current solar wind speed (i.e., persistence), and better than the Wang-Sheeley-Arge Model for prediction horizons of 24 hours. Once the drivers are predicted, and the uncertainty on the drivers are specified, the density in the thermosphere can be derived using various models of the thermosphere, such as the Global Ionosphere Thermosphere Model. In addition, uncertainties on the densities can be estimated, based on ensembles of simulations. From the density and uncertainty predictions, satellite positions, as well as the uncertainty in those positions can be estimated. These can assist operators in determining the probability of collisions between objects in low Earth orbit.

  14. Density functional theory predictions of isotropic hyperfine coupling constants.

    PubMed

    Hermosilla, L; Calle, P; García de la Vega, J M; Sieiro, C

    2005-02-17

    The reliability of density functional theory (DFT) in the determination of the isotropic hyperfine coupling constants (hfccs) of the ground electronic states of organic and inorganic radicals is examined. Predictions using several DFT methods and 6-31G, TZVP, EPR-III and cc-pVQZ basis sets are made and compared to experimental values. The set of 75 radicals here studied was selected using a wide range of criteria. The systems studied are neutral, cationic, anionic; doublet, triplet, quartet; localized, and conjugated radicals, containing 1H, 9Be, 11B, 13C, 14N, 17O, 19F, 23Na, 25Mg, 27Al, 29Si, 31P, 33S, and 35Cl nuclei. The considered radicals provide 241 theoretical hfcc values, which are compared with 174 available experimental ones. The geometries of the studied systems are obtained by theoretical optimization using the same functional and basis set with which the hfccs were calculated. Regression analysis is used as a basic and appropriate methodology for this kind of comparative study. From this analysis, we conclude that DFT predictions of the hfccs are reliable for B3LYP/TZVP and B3LYP/EPR-III combinations. Both functional/basis set scheme are the more useful theoretical tools for predicting hfccs if compared to other much more expensive methods.

  15. Predicting taxonomic and functional structure of microbial communities in acid mine drainage

    PubMed Central

    Kuang, Jialiang; Huang, Linan; He, Zhili; Chen, Linxing; Hua, Zhengshuang; Jia, Pu; Li, Shengjin; Liu, Jun; Li, Jintian; Zhou, Jizhong; Shu, Wensheng

    2016-01-01

    Predicting the dynamics of community composition and functional attributes responding to environmental changes is an essential goal in community ecology but remains a major challenge, particularly in microbial ecology. Here, by targeting a model system with low species richness, we explore the spatial distribution of taxonomic and functional structure of 40 acid mine drainage (AMD) microbial communities across Southeast China profiled by 16S ribosomal RNA pyrosequencing and a comprehensive microarray (GeoChip). Similar environmentally dependent patterns of dominant microbial lineages and key functional genes were observed regardless of the large-scale geographical isolation. Functional and phylogenetic β-diversities were significantly correlated, whereas functional metabolic potentials were strongly influenced by environmental conditions and community taxonomic structure. Using advanced modeling approaches based on artificial neural networks, we successfully predicted the taxonomic and functional dynamics with significantly higher prediction accuracies of metabolic potentials (average Bray–Curtis similarity 87.8) as compared with relative microbial abundances (similarity 66.8), implying that natural AMD microbial assemblages may be better predicted at the functional genes level rather than at taxonomic level. Furthermore, relative metabolic potentials of genes involved in many key ecological functions (for example, nitrogen and phosphate utilization, metals resistance and stress response) were extrapolated to increase under more acidic and metal-rich conditions, indicating a critical strategy of stress adaptation in these extraordinary communities. Collectively, our findings indicate that natural selection rather than geographic distance has a more crucial role in shaping the taxonomic and functional patterns of AMD microbial community that readily predicted by modeling methods and suggest that the model-based approach is essential to better understand natural

  16. Remote sensing of vegetation ecophysiological function for improved hydrologic prediction

    NASA Astrophysics Data System (ADS)

    Drewry, D.; Ruddell, B. L.

    2014-12-01

    Land surface hydrology in vegetated landscapes is strongly controlled by ecophysiological function. The coupling between photosynthesis, stomatal dynamics and leaf energy balance fundamentally links the hydrologic and carbon cycles, and provides a basis for examining the utility of observations of functional plant traits for hydrologic prediction. Here we explore the potential of solar induced fluorescence (SIF) and thermal infrared (TIR) remote sensing observations to improve the accuracy and reduce the uncertainty in hydrologic prediction. While SIF represents an emission of radiation associated with photosynthesis, TIR provides information on foliage temperature and is related to stomatal function and water stress. A set of remote observing system simulation experiments are conducted to quantify the value of remotely sensed observations of SIF and TIR when assimilated into a detailed vegetation biophysical model. The MLCan model discretizes a dense plant canopy to resolve vertical variation in photosynthesis, water vapor and energy exchange. Here we present extensions to MLCan that allow for direct computation of the canopy emission of both SIF and TIR. The detailed representation of the physical environment and biological functioning of structurally complex canopies makes MLCan an ideal simulation tool for exploring the impact of these two unique, and potentially synergistic observables. This work specifically addresses remote sensing capabilities on both recently launched (OCO-2) and near-term (ECOSTRESS) satellite platforms. We contrast the information gained through the assimilation of SIF and TIR observations to that of the assimilation of data related to physical states such as soil moisture and leaf area index.

  17. Spinal meningiomas: clinicoradiological factors predicting recurrence and functional outcome.

    PubMed

    Maiti, Tanmoy K; Bir, Shyamal C; Patra, Devi Prasad; Kalakoti, Piyush; Guthikonda, Bharat; Nanda, Anil

    2016-08-01

    OBJECTIVE Spinal meningiomas are benign tumors with a wide spectrum of clinical and radiological features at presentation. The authors analyzed multiple clinicoradiological factors to predict recurrence and functional outcome in a cohort with a mean follow-up of more than 4 years. The authors also discuss the results of clinical studies regarding spinal meningiomas in the last 15 years. METHODS The authors retrospectively reviewed the clinical and radiological details of patients who underwent surgery for spinal tumors between 2001 and 2015 that were histopathologically confirmed as meningiomas. Demographic parameters, such as age, sex, race, and association with neurofibromatosis Type 2, were considered. Radiological parameters, such as tumor size, signal changes of spinal cord, spinal level, number of levels, location of tumor attachment, shape of tumor, and presence of dural tail/calcification, were noted. These factors were analyzed to predict recurrence and functional outcome. Furthermore, a pooled analysis was performed from 13 reports of spinal meningiomas in the last 15 years. RESULTS A total of 38 patients were included in this study. Male sex and tumors with radiological evidence of a dural tail were associated with an increased risk of recurrence at a mean follow-up of 51.2 months. Ventral or ventrolateral location, large tumors, T2 cord signal changes, and poor preoperative functional status were associated with poor functional outcome at 1-year follow-up. CONCLUSIONS Spine surgeons must be aware of the natural history and risk factors of spinal meningiomas to establish a prognosis for their patients.

  18. Multitrophic functional diversity predicts ecosystem functioning in experimental assemblages of estuarine consumers.

    PubMed

    Lefcheck, Jonathan S; Duffy, J Emmett

    2015-11-01

    The use of functional traits to explain how biodiversity affects ecosystem functioning has attracted intense interest, yet few studies have a priori altered functional diversity, especially in multitrophic communities. Here, we manipulated multivariate functional diversity of estuarine grazers and predators within multiple levels of species richness to test how species richness and functional diversity predicted ecosystem functioning in a multitrophic food web. Community functional diversity was a better predictor than species richness for the majority of ecosystem properties, based on generalized linear mixed-effects models. Combining inferences from eight traits into a single multivariate index increased prediction accuracy of these models relative to any individual trait. Structural equation modeling revealed that functional diversity of both grazers and predators was important in driving final biomass within trophic levels, with stronger effects observed for predators. We also show that different species drove different ecosystem responses, with evidence for both sampling effects and complementarity. Our study extends experimental investigations of functional trait diversity to a multilevel food web, and demonstrates that functional diversity can be more accurate and effective than species richness in predicting community biomass in a food web context. PMID:27070016

  19. Models for predicting objective function weights in prostate cancer IMRT

    SciTech Connect

    Boutilier, Justin J. Lee, Taewoo; Craig, Tim; Sharpe, Michael B.; Chan, Timothy C. Y.

    2015-04-15

    Purpose: To develop and evaluate the clinical applicability of advanced machine learning models that simultaneously predict multiple optimization objective function weights from patient geometry for intensity-modulated radiation therapy of prostate cancer. Methods: A previously developed inverse optimization method was applied retrospectively to determine optimal objective function weights for 315 treated patients. The authors used an overlap volume ratio (OV) of bladder and rectum for different PTV expansions and overlap volume histogram slopes (OVSR and OVSB for the rectum and bladder, respectively) as explanatory variables that quantify patient geometry. Using the optimal weights as ground truth, the authors trained and applied three prediction models: logistic regression (LR), multinomial logistic regression (MLR), and weighted K-nearest neighbor (KNN). The population average of the optimal objective function weights was also calculated. Results: The OV at 0.4 cm and OVSR at 0.1 cm features were found to be the most predictive of the weights. The authors observed comparable performance (i.e., no statistically significant difference) between LR, MLR, and KNN methodologies, with LR appearing to perform the best. All three machine learning models outperformed the population average by a statistically significant amount over a range of clinical metrics including bladder/rectum V53Gy, bladder/rectum V70Gy, and dose to the bladder, rectum, CTV, and PTV. When comparing the weights directly, the LR model predicted bladder and rectum weights that had, on average, a 73% and 74% relative improvement over the population average weights, respectively. The treatment plans resulting from the LR weights had, on average, a rectum V70Gy that was 35% closer to the clinical plan and a bladder V70Gy that was 29% closer, compared to the population average weights. Similar results were observed for all other clinical metrics. Conclusions: The authors demonstrated that the KNN and MLR

  20. Intelligence, creativity, and cognitive control: The common and differential involvement of executive functions in intelligence and creativity

    PubMed Central

    Benedek, Mathias; Jauk, Emanuel; Sommer, Markus; Arendasy, Martin; Neubauer, Aljoscha C.

    2014-01-01

    Intelligence and creativity are known to be correlated constructs suggesting that they share a common cognitive basis. The present study assessed three specific executive abilities – updating, shifting, and inhibition – and examined their common and differential relations to fluid intelligence and creativity (i.e., divergent thinking ability) within a latent variable model approach. Additionally, it was tested whether the correlation of fluid intelligence and creativity can be explained by a common executive involvement. As expected, fluid intelligence was strongly predicted by updating, but not by shifting or inhibition. Creativity was predicted by updating and inhibition, but not by shifting. Moreover, updating (and the personality factor openness) was found to explain a relevant part of the shared variance between intelligence and creativity. The findings provide direct support for the executive involvement in creative thought and shed further light on the functional relationship between intelligence and creativity. PMID:25278640

  1. Intelligence, creativity, and cognitive control: The common and differential involvement of executive functions in intelligence and creativity.

    PubMed

    Benedek, Mathias; Jauk, Emanuel; Sommer, Markus; Arendasy, Martin; Neubauer, Aljoscha C

    2014-09-01

    Intelligence and creativity are known to be correlated constructs suggesting that they share a common cognitive basis. The present study assessed three specific executive abilities - updating, shifting, and inhibition - and examined their common and differential relations to fluid intelligence and creativity (i.e., divergent thinking ability) within a latent variable model approach. Additionally, it was tested whether the correlation of fluid intelligence and creativity can be explained by a common executive involvement. As expected, fluid intelligence was strongly predicted by updating, but not by shifting or inhibition. Creativity was predicted by updating and inhibition, but not by shifting. Moreover, updating (and the personality factor openness) was found to explain a relevant part of the shared variance between intelligence and creativity. The findings provide direct support for the executive involvement in creative thought and shed further light on the functional relationship between intelligence and creativity.

  2. Multiscale prediction of patient-specific platelet function under flow.

    PubMed

    Flamm, Matthew H; Colace, Thomas V; Chatterjee, Manash S; Jing, Huiyan; Zhou, Songtao; Jaeger, Daniel; Brass, Lawrence F; Sinno, Talid; Diamond, Scott L

    2012-07-01

    During thrombotic or hemostatic episodes, platelets bind collagen and release ADP and thromboxane A(2), recruiting additional platelets to a growing deposit that distorts the flow field. Prediction of clotting function under hemodynamic conditions for a patient's platelet phenotype remains a challenge. A platelet signaling phenotype was obtained for 3 healthy donors using pairwise agonist scanning, in which calcium dye-loaded platelets were exposed to pairwise combinations of ADP, U46619, and convulxin to activate the P2Y(1)/P2Y(12), TP, and GPVI receptors, respectively, with and without the prostacyclin receptor agonist iloprost. A neural network model was trained on each donor's pairwise agonist scanning experiment and then embedded into a multiscale Monte Carlo simulation of donor-specific platelet deposition under flow. The simulations were compared directly with microfluidic experiments of whole blood flowing over collagen at 200 and 1000/s wall shear rate. The simulations predicted the ranked order of drug sensitivity for indomethacin, aspirin, MRS-2179 (a P2Y(1) inhibitor), and iloprost. Consistent with measurement and simulation, one donor displayed larger clots and another presented with indomethacin resistance (revealing a novel heterozygote TP-V241G mutation). In silico representations of a subject's platelet phenotype allowed prediction of blood function under flow, essential for identifying patient-specific risks, drug responses, and novel genotypes.

  3. Platelet Serotonin Transporter Function Predicts Default-Mode Network Activity

    PubMed Central

    Kasess, Christian H.; Meyer, Bernhard M.; Hofmaier, Tina; Diers, Kersten; Bartova, Lucie; Pail, Gerald; Huf, Wolfgang; Uzelac, Zeljko; Hartinger, Beate; Kalcher, Klaudius; Perkmann, Thomas; Haslacher, Helmuth; Meyer-Lindenberg, Andreas; Kasper, Siegfried; Freissmuth, Michael; Windischberger, Christian; Willeit, Matthäus; Lanzenberger, Rupert; Esterbauer, Harald; Brocke, Burkhard; Moser, Ewald; Sitte, Harald H.; Pezawas, Lukas

    2014-01-01

    Background The serotonin transporter (5-HTT) is abundantly expressed in humans by the serotonin transporter gene SLC6A4 and removes serotonin (5-HT) from extracellular space. A blood-brain relationship between platelet and synaptosomal 5-HT reuptake has been suggested, but it is unknown today, if platelet 5-HT uptake can predict neural activation of human brain networks that are known to be under serotonergic influence. Methods A functional magnetic resonance study was performed in 48 healthy subjects and maximal 5-HT uptake velocity (Vmax) was assessed in blood platelets. We used a mixed-effects multilevel analysis technique (MEMA) to test for linear relationships between whole-brain, blood-oxygen-level dependent (BOLD) activity and platelet Vmax. Results The present study demonstrates that increases in platelet Vmax significantly predict default-mode network (DMN) suppression in healthy subjects independent of genetic variation within SLC6A4. Furthermore, functional connectivity analyses indicate that platelet Vmax is related to global DMN activation and not intrinsic DMN connectivity. Conclusion This study provides evidence that platelet Vmax predicts global DMN activation changes in healthy subjects. Given previous reports on platelet-synaptosomal Vmax coupling, results further suggest an important role of neuronal 5-HT reuptake in DMN regulation. PMID:24667541

  4. Electrocortical indices of selective attention predict adolescent executive functioning.

    PubMed

    Lackner, Christine L; Santesso, Diane L; Dywan, Jane; Wade, Terrance J; Segalowitz, Sidney J

    2013-05-01

    Executive functioning is considered a powerful predictor of behavioral and mental health outcomes during adolescence. Our question was whether executive functioning skills, normally considered "top-down" processes, are related to automatic aspects of selective attention. Event-related potentials (ERPs) were recorded from typically-developing 12-14-year-old adolescents as they responded to tones presented in attended and unattended channels in an auditory selective attention task. Examining these ERPs in relation to parental reports on the Behavior Rating Inventory of Executive Function (BRIEF) revealed that an early frontal positivity (EFP) elicited by to-be-ignored/unattended tones was larger in those with poorer executive functions, driven by scores on the BRIEF Metacognition Index. As is traditionally found, N1 amplitudes were more negative for the to-be-attended rather than unattended tones. Additionally, N1 latencies to unattended tones correlated with parent-ratings on the BRIEF Behavior Regulation Index, where shorter latencies predicted better executive functions. Results suggest that the ability to disengage attention from distractor information in the early stages of stimulus processing is associated with adolescent executive functioning skills. PMID:23528784

  5. Electrocortical indices of selective attention predict adolescent executive functioning.

    PubMed

    Lackner, Christine L; Santesso, Diane L; Dywan, Jane; Wade, Terrance J; Segalowitz, Sidney J

    2013-05-01

    Executive functioning is considered a powerful predictor of behavioral and mental health outcomes during adolescence. Our question was whether executive functioning skills, normally considered "top-down" processes, are related to automatic aspects of selective attention. Event-related potentials (ERPs) were recorded from typically-developing 12-14-year-old adolescents as they responded to tones presented in attended and unattended channels in an auditory selective attention task. Examining these ERPs in relation to parental reports on the Behavior Rating Inventory of Executive Function (BRIEF) revealed that an early frontal positivity (EFP) elicited by to-be-ignored/unattended tones was larger in those with poorer executive functions, driven by scores on the BRIEF Metacognition Index. As is traditionally found, N1 amplitudes were more negative for the to-be-attended rather than unattended tones. Additionally, N1 latencies to unattended tones correlated with parent-ratings on the BRIEF Behavior Regulation Index, where shorter latencies predicted better executive functions. Results suggest that the ability to disengage attention from distractor information in the early stages of stimulus processing is associated with adolescent executive functioning skills.

  6. The predictability of molecular evolution during functional innovation.

    PubMed

    Blank, Diana; Wolf, Luise; Ackermann, Martin; Silander, Olin K

    2014-02-25

    Determining the molecular changes that give rise to functional innovations is a major unresolved problem in biology. The paucity of examples has served as a significant hindrance in furthering our understanding of this process. Here we used experimental evolution with the bacterium Escherichia coli to quantify the molecular changes underlying functional innovation in 68 independent instances ranging over 22 different metabolic functions. Using whole-genome sequencing, we show that the relative contribution of regulatory and structural mutations depends on the cellular context of the metabolic function. In addition, we find that regulatory mutations affect genes that act in pathways relevant to the novel function, whereas structural mutations affect genes that act in unrelated pathways. Finally, we use population genetic modeling to show that the relative contributions of regulatory and structural mutations during functional innovation may be affected by population size. These results provide a predictive framework for the molecular basis of evolutionary innovation, which is essential for anticipating future evolutionary trajectories in the face of rapid environmental change.

  7. Predicting re-involvement for children adopted out of a public child welfare system.

    PubMed

    Orsi, Rebecca

    2015-01-01

    Some of the approximately 400,000 children currently placed out-of-home in a public child welfare system will not reunify with their family of origin. They may instead be adopted into a new family. Adoption placements can be characterized by poor adjustment for children; some such placements even result in disruption or dissolution. We conducted a stratified Cox regression of 4,016 children from the Colorado public child welfare system. All of the children had a finalized adoption during the years 2002 through 2006. The two outcomes analyzed were new child protection and youth-in-conflict referrals and assessments for these previously adopted children. New child welfare referrals and assessments may be early indicators of poor adjustment for adopted children within the adoptive family. Study results indicate that older children and Hispanic children had higher rates of referral and assessment. Children with a pre-adoption history including longer time out-of-home or a larger number of out-of-home placements also experienced higher referral and assessment rates. Additional factors which predicted subsequent system re-involvement included presence of paid adoption assistance, adoption by a non-relative foster parent and younger adoptive parent age. Several study results were moderated by the presence or absence of an ethnic match between the child and the adoptive parents. We provide an overview of the statistical model used for analysis and we discuss implications of the study results for child welfare practice.

  8. Certain Fractional Integral Formulas Involving the Product of Generalized Bessel Functions

    PubMed Central

    Baleanu, D.; Agarwal, P.; Purohit, S. D.

    2013-01-01

    We apply generalized operators of fractional integration involving Appell's function F3(·) due to Marichev-Saigo-Maeda, to the product of the generalized Bessel function of the first kind due to Baricz. The results are expressed in terms of the multivariable generalized Lauricella functions. Corresponding assertions in terms of Saigo, Erdélyi-Kober, Riemann-Liouville, and Weyl type of fractional integrals are also presented. Some interesting special cases of our two main results are presented. We also point out that the results presented here, being of general character, are easily reducible to yield many diverse new and known integral formulas involving simpler functions. PMID:24379745

  9. Quality of Parental Homework Involvement: Predictors and Reciprocal Relations with Academic Functioning in the Reading Domain

    ERIC Educational Resources Information Center

    Dumont, Hanna; Trautwein, Ulrich; Nagy, Gabriel; Nagengast, Benjamin

    2014-01-01

    This study examined predictors of the quality of parental homework involvement and reciprocal relations between the quality of parental homework involvement and students' reading achievement and academic functioning in a reading-intensive subject (German). Data from 2,830 students in nonacademic tracks and their parents who were surveyed in both…

  10. PSCL: predicting protein subcellular localization based on optimal functional domains.

    PubMed

    Wang, Kai; Hu, Le-Le; Shi, Xiao-He; Dong, Ying-Song; Li, Hai-Peng; Wen, Tie-Qiao

    2012-01-01

    It is well known that protein subcellular localizations are closely related to their functions. Although many computational methods and tools are available from Internet, it is still necessary to develop new algorithms in this filed to gain a better understanding of the complex mechanism of plant subcellular localization. Here, we provide a new web server named PSCL for plant protein subcellular localization prediction by employing optimized functional domains. After feature optimization, 848 optimal functional domains from InterPro were obtained to represent each protein. By calculating the distances to each of the seven categories, PSCL showing the possibilities of a protein located into each of those categories in ascending order. Toward our dataset, PSCL achieved a first-order predicted accuracy of 75.7% by jackknife test. Gene Ontology enrichment analysis showing that catalytic activity, cellular process and metabolic process are strongly correlated with the localization of plant proteins. Finally, PSCL, a Linux Operate System based web interface for the predictor was designed and is accessible for public use at http://pscl.biosino.org/.

  11. Confronting species distribution model predictions with species functional traits.

    PubMed

    Wittmann, Marion E; Barnes, Matthew A; Jerde, Christopher L; Jones, Lisa A; Lodge, David M

    2016-02-01

    Species distribution models are valuable tools in studies of biogeography, ecology, and climate change and have been used to inform conservation and ecosystem management. However, species distribution models typically incorporate only climatic variables and species presence data. Model development or validation rarely considers functional components of species traits or other types of biological data. We implemented a species distribution model (Maxent) to predict global climate habitat suitability for Grass Carp (Ctenopharyngodon idella). We then tested the relationship between the degree of climate habitat suitability predicted by Maxent and the individual growth rates of both wild (N = 17) and stocked (N = 51) Grass Carp populations using correlation analysis. The Grass Carp Maxent model accurately reflected the global occurrence data (AUC = 0.904). Observations of Grass Carp growth rate covered six continents and ranged from 0.19 to 20.1 g day(-1). Species distribution model predictions were correlated (r = 0.5, 95% CI (0.03, 0.79)) with observed growth rates for wild Grass Carp populations but were not correlated (r = -0.26, 95% CI (-0.5, 0.012)) with stocked populations. Further, a review of the literature indicates that the few studies for other species that have previously assessed the relationship between the degree of predicted climate habitat suitability and species functional traits have also discovered significant relationships. Thus, species distribution models may provide inferences beyond just where a species may occur, providing a useful tool to understand the linkage between species distributions and underlying biological mechanisms.

  12. [Chronic diseases, functional ability, social involvement and satisfaction in community-dwelling elderly: the Fibra study].

    PubMed

    Pinto, Juliana Martins; Neri, Anita Liberalesso

    2013-12-01

    The scope of this article is to describe variations in the measurement of chronic diseases, functional ability, social involvement and satisfaction with respect to memory, problem solving, social relationships, environment, health services and transportation. This is done according to gender, age and income. It analyzes correlations between social involvement and functional ability in independent community dwelling-elderly aged 65 and above. 2,472 seniors without cognitive deficit, from probabilistic samples of seven Brazilian locations, were submitted to self-reported measurement concerning all variables, with the exception of grip strength and gait speed assessed by objective tests. Mean age was 72.2 ± 5.5 years and mean income was 3.9 ± 4.9 MW; 65.7% were women, who had more diseases, worse functional performance and greater social involvement than men; those aged 80 and above and the poorest participants had worse functional performance and less social involvement. Correlations were observed between functional ability and social involvement. Level of income was related to satisfaction concerning memory, problem solving, health and transport services. Health, functionality and satisfaction interact in old age, influencing patterns of activity and social involvement.

  13. The Evolutionary Legacy of Diversification Predicts Ecosystem Function.

    PubMed

    Yguel, Benjamin; Jactel, Hervé; Pearse, Ian S; Moen, Daniel; Winter, Marten; Hortal, Joaquin; Helmus, Matthew R; Kühn, Ingolf; Pavoine, Sandrine; Purschke, Oliver; Weiher, Evan; Violle, Cyrille; Ozinga, Wim; Brändle, Martin; Bartish, Igor; Prinzing, Andreas

    2016-10-01

    Theory suggests that the structure of evolutionary history represented in a species community may affect its functioning, but phylogenetic diversity metrics do not allow for the identification of major differences in this structure. Here we propose a new metric, ELDERness (for Evolutionary Legacy of DivERsity) to estimate evolutionary branching patterns within communities by fitting a polynomial function to lineage-through-time (LTT) plots. We illustrate how real and simulated community branching patterns can be more correctly described by ELDERness and can successfully predict ecosystem functioning. In particular, the evolutionary history of branching patterns can be encapsulated by the parameters of third-order polynomial functions and further measured through only two parameters, the "ELDERness surfaces." These parameters captured variation in productivity of a grassland community better than existing phylogenetic diversity or diversification metrics and independent of species richness or presence of nitrogen fixers. Specifically, communities with small ELDERness surfaces (constant accumulation of lineages through time in LTT plots) were more productive, consistent with increased productivity resulting from complementary lineages combined with niche filling within lineages. Overall, while existing phylogenetic diversity metrics remain useful in many contexts, we suggest that our ELDERness approach better enables testing hypotheses that relate complex patterns of macroevolutionary history represented in local communities to ecosystem functioning.

  14. The Evolutionary Legacy of Diversification Predicts Ecosystem Function.

    PubMed

    Yguel, Benjamin; Jactel, Hervé; Pearse, Ian S; Moen, Daniel; Winter, Marten; Hortal, Joaquin; Helmus, Matthew R; Kühn, Ingolf; Pavoine, Sandrine; Purschke, Oliver; Weiher, Evan; Violle, Cyrille; Ozinga, Wim; Brändle, Martin; Bartish, Igor; Prinzing, Andreas

    2016-10-01

    Theory suggests that the structure of evolutionary history represented in a species community may affect its functioning, but phylogenetic diversity metrics do not allow for the identification of major differences in this structure. Here we propose a new metric, ELDERness (for Evolutionary Legacy of DivERsity) to estimate evolutionary branching patterns within communities by fitting a polynomial function to lineage-through-time (LTT) plots. We illustrate how real and simulated community branching patterns can be more correctly described by ELDERness and can successfully predict ecosystem functioning. In particular, the evolutionary history of branching patterns can be encapsulated by the parameters of third-order polynomial functions and further measured through only two parameters, the "ELDERness surfaces." These parameters captured variation in productivity of a grassland community better than existing phylogenetic diversity or diversification metrics and independent of species richness or presence of nitrogen fixers. Specifically, communities with small ELDERness surfaces (constant accumulation of lineages through time in LTT plots) were more productive, consistent with increased productivity resulting from complementary lineages combined with niche filling within lineages. Overall, while existing phylogenetic diversity metrics remain useful in many contexts, we suggest that our ELDERness approach better enables testing hypotheses that relate complex patterns of macroevolutionary history represented in local communities to ecosystem functioning. PMID:27622874

  15. Defining Predictive Probability Functions for Species Sampling Models

    PubMed Central

    Lee, Jaeyong; Quintana, Fernando A.; Müller, Peter; Trippa, Lorenzo

    2013-01-01

    We review the class of species sampling models (SSM). In particular, we investigate the relation between the exchangeable partition probability function (EPPF) and the predictive probability function (PPF). It is straightforward to define a PPF from an EPPF, but the converse is not necessarily true. In this paper we introduce the notion of putative PPFs and show novel conditions for a putative PPF to define an EPPF. We show that all possible PPFs in a certain class have to define (unnormalized) probabilities for cluster membership that are linear in cluster size. We give a new necessary and sufficient condition for arbitrary putative PPFs to define an EPPF. Finally, we show posterior inference for a large class of SSMs with a PPF that is not linear in cluster size and discuss a numerical method to derive its PPF. PMID:24368874

  16. Predicting Infrared Spectra of Nerve Agents Using Density Functional Theory

    NASA Astrophysics Data System (ADS)

    Zhang, Y.-P.; Wang, H.-T.; Zheng, W.-P.; Sun, C.; Bai, Y.; Guo, X.-D.; Sun, H.

    2016-09-01

    Vibration frequencies of four nerve agents and two simulators are calculated using B3LYP coupled with ten basis sets. To evaluate the accuracy of calculated spectra, root mean square error (RMSE) and weighted cross-correlation average (WCCA) are considered. The evaluation shows that B3LYP/6-311+g(d,p) performs best in predicting infrared spectra, and polarization functions are found to be more important than diffusion functions in spectra simulation. Moreover, B3LYP calculation underestimates frequencies related to the P atom. The WCCA metric derives 1.008 as a unique scaling factor for calculated frequencies. The results indicate that the WCCA metric can identify six agents based on calculated spectra.

  17. Predictions for the ARPES spectral function of kagome antiferromagnetic insulators

    NASA Astrophysics Data System (ADS)

    Pujari, Sumiran; Lawler, Michael J.

    2011-03-01

    There are now a number of spin liquid candidate materials possibly with exotic spin-1/2 ``spinon'' excitations. Motivation by these discoveries, we consider the scaling properties of the hole spectral function for the frustrated Kagome Heisenberg antiferromagnet assuming Dirac Spin Liquid(DSL) ground state proposed for Herbertsmithite [ 2 ] . We predict a sublinear in energy power law dependence of the ARPES spectral function at certain wave vectors. Using Renormalization group techniques, we show how (gauge) fluctuations of the DSL mean field give an anomalous exponent to spinons [ 2 ] and no anomalous exponent to holons thereby leading to the sublinear power law. If this behavior is observed in experiments, they would provide strong evidence for the existence of spinons in highly frustrated magnets. S.P. gratefully acknowledges support from NSF grant DMR-1005466.

  18. Utility functions predict variance and skewness risk preferences in monkeys.

    PubMed

    Genest, Wilfried; Stauffer, William R; Schultz, Wolfram

    2016-07-26

    Utility is the fundamental variable thought to underlie economic choices. In particular, utility functions are believed to reflect preferences toward risk, a key decision variable in many real-life situations. To assess the validity of utility representations, it is therefore important to examine risk preferences. In turn, this approach requires formal definitions of risk. A standard approach is to focus on the variance of reward distributions (variance-risk). In this study, we also examined a form of risk related to the skewness of reward distributions (skewness-risk). Thus, we tested the extent to which empirically derived utility functions predicted preferences for variance-risk and skewness-risk in macaques. The expected utilities calculated for various symmetrical and skewed gambles served to define formally the direction of stochastic dominance between gambles. In direct choices, the animals' preferences followed both second-order (variance) and third-order (skewness) stochastic dominance. Specifically, for gambles with different variance but identical expected values (EVs), the monkeys preferred high-variance gambles at low EVs and low-variance gambles at high EVs; in gambles with different skewness but identical EVs and variances, the animals preferred positively over symmetrical and negatively skewed gambles in a strongly transitive fashion. Thus, the utility functions predicted the animals' preferences for variance-risk and skewness-risk. Using these well-defined forms of risk, this study shows that monkeys' choices conform to the internal reward valuations suggested by their utility functions. This result implies a representation of utility in monkeys that accounts for both variance-risk and skewness-risk preferences. PMID:27402743

  19. Utility functions predict variance and skewness risk preferences in monkeys

    PubMed Central

    Genest, Wilfried; Stauffer, William R.; Schultz, Wolfram

    2016-01-01

    Utility is the fundamental variable thought to underlie economic choices. In particular, utility functions are believed to reflect preferences toward risk, a key decision variable in many real-life situations. To assess the validity of utility representations, it is therefore important to examine risk preferences. In turn, this approach requires formal definitions of risk. A standard approach is to focus on the variance of reward distributions (variance-risk). In this study, we also examined a form of risk related to the skewness of reward distributions (skewness-risk). Thus, we tested the extent to which empirically derived utility functions predicted preferences for variance-risk and skewness-risk in macaques. The expected utilities calculated for various symmetrical and skewed gambles served to define formally the direction of stochastic dominance between gambles. In direct choices, the animals’ preferences followed both second-order (variance) and third-order (skewness) stochastic dominance. Specifically, for gambles with different variance but identical expected values (EVs), the monkeys preferred high-variance gambles at low EVs and low-variance gambles at high EVs; in gambles with different skewness but identical EVs and variances, the animals preferred positively over symmetrical and negatively skewed gambles in a strongly transitive fashion. Thus, the utility functions predicted the animals’ preferences for variance-risk and skewness-risk. Using these well-defined forms of risk, this study shows that monkeys’ choices conform to the internal reward valuations suggested by their utility functions. This result implies a representation of utility in monkeys that accounts for both variance-risk and skewness-risk preferences. PMID:27402743

  20. Utility functions predict variance and skewness risk preferences in monkeys.

    PubMed

    Genest, Wilfried; Stauffer, William R; Schultz, Wolfram

    2016-07-26

    Utility is the fundamental variable thought to underlie economic choices. In particular, utility functions are believed to reflect preferences toward risk, a key decision variable in many real-life situations. To assess the validity of utility representations, it is therefore important to examine risk preferences. In turn, this approach requires formal definitions of risk. A standard approach is to focus on the variance of reward distributions (variance-risk). In this study, we also examined a form of risk related to the skewness of reward distributions (skewness-risk). Thus, we tested the extent to which empirically derived utility functions predicted preferences for variance-risk and skewness-risk in macaques. The expected utilities calculated for various symmetrical and skewed gambles served to define formally the direction of stochastic dominance between gambles. In direct choices, the animals' preferences followed both second-order (variance) and third-order (skewness) stochastic dominance. Specifically, for gambles with different variance but identical expected values (EVs), the monkeys preferred high-variance gambles at low EVs and low-variance gambles at high EVs; in gambles with different skewness but identical EVs and variances, the animals preferred positively over symmetrical and negatively skewed gambles in a strongly transitive fashion. Thus, the utility functions predicted the animals' preferences for variance-risk and skewness-risk. Using these well-defined forms of risk, this study shows that monkeys' choices conform to the internal reward valuations suggested by their utility functions. This result implies a representation of utility in monkeys that accounts for both variance-risk and skewness-risk preferences.

  1. Predicting activity approach based on new atoms similarity kernel function.

    PubMed

    Abu El-Atta, Ahmed H; Moussa, M I; Hassanien, Aboul Ella

    2015-07-01

    Drug design is a high cost and long term process. To reduce time and costs for drugs discoveries, new techniques are needed. Chemoinformatics field implements the informational techniques and computer science like machine learning and graph theory to discover the chemical compounds properties, such as toxicity or biological activity. This is done through analyzing their molecular structure (molecular graph). To overcome this problem there is an increasing need for algorithms to analyze and classify graph data to predict the activity of molecules. Kernels methods provide a powerful framework which combines machine learning with graph theory techniques. These kernels methods have led to impressive performance results in many several chemoinformatics problems like biological activity prediction. This paper presents a new approach based on kernel functions to solve activity prediction problem for chemical compounds. First we encode all atoms depending on their neighbors then we use these codes to find a relationship between those atoms each other. Then we use relation between different atoms to find similarity between chemical compounds. The proposed approach was compared with many other classification methods and the results show competitive accuracy with these methods.

  2. Loss of anterior concavity of the first sacrum can predict spinal involvement in ankylosing spondylitis.

    PubMed

    Kim, Ji Young; Lee, Seunghun; Joo, Kyung Bin; Song, Yoonah; Joo, Young Bin; Kim, Tae-Hwan

    2016-01-01

    In this study, we evaluated the frequency of squaring of the first sacrum (S1), defined as the loss of anterior concavity, in patients with ankylosing spondylitis (AS). We also determined the interobserver reliability in the assessment of S1 squaring and the relationships of S1 squaring with MRI findings and the modified Stoke Ankylosing Spondylitis Spinal Score (mSASSS). To this end, we performed a retrospective study of 100 patients with AS (mean age 33.2 years; range 19-57 years) and 100 control patients (mean age 35.6 years; range 19-50 years). Four experienced radiologists independently assessed the presence of S1 squaring in the AS and control groups. The frequencies of S1 squaring as scored by the four observers were 47, 48, 46, and 42 in the AS group and 3, 6, 4, and 6 in the control group. The interobserver agreement among the four observers with respect to S1 squaring was excellent (κ value 0.80) in the AS group and fair to good (κ value 0.61) in the control group. In patients with AS, the presence of S1 squaring showed fair to good agreement with the MRI changes (κ value 0.74). Moreover, the mSASSSs of patients with versus without S1 squaring were significantly different (mean 23.9 vs 7.0, p < 0.001). In conclusion, S1 squaring is relatively common in patients with AS. Moreover, S1 squaring is closely correlated with MRI changes and significantly associated with the mSASSS. Assessment of S1 squaring could be a simple method that is potentially useful for predicting early spinal structural involvement in patients with AS.

  3. Graphlet kernels for prediction of functional residues in protein structures.

    PubMed

    Vacic, Vladimir; Iakoucheva, Lilia M; Lonardi, Stefano; Radivojac, Predrag

    2010-01-01

    We introduce a novel graph-based kernel method for annotating functional residues in protein structures. A structure is first modeled as a protein contact graph, where nodes correspond to residues and edges connect spatially neighboring residues. Each vertex in the graph is then represented as a vector of counts of labeled non-isomorphic subgraphs (graphlets), centered on the vertex of interest. A similarity measure between two vertices is expressed as the inner product of their respective count vectors and is used in a supervised learning framework to classify protein residues. We evaluated our method on two function prediction problems: identification of catalytic residues in proteins, which is a well-studied problem suitable for benchmarking, and a much less explored problem of predicting phosphorylation sites in protein structures. The performance of the graphlet kernel approach was then compared against two alternative methods, a sequence-based predictor and our implementation of the FEATURE framework. On both tasks, the graphlet kernel performed favorably; however, the margin of difference was considerably higher on the problem of phosphorylation site prediction. While there is data that phosphorylation sites are preferentially positioned in intrinsically disordered regions, we provide evidence that for the sites that are located in structured regions, neither the surface accessibility alone nor the averaged measures calculated from the residue microenvironments utilized by FEATURE were sufficient to achieve high accuracy. The key benefit of the graphlet representation is its ability to capture neighborhood similarities in protein structures via enumerating the patterns of local connectivity in the corresponding labeled graphs.

  4. Habitual fat intake predicts memory function in younger women.

    PubMed

    Gibson, E Leigh; Barr, Suzanne; Jeanes, Yvonne M

    2013-01-01

    High intakes of fat have been linked to greater cognitive decline in old age, but such associations may already occur in younger adults. We tested memory and learning in 38 women (25 to 45 years old), recruited for a larger observational study in women with polycystic ovary syndrome. These women varied in health status, though not significantly between cases (n = 23) and controls (n = 15). Performance on tests sensitive to medial temporal lobe function (CANTABeclipse, Cambridge Cognition Ltd, Cambridge, UK), i.e., verbal memory, visuo-spatial learning, and delayed pattern matching (DMS), were compared with intakes of macronutrients from 7-day diet diaries and physiological indices of metabolic syndrome. Partial correlations were adjusted for age, activity, and verbal IQ (National Adult Reading Test). Greater intakes of saturated and trans fats, and higher saturated to unsaturated fat ratio (Sat:UFA), were associated with more errors on the visuo-spatial task and with poorer word recall and recognition. Unexpectedly, higher UFA intake predicted poorer performance on the word recall and recognition measures. Fasting insulin was positively correlated with poorer word recognition only, whereas higher blood total cholesterol was associated only with visuo-spatial learning errors. None of these variables predicted performance on a DMS test. The significant nutrient-cognition relationships were tested for mediation by total energy intake: saturated and trans fat intakes, and Sat:UFA, remained significant predictors specifically of visuo-spatial learning errors, whereas total fat and UFA intakes now predicted only poorer word recall. Examination of associations separately for monounsaturated (MUFA) and polyunsaturated fats suggested that only MUFA intake was predictive of poorer word recall. Saturated and trans fats, and fasting insulin, may already be associated with cognitive deficits in younger women. The findings need extending but may have important implications for

  5. Ongoing dynamics in large-scale functional connectivity predict perception

    PubMed Central

    Sadaghiani, Sepideh; Poline, Jean-Baptiste; Kleinschmidt, Andreas; D’Esposito, Mark

    2015-01-01

    Most brain activity occurs in an ongoing manner not directly locked to external events or stimuli. Regional ongoing activity fluctuates in unison with some brain regions but not others, and the degree of long-range coupling is called functional connectivity, often measured with correlation. Strength and spatial distributions of functional connectivity dynamically change in an ongoing manner over seconds to minutes, even when the external environment is held constant. Direct evidence for any behavioral relevance of these continuous large-scale dynamics has been limited. Here, we investigated whether ongoing changes in baseline functional connectivity correlate with perception. In a continuous auditory detection task, participants perceived the target sound in roughly one-half of the trials. Very long (22–40 s) interstimulus intervals permitted investigation of baseline connectivity unaffected by preceding evoked responses. Using multivariate classification, we observed that functional connectivity before the target predicted whether it was heard or missed. Using graph theoretical measures, we characterized the difference in functional connectivity between states that lead to hits vs. misses. Before misses compared with hits and task-free rest, connectivity showed reduced modularity, a measure of integrity of modular network structure. This effect was strongest in the default mode and visual networks and caused by both reduced within-network connectivity and enhanced across-network connections before misses. The relation of behavior to prestimulus connectivity was dissociable from that of prestimulus activity amplitudes. In conclusion, moment to moment dynamic changes in baseline functional connectivity may shape subsequent behavioral performance. A highly modular network structure seems beneficial to perceptual efficiency. PMID:26106164

  6. Ongoing dynamics in large-scale functional connectivity predict perception.

    PubMed

    Sadaghiani, Sepideh; Poline, Jean-Baptiste; Kleinschmidt, Andreas; D'Esposito, Mark

    2015-07-01

    Most brain activity occurs in an ongoing manner not directly locked to external events or stimuli. Regional ongoing activity fluctuates in unison with some brain regions but not others, and the degree of long-range coupling is called functional connectivity, often measured with correlation. Strength and spatial distributions of functional connectivity dynamically change in an ongoing manner over seconds to minutes, even when the external environment is held constant. Direct evidence for any behavioral relevance of these continuous large-scale dynamics has been limited. Here, we investigated whether ongoing changes in baseline functional connectivity correlate with perception. In a continuous auditory detection task, participants perceived the target sound in roughly one-half of the trials. Very long (22-40 s) interstimulus intervals permitted investigation of baseline connectivity unaffected by preceding evoked responses. Using multivariate classification, we observed that functional connectivity before the target predicted whether it was heard or missed. Using graph theoretical measures, we characterized the difference in functional connectivity between states that lead to hits vs. misses. Before misses compared with hits and task-free rest, connectivity showed reduced modularity, a measure of integrity of modular network structure. This effect was strongest in the default mode and visual networks and caused by both reduced within-network connectivity and enhanced across-network connections before misses. The relation of behavior to prestimulus connectivity was dissociable from that of prestimulus activity amplitudes. In conclusion, moment to moment dynamic changes in baseline functional connectivity may shape subsequent behavioral performance. A highly modular network structure seems beneficial to perceptual efficiency. PMID:26106164

  7. Ongoing dynamics in large-scale functional connectivity predict perception.

    PubMed

    Sadaghiani, Sepideh; Poline, Jean-Baptiste; Kleinschmidt, Andreas; D'Esposito, Mark

    2015-07-01

    Most brain activity occurs in an ongoing manner not directly locked to external events or stimuli. Regional ongoing activity fluctuates in unison with some brain regions but not others, and the degree of long-range coupling is called functional connectivity, often measured with correlation. Strength and spatial distributions of functional connectivity dynamically change in an ongoing manner over seconds to minutes, even when the external environment is held constant. Direct evidence for any behavioral relevance of these continuous large-scale dynamics has been limited. Here, we investigated whether ongoing changes in baseline functional connectivity correlate with perception. In a continuous auditory detection task, participants perceived the target sound in roughly one-half of the trials. Very long (22-40 s) interstimulus intervals permitted investigation of baseline connectivity unaffected by preceding evoked responses. Using multivariate classification, we observed that functional connectivity before the target predicted whether it was heard or missed. Using graph theoretical measures, we characterized the difference in functional connectivity between states that lead to hits vs. misses. Before misses compared with hits and task-free rest, connectivity showed reduced modularity, a measure of integrity of modular network structure. This effect was strongest in the default mode and visual networks and caused by both reduced within-network connectivity and enhanced across-network connections before misses. The relation of behavior to prestimulus connectivity was dissociable from that of prestimulus activity amplitudes. In conclusion, moment to moment dynamic changes in baseline functional connectivity may shape subsequent behavioral performance. A highly modular network structure seems beneficial to perceptual efficiency.

  8. Does obesity predict functional outcome in the dysvascular amputee?

    PubMed

    Kalbaugh, Corey A; Taylor, Spence M; Kalbaugh, Brooke A; Halliday, Matthew; Daniel, Grace; Cass, Anna L; Blackhurst, Dawn W; Cull, David L; Langan, Eugene M; Carsten, Christopher G; York, John W; Snyder, Bruce A; Youkey, Jerry R

    2006-08-01

    Limited information is available concerning the effects of obesity on the functional outcomes of patients requiring major lower limb amputation because of peripheral arterial disease (PAD). The purpose of this study was to examine the predictive ability of body mass index (BMI) to determine functional outcome in the dysvascular amputee. To do this, 434 consecutive patients (mean age, 65.8 +/- 13.3, 59% male, 71.4% diabetic) undergoing major limb amputation (225 below-knee amputation, 27 through-knee amputation, 132 above-knee amputation, and 50 bilateral) as a complication of PAD from January 1998 through May 2004 were analyzed according to preoperative BMI. BMI was classified according to the four-group Center for Disease Control system: underweight, 0 to 18.4 kg/m2; normal, 18.5 to 24.9 kg/m2; overweight, 25 to 29.9 kg/m2; and obese, > or = 30 kg/m2. Outcome parameters measured included prosthetic usage, maintenance of ambulation, survival, and maintenance of independent living status. The chi2 test for association was used to examine prosthesis wear. Kaplan-Meier curves were constructed to assess maintenance of ambulation, survival, and maintenance of independent living status. Multivariate analysis using the multiple logistic regression model and a Cox proportional hazards model were used to predict variables independently associated with prosthetic use and ambulation, survival, and independence, respectively. Overall prosthetic usage and 36-month ambulation, survival, and independent living status for the entire cohort was 48.6 per cent, 42.8 per cent, 48.1 per cent, 72.3 per cent, and for patients with normal BMI was 41.5 per cent, 37.4 per cent, 45.6 per cent, and 69.5 per cent, respectively. There was no statistically significant difference in outcomes for overweight patients (59.2%, 50.7%, 52.5%, and 75%) or obese patients (51.8%, 46.2%, 49.7%, and 75%) when compared with normal patients. Although there were significantly poorer outcomes for underweight

  9. Predicting Gene-Regulation Functions: Lessons from Temperate Bacteriophages

    PubMed Central

    Teif, Vladimir B.

    2010-01-01

    Gene-regulation functions (GRF) provide a unique characteristic of a cis-regulatory module (CRM), relating the concentrations of transcription factors (input) to the promoter activities (output). The challenge is to predict GRFs from the sequence. Here we systematically consider the lysogeny-lysis CRMs of different temperate bacteriophages such as the Lactobacillus casei phage A2, Escherichia coli phages λ, and 186 and Lactococcal phage TP901-1. This study allowed explaining a recent experimental puzzle on the role of Cro protein in the lambda switch. Several general conclusions have been drawn: 1), long-range interactions, multilayer assembly and DNA looping may lead to complex GRFs that cannot be described by linear functions of binding site occupancies; 2), in general, GRFs cannot be described by the Boolean logic, whereas a three-state non-Boolean logic suffices for the studied examples; 3), studied CRMs of the intact phages seemed to have a similar GRF topology (the number of plateaus and peaks corresponding to different expression regimes); we hypothesize that functionally equivalent CRMs might have topologically equivalent GRFs for a larger class of genetic systems; and 4) within a given GRF class, a set of mechanistic-to-mathematical transformations has been identified, which allows shaping the GRF before carrying out a system-level analysis. PMID:20371324

  10. Further results involving a class of generalized Hurwitz-Lerch zeta functions

    NASA Astrophysics Data System (ADS)

    Srivastava, H. M.; Gaboury, S.; Fugère, B.-J.

    2014-10-01

    In this paper, we present several new expansion formulas for a class of generalized Hurwitz-Lerch zeta functions which were introduced by Raina and Chhajed [R. K. Raina and P. K. Chhajed, "Certain Results Involving a Class of Functions Associated with the Hurwitz Zeta Function," Acta Math. Univ. Comenian. 73, 89-100 (2004)] and (more recently) by Srivastava et al. [H. M. Srivastava, M.-J. Luo, and R. K. Raina, "New Results Involving a Class of Generalized Hurwitz-Lerch Zeta Functions and Their Applications," Turkish J. Anal. Number Theory 1, 26-35 (2013)]. These expansion formulas are obtained with the help of some fractional calculus theorems such as the generalized Leibniz rules, the Taylorlike expansions in terms of different functions and the generalized chain rule. Several (known or new) special cases are also considered.

  11. Functional Network Architecture Predicts Psychologically Mediated Analgesia Related to Treatment in Chronic Knee Pain Patients

    PubMed Central

    Kong, Jian; Spaeth, Rosa; Khan, Sheraz; Kaptchuk, Ted J.

    2014-01-01

    Placebo analgesia is an indicator of how efficiently the brain translates psychological signals conveyed by a treatment procedure into pain relief. It has been demonstrated that functional connectivity between distributed brain regions predicts placebo analgesia in chronic back pain patients. Greater network efficiency in baseline brain networks may allow better information transfer and facilitate adaptive physiological responses to psychological aspects of treatment. Here, we theorized that topological network alignments in resting state scans predict psychologically conditioned analgesic responses to acupuncture treatment in chronic knee osteoarthritis pain patients (n = 45). Analgesia was induced by building positive expectations toward acupuncture treatment with verbal suggestion and heat pain conditioning on a test site of the arm. This procedure induced significantly more analgesia after sham or real acupuncture on the test site than in a control site. The psychologically conditioned analgesia was invariant to sham versus real treatment. Efficiency of information transfer within local networks calculated with graph-theoretic measures (local efficiency and clustering coefficients) significantly predicted conditioned analgesia. Clustering coefficients in regions associated with memory, motivation, and pain modulation were closely involved in predicting analgesia. Moreover, women showed higher clustering coefficients and marginally greater pain reduction than men. Overall, analgesic response to placebo cues can be predicted from a priori resting state data by observing local network topology. Such low-cost synchronizations may represent preparatory resources that facilitate subsequent performance of brain circuits in responding to adaptive environmental cues. This suggests a potential utility of network measures in predicting placebo response for clinical use. PMID:24623770

  12. Striatal structure and function predict individual biases in learning to avoid pain

    PubMed Central

    Eldar, Eran; Hauser, Tobias U.; Dayan, Peter; Dolan, Raymond J.

    2016-01-01

    Pain is an elemental inducer of avoidance. Here, we demonstrate that people differ in how they learn to avoid pain, with some individuals refraining from actions that resulted in painful outcomes, whereas others favor actions that helped prevent pain. These individual biases were best explained by differences in learning from outcome prediction errors and were associated with distinct forms of striatal responses to painful outcomes. Specifically, striatal responses to pain were modulated in a manner consistent with an aversive prediction error in individuals who learned predominantly from pain, whereas in individuals who learned predominantly from success in preventing pain, modulation was consistent with an appetitive prediction error. In contrast, striatal responses to success in preventing pain were consistent with an appetitive prediction error in both groups. Furthermore, variation in striatal structure, encompassing the region where pain prediction errors were expressed, predicted participants’ predominant mode of learning, suggesting the observed learning biases may reflect stable individual traits. These results reveal functional and structural neural components underlying individual differences in avoidance learning, which may be important contributors to psychiatric disorders involving pathological harm avoidance behavior. PMID:27071092

  13. Individual differences in common factors of emotional traits and executive functions predict functional connectivity of the amygdala.

    PubMed

    Rohr, C S; Dreyer, F R; Aderka, I M; Margulies, D S; Frisch, S; Villringer, A; Okon-Singer, H

    2015-10-15

    Evidence suggests that individual differences in emotion control are associated with frontoparietal-limbic networks and linked to emotional traits and executive functions. In a first attempt to directly target the link between emotional traits and executive functions using resting-state fMRI analysis, 43 healthy adults completed a test battery including executive tasks and emotional trait self-assessments that were subjected to a principal component analysis. Of the three factors detected, two explained 40.4% of the variance and were further investigated. Both factors suggest a relation between emotional traits and executive functions. Specifically, the first factor consisted of measures related to inhibitory control and negative affect, and the second factor was related to reward and positive affect. To investigate whether this interplay between emotional traits and executive functions is reflected in neural connectivity, we used resting-state fMRI to explore the functional connectivity of the amygdala as a starting point, and progressed to other seed-based analyses based on the initial findings. We found that the first factor predicted the strength of connectivity between brain regions known to be involved in the cognitive control of emotion, including the amygdala and the dorsolateral prefrontal cortex, whereas the second factor predicted the strength of connectivity between brain regions known to be involved in reward and attention, including the amygdala, the caudate and the thalamus. These findings suggest that individual differences in the ability to inhibit negative affect are mediated by prefrontal-limbic pathways, while the ability to be positive and use rewarding information is mediated by a network that includes the amygdala and thalamostriatal regions.

  14. Use of contiguity on the chromosome to predict functional coupling.

    SciTech Connect

    Overbeek, R.; Fonstein, M.; Souza, D'Souza, M.; Pusch, G. D.; Maltsev, N.; Mathematics and Computer Science; Univ. of Chicago

    1999-01-01

    The availability of a growing number of completely sequenced genomes opens new opportunities for understanding of complex biological systems. Success of genome-based biology will, to a large extent, depend on the development of new approaches and tools for efficient comparative analysis of the genomes and their organization. We have developed a technique for detecting possible functional coupling between genes based on detection of potential operons. The approach involves computation of 'pairs of close bidirectional best hits', which are pairs of genes that apparently occur within operons in multiple genomes. Using these pairs, one can compose evidence (based on the number of distinct genomes and the phylogenetic distance between the orthologous pairs) that a pair of genes is potentially functionally coupled. The technique has revealed a surprisingly rich and apparently accurate set of functionally coupled genes. The approach depends on the use of a relatively large number of genomes, and the amount of detected coupling grows dramatically as the number of genomes increases.

  15. Predicted equations for ventilatory function among Kuching (Sarawak, Malaysia) population.

    PubMed

    Djojodibroto, R D; Pratibha, G; Kamaluddin, B; Manjit, S S; Sumitabha, G; Kumar, A Deva; Hashami, B

    2009-12-01

    Spirometry data of 869 individuals (males and females) between the ages of 10 to 60 years were analyzed. The analysis yielded the following conclusions: 1. The pattern of Forced Vital Capacity (FVC) and Forced Expiratory Volume in One Second (FEV1) for the selected subgroups seems to be gender dependant: in males, the highest values were seen in the Chinese, followed by the Malay, and then the Dayak; in females, the highest values were seen in the Chinese, followed by the Dayak, and then the Malay. 2. Smoking that did not produce respiratory symptom was not associated with a decline in lung function, in fact we noted higher values in smokers as compared to nonsmokers. 3. Prediction formulae (54 in total) are worked out for FVC & FEV1 for the respective gender and each of the selected subgroups.

  16. A yeast functional screen predicts new candidate ALS disease genes

    PubMed Central

    Couthouis, Julien; Hart, Michael P.; Shorter, James; DeJesus-Hernandez, Mariely; Erion, Renske; Oristano, Rachel; Liu, Annie X.; Ramos, Daniel; Jethava, Niti; Hosangadi, Divya; Epstein, James; Chiang, Ashley; Diaz, Zamia; Nakaya, Tadashi; Ibrahim, Fadia; Kim, Hyung-Jun; Solski, Jennifer A.; Williams, Kelly L.; Mojsilovic-Petrovic, Jelena; Ingre, Caroline; Boylan, Kevin; Graff-Radford, Neill R.; Dickson, Dennis W.; Clay-Falcone, Dana; Elman, Lauren; McCluskey, Leo; Greene, Robert; Kalb, Robert G.; Lee, Virginia M.-Y.; Trojanowski, John Q.; Ludolph, Albert; Robberecht, Wim; Andersen, Peter M.; Nicholson, Garth A.; Blair, Ian P.; King, Oliver D.; Bonini, Nancy M.; Van Deerlin, Vivianna; Rademakers, Rosa; Mourelatos, Zissimos; Gitler, Aaron D.

    2011-01-01

    Amyotrophic lateral sclerosis (ALS) is a devastating and universally fatal neurodegenerative disease. Mutations in two related RNA-binding proteins, TDP-43 and FUS, that harbor prion-like domains, cause some forms of ALS. There are at least 213 human proteins harboring RNA recognition motifs, including FUS and TDP-43, raising the possibility that additional RNA-binding proteins might contribute to ALS pathogenesis. We performed a systematic survey of these proteins to find additional candidates similar to TDP-43 and FUS, followed by bioinformatics to predict prion-like domains in a subset of them. We sequenced one of these genes, TAF15, in patients with ALS and identified missense variants, which were absent in a large number of healthy controls. These disease-associated variants of TAF15 caused formation of cytoplasmic foci when expressed in primary cultures of spinal cord neurons. Very similar to TDP-43 and FUS, TAF15 aggregated in vitro and conferred neurodegeneration in Drosophila, with the ALS-linked variants having a more severe effect than wild type. Immunohistochemistry of postmortem spinal cord tissue revealed mislocalization of TAF15 in motor neurons of patients with ALS. We propose that aggregation-prone RNA-binding proteins might contribute very broadly to ALS pathogenesis and the genes identified in our yeast functional screen, coupled with prion-like domain prediction analysis, now provide a powerful resource to facilitate ALS disease gene discovery. PMID:22065782

  17. Predicting Stability Constants for Uranyl Complexes Using Density Functional Theory

    DOE PAGESBeta

    Vukovic, Sinisa; Hay, Benjamin P.; Bryantsev, Vyacheslav S.

    2015-04-02

    The ability to predict the equilibrium constants for the formation of 1:1 uranyl:ligand complexes (log K1 values) provides the essential foundation for the rational design of ligands with enhanced uranyl affinity and selectivity. We also use density functional theory (B3LYP) and the IEFPCM continuum solvation model to compute aqueous stability constants for UO22+ complexes with 18 donor ligands. Theoretical calculations permit reasonably good estimates of relative binding strengths, while the absolute log K1 values are significantly overestimated. Accurate predictions of the absolute log K1 values (root mean square deviation from experiment < 1.0 for log K1 values ranging from 0more » to 16.8) can be obtained by fitting the experimental data for two groups of mono and divalent negative oxygen donor ligands. The utility of correlations is demonstrated for amidoxime and imide dioxime ligands, providing a useful means of screening for new ligands with strong chelate capability to uranyl.« less

  18. Predicting Stability Constants for Uranyl Complexes Using Density Functional Theory

    SciTech Connect

    Vukovic, Sinisa; Hay, Benjamin P.; Bryantsev, Vyacheslav S.

    2015-04-02

    The ability to predict the equilibrium constants for the formation of 1:1 uranyl:ligand complexes (log K1 values) provides the essential foundation for the rational design of ligands with enhanced uranyl affinity and selectivity. We also use density functional theory (B3LYP) and the IEFPCM continuum solvation model to compute aqueous stability constants for UO22+ complexes with 18 donor ligands. Theoretical calculations permit reasonably good estimates of relative binding strengths, while the absolute log K1 values are significantly overestimated. Accurate predictions of the absolute log K1 values (root mean square deviation from experiment < 1.0 for log K1 values ranging from 0 to 16.8) can be obtained by fitting the experimental data for two groups of mono and divalent negative oxygen donor ligands. The utility of correlations is demonstrated for amidoxime and imide dioxime ligands, providing a useful means of screening for new ligands with strong chelate capability to uranyl.

  19. Prediction of glass durability as a function of environmental conditions

    SciTech Connect

    Jantzen, C M

    1988-01-01

    A thermodynamic model of glass durability is applied to natural, ancient, and nuclear waste glasses. The durabilities of over 150 different natural and man-made glasses, including actual ancient Roman and Islamic glasses (Jalame ca. 350 AD, Nishapur 10-11th century AD and Gorgon 9-11th century AD), are compared. Glass durability is a function of the thermodynamic hydration free energy, ..delta..G/sub hyd/, which can be calculated from glass composition and solution pH. The durability of the most durable nuclear waste glasses examined was /approximately/10/sup 6/ years. The least durable waste glass formulations were comparable in durability to the most durable simulated medieval window glasses of /approximately/10/sup 3/ years. In this manner, the durability of nuclear waste glasses has been interpolated to be /approximately/10/sup 6/ years and no less than 10/sup 3/ years. Hydration thermodynamics have been shown to be applicable to the dissolution of glass in various natural environments. Groundwater-glass interactions relative to geologic disposal of nuclear waste, hydration rind dating of obsidians, andor other archeological studies can be modeled, e.g., the relative durabilities of six simulated medieval window glasses have been correctly predicted for both laboratory (one month) and burial (5 years) experiments. Effects of solution pH on glass dissolution has been determined experimentally for the 150 different glasses and can be predicted theoretically by hydration thermodynamics. The effects of solution redox on dissolution of glass matrix elements such as SI and B have shown to be minimal. The combined effects of solution pH and Eh have been described and unified by construction of thermodynamically calculated Pourbaix (pH-Eh) diagrams for glass dissolution. The Pourbaix diagrams have been quantified to describe glass dissolution as a function of environmental conditions by use of the data derived from hydration thermodynamics. 56 refs., 7 figs.

  20. FunPred-1: protein function prediction from a protein interaction network using neighborhood analysis.

    PubMed

    Saha, Sovan; Chatterjee, Piyali; Basu, Subhadip; Kundu, Mahantapas; Nasipuri, Mita

    2014-12-01

    Proteins are responsible for all biological activities in living organisms. Thanks to genome sequencing projects, large amounts of DNA and protein sequence data are now available, but the biological functions of many proteins are still not annotated in most cases. The unknown function of such non-annotated proteins may be inferred or deduced from their neighbors in a protein interaction network. In this paper, we propose two new methods to predict protein functions based on network neighborhood properties. FunPred 1.1 uses a combination of three simple-yet-effective scoring techniques: the neighborhood ratio, the protein path connectivity and the relative functional similarity. FunPred 1.2 applies a heuristic approach using the edge clustering coefficient to reduce the search space by identifying densely connected neighborhood regions. The overall accuracy achieved in FunPred 1.2 over 8 functional groups involving hetero-interactions in 650 yeast proteins is around 87%, which is higher than the accuracy with FunPred 1.1. It is also higher than the accuracy of many of the state-of-the-art protein function prediction methods described in the literature. The test datasets and the complete source code of the developed software are now freely available at http://code.google.com/p/cmaterbioinfo/ . PMID:25424913

  1. FunPred-1: protein function prediction from a protein interaction network using neighborhood analysis.

    PubMed

    Saha, Sovan; Chatterjee, Piyali; Basu, Subhadip; Kundu, Mahantapas; Nasipuri, Mita

    2014-12-01

    Proteins are responsible for all biological activities in living organisms. Thanks to genome sequencing projects, large amounts of DNA and protein sequence data are now available, but the biological functions of many proteins are still not annotated in most cases. The unknown function of such non-annotated proteins may be inferred or deduced from their neighbors in a protein interaction network. In this paper, we propose two new methods to predict protein functions based on network neighborhood properties. FunPred 1.1 uses a combination of three simple-yet-effective scoring techniques: the neighborhood ratio, the protein path connectivity and the relative functional similarity. FunPred 1.2 applies a heuristic approach using the edge clustering coefficient to reduce the search space by identifying densely connected neighborhood regions. The overall accuracy achieved in FunPred 1.2 over 8 functional groups involving hetero-interactions in 650 yeast proteins is around 87%, which is higher than the accuracy with FunPred 1.1. It is also higher than the accuracy of many of the state-of-the-art protein function prediction methods described in the literature. The test datasets and the complete source code of the developed software are now freely available at http://code.google.com/p/cmaterbioinfo/ .

  2. Genome-based discovery, structure prediction and functional analysis of cyclic lipopeptide antibiotics in Pseudomonas species.

    PubMed

    de Bruijn, Irene; de Kock, Maarten J D; Yang, Meng; de Waard, Pieter; van Beek, Teris A; Raaijmakers, Jos M

    2007-01-01

    Analysis of microbial genome sequences have revealed numerous genes involved in antibiotic biosynthesis. In Pseudomonads, several gene clusters encoding non-ribosomal peptide synthetases (NRPSs) were predicted to be involved in the synthesis of cyclic lipopeptide (CLP) antibiotics. Most of these predictions, however, are untested and the association between genome sequence and biological function of the predicted metabolite is lacking. Here we report the genome-based identification of previously unknown CLP gene clusters in plant pathogenic Pseudomonas syringae strains B728a and DC3000 and in plant beneficial Pseudomonas fluorescens Pf0-1 and SBW25. For P. fluorescens SBW25, a model strain in studying bacterial evolution and adaptation, the structure of the CLP with a predicted 9-amino acid peptide moiety was confirmed by chemical analyses. Mutagenesis confirmed that the three identified NRPS genes are essential for CLP synthesis in strain SBW25. CLP production was shown to play a key role in motility, biofilm formation and in activity of SBW25 against zoospores of Phytophthora infestans. This is the first time that an antimicrobial metabolite is identified from strain SBW25. The results indicate that genome mining may enable the discovery of unknown gene clusters and traits that are highly relevant in the lifestyle of plant beneficial and plant pathogenic bacteria.

  3. Student Involvement as Predictive of College Freshmen Plans to Study Abroad

    ERIC Educational Resources Information Center

    Rust, Val; Dhanatya, Cathryn; Furuto, Linda H. L.; Kheiltash, Omid

    2008-01-01

    In this study, the authors analyze the 2003 Cooperative Institutional Research Program (CIRP) Freshman Survey to investigate whether freshmen who intend to study abroad express a history of active involvement. The CIRP Freshman Survey has a number of items indicating student involvement and participation. The authors created six scales based on…

  4. The Role of Family Involvement in Predicting Student-Teacher Relationships and Academic and Behavioral Outcomes for Children of Immigrants

    ERIC Educational Resources Information Center

    Ryce, Patrice

    2012-01-01

    Using a multi-ethnic, socioeconomically varied sample of children of immigrants attending Islamic and public schools from first through third grade, this dissertation examined the degree to which school-based family involvement predicted teacher perceptions of value differences with parents, teacher expectations, child externalizing behavioral…

  5. Predictive Factors in Undergraduates' Involvement in Campus Secret Cults in Public Universities in Edo State of Nigeria

    ERIC Educational Resources Information Center

    Azetta Arhedo, Philip; Aluede, Oyaziwo; Adomeh, Ilu O. C.

    2011-01-01

    This study examined the predictive factors in undergraduates' involvement in campus secret cults in public universities in Edo State of Nigeria. The study employed the descriptive method, specifically the survey format. A random sample of three hundred and eighty (380) undergraduates was drawn from the two public universities. Data were elicited…

  6. No Parent Left Behind: Predicting Parental Involvement in Adolescents' Education within a Sociodemographically Diverse Population

    ERIC Educational Resources Information Center

    Park, Sira; Holloway, Susan D.

    2013-01-01

    Numerous studies have investigated the utility of the Hoover-Dempsey and Sandler (HDS) model for predicting parents' involvement in students' education. Yet, the model has yet to be thoroughly evaluated with respect to youth who are (a) in high school and (b) from sociodemographically diverse families. Using a nationally representative…

  7. Balance assessments for predicting functional ankle instability and stable ankles.

    PubMed

    Ross, Scott E; Linens, Shelley W; Wright, Cynthia J; Arnold, Brent L

    2011-10-01

    A number of instrumented and non-instrumented measures are used to detect balance deficits associated with functional ankle instability (FAI). Determining outcome measures that detect balance deficits associated with FAI might assist clinicians in identifying impairments that may otherwise go undetected with less responsive balance measures. Thus, our objective was to determine the balance measure that best predicted ankle group membership (FAI or stable ankle). Participants included 17 subjects without a history of ankle sprains (168±9 cm, 66±14 kg, 24±5 yr) and 17 subjects with FAI (172±9 cm, 71±11 kg, 22±3 yr). Balance trials were performed without vision and subjects stood on a single leg as motionless as possible for 20s. Balance was quantified with center-of-pressure measures (velocity, area) and error score. Measures were positively correlated with each other (r range: 0.60-0.76). The multifactorial model with all three measures best predicted group membership (F((3,30))=7.20, P=0.001; R(2)=0.42; percent classified correctly=77%), and was followed by the multifactorial model with resultant center-of-pressure velocity and error score (F((2,31))=8.73, P=0.001; R(2)=0.36; percent classified correctly=74%). The resultant center-of-pressure velocity (F((1,32))=13.46, P=0.001; R(2)=0.30; percent classified correctly=74%; unique variance=12.7%) and error score (F((1,32))=12.51, P=0.001; R(2)=0.28; percent classified correctly=71%; unique variance=12.0%) predicted group membership; however, 95th percentile center-of-pressure area ellipse did not (F((1,32))=4.16, P=0.05; R(2)=0.12; percent classified correctly=65%; unique variance=5.8%). A multifactorial single leg balance assessment is best for predicting group membership. COPV is the best single predictor of group membership, but clinicians may use error score to identify deficits associated with FAI if force plates are not available. PMID:21868225

  8. The Transmembrane Domain C of AMPA Receptors is Critically Involved in Receptor Function and Modulation

    PubMed Central

    Terhag, Jan; Gottschling, Kevin; Hollmann, Michael

    2010-01-01

    Ionotropic glutamate receptors are major players in synaptic transmission and are critically involved in many cognitive events. Although receptors of different subfamilies serve different functions, they all show a conserved domain topology. For most of these domains, structure–function relationships have been established and are well understood. However, up to date the role of the transmembrane domain C in receptor function has been investigated only poorly. We have constructed a series of receptor chimeras and point mutants designed to shed light on the structural and/or functional importance of this domain. We here present evidence that the role of transmembrane domain C exceeds that of a mere scaffolding domain and that several amino acid residues located within the domain are crucial for receptor gating and desensitization. Furthermore, our data suggest that the domain may be involved in receptor interaction with transmembrane AMPA receptor regulatory proteins. PMID:21206529

  9. Prediction of novel families of enzymes involved in oxidative and other complex modifications of bases in nucleic acids.

    PubMed

    Iyer, Lakshminarayan M; Tahiliani, Mamta; Rao, Anjana; Aravind, L

    2009-06-01

    Modified bases in nucleic acids present a layer of information that directs biological function over and beyond the coding capacity of the conventional bases. While a large number of modified bases have been identified, many of the enzymes generating them still remain to be discovered. Recently, members of the 2-oxoglutarate- and iron(II)-dependent dioxygenase super-family, which modify diverse substrates from small molecules to biopolymers, were predicted and subsequently confirmed to catalyze oxidative modification of bases in nucleic acids. Of these, two distinct families, namely the AlkB and the kinetoplastid base J binding proteins (JBP) catalyze in situ hydroxylation of bases in nucleic acids. Using sensitive computational analysis of sequences, structures and contextual information from genomic structure and protein domain architectures, we report five distinct families of 2-oxoglutarate- and iron(II)-dependent dioxygenase that we predict to be involved in nucleic acid modifications. Among the DNA-modifying families, we show that the dioxygenase domains of the kinetoplastid base J-binding proteins belong to a larger family that includes the Tet proteins, prototyped by the human oncogene Tet1, and proteins from basidiomycete fungi, chlorophyte algae, heterolobosean amoeboflagellates and bacteriophages. We present evidence that some of these proteins are likely to be involved in oxidative modification of the 5-methyl group of cytosine leading to the formation of 5-hydroxymethylcytosine. The Tet/JBP homologs from basidiomycete fungi such as Laccaria and Coprinopsis show large lineage-specific expansions and a tight linkage with genes encoding a novel and distinct family of predicted transposases, and a member of the Maelstrom-like HMG family. We propose that these fungal members are part of a mobile transposon. To the best of our knowledge, this is the first report of a eukaryotic transposable element that encodes its own DNA-modification enzyme with a

  10. Parental food involvement predicts parent and child intakes of fruits and vegetables.

    PubMed

    Ohly, Heather; Pealing, Juliet; Hayter, Arabella K M; Pettinger, Clare; Pikhart, Hynek; Watt, Richard G; Rees, Gail

    2013-10-01

    In order to develop successful interventions to improve children's diets, the factors influencing food choice need to be understood. Parental food involvement - the level of importance of food in a person's life - may be one of many important factors. The aim of this study was to determine whether parental food involvement is associated with parents' and children's diet quality. As part of an intervention study, 394 parents with children aged between 18 months and 5 years were recruited from children's centres in Cornwall and Islington, UK. Questionnaires were used to collect data on socio-demographic characteristics, parents' diets, and attitudes towards food including food involvement. Children's diets were assessed using the multiple pass 24 h recall method. Parents reported low intakes of fruits and vegetables and high intakes of sugary items for themselves and their young children. Parental food involvement was strongly correlated with consumption of fruits and vegetables (amount and diversity) for both parents and children. Correlations with consumption of sugary drinks and snacks/foods were not significant. These findings indicate that parental food involvement may influence consumption of fruits and vegetables, more so than sugary items. Further research is needed to investigate how parental food involvement could mediate dietary changes. PMID:23684902

  11. Paternal involvement in pediatric Type 1 diabetes: fathers' and mothers' psychological functioning and disease management.

    PubMed

    Hansen, Jennifer A; Weissbrod, Carol; Schwartz, David D; Taylor, W Patrick

    2012-03-01

    Psychological functioning in fathers of children with Type 1 diabetes has received relatively little attention compared to mothers. This study examined fathers' perceived involvement in their children's diabetes care as it related to mothers' and fathers' pediatric parenting stress, depression, anxiety, marital satisfaction, and sleep, and to their children's diabetes regimen adherence and glycemic control. Eighty-two mothers and 43 fathers completed questionnaires. Multivariate linear regressions were conducted separately for mothers and fathers to determine the relationships between the perceived amount and the perceived helpfulness of father involvement in child diabetes care on parental psychosocial functioning and child diabetes control. Maternal perceptions of father helpfulness and amount of involvement in illness care were related to improved marital satisfaction and fewer depressive symptoms in mothers. In fathers, perception of their own amount of involvement was related to increased pediatric parenting stress and anxiety. Better child regimen adherence was associated with maternal perceptions of father helpfulness but not the amount of their involvement, while paternal perceptions of their own helpfulness were related to poorer glycemic control. These findings suggest that fathers and mothers may react differently to their roles in childhood illness and that perceptions of their involvement may be differently associated with children's glycemic control and regimen adherence.

  12. Development of a predictive model of Crohn’s disease proximal small bowel involvement in capsule endoscopy evaluation

    PubMed Central

    Rodrigues-Pinto, Eduardo; Cardoso, Helder; Rosa, Bruno; Santos-Antunes, João; Rodrigues, Susana; Marques, Margarida; Lopes, Susana; Albuquerque, Andreia; Carvalho, Pedro; Moreira, Maria; Cotter, José; Macedo, Guilherme

    2016-01-01

    Background and study aims: One of the indications for capsule endoscopy (CE) is the detection of proximal small bowel (SB) involvement in Crohn's disease (CD) patients. Our aim was to assess clinical, laboratory and endoscopic predictors associated with proximal SB involvement in CD patients submitted to CE. Patients and methods: Retrospective multicenter study in which Lewis score (LS) was systematically determined in 190 CE of patients diagnosed with CD between 2003 and 2014. Results: Significant inflammatory activity (LS > 135) was present in 23 % of the patients in the first tertile and in 31 % of the patients in the second tertile. Albumin, haemoglobin, and total proteins were significantly lower in patients with a LS > 790 compared to patients with a LS < 135, while white blood cell counts and C-reactive protein were significantly higher. In the univariable analysis, a higher risk for proximal SB involvement at CE was associated with ileal involvement at ileocolonoscopy (OR 2.858, P = 0.006), higher platelets levels (OR 1.005, P = 0.004) and significant weight loss (OR 2.450, P = 0.006). In logistic regression, ileal involvement at ileocolonoscopy (OR 6.817, P = 0.003), stricturing behavior (OR 8.653, P = 0.011) and significant weight loss (OR 3.629, P = 0.028) were independently associated with proximal SB involvement at CE. Considering the ROC curve of this model, a cut-off > 0.249 predicts proximal SB involvement with 90 % sensitivity and 40 % specificity (AUROC 0.732). Conclusions: One-third of patients had proximal SB involvement. Predictive factors were significant weight loss, stricturing behaviour, and ileal involvement at ileocolonoscopy. These data help to select CD patients that benefit the most from performing a CE. PMID:27556069

  13. Homework Involvement and Functions: Perceptions of Hong Kong Chinese Primary School Students and Parents

    ERIC Educational Resources Information Center

    Tam, Vicky C. W.; Chan, Raymond M. C.

    2011-01-01

    This study examines the perceptions of Chinese students and parents in Hong Kong on homework involvement, assignment type and homework functions. The relationships of homework perceptions to student and parent attributes are also assessed. The sample includes 1393 pairs of students and their parents from 36 primary schools in Hong Kong. Findings…

  14. Relationship between involvement and functional milk desserts intention to purchase. Influence on attitude towards packaging characteristics.

    PubMed

    Ares, Gastón; Besio, Mariángela; Giménez, Ana; Deliza, Rosires

    2010-10-01

    Consumers perceive functional foods as member of the particular food category to which they belong. In this context, apart from health and sensory characteristics, non-sensory factors such as packaging might have a key role on determining consumers' purchase decisions regarding functional foods. The aims of the present work were to study the influence of different package attributes on consumer willingness to purchase regular and functional chocolate milk desserts; and to assess if the influence of these attributes was affected by consumers' level of involvement with the product. A conjoint analysis task was carried out with 107 regular milk desserts consumers, who were asked to score their willingness to purchase of 16 milk dessert package concepts varying in five features of the package, and to complete a personal involvement inventory questionnaire. Consumers' level of involvement with the product affected their interest in the evaluated products and their reaction towards the considered conjoint variables, suggesting that it could be a useful segmentation tool during food development. Package colour and the presence of a picture on the label were the variables with the highest relative importance, regardless of consumers' involvement with the product. The importance of these variables was higher than the type of dessert indicating that packaging may play an important role in consumers' perception and purchase intention of functional foods.

  15. Self-Determination and Student Involvement in Functional Assessment: Innovative Practices

    ERIC Educational Resources Information Center

    Wehmeyer, Michael L.; Baker, Daniel J.; Blumberg, Richard; Harrison, Richard

    2004-01-01

    The fundamental feature that distinguishes positive behavior support (PBS) from previous generations of applied behavior analysis is its focus on the remediation of deficient contexts that are determined to be the source of the problem. Determining this source involves conducting a functional assessment. This innovative practices article presents…

  16. Relationship between involvement and functional milk desserts intention to purchase. Influence on attitude towards packaging characteristics.

    PubMed

    Ares, Gastón; Besio, Mariángela; Giménez, Ana; Deliza, Rosires

    2010-10-01

    Consumers perceive functional foods as member of the particular food category to which they belong. In this context, apart from health and sensory characteristics, non-sensory factors such as packaging might have a key role on determining consumers' purchase decisions regarding functional foods. The aims of the present work were to study the influence of different package attributes on consumer willingness to purchase regular and functional chocolate milk desserts; and to assess if the influence of these attributes was affected by consumers' level of involvement with the product. A conjoint analysis task was carried out with 107 regular milk desserts consumers, who were asked to score their willingness to purchase of 16 milk dessert package concepts varying in five features of the package, and to complete a personal involvement inventory questionnaire. Consumers' level of involvement with the product affected their interest in the evaluated products and their reaction towards the considered conjoint variables, suggesting that it could be a useful segmentation tool during food development. Package colour and the presence of a picture on the label were the variables with the highest relative importance, regardless of consumers' involvement with the product. The importance of these variables was higher than the type of dessert indicating that packaging may play an important role in consumers' perception and purchase intention of functional foods. PMID:20609376

  17. Can Parents' Involvement in Children's Education Offset the Effects of Early Insensitivity on Academic Functioning?

    ERIC Educational Resources Information Center

    Monti, Jennifer D.; Pomerantz, Eva M.; Roisman, Glenn I.

    2014-01-01

    Data from the National Institute of Child Health and Human Development Study of Early Child Care and Youth Development (N = 1,312) were analyzed to examine whether the adverse effects of early insensitive parenting on children's academic functioning can be offset by parents' later involvement in children's education. Observations of mothers' early…

  18. Transcriptome profiling to identify genes involved in peroxisome assembly and function.

    PubMed

    Smith, Jennifer J; Marelli, Marcello; Christmas, Rowan H; Vizeacoumar, Franco J; Dilworth, David J; Ideker, Trey; Galitski, Timothy; Dimitrov, Krassen; Rachubinski, Richard A; Aitchison, John D

    2002-07-22

    Yeast cells were induced to proliferate peroxisomes, and microarray transcriptional profiling was used to identify PEX genes encoding peroxins involved in peroxisome assembly and genes involved in peroxisome function. Clustering algorithms identified 224 genes with expression profiles similar to those of genes encoding peroxisomal proteins and genes involved in peroxisome biogenesis. Several previously uncharacterized genes were identified, two of which, YPL112c and YOR084w, encode proteins of the peroxisomal membrane and matrix, respectively. Ypl112p, renamed Pex25p, is a novel peroxin required for the regulation of peroxisome size and maintenance. These studies demonstrate the utility of comparative gene profiling as an alternative to functional assays to identify genes with roles in peroxisome biogenesis.

  19. PlasmoDraft: a database of Plasmodium falciparum gene function predictions based on postgenomic data

    PubMed Central

    Bréhélin, Laurent; Dufayard, Jean-François; Gascuel, Olivier

    2008-01-01

    Background Of the 5 484 predicted proteins of Plasmodium falciparum, the main causative agent of malaria, about 60% do not have sufficient sequence similarity with proteins in other organisms to warrant provision of functional assignments. Non-homology methods are thus needed to obtain functional clues for these uncharacterized genes. Results We present PlasmoDraft , a database of Gene Ontology (GO) annotation predictions for P. falciparum genes based on postgenomic data. Predictions of PlasmoDraft are achieved with a Guilt By Association method named Gonna. This involves (1) a predictor that proposes GO annotations for a gene based on the similarity of its profile (measured with transcriptome, proteome or interactome data) with genes already annotated by GeneDB; (2) a procedure that estimates the confidence of the predictions achieved with each data source; (3) a procedure that combines all data sources to provide a global summary and confidence estimate of the predictions. Gonna has been applied to all P. falciparum genes using most publicly available transcriptome, proteome and interactome data sources. Gonna provides predictions for numerous genes without any annotations. For example, 2 434 genes without any annotations in the Biological Process ontology are associated with specific GO terms (e.g. Rosetting, Antigenic variation), and among these, 841 have confidence values above 50%. In the Cellular Component and Molecular Function ontologies, 1 905 and 1 540 uncharacterized genes are associated with specific GO terms, respectively (740 and 329 with confidence value above 50%). Conclusion All predictions along with their confidence values have been compiled in PlasmoDraft, which thus provides an extensive database of GO annotation predictions that can be achieved with these data sources. The database can be accessed in different ways. A global view allows for a quick inspection of the GO terms that are predicted with high confidence, depending on the various

  20. Nonseparable exchange-correlation functional for molecules, including homogeneous catalysis involving transition metals.

    PubMed

    Yu, Haoyu S; Zhang, Wenjing; Verma, Pragya; He, Xiao; Truhlar, Donald G

    2015-05-14

    The goal of this work is to develop a gradient approximation to the exchange-correlation functional of Kohn-Sham density functional theory for treating molecular problems with a special emphasis on the prediction of quantities important for homogeneous catalysis and other molecular energetics. Our training and validation of exchange-correlation functionals is organized in terms of databases and subdatabases. The key properties required for homogeneous catalysis are main group bond energies (database MGBE137), transition metal bond energies (database TMBE32), reaction barrier heights (database BH76), and molecular structures (database MS10). We also consider 26 other databases, most of which are subdatabases of a newly extended broad database called Database 2015, which is presented in the present article and in its ESI. Based on the mathematical form of a nonseparable gradient approximation (NGA), as first employed in the N12 functional, we design a new functional by using Database 2015 and by adding smoothness constraints to the optimization of the functional. The resulting functional is called the gradient approximation for molecules, or GAM. The GAM functional gives better results for MGBE137, TMBE32, and BH76 than any available generalized gradient approximation (GGA) or than N12. The GAM functional also gives reasonable results for MS10 with an MUE of 0.018 Å. The GAM functional provides good results both within the training sets and outside the training sets. The convergence tests and the smooth curves of exchange-correlation enhancement factor as a function of the reduced density gradient show that the GAM functional is a smooth functional that should not lead to extra expense or instability in optimizations. NGAs, like GGAs, have the advantage over meta-GGAs and hybrid GGAs of respectively smaller grid-size requirements for integrations and lower costs for extended systems. These computational advantages combined with the relatively high accuracy for all

  1. Functional identity and diversity of animals predict ecosystem functioning better than species-based indices.

    PubMed

    Gagic, Vesna; Bartomeus, Ignasi; Jonsson, Tomas; Taylor, Astrid; Winqvist, Camilla; Fischer, Christina; Slade, Eleanor M; Steffan-Dewenter, Ingolf; Emmerson, Mark; Potts, Simon G; Tscharntke, Teja; Weisser, Wolfgang; Bommarco, Riccardo

    2015-02-22

    Drastic biodiversity declines have raised concerns about the deterioration of ecosystem functions and have motivated much recent research on the relationship between species diversity and ecosystem functioning. A functional trait framework has been proposed to improve the mechanistic understanding of this relationship, but this has rarely been tested for organisms other than plants. We analysed eight datasets, including five animal groups, to examine how well a trait-based approach, compared with a more traditional taxonomic approach, predicts seven ecosystem functions below- and above-ground. Trait-based indices consistently provided greater explanatory power than species richness or abundance. The frequency distributions of single or multiple traits in the community were the best predictors of ecosystem functioning. This implies that the ecosystem functions we investigated were underpinned by the combination of trait identities (i.e. single-trait indices) and trait complementarity (i.e. multi-trait indices) in the communities. Our study provides new insights into the general mechanisms that link biodiversity to ecosystem functioning in natural animal communities and suggests that the observed responses were due to the identity and dominance patterns of the trait composition rather than the number or abundance of species per se.

  2. Functional identity and diversity of animals predict ecosystem functioning better than species-based indices

    PubMed Central

    Gagic, Vesna; Bartomeus, Ignasi; Jonsson, Tomas; Taylor, Astrid; Winqvist, Camilla; Fischer, Christina; Slade, Eleanor M.; Steffan-Dewenter, Ingolf; Emmerson, Mark; Potts, Simon G.; Tscharntke, Teja; Weisser, Wolfgang; Bommarco, Riccardo

    2015-01-01

    Drastic biodiversity declines have raised concerns about the deterioration of ecosystem functions and have motivated much recent research on the relationship between species diversity and ecosystem functioning. A functional trait framework has been proposed to improve the mechanistic understanding of this relationship, but this has rarely been tested for organisms other than plants. We analysed eight datasets, including five animal groups, to examine how well a trait-based approach, compared with a more traditional taxonomic approach, predicts seven ecosystem functions below- and above-ground. Trait-based indices consistently provided greater explanatory power than species richness or abundance. The frequency distributions of single or multiple traits in the community were the best predictors of ecosystem functioning. This implies that the ecosystem functions we investigated were underpinned by the combination of trait identities (i.e. single-trait indices) and trait complementarity (i.e. multi-trait indices) in the communities. Our study provides new insights into the general mechanisms that link biodiversity to ecosystem functioning in natural animal communities and suggests that the observed responses were due to the identity and dominance patterns of the trait composition rather than the number or abundance of species per se. PMID:25567651

  3. Prediction of Functional Outcome in Axonal Guillain-Barre Syndrome

    PubMed Central

    2016-01-01

    Objective To identify the factors that could predict the functional outcome in patients with the axonal type of Guillain-Barre syndrome (GBS). Methods Two hundred and two GBS patients admitted to our university hospital between 2003 and 2014 were reviewed retrospectively. We defined a good outcome as being "able to walk independently at 1 month after onset" and a poor outcome as being "unable to walk independently at 1 month after onset". We evaluated the factors that differed between the good and poor outcome groups. Results Twenty-four patients were classified into the acute motor axonal neuropathy type. There was a statistically significant difference between the good and poor outcome groups in terms of the GBS disability score at admission, and GBS disability score and Medical Research Council sum score at 1 month after admission. In an electrophysiologic analysis, the good outcome group showed greater amplitude of median, ulnar, deep peroneal, and posterior tibial nerve compound muscle action potentials (CMAP) and greater amplitude of median, ulnar, and superficial peroneal sensory nerve action potentials (SNAP) than the poor outcome group. Conclusion A lower GBS disability score at admission, high amplitude of median, ulnar, deep peroneal, and posterior tibial CMAPs, and high amplitude of median, ulnar, and superficial peroneal SNAPs were associated with being able to walk at 1 month in patients with axonal GBS. PMID:27446785

  4. Anisotropic yield function capable of predicting eight ears

    NASA Astrophysics Data System (ADS)

    Yoon, J. H.; Cazacu, O.

    2011-08-01

    Deep drawing of a cylindrical cup from a rolled sheet is one of the typical forming operations where the effect of this anisotropy is most evident. Indeed, it is well documented in the literature that the number of ears and the shape of the earing pattern correlate with the r-values profile. For the strongly textured aluminum alloy AA 5042 (Numisheet Benchmark 2011), the experimental r-value distribution has two minima between the rolling and transverse direction data provided for this show that the r-value along the transverse direction (TD) is five times larger than the value corresponding to the rolling direction. Therefore, it is expected that there are more that the earing profile has more than four ears. The main objective of this paper is to assess whether a new form of CPB06ex2 yield function (Plunkett et al. (2008)) tailored for metals with no tension-compression asymmetry is capable of predicting more than four ears for this material.

  5. Parental Involvement in Predicting School Motivation: Similar and Differential Effects across Ethnic Groups

    ERIC Educational Resources Information Center

    Fan, Weihua; Williams, Cathy M.; Wolters, Christopher A.

    2012-01-01

    The authors investigated how different dimensions of parental involvement similarly or differentially linked to various constructs of school motivation (academic self-efficacy in mathematics and English, intrinsic motivation toward mathematics and English, and engagement) across ethnic groups of Caucasian, African American, Asian American, and…

  6. How Does Motivational Interviewing Work? Therapist Interpersonal Skill Predicts Client Involvement Within Motivational Interviewing Sessions

    ERIC Educational Resources Information Center

    Moyers, Theresa B.; Miller, William R.; Hendrickson, Stacey M. L.

    2005-01-01

    Although many studies have shown that motivational interviewing (MI) is effective in reducing problem behaviors, few have investigated purported causal mechanisms. Therapist interpersonal skills have been proposed as an influence on client involvement during MI sessions and as a necessary precursor to client commitment language. Using the…

  7. Arts Involvement Predicts Academic Achievement Only When the Child Has a Musical Instrument

    ERIC Educational Resources Information Center

    Young, Laura N.; Cordes, Sara; Winner, Ellen

    2014-01-01

    We examined the associations between academic achievement and arts involvement (access to a musical instrument for the child at home, participation in unspecified after-school arts activities) in a sample of 2339 11-12-year-olds surveyed in the USA between 1998 and 2008. We compared the contributions of these variables to other kinds of cognitive…

  8. Discriminative local subspaces in gene expression data for effective gene function prediction

    PubMed Central

    Gutiérrez, Rodrigo A.; Soto, Alvaro

    2012-01-01

    Motivation: Massive amounts of genome-wide gene expression data have become available, motivating the development of computational approaches that leverage this information to predict gene function. Among successful approaches, supervised machine learning methods, such as Support Vector Machines (SVMs), have shown superior prediction accuracy. However, these methods lack the simple biological intuition provided by co-expression networks (CNs), limiting their practical usefulness. Results: In this work, we present Discriminative Local Subspaces (DLS), a novel method that combines supervised machine learning and co-expression techniques with the goal of systematically predict genes involved in specific biological processes of interest. Unlike traditional CNs, DLS uses the knowledge available in Gene Ontology (GO) to generate informative training sets that guide the discovery of expression signatures: expression patterns that are discriminative for genes involved in the biological process of interest. By linking genes co-expressed with these signatures, DLS is able to construct a discriminative CN that links both, known and previously uncharacterized genes, for the selected biological process. This article focuses on the algorithm behind DLS and shows its predictive power using an Arabidopsis thaliana dataset and a representative set of 101 GO terms from the Biological Process Ontology. Our results show that DLS has a superior average accuracy than both SVMs and CNs. Thus, DLS is able to provide the prediction accuracy of supervised learning methods while maintaining the intuitive understanding of CNs. Availability: A MATLAB® implementation of DLS is available at http://virtualplant.bio.puc.cl/cgi-bin/Lab/tools.cgi Contact: tfpuelma@uc.cl Supplementary Information: Supplementary data are available at http://bioinformatics.mpimp-golm.mpg.de/. PMID:22820203

  9. Origin and Functional Prediction of Pollen Allergens in Plants1[OPEN

    PubMed Central

    Chen, Miaolin; Xu, Jie; Ren, Kang; Searle, Iain

    2016-01-01

    Pollen allergies have long been a major pandemic health problem for human. However, the evolutionary events and biological function of pollen allergens in plants remain largely unknown. Here, we report the genome-wide prediction of pollen allergens and their biological function in the dicotyledonous model plant Arabidopsis (Arabidopsis thaliana) and the monocotyledonous model plant rice (Oryza sativa). In total, 145 and 107 pollen allergens were predicted from rice and Arabidopsis, respectively. These pollen allergens are putatively involved in stress responses and metabolic processes such as cell wall metabolism during pollen development. Interestingly, these putative pollen allergen genes were derived from large gene families and became diversified during evolution. Sequence analysis across 25 plant species from green alga to angiosperms suggest that about 40% of putative pollen allergenic proteins existed in both lower and higher plants, while other allergens emerged during evolution. Although a high proportion of gene duplication has been observed among allergen-coding genes, our data show that these genes might have undergone purifying selection during evolution. We also observed that epitopes of an allergen might have a biological function, as revealed by comprehensive analysis of two known allergens, expansin and profilin. This implies a crucial role of conserved amino acid residues in both in planta biological function and allergenicity. Finally, a model explaining how pollen allergens were generated and maintained in plants is proposed. Prediction and systematic analysis of pollen allergens in model plants suggest that pollen allergens were evolved by gene duplication and then functional specification. This study provides insight into the phylogenetic and evolutionary scenario of pollen allergens that will be helpful to future characterization and epitope screening of pollen allergens. PMID:27436829

  10. Genetic Adaptation to Climate in White Spruce Involves Small to Moderate Allele Frequency Shifts in Functionally Diverse Genes

    PubMed Central

    Hornoy, Benjamin; Pavy, Nathalie; Gérardi, Sébastien; Beaulieu, Jean; Bousquet, Jean

    2015-01-01

    Understanding the genetic basis of adaptation to climate is of paramount importance for preserving and managing genetic diversity in plants in a context of climate change. Yet, this objective has been addressed mainly in short-lived model species. Thus, expanding knowledge to nonmodel species with contrasting life histories, such as forest trees, appears necessary. To uncover the genetic basis of adaptation to climate in the widely distributed boreal conifer white spruce (Picea glauca), an environmental association study was conducted using 11,085 single nucleotide polymorphisms representing 7,819 genes, that is, approximately a quarter of the transcriptome. Linear and quadratic regressions controlling for isolation-by-distance, and the Random Forest algorithm, identified several dozen genes putatively under selection, among which 43 showed strongest signals along temperature and precipitation gradients. Most of them were related to temperature. Small to moderate shifts in allele frequencies were observed. Genes involved encompassed a wide variety of functions and processes, some of them being likely important for plant survival under biotic and abiotic environmental stresses according to expression data. Literature mining and sequence comparison also highlighted conserved sequences and functions with angiosperm homologs. Our results are consistent with theoretical predictions that local adaptation involves genes with small frequency shifts when selection is recent and gene flow among populations is high. Accordingly, genetic adaptation to climate in P. glauca appears to be complex, involving many independent and interacting gene functions, biochemical pathways, and processes. From an applied perspective, these results shall lead to specific functional/association studies in conifers and to the development of markers useful for the conservation of genetic resources. PMID:26560341

  11. Expert Involvement Predicts mHealth App Downloads: Multivariate Regression Analysis of Urology Apps

    PubMed Central

    Osório, Luís; Cavadas, Vitor; Fraga, Avelino; Carrasquinho, Eduardo; Cardoso de Oliveira, Eduardo; Castelo-Branco, Miguel; Roobol, Monique J

    2016-01-01

    Background Urological mobile medical (mHealth) apps are gaining popularity with both clinicians and patients. mHealth is a rapidly evolving and heterogeneous field, with some urology apps being downloaded over 10,000 times and others not at all. The factors that contribute to medical app downloads have yet to be identified, including the hypothetical influence of expert involvement in app development. Objective The objective of our study was to identify predictors of the number of urology app downloads. Methods We reviewed urology apps available in the Google Play Store and collected publicly available data. Multivariate ordinal logistic regression evaluated the effect of publicly available app variables on the number of apps being downloaded. Results Of 129 urology apps eligible for study, only 2 (1.6%) had >10,000 downloads, with half having ≤100 downloads and 4 (3.1%) having none at all. Apps developed with expert urologist involvement (P=.003), optional in-app purchases (P=.01), higher user rating (P<.001), and more user reviews (P<.001) were more likely to be installed. App cost was inversely related to the number of downloads (P<.001). Only data from the Google Play Store and the developers’ websites, but not other platforms, were publicly available for analysis, and the level and nature of expert involvement was not documented. Conclusions The explicit participation of urologists in app development is likely to enhance its chances to have a higher number of downloads. This finding should help in the design of better apps and further promote urologist involvement in mHealth. Official certification processes are required to ensure app quality and user safety. PMID:27421338

  12. Can a video-based hazard perception test used for driver licensing predict crash involvement?

    PubMed

    Horswill, Mark S; Hill, Andrew; Wetton, Mark

    2015-09-01

    In 2008, the state of Queensland in Australia introduced a video-based hazard perception test as part of the licensing process for new drivers. A key validity check for such a test is whether scores are associated with crash involvement. We present data demonstrating that drivers who failed the hazard perception test (based on a ROC curve-derived pass mark) were 25% [95% confidence interval (CI) 6%, 48%] more likely to be involved in an active crash (defined as a crash occurring while the driver's vehicle was moving but they were not engaged in parking or reversing) during a one year period following the test (controlling for driving exposure, age, and sex). Failing drivers were also 17% (95% CI 6%, 29%) more likely to have been involved in active crashes prior to the test, in the period since obtaining their provisional license. These data support the proposal that the hazard perception test is a valid measure of crash-related driving performance. PMID:26093097

  13. Can a video-based hazard perception test used for driver licensing predict crash involvement?

    PubMed

    Horswill, Mark S; Hill, Andrew; Wetton, Mark

    2015-09-01

    In 2008, the state of Queensland in Australia introduced a video-based hazard perception test as part of the licensing process for new drivers. A key validity check for such a test is whether scores are associated with crash involvement. We present data demonstrating that drivers who failed the hazard perception test (based on a ROC curve-derived pass mark) were 25% [95% confidence interval (CI) 6%, 48%] more likely to be involved in an active crash (defined as a crash occurring while the driver's vehicle was moving but they were not engaged in parking or reversing) during a one year period following the test (controlling for driving exposure, age, and sex). Failing drivers were also 17% (95% CI 6%, 29%) more likely to have been involved in active crashes prior to the test, in the period since obtaining their provisional license. These data support the proposal that the hazard perception test is a valid measure of crash-related driving performance.

  14. Physical characteristics that predict involvement with the ball in recreational youth soccer.

    PubMed

    Ré, Alessandro H Nicolai; Cattuzzo, Maria Teresa; Henrique, Rafael Dos Santos; Stodden, David F

    2016-09-01

    This study examined the relative contribution of age, stage of puberty, anthropometric characteristics, health-related fitness, soccer-specific tests and match-related technical performance to variance in involvements with the ball during recreational 5-a-side small-sided (32 × 15 m) soccer matches. Using a cross-sectional design, 80 healthy male students (14.6 ± 0.5 years of age; range 13.6-15.4) who played soccer recreationally were randomly divided into 10 teams and played against each other. Measurements included height, body mass, pubertal status, health-related fitness (12-min walk/run test, standing long jump, 15-m sprint and sit-ups in 30 s), soccer-specific tests (kicking for speed, passing for accuracy and agility run with and without a ball), match-related technical performance (kicks, passes and dribbles) and involvements with the ball during matches. Forward multiple regression analysis revealed that cardiorespiratory fitness (12-min walk/run test) accounted for 36% of the variance in involvements with the ball. When agility with the ball (zigzag running) and power (standing long jump) were included among the predictors, the total explained variance increased to 62%. In conclusion, recreational adolescent players, regardless of their soccer-specific skills, may increase participation in soccer matches most through physical activities that promote improvement in cardiorespiratory fitness, muscle power and agility. PMID:27328724

  15. Impairment in occupational functioning and adult ADHD: the predictive utility of executive function (EF) ratings versus EF tests.

    PubMed

    Barkley, Russell A; Murphy, Kevin R

    2010-05-01

    Attention deficit hyperactivity disorder (ADHD) is associated with deficits in executive functioning (EF). ADHD in adults is also associated with impairments in major life activities, particularly occupational functioning. We investigated the extent to which EF deficits assessed by both tests and self-ratings contributed to the degree of impairment in 11 measures involving self-reported occupational problems, employer reported workplace adjustment, and clinician rated occupational adjustment. Three groups of adults were recruited as a function of their severity of ADHD: ADHD diagnosis (n = 146), clinical controls self-referring for ADHD but not diagnosed with it (n = 97), and community controls (n = 109). Groups were combined and regression analyses revealed that self-ratings of EF were significantly predictive of impairments in all 11 measures of occupational adjustment. Although several tests of EF also did so, they contributed substantially less than did the EF ratings, particularly when analyzed jointly with the ratings. We conclude that EF deficits contribute to the impairments in occupational functioning that occur in conjunction with adult ADHD. Ratings of EF in daily life contribute more to such impairments than do EF tests, perhaps because, as we hypothesize, each assesses a different level in the hierarchical organization of EF as a meta-construct.

  16. Role of ocular involvement in the prediction of visual development and clinical prognosis in Aicardi syndrome.

    PubMed Central

    Menezes, A V; Lewis, T L; Buncic, J R

    1996-01-01

    AIMS/BACKGROUND: This study was undertaken to document visual function and acuity in patients with Aicardi syndrome, and to determine whether there is any relation between ocular features of the syndrome exhibited at birth and later visual function. METHODS: Fourteen patients with Aicardi syndrome, all examined and followed by the same ophthalmologist, were reviewed between 1975 and 1992 and their ocular characteristics and visual acuity described. It was hypothesised that larger lacunae may be associated with poorer clinical outcome and therefore the relation between these two variables was investigated. RESULTS: Visual acuity as documented by Snellen, Sheridan-Gardner, preferential looking, or pattern visual evoked potential tests was in the normal to low normal range in six eyes of four patients. Visual function correlated significantly with macular appearance. Good visual function was preserved if the fovea appeared normal on funduscopic examination and was uninvolved by lacunae. The size of the largest chorioretinal lacuna also correlated significantly with clinical outcome: patients with large lacunae were more likely to be immobile and to have no language skills. CONCLUSION: It was concluded that good visual function in patients with Aicardi syndrome may be anticipated if the fovea is normal. Although many patients have severe psychomotor retardation, the presence of predominantly small chorioretinal lacunae may indicate a better prognosis for mobility and language development. Images PMID:8942377

  17. Structure activity relationships: their function in biological prediction

    SciTech Connect

    Schultz, T.W.

    1982-01-01

    Quantitative structure activity relationships provide a means of ranking or predicting biological effects based on chemical structure. For each compound used to formulate a structure activity model two kinds of quantitative information are required: (1) biological activity and (2) molecular properties. Molecular properties are of three types: (1) molecular shape, (2) physiochemical parameters, and (3) abstract quantitations of molecular structure. Currently the two best descriptors are the hydrophobic parameter, log 1-octanol/water partition coefficient (log P), and the /sup 1/X/sup v/(one-chi-v) molecular connectivity index. Biological responses can be divided into three main categories: (1) non-specific effects due to membrane perturbation, (2) non-specific effects due to interaction with functional groups of proteins, and (3) specific effects due to interaction with receptors. Twenty-six synthetic fossil fuel-related nitrogen-containing aromatic compounds were examined to determine the quantitative correlation between log P and /sup 1/X/sup v/ and population growth impairment of Tetrahymena pyriformis. Nitro-containing compounds are the most active, followed by amino-containing compounds and azaarenes. Within each analog series activity increases with alkyl substitution and ring addition. The planar model log BR = 0.5564 log P + 0.3000 /sup 1/X/sup v/ -2.0138 was determined using mono-nitrogen substituted compounds. Attempts to extrapolate this model to dinitrogen-containing molecules were, for the most part, unsuccessful because of a change in mode of action from membrane perturbation to uncoupling of oxidative phosphoralation.

  18. Parental Involvement in Infant Sleep Routines Predicts Differential Sleep Patterns in Children With and Without Anxiety Disorders.

    PubMed

    Cowie, Jennifer; Palmer, Cara A; Hussain, Hira; Alfano, Candice A

    2016-08-01

    This study compared parents' retrospective reports of their involvement in infant settling strategies and their relation to current sleep patterns among children (N = 84, ages 7-11) with generalized anxiety disorder (GAD) and healthy controls. Parents of children with GAD were significantly more likely to report rocking their infants to sleep and putting infants down when they were already asleep than parents of healthy controls, even when accounting for infant health-related factors and parental anxiety. Greater involvement in infant sleep routines also predicted sleep patterns (measured via actigraphy) during childhood, though opposite relationships were observed in the two groups. Early involvement was related to poorer sleep in control children but better sleep for children with GAD even after controlling for current parenting practices. Findings suggest differential effects of early sleep-related parenting for children with and without later anxiety disorders with possible implications for early intervention. PMID:26493392

  19. Structure and function of a novel LD-carboxypeptidase a involved in peptidoglycan recycling.

    PubMed

    Das, Debanu; Hervé, Mireille; Elsliger, Marc-André; Kadam, Rameshwar U; Grant, Joanna C; Chiu, Hsiu-Ju; Knuth, Mark W; Klock, Heath E; Miller, Mitchell D; Godzik, Adam; Lesley, Scott A; Deacon, Ashley M; Mengin-Lecreulx, Dominique; Wilson, Ian A

    2013-12-01

    Approximately 50% of cell wall peptidoglycan in Gram-negative bacteria is recycled with each generation. The primary substrates used for peptidoglycan biosynthesis and recycling in the cytoplasm are GlcNAc-MurNAc(anhydro)-tetrapeptide and its degradation product, the free tetrapeptide. This complex process involves ∼15 proteins, among which the cytoplasmic enzyme ld-carboxypeptidase A (LdcA) catabolizes the bond between the last two l- and d-amino acid residues in the tetrapeptide to form the tripeptide, which is then utilized as a substrate by murein peptide ligase (Mpl). LdcA has been proposed as an antibacterial target. The crystal structure of Novosphingobium aromaticivorans DSM 12444 LdcA (NaLdcA) was determined at 1.89-Å resolution. The enzyme was biochemically characterized and its interactions with the substrate modeled, identifying residues potentially involved in substrate binding. Unaccounted electron density at the dimer interface in the crystal suggested a potential site for disrupting protein-protein interactions should a dimer be required to perform its function in bacteria. Our analysis extends the identification of functional residues to several other homologs, which include enzymes from bacteria that are involved in hydrocarbon degradation and destruction of coral reefs. The NaLdcA crystal structure provides an alternate system for investigating the structure-function relationships of LdcA and increases the structural coverage of the protagonists in bacterial cell wall recycling.

  20. Structure and Function of a Novel ld-Carboxypeptidase A Involved in Peptidoglycan Recycling

    PubMed Central

    Das, Debanu; Hervé, Mireille; Elsliger, Marc-André; Kadam, Rameshwar U.; Grant, Joanna C.; Chiu, Hsiu-Ju; Knuth, Mark W.; Klock, Heath E.; Miller, Mitchell D.; Godzik, Adam; Lesley, Scott A.; Deacon, Ashley M.

    2013-01-01

    Approximately 50% of cell wall peptidoglycan in Gram-negative bacteria is recycled with each generation. The primary substrates used for peptidoglycan biosynthesis and recycling in the cytoplasm are GlcNAc-MurNAc(anhydro)-tetrapeptide and its degradation product, the free tetrapeptide. This complex process involves ∼15 proteins, among which the cytoplasmic enzyme ld-carboxypeptidase A (LdcA) catabolizes the bond between the last two l- and d-amino acid residues in the tetrapeptide to form the tripeptide, which is then utilized as a substrate by murein peptide ligase (Mpl). LdcA has been proposed as an antibacterial target. The crystal structure of Novosphingobium aromaticivorans DSM 12444 LdcA (NaLdcA) was determined at 1.89-Å resolution. The enzyme was biochemically characterized and its interactions with the substrate modeled, identifying residues potentially involved in substrate binding. Unaccounted electron density at the dimer interface in the crystal suggested a potential site for disrupting protein-protein interactions should a dimer be required to perform its function in bacteria. Our analysis extends the identification of functional residues to several other homologs, which include enzymes from bacteria that are involved in hydrocarbon degradation and destruction of coral reefs. The NaLdcA crystal structure provides an alternate system for investigating the structure-function relationships of LdcA and increases the structural coverage of the protagonists in bacterial cell wall recycling. PMID:24123814

  1. Exploring patient involvement in healthcare decision making across different education and functional health literacy groups.

    PubMed

    Smith, Sian K; Dixon, Ann; Trevena, Lyndal; Nutbeam, Don; McCaffery, Kirsten J

    2009-12-01

    Education and health literacy potentially limit a person's ability to be involved in decisions about their health. Few studies, however, have explored understandings and experiences of involvement in decision making among patients varying in education and health literacy. This paper reports on a qualitative interview study of 73 men and women living in Sydney, Australia, with varying education and functional health literacy levels. Participants were recruited from a community sample with lower educational attainment, plus an educated sample of University of Sydney alumni. The transcripts were analysed using the 'Framework' approach, a matrix-based method of thematic analysis. We found that participants with different education conceptualised their involvement in decision making in diverse ways. Participants with higher education appeared to conceive their involvement as sharing the responsibility with the doctor throughout the decision-making process. This entailed verifying the credibility of the information and exploring options beyond those presented in the consultation. They also viewed themselves as helping others in their health decisions and acting as information resources. In contrast, participants with lower education appeared to conceive their involvement in terms of consenting to an option recommended by the doctor, and having responsibility for the ultimate decision, to agree or disagree with the recommendation. They also described how relatives and friends sought information on their behalf and played a key role in their decisions. Both education groups described how aspects of the patient-practitioner relationship (e.g. continuity, negotiation, trust) and the practitioner's interpersonal communication skills influenced their involvement. Health information served a variety of needs for all groups (e.g. supporting psychosocial, practical and decision support needs). These findings have practical implications for how to involve patients with different

  2. Nanochemical equilibrium involving a small number of molecules: a prediction of a distinct confinement effect.

    PubMed

    Polak, Micha; Rubinovich, Leonid

    2008-10-01

    The equilibrium state of a reaction mixture comprised of a small number of molecules is modeled for three different nanoconfined systems. The issue is relevant to several advanced routes for the synthesis of encapsulated organic molecules, metallic or inorganic nanoclusters, and other nanoscale structures. Canonical-ensemble based formulations and computations predict for the equilibrated closed small systems significant deviations from the (macroscopic) thermodynamic limit. The effects include the enhancement/suppression of the equilibrium extent of the exothermic/endothermic model reactions, associated mainly with reduced numbers of mixed reactant-product microstates in the closed system. Fluctuations in the nanochemical reaction extent, which are found to be closely related to the stoichiometric coefficients, become more dominant for smaller systems and modify considerably the temperature dependence of the equilibrium constant.

  3. Prediction of functional sites in proteins using conserved functional group analysis.

    PubMed

    Innis, C Axel; Anand, A Prem; Sowdhamini, R

    2004-04-01

    A detailed knowledge of a protein's functional site is an absolute prerequisite for understanding its mode of action at the molecular level. However, the rapid pace at which sequence and structural information is being accumulated for proteins greatly exceeds our ability to determine their biochemical roles experimentally. As a result, computational methods are required which allow for the efficient processing of the evolutionary information contained in this wealth of data, in particular that related to the nature and location of functionally important sites and residues. The method presented here, referred to as conserved functional group (CFG) analysis, relies on a simplified representation of the chemical groups found in amino acid side-chains to identify functional sites from a single protein structure and a number of its sequence homologues. We show that CFG analysis can fully or partially predict the location of functional sites in approximately 96% of the 470 cases tested and that, unlike other methods available, it is able to tolerate wide variations in sequence identity. In addition, we discuss its potential in a structural genomics context, where automation, scalability and efficiency are critical, and an increasing number of protein structures are determined with no prior knowledge of function. This is exemplified by our analysis of the hypothetical protein Ydde_Ecoli, whose structure was recently solved by members of the North East Structural Genomics consortium. Although the proposed active site for this protein needs to be validated experimentally, this example illustrates the scope of CFG analysis as a general tool for the identification of residues likely to play an important role in a protein's biochemical function. Thus, our method offers a convenient solution to rapidly and automatically process the vast amounts of data that are beginning to emerge from structural genomics projects. PMID:15033369

  4. Prediction of biological functions on glycosylation site migrations in human influenza H1N1 viruses.

    PubMed

    Sun, Shisheng; Wang, Qinzhe; Zhao, Fei; Chen, Wentian; Li, Zheng

    2012-01-01

    Protein glycosylation alteration is typically employed by various viruses for escaping immune pressures from their hosts. Our previous work had shown that not only the increase of glycosylation sites (glycosites) numbers, but also glycosite migration might be involved in the evolution of human seasonal influenza H1N1 viruses. More importantly, glycosite migration was likely a more effectively alteration way for the host adaption of human influenza H1N1 viruses. In this study, we provided more bioinformatics and statistic evidences for further predicting the significant biological functions of glycosite migration in the host adaptation of human influenza H1N1 viruses, by employing homology modeling and in silico protein glycosylation of representative HA and NA proteins as well as amino acid variability analysis at antigenic sites of HA and NA. The results showed that glycosite migrations in human influenza viruses have at least five possible functions: to more effectively mask the antigenic sites, to more effectively protect the enzymatic cleavage sites of neuraminidase (NA), to stabilize the polymeric structures, to regulate the receptor binding and catalytic activities and to balance the binding activity of hemagglutinin (HA) with the release activity of NA. The information here can provide some constructive suggestions for the function research related to protein glycosylation of influenza viruses, although these predictions still need to be supported by experimental data.

  5. Predictive Accuracy of Urinary neutrophil gelatinase associated lipocalin (NGAL) for renal parenchymal involvement in Children with Acute Pyelonephritis

    PubMed Central

    Ghasemi, Kambiz; Esteghamati, Maryam; Borzoo, Sara; Parvaneh, Erfan; Borzoo, Samira

    2016-01-01

    Introduction Urinary tract infections (UTIs) are among the most prevalent infections in children and infants. Early and accurate detection of renal parenchymal involvement in UTI is necessary for decision making and determining treatment strategies. The aim of this study was to determine the predictive accuracy of urinary neutrophil gelatinase-associated lipocalin (NGAL) for renal parenchymal involvement in children with acute pyelonephritis. Methods This descriptive, cross-sectional study was conducted in 2014 on children who had been diagnosed with UTI. Children who were admitted to Koodakan Hospital in Bandar Abbas, Hormozgan Province, Iran, and whose ages ranged from two months to 14 years were enrolled in the study. Urine samples were taken to conduct urinary NGAL tests, urine cultures, and urinalyses. In addition, some blood samples were collected for the purpose of determining leukocyte count and C-reactive protein (CRP) and to conduct erythrocyte sedimentation rate (ESR) tests. All patients underwent a dimercaptosuccinic acid (DMSA) scan. SPSS software was used to analyze the data. Results Among the participants in the study, 29 were male (32%), and 60 were female (68%). The mean age of the children who participated in the study was 2.99 ± 2.94 years. The results of the Kruskal-Wallis test showed a significant increase in the urinary NGAL level, an increase in the CRP level, and higher DMSA scan grades (p < 0.001). The cutoff point amounted to > 5 mg/l, having the negative predictive value (NPV) of 76.3%, the specificity of 97.83%, the positive predictive value (PPV) of 96.7%, and the sensitivity of 67.4%. Conclusion Urinary NGAL is not sensitive enough for the prediction of renal parenchymal involvement, but it is a specific marker. PMID:27053998

  6. A selective involvement of putamen functional connectivity in youth with internet gaming disorder.

    PubMed

    Hong, Soon-Beom; Harrison, Ben J; Dandash, Orwa; Choi, Eun-Jung; Kim, Seong-Chan; Kim, Ho-Hyun; Shim, Do-Hyun; Kim, Chang-Dai; Kim, Jae-Won; Yi, Soon-Hyung

    2015-03-30

    Brain cortico-striatal circuits have consistently been implicated in the pathology of addiction related disorders. We applied a reliable seed-based analysis of the resting-state brain activity to comprehensively delineate the subdivisions of striatal functional connectivity implicated in internet gaming disorder. Among twelve right-handed male adolescents with internet gaming disorder and 11 right-handed and gender-matched healthy controls, we examined group differences in the functional connectivity of dorsal and ventral subdivisions of the caudate nucleus and putamen, as well as the association of these connectivity indices with behavioral measures of internet use. Adolescents with internet gaming disorder showed significantly reduced dorsal putamen functional connectivity with the posterior insula-parietal operculum. More time spent playing online games predicted significantly greater functional connectivity between the dorsal putamen and bilateral primary somatosensory cortices in adolescents with internet gaming disorder, and significantly lower functional connectivity between the dorsal putamen and bilateral sensorimotor cortices in healthy controls. The dorsal putamen functional connectivity was significantly and specifically different in adolescents with internet gaming disorder. The findings suggest a possible biomarker of internet gaming disorder.

  7. A selective involvement of putamen functional connectivity in youth with internet gaming disorder.

    PubMed

    Hong, Soon-Beom; Harrison, Ben J; Dandash, Orwa; Choi, Eun-Jung; Kim, Seong-Chan; Kim, Ho-Hyun; Shim, Do-Hyun; Kim, Chang-Dai; Kim, Jae-Won; Yi, Soon-Hyung

    2015-03-30

    Brain cortico-striatal circuits have consistently been implicated in the pathology of addiction related disorders. We applied a reliable seed-based analysis of the resting-state brain activity to comprehensively delineate the subdivisions of striatal functional connectivity implicated in internet gaming disorder. Among twelve right-handed male adolescents with internet gaming disorder and 11 right-handed and gender-matched healthy controls, we examined group differences in the functional connectivity of dorsal and ventral subdivisions of the caudate nucleus and putamen, as well as the association of these connectivity indices with behavioral measures of internet use. Adolescents with internet gaming disorder showed significantly reduced dorsal putamen functional connectivity with the posterior insula-parietal operculum. More time spent playing online games predicted significantly greater functional connectivity between the dorsal putamen and bilateral primary somatosensory cortices in adolescents with internet gaming disorder, and significantly lower functional connectivity between the dorsal putamen and bilateral sensorimotor cortices in healthy controls. The dorsal putamen functional connectivity was significantly and specifically different in adolescents with internet gaming disorder. The findings suggest a possible biomarker of internet gaming disorder. PMID:25553620

  8. Prediction of additional lymph node involvement in breast cancer patients with positive sentinel lymph nodes.

    PubMed

    Pohlodek, K; Bozikova, S; Meciarova, I; Mucha, V; Bartova, M; Ondrias, F

    2016-01-01

    Axillary lymph node dissection (ALND) has traditionally been the principal method for evaluating axillary lymph node status in breast cancer patients. In the past decades sentinel lymph nodes biopsy after lymphatic mapping has been used to stage the disease. The majority of sentinel lymph nodes (SLN) positive patients do not have additional metastases in non-sentinel nodes (non-SLN) after additional ALND. These patients are exposed to the morbidity of ALND without any benefit from additional axillary clearence. In the present study we would like to asses the criteria for selecting those patients, who have high risk for non-SLN metastases in the axilla in cases of positive SLN. In this retrospective analysis, clinical and pathologic data from 163 patients who underwent SLN biopsy followed by ALND were collected. Following clinical and pathological characteristics were analyzed to predict the likehood of non-SLN metastases: age, staging, histologic type and grading of the tumors, hormonal receptor status, HER-2 receptor status and Ki-67 protein, angioinvasion, metastases in SLN and non-SLN. Relative frequencies of individual characteristics between sample groups were statistically tested by Chi-square test at significance level p=0.5, when sample sizes in groups were small (≤5) by Fisher´s exact test. Metastasis in SLN were present in 67 (41%) of patients, 48 patients (29,4%) had metastasis also in non-SLN. The ratio between non-SLN positive / non-SLN negative lymph nodes in patients with positive SLN increases with the stage of the disease, the difference between values for the pT1c and pT2 stadium was statistically significant (p = 0.0296). The same applies to grading, but the differences were not significant (p>0.05). We could not find significant differences for angioinvasion of the tumor, probably for small number of patients with angioinvasion (p>0.05).Only the stage of the tumor was shown to be significant in predicting the metastasis in non-SLN in our

  9. On the regularization of extremal three-point functions involving giant gravitons

    NASA Astrophysics Data System (ADS)

    Kristjansen, Charlotte; Mori, Stefano; Young, Donovan

    2015-11-01

    In the AdS5 /CFT4 set-up, extremal three-point functions involving two giant 1/2 BPS gravitons and one point-like 1/2 BPS graviton, when calculated using semi-classical string theory methods, match the corresponding three-point functions obtained in the tree-level gauge theory. The string theory computation relies on a certain regularization procedure whose justification is based on the match between gauge and string theory. We revisit the regularization procedure and reformulate it in a way which allows a generalization to the ABJM set-up where three-point functions of 1/2 BPS operators are not protected and where a match between tree-level gauge theory and semi-classical string theory is hence not expected.

  10. Executive function plays a role in coordinating different perspectives, particularly when one's own perspective is involved.

    PubMed

    Fizke, Ella; Barthel, Dana; Peters, Thomas; Rakoczy, Hannes

    2014-03-01

    While developmental experiments with children and elderly subjects, work with neuropsychological patients and adult experimental studies have consistently found close relations between executive function and theory of mind, the foundation of this relation still remains somewhat unclear. One prominent account holds that executive function is specifically involved in ascribing such mental states, paradigmatically beliefs, that aim at representing the world truly because ascribing such states requires inhibition of normative defaults (beliefs being true) (e.g. Sabbagh, Moses, & Shiverick, 2006). The present studies systematically tested for the role of executive function in different forms of mental state ascription as a function of the type of state ascribed (beliefs or desires) and the first person involvement of the ascriber (whether she herself has an attitude conflicting with one to be ascribed to someone else) in young children. The results reveal that (i) executive function is related not only to belief ascription but equally to desire ascription when both are matched in terms of logical complexity (such that two subjective attitudes have to be ascribed to two agents that are incompatible with each other). (ii) Both for desires and for beliefs, these relations are strongest in such tasks where the ascriber herself is one of the two agents, i.e. has a belief or desire herself that stands in contrast to that to be ascribed to someone else. All in all, these findings suggest that executive function figures in coordinating perspectives more generally, not only epistemic ones, and in particular in coordinating others' and one's own conflicting perspectives.

  11. Living alongside more affluent neighbors predicts greater involvement in antisocial behavior among low-income boys

    PubMed Central

    Odgers, Candice L.; Donley, Sachiko; Caspi, Avshalom; Bates, Christopher J.; Moffitt, Terrie E.

    2016-01-01

    Background The creation of economically mixed communities has been proposed as one way to improve the life outcomes of children growing up in poverty. However, whether low-income children benefit from living alongside more affluent neighbors is unknown. Method Prospectively gathered data on over 1,600 children from the Environmental Risk (E-Risk) Longitudinal Twin Study living in urban environments is used to test whether living alongside more affluent neighbors (measured via high-resolution geo-spatial indices) predicts low-income children’s antisocial behavior (reported by mothers and teachers at the ages of 5, 7, 10, and 12). Results Results indicated that low-income boys (but not girls) surrounded by more affluent neighbors had higher levels of antisocial behavior than their peers embedded in concentrated poverty. The negative effect of growing up alongside more affluent neighbors on low-income boys’ antisocial behavior held across childhood and after controlling for key neighborhood and family-level factors. Conclusions Findings suggest that efforts to create more economically mixed communities for children, if not properly supported, may have iatrogenic effects on boys’ antisocial behavior. PMID:25611118

  12. Comparison of Nodal Risk Formula and MR Lymphography for Predicting Lymph Node Involvement in Prostate Cancer

    SciTech Connect

    Deserno, Willem M.L.L.G.; Debats, Oscar A.; Rozema, Tom; Fortuin, Ansje S.; Heesakkers, Roel A.M.; Hoogeveen, Yvonne; Peer, Petronella G.M.; Barentsz, Jelle O.; Lin, Emile N.J.T. van

    2011-09-01

    Purpose: To compare the nodal risk formula (NRF) as a predictor for lymph node (LN) metastasis in patients with prostate cancer with magnetic resonance lymphography (MRL) using Ultrasmall Super-Paramagnetic particles of Iron Oxide (USPIO) and with histology as gold standard. Methods and Materials: Logistic regression analysis was performed with the results of histopathological evaluation of the LN as dependent variable and the nodal risk according to the NRF and the result of MRL as independent input variables. Receiver operating characteristic (ROC) analysis was performed to assess the performance of the models. Results: The analysis included 375 patients. In the single-predictor regression models, the NRF and MRL results were both significantly (p <0.001) predictive of the presence of LN metastasis. In the models with both predictors included, NRF was nonsignificant (p = 0.126), but MRL remained significant (p <0.001). For NRF, sensitivity was 0.79 and specificity was 0.38; for MRL, sensitivity was 0.82 and specificity was 0.93. After a negative MRL result, the probability of LN metastasis is 4% regardless of the NRF result. After a positive MRL, the probability of having LN metastasis is 68%. Conclusions: MRL is a better predictor of the presence of LN metastasis than NRF. Using only the NRF can lead to a significant overtreatment on the pelvic LN by radiation therapy. When the MRL result is available, the NRF is no longer of added value.

  13. Right Ventricular and Right Atrial Involvement Can Predict Atrial Fibrillation in Patients with Hypertrophic Cardiomyopathy?

    PubMed Central

    Doesch, Christina; Lossnitzer, Dirk; Rudic, Boris; Tueluemen, Erol; Budjan, Johannes; Haubenreisser, Holger; Henzler, Thomas; Schoenberg, Stefan O.; Borggrefe, Martin; Papavassiliu, Theano

    2016-01-01

    Objectives and Background: Atrial fibrillation (AF) is associated with clinical deterioration, stroke and disability in patients with hypertrophic cardiomyopathy (HCM). Therefore, the objective of this study was to evaluated cardiac magnetic resonance (CMR)-derived determinants for the occurrence of AF in patients with HCM. Methods: 98 Patients with HCM and 30 healthy controls underwent CMR and were followed-up for 6±3 years. Results: 19 (19.4%) patients presented with AF at initial diagnosis, 19 (19.4%) developed AF during follow-up and 60 (61.2%) remained in sinus rhythm (SR). Compared to healthy controls, patients with HCM who remained in SR presented with significantly increased left ventricular mass, an elevated left ventricular remodeling index, enlarged left atrial volumes and reduced septal mitral annular plane systolic excursion (MAPSE) compared to healthy controls. Whereas HCM patients who presented with AF at initial diagnosis and those who developed AF during follow-up additionally presented with reduced tricuspid annular plane systolic excursion (TAPSE) and right atrial (RA) dilatation. Receiver-operator curve analysis indicated good predictive performance of TAPSE, RA diameter and septal MAPSE (AUC 0.73, 0.69 and 0.71, respectively) to detect patients at risk of developing AF. Conclusion: Reduced MAPSE measurements and enlarged LA volumes seems to be a common feature in patients with HCM, whereas reduced TAPSE and RA dilatation only seem to be altered in patients with history of AF and those developing AF. Therefore, they could serve as easy determinable markers of AF in patients with HCM. PMID:26812947

  14. Cloud Prediction of Protein Structure and Function with PredictProtein for Debian

    PubMed Central

    Kaján, László; Yachdav, Guy; Vicedo, Esmeralda; Steinegger, Martin; Mirdita, Milot; Angermüller, Christof; Böhm, Ariane; Domke, Simon; Ertl, Julia; Mertes, Christian; Reisinger, Eva; Rost, Burkhard

    2013-01-01

    We report the release of PredictProtein for the Debian operating system and derivatives, such as Ubuntu, Bio-Linux, and Cloud BioLinux. The PredictProtein suite is available as a standard set of open source Debian packages. The release covers the most popular prediction methods from the Rost Lab, including methods for the prediction of secondary structure and solvent accessibility (profphd), nuclear localization signals (predictnls), and intrinsically disordered regions (norsnet). We also present two case studies that successfully utilize PredictProtein packages for high performance computing in the cloud: the first analyzes protein disorder for whole organisms, and the second analyzes the effect of all possible single sequence variants in protein coding regions of the human genome. PMID:23971032

  15. Cloud prediction of protein structure and function with PredictProtein for Debian.

    PubMed

    Kaján, László; Yachdav, Guy; Vicedo, Esmeralda; Steinegger, Martin; Mirdita, Milot; Angermüller, Christof; Böhm, Ariane; Domke, Simon; Ertl, Julia; Mertes, Christian; Reisinger, Eva; Staniewski, Cedric; Rost, Burkhard

    2013-01-01

    We report the release of PredictProtein for the Debian operating system and derivatives, such as Ubuntu, Bio-Linux, and Cloud BioLinux. The PredictProtein suite is available as a standard set of open source Debian packages. The release covers the most popular prediction methods from the Rost Lab, including methods for the prediction of secondary structure and solvent accessibility (profphd), nuclear localization signals (predictnls), and intrinsically disordered regions (norsnet). We also present two case studies that successfully utilize PredictProtein packages for high performance computing in the cloud: the first analyzes protein disorder for whole organisms, and the second analyzes the effect of all possible single sequence variants in protein coding regions of the human genome.

  16. Towards quantifying the role of exact exchange in the prediction hydrogen bond spin-spin coupling constants involving fluorine.

    PubMed

    San Fabián, J; Omar, S; García de la Vega, J M

    2016-08-28

    The effect of a fraction of Hartree-Fock exchange on the calculated spin-spin coupling constants involving fluorine through a hydrogen bond is analyzed in detail. Coupling constants calculated using wavefunction methods are revisited in order to get high-level calculations using the same basis set. Accurate MCSCF results are obtained using an additive approach. These constants and their contributions are used as a reference for density functional calculations. Within the density functional theory, the Hartree-Fock exchange functional is split in short- and long-range using a modified version of the Coulomb-attenuating method with the SLYP functional as well as with the original B3LYP. Results support the difficulties for calculating hydrogen bond coupling constants using density functional methods when fluorine nuclei are involved. Coupling constants are very sensitive to the Hartree-Fock exchange and it seems that, contrary to other properties, it is important to include this exchange for short-range interactions. Best functionals are tested in two different groups of complexes: those related with anionic clusters of type [F(HF)n](-) and those formed by difluoroacetylene and either one or two hydrogen fluoride molecules. PMID:27586916

  17. Metataxonomic profiling and prediction of functional behaviour of wheat straw degrading microbial consortia

    PubMed Central

    2014-01-01

    Background Mixed microbial cultures, in which bacteria and fungi interact, have been proposed as an efficient way to deconstruct plant waste. The characterization of specific microbial consortia could be the starting point for novel biotechnological applications related to the efficient conversion of lignocellulose to cello-oligosaccharides, plastics and/or biofuels. Here, the diversity, composition and predicted functional profiles of novel bacterial-fungal consortia are reported, on the basis of replicated aerobic wheat straw enrichment cultures. Results In order to set up biodegradative microcosms, microbial communities were retrieved from a forest soil and introduced into a mineral salt medium containing 1% of (un)treated wheat straw. Following each incubation step, sequential transfers were carried out using 1 to 1,000 dilutions. The microbial source next to three sequential batch cultures (transfers 1, 3 and 10) were analyzed by bacterial 16S rRNA gene and fungal ITS1 pyrosequencing. Faith’s phylogenetic diversity values became progressively smaller from the inoculum to the sequential batch cultures. Moreover, increases in the relative abundances of Enterobacteriales, Pseudomonadales, Flavobacteriales and Sphingobacteriales were noted along the enrichment process. Operational taxonomic units affiliated with Acinetobacter johnsonii, Pseudomonas putida and Sphingobacterium faecium were abundant and the underlying strains were successfully isolated. Interestingly, Klebsiella variicola (OTU1062) was found to dominate in both consortia, whereas K. variicola-affiliated strains retrieved from untreated wheat straw consortia showed endoglucanase/xylanase activities. Among the fungal players with high biotechnological relevance, we recovered members of the genera Penicillium, Acremonium, Coniochaeta and Trichosporon. Remarkably, the presence of peroxidases, alpha-L-fucosidases, beta-xylosidases, beta-mannases and beta-glucosidases, involved in lignocellulose

  18. Functional brain imaging predicts public health campaign success.

    PubMed

    Falk, Emily B; O'Donnell, Matthew Brook; Tompson, Steven; Gonzalez, Richard; Dal Cin, Sonya; Strecher, Victor; Cummings, Kenneth Michael; An, Lawrence

    2016-02-01

    Mass media can powerfully affect health decision-making. Pre-testing through focus groups or surveys is a standard, though inconsistent, predictor of effectiveness. Converging evidence demonstrates that activity within brain systems associated with self-related processing can predict individual behavior in response to health messages. Preliminary evidence also suggests that neural activity in small groups can forecast population-level campaign outcomes. Less is known about the psychological processes that link neural activity and population-level outcomes, or how these predictions are affected by message content. We exposed 50 smokers to antismoking messages and used their aggregated neural activity within a 'self-localizer' defined region of medial prefrontal cortex to predict the success of the same campaign messages at the population level (n = 400,000 emails). Results demonstrate that: (i) independently localized neural activity during health message exposure complements existing self-report data in predicting population-level campaign responses (model combined R(2) up to 0.65) and (ii) this relationship depends on message content-self-related neural processing predicts outcomes in response to strong negative arguments against smoking and not in response to compositionally similar neutral images. These data advance understanding of the psychological link between brain and large-scale behavior and may aid the construction of more effective media health campaigns.

  19. Molecular Evolution and Functional Characterization of a Bifunctional Decarboxylase Involved in Lycopodium Alkaloid Biosynthesis1[OPEN

    PubMed Central

    Bunsupa, Somnuk; Hanada, Kousuke; Maruyama, Akira; Aoyagi, Kaori; Komatsu, Kana; Ueno, Hideki; Yamashita, Madoka; Sasaki, Ryosuke; Oikawa, Akira; Yamazaki, Mami

    2016-01-01

    Lycopodium alkaloids (LAs) are derived from lysine (Lys) and are found mainly in Huperziaceae and Lycopodiaceae. LAs are potentially useful against Alzheimer’s disease, schizophrenia, and myasthenia gravis. Here, we cloned the bifunctional lysine/ornithine decarboxylase (L/ODC), the first gene involved in LA biosynthesis, from the LA-producing plants Lycopodium clavatum and Huperzia serrata. We describe the in vitro and in vivo functional characterization of the L. clavatum L/ODC (LcL/ODC). The recombinant LcL/ODC preferentially catalyzed the decarboxylation of l-Lys over l-ornithine (l-Orn) by about 5 times. Transient expression of LcL/ODC fused with the amino or carboxyl terminus of green fluorescent protein, in onion (Allium cepa) epidermal cells and Nicotiana benthamiana leaves, showed LcL/ODC localization in the cytosol. Transgenic tobacco (Nicotiana tabacum) hairy roots and Arabidopsis (Arabidopsis thaliana) plants expressing LcL/ODC enhanced the production of a Lys-derived alkaloid, anabasine, and cadaverine, respectively, thus, confirming the function of LcL/ODC in plants. In addition, we present an example of the convergent evolution of plant Lys decarboxylase that resulted in the production of Lys-derived alkaloids in Leguminosae (legumes) and Lycopodiaceae (clubmosses). This convergent evolution event probably occurred via the promiscuous functions of the ancestral Orn decarboxylase, which is an enzyme involved in the primary metabolism of polyamine. The positive selection sites were detected by statistical analyses using phylogenetic trees and were confirmed by site-directed mutagenesis, suggesting the importance of those sites in granting the promiscuous function to Lys decarboxylase while retaining the ancestral Orn decarboxylase function. This study contributes to a better understanding of LA biosynthesis and the molecular evolution of plant Lys decarboxylase. PMID:27303024

  20. Molecular Evolution and Functional Characterization of a Bifunctional Decarboxylase Involved in Lycopodium Alkaloid Biosynthesis.

    PubMed

    Bunsupa, Somnuk; Hanada, Kousuke; Maruyama, Akira; Aoyagi, Kaori; Komatsu, Kana; Ueno, Hideki; Yamashita, Madoka; Sasaki, Ryosuke; Oikawa, Akira; Saito, Kazuki; Yamazaki, Mami

    2016-08-01

    Lycopodium alkaloids (LAs) are derived from lysine (Lys) and are found mainly in Huperziaceae and Lycopodiaceae. LAs are potentially useful against Alzheimer's disease, schizophrenia, and myasthenia gravis. Here, we cloned the bifunctional lysine/ornithine decarboxylase (L/ODC), the first gene involved in LA biosynthesis, from the LA-producing plants Lycopodium clavatum and Huperzia serrata We describe the in vitro and in vivo functional characterization of the L. clavatum L/ODC (LcL/ODC). The recombinant LcL/ODC preferentially catalyzed the decarboxylation of l-Lys over l-ornithine (l-Orn) by about 5 times. Transient expression of LcL/ODC fused with the amino or carboxyl terminus of green fluorescent protein, in onion (Allium cepa) epidermal cells and Nicotiana benthamiana leaves, showed LcL/ODC localization in the cytosol. Transgenic tobacco (Nicotiana tabacum) hairy roots and Arabidopsis (Arabidopsis thaliana) plants expressing LcL/ODC enhanced the production of a Lys-derived alkaloid, anabasine, and cadaverine, respectively, thus, confirming the function of LcL/ODC in plants. In addition, we present an example of the convergent evolution of plant Lys decarboxylase that resulted in the production of Lys-derived alkaloids in Leguminosae (legumes) and Lycopodiaceae (clubmosses). This convergent evolution event probably occurred via the promiscuous functions of the ancestral Orn decarboxylase, which is an enzyme involved in the primary metabolism of polyamine. The positive selection sites were detected by statistical analyses using phylogenetic trees and were confirmed by site-directed mutagenesis, suggesting the importance of those sites in granting the promiscuous function to Lys decarboxylase while retaining the ancestral Orn decarboxylase function. This study contributes to a better understanding of LA biosynthesis and the molecular evolution of plant Lys decarboxylase. PMID:27303024

  1. Increased involvement of the parahippocampal gyri in a sad mood predicts future depressive symptoms

    PubMed Central

    Huffziger, Silke; Ebner-Priemer, Ulrich; Kuehner, Christine; Kirsch, Peter

    2014-01-01

    Behavioral studies suggest a relationship between autobiographical memory, rumination and depression. The objective of this study was to determine whether remitted depressed patients show alterations in connectivity of the posterior cingulate cortex (PCC, a node in the default mode network) with the parahippocampal gyri (PHG, a region associated with autobiographical memory) while intensively recalling negative memories and whether this is related to daily life symptoms and to the further course of depression. Sad mood was induced with keywords of personal negative life events in participants with remitted depression (n = 29) and matched healthy controls (n = 29) during functional magnetic resonance imaging. Additionally, daily life assessments of mood and rumination and a 6-month follow-up were conducted. Remitted depressed participants showed greater connectivity than healthy controls of the PCC with the PHG, which was even stronger in patients with more previous episodes. Furthermore, patients with increased PCC–PHG connectivity showed a sadder mood and more rumination in daily life and a worsening of rumination and depression scores during follow-up. A relationship of negative autobiographical memory processing, rumination, sad mood and depression on a neural level seems likely. The identified increased connectivity probably indicates a ‘scar’ of recurrent depression and may represent a prognostic factor for future depression. PMID:24493842

  2. Neural networks involved in adolescent reward processing: An activation likelihood estimation meta-analysis of functional neuroimaging studies.

    PubMed

    Silverman, Merav H; Jedd, Kelly; Luciana, Monica

    2015-11-15

    Behavioral responses to, and the neural processing of, rewards change dramatically during adolescence and may contribute to observed increases in risk-taking during this developmental period. Functional MRI (fMRI) studies suggest differences between adolescents and adults in neural activation during reward processing, but findings are contradictory, and effects have been found in non-predicted directions. The current study uses an activation likelihood estimation (ALE) approach for quantitative meta-analysis of functional neuroimaging studies to: (1) confirm the network of brain regions involved in adolescents' reward processing, (2) identify regions involved in specific stages (anticipation, outcome) and valence (positive, negative) of reward processing, and (3) identify differences in activation likelihood between adolescent and adult reward-related brain activation. Results reveal a subcortical network of brain regions involved in adolescent reward processing similar to that found in adults with major hubs including the ventral and dorsal striatum, insula, and posterior cingulate cortex (PCC). Contrast analyses find that adolescents exhibit greater likelihood of activation in the insula while processing anticipation relative to outcome and greater likelihood of activation in the putamen and amygdala during outcome relative to anticipation. While processing positive compared to negative valence, adolescents show increased likelihood for activation in the posterior cingulate cortex (PCC) and ventral striatum. Contrasting adolescent reward processing with the existing ALE of adult reward processing reveals increased likelihood for activation in limbic, frontolimbic, and striatal regions in adolescents compared with adults. Unlike adolescents, adults also activate executive control regions of the frontal and parietal lobes. These findings support hypothesized elevations in motivated activity during adolescence. PMID:26254587

  3. Anatomical evidence for the involvement of medial cerebellar output from the interpositus nuclei in cognitive functions

    PubMed Central

    Lu, Xiaofeng; Miyachi, Shigehiro; Takada, Masahiko

    2012-01-01

    Although the cerebellar interpositus nuclei are known to be involved in cognitive functions, such as associative motor learning, no anatomical evidence has been available for this issue. Here we used retrograde transneuronal transport of rabies virus to identify neurons in the cerebellar nuclei that project via the thalamus to area 46 of the prefrontal cortex of macaques in comparison with the projections to the primary motor cortex (M1). After rabies injections into area 46, many neurons in the restricted region of the posterior interpositus nucleus (PIN) were labeled disynaptically via the thalamus, whereas no neuron labeling was found in the anterior interpositus nucleus (AIN). The distribution of the labeled neurons was dorsoventrally different from that of PIN neurons labeled from the M1. This defines an anatomical substrate for the contribution of medial cerebellar output to cognitive functions. Like the dentate nucleus, the PIN has dual motor and cognitive channels, whereas the AIN has a motor channel only. PMID:23112179

  4. Baseline Religion Involvement Predicts Subsequent Salivary Cortisol Levels Among Male But not Female Black Youth

    PubMed Central

    Assari, Shervin; Moghani Lankarani, Maryam; Malekahmadi, Mohammad Reza; Caldwell, Cleopatra Howard; Zimmerman, Marc

    2015-01-01

    race, sex, religiosity, chronic stress, coping, and function of hypothalamo-pituitary-adrenal (HPA). It is not known whether male Black youth who are and those who are not religious differently cope with stress associated with daily discrimination and living in disadvantaged neighborhoods. PMID:26633983

  5. Executive Function Predicts Artificial Language Learning in Children and Adults

    ERIC Educational Resources Information Center

    Kapa, Leah Lynn

    2013-01-01

    Prior research has established an executive function advantage among bilinguals as compared to monolingual peers. These non-linguistic cognitive advantages are largely assumed to result from the experience of managing two linguistic systems. However, the possibility remains that the relationship between bilingualism and executive function is…

  6. Circadian Misalignment, Reward-Related Brain Function, and Adolescent Alcohol Involvement

    PubMed Central

    Hasler, Brant P.; Clark, Duncan B.

    2013-01-01

    Background Developmental changes in sleep and circadian rhythms that occur during adolescence may contribute to reward-related brain dysfunction, and consequently increase the risk of alcohol use disorders (AUDs). Methods This review (a) describes marked changes in circadian rhythms, reward-related behavior and brain function, and alcohol involvement that occur during adolescence, (b) offers evidence that these parallel developmental changes are associated, and (c) posits a conceptual model by which misalignment between sleep-wake timing and endogenous circadian timing may increase the risk of adolescent AUDs by altering reward-related brain function. Results The timing of sleep shifts later throughout adolescence, in part due to developmental changes in endogenous circadian rhythms, which tend to become more delayed. This tendency for delayed sleep and circadian rhythms is at odds with early school start times during secondary education, leading to misalignment between many adolescents’ sleep-wake schedules and their internal circadian timing. Circadian misalignment is associated with increased alcohol use and other risk-taking behaviors, as well as sleep loss and sleep disturbance. Growing evidence indicates that circadian rhythms modulate the reward system, suggesting that circadian misalignment may impact adolescent alcohol involvement by altering reward-related brain function. Neurocognitive function is also subject to sleep and circadian influence, and thus circadian misalignment may also impair inhibitory control and other cognitive processes relevant to alcohol use. Specifically, circadian misalignment may further exacerbate the cortical-subcortical imbalance within the reward circuit, an imbalance thought to explain increased risk-taking and sensation-seeking during adolescence. Adolescent alcohol use is highly contexualized, however, and thus studies testing this model will also need to consider factors that may influence both circadian misalignment and

  7. Obesity is marked by distinct functional connectivity in brain networks involved in food reward and salience.

    PubMed

    Wijngaarden, M A; Veer, I M; Rombouts, S A R B; van Buchem, M A; Willems van Dijk, K; Pijl, H; van der Grond, J

    2015-01-01

    We hypothesized that brain circuits involved in reward and salience respond differently to fasting in obese versus lean individuals. We compared functional connectivity networks related to food reward and saliency after an overnight fast (baseline) and after a prolonged fast of 48 h in lean versus obese subjects. We included 13 obese (2 males, 11 females, BMI 35.4 ± 1.2 kg/m(2), age 31 ± 3 years) and 11 lean subjects (2 males, 9 females, BMI 23.2 ± 0.5 kg/m(2), age 28 ± 3 years). Resting-state functional magnetic resonance imaging scans were made after an overnight fast (baseline) and after a prolonged 48 h fast. Functional connectivity of the amygdala, hypothalamus and posterior cingulate cortex (default-mode) networks was assessed using seed-based correlations. At baseline, we found a stronger connectivity between hypothalamus and left insula in the obese subjects. This effect diminished upon the prolonged fast. After prolonged fasting, connectivity of the hypothalamus with the dorsal anterior cingulate cortex (dACC) increased in lean subjects and decreased in obese subjects. Amygdala connectivity with the ventromedial prefrontal cortex was stronger in lean subjects at baseline, which did not change upon the prolonged fast. No differences in posterior cingulate cortex connectivity were observed. In conclusion, obesity is marked by alterations in functional connectivity networks involved in food reward and salience. Prolonged fasting differentially affected hypothalamic connections with the dACC and the insula between obese and lean subjects. Our data support the idea that food reward and nutrient deprivation are differently perceived and/or processed in obesity.

  8. Functional connectivity between brain regions involved in learning words of a new language.

    PubMed

    Veroude, Kim; Norris, David G; Shumskaya, Elena; Gullberg, Marianne; Indefrey, Peter

    2010-04-01

    Previous studies have identified several brain regions that appear to be involved in the acquisition of novel word forms. Standard word-by-word presentation is often used although exposure to a new language normally occurs in a natural, real world situation. In the current experiment we investigated naturalistic language exposure and applied a model-free analysis for hemodynamic-response data. Functional connectivity, temporal correlations between hemodynamic activity of different areas, was assessed during rest before and after presentation of a movie of a weather report in Mandarin Chinese to Dutch participants. We hypothesized that learning of novel words might be associated with stronger functional connectivity of regions that are involved in phonological processing. Participants were divided into two groups, learners and non-learners, based on the scores on a post hoc word recognition task. The learners were able to recognize Chinese target words from the weather report, while the non-learners were not. In the first resting state period, before presentation of the movie, stronger functional connectivity was observed for the learners compared to the non-learners between the left supplementary motor area and the left precentral gyrus as well as the left insula and the left rolandic operculum, regions that are important for phonological rehearsal. After exposure to the weather report, functional connectivity between the left and right supramarginal gyrus was stronger for learners than for non-learners. This is consistent with a role of the left supramarginal gyrus in the storage of phonological forms. These results suggest both pre-existing and learning-induced differences between the two groups.

  9. Prediction of Functional Outcome in Individuals at Clinical High Risk for Psychosis

    PubMed Central

    Carrión, Ricardo E.; McLaughlin, Danielle; Goldberg, Terry E.; Auther, Andrea M.; Olsen, Ruth H.; Olvet, Doreen M.; Correll, Christoph U.; Cornblatt, Barbara A.

    2014-01-01

    Importance A major public health concern associated with schizophrenia and psychotic disorders is the long-term disability that involves impaired cognition, lack of social support, and an inability to function independently in the community. A critical goal of early detection and intervention studies in psychosis is therefore to understand the factors leading to this often profound impairment. Objective To develop a predictive model of functional (social and role) outcome in a clinical high-risk sample for psychosis. Design Prospective, naturalistic, longitudinal 3- to 5-year follow-up study. Setting The Recognition and Prevention Program in New York, a research clinic located in the Zucker Hillside Hospital in New York. Participants One hundred one treatment-seeking patients at clinical high risk for psychosis. Ninety-two (91%) were followed up prospectively for a mean (SD) of 3 (1.6) years. Intervention Neurocognitive and clinical assessment. Main Outcomes and Measures The primary outcome variables were social and role functioning at the last follow-up visit. Results Poor social outcome was predicted by reduced processing speed (odds ratio [OR], 1.38; 95% CI, 1.050-1.823; P = .02), impaired social functioning at baseline (OR, 1.85; 95% CI, 1.258-2.732; P = .002), and total disorganized symptoms (OR, 5.06; 95% CI, 1.548-16.527; P = .007). Reduced performance on tests for verbal memory (OR, 1.74; 95% CI, 1.169-2.594; P = .006), role functioning at baseline (OR, 1.34; 95% CI, 1.053-1.711; P = .02), and motor disturbances (OR, 1.77; 95% CI, 1.060-2.969; P = .03) predicted role outcome. The areas under the curve for the social and role prediction models were 0.824 (95% CI, 0.736-0.913; P < .001) and 0.77 (95% CI, 0.68-0.87; P < .001), respectively, demonstrating a high discriminative ability. In addition, poor functional outcomes were not entirely dependent on the development of psychosis, because 40.3% and 45.5% of nonconverters at clinical high risk had poor social

  10. The Ku70 DNA-repair protein is involved in centromere function in a grasshopper species.

    PubMed

    Cabrero, Josefa; Bakkali, Mohammed; Navarro-Domínguez, Beatriz; Ruíz-Ruano, Francisco J; Martín-Blázquez, Rubén; López-León, María Dolores; Camacho, Juan Pedro M

    2013-06-25

    The Ku70 protein is involved in numerous cell functions, the nonhomologous end joining (NHEJ) DNA repair pathway being the best known. Here, we report a novel function for this protein in the grasshopper Eyprepocnemis plorans. We observed the presence of large Ku70 foci on the centromeres of meiotic and mitotic chromosomes during the cell cycle stages showing the highest centromeric activity (i.e., metaphase and anaphase). The fact that colchicine treatment prevented centromeric location of Ku70, suggests a microtubule-dependent centromeric function for Ku70. Likewise, the absence of Ku70 at metaphase-anaphase centromeres from three males whose Ku70 gene had been knocked down using interference RNA, and the dramatic increase in the frequency of polyploid spermatids observed in these males, suggest that the centromeric presence of Ku70 is required for normal cytokinesis in this species. The centromeric function of Ku70 was not observed in 14 other grasshopper and locust species, or in the mouse, thus suggesting that it is an autapomorphy in E. plorans. PMID:23797468

  11. Better prediction of functional effects for sequence variants

    PubMed Central

    2015-01-01

    Elucidating the effects of naturally occurring genetic variation is one of the major challenges for personalized health and personalized medicine. Here, we introduce SNAP2, a novel neural network based classifier that improves over the state-of-the-art in distinguishing between effect and neutral variants. Our method's improved performance results from screening many potentially relevant protein features and from refining our development data sets. Cross-validated on >100k experimentally annotated variants, SNAP2 significantly outperformed other methods, attaining a two-state accuracy (effect/neutral) of 83%. SNAP2 also outperformed combinations of other methods. Performance increased for human variants but much more so for other organisms. Our method's carefully calibrated reliability index informs selection of variants for experimental follow up, with the most strongly predicted half of all effect variants predicted at over 96% accuracy. As expected, the evolutionary information from automatically generated multiple sequence alignments gave the strongest signal for the prediction. However, we also optimized our new method to perform surprisingly well even without alignments. This feature reduces prediction runtime by over two orders of magnitude, enables cross-genome comparisons, and renders our new method as the best solution for the 10-20% of sequence orphans. SNAP2 is available at: https://rostlab.org/services/snap2web Definitions used Delta, input feature that results from computing the difference feature scores for native amino acid and feature scores for variant amino acid; nsSNP, non-synoymous SNP; PMD, Protein Mutant Database; SNAP, Screening for non-acceptable polymorphisms; SNP, single nucleotide polymorphism; variant, any amino acid changing sequence variant. PMID:26110438

  12. Paternal Involvement in Childcare as a Function of Maternal Employment in Nuclear and Extended Families in India.

    ERIC Educational Resources Information Center

    Suppal, Preeti; Roopnarine, Jaipaul L.

    1999-01-01

    Assessed parental involvement in child care as a function of family structure and maternal employment in 92 dual-wage and 103 single-wage families in India. Parents in single-wage families spent more time in primary caregiving, but fathers' involvement did not vary as a function of mothers' employment status or family structure. (SLD)

  13. Functions of Parental Involvement and Effects of School Climate on Bullying Behaviors among South Korean Middle School Students

    ERIC Educational Resources Information Center

    Lee, Chang-Hun; Song, Juyoung

    2012-01-01

    This study uses an ecological systems theory to understand bullying behavior. Emphasis is given to overcome limitations found in the literature, such as very little empirical research on functions of parental involvement and the impacts of school climate on bullying as an outcome variable. Two functions of parental involvement investigated are (a)…

  14. Predicted Risk of Radiation-Induced Cancers After Involved Field and Involved Node Radiotherapy With or Without Intensity Modulation for Early-Stage Hodgkin Lymphoma in Female Patients

    SciTech Connect

    Weber, Damien C.; Johanson, Safora; Peguret, Nicolas; Cozzi, Luca; Olsen, Dag R.

    2011-10-01

    Purpose: To assess the excess relative risk (ERR) of radiation-induced cancers (RIC) in female patients with Hodgkin lymphoma (HL) female patients treated with conformal (3DCRT), intensity modulated (IMRT), or volumetric modulated arc (RA) radiation therapy. Methods and Materials: Plans for 10 early-stage HL female patients were computed for 3DCRT, IMRT, and RA with involved field RT (IFRT) and involvednode RT (INRT) radiation fields. Organs at risk dose--volume histograms were computed and inter-compared for IFRT vs. INRT and 3DCRT vs. IMRT/RA, respectively. The ERR for cancer induction in breasts, lungs, and thyroid was estimated using both linear and nonlinear models. Results: The mean estimated ERR for breast, lung, and thyroid were significantly lower (p < 0.01) with INRT than with IFRT planning, regardless of the radiation delivery technique used, assuming a linear dose-risk relationship. We found that using the nonlinear model, the mean ERR values were significantly (p < 0.01) increased with IMRT or RA compared to those with 3DCRT planning for the breast, lung, and thyroid, using an IFRT paradigm. After INRT planning, IMRT or RA increased the risk of RIC for lung and thyroid only. Conclusions: In this comparative planning study, using a nonlinear dose--risk model, IMRT or RA increased the estimated risk of RIC for breast, lung, and thyroid for HL female patients. This study also suggests that INRT planning, compared to IFRT planning, may reduce the ERR of RIC when risk is predicted using a linear model. Observing the opposite effect, with a nonlinear model, however, questions the validity of these biologically parameterized models.

  15. In silico prediction of structure and functions for some proteins of male-specific region of the human Y chromosome.

    PubMed

    Saha, Chinmoy; Polash, Ahsan Habib; Islam, Md Tariqul; Shafrin, Farhana

    2013-12-01

    Male-specific region of the human Y chromosome (MSY) comprises 95% of its length that is functionally active. This portion inherits in block from father to male offspring. Most of the genes in the MSY region are involved in male-specific function, such as sex determination and spermatogenesis; also contains genes probably involved in other cellular functions. However, a detailed characterization of numerous MSY-encoded proteins still remains to be done. In this study, 12 uncharacterized proteins of MSY were analyzed through bioinformatics tools for structural and functional characterization. Within these 12 proteins, a total of 55 domains were found, with DnaJ domain signature corresponding to be the highest (11%) followed by both FAD-dependent pyridine nucleotide reductase signature and fumarate lyase superfamily signature (9%). The 3D structures of our selected proteins were built up using homology modeling and the protein threading approaches. These predicted structures confirmed in detail the stereochemistry; indicating reasonably good quality model. Furthermore the predicted functions and the proteins with whom they interact established their biological role and their mechanism of action at molecular level. The results of these structure-functional annotations provide a comprehensive view of the proteins encoded by MSY, which sheds light on their biological functions and molecular mechanisms. The data presented in this study may assist in future prognosis of several human diseases such as Turner syndrome, gonadal sex reversal, spermatogenic failure, and gonadoblastoma.

  16. Fitness Costs Predict Inbreeding Aversion Irrespective of Self-Involvement: Support for Hypotheses Derived from Evolutionary Theory

    PubMed Central

    Antfolk, Jan; Lieberman, Debra; Santtila, Pekka

    2012-01-01

    It is expected that in humans, the lowered fitness of inbred offspring has produced a sexual aversion between close relatives. Generally, the strength of this aversion depends on the degree of relatedness between two individuals, with closer relatives inciting greater aversion than more distant relatives. Individuals are also expected to oppose acts of inbreeding that do not include the self, as inbreeding between two individuals posits fitness costs not only to the individuals involved in the sexual act, but also to their biological relatives. Thus, the strength of inbreeding aversion should be predicted by the fitness costs an inbred child posits to a given individual, irrespective of this individual’s actual involvement in the sexual act. To test this prediction, we obtained information about the family structures of 663 participants, who reported the number of same-sex siblings, opposite-sex siblings, opposite-sex half siblings and opposite-sex cousins. Each participant was presented with three different types of inbreeding scenarios: 1) Participant descriptions, in which participants themselves were described as having sex with an actual opposite-sex relative (sibling, half sibling, or cousin); 2) Related third-party descriptions, in which participants’ actual same-sex siblings were described as having sex with their actual opposite-sex relatives; 3) Unrelated third-party descriptions, in which individuals of the same sex as the participants but unrelated to them were described as having sex with opposite-sex relatives. Participants rated each description on the strength of sexual aversion (i.e., disgust-reaction). We found that unrelated third-party descriptions elicited less disgust than related third-party and participant descriptions. Related third-party and participant descriptions elicited similar levels of disgust suggesting that the strength of inbreeding aversion is predicted by inclusive fitness costs. Further, in the related and unrelated

  17. Predictability Effects on Durations of Content and Function Words in Conversational English

    SciTech Connect

    Bell, Alan; Brenier, Jason; Gregory, Michelle L.; girand, cynthia; Jurafsky, Daniel

    2009-01-01

    Content and function word duration are affected differently by their frequency and predictability. Regression analyses of conversational speech show that content words are shorter when they are more frequent, but function words are not. Repeated content words are shorter, but function words are not. Furthermore, function words have shorter pronunciations, after controlling for frequency and predictability. both content and function words are strongly affected by predictability from the word following them, and only very frequent function words show sensitivity to predictability from the preceding word. The results support the view that content and function words are accessed by different production mechanisms. We argue that words’ form differences due to frequency or repetition stem from their faster or slower lexical access, mediated by a general mechanism that coordinates the pace of higher-level planning and the execution of the articulatory plan.

  18. Functional characterization of an α-esterase gene involving malathion detoxification in Bactrocera dorsalis (Hendel).

    PubMed

    Wang, Luo-Luo; Lu, Xue-Ping; Meng, Li-Wei; Huang, Yong; Wei, Dong; Jiang, Hong-Bo; Smagghe, Guy; Wang, Jin-Jun

    2016-06-01

    Extensive use of insecticides in many orchards has prompted resistance development in the oriental fruit fly, Bactrocera dorsalis (Hendel). In this study, a laboratory selected strain of B. dorsalis (MR) with a 21-fold higher resistance to malathion was used to examine the resistance mechanisms to this organophosphate insecticide. Carboxylesterase (CarE) was found to be involved in malathion resistance in B. dorsalis from the synergism bioassay by CarE-specific inhibitor triphenylphosphate (TPP). Molecular studies further identified a previously uncharacterized α-esterase gene, BdCarE2, that may function in the development of malathion resistance in B. dorsalis via gene upregulation. This gene is predominantly expressed in the Malpighian tubules, a key insect tissue for detoxification. The transcript levels of BdCarE2 were also compared between the MR and a malathion-susceptible (MS) strain of B. dorsalis, and it was significantly more abundant in the MR strain. No sequence mutation or gene copy changes were detected between the two strains. Functional studies using RNA interference (RNAi)-mediated knockdown of BdCarE2 significantly increased the malathion susceptibility in the adult files. Furthermore, heterologous expression of BdCarE2 combined with cytotoxicity assay in Sf9 cells demonstrated that BdCarE2 could probably detoxify malathion. Taken together, the current study bring new molecular evidence supporting the involvement of CarE-mediated metabolism in resistance development against malathion in B. dorsalis and also provide bases on functional analysis of insect α-esterase associated with insecticide resistance. PMID:27155483

  19. Unique sequences and predicted functions of myosins in Tetrahymena thermophila.

    PubMed

    Sugita, Maki; Iwataki, Yoshinori; Nakano, Kentaro; Numata, Osamu

    2011-07-01

    Myosins are eukaryotic actin-dependent molecular motors that play important roles in many cellular events. The function of each myosin is determined by a variety of functional domains in its tail region. In some major model organisms, the functions and properties of myosins have been investigated based on their amino acid sequences. However, in protists, myosins have been little studied beyond the level of genome sequences. We therefore investigated the mRNA expression levels and amino acid sequences of 13 myosin genes in the ciliate Tetrahymena thermophila. This study is an overview of myosins in T. thermophila, which has no typical myosins, such as class I, II, or V myosins. We showed that all 13 myosins were expressed in vegetative cells. Furthermore, these myosins could be divided into 3 subclasses based on four functional domains in their tail regions. Subclass 1 comprised of 8 myosins has both MyTH4 and FERM domains, and has a potential to function in vesicle transport or anchoring between membrane and actin filaments. Subclass 2 comprised of 4 myosins has RCC1 (regulator of chromosome condensation 1) domains, which are found only in some protists, and may have unconventional features. Subclass 3 is comprised of one myosin, which has a long coiled-coil domain like class II myosin. In addition, phylogenetic analysis on the basis of motor domains showed that T. thermophila myosins are separated into two clusters: one consists of subclasses 1 and 2, and the other consists of subclass 3.

  20. Genetic analysis of functions involved in adhesion of Pseudomonas putida to seeds.

    PubMed

    Espinosa-Urgel, M; Salido, A; Ramos, J L

    2000-05-01

    Many agricultural uses of bacteria require the establishment of efficient bacterial populations in the rhizosphere, for which colonization of plant seeds often constitutes a critical first step. Pseudomonas putida KT2440 is a strain that colonizes the rhizosphere of a number of agronomically important plants at high population densities. To identify the functions involved in initial seed colonization by P. putida KT2440, we subjected this strain to transposon mutagenesis and screened for mutants defective in attachment to corn seeds. Eight different mutants were isolated and characterized. While all of them showed reduced attachment to seeds, only two had strong defects in their adhesion to abiotic surfaces (glass and different plastics). Sequences of the loci affected in all eight mutants were obtained. None of the isolated genes had previously been described in P. putida, although four of them showed clear similarities with genes of known functions in other organisms. They corresponded to putative surface and membrane proteins, including a calcium-binding protein, a hemolysin, a peptide transporter, and a potential multidrug efflux pump. One other showed limited similarities with surface proteins, while the remaining three presented no obvious similarities with known genes, indicating that this study has disclosed novel functions.

  1. The involvement of working memory and inhibition functions in the different phases of insight problem solving.

    PubMed

    Lv, Kai

    2015-07-01

    In this article, the involvement of working memory capacity and inhibition functions in different phases of insight problem solving is investigated, by employing a method of separating the different phases of insight problem solving directly, on the basis of the subjects' oral reports. Two experiments are described. In Experiment 1, 87 subjects were administered a series of working memory span tasks and inhibition tasks, as well as a verbal insight problem. In Experiment 2, 119 subjects were administered the same working memory span tasks and inhibition tasks as in the first experiment, as well as a spatial insight problem. Several conclusions can be drawn from this study. First, the insight problem-solving process can be divided into several relatively independent phases, including an initial searching phase and a restructuring phase. Second, executive functions, as measured by working memory capacity, influence mainly the initial searching phase, rather than the restructuring phase. Third, inhibition functions play important but complex roles in restructuring, and sometimes could influence restructuring in contradictory ways simultaneously. The implications and value of this study are discussed further.

  2. Hal2p functions in Bdf1p-involved salt stress response in Saccharomyces cerevisiae.

    PubMed

    Chen, Lei; Liu, Liangyu; Wang, Mingpeng; Fu, Jiafang; Zhang, Zhaojie; Hou, Jin; Bao, Xiaoming

    2013-01-01

    The Saccharomyces cerevisiae Bdf1p associates with the basal transcription complexes TFIID and acts as a transcriptional regulator. Lack of Bdf1p is salt sensitive and displays abnormal mitochondrial function. The nucleotidase Hal2p detoxifies the toxic compound 3' -phosphoadenosine-5'-phosphate (pAp), which blocks the biosynthesis of methionine. Hal2p is also a target of high concentration of Na(+). Here, we reported that HAL2 overexpression recovered the salt stress sensitivity of bdf1Δ. Further evidence demonstrated that HAL2 expression was regulated indirectly by Bdf1p. The salt stress response mechanisms mediated by Bdf1p and Hal2p were different. Unlike hal2Δ, high Na(+) or Li(+) stress did not cause pAp accumulation in bdf1Δ and methionine supplementation did not recover its salt sensitivity. HAL2 overexpression in bdf1Δ reduced ROS level and improved mitochondrial function, but not respiration. Further analyses suggested that autophagy was apparently defective in bdf1Δ, and autophagy stimulated by Hal2p may play an important role in recovering mitochondrial functions and Na(+) sensitivity of bdf1Δ. Our findings shed new light towards our understanding about the molecular mechanism of Bdf1p-involved salt stress response in budding yeast.

  3. Functional prediction: identification of protein orthologs and paralogs.

    PubMed Central

    Chen, R.; Jeong, S. S.

    2000-01-01

    Orthologs typically retain the same function in the course of evolution. Using beta-decarboxylating dehydrogenase family as a model, we demonstrate that orthologs can be confidently identified. The strategy is based on our recent findings that substitutions of only a few amino acid residues in these enzymes are sufficient to exchange substrate and coenzyme specificities. Hence, the few major specificity determinants can serve as reliable markers for determining orthologous or paralogous relationships. The power of this approach has been demonstrated by correcting similarity-based functional misassignment and discovering new genes and related pathways, and should be broadly applicable to other enzyme families. PMID:11206056

  4. Prediction of mitochondrial protein function by comparative physiology and phylogenetic profiling.

    PubMed

    Cheng, Yiming; Perocchi, Fabiana

    2015-01-01

    According to the endosymbiotic theory, mitochondria originate from a free-living alpha-proteobacteria that established an intracellular symbiosis with the ancestor of present-day eukaryotic cells. During the bacterium-to-organelle transformation, the proto-mitochondrial proteome has undergone a massive turnover, whereby less than 20 % of modern mitochondrial proteomes can be traced back to the bacterial ancestor. Moreover, mitochondrial proteomes from several eukaryotic organisms, for example, yeast and human, show a rather modest overlap, reflecting differences in mitochondrial physiology. Those differences may result from the combination of differential gain and loss of genes and retargeting processes among lineages. Therefore, an evolutionary signature, also called "phylogenetic profile", could be generated for every mitochondrial protein. Here, we present two evolutionary biology approaches to study mitochondrial physiology: the first strategy, which we refer to as "comparative physiology," allows the de novo identification of mitochondrial proteins involved in a physiological function; the second, known as "phylogenetic profiling," allows to predict protein functions and functional interactions by comparing phylogenetic profiles of uncharacterized and known components.

  5. Iowa Gambling Task Performance and Executive Function Predict Low-income Urban Preadolescents’ Risky Behaviors

    PubMed Central

    Ursache, Alexandra; Raver, C. Cybele

    2015-01-01

    This study examines preadolescents’ reports of risk-taking as predicted by two different, but related inhibitory control systems involving sensitivity to reward and loss on the one hand, and higher order processing in the context of cognitive conflict, known as executive functioning (EF), on the other. Importantly, this study examines these processes with a sample of inner-city, low-income preadolescents and as such examines the ways in which these processes may be related to risky behaviors as a function of children's levels of both concurrent and chronic exposure to household poverty. As part of a larger longitudinal study, 382 children (ages 9 -11) provided a self-report of risky behaviors and participated in the Iowa Gambling task, assessing bias for infrequent loss (preference for infrequent, high magnitude versus frequent, low magnitude loss) and the Hearts and Flowers task assessing executive functioning. Results demonstrated that a higher bias for infrequent loss was associated with higher risky behaviors for children who demonstrated lower EF. Furthermore, bias for infrequent loss was most strongly associated with higher risk-taking for children facing highest levels of poverty. Implications for early identification and prevention of risk-taking in inner-city preadolescents are discussed. PMID:26412918

  6. EvoCor: a platform for predicting functionally related genes using phylogenetic and expression profiles.

    PubMed

    Dittmar, W James; McIver, Lauren; Michalak, Pawel; Garner, Harold R; Valdez, Gregorio

    2014-07-01

    The wealth of publicly available gene expression and genomic data provides unique opportunities for computational inference to discover groups of genes that function to control specific cellular processes. Such genes are likely to have co-evolved and be expressed in the same tissues and cells. Unfortunately, the expertise and computational resources required to compare tens of genomes and gene expression data sets make this type of analysis difficult for the average end-user. Here, we describe the implementation of a web server that predicts genes involved in affecting specific cellular processes together with a gene of interest. We termed the server 'EvoCor', to denote that it detects functional relationships among genes through evolutionary analysis and gene expression correlation. This web server integrates profiles of sequence divergence derived by a Hidden Markov Model (HMM) and tissue-wide gene expression patterns to determine putative functional linkages between pairs of genes. This server is easy to use and freely available at http://pilot-hmm.vbi.vt.edu/.

  7. From static to dynamic: The need for structural ensembles and a predictive model of RNA folding and function

    PubMed Central

    Herschlag, Daniel; Allred, Benjamin E.; Gowrishankar, Seshadri

    2015-01-01

    To understand RNA, it is necessary to move beyond a descriptive categorization towards quantitative predictions of its molecular conformations and functional behavior. An incisive approach to understanding the function and folding of biological RNA systems involves characterizing small, simple components that are largely responsible for the behavior of complex systems including helix-junction-helix elements and tertiary motifs. State-of-the-art methods have permitted unprecedented insight into the conformational ensembles of these elements revealing, for example, that conformations of helix-junction-helix elements are confined to a small region of the ensemble, that this region is highly dependent on the junction’s topology, and that the correct alignment of tertiary motifs may be a rare conformation on the overall folding landscape. Further characterization of RNA components and continued development of experimental and computational methods with the goal of quantitatively predicting RNA folding and functional behavior will be critical to understanding biological RNA systems. PMID:25744941

  8. Cognitive Function and Prediction of Dementia in Old Age.

    ERIC Educational Resources Information Center

    La Rue, Asenath; Jarvik, Lissy F.

    1987-01-01

    Examined longitudinal changes in cognitive functioning for aging twins. Found that those who were considered demented in old age had achieved lower test scores 20 years prior to diagnosis and experienced greater declines in vocabulary and forward digit span over time than those without dementia. Suggests that dementia may develop very slowly.…

  9. Functional convergence of structurally distinct thioesterases from cyanobacteria and plants involved in phylloquinone biosynthesis.

    PubMed

    Furt, Fabienne; Allen, William J; Widhalm, Joshua R; Madzelan, Peter; Rizzo, Robert C; Basset, Gilles; Wilson, Mark A

    2013-10-01

    The synthesis of phylloquinone (vitamin K1) in photosynthetic organisms requires a thioesterase that hydrolyzes 1,4-dihydroxy-2-naphthoyl-CoA (DHNA-CoA) to release 1,4-dihydroxy-2-naphthoate (DHNA). Cyanobacteria and plants contain distantly related hotdog-fold thioesterases that catalyze this reaction, although the structural basis of these convergent enzymatic activities is unknown. To investigate this, the crystal structures of hotdog-fold DHNA-CoA thioesterases from the cyanobacterium Synechocystis (Slr0204) and the flowering plant Arabidopsis thaliana (AtDHNAT1) were determined. These enzymes form distinct homotetramers and use different active sites to catalyze hydrolysis of DHNA-CoA, similar to the 4-hydroxybenzoyl-CoA (4-HBA-CoA) thioesterases from Pseudomonas and Arthrobacter. Like the 4-HBA-CoA thioesterases, the DHNA-CoA thioesterases contain either an active-site aspartate (Slr0204) or glutamate (AtDHNAT1) that are predicted to be catalytically important. Computational modeling of the substrate-bound forms of both enzymes indicates the residues that are likely to be involved in substrate binding and catalysis. Both enzymes are selective for DHNA-CoA as a substrate, but this selectivity is achieved using divergent predicted binding strategies. The Slr0204 binding pocket is predominantly hydrophobic and closely conforms to DHNA, while that of AtDHNAT1 is more polar and solvent-exposed. Considered in light of the related 4-HBA-CoA thioesterases, these structures indicate that hotdog-fold thioesterases using either an active-site aspartate or glutamate diverged into distinct clades prior to the evolution of strong substrate specificity in these enzymes.

  10. Involving regional expertise in nationwide modeling for adequate prediction of climate change effects on different demands for fresh water

    NASA Astrophysics Data System (ADS)

    de Lange, W. J.

    2014-05-01

    Wim J. de Lange, Geert F. Prinsen, Jacco H. Hoogewoud, Ab A Veldhuizen, Joachim Hunink, Erik F.W. Ruijgh, Timo Kroon Nationwide modeling aims to produce a balanced distribution of climate change effects (e.g. harm on crops) and possible compensation (e.g. volume fresh water) based on consistent calculation. The present work is based on the Netherlands Hydrological Instrument (NHI, www.nhi.nu), which is a national, integrated, hydrological model that simulates distribution, flow and storage of all water in the surface water and groundwater systems. The instrument is developed to assess the impact on water use on land-surface (sprinkling crops, drinking water) and in surface water (navigation, cooling). The regional expertise involved in the development of NHI come from all parties involved in the use, production and management of water, such as waterboards, drinking water supply companies, provinces, ngo's, and so on. Adequate prediction implies that the model computes changes in the order of magnitude that is relevant to the effects. In scenarios related to drought, adequate prediction applies to the water demand and the hydrological effects during average, dry, very dry and extremely dry periods. The NHI acts as a part of the so-called Deltamodel (www.deltamodel.nl), which aims to predict effects and compensating measures of climate change both on safety against flooding and on water shortage during drought. To assess the effects, a limited number of well-defined scenarios is used within the Deltamodel. The effects on demand of fresh water consist of an increase of the demand e.g. for surface water level control to prevent dike burst, for flushing salt in ditches, for sprinkling of crops, for preserving wet nature and so on. Many of the effects are dealt with by regional and local parties. Therefore, these parties have large interest in the outcome of the scenario analyses. They are participating in the assessment of the NHI previous to the start of the analyses

  11. Involving regional expertise in nationwide modeling for adequate prediction of climate change effects on different demands for fresh water

    NASA Astrophysics Data System (ADS)

    de Lange, Wim; Prinsen, Geert.; Hoogewoud, Jacco; Veldhuizen, Ab; Ruijgh, Erik; Kroon, Timo

    2013-04-01

    Nationwide modeling aims to produce a balanced distribution of climate change effects (e.g. harm on crops) and possible compensation (e.g. volume fresh water) based on consistent calculation. The present work is based on the Netherlands Hydrological Instrument (NHI, www.nhi.nu), which is a national, integrated, hydrological model that simulates distribution, flow and storage of all water in the surface water and groundwater systems. The instrument is developed to assess the impact on water use on land-surface (sprinkling crops, drinking water) and in surface water (navigation, cooling). The regional expertise involved in the development of NHI come from all parties involved in the use, production and management of water, such as waterboards, drinking water supply companies, provinces, ngo's, and so on. Adequate prediction implies that the model computes changes in the order of magnitude that is relevant to the effects. In scenarios related to drought, adequate prediction applies to the water demand and the hydrological effects during average, dry, very dry and extremely dry periods. The NHI acts as a part of the so-called Deltamodel (www.deltamodel.nl), which aims to predict effects and compensating measures of climate change both on safety against flooding and on water shortage during drought. To assess the effects, a limited number of well-defined scenarios is used within the Deltamodel. The effects on demand of fresh water consist of an increase of the demand e.g. for surface water level control to prevent dike burst, for flushing salt in ditches, for sprinkling of crops, for preserving wet nature and so on. Many of the effects are dealt with? by regional and local parties. Therefore, these parties have large interest in the outcome of the scenario analyses. They are participating in the assessment of the NHI previous to the start of the analyses. Regional expertise is welcomed in the calibration phase of NHI. It aims to reduce uncertainties by improving the

  12. Clinical presentation and outcome prediction of clinical, serological, and histopathological classification schemes in ANCA-associated vasculitis with renal involvement.

    PubMed

    Córdova-Sánchez, Bertha M; Mejía-Vilet, Juan M; Morales-Buenrostro, Luis E; Loyola-Rodríguez, Georgina; Uribe-Uribe, Norma O; Correa-Rotter, Ricardo

    2016-07-01

    categories predict renal or patient survival. Age, renal function and proteinuria at presentation, histopathology, and infectious complications constitute the main outcome predictors and should be considered for individualized management.

  13. Next generation sequencing in predicting gene function in podophyllotoxin biosynthesis.

    PubMed

    Marques, Joaquim V; Kim, Kye-Won; Lee, Choonseok; Costa, Michael A; May, Gregory D; Crow, John A; Davin, Laurence B; Lewis, Norman G

    2013-01-01

    Podophyllum species are sources of (-)-podophyllotoxin, an aryltetralin lignan used for semi-synthesis of various powerful and extensively employed cancer-treating drugs. Its biosynthetic pathway, however, remains largely unknown, with the last unequivocally demonstrated intermediate being (-)-matairesinol. Herein, massively parallel sequencing of Podophyllum hexandrum and Podophyllum peltatum transcriptomes and subsequent bioinformatics analyses of the corresponding assemblies were carried out. Validation of the assembly process was first achieved through confirmation of assembled sequences with those of various genes previously established as involved in podophyllotoxin biosynthesis as well as other candidate biosynthetic pathway genes. This contribution describes characterization of two of the latter, namely the cytochrome P450s, CYP719A23 from P. hexandrum and CYP719A24 from P. peltatum. Both enzymes were capable of converting (-)-matairesinol into (-)-pluviatolide by catalyzing methylenedioxy bridge formation and did not act on other possible substrates tested. Interestingly, the enzymes described herein were highly similar to methylenedioxy bridge-forming enzymes from alkaloid biosynthesis, whereas candidates more similar to lignan biosynthetic enzymes were catalytically inactive with the substrates employed. This overall strategy has thus enabled facile further identification of enzymes putatively involved in (-)-podophyllotoxin biosynthesis and underscores the deductive power of next generation sequencing and bioinformatics to probe and deduce medicinal plant biosynthetic pathways.

  14. Next Generation Sequencing in Predicting Gene Function in Podophyllotoxin Biosynthesis*

    PubMed Central

    Marques, Joaquim V.; Kim, Kye-Won; Lee, Choonseok; Costa, Michael A.; May, Gregory D.; Crow, John A.; Davin, Laurence B.; Lewis, Norman G.

    2013-01-01

    Podophyllum species are sources of (−)-podophyllotoxin, an aryltetralin lignan used for semi-synthesis of various powerful and extensively employed cancer-treating drugs. Its biosynthetic pathway, however, remains largely unknown, with the last unequivocally demonstrated intermediate being (−)-matairesinol. Herein, massively parallel sequencing of Podophyllum hexandrum and Podophyllum peltatum transcriptomes and subsequent bioinformatics analyses of the corresponding assemblies were carried out. Validation of the assembly process was first achieved through confirmation of assembled sequences with those of various genes previously established as involved in podophyllotoxin biosynthesis as well as other candidate biosynthetic pathway genes. This contribution describes characterization of two of the latter, namely the cytochrome P450s, CYP719A23 from P. hexandrum and CYP719A24 from P. peltatum. Both enzymes were capable of converting (−)-matairesinol into (−)-pluviatolide by catalyzing methylenedioxy bridge formation and did not act on other possible substrates tested. Interestingly, the enzymes described herein were highly similar to methylenedioxy bridge-forming enzymes from alkaloid biosynthesis, whereas candidates more similar to lignan biosynthetic enzymes were catalytically inactive with the substrates employed. This overall strategy has thus enabled facile further identification of enzymes putatively involved in (−)-podophyllotoxin biosynthesis and underscores the deductive power of next generation sequencing and bioinformatics to probe and deduce medicinal plant biosynthetic pathways. PMID:23161544

  15. Amphioxus SARM involved in neural development may function as a suppressor of TLR signaling.

    PubMed

    Yuan, Shaochun; Wu, Kui; Yang, Manyi; Xu, Liqun; Huang, Ling; Liu, Huiling; Tao, Xin; Huang, Shengfeng; Xu, Anlong

    2010-06-15

    Among five Toll/IL-1R resistance adaptors, sterile alpha and Toll/IL-1R resistance motif containing protein (SARM) is the only one conserved from Caenorhabditis elegans to human. However, its physiologic roles are hardly understood, and its involvement in TLR signaling remains debatable. In this study, we first demonstrated a predominant expression of amphioxus SARM (Branchiostoma belcheri tsingtauense SARM) in neural cells during embryogenesis and its predominant expression in the digestive system from larva to adult, suggesting its primitive role in neural development and a potential physiologic role in immunity. We further found that B. belcheri tsingtauense SARM was localized in mitochondria and could attenuate the TLR signaling via interacting with amphioxus MyD88 and tumor necrosis receptor associated factor 6. Thus, amphioxus SARM appears unique in that it may play dual functions in neural development and innate immunity by targeting amphioxus TLR signaling.

  16. Experience induces functional reorganization in brain regions involved in odor imagery in perfumers.

    PubMed

    Plailly, Jane; Delon-Martin, Chantal; Royet, Jean-Pierre

    2012-01-01

    Areas of expertise that cultivate specific sensory domains reveal the brain's ability to adapt to environmental change. Perfumers are a small population who claim to have a unique ability to generate olfactory mental images. To evaluate the impact of this expertise on the brain regions involved in odor processing, we measured brain activity in novice and experienced (student and professional) perfumers while they smelled or imagined odors. We demonstrate that olfactory imagery activates the primary olfactory (piriform) cortex (PC) in all perfumers, demonstrating that similar neural substrates were activated in odor perception and imagination. In professional perfumers, extensive olfactory practice influences the posterior PC, the orbitofrontal cortex, and the hippocampus; during the creation of mental images of odors, the activity in these areas was negatively correlated with experience. Thus, the perfumers' expertise is associated with a functional reorganization of key olfactory and memory brain regions, explaining their extraordinary ability to imagine odors and create fragrances.

  17. Uniqueness of Absolute Minimizers for L^∞ -Functionals Involving Hamiltonians {H(x,p)}

    NASA Astrophysics Data System (ADS)

    Miao, Qianyun; Wang, Changyou; Zhou, Yuan

    2016-08-01

    For a bounded domain {Usubset{{R}^n}} , consider the {L^∞} -functional involving a non-negative Hamilton function {H:{overline{U}}×{{R}^n}to [0,∞)} . In this paper, we will establish the uniqueness of absolute minimizers {uin W^{1,∞}_loc(U)\\cap C({overline{U}})} for {H} , under the Dirichlet boundary value {gin C(partial U)} , provided that: (A1) {H} is lower semicontinuous in {overline U×{R}^n} , and {H(x,\\cdot)} is convex for any {xin{overline{U}}} . (A2) { H(x,0)=min_{pin {{R}^n}}H(x,p)=0} for any { xin {overline{U}}} , and {bigcup_{xin overline U}{p: H(x,p)=0}} is contained in a hyperplane of {{R}^n} . (A3) For any {λ > 0} , there exist { 0 < r_λ≤ R_λ < ∞} , with {lim_{λto∞}r_λ=∞} , such that B(0,r_λ)subset {pin{R}^n | H(x,p) < λ }subset B(0,R_λ) forall λ > 0 and xin {overline{U}}. This generalizes the uniqueness theorem by Jensen (Arch Ration Mech Anal 123:51-74, 1993), Jensen et al. (Arch Ration Mech Anal 190:347-370, 2008), Armstrong et al. (Arch Ration Mech Anal 200:405-443, 2011) and Koskela et al. (Arch Ration Mech Anal 214:99-142, 2014) to a large class of Hamiltonian functions {H(x,p)} with {x} -dependence. As a corollary, we confirm an open question on the uniqueness of absolute minimizers posed by Jensen et al. (Arch Ration Mech Anal 190:347-370, 2008). The proofs rely on the geometric structure of the action function {{L}_t(x,y)} induced by {H} , and the identification of the absolute subminimality of {u} with convexity of the Hamilton-Jacobi flow {tmapsto T^t u(x)}.

  18. Linking mother and youth parenting attitudes: indirect effects via maltreatment, parent involvement, and youth functioning.

    PubMed

    Thompson, Richard; Jones, Deborah J; Litrownik, Alan J; English, Diana J; Kotch, Jonathan B; Lewis, Terri; Dubowitz, Howard

    2014-01-01

    Evidence suggests that parenting attitudes are transmitted within families. However, limited research has examined this prospectively. The current prospective study examined direct effects of early maternal attitudes toward parenting (as measured at child age 4 by the Adult-Adolescent Parenting Inventory [AAPI]) on later youth parenting attitudes (as measured by the AAPI at youth age 18). Indirect effects via child maltreatment (physical abuse, sexual abuse, neglect, and emotional maltreatment), parent involvement, and youth functioning (internalizing and externalizing problems) were also assessed. Analyses were conducted on data from 412 families enrolled in the Longitudinal Studies of Child Abuse and Neglect (LONGSCAN). There were significant direct effects for three of the four classes of mother parenting attitudes (appropriate developmental expectations of children, empathy toward children, and appropriate family roles) on youth attitudes but not for rejection of punishment. In addition, the following indirect effects were obtained: Mother expectations influenced youth expectations via neglect; mother empathy influenced youth empathy via both parental involvement and youth externalizing problems; and mother rejection of punishment influenced youth rejection of punishment via youth internalizing problems. None of the child or family process variables, however, affected the link between mother and youth attitudes about roles.

  19. Linking Mother and Youth Parenting Attitudes: Indirect Effects via Maltreatment, Parent Involvement, and Youth Functioning

    PubMed Central

    Thompson, Richard; Jones, Deborah J.; Litrownik, Alan J.; English, Diana J.; Kotch, Jonathan B.; Lewis, Terri; Dubowitz, Howard

    2014-01-01

    Evidence suggests that parenting attitudes are transmitted within families. However, limited research has examined this prospectively. The current prospective study examined direct effects of early maternal attitudes toward parenting (as measured at child age 4 by the Adult-Adolescent Parenting Inventory [AAPI]) on later youth parenting attitudes (as measured by the AAPI at youth age 18). Indirect effects via child maltreatment (physical abuse, sexual abuse, neglect, and emotional maltreatment), parent involvement, and youth functioning (internalizing and externalizing problems) were also assessed. Analyses were conducted on data from 412 families enrolled in the Longitudinal Studies of Child Abuse and Neglect (LONGSCAN). There were significant direct effects for three of the four classes of mother parenting attitudes (appropriate developmental expectations of children, empathy toward children, and appropriate family roles) on youth attitudes but not for rejection of punishment. In addition, the following indirect effects were obtained: Mother expectations influenced youth expectations via neglect; mother empathy influenced youth empathy via both parental involvement and youth externalizing problems; and mother rejection of punishment influenced youth rejection of punishment via youth internalizing problems. None of the child or family process variables, however, affected the link between mother and youth attitudes about roles. PMID:25113632

  20. Improvement in protein functional site prediction by distinguishing structural and functional constraints on protein family evolution using computational design.

    PubMed

    Cheng, Gong; Qian, Bin; Samudrala, Ram; Baker, David

    2005-01-01

    The prediction of functional sites in newly solved protein structures is a challenge for computational structural biology. Most methods for approaching this problem use evolutionary conservation as the primary indicator of the location of functional sites. However, sequence conservation reflects not only evolutionary selection at functional sites to maintain protein function, but also selection throughout the protein to maintain the stability of the folded state. To disentangle sequence conservation due to protein functional constraints from sequence conservation due to protein structural constraints, we use all atom computational protein design methodology to predict sequence profiles expected under solely structural constraints, and to compute the free energy difference between the naturally occurring amino acid and the lowest free energy amino acid at each position. We show that functional sites are more likely than non-functional sites to have computed sequence profiles which differ significantly from the naturally occurring sequence profiles and to have residues with sub-optimal free energies, and that incorporation of these two measures improves sequence based prediction of protein functional sites. The combined sequence and structure based functional site prediction method has been implemented in a publicly available web server.

  1. Sparse Markov chain-based semi-supervised multi-instance multi-label method for protein function prediction.

    PubMed

    Han, Chao; Chen, Jian; Wu, Qingyao; Mu, Shuai; Min, Huaqing

    2015-10-01

    Automated assignment of protein function has received considerable attention in recent years for genome-wide study. With the rapid accumulation of genome sequencing data produced by high-throughput experimental techniques, the process of manually predicting functional properties of proteins has become increasingly cumbersome. Such large genomics data sets can only be annotated computationally. However, automated assignment of functions to unknown protein is challenging due to its inherent difficulty and complexity. Previous studies have revealed that solving problems involving complicated objects with multiple semantic meanings using the multi-instance multi-label (MIML) framework is effective. For the protein function prediction problems, each protein object in nature may associate with distinct structural units (instances) and multiple functional properties (class labels) where each unit is described by an instance and each functional property is considered as a class label. Thus, it is convenient and natural to tackle the protein function prediction problem by using the MIML framework. In this paper, we propose a sparse Markov chain-based semi-supervised MIML method, called Sparse-Markov. A sparse transductive probability graph is constructed to encode the affinity information of the data based on ensemble of Hausdorff distance metrics. Our goal is to exploit the affinity between protein objects in the sparse transductive probability graph to seek a sparse steady state probability of the Markov chain model to do protein function prediction, such that two proteins are given similar functional labels if they are close to each other in terms of an ensemble Hausdorff distance in the graph. Experimental results on seven real-world organism data sets covering three biological domains show that our proposed Sparse-Markov method is able to achieve better performance than four state-of-the-art MIML learning algorithms.

  2. Genomic islands predict functional adaptation in marine actinobacteria

    SciTech Connect

    Penn, Kevin; Jenkins, Caroline; Nett, Markus; Udwary, Daniel; Gontang, Erin; McGlinchey, Ryan; Foster, Brian; Lapidus, Alla; Podell, Sheila; Allen, Eric; Moore, Bradley; Jensen, Paul

    2009-04-01

    Linking functional traits to bacterial phylogeny remains a fundamental but elusive goal of microbial ecology 1. Without this information, it becomes impossible to resolve meaningful units of diversity and the mechanisms by which bacteria interact with each other and adapt to environmental change. Ecological adaptations among bacterial populations have been linked to genomic islands, strain-specific regions of DNA that house functionally adaptive traits 2. In the case of environmental bacteria, these traits are largely inferred from bioinformatic or gene expression analyses 2, thus leaving few examples in which the functions of island genes have been experimentally characterized. Here we report the complete genome sequences of Salinispora tropica and S. arenicola, the first cultured, obligate marine Actinobacteria 3. These two species inhabit benthic marine environments and dedicate 8-10percent of their genomes to the biosynthesis of secondary metabolites. Despite a close phylogenetic relationship, 25 of 37 secondary metabolic pathways are species-specific and located within 21 genomic islands, thus providing new evidence linking secondary metabolism to ecological adaptation. Species-specific differences are also observed in CRISPR sequences, suggesting that variations in phage immunity provide fitness advantages that contribute to the cosmopolitan distribution of S. arenicola 4. The two Salinispora genomes have evolved by complex processes that include the duplication and acquisition of secondary metabolite genes, the products of which provide immediate opportunities for molecular diversification and ecological adaptation. Evidence that secondary metabolic pathways are exchanged by Horizontal Gene Transfer (HGT) yet are fixed among globally distributed populations 5 supports a functional role for their products and suggests that pathway acquisition represents a previously unrecognized force driving bacterial diversification

  3. Dynamic circadian protein-protein interaction networks predict temporal organization of cellular functions.

    PubMed

    Wallach, Thomas; Schellenberg, Katja; Maier, Bert; Kalathur, Ravi Kiran Reddy; Porras, Pablo; Wanker, Erich E; Futschik, Matthias E; Kramer, Achim

    2013-03-01

    Essentially all biological processes depend on protein-protein interactions (PPIs). Timing of such interactions is crucial for regulatory function. Although circadian (~24-hour) clocks constitute fundamental cellular timing mechanisms regulating important physiological processes, PPI dynamics on this timescale are largely unknown. Here, we identified 109 novel PPIs among circadian clock proteins via a yeast-two-hybrid approach. Among them, the interaction of protein phosphatase 1 and CLOCK/BMAL1 was found to result in BMAL1 destabilization. We constructed a dynamic circadian PPI network predicting the PPI timing using circadian expression data. Systematic circadian phenotyping (RNAi and overexpression) suggests a crucial role for components involved in dynamic interactions. Systems analysis of a global dynamic network in liver revealed that interacting proteins are expressed at similar times likely to restrict regulatory interactions to specific phases. Moreover, we predict that circadian PPIs dynamically connect many important cellular processes (signal transduction, cell cycle, etc.) contributing to temporal organization of cellular physiology in an unprecedented manner. PMID:23555304

  4. Does psychological strengths and subjective well-being predicting parental involvement and problem solving among Malaysian and Indian students?

    PubMed

    Khan, Aqeel; Ahmad, Roslee; Hamdan, Abdul Rahim; Mustaffa, Mohamed Sharif; Tahir, Lokman Mohd

    2014-01-01

    The present study examined the predictors of psychological strengths and subjective well-being for dealing with academic stress perceived by university engineering students. Sample of 400 Malaysian (N = 180 boys and N = 220 girls) age varies 18 to 25 years and 400 Indian students (N = 240 boys and N = 160 girls) age varies 18 to 25 years from public universities were participated. Quantitative method was used for data analysis. Findings shows that gender, religiosity and socioeconomic status are significantly influencing psychological strengths and subjective well-being of both Indian and Malaysian students. Findings also revealed that parental involvement and problem solving coping styles were significantly predicting psychological strengths and subjective well-being among both countries participants. Findings of the current study provide the insight for the educators, and parents dealing with adolescents. PMID:25674482

  5. Does psychological strengths and subjective well-being predicting parental involvement and problem solving among Malaysian and Indian students?

    PubMed

    Khan, Aqeel; Ahmad, Roslee; Hamdan, Abdul Rahim; Mustaffa, Mohamed Sharif; Tahir, Lokman Mohd

    2014-01-01

    The present study examined the predictors of psychological strengths and subjective well-being for dealing with academic stress perceived by university engineering students. Sample of 400 Malaysian (N = 180 boys and N = 220 girls) age varies 18 to 25 years and 400 Indian students (N = 240 boys and N = 160 girls) age varies 18 to 25 years from public universities were participated. Quantitative method was used for data analysis. Findings shows that gender, religiosity and socioeconomic status are significantly influencing psychological strengths and subjective well-being of both Indian and Malaysian students. Findings also revealed that parental involvement and problem solving coping styles were significantly predicting psychological strengths and subjective well-being among both countries participants. Findings of the current study provide the insight for the educators, and parents dealing with adolescents.

  6. Phytoplankton traits predict ecosystem function in a global set of lakes.

    PubMed

    Zwart, Jacob A; Solomon, Christopher T; Jones, Stuart E

    2015-08-01

    Predicting ecosystem function from environmental conditions is a central goal of ecosystem ecology. However, many traditional ecosystem models are tailored for specific regions or ecosystem types, requiring several regional models to predict the same function. Alternatively, trait-based approaches have been effectively used to predict community structure in both terrestrial and aquatic environments and ecosystem function in a limited number of terrestrial examples. Here, we test the efficacy of a trait-based model in predicting gross primary production (GPP) in lake ecosystems. We incorporated data from >1000 United States lakes along with laboratory-generated phytoplankton trait data to build a trait-based model of GPP and then validated the model with GPP observations from a separate set of globally distributed lakes. The trait-based model performed as well as or outperformed two ecosystem models both spatially and temporally, demonstrating the efficacy of trait-based models for predicting ecosystem function over a range of environmental conditions.

  7. SIFTER search: a web server for accurate phylogeny-based protein function prediction.

    PubMed

    Sahraeian, Sayed M; Luo, Kevin R; Brenner, Steven E

    2015-07-01

    We are awash in proteins discovered through high-throughput sequencing projects. As only a minuscule fraction of these have been experimentally characterized, computational methods are widely used for automated annotation. Here, we introduce a user-friendly web interface for accurate protein function prediction using the SIFTER algorithm. SIFTER is a state-of-the-art sequence-based gene molecular function prediction algorithm that uses a statistical model of function evolution to incorporate annotations throughout the phylogenetic tree. Due to the resources needed by the SIFTER algorithm, running SIFTER locally is not trivial for most users, especially for large-scale problems. The SIFTER web server thus provides access to precomputed predictions on 16 863 537 proteins from 232 403 species. Users can explore SIFTER predictions with queries for proteins, species, functions, and homologs of sequences not in the precomputed prediction set. The SIFTER web server is accessible at http://sifter.berkeley.edu/ and the source code can be downloaded.

  8. An integrated probabilistic approach for gene function prediction using multiple sources of high-throughput data.

    PubMed

    Zhang, Chao; Joshi, Trupti; Lin, Guan Ning; Xu, Dong

    2008-01-01

    Characterising gene function is one of the major challenging tasks in the post-genomic era. Various approaches have been developed to integrate multiple sources of high-throughput data to predict gene function. Most of those approaches are just used for research purpose and have not been implemented as publicly available tools. Even for those implemented applications, almost all of them are still web-based 'prediction servers' that have to be managed by specialists. This paper introduces a systematic method for integrating various sources of high-throughput data to predict gene function and analyse our prediction results and evaluates its performances based on the competition for mouse gene function prediction (MouseFunc). A stand-alone Java-based software package 'GeneFAS' is freely available at http://digbio. missouri.eduigenefas.

  9. Physiologically based pharmacokinetic modeling to predict drug-drug interactions involving inhibitory metabolite: a case study of amiodarone.

    PubMed

    Chen, Yuan; Mao, Jialin; Hop, Cornelis E C A

    2015-02-01

    Evaluation of drug-drug interaction (DDI) involving circulating inhibitory metabolites of perpetrator drugs has recently drawn more attention from regulatory agencies and pharmaceutical companies. Here, using amiodarone (AMIO) as an example, we demonstrate the use of physiologically based pharmacokinetic (PBPK) modeling to assess how a potential inhibitory metabolite can contribute to clinically significant DDIs. Amiodarone was reported to increase the exposure of simvastatin, dextromethorphan, and warfarin by 1.2- to 2-fold, which was not expected based on its weak inhibition observed in vitro. The major circulating metabolite, mono-desethyl-amiodarone (MDEA), was later identified to have a more potent inhibitory effect. Using a combined "bottom-up" and "top-down" approach, a PBPK model was built to successfully simulate the pharmacokinetic profile of AMIO and MDEA, particularly their accumulation in plasma and liver after a long-term treatment. The clinical AMIO DDIs were predicted using the verified PBPK model with incorporation of cytochrome P450 inhibition from both AMIO and MDEA. The closest prediction was obtained for CYP3A (simvastatin) DDI when the competitive inhibition from both AMIO and MDEA was considered, for CYP2D6 (dextromethorphan) DDI when the competitive inhibition from AMIO and the competitive plus time-dependent inhibition from MDEA were incorporated, and for CYP2C9 (warfarin) DDI when the competitive plus time-dependent inhibition from AMIO and the competitive inhibition from MDEA were considered. The PBPK model with the ability to simulate DDI by considering dynamic change and accumulation of inhibitor (parent and metabolite) concentration in plasma and liver provides advantages in understanding the possible mechanism of clinical DDIs involving inhibitory metabolites.

  10. Novel semantic similarity measure improves an integrative approach to predicting gene functional associations

    PubMed Central

    2013-01-01

    Background Elucidation of the direct/indirect protein interactions and gene associations is required to fully understand the workings of the cell. This can be achieved through the use of both low- and high-throughput biological experiments and in silico methods. We present GAP (Gene functional Association Predictor), an integrative method for predicting and characterizing gene functional associations. GAP integrates different biological features using a novel taxonomy-based semantic similarity measure in predicting and prioritizing high-quality putative gene associations. The proposed similarity measure increases information gain from the available gene annotations. The annotation information is incorporated from several public pathway databases, Gene Ontology annotations as well as drug and disease associations from the scientific literature. Results We evaluated GAP by comparing its prediction performance with several other well-known functional interaction prediction tools over a comprehensive dataset of known direct and indirect interactions, and observed significantly better prediction performance. We also selected a small set of GAP’s highly-scored novel predicted pairs (i.e., currently not found in any known database or dataset), and by manually searching the literature for experimental evidence accessible in the public domain, we confirmed different categories of predicted functional associations with available evidence of interaction. We also provided extra supporting evidence for subset of the predicted functionally-associated pairs using an expert curated database of genes associated to autism spectrum disorders. Conclusions GAP’s predictedfunctional interactome” contains ≈1M highly-scored predicted functional associations out of which about 90% are novel (i.e., not experimentally validated). GAP’s novel predictions connect disconnected components and singletons to the main connected component of the known interactome. It can, therefore, be

  11. In silico predicted structural and functional robustness of piscine steroidogenesis.

    PubMed

    Hala, D; Huggett, D B

    2014-03-21

    Assessments of metabolic robustness or susceptibility are inherently dependent on quantitative descriptions of network structure and associated function. In this paper a stoichiometric model of piscine steroidogenesis was constructed and constrained with productions of selected steroid hormones. Structural and flux metrics of this in silico model were quantified by calculating extreme pathways and optimal flux distributions (using linear programming). Extreme pathway analysis showed progestin and corticosteroid synthesis reactions to be highly participant in extreme pathways. Furthermore, reaction participation in extreme pathways also fitted a power law distribution (degree exponent γ=2.3), which suggested that progestin and corticosteroid reactions act as 'hubs' capable of generating other functionally relevant pathways required to maintain steady-state functionality of the network. Analysis of cofactor usage (O2 and NADPH) showed progestin synthesis reactions to exhibit high robustness, whereas estrogen productions showed highest energetic demands with low associated robustness to maintain such demands. Linear programming calculated optimal flux distributions showed high heterogeneity of flux values with a near-random power law distribution (degree exponent γ≥2.7). Subsequently, network robustness was tested by assessing maintenance of metabolite flux-sum subject to targeted deletions of rank-ordered (low to high metric) extreme pathway participant and optimal flux reactions. Network robustness was susceptible to deletions of extreme pathway participant reactions, whereas minimal impact of high flux reaction deletion was observed. This analysis shows that the steroid network is susceptible to perturbation of structurally relevant (extreme pathway) reactions rather than those carrying high flux. PMID:24333207

  12. Fibrosis with Inflammation at One Year Predicts Transplant Functional Decline

    PubMed Central

    Park, Walter D.; Griffin, Matthew D.; Cornell, Lynn D.; Cosio, Fernando G.

    2010-01-01

    Lack of knowledge regarding specific causes for late loss of kidney transplants hampers improvements in long-term allograft survival. Kidney transplants with both interstitial fibrosis and subclinical inflammation but not fibrosis alone after 1 year have reduced survival. This study tested whether fibrosis with inflammation at 1 year associates with decline of renal function in a low-risk cohort and characterized the nature of the inflammation. We studied 151 living-donor, tacrolimus/mycophenolate-treated recipients without overt risk factors for reduced graft survival. Transplants with normal histology (n = 86) or fibrosis alone (n = 45) on 1-year protocol biopsy had stable renal function between 1 and 5 years, whereas those with both fibrosis and inflammation (n = 20) exhibited a decline in GFR and reduced graft survival. Immunohistochemistry confirmed increased interstitial T cells and macrophages/dendritic cells in the group with both fibrosis and inflammation, and there was increased expression of transcripts related to innate and cognate immunity. Pathway- and pathologic process–specific analyses of microarray profiles revealed that potentially damaging immunologic activities were enriched among the overexpressed transcripts (e.g., Toll-like receptor signaling, antigen presentation/dendritic cell maturation, IFN-γ–inducible response, cytotoxic T lymphocyte–associated and acute rejection–associated genes). Therefore, the combination of fibrosis and inflammation in 1-year protocol biopsies associates with reduced graft function and survival as well as a rejection-like gene expression signature, even among recipients with no clinical risk factors for poor outcomes. Early interventions aimed at altering rejection-like inflammation may improve long-term survival of kidney allografts. PMID:20813870

  13. Functional characterization of Sporothrix schenckii glycosidases involved in the N-linked glycosylation pathway.

    PubMed

    Lopes-Bezerra, Leila M; Lozoya-Pérez, Nancy E; López-Ramírez, Luz A; Martínez-Álvarez, José A; Teixeira, Marcus M; Felipe, Maria S S; Flores-Carreón, Arturo; Mora-Montes, Héctor M

    2015-01-01

    Protein glycosylation pathways are conserved metabolic processes in eukaryotic organisms and are required for cell fitness. In fungal pathogens, the N-linked glycosylation pathway is indispensable for proper cell wall composition and virulence. In Sporothrix schenckii sensu stricto, the causative agent of sporotrichosis, little is known about this glycosylation pathway. Here, using a genome-wide screening for putative members of the glycosyl hydrolase (CAZy - GH) families 47 and 63, which group enzymes involved in the processing step during N-linked glycan maturation, we found seven homologue genes belonging to family 47 and one to family 63. The eight genes were individually expressed in C. albicans null mutants lacking either MNS1 (for members of family 47) or CWH41 (for the member of family 63). Our results indicate that SsCWH41 is the functional ortholog of CaCWH41, whereas SsMNS1 is the functional ortholog of CaMNS1. The remaining genes of family 47 encode Golgi mannosidases and endoplasmic reticulum degradation-enhancing alpha-mannosidase-like proteins (EDEMs). Since these GH families gather proteins used as target for drugs to control cell growth, identification of these genes could help in the design of antifungals that could be used to treat sporotrichosis and other fungal diseases. In addition, to our knowledge, we are the first to report that Golgi mannosidases and EDEMs are expressed and characterized in yeast cells.

  14. A TAF4 coactivator function for E proteins that involves enhanced TFIID binding

    PubMed Central

    Chen, Wei-Yi; Zhang, Jinsong; Geng, Huimin; Du, Zhimei; Nakadai, Tomoyoshi; Roeder, Robert G.

    2013-01-01

    The multisubunit TFIID plays a direct role in transcription initiation by binding to core promoter elements and directing preinitiation complex assembly. Although TFIID may also function as a coactivator through direct interactions with promoter-bound activators, mechanistic aspects of this poorly defined function remain unclear. Here, biochemical studies show a direct TFIID–E-protein interaction that (1) is mediated through interaction of a novel E-protein activation domain (activation domain 3 [AD3]) with the TAF homology (TAFH) domain of TAF4, (2) is critical for activation of a natural target gene by an E protein, and (3) mechanistically acts by enhancing TFIID binding to the core promoter. Complementary assays establish a gene-specific role for the TAFH domain in TFIID recruitment and activation of a large subset of genes in vivo. These results firmly establish TAF4 as a bona fide E-protein coactivator as well as a mechanism involving facilitated TFIID binding through direct interaction with an E-protein activation domain. PMID:23873942

  15. Insertional Mutagenesis for Genes involved in Otic/Vestibular Development and Function in Xenopus Tropicalis

    NASA Technical Reports Server (NTRS)

    Torrejon, Marcela; Li, Erica; Nguyen, Minh; Winfree, Seth; Wang, Esther; Reinsch, Sigrid; Dalton, Bonnie (Technical Monitor)

    2002-01-01

    Sensitivity to gravity is essential for spatial orientation. Consequently, the gravity receptor system is one of the phylogenetically oldest sensory systems, and the special adaptations that enhance sensitivity to gravity are highly conserved. The main goal of this project is to use Xenopus (frog) to identify genes expressed during vestibular and auditory development. These studies will lead a better understanding of the molecular mechanisms involved in vestibular and auditory development and function. We are using a gene-trap approach in Xenopus tropicalis with the green fluorescent protein (GFP) gene as the transgene reporter. GFP expression occurs only when the GFP gene is correctly integrated in actively transcribed genes. Using the GFP as a tag we can easily identify and clone the mutated gene. In addition, we can study the function of the mutated gene by analyzing the defects generated by insertion of the GFP transgene. To date we have tissue specific GFP expression in X. tropicalis including expression in ear, neural tube, kidney, muscle, eyes and nose. Our transgenic animals will soon reach maturity so that we can outcross them and analyze their progeny. Our next goal is to isolate RNA from our transgenics and clone the tagged genes using RACE-PCR. Currently we are optimizing the RACE-PCR method using transgenics with crystallin GFP expression.

  16. Functional characterization of Sporothrix schenckii glycosidases involved in the N-linked glycosylation pathway.

    PubMed

    Lopes-Bezerra, Leila M; Lozoya-Pérez, Nancy E; López-Ramírez, Luz A; Martínez-Álvarez, José A; Teixeira, Marcus M; Felipe, Maria S S; Flores-Carreón, Arturo; Mora-Montes, Héctor M

    2015-01-01

    Protein glycosylation pathways are conserved metabolic processes in eukaryotic organisms and are required for cell fitness. In fungal pathogens, the N-linked glycosylation pathway is indispensable for proper cell wall composition and virulence. In Sporothrix schenckii sensu stricto, the causative agent of sporotrichosis, little is known about this glycosylation pathway. Here, using a genome-wide screening for putative members of the glycosyl hydrolase (CAZy - GH) families 47 and 63, which group enzymes involved in the processing step during N-linked glycan maturation, we found seven homologue genes belonging to family 47 and one to family 63. The eight genes were individually expressed in C. albicans null mutants lacking either MNS1 (for members of family 47) or CWH41 (for the member of family 63). Our results indicate that SsCWH41 is the functional ortholog of CaCWH41, whereas SsMNS1 is the functional ortholog of CaMNS1. The remaining genes of family 47 encode Golgi mannosidases and endoplasmic reticulum degradation-enhancing alpha-mannosidase-like proteins (EDEMs). Since these GH families gather proteins used as target for drugs to control cell growth, identification of these genes could help in the design of antifungals that could be used to treat sporotrichosis and other fungal diseases. In addition, to our knowledge, we are the first to report that Golgi mannosidases and EDEMs are expressed and characterized in yeast cells. PMID:25526779

  17. Specific involvement of gonadal hormones in the functional maturation of growth hormone releasing hormone (GHRH) neurons.

    PubMed

    Gouty-Colomer, Laurie-Anne; Méry, Pierre-François; Storme, Emilie; Gavois, Elodie; Robinson, Iain C; Guérineau, Nathalie C; Mollard, Patrice; Desarménien, Michel G

    2010-12-01

    Growth hormone (GH) is the key hormone involved in the regulation of growth and metabolism, two functions that are highly modulated during infancy. GH secretion, controlled mainly by GH releasing hormone (GHRH), has a characteristic pattern during postnatal development that results in peaks of blood concentration at birth and puberty. A detailed knowledge of the electrophysiology of the GHRH neurons is necessary to understand the mechanisms regulating postnatal GH secretion. Here, we describe the unique postnatal development of the electrophysiological properties of GHRH neurons and their regulation by gonadal hormones. Using GHRH-eGFP mice, we demonstrate that already at birth, GHRH neurons receive numerous synaptic inputs and fire large and fast action potentials (APs), consistent with effective GH secretion. Concomitant with the GH secretion peak occurring at puberty, these neurons display modifications of synaptic input properties, decrease in AP duration, and increase in a transient voltage-dependant potassium current. Furthermore, the modulation of both the AP duration and voltage-dependent potassium current are specifically controlled by gonadal hormones because gonadectomy prevented the maturation of these active properties and hormonal treatment restored it. Thus, GHRH neurons undergo specific developmental modulations of their electrical properties over the first six postnatal weeks, in accordance with hormonal demand. Our results highlight the importance of the interaction between the somatotrope and gonadotrope axes during the establishment of adapted neuroendocrine functions.

  18. Social choice functions: A tool for ranking variables involved in action plans against road noise.

    PubMed

    Ruiz-Padillo, Alejandro; de Oliveira, Thiago B F; Alves, Matheus; Bazzan, Ana L C; Ruiz, Diego P

    2016-08-01

    Traffic noise is gaining importance in planning and operation of roads in developing countries, and particularly in Europe and Latin America. Many variables with different degrees of importance influence the perception of noise from roads. Thus, the problem of prioritizing road stretches for action against such noise is an important issue in environmental noise management. For example, it can be addressed using multicriteria methods. However, these methodologies require criteria or suitable variables to be ranked according to their relative importance. In the present study, for this ranking, a list of nine variables involved in the decision-making process (called "road stretch priority variables") was presented in the form of questionnaires to high-level experts from Andalusia, southern Spain. These experts ranked the variables by relevance. Using the same data, seven social choice functions (Plurality, Raynaud, Kemeny-Young, Copeland, Simpson, Schulze, and Borda) were used in order to rank the variables. The results indicate that the most important variables were those that take into account the parameters of greatest exposure for the citizens, followed by variables related to the intensity of the problem analyzed. The results show that a combination of the use of social choice functions on aggregated information from expert panels can provide a consensus for ranking priority variables related to road stretches.

  19. Functional Analysis of Esterase TCE2 Gene from Tetranychus cinnabarinus (Boisduval) involved in Acaricide Resistance

    PubMed Central

    Shi, Li; Wei, Peng; Wang, Xiangzun; Shen, Guangmao; Zhang, Jiao; Xiao, Wei; Xu, Zhifeng; Xu, Qiang; He, Lin

    2016-01-01

    The carmine spider mite, Tetranychus cinnabarinus is an important pest of crops and vegetables worldwide, and it has the ability to develop resistance against acaricides rapidly. Our previous study identified an esterase gene (designated TCE2) over-expressed in resistant mites. To investigate this gene’s function in resistance, the expression levels of TCE2 in susceptible, abamectin-, fenpropathrin-, and cyflumetofen-resistant strains were knocked down (65.02%, 63.14%, 57.82%, and 63.99%, respectively) via RNA interference. The bioassay data showed that the resistant levels to three acaricides were significantly decreased after the down-regulation of TCE2, indicating a correlation between the expression of TCE2 and the acaricide-resistance in T. cinnabarinus. TCE2 gene was then re-engineered for heterologous expression in Escherichia coli. The recombinant TCE2 exhibited α-naphthyl acetate activity (483.3 ± 71.8 nmol/mg pro. min−1), and the activity of this enzyme could be inhibited by abamectin, fenpropathrin, and cyflumetofen, respectively. HPLC and GC results showed that 10 μg of the recombinant TCE2 could effectively decompose 21.23% fenpropathrin and 49.70% cyflumetofen within 2 hours. This is the first report of a successful heterologous expression of an esterase gene from mites. This study provides direct evidence that TCE2 is a functional gene involved in acaricide resistance in T. cinnabarinus. PMID:26725309

  20. Functional connectivity during rested wakefulness predicts vulnerability to sleep deprivation.

    PubMed

    Yeo, B T Thomas; Tandi, Jesisca; Chee, Michael W L

    2015-05-01

    Significant inter-individual differences in vigilance decline following sleep deprivation exist. We characterized functional connectivity in 68 healthy young adult participants in rested wakefulness and following a night of total sleep deprivation. After whole brain signal regression, functionally connected cortical networks during the well-rested state exhibited reduced correlation following sleep deprivation, suggesting that highly integrated brain regions become less integrated during sleep deprivation. In contrast, anti-correlations in the well-rested state became less so following sleep deprivation, suggesting that highly segregated networks become less segregated during sleep deprivation. Subjects more resilient to vigilance decline following sleep deprivation showed stronger anti-correlations among several networks. The weaker anti-correlations overlapped with connectivity alterations following sleep deprivation. Resilient individuals thus evidence clearer separation of highly segregated cortical networks in the well-rested state. In contrast to corticocortical connectivity, subcortical-cortical connectivity was comparable across resilient and vulnerable groups despite prominent state-related changes in both groups. Because sleep deprivation results in a significant elevation of whole brain signal amplitude, the aforesaid signal changes and group contrasts may be masked in analyses omitting their regression, suggesting possible value in regressing whole brain signal in certain experimental contexts.

  1. Does human presynaptic striatal dopamine function predict social conformity?

    PubMed

    Stokes, Paul R A; Benecke, Aaf; Puraite, Julita; Bloomfield, Michael A P; Shotbolt, Paul; Reeves, Suzanne J; Lingford-Hughes, Anne R; Howes, Oliver; Egerton, Alice

    2014-03-01

    Socially desirable responding (SDR) is a personality trait which reflects either a tendency to present oneself in an overly positive manner to others, consistent with social conformity (impression management (IM)), or the tendency to view one's own behaviour in an overly positive light (self-deceptive enhancement (SDE)). Neurochemical imaging studies report an inverse relationship between SDR and dorsal striatal dopamine D₂/₃ receptor availability. This may reflect an association between SDR and D₂/₃ receptor expression, synaptic dopamine levels or a combination of the two. In this study, we used a [¹⁸F]-DOPA positron emission tomography (PET) image database to investigate whether SDR is associated with presynaptic dopamine function. Striatal [¹⁸F]-DOPA uptake, (k(i)(cer), min⁻¹), was determined in two independent healthy participant cohorts (n=27 and 19), by Patlak analysis using a cerebellar reference region. SDR was assessed using the revised Eysenck Personality Questionnaire (EPQ-R) Lie scale, and IM and SDE were measured using the Paulhus Deception Scales. No significant associations were detected between Lie, SDE or IM scores and striatal [¹⁸F]-DOPA k(i)(cer). These results indicate that presynaptic striatal dopamine function is not associated with social conformity and suggests that social conformity may be associated with striatal D₂/₃ receptor expression rather than with synaptic dopamine levels.

  2. Functional characterization of chitinase-3 reveals involvement of chitinases in early embryo immunity in zebrafish.

    PubMed

    Teng, Zinan; Sun, Chen; Liu, Shousheng; Wang, Hongmiao; Zhang, Shicui

    2014-10-01

    The function and mechanism of chitinases in early embryonic development remain largely unknown. We show here that recombinant chitinase-3 (rChi3) is able to hydrolyze the artificial chitin substrate, 4-methylumbelliferyl-β-D-N,N',N″-triacetylchitotrioside, and to bind to and inhibit the growth of the fungus Candida albicans, implicating that Chi3 plays a dual function in innate immunity and chitin-bearing food digestion in zebrafish. This is further corroborated by the expression profile of Chi3 in the liver and gut, which are both immune- and digestion-relevant organs. Compared with rChi3, rChi3-CD lacking CBD still retains partial capacity to bind to C. albicans, but its enzymatic and antifungal activities are significantly reduced. By contrast, rChi3-E140N with the putative catalytic residue E140 mutated shows little affinity to chitin, and its enzymatic and antifungal activities are nearly completely lost. These suggest that both enzymatic and antifungal activities of Chi3 are dependent on the presence of CBD and E140. We also clearly demonstrate that in zebrafish, both the embryo extract and the developing embryo display antifungal activity against C. albicans, and all the findings point to chitinase-3 (Chi3) being a newly-identified factor involved in the antifungal activity. Taken together, a dual function in both innate immunity and food digestion in embryo is proposed for zebrafish Chi3. It also provides a new angle to understand the immune role of chitinases in early embryonic development of animals.

  3. RNA silencing of genes involved in Alzheimer's disease enhances mitochondrial function and synaptic activity.

    PubMed

    Manczak, Maria; Reddy, P Hemachandra

    2013-12-01

    An age-dependent increase in mRNA levels of the amyloid precursor protein (APP), the microtubule-associated protein Tau, and voltage-dependent anion channel 1 (VDAC1) genes are reported to be toxic to neurons affected by Alzheimer's disease (AD). However, the underlying toxic nature of these genes is not completely understood. The purpose of our study was to determine the effects of RNA silencing of APP, Tau, and VDAC1 genes in AD pathogenesis. Using human neuroblastoma (SHSY5Y) cells, we first silenced RNA for APP, Tau, and VDAC1 genes, and then performed real-time RT-PCR analysis to measure mRNA levels of 34 genes that are involved in AD pathogenesis. Using biochemical assays, we also assessed mitochondrial function by measuring levels of H2O2 production, lipid peroxidation, cytochrome c oxidase activity, ATP production, and GTPase enzymatic activity. We found that increased mRNA expression of synaptic function and mitochondrial fission genes, and reduced levels of mitochondrial fusion genes in RNA silenced the SHSY5Y cells for APP, Tau and VDAC1 genes relative to the control SHSY5Y cells. In addition, RNA-silenced APP, Tau, and VDAC1 genes in SHSY5Y cells showed reduced levels of H2O2 production, lipid peroxidation, fission-linked GTPase activity, and increased cytochrome oxidase activity and ATP production. These findings suggest that a reduction of human APP, Tau, and VDAC1 may enhance synaptic activity, may improve mitochondrial maintenance and function, and may protect against toxicities of AD-related genes. Thus, these findings also suggest that the reduction of APP, Tau, and VDAC1 mRNA expressions may have therapeutic value for patients with AD.

  4. [Prediction of G-load (Gz) tolerance based on various functional tests].

    PubMed

    Suvorov, P M; Karlov, V N; Sidorova, K A

    1996-01-01

    The purpose of the present study was to analyze and sum up the data on the methods of predicting g-tolerance (+Gz) utilizing various functional tests within the program of medical flight certification. The study involved 478 fighter pilots who were examined at the Central Military Scientific/Research Aviation Hospital. The age of examinates varied from 25 to 50 years (35 yr. on the average). Along with healthy subjects there were also pilots with the history of vascular-autonomous instability, anamnesis of syncope, myocardiodystrophy, myocardiac and atherosclerotic cardiosclerosis, and some other disorders. As a result, a correlation was established between the tolerance of lower body negative pressure at -50 mm Hg and standing tests. No link was noted between tolerance of the subjects to moderate hypoxia (H = 5,000 m for 30 minutes) and +Gz-loads at 3 and 5 units for 30 seconds. Neither was there evidence of correlation between tolerance of standing tests including their modifications and g-loads. Pearson association coefficient ra = 0.01. Comparison of the tolerance to +Gz at 3, 5, and 6 units without the anti-gravity suit and static loads at 120, 160, 200, and 240 kg/s during 30 seconds each gave an agreement of 67%. However, the statoergometry test revealed a poor tolerance of static loads only in 17.2% out of 29 pilots with low g-loads tolerance. Hence, the association coefficient appeared to be equal to 0.06 denying any predictive link. This absence of reliable predictive correlation between the tests in use was extenuated by different physiological mechanisms of adaptation.

  5. [Prediction of G-load (Gz) tolerance based on various functional tests].

    PubMed

    Suvorov, P M; Karlov, V N; Sidorova, K A

    1996-01-01

    The purpose of the present study was to analyze and sum up the data on the methods of predicting g-tolerance (+Gz) utilizing various functional tests within the program of medical flight certification. The study involved 478 fighter pilots who were examined at the Central Military Scientific/Research Aviation Hospital. The age of examinates varied from 25 to 50 years (35 yr. on the average). Along with healthy subjects there were also pilots with the history of vascular-autonomous instability, anamnesis of syncope, myocardiodystrophy, myocardiac and atherosclerotic cardiosclerosis, and some other disorders. As a result, a correlation was established between the tolerance of lower body negative pressure at -50 mm Hg and standing tests. No link was noted between tolerance of the subjects to moderate hypoxia (H = 5,000 m for 30 minutes) and +Gz-loads at 3 and 5 units for 30 seconds. Neither was there evidence of correlation between tolerance of standing tests including their modifications and g-loads. Pearson association coefficient ra = 0.01. Comparison of the tolerance to +Gz at 3, 5, and 6 units without the anti-gravity suit and static loads at 120, 160, 200, and 240 kg/s during 30 seconds each gave an agreement of 67%. However, the statoergometry test revealed a poor tolerance of static loads only in 17.2% out of 29 pilots with low g-loads tolerance. Hence, the association coefficient appeared to be equal to 0.06 denying any predictive link. This absence of reliable predictive correlation between the tests in use was extenuated by different physiological mechanisms of adaptation. PMID:8974598

  6. INTREPID: a web server for prediction of functionally important residues by evolutionary analysis.

    PubMed

    Sankararaman, Sriram; Kolaczkowski, Bryan; Sjölander, Kimmen

    2009-07-01

    We present the INTREPID web server for predicting functionally important residues in proteins. INTREPID has been shown to boost the recall and precision of catalytic residue prediction over other sequence-based methods and can be used to identify other types of functional residues. The web server takes an input protein sequence, gathers homologs, constructs a multiple sequence alignment and phylogenetic tree and finally runs the INTREPID method to assign a score to each position. Residues predicted to be functionally important are displayed on homologous 3D structures (where available), highlighting spatial patterns of conservation at various significance thresholds. The INTREPID web server is available at http://phylogenomics.berkeley.edu/intrepid.

  7. GO-At: in silico prediction of gene function in Arabidopsis thaliana by combining heterogeneous data.

    PubMed

    Bradford, James R; Needham, Chris J; Tedder, Philip; Care, Matthew A; Bulpitt, Andrew J; Westhead, David R

    2010-02-01

    Despite recent advances, accurate gene function prediction remains an elusive goal, with very few methods directly applicable to the plant Arabidopsis thaliana. In this study, we present GO-At (gene ontology prediction in A. thaliana), a method that combines five data types (co-expression, sequence, phylogenetic profile, interaction and gene neighbourhood) to predict gene function in Arabidopsis. Using a simple, yet powerful two-step approach, GO-At first generates a list of genes ranked in descending order of probability of functional association with the query gene. Next, a prediction score is automatically assigned to each function in this list based on the assumption that functions appearing most frequently at the top of the list are most likely to represent the function of the query gene. In this way, the second step provides an effective alternative to simply taking the 'best hit' from the first list, and achieves success rates of up to 79%. GO-At is applicable across all three GO categories: molecular function, biological process and cellular component, and can assign functions at multiple levels of annotation detail. Furthermore, we demonstrate GO-At's ability to predict functions of uncharacterized genes by identifying ten putative golgins/Golgi-associated proteins amongst 8219 genes of previously unknown cellular component and present independent evidence to support our predictions. A web-based implementation of GO-At (http://www.bioinformatics.leeds.ac.uk/goat) is available, providing a unique resource for plant researchers to make predictions for uncharacterized genes and predict novel functions in Arabidopsis.

  8. PTMcode: a database of known and predicted functional associations between post-translational modifications in proteins.

    PubMed

    Minguez, Pablo; Letunic, Ivica; Parca, Luca; Bork, Peer

    2013-01-01

    Post-translational modifications (PTMs) are involved in the regulation and structural stabilization of eukaryotic proteins. The combination of individual PTM states is a key to modulate cellular functions as became evident in a few well-studied proteins. This combinatorial setting, dubbed the PTM code, has been proposed to be extended to whole proteomes in eukaryotes. Although we are still far from deciphering such a complex language, thousands of protein PTM sites are being mapped by high-throughput technologies, thus providing sufficient data for comparative analysis. PTMcode (http://ptmcode.embl.de) aims to compile known and predicted PTM associations to provide a framework that would enable hypothesis-driven experimental or computational analysis of various scales. In its first release, PTMcode provides PTM functional associations of 13 different PTM types within proteins in 8 eukaryotes. They are based on five evidence channels: a literature survey, residue co-evolution, structural proximity, PTMs at the same residue and location within PTM highly enriched protein regions (hotspots). PTMcode is presented as a protein-based searchable database with an interactive web interface providing the context of the co-regulation of nearly 75 000 residues in >10 000 proteins.

  9. Functional characterization of enzymes involved in cysteine biosynthesis and H(2)S production in Trypanosoma cruzi.

    PubMed

    Marciano, Daniela; Santana, Marianela; Nowicki, Cristina

    2012-10-01

    Trypanosoma cruzi is expected to synthetize de novo cysteine by different routes, among which the two-step pathway involving serine acetyltransferase and cysteine synthase (CS) is comprised. Also, cystathionine β synthase (CBS) might contribute to the de novo generation of cysteine in addition to catalyze the first step of the reverse transsulfuration route producing cystathionine. However, neither the functionality of CS nor that of cystathionine γ lyase (CGL) has been assessed. Our results show that T. cruzi CS could participate notably more actively than CBS in the de novo synthesis of cysteine. Interestingly, at the protein level T. cruzi CS is more abundant in amastigotes than in epimastigotes. Unlike the mammalian homologues, T. cruzi CGL specifically cleaves cystathionine into cysteine and is unable to produce H(2)S. The expression pattern of T. cruzi CGL parallels that of CBS, which unexpectedly suggests that in addition to the de novo synthesis of cysteine, the reverse transsulfuration pathway could be operative in the mammalian and insect stages. Besides, T. cruzi CBS produces H(2)S by decomposing cysteine or via condensation of cysteine with homocysteine. The latter reaction leads to cystathionine production, and is catalyzed remarkably more efficiently than the breakdown of cysteine. In T. cruzi like in other organisms, H(2)S could exert regulatory effects on varied metabolic processes. Notably, T. cruzi seems to count on stage-specific routes involved in cysteine production, the multiple cysteine-processing alternatives could presumably reflect this parasite's high needs of reducing power for detoxification of reactive oxygen species.

  10. Functional proteomic analysis reveals the involvement of KIAA1199 in breast cancer growth, motility and invasiveness

    PubMed Central

    2014-01-01

    Background KIAA1199 is a recently identified novel gene that is up-regulated in human cancer with poor survival. Our proteomic study on signaling polarity in chemotactic cells revealed KIAA1199 as a novel protein target that may be involved in cellular chemotaxis and motility. In the present study, we examined the functional significance of KIAA1199 expression in breast cancer growth, motility and invasiveness. Methods We validated the previous microarray observation by tissue microarray immunohistochemistry using a TMA slide containing 12 breast tumor tissue cores and 12 corresponding normal tissues. We performed the shRNA-mediated knockdown of KIAA1199 in MDA-MB-231 and HS578T cells to study the role of this protein in cell proliferation, migration and apoptosis in vitro. We studied the effects of KIAA1199 knockdown in vivo in two groups of mice (n = 5). We carried out the SILAC LC-MS/MS based proteomic studies on the involvement of KIAA1199 in breast cancer. Results KIAA1199 mRNA and protein was significantly overexpressed in breast tumor specimens and cell lines as compared with non-neoplastic breast tissues from large-scale microarray and studies of breast cancer cell lines and tumors. To gain deeper insights into the novel role of KIAA1199 in breast cancer, we modulated KIAA1199 expression using shRNA-mediated knockdown in two breast cancer cell lines (MDA-MB-231 and HS578T), expressing higher levels of KIAA1199. The KIAA1199 knockdown cells showed reduced motility and cell proliferation in vitro. Moreover, when the knockdown cells were injected into the mammary fat pads of female athymic nude mice, there was a significant decrease in tumor incidence and growth. In addition, quantitative proteomic analysis revealed that knockdown of KIAA1199 in breast cancer (MDA-MB-231) cells affected a broad range of cellular functions including apoptosis, metabolism and cell motility. Conclusions Our findings indicate that KIAA1199 may play an important role in breast

  11. Structure and function of enzymes involved in the biosynthesis of phenylpropanoids

    PubMed Central

    Ferrer, J.-L.; Austin, M.B.; Stewart, C.; Noel, J.P.

    2010-01-01

    As a major component of plant specialized metabolism, phenylpropanoid biosynthetic pathways provide anthocyanins for pigmentation, flavonoids such as flavones for protection against UV photodamage, various flavonoid and isoflavonoid inducers of Rhizobium nodulation genes, polymeric lignin for structural support and assorted antimicrobial phytoalexins. As constituents of plant-rich diets and an assortment of herbal medicinal agents, the phenylpropanoids exhibit measurable cancer chemopreventive, antimitotic, estrogenic, antimalarial, antioxidant and antiasthmatic activities. The health benefits of consuming red wine, which contains significant amounts of 3,4′,5-trihydroxystilbene (resveratrol) and other phenylpropanoids, highlight the increasing awareness in the medical community and the public at large as to the potential dietary importance of these plant derived compounds. As recently as a decade ago, little was known about the three-dimensional structure of the enzymes involved in these highly branched biosynthetic pathways. Ten years ago, we initiated X-ray crystallographic analyses of key enzymes of this pathway, complemented by biochemical and enzyme engineering studies. We first investigated chalcone synthase (CHS), the entry point of the flavonoid pathway, and its close relative stilbene synthase (STS). Work soon followed on the O-methyl transferases (OMTs) involved in modifications of chalcone, isoflavonoids and metabolic precursors of lignin. More recently, our groups and others have extended the range of phenylpropanoid pathway structural investigations to include the upstream enzymes responsible for the initial recruitment of phenylalanine and tyrosine, as well as a number of reductases, acyltransferases and ancillary tailoring enzymes of phenylpropanoid-derived metabolites. These structure–function studies collectively provide a comprehensive view of an important aspect of phenylpropanoid metabolism. More specifically, these atomic resolution

  12. Structure and function of enzymes involved in the biosynthesis of phenylpropanoids.

    PubMed

    Ferrer, J-L; Austin, M B; Stewart, C; Noel, J P

    2008-03-01

    As a major component of plant specialized metabolism, phenylpropanoid biosynthetic pathways provide anthocyanins for pigmentation, flavonoids such as flavones for protection against UV photodamage, various flavonoid and isoflavonoid inducers of Rhizobium nodulation genes, polymeric lignin for structural support and assorted antimicrobial phytoalexins. As constituents of plant-rich diets and an assortment of herbal medicinal agents, the phenylpropanoids exhibit measurable cancer chemopreventive, antimitotic, estrogenic, antimalarial, antioxidant and antiasthmatic activities. The health benefits of consuming red wine, which contains significant amounts of 3,4',5-trihydroxystilbene (resveratrol) and other phenylpropanoids, highlight the increasing awareness in the medical community and the public at large as to the potential dietary importance of these plant derived compounds. As recently as a decade ago, little was known about the three-dimensional structure of the enzymes involved in these highly branched biosynthetic pathways. Ten years ago, we initiated X-ray crystallographic analyses of key enzymes of this pathway, complemented by biochemical and enzyme engineering studies. We first investigated chalcone synthase (CHS), the entry point of the flavonoid pathway, and its close relative stilbene synthase (STS). Work soon followed on the O-methyl transferases (OMTs) involved in modifications of chalcone, isoflavonoids and metabolic precursors of lignin. More recently, our groups and others have extended the range of phenylpropanoid pathway structural investigations to include the upstream enzymes responsible for the initial recruitment of phenylalanine and tyrosine, as well as a number of reductases, acyltransferases and ancillary tailoring enzymes of phenylpropanoid-derived metabolites. These structure-function studies collectively provide a comprehensive view of an important aspect of phenylpropanoid metabolism. More specifically, these atomic resolution insights

  13. Correlated Protein Function Prediction via Maximization of Data-Knowledge Consistency.

    PubMed

    Wang, Hua; Huang, Heng; Ding, Chris

    2015-06-01

    Conventional computational approaches for protein function prediction usually predict one function at a time, fundamentally. As a result, the protein functions are treated as separate target classes. However, biological processes are highly correlated in reality, which makes multiple functions assigned to a protein not independent. Therefore, it would be beneficial to make use of function category correlations when predicting protein functions. In this article, we propose a novel Maximization of Data-Knowledge Consistency (MDKC) approach to exploit function category correlations for protein function prediction. Our approach banks on the assumption that two proteins are likely to have large overlap in their annotated functions if they are highly similar according to certain experimental data. We first establish a new pairwise protein similarity using protein annotations from knowledge perspective. Then by maximizing the consistency between the established knowledge similarity upon annotations and the data similarity upon biological experiments, putative functions are assigned to unannotated proteins. Most importantly, function category correlations are gracefully incorporated into our learning objective through the knowledge similarity. Comprehensive experimental evaluations on the Saccharomyces cerevisiae species have demonstrated promising results that validate the performance of our methods.

  14. Functional analysis of a cinnamyl alcohol dehydrogenase involved in lignin biosynthesis in wheat.

    PubMed

    Ma, Qing-Hu

    2010-06-01

    Cinnamyl alcohol dehydrogenase (CAD) catalyses the final step in the biosynthesis of monolignols. In the present study, a cDNA encoding a CAD was isolated from wheat, designated as TaCAD1. A genome-wide data mining in the wheat EST database revealed another 10 CAD-like homologues, namely TaCAD2 to TaCAD11. A phylogenetic analysis showed that TaCAD1 belonged to the bona fide CAD group involved in lignin synthesis. Two other putative CADs from the wheat genome (TaCAD2 and TaCAD4) also belonged to this group and were very close to TaCAD1, but lacked C-terminal domain, suggesting that they are pseudogenes. DNA gel blot analysis for the wheat genome showed two to three copies of CAD related to TaCAD1, but RNA gel blot analysis revealed only single band for TaCAD1, which was highly expressed in stem, with quite low expression in leaf and undetectable expression in root. The predicted three-dimension structure of TaCAD1 resembled that of AtCAD5, but two amino acid substitutions were identified in the substrate binding region. Recombinant TaCAD1 protein used coniferyl aldehyde as the most favoured substrate, also showed high efficiencies toward sinapyl and p-coumaryl aldehydes. TaCAD1 was an enzyme being pH-dependent and temperature-sensitive, and showing a typical random catalysing mechanism. At the milky stage of wheat, TaCAD1 mRNA abundance, protein level and enzyme activity in stem tissues were higher in a lodging-resistant cultivar (H4546) than in lodging-sensitive cultivar (C6001). These properties were correlated to the lignin contents and lodging indices of the two cultivars. These data suggest that TaCAD1 is the predominant CAD in wheat stem for lignin biosynthesis and is critical for lodging resistance.

  15. Teacher Involvement in the Development of Function-Based Behaviour Intervention Plans for Students with Challenging Behaviour

    ERIC Educational Resources Information Center

    O'Neill, Sue; Stephenson, Jennifer

    2009-01-01

    This article examines literature published since 1997 on functional behaviour assessment (FBA) and behaviour intervention plans (BIPs), involving school-based personnel, for children identified as having or being at risk of emotional/behavioural disorder (E/BD) in school settings. Of interest was the level of involvement of school-based personnel…

  16. FINDSITE: a combined evolution/structure-based approach to protein function prediction

    PubMed Central

    Brylinski, Michal

    2009-01-01

    A key challenge of the post-genomic era is the identification of the function(s) of all the molecules in a given organism. Here, we review the status of sequence and structure-based approaches to protein function inference and ligand screening that can provide functional insights for a significant fraction of the ∼50% of ORFs of unassigned function in an average proteome. We then describe FINDSITE, a recently developed algorithm for ligand binding site prediction, ligand screening and molecular function prediction, which is based on binding site conservation across evolutionary distant proteins identified by threading. Importantly, FINDSITE gives comparable results when high-resolution experimental structures as well as predicted protein models are used. PMID:19324930

  17. Applications of Displacement Transfer Functions to Deformed Shape Predictions of the GIII Swept-Wing Structure

    NASA Technical Reports Server (NTRS)

    Lung, Shun-Fat; Ko, William L.

    2016-01-01

    The displacement transfer functions (DTFs) were applied to the GIII swept wing for the deformed shape prediction. The calculated deformed shapes are very close to the correlated finite element results as well as the measured data. The convergence study showed that using 17 strain stations, the wing-tip displacement prediction error was 1.6 percent, and that there is no need to use a large number of strain stations for G-III wing shape predictions.

  18. Genomics and structure/function studies of Rhabdoviridae proteins involved in replication and transcription.

    PubMed

    Assenberg, R; Delmas, O; Morin, B; Graham, S C; De Lamballerie, X; Laubert, C; Coutard, B; Grimes, J M; Neyts, J; Owens, R J; Brandt, B W; Gorbalenya, A; Tucker, P; Stuart, D I; Canard, B; Bourhy, H

    2010-08-01

    Some mammalian rhabdoviruses may infect humans, and also infect invertebrates, dogs, and bats, which may act as vectors transmitting viruses among different host species. The VIZIER programme, an EU-funded FP6 program, has characterized viruses that belong to the Vesiculovirus, Ephemerovirus and Lyssavirus genera of the Rhabdoviridae family to perform ground-breaking research on the identification of potential new drug targets against these RNA viruses through comprehensive structural characterization of the replicative machinery. The contribution of VIZIER programme was of several orders. First, it contributed substantially to research aimed at understanding the origin, evolution and diversity of rhabdoviruses. This diversity was then used to obtain further structural information on the proteins involved in replication. Two strategies were used to produce recombinant proteins by expression of both full length or domain constructs in either E. coli or insect cells, using the baculovirus system. In both cases, parallel cloning and expression screening at small-scale of multiple constructs based on different viruses including the addition of fusion tags, was key to the rapid generation of expression data. As a result, some progress has been made in the VIZIER programme towards dissecting the multi-functional L protein into components suitable for structural and functional studies. However, the phosphoprotein polymerase co-factor and the structural matrix protein, which play a number of roles during viral replication and drives viral assembly, have both proved much more amenable to structural biology. Applying the multi-construct/multi-virus approach central to protein production processes in VIZIER has yielded new structural information which may ultimately be exploitable in the derivation of novel ways of intervening in viral replication.

  19. Neck circumference predicts renal function decline in overweight women

    PubMed Central

    Yoon, Chang-Yun; Park, Jung Tak; Jhee, Jong Hyun; Kee, Youn Kyung; Seo, Changhwan; Lee, Misol; Cha, Min-Uk; Jung, Su-Young; Park, Seohyun; Yun, Hae-Ryong; Kwon, Young Eun; Oh, Hyung Jung; Han, Seung Hyeok; Yoo, Tae-Hyun; Kang, Shin-Wook

    2016-01-01

    Abstract Chronic kidney disease (CKD) is characterized by increased risks of morbidity and mortality. Upper-body subcutaneous fat, which is commonly estimated from the neck circumference (NC), was revealed to be the main reservoir of circulating nonesterified fatty acids in overweight patients. Despite a close association between NC and metabolic complications, the relationship of NC with renal function has not been fully investigated. In this study, the impact of NC on the development of incident CKD was elucidated. The data were retrieved from the Korean Genome and Epidemiology Study cohort. The subjects were followed at 2-year intervals from 2003 to 2011. Overweight was defined as a body mass index of ≥23 kg/m2. A total of 4298 cohort subjects were screened. After exclusion, 2268 overweight subjects were included for the final analysis. The primary end point was incident CKD, which was defined as a composite of estimated glomerular filtration rate (eGFR) < 60 mL/min/1.73 m2 or the development of proteinuria. The mean patient age was 36.3 ± 3.0 years, and 1285 (56.7%) were men. They were divided into 2 groups according to the median NC in male and female subjects, separately. In both sexes, hypertension (men, P < 0.001; women, P = 0.009) and diabetes (men, P = 0.002; women, P < 0.001) were significantly more prevalent in the big NC group than in the small NC group. In contrast, eGFR was significantly lower only in male subjects of the big NC group (P < 0.001), whereas it was comparable between the small and big NC groups (P = 0.167). In multivariate Cox proportional hazards regression analysis, NC values were independently associated with incident CKD development in female subjects after adjusting for multiple confounding factors (per 1 cm increase, hazard ratio [95% confidence interval] = 1.159 [1.024–1.310], P = 0.019) but not in male subjects. NC is independently associated with the development of CKD in overweight female

  20. Predicting the biomechanical strength of proximal femur specimens with Minkowski functionals and support vector regression

    NASA Astrophysics Data System (ADS)

    Yang, Chien-Chun; Nagarajan, Mahesh B.; Huber, Markus B.; Carballido-Gamio, Julio; Bauer, Jan S.; Baum, Thomas; Eckstein, Felix; Lochmüller, Eva-Maria; Link, Thomas M.; Wismüller, Axel

    2014-03-01

    Regional trabecular bone quality estimation for purposes of femoral bone strength prediction is important for improving the clinical assessment of osteoporotic fracture risk. In this study, we explore the ability of 3D Minkowski Functionals derived from multi-detector computed tomography (MDCT) images of proximal femur specimens in predicting their corresponding biomechanical strength. MDCT scans were acquired for 50 proximal femur specimens harvested from human cadavers. An automated volume of interest (VOI)-fitting algorithm was used to define a consistent volume in the femoral head of each specimen. In these VOIs, the trabecular bone micro-architecture was characterized by statistical moments of its BMD distribution and by topological features derived from Minkowski Functionals. A linear multiregression analysis and a support vector regression (SVR) algorithm with a linear kernel were used to predict the failure load (FL) from the feature sets; the predicted FL was compared to the true FL determined through biomechanical testing. The prediction performance was measured by the root mean square error (RMSE) for each feature set. The best prediction result was obtained from the Minkowski Functional surface used in combination with SVR, which had the lowest prediction error (RMSE = 0.939 ± 0.345) and which was significantly lower than mean BMD (RMSE = 1.075 ± 0.279, p<0.005). Our results indicate that the biomechanical strength prediction can be significantly improved in proximal femur specimens with Minkowski Functionals extracted from on MDCT images used in conjunction with support vector regression.

  1. Predicting College Students' Positive Psychology Associated Traits with Executive Functioning Dimensions

    ERIC Educational Resources Information Center

    Marshall, Seth

    2016-01-01

    More research is needed that investigates how positive psychology-associated traits are predicted by neurocognitive processes. Correspondingly, the purpose of this study was to ascertain how, and to what extent, four traits, namely, grit, optimism, positive affect, and life satisfaction were predicted by the executive functioning (EF) dimensions…

  2. Nurses' Assessment of Rehabilitation Potential and Prediction of Functional Status at Discharge from Inpatient Rehabilitation

    ERIC Educational Resources Information Center

    Myers, Jamie S.; Grigsby, Jim; Teel, Cynthia S.; Kramer, Andrew M.

    2009-01-01

    The goals of this study were to evaluate the accuracy of nurses' predictions of rehabilitation potential in older adults admitted to inpatient rehabilitation facilities and to ascertain whether the addition of a measure of executive cognitive function would enhance predictive accuracy. Secondary analysis was performed on prospective data collected…

  3. Predicting maize phenology: Intercomparison of functions for developmental response to temperature

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accurate prediction of phenological development in maize is fundamental to determining crop adaptation and yield potential. A number of thermal functions are used in crop models, but their relative precision in predicting maize development has not been quantified. The objectives of this study were t...

  4. Wegener's granulomatosis with renal involvement: patient survival and correlations between initial renal function, renal histology, therapy and renal outcome.

    PubMed

    Andrassy, K; Erb, A; Koderisch, J; Waldherr, R; Ritz, E

    1991-04-01

    Patient survival and renal outcome were followed in 25 patients with biopsy confirmed Wegener's granulomatosis and renal involvement. Fourteen out of 25 patients required dialysis on admission, 11/25 patients did not. All patients were treated with a novel protocol comprising methylprednisolone and cyclophosphamide. The median follow-up observation was 36 months (12-113 months). With the exception of 1 patient (who died from causes not related to Wegener's granulomatosis) all patients are alive. Among the patients initially requiring dialysis (n = 14) 4 are in terminal renal failure after 0, 7, 21 and 38 months respectively. In the nondialysis group (n = 11) only 1 patient subsequently required chronic dialysis 30 months after clinical admission. Renal failure was due to non-compliance with immunosuppressive therapy in at least 2 patients. Percentage of obsolescent glomeruli and the degree of tubulointerstitial lesions, but not active glomerular lesions (crescents, necroses) predicted renal outcome. The major cause of renal functional impairment was relapse of Wegener's granulomatosis usually within 2 years after clinical remission. Therefore prolonged treatment with cyclophosphamide for at least 2 years after clinical remission is recommended. Two patients with initially negative immunohistology had a second renal biopsy which revealed de novo appearance of mesangial IgA deposits.

  5. Bioinformatic analysis of functional proteins involved in obesity associated with diabetes.

    PubMed

    Rao, Allam Appa; Tayaru, N Manga; Thota, Hanuman; Changalasetty, Suresh Babu; Thota, Lalitha Saroja; Gedela, Srinubabu

    2008-03-01

    The twin epidemic of diabetes and obesity pose daunting challenges worldwide. The dramatic rise in obesity-associated diabetes resulted in an alarming increase in the incidence and prevalence of obesity an important complication of diabetes. Differences among individuals in their susceptibility to both these conditions probably reflect their genetic constitutions. The dramatic improvements in genomic and bioinformatic resources are accelerating the pace of gene discovery. It is tempting to speculate the key susceptible genes/proteins that bridges diabetes mellitus and obesity. In this regard, we evaluated the role of several genes/proteins that are believed to be involved in the evolution of obesity associated diabetes by employing multiple sequence alignment using ClustalW tool and constructed a phylogram tree using functional protein sequences extracted from NCBI. Phylogram was constructed using Neighbor-Joining Algorithm a bioinformatic tool. Our bioinformatic analysis reports resistin gene as ominous link with obesity associated diabetes. This bioinformatic study will be useful for future studies towards therapeutic inventions of obesity associated type 2 diabetes. PMID:23675069

  6. Fission yeast pkl1 is a kinesin-related protein involved in mitotic spindle function.

    PubMed Central

    Pidoux, A L; LeDizet, M; Cande, W Z

    1996-01-01

    We have used anti-peptide antibodies raised against highly conserved regions of the kinesin motor domain to identify kinesin-related proteins in the fission yeast Schizosaccharomyces pombe. Here we report the identification of a new kinesin-related protein, which we have named pkl1. Sequence homology and domain organization place pkl1 in the Kar3/ncd subfamily of kinesin-related proteins. Bacterially expressed pkl1 fusion proteins display microtubule-stimulated ATPase activity, nucleotide-sensitive binding, and bundling of microtubules. Immunofluorescence studies with affinity-purified antibodies indicate that the pkl1 protein localizes to the nucleus and the mitotic spindle. Pkl1 null mutants are viable but have increased sensitivity to microtubule-disrupting drugs. Disruption of pkl1+ suppresses mutations in another kinesin-related protein, cut7, which is known to act in the spindle. Overexpression of pkl1 to very high levels causes a similar phenotype to that seen in cut7 mutants: V-shaped and star-shaped microtubule structures are observed, which we interpret to be spindles with unseparated spindle poles. These observations suggest that pkl1 and cut7 provide opposing forces in the spindle. We propose that pkl1 functions as a microtubule-dependent motor that is involved in microtubule organization in the mitotic spindle. Images PMID:8898367

  7. Further evidence for involvement of a noncanonical function of uracil DNA glycosylase in class switch recombination.

    PubMed

    Begum, Nasim A; Stanlie, Andre; Doi, Tomomitsu; Sasaki, Yoko; Jin, Hai Wei; Kim, Yong Sung; Nagaoka, Hitoshi; Honjo, Tasuku

    2009-02-24

    Activation-induced cytidine deaminase (AID) introduces DNA cleavage in the Ig gene locus to initiate somatic hypermutation (SHM) and class switch recombination (CSR) in B cells. The DNA deamination model assumes that AID deaminates cytidine (C) on DNA and generates uridine (U), resulting in DNA cleavage after removal of U by uracil DNA glycosylase (UNG). Although UNG deficiency reduces CSR efficiency to one tenth, we reported that catalytically inactive mutants of UNG were fully proficient in CSR and that several mutants at noncatalytic sites lost CSR activity, indicating that enzymatic activity of UNG is not required for CSR. In this report we show that CSR activity by many UNG mutants critically depends on its N-terminal domain, irrespective of their enzymatic activities. Dissociation of the catalytic and CSR activity was also found in another UNG family member, SMUG1, and its mutants. We also show that Ugi, a specific peptide inhibitor of UNG, inhibits CSR without reducing DNA cleavage of the S (switch) region, confirming dispensability of UNG in DNA cleavage in CSR. It is therefore likely that UNG is involved in a repair step after DNA cleavage in CSR. Furthermore, requirement of the N terminus but not enzymatic activity of UNG mutants for CSR indicates that the UNG protein structure is critical. The present findings support our earlier proposal that CSR depends on a noncanonical function of the UNG protein (e.g., as a scaffold for repair enzymes) that might be required for the recombination reaction after DNA cleavage.

  8. Biological functions of glycosyltransferase genes involved in O-fucose glycan synthesis.

    PubMed

    Okajima, Tetsuya; Matsuura, Aiko; Matsuda, Tsukasa

    2008-07-01

    Rare types of glycosylation often occur in a domain-specific manner and are involved in specific biological processes. Well-known examples of such modification are O-linked fucose (O-fucose) and O-linked glucose (O-glucose) glycans on epidermal growth factor (EGF) domains. In particular, O-fucose glycans are reported to regulate the functions of EGF domain-containing proteins such as urinary-type plasminogen activator and Notch receptors. Two glycosyltransferases catalyze the initiation and elongation of O-fucose glycans. The initiation process is catalyzed by O-fucosyltransferase 1, which is essential for Notch signalling in both Drosophila and mice. O-fucosyltransferase 1 can affect the folding, ligand interaction and endocytosis of Notch receptors, and both the glycosyltransferase and non-catalytic activities of O-fucosyltransferase 1 have been reported. The elongation of O-fucose monosaccharide is catalyzed by Fringe-related genes, which differentially modulate the interaction between Notch and two classes of ligands, namely, Delta and Serrate/Jagged. In this article, we have reviewed the recent reports addressing the distinctive features of the glycosyltransferases and O-glycans present on the EGF domains.

  9. Spatially distributed flame transfer functions for predicting combustion dynamics in lean premixed gas turbine combustors

    SciTech Connect

    Kim, K.T.; Lee, J.G.; Quay, B.D.; Santavicca, D.A.

    2010-09-15

    The present paper describes a methodology to improve the accuracy of prediction of the eigenfrequencies and growth rates of self-induced instabilities and demonstrates its application to a laboratory-scale, swirl-stabilized, lean-premixed, gas turbine combustor. The influence of the spatial heat release distribution is accounted for using local flame transfer function (FTF) measurements. The two-microphone technique and CH{sup *} chemiluminescence intensity measurements are used to determine the input (inlet velocity perturbation) and the output functions (heat release oscillation), respectively, for the local flame transfer functions. The experimentally determined local flame transfer functions are superposed using the flame transfer function superposition principle, and the result is incorporated into an analytic thermoacoustic model, in order to predict the linear stability characteristics of a given system. Results show that when the flame length is not acoustically compact the model prediction calculated using the local flame transfer functions is better than the prediction made using the global flame transfer function. In the case of a flame in the compact flame regime, accurate predictions of eigenfrequencies and growth rates can be obtained using the global flame transfer function. It was also found that the general response characteristics of the local FTF (gain and phase) are qualitatively the same as those of the global FTF. (author)

  10. Modeling of glycerol-3-phosphate transporter suggests a potential 'tilt' mechanism involved in its function.

    PubMed

    Tsigelny, Igor F; Greenberg, Jerry; Kouznetsova, Valentina; Nigam, Sanjay K

    2008-10-01

    "rocker switch" may apply to certain MFS transporters, intermediate "tilted" states may exist under certain circumstances or as transitional structures. Although wet lab experimental confirmation is required, our results suggest that transport mechanisms in this transporter family should probably not be assumed to be conserved simply based on standard structural homology considerations. Furthermore, steered molecular dynamics elucidating energetic interactions of ligands with amino acid residues in an appropriately modeled transporter may have predictive value in understanding the impact of mutations and/or polymorphisms on transporter function. PMID:18942157

  11. Functional Knowledge Transfer for High-accuracy Prediction of Under-studied Biological Processes

    PubMed Central

    Rowland, Jessica; Guan, Yuanfang; Bongo, Lars A.; Burdine, Rebecca D.; Troyanskaya, Olga G.

    2013-01-01

    A key challenge in genetics is identifying the functional roles of genes in pathways. Numerous functional genomics techniques (e.g. machine learning) that predict protein function have been developed to address this question. These methods generally build from existing annotations of genes to pathways and thus are often unable to identify additional genes participating in processes that are not already well studied. Many of these processes are well studied in some organism, but not necessarily in an investigator's organism of interest. Sequence-based search methods (e.g. BLAST) have been used to transfer such annotation information between organisms. We demonstrate that functional genomics can complement traditional sequence similarity to improve the transfer of gene annotations between organisms. Our method transfers annotations only when functionally appropriate as determined by genomic data and can be used with any prediction algorithm to combine transferred gene function knowledge with organism-specific high-throughput data to enable accurate function prediction. We show that diverse state-of-art machine learning algorithms leveraging functional knowledge transfer (FKT) dramatically improve their accuracy in predicting gene-pathway membership, particularly for processes with little experimental knowledge in an organism. We also show that our method compares favorably to annotation transfer by sequence similarity. Next, we deploy FKT with state-of-the-art SVM classifier to predict novel genes to 11,000 biological processes across six diverse organisms and expand the coverage of accurate function predictions to processes that are often ignored because of a dearth of annotated genes in an organism. Finally, we perform in vivo experimental investigation in Danio rerio and confirm the regulatory role of our top predicted novel gene, wnt5b, in leftward cell migration during heart development. FKT is immediately applicable to many bioinformatics techniques and will

  12. Sustained prediction ability of net analyte preprocessing methods using reduced calibration sets. Theoretical and experimental study involving the spectrophotometric analysis of multicomponent mixtures.

    PubMed

    Goicoechea, H C; Olivieri, A C

    2001-07-01

    A newly developed multivariate method involving net analyte preprocessing (NAP) was tested using central composite calibration designs of progressively decreasing size regarding the multivariate simultaneous spectrophotometric determination of three active components (phenylephrine, diphenhydramine and naphazoline) and one excipient (methylparaben) in nasal solutions. Its performance was evaluated and compared with that of partial least-squares (PLS-1). Minimisation of the calibration predicted error sum of squares (PRESS) as a function of a moving spectral window helped to select appropriate working spectral ranges for both methods. The comparison of NAP and PLS results was carried out using two tests: (1) the elliptical joint confidence region for the slope and intercept of a predicted versus actual concentrations plot for a large validation set of samples and (2) the D-optimality criterion concerning the information content of the calibration data matrix. Extensive simulations and experimental validation showed that, unlike PLS, the NAP method is able to furnish highly satisfactory results when the calibration set is reduced from a full four-component central composite to a fractional central composite, as expected from the modelling requirements of net analyte based methods.

  13. Predictive value of obsessive compulsive symptoms involving the skin on quality of life in patients with acne vulgaris.

    PubMed

    Bez, Yasin; Yesilova, Yavuz; Arı, Mustafa; Kaya, Mehmet Cemal; Alpak, Gokay; Bulut, Mahmut

    2013-11-01

    Acne is one of the most common dermatological diseases, and obsessive compulsive disorder is among the most frequent psychiatric conditions seen in dermatology clinics. Comorbidity of these conditions may therefore be expected. The aim of this study was to measure obsessive compulsive symptoms and quality of life in patients with acne vulgaris, compare them with those of healthy control subjects, and determine whether there is any predictive value of obsessive compulsive symptoms for quality of life in patients with acne. Obsessive compulsive symptoms and quality of life measurements of 146 patients with acne vulgaris and 94 healthy control subjects were made using the Maudsley Obsessive Compulsive Questionnaire and Short Form-36 in a cross-sectional design. Patients with acne vulgaris had lower scores for physical functioning, physical role dysfunction, general health perception, vitality, and emotional role dysfunction. They also had higher scores for checking, slowness, and rumination. The only predictor of physical functioning and vitality dimensions of health-related quality of life in these patients was rumination score. Obsessive compulsive symptoms in patients with acne vulgaris are higher than in controls, and this may correlate with both disease severity and quality of life for patients.

  14. Using PPI network autocorrelation in hierarchical multi-label classification trees for gene function prediction

    PubMed Central

    2013-01-01

    Background Ontologies and catalogs of gene functions, such as the Gene Ontology (GO) and MIPS-FUN, assume that functional classes are organized hierarchically, that is, general functions include more specific ones. This has recently motivated the development of several machine learning algorithms for gene function prediction that leverages on this hierarchical organization where instances may belong to multiple classes. In addition, it is possible to exploit relationships among examples, since it is plausible that related genes tend to share functional annotations. Although these relationships have been identified and extensively studied in the area of protein-protein interaction (PPI) networks, they have not received much attention in hierarchical and multi-class gene function prediction. Relations between genes introduce autocorrelation in functional annotations and violate the assumption that instances are independently and identically distributed (i.i.d.), which underlines most machine learning algorithms. Although the explicit consideration of these relations brings additional complexity to the learning process, we expect substantial benefits in predictive accuracy of learned classifiers. Results This article demonstrates the benefits (in terms of predictive accuracy) of considering autocorrelation in multi-class gene function prediction. We develop a tree-based algorithm for considering network autocorrelation in the setting of Hierarchical Multi-label Classification (HMC). We empirically evaluate the proposed algorithm, called NHMC (Network Hierarchical Multi-label Classification), on 12 yeast datasets using each of the MIPS-FUN and GO annotation schemes and exploiting 2 different PPI networks. The results clearly show that taking autocorrelation into account improves the predictive performance of the learned models for predicting gene function. Conclusions Our newly developed method for HMC takes into account network information in the learning phase: When

  15. Drug-target interaction prediction by integrating chemical, genomic, functional and pharmacological data.

    PubMed

    Yang, Fan; Xu, Jinbo; Zeng, Jianyang

    2014-01-01

    In silico prediction of unknown drug-target interactions (DTIs) has become a popular tool for drug repositioning and drug development. A key challenge in DTI prediction lies in integrating multiple types of data for accurate DTI prediction. Although recent studies have demonstrated that genomic, chemical and pharmacological data can provide reliable information for DTI prediction, it remains unclear whether functional information on proteins can also contribute to this task. Little work has been developed to combine such information with other data to identify new interactions between drugs and targets. In this paper, we introduce functional data into DTI prediction and construct biological space for targets using the functional similarity measure. We present a probabilistic graphical model, called conditional random field (CRF), to systematically integrate genomic, chemical, functional and pharmacological data plus the topology of DTI networks into a unified framework to predict missing DTIs. Tests on two benchmark datasets show that our method can achieve excellent prediction performance with the area under the precision-recall curve (AUPR) up to 94.9. These results demonstrate that our CRF model can successfully exploit heterogeneous data to capture the latent correlations of DTIs, and thus will be practically useful for drug repositioning. Supplementary Material is available at http://iiis.tsinghua.edu.cn/~compbio/papers/psb2014/psb2014_sm.pdf. PMID:24297542

  16. Gene-Specific Function Prediction for Non-Synonymous Mutations in Monogenic Diabetes Genes

    PubMed Central

    Li, Quan; Liu, Xiaoming; Gibbs, Richard A.; Boerwinkle, Eric; Polychronakos, Constantin; Qu, Hui-Qi

    2014-01-01

    The rapid progress of genomic technologies has been providing new opportunities to address the need of maturity-onset diabetes of the young (MODY) molecular diagnosis. However, whether a new mutation causes MODY can be questionable. A number of in silico methods have been developed to predict functional effects of rare human mutations. The purpose of this study is to compare the performance of different bioinformatics methods in the functional prediction of nonsynonymous mutations in each MODY gene, and provides reference matrices to assist the molecular diagnosis of MODY. Our study showed that the prediction scores by different methods of the diabetes mutations were highly correlated, but were more complimentary than replacement to each other. The available in silico methods for the prediction of diabetes mutations had varied performances across different genes. Applying gene-specific thresholds defined by this study may be able to increase the performance of in silico prediction of disease-causing mutations. PMID:25136813

  17. GWAS for executive function and processing speed suggests involvement of the CADM2 gene.

    PubMed

    Ibrahim-Verbaas, C A; Bressler, J; Debette, S; Schuur, M; Smith, A V; Bis, J C; Davies, G; Trompet, S; Smith, J A; Wolf, C; Chibnik, L B; Liu, Y; Vitart, V; Kirin, M; Petrovic, K; Polasek, O; Zgaga, L; Fawns-Ritchie, C; Hoffmann, P; Karjalainen, J; Lahti, J; Llewellyn, D J; Schmidt, C O; Mather, K A; Chouraki, V; Sun, Q; Resnick, S M; Rose, L M; Oldmeadow, C; Stewart, M; Smith, B H; Gudnason, V; Yang, Q; Mirza, S S; Jukema, J W; deJager, P L; Harris, T B; Liewald, D C; Amin, N; Coker, L H; Stegle, O; Lopez, O L; Schmidt, R; Teumer, A; Ford, I; Karbalai, N; Becker, J T; Jonsdottir, M K; Au, R; Fehrmann, R S N; Herms, S; Nalls, M; Zhao, W; Turner, S T; Yaffe, K; Lohman, K; van Swieten, J C; Kardia, S L R; Knopman, D S; Meeks, W M; Heiss, G; Holliday, E G; Schofield, P W; Tanaka, T; Stott, D J; Wang, J; Ridker, P; Gow, A J; Pattie, A; Starr, J M; Hocking, L J; Armstrong, N J; McLachlan, S; Shulman, J M; Pilling, L C; Eiriksdottir, G; Scott, R J; Kochan, N A; Palotie, A; Hsieh, Y-C; Eriksson, J G; Penman, A; Gottesman, R F; Oostra, B A; Yu, L; DeStefano, A L; Beiser, A; Garcia, M; Rotter, J I; Nöthen, M M; Hofman, A; Slagboom, P E; Westendorp, R G J; Buckley, B M; Wolf, P A; Uitterlinden, A G; Psaty, B M; Grabe, H J; Bandinelli, S; Chasman, D I; Grodstein, F; Räikkönen, K; Lambert, J-C; Porteous, D J; Price, J F; Sachdev, P S; Ferrucci, L; Attia, J R; Rudan, I; Hayward, C; Wright, A F; Wilson, J F; Cichon, S; Franke, L; Schmidt, H; Ding, J; de Craen, A J M; Fornage, M; Bennett, D A; Deary, I J; Ikram, M A; Launer, L J; Fitzpatrick, A L; Seshadri, S; van Duijn, C M; Mosley, T H

    2016-02-01

    To identify common variants contributing to normal variation in two specific domains of cognitive functioning, we conducted a genome-wide association study (GWAS) of executive functioning and information processing speed in non-demented older adults from the CHARGE (Cohorts for Heart and Aging Research in Genomic Epidemiology) consortium. Neuropsychological testing was available for 5429-32,070 subjects of European ancestry aged 45 years or older, free of dementia and clinical stroke at the time of cognitive testing from 20 cohorts in the discovery phase. We analyzed performance on the Trail Making Test parts A and B, the Letter Digit Substitution Test (LDST), the Digit Symbol Substitution Task (DSST), semantic and phonemic fluency tests, and the Stroop Color and Word Test. Replication was sought in 1311-21860 subjects from 20 independent cohorts. A significant association was observed in the discovery cohorts for the single-nucleotide polymorphism (SNP) rs17518584 (discovery P-value=3.12 × 10(-8)) and in the joint discovery and replication meta-analysis (P-value=3.28 × 10(-9) after adjustment for age, gender and education) in an intron of the gene cell adhesion molecule 2 (CADM2) for performance on the LDST/DSST. Rs17518584 is located about 170 kb upstream of the transcription start site of the major transcript for the CADM2 gene, but is within an intron of a variant transcript that includes an alternative first exon. The variant is associated with expression of CADM2 in the cingulate cortex (P-value=4 × 10(-4)). The protein encoded by CADM2 is involved in glutamate signaling (P-value=7.22 × 10(-15)), gamma-aminobutyric acid (GABA) transport (P-value=1.36 × 10(-11)) and neuron cell-cell adhesion (P-value=1.48 × 10(-13)). Our findings suggest that genetic variation in the CADM2 gene is associated with individual differences in information processing speed. PMID:25869804

  18. GWAS for executive function and processing speed suggests involvement of the CADM2 gene

    PubMed Central

    Ibrahim-Verbaas, CA; Bressler, J; Debette, S; Schuur, M; Smith, AV; Bis, JC; Davies, G; Trompet, S; Smith, JA; Wolf, C; Chibnik, LB; Liu, Y; Vitart, V; Kirin, M; Petrovic, K; Polasek, O; Zgaga, L; Fawns-Ritchie, C; Hoffmann, P; Karjalainen, J; Lahti, J; Llewellyn, DJ; Schmidt, CO; Mather, KA; Chouraki, V; Sun, Q; Resnick, SM; Rose, LM; Oldmeadow, C; Stewart, M; Smith, BH; Gudnason, V; Yang, Q; Mirza, SS; Jukema, JW; deJager, PL; Harris, TB; Liewald, DC; Amin, N; Coker, LH; Stegle, O; Lopez, OL; Schmidt, R; Teumer, A; Ford, I; Karbalai, N; Becker, JT; Jonsdottir, MK; Au, R; Fehrmann, RSN; Herms, S; Nalls, M; Zhao, W; Turner, ST; Yaffe, K; Lohman, K; van Swieten, JC; Kardia, SLR; Knopman, DS; Meeks, WM; Heiss, G; Holliday, EG; Schofield, PW; Tanaka, T; Stott, DJ; Wang, J; Ridker, P; Gow, AJ; Pattie, A; Starr, JM; Hocking, LJ; Armstrong, NJ; McLachlan, S; Shulman, JM; Pilling, LC; Eiriksdottir, G; Scott, RJ; Kochan, NA; Palotie, A; Hsieh, Y-C; Eriksson, JG; Penman, A; Gottesman, RF; Oostra, BA; Yu, L; DeStefano, AL; Beiser, A; Garcia, M; Rotter, JI; Nöthen, MM; Hofman, A; Slagboom, PE; Westendorp, RGJ; Buckley, BM; Wolf, PA; Uitterlinden, AG; Psaty, BM; Grabe, HJ; Bandinelli, S; Chasman, DI; Grodstein, F; Räikkönen, K; Lambert, J-C; Porteous, DJ; Price, JF; Sachdev, PS; Ferrucci, L; Attia, JR; Rudan, I; Hayward, C; Wright, AF; Wilson, JF; Cichon, S; Franke, L; Schmidt, H; Ding, J; de Craen, AJM; Fornage, M

    2016-01-01

    To identify common variants contributing to normal variation in two specific domains of cognitive functioning, we conducted a genome-wide association study (GWAS) of executive functioning and information processing speed in non-demented older adults from the CHARGE (Cohorts for Heart and Aging Research in Genomic Epidemiology) consortium. Neuropsychological testing was available for 5429–32 070 subjects of European ancestry aged 45 years or older, free of dementia and clinical stroke at the time of cognitive testing from 20 cohorts in the discovery phase. We analyzed performance on the Trail Making Test parts A and B, the Letter Digit Substitution Test (LDST), the Digit Symbol Substitution Task (DSST), semantic and phonemic fluency tests, and the Stroop Color and Word Test. Replication was sought in 1311-21860 subjects from 20 independent cohorts. A significant association was observed in the discovery cohorts for the single-nucleotide polymorphism (SNP) rs17518584 (discovery P-value = 3.12 × 10−8) and in the joint discovery and replication meta-analysis (P-value = 3.28 × 10−9 after adjustment for age, gender and education) in an intron of the gene cell adhesion molecule 2 (CADM2) for performance on the LDST/DSST. Rs17518584 is located about 170 kb upstream of the transcription start site of the major transcript for the CADM2 gene, but is within an intron of a variant transcript that includes an alternative first exon. The variant is associated with expression of CADM2 in the cingulate cortex (P-value = 4 × 10−4). The protein encoded by CADM2 is involved in glutamate signaling (P-value = 7.22 × 10−15), gamma-aminobutyric acid (GABA) transport (P-value = 1.36 × 10−11) and neuron cell-cell adhesion (P-value = 1.48 × 10−13). Our findings suggest that genetic variation in the CADM2 gene is associated with individual differences in information processing speed. PMID:25869804

  19. A bridge-functional-based classical mapping method for predicting the correlation functions of uniform electron gases at finite temperature

    SciTech Connect

    Liu, Yu; Wu, Jianzhong

    2014-02-28

    Efficient and accurate prediction of the correlation functions of uniform electron gases is of great importance for both practical and theoretical applications. This paper presents a bridge-functional-based classical mapping method for calculating the correlation functions of uniform spin-unpolarized electron gases at finite temperature. The bridge functional is formulated by following Rosenfeld's universality ansatz in combination with the modified fundamental measure theory. The theoretical predictions are in good agreement with recent quantum Monte Carlo results but with negligible computational cost, and the accuracy is better than a previous attempt based on the hypernetted-chain approximation. We find that the classical mapping method is most accurate if the effective mass of electrons increases as the density falls.

  20. Functional interactions between type IV secretion systems involved in DNA transfer and virulence.

    PubMed

    de Paz, Héctor D; Sangari, Félix J; Bolland, Silvia; García-Lobo, Juan M; Dehio, Christoph; de la Cruz, Fernando; Llosa, Matxalen

    2005-11-01

    This paper reports an analysis of the functional interactions between type IV secretion systems (T4SS) that are part of the conjugative machinery for horizontal DNA transfer (cT4SS), and T4SS involved in bacterial pathogenicity (pT4SS). The authors' previous work showed that a conjugative coupling protein (T4CP) interacts with the VirB10-type component of the T4SS in order to recruit the protein-DNA complex to the transporter for conjugative DNA transfer. This study now shows by two-hybrid analysis that conjugative T4CPs also interact with the VirB10 element of the pT4SS of Agrobacterium tumefaciens (At), Bartonella tribocorum (Bt) and Brucella suis (Bs). Moreover, the VirB10 component of a cT4SS (protein TrwE of plasmid R388) could be partially substituted by that of a pT4SS (protein TrwE of Bt) for conjugation. This result opens the way for the construction of hybrid T4SS that deliver DNA into animal cells. Interestingly, in the presence of part of the Bs T4SS the R388 T4SS protein levels were decreased and R388 conjugation was strongly inhibited. Complementation assays between the Trw systems of R388 and Bt showed that only individual components from the so-called 'core complex' could be exchanged, supporting the concept that this core is the common scaffold for the transport apparatus while the other 'peripheral components' are largely system-specific. PMID:16272374

  1. Functional responses and molecular mechanisms involved in histone-mediated platelet activation.

    PubMed

    Carestia, A; Rivadeneyra, L; Romaniuk, M A; Fondevila, C; Negrotto, S; Schattner, M

    2013-11-01

    Histones are highly alkaline proteins found in cell nuclei and they can be released by either dying or inflammatory cells. The recent observations that histones are major components of neutrophil extracellular traps and promote platelet aggregation and platelet-dependent thrombin generation have shown that these proteins are potent prothrombotic molecules. Because the mechanism(s) of platelet activation by histones are not completely understood, we explored the ability of individual recombinant human histones H1, H2A, H2B, H3 and H4 to induce platelet activation as well as the possible molecular mechanisms involved. All histones were substrates for platelet adhesion and spreading and triggered fibrinogen binding, aggregation, von Willebrand factor release, P-selectin and phosphatidylserine (PS) exposure and the formation of platelet-leukocyte aggregates; however, H4 was the most potent. Histone-mediated fibrinogen binding, P-selectin and PS exposure and the formation of mixed aggregates were potentiated by thrombin. Histones induced the activation of ERK, Akt, p38 and NFκB. Accordingly, histone-induced platelet activation was significantly impaired by pretreatment of platelets with inhibitors of ERK (U 0126), PI3K/Akt (Ly 294002), p38 (SB 203580) and NFκB (BAY 11-7082 and Ro 106-9920). Preincubation of platelets with either aspirin or dexamethasone markedly decreased fibrinogen binding and the adhesion mediated by histones without affecting P-selectin exposure. Functional platelet responses induced by H3 and H4, but not H1, H2A and H2B, were partially mediated through interaction with Toll-like receptors -2 and -4. Our data identify histones as important triggers of haemostatic and proinflammatory platelet responses, and only haemostatic responses are partially inhibited by anti-inflammatory drugs. PMID:23965842

  2. Functional responses and molecular mechanisms involved in histone-mediated platelet activation.

    PubMed

    Carestia, A; Rivadeneyra, L; Romaniuk, M A; Fondevila, C; Negrotto, S; Schattner, M

    2013-11-01

    Histones are highly alkaline proteins found in cell nuclei and they can be released by either dying or inflammatory cells. The recent observations that histones are major components of neutrophil extracellular traps and promote platelet aggregation and platelet-dependent thrombin generation have shown that these proteins are potent prothrombotic molecules. Because the mechanism(s) of platelet activation by histones are not completely understood, we explored the ability of individual recombinant human histones H1, H2A, H2B, H3 and H4 to induce platelet activation as well as the possible molecular mechanisms involved. All histones were substrates for platelet adhesion and spreading and triggered fibrinogen binding, aggregation, von Willebrand factor release, P-selectin and phosphatidylserine (PS) exposure and the formation of platelet-leukocyte aggregates; however, H4 was the most potent. Histone-mediated fibrinogen binding, P-selectin and PS exposure and the formation of mixed aggregates were potentiated by thrombin. Histones induced the activation of ERK, Akt, p38 and NFκB. Accordingly, histone-induced platelet activation was significantly impaired by pretreatment of platelets with inhibitors of ERK (U 0126), PI3K/Akt (Ly 294002), p38 (SB 203580) and NFκB (BAY 11-7082 and Ro 106-9920). Preincubation of platelets with either aspirin or dexamethasone markedly decreased fibrinogen binding and the adhesion mediated by histones without affecting P-selectin exposure. Functional platelet responses induced by H3 and H4, but not H1, H2A and H2B, were partially mediated through interaction with Toll-like receptors -2 and -4. Our data identify histones as important triggers of haemostatic and proinflammatory platelet responses, and only haemostatic responses are partially inhibited by anti-inflammatory drugs.

  3. Flower development of Phalaenopsis orchid involves functionally divergent SEPALLATA-like genes.

    PubMed

    Pan, Zhao-Jun; Chen, You-Yi; Du, Jian-Syun; Chen, Yun-Yu; Chung, Mei-Chu; Tsai, Wen-Chieh; Wang, Chun-Neng; Chen, Hong-Hwa

    2014-05-01

    The Phalaenopsis orchid produces complex flowers that are commercially valuable, which has promoted the study of its flower development. E-class MADS-box genes, SEPALLATA (SEP), combined with B-, C- and D-class MADS-box genes, are involved in various aspects of plant development, such as floral meristem determination, organ identity, fruit maturation, seed formation and plant architecture. Four SEP-like genes were cloned from Phalaenopsis orchid, and the duplicated PeSEPs were grouped into PeSEP1/3 and PeSEP2/4. All PeSEPs were expressed in all floral organs. PeSEP2 expression was detectable in vegetative tissues. The study of protein-protein interactions suggested that PeSEPs may form higher order complexes with the B-, C-, D-class and AGAMOUS LIKE6-related MADS-box proteins to determine floral organ identity. The tepal became a leaf-like organ when PeSEP3 was silenced by virus-induced silencing, with alterations in epidermis identity and contents of anthocyanin and chlorophyll. Silencing of PeSEP2 had minor effects on the floral phenotype. Silencing of the E-class genes PeSEP2 and PeSEP3 resulted in the downregulation of B-class PeMADS2-6 genes, which indicates an association of PeSEP functions and B-class gene expression. These findings reveal the important roles of PeSEP in Phalaenopsis floral organ formation throughout the developmental process by the formation of various multiple protein complexes.

  4. Flower development of Phalaenopsis orchid involves functionally divergent SEPALLATA-like genes.

    PubMed

    Pan, Zhao-Jun; Chen, You-Yi; Du, Jian-Syun; Chen, Yun-Yu; Chung, Mei-Chu; Tsai, Wen-Chieh; Wang, Chun-Neng; Chen, Hong-Hwa

    2014-05-01

    The Phalaenopsis orchid produces complex flowers that are commercially valuable, which has promoted the study of its flower development. E-class MADS-box genes, SEPALLATA (SEP), combined with B-, C- and D-class MADS-box genes, are involved in various aspects of plant development, such as floral meristem determination, organ identity, fruit maturation, seed formation and plant architecture. Four SEP-like genes were cloned from Phalaenopsis orchid, and the duplicated PeSEPs were grouped into PeSEP1/3 and PeSEP2/4. All PeSEPs were expressed in all floral organs. PeSEP2 expression was detectable in vegetative tissues. The study of protein-protein interactions suggested that PeSEPs may form higher order complexes with the B-, C-, D-class and AGAMOUS LIKE6-related MADS-box proteins to determine floral organ identity. The tepal became a leaf-like organ when PeSEP3 was silenced by virus-induced silencing, with alterations in epidermis identity and contents of anthocyanin and chlorophyll. Silencing of PeSEP2 had minor effects on the floral phenotype. Silencing of the E-class genes PeSEP2 and PeSEP3 resulted in the downregulation of B-class PeMADS2-6 genes, which indicates an association of PeSEP functions and B-class gene expression. These findings reveal the important roles of PeSEP in Phalaenopsis floral organ formation throughout the developmental process by the formation of various multiple protein complexes. PMID:24571782

  5. Identification of optimal soil hydraulic functions and parameters for predicting soil moisture

    EPA Science Inventory

    We examined the accuracy of several commonly used soil hydraulic functions and associated parameters for predicting observed soil moisture data. We used six combined methods formed by three commonly used soil hydraulic functions – i.e., Brooks and Corey (1964) (BC), Campbell (19...

  6. COMBREX-DB: an experiment centered database of protein function: knowledge, predictions and knowledge gaps.

    PubMed

    Chang, Yi-Chien; Hu, Zhenjun; Rachlin, John; Anton, Brian P; Kasif, Simon; Roberts, Richard J; Steffen, Martin

    2016-01-01

    The COMBREX database (COMBREX-DB; combrex.bu.edu) is an online repository of information related to (i) experimentally determined protein function, (ii) predicted protein function, (iii) relationships among proteins of unknown function and various types of experimental data, including molecular function, protein structure, and associated phenotypes. The database was created as part of the novel COMBREX (COMputational BRidges to EXperiments) effort aimed at accelerating the rate of gene function validation. It currently holds information on ∼ 3.3 million known and predicted proteins from over 1000 completely sequenced bacterial and archaeal genomes. The database also contains a prototype recommendation system for helping users identify those proteins whose experimental determination of function would be most informative for predicting function for other proteins within protein families. The emphasis on documenting experimental evidence for function predictions, and the prioritization of uncharacterized proteins for experimental testing distinguish COMBREX from other publicly available microbial genomics resources. This article describes updates to COMBREX-DB since an initial description in the 2011 NAR Database Issue.

  7. Interpreting functional effects of coding variants: challenges in proteome-scale prediction, annotation and assessment.

    PubMed

    Shameer, Khader; Tripathi, Lokesh P; Kalari, Krishna R; Dudley, Joel T; Sowdhamini, Ramanathan

    2016-09-01

    Accurate assessment of genetic variation in human DNA sequencing studies remains a nontrivial challenge in clinical genomics and genome informatics. Ascribing functional roles and/or clinical significances to single nucleotide variants identified from a next-generation sequencing study is an important step in genome interpretation. Experimental characterization of all the observed functional variants is yet impractical; thus, the prediction of functional and/or regulatory impacts of the various mutations using in silico approaches is an important step toward the identification of functionally significant or clinically actionable variants. The relationships between genotypes and the expressed phenotypes are multilayered and biologically complex; such relationships present numerous challenges and at the same time offer various opportunities for the design of in silico variant assessment strategies. Over the past decade, many bioinformatics algorithms have been developed to predict functional consequences of single nucleotide variants in the protein coding regions. In this review, we provide an overview of the bioinformatics resources for the prediction, annotation and visualization of coding single nucleotide variants. We discuss the currently available approaches and major challenges from the perspective of protein sequence, structure, function and interactions that require consideration when interpreting the impact of putatively functional variants. We also discuss the relevance of incorporating integrated workflows for predicting the biomedical impact of the functionally important variations encoded in a genome, exome or transcriptome. Finally, we propose a framework to classify variant assessment approaches and strategies for incorporation of variant assessment within electronic health records.

  8. COMBREX-DB: an experiment centered database of protein function: knowledge, predictions and knowledge gaps.

    PubMed

    Chang, Yi-Chien; Hu, Zhenjun; Rachlin, John; Anton, Brian P; Kasif, Simon; Roberts, Richard J; Steffen, Martin

    2016-01-01

    The COMBREX database (COMBREX-DB; combrex.bu.edu) is an online repository of information related to (i) experimentally determined protein function, (ii) predicted protein function, (iii) relationships among proteins of unknown function and various types of experimental data, including molecular function, protein structure, and associated phenotypes. The database was created as part of the novel COMBREX (COMputational BRidges to EXperiments) effort aimed at accelerating the rate of gene function validation. It currently holds information on ∼ 3.3 million known and predicted proteins from over 1000 completely sequenced bacterial and archaeal genomes. The database also contains a prototype recommendation system for helping users identify those proteins whose experimental determination of function would be most informative for predicting function for other proteins within protein families. The emphasis on documenting experimental evidence for function predictions, and the prioritization of uncharacterized proteins for experimental testing distinguish COMBREX from other publicly available microbial genomics resources. This article describes updates to COMBREX-DB since an initial description in the 2011 NAR Database Issue. PMID:26635392

  9. COMBREX-DB: an experiment centered database of protein function: knowledge, predictions and knowledge gaps

    PubMed Central

    Chang, Yi-Chien; Hu, Zhenjun; Rachlin, John; Anton, Brian P.; Kasif, Simon; Roberts, Richard J.; Steffen, Martin

    2016-01-01

    The COMBREX database (COMBREX-DB; combrex.bu.edu) is an online repository of information related to (i) experimentally determined protein function, (ii) predicted protein function, (iii) relationships among proteins of unknown function and various types of experimental data, including molecular function, protein structure, and associated phenotypes. The database was created as part of the novel COMBREX (COMputational BRidges to EXperiments) effort aimed at accelerating the rate of gene function validation. It currently holds information on ∼3.3 million known and predicted proteins from over 1000 completely sequenced bacterial and archaeal genomes. The database also contains a prototype recommendation system for helping users identify those proteins whose experimental determination of function would be most informative for predicting function for other proteins within protein families. The emphasis on documenting experimental evidence for function predictions, and the prioritization of uncharacterized proteins for experimental testing distinguish COMBREX from other publicly available microbial genomics resources. This article describes updates to COMBREX-DB since an initial description in the 2011 NAR Database Issue. PMID:26635392

  10. Accurate predictions of C-SO2R bond dissociation enthalpies using density functional theory methods.

    PubMed

    Yu, Hai-Zhu; Fu, Fang; Zhang, Liang; Fu, Yao; Dang, Zhi-Min; Shi, Jing

    2014-10-14

    The dissociation of the C-SO2R bond is frequently involved in organic and bio-organic reactions, and the C-SO2R bond dissociation enthalpies (BDEs) are potentially important for understanding the related mechanisms. The primary goal of the present study is to provide a reliable calculation method to predict the different C-SO2R bond dissociation enthalpies (BDEs). Comparing the accuracies of 13 different density functional theory (DFT) methods (such as B3LYP, TPSS, and M05 etc.), and different basis sets (such as 6-31G(d) and 6-311++G(2df,2p)), we found that M06-2X/6-31G(d) gives the best performance in reproducing the various C-S BDEs (and especially the C-SO2R BDEs). As an example for understanding the mechanisms with the aid of C-SO2R BDEs, some primary mechanistic studies were carried out on the chemoselective coupling (in the presence of a Cu-catalyst) or desulfinative coupling reactions (in the presence of a Pd-catalyst) between sulfinic acid salts and boryl/sulfinic acid salts.

  11. Bioinformatic Prediction of Gene Functions Regulated by Quorum Sensing in the Bioleaching Bacterium Acidithiobacillus ferrooxidans

    PubMed Central

    Banderas, Alvaro; Guiliani, Nicolas

    2013-01-01

    The biomining bacterium Acidithiobacillus ferrooxidans oxidizes sulfide ores and promotes metal solubilization. The efficiency of this process depends on the attachment of cells to surfaces, a process regulated by quorum sensing (QS) cell-to-cell signalling in many Gram-negative bacteria. At. ferrooxidans has a functional QS system and the presence of AHLs enhances its attachment to pyrite. However, direct targets of the QS transcription factor AfeR remain unknown. In this study, a bioinformatic approach was used to infer possible AfeR direct targets based on the particular palindromic features of the AfeR binding site. A set of Hidden Markov Models designed to maintain palindromic regions and vary non-palindromic regions was used to screen for putative binding sites. By annotating the context of each predicted binding site (PBS), we classified them according to their positional coherence relative to other putative genomic structures such as start codons, RNA polymerase promoter elements and intergenic regions. We further used the Multiple EM for Motif Elicitation algorithm (MEME) to further filter out low homology PBSs. In summary, 75 target-genes were identified, 34 of which have a higher confidence level. Among the identified genes, we found afeR itself, zwf, genes encoding glycosyltransferase activities, metallo-beta lactamases, and active transport-related proteins. Glycosyltransferases and Zwf (Glucose 6-phosphate-1-dehydrogenase) might be directly involved in polysaccharide biosynthesis and attachment to minerals by At. ferrooxidans cells during the bioleaching process. PMID:23959118

  12. Using the functional response of a consumer to predict biotic resistance to invasive prey.

    PubMed

    Twardochleb, Laura A; Novak, Mark; Moore, Jonathan W

    2012-06-01

    Predators sometimes provide biotic resistance against invasions by nonnative prey. Understanding and predicting the strength of biotic resistance remains a key challenge in invasion biology. A predator's functional response to nonnative prey may predict whether a predator can provide biotic resistance against nonnative prey at different prey densities. Surprisingly, functional responses have not been used to make quantitative predictions about biotic resistance. We parameterized the functional response of signal crayfish (Pacifastacus leniusculus) to invasive New Zealand mud snails (Potamopyrgus antipodarum; NZMS) and used this functional response and a simple model of NZMS population growth to predict the probability of biotic resistance at different predator and prey densities. Signal crayfish were effective predators of NZMS, consuming more than 900 NZMS per predator in a 12-h period, and Bayesian model fitting indicated their consumption rate followed a type 3 functional response to NZMS density. Based on this functional response and associated parameter uncertainty, we predict that NZMS will be able to invade new systems at low crayfish densities (< 0.2 crayfish/m2) regardless of NZMS density. At intermediate to high crayfish densities (> 0.2 crayfish/m2), we predict that low densities of NZMS will be able to establish in new communities; however, once NZMS reach a threshold density of -2000 NZMS/m2, predation by crayfish will drive negative NZMS population growth. Further, at very high densities, NZMS overwhelm predation by crayfish and invade. Thus, interacting thresholds of propagule pressure and predator densities define the probability of biotic resistance. Quantifying the shape and uncertainty of predator functional responses to nonnative prey may help predict the outcomes of invasions.

  13. The Frozen Cage Model: A Computationally Low-Cost Tool for Predicting the Exohedral Regioselectivity of Cycloaddition Reactions Involving Endohedral Metallofullerenes.

    PubMed

    Garcia-Borràs, Marc; Romero-Rivera, Adrian; Osuna, Sílvia; Luis, Josep M; Swart, Marcel; Solà, Miquel

    2012-05-01

    Functionalization of endohedral metallofullerenes (EMFs) is an active line of research that is important for obtaining nanomaterials with unique properties that might be used in a variety of fields, ranging from molecular electronics to biomedical applications. Such functionalization is commonly achieved by means of cycloaddition reactions. The scarcity of both experimental and theoretical studies analyzing the exohedral regioselectivity of cycloaddition reactions involving EMFs translates into a poor understanding of the EMF reactivity. From a theoretical point of view, the main obstacle is the high computational cost associated with this kind of studies. To alleviate the situation, we propose an approach named the frozen cage model (FCM) based on single point energy calculations at the optimized geometries of the empty cage products. The FCM represents a fast and computationally inexpensive way to perform accurate qualitative predictions of the exohedral regioselectivity of cycloaddition reactions in EMFs. Analysis of the Dimroth approximation, the activation strain or distortion/interaction model, and the noncluster energies in the Diels-Alder cycloaddition of s-cis-1,3-butadiene to X@D3h-C78 (X = Ti2C2, Sc3N, and Y3N) EMFs provides a justification of the method.

  14. Classroom Climate, Parental Educational Involvement, and Student School Functioning in Early Adolescence: A Longitudinal Study

    ERIC Educational Resources Information Center

    Kaplan Toren, Nurit; Seginer, Rachel

    2015-01-01

    In this 2-year longitudinal study, we examine the effects of perceived classroom climate and two aspects of parental educational involvement (home-based and school-based) on junior high school students' self-evaluation and academic achievement. Our main hypothesis was that perceived parental educational involvement mediates students' perceived…

  15. Caregiver Involvement in the Intensive Mental Health Program: Influence on Changes in Child Functioning

    ERIC Educational Resources Information Center

    Richards, Margaret M.; Bowers, Mark J.; Lazicki, Tammy; Krall, Dan; Jacobs, Anne K.

    2008-01-01

    We examined behavioral markers of caregiver involvement and the ways in which family participation was related to treatment outcomes in 47 elementary school children with SED enrolled in a school-based intensive mental health program. Measures of caregiver involvement included therapeutic home visits, attendance at therapeutic meetings, completion…

  16. The Function of Electronic Communication Devices in Assisting Parental Involvement in Middle Schools

    ERIC Educational Resources Information Center

    Koch, Cotton S.

    2010-01-01

    The importance of home-to-school and school-to-home communication and parental involvement is well documented by researchers and acknowledged by practitioners. A number of earlier studies argue that there is a positive association between two-way communication, parental involvement, and student achievement at all levels of K-12 education. However,…

  17. Phagonaute: A web-based interface for phage synteny browsing and protein function prediction.

    PubMed

    Delattre, Hadrien; Souiai, Oussema; Fagoonee, Khema; Guerois, Raphaël; Petit, Marie-Agnès

    2016-09-01

    Distant homology search tools are of great help to predict viral protein functions. However, due to the lack of profile databases dedicated to viruses, they can lack sensitivity. We constructed HMM profiles for more than 80,000 proteins from both phages and archaeal viruses, and performed all pairwise comparisons with HHsearch program. The whole resulting database can be explored through a user-friendly "Phagonaute" interface to help predict functions. Results are displayed together with their genetic context, to strengthen inferences based on remote homology. Beyond function prediction, this tool permits detections of co-occurrences, often indicative of proteins completing a task together, and observation of conserved patterns across large evolutionary distances. As a test, Herpes simplex virus I was added to Phagonaute, and 25% of its proteome matched to bacterial or archaeal viral protein counterparts. Phagonaute should therefore help virologists in their quest for protein functions and evolutionary relationships. PMID:27254594

  18. Executive functioning predicts reading, mathematics, and theory of mind during the elementary years.

    PubMed

    Cantin, Rachelle H; Gnaedinger, Emily K; Gallaway, Kristin C; Hesson-McInnis, Matthew S; Hund, Alycia M

    2016-06-01

    The goal of this study was to specify how executive functioning components predict reading, mathematics, and theory of mind performance during the elementary years. A sample of 93 7- to 10-year-old children completed measures of working memory, inhibition, flexibility, reading, mathematics, and theory of mind. Path analysis revealed that all three executive functioning components (working memory, inhibition, and flexibility) mediated age differences in reading comprehension, whereas age predicted mathematics and theory of mind directly. In addition, reading mediated the influence of executive functioning components on mathematics and theory of mind, except that flexibility also predicted mathematics directly. These findings provide important details about the development of executive functioning, reading, mathematics, and theory of mind during the elementary years.

  19. Phagonaute: A web-based interface for phage synteny browsing and protein function prediction.

    PubMed

    Delattre, Hadrien; Souiai, Oussema; Fagoonee, Khema; Guerois, Raphaël; Petit, Marie-Agnès

    2016-09-01

    Distant homology search tools are of great help to predict viral protein functions. However, due to the lack of profile databases dedicated to viruses, they can lack sensitivity. We constructed HMM profiles for more than 80,000 proteins from both phages and archaeal viruses, and performed all pairwise comparisons with HHsearch program. The whole resulting database can be explored through a user-friendly "Phagonaute" interface to help predict functions. Results are displayed together with their genetic context, to strengthen inferences based on remote homology. Beyond function prediction, this tool permits detections of co-occurrences, often indicative of proteins completing a task together, and observation of conserved patterns across large evolutionary distances. As a test, Herpes simplex virus I was added to Phagonaute, and 25% of its proteome matched to bacterial or archaeal viral protein counterparts. Phagonaute should therefore help virologists in their quest for protein functions and evolutionary relationships.

  20. Early functional magnetic resonance imaging activations predict language outcome after stroke.

    PubMed

    Saur, Dorothee; Ronneberger, Olaf; Kümmerer, Dorothee; Mader, Irina; Weiller, Cornelius; Klöppel, Stefan

    2010-04-01

    An accurate prediction of system-specific recovery after stroke is essential to provide rehabilitation therapy based on the individual needs. We explored the usefulness of functional magnetic resonance imaging scans from an auditory language comprehension experiment to predict individual language recovery in 21 aphasic stroke patients. Subjects with an at least moderate language impairment received extensive language testing 2 weeks and 6 months after left-hemispheric stroke. A multivariate machine learning technique was used to predict language outcome 6 months after stroke. In addition, we aimed to predict the degree of language improvement over 6 months. 76% of patients were correctly separated into those with good and bad language performance 6 months after stroke when based on functional magnetic resonance imaging data from language relevant areas. Accuracy further improved (86% correct assignments) when age and language score were entered alongside functional magnetic resonance imaging data into the fully automatic classifier. A similar accuracy was reached when predicting the degree of language improvement based on imaging, age and language performance. No prediction better than chance level was achieved when exploring the usefulness of diffusion weighted imaging as well as functional magnetic resonance imaging acquired two days after stroke. This study demonstrates the high potential of current machine learning techniques to predict system-specific clinical outcome even for a disease as heterogeneous as stroke. Best prediction of language recovery is achieved when the brain activation potential after system-specific stimulation is assessed in the second week post stroke. More intensive early rehabilitation could be provided for those with a predicted poor recovery and the extension to other systems, for example, motor and attention seems feasible. PMID:20299389

  1. Validation of Skeletal Muscle cis-Regulatory Module Predictions Reveals Nucleotide Composition Bias in Functional Enhancers

    PubMed Central

    Kwon, Andrew T.; Chou, Alice Yi; Arenillas, David J.; Wasserman, Wyeth W.

    2011-01-01

    We performed a genome-wide scan for muscle-specific cis-regulatory modules (CRMs) using three computational prediction programs. Based on the predictions, 339 candidate CRMs were tested in cell culture with NIH3T3 fibroblasts and C2C12 myoblasts for capacity to direct selective reporter gene expression to differentiated C2C12 myotubes. A subset of 19 CRMs validated as functional in the assay. The rate of predictive success reveals striking limitations of computational regulatory sequence analysis methods for CRM discovery. Motif-based methods performed no better than predictions based only on sequence conservation. Analysis of the properties of the functional sequences relative to inactive sequences identifies nucleotide sequence composition can be an important characteristic to incorporate in future methods for improved predictive specificity. Muscle-related TFBSs predicted within the functional sequences display greater sequence conservation than non-TFBS flanking regions. Comparison with recent MyoD and histone modification ChIP-Seq data supports the validity of the functional regions. PMID:22144875

  2. Improved Displacement Transfer Functions for Structure Deformed Shape Predictions Using Discretely Distributed Surface Strains

    NASA Technical Reports Server (NTRS)

    Ko, William L.; Fleischer, Van Tran

    2012-01-01

    In the formulations of earlier Displacement Transfer Functions for structure shape predictions, the surface strain distributions, along a strain-sensing line, were represented with piecewise linear functions. To improve the shape-prediction accuracies, Improved Displacement Transfer Functions were formulated using piecewise nonlinear strain representations. Through discretization of an embedded beam (depth-wise cross section of a structure along a strain-sensing line) into multiple small domains, piecewise nonlinear functions were used to describe the surface strain distributions along the discretized embedded beam. Such piecewise approach enabled the piecewise integrations of the embedded beam curvature equations to yield slope and deflection equations in recursive forms. The resulting Improved Displacement Transfer Functions, written in summation forms, were expressed in terms of beam geometrical parameters and surface strains along the strain-sensing line. By feeding the surface strains into the Improved Displacement Transfer Functions, structural deflections could be calculated at multiple points for mapping out the overall structural deformed shapes for visual display. The shape-prediction accuracies of the Improved Displacement Transfer Functions were then examined in view of finite-element-calculated deflections using different tapered cantilever tubular beams. It was found that by using the piecewise nonlinear strain representations, the shape-prediction accuracies could be greatly improved, especially for highly-tapered cantilever tubular beams.

  3. Executive function does not predict coping with symptoms in stable patients with a diagnosis of schizophrenia

    PubMed Central

    Bak, Maarten; Krabbendam, Lydia; Delespaul, Philippe; Huistra, Karola; Walraven, Wil; van Os, Jim

    2008-01-01

    Background Associations between coping with and control over psychotic symptoms were examined using the Maastricht Assessment of Coping Strategies-24, testing the hypothesis that the cognitive domain of executive functioning predicted quality and quantity of coping. Methods MACS-24 was administered to 32 individuals with a diagnosis of schizophrenia. For each of 24 symptoms, experience of distress, type of coping and the resulting degree of perceived control were assessed. Coping types were reduced to two contrasting coping categories: symptomatic coping (SC) and non-symptomatic coping (NSC; combining active problem solving, passive illness behaviour, active problem avoiding, and passive problem avoiding). Cognitive functioning was assessed using the GIT (Groninger Intelligence Test), the Zoo map (BADS: Behavioural Assessment of Dysexecutive function), Stroop-test and Trail making. Results Cognitive function was not associated with frequency of coping, nor did cognitive function differentially predict SC or NSC. Cognitive function similarly was not associated with symptom distress or level of perceived control over the symptom. Conclusion There was no evidence that cognitive function predicts quantity or quality of coping with symptoms in people with a diagnosis of schizophrenia. Variation in the realm of emotion regulation and social cognition may be more predictive of coping with psychotic symptoms. PMID:18510757

  4. Central Functions of the Lumenal and Peripheral Thylakoid Proteome of Arabidopsis Determined by Experimentation and Genome-Wide Prediction

    PubMed Central

    Peltier, Jean-Benoît; Emanuelsson, Olof; Kalume, Dário E.; Ytterberg, Jimmy; Friso, Giulia; Rudella, Andrea; Liberles, David A.; Söderberg, Linda; Roepstorff, Peter; von Heijne, Gunnar; van Wijk, Klaas J.

    2002-01-01

    Experimental proteome analysis was combined with a genome-wide prediction screen to characterize the protein content of the thylakoid lumen of Arabidopsis chloroplasts. Soluble thylakoid proteins were separated by two-dimensional electrophoresis and identified by mass spectrometry. The identities of 81 proteins were established, and N termini were sequenced to validate localization prediction. Gene annotation of the identified proteins was corrected by experimental data, and an interesting case of alternative splicing was discovered. Expression of a surprising number of paralogs was detected. Expression of five isomerases of different classes suggests strong (un)folding activity in the thylakoid lumen. These isomerases possibly are connected to a network of peripheral and lumenal proteins involved in antioxidative response, including peroxiredoxins, m-type thioredoxins, and a lumenal ascorbate peroxidase. Characteristics of the experimentally identified lumenal proteins and their orthologs were used for a genome-wide prediction of the lumenal proteome. Lumenal proteins with a typical twin-arginine translocation motif were predicted with good accuracy and sensitivity and included additional isomerases and proteases. Thus, prime functions of the lumenal proteome include assistance in the folding and proteolysis of thylakoid proteins as well as protection against oxidative stress. Many of the predicted lumenal proteins must be present at concentrations at least 10,000-fold lower than proteins of the photosynthetic apparatus. PMID:11826309

  5. Predicting critical temperatures of iron(II) spin crossover materials: density functional theory plus U approach.

    PubMed

    Zhang, Yachao

    2014-12-01

    A first-principles study of critical temperatures (T(c)) of spin crossover (SCO) materials requires accurate description of the strongly correlated 3d electrons as well as much computational effort. This task is still a challenge for the widely used local density or generalized gradient approximations (LDA/GGA) and hybrid functionals. One remedy, termed density functional theory plus U (DFT+U) approach, introduces a Hubbard U term to deal with the localized electrons at marginal computational cost, while treats the delocalized electrons with LDA/GGA. Here, we employ the DFT+U approach to investigate the T(c) of a pair of iron(II) SCO molecular crystals (α and β phase), where identical constituent molecules are packed in different ways. We first calculate the adiabatic high spin-low spin energy splitting ΔE(HL) and molecular vibrational frequencies in both spin states, then obtain the temperature dependent enthalpy and entropy changes (ΔH and ΔS), and finally extract T(c) by exploiting the ΔH/T - T and ΔS - T relationships. The results are in agreement with experiment. Analysis of geometries and electronic structures shows that the local ligand field in the α phase is slightly weakened by the H-bondings involving the ligand atoms and the specific crystal packing style. We find that this effect is largely responsible for the difference in T(c) of the two phases. This study shows the applicability of the DFT+U approach for predicting T(c) of SCO materials, and provides a clear insight into the subtle influence of the crystal packing effects on SCO behavior.

  6. Predicting critical temperatures of iron(II) spin crossover materials: Density functional theory plus U approach

    SciTech Connect

    Zhang, Yachao

    2014-12-07

    A first-principles study of critical temperatures (T{sub c}) of spin crossover (SCO) materials requires accurate description of the strongly correlated 3d electrons as well as much computational effort. This task is still a challenge for the widely used local density or generalized gradient approximations (LDA/GGA) and hybrid functionals. One remedy, termed density functional theory plus U (DFT+U) approach, introduces a Hubbard U term to deal with the localized electrons at marginal computational cost, while treats the delocalized electrons with LDA/GGA. Here, we employ the DFT+U approach to investigate the T{sub c} of a pair of iron(II) SCO molecular crystals (α and β phase), where identical constituent molecules are packed in different ways. We first calculate the adiabatic high spin-low spin energy splitting ΔE{sub HL} and molecular vibrational frequencies in both spin states, then obtain the temperature dependent enthalpy and entropy changes (ΔH and ΔS), and finally extract T{sub c} by exploiting the ΔH/T − T and ΔS − T relationships. The results are in agreement with experiment. Analysis of geometries and electronic structures shows that the local ligand field in the α phase is slightly weakened by the H-bondings involving the ligand atoms and the specific crystal packing style. We find that this effect is largely responsible for the difference in T{sub c} of the two phases. This study shows the applicability of the DFT+U approach for predicting T{sub c} of SCO materials, and provides a clear insight into the subtle influence of the crystal packing effects on SCO behavior.

  7. Protein function prediction using neighbor relativity in protein-protein interaction network.

    PubMed

    Moosavi, Sobhan; Rahgozar, Masoud; Rahimi, Amir

    2013-04-01

    There is a large gap between the number of discovered proteins and the number of functionally annotated ones. Due to the high cost of determining protein function by wet-lab research, function prediction has become a major task for computational biology and bioinformatics. Some researches utilize the proteins interaction information to predict function for un-annotated proteins. In this paper, we propose a novel approach called "Neighbor Relativity Coefficient" (NRC) based on interaction network topology which estimates the functional similarity between two proteins. NRC is calculated for each pair of proteins based on their graph-based features including distance, common neighbors and the number of paths between them. In order to ascribe function to an un-annotated protein, NRC estimates a weight for each neighbor to transfer its annotation to the unknown protein. Finally, the unknown protein will be annotated by the top score transferred functions. We also investigate the effect of using different coefficients for various types of functions. The proposed method has been evaluated on Saccharomyces cerevisiae and Homo sapiens interaction networks. The performance analysis demonstrates that NRC yields better results in comparison with previous protein function prediction approaches that utilize interaction network.

  8. Identification of two distinct functional domains on vinculin involved in its association with focal contacts

    PubMed Central

    1989-01-01

    We report here on the identification of two distinct functional domains on chicken vinculin molecule, which can, independently, mediate its interaction with focal contacts in living cells. These findings were obtained by immunofluorescent labeling of COS cells transfected with a series of chicken vinculin-specific cDNA constructs derived from clones cVin1 and cVin5 (Bendori, R., D. Salomon, and B. Geiger. 1987. EMBO [Eur. Mol. Biol. Organ.] J. 6:2897-2905). These included a chimeric construct consisting of 5' sequences of cVin1 attached to the complementary 3' region of cVin5, as well as several constructs of either cVin1 or cVin5 from which 3' or 5' sequences were deleted. We show here that the products of both cVin1 and cVin5, and of the cVin1/cVin5 chimera, readily associated with focal contacts in transfected COS cells. Furthermore, 78 and 45 kD NH2-terminal fragments encoded by a deleted cVin1 and the 78-kD COOH-terminal portion of vinculin encoded by cVin5 were capable of binding specifically to focal contact areas. In contrast 3'-deletion mutants prepared from clone cVin5 and a 5'-deletion mutant of cVin1, lacking both NH2- and COOH- terminal sequences, failed to associate with focal contacts in transfected cells. The loss of binding was accompanied by an overall disarray of the microfilament system. These results, together with previous in vitro binding studies, suggest that vinculin contains at least two independent sites for binding to focal contacts; the NH2- terminal domain may contain the talin binding site while the COOH- terminal domain may mediate vinculin-vinculin interaction. Moreover, the disruptive effect of the double-deleted molecule (lacking the two focal-contact binding sites) on the organization of actin suggests that a distinct region involved in the binding of vinculin to the microfilament system is present in the NH2-terminal 45-kD region of the molecule. PMID:2500446

  9. Local structure based method for prediction of the biochemical function of proteins: Applications to glycoside hydrolases.

    PubMed

    Parasuram, Ramya; Mills, Caitlyn L; Wang, Zhouxi; Somasundaram, Saroja; Beuning, Penny J; Ondrechen, Mary Jo

    2016-01-15

    Thousands of protein structures of unknown or uncertain function have been reported as a result of high-throughput structure determination techniques developed by Structural Genomics (SG) projects. However, many of the putative functional assignments of these SG proteins in the Protein Data Bank (PDB) are incorrect. While high-throughput biochemical screening techniques have provided valuable functional information for limited sets of SG proteins, the biochemical functions for most SG proteins are still unknown or uncertain. Therefore, computational methods for the reliable prediction of protein function from structure can add tremendous value to the existing SG data. In this article, we show how computational methods may be used to predict the function of SG proteins, using examples from the six-hairpin glycosidase (6-HG) and the concanavalin A-like lectin/glucanase (CAL/G) superfamilies. Using a set of predicted functional residues, obtained from computed electrostatic and chemical properties for each protein structure, it is shown that these superfamilies may be sorted into functional families according to biochemical function. Within these superfamilies, a total of 18 SG proteins were analyzed according to their predicted, local functional sites: 13 from the 6-HG superfamily, five from the CAL/G superfamily. Within the 6-HG superfamily, an uncharacterized protein BACOVA_03626 from Bacteroides ovatus (PDB 3ON6) and a hypothetical protein BT3781 from Bacteroides thetaiotaomicron (PDB 2P0V) are shown to have very strong active site matches with exo-α-1,6-mannosidases, thus likely possessing this function. Also in this superfamily, it is shown that protein BH0842, a putative glycoside hydrolase from Bacillus halodurans (PDB 2RDY), has a predicted active site that matches well with a known α-L-galactosidase. In the CAL/G superfamily, an uncharacterized glycosyl hydrolase family 16 protein from Mycobacterium smegmatis (PDB 3RQ0) is shown to have local structural

  10. Alternative growth functions for predicting body, carcass, and breast weight in ducks: Lomolino equation and extreme value function.

    PubMed

    Faridi, A; Murawska, D; Golian, A; Mottaghitalab, M; Gitoee, A; Lopez, S; France, J

    2014-04-01

    In this study, 2 alternative growth functions, the Lomolino and the extreme value function (EVF), are introduced and their ability to predict body, carcass, and breast weight in ducks evaluated. A comparative study was carried out of these equations with standard growth functions: Gompertz, exponential, Richards, and generalized Michaelis-Menten. Goodness of fit of the functions was evaluated using R(2), mean square error, Akaike information criterion, and Bayesian information criterion, whereas bias factor, accuracy factor, Durbin-Watson statistic, and number of runs of sign were the criteria used for analysis of residuals. Results showed that predictive performance of all functions was acceptable, though the Richards and exponential equations failed to converge in a few cases for both male and female ducks. Based on goodness-of-fit statistics, the Richards, Gompertz, and EVF were the best equations whereas the worst fits to the data were obtained with the exponential. Analysis of residuals indicated that, for the different traits investigated, the least biased and the most accurate equations were the Gompertz, EVF, Richards, and generalized Michaelis-Menten, whereas the exponential was the most biased and least accurate. Based on the Durbin-Watson statistic, all models generally behaved well and only the exponential showed evidence of autocorrelation for all 3 traits investigated. Results showed that with all functions, estimated final weights of males were higher than females for the body, carcass, and breast weight profiles. The alternative functions introduced here have desirable advantages including flexibility and a low number of parameters. However, because this is probably the first study to apply these functions to predict growth patterns in poultry or other animals, further analysis of these new models is suggested.

  11. A noise level prediction method based on electro-mechanical frequency response function for capacitors.

    PubMed

    Zhu, Lingyu; Ji, Shengchang; Shen, Qi; Liu, Yuan; Li, Jinyu; Liu, Hao

    2013-01-01

    The capacitors in high-voltage direct-current (HVDC) converter stations radiate a lot of audible noise which can reach higher than 100 dB. The existing noise level prediction methods are not satisfying enough. In this paper, a new noise level prediction method is proposed based on a frequency response function considering both electrical and mechanical characteristics of capacitors. The electro-mechanical frequency response function (EMFRF) is defined as the frequency domain quotient of the vibration response and the squared capacitor voltage, and it is obtained from impulse current experiment. Under given excitations, the vibration response of the capacitor tank is the product of EMFRF and the square of the given capacitor voltage in frequency domain, and the radiated audible noise is calculated by structure acoustic coupling formulas. The noise level under the same excitations is also measured in laboratory, and the results are compared with the prediction. The comparison proves that the noise prediction method is effective.

  12. The functional response predicts the effect of resource distribution on the optimal movement rate of consumers.

    PubMed

    Calcagno, Vincent; Grognard, Frédéric; Hamelin, Frédéric M; Wajnberg, Éric; Mailleret, Ludovic

    2014-12-01

    Understanding how often individuals should move when foraging over patchy habitats is a central question in ecology. By combining optimality and functional response theories, we show analytically how the optimal movement rate varies with the average resource level (enrichment) and resource distribution (patch heterogeneity). We find that the type of functional response predicts the effect of enrichment in homogeneous habitats: enrichment should decrease movement for decelerating functional responses, but increase movement for accelerating responses. An intermediate resource level thus maximises movement for type-III responses. Counterintuitively, greater movement costs favour an increase in movement. In heterogeneous habitats predictions further depend on how enrichment alters the variance of resource distribution. Greater patch variance always increases the optimal rate of movement, except for type-IV functional responses. While the functional response is well established as a fundamental determinant of consumer-resource dynamics, our results indicate its importance extends to the understanding of individual movement strategies.

  13. Can infant lung function predict respiratory morbidity during the first year of life in preterm infants?

    PubMed

    Proietti, Elena; Riedel, Thomas; Fuchs, Oliver; Pramana, Isabelle; Singer, Florian; Schmidt, Anne; Kuehni, Claudia; Latzin, Philipp; Frey, Urs

    2014-06-01

    Compared with term-born infants, preterm infants have increased respiratory morbidity in the first year of life. We investigated whether lung function tests performed near term predict subsequent respiratory morbidity during the first year of life and compared this to standard clinical parameters in preterms. The prospective birth cohort included randomly selected preterm infants with and without bronchopulmonary dysplasia. Lung function (tidal breathing and multiple-breath washout) was measured at 44 weeks post-menstrual age during natural sleep. We assessed respiratory morbidity (wheeze, hospitalisation, inhalation and home oxygen therapy) after 1 year using a standardised questionnaire. We first assessed the association between lung function and subsequent respiratory morbidity. Secondly, we compared the predictive power of standard clinical predictors with and without lung function data. In 166 preterm infants, tidal volume, time to peak tidal expiratory flow/expiratory time ratio and respiratory rate were significantly associated with subsequent wheeze. In comparison with standard clinical predictors, lung function did not improve the prediction of later respiratory morbidity in an individual child. Although associated with later wheeze, noninvasive infant lung function shows large physiological variability and does not add to clinically relevant risk prediction for subsequent respiratory morbidity in an individual preterm.

  14. Predicting predation through prey ontogeny using size-dependent functional response models.

    PubMed

    McCoy, Michael W; Bolker, Benjamin M; Warkentin, Karen M; Vonesh, James R

    2011-06-01

    The functional response is a critical link between consumer and resource dynamics, describing how a consumer's feeding rate varies with prey density. Functional response models often assume homogenous prey size and size-independent feeding rates. However, variation in prey size due to ontogeny and competition is ubiquitous, and predation rates are often size dependent. Thus, functional responses that ignore prey size may not effectively predict predation rates through ontogeny or in heterogeneous populations. Here, we use short-term response-surface experiments and statistical modeling to develop and test prey size-dependent functional responses for water bugs and dragonfly larvae feeding on red-eyed treefrog tadpoles. We then extend these models through simulations to predict mortality through time for growing prey. Both conventional and size-dependent functional response models predicted average overall mortality in short-term mixed-cohort experiments, but only the size-dependent models accurately captured how mortality was spread across sizes. As a result, simulations that extrapolated these results through prey ontogeny showed that differences in size-specific mortality are compounded as prey grow, causing predictions from conventional and size-dependent functional response models to diverge dramatically through time. Our results highlight the importance of incorporating prey size when modeling consumer-prey dynamics in size-structured, growing prey populations. PMID:21597252

  15. Application of Gap-Constraints Given Sequential Frequent Pattern Mining for Protein Function Prediction

    PubMed Central

    Park, Hyeon Ah; Kim, Taewook; Li, Meijing; Shon, Ho Sun; Park, Jeong Seok; Ryu, Keun Ho

    2015-01-01

    Objectives Predicting protein function from the protein–protein interaction network is challenging due to its complexity and huge scale of protein interaction process along with inconsistent pattern. Previously proposed methods such as neighbor counting, network analysis, and graph pattern mining has predicted functions by calculating the rules and probability of patterns inside network. Although these methods have shown good prediction, difficulty still exists in searching several functions that are exceptional from simple rules and patterns as a result of not considering the inconsistent aspect of the interaction network. Methods In this article, we propose a novel approach using the sequential pattern mining method with gap-constraints. To overcome the inconsistency problem, we suggest frequent functional patterns to include every possible functional sequence—including patterns for which search is limited by the structure of connection or level of neighborhood layer. We also constructed a tree-graph with the most crucial interaction information of the target protein, and generated candidate sets to assign by sequential pattern mining allowing gaps. Results The parameters of pattern length, maximum gaps, and minimum support were given to find the best setting for the most accurate prediction. The highest accuracy rate was 0.972, which showed better results than the simple neighbor counting approach and link-based approach. Conclusion The results comparison with other approaches has confirmed that the proposed approach could reach more function candidates that previous methods could not obtain. PMID:25938021

  16. A gene X environment interaction between DRD2 and religiosity in the prediction of adolescent delinquent involvement in a sample of males.

    PubMed

    Beaver, Kevin M; Gibson, Chris L; Jennings, Wesley G; Ward, Jeffrey T

    2009-01-01

    Human behavioral phenotypes are the result of complex interactions between genotype and the environment. Still, much remains unknown about the gene X environmental basis to adolescent delinquent involvement. Using data from the National Longitudinal Study of Adolescent Health, we examine whether a polymorphism in the dopamine D2 receptor (DRD2) gene interacts with religiosity to predict variation in adolescent delinquent involvement. The results of the analyses revealed a gene X environment interaction between the A-1 allele of DRD2 and religiosity in the prediction of adolescent delinquency. Limitations are noted, and the implications of the findings are discussed.

  17. Prediction of postoperative pulmonary function following thoracic operations. Value of ventilation-perfusion scanning

    SciTech Connect

    Bria, W.F.; Kanarek, D.J.; Kazemi, H.

    1983-08-01

    Surgical resection of lung cancer is frequently required in patients with severely impaired lung function resulting from chronic obstructive pulmonary disease. Twenty patients with obstructive lung disease and cancer (mean preoperative forced expiratory volume in 1 second (FEV1) . 1.73 L) were studied preoperatively and postoperatively by spirometry and radionuclide perfusion, single-breath ventilation, and washout techniques to test the ability of these methods to predict preoperatively the partial loss of lung function by the resection. Postoperative FEV1 and forced vital capacity (FVC) were accurately predicted by the formula: postoperative FEV1 (or FVC) . preoperative FEV1 X percent function of regions of lung not to be resected (r . 0.88 and 0.95, respectively). Ventilation and perfusion scans are equally effective in prediction. Washout data add to the sophistication of the method by permitting the qualitative evaluation of ventilation during tidal breathing. Criteria for patients requiring the study are suggested.

  18. Perinatal medical variables predict executive function within a sample of preschoolers born very low birth weight.

    PubMed

    Duvall, Susanne W; Erickson, Sarah J; MacLean, Peggy; Lowe, Jean R

    2015-05-01

    The goal was to identify perinatal predictors of early executive dysfunction in preschoolers born very low birth weight. Fifty-seven preschoolers completed 3 executive function tasks: Dimensional Change Card Sort-Separated (inhibition, working memory, and cognitive flexibility), Bear Dragon (inhibition and working memory), and Gift Delay Open (inhibition). Relationships between executive function and perinatal medical severity factors (gestational age, days on ventilation, size for gestational age, maternal steroids, and number of surgeries) and chronological age were investigated by multiple linear regression and logistic regression. Different perinatal medical severity factors were predictive of executive function tasks, with gestational age predicting Bear Dragon and Gift Open; and number of surgeries and maternal steroids predicting performance on Dimensional Change Card Sort-Separated. By understanding the relationship between perinatal medical severity factors and preschool executive outcomes, we can identify children at highest risk for future executive dysfunction, thereby focusing targeted early intervention services. PMID:25117418

  19. Inter-individual differences in the experience of negative emotion predict variations in functional brain architecture.

    PubMed

    Petrican, Raluca; Saverino, Cristina; Shayna Rosenbaum, R; Grady, Cheryl

    2015-12-01

    Current evidence suggests that two spatially distinct neuroanatomical networks, the dorsal attention network (DAN) and the default mode network (DMN), support externally and internally oriented cognition, respectively, and are functionally regulated by a third, frontoparietal control network (FPC). Interactions among these networks contribute to normal variations in cognitive functioning and to the aberrant affective profiles present in certain clinical conditions, such as major depression. Nevertheless, their links to non-clinical variations in affective functioning are still poorly understood. To address this issue, we used fMRI to measure the intrinsic functional interactions among these networks in a sample of predominantly younger women (N=162) from the Human Connectome Project. Consistent with the previously documented dichotomous motivational orientations (i.e., withdrawal versus approach) associated with sadness versus anger, we hypothesized that greater sadness would predict greater DMN (rather than DAN) functional dominance, whereas greater anger would predict the opposite. Overall, there was evidence of greater DAN (rather than DMN) functional dominance, but this pattern was modulated by current experience of specific negative emotions, as well as subclinical depressive and anxiety symptoms. Thus, greater levels of currently experienced sadness and subclinical depression independently predicted weaker DAN functional dominance (i.e., weaker DAN-FPC functional connectivity), likely reflecting reduced goal-directed attention towards the external perceptual environment. Complementarily, greater levels of currently experienced anger and subclinical anxiety predicted greater DAN functional dominance (i.e., greater DAN-FPC functional connectivity and, for anxiety only, also weaker DMN-FPC coupling). Our findings suggest that distinct affective states and subclinical mood symptoms have dissociable neural signatures, reflective of the symbiotic relationship

  20. Prospective prediction of post-radiation therapy lung function using quantitative lung scans and pulmonary function testing

    SciTech Connect

    Rubenstein, J.H.; Richter, M.P.; Moldofsky, P.J.; Solin, L.J.

    1988-07-01

    Surgeons have made use of quantitative perfusion lung scanning (QS) and forced expiratory volume in one second (FEV1) to predict a patient's ability to tolerate lung resection. In this study QS and FEV1 were used to predict prospectively pulmonary function following lung irradiation (XRT). Twenty-two patients have had QS and FEV1 determined before XRT and at planned intervals post-XRT. Serial determination of lung function post-XRT allows comment on the temporal nature of the XRT effect on lung function. Seventeen patients had QS and FEV1 determined at an interval of 2-6 months post-irradiation with a drop in the groups mean FEV1 from 1.91 to 1.87L. or 2% during that interval. In the interval from 6-12 months post-XRT, 13 patients had studies with the groups mean FEV1 dropping from 1.79 to 1.58L or 12% of the original. In the interval from 12-18 months, 6 patients had a decline in mean FEV1 from 1.73 to 1.56L. or 10% of the original. In 22 patients a predicted final FEV1 was compared with a measured value at an interval from XRT. Fourteen of these determinations were at intervals greater than 6 months from the start of XRT and 6 at intervals of greater than 1 year. FEV1 was seen to drop during the follow-up intervals toward the predicted value. In only 2 patients did the final FEV1 drop below the predicted FEV1 and never by more than 0.12L. (6%). In summary, a method for predicting post-XRT pulmonary function using QS and FEV1 is described. Serial follow-up revealed a latent period followed by a late phase where FEV1 fell toward, but not significantly below, the predicted value. Such a determination can be of value in formulating a treatment plan for patients with significantly diminished pulmonary function.

  1. Prediction of Dynamic Response for Ti/TiB Functionally Graded Beams

    SciTech Connect

    Tuegel, Eric J.; Byrd, Larry W.; Beberniss, Timothy J.

    2008-02-15

    Functionally graded ceramic-metal materials are candidates for use in aerospace structures that are exposed to high temperatures. These structures will experience other demands such as significant pressure fluctuations that will cause panels to vibrate at high frequencies. These materials must be engineered for specific applications. Standard engineering methods were used to predict the response of Ti/TiB cantilever beams to quasi-static and dynamic loadings. Experiments were performed and compared to the predictions. The predictions and experiments did not agree due to significant uncertainty about the elastic modulus of TiB.

  2. SIFTER search: a web server for accurate phylogeny-based protein function prediction

    DOE PAGESBeta

    Sahraeian, Sayed M.; Luo, Kevin R.; Brenner, Steven E.

    2015-05-15

    We are awash in proteins discovered through high-throughput sequencing projects. As only a minuscule fraction of these have been experimentally characterized, computational methods are widely used for automated annotation. Here, we introduce a user-friendly web interface for accurate protein function prediction using the SIFTER algorithm. SIFTER is a state-of-the-art sequence-based gene molecular function prediction algorithm that uses a statistical model of function evolution to incorporate annotations throughout the phylogenetic tree. Due to the resources needed by the SIFTER algorithm, running SIFTER locally is not trivial for most users, especially for large-scale problems. The SIFTER web server thus provides access tomore » precomputed predictions on 16 863 537 proteins from 232 403 species. Users can explore SIFTER predictions with queries for proteins, species, functions, and homologs of sequences not in the precomputed prediction set. Lastly, the SIFTER web server is accessible at http://sifter.berkeley.edu/ and the source code can be downloaded.« less

  3. Pose prediction and virtual screening performance of GOLD scoring functions in a standardized test.

    PubMed

    Liebeschuetz, John W; Cole, Jason C; Korb, Oliver

    2012-06-01

    The performance of all four GOLD scoring functions has been evaluated for pose prediction and virtual screening under the standardized conditions of the comparative docking and scoring experiment reported in this Edition. Excellent pose prediction and good virtual screening performance was demonstrated using unmodified protein models and default parameter settings. The best performing scoring function for both pose prediction and virtual screening was demonstrated to be the recently introduced scoring function ChemPLP. We conclude that existing docking programs already perform close to optimally in the cognate pose prediction experiments currently carried out and that more stringent pose prediction tests should be used in the future. These should employ cross-docking sets. Evaluation of virtual screening performance remains problematic and much remains to be done to improve the usefulness of publically available active and decoy sets for virtual screening. Finally we suggest that, for certain target/scoring function combinations, good enrichment may sometimes be a consequence of 2D property recognition rather than a modelling of the correct 3D interactions.

  4. SIFTER search: a web server for accurate phylogeny-based protein function prediction.

    PubMed

    Sahraeian, Sayed M; Luo, Kevin R; Brenner, Steven E

    2015-07-01

    We are awash in proteins discovered through high-throughput sequencing projects. As only a minuscule fraction of these have been experimentally characterized, computational methods are widely used for automated annotation. Here, we introduce a user-friendly web interface for accurate protein function prediction using the SIFTER algorithm. SIFTER is a state-of-the-art sequence-based gene molecular function prediction algorithm that uses a statistical model of function evolution to incorporate annotations throughout the phylogenetic tree. Due to the resources needed by the SIFTER algorithm, running SIFTER locally is not trivial for most users, especially for large-scale problems. The SIFTER web server thus provides access to precomputed predictions on 16 863 537 proteins from 232 403 species. Users can explore SIFTER predictions with queries for proteins, species, functions, and homologs of sequences not in the precomputed prediction set. The SIFTER web server is accessible at http://sifter.berkeley.edu/ and the source code can be downloaded. PMID:25979264

  5. Pose prediction and virtual screening performance of GOLD scoring functions in a standardized test.

    PubMed

    Liebeschuetz, John W; Cole, Jason C; Korb, Oliver

    2012-06-01

    The performance of all four GOLD scoring functions has been evaluated for pose prediction and virtual screening under the standardized conditions of the comparative docking and scoring experiment reported in this Edition. Excellent pose prediction and good virtual screening performance was demonstrated using unmodified protein models and default parameter settings. The best performing scoring function for both pose prediction and virtual screening was demonstrated to be the recently introduced scoring function ChemPLP. We conclude that existing docking programs already perform close to optimally in the cognate pose prediction experiments currently carried out and that more stringent pose prediction tests should be used in the future. These should employ cross-docking sets. Evaluation of virtual screening performance remains problematic and much remains to be done to improve the usefulness of publically available active and decoy sets for virtual screening. Finally we suggest that, for certain target/scoring function combinations, good enrichment may sometimes be a consequence of 2D property recognition rather than a modelling of the correct 3D interactions. PMID:22371207

  6. SIFTER search: a web server for accurate phylogeny-based protein function prediction

    SciTech Connect

    Sahraeian, Sayed M.; Luo, Kevin R.; Brenner, Steven E.

    2015-05-15

    We are awash in proteins discovered through high-throughput sequencing projects. As only a minuscule fraction of these have been experimentally characterized, computational methods are widely used for automated annotation. Here, we introduce a user-friendly web interface for accurate protein function prediction using the SIFTER algorithm. SIFTER is a state-of-the-art sequence-based gene molecular function prediction algorithm that uses a statistical model of function evolution to incorporate annotations throughout the phylogenetic tree. Due to the resources needed by the SIFTER algorithm, running SIFTER locally is not trivial for most users, especially for large-scale problems. The SIFTER web server thus provides access to precomputed predictions on 16 863 537 proteins from 232 403 species. Users can explore SIFTER predictions with queries for proteins, species, functions, and homologs of sequences not in the precomputed prediction set. Lastly, the SIFTER web server is accessible at http://sifter.berkeley.edu/ and the source code can be downloaded.

  7. Successful Function-Preserving Therapy for Chondroblastoma of the Temporal Bone Involving the Temporomandibular Joint

    PubMed Central

    Yokoyama, Junkichi; Yoshimoto, Hitoshi; Ito, Shin; Ohba, Shinichi; Fujimaki, Mitsuhisa; Ikeda, Katsuhisa; Yazawa, Masaki; Fujimiya, Nozomi; Hanaguri, Makoto

    2011-01-01

    We present a case involving a late diagnosis of chondroblastoma of the temporal skull base involving the temporomandibular joint (TMJ). Following an initial misdiagnosis and unsuccessful treatment over a period of 5 years, the patient was referred to our department for further evaluation and possible surgical intervention for occlusal abnormalities, trismus, clicking of the TMJ, and hearing impairment. Based on preoperative immunochemical studies showing positive reaction of multinucleated giant cells for S-100 protein, the final diagnosis was chondroblastoma. The surgical approach – postauricular incision and total parotidectomy, with complete removal of the temporal bone, including the TMJ via the extended middle fossa – was successful in preserving facial nerves and diminishing clinical manifestations. This study highlights a misdiagnosed case in an effort to underline the importance of medical examinations and accurate differential diagnosis in cases involving any tumor mass in the temporal bone. PMID:21475594

  8. Successful function-preserving therapy for chondroblastoma of the temporal bone involving the temporomandibular joint.

    PubMed

    Yokoyama, Junkichi; Yoshimoto, Hitoshi; Ito, Shin; Ohba, Shinichi; Fujimaki, Mitsuhisa; Ikeda, Katsuhisa; Yazawa, Masaki; Fujimiya, Nozomi; Hanaguri, Makoto

    2011-02-14

    We present a case involving a late diagnosis of chondroblastoma of the temporal skull base involving the temporomandibular joint (TMJ). Following an initial misdiagnosis and unsuccessful treatment over a period of 5 years, the patient was referred to our department for further evaluation and possible surgical intervention for occlusal abnormalities, trismus, clicking of the TMJ, and hearing impairment. Based on preoperative immunochemical studies showing positive reaction of multinucleated giant cells for S-100 protein, the final diagnosis was chondroblastoma. The surgical approach - postauricular incision and total parotidectomy, with complete removal of the temporal bone, including the TMJ via the extended middle fossa - was successful in preserving facial nerves and diminishing clinical manifestations. This study highlights a misdiagnosed case in an effort to underline the importance of medical examinations and accurate differential diagnosis in cases involving any tumor mass in the temporal bone.

  9. UET: a database of evolutionarily-predicted functional determinants of protein sequences that cluster as functional sites in protein structures.

    PubMed

    Lua, Rhonald C; Wilson, Stephen J; Konecki, Daniel M; Wilkins, Angela D; Venner, Eric; Morgan, Daniel H; Lichtarge, Olivier

    2016-01-01

    The structure and function of proteins underlie most aspects of biology and their mutational perturbations often cause disease. To identify the molecular determinants of function as well as targets for drugs, it is central to characterize the important residues and how they cluster to form functional sites. The Evolutionary Trace (ET) achieves this by ranking the functional and structural importance of the protein sequence positions. ET uses evolutionary distances to estimate functional distances and correlates genotype variations with those in the fitness phenotype. Thus, ET ranks are worse for sequence positions that vary among evolutionarily closer homologs but better for positions that vary mostly among distant homologs. This approach identifies functional determinants, predicts function, guides the mutational redesign of functional and allosteric specificity, and interprets the action of coding sequence variations in proteins, people and populations. Now, the UET database offers pre-computed ET analyses for the protein structure databank, and on-the-fly analysis of any protein sequence. A web interface retrieves ET rankings of sequence positions and maps results to a structure to identify functionally important regions. This UET database integrates several ways of viewing the results on the protein sequence or structure and can be found at http://mammoth.bcm.tmc.edu/uet/.

  10. Prediction of the Functional Performance of Machined Components Based on Surface Topography: State of the Art

    NASA Astrophysics Data System (ADS)

    Grzesik, Wit

    2016-10-01

    This survey overviews the functional performance of manufactured components produced by typical finishing machining operations in terms of their topographical characteristics. Surface topographies were characterized using both profile (2D) and 3D (areal) surface roughness parameters. The prediction of typical functional properties such as fatigue, friction, wear, bonding and corrosion is discussed based on appropriate surface roughness parameters. Some examples of real 3D surface topographies produced with desired functional characteristics are provided. This survey highlights technological possibilities of producing surfaces with enhanced functional properties by machining processes.

  11. Prediction of the Functional Performance of Machined Components Based on Surface Topography: State of the Art

    NASA Astrophysics Data System (ADS)

    Grzesik, Wit

    2016-08-01

    This survey overviews the functional performance of manufactured components produced by typical finishing machining operations in terms of their topographical characteristics. Surface topographies were characterized using both profile (2D) and 3D (areal) surface roughness parameters. The prediction of typical functional properties such as fatigue, friction, wear, bonding and corrosion is discussed based on appropriate surface roughness parameters. Some examples of real 3D surface topographies produced with desired functional characteristics are provided. This survey highlights technological possibilities of producing surfaces with enhanced functional properties by machining processes.

  12. Convergent Evolution of Hemoglobin Function in High-Altitude Andean Waterfowl Involves Limited Parallelism at the Molecular Sequence Level.

    PubMed

    Natarajan, Chandrasekhar; Projecto-Garcia, Joana; Moriyama, Hideaki; Weber, Roy E; Muñoz-Fuentes, Violeta; Green, Andy J; Kopuchian, Cecilia; Tubaro, Pablo L; Alza, Luis; Bulgarella, Mariana; Smith, Matthew M; Wilson, Robert E; Fago, Angela; McCracken, Kevin G; Storz, Jay F

    2015-12-01

    A fundamental question in evolutionary genetics concerns the extent to which adaptive phenotypic convergence is attributable to convergent or parallel changes at the molecular sequence level. Here we report a comparative analysis of hemoglobin (Hb) function in eight phylogenetically replicated pairs of high- and low-altitude waterfowl taxa to test for convergence in the oxygenation properties of Hb, and to assess the extent to which convergence in biochemical phenotype is attributable to repeated amino acid replacements. Functional experiments on native Hb variants and protein engineering experiments based on site-directed mutagenesis revealed the phenotypic effects of specific amino acid replacements that were responsible for convergent increases in Hb-O2 affinity in multiple high-altitude taxa. In six of the eight taxon pairs, high-altitude taxa evolved derived increases in Hb-O2 affinity that were caused by a combination of unique replacements, parallel replacements (involving identical-by-state variants with independent mutational origins in different lineages), and collateral replacements (involving shared, identical-by-descent variants derived via introgressive hybridization). In genome scans of nucleotide differentiation involving high- and low-altitude populations of three separate species, function-altering amino acid polymorphisms in the globin genes emerged as highly significant outliers, providing independent evidence for adaptive divergence in Hb function. The experimental results demonstrate that convergent changes in protein function can occur through multiple historical paths, and can involve multiple possible mutations. Most cases of convergence in Hb function did not involve parallel substitutions and most parallel substitutions did not affect Hb-O2 affinity, indicating that the repeatability of phenotypic evolution does not require parallelism at the molecular level.

  13. Convergent Evolution of Hemoglobin Function in High-Altitude Andean Waterfowl Involves Limited Parallelism at the Molecular Sequence Level

    PubMed Central

    Natarajan, Chandrasekhar; Projecto-Garcia, Joana; Moriyama, Hideaki; Weber, Roy E.; Muñoz-Fuentes, Violeta; Green, Andy J.; Kopuchian, Cecilia; Tubaro, Pablo L.; Alza, Luis; Bulgarella, Mariana; Smith, Matthew M.; Wilson, Robert E.; Fago, Angela; McCracken, Kevin G.; Storz, Jay F.

    2015-01-01

    A fundamental question in evolutionary genetics concerns the extent to which adaptive phenotypic convergence is attributable to convergent or parallel changes at the molecular sequence level. Here we report a comparative analysis of hemoglobin (Hb) function in eight phylogenetically replicated pairs of high- and low-altitude waterfowl taxa to test for convergence in the oxygenation properties of Hb, and to assess the extent to which convergence in biochemical phenotype is attributable to repeated amino acid replacements. Functional experiments on native Hb variants and protein engineering experiments based on site-directed mutagenesis revealed the phenotypic effects of specific amino acid replacements that were responsible for convergent increases in Hb-O2 affinity in multiple high-altitude taxa. In six of the eight taxon pairs, high-altitude taxa evolved derived increases in Hb-O2 affinity that were caused by a combination of unique replacements, parallel replacements (involving identical-by-state variants with independent mutational origins in different lineages), and collateral replacements (involving shared, identical-by-descent variants derived via introgressive hybridization). In genome scans of nucleotide differentiation involving high- and low-altitude populations of three separate species, function-altering amino acid polymorphisms in the globin genes emerged as highly significant outliers, providing independent evidence for adaptive divergence in Hb function. The experimental results demonstrate that convergent changes in protein function can occur through multiple historical paths, and can involve multiple possible mutations. Most cases of convergence in Hb function did not involve parallel substitutions and most parallel substitutions did not affect Hb-O2 affinity, indicating that the repeatability of phenotypic evolution does not require parallelism at the molecular level. PMID:26637114

  14. iPFPi: A System for Improving Protein Function Prediction through Cumulative Iterations.

    PubMed

    Taha, Kamal; Yoo, Paul D; Alzaabi, Mohammed

    2015-01-01

    We propose a classifier system called iPFPi that predicts the functions of un-annotated proteins. iPFPi assigns an un-annotated protein P the functions of GO annotation terms that are semantically similar to P. An un-annotated protein P and a GO annotation term T are represented by their characteristics. The characteristics of P are GO terms found within the abstracts of biomedical literature associated with P. The characteristics of Tare GO terms found within the abstracts of biomedical literature associated with the proteins annotated with the function of T. Let F and F/ be the important (dominant) sets of characteristic terms representing T and P, respectively. iPFPi would annotate P with the function of T, if F and F/ are semantically similar. We constructed a novel semantic similarity measure that takes into consideration several factors, such as the dominance degree of each characteristic term t in set F based on its score, which is a value that reflects the dominance status of t relative to other characteristic terms, using pairwise beats and looses procedure. Every time a protein P is annotated with the function of T, iPFPi updates and optimizes the current scores of the characteristic terms for T based on the weights of the characteristic terms for P. Set F will be updated accordingly. Thus, the accuracy of predicting the function of T as the function of subsequent proteins improves. This prediction accuracy keeps improving over time iteratively through the cumulative weights of the characteristic terms representing proteins that are successively annotated with the function of T. We evaluated the quality of iPFPi by comparing it experimentally with two recent protein function prediction systems. Results showed marked improvement.

  15. Relationship between global structural parameters and Enzyme Commission hierarchy: implications for function prediction.

    PubMed

    Boareto, Marcelo; Yamagishi, Michel E B; Caticha, Nestor; Leite, Vitor B P

    2012-10-01

    In protein databases there is a substantial number of proteins structurally determined but without function annotation. Understanding the relationship between function and structure can be useful to predict function on a large scale. We have analyzed the similarities in global physicochemical parameters for a set of enzymes which were classified according to the four Enzyme Commission (EC) hierarchical levels. Using relevance theory we introduced a distance between proteins in the space of physicochemical characteristics. This was done by minimizing a cost function of the metric tensor built to reflect the EC classification system. Using an unsupervised clustering method on a set of 1025 enzymes, we obtained no relevant clustering formation compatible with EC classification. The distance distributions between enzymes from the same EC group and from different EC groups were compared by histograms. Such analysis was also performed using sequence alignment similarity as a distance. Our results suggest that global structure parameters are not sufficient to segregate enzymes according to EC hierarchy. This indicates that features essential for function are rather local than global. Consequently, methods for predicting function based on global attributes should not obtain high accuracy in main EC classes prediction without relying on similarities between enzymes from training and validation datasets. Furthermore, these results are consistent with a substantial number of studies suggesting that function evolves fundamentally by recruitment, i.e., a same protein motif or fold can be used to perform different enzymatic functions and a few specific amino acids (AAs) are actually responsible for enzyme activity. These essential amino acids should belong to active sites and an effective method for predicting function should be able to recognize them.

  16. Expression Pattern Similarities Support the Prediction of Orthologs Retaining Common Functions after Gene Duplication Events.

    PubMed

    Das, Malay; Haberer, Georg; Panda, Arup; Das Laha, Shayani; Ghosh, Tapas Chandra; Schäffner, Anton R

    2016-08-01

    The identification of functionally equivalent, orthologous genes (functional orthologs) across genomes is necessary for accurate transfer of experimental knowledge from well-characterized organisms to others. This frequently relies on automated, coding sequence-based approaches such as OrthoMCL, Inparanoid, and KOG, which usually work well for one-to-one homologous states. However, this strategy does not reliably work for plants due to the occurrence of extensive gene/genome duplication. Frequently, for one query gene, multiple orthologous genes are predicted in the other genome, and it is not clear a priori from sequence comparison and similarity which one preserves the ancestral function. We have studied 11 organ-dependent and stress-induced gene expression patterns of 286 Arabidopsis lyrata duplicated gene groups and compared them with the respective Arabidopsis (Arabidopsis thaliana) genes to predict putative expressologs and nonexpressologs based on gene expression similarity. Promoter sequence divergence as an additional tool to substantiate functional orthology only partially overlapped with expressolog classification. By cloning eight A. lyrata homologs and complementing them in the respective four Arabidopsis loss-of-function mutants, we experimentally proved that predicted expressologs are indeed functional orthologs, while nonexpressologs or nonfunctionalized orthologs are not. Our study demonstrates that even a small set of gene expression data in addition to sequence homologies are instrumental in the assignment of functional orthologs in the presence of multiple orthologs. PMID:27303025

  17. Ligand Similarity Complements Sequence, Physical Interaction, and Co-Expression for Gene Function Prediction.

    PubMed

    O'Meara, Matthew J; Ballouz, Sara; Shoichet, Brian K; Gillis, Jesse

    2016-01-01

    The expansion of protein-ligand annotation databases has enabled large-scale networking of proteins by ligand similarity. These ligand-based protein networks, which implicitly predict the ability of neighboring proteins to bind related ligands, may complement biologically-oriented gene networks, which are used to predict functional or disease relevance. To quantify the degree to which such ligand-based protein associations might complement functional genomic associations, including sequence similarity, physical protein-protein interactions, co-expression, and disease gene annotations, we calculated a network based on the Similarity Ensemble Approach (SEA: sea.docking.org), where protein neighbors reflect the similarity of their ligands. We also measured the similarity with functional genomic networks over a common set of 1,131 genes, and found that the networks had only small overlaps, which were significant only due to the large scale of the data. Consistent with the view that the networks contain different information, combining them substantially improved Molecular Function prediction within GO (from AUROC~0.63-0.75 for the individual data modalities to AUROC~0.8 in the aggregate). We investigated the boost in guilt-by-association gene function prediction when the networks are combined and describe underlying properties that can be further exploited. PMID:27467773

  18. Ligand Similarity Complements Sequence, Physical Interaction, and Co-Expression for Gene Function Prediction

    PubMed Central

    Shoichet, Brian K.; Gillis, Jesse

    2016-01-01

    The expansion of protein-ligand annotation databases has enabled large-scale networking of proteins by ligand similarity. These ligand-based protein networks, which implicitly predict the ability of neighboring proteins to bind related ligands, may complement biologically-oriented gene networks, which are used to predict functional or disease relevance. To quantify the degree to which such ligand-based protein associations might complement functional genomic associations, including sequence similarity, physical protein-protein interactions, co-expression, and disease gene annotations, we calculated a network based on the Similarity Ensemble Approach (SEA: sea.docking.org), where protein neighbors reflect the similarity of their ligands. We also measured the similarity with functional genomic networks over a common set of 1,131 genes, and found that the networks had only small overlaps, which were significant only due to the large scale of the data. Consistent with the view that the networks contain different information, combining them substantially improved Molecular Function prediction within GO (from AUROC~0.63–0.75 for the individual data modalities to AUROC~0.8 in the aggregate). We investigated the boost in guilt-by-association gene function prediction when the networks are combined and describe underlying properties that can be further exploited. PMID:27467773

  19. Reliability of predicted renal function in Japanese patients on cisplatin therapy.

    PubMed

    Yajima, A; Ogawa, C; Yatabe, M; Kondo, N; Saito, S; Suzuki, Y; Uesawa, Y

    2013-09-01

    Cisplatin, cis-Dichlorodiammine platinum (II) (CDDP) remains a major antineoplastic drug for the treatment of solid tumors. Its chief dose-limiting side effect is nephrotoxicity. To make a safe and effective dosing regimen of a drug excreted mainly by the renal route, evaluation of patients' renal function is essential. Creatinine clearance (CLcr) or glomerular filtration rate (GFR) is considered to be a standard renal-function test. Several equations have been used in clinical settings, to predict CLcr and GFR using serum creatinine concentration. We carried out a retrospective analysis of the correlation between 24-hour CLcr measured by a urine collection method; and the predicted CLcr and GFR estimated by various equations such as Jelliffe, Yasuda, Orita, Mawer, Mawer, MDRD and modified MDRD, and Cockcroft-Gault. This study used data from Japanese head-and-neck cancer patients, before and after chemotherapy with CDDP. Slopes of regression lines of scatter plots between measured CLcr and predicted renal function in post-CDDP patients were less compared to pre-CDDP patients. On the other hand, Y-intercepts were noted in the scatter plots on renal function from all equations. These results suggest that evaluation of renal function using predictive formulae may have been over-/under-estimated after CDDP administration. PMID:24147348

  20. Weaknesses in executive functioning predict the initiating of adolescents' alcohol use.

    PubMed

    Peeters, Margot; Janssen, Tim; Monshouwer, Karin; Boendermaker, Wouter; Pronk, Thomas; Wiers, Reinout; Vollebergh, Wilma

    2015-12-01

    Recently, it has been suggested that impairments in executive functioning might be risk factors for the onset of alcohol use rather than a result of heavy alcohol use. In the present study, we examined whether two aspects of executive functioning, working memory and response inhibition, predicted the first alcoholic drink and first binge drinking episode in young adolescents using discrete survival analyses. Adolescents were selected from several Dutch secondary schools including both mainstream and special education (externalizing behavioral problems). Participants were 534 adolescents between 12 and 14 years at baseline. Executive functioning and alcohol use were assessed four times over a period of two years. Working memory uniquely predicted the onset of first drink (p=.01) and first binge drinking episode (p=.04) while response inhibition only uniquely predicted the initiating of the first drink (p=.01). These results suggest that the association of executive functioning and alcohol consumption found in former studies cannot simply be interpreted as an effect of alcohol consumption, as weaknesses in executive functioning, found in alcohol naïve adolescents, predict the initiating of (binge) drinking. Though, prolonged and heavy alcohol use might further weaken already existing deficiencies.

  1. Enhanced Left Frontal Involvement during Novel Metaphor Comprehension in Schizophrenia: Evidence from Functional Neuroimaging

    ERIC Educational Resources Information Center

    Mashal, N.; Vishne, T.; Laor, N.; Titone, D.

    2013-01-01

    The neural basis involved in novel metaphor comprehension in schizophrenia is relatively unknown. Fourteen people with schizophrenia and fourteen controls were scanned while they silently read novel metaphors, conventional metaphors, literal expressions, and meaningless word-pairs. People with schizophrenia showed reduced comprehension of both…

  2. Functional Connectivity between Brain Regions Involved in Learning Words of a New Language

    ERIC Educational Resources Information Center

    Veroude, Kim; Norris, David G.; Shumskaya, Elena; Gullberg, Marianne; Indefrey, Peter

    2010-01-01

    Previous studies have identified several brain regions that appear to be involved in the acquisition of novel word forms. Standard word-by-word presentation is often used although exposure to a new language normally occurs in a natural, real world situation. In the current experiment we investigated naturalistic language exposure and applied a…

  3. Parental Involvement and the Academic Achievement and Social Functioning of Cuban School Children

    ERIC Educational Resources Information Center

    Alvarez-Valdivia, Ibis M.; Chavez, Kenia Lorenzo; Schneider, Barry H.; Roberts, Jesse S.; Becalli-Puerta, Laura E.; Perez-Lujan, Dalgys; Sanz-Martinez, Yuri Arsenio

    2013-01-01

    The goal of the current study was to investigate whether parental involvement is an important predictor of student outcomes within the Cuban school system, where extensive support for pupils' progress and adjustment are available from the peer group, community, and family. The participants were 188 children in Grades 2 and 3 from four…

  4. The F8H Glycosyltransferase is a Functional Paralog of FRA8 Involved in Glucuronoxylan Biosynthesis in Arabidopsis

    EPA Science Inventory

    The FRAGILE FIBER8 gene was previously shown to be required for the biosynthesis of the reducing end tetrasaccharide sequence of glucuronoxylan (GX) in Arabidopsis thaliana. Here, we demonstrate that F8H, a close homolog of FRA8, is a functional ortholog of FRA8 involved in GX bi...

  5. Organization of intrinsic functional brain connectivity predicts decisions to reciprocate social behavior.

    PubMed

    Cáceda, Ricardo; James, G Andrew; Gutman, David A; Kilts, Clinton D

    2015-10-01

    Reciprocation of trust exchanges is central to the development of interpersonal relationships and societal well-being. Understanding how humans make pro-social and self-centered decisions in dyadic interactions and how to predict these choices has been an area of great interest in social neuroscience. A functional magnetic resonance imaging (fMRI) based technology with potential clinical application is the study of resting state brain connectivity. We tested if resting state connectivity may predict choice behavior in a social context. Twenty-nine healthy adults underwent resting state fMRI before performing the Trust Game, a two person monetary exchange game. We assessed the ability of patterns of resting-state functional brain organization, demographic characteristics and a measure of moral development, the Defining Issues Test (DIT-2), to predict individuals' decisions to reciprocate money during the Trust Game. Subjects reciprocated in 74.9% of the trials. Independent component analysis identified canonical resting-state networks. Increased functional connectivity between the salience (bilateral insula/anterior cingulate) and central executive (dorsolateral prefrontal cortex/ posterior parietal cortex) networks significantly predicted the choice to reciprocate pro-social behavior (R(2) = 0.20, p = 0.015). Stepwise linear regression analysis showed that functional connectivity between these two networks (p = 0.002), age (p = 0.007) and DIT-2 personal interest schema score (p = 0.032) significantly predicted reciprocity behavior (R(2) = 0.498, p = 0.001). Intrinsic functional connectivity between neural networks in conjunction with other individual characteristics may be a valuable tool for predicting performance during social interactions. Future replication and temporal extension of these findings may bolster the understanding of decision making in clinical, financial and marketing settings.

  6. Organization of intrinsic functional brain connectivity predicts decisions to reciprocate social behavior.

    PubMed

    Cáceda, Ricardo; James, G Andrew; Gutman, David A; Kilts, Clinton D

    2015-10-01

    Reciprocation of trust exchanges is central to the development of interpersonal relationships and societal well-being. Understanding how humans make pro-social and self-centered decisions in dyadic interactions and how to predict these choices has been an area of great interest in social neuroscience. A functional magnetic resonance imaging (fMRI) based technology with potential clinical application is the study of resting state brain connectivity. We tested if resting state connectivity may predict choice behavior in a social context. Twenty-nine healthy adults underwent resting state fMRI before performing the Trust Game, a two person monetary exchange game. We assessed the ability of patterns of resting-state functional brain organization, demographic characteristics and a measure of moral development, the Defining Issues Test (DIT-2), to predict individuals' decisions to reciprocate money during the Trust Game. Subjects reciprocated in 74.9% of the trials. Independent component analysis identified canonical resting-state networks. Increased functional connectivity between the salience (bilateral insula/anterior cingulate) and central executive (dorsolateral prefrontal cortex/ posterior parietal cortex) networks significantly predicted the choice to reciprocate pro-social behavior (R(2) = 0.20, p = 0.015). Stepwise linear regression analysis showed that functional connectivity between these two networks (p = 0.002), age (p = 0.007) and DIT-2 personal interest schema score (p = 0.032) significantly predicted reciprocity behavior (R(2) = 0.498, p = 0.001). Intrinsic functional connectivity between neural networks in conjunction with other individual characteristics may be a valuable tool for predicting performance during social interactions. Future replication and temporal extension of these findings may bolster the understanding of decision making in clinical, financial and marketing settings. PMID:26166191

  7. Predicting (17)O NMR chemical shifts of polyoxometalates using density functional theory.

    PubMed

    Sharma, Rupali; Zhang, Jie; Ohlin, C André

    2016-03-21

    We have investigated the computation of (17)O NMR chemical shifts of a wide range of polyoxometalates using density functional theory. The effects of basis sets and exchange-correlation functionals are explored, and whereas pure DFT functionals generally predict the chemical shifts of terminal oxygen sites quite well, hybrid functionals are required for the prediction of accurate chemical shifts in conjunction with linear regression. By using PBE0/def2-tzvp//PBE0/cc-pvtz(H-Ar), lanl2dz(K-) we have computed the chemical shifts of 37 polyoxometalates, corresponding to 209 (17)O NMR signals. We also show that at this level of theory the protonation-induced pH dependence of the chemical shift of the triprotic hexaniobate Lindqvist anion, [HxNb6O19]((8-x)), can be reproduced, which suggests that hypotheses regarding loci of protonation can be confidently tested. PMID:26925832

  8. Network-based function prediction and interactomics: the case for metabolic enzymes.

    PubMed

    Janga, S C; Díaz-Mejía, J Javier; Moreno-Hagelsieb, G

    2011-01-01

    As sequencing technologies increase in power, determining the functions of unknown proteins encoded by the DNA sequences so produced becomes a major challenge. Functional annotation is commonly done on the basis of amino-acid sequence similarity alone. Long after sequence similarity becomes undetectable by pair-wise comparison, profile-based identification of homologs can often succeed due to the conservation of position-specific patterns, important for a protein's three dimensional folding and function. Nevertheless, prediction of protein function from homology-driven approaches is not without problems. Homologous proteins might evolve different functions and the power of homology detection has already started to reach its maximum. Computational methods for inferring protein function, which exploit the context of a protein in cellular networks, have come to be built on top of homology-based approaches. These network-based functional inference techniques provide both a first hand hint into a proteins' functional role and offer complementary insights to traditional methods for understanding the function of uncharacterized proteins. Most recent network-based approaches aim to integrate diverse kinds of functional interactions to boost both coverage and confidence level. These techniques not only promise to solve the moonlighting aspect of proteins by annotating proteins with multiple functions, but also increase our understanding on the interplay between different functional classes in a cell. In this article we review the state of the art in network-based function prediction and describe some of the underlying difficulties and successes. Given the volume of high-throughput data that is being reported the time is ripe to employ these network-based approaches, which can be used to unravel the functions of the uncharacterized proteins accumulating in the genomic databases.

  9. Independent Component Analysis Involving Autocorrelated Sources With an Application to Functional Magnetic Resonance Imaging

    PubMed Central

    Lee, Seonjoo; Shen, Haipeng; Truong, Young; Lewis, Mechelle; Huang, Xuemei

    2016-01-01

    Independent component analysis (ICA) is an effective data-driven method for blind source separation. It has been successfully applied to separate source signals of interest from their mixtures. Most existing ICA procedures are carried out by relying solely on the estimation of the marginal density functions, either parametrically or nonparametrically. In many applications, correlation structures within each source also play an important role besides the marginal distributions. One important example is functional magnetic resonance imaging (fMRI) analysis where the brain-function-related signals are temporally correlated. In this article, we consider a novel approach to ICA that fully exploits the correlation structures within the source signals. Specifically, we propose to estimate the spectral density functions of the source signals instead of their marginal density functions. This is made possible by virtue of the intrinsic relationship between the (unobserved) sources and the (observed) mixed signals. Our methodology is described and implemented using spectral density functions from frequently used time series models such as autoregressive moving average (ARMA) processes. The time series parameters and the mixing matrix are estimated via maximizing the Whittle likelihood function. We illustrate the performance of the proposed method through extensive simulation studies and a real fMRI application. The numerical results indicate that our approach outperforms several popular methods including the most widely used fastICA algorithm. This article has supplementary material online. PMID:27524847

  10. Prediction of functional outcome by motor capability after spinal cord injury.

    PubMed

    Lazar, R B; Yarkony, G M; Ortolano, D; Heinemann, A W; Perlow, E; Lovell, L; Meyer, P R

    1989-11-01

    The relationship between early motor status and functional outcome after spinal cord injury (SCI) was evaluated prospectively in 52 quadriplegic and 26 paraplegic patients. Motor status was measured within 72 hours of injury and quantified with the Motor Index Score (MIS). Functional status was evaluated with the Modified Barthel Index (MBI). A senior physical therapist completed the MIS and the MBI when each patient was admitted to the spinal cord intensive care unit and every 30 days during rehabilitation. Early motor function was correlated with average daily improvement in functional status including self-care and mobility (p = .001). The initial MIS strongly correlated with functional status of quadriplegics at admission (p = .001), at 60 days, and at rehabilitation discharge (p = .001). In paraplegics, the overall MBI at admission, after 60 days of rehabilitation, and at discharge was not correlated with early motor function. However, the MIS correlated significantly with the MBI self-care subscore at 60 days and at discharge (p = .01), but not with the mobility subscore. The initial MIS was also significantly correlated to functional status at discharge in patients with complete lesions (p = .001), but was not related to functional status at discharge in patients with incomplete lesions. The MIS appears to be a useful tool in predicting function during rehabilitation, although individual differences in ambulation, particularly for patients with paraplegia, limit the predictive utility of this index. PMID:2818153

  11. Vestibular involvement in cognition: Visuospatial ability, attention, executive function, and memory.

    PubMed

    Bigelow, Robin T; Agrawal, Yuri

    2015-01-01

    A growing body of literature suggests the inner ear vestibular system has a substantial impact on cognitive function. The strongest evidence exists in connecting vestibular function to the cognitive domain of visuospatial ability, which includes spatial memory, navigation, mental rotation, and mental representation of three-dimensional space. Substantial evidence also exists suggesting the vestibular system has an impact on attention and cognitive processing ability. The cognitive domains of memory and executive function are also implicated in a number of studies. We will review the current literature, discuss possible causal links between vestibular dysfunction and cognitive performance, and suggest areas of future research. PMID:26410672

  12. Vestibular involvement in cognition: Visuospatial ability, attention, executive function, and memory.

    PubMed

    Bigelow, Robin T; Agrawal, Yuri

    2015-01-01

    A growing body of literature suggests the inner ear vestibular system has a substantial impact on cognitive function. The strongest evidence exists in connecting vestibular function to the cognitive domain of visuospatial ability, which includes spatial memory, navigation, mental rotation, and mental representation of three-dimensional space. Substantial evidence also exists suggesting the vestibular system has an impact on attention and cognitive processing ability. The cognitive domains of memory and executive function are also implicated in a number of studies. We will review the current literature, discuss possible causal links between vestibular dysfunction and cognitive performance, and suggest areas of future research.

  13. Biological interpretation of genome-wide association studies using predicted gene functions.

    PubMed

    Pers, Tune H; Karjalainen, Juha M; Chan, Yingleong; Westra, Harm-Jan; Wood, Andrew R; Yang, Jian; Lui, Julian C; Vedantam, Sailaja; Gustafsson, Stefan; Esko, Tonu; Frayling, Tim; Speliotes, Elizabeth K; Boehnke, Michael; Raychaudhuri, Soumya; Fehrmann, Rudolf S N; Hirschhorn, Joel N; Franke, Lude

    2015-01-19

    The main challenge for gaining biological insights from genetic associations is identifying which genes and pathways explain the associations. Here we present DEPICT, an integrative tool that employs predicted gene functions to systematically prioritize the most likely causal genes at associated loci, highlight enriched pathways and identify tissues/cell types where genes from associated loci are highly expressed. DEPICT is not limited to genes with established functions and prioritizes relevant gene sets for many phenotypes.

  14. Using Wannier functions to improve solid band gap predictions in density functional theory

    NASA Astrophysics Data System (ADS)

    Ma, Jie; Wang, Lin-Wang

    2016-04-01

    Enforcing a straight-line condition of the total energy upon removal/addition of fractional electrons on eigen states has been successfully applied to atoms and molecules for calculating ionization potentials and electron affinities, but fails for solids due to the extended nature of the eigen orbitals. Here we have extended the straight-line condition to the removal/addition of fractional electrons on Wannier functions constructed within the occupied/unoccupied subspaces. It removes the self-interaction energies of those Wannier functions, and yields accurate band gaps for solids compared to experiments. It does not have any adjustable parameters and the computational cost is at the DFT level. This method can also work for molecules, providing eigen energies in good agreement with experimental ionization potentials and electron affinities. Our approach can be viewed as an alternative approach of the standard LDA+U procedure.

  15. Using Wannier functions to improve solid band gap predictions in density functional theory

    PubMed Central

    Ma, Jie; Wang, Lin-Wang

    2016-01-01

    Enforcing a straight-line condition of the total energy upon removal/addition of fractional electrons on eigen states has been successfully applied to atoms and molecules for calculating ionization potentials and electron affinities, but fails for solids due to the extended nature of the eigen orbitals. Here we have extended the straight-line condition to the removal/addition of fractional electrons on Wannier functions constructed within the occupied/unoccupied subspaces. It removes the self-interaction energies of those Wannier functions, and yields accurate band gaps for solids compared to experiments. It does not have any adjustable parameters and the computational cost is at the DFT level. This method can also work for molecules, providing eigen energies in good agreement with experimental ionization potentials and electron affinities. Our approach can be viewed as an alternative approach of the standard LDA+U procedure. PMID:27114185

  16. Serum Glutathione S-Transferase P1 1 in Prediction of Cardiac Function

    PubMed Central

    Andrukhova, Olena; Salama, Mohamed; Rosenhek, Raphael; Gmeiner, Matthias; Perkmann, Thomas; Steindl, Johannes; Aharinejad, Seyedhossein

    2012-01-01

    Background Glutathione S-transferase P1 1 (GSTP1) belongs to the multigene isozyme family involved in cellular response to oxidative stress and apoptosis. Our initial retrospective proteomic analysis suggested that GSTP1 is associated with heart failure (HF). Although pro–B-type natriuretic peptide (proBNP) serves currently as a surrogate diagnostic and prognostic parameter in HF patients, its specificity remains uncertain. We hypothesized that GSTP1 might be a useful serum marker in the monitoring of HF patients. Methods and Results Serum GSTP1 and proBNP were prospectively measured in 193 patients subdivided based on their ejection fraction (EF) either in equal-sized quintiles or predefined EF groups >52%, 43%–52%, 33%–42%, 23%–32% and ≤22%. At a cutoff of ≥231 ng/mL, GSTP1 identified HF patients with EF ≤22% with 81% sensitivity and 83% specificity, and at a cutoff of ≥655 pg/mL, proBNP identified the same patient group with 84% sensitivity and 22% specificity. GSTP1 at a ≥126 ng/mL cutoff identified EF ≤42% with 90% sensitivity and 95% specificity, or proBNP at a ≥396 pg/mL cutoff had 97% sensitivity and 20% specificity. In regression analyses, GSTP1, but not proBNP, discriminated between EF ≤42% and EF >42% in HF patients. Conclusions These results suggest that GSTP1 is strongly associated with HF and could serve as a sensitive and specific marker to predict the ventricular function in HF patients. PMID:22385947

  17. Defining the players in higher-order networks: predictive modeling for reverse engineering functional influence networks.

    PubMed

    McDermott, Jason E; Archuleta, Michelle; Stevens, Susan L; Stenzel-Poore, Mary P; Sanfilippo, Antonio

    2011-01-01

    Determining biological network dependencies that can help predict the behavior of a system given prior observations from high-throughput data is a very valuable but difficult task, especially in the light of the ever-increasing volume of experimental data. Such an endeavor can be greatly enhanced by considering regulatory influences on co-expressed groups of genes representing functional modules, thus constraining the number of parameters in the system. This allows development of network models that are predictive of system dynamics. We first develop a predictive network model of the transcriptomics of whole blood from a mouse model of neuroprotection in ischemic stroke, and show that it can accurately predict system behavior under novel conditions. We then use a network topology approach to expand the set of regulators considered and show that addition of topological bottlenecks improves the performance of the predictive model. Finally, we explore how improvements in definition of functional modules may be achieved through an integration of inferred network relationships and functional relationships defined using Gene Ontology similarity. We show that appropriate integration of these two types of relationships can result in models with improved performance.

  18. Is SOD1 loss of function involved in amyotrophic lateral sclerosis?

    PubMed

    Saccon, Rachele A; Bunton-Stasyshyn, Rosie K A; Fisher, Elizabeth M C; Fratta, Pietro

    2013-08-01

    Mutations in the gene superoxide dismutase 1 (SOD1) are causative for familial forms of the neurodegenerative disease amyotrophic lateral sclerosis. When the first SOD1 mutations were identified they were postulated to give rise to amyotrophic lateral sclerosis through a loss of function mechanism, but experimental data soon showed that the disease arises from a--still unknown--toxic gain of function, and the possibility that loss of function plays a role in amyotrophic lateral sclerosis pathogenesis was abandoned. Although loss of function is not causative for amyotrophic lateral sclerosis, here we re-examine two decades of evidence regarding whether loss of function may play a modifying role in SOD1-amyotrophic lateral sclerosis. From analysing published data from patients with SOD1-amyotrophic lateral sclerosis, we find a marked loss of SOD1 enzyme activity arising from almost all mutations. We continue to examine functional data from all Sod1 knockout mice and we find obvious detrimental effects within the nervous system with, interestingly, some specificity for the motor system. Here, we bring together historical and recent experimental findings to conclude that there is a possibility that SOD1 loss of function may play a modifying role in amyotrophic lateral sclerosis. This likelihood has implications for some current therapies aimed at knocking down the level of mutant protein in patients with SOD1-amyotrophic lateral sclerosis. Finally, the wide-ranging phenotypes that result from loss of function indicate that SOD1 gene sequences should be screened in diseases other than amyotrophic lateral sclerosis.

  19. Gait function in high-functioning autism and Asperger's disorder : evidence for basal-ganglia and cerebellar involvement?

    PubMed

    Rinehart, Nicole J; Tonge, Bruce J; Bradshaw, John L; Iansek, Robert; Enticott, Peter G; McGinley, Jenny

    2006-08-01

    Gait abnormalities have been widely reported in individuals with autism and Asperger's disorder. There is controversy as to whether the cerebellum or the basal-ganglia frontostriatal regions underpin these abnormalities. This is the first direct comparison of gait and upper-body postural features in autism and Asperger's disorder. Clinical and control groups were matched according to age, height, weight, performance, and full scale IQ. Consistent with Hallet's (1993) cerebellar-gait hypothesis, the autistic group showed significantly increased stride-length variability in their gait in comparison to control and Asperger's disorder participants. No quantitative gait deficits were found for the Asperger's disorder group. In support of Damasio and Maurer's (1982) basal-ganglia frontostriatal-gait hypothesis, both clinical groups were rated as showing abnormal arm posturing, however, only the Asperger's group were rated as significantly different from controls in terms of head and trunk posturing. While DSM-IV-TR suggests that Asperger's disorder, but not autism, is associated with motoric clumsiness, our data suggest that both clinical groups are uncoordinated and lacking in motor smoothness. Gait differences in autism and Asperger's disorder were suggested to reflect differential involvement of the cerebellum, with commonalities reflecting similar involvement of the basal-ganglia frontostriatal region.

  20. Examining the interaction of parental involvement and parenting style in predicting adherence in youth with type 1 diabetes

    PubMed Central

    Landers, Sara E.; Friedrich, Elizabeth A.; Jawad, Abbas F.; Miller, Victoria A.

    2016-01-01

    Introduction This study examined whether aspects of parenting style (specifically, warmth, autonomy support, and coercion) moderated the association between parental involvement and adherence in youth with type 1 diabetes. Methods Children ages 8–16 years with type 1 diabetes and a parent completed assessments of parental involvement, parenting style, and adherence. Results Parent autonomy support and coercion were associated with adherence but warmth was not. Child report of more parental involvement was associated with better adherence. Warmth, autonomy support, and coercion were not moderators. Discussion The findings underscore the importance of parental involvement, operationalized as responsibility for diabetes tasks, and parenting style, specifically coercion and autonomy support, for adherence in pediatric chronic illness management. Longitudinal research is needed to better understand how and why dimensions of involvement (e.g., responsibility, monitoring, support) vary over time and whether they impact outcomes differentially. PMID:26866945

  1. Role of religious involvement and spirituality in functioning among African Americans with cancer: testing a mediational model

    PubMed Central

    Holt, Cheryl L.; Wang, Min Qi; Caplan, Lee; Schulz, Emily; Blake, Victor; Southward, Vivian L.

    2013-01-01

    The present study tested a mediational model of the role of religious involvement, spirituality, and physical/emotional functioning in a sample of African American men and women with cancer. Several mediators were proposed based on theory and previous research, including sense of meaning, positive and negative affect, and positive and negative religious coping. One hundred patients were recruited through oncologist offices, key community leaders and community organizations, and interviewed by telephone. Participants completed an established measure of religious involvement, the Functional Assessment of Chronic Illness Therapy-Spiritual Well-Being Scale (FACIT-SP-12 version 4), the Positive and Negative Affect Schedule (PANAS), the Meaning in Life Scale, the Brief RCOPE, and the SF-12, which assesses physical and emotional functioning. Positive affect completely mediated the relationship between religious behaviors and emotional functioning. Though several other constructs showed relationships with study variables, evidence of mediation was not supported. Mediational models were not significant for the physical functioning outcome, nor were there significant main effects of religious involvement or spirituality for this outcome. Implications for cancer survivorship interventions are discussed. PMID:21222026

  2. Enhanced left frontal involvement during novel metaphor comprehension in schizophrenia: evidence from functional neuroimaging.

    PubMed

    Mashal, N; Vishne, T; Laor, N; Titone, D

    2013-01-01

    The neural basis involved in novel metaphor comprehension in schizophrenia is relatively unknown. Fourteen people with schizophrenia and fourteen controls were scanned while they silently read novel metaphors, conventional metaphors, literal expressions, and meaningless word-pairs. People with schizophrenia showed reduced comprehension of both novel and conventional metaphors. Furthermore, while controls showed enhanced brain activation in right inferior frontal gyrus (IFG) for novel metaphors versus meaningless word-pairs, people with schizophrenia showed an over-activation of left IFG and middle frontal gyrus (MFG). Direct comparison between the groups revealed greater activation in left precuneus for both novel metaphors and literal expressions vs. baseline for individuals with schizophrenia. Direct comparison for novel metaphors vs. literal expressions also revealed increased activation for individuals with schizophrenia in left MFG. These results suggest that the inefficient processing of novel metaphors in schizophrenia involves compensatory recruitment of additional brain regions that include the left MFG and left precuneus. PMID:23291493

  3. Enhanced left frontal involvement during novel metaphor comprehension in schizophrenia: evidence from functional neuroimaging.

    PubMed

    Mashal, N; Vishne, T; Laor, N; Titone, D

    2013-01-01

    The neural basis involved in novel metaphor comprehension in schizophrenia is relatively unknown. Fourteen people with schizophrenia and fourteen controls were scanned while they silently read novel metaphors, conventional metaphors, literal expressions, and meaningless word-pairs. People with schizophrenia showed reduced comprehension of both novel and conventional metaphors. Furthermore, while controls showed enhanced brain activation in right inferior frontal gyrus (IFG) for novel metaphors versus meaningless word-pairs, people with schizophrenia showed an over-activation of left IFG and middle frontal gyrus (MFG). Direct comparison between the groups revealed greater activation in left precuneus for both novel metaphors and literal expressions vs. baseline for individuals with schizophrenia. Direct comparison for novel metaphors vs. literal expressions also revealed increased activation for individuals with schizophrenia in left MFG. These results suggest that the inefficient processing of novel metaphors in schizophrenia involves compensatory recruitment of additional brain regions that include the left MFG and left precuneus.

  4. Identification of Genes Directly Involved in Shell Formation and Their Functions in Pearl Oyster, Pinctada fucata

    PubMed Central

    Fang, Dong; Xu, Guangrui; Hu, Yilin; Pan, Cong; Xie, Liping; Zhang, Rongqing

    2011-01-01

    Mollusk shell formation is a fascinating aspect of biomineralization research. Shell matrix proteins play crucial roles in the control of calcium carbonate crystallization during shell formation in the pearl oyster, Pinctada fucata. Characterization of biomineralization-related genes during larval development could enhance our understanding of shell formation. Genes involved in shell biomineralization were isolated by constructing three suppression subtractive hybridization (SSH) libraries that represented genes expressed at key points during larval shell formation. A total of 2,923 ESTs from these libraries were sequenced and gave 990 unigenes. Unigenes coding for secreted proteins and proteins with tandem-arranged repeat units were screened in the three SSH libraries. A set of sequences coding for genes involved in shell formation was obtained. RT-PCR and in situ hybridization assays were carried out on five genes to investigate their spatial expression in several tissues, especially the mantle tissue. They all showed a different expression pattern from known biomineralization-related genes. Inhibition of the five genes by RNA interference resulted in different defects of the nacreous layer, indicating that they all were involved in aragonite crystallization. Intriguingly, one gene (UD_Cluster94.seq.Singlet1) was restricted to the ‘aragonitic line’. The current data has yielded for the first time, to our knowledge, a suite of biomineralization-related genes active during the developmental stages of P.fucata, five of which were responsible for nacreous layer formation. This provides a useful starting point for isolating new genes involved in shell formation. The effects of genes on the formation of the ‘aragonitic line’, and other areas of the nacreous layer, suggests a different control mechanism for aragonite crystallization initiation from that of mature aragonite growth. PMID:21747964

  5. Mothers' depressive symptoms and children's cognitive and social agency: Predicting first-grade cognitive functioning.

    PubMed

    Yan, Ni; Dix, Theodore

    2016-08-01

    Using data from the National Institute of Child Health and Human Development (NICHD) Study of Early Child Care and Youth Development (N = 1,364), the present study supports an agentic perspective; it demonstrates that mothers' depressive symptoms in infancy predict children's poor first-grade cognitive functioning because depressive symptoms predict children's low social and cognitive agency-low motivation to initiate social interaction and actively engage in activities. When mothers' depressive symptoms were high in infancy, children displayed poor first-grade cognitive functioning due to (a) tendencies to become socially withdrawn by 36 months and low in mastery motivation by 54 months and (b) tendencies for children's low agency to predict declines in mothers' sensitivity and cognitive stimulation. Findings suggest that mothers' depressive symptoms undermine cognitive development through bidirectional processes centered on children's low motivation to engage in social interaction and initiate and persist at everyday tasks. (PsycINFO Database Record PMID:27389834

  6. Functional characterization of two SOS-regulated genes involved in mitomycin C resistance in Caulobacter crescentus.

    PubMed

    Lopes-Kulishev, Carina O; Alves, Ingrid R; Valencia, Estela Y; Pidhirnyj, María I; Fernández-Silva, Frank S; Rodrigues, Ticiane R; Guzzo, Cristiane R; Galhardo, Rodrigo S

    2015-09-01

    The SOS response is a universal bacterial regulon involved in the cellular response to DNA damage and other forms of stress. In Caulobacter crescentus, previous work has identified a plethora of genes that are part of the SOS regulon, but the biological roles of several of them remain to be determined. In this study, we report that two genes, hereafter named mmcA and mmcB, are involved in the defense against DNA damage caused by mitomycin C (MMC), but not against lesions induced by other common DNA damaging agents, such as UVC light, methyl methanesulfonate (MMS) and hydrogen peroxide. mmcA is a conserved gene that encodes a member of the glyoxalases/dioxygenases protein family, and acts independently of known DNA repair pathways. On the other hand, epistasis analysis showed that mmcB acts in the same pathway as imuC (dnaE2), and is required specifically for MMC-induced mutagenesis, but not for that induced by UV light, suggesting a role for MmcB in translesion synthesis-dependent repair of MMC damage. We show that the lack of MMC-induced mutability in the mmcB strain is not caused by lack of proper SOS induction of the imuABC operon, involved in translesion synthesis (TLS) in C. crescentus. Based on this data and on structural analysis of a close homolog, we propose that MmcB is an endonuclease which creates substrates for ImuABC-mediated TLS patches.

  7. Functional characterisation of wheat Pgip genes reveals their involvement in the local response to wounding.

    PubMed

    Janni, M; Bozzini, T; Moscetti, I; Volpi, C; D'Ovidio, R

    2013-11-01

    Polygalacturonase-inhibiting proteins (PGIPs) are cell wall leucine-rich repeat (LRR) proteins involved in plant defence. The hexaploid wheat (Triticum aestivum, genome AABBDD) genome contains one Pgip gene per genome. Tapgip1 (B genome) and Tapgip2 (D genome) are expressed in all tissues, whereas Tapgip3 (A genome) is inactive because of a long terminal repeat, Copia retrotransposon insertion within the coding region. To verify whether Tapgip1 and Tapgip2 encode active PGIPs and are involved in the wheat defence response, we expressed them transiently and analysed their expression under stress conditions. Neither TaPGIP1 nor TaPGIP2 showed inhibition activity in vitro against fungal polygalacturonases. Moreover, a wheat genotype (T. turgidum ssp. dicoccoides) lacking active homologues of Tapgip1 or Tapgip2 possesses PGIP activity. At transcript level, Tapgip1 and Tapgip2 were both up-regulated after fungal infection and strongly induced following wounding. This latter result has been confirmed in transgenic wheat plants expressing the β-glucuronidase (GUS) gene under control of the 5'-flanking region of Tdpgip1, a homologue of Tapgip1 with an identical sequence. Strong and transient GUS staining was mainly restricted to the damaged tissues and was not observed in adjacent tissues. Taken together, these results suggest that Tapgips and their homologues are involved in the wheat defence response by acting at the site of the lesion caused by pathogen infection.

  8. Individual Differences in Executive Functioning Predict Preschoolers' Improvement from Theory-of-Mind Training

    ERIC Educational Resources Information Center

    Benson, Jeannette E.; Sabbagh, Mark A.; Carlson, Stephanie M.; Zelazo, Philip David

    2013-01-01

    Twenty-four 3.5-year-old children who initially showed poor performance on false-belief tasks participated in a training protocol designed to promote performance on these tasks. Our aim was to determine whether the extent to which children benefited from training was predicted by their performance on a battery of executive functioning tasks.…

  9. Mothers' Depressive Symptoms and Children's Cognitive and Social Agency: Predicting First-Grade Cognitive Functioning

    ERIC Educational Resources Information Center

    Yan, Ni; Dix, Theodore

    2016-01-01

    Using data from the National Institute of Child Health and Human Development (NICHD) Study of Early Child Care and Youth Development (N = 1,364), the present study supports an agentic perspective; it demonstrates that mothers' depressive symptoms in infancy predict children's poor first-grade cognitive functioning because depressive symptoms…

  10. Concurrent and Predictive Relations between Hormone Levels and Social-Emotional Functioning in Early Adolescence.

    ERIC Educational Resources Information Center

    Nottelmann, Editha D.; And Others

    Hormone levels and changes in hormone levels were evaluated three times across a 1-year period as concurrent and predictive correlates of the socio-emotional functioning of 56 boys 10- to 14-years-old and 52 girls 9- to 14-years-old who represented the five stages of Tanner's criteria of pubertal development. The hormone measures were serum levels…

  11. 21 CFR 868.1890 - Predictive pulmonary-function value calculator.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Predictive pulmonary-function value calculator. 868.1890 Section 868.1890 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1890...

  12. 21 CFR 868.1890 - Predictive pulmonary-function value calculator.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Predictive pulmonary-function value calculator. 868.1890 Section 868.1890 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1890...

  13. 21 CFR 868.1890 - Predictive pulmonary-function value calculator.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Predictive pulmonary-function value calculator. 868.1890 Section 868.1890 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1890...

  14. 21 CFR 868.1890 - Predictive pulmonary-function value calculator.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Predictive pulmonary-function value calculator. 868.1890 Section 868.1890 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1890...

  15. 21 CFR 868.1890 - Predictive pulmonary-function value calculator.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Predictive pulmonary-function value calculator. 868.1890 Section 868.1890 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1890...

  16. Mothers' Predictions of Their Son's Executive Functioning Skills: Relations to Child Behavior Problems

    ERIC Educational Resources Information Center

    Johnston, Charlotte

    2011-01-01

    This study examined mothers' ability to accurately predict their sons' performance on executive functioning tasks in relation to the child's behavior problems. One-hundred thirteen mothers and their 4-7 year old sons participated. From behind a one-way mirror, mothers watched their sons perform tasks assessing inhibition and planning skills.…

  17. Patterns of Functioning and Predictive Factors in Children Born Moderately Preterm or at Term

    ERIC Educational Resources Information Center

    Cserjesi, Renata; van Braeckel, Koenraad N. J. A.; Timmerman, Marieke; Butcher, Phillipa R.; Kerstjens, Jorien M.; Reijneveld, Sijmen A.; Bouma, Anke; Bos, Arend F.; Geuze, Reint H.

    2012-01-01

    Aim: The aim of this study was to identify subgroups of children born moderately preterm (MPT) and term with distinctive levels and patterns of functioning, and the perinatal and demographic factors that predict subgroup membership. Method: A total of 378 children aged 7 years, 248 MPT (138 males, 110 females; gestational age 32-36 wks) and a…

  18. Cognitive functioning differentially predicts different dimensions of older drivers' on-road safety.

    PubMed

    Aksan, Nazan; Anderson, Steve W; Dawson, Jeffrey; Uc, Ergun; Rizzo, Matthew

    2015-02-01

    The extent to which deficits in specific cognitive domains contribute to older drivers' safety risk in complex real-world driving tasks is not well understood. We selected 148 drivers older than 70 years of age both with and without neurodegenerative diseases (Alzheimer disease-AD and Parkinson disease-PD) from an existing driving database of older adults. Participant assessments included on-road driving safety and cognitive functioning in visuospatial construction, speed of processing, memory, and executive functioning. The standardized on-road drive test was designed to examine multiple facets of older driver safety including navigation performance (e.g., following a route, identifying landmarks), safety errors while concurrently performing secondary navigation tasks ("on-task" safety errors), and safety errors in the absence of any secondary navigation tasks ("baseline" safety errors). The inter-correlations of these outcome measures were fair to moderate supporting their distinctiveness. Participants with diseases performed worse than the healthy aging group on all driving measures and differences between those with AD and PD were minimal. In multivariate analyses, different domains of cognitive functioning predicted distinct facets of driver safety on road. Memory and set-shifting predicted performance in navigation-related secondary tasks, speed of processing predicted on-task safety errors, and visuospatial construction predicted baseline safety errors. These findings support broad assessments of cognitive functioning to inform decisions regarding older driver safety on the road and suggest navigation performance may be useful in evaluating older driver fitness and restrictions in licensing. PMID:25525974

  19. Increased functional connectivity with puberty in the mentalising network involved in social emotion processing

    PubMed Central

    Klapwijk, Eduard T.; Goddings, Anne-Lise; Heyes, Stephanie Burnett; Bird, Geoffrey; Viner, Russell M.; Blakemore, Sarah-Jayne

    2015-01-01

    There is increasing evidence that puberty plays an important role in the structural and functional brain development seen in adolescence, but little is known of the pubertal influence on changes in functional connectivity. We explored how pubertal indicators (salivary concentrations of testosterone, oestradiol and DHEA; pubertal stage; menarcheal status) relate to functional connectivity between components of a mentalising network identified to be engaged in social emotion processing by our prior work, using psychophysiological interaction (PPI) analysis. Female adolescents aged 11 to 13 years were scanned whilst silently reading scenarios designed to evoke either social emotions (guilt and embarrassment) or basic emotions (disgust and fear), of which only social compared to basic emotions require the representation of another person’s mental states. Pubertal stage and menarcheal status were used to assign participants to pre/early or mid/late puberty groups. We found increased functional connectivity between the dorsomedial prefrontal cortex (DMPFC) and the right posterior superior temporal sulcus (pSTS) and right temporo-parietal junction (TPJ) during social relative to basic emotion processing. Moreover, increasing oestradiol concentrations were associated with increased functional connectivity between the DMPFC and the right TPJ during social relative to basic emotion processing, independent of age. Our analysis of the PPI data by phenotypic pubertal status showed that more advanced puberty stage was associated with enhanced functional connectivity between the DMPFC and the left anterior temporal cortex (ATC) during social relative to basic emotion processing, also independent of age. Our results suggest increased functional maturation of the social brain network with the advancement of puberty in girls. PMID:23998674

  20. Bridging Between Proline Structure, Functions, Metabolism, and Involvement in Organism Physiology.

    PubMed

    Saibi, Walid; Feki, Kaouthar; Yacoubi, Ines; Brini, Faiçal

    2015-08-01

    Much is now known about proline multifunctionality and metabolism; some aspects of its biological functions are still unclear. Here, we discuss some cases in the proline, structure, definition, metabolism, compartmentalization, accumulation, plausible functions and also its implication in homeostasis and organism physiology. Indeed, we report the role of proline in cellular homeostasis, including redox balance and energy status and their implication as biocatalyst for aldolase activity. Proline can act as a signaling molecule to modulate mitochondrial functions, influence cell proliferation or cell death, and trigger specific gene expression, which can be essential for plant recovery from stresses. Although, the regulation and the function of proline accumulation, during abiotic stresses, are not yet completely understood. The engineering of proline metabolism could lead to new opportunities to improve plant tolerance against environmental stresses. This atypical amino acid has a potential role in the toxicity during growth of some microorganism, vegetal, and mammalian species. Furthermore, we note that the purpose through the work is to provide a rich, concise, and mostly cohesive source on proline, considered as a platform and an anchor between several disciplines and biological functions.

  1. Towards New Drug Targets? Function Prediction of Putative Proteins of Neisseria meningitidis MC58 and Their Virulence Characterization

    PubMed Central

    Shahbaaz, Mohd.; Bisetty, Krishna; Ahmad, Faizan

    2015-01-01

    Abstract Neisseria meningitidis is a Gram-negative aerobic diplococcus, responsible for a variety of meningococcal diseases. The genome of N. meningitidis MC58 is comprised of 2114 genes that are translated into 1953 proteins. The 698 genes (∼35%) encode hypothetical proteins (HPs), because no experimental evidence of their biological functions are available. Analyses of these proteins are important to understand their functions in the metabolic networks and may lead to the discovery of novel drug targets against the infections caused by N. meningitidis. This study aimed at the identification and categorization of each HP present in the genome of N. meningitidis MC58 using computational tools. Functions of 363 proteins were predicted with high accuracy among the annotated set of HPs investigated. The reliably predicted 363 HPs were further grouped into 41 different classes of proteins, based on their possible roles in cellular processes such as metabolism, transport, and replication. Our studies revealed that 22 HPs may be involved in the pathogenesis caused by this microorganism. The top two HPs with highest virulence scores were subjected to molecular dynamics (MD) simulations to better understand their conformational behavior in a water environment. We also compared the MD simulation results with other virulent proteins present in N. meningitidis. This study broadens our understanding of the mechanistic pathways of pathogenesis, drug resistance, tolerance, and adaptability for host immune responses to N. meningitidis. PMID:26076386

  2. Predicting mass loading as a function of pressure difference across prefilter/HEPA filter systems

    SciTech Connect

    Novick, V.J.; Klassen, J.F. ); Monson, P.R. )

    1992-01-01

    The purpose of this work is to develop a methodology for predicting the mass loading and pressure drop effects on a prefilter/ HEPA filter system. The methodology relies on the use of empirical equations for the specific resistance of the aerosol loaded filter as a function of the particle diameter. These correlations relate the pressure difference across a filter to the mass loading on the filter and accounts for aerosol particle density effects. These predictions are necessary for the efficient design of new filtration systems and for risk assessment studies of existing filter systems. This work specifically addresses the prefilter/HEPA filter Airborne Activity Confinement Systems (AACS) at the Savannah River Plant. In order to determine the mass loading on the system, it is necessary to establish the efficiency characteristics for the prefilter, the mass loading characteristics of the prefilter measured as a function of pressure difference across the prefilter, and the mass loading characteristics of the HEPA filter as a function of pressure difference across the filter. Furthermore, the efficiency and mass loading characteristics need to be determined as a function of the aerosol particle diameter. A review of the literature revealed that no previous work had been performed to characterize the prefilter material of interest. In order to complete the foundation of information necessary to predict total mass loadings on prefilter/HEPA filter systems, it was necessary to determine the prefilter efficiency and mass loading characteristics. The measured prefilter characteristics combined with the previously determined HEPA filter characteristics allowed the resulting pressure difference across both filters to be predicted as a function of total particle mass for a given particle distribution. These predictions compare favorably to experimental measurements ({plus minus}25%).

  3. Prediction of CpG-island function: CpG clustering vs. sliding-window methods

    PubMed Central

    2010-01-01

    Background Unmethylated stretches of CpG dinucleotides (CpG islands) are an outstanding property of mammal genomes. Conventionally, these regions are detected by sliding window approaches using %G + C, CpG observed/expected ratio and length thresholds as main parameters. Recently, clustering methods directly detect clusters of CpG dinucleotides as a statistical property of the genome sequence. Results We compare sliding-window to clustering (i.e. CpGcluster) predictions by applying new ways to detect putative functionality of CpG islands. Analyzing the co-localization with several genomic regions as a function of window size vs. statistical significance (p-value), CpGcluster shows a higher overlap with promoter regions and highly conserved elements, at the same time showing less overlap with Alu retrotransposons. The major difference in the prediction was found for short islands (CpG islets), often exclusively predicted by CpGcluster. Many of these islets seem to be functional, as they are unmethylated, highly conserved and/or located within the promoter region. Finally, we show that window-based islands can spuriously overlap several, differentially regulated promoters as well as different methylation domains, which might indicate a wrong merge of several CpG islands into a single, very long island. The shorter CpGcluster islands seem to be much more specific when concerning the overlap with alternative transcription start sites or the detection of homogenous methylation domains. Conclusions The main difference between sliding-window approaches and clustering methods is the length of the predicted islands. Short islands, often differentially methylated, are almost exclusively predicted by CpGcluster. This suggests that CpGcluster may be the algorithm of choice to explore the function of these short, but putatively functional CpG islands. PMID:20500903

  4. Combining many interaction networks to predict gene function and analyze gene lists.

    PubMed

    Mostafavi, Sara; Morris, Quaid

    2012-05-01

    In this article, we review how interaction networks can be used alone or in combination in an automated fashion to provide insight into gene and protein function. We describe the concept of a "gene-recommender system" that can be applied to any large collection of interaction networks to make predictions about gene or protein function based on a query list of proteins that share a function of interest. We discuss these systems in general and focus on one specific system, GeneMANIA, that has unique features and uses different algorithms from the majority of other systems.

  5. [Chemerin: a pro-inflammatory adipokine involved in the reproduction function?].

    PubMed

    Reverchon, Maxime; Ramé, Christelle; Dupont, Joëlle

    2015-05-01

    Chemerin is a pro-inflammatory adipokine secreted and expressed predominantly by adipocytes. Chemerin is initially involved in the regulation of the immune system, the adipogenesis and the energy metabolism. However, several recent studies show that this adipokine and its receptors are present in the gonads. In vitro, chemerin reduces steroidogenesis in ovarian and testicular cells in rodents and humans. Chemerin and its receptors are also present in the placenta. Chemerin plays an important role in the regulation of fetal and maternal metabolism, fetal growth and metabolic homeostasis during pregnancy. This review describes the role of chemerin in metabolism and reproduction. PMID:26059299

  6. Predicting Species-environment Relationships with Functional Traits for the Understory Flora of Wisconsin

    NASA Astrophysics Data System (ADS)

    Ash, J.; Li, D.; Johnson, S.; Rogers, D. A.; Waller, D. M.

    2015-12-01

    Understanding the processes that structure species' abundance patterns is a central problem in ecology, both for explaining current species' distributions and predicting future changes. Environmental gradients affect species' distribution patterns with these responses likely depending on species' functional traits. Thus, tracking shifts in species' traits can provide insight into the mechanisms by which species respond to dynamic environmental conditions. We examined how functional traits are associated with long-term changes in the distribution and abundance of understory plants in Wisconsin forests over the last 50+ years. We relied on detailed surveys and resurveys of the same Wisconsin forest plots, data on 12 functional traits, and site-level environmental variables including soil and climate conditions. We then related changes in the abundance of 293 species across a network of 249 sites to these environmental variables and explored whether functional traits served to predict these relationships using multilevel models. Species abundance patterns were strongly related to variation in environmental conditions among sites, but species appear to be responding to distinct sets of environmental variables. Functional traits only weakly predicted these species-environment relationships, limiting our ability to generalize these results to other systems. Nonetheless, understanding how traits interact with environmental gradients to structure species distribution patterns helps us to disentangle the drivers of ecological change across diverse landscapes.

  7. Functional connectivity between amygdala and facial regions involved in recognition of facial threat.

    PubMed

    Miyahara, Motohide; Harada, Tokiko; Ruffman, Ted; Sadato, Norihiro; Iidaka, Tetsuya

    2013-02-01

    The recognition of threatening faces is important for making social judgments. For example, threatening facial features of defendants could affect the decisions of jurors during a trial. Previous neuroimaging studies using faces of members of the general public have identified a pivotal role of the amygdala in perceiving threat. This functional magnetic resonance imaging study used face photographs of male prisoners who had been convicted of first-degree murder (MUR) as threatening facial stimuli. We compared the subjective ratings of MUR faces with those of control (CON) faces and examined how they were related to brain activation, particularly, the modulation of the functional connectivity between the amygdala and other brain regions. The MUR faces were perceived to be more threatening than the CON faces. The bilateral amygdala was shown to respond to both MUR and CON faces, but subtraction analysis revealed no significant difference between the two. Functional connectivity analysis indicated that the extent of connectivity between the left amygdala and the face-related regions (i.e. the superior temporal sulcus, inferior temporal gyrus and fusiform gyrus) was correlated with the subjective threat rating for the faces. We have demonstrated that the functional connectivity is modulated by vigilance for threatening facial features.

  8. On the applicability of hybrid functionals for predicting fundamental properties of metals

    NASA Astrophysics Data System (ADS)

    Gao, Weiwei; Abtew, Tesfaye A.; Cai, Tianyi; Sun, Yi-Yang; Zhang, Shengbai; Zhang, Peihong

    2016-05-01

    The repercussions of an inaccurate account of electronic states near the Fermi level by hybrid functionals in predicting several important metallic properties are investigated. The difficulties include a vanishing or severely suppressed density of states (DOS) at EF, significantly widened valence bandwidth, greatly enhanced electron-phonon (el-ph) deformation potentials, and an overestimate of magnetic moment in transition metals. The erroneously enhanced el-ph coupling calculated by hybrid functionals may lead to a false prediction of lattice instability. The main culprit of the problem comes from the simplistic treatment of the exchange functional rooted in the original Fock exchange energy. The use of a short-ranged Coulomb interaction alleviates some of the drawbacks but the fundamental issues remain unchanged.

  9. Predicting climate change effects on wetland ecosystem services using species distribution modeling and plant functional traits.

    PubMed

    Moor, Helen; Hylander, Kristoffer; Norberg, Jon

    2015-01-01

    Wetlands provide multiple ecosystem services, the sustainable use of which requires knowledge of the underlying ecological mechanisms. Functional traits, particularly the community-weighted mean trait (CWMT), provide a strong link between species communities and ecosystem functioning. We here combine species distribution modeling and plant functional traits to estimate the direction of change of ecosystem processes under climate change. We model changes in CWMT values for traits relevant to three key services, focusing on the regional species pool in the Norrström area (central Sweden) and three main wetland types. Our method predicts proportional shifts toward faster growing, more productive and taller species, which tend to increase CWMT values of specific leaf area and canopy height, whereas changes in root depth vary. The predicted changes in CWMT values suggest a potential increase in flood attenuation services, a potential increase in short (but not long)-term nutrient retention, and ambiguous outcomes for carbon sequestration.

  10. Predictive Integration of Gene Ontology-Driven Similarity and Functional Interactions

    PubMed Central

    Wang, Haiying; Zheng, Huiru; Bodenreider, Olivier; Chesneau, Alban

    2015-01-01

    There is a need to develop methods to automatically incorporate prior knowledge to support the prediction and validation of novel functional associations. One such important source is represented by the Gene Ontology (GO)™ and the many model organism databases of gene products annotated to the GO. We investigated quantitative relationships between the GO-driven similarity of genes and their functional interactions by analyzing different types of associations in Saccharomyces cerevisiae and Caenorhabditis elegans. Interacting genes exhibited significantly higher levels of GO-driven similarity (GOS) in comparison to random pairs of genes used as a surrogate for negative interactions. The Biological Process hierarchy provides more reliable results for co-regulatory and protein-protein interactions. GOS represent a relevant resource to support prediction of functional networks in combination with other resources. PMID:25698910

  11. Reexamination of Chlorophyllase Function Implies Its Involvement in Defense against Chewing Herbivores1[OPEN

    PubMed Central

    Hu, Xueyun; Makita, Satoru; Schelbert, Silvia; Sano, Shinsuke; Tsuchiya, Tohru; Hasegawa, Shigeaki F.; Hörtensteiner, Stefan; Tanaka, Ayumi

    2015-01-01

    Chlorophyllase (CLH) is a common plant enzyme that catalyzes the hydrolysis of chlorophyll to form chlorophyllide, a more hydrophilic derivative. For more than a century, the biological role of CLH has been controversial, although this enzyme has been often considered to catalyze chlorophyll catabolism during stress-induced chlorophyll breakdown. In this study, we found that the absence of CLH does not affect chlorophyll breakdown in intact leaf tissue in the absence or the presence of methyl-jasmonate, which is known to enhance stress-induced chlorophyll breakdown. Fractionation of cellular membranes shows that Arabidopsis (Arabidopsis thaliana) CLH is located in the endoplasmic reticulum and the tonoplast of intact plant cells. These results indicate that CLH is not involved in endogenous chlorophyll catabolism. Instead, we found that CLH promotes chlorophyllide formation upon disruption of leaf cells, or when it is artificially mistargeted to the chloroplast. These results indicate that CLH is responsible for chlorophyllide formation after the collapse of cells, which led us to hypothesize that chlorophyllide formation might be a process of defense against chewing herbivores. We found that Arabidopsis leaves with genetically enhanced CLH activity exhibit toxicity when fed to Spodoptera litura larvae, an insect herbivore. In addition, purified chlorophyllide partially suppresses the growth of the larvae. Taken together, these results support the presence of a unique binary defense system against insect herbivores involving chlorophyll and CLH. Potential mechanisms of chlorophyllide action for defense are discussed. PMID:25583926

  12. Functional Identification of Novel Genes Involved in the Glutathione-Independent Gentisate Pathway in Corynebacterium glutamicum

    PubMed Central

    Shen, Xi-Hui; Jiang, Cheng-Ying; Huang, Yan; Liu, Zhi-Pei; Liu, Shuang-Jiang

    2005-01-01

    Corynebacterium glutamicum used gentisate and 3-hydroxybenzoate as its sole carbon and energy source for growth. By genome-wide data mining, a gene cluster designated ncg12918-ncg12923 was proposed to encode putative proteins involved in gentisate/3-hydroxybenzoate pathway. Genes encoding gentisate 1,2-dioxygenase (ncg12920) and fumarylpyruvate hydrolase (ncg12919) were identified by cloning and expression of each gene in Escherichia coli. The gene of ncg12918 encoding a hypothetical protein (Ncg12918) was proved to be essential for gentisate-3-hydroxybenzoate assimilation. Mutant strain RES167Δncg12918 lost the ability to grow on gentisate or 3-hydroxybenzoate, but this ability could be restored in C. glutamicum upon the complementation with pXMJ19-ncg12918. Cloning and expression of this ncg12918 gene in E. coli showed that Ncg12918 is a glutathione-independent maleylpyruvate isomerase. Upstream of ncg12920, the genes ncg12921-ncg12923 were located, which were essential for gentisate and/or 3-hydroxybenzoate catabolism. The Ncg12921 was able to up-regulate gentisate 1,2-dioxygenase, maleylpyruvate isomerase, and fumarylpyruvate hydrolase activities. The genes ncg12922 and ncg12923 were deduced to encode a gentisate transporter protein and a 3-hydroxybenzoate hydroxylase, respectively, and were essential for gentisate or 3-hydroxybenzoate assimilation. Based on the results obtained in this study, a GSH-independent gentisate pathway was proposed, and genes involved in this pathway were identified. PMID:16000747

  13. Functional and comparative genomic analyses of an operon involved in fructooligosaccharide utilization by Lactobacillus acidophilus

    PubMed Central

    Barrangou, Rodolphe; Altermann, Eric; Hutkins, Robert; Cano, Raul; Klaenhammer, Todd R.

    2003-01-01

    Lactobacillus acidophilus is a probiotic organism that displays the ability to use prebiotic compounds such as fructooligosaccharides (FOS), which stimulate the growth of beneficial commensals in the gastrointestinal tract. However, little is known about the mechanisms and genes involved in FOS utilization by Lactobacillus species. Analysis of the L. acidophilus NCFM genome revealed an msm locus composed of a transcriptional regulator of the LacI family, a four-component ATP-binding cassette (ABC) transport system, a fructosidase, and a sucrose phosphorylase. Transcriptional analysis of this operon demonstrated that gene expression was induced by sucrose and FOS but not by glucose or fructose, suggesting some specificity for nonreadily fermentable sugars. Additionally, expression was repressed by glucose but not by fructose, suggesting catabolite repression via two cre-like sequences identified in the promoter–operator region. Insertional inactivation of the genes encoding the ABC transporter substrate-binding protein and the fructosidase reduced the ability of the mutants to grow on FOS. Comparative analysis of gene architecture within this cluster revealed a high degree of synteny with operons in Streptococcus mutans and Streptococcus pneumoniae. However, the association between a fructosidase and an ABC transporter is unusual and may be specific to L. acidophilus. This is a description of a previously undescribed gene locus involved in transport and catabolism of FOS compounds, which can promote competition of beneficial microorganisms in the human gastrointestinal tract. PMID:12847288

  14. Less-structured time in children's daily lives predicts self-directed executive functioning

    PubMed Central

    Barker, Jane E.; Semenov, Andrei D.; Michaelson, Laura; Provan, Lindsay S.; Snyder, Hannah R.; Munakata, Yuko

    2014-01-01

    Executive functions (EFs) in childhood predict important life outcomes. Thus, there is great interest in attempts to improve EFs early in life. Many interventions are led by trained adults, including structured training activities in the lab, and less-structured activities implemented in schools. Such programs have yielded gains in children's externally-driven executive functioning, where they are instructed on what goal-directed actions to carry out and when. However, it is less clear how children's experiences relate to their development of self-directed executive functioning, where they must determine on their own what goal-directed actions to carry out and when. We hypothesized that time spent in less-structured activities would give children opportunities to practice self-directed executive functioning, and lead to benefits. To investigate this possibility, we collected information from parents about their 6–7 year-old children's daily, annual, and typical schedules. We categorized children's activities as “structured” or “less-structured” based on categorization schemes from prior studies on child leisure time use. We assessed children's self-directed executive functioning using a well-established verbal fluency task, in which children generate members of a category and can decide on their own when to switch from one subcategory to another. The more time that children spent in less-structured activities, the better their self-directed executive functioning. The opposite was true of structured activities, which predicted poorer self-directed executive functioning. These relationships were robust (holding across increasingly strict classifications of structured and less-structured time) and specific (time use did not predict externally-driven executive functioning). We discuss implications, caveats, and ways in which potential interpretations can be distinguished in future work, to advance an understanding of this fundamental aspect of growing up

  15. Matrix factorization-based data fusion for gene function prediction in baker's yeast and slime mold.

    PubMed

    Zitnik, Marinka; Zupan, Blaž

    2014-01-01

    The development of effective methods for the characterization of gene functions that are able to combine diverse data sources in a sound and easily-extendible way is an important goal in computational biology. We have previously developed a general matrix factorization-based data fusion approach for gene function prediction. In this manuscript, we show that this data fusion approach can be applied to gene function prediction and that it can fuse various heterogeneous data sources, such as gene expression profiles, known protein annotations, interaction and literature data. The fusion is achieved by simultaneous matrix tri-factorization that shares matrix factors between sources. We demonstrate the effectiveness of the approach by evaluating its performance on predicting ontological annotations in slime mold D. discoideum and on recognizing proteins of baker's yeast S. cerevisiae that participate in the ribosome or are located in the cell membrane. Our approach achieves predictive performance comparable to that of the state-of-the-art kernel-based data fusion, but requires fewer data preprocessing steps.

  16. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences

    PubMed Central

    Langille, Morgan G. I.; Zaneveld, Jesse; Caporaso, J. Gregory; McDonald, Daniel; Knights, Dan; Reyes, Joshua A.; Clemente, Jose C.; Burkepile, Deron E.; Vega Thurber, Rebecca L.; Knight, Rob; Beiko, Robert G.; Huttenhower, Curtis

    2013-01-01

    Profiling phylogenetic marker genes, such as the 16S rRNA gene, is a key tool for studies of microbial communities but does not provide direct evidence of a community’s functional capabilities. Here we describe PICRUSt (Phylogenetic Investigation of Communities by Reconstruction of Unobserved States), a computational approach to predict the functional composition of a metagenome using marker gene data and a database of reference genomes. PICRUSt uses an extended ancestral-state reconstruction algorithm to predict which gene families are present and then combines gene families to estimate the composite metagenome. Using 16S information, PICRUSt recaptures key findings from the Human Microbiome Project and accurately predicts the abundance of gene families in host-associated and environmental communities, with quantifiable uncertainty. Our results demonstrate that phylogeny and function are sufficiently linked that this ‘predictive metagenomic’ approach should provide useful insights into the thousands of uncultivated microbial communities for which only marker gene surveys are currently available. PMID:23975157

  17. Prediction of cloud condensation nuclei activity for organic compounds using functional group contribution methods

    DOE PAGESBeta

    Petters, M. D.; Kreidenweis, S. M.; Ziemann, P. J.

    2016-01-19

    A wealth of recent laboratory and field experiments demonstrate that organic aerosol composition evolves with time in the atmosphere, leading to changes in the influence of the organic fraction to cloud condensation nuclei (CCN) spectra. There is a need for tools that can realistically represent the evolution of CCN activity to better predict indirect effects of organic aerosol on clouds and climate. This work describes a model to predict the CCN activity of organic compounds from functional group composition. Following previous methods in the literature, we test the ability of semi-empirical group contribution methods in Köhler theory to predict themore » effective hygroscopicity parameter, kappa. However, in our approach we also account for liquid–liquid phase boundaries to simulate phase-limited activation behavior. Model evaluation against a selected database of published laboratory measurements demonstrates that kappa can be predicted within a factor of 2. Simulation of homologous series is used to identify the relative effectiveness of different functional groups in increasing the CCN activity of weakly functionalized organic compounds. Hydroxyl, carboxyl, aldehyde, hydroperoxide, carbonyl, and ether moieties promote CCN activity while methylene and nitrate moieties inhibit CCN activity. The model can be incorporated into scale-bridging test beds such as the Generator of Explicit Chemistry and Kinetics of Organics in the Atmosphere (GECKO-A) to evaluate the evolution of kappa for a complex mix of organic compounds and to develop suitable parameterizations of CCN evolution for larger-scale models.« less

  18. Matrix factorization-based data fusion for gene function prediction in baker's yeast and slime mold.

    PubMed

    Zitnik, Marinka; Zupan, Blaž

    2014-01-01

    The development of effective methods for the characterization of gene functions that are able to combine diverse data sources in a sound and easily-extendible way is an important goal in computational biology. We have previously developed a general matrix factorization-based data fusion approach for gene function prediction. In this manuscript, we show that this data fusion approach can be applied to gene function prediction and that it can fuse various heterogeneous data sources, such as gene expression profiles, known protein annotations, interaction and literature data. The fusion is achieved by simultaneous matrix tri-factorization that shares matrix factors between sources. We demonstrate the effectiveness of the approach by evaluating its performance on predicting ontological annotations in slime mold D. discoideum and on recognizing proteins of baker's yeast S. cerevisiae that participate in the ribosome or are located in the cell membrane. Our approach achieves predictive performance comparable to that of the state-of-the-art kernel-based data fusion, but requires fewer data preprocessing steps. PMID:24297565

  19. Comparative study of biodegradability prediction of chemicals using decision trees, functional trees, and logistic regression.

    PubMed

    Chen, Guangchao; Li, Xuehua; Chen, Jingwen; Zhang, Ya-Nan; Peijnenburg, Willie J G M

    2014-12-01

    Biodegradation is the principal environmental dissipation process of chemicals. As such, it is a dominant factor determining the persistence and fate of organic chemicals in the environment, and is therefore of critical importance to chemical management and regulation. In the present study, the authors developed in silico methods assessing biodegradability based on a large heterogeneous set of 825 organic compounds, using the techniques of the C4.5 decision tree, the functional inner regression tree, and logistic regression. External validation was subsequently carried out by 2 independent test sets of 777 and 27 chemicals. As a result, the functional inner regression tree exhibited the best predictability with predictive accuracies of 81.5% and 81.0%, respectively, on the training set (825 chemicals) and test set I (777 chemicals). Performance of the developed models on the 2 test sets was subsequently compared with that of the Estimation Program Interface (EPI) Suite Biowin 5 and Biowin 6 models, which also showed a better predictability of the functional inner regression tree model. The model built in the present study exhibits a reasonable predictability compared with existing models while possessing a transparent algorithm. Interpretation of the mechanisms of biodegradation was also carried out based on the models developed.

  20. Prediction of cloud condensation nuclei activity for organic compounds using functional group contribution methods

    NASA Astrophysics Data System (ADS)

    Petters, M. D.; Kreidenweis, S. M.; Ziemann, P. J.

    2016-01-01

    A wealth of recent laboratory and field experiments demonstrate that organic aerosol composition evolves with time in the atmosphere, leading to changes in the influence of the organic fraction to cloud condensation nuclei (CCN) spectra. There is a need for tools that can realistically represent the evolution of CCN activity to better predict indirect effects of organic aerosol on clouds and climate. This work describes a model to predict the CCN activity of organic compounds from functional group composition. Following previous methods in the literature, we test the ability of semi-empirical group contribution methods in Köhler theory to predict the effective hygroscopicity parameter, kappa. However, in our approach we also account for liquid-liquid phase boundaries to simulate phase-limited activation behavior. Model evaluation against a selected database of published laboratory measurements demonstrates that kappa can be predicted within a factor of 2. Simulation of homologous series is used to identify the relative effectiveness of different functional groups in increasing the CCN activity of weakly functionalized organic compounds. Hydroxyl, carboxyl, aldehyde, hydroperoxide, carbonyl, and ether moieties promote CCN activity while methylene and nitrate moieties inhibit CCN activity. The model can be incorporated into scale-bridging test beds such as the Generator of Explicit Chemistry and Kinetics of Organics in the Atmosphere (GECKO-A) to evaluate the evolution of kappa for a complex mix of organic compounds and to develop suitable parameterizations of CCN evolution for larger-scale models.

  1. Nonlinear modeling and predictive functional control of Hammerstein system with application to the turntable servo system

    NASA Astrophysics Data System (ADS)

    Zhang, Qian; Wang, Qunjing; Li, Guoli

    2016-05-01

    This article deals with the identification of nonlinear model and Nonlinear Predictive Functional Controller (NPFC) design based on the Hammerstein structure for the turntable servo system. As a mechanism with multi-mass rotational system, nonlinearities significantly influence the system operation, especially when the turntable is in the states of zero-crossing distortion or rapid acceleration/deceleration, etc. The field data from identification experiments are processed by Comprehensive Learning Particle Swarm Optimization (CLPSO). As a result, Hammerstein model can be derived to describe the input-output relationship globally, considering all the linear and nonlinear factors of the turntable system. Cross validation results demonstrate good correspondence between the real equipment and the identified model. In the second part of this manuscript, a nonlinear control strategy based on the genetic algorithm and predictive control is developed. The global nonlinear predictive controller is carried out by two steps: (i) build the linear predictive functional controller with state space equations for the linear subsystem of Hammerstein model, and (ii) optimize the global control variable by minimizing the cost function through genetic algorithm. On the basis of distinguish model for turntable and the effectiveness of NPFC, the good performance of tracking ability is achieved in the simulation results.

  2. Modulation of motor functions involving central dopaminergic system by L-histidine.

    PubMed

    Paul, V N; Chopra, K; Kulkarni, S K

    2000-10-01

    There exists a possibility of interactions of histaminergic system with other neurotransmitters and their receptors in the central nervous system. Experimental evidences suggest a possible inhibitory influence of histaminergic system on the dopaminergic system. To elucidate the possible interaction between the histaminergic and dopaminergic pathways, we devised a strategy to study their effects on locomotor function and stereotypy behaviour. We investigated the effect of L-histidine, the precursor of histamine, on apomorphine-induced stereotypy and perphenazine-induced catalepsy. Histidine antagonised apomorphine-induced stereotypy. This inhibitory effect of histidine was abolished by both H1- and H2-receptor antagonists, chlorpheniramine and cimetidine, respectively. Perphenazine-induced catalepsy was potentiated by histidine and this effect was inhibited by chlorpheniramine alone but not by cimetidine. These results confirm a possible histamine-dopamine interaction in the modulation of motor functions by the central nervous system.

  3. Examining the consistency relations describing the three-point functions involving tensors

    SciTech Connect

    Sreenath, V.; Sriramkumar, L. E-mail: sriram@physics.iitm.ac.in

    2014-10-01

    It is well known that the non-Gaussianity parameter f{sub NL} characterizing the scalar bi-spectrum can be expressed in terms of the scalar spectral index in the squeezed limit, a property that is referred to as the consistency relation. In contrast to the scalar bi-spectrum, the three-point cross-correlations involving scalars and tensors and the tensor bi-spectrum have not received adequate attention, which can be largely attributed to the fact that the tensors had remained undetected at the level of the power spectrum until very recently. The detection of the imprints of the primordial tensor perturbations by BICEP2 and its indication of a rather high tensor-to-scalar ratio, if confirmed, can open up a new window for understanding the tensor perturbations, not only at the level of the power spectrum, but also in the realm of non-Gaussianities. In this work, we consider the consistency relations associated with the three-point cross-correlations involving scalars and tensors as well as the tensor bi-spectrum in inflationary models driven by a single, canonical, scalar field. Characterizing the cross-correlations in terms of the dimensionless non-Gaussianity parameters C{sub NL}{sup R} and C{sub NL}{sup γ} that we had introduced earlier, we express the consistency relations governing the cross-correlations as relations between these non-Gaussianity parameters and the scalar or tensor spectral indices, in a fashion similar to that of the purely scalar case. We also discuss the corresponding relation for the non-Gaussianity parameter h{sub NL} used to describe the tensor bi-spectrum. We analytically establish these consistency relations explicitly in the following two situations: a simple example involving a specific case of power law inflation and a non-trivial scenario in the so-called Starobinsky model that is governed by a linear potential with a sharp change in its slope. We also numerically verify the consistency relations in three types of inflationary

  4. Characterization of Angiotensin II Molecular Determinants Involved in AT1 Receptor Functional Selectivity.

    PubMed

    Domazet, Ivana; Holleran, Brian J; Richard, Alexandra; Vandenberghe, Camille; Lavigne, Pierre; Escher, Emanuel; Leduc, Richard; Guillemette, Gaétan

    2015-06-01

    The octapeptide angiotensin II (AngII) exerts a variety of cardiovascular effects through the activation of the AngII type 1 receptor (AT1), a G protein-coupled receptor. The AT1 receptor engages and activates several signaling pathways, including heterotrimeric G proteins Gq and G12, as well as the extracellular signal-regulated kinases (ERK) 1/2 pathway. Additionally, following stimulation, βarrestin is recruited to the AT1 receptor, leading to receptor desensitization. It is increasingly recognized that specific ligands selectively bind and favor the activation of some signaling pathways over others, a concept termed ligand bias or functional selectivity. A better understanding of the molecular basis of functional selectivity may lead to the development of better therapeutics with fewer adverse effects. In the present study, we developed assays allowing the measurement of six different signaling modalities of the AT1 receptor. Using a series of AngII peptide analogs that were modified in positions 1, 4, and 8, we sought to better characterize the molecular determinants of AngII that underlie functional selectivity of the AT1 receptor in human embryonic kidney 293 cells. The results reveal that position 1 of AngII does not confer functional selectivity, whereas position 4 confers a bias toward ERK signaling over Gq signaling, and position 8 confers a bias toward βarrestin recruitment over ERK activation and Gq signaling. Interestingly, the analogs modified in position 8 were also partial agonists of the protein kinase C (PKC)-dependent ERK pathway via atypical PKC isoforms PKCζ and PKCι.

  5. On- and off-resonance radiation-atom-coupling matrix elements involving extended atomic wave functions

    NASA Astrophysics Data System (ADS)

    Komninos, Yannis; Mercouris, Theodoros; Nicolaides, Cleanthes A.

    2014-01-01

    In continuation of our earlier works, we present results concerning the computation of matrix elements of the multipolar Hamiltonian (MPH) between extended wave functions that are obtained numerically. The choice of the MPH is discussed in connection with the broader issue of the form of radiation-atom (or -molecule) interaction that is appropriate for the systematic solution of various problems of matter-radiation interaction. We derive analytic formulas, in terms of the sine-integral function and spherical Bessel functions of various orders, for the cumulative radial integrals that were obtained and calculated by Komninos, Mercouris, and Nicolaides [Phys. Rev. A 71, 023410 (2005), 10.1103/PhysRevA.71.023410]. This development allows the much faster and more accurate computation of such matrix elements, a fact that enhances the efficiency with which the time-dependent Schrödinger equation is solved nonperturbatively, in the framework of the state-specific expansion approach. The formulas are applicable to the general case where a pair of orbitals with angular parts |ℓ1,m1> and |ℓ2,m2> are coupled radiatively. As a test case, we calculate the matrix elements of the electric field and of the paramagnetic operators for on- and off-resonance transitions, between hydrogenic circular states of high angular momentum, whose quantum numbers are chosen so as to satisfy electric dipole and electric quadrupole selection rules. Because of the nature of their wave function (they are nodeless and the large centrifugal barrier keeps their overwhelming part at large distances from the nucleus), the validity of the electric dipole approximation in various applications where the off-resonance couplings must be considered becomes precarious. For example, for the transition from the circular state with n = 20 to that with n = 21, for which ≈400 a.u., the dipole approximation starts to fail already at XUV wavelengths (λ <125nm).

  6. FOXA2 regulates a network of genes involved in critical functions of human intestinal epithelial cells.

    PubMed

    Gosalia, Nehal; Yang, Rui; Kerschner, Jenny L; Harris, Ann

    2015-07-01

    The forkhead box A (FOXA) family of pioneer transcription factors is critical for the development of many endoderm-derived tissues. Their importance in regulating biological processes in the lung and liver is extensively characterized, though much less is known about their role in intestine. Here we investigate the contribution of FOXA2 to coordinating intestinal epithelial cell function using postconfluent Caco2 cells, differentiated into an enterocyte-like model. FOXA2 binding sites genome-wide were determined by ChIP-seq and direct targets of the factor were validated by ChIP-qPCR and siRNA-mediated depletion of FOXA1/2 followed by RT-qPCR. Peaks of FOXA2 occupancy were frequent at loci contributing to gene ontology pathways of regulation of cell migration, cell motion, and plasma membrane function. Depletion of both FOXA1 and FOXA2 led to a significant reduction in the expression of multiple transmembrane proteins including ion channels and transporters, which form a network that is essential for maintaining normal ion and solute transport. One of the targets was the adenosine A2B receptor, and reduced receptor mRNA levels were associated with a functional decrease in intracellular cyclic AMP. We also observed that 30% of FOXA2 binding sites contained a GATA motif and that FOXA1/A2 depletion reduced GATA-4, but not GATA-6 protein levels. These data show that FOXA2 plays a pivotal role in regulating intestinal epithelial cell function. Moreover, that the FOXA and GATA families of transcription factors may work cooperatively to regulate gene expression genome-wide in the intestinal epithelium.

  7. Variation in the CBP gene involved in epigenetic control associates with cognitive function.

    PubMed

    Trompet, Stella; de Craen, Anton J M; Jukema, J Wouter; Pons, D; Slagboom, P Eline; Kremer, D; Bollen, Eduard L E M; Westendorp, Rudi G J

    2011-03-01

    Research into the pathologic mechanisms of neurodegenerative diseases has revealed that CREB binding protein (CBP) plays an important role in cognitive dysfunction. Loss of one copy of this gene leads to a syndrome with severe cognitive dysfunction. We investigated the association between four common variants in the CBP gene and cognitive function in 5804 participants of the PROspective Study of Pravastatin in the Elderly at Risk (PROSPER). Baseline associations between genetic variation and cognitive function were assessed with linear regression. Longitudinal associations were assessed with linear mixed models. All analyses were adjusted for sex, age, education, country, version of test, and pravastatin use. The intron 4CT and intron 3AC polymorphisms in the CBP gene were associated with better cognitive performance at baseline and during follow-up. Furthermore, the haplotype with the variant alleles of these two polymorphisms also showed a protective effect on cognitive function in all cognitive domains (all p<0.03). Genetic variation in the CBP gene is associated with better cognitive performance in an elderly population. Future research is necessary to investigate the effect of these polymorphisms on the expression of CBP levels and how these polymorphisms affect the gene expression mediated by CBP.

  8. Functional analysis of the two Brassica AP3 genes involved in apetalous and stamen carpelloid phenotypes.

    PubMed

    Zhang, Yanfeng; Wang, Xuefang; Zhang, Wenxue; Yu, Fei; Tian, Jianhua; Li, Dianrong; Guo, Aiguang

    2011-01-01

    The Arabidopsis homeotic genes APETALA3 (AP3) and PISTILLATA (PI) are B genes which encode MADS-box transcription factors and specify petal and stamen identities. In the current study, the stamen carpelloid (SC) mutants, HGMS and AMS, of B. rapa and B. napus were investigated and two types of AP3 genes, B.AP3.a and B.AP3.b, were functional characterized. B.AP3.a and B.AP3.b share high similarity in amino acid sequences except for 8 residues difference located at the C-terminus. Loss of this 8 residues in B.AP3.b led to the change of PI-derived motifs. Meanwhile, B.AP3.a specified petal and stamen development, whereas B.AP3.b only specified stamen development. In B. rapa, the mutations of both genes generated the SC mutant HGMS. In B. napus that contained two B.AP3.a and two B.AP3.b, loss of the two B.AP3.a functions was the key reason for the apetalous mutation, however, the loss-of-function in all four AP3 was related to the SC mutant AMS. We inferred that the 8 residues or the PI-derived motif in AP3 gene probably relates to petal formation.

  9. Filaggrin genotype in ichthyosis vulgaris predicts abnormalities in epidermal structure and function.

    PubMed

    Gruber, Robert; Elias, Peter M; Crumrine, Debra; Lin, Tzu-Kai; Brandner, Johanna M; Hachem, Jean-Pierre; Presland, Richard B; Fleckman, Philip; Janecke, Andreas R; Sandilands, Aileen; McLean, W H Irwin; Fritsch, Peter O; Mildner, Michael; Tschachler, Erwin; Schmuth, Matthias

    2011-05-01

    Although it is widely accepted that filaggrin (FLG) deficiency contributes to an abnormal barrier function in ichthyosis vulgaris and atopic dermatitis, the pathomechanism of how FLG deficiency provokes a barrier abnormality in humans is unknown. We report here that the presence of FLG mutations in Caucasians predicts dose-dependent alterations in epidermal permeability barrier function. Although FLG is an intracellular protein, the barrier abnormality occurred solely via a paracellular route in affected stratum corneum. Abnormal barrier function correlated with alterations in keratin filament organization (perinuclear retraction), impaired loading of lamellar body contents, followed by nonuniform extracellular distribution of secreted organelle contents, and abnormalities in lamellar bilayer architecture. In addition, we observed reductions in corneodesmosome density and tight junction protein expression. Thus, FLG deficiency provokes alterations in keratinocyte architecture that influence epidermal functions localizing to the extracellular matrix. These results clarify how FLG mutations impair epidermal permeability barrier function.

  10. Predicting Functional Performance and Range of Motion Outcomes After Total Knee Arthroplasty

    PubMed Central

    Bade, Michael J.; Kittelson, John M.; Kohrt, Wendy M.; Stevens-Lapsley, Jennifer E.

    2015-01-01

    Objective The aim of this study was to assess the predictive value of functional performance and range of motion measures on outcomes after total knee arthroplasty. Design This is a secondary analysis of two pooled prospective randomized controlled trials. Sixty-four subjects (32 men and 32 women) with end-stage knee osteoarthritis scheduled to undergo primary total knee arthroplasty were enrolled. Active knee flexion and extension range of motion, Timed Up and Go (TUG) test time, and 6-min walk test distance were assessed. Results Preoperative measures of knee flexion and extension were predictive of long-term flexion (β = 0.44, P < 0.001) and extension (β = 0.46, P < 0.001). Acute measures of knee flexion and extension were not predictive of long-term flexion (β= 0.09, P = 0.26) or extension (β = 0.04, P = 0.76). Preoperative TUG performance was predictive of long-term 6-min walk performance (β = −21, P < 0.001). Acute TUG performance was predictive of long-term functional performance on the 6-min walk test, after adjusting for the effects of sex and age (P = 0.02); however, once adjusted for preoperative TUG performance, acute TUG was no longer related to long-term 6-min walk performance (P = 0.65). Conclusions Acute postoperative measures of knee range of motion are of limited prognostic value, although preoperative measures have some prognostic value. However, acute measures of functional performance are of useful prognostic value, especially when preoperative functional performance data are unavailable. PMID:24508937

  11. Effect of triacontanol on numbers and functions of cells involved in inflammatory responses.

    Pub