75 FR 70274 - Statement of Organization, Functions, and Delegations of Authority
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-17
... designs to prevent slope and highwall failures; (5) conducts research using a variety of techniques...) designs and conducts epidemiological research studies to identify and classify risk factors that cause, or... the titles and functional statements for the Office of Mine Safety and Health Research (CCM) and...
User-oriented design strategies for a Lunar base
NASA Astrophysics Data System (ADS)
Jukola, Paivi
'Form follows function can be translated, among other, to communicate a desire to prioritize functional objectives for a particular design task. Thus it is less likely that a design program for a multi-functional habitat, for an all-purpose vehicle, or for a general community, will lead to most optimal, cost-effective and sustainable solutions. A power plant, a factory, a farm and a research center have over centuries had different logistical and functional requirements, despite of the local culture on various parts around the planet Earth. 'The same size fits all' concept is likely to lead to less user-friendly solutions. The paper proposes to rethink and to investigate alternative strategies to formulate objectives for a Lunar base. Diverse scientific experiments and potential future research programs for the Moon have a number of functional requirements that differ from each other. A crew of 4-6 may not be optimal for the most innovative research. The discussion is based on research of Human Factors and Design for visiting professor lectures for a Lunar base project with Howard University and NASA Marshall Space Center 2009-2010.
Code of Federal Regulations, 2011 CFR
2011-01-01
.... agricultural and rural economy. (2) Administering a methodological research program to improve agricultural... design and data collection methodologies to the agricultural statistics program. Major functions include...) Designing, testing, and establishing survey techniques and standards, including sample design, sample...
Code of Federal Regulations, 2010 CFR
2010-01-01
.... agricultural and rural economy. (2) Administering a methodological research program to improve agricultural... design and data collection methodologies to the agricultural statistics program. Major functions include...) Designing, testing, and establishing survey techniques and standards, including sample design, sample...
Code of Federal Regulations, 2012 CFR
2012-01-01
.... agricultural and rural economy. (2) Administering a methodological research program to improve agricultural... design and data collection methodologies to the agricultural statistics program. Major functions include...) Designing, testing, and establishing survey techniques and standards, including sample design, sample...
Code of Federal Regulations, 2013 CFR
2013-01-01
.... agricultural and rural economy. (2) Administering a methodological research program to improve agricultural... design and data collection methodologies to the agricultural statistics program. Major functions include...) Designing, testing, and establishing survey techniques and standards, including sample design, sample...
Code of Federal Regulations, 2014 CFR
2014-01-01
.... agricultural and rural economy. (2) Administering a methodological research program to improve agricultural... design and data collection methodologies to the agricultural statistics program. Major functions include...) Designing, testing, and establishing survey techniques and standards, including sample design, sample...
Research the mobile phone operation interfaces for vision-impairment.
Yao, Yen-Ting; Leung, Cherng-Yee
2012-01-01
Due to the vision-impaired users commonly having difficulty with mobile-phone function operations and adaption any manufacturer's user interface design, the goals for this research are established for evaluating how to improve for them the function operation convenience and user interfaces of either mobile phones or electronic appliances in the market currently. After applying collecting back 30 effective questionnaires from 30 vision-impairment, the comments have been concluded from this research include: (1) All mobile phone manufactures commonly ignorant of the vision-impairment difficulty with operating mobile phone user interfaces; (2) The vision-impairment preferential with audio alert signals; (3) The vision-impairment incapable of mobile-phone procurement independently unless with assistance from others; (4) Preferential with adding touch-usage interface design by the vision-impairment; in contrast with the least requirement for such functions as braille, enlarging keystroke size and diversifying-function control panel. With exploring the vision-impairment's necessary improvements and obstacles for mobile phone interface operation, this research is established with goals for offering reference possibly applied in electronic appliance design and . Hopefully, the analysis results of this research could be used as data references for designing electronic and high-tech products and promoting more usage convenience for those vision-impaired.
Functional and Database Architecture Design.
1983-09-26
I AD-At3.N 275 FUNCTIONAL AND D ATABASE ARCHITECTURE DESIGN (U) ALPHA / OMEGA GROUP INC HARVARD MA 26 SEP 83 NODS 4-83-C 0525 UNCLASSIFIED FG52 N EE...0525 REPORT AOO1 FUNCTIONAL AND DATABASE ARCHITECTURE DESIGN Submitted to: Office of Naval Research Department of the Navy 800 N. Quincy Street...ZNTIS GRA& I DTIC TAB Unannounced 0 Justification REPORT ON Distribution/ Availability Codes Avail and/or FUNCTIONAL AND DATABASE ARCHITECTURE DESIGN Dist
Laboratory Animal Facilities. Laboratory Design Notes.
ERIC Educational Resources Information Center
Jonas, Albert M.
1965-01-01
Design of laboratory animal facilities must be functional. Accordingly, the designer should be aware of the complex nature of animal research and specifically the type of animal research which will be conducted in a new facility. The building of animal-care facilities in research institutions requires special knowledge in laboratory animal…
The design of a research water table
NASA Technical Reports Server (NTRS)
Fike, R. L.; Kinney, R. B.; Perkins, H. C.
1973-01-01
A complete design for a research water table is presented. Following a brief discussion of the analogy between water and compressible-gas flows (hydraulic analogy), the components of the water table and their function are described. The major design considerations are discussed, and the final design is presented.
ERIC Educational Resources Information Center
Shager, Hilary M.; Schindler, Holly S.; Magnuson, Katherine A.; Duncan, Greg J.; Yoshikawa, Hirokazu; Hart, Cassandra M. D.
2013-01-01
This study explores the extent to which differences in research design explain variation in Head Start program impacts. We employ meta-analytic techniques to predict effect sizes for cognitive and achievement outcomes as a function of the type and rigor of research design, quality and type of outcome measure, activity level of control group, and…
Functional design to support CDTI/DABS flight experiments
NASA Technical Reports Server (NTRS)
Goka, T.
1982-01-01
The objectives of this project are to: (1) provide a generalized functional design of CDTI avionics using the FAA developd DABS/ATARS ground system as the 'traffic sensor', (2) specify software modifications and/or additions to the existing DABS/ATARS ground system to support CDTI avionics, (3) assess the existing avionics of a NASA research aircraft in terms of CDTI applications, and (4) apply the generalized functional design to provide research flight experiment capability. DABS Data Link Formats are first specified for CDTI flight experiments. The set of CDTI/DABS Format specifications becomes a vehicle to coordinate the CDTI avionics and ground system designs, and hence, to develop overall system requirements. The report is the first iteration of a system design and development effort to support eventual CDTI flight test experiments.
2017-04-04
research thrust areas are designed to enable the development of reliable, damage tolerant, lightweight structures with excellent thermal management...46 2. RESEARCH THRUST AREA: MULTISCALE CHARACTERIZATION AND MODELING .................................... 56 2.1 DESIGN OF MATERIALS...The research thrust areas are designed to enable the development of reliable, damage tolerant, lightweight structures with excellent thermal
Design and experiment of a neural signal detection using a FES driving system.
Zonghao, Huang; Zhigong, Wang; Xiaoying, Lu; Wenyuan, Li; Xiaoyan, Shen; Xintai, Zhao; Shushan, Xie; Haixian, Pan; Cunliang, Zhu
2010-01-01
The channel bridging, signal regenerating, and functional rebuilding of injured nerves is one of the most important issues in life science research. In recent years, some progresses in the research area have been made in repairing injured nerves with microelectronic neural bridge. Based on the previous work, this paper presents a neural signal detection and functional electrical stimulation (FES) driving system with using high performance operational amplifiers, which has been realized. The experimental results show that the designed system meets requirements. In animal experiments, sciatic nerve signal detection, regeneration and function rebuilding between two toads have been accomplished successfully by using the designed system.
Design and validation of an improved graphical user interface with the 'Tool ball'.
Lee, Kuo-Wei; Lee, Ying-Chu
2012-01-01
The purpose of this research is introduce the design of an improved graphical user interface (GUI) and verifies the operational efficiency of the proposed interface. Until now, clicking the toolbar with the mouse is the usual way to operate software functions. In our research, we designed an improved graphical user interface - a tool ball that is operated by a mouse wheel to perform software functions. Several experiments are conducted to measure the time needed to operate certain software functions with the traditional combination of "mouse click + tool button" and the proposed integration of "mouse wheel + tool ball". The results indicate that the tool ball design can accelerate the speed of operating software functions, decrease the number of icons on the screen, and enlarge the applications of the mouse wheel. Copyright © 2011 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Design and ergonomics. Methods for integrating ergonomics at hand tool design stage.
Marsot, Jacques; Claudon, Laurent
2004-01-01
As a marked increase in the number of musculoskeletal disorders was noted in many industrialized countries and more specifically in companies that require the use of hand tools, the French National Research and Safety Institute (INRS) launched in 1999 a research project on the topic of integrating ergonomics into hand tool design, and more particularly to a design of a boning knife. After a brief recall of the difficulties of integrating ergonomics at the design stage, the present paper shows how 3 design methodological tools--Functional Analysis, Quality Function Deployment and TRIZ--have been applied to the design of a boning knife. Implementation of these tools enabled us to demonstrate the extent to which they are capable of responding to the difficulties of integrating ergonomics into product design.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-02
... tobacco product research could be subject to third-party governance? For example, could it be applied to... governance? For example, should both the design and conduct of research studies be subject to third-party... more key functions, including the design and conduct of research, the oversight of specific studies...
Design of indoor furniture with acoustic insulation and noise reduction function
NASA Astrophysics Data System (ADS)
Chen, Ziqiang; Lyu, Jianhua; Chen, Ming
2018-05-01
In this article, the current status of noise pollution research is analyzed and indoor noise pollution hazard on human body is discussed taking noise pollution as entry point to better understand people's needs in this concern, and it comes to the conclusion that indoor furniture with noise insulation function is required; In addition, the design status and necessity of indoor furniture with noise insulation function are expounded and the material property, structure design essentials and form design are analyzed according to sound transmission principles. In the end, design case study is presented to provide an effective way for design of indoor furniture with acoustic insulation function that meets people's needs.
Unsymmetric Lanczos model reduction and linear state function observer for flexible structures
NASA Technical Reports Server (NTRS)
Su, Tzu-Jeng; Craig, Roy R., Jr.
1991-01-01
This report summarizes part of the research work accomplished during the second year of a two-year grant. The research, entitled 'Application of Lanczos Vectors to Control Design of Flexible Structures' concerns various ways to use Lanczos vectors and Krylov vectors to obtain reduced-order mathematical models for use in the dynamic response analyses and in control design studies. This report presents a one-sided, unsymmetric block Lanczos algorithm for model reduction of structural dynamics systems with unsymmetric damping matrix, and a control design procedure based on the theory of linear state function observers to design low-order controllers for flexible structures.
User-centered design and evaluation of a next generation fixed-split ergonomic keyboard.
McLoone, Hugh E; Jacobson, Melissa; Hegg, Chau; Johnson, Peter W
2010-01-01
Research has shown that fixed-split, ergonomic keyboards lessen the pain and functional status in symptomatic individuals as well as reduce the likelihood of developing musculoskeletal disorders in asymptomatic typists over extended use. The goal of this study was to evaluate design features to determine whether the current fixed-split ergonomic keyboard design could be improved. Thirty-nine, adult-aged, fixed-split ergonomic keyboard users were recruited to participate in one of three studies. First utilizing non-functional models and later a functional prototype, three studies evaluated keyboard design features including: 1) keyboard lateral inclination, 2) wrist rest height, 3) keyboard slope, and 4) curved "gull-wing" key layouts. The findings indicated that keyboard lateral inclination could be increased from 8° to 14°; wrist rest height could be increased up to 10 mm from current setting; positive, flat, and negative slope settings were equally preferred and facilitated greater postural variation; and participants preferred a new gull-wing key layout. The design changes reduced forearm pronation and wrist extension while not adversely affecting typing performance. This research demonstrated how iterative-evaluative, user-centered research methods can be utilized to improve a product's design such as a fixed-split ergonomic keyboard.
Research-oriented teaching in optical design course and its function in education
NASA Astrophysics Data System (ADS)
Cen, Zhaofeng; Li, Xiaotong; Liu, Xiangdong; Deng, Shitao
2008-03-01
The principles and operation plans of research-oriented teaching in the course of computer aided optical design are presented, especially the mode of research in practice course. This program includes contract definition phase, project organization and execution, post project evaluation and discussion. Modes of academic organization are used in the practice course of computer aided optical design. In this course the students complete their design projects in research teams by autonomous group approach and cooperative exploration. In this research process they experience the interpersonal relationship in modern society, the importance of cooperation in team, the functions of each individual, the relationships between team members, the competition and cooperation in one academic group and with other groups, and know themselves objectively. In the design practice the knowledge of many academic fields is applied including applied optics, computer programming, engineering software and etc. The characteristic of interdisciplinary is very useful for academic research and makes the students be ready for innovation by integrating the knowledge of interdisciplinary field. As shown by the practice that this teaching mode has taken very important part in bringing up the abilities of engineering, cooperation, digesting the knowledge at a high level and problem analyzing and solving.
ERIC Educational Resources Information Center
Zarzosa, Jennifer
2018-01-01
This article seeks to address the gap between marketing education and marketing practice by integrating a design-thinking (DT) methodology to the marketing research (MR) framework to achieve learning objectives that will enhance cross-functional, collaborative, conceptual, and technical skills. The mobile application marketing research project…
Conceptual design of Dipole Research Experiment (DREX)
NASA Astrophysics Data System (ADS)
Xiao, Qingmei; Wang, Zhibin; Wang, Xiaogang; Xiao, Chijie; Yang, Xiaoyi; Zheng, Jinxing
2017-03-01
A new terrella-like device for laboratory simulation of inner magnetosphere plasmas, Dipole Research Experiment, is scheduled to be built at the Harbin Institute of Technology (HIT), China, as a major state scientific research facility for space physics studies. It is designed to provide a ground experimental platform to reproduce the inner magnetosphere to simulate the processes of trapping, acceleration, and transport of energetic charged particles restrained in a dipole magnetic field configuration. The scaling relation of hydromagnetism between the laboratory plasma of the device and the geomagnetosphere plasma is applied to resemble geospace processes in the Dipole Research Experiment plasma. Multiple plasma sources, different kinds of coils with specific functions, and advanced diagnostics are designed to be equipped in the facility for multi-functions. The motivation, design criteria for the Dipole Research Experiment experiments and the means applied to generate the plasma of desired parameters in the laboratory are also described. Supported by National Natural Science Foundation of China (Nos. 11505040, 11261140326 and 11405038), China Postdoctoral Science Foundation (Nos. 2016M591518, 2015M570283) and Project Supported by Natural Scientific Research Innovation Foundation in Harbin Institute of Technology (No. 2017008).
Growing and Growing: Promoting Functional Thinking with Geometric Growing Patterns
ERIC Educational Resources Information Center
Markworth, Kimberly A.
2010-01-01
Design research methodology is used in this study to develop an empirically-substantiated instruction theory about students' development of functional thinking in the context of geometric growing patterns. The two research questions are: (1) How does students' functional thinking develop in the context of geometric growing patterns? (2) What are…
Molecular communication among biological nanomachines: a layered architecture and research issues.
Nakano, Tadashi; Suda, Tatsuya; Okaie, Yutaka; Moore, Michael J; Vasilakos, Athanasios V
2014-09-01
Molecular communication is an emerging communication paradigm for biological nanomachines. It allows biological nanomachines to communicate through exchanging molecules in an aqueous environment and to perform collaborative tasks through integrating functionalities of individual biological nanomachines. This paper develops the layered architecture of molecular communication and describes research issues that molecular communication faces at each layer of the architecture. Specifically, this paper applies a layered architecture approach, traditionally used in communication networks, to molecular communication, decomposes complex molecular communication functionality into a set of manageable layers, identifies basic functionalities of each layer, and develops a descriptive model consisting of key components of the layer for each layer. This paper also discusses open research issues that need to be addressed at each layer. In addition, this paper provides an example design of targeted drug delivery, a nanomedical application, to illustrate how the layered architecture helps design an application of molecular communication. The primary contribution of this paper is to provide an in-depth architectural view of molecular communication. Establishing a layered architecture of molecular communication helps organize various research issues and design concerns into layers that are relatively independent of each other, and thus accelerates research in each layer and facilitates the design and development of applications of molecular communication.
ERIC Educational Resources Information Center
Reeder, Kevin
2005-01-01
In order to facilitate the selection/prioritization process and bridge the gap of design research to design conceptualization, students need to visualize the big picture that describes how the research categories such as "user," "marketing," "functional/mechanical research" are related. This is achieved through the use of a visual storyboard. The…
Vestibular Function Research (VFR) experiment. Phase B: Design definition study
NASA Technical Reports Server (NTRS)
1978-01-01
The Vestibular Functions Research (VFR) Experiment was established to investigate the neurosensory and related physiological processes believed to be associated with the space flight nausea syndrome and to develop logical means for its prediction, prevention and treatment. The VFR Project consists of ground and spaceflight experimentation using frogs as specimens. The phase B Preliminary Design Study provided for the preliminary design of the experiment hardware, preparation of performance and hardware specification and a Phase C/D development plan, establishment of STS (Space Transportation System) interfaces and mission operations, and the study of a variety of hardware, experiment and mission options. The study consist of three major tasks: (1) mission mode trade-off; (2) conceptual design; and (3) preliminary design.
Green Infrastructure Research at EPA's Edison Environmental Center
The presentation outline includes: (1) Green infrastructure research objectives (2) Introduction to ongoing research projects - Aspects of design, construction, and maintenence that affect function - Real-world applications of GI research
Johnson, B C
1990-01-01
As health care competition increases, and as the penalties for making poor decisions become potentially more devastating, market research continues to play an increasingly important role in the decision-making process for hospitals. Concern over the appropriate use of market research and the costs related to it remains high. As such, efficiency in research design and clarity in research outcome are clearly the goals. This paper examines the focus group process and its adjunctive role in enhancing the overall design of health care market research. Specifically, the function and placement of focus groups within the research plan as well as several methods of creative focus group analysis are considered within the context of an effective research design.
The Halogen Bond in the Design of Functional Supramolecular Materials: Recent Advances
2013-01-01
Halogen bonding is an emerging noncovalent interaction for constructing supramolecular assemblies. Though similar to the more familiar hydrogen bonding, four primary differences between these two interactions make halogen bonding a unique tool for molecular recognition and the design of functional materials. First, halogen bonds tend to be much more directional than (single) hydrogen bonds. Second, the interaction strength scales with the polarizability of the bond-donor atom, a feature that researchers can tune through single-atom mutation. In addition, halogen bonds are hydrophobic whereas hydrogen bonds are hydrophilic. Lastly, the size of the bond-donor atom (halogen) is significantly larger than hydrogen. As a result, halogen bonding provides supramolecular chemists with design tools that cannot be easily met with other types of noncovalent interactions and opens up unprecedented possibilities in the design of smart functional materials. This Account highlights the recent advances in the design of halogen-bond-based functional materials. Each of the unique features of halogen bonding, directionality, tunable interaction strength, hydrophobicity, and large donor atom size, makes a difference. Taking advantage of the hydrophobicity, researchers have designed small-size ion transporters. The large halogen atom size provided a platform for constructing all-organic light-emitting crystals that efficiently generate triplet electrons and have a high phosphorescence quantum yield. The tunable interaction strengths provide tools for understanding light-induced macroscopic motions in photoresponsive azobenzene-containing polymers, and the directionality renders halogen bonding useful in the design on functional supramolecular liquid crystals and gel-phase materials. Although halogen bond based functional materials design is still in its infancy, we foresee a bright future for this field. We expect that materials designed based on halogen bonding could lead to applications in biomimetics, optics/photonics, functional surfaces, and photoswitchable supramolecules. PMID:23805801
2007-07-01
been put into place to guide the standards process. 6. If the balloting results in 75% approval then the draft standard is sub- mitted to the IEEE-SA...as functionality and timeliness. Such a design process presumably guided the design for the AMRFC test bed. The multifunction apertures for...Integrated Topside should be guided by the same design process. Engaging in a spiral design process will lead to the most effective selection of research
Wu, Dongni; Zhang, Shuangying; Zhao, Yuyuan; Ao, Ningjian; Ramakrishna, Seeram; He, Liumin
2018-03-16
RADA16-I (Ac-(RADA) 4 -CONH 2 ) is a widely investigated self-assembling peptide (SAP) in the biomedical field. It can undergo ordered self-assembly to form stable secondary structures, thereby further forming a nanofiber hydrogel. The modification of RADA16-I with functional peptide motifs has become a popular research topic. Researchers aim to exhibit particular biomedical signaling, and subsequently, further expand its applications. However, only a few fundamental reports are available on the influences of the peptide motifs on self-assembly mechanisms of designer functional RADA16-I SAPs. In this study, we designed RGD-modified RADA16-I SAPs with a series of net charges and amphiphilicities. The assembly/reassembly of these functionally designer SAPs was thoroughly studied using Raman spectroscopy, CD spectroscopy, and AFM. The nanofiber morphology and the secondary structure largely depended on the balance between the hydrophobic effects versus like-charge repulsions of the motifs, which should be to the focus in order to achieve a tailored nanostructure. Our study would contribute insight into considerations for sophisticated design of SAPs for biomedical applications.
Zahiripour, Seyed Ali; Jalali, Ali Akbar
2014-09-01
A novel switching function based on an optimization strategy for the sliding mode control (SMC) method has been provided for uncertain stochastic systems subject to actuator degradation such that the closed-loop system is globally asymptotically stable with probability one. In the previous researches the focus on sliding surface has been on proportional or proportional-integral function of states. In this research, from a degree of freedom that depends on designer choice is used to meet certain objectives. In the design of the switching function, there is a parameter which the designer can regulate for specified objectives. A sliding-mode controller is synthesized to ensure the reachability of the specified switching surface, despite actuator degradation and uncertainties. Finally, the simulation results demonstrate the effectiveness of the proposed method. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
An integrated optimum design approach for high speed prop-rotors including acoustic constraints
NASA Technical Reports Server (NTRS)
Chattopadhyay, Aditi; Wells, Valana; Mccarthy, Thomas; Han, Arris
1993-01-01
The objective of this research is to develop optimization procedures to provide design trends in high speed prop-rotors. The necessary disciplinary couplings are all considered within a closed loop multilevel decomposition optimization process. The procedures involve the consideration of blade-aeroelastic aerodynamic performance, structural-dynamic design requirements, and acoustics. Further, since the design involves consideration of several different objective functions, multiobjective function formulation techniques are developed.
Assessment of cockpit interface concepts for data link retrofit
NASA Technical Reports Server (NTRS)
Mccauley, Hugh W.; Miles, William L.; Dwyer, John P.; Erickson, Jeffery B.
1992-01-01
The problem is examined of retrofitting older generation aircraft with data link capability. The approach taken analyzes requirements for the cockpit interface, based on review of prior research and opinions obtained from subject matter experts. With this background, essential functions and constraints for a retrofit installation are defined. After an assessment of the technology available to meet the functions and constraints, candidate design concepts are developed. The most promising design concept is described in detail. Finally, needs for further research and development are identified.
Work boot design affects the way workers walk: A systematic review of the literature.
Dobson, Jessica A; Riddiford-Harland, Diane L; Bell, Alison F; Steele, Julie R
2017-05-01
Safety boots are compulsory in many occupations to protect the feet of workers from undesirable external stimuli, particularly in harsh work environments. The unique environmental conditions and varying tasks performed in different occupations necessitate a variety of boot designs to match each worker's occupational safety and functional requirements. Unfortunately, safety boots are often designed more for occupational safety at the expense of functionality and comfort. In fact, there is a paucity of published research investigating the influence that specific variations in work boot design have on fundamental tasks common to many occupations, such as walking. This literature review aimed to collate and examine what is currently known about the influence of boot design on walking in order to identify gaps in the literature and develop evidence-based recommendations upon which to design future research studies investigating work boot design. Copyright © 2017 Elsevier Ltd. All rights reserved.
Research and exploration of product innovative design for function
NASA Astrophysics Data System (ADS)
Wang, Donglin; Wei, Zihui; Wang, Youjiang; Tan, Runhua
2009-07-01
Products innovation is under the prerequisite of realizing the new function, the realization of the new function must solve the contradiction. A new process model of new product innovative design was proposed based on Axiomatic Design (AD) Theory and Functional Structure Analysis (FSA), imbedded Principle of Solving Contradiction. In this model, employ AD Theory to guide FSA, determine the contradiction for the realization of the principle solution. To provide powerful support for innovative design tools in principle solution, Principle of Solving Contradiction in the model were imbedded, so as to boost up the innovation of principle solution. As a case study, an innovative design of button battery separator paper punching machine has been achieved with application of the proposed model.
Human factor design of habitable space facilities
NASA Technical Reports Server (NTRS)
Clearwater, Yvonne A.
1987-01-01
Current fundamental and applied habitability research conducted as part of the U.S. space program is reviewed with emphasis on methods, findings, and applications of the results to the planning and design of the International Space Station. The discussion covers the following six concurrent directions of habitability research: operational simulation, functional interior decor research, space crew privacy requirements, interior layout and configuration analysis, human spatial habitability model, and analogous environments research.
Patterson, Kara K; Gallant, Nicole; Ormiston, Tracey; Patience, Chad; Whitechurch, Mandy; Mansfield, Avril; Brown, Janet
2015-08-01
The main objective of this study was to evaluate the feasibility of a newly developed questionnaire to assess the influence of study design on participation in gait rehabilitation research in a pilot test with individuals with stroke. A secondary objective was to investigate the relationship between participation in gait rehabilitation research and social and clinical factors of interest after stroke. A questionnaire was developed with expert opinion and guidance from related previous research. The questionnaire was pilot tested in a group of 21 people with stroke, and social and clinical factors (including gait function) were collected. Gait function was assessed using a pressure-sensitive mat; social and clinical characteristics were extracted from patient charts. Correlations were performed to investigate relationships between questionnaire responses and gait function, motor impairment, and chronicity; t-tests were used to examine response differences between people with a caregiver at home and those without. A total of 21 people with stroke completed the questionnaire without difficulty; mean completion time was 7.2 (SD 3.5) minutes, with a range of responses across participants. Borderline significant associations were found between gait function and the number of studies in which a person would participate and between stroke chronicity and the location of studies in which a person would participate. A questionnaire to investigate the influence of study design factors on participation in rehabilitation research is feasible for administration in the post-stroke population and has potential to inform the design of future studies.
New Insights into Teaching Apparel Design.
ERIC Educational Resources Information Center
Capjack, Linda
1993-01-01
Describes projects intended to integrate competitive strategies, develop research skills, increase problem-solving ability, and foster a closer link with the apparel industry: the design of children's wear using computer-aided design technology and a project using the Functional Design Process. (Author/JOW)
Urban Planning and Management Information Systems Analysis and Design Based on GIS
NASA Astrophysics Data System (ADS)
Xin, Wang
Based on the analysis of existing relevant systems on the basis of inadequate, after a detailed investigation and research, urban planning and management information system will be designed for three-tier structure system, under the LAN using C/S mode architecture. Related functions for the system designed in accordance with the requirements of the architecture design of the functional relationships between the modules. Analysis of the relevant interface and design, data storage solutions proposed. The design for small and medium urban planning information system provides a viable building program.
Comptational Design Of Functional CA-S-H and Oxide Doped Alloy Systems
NASA Astrophysics Data System (ADS)
Yang, Shizhong; Chilla, Lokeshwar; Yang, Yan; Li, Kuo; Wicker, Scott; Zhao, Guang-Lin; Khosravi, Ebrahim; Bai, Shuju; Zhang, Boliang; Guo, Shengmin
Computer aided functional materials design accelerates the discovery of novel materials. This presentation will cover our recent research advance on the Ca-S-H system properties prediction and oxide doped high entropy alloy property simulation and experiment validation. Several recent developed computational materials design methods were utilized to the two systems physical and chemical properties prediction. A comparison of simulation results to the corresponding experiment data will be introduced. This research is partially supported by NSF CIMM project (OIA-15410795 and the Louisiana BoR), NSF HBCU Supplement climate change and ecosystem sustainability subproject 3, and LONI high performance computing time allocation loni mat bio7.
Reliability based design including future tests and multiagent approaches
NASA Astrophysics Data System (ADS)
Villanueva, Diane
The initial stages of reliability-based design optimization involve the formulation of objective functions and constraints, and building a model to estimate the reliability of the design with quantified uncertainties. However, even experienced hands often overlook important objective functions and constraints that affect the design. In addition, uncertainty reduction measures, such as tests and redesign, are often not considered in reliability calculations during the initial stages. This research considers two areas that concern the design of engineering systems: 1) the trade-off of the effect of a test and post-test redesign on reliability and cost and 2) the search for multiple candidate designs as insurance against unforeseen faults in some designs. In this research, a methodology was developed to estimate the effect of a single future test and post-test redesign on reliability and cost. The methodology uses assumed distributions of computational and experimental errors with re-design rules to simulate alternative future test and redesign outcomes to form a probabilistic estimate of the reliability and cost for a given design. Further, it was explored how modeling a future test and redesign provides a company an opportunity to balance development costs versus performance by simultaneously designing the design and the post-test redesign rules during the initial design stage. The second area of this research considers the use of dynamic local surrogates, or surrogate-based agents, to locate multiple candidate designs. Surrogate-based global optimization algorithms often require search in multiple candidate regions of design space, expending most of the computation needed to define multiple alternate designs. Thus, focusing on solely locating the best design may be wasteful. We extended adaptive sampling surrogate techniques to locate multiple optima by building local surrogates in sub-regions of the design space to identify optima. The efficiency of this method was studied, and the method was compared to other surrogate-based optimization methods that aim to locate the global optimum using two two-dimensional test functions, a six-dimensional test function, and a five-dimensional engineering example.
Physical activity interventions and children's mental function: An introduction and overview
Tomporowski, Phillip D.; Lambourne, Kate; Okumura, Michelle S.
2011-01-01
Background This review provides a historical overview of physical activity interventions designed by American educators and an evaluation of research that has assessed the effects of exercise on children's mental function. Method Historical descriptions of the emergence of American physical education doctrine throughout the 20th century were evaluated. Prior reviews of studies that assessed the effects of single acute bouts of exercise and the effects of chronic exercise training on children's mental function were examined and the results of recent studies were summarized. Results Physical activity interventions designed for American children have reflected two competing views: activities should promote physical fitness and activities should promote social, emotional, and intellectual development. Research results indicate that exercise fosters the emergence of children's mental function; particularly executive functioning. The route by which physical activity impacts mental functioning is complex and is likely moderated by several variables, including physical fitness level, health status, and numerous psycho-social factors. Conclusion Physical activity interventions for children should be designed to meet multiple objectives; e.g., optimize physical fitness, promote health-related behaviors that offset obesity, and facilitate mental development. PMID:21420981
Discourse Classification into Rhetorical Functions for AWE Feedback
ERIC Educational Resources Information Center
Cotos, Elena; Pendar, Nick
2016-01-01
This paper reports on the development of an analysis engine for the Research Writing Tutor (RWT), an AWE program designed to provide genre and discipline-specific feedback on the functional units of research article discourse. Unlike traditional NLP-based applications that categorize complete documents, the analyzer categorizes every sentence in…
ERIC Educational Resources Information Center
Russell, A.; Winkler, R.
1977-01-01
It is proposed that clinicians should develop research-based assertiveness training procedures for homosexuals that are designed to facilitate homosexual functioning. Subjects (N=27) were assigned to a behaviorally oriented assertive training group or a non-directive group run by a homosexual guidance service. Self-report measures indicated…
Design of a radiator shade for testing in a simulated lunar environment
NASA Technical Reports Server (NTRS)
Huff, Jaimi; Remington, Randy; Tang, Toan
1992-01-01
The National Aeronautics and Space Administration (NASA) and The Universities Space Research Association (USRA) have chosen the parabolic/catenary concept from their sponsored Fall 1991 lunar radiation shade project for further testing and development. NASA asked the design team to build a shading device and support structure for testing in a vacuum chamber. Besides the support structure for the catenary shading device, the design team was asked to develop a system for varying the shade shape so that the device can be tested at different focal lengths. The design team developed concept variants and combined the concept variants to form overall designs. Using a decision matrix, an overall design was selected by the team from several overall design alternatives. Concept variants were developed for three primary functions. The three functions were structural support, shape adjustments, and end shielding. The shade adjustment function was divided into two sub-functions, arc length adjustment, and width adjustment.
A need for an augmented review when reviewing rehabilitation research.
Gerber, Lynn H; Nava, Andrew; Garfinkel, Steven; Goel, Divya; Weinstein, Ali A; Cai, Cindy
2016-10-01
There is a need for additional strategies for performing systematic reviews (SRs) to improve translation of findings into practice and to influence health policy. SRs critically appraise research methodology and determine level of evidence of research findings. The standard type of SR identifies randomized controlled trials (RCTs) as providing the most valid data and highest level of evidence. RCTs are not among the most frequently used research design in disability and health research. RCTs usually measure impairments for the primary research outcome rather than improved function, participation or societal integration. It forces a choice between "validity" and "utility/relevance." Other approaches have effectively been used to assess the validity of alternative research designs, whose outcomes focus on function and patient-reported outcomes. We propose that utilizing existing evaluation tools that measure knowledge, dissemination and utility of findings, may help improve the translation of findings into practice and health policy. Copyright © 2016 Elsevier Inc. All rights reserved.
1971-07-01
itself. IlumRRO assistance was requested by the Infantry School both for design of experimental tests and for analysis and interpretation of the data from...of Research. To develop an experimental Army literacy training program designed to provide a level of functional literacy appropriate to present...assigned under the provisions of a long- range program (up to two years in duration) designed by tlumRRO. Specially designed experimental
Development of a Flapping Wing Design Incorporating Shape Memory Alloy Actuation
2010-03-01
blimp platform. The Methodology section describes the manner in which functional kinematics of Nitinol were determined, the design and fabrication...functional kinematics of Nitinol . The direction of this research aimed at quantifying the stroke length of selected diameter Nitinol wires as a function...of cycling rate. Several Nitinol wires, trademarked as FlexinolTM and advertised as 50:50 Nickel-Titanium in composition, were purchased online
End-to-end automated microfluidic platform for synthetic biology: from design to functional analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Linshiz, Gregory; Jensen, Erik; Stawski, Nina
Synthetic biology aims to engineer biological systems for desired behaviors. The construction of these systems can be complex, often requiring genetic reprogramming, extensive de novo DNA synthesis, and functional screening. Here, we present a programmable, multipurpose microfluidic platform and associated software and apply the platform to major steps of the synthetic biology research cycle: design, construction, testing, and analysis. We show the platform’s capabilities for multiple automated DNA assembly methods, including a new method for Isothermal Hierarchical DNA Construction, and for Escherichia coli and Saccharomyces cerevisiae transformation. The platform enables the automated control of cellular growth, gene expression induction, andmore » proteogenic and metabolic output analysis. Finally, taken together, we demonstrate the microfluidic platform’s potential to provide end-to-end solutions for synthetic biology research, from design to functional analysis.« less
End-to-end automated microfluidic platform for synthetic biology: from design to functional analysis
Linshiz, Gregory; Jensen, Erik; Stawski, Nina; ...
2016-02-02
Synthetic biology aims to engineer biological systems for desired behaviors. The construction of these systems can be complex, often requiring genetic reprogramming, extensive de novo DNA synthesis, and functional screening. Here, we present a programmable, multipurpose microfluidic platform and associated software and apply the platform to major steps of the synthetic biology research cycle: design, construction, testing, and analysis. We show the platform’s capabilities for multiple automated DNA assembly methods, including a new method for Isothermal Hierarchical DNA Construction, and for Escherichia coli and Saccharomyces cerevisiae transformation. The platform enables the automated control of cellular growth, gene expression induction, andmore » proteogenic and metabolic output analysis. Finally, taken together, we demonstrate the microfluidic platform’s potential to provide end-to-end solutions for synthetic biology research, from design to functional analysis.« less
Wireless device connection problems and design solutions
NASA Astrophysics Data System (ADS)
Song, Ji-Won; Norman, Donald; Nam, Tek-Jin; Qin, Shengfeng
2016-09-01
Users, especially the non-expert users, commonly experience problems when connecting multiple devices with interoperability. While studies on multiple device connections are mostly concentrated on spontaneous device association techniques with a focus on security aspects, the research on user interaction for device connection is still limited. More research into understanding people is needed for designers to devise usable techniques. This research applies the Research-through-Design method and studies the non-expert users' interactions in establishing wireless connections between devices. The "Learning from Examples" concept is adopted to develop a study focus line by learning from the expert users' interaction with devices. This focus line is then used for guiding researchers to explore the non-expert users' difficulties at each stage of the focus line. Finally, the Research-through-Design approach is used to understand the users' difficulties, gain insights to design problems and suggest usable solutions. When connecting a device, the user is required to manage not only the device's functionality but also the interaction between devices. Based on learning from failures, an important insight is found that the existing design approach to improve single-device interaction issues, such as improvements to graphical user interfaces or computer guidance, cannot help users to handle problems between multiple devices. This study finally proposes a desirable user-device interaction in which images of two devices function together with a system image to provide the user with feedback on the status of the connection, which allows them to infer any required actions.
ERIC Educational Resources Information Center
Wang, June-Yi; Wu, Hsin-Kai; Chien, Sung-Pei; Hwang, Fu-Kwun; Hsu, Ying-Shao
2015-01-01
So far relatively little research in education has explored the pedagogical and learning potentials of applications (Apps) on tablet PCs (TPCs). Drawing upon research on learning technologies and taking an embodied perspective, this study first identified educational functionalities of TPCs and generated guidelines to design educational Apps for…
NASA Astrophysics Data System (ADS)
Tarumi, Shinya; Kozaki, Kouji; Kitamura, Yoshinobu; Mizoguchi, Riichiro
In the recent materials research, much work aims at realization of ``functional materials'' by changing structure and/or manufacturing process with nanotechnology. However, knowledge about the relationship among function, structure and manufacturing process is not well organized. So, material designers have to consider a lot of things at the same time. It would be very helpful for them to support their design process by a computer system. In this article, we discuss a conceptual design supporting system for nano-materials. Firstly, we consider a framework for representing functional structures and manufacturing processes of nano-materials with relationships among them. We expand our former framework for representing functional knowledge based on our investigation through discussion with experts of nano-materials. The extended framework has two features: 1) it represents functional structures and manufacturing processes comprehensively, 2) it expresses parameters of function and ways with their dependencies because they are important for material design. Next, we describe a conceptual design support system we developed based on the framework with its functionalities. Lastly, we evaluate the utility of our system in terms of functionality for design supports. For this purpose, we tried to represent two real examples of material design. And then we did an evaluation experiment on conceptual design of material using our system with the collaboration of domain experts.
Knowledge about the research and ethics committee at Makerere University, Kampala.
Ibingira, B R; Ochieng, J
2013-12-01
All research involving human participants should be reviewed by a competent and independent institutional research and ethics committee. Research conducted at Makerere University College of Health Sciences should be subjected to a rigorous review process by the ethics committee in order to protect human participants' interests, rights and welfare. To evaluate researchers' knowledge about the functions and ethical review process of the College of Health Sciences research and ethics committee. A cross sectional study. 135 researchers consented to participate in the study, but 70 questionnaires were answered giving a 52% response. Age ranged between 30 to 61 years, majority of participants 30-39 years. Most of the respondents do agree that the REC functions include Protocol review 86%, protection of research participants 84.3%, and monitoring of ongoing research. During ethical review, the RECpays special attention to scientific design [79.7%] and ethical issues [75.3%], but less to the budget and literature review. More than 97% of the respondents believe that the REC is either average or very good, while 2.8% rank it below average. Respondents knew the major functions of the committee including protection of the rights and welfare of research participants, protocol review and monitoring of on going research, and the elements of protocol review that are given more attention include ;scientific design and ethical issues. Overall performance of the REC was ranked as average by respondents. The committee should limit delays in approval and effectively handle all functions of the committee.
Research and constructive solutions on the reduction of slosh noise
NASA Astrophysics Data System (ADS)
Manta (Balas, M.; Balas, R.; Doicin, C. V.
2016-11-01
The paper presents a product design making of, over a “delicate issue” in automotive industry as slosh noise phenomena. Even though the current market tendency shows great achievements over this occurrence, in this study, the main idea is to design concepts of slosh noise baffles adapted for serial life existing fuel tanks in the automotive industry. Moreover, starting with internal and external research, going further through reversed engineering and applying own baffle technical solutions from conceptual sketches to 3D design, the paper shows the technical solutions identified as an alternative to a new development of fuel tank. Based on personal and academic experience there were identified several problematics and the possible answers based on functional analysis, in order to avoid blocking points. The idea of developing baffles adapted to already existent fuel tanks leaded to equivalent solutions analyzed from functional point of view. Once this stage is finished, a methodology will be used so as to choose the optimum solution so as to get the functional design.
Brown, Jeffrey S; Holmes, John H; Shah, Kiran; Hall, Ken; Lazarus, Ross; Platt, Richard
2010-06-01
Comparative effectiveness research, medical product safety evaluation, and quality measurement will require the ability to use electronic health data held by multiple organizations. There is no consensus about whether to create regional or national combined (eg, "all payer") databases for these purposes, or distributed data networks that leave most Protected Health Information and proprietary data in the possession of the original data holders. Demonstrate functions of a distributed research network that supports research needs and also address data holders concerns about participation. Key design functions included strong local control of data uses and a centralized web-based querying interface. We implemented a pilot distributed research network and evaluated the design considerations, utility for research, and the acceptability to data holders of methods for menu-driven querying. We developed and tested a central, web-based interface with supporting network software. Specific functions assessed include query formation and distribution, query execution and review, and aggregation of results. This pilot successfully evaluated temporal trends in medication use and diagnoses at 5 separate sites, demonstrating some of the possibilities of using a distributed research network. The pilot demonstrated the potential utility of the design, which addressed the major concerns of both users and data holders. No serious obstacles were identified that would prevent development of a fully functional, scalable network. Distributed networks are capable of addressing nearly all anticipated uses of routinely collected electronic healthcare data. Distributed networks would obviate the need for centralized databases, thus avoiding numerous obstacles.
RNA Nanostructures – Methods and Protocols | Center for Cancer Research
RNA nanotechnology is a young field with many potential applications. The goal is to utilize designed RNA strands, such that the obtained constructs have specific properties in terms of shape and functionality. RNA has potential functionalities that are comparable to that of proteins, but possesses (compared to proteins) simpler design principles akin to DNA. The promise is
Multidisciplinary design optimization: An emerging new engineering discipline
NASA Technical Reports Server (NTRS)
Sobieszczanski-Sobieski, Jaroslaw
1993-01-01
This paper defines the Multidisciplinary Design Optimization (MDO) as a new field of research endeavor and as an aid in the design of engineering systems. It examines the MDO conceptual components in relation to each other and defines their functions.
Designing added functions in engineered cementitious composites
NASA Astrophysics Data System (ADS)
Yang, En-Hua
In this dissertation, a new and systematic material design approach is developed for ECC with added functions through material microstructures linkage to composite macroscopic behavior. The thesis research embodies theoretical development by building on previous ECC micromechanical models, and experimental investigations into three specific new versions of ECC with added functions aimed at addressing societal demands of our built infrastructure. Specifically, the theoretical study includes three important ECC modeling elements: Steady-state crack propagation analyses and simulation, predictive accuracy of the fiber bridging constitutive model, and development of the rate-dependent strain-hardening criteria. The first element establishes the steady-state cracking criterion as a fundamental requirement for multiple cracking behavior in brittle matrix composites. The second element improves the accuracy of crack-width prediction in ECC. The third element establishes the micromechanics basis for impact-resistant ECC design. Three new ECCs with added functions were developed and experimentally verified in this thesis research through the enhanced theoretical framework. A green ECC incorporating a large volume of industrial waste was demonstrated to possess reduced crack width and drying shrinkage. The self-healing ECC designed with tight crack width was demonstrated to recover transport and mechanical properties after microcrack damage when exposed to wet and dry cycles. The impact-resistant ECC was demonstrated to retain tensile ductility with increased strength under moderately high strain-rate loading. These new versions of ECC with added functions are expected to contribute greatly to enhancing the sustainability, durability, and safety of civil infrastructure built with ECC. This research establishes the effectiveness of micromechanics-based design and material ingredient tailoring for ECC with added new attributes but without losing its basic tensile ductile characteristics.
Functional-to-form mapping for assembly design automation
NASA Astrophysics Data System (ADS)
Xu, Z. G.; Liu, W. M.; Shen, W. D.; Yang, D. Y.; Liu, T. T.
2017-11-01
Assembly-level function-to-form mapping is the most effective procedure towards design automation. The research work mainly includes: the assembly-level function definitions, product network model and the two-step mapping mechanisms. The function-to-form mapping is divided into two steps, i.e. mapping of function-to-behavior, called the first-step mapping, and the second-step mapping, i.e. mapping of behavior-to-structure. After the first step mapping, the three dimensional transmission chain (or 3D sketch) is studied, and the feasible design computing tools are developed. The mapping procedure is relatively easy to be implemented interactively, but, it is quite difficult to finish it automatically. So manual, semi-automatic, automatic and interactive modification of the mapping model are studied. A mechanical hand F-F mapping process is illustrated to verify the design methodologies.
ERIC Educational Resources Information Center
Hosseinzadeh, Hassan; Hossain, Syeda Zakia; Niknami, Shamsaddin
2012-01-01
Objective: This study examines the levels of human immunodeficiency virus (HIV)/acquired immunodeficiency syndrome (AIDS) related stigma among the Iranian population and the factors that contribute to the formation of stigma within the study population. Design: A quantitative research design was used in this research whereby participants completed…
ERIC Educational Resources Information Center
Olsen, Deborah
2000-01-01
Discusses institutional research (IR) in higher education, which is designed to generate information that serves planning, policy development, resource allocation, and management or evaluation decisions in all functional areas. Addresses its history, the skills and training needed by researchers, structure and staffing, and professional…
Composing, Analyzing and Validating Software Models
NASA Astrophysics Data System (ADS)
Sheldon, Frederick T.
1998-10-01
This research has been conducted at the Computational Sciences Division of the Information Sciences Directorate at Ames Research Center (Automated Software Engineering Grp). The principle work this summer has been to review and refine the agenda that were carried forward from last summer. Formal specifications provide good support for designing a functionally correct system, however they are weak at incorporating non-functional performance requirements (like reliability). Techniques which utilize stochastic Petri nets (SPNs) are good for evaluating the performance and reliability for a system, but they may be too abstract and cumbersome from the stand point of specifying and evaluating functional behavior. Therefore, one major objective of this research is to provide an integrated approach to assist the user in specifying both functionality (qualitative: mutual exclusion and synchronization) and performance requirements (quantitative: reliability and execution deadlines). In this way, the merits of a powerful modeling technique for performability analysis (using SPNs) can be combined with a well-defined formal specification language. In doing so, we can come closer to providing a formal approach to designing a functionally correct system that meets reliability and performance goals.
Composing, Analyzing and Validating Software Models
NASA Technical Reports Server (NTRS)
Sheldon, Frederick T.
1998-01-01
This research has been conducted at the Computational Sciences Division of the Information Sciences Directorate at Ames Research Center (Automated Software Engineering Grp). The principle work this summer has been to review and refine the agenda that were carried forward from last summer. Formal specifications provide good support for designing a functionally correct system, however they are weak at incorporating non-functional performance requirements (like reliability). Techniques which utilize stochastic Petri nets (SPNs) are good for evaluating the performance and reliability for a system, but they may be too abstract and cumbersome from the stand point of specifying and evaluating functional behavior. Therefore, one major objective of this research is to provide an integrated approach to assist the user in specifying both functionality (qualitative: mutual exclusion and synchronization) and performance requirements (quantitative: reliability and execution deadlines). In this way, the merits of a powerful modeling technique for performability analysis (using SPNs) can be combined with a well-defined formal specification language. In doing so, we can come closer to providing a formal approach to designing a functionally correct system that meets reliability and performance goals.
NASA Technical Reports Server (NTRS)
Boyer, Charles M.; Jackson, Trevor P.; Beyon, Jeffrey Y.; Petway, Larry B.
2013-01-01
Optimized designs of the Navigation Doppler Lidar (NDL) instrument for Autonomous Landing Hazard Avoidance Technology (ALHAT) were accomplished via Interdisciplinary Design Concept (IDEC) at NASA Langley Research Center during the summer of 2013. Three branches in the Engineering Directorate and three students were involved in this joint task through the NASA Langley Aerospace Research Summer Scholars (LARSS) Program. The Laser Remote Sensing Branch (LRSB), Mechanical Systems Branch (MSB), and Structural and Thermal Systems Branch (STSB) were engaged to achieve optimal designs through iterative and interactive collaborative design processes. A preliminary design iteration was able to reduce the power consumption, mass, and footprint by removing redundant components and replacing inefficient components with more efficient ones. A second design iteration reduced volume and mass by replacing bulky components with excessive performance with smaller components custom-designed for the power system. Mechanical placement collaboration reduced potential electromagnetic interference (EMI). Through application of newly selected electrical components and thermal analysis data, a total electronic chassis redesign was accomplished. Use of an innovative forced convection tunnel heat sink was employed to meet and exceed project requirements for cooling, mass reduction, and volume reduction. Functionality was a key concern to make efficient use of airflow, and accessibility was also imperative to allow for servicing of chassis internals. The collaborative process provided for accelerated design maturation with substantiated function.
The Polyfunctionality of Design Language in the Education System of the Design-Student
ERIC Educational Resources Information Center
Lazutina, Tatiana Vladimirovna; Lazutin, Nicolay Konstantinovich
2016-01-01
This research work is devoted to the identification of functions carried out by design in life of society in general and a sense-creating role interpretation of design language in life of the individual that leads to the realization of the analysis necessity of a design role in the sphere of modern professional education. The design as the…
NASA Technical Reports Server (NTRS)
Polk, M.
1999-01-01
The objective of this research project is to design calixarenes, cup-shaped molecules, with the specific binding sites to the sodium chloride and nitrogen containing components of urine, such as urea and uric acid, in urine. The following partition of the research accomplishes this objective: (1) functionalization of calixarene, (2) development of a calixarene based medium for the separatory process, (3) design of the column regeneration protocol. Work was also accomplished in the area of temperature sensitive paint (TSP). Research was undertaken to design a TSP with insulating propertites. An important part of this research project is to discover the thermal conductivity of polymers for TSP.
Designing to Control Flight Crew Errors
NASA Technical Reports Server (NTRS)
Schutte, Paul C.; Willshire, Kelli F.
1997-01-01
It is widely accepted that human error is a major contributing factor in aircraft accidents. There has been a significant amount of research in why these errors occurred, and many reports state that the design of flight deck can actually dispose humans to err. This research has led to the call for changes in design according to human factors and human-centered principles. The National Aeronautics and Space Administration's (NASA) Langley Research Center has initiated an effort to design a human-centered flight deck from a clean slate (i.e., without constraints of existing designs.) The effort will be based on recent research in human-centered design philosophy and mission management categories. This design will match the human's model of the mission and function of the aircraft to reduce unnatural or non-intuitive interfaces. The product of this effort will be a flight deck design description, including training and procedures, and a cross reference or paper trail back to design hypotheses, and an evaluation of the design. The present paper will discuss the philosophy, process, and status of this design effort.
A smoke generator system for aerodynamic flight research
NASA Technical Reports Server (NTRS)
Richwine, David M.; Curry, Robert E.; Tracy, Gene V.
1989-01-01
A smoke generator system was developed for in-flight vortex flow studies on the F-18 high alpha research vehicle (HARV). The development process included conceptual design, a survey of existing systems, component testing, detailed design, fabrication, and functional flight testing. Housed in the forebody of the aircraft, the final system consists of multiple pyrotechnic smoke cartridges which can be fired simultaneously or in sequence. The smoke produced is ducted to desired locations on the aircraft surface. The smoke generator system (SGS) has been used successfully to identify vortex core and core breakdown locations as functions of flight condition. Although developed for a specific vehicle, this concept may be useful for other aerodynamic flight research which requires the visualization of local flows.
Approximation, abstraction and decomposition in search and optimization
NASA Technical Reports Server (NTRS)
Ellman, Thomas
1992-01-01
In this paper, I discuss four different areas of my research. One portion of my research has focused on automatic synthesis of search control heuristics for constraint satisfaction problems (CSPs). I have developed techniques for automatically synthesizing two types of heuristics for CSPs: Filtering functions are used to remove portions of a search space from consideration. Another portion of my research is focused on automatic synthesis of hierarchic algorithms for solving constraint satisfaction problems (CSPs). I have developed a technique for constructing hierarchic problem solvers based on numeric interval algebra. Another portion of my research is focused on automatic decomposition of design optimization problems. We are using the design of racing yacht hulls as a testbed domain for this research. Decomposition is especially important in the design of complex physical shapes such as yacht hulls. Another portion of my research is focused on intelligent model selection in design optimization. The model selection problem results from the difficulty of using exact models to analyze the performance of candidate designs.
Code of Federal Regulations, 2010 CFR
2010-10-01
... and other marine geophysical or geological surveys, atmospheric research, and biological research... freight for hire, except an oceanographic research vessel or an offshore supply vessel. Industrial vessel means a vessel which, by reason of its special outfit, purpose, design, or function engages in certain...
Code of Federal Regulations, 2013 CFR
2013-10-01
... and other marine geophysical or geological surveys, atmospheric research, and biological research... freight for hire, except an oceanographic research vessel or an offshore supply vessel. Industrial vessel means a vessel which, by reason of its special outfit, purpose, design, or function engages in certain...
Code of Federal Regulations, 2011 CFR
2011-10-01
... and other marine geophysical or geological surveys, atmospheric research, and biological research... freight for hire, except an oceanographic research vessel or an offshore supply vessel. Industrial vessel means a vessel which, by reason of its special outfit, purpose, design, or function engages in certain...
Code of Federal Regulations, 2014 CFR
2014-10-01
... and other marine geophysical or geological surveys, atmospheric research, and biological research... freight for hire, except an oceanographic research vessel or an offshore supply vessel. Industrial vessel means a vessel which, by reason of its special outfit, purpose, design, or function engages in certain...
Code of Federal Regulations, 2012 CFR
2012-10-01
... and other marine geophysical or geological surveys, atmospheric research, and biological research... freight for hire, except an oceanographic research vessel or an offshore supply vessel. Industrial vessel means a vessel which, by reason of its special outfit, purpose, design, or function engages in certain...
ERIC Educational Resources Information Center
Lee, Il-Sun; Byeon, Jung-Ho; Kim, Young-shin; Kwon, Yong-Ju
2014-01-01
The purpose of this study was to develop a model for measuring experimental design ability based on functional magnetic resonance imaging (fMRI) during biological inquiry. More specifically, the researchers developed an experimental design task that measures experimental design ability. Using the developed experimental design task, they measured…
ERIC Educational Resources Information Center
Kissi, Philip Siaw; Opoku, Gyabaah; Boateng, Sampson Kwadwo
2016-01-01
The aim of the study was to investigate the effect of Microsoft Math Tool (graphical calculator) on students' achievement in the linear function. The study employed Quasi-experimental research design (Pre-test Post-test two group designs). A total of ninety-eight (98) students were selected for the study from two different Senior High Schools…
Theoretical constraints in the design of multivariable control systems
NASA Technical Reports Server (NTRS)
Rynaski, E. G.; Mook, D. Joseph; Depena, Juan
1991-01-01
The research being performed under NASA Grant NAG1-1361 involves a more clear understanding and definition of the constraints involved in the pole-zero placement or assignment process for multiple input, multiple output systems. Complete state feedback to more than a single controller under conditions of complete controllability and observability is redundant if pole placement alone is the design objective. The additional feedback gains, above and beyond those required for pole placement can be used for eignevalue assignment or zero placement of individual closed loop transfer functions. Because both poles and zeros of individual closed loop transfer functions strongly affect the dynamic response to a pilot command input, the pole-zero placement problem is important. When fewer controllers than degrees of freedom of motion are available, complete design freedom is not possible, the transmission zeros constrain the regions of possible pole-zero placement. The effect of transmission zero constraints on the design possibilities, selection of transmission zeros and the avoidance of producing non-minimum phase transfer functions is the subject of the research being performed under this grant.
Understanding Complex Natural Systems by Articulating Structure-Behavior-Function Models
ERIC Educational Resources Information Center
Vattam, Swaroop S.; Goel, Ashok K.; Rugaber, Spencer; Hmelo-Silver, Cindy E.; Jordan, Rebecca; Gray, Steven; Sinha, Suparna
2011-01-01
Artificial intelligence research on creative design has led to Structure-Behavior-Function (SBF) models that emphasize functions as abstractions for organizing understanding of physical systems. Empirical studies on understanding complex systems suggest that novice understanding is shallow, typically focusing on their visible structures and…
ERIC Educational Resources Information Center
Gilpatrick, Eleanor
The two research reports included in this document describe the application of the Health Services Mobility Study (HSMS) task analysis method to two technologist functions and examine the interrelationships of these tasks with those in diagnostic radiology. (The HSMS method includes processes for using the data for designing job ladders, for…
Wolfe, Katie; Seaman, Michael A; Drasgow, Erik
2016-11-01
Previous research on visual analysis has reported low levels of interrater agreement. However, many of these studies have methodological limitations (e.g., use of AB designs, undefined judgment task) that may have negatively influenced agreement. Our primary purpose was to evaluate whether agreement would be higher than previously reported if we addressed these weaknesses. Our secondary purposes were to investigate agreement at the tier level (i.e., the AB comparison) and at the functional relation level in multiple baseline designs and to examine the relationship between raters' decisions at each of these levels. We asked experts (N = 52) to make judgments about changes in the dependent variable in individual tiers and about the presence of an overall functional relation in 31 multiple baseline graphs. Our results indicate that interrater agreement was just at or just below minimally adequate levels for both types of decisions and that agreement at the individual tier level often resulted in agreement about the overall functional relation. We report additional findings and discuss implications for practice and future research. © The Author(s) 2016.
Designing a mobile augmented reality tool for the locative visualisation of biomedical knowledge.
Kilby, Jess; Gray, Kathleen; Elliott, Kristine; Waycott, Jenny; Sanchez, Fernando Martin; Dave, Bharat
2013-01-01
Mobile augmented reality (MAR) may offer new and engaging ways to support consumer participation in health. We report on design-based research into a MAR application for smartphones and tablets, intended to improve public engagement with biomedical research in a specific urban precinct. Following a review of technical capabilities and organizational and locative design considerations, we worked with staff of four research institutes to elicit their ideas about information and interaction functionalities of a shared MAR app. The results were promising, supporting the development of a prototype and initial field testing with these staff. Evidence from this project may point the way toward user-centred design of MAR services that will enable more widespread adoption of the technology in other healthcare and biomedical research contexts.
Data-Driven Design of Intelligent Wireless Networks: An Overview and Tutorial.
Kulin, Merima; Fortuna, Carolina; De Poorter, Eli; Deschrijver, Dirk; Moerman, Ingrid
2016-06-01
Data science or "data-driven research" is a research approach that uses real-life data to gain insight about the behavior of systems. It enables the analysis of small, simple as well as large and more complex systems in order to assess whether they function according to the intended design and as seen in simulation. Data science approaches have been successfully applied to analyze networked interactions in several research areas such as large-scale social networks, advanced business and healthcare processes. Wireless networks can exhibit unpredictable interactions between algorithms from multiple protocol layers, interactions between multiple devices, and hardware specific influences. These interactions can lead to a difference between real-world functioning and design time functioning. Data science methods can help to detect the actual behavior and possibly help to correct it. Data science is increasingly used in wireless research. To support data-driven research in wireless networks, this paper illustrates the step-by-step methodology that has to be applied to extract knowledge from raw data traces. To this end, the paper (i) clarifies when, why and how to use data science in wireless network research; (ii) provides a generic framework for applying data science in wireless networks; (iii) gives an overview of existing research papers that utilized data science approaches in wireless networks; (iv) illustrates the overall knowledge discovery process through an extensive example in which device types are identified based on their traffic patterns; (v) provides the reader the necessary datasets and scripts to go through the tutorial steps themselves.
Overview of computational control research at UT Austin
NASA Technical Reports Server (NTRS)
Bong, Wie
1989-01-01
An overview of current research activities at UT Austin is presented to discuss certain technical issues in the following areas: (1) Computer-Aided Nonlinear Control Design: In this project, the describing function method is employed for the nonlinear control analysis and design of a flexible spacecraft equipped with pulse modulated reaction jets. INCA program has been enhanced to allow the numerical calculation of describing functions as well as the nonlinear limit cycle analysis capability in the frequency domain; (2) Robust Linear Quadratic Gaussian (LQG) Compensator Synthesis: Robust control design techniques and software tools are developed for flexible space structures with parameter uncertainty. In particular, an interactive, robust multivariable control design capability is being developed for INCA program; and (3) LQR-Based Autonomous Control System for the Space Station: In this project, real time implementation of LQR-based autonomous control system is investigated for the space station with time-varying inertias and with significant multibody dynamic interactions.
Reinventing Material Science - Continuum Magazine | NREL
to reinvent an entire field of study, but that is exactly what the Center for Inverse Design is functional materials by developing an "inverse design" approach, powered by theory that guides experiment. The Center for Inverse Design was established as an Energy Frontier Research Center, funded by
Arrows: A Special Case of Graphic Communication.
ERIC Educational Resources Information Center
Hardin, Pris
The purpose of this paper is to examine arrow design in relation to the type of pointing, connecting, or processing involved. Three possible approaches to the investigation of arrows as graphic communication include research: by arrow function, relating message structure to arrow design, and linking user expectations to arrow design. The following…
ERIC Educational Resources Information Center
Peterson, James N.; Hess, Herbert L.
An undergraduate capstone engineering design project now provides hydroelectric power to a remote wilderness location. Students investigated the feasibility of designing, building, and installing a 4kW hydroelectric system to satisfy the need for electric power to support the research and teaching functions of Taylor Ranch, a university facility…
Talking to Texts and Sketches: The Function of Written and Graphic Mediation in Engineering Design.
ERIC Educational Resources Information Center
Lewis, Barbara
2000-01-01
Describes the author's research that explores the role of language, particularly texts, in the engineering design process. Notes that results of this case study support a new "mediated" model of engineering design as an inventional activity in which designers use talk, written language, and other symbolic representations as tools to think about…
A Simulation Analysis of an Automated Identification Processor for the Tactical Air Control System.
1986-06-01
available at the work station for the M&I operators to identify aircraft. Some data is provided via the console such as the IFF/SIF and the airspace control...factors led to the development of efficient work stations for the functional positions in the air defense mission. Experimental Design Experiments are...techniques that helped keep the thesis work "on track"! The Research Design The research plan or design of this thesis effort is not unique. In fact
Research Libraries--Automation and Cooperation.
ERIC Educational Resources Information Center
McDonald, David R.; Hurowitz, Robert
1982-01-01
Description of Research Libraries Information Network, an automated technical processing and information retrieval system, notes subsystems (acquisitions, cataloging, message, print, tables), functions, design, and benefits to participating libraries. (Request complimentary subscription on institution letterhead from Editor, "Perspectives in…
Onyx-Advanced Aeropropulsion Simulation Framework Created
NASA Technical Reports Server (NTRS)
Reed, John A.
2001-01-01
The Numerical Propulsion System Simulation (NPSS) project at the NASA Glenn Research Center is developing a new software environment for analyzing and designing aircraft engines and, eventually, space transportation systems. Its purpose is to dramatically reduce the time, effort, and expense necessary to design and test jet engines by creating sophisticated computer simulations of an aerospace object or system (refs. 1 and 2). Through a university grant as part of that effort, researchers at the University of Toledo have developed Onyx, an extensible Java-based (Sun Micro-systems, Inc.), objectoriented simulation framework, to investigate how advanced software design techniques can be successfully applied to aeropropulsion system simulation (refs. 3 and 4). The design of Onyx's architecture enables users to customize and extend the framework to add new functionality or adapt simulation behavior as required. It exploits object-oriented technologies, such as design patterns, domain frameworks, and software components, to develop a modular system in which users can dynamically replace components with others having different functionality.
Anthropometric evaluation of the Creches children furniture in Turkey.
Barli, Onder; Sari, Reyhan Midilli; Elmali, Derya; Aydintan, Erkan
2006-12-01
The dimensions of the living and working space and buildings, the types of material and different riggings should be designed to conform to the users' anthropometric measures. The first requirement to design on ergonomic system is to measure the human being who will work and live in that system. Because of this, anthropometric measures are the most frequently used ergonomic data during the design process. In this research paper, we attempt to organize a new data base of anthropometric data to use in the design of children's equipment and furniture used in crèches. A starting point for research on the proper dimensions of creche furniture is to investigate how the dimensions of furniture reflect the body dimensions and the functional needs of the children using furniture. The anthropometric data of 3, 4 and 5 year-old-children in crèches was used. We report the results of the measurements of 18 anthropometric characteristics of children which constitute a set of basic data for the design of functional spaces and furniture.
Integrating Kano’s Model into Quality Function Deployment for Product Design: A Comprehensive Review
NASA Astrophysics Data System (ADS)
Ginting, Rosnani; Hidayati, Juliza; Siregar, Ikhsan
2018-03-01
Many methods and techniques are adopted by some companies to improve the competitiveness through the fulfillment of customer satisfaction by enhancement and improvement the product design quality. Over the past few years, several researcher have studied extensively combining Quality Function Deployment and Kano’s model as design techniques by focusing on translating consumer desires into a product design. This paper presents a review and analysis of several literatures that associated to the integration methodology of Kano into the QFD process. Various of international journal articles were selected, collected and analyzed through a number of relevant scientific publications. In-depth analysis was performed, and focused in this paper on the results, advantages and drawbacks of its methodology. In addition, this paper also provides the analysis that acquired in this study related to the development of the methodology. It is hopedd this paper can be a reference for other researchers and manufacturing companies to implement the integration method of QFD- Kano for product design.
ERIC Educational Resources Information Center
Wilkie, Karina J.; Clarke, Doug M.
2016-01-01
Spatial visualisation of geometric patterns and their generalisation have become a recognised pathway to developing students' functional thinking and understanding of variables in algebra. This design-based research project investigated upper primary students' development of explicit generalisation of functional relationships and their…
Morphometry, geometry, function, and the future.
Mcnulty, Kieran P; Vinyard, Christopher J
2015-01-01
The proliferation of geometric morphometrics (GM) in biological anthropology and more broadly throughout the biological sciences has resulted in a multitude of studies that adopt landmark-based approaches for addressing a variety of questions in evolutionary morphology. In some cases, particularly in the realm of systematics, the fit between research question and analytical design is quite good. Functional-adaptive studies, however, do not readily conform to the methods available in the GM toolkit. The symposium organized by Terhune and Cooke entitled "Assessing function via shape: What is the place of GM in functional morphology?" held at the 2013 meetings of the American Association of Physical Anthropologists was designed specifically to explore this relationship between landmark-based methods and analyses of functional morphology, and the articles in this special issue, which stem in large part from this symposium, provide numerous examples of how the two approaches can complement and contrast each other. Here, we underscore some of the major difficulties in interpreting GM results within a functional regime. In combination with other contributions in this issue, we identify emerging areas of research that will help bridge the gap between multivariate morphometry and functional-adaptive analysis. Ultimately, neither geometric nor functional morphometric approaches is sufficient to elaborate the adaptive pathways that explain morphological evolution through natural selection. These perspectives must be further integrated with research from physiology, developmental biology, genomics, and ecology. © 2014 Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
Charles, J. B.; Bungo, M. W.
1986-01-01
The design of the Space Station's Human Research Facility for the collection of information on the long-time physiological adjustments of humans to space is described. The Space Life Sciences-1 mission will carry a rack-mounted echocardiograph for cardiac imaging, a mass spectrometer for cardiac output and respiratory function assessments at rest and during exercise, and a device to stimulate the carotid sinus baroreceptors and measure the resulting changes in heart rate.
USDA-ARS?s Scientific Manuscript database
This application was designed for farmers, agriculture researchers, and gardeners. The application includes a calculator, a data logger, and a GPS mapping function. It was designed for vegetable farming but can be used for open field applications. The calculator solves for the amount of pesticide,...
Brown, C. Hendricks; Kellam, Sheppard G.; Kaupert, Sheila; Muthén, Bengt O.; Wang, Wei; Muthén, Linda K.; Chamberlain, Patricia; PoVey, Craig L.; Cady, Rick; Valente, Thomas W.; Ogihara, Mitsunori; Prado, Guillermo J.; Pantin, Hilda M.; Gallo, Carlos G.; Szapocznik, José; Czaja, Sara J.; McManus, John W.
2012-01-01
What progress prevention research has made comes through strategic partnerships with communities and institutions that host this research, as well as professional and practice networks that facilitate the diffusion of knowledge about prevention. We discuss partnership issues related to the design, analysis, and implementation of prevention research and especially how rigorous designs, including random assignment, get resolved through a partnership between community stakeholders, institutions, and researchers. These partnerships shape not only study design, but they determine the data that can be collected and how results and new methods are disseminated. We also examine a second type of partnership to improve the implementation of effective prevention programs into practice. We draw on social networks to studying partnership formation and function. The experience of the Prevention Science and Methodology Group, which itself is a networked partnership between scientists and methodologists, is highlighted. PMID:22160786
Brown, C Hendricks; Kellam, Sheppard G; Kaupert, Sheila; Muthén, Bengt O; Wang, Wei; Muthén, Linda K; Chamberlain, Patricia; PoVey, Craig L; Cady, Rick; Valente, Thomas W; Ogihara, Mitsunori; Prado, Guillermo J; Pantin, Hilda M; Gallo, Carlos G; Szapocznik, José; Czaja, Sara J; McManus, John W
2012-07-01
What progress prevention research has made comes through strategic partnerships with communities and institutions that host this research, as well as professional and practice networks that facilitate the diffusion of knowledge about prevention. We discuss partnership issues related to the design, analysis, and implementation of prevention research and especially how rigorous designs, including random assignment, get resolved through a partnership between community stakeholders, institutions, and researchers. These partnerships shape not only study design, but they determine the data that can be collected and how results and new methods are disseminated. We also examine a second type of partnership to improve the implementation of effective prevention programs into practice. We draw on social networks to studying partnership formation and function. The experience of the Prevention Science and Methodology Group, which itself is a networked partnership between scientists and methodologists, is highlighted.
A review of the design and modification of lactoferricins and their derivatives.
Hao, Ya; Yang, Na; Teng, Da; Wang, Xiumin; Mao, Ruoyu; Wang, Jianhua
2018-06-01
Lactoferricin (Lfcin), a multifunction short peptide with a length of 25 residues, is derived from the whey protein lactoferrin by acidic pepsin hydrolysis. It has potent nutritional enhancement, antimicrobial, anticancer, antiviral, antiparasitic, and anti-inflammatory activities. This review describes the research advantages of the above biological functions, with attention to the molecular design and modification of Lfcin. In this examination of design and modification studies, research on the identification of Lfcin active derivatives and crucial amino acid residues is also reviewed. Many strategies for Lfcin optimization have been studied in recent decades, but we mainly introduce chemical modification, cyclization, chimera and polymerization of this peptide. Modifications such as incorporation of D-amino acids, acetylation and/or amidation could effectively improve the activity and stability of these compounds. Due to their wide array of bio-functions and applications, Lfcins have great potential to be developed as biological agents with multiple functions involved with nutritional enhancement, as well as disease preventive and therapeutic effects.
Functional performance of pyrovalves
NASA Technical Reports Server (NTRS)
Bement, Laurence J.
1996-01-01
Following several flight and ground test failures of spacecraft systems using single-shot, 'normally closed' pyrotechnically actuated valves (pyrovalves), a Government/Industry cooperative program was initiated to assess the functional performance of five qualified designs. The goal of the program was to provide information on functional performance of pyrovalves to allow users the opportunity to improve procurement requirements. Specific objectives included the demonstration of performance test methods, the seating; these gases/particles entered the fluid path of measurement of 'blowby' (the passage of gases from the pyrotechnic energy source around the activating piston into the valve's fluid path), and the quantification of functional margins for each design. Experiments were conducted at NASA's Langley Research Center on several units for each of the five valve designs. The test methods used for this program measured the forces and energies required to actuate the valves, as well as the energies and the pressures (where possible) delivered by the pyrotechnic sources. Functional performance ranged widely among the designs. Blowby cannot be prevented by o-ring seals; metal-to-metal seals were effective. Functional margin was determined by dividing the energy delivered by the pyrotechnic sources in excess to that required to accomplish the function by the energy required for that function. Two of the five designs had inadequate functional margins with the pyrotechnic cartridges evaluated.
Navigating the Requirements Jungle
NASA Astrophysics Data System (ADS)
Langer, Boris; Tautschnig, Michael
Research on validation and verification of requirements specifications has thus far focused on functional properties. Yet, in embedded systems, functional requirements constitute only a small fraction of the properties that must hold to guarantee proper and safe operation of the system under design.
NASA Technical Reports Server (NTRS)
Zipf, Mark E.
1989-01-01
An overview is presented of research work focussed on the design and insertion of classical models of human pilot dynamics within the flight control loops of V/STOL aircraft. The pilots were designed and configured for use in integrated control system research and design. The models of human behavior that were considered are: McRuer-Krendel (a single variable transfer function model); and Optimal Control Model (a multi-variable approach based on optimal control and stochastic estimation theory). These models attempt to predict human control response characteristics when confronted with compensatory tracking and state regulation tasks. An overview, mathematical description, and discussion of predictive limitations of the pilot models is presented. Design strategies and closed loop insertion configurations are introduced and considered for various flight control scenarios. Models of aircraft dynamics (both transfer function and state space based) are developed and discussed for their use in pilot design and application. Pilot design and insertion are illustrated for various flight control objectives. Results of pilot insertion within the control loops of two V/STOL research aricraft (Sikorski Black Hawk UH-60A, McDonnell Douglas Harrier II AV-8B) are presented and compared against actual pilot flight data. Conclusions are reached on the ability of the pilot models to adequately predict human behavior when confronted with similar control objectives.
Optimum Design of High Speed Prop-Rotors
NASA Technical Reports Server (NTRS)
Chattopadhyay, Aditi
1992-01-01
The objective of this research is to develop optimization procedures to provide design trends in high speed prop-rotors. The necessary disciplinary couplings are all considered within a closed loop optimization process. The procedures involve the consideration of blade aeroelastic, aerodynamic performance, structural and dynamic design requirements. Further, since the design involves consideration of several different objectives, multiobjective function formulation techniques are developed.
Test Method Designed to Evaluate Cylinder Liner-Piston Ring Coatings for Advanced Heat Engines
NASA Technical Reports Server (NTRS)
Radil, Kevin C.
1997-01-01
Research on advanced heat engine concepts, such as the low-heat-rejection engine, have shown the potential for increased thermal efficiency, reduced emissions, lighter weight, simpler design, and longer life in comparison to current diesel engine designs. A major obstacle in the development of a functional advanced heat engine is overcoming the problems caused by the high combustion temperatures at the piston ring/cylinder liner interface, specifically at top ring reversal (TRR). Therefore, advanced cylinder liner and piston ring materials are needed that can survive under these extreme conditions. To address this need, researchers at the NASA Lewis Research Center have designed a tribological test method to help evaluate candidate piston ring and cylinder liner materials for advanced diesel engines.
Filtered Mass Density Function for Design Simulation of High Speed Airbreathing Propulsion Systems
NASA Technical Reports Server (NTRS)
Givi, P.; Madnia, C. K.; Gicquel, L. Y. M.; Sheikhi, M. R. H.; Drozda, T. G.
2002-01-01
The objective of this research is to improve and implement the filtered mass density function (FDF) methodology for large eddy simulation (LES) of high speed reacting turbulent flows. NASA is interested in the design of various components involved in air breathing propulsion systems such as the scramjet. There is a demand for development of robust tools that can aid in the design procedure. The physics of high speed reactive flows is rich with many complexities. LES is regarded as one of the most promising means of simulating turbulent reacting flows.
Towards Enhanced Affective Design: Rethinking the Notion of Design
NASA Astrophysics Data System (ADS)
Kim, SuKyoung; Cho, Youngil
2017-09-01
Design disciplines have been contributing to shaping the life of human beings, as well as fostering culture and heritage. Design disciplines and research have been rapidly transforming, and not only objects but also services are target of design. This paper reviews design disciplines towards enhanced affective design, which attributes to intuitive knowledge. It aims at rethinking the notion of design to propose a conceptual framework for integrating user experience into objects that strengthen the form and function based design with pleasing.
The Instrumental Value of Conceptual Frameworks in Educational Technology Research
ERIC Educational Resources Information Center
Antonenko, Pavlo D.
2015-01-01
Scholars from diverse fields and research traditions agree that the conceptual framework is a critically important component of disciplined inquiry. Yet, there is a pronounced lack of shared understanding regarding the definition and functions of conceptual frameworks, which impedes our ability to design effective research and mentor novice…
Data-Driven Design of Intelligent Wireless Networks: An Overview and Tutorial
Kulin, Merima; Fortuna, Carolina; De Poorter, Eli; Deschrijver, Dirk; Moerman, Ingrid
2016-01-01
Data science or “data-driven research” is a research approach that uses real-life data to gain insight about the behavior of systems. It enables the analysis of small, simple as well as large and more complex systems in order to assess whether they function according to the intended design and as seen in simulation. Data science approaches have been successfully applied to analyze networked interactions in several research areas such as large-scale social networks, advanced business and healthcare processes. Wireless networks can exhibit unpredictable interactions between algorithms from multiple protocol layers, interactions between multiple devices, and hardware specific influences. These interactions can lead to a difference between real-world functioning and design time functioning. Data science methods can help to detect the actual behavior and possibly help to correct it. Data science is increasingly used in wireless research. To support data-driven research in wireless networks, this paper illustrates the step-by-step methodology that has to be applied to extract knowledge from raw data traces. To this end, the paper (i) clarifies when, why and how to use data science in wireless network research; (ii) provides a generic framework for applying data science in wireless networks; (iii) gives an overview of existing research papers that utilized data science approaches in wireless networks; (iv) illustrates the overall knowledge discovery process through an extensive example in which device types are identified based on their traffic patterns; (v) provides the reader the necessary datasets and scripts to go through the tutorial steps themselves. PMID:27258286
A Rigorous Framework for Optimization of Expensive Functions by Surrogates
NASA Technical Reports Server (NTRS)
Booker, Andrew J.; Dennis, J. E., Jr.; Frank, Paul D.; Serafini, David B.; Torczon, Virginia; Trosset, Michael W.
1998-01-01
The goal of the research reported here is to develop rigorous optimization algorithms to apply to some engineering design problems for which design application of traditional optimization approaches is not practical. This paper presents and analyzes a framework for generating a sequence of approximations to the objective function and managing the use of these approximations as surrogates for optimization. The result is to obtain convergence to a minimizer of an expensive objective function subject to simple constraints. The approach is widely applicable because it does not require, or even explicitly approximate, derivatives of the objective. Numerical results are presented for a 31-variable helicopter rotor blade design example and for a standard optimization test example.
Design of a recumbent seating system
NASA Technical Reports Server (NTRS)
Croyle, Scott; Delarosa, Jose; George, Daren; Hinkle, Cathy; Karas, Stephen
1993-01-01
Future space shuttle missions presented by NASA might require the shuttle to rendezvous with the Russian space station Mir for the purpose of transporting astronauts back to earth. Due to the atrophied state of these astronauts, a special seating system must be designed for their transportation. The main functions of this seating system are to support and restrain the astronauts during normal reentry flight and to dampen some of the loading that might occur in a crash situation. Through research, the design team developed many concept variants for these functional requirements. By evaluating each variant, the concepts were eliminated until the four most attractive designs remained. The team used a decision matrix to determine the best concept to carry through embodiment. This concept involved using struts for support during reentry flight and a spring damper/shock absorber system to dampen crash landing loads. The embodiment design process consisted of defining the layout of each of the main functional components, specifically, the seat structure and the strut structure. Through the use of MCS/pal two, the design was refined until it could handle all required loads and dampen to the forces specified. The auxiliary function carriers were then considered. Following the design of these components, the complete final layout could be determined. It is concluded that the final design meets all specifications outlined in the conceptual design. The main advantages of this design are its low weight, simplicity, and large amount of function sharing between different components. The disassembly of this design could potentially present a problem because of time and size constraints involved. Overall, this design meets or exceeds all functional requirements.
Exploring the impact of wheelchair design on user function in a rural South African setting.
Visagie, Surona; Duffield, Svenje; Unger, Mariaan
2015-01-01
Wheelchairs provide mobility that can enhance function and community integration. Function in a wheelchair is influenced by wheelchair design. To explore the impact of wheelchair design on user function and the variables that guided wheelchair prescription in the study setting. A mixed-method, descriptive design using convenience sampling was implemented. Quantitative data were collected from 30 wheelchair users using the functioning every day with a Wheelchair Scale and a Wheelchair Specification Checklist. Qualitative data were collected from ten therapists who prescribed wheelchairs to these users, through interviews. The Kruskal-Wallis test was used to identify relationships, and content analysis was undertaken to identify emerging themes in qualitative data. Wheelchairs with urban designs were issued to 25 (83%) participants. Wheelchair size, fit, support and functional features created challenges concerning transport, operating the wheelchair, performing personal tasks, and indoor and outdoor mobility. Users using wheelchairs designed for use in semi-rural environments achieved significantly better scores regarding the appropriateness of the prescribed wheelchair than those using wheelchairs designed for urban use ( p = <0.01). Therapists prescribed the basic, four-wheel folding frame design most often because of a lack of funding, lack of assessment, lack of skills and user choice. Issuing urban type wheelchairs to users living in rural settings might have a negative effect on users' functional outcomes. Comprehensive assessments, further training and research, on long term cost and quality of life implications, regarding provision of a suitable wheelchair versus a cheaper less suitable option is recommended.
Behavioural science at work for Canada: National Research Council laboratories.
Veitch, Jennifer A
2007-03-01
The National Research Council is Canada's principal research and development agency. Its 20 institutes are structured to address interdisciplinary problems for industrial sectors, and to provide the necessary scientific infrastructure, such as the national science library. Behavioural scientists are active in five institutes: Biological Sciences, Biodiagnostics, Aerospace, Information Technology, and Construction. Research topics include basic cellular neuroscience, brain function, human factors in the cockpit, human-computer interaction, emergency evacuation, and indoor environment effects on occupants. Working in collaboration with NRC colleagues and with researchers from universities and industry, NRC behavioural scientists develop knowledge, designs, and applications that put technology to work for people, designed with people in mind.
Brach, Jennifer S; Perera, Subashan; Gilmore, Sandra; VanSwearingen, Jessie M; Brodine, Deborah; Wert, David; Nadkarni, Neelesh K; Ricci, Edmund
2016-09-01
Group exercise programs for older adults often exclude the timing and coordination of movement. Stakeholder involvement in the research process is strongly encouraged and improves the relevance and adoption of findings. We describe stakeholder involvement in the design of a clinical trial of a group-based exercise program that incorporates timing and coordination of movement into the exercises. The study was a cluster randomized, single-blind intervention trial to compare the effects on function, disability and mobility of a standard group exercise program and the "On the Move" group exercise program in older adults residing in independent living facilities and senior apartment buildings, and attending community centers. Exercise classes were twice weekly for 12weeks delivered by study exercise leaders and facility activity staff personnel. The primary outcomes function, disability and mobility were assessed at baseline and post-intervention. Function and disability were assessed using the Late Life Function and Disability Instrument, and mobility using the Six-Minute Walk Test and gait speed. Patient and provider stakeholders had significant input into the study aims, design, sample, intervention, outcomes and operational considerations. A community-based exercise program to improve walking can be developed to address both investigator identified missing components in current exercise to improve walking and stakeholder defined needs and interest for the activity program. Involvement of stakeholders substantially improves the relevance of research questions, increases the transparency of research activities and may accelerate the adoption of research into practice. Copyright © 2016 Elsevier Inc. All rights reserved.
Brach, Jennifer S.; Perera, Subashan; Gilmore, Sandra; VanSwearingen, Jessie M.; Brodine, Deborah; Wert, David; Nadkarni, Neelesh K.; Ricci, Edmund
2016-01-01
Background Group exercise programs for older adults often exclude the timing and coordination of movement. Stakeholder involvement in the research process is strongly encouraged and improves the relevance and adoption of findings. We describe stakeholder involvement in the design of a clinical trial of a group-based exercise program that incorporates timing and coordination of movement into the exercises. Methods The study was a cluster randomized, single-blind intervention trial to compare the effects on function, disability and mobility of a standard group exercise program and the “On the Move” group exercise program in older adults residing in independent living facilities and senior apartment buildings, and attending community centers. Exercise classes were twice weekly for 12 weeks delivered by study exercise leaders and facility activity staff personnel. Outcomes The primary outcomes function, disability and mobility were assessed at baseline and post-intervention. Function and disability were assessed using the Late Life Function and Disability Instrument, and mobility using the Six-Minute Walk Test and gait speed. Stakeholders Patient and provider stakeholders had significant input into the study aims, design, sample, intervention, outcomes and operational considerations. Summary A community-based exercise program to improve walking can be developed to address both investigator identified missing components in current exercise to improve walking and stakeholder defined needs and interest for the activity program. Involvement of stakeholders substantially improves the relevance of research questions, increases the transparency of research activities and may accelerate the adoption of research into practice. PMID:27521806
ERIC Educational Resources Information Center
Gage, Nicholas A.; Lewis, Timothy J.; Stichter, Janine P.
2012-01-01
Of the myriad practices currently utilized for students with disabilities, particularly students with or at risk for emotional and/or behavioral disorder (EBD), functional behavior assessment (FBA) is a practice with an emerging solid research base. However, the FBA research base relies on single-subject design (SSD) and synthesis has relied on…
Using computed tomography and 3D printing to construct custom prosthetics attachments and devices.
Liacouras, Peter C; Sahajwalla, Divya; Beachler, Mark D; Sleeman, Todd; Ho, Vincent B; Lichtenberger, John P
2017-01-01
The prosthetic devices the military uses to restore function and mobility to our wounded warriors are highly advanced, and in many instances not publically available. There is considerable research aimed at this population of young patients who are extremely active and desire to take part in numerous complex activities. While prosthetists design and manufacture numerous devices with standard materials and limb assemblies, patients often require individualized prosthetic design and/or modifications to enable them to participate fully in complex activities. Prosthetists and engineers perform research and implement digitally designs in collaboration to generate equipment for their patient's rehabilitation needs. 3D printing allows for these devices to be manufactured from an array of materials ranging from plastic to titanium alloy. Many designs require form fitting to a prosthetic socket or a complex surface geometry. Specialty items can be scanned using computed tomography and digitally reconstructed to produce a virtual 3D model the engineer can use to design the necessary features of the desired prosthetic, device, or attachment. Completed devices are tested for fit and function. Numerous custom prostheses and attachments have been successfully translated from the research domain to clinical reality, in particular, those that feature the use of computed tomography (CT) reconstructions. The purpose of this project is to describe the research pathways to implementation for the following clinical designs: sets of bilateral hockey skates; custom weightlifting prosthetic hands; and a wine glass holder. This article will demonstrate how to incorporate CT imaging and 3D printing in the design and manufacturing process of custom attachments and assistive technology devices. Even though some of these prosthesis attachments may be relatively simple in design to an engineer, they have an enormous impact on the lives of our wounded warriors.
Development and Testing of Control Laws for the Active Aeroelastic Wing Program
NASA Technical Reports Server (NTRS)
Dibley, Ryan P.; Allen, Michael J.; Clarke, Robert; Gera, Joseph; Hodgkinson, John
2005-01-01
The Active Aeroelastic Wing research program was a joint program between the U.S. Air Force Research Laboratory and NASA established to investigate the characteristics of an aeroelastic wing and the technique of using wing twist for roll control. The flight test program employed the use of an F/A-18 aircraft modified by reducing the wing torsional stiffness and adding a custom research flight control system. The research flight control system was optimized to maximize roll rate using only wing surfaces to twist the wing while simultaneously maintaining design load limits, stability margins, and handling qualities. NASA Dryden Flight Research Center developed control laws using the software design tool called CONDUIT, which employs a multi-objective function optimization to tune selected control system design parameters. Modifications were made to the Active Aeroelastic Wing implementation in this new software design tool to incorporate the NASA Dryden Flight Research Center nonlinear F/A-18 simulation for time history analysis. This paper describes the design process, including how the control law requirements were incorporated into constraints for the optimization of this specific software design tool. Predicted performance is also compared to results from flight.
Stochastic Methods for Aircraft Design
NASA Technical Reports Server (NTRS)
Pelz, Richard B.; Ogot, Madara
1998-01-01
The global stochastic optimization method, simulated annealing (SA), was adapted and applied to various problems in aircraft design. The research was aimed at overcoming the problem of finding an optimal design in a space with multiple minima and roughness ubiquitous to numerically generated nonlinear objective functions. SA was modified to reduce the number of objective function evaluations for an optimal design, historically the main criticism of stochastic methods. SA was applied to many CFD/MDO problems including: low sonic-boom bodies, minimum drag on supersonic fore-bodies, minimum drag on supersonic aeroelastic fore-bodies, minimum drag on HSCT aeroelastic wings, FLOPS preliminary design code, another preliminary aircraft design study with vortex lattice aerodynamics, HSR complete aircraft aerodynamics. In every case, SA provided a simple, robust and reliable optimization method which found optimal designs in order 100 objective function evaluations. Perhaps most importantly, from this academic/industrial project, technology has been successfully transferred; this method is the method of choice for optimization problems at Northrop Grumman.
Enhancing public involvement in assistive technology design research.
Williamson, Tracey; Kenney, Laurence; Barker, Anthony T; Cooper, Glen; Good, Tim; Healey, Jamie; Heller, Ben; Howard, David; Matthews, Martin; Prenton, Sarah; Ryan, Julia; Smith, Christine
2015-05-01
To appraise the application of accepted good practice guidance on public involvement in assistive technology research and to identify its impact on the research team, the public, device and trial design. Critical reflection and within-project evaluation were undertaken in a case study of the development of a functional electrical stimulation device. Individual and group interviews were undertaken with lay members of a 10 strong study user advisory group and also research team members. Public involvement was seen positively by research team members, who reported a positive impact on device and study designs. The public identified positive impact on confidence, skills, self-esteem, enjoyment, contribution to improving the care of others and opportunities for further involvement in research. A negative impact concerned the challenge of engaging the public in dissemination after the study end. The public were able to impact significantly on the design of an assistive technology device which was made more fit for purpose. Research team attitudes to public involvement were more positive after having witnessed its potential first hand. Within-project evaluation underpins this case study which presents a much needed detailed account of public involvement in assistive technology design research to add to the existing weak evidence base. The evidence base for impact of public involvement in rehabilitation technology design is in need of development. Public involvement in co-design of rehabilitation devices can lead to technologies that are fit for purpose. Rehabilitation researchers need to consider the merits of active public involvement in research.
Programmable in vivo selection of arbitrary DNA sequences.
Ben Yehezkel, Tuval; Biezuner, Tamir; Linshiz, Gregory; Mazor, Yair; Shapiro, Ehud
2012-01-01
The extraordinary fidelity, sensory and regulatory capacity of natural intracellular machinery is generally confined to their endogenous environment. Nevertheless, synthetic bio-molecular components have been engineered to interface with the cellular transcription, splicing and translation machinery in vivo by embedding functional features such as promoters, introns and ribosome binding sites, respectively, into their design. Tapping and directing the power of intracellular molecular processing towards synthetic bio-molecular inputs is potentially a powerful approach, albeit limited by our ability to streamline the interface of synthetic components with the intracellular machinery in vivo. Here we show how a library of synthetic DNA devices, each bearing an input DNA sequence and a logical selection module, can be designed to direct its own probing and processing by interfacing with the bacterial DNA mismatch repair (MMR) system in vivo and selecting for the most abundant variant, regardless of its function. The device provides proof of concept for programmable, function-independent DNA selection in vivo and provides a unique example of a logical-functional interface of an engineered synthetic component with a complex endogenous cellular system. Further research into the design, construction and operation of synthetic devices in vivo may lead to other functional devices that interface with other complex cellular processes for both research and applied purposes.
Cicchetti, D V; Rosenheck, R; Showalter, D; Charney, D; Cramer, J
1999-05-01
Sir Ronald Fisher used a single-subject design to derive the concepts of appropriate research design, randomization, sensitivity, and tests of statistical significance. The seminal work of Broca demonstrated that valid and generalizable findings can and have emerged from studies of a single patient in neuropsychology. In order to assess the reliability and/or validity of any clinical phenomena that derive from single subject research, it becomes necessary to apply appropriate biostatistical methodology. The authors develop just such an approach and apply it successfully to the evaluation of the functioning, quality of life, and neuropsychological symptomatology of a single schizophrenic patient.
Research on pressure control of pressurizer in pressurized water reactor nuclear power plant
NASA Astrophysics Data System (ADS)
Dai, Ling; Yang, Xuhong; Liu, Gang; Ye, Jianhua; Qian, Hong; Xue, Yang
2010-07-01
Pressurizer is one of the most important components in the nuclear reactor system. Its function is to keep the pressure of the primary circuit. It can prevent shutdown of the system from the reactor accident under the normal transient state while keeping the setting value in the normal run-time. This paper is mainly research on the pressure system which is running in the Daya Bay Nuclear Power Plant. A conventional PID controller and a fuzzy controller are designed through analyzing the dynamic characteristics and calculating the transfer function. Then a fuzzy PID controller is designed by analyzing the results of two controllers. The fuzzy PID controller achieves the optimal control system finally.
An analysis of electronic document management in oncology care.
Poulter, Thomas; Gannon, Brian; Bath, Peter A
2012-06-01
In this research in progress, a reference model for the use of electronic patient record (EPR) systems in oncology is described. The model, termed CICERO, comprises technical and functional components, and emphasises usability, clinical safety and user acceptance. One of the functional components of the model-an electronic document and records management (EDRM) system-is monitored in the course of its deployment at a leading oncology centre in the UK. Specifically, the user requirements and design of the EDRM solution are described.The study is interpretative and forms part a wider research programme to define and validate the CICERO model. Preliminary conclusions confirm the importance of a socio-technical perspective in Onco-EPR system design.
ERIC Educational Resources Information Center
Thornburg, David D.
1986-01-01
Overview of the artificial intelligence (AI) field provides a definition; discusses past research and areas of future research; describes the design, functions, and capabilities of expert systems and the "Turing Test" for machine intelligence; and lists additional sources for information on artificial intelligence. Languages of AI are…
Hajdukiewicz, John R; Vicente, Kim J
2002-01-01
Ecological interface design (EID) is a theoretical framework that aims to support worker adaptation to change and novelty in complex systems. Previous evaluations of EID have emphasized representativeness to enhance generalizability of results to operational settings. The research presented here is complementary, emphasizing experimental control to enhance theory building. Two experiments were conducted to test the impact of functional information and emergent feature graphics on adaptation to novelty and change in a thermal-hydraulic process control microworld. Presenting functional information in an interface using emergent features encouraged experienced participants to become perceptually coupled to the interface and thereby to exhibit higher-level control and more successful adaptation to unanticipated events. The absence of functional information or of emergent features generally led to lower-level control and less success at adaptation, the exception being a minority of participants who compensated by relying on analytical reasoning. These findings may have practical implications for shaping coordination in complex systems and fundamental implications for the development of a general unified theory of coordination for the technical, human, and social sciences. Actual or potential applications of this research include the design of human-computer interfaces that improve safety in complex sociotechnical systems.
NASA Technical Reports Server (NTRS)
Ruoff, Carl F.
1989-01-01
The use of telerobots and rovers in space missions is examined. The functioning of the telerobots and rovers and their proposed applications are described. Research developments needed to design robots for specific environments and functions are described. Examples of NASA robotics projects are presented.
Development of self-cleaning box culvert designs : final report, June 2009.
DOT National Transportation Integrated Search
2009-06-01
The main function of a roadway culvert is to effectively convey drainage flow during normal and extreme hydrologic conditions. This function is often impaired due to the sedimentation blockage of the culvert. This research sought to understand the me...
Neuroimaging in aphasia treatment research: Standards for establishing the effects of treatment
Kiran, Swathi; Ansaldo, Ana; Bastiaanse, Roelien; Cherney, Leora R.; Howard, David; Faroqi-Shah, Yasmeen; Meinzer, Marcus; Thompson, Cynthia K
2012-01-01
The goal of this paper is to discuss experimental design options available for establishing the effects of treatment in studies that aim to examine the neural mechanisms associated with treatment-induced language recovery in aphasia, using functional magnetic resonance imaging (fMRI). We present both group and single-subject experimental or case-series design options for doing this and address advantages and disadvantages of each. We also discuss general components of and requirements for treatment research studies, including operational definitions of variables, criteria for defining behavioral change and treatment efficacy, and reliability of measurement. Important considerations that are unique to neuroimaging-based treatment research are addressed, pertaining to the relation between the selected treatment approach and anticipated changes in language processes/functions and how such changes are hypothesized to map onto the brain. PMID:23063559
Design, Development and Evaluation of a Field Learning Video Blog
ERIC Educational Resources Information Center
Petrovic, Otto
2016-01-01
The research question in this paper is how a Field Learning Video Blog (FLvlog) has to be designed in order to optimize learning processes taking into account changed everyday communication habits of students. The system is designed to meet pedagogical as well as functional requirements for learning in fieldwork settings. The main difference to…
Relating Right Brain Studies to the Design Process.
ERIC Educational Resources Information Center
Hofland, John
Intended for teachers of theatrical design who need to describe a design process for their students, this paper begins by giving a brief overview of recent research that has described the different functions of the right and left cerebral hemispheres. It then notes that although the left hemisphere tends to dominate the right hemisphere, it is the…
Interactive Electronic Technical Manuals (IETMs) Annotated Bibliography
2002-10-22
translated from their graphical counterparts. This paper examines a set of challenging issues facing speech interface designers and describes approaches...spreading network, combined with visual design techniques, such as typography , color, and transparency, enables the system to fluidly respond to...However, most research and design guidelines address typography and color separately without considering their spatial context or their function as
Identified research directions for using manufacturing knowledge earlier in the product lifecycle
Hedberg, Thomas D.; Hartman, Nathan W.; Rosche, Phil; Fischer, Kevin
2016-01-01
Design for Manufacturing (DFM), especially the use of manufacturing knowledge to support design decisions, has received attention in the academic domain. However, industry practice has not been studied enough to provide solutions that are mature for industry. The current state of the art for DFM is often rule-based functionality within Computer-Aided Design (CAD) systems that enforce specific design requirements. That rule-based functionality may or may not dynamically affect geometry definition. And, if rule-based functionality exists in the CAD system, it is typically a customization on a case-by-case basis. Manufacturing knowledge is a phrase with vast meanings, which may include knowledge on the effects of material properties decisions, machine and process capabilities, or understanding the unintended consequences of design decisions on manufacturing. One of the DFM questions to answer is how can manufacturing knowledge, depending on its definition, be used earlier in the product lifecycle to enable a more collaborative development environment? This paper will discuss the results of a workshop on manufacturing knowledge that highlights several research questions needing more study. This paper proposes recommendations for investigating the relationship of manufacturing knowledge with shape, behavior, and context characteristics of product to produce a better understanding of what knowledge is most important. In addition, the proposal includes recommendations for investigating the system-level barriers to reusing manufacturing knowledge and how model-based manufacturing may ease the burden of knowledge sharing. Lastly, the proposal addresses the direction of future research for holistic solutions of using manufacturing knowledge earlier in the product lifecycle. PMID:27990027
Identified research directions for using manufacturing knowledge earlier in the product lifecycle.
Hedberg, Thomas D; Hartman, Nathan W; Rosche, Phil; Fischer, Kevin
2017-01-01
Design for Manufacturing (DFM), especially the use of manufacturing knowledge to support design decisions, has received attention in the academic domain. However, industry practice has not been studied enough to provide solutions that are mature for industry. The current state of the art for DFM is often rule-based functionality within Computer-Aided Design (CAD) systems that enforce specific design requirements. That rule-based functionality may or may not dynamically affect geometry definition. And, if rule-based functionality exists in the CAD system, it is typically a customization on a case-by-case basis. Manufacturing knowledge is a phrase with vast meanings, which may include knowledge on the effects of material properties decisions, machine and process capabilities, or understanding the unintended consequences of design decisions on manufacturing. One of the DFM questions to answer is how can manufacturing knowledge, depending on its definition, be used earlier in the product lifecycle to enable a more collaborative development environment? This paper will discuss the results of a workshop on manufacturing knowledge that highlights several research questions needing more study. This paper proposes recommendations for investigating the relationship of manufacturing knowledge with shape, behavior, and context characteristics of product to produce a better understanding of what knowledge is most important. In addition, the proposal includes recommendations for investigating the system-level barriers to reusing manufacturing knowledge and how model-based manufacturing may ease the burden of knowledge sharing. Lastly, the proposal addresses the direction of future research for holistic solutions of using manufacturing knowledge earlier in the product lifecycle.
Qin, Mian; Liu, Yaxiong; He, Jiankang; Wang, Ling; Lian, Qin; Li, Dichen; Jin, Zhongmin; He, Sanhu; Li, Gang; Liu, Yanpu; Wang, Zhen
2014-03-01
To summarize the latest research development of the application of digital design and three-dimensional (3-D) printing technique on individualized medical treatment. Recent research data and clinical literature about the application of digital design and 3-D printing technique on individualized medical treatment in Xi'an Jiaotong University and its cooperation unit were summarized, reviewed, and analyzed. Digital design and 3-D printing technique can design and manufacture individualized implant based on the patient's specific disease conditions. And the implant can satisfy the needs of specific shape and function of the patient, reducing dependence on the level of experience required for the doctor. So 3-D printing technique get more and more recognition of the surgeon on the individualized repair of human tissue. Xi'an Jiaotong University is the first unit to develop the commercial 3-D printer and conduct depth research on the design and manufacture of individualized medical implant. And complete technological processes and quality standards of product have been developed. The individualized medical implant manufactured by 3-D printing technique can not only achieve personalized match but also meet the functional requirements and aesthetic requirements of patients. In addition, the individualized medical implant has the advantages of accurate positioning, stable connection, and high strength. So 3-D printing technique has broad prospects in the manufacture and application of individualized implant.
Using Brain Research to Drive College Teaching: Innovations in Universal Course Design
ERIC Educational Resources Information Center
Schreiner, Mary B.; Rothenberger, Cynthia D.; Sholtz, A. Janae
2013-01-01
Faculty members in higher education are challenged to meet the needs of an increasingly learning-diverse student body. Neuroscience research indicates that individual variations in brain function affect each learner's ability to process and express information. Using this research as a foundation, the theory and principles of universal course…
ERIC Educational Resources Information Center
Brown, Brendan; Nuberg, Ian; Llewellyn, Rick
2018-01-01
Purpose: The limited uptake of improved agricultural practices in Africa raise questions on the functionality of current agricultural research systems. Our purpose is to explore the capacity for local innovation within the research systems of Ethiopia, Malawi and Mozambique. Design/Methodology/Approach: Using Conservation Agriculture (CA) as a…
Rehabilitation R and D Progress Reports, 1991
1991-01-01
FES) is a challeng- work of our group , we are addressing the problem ing problem. A crucial difficulty is controlling the of designing a functional FES... control data. Background infor- research to design and evaluate interventions which mation will be obtained on the visual, sensory, help to reduce the...the senior was randomly Larger scale research is planned to investigate assigned to either a control or service group . the incidence of minor accidents
Bichutskiy, Vadim Y.; Colman, Richard; Brachmann, Rainer K.; Lathrop, Richard H.
2006-01-01
Complex problems in life science research give rise to multidisciplinary collaboration, and hence, to the need for heterogeneous database integration. The tumor suppressor p53 is mutated in close to 50% of human cancers, and a small drug-like molecule with the ability to restore native function to cancerous p53 mutants is a long-held medical goal of cancer treatment. The Cancer Research DataBase (CRDB) was designed in support of a project to find such small molecules. As a cancer informatics project, the CRDB involved small molecule data, computational docking results, functional assays, and protein structure data. As an example of the hybrid strategy for data integration, it combined the mediation and data warehousing approaches. This paper uses the CRDB to illustrate the hybrid strategy as a viable approach to heterogeneous data integration in biomedicine, and provides a design method for those considering similar systems. More efficient data sharing implies increased productivity, and, hopefully, improved chances of success in cancer research. (Code and database schemas are freely downloadable, http://www.igb.uci.edu/research/research.html.) PMID:19458771
Continual Response Measurement: Design and Validation.
ERIC Educational Resources Information Center
Baggaley, Jon
1987-01-01
Discusses reliability and validity of continual response measurement (CRM), a computer-based measurement technique, and its use in social science research. Highlights include the importance of criterion-referencing the data, guidelines for designing studies using CRM, examples typifying their deductive and inductive functions, and a discussion of…
DOT National Transportation Integrated Search
1999-08-01
This study examines certain airport design standards in an effort to understand the rationale behind their development. Researchers studied the standards to identify potential standards for relaxing. The focus is on smaller, less active airports wher...
Designing robust control laws using genetic algorithms
NASA Technical Reports Server (NTRS)
Marrison, Chris
1994-01-01
The purpose of this research is to create a method of finding practical, robust control laws. The robustness of a controller is judged by Stochastic Robustness metrics and the level of robustness is optimized by searching for design parameters that minimize a robustness cost function.
ERIC Educational Resources Information Center
Wilkie, Karina J,; Clarke, Doug
2014-01-01
This design-based research project investigated the development of functional thinking in algebra for the upper primary years of schooling. Ten teachers and their students were involved in a sequence of five cycles of collaborative planning, team-teaching, evaluating and revising five lessons on functional thinking for their students over one…
76 FR 42112 - Specialty Crop Committee Stakeholder Listening Sessions
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-18
... competitive position; and on measures designed to improve the competitiveness of research, extension and..., filing of petitions and applications and agency #0;statements of organization and functions are examples... Specialty Crop Committee Stakeholder Listening Sessions AGENCY: Research, Education, and Economics, USDA...
Educational Neuroscience: Neuroethical Considerations
ERIC Educational Resources Information Center
Lalancette, Helene; Campbell, Stephen R.
2012-01-01
Research design and methods in educational neuroscience involve using neuroscientific tools such as brain image technologies to investigate cognitive functions and inform educational practices. The ethical challenges raised by research in social neuroscience have become the focus of neuroethics, a sub-discipline of bioethics. More specifically…
ERIC Educational Resources Information Center
Morse, Emile L.; Schmidt, Heidi; Butter, Karen; Rider, Cynthia; Hickey, Thomas B.; O'Neill, Edward T.; Toves, Jenny; Green, Marlan; Soy, Sue; Gunn, Stan; Galloway, Patricia
2002-01-01
Includes four articles that discuss evaluation methods for information management systems under the Defense Advanced Research Projects Agency; building digital libraries at the University of California San Francisco's Tobacco Control Archives; IFLA's Functional Requirements for Bibliographic Records; and designing the Texas email repository model…
Solving bezel reliability and CRT obsolescence
NASA Astrophysics Data System (ADS)
Schwartz, Richard J.; Bowen, Arlen R.; Knowles, Terry
2003-09-01
Scientific Research Corporation designed a Smart Multi-Function Color Display with Positive Pilot Feedback under the funding of an U. S. Navy Small Business Innovative Research program. The Smart Multi-Function Color Display can replace the obsolete monochrome Cathode Ray Tube display currently on the T-45C aircraft built by Boeing. The design utilizes a flat panel color Active Matrix Liquid Crystal Display and TexZec's patented Touch Thru Metal bezel technology providing both visual and biomechanical feedback to the pilot in a form, fit, and function replacement to the current T-45C display. Use of an existing color AMLCD, requires the least adaptation to fill the requirements of this application, thereby minimizing risk associated with developing a new display technology and maximizing the investment in improved user interface technology. The improved user interface uses TexZec's Touch Thru Metal technology to eliminate all of the moving parts that traditionally have limited Mean-Time-Between-Failure. The touch detection circuit consists of Commercial-Off-The-Shelf components, creating touch detection circuitry, which is simple and durable. This technology provides robust switch activation and a high level of environmental immunity, both mechanical and electrical. Replacement of all the T-45C multi-function displays with this design will improve the Mean-Time-Between-Failure and drastically reduce display life cycle costs. The design methodology described in this paper can be adapted to any new or replacement display.
Pasqua, Luigi; Cundari, Sante; Ceresa, Cecilia; Cavaletti, Guido
2009-01-01
Mesoporous silica particles (MSP) are a new development in nanotechnology. Covalent modification of the surface of the silica is possible both on the internal pore and on the external particle surface. It allows the design of functional nanostructured materials with properties of organic, biological and inorganic components. Research and development are ongoing on the MSP, which have applications in catalysis, drug delivery and imaging. The most recent and interesting advancements in size, morphology control and surface functionalization of MSP have enhanced the biocompatibility of these materials with high surface areas and pore volumes. In the last 5 years several reports have demonstrated that MSP can be efficiently internalized using in vitro and animal models. The functionalization of MSP with organic moieties or other nanostructures brings controlled release and molecular recognition capabilities to these mesoporous materials for drug/gene delivery and sensing applications, respectively. Herein, we review recent research progress on the design of functional MSP materials with various mechanisms of targeting and controlled release.
Buffer strip design for protecting water quality and fish habitat
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belt, G.H.; O'Laughlin, J.
1994-04-01
Buffer strips are protective areas adjacent to streams or lakes. Among other functions, they protect water quality and fish habitat. A typical buffer strip is found in western Oregon, where they are called Riparian Management Areas (RMAs). The authors use the term buffer strip to include functional descriptions such as filter, stabilization, or leave strips, and administrative designations such as Idaho's Stream Protection Zone (SPZ), Washington's Riparian Management Zone (RMZ), and the USDA Forest Service's Streamside Management Zone (SMZ). They address water quality and fishery protective functions of buffer strips on forestlands, pointing out improvements in buffer strip design possiblemore » through research or administrative changes. Buffer strip design requirements found in some western Forest Practices Act (FPA) regulations are also compared and related to findings in the scientific literature.« less
Cognitive, Behavioral, and Functional Consequences of Inadequate Sleep in Children and Adolescents
Beebe, Dean W.
2011-01-01
Synopsis During the past few decades, studies using multiple research designs have examined whether sleep during childhood and adolescence is related to cognition, behavior, and other aspects of daytime functioning. This paper summarizes recent correlational, case-control, quasi-experimental, and experimental studies, highlighting how the strengths and limitations of each research design are complementary, thereby allowing one to more confidently draw conclusions when viewing the research literature as a whole. Viewed in this manner, published findings suggest that inadequate sleep quality and/or quantity can cause sleepiness, inattention and, very likely, other cognitive and behavioral deficits that significantly impact children and adolescents in important functional settings (e.g., school). This paper then integrates findings from longitudinal studies within a developmental psychopathology model. In this model, inadequate sleep is viewed as a noxious exposure that can, over time, fundamentally alter a child or adolescent's development, resulting in poorer long-term outcomes. Important research questions remain, but the available evidence supports the integration of sleep screening and interventions into routine clinical care and also supports advocacy for public policy changes to improve the sleep of children and adolescents. PMID:21600347
NASA Astrophysics Data System (ADS)
Aarons, J.; Grossi, M. D.
1982-08-01
To develop and operate an adaptive system, propagation factors of the ionospheric medium must be given to the designer. The operation of the system must change as a function of multipath spread, Doppler spread, path losses, channel correlation functions, etc. In addition, NATO mid-latitude HF transmission and transauroral paths require varying system operation, which must fully utilize automatic path diversity across transauroral paths. Current research and literature are reviewed to estimate the extent of the available technical information. Additional investigations to allow designers to orient new systems on realistic models of these parameters are suggested.
Collision attack against Tav-128 hash function
NASA Astrophysics Data System (ADS)
Hariyanto, Fajar; Hayat Susanti, Bety
2017-10-01
Tav-128 is a hash function which is designed for Radio Frequency Identification (RFID) authentication protocol. Tav-128 is expected to be a cryptographically secure hash function which meets collision resistance properties. In this research, a collision attack is done to prove whether Tav-128 is a collision resistant hash function. The results show that collisions can be obtained in Tav-128 hash function which means in other word, Tav-128 is not a collision resistant hash function.
Failure Mode Identification Through Clustering Analysis
NASA Technical Reports Server (NTRS)
Arunajadai, Srikesh G.; Stone, Robert B.; Tumer, Irem Y.; Clancy, Daniel (Technical Monitor)
2002-01-01
Research has shown that nearly 80% of the costs and problems are created in product development and that cost and quality are essentially designed into products in the conceptual stage. Currently, failure identification procedures (such as FMEA (Failure Modes and Effects Analysis), FMECA (Failure Modes, Effects and Criticality Analysis) and FTA (Fault Tree Analysis)) and design of experiments are being used for quality control and for the detection of potential failure modes during the detail design stage or post-product launch. Though all of these methods have their own advantages, they do not give information as to what are the predominant failures that a designer should focus on while designing a product. This work uses a functional approach to identify failure modes, which hypothesizes that similarities exist between different failure modes based on the functionality of the product/component. In this paper, a statistical clustering procedure is proposed to retrieve information on the set of predominant failures that a function experiences. The various stages of the methodology are illustrated using a hypothetical design example.
Dependent seniors garment design
NASA Astrophysics Data System (ADS)
Caldas, A. L.; Carvalho, M. A.; Lopes, H. P.
2017-10-01
This paper is part of a PhD research in Textile Engineering at University of Minho and aims to establish an ergonomic pattern design methodology to be used in the construction of garments for elderly women, aged 65 and over, dependent of care. The research was developed with a close contact with four institutions involved in supporting this aged population, located in the cities of Guimarães (Portugal) and Teresina (Brazil). These clothes should be adequate to their anthropometrics and their special needs, in accordance with important functional factors for the dependency of their caregiver, such as: care for the caregiver and comfort for the user. Questions regarding the functional properties of the materials, the pattern design process, trimmings and the assembling process of the garments are specially considered in the desired comfort levels, in order to provide an adequate handling by facilitating the dressing and undressing tasks, but also to assure the user the needed comfort in all its variables.
Understanding Biological Regulation Through Synthetic Biology.
Bashor, Caleb J; Collins, James J
2018-05-20
Engineering synthetic gene regulatory circuits proceeds through iterative cycles of design, building, and testing. Initial circuit designs must rely on often-incomplete models of regulation established by fields of reductive inquiry-biochemistry and molecular and systems biology. As differences in designed and experimentally observed circuit behavior are inevitably encountered, investigated, and resolved, each turn of the engineering cycle can force a resynthesis in understanding of natural network function. Here, we outline research that uses the process of gene circuit engineering to advance biological discovery. Synthetic gene circuit engineering research has not only refined our understanding of cellular regulation but furnished biologists with a toolkit that can be directed at natural systems to exact precision manipulation of network structure. As we discuss, using circuit engineering to predictively reorganize, rewire, and reconstruct cellular regulation serves as the ultimate means of testing and understanding how cellular phenotype emerges from systems-level network function.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maitra, Neepa
2016-07-14
This project investigates the accuracy of currently-used functionals in time-dependent density functional theory, which is today routinely used to predict and design materials and computationally model processes in solar energy conversion. The rigorously-based electron-ion dynamics method developed here sheds light on traditional methods and overcomes challenges those methods have. The fundamental research undertaken here is important for building reliable and practical methods for materials discovery. The ultimate goal is to use these tools for the computational design of new materials for solar cell devices of high efficiency.
Hierarchical nanostructures for functional materials.
Qin, Zhao; Buehler, Markus J
2018-07-13
Naturally occurring biomaterials often have amazing functions, such as mechanical, thermal, electromagnetic, biological, optical and acoustic. These superior performances are often due to their hierarchical organizations of natural materials, starting from the nanoscopic scale and extending all the way to the macroscopic level. This topical issue features articles dedicated to understanding, designing and characterizing complex de novo hierarchical materials for a variety of applications. This research area is quickly evolving, and we hope that future work will drive the rational designs of innovative functional materials and generate deep impacts to broad engineering fields that address major societal challenges and needs.
Hierarchical nanostructures for functional materials
NASA Astrophysics Data System (ADS)
Qin, Zhao; Buehler, Markus J.
2018-07-01
Naturally occurring biomaterials often have amazing functions, such as mechanical, thermal, electromagnetic, biological, optical and acoustic. These superior performances are often due to their hierarchical organizations of natural materials, starting from the nanoscopic scale and extending all the way to the macroscopic level. This topical issue features articles dedicated to understanding, designing and characterizing complex de novo hierarchical materials for a variety of applications. This research area is quickly evolving, and we hope that future work will drive the rational designs of innovative functional materials and generate deep impacts to broad engineering fields that address major societal challenges and needs.
Molecular structures guide the engineering of chromatin.
Tekel, Stefan J; Haynes, Karmella A
2017-07-27
Chromatin is a system of proteins, RNA, and DNA that interact with each other to organize and regulate genetic information within eukaryotic nuclei. Chromatin proteins carry out essential functions: packing DNA during cell division, partitioning DNA into sub-regions within the nucleus, and controlling levels of gene expression. There is a growing interest in manipulating chromatin dynamics for applications in medicine and agriculture. Progress in this area requires the identification of design rules for the chromatin system. Here, we focus on the relationship between the physical structure and function of chromatin proteins. We discuss key research that has elucidated the intrinsic properties of chromatin proteins and how this information informs design rules for synthetic systems. Recent work demonstrates that chromatin-derived peptide motifs are portable and in some cases can be customized to alter their function. Finally, we present a workflow for fusion protein design and discuss best practices for engineering chromatin to assist scientists in advancing the field of synthetic epigenetics. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Unified Engineering Software System
NASA Technical Reports Server (NTRS)
Purves, L. R.; Gordon, S.; Peltzman, A.; Dube, M.
1989-01-01
Collection of computer programs performs diverse functions in prototype engineering. NEXUS, NASA Engineering Extendible Unified Software system, is research set of computer programs designed to support full sequence of activities encountered in NASA engineering projects. Sequence spans preliminary design, design analysis, detailed design, manufacturing, assembly, and testing. Primarily addresses process of prototype engineering, task of getting single or small number of copies of product to work. Written in FORTRAN 77 and PROLOG.
Design challenges for space bioreactors
NASA Technical Reports Server (NTRS)
Seshan, P. K.; Petersen, G. R.
1989-01-01
The design of bioreactors for operation under conditions of microgravity presents problems and challenges. Absence of a significant body force such as gravity can have profound consequences for interfacial phenomena. Marangoni convection can no longer be overlooked. Many speculations on the advantages and benefits of microgravity can be found in the literature. Initial bioreactor research considerations for space applications had little regard for the suitability of the designs for conditions of microgravity. Bioreactors can be classified in terms of their function and type of operation. The complex interaction of parameters leading to optimal design and operation of a bioreactor is illustrated by the JSC mammalian cell culture system. The design of a bioreactor is strongly dependent upon its intended use as a production unit for cell mass and/or biologicals or as a research reactor for the study of cell growth and function. Therefore a variety of bioreactor configurations are presented in rapid summary. Following this, a rationale is presented for not attempting to derive key design parameters such as the oxygen transfer coefficient from ground-based data. A set of themes/objectives for flight experiments to develop the expertise for design of space bioreactors is then proposed for discussion. These experiments, carried out systematically, will provide a database from which engineering tools for space bioreactor design will be derived.
Taylor, Ann M; Phillips, Kristine; Patel, Kushang V; Turk, Dennis C; Dworkin, Robert H; Beaton, Dorcas; Clauw, Daniel J; Gignac, Monique A M; Markman, John D; Williams, David A; Bujanover, Shay; Burke, Laurie B; Carr, Daniel B; Choy, Ernest H; Conaghan, Philip G; Cowan, Penney; Farrar, John T; Freeman, Roy; Gewandter, Jennifer; Gilron, Ian; Goli, Veeraindar; Gover, Tony D; Haddox, J David; Kerns, Robert D; Kopecky, Ernest A; Lee, David A; Malamut, Richard; Mease, Philip; Rappaport, Bob A; Simon, Lee S; Singh, Jasvinder A; Smith, Shannon M; Strand, Vibeke; Tugwell, Peter; Vanhove, Gertrude F; Veasley, Christin; Walco, Gary A; Wasan, Ajay D; Witter, James
2016-09-01
Although pain reduction is commonly the primary outcome in chronic pain clinical trials, physical functioning is also important. A challenge in designing chronic pain trials to determine efficacy and effectiveness of therapies is obtaining appropriate information about the impact of an intervention on physical function. The Initiative on Methods, Measurement, and Pain Assessment in Clinical Trials (IMMPACT) and Outcome Measures in Rheumatology (OMERACT) convened a meeting to consider assessment of physical functioning and participation in research on chronic pain. The primary purpose of this article is to synthesize evidence on the scope of physical functioning to inform work on refining physical function outcome measurement. We address issues in assessing this broad construct and provide examples of frequently used measures of relevant concepts. Investigators can assess physical functioning using patient-reported outcome (PRO), performance-based, and objective measures of activity. This article aims to provide support for the use of these measures, covering broad aspects of functioning, including work participation, social participation, and caregiver burden, which researchers should consider when designing chronic pain clinical trials. Investigators should consider the inclusion of both PROs and performance-based measures as they provide different but also important complementary information. The development and use of reliable and valid PROs and performance-based measures of physical functioning may expedite development of treatments, and standardization of these measures has the potential to facilitate comparison across studies. We provide recommendations regarding important domains to stimulate research to develop tools that are more robust, address consistency and standardization, and engage patients early in tool development.
10 CFR Appendix A to Part 851 - Worker Safety and Health Functional Areas
Code of Federal Regulations, 2014 CFR
2014-01-01
... requirements to research and development laboratory type operations consistent with the DOE level of protection... safety policies and procedures to ensure that pressure systems are designed, fabricated, tested... must include the following: (1) Design drawings, sketches, and calculations must be reviewed and...
10 CFR Appendix A to Part 851 - Worker Safety and Health Functional Areas
Code of Federal Regulations, 2012 CFR
2012-01-01
... requirements to research and development laboratory type operations consistent with the DOE level of protection... safety policies and procedures to ensure that pressure systems are designed, fabricated, tested... must include the following: (1) Design drawings, sketches, and calculations must be reviewed and...
10 CFR Appendix A to Part 851 - Worker Safety and Health Functional Areas
Code of Federal Regulations, 2011 CFR
2011-01-01
... requirements to research and development laboratory type operations consistent with the DOE level of protection... safety policies and procedures to ensure that pressure systems are designed, fabricated, tested... must include the following: (1) Design drawings, sketches, and calculations must be reviewed and...
Single-case research design in pediatric psychology: considerations regarding data analysis.
Cohen, Lindsey L; Feinstein, Amanda; Masuda, Akihiko; Vowles, Kevin E
2014-03-01
Single-case research allows for an examination of behavior and can demonstrate the functional relation between intervention and outcome in pediatric psychology. This review highlights key assumptions, methodological and design considerations, and options for data analysis. Single-case methodology and guidelines are reviewed with an in-depth focus on visual and statistical analyses. Guidelines allow for the careful evaluation of design quality and visual analysis. A number of statistical techniques have been introduced to supplement visual analysis, but to date, there is no consensus on their recommended use in single-case research design. Single-case methodology is invaluable for advancing pediatric psychology science and practice, and guidelines have been introduced to enhance the consistency, validity, and reliability of these studies. Experts generally agree that visual inspection is the optimal method of analysis in single-case design; however, statistical approaches are becoming increasingly evaluated and used to augment data interpretation.
Analytical Tools for Functional Assessment of Architectural Layouts
NASA Astrophysics Data System (ADS)
Bąkowski, Jarosław
2017-10-01
Functional layout of the building, understood as a layout or set of the facility rooms (or groups of rooms) with a system of internal communication, creates an environment and a place of mutual relations between the occupants of the object. Achieving optimal (from the occupants’ point of view) spatial arrangement is possible through activities that often go beyond the stage of architectural design. Adopted in the architectural design, most often during trial and error process or on the basis of previous experience (evidence-based design), functional layout is subject to continuous evaluation and dynamic changing since the beginning of its use. Such verification of the occupancy phase allows to plan future, possible transformations, as well as to develop model solutions for use in other settings. In broader terms, the research hypothesis is to examine whether and how the collected datasets concerning the facility and its utilization can be used to develop methods for assessing functional layout of buildings. In other words, if it is possible to develop an objective method of assessing functional layouts basing on a set of buildings’ parameters: technical, technological and functional ones and whether the method allows developing a set of tools enhancing the design methodology of complex functional objects. By linking the design with the construction phase it is possible to build parametric models of functional layouts, especially in the context of sustainable design or lean design in every aspect: ecological (by reducing the property’s impact on environment), economic (by optimizing its cost) and social (through the implementation of high-performance work environment). Parameterization of size and functional connections of the facility become part of the analyses, as well as the element of model solutions. The “lean” approach means the process of analysis of the existing scheme and consequently - finding weak points as well as means for eliminating these defects. This approach, supplemented by the method of reverse engineering means that already in the design phase there is essential knowledge about the functioning of the facility. It is far beyond intuitive knowledge, based on the standards and specifications. In the scope of reverse engineering methods, the subject of the research is an audit of the product (i.e. architectural design, especially the built spatial layout) in order to determine exactly how it works. Information gained in this way is to help building a system for supporting decisions for preparing design solutions for future investments as well as the functional analysis itself becomes an essential part of the setting up building information process. The data are presented with graphical methods as networks of different factors between rooms. The direct analytical method for the setting is to determine the functional collision between users’ tracks, finding or indication of the shortest paths connecting analyzed rooms and finally to identify the optimal location of these rooms (each according to different factor). The measurement data are supplemented by the results of surveys conducted among users of hospitals, statistics and quantitative medical procedures performed in the test section of the hospital. The results of research are transferred and integrated with BIM system (building information modelling system), and included in the specifications of the IFC (Industry Foundation Classes), especially at the level of information on the relationship between the individual properties associated with elements (in the case of hospitals it may be information about the necessary connections with other rooms, access times from or to specific rooms, rooms utilization conditions, fire safety protection and conditions and many other). At the level of the BIM specification the model data are integrated at the BIM 6D (an extension of the model data with a range of functional analysis) or even BIM 7D (additional integration with systems used at the stage of operation and maintenance of the facility).
NASA Astrophysics Data System (ADS)
Lin, Y.; Zhang, W. J.
2005-02-01
This paper presents an approach to human-machine interface design for control room operators of nuclear power plants. The first step in designing an interface for a particular application is to determine information content that needs to be displayed. The design methodology for this step is called the interface design framework (called framework ). Several frameworks have been proposed for applications at varying levels, including process plants. However, none is based on the design and manufacture of a plant system for which the interface is designed. This paper presents an interface design framework which originates from design theory and methodology for general technical systems. Specifically, the framework is based on a set of core concepts of a function-behavior-state model originally proposed by the artificial intelligence research community and widely applied in the design research community. Benefits of this new framework include the provision of a model-based fault diagnosis facility, and the seamless integration of the design (manufacture, maintenance) of plants and the design of human-machine interfaces. The missing linkage between design and operation of a plant was one of the causes of the Three Mile Island nuclear reactor incident. A simulated plant system is presented to explain how to apply this framework in designing an interface. The resulting human-machine interface is discussed; specifically, several fault diagnosis examples are elaborated to demonstrate how this interface could support operators' fault diagnosis in an unanticipated situation.
Integrating Quality Matters into Hybrid Course Design: A Principles of Marketing Case Study
ERIC Educational Resources Information Center
Young, Mark R.
2014-01-01
Previous research supports the idea that the success of hybrid or online delivery modes is more a function of course design than delivery media. This article describes a case study of a hybrid Principles of Marketing course that implemented a comprehensive redesign based on design principles espoused by the Quality Matters Program, a center for…
Code of Federal Regulations, 2012 CFR
2012-10-01
... restaurant trade, but whose primary business function is not the processing or packaging of fish or fish... processing vessels and any person in the business of acquiring (taking title to) fish directly from harvesters. Research means any type of research designed to advance the image, desirability, usage...
Code of Federal Regulations, 2011 CFR
2011-10-01
... restaurant trade, but whose primary business function is not the processing or packaging of fish or fish... processing vessels and any person in the business of acquiring (taking title to) fish directly from harvesters. Research means any type of research designed to advance the image, desirability, usage...
Code of Federal Regulations, 2013 CFR
2013-10-01
... restaurant trade, but whose primary business function is not the processing or packaging of fish or fish... processing vessels and any person in the business of acquiring (taking title to) fish directly from harvesters. Research means any type of research designed to advance the image, desirability, usage...
Code of Federal Regulations, 2010 CFR
2010-10-01
... restaurant trade, but whose primary business function is not the processing or packaging of fish or fish... processing vessels and any person in the business of acquiring (taking title to) fish directly from harvesters. Research means any type of research designed to advance the image, desirability, usage...
Code of Federal Regulations, 2014 CFR
2014-10-01
... restaurant trade, but whose primary business function is not the processing or packaging of fish or fish... processing vessels and any person in the business of acquiring (taking title to) fish directly from harvesters. Research means any type of research designed to advance the image, desirability, usage...
Grabber arm mechanism for the Italian Research Interim Stage (IRIS)
NASA Technical Reports Server (NTRS)
Turci, Edmondo
1987-01-01
Two deployable arms, named grabbers, were designed and manufactured to provide lateral stability of the perigee spinning stage which will be deployed from the Space Shuttle cargo bay. The spinning stage is supported by a spin table on a cradle at its base. The Italian Research Interim Stage (IRIS) is designed to carry satellites of intermediate mass up to 900 kg. The requirements are defined and the mechanism is described. Functional test results are presented.
Multiqubit Clifford groups are unitary 3-designs
NASA Astrophysics Data System (ADS)
Zhu, Huangjun
2017-12-01
Unitary t -designs are a ubiquitous tool in many research areas, including randomized benchmarking, quantum process tomography, and scrambling. Despite the intensive efforts of many researchers, little is known about unitary t -designs with t ≥3 in the literature. We show that the multiqubit Clifford group in any even prime-power dimension is not only a unitary 2-design, but also a 3-design. Moreover, it is a minimal 3-design except for dimension 4. As an immediate consequence, any orbit of pure states of the multiqubit Clifford group forms a complex projective 3-design; in particular, the set of stabilizer states forms a 3-design. In addition, our study is helpful in studying higher moments of the Clifford group, which are useful in many research areas ranging from quantum information science to signal processing. Furthermore, we reveal a surprising connection between unitary 3-designs and the physics of discrete phase spaces and thereby offer a simple explanation of why no discrete Wigner function is covariant with respect to the multiqubit Clifford group, which is of intrinsic interest in studying quantum computation.
ERIC Educational Resources Information Center
Sousa, David A.
This book is designed to help teachers turn research on the brain function of intellectually and artistically advanced students into practical classroom activities and strategies. Following an introduction that discuses the myths and realities about giftedness, chapter 1 discusses basic brain structures and their functions. Chapter 2 looks at…
Tobner, Cornelia M; Paquette, Alain; Reich, Peter B; Gravel, Dominique; Messier, Christian
2014-03-01
Increasing concern about loss of biodiversity and its effects on ecosystem functioning has triggered a series of manipulative experiments worldwide, which have demonstrated a general trend for ecosystem functioning to increase with diversity. General mechanisms proposed to explain diversity effects include complementary resource use and invoke a key role for species' functional traits. The actual mechanisms by which complementary resource use occurs remain, however, poorly understood, as well as whether they apply to tree-dominated ecosystems. Here we present an experimental approach offering multiple innovative aspects to the field of biodiversity-ecosystem functioning (BEF) research. The International Diversity Experiment Network with Trees (IDENT) allows research to be conducted at several hierarchical levels within individuals, neighborhoods, and communities. The network investigates questions related to intraspecific trait variation, complementarity, and environmental stress. The goal of IDENT is to identify some of the mechanisms through which individuals and species interact to promote coexistence and the complementary use of resources. IDENT includes several implemented and planned sites in North America and Europe, and uses a replicated design of high-density tree plots of fixed species-richness levels varying in functional diversity (FD). The design reduces the space and time needed for trees to interact allowing a thorough set of mixtures varying over different diversity gradients (specific, functional, phylogenetic) and environmental conditions (e.g., water stress) to be tested in the field. The intention of this paper is to share the experience in designing FD-focused BEF experiments with trees, to favor collaborations and expand the network to different conditions.
History of watershed research in the Central Arizona Highlands
Malchus B. Baker
1999-01-01
The Central Arizona Highlands have been the focus of a wide range of research efforts designed to learn more about the effects of natural and human induced disturbances on the functioning, processes, and components of the region's ecosystems. The watershed research spearheaded by the USDA Forest Service and its cooperators continues to lead to a comprehensive...
ERIC Educational Resources Information Center
Gecer, Aynur; Ozel, Ruhan
2012-01-01
This research aims to explore the problems that teacher have experienced their opinion towards effectives and and functionality of teaching-learning process of Primary Science and Technology curriculum started to be implemented in 2004-2005 academic year in Turkey. The qualitative research design is used in this study. Research data are collected…
NASA Technical Reports Server (NTRS)
1974-01-01
The definition and integration tasks involved in the development of design concepts for a carry-on laboratory (COL), to be compatible with Spacelab operations, were divided into the following study areas: (1) identification of research and equipment requirements of the COL; (2) development of a number of conceptual layouts for COL based on the defined research of final conceptual designs; and (4) development of COL planning information for definition of COL/Spacelab interface data, cost data, and program cost schedules, including design drawings of a selected COL to permit fabrication of a functional breadboard.
Tang, Qi-Yi; Zhang, Chuan-Xi
2013-04-01
A comprehensive but simple-to-use software package called DPS (Data Processing System) has been developed to execute a range of standard numerical analyses and operations used in experimental design, statistics and data mining. This program runs on standard Windows computers. Many of the functions are specific to entomological and other biological research and are not found in standard statistical software. This paper presents applications of DPS to experimental design, statistical analysis and data mining in entomology. © 2012 The Authors Insect Science © 2012 Institute of Zoology, Chinese Academy of Sciences.
Applying the design-build-test paradigm in microbiome engineering.
Pham, Hoang Long; Ho, Chun Loong; Wong, Adison; Lee, Yung Seng; Chang, Matthew Wook
2017-12-01
The recently discovered roles of human microbiome in health and diseases have inspired research efforts across many disciplines to engineer microbiome for health benefits. In this review, we highlight recent progress in human microbiome research and how modifications to the microbiome could result in implications to human health. Furthermore, we discuss the application of a 'design-build-test' framework to expedite microbiome engineering efforts by reviewing current literature on three key aspects: design principles to engineer the human microbiome, methods to engineer microbiome with desired functions, and analytical techniques to examine complex microbiome samples. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Prinzel, Lawrence J., III; Kaber, David B.
2006-01-01
This report presents a review of literature on approaches to adaptive and adaptable task/function allocation and adaptive interface technologies for effective human management of complex systems that are likely to be issues for the Next Generation Air Transportation System, and a focus of research under the Aviation Safety Program, Integrated Intelligent Flight Deck Project. Contemporary literature retrieved from an online database search is summarized and integrated. The major topics include the effects of delegation-type, adaptable automation on human performance, workload and situation awareness, the effectiveness of various automation invocation philosophies and strategies to function allocation in adaptive systems, and the role of user modeling in adaptive interface design and the performance implications of adaptive interface technology.
The new Langley Research Center advanced real-time simulation (ARTS) system
NASA Technical Reports Server (NTRS)
Crawford, D. J.; Cleveland, J. I., II
1986-01-01
Based on a survey of current local area network technology with special attention paid to high bandwidth and very low transport delay requirements, NASA's Langley Research Center designed a new simulation subsystem using the computer automated measurement and control (CAMAC) network. This required significant modifications to the standard CAMAC system and development of a network switch, a clocking system, new conversion equipment, new consoles, supporting software, etc. This system is referred to as the advanced real-time simulation (ARTS) system. It is presently being built at LaRC. This paper provides a functional and physical description of the hardware and a functional description of the software. The requirements which drove the design are presented as well as present performance figures and status.
Digital avionics systems - Overview of FAA/NASA/industry-wide briefing
NASA Technical Reports Server (NTRS)
Larsen, William E.; Carro, Anthony
1986-01-01
The effects of incorporating digital technology into the design of aircraft on the airworthiness criteria and certification procedures for aircraft are investigated. FAA research programs aimed at providing data for the functional assessment of aircraft which use digital systems for avionics and flight control functions are discussed. The need to establish testing, assurance assessment, and configuration management technologies to insure the reliability of digital systems is discussed; consideration is given to design verification, system performance/robustness, and validation technology.
Research on Capturing of Customer Requirements Based on Innovation Theory
NASA Astrophysics Data System (ADS)
junwu, Ding; dongtao, Yang; zhenqiang, Bao
To exactly and effectively capture customer requirements information, a new customer requirements capturing modeling method was proposed. Based on the analysis of function requirement models of previous products and the application of technology system evolution laws of the Theory of Innovative Problem Solving (TRIZ), the customer requirements could be evolved from existing product designs, through modifying the functional requirement unit and confirming the direction of evolution design. Finally, a case study was provided to illustrate the feasibility of the proposed approach.
Prototyping Visual Learning Analytics Guided by an Educational Theory Informed Goal
ERIC Educational Resources Information Center
Hillaire, Garron; Rappolt-Schlichtmann, Gabrielle; Ducharme, Kim
2016-01-01
Prototype work can support the creation of data visualizations throughout the research and development process through paper prototypes with sketching, designed prototypes with graphic design tools, and functional prototypes to explore how the implementation will work. One challenging aspect of data visualization work is coordinating the expertise…
EVALUATING DESIGN AND VERIFYING COMPLIANCE OF CREATED WETLANDS IN THE VICINITY OF TAMPA, FLORIDA
Completed mitigation projects are being studied by the Wetlands Research Program nationwide to identify critical design features, develop methods for evaluating projects, determine the functions they perform, and describe how they change with time. his report is the second in a s...
NASA Astrophysics Data System (ADS)
Akai, Hisazumi; Oguchi, Tamio
2007-09-01
This special issue of Journal of Physics: Condensed Matter comprises selected papers from the 1st International Conference on Quantum Simulators and Design (QSD2006) held in Hiroshima, Japan, 3-6 December 2006. This conference was organized under the auspices of the Development of New Quantum Simulators and Quantum Design Grant-in-Aid for Scientific Research on Priority Areas, Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT), and Hiroshima University Quantum design is a computational approach to the development of new materials with specified properties and functionalities. The basic ingredient is the use of quantum simulations to design a material that meets a given specification of properties and functionalities. For this to be successful, the quantum simulation should be highly reliable and be applicable to systems of realistic size. A central interest is, therefore, the development of new methods of quantum simulation and quantum design. This includes methods beyond the local density approximation of density functional theory (LDA), order-N methods, methods dealing with excitations and reactions, and so on, as well as the application of these methods to the design of new materials and devices. The field of quantum design has developed rapidly in the past few years and this conference provides an international forum for experimental and theoretical researchers to exchange ideas. A total of 183 delegates from 8 countries participated in the conference. There were 18 invited talks, 16 oral presentations and 100 posters. There were many new ideas and we foresee dramatic progress in the coming years. The 2nd International Conference on Quantum Simulators and Design will be held in Tokyo, Japan, 31 May-3 June 2008.
NASA Technical Reports Server (NTRS)
Morelli, Eugene A.; DeLoach, Richard
2003-01-01
A wind tunnel experiment for characterizing the aerodynamic and propulsion forces and moments acting on a research model airplane is described. The model airplane called the Free-flying Airplane for Sub-scale Experimental Research (FASER), is a modified off-the-shelf radio-controlled model airplane, with 7 ft wingspan, a tractor propeller driven by an electric motor, and aerobatic capability. FASER was tested in the NASA Langley 12-foot Low-Speed Wind Tunnel, using a combination of traditional sweeps and modern experiment design. Power level was included as an independent variable in the wind tunnel test, to allow characterization of power effects on aerodynamic forces and moments. A modeling technique that employs multivariate orthogonal functions was used to develop accurate analytic models for the aerodynamic and propulsion force and moment coefficient dependencies from the wind tunnel data. Efficient methods for generating orthogonal modeling functions, expanding the orthogonal modeling functions in terms of ordinary polynomial functions, and analytical orthogonal blocking were developed and discussed. The resulting models comprise a set of smooth, differentiable functions for the non-dimensional aerodynamic force and moment coefficients in terms of ordinary polynomials in the independent variables, suitable for nonlinear aircraft simulation.
Li, Hongguang; Choi, Jiyoung; Nakanishi, Takashi
2013-05-07
The engineering of single molecules into higher-order hierarchical assemblies is a current research focus in molecular materials chemistry. Molecules containing π-conjugated units are an important class of building blocks because their self-assembly is not only of fundamental interest, but also the key to fabricating functional systems for organic electronic and photovoltaic applications. Functionalizing the π-cores with "alkyl chains" is a common strategy in the molecular design that can give the system desirable properties, such as good solubility in organic solvents for solution processing. Moreover, the alkylated-π system can regulate the self-assembly behavior by fine-tuning the intermolecular forces. The optimally assembled structures can then exhibit advanced functions. However, while some general rules have been revealed, a comprehensive understanding of the function played by the attached alkyl chains is still lacking, and current methodology is system-specific in many cases. Better clarification of this issue requires contributions from carefully designed libraries of alkylated-π molecular systems in both self-assembly and nonassembly materialization strategies. Here, based on recent efforts toward this goal, we show the power of the alkyl chains in controlling the self-assembly of soft molecular materials and their resulting optoelectronic properties. The design of alkylated-C60 is selected from our recent research achievements, as the most attractive example of such alkylated-π systems. Some other closely related systems composed of alkyl chains and π-units are also reviewed to indicate the universality of the methodology. Finally, as a contrast to the self-assembled molecular materials, nonassembled, solvent-free, novel functional liquid materials are discussed. In doing so, a new journey toward the ultimate organic "soft" materials is introduced, based on alkylated-π molecular design.
7 CFR 1207.512 - Designated handler.
Code of Federal Regulations, 2012 CFR
2012-01-01
... AGREEMENTS AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE POTATO RESEARCH AND PROMOTION... who grades, packs, or otherwise performs handler functions thereby becomes a handler and as such...
Tenure, Functional Track and Strategic Leadership
ERIC Educational Resources Information Center
Eacott, Scott
2010-01-01
Purpose: The purpose of this paper is to investigate whether the demographic variables of tenure and functional track have a moderating effect on the strategic leadership of school leaders. Design/methodology/approach: Using a conceptual framework developed by the researcher, a static/cross-sectional questionnaire-based study on a convenience…
ERIC Educational Resources Information Center
Schermerhorn, Alice C.; D'Onofrio, Brian M.; Turkheimer, Eric; Ganiban, Jody M.; Spotts, Erica L.; Lichtenstein, Paul; Reiss, David; Neiderhiser, Jenae M.
2011-01-01
Research has documented associations between family functioning and offspring psychosocial adjustment, but questions remain regarding whether these associations are partly due to confounding genetic factors and other environmental factors. The current study used a genetically informed approach, the Children of Twins design, to explore the…
USDA-ARS?s Scientific Manuscript database
Objectives: To determine whether objectively measured physical activity levels are associated with measures of physical function and mobility in older men. Design: Cross-sectional. Setting: Academic research center. Participants: Eighty-two community-dwelling men >/= 65 years of age with self-report...
46 CFR 501.5 - Functions of the organizational components of the Federal Maritime Commission.
Code of Federal Regulations, 2011 CFR
2011-10-01
... and recommends policies for activities designed to promote economy, efficiency, and effectiveness in...(8) of the Shipping Act of 1984 (46 U.S.C. 40102(8)), researches their status, and makes... Commission. The Office's functions include: Conducting IT management studies and surveys; managing data and...
Mazzoleni, Stefano; Toth, Andras; Munih, Marko; Van Vaerenbergh, Jo; Cavallo, Giuseppe; Micera, Silvestro; Dario, Paolo; Guglielmelli, Eugenio
2009-10-30
One of the main scientific and technological challenges of rehabilitation bioengineering is the development of innovative methodologies, based on the use of appropriate technological devices, for an objective assessment of patients undergoing a rehabilitation treatment. Such tools should be as fast and cheap to use as clinical scales, which are currently the daily instruments most widely used in the routine clinical practice. A human-centered approach was used in the design and development of a mechanical structure equipped with eight force/torque sensors that record quantitative data during the initiation of a predefined set of Activities of Daily Living (ADL) tasks, in isometric conditions. Preliminary results validated the appropriateness, acceptability and functionality of the proposed platform, that has become now a tool used for clinical research in three clinical centres. This paper presented the design and development of an innovative platform for whole-body force and torque measurements on human subjects. The platform has been designed to perform accurate quantitative measurements in isometric conditions with the specific aim to address the needs for functional assessment tests of patients undergoing a rehabilitation treatment as a consequence of a stroke.The versatility of the system also enlightens several other interesting possible areas of application for therapy in neurorehabilitation, for research in basic neuroscience, and more.
Trial-Based Functional Analysis Informs Treatment for Vocal Scripting.
Rispoli, Mandy; Brodhead, Matthew; Wolfe, Katie; Gregori, Emily
2018-05-01
Research on trial-based functional analysis has primarily focused on socially maintained challenging behaviors. However, procedural modifications may be necessary to clarify ambiguous assessment results. The purposes of this study were to evaluate the utility of iterative modifications to trial-based functional analysis on the identification of putative reinforcement and subsequent treatment for vocal scripting. For all participants, modifications to the trial-based functional analysis identified a primary function of automatic reinforcement. The structure of the trial-based format led to identification of social attention as an abolishing operation for vocal scripting. A noncontingent attention treatment was evaluated using withdrawal designs for each participant. This noncontingent attention treatment resulted in near zero levels of vocal scripting for all participants. Implications for research and practice are presented.
One output function: a misconception of students studying digital systems - a case study
NASA Astrophysics Data System (ADS)
Trotskovsky, E.; Sabag, N.
2015-05-01
Background:Learning processes are usually characterized by students' misunderstandings and misconceptions. Engineering educators intend to help their students overcome their misconceptions and achieve correct understanding of the concept. This paper describes a misconception in digital systems held by many students who believe that combinational logic circuits should have only one output. Purpose:The current study aims to investigate the roots of the misconception about one-output function and the pedagogical methods that can help students overcome the misconception. Sample:Three hundred and eighty-one students in the Departments of Electrical and Electronics and Mechanical Engineering at an academic engineering college, who learned the same topics of a digital combinational system, participated in the research. Design and method:In the initial research stage, students were taught according to traditional method - first to design a one-output combinational logic system, and then to implement a system with a number of output functions. In the main stage, an experimental group was taught using a new method whereby they were shown how to implement a system with several output functions, prior to learning about one-output systems. A control group was taught using the traditional method. In the replication stage (the third stage), an experimental group was taught using the new method. A mixed research methodology was used to examine the results of the new learning method. Results:Quantitative research showed that the new teaching approach resulted in a statistically significant decrease in student errors, and qualitative research revealed students' erroneous thinking patterns. Conclusions:It can be assumed that the traditional teaching method generates an incorrect mental model of the one-output function among students. The new pedagogical approach prevented the creation of an erroneous mental model and helped students develop the correct conceptual understanding.
Lee, Sharon Y; Lo, Ya-Yu; Lo, Yafen
2017-08-01
The researchers used a single-case, multiple probe design across three sets of toys (i.e., farm toy, doctor's clinic toy, and rescue toy) to examine the effects of video self-modeling (VSM) on the functional play skills of a 5-year-old child with autism spectrum disorder. The findings showed a functional relation between VSM and increased percentages of functional play actions across the toy sets. The participant's percentages of the targeted functional play skills for the intervention toys remained high 1 week and 2 weeks after the intervention ceased. Additionally, preliminary generalization results showed slight improvement in the percentages of functional play actions with the generalization toys that were not directly taught. Limitations, practical implications, and directions for future research are discussed.
Volunteering in the Community: Potential Benefits for Cognitive Aging.
Guiney, Hayley; Machado, Liana
2018-03-02
This review aims to advance understanding of the potential benefits of volunteering in the community for older adults' cognitive functioning by taking an in-depth look at the relevant evidence to date. This review describes the main pathways through which volunteering could plausibly benefit cognitive functioning and critically examines research that has specifically investigated links between volunteering and cognition. Fifteen articles that assessed in adults aged ≥ 55 years the relationship between volunteering (predictor) and cognitive functioning (outcome) were identified via literature database searches. On balance, evidence from the small number of relevant studies to date supports the idea that volunteering can protect against cognitive aging with respect to global functioning and at least some specific cognitive domains. Studies that used robust designs and assessed domain-specific cognitive functioning produced the largest effect sizes. To help advance the field, this review puts forward recommendations for future research, with an emphasis on the need for robust study designs and specific investigations into the nature and extent of the cognitive benefits of volunteering. Through that work, researchers can determine how a simple and accessible activity like volunteering can best be used to help reduce the burden of age-related cognitive decline. © The Author 2017. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Efficacy of an Emotion-Focused Treatment for Prolonged Fatigue
ERIC Educational Resources Information Center
Schutte, Nicola S.; Malouff, John M.; Brown, Rhonda F.
2008-01-01
Previous research findings have suggested a relationship between less adaptive emotional functioning and fatigue. The present study used a research design involving multiple baselines across participants to evaluate the efficacy of a new emotion-focused treatment for prolonged fatigue delivered in a cognitive behavioral therapy framework. The 13…
ERIC Educational Resources Information Center
Cui, Ming; Donnellan, M. Brent; Conger, Rand D.
2007-01-01
The present study examines reciprocal associations between marital functioning and adolescent maladjustment using cross-lagged autoregressive models. The research involved 451 early adolescents and their families and used a prospective, longitudinal research design with multi-informant methods. Results indicate that parental conflicts over child…
Workshop on Instructional Features and Instructor/Operator Station Design for Training Systems.
ERIC Educational Resources Information Center
Ricard, G. L., Ed.; And Others
These 19 papers review current research and development work related to the operation of the instructor's station of training systems, with emphasis on developing functional station specifications applicable to a variety of simulation-based training situations. Topics include (1) instructional features; (2) instructor/operator station research and…
ERIC Educational Resources Information Center
Ciechanowski, Kathryn M.
2014-01-01
This research explores third-grade science and language instruction for emergent bilinguals designed through a framework of planning, lessons, and assessment in an interconnected model including content, linguistic features, and functions. Participants were a team of language specialist, classroom teacher, and researcher who designed…
Field research on the spectral properties of crops and soils, volume 1. [Purdue Agronomy Farm
NASA Technical Reports Server (NTRS)
Bauer, M. E. (Principal Investigator); Biehl, L. L.; Robinson, B. F.
1980-01-01
The experiment design, data acquisition and preprocessing, data base management, analysis results and development of instrumentation for the AgRISTARS Supporting Research Project, Field Research task are described. Results of several investigations on the spectral reflectance of corn and soybean canopies as influenced by cultural practices, development stage and nitrogen nutrition are reported as well as results of analyses of the spectral properties of crop canopies as a function of canopy geometry, row orientation, sensor view angle and solar illumination angle are presented. The objectives, experiment designs and data acquired in 1980 for field research experiments are described. The development and performance characteristics of a prototype multiband radiometer, data logger, and aerial tower for field research are discussed.
ERIC Educational Resources Information Center
Crist, Courtney A.; Duncan, Susan E.; Bianchi, Laurie M.
2017-01-01
A Wiki research project was created in the Functional Foods for Health (FST/HNFE 2544) as an instructional tool and assignment for improving undergraduate students' proficiency in evaluating appropriate information sources for rapidly evolving science and research. The project design targeted improving students' information literacy skills…
2015 Summer Series - Lee Stone - Brain Function Through the Eyes of the Beholder
2015-06-09
The Visuomotor Control Laboratory (VCL) at NASA Ames conducts neuroscience research on the link between eye movements and brain function to provide an efficient and quantitative means of monitoring human perceptual performance. The VCL aims to make dramatic improvements in mission success through analysis, experimentation, and modeling of human performance and human-automation interaction. Dr. Lee Stone elaborates on how this research is conducted and how it contributes to NASA's mission and advances human-centered design and operations of complex aerospace systems.
NASA Astrophysics Data System (ADS)
Pennington, D. D.; Gandara, A.; Gris, I.
2012-12-01
The Virtual Learning Commons (VLC), funded by the National Science Foundation Office of Cyberinfrastructure CI-Team Program, is a combination of Semantic Web, mash up, and social networking tools that supports knowledge sharing and innovation across scientific disciplines in research and education communities and networks. The explosion of scientific resources (data, models, algorithms, tools, and cyberinfrastructure) challenges the ability of researchers to be aware of resources that might benefit them. Even when aware, it can be difficult to understand enough about those resources to become potential adopters or re-users. Often scientific data and emerging technologies have little documentation, especially about the context of their use. The VLC tackles this challenge by providing mechanisms for individuals and groups of researchers to organize Web resources into virtual collections, and engage each other around those collections in order to a) learn about potentially relevant resources that are available; b) design research that leverages those resources; and c) develop initial work plans. The VLC aims to support the "fuzzy front end" of innovation, where novel ideas emerge and there is the greatest potential for impact on research design. It is during the fuzzy front end that conceptual collisions across disciplines and exposure to diverse perspectives provide opportunity for creative thinking that can lead to inventive outcomes. The VLC integrates Semantic Web functionality for structuring distributed information, mash up functionality for retrieving and displaying information, and social media for discussing/rating information. We are working to provide three views of information that support researchers in different ways: 1. Innovation Marketplace: supports users as they try to understand what research is being conducted, who is conducting it, where they are located, and who they collaborate with; 2. Conceptual Mapper: supports users as they organize their thinking about their own and related research; 3. Workflow Designer: supports users as they generate task-level analytical designs and consider data/methods/tools that could be relevant. This presentation will discuss the innovation theories that have informed design of the VLC, hypotheses about the use of emerging technologies to support the process of innovation, and will include a brief demonstration of these capabilities.
Implementation of a research prototype onboard fault monitoring and diagnosis system
NASA Technical Reports Server (NTRS)
Palmer, Michael T.; Abbott, Kathy H.; Schutte, Paul C.; Ricks, Wendell R.
1987-01-01
Due to the dynamic and complex nature of in-flight fault monitoring and diagnosis, a research effort was undertaken at NASA Langley Research Center to investigate the application of artificial intelligence techniques for improved situational awareness. Under this research effort, concepts were developed and a software architecture was designed to address the complexities of onboard monitoring and diagnosis. This paper describes the implementation of these concepts in a computer program called FaultFinder. The implementation of the monitoring, diagnosis, and interface functions as separate modules is discussed, as well as the blackboard designed for the communication of these modules. Some related issues concerning the future installation of FaultFinder in an aircraft are also discussed.
ERIC Educational Resources Information Center
Lee, Sharon Y.; Lo, Ya-yu; Lo, Yafen
2017-01-01
The researchers used a single-case, multiple probe design across three sets of toys (i.e., farm toy, doctor's clinic toy, and rescue toy) to examine the effects of video self-modeling (VSM) on the functional play skills of a 5-year-old child with autism spectrum disorder. The findings showed a functional relation between VSM and increased…
Photonics applications and web engineering: WILGA Winter 2016
NASA Astrophysics Data System (ADS)
Romaniuk, Ryszard S.
2016-09-01
Since twenty years, young researchers form the Institute of Electronic Systems, Warsaw University of Technology, organize two times a year, under only a marginal supervision of the senior faculty members, under the patronage of WEiTI PW, KEiT PAN, SPIE, IEEE, PKOpto SEP and PSF, the WILGA Symposium on advanced, integrated functional electronic, photonic and mechatronic systems [1-5]. All aspects are considered like: research and development, theory and design, technology - material and construction, software and hardware, commissioning and tests, as well as pilot and practical applications. The applications concern mostly, which turned after several years to be a proud specialization of the WILGA Symposium, Internet engineering, high energy physics experiments, new power industry including fusion, nuclear industry, space and satellite technologies, telecommunications, smart municipal environment, as well as biology and medicine [6-8]. XXXVIIth WILGA Symposium was held on 29-31 January 2016 and gathered a few tens of young researchers active in the mentioned research areas. There were presented a few tens of technical papers which will be published in Proc.SPIE together with the accepted articles from the Summer Edition of the WILGA Symposium scheduled for 29.05-06.06.2016. This article is a digest of chosen presentations from WILGA Symposium 2016 Winter Edition. The survey is narrowed to a few chosen and main topical tracks, like electronics and photonics design using industrial standards like ATCA/MTCA, also particular designs of functional systems using this series of industrial standards. The paper, summarizing traditionally since many years the accomplished WILGA Symposium organized by young researchers from Warsaw University of Technology, is also the following part of a cycle of papers concerning their participation in design of new generations of electronic systems used in discovery experiments in Poland and in leading research laboratories of the world.
Research-Based Model for Adult Consumer-Homemaking Education.
ERIC Educational Resources Information Center
Ball State Univ., Muncie, IN.
This model is designed to be used as a guide by all teachers and designers of adult vocational consumer and homemaking courses who usually function as program planners. Chapter 1 contains an operational definition, the rationale, and description of intended users. Chapter 2 presents the model description with an overview and discussion of the…
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-23
... efforts are accomplished through phased releases of ACE component functionality designed to introduce new... designed to evaluate planned components of the NCAP. This test is authorized pursuant to Sec. 101.9(b) of... import meat, poultry, or egg products or ``Samples for Laboratory Examination, Research, Evaluative...
CLINIC-LABORATORY DESIGN BASED ON FUNCTION AND PHILOSOPHY AT PURDUE UNIVERSITY.
ERIC Educational Resources Information Center
HANLEY, T.D.; STEER, M.D.
THIS REPORT DESCRIBES THE DESIGN OF A NEW CLINIC AND LABORATORY FOR SPEECH AND HEARING TO ACCOMMODATE THE THREE BASIC PROGRAMS OF--(1) CLINICAL TRAINING OF UNDERGRADUATE AND GRADUATE STUDENT MAJORS, (2) SERVICES MADE AVAILABLE TO THE SPEECH AND HEARING HANDICAPPED, AND (3) RESEARCH IN SPEECH PATHOLOGY, AUDIOLOGY, PSYCHO-ACOUSTICS, AND…
Designing a Supply Chain Management Academic Curriculum Using QFD and Benchmarking
ERIC Educational Resources Information Center
Gonzalez, Marvin E.; Quesada, Gioconda; Gourdin, Kent; Hartley, Mark
2008-01-01
Purpose: The purpose of this paper is to utilize quality function deployment (QFD), Benchmarking analyses and other innovative quality tools to develop a new customer-centered undergraduate curriculum in supply chain management (SCM). Design/methodology/approach: The researchers used potential employers as the source for data collection. Then,…
Extending the Consequentiality of "Invisible Work" in the Food Justice Movement
ERIC Educational Resources Information Center
Jurow, A. Susan; Teeters, Leah; Shea, Molly; Van Steenis, Erica
2016-01-01
Questions regarding what is consequential for communities are critical for the study and design of learning. Answering these questions requires knowledge of how the social world functions to make certain ideas, practices, and identities visible and potentially valuable. In our longitudinal, participatory design research project, we work with a…
Museum of Science Builds National Center for Technological Literacy (NCTL)
ERIC Educational Resources Information Center
Technology Teacher, 2005
2005-01-01
Research indicates that most Americans don't understand the technologies that surround them--the products and systems designed to fill a specific need. From water filtration to wheelchairs, from pens to PDAs, people use technology, often without fully comprehending how these tools are designed, developed, and function. In response, the Museum of…
Comparing the Effects of Home versus Clinic-Based Parent Training for Children with Autism
ERIC Educational Resources Information Center
Crone, Regina M.
2010-01-01
Research with parents on managing child problem behavior typically measures either child or parent behavior. This study was designed to evaluate the effectiveness of training parents to implement a function-based behavior intervention plan (BIP) in a non-trained natural environment utilizing a Multiple Probe Design across Participants.…
A probabilistic approach to aircraft design emphasizing stability and control uncertainties
NASA Astrophysics Data System (ADS)
Delaurentis, Daniel Andrew
In order to address identified deficiencies in current approaches to aerospace systems design, a new method has been developed. This new method for design is based on the premise that design is a decision making activity, and that deterministic analysis and synthesis can lead to poor, or misguided decision making. This is due to a lack of disciplinary knowledge of sufficient fidelity about the product, to the presence of uncertainty at multiple levels of the aircraft design hierarchy, and to a failure to focus on overall affordability metrics as measures of goodness. Design solutions are desired which are robust to uncertainty and are based on the maximum knowledge possible. The new method represents advances in the two following general areas. 1. Design models and uncertainty. The research performed completes a transition from a deterministic design representation to a probabilistic one through a modeling of design uncertainty at multiple levels of the aircraft design hierarchy, including: (1) Consistent, traceable uncertainty classification and representation; (2) Concise mathematical statement of the Probabilistic Robust Design problem; (3) Variants of the Cumulative Distribution Functions (CDFs) as decision functions for Robust Design; (4) Probabilistic Sensitivities which identify the most influential sources of variability. 2. Multidisciplinary analysis and design. Imbedded in the probabilistic methodology is a new approach for multidisciplinary design analysis and optimization (MDA/O), employing disciplinary analysis approximations formed through statistical experimentation and regression. These approximation models are a function of design variables common to the system level as well as other disciplines. For aircraft, it is proposed that synthesis/sizing is the proper avenue for integrating multiple disciplines. Research hypotheses are translated into a structured method, which is subsequently tested for validity. Specifically, the implementation involves the study of the relaxed static stability technology for a supersonic commercial transport aircraft. The probabilistic robust design method is exercised resulting in a series of robust design solutions based on different interpretations of "robustness". Insightful results are obtained and the ability of the method to expose trends in the design space are noted as a key advantage.
Rapid tooling for functional prototyping of metal mold processes. CRADA final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zacharia, T.; Ludtka, G.M.; Bjerke, M.A.
1997-12-01
The overall scope of this endeavor was to develop an integrated computer system, running on a network of heterogeneous computers, that would allow the rapid development of tool designs, and then use process models to determine whether the initial tooling would have characteristics which produce the prototype parts. The major thrust of this program for ORNL was the definition of the requirements for the development of the integrated die design system with the functional purpose to link part design, tool design, and component fabrication through a seamless software environment. The principal product would be a system control program that wouldmore » coordinate the various application programs and implement the data transfer so that any networked workstation would be useable. The overall system control architecture was to be required to easily facilitate any changes, upgrades, or replacements of the model from either the manufacturing end or the design criteria standpoint. The initial design of such a program is described in the section labeled ``Control Program Design``. A critical aspect of this research was the design of the system flow chart showing the exact system components and the data to be transferred. All of the major system components would have been configured to ensure data file compatibility and transferability across the Internet. The intent was to use commercially available packages to model the various manufacturing processes for creating the die and die inserts in addition to modeling the processes for which these parts were to be used. In order to meet all of these requirements, investigative research was conducted to determine the system flow features and software components within the various organizations contributing to this project. This research is summarized.« less
Recent development in modeling and analysis of functionally graded materials and structures
NASA Astrophysics Data System (ADS)
Gupta, Ankit; Talha, Mohammad
2015-11-01
In this article, an extensive review related to the structural response of the functionally graded materials (FGMs) and structures have been presented. These are high technology materials developed by a group scientist in the late 1980's in Japan. The emphasis has been made here, to present the structural characteristics of FGMs plates/shells under thermo-electro-mechanical loadings under various boundary and environmental conditions. This paper also provides an overview of different fabrication procedures and the future research directions which is required to implement these materials in the design and analysis appropriately. The expected outcome of present review can be treated as milestone for future studies in the area of high technology materials and structures, and would be definitely advantageous for the researchers, scientists, and designers working in this field.
[Advances of portable electrocardiogram monitor design].
Ding, Shenping; Wang, Yinghai; Wu, Weirong; Deng, Lingli; Lu, Jidong
2014-06-01
Portable electrocardiogram monitor is an important equipment in the clinical diagnosis of cardiovascular diseases due to its portable, real-time features. It has a broad application and development prospects in China. In the present review, previous researches on the portable electrocardiogram monitors have been arranged, analyzed and summarized. According to the characteristics of the electrocardiogram (ECG), this paper discusses the ergonomic design of the portable electrocardiogram monitor, including hardware and software. The circuit components and software modules were parsed from the ECG features and system functions. Finally, the development trend and reference are provided for the portable electrocardiogram monitors and for the subsequent research and product design.
Form and Function of Educational Technology in Developmental Curricula in a Community College
ERIC Educational Resources Information Center
Hess, Patrice M.
2012-01-01
This qualitative action research study examines the form (where and how) and function (specific use) of Educational Technology in developmental curricula at a community college. The study uses theoretical frameworks of Educational Technology and Instructional Systems Design to review and analyze curricular materials (print and electronic) and…
ERIC Educational Resources Information Center
Cheng, Yin Cheong; Yuen, Timothy W. W.
2017-01-01
Purpose: The purpose of this paper is to contribute to the worldwide discussion of conceptualization, multiple functions and management of national education in an era of globalisation by proposing a new comprehensive framework for research, policy analysis and practical implementation. Design/Methodology/Approach: Based on a review of the…
Romantic Attachment and Relationship Functioning in Same-Sex Couples
ERIC Educational Resources Information Center
Mohr, Jonathan J.; Selterman, Dylan; Fassinger, Ruth E.
2013-01-01
The present study was designed to investigate links between dimensions of romantic attachment and relationship functioning in a cross-sectional sample of people in same-sex relationships, with the goals of replicating basic findings from research on heterosexual couples and advancing understanding of unique issues faced by same-sex couples. The…
ERIC Educational Resources Information Center
Sánchez, Jennifer; Rosenthal, David A.; Chan, Fong; Brooks, Jessica; Bezyak, Jill L.
2016-01-01
Purpose: To examine the World Health Organization "International Classification of Functioning, Disability and Health" (ICF) constructs as correlates of community participation of people with severe mental illnesses (SMI). Methods: Quantitative descriptive research design using multiple regression and correlational techniques was used to…
Research on the optimization of quota design in real estate
NASA Astrophysics Data System (ADS)
Sun, Chunling; Ma, Susu; Zhong, Weichao
2017-11-01
Quota design is one of the effective methods of cost control in real estate development project and widely used in the current real estate development project to control the engineering construction cost, but quota design have many deficiencies in design process. For this purpose, this paper put forward a method to achieve investment control of real estate development project, which combine quota design and value engineering(VE) at the stage of design. Specifically, it’s an optimizing for the structure of quota design. At first, determine the design limits by investment estimate value, then using VE to carry on initial allocation of design limits and gain the functional target cost, finally, consider the whole life cycle cost (LCC) and operational problem in practical application to finish complex correction for the functional target cost. The improved process can control the project cost more effectively. It not only can control investment in a certain range, but also make the project realize maximum value within investment.
UWGSP6: a diagnostic radiology workstation of the future
NASA Astrophysics Data System (ADS)
Milton, Stuart W.; Han, Sang; Choi, Hyung-Sik; Kim, Yongmin
1993-06-01
The Univ. of Washington's Image Computing Systems Lab. (ICSL) has been involved in research into the development of a series of PACS workstations since the middle 1980's. The most recent research, a joint UW-IBM project, attempted to create a diagnostic radiology workstation using an IBM RISC System 6000 (RS6000) computer workstation and the X-Window system. While the results are encouraging, there are inherent limitations in the workstation hardware which prevent it from providing an acceptable level of functionality for diagnostic radiology. Realizing the RS6000 workstation's limitations, a parallel effort was initiated to design a workstation, UWGSP6 (Univ. of Washington Graphics System Processor #6), that provides the required functionality. This paper documents the design of UWGSP6, which not only addresses the requirements for a diagnostic radiology workstation in terms of display resolution, response time, etc., but also includes the processing performance necessary to support key functions needed in the implementation of algorithms for computer-aided diagnosis. The paper includes a description of the workstation architecture, and specifically its image processing subsystem. Verification of the design through hardware simulation is then discussed, and finally, performance of selected algorithms based on detailed simulation is provided.
Metal Matrix Composites: Custom-made Materials for Automotive and Aerospace Engineering
NASA Astrophysics Data System (ADS)
Kainer, Karl U.
2006-02-01
Since the properties of MMCs can be directly designed "into" the material, they can fulfill all the demands set by design engineers. This book surveys the latest results and development possibilities for MMCs as engineering and functional materials, making it of utmost value to all materials scientists and engineers seeking in-depth background information on the potentials these materials have to offer in research, development and design engineering.
NASA Technical Reports Server (NTRS)
Walker, Carrie K.
1991-01-01
A technique has been developed for combining features of a systems architecture design and assessment tool and a software development tool. This technique reduces simulation development time and expands simulation detail. The Architecture Design and Assessment System (ADAS), developed at the Research Triangle Institute, is a set of computer-assisted engineering tools for the design and analysis of computer systems. The ADAS system is based on directed graph concepts and supports the synthesis and analysis of software algorithms mapped to candidate hardware implementations. Greater simulation detail is provided by the ADAS functional simulator. With the functional simulator, programs written in either Ada or C can be used to provide a detailed description of graph nodes. A Computer-Aided Software Engineering tool developed at the Charles Stark Draper Laboratory (CSDL CASE) automatically generates Ada or C code from engineering block diagram specifications designed with an interactive graphical interface. A technique to use the tools together has been developed, which further automates the design process.
NOVA: A new multi-level logic simulator
NASA Technical Reports Server (NTRS)
Miles, L.; Prins, P.; Cameron, K.; Shovic, J.
1990-01-01
A new logic simulator that was developed at the NASA Space Engineering Research Center for VLSI Design was described. The simulator is multi-level, being able to simulate from the switch level through the functional model level. NOVA is currently in the Beta test phase and was used to simulate chips designed for the NASA Space Station and the Explorer missions. A new algorithm was devised to simulate bi-directional pass transistors and a preliminary version of the algorithm is presented. The usage of functional models in NOVA is also described and performance figures are presented.
Patient satisfaction surveys and multicollinearity.
Stratmann, W C; Zastowny, T R; Bayer, L R; Adams, E H; Black, G S; Fry, P A
1994-01-01
The measurement of patient satisfaction is now an integral part of hospital market research. Just as consumer satisfaction is a function of the extent to which providers do things right, the value of consumer-oriented market research is directly related to whether the research itself is done right. The use of poorly designed consumer research instruments, no matter how well executed, can cause multicollinearity among the independent variables, which, in turn, can result in misleading conclusions.
Work Models in the Design Process for House Interior and Exterior: Physical or Virtual?
NASA Astrophysics Data System (ADS)
Bradecki, Tomasz; Uherek-Bradecka, Barbara
2017-10-01
The article presents the effects of research on different types of models of single family houses and multifamily houses. Exterior layout and interior functional layout are the main drivers for the final result of a design. Models are an important medium for presentation of architectural designs and play a pivotal role in explaining the first idea to people and potential clients. Although 3D models have unlimited possibilities of representation, some people cannot understand or ‘feel’ the designed space. The authors try to test how to combine the interior and the exterior in a single synthetic model. Several models of different houses have been presented in the article. All the case studies were developed with physical models, 3D models, and 2D hand sketches. The main focus of the work with the models was to achieve a coherent vision for future feeling of open space in designed houses. The research shows how synthetic models might be helpful in the design process. The research was carried in the URBAN model research group (urbanmodel.org, Gliwice, Poland) that consists of academic researchers and architects. The models reflect architectural experience gathered by the authors during their work on theoretical models, architectural projects and by supervision on site during construction site visits. Conclusions might be helpful for developers, architects, interior designers and architecture students.
Susan Buffler
2008-01-01
Currently, there is no scientific literature examining appropriate riparian buffer widths for water quality for streams on private agriculturally dominated lands in arid regions of the Intermountain West. The initial step in this research effort was a review of buffer research as documented in the literature in other physiographic regions of the United States. Research...
A Health Science Process Framework for Comprehensive Clinical Functional Assessment
2014-02-01
Services (CMS), a Research , Measurement, Assessment, Design, and Analysis (RMADA) IDIQ with the primary task order targeting improving the disability ...2014 TYPE OF REPORT: Annual PREPARED FOR: U.S. Army Medical Research and Materiel Command Fort Detrick, Maryland 21702-5012 DISTRIBUTION STATEMENT...U.S. Army Medical Research and Materiel Command Fort Detrick, Maryland 21702-5012 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 12. DISTRIBUTION
U.S. Army Research Institute Program in Basic Research - FY 2007
2008-05-01
learner characteristics (e.g., cognitive ability or learning style), depth and complexity of content, or instructional design characteristics. There...trainers to think about ways of making learning purposeful. The effects of cognitive load on learning were minimally explored in the current research...Achievement in Complex Learning Environments as a Function of Information Processing Ability , Knowledge, and Self-Control Josep h F . F ag an
Hammond, Athena; Homer, Caroline S E; Foureur, Maralyn
2017-07-01
to identify and describe the design characteristics of hospital birth rooms that support midwives and their practice. this study used a qualitative exploratory descriptive methodology underpinned by the theoretical approach of critical realism. Data was collected through 21 in-depth, face-to-face photo-elicitation interviews and a thematic analysis guided by study objectives and the aims of exploratory research was undertaken. the study was set at a recently renovated tertiary hospital in a large Australian city. participants were 16 registered midwives working in a tertiary hospital; seven in delivery suite and nine in birth centre settings. Experience as a midwife ranged from three to 39 years and the sample included midwives in diverse roles such as educator, student support and unit manager. three design characteristics were identified that supported midwifery practice. They were friendliness, functionality and freedom. Friendly rooms reduced stress and increased midwives' feelings of safety. Functional rooms enabled choice and provided options to better meet the needs of labouring women. And freedom allowed for flexible, spontaneous and responsive midwifery practice. hospital birth rooms that possess the characteristics of friendliness, functionality and freedom offer enhanced support for midwives and may therefore increase effective care provision. new and existing birth rooms can be designed or adapted to better support the wellbeing and effectiveness of midwives and may thereby enhance the quality of midwifery care delivered in the hospital. Quality midwifery care is associated with positive outcomes and experiences for labouring women. Further research is required to investigate the benefit that may be transmitted to women by implementing design intended to support and enhance midwifery practice. Copyright © 2017 Elsevier Ltd. All rights reserved.
Heo, Moonseong; Meissner, Paul; Litwin, Alain H; Arnsten, Julia H; McKee, M Diane; Karasz, Alison; McKinley, Paula; Rehm, Colin D; Chambers, Earle C; Yeh, Ming-Chin; Wylie-Rosett, Judith
2017-01-01
Comparative effectiveness research trials in real-world settings may require participants to choose between preferred intervention options. A randomized clinical trial with parallel experimental and control arms is straightforward and regarded as a gold standard design, but by design it forces and anticipates the participants to comply with a randomly assigned intervention regardless of their preference. Therefore, the randomized clinical trial may impose impractical limitations when planning comparative effectiveness research trials. To accommodate participants' preference if they are expressed, and to maintain randomization, we propose an alternative design that allows participants' preference after randomization, which we call a "preference option randomized design (PORD)". In contrast to other preference designs, which ask whether or not participants consent to the assigned intervention after randomization, the crucial feature of preference option randomized design is its unique informed consent process before randomization. Specifically, the preference option randomized design consent process informs participants that they can opt out and switch to the other intervention only if after randomization they actively express the desire to do so. Participants who do not independently express explicit alternate preference or assent to the randomly assigned intervention are considered to not have an alternate preference. In sum, preference option randomized design intends to maximize retention, minimize possibility of forced assignment for any participants, and to maintain randomization by allowing participants with no or equal preference to represent random assignments. This design scheme enables to define five effects that are interconnected with each other through common design parameters-comparative, preference, selection, intent-to-treat, and overall/as-treated-to collectively guide decision making between interventions. Statistical power functions for testing all these effects are derived, and simulations verified the validity of the power functions under normal and binomial distributions.
Journal of Open Source Software (JOSS): design and first-year review
NASA Astrophysics Data System (ADS)
Smith, Arfon M.
2018-01-01
JOSS is a free and open-access journal that publishes articles describing research software across all disciplines. It has the dual goals of improving the quality of the software submitted and providing a mechanism for research software developers to receive credit. While designed to work within the current merit system of science, JOSS addresses the dearth of rewards for key contributions to science made in the form of software. JOSS publishes articles that encapsulate scholarship contained in the software itself, and its rigorous peer review targets the software components: functionality, documentation, tests, continuous integration, and the license. A JOSS article contains an abstract describing the purpose and functionality of the software, references, and a link to the software archive. JOSS published more than 100 articles in its first year, many from the scientific python ecosystem (including a number of articles related to astronomy and astrophysics). JOSS is a sponsored project of the nonprofit organization NumFOCUS and is an affiliate of the Open Source Initiative.In this presentation, I'll describes the motivation, design, and progress of the Journal of Open Source Software (JOSS) and how it compares to other avenues for publishing research software in astronomy.
Luminescent Porous Polymers Based on Aggregation-Induced Mechanism: Design, Synthesis and Functions.
Dalapati, Sasanka; Gu, Cheng; Jiang, Donglin
2016-12-01
Enormous research efforts are focusing on the design and synthesis of advanced luminescent systems, owing to their diverse capability in scientific studies and technological developments. In particular, fluorescence systems based on aggregation-induced emission (AIE) have emerged to show great potential for sensing, bio-imaging, and optoelectronic applications. Among them, integrating AIE mechanisms to design porous polymers is unique because it enables the combination of porosity and luminescence activity in one molecular skeleton for functional design. In recent years rapid progress in exploring AIE-based porous polymers has developed a new class of luminescent materials that exhibit broad structural diversity, outstanding properties and functions and promising applications. By classifying the structural nature of the skeleton, herein the design principle, synthetic development and structural features of different porous luminescent materials are elucidated, including crystalline covalent organic frameworks (COFs), metal-organic frameworks (MOFs), and amorphous porous organic polymers (POPs). The functional exploration of these luminescent porous polymers are highlighted by emphasizing electronic interplay within the confined nanospace, fundamental issues to be addressed are disclosed, and future directions from chemistry, physics and materials science perspectives are proposed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Peck, Jessica A; Levashina, Julia
2017-01-01
Impression management (IM) is pervasive in interview and job performance settings. We meta-analytically examine IM by self- and other-focused tactics to establish base rates of tactic usage, to understand the impact of tactics on interview and job performance ratings, and to examine the moderating effects of research design. Our results suggest IM is used more frequently in the interview rather than job performance settings. Self-focused tactics are more effective in the interview rather than in job performance settings, and other-focused tactics are more effective in job performance settings rather than in the interview. We explore several research design moderators including research fidelity, rater, and participants. IM has a somewhat stronger impact on interview ratings in lab settings than field settings. IM also has a stronger impact on interview ratings when the target of IM is also the rater of performance than when the rater of performance is an observer. Finally, labor market participants use IM more frequently and more effectively than students in interview settings. Our research has implications for understanding how different IM tactics function in interview and job performance settings and the effects of research design on IM frequency and impact.
The Manifest and Latent Functions of Differential Response in Child Welfare
ERIC Educational Resources Information Center
Ji, Daniel; Sullivan, Richard
2016-01-01
Although previous research has explored the efficacy of differential response (DR) programs in child welfare, there have been no studies to date about coding decisions between designations by child protection service agencies. Research has explored client satisfaction with DR as well as rates of recidivism and removal/placement but with limited…
NIST: Information Management in the AMRF
NASA Technical Reports Server (NTRS)
Callaghan, George (Editor)
1991-01-01
The information management strategies developed for the NIST Automated Manufacturing Research Facility (AMRF) - a prototype small batch manufacturing facility used for integration and measurement related standards research are outlined in this video. The five major manufacturing functions - design, process planning, off-line programming, shop floor control, and materials processing are explained and their applications demonstrated.
Integration of Environmental Education and Environmental Law Enforcement for Police Officers
ERIC Educational Resources Information Center
Bovornkijprasert, Sravoot; Rawang, Wee
2016-01-01
The purpose of this research was to establish an integrated model of environmental education (EE) and environmental law enforcement (ELE) to improve the efficiency of functional competency for police officers in Bangkok Metropolitan Police Division 9 (MBP Div. 9). The research design was mixed methods of quantitative and qualitative approaches…
The secret lives of experiments: methods reporting in the fMRI literature.
Carp, Joshua
2012-10-15
Replication of research findings is critical to the progress of scientific understanding. Accordingly, most scientific journals require authors to report experimental procedures in sufficient detail for independent researchers to replicate their work. To what extent do research reports in the functional neuroimaging literature live up to this standard? The present study evaluated methods reporting and methodological choices across 241 recent fMRI articles. Many studies did not report critical methodological details with regard to experimental design, data acquisition, and analysis. Further, many studies were underpowered to detect any but the largest statistical effects. Finally, data collection and analysis methods were highly flexible across studies, with nearly as many unique analysis pipelines as there were studies in the sample. Because the rate of false positive results is thought to increase with the flexibility of experimental designs, the field of functional neuroimaging may be particularly vulnerable to false positives. In sum, the present study documented significant gaps in methods reporting among fMRI studies. Improved methodological descriptions in research reports would yield significant benefits for the field. Copyright © 2012 Elsevier Inc. All rights reserved.
Towards a theoretical clarification of biomimetics using conceptual tools from engineering design.
Drack, M; Limpinsel, M; de Bruyn, G; Nebelsick, J H; Betz, O
2017-12-13
Many successful examples of biomimetic products are available, and most research efforts in this emerging field are directed towards the development of specific applications. The theoretical and conceptual underpinnings of the knowledge transfer between biologists, engineers and architects are, however, poorly investigated. The present article addresses this gap. We use a 'technomorphic' approach, i.e. the application of conceptual tools derived from engineering design, to better understand the processes operating during a typical biomimetic research project. This helps to elucidate the formal connections between functions, working principles and constructions (in a broad sense)-because the 'form-function-relationship' is a recurring issue in biology and engineering. The presented schema also serves as a conceptual framework that can be implemented for future biomimetic projects. The concepts of 'function' and 'working principle' are identified as the core elements in the biomimetic knowledge transfer towards applications. This schema not only facilitates the development of a common language in the emerging science of biomimetics, but also promotes the interdisciplinary dialogue among its subdisciplines.
A Hitchhiker's Guide to Functional Magnetic Resonance Imaging
Soares, José M.; Magalhães, Ricardo; Moreira, Pedro S.; Sousa, Alexandre; Ganz, Edward; Sampaio, Adriana; Alves, Victor; Marques, Paulo; Sousa, Nuno
2016-01-01
Functional Magnetic Resonance Imaging (fMRI) studies have become increasingly popular both with clinicians and researchers as they are capable of providing unique insights into brain functions. However, multiple technical considerations (ranging from specifics of paradigm design to imaging artifacts, complex protocol definition, and multitude of processing and methods of analysis, as well as intrinsic methodological limitations) must be considered and addressed in order to optimize fMRI analysis and to arrive at the most accurate and grounded interpretation of the data. In practice, the researcher/clinician must choose, from many available options, the most suitable software tool for each stage of the fMRI analysis pipeline. Herein we provide a straightforward guide designed to address, for each of the major stages, the techniques, and tools involved in the process. We have developed this guide both to help those new to the technique to overcome the most critical difficulties in its use, as well as to serve as a resource for the neuroimaging community. PMID:27891073
Eriksson, Henrik; Salzmann-Erikson, Martin
2017-04-01
The aim of this study was to present the functionality and design of nursing care robots as depicted in pictures posted on social media. A netnographic study was conducted using social media postings over a period of 3 years. One hundred and Seventy-two images were analyzed using netnographic methodology. The findings show that nursing care robots exist in various designs and functionalities, all with a common denominator of supporting the care of one's own and others' health and/or well-being as a main function. The results also show that functionality and design are influenced by recent popular sci-fi/cartoon contexts as portrayed in blockbuster movies, for example. Robots'designs seem more influenced by popular sci-fi/cartoon culture than professional nursing culture. We therefore stress that it is relevant for nursing researchers to critically reflect upon the development of nursing care robots as a thoughtful discussion about embracing technology also might generate a range of epistemological possibilities when entering a postmodern era of science and practice. © 2016 John Wiley & Sons Ltd.
Older driver highway design handbook
DOT National Transportation Integrated Search
1998-01-01
This project included literature reviews and research syntheses, using meta-analytic techniques where : appropriate, in the areas of age-related (diminished) functional capabilities, and human factors and : highway safety. A User-Requirements Analysi...
Application of New Materials in the Household Appliances Design
NASA Astrophysics Data System (ADS)
Zhang, Y.; Ren, Y.
The widespread use of new materials in household appliances industry, not only help those products to get rid of the appearance shackles caused by original materials, but also gave the designers the freedom to open up the world of product design. This paper aims to analyze the impact of new materials for home appliances design through relevant research, to explore the application of new material in household appliances functional design, shape design, color design and emotional design, etc., so as to reveal the impact and promoting effects of new material in household appliances world, as well as the prospects of new material in future household appliances design.
Synthetic Virology: Engineering Viruses for Gene Delivery
Guenther, Caitlin M.; Kuypers, Brianna E.; Lam, Michael T.; Robinson, Tawana M.; Zhao, Julia; Suh, Junghae
2014-01-01
The success of gene therapy relies heavily on the performance of vectors that can effectively deliver transgenes to desired cell populations. As viruses have evolved to deliver genetic material into cells, a prolific area of research has emerged over the last several decades to leverage the innate properties of viruses as well as to engineer new features into them. Specifically, the field of synthetic virology aims to capitalize on knowledge accrued from fundamental virology research in order to design functionally enhanced gene delivery vectors. The enhanced viral vectors, or “bionic” viruses, feature engineered components, or “parts”, that are natural (intrinsic to viruses or from other organisms) and synthetic (such as man-made polymers or inorganic nanoparticles). Various design strategies – rational, combinatorial, and pseudo-rational – have been pursued to create the hybrid viruses. The gene delivery vectors of the future will likely criss-cross the boundaries between natural and synthetic domains to harness the unique strengths afforded by the various functional parts that can be grafted onto virus capsids. Such research endeavours will further expand and enable enhanced control over the functional capacity of these nanoscale devices for biomedicine. PMID:25195922
Synthetic virology: engineering viruses for gene delivery.
Guenther, Caitlin M; Kuypers, Brianna E; Lam, Michael T; Robinson, Tawana M; Zhao, Julia; Suh, Junghae
2014-01-01
The success of gene therapy relies heavily on the performance of vectors that can effectively deliver transgenes to desired cell populations. As viruses have evolved to deliver genetic material into cells, a prolific area of research has emerged over the last several decades to leverage the innate properties of viruses as well as to engineer new features into them. Specifically, the field of synthetic virology aims to capitalize on knowledge accrued from fundamental virology research in order to design functionally enhanced gene delivery vectors. The enhanced viral vectors, or 'bionic' viruses, feature engineered components, or 'parts', that are natural (intrinsic to viruses or from other organisms) and synthetic (such as man-made polymers or inorganic nanoparticles). Various design strategies--rational, combinatorial, and pseudo-rational--have been pursued to create the hybrid viruses. The gene delivery vectors of the future will likely criss-cross the boundaries between natural and synthetic domains to harness the unique strengths afforded by the various functional parts that can be grafted onto virus capsids. Such research endeavors will further expand and enable enhanced control over the functional capacity of these nanoscale devices for biomedicine. © 2014 Wiley Periodicals, Inc.
CCD research. [design, fabrication, and applications
NASA Technical Reports Server (NTRS)
Gassaway, J. D.
1976-01-01
The fundamental problems encountered in designing, fabricating, and applying CCD's are reviewed. Investigations are described and results and conclusions are given for the following: (1) the development of design analyses employing computer aided techniques and their application to the design of a grapped structure; (2) the role of CCD's in applications to electronic functions, in particular, signal processing; (3) extending the CCD to silicon films on sapphire (SOS); and (4) all aluminum transfer structure with low noise input-output circuits. Related work on CCD imaging devices is summarized.
Recent progresses in biomedical applications of aptamer-functionalized systems.
Ding, Fei; Gao, Yangguang; He, Xianran
2017-09-15
Aptamers, known as "chemical antibodies" are screened via a combinational technology of systematic evolution of ligands by exponential enrichment (SELEX). Due to their specific targeting ability, high binding affinity, low immunogenicity and easy modification, aptamer-functionalized systems have been extensively applied in various fields and exhibit favorable results. However, there is still a long way for them to be commercialized, and few aptamer-functionalized systems have yet successfully entered clinical and industrial use. Thus, it is necessary to overview the recent research progresses of aptamer-functionalized systems for the researchers to improve or design novel and better aptamer-functionalized systems. In this review, we first introduce the recent progresses of aptamer-functionalized systems' applications in biosensing, targeted drug delivery, gene therapy and cancer cell imaging, followed by a discussion of the challenges faced with extensive applications of aptamer-functionalized systems and speculation of the future prospects of them. Copyright © 2017 Elsevier Ltd. All rights reserved.
The flavivirus capsid protein: Structure, function and perspectives towards drug design.
Oliveira, Edson R A; Mohana-Borges, Ronaldo; de Alencastro, Ricardo B; Horta, Bruno A C
2017-01-02
Flaviviruses, such as dengue and zika viruses, are etiologic agents transmitted to humans mainly by arthropods and are of great epidemiological interest. The flavivirus capsid protein is a structural element required for the viral nucleocapsid assembly that presents the classical function of sheltering the viral genome. After decades of research, many reports have shown its different functionalities and influence over cell normal functioning. The subcellular distribution of this protein, which involves accumulation around lipid droplets and nuclear localization, also corroborates with its multi-functional characteristic. As flavivirus diseases are still in need of global control and in view of the possible key functionalities that the capsid protein promotes over flavivirus biology, novel considerations arise towards anti-flavivirus drug research. This review covers the main aspects concerning structural and functional features of the flavivirus C protein, ultimately, highlighting prospects in drug discovery based on this viral target. Copyright © 2016 Elsevier B.V. All rights reserved.
Review on design and control aspects of ankle rehabilitation robots.
Jamwal, Prashant K; Hussain, Shahid; Xie, Sheng Q
2015-03-01
Ankle rehabilitation robots can play an important role in improving outcomes of the rehabilitation treatment by assisting therapists and patients in number of ways. Consequently, few robot designs have been proposed by researchers which fall under either of the two categories, namely, wearable robots or platform-based robots. This paper presents a review of both kinds of ankle robots along with a brief analysis of their design, actuation and control approaches. While reviewing these designs it was observed that most of them are undesirably inspired by industrial robot designs. Taking note of the design concerns of current ankle robots, few improvements in the ankle robot designs have also been suggested. Conventional position control or force control approaches, being used in the existing ankle robots, have been reviewed. Apparently, opportunities of improvement also exist in the actuation as well as control of ankle robots. Subsequently, a discussion on most recent research in the development of novel actuators and advanced controllers based on appropriate physical and cognitive human-robot interaction has also been included in this review. Implications for Rehabilitation Ankle joint functions are restricted/impaired as a consequence of stroke or injury during sports or otherwise. Robots can help in reinstating functions faster and can also work as tool for recording rehabilitation data useful for further analysis. Evolution of ankle robots with respect to their design and control aspects has been discussed in the present paper and a novel design with futuristic control approach has been proposed.
Examining the impact of child parent relationship therapy (CPRT) on family functioning.
Cornett, Nick; Bratton, Sue C
2014-07-01
Research supports that child parent relationship therapy (CPRT), a filial therapy approach, has strong effects on participating parents and children. Some speculate that filial therapy improves the family system; however, minimal research exists to support this claim. Using a single-case design, researchers examined CPRT's impact on the functioning of 8 families. Results revealed that 6 families experienced statistically significant improvements in targeted areas of family functioning. Results from self-reported measures indicated that 7 families improved in family satisfaction, 4 in cohesion, 3 in communication, and 1 in flexibility. Observational measures also revealed improvements: 5 families in flexibility, 4 families in cohesion, and 4 families in communication. The results support that the benefits of CPRT may extend to the family system. © 2013 American Association for Marriage and Family Therapy.
Web-Based Programs Assess Cognitive Fitness
NASA Technical Reports Server (NTRS)
2009-01-01
The National Space Biomedical Research Institute, based in Houston and funded by NASA, began funding research for Harvard University researchers to design Palm software to help astronauts monitor and assess their cognitive functioning. The MiniCog Rapid Assessment Battery (MRAB) was licensed by the Criteria Corporation in Los Angeles and adapted for Web-based employment testing. The test battery assesses nine different cognitive functions and can gauge the effect of stress-related deficits, such as fatigue, on various tasks. The MRAB can be used not only for pre-employment testing but also for repeat administrations to measure day-to-day job readiness in professions where alertness is critical.
NASA Astrophysics Data System (ADS)
Babaee, Sahab
In the search for materials with new properties, there have been significant advances in recent years aimed at the construction of architected materials whose behavior is governed by structure, rather than composition. Through careful design of the material's architecture, new mechanical properties have been demonstrated, including negative Poisson's ratio, high stiffness to weight ratio and mechanical cloaking. However, most of the proposed architected materials (also known as mechanical metamaterials) have a unique structure that cannot be recon figured after fabrication, making them suitable only for a specific task. This thesis focuses on the design of architected materials that take advantage of the applied large deformation to enhance their functionality. Mechanical instabilities, which have been traditionally viewed as a failure mode with research focusing on how to avoid them, are exploited to achieve novel and tunable functionalities. In particular I demonstrate the design of mechanical metamaterials with tunable negative Poisson ratio, adaptive phononic band gaps, acoustic switches, and reconfigurable origami-inspired waveguides. Remarkably, due to large deformation capability and full reversibility of soft materials, the responses of the proposed designs are reversible, repeatable, and scale independent. The results presented here pave the way for the design of a new class of soft, active, adaptive, programmable and tunable structures and systems with unprecedented performance and improved functionalities.
Load compensation in a lean burn natural gas vehicle
NASA Astrophysics Data System (ADS)
Gangopadhyay, Anupam
A new multivariable PI tuning technique is developed in this research that is primarily developed for regulation purposes. Design guidelines are developed based on closed-loop stability. The new multivariable design is applied in a natural gas vehicle to combine idle and A/F ratio control loops. This results in better recovery during low idle operation of a vehicle under external step torques. A powertrain model of a natural gas engine is developed and validated for steady-state and transient operation. The nonlinear model has three states: engine speed, intake manifold pressure and fuel fraction in the intake manifold. The model includes the effect of fuel partial pressure in the intake manifold filling and emptying dynamics. Due to the inclusion of fuel fraction as a state, fuel flow rate into the cylinders is also accurately modeled. A linear system identification is performed on the nonlinear model. The linear model structure is predicted analytically from the nonlinear model and the coefficients of the predicted transfer function are shown to be functions of key physical parameters in the plant. Simulations of linear system and model parameter identification is shown to converge to the predicted values of the model coefficients. The multivariable controller developed in this research could be designed in an algebraic fashion once the plant model is known. It is thus possible to implement the multivariable PI design in an adaptive fashion combining the controller with identified plant model on-line. This will result in a self-tuning regulator (STR) type controller where the underlying design criteria is the multivariable tuning technique designed in this research.
NASA Astrophysics Data System (ADS)
Makarov, M.; Shchanikov, S.; Trantina, N.
2017-01-01
We have conducted a research into the major, in terms of their future application, properties of nanoscale objects, based on modelling these objects as free-standing physical elements beyond the structure of an engineering system designed for their integration as well as a part of a system that operates under the influence of the external environment. For the empirical research suggested within the scope of this work, we have chosen a nanoscale electronic element intended to be used while designing information processing systems with the parallel architecture - a memristor. The target function of the research was to provide the maximum fault-tolerance index of a memristor-based system when affected by all possible impacts of the internal destabilizing factors and external environment. The research results have enabled us to receive and classify all the factors predetermining the fault-tolerance index of the hardware implementation of a computing system based on the nanoscale electronic element base.
NASA Technical Reports Server (NTRS)
Mantay, Wayne R.; Adelman, Howard M.
1990-01-01
This paper describes a joint NASA/Army research activity at the Langley Research Center to develop optimization procedures aimed at improving the rotor blade design process by integrating appropriate disciplines and accounting for important interactions among the disciplines. The activity is being guided by a Steering Committee made up of key NASA and Army researchers and managers. The paper describes the optimization formulation in terms of the objective function, design variables, and constraints. The analysis aspects are discussed, and the interdisciplinary interactions are defined in terms of the information that must be transferred among disciplinary analyses as well as the trade-offs between disciplines in determining the details of the design. At this writing, some significant progress has been made. Results given in the paper represent accomplishments in rotor aerodynamic performance optimization for minimum horsepower, rotor dynamic optimization for vibration reduction, approximate analysis of frequencies and mode shapes, rotor structural optimization for minimum weight, and integrated aerodynamic load/dynamics optimization for minimum vibration and weight.
Investigation on Smart Parts with Embedded Piezoelectric Sensors via Additive Manufacturing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Yirong
The goal of this proposed research is to design, fabricate, and evaluate “smart parts” with embedded sensors for energy systems. The “smart parts” will be fabricated using Electron Beam Melting (EBM) 3D printing technique with built-in piezoceramic sensors. The objectives of the proposed project are: 1) Fabricate energy system related components with embedded sensors, 2) Evaluate the mechanical properties and sensing functionalities of the “smart parts” with embedded piezoceramic sensors, and 3) Assess in-situ sensing capability of energy system parts. The second year’s research of the research is centered on fabrication of the “smart parts” with considerations of overall materialmore » property as well as demonstration of sensing functionalities. The results for the final report are presented here, including all research accomplishment, project management. Details are included such as: how the design and fabrication of sensor packaging could improve the sensor performance, demonstration of “smart parts” sensing capabilities, analysis on the elements that constitute the “smart sensors”, advanced “stop and go” fabrication process, smart injector fabrication using SLM technology, smart injector testing in combustion environments etc. Research results to date have generated several posters and papers.« less
Stucki, Gerold; Grimby, Gunnar
2007-05-01
There is a need to organize rehabilitation and related research into distinct scientific fields in order to overcome the current limitations of rehabilitation research. Based on the general distinction in basic, applied and professional sciences applicable to research in general, and the rehabilitation relevant distinction between the comprehensive perspective based on WHO's integrative model of human functioning (ICF) and the partial perspective focusing on the biomedical aspects of functioning, it is possible to identify 5 distinct scientific fields of human functioning and rehabilitation research. These are the emerging human functioning sciences and integrative rehabilitation sciences from the comprehensive perspective, the established biosciences and biomedical rehabilitation sciences and engineering from the partial perspective, and the professional rehabilitation sciences at the cutting edge of research and practice. The human functioning sciences aim to understand human functioning and to identify targets for comprehensive interventions, with the goal of contributing to the minimization of the experience of disability in the population. The biosciences in rehabilitation aim to explain body injury and repair and to identify targets for biomedical interventions. The integrative rehabilitation sciences design and study comprehensive assessments and interventions that integrate biomedical, personal factor and environmental approaches suited to optimize people's performance. The biomedical rehabilitation sciences and engineering study diagnostic measures and interventions suitable to minimize impairment, including symptom control, and to optimize people's capacity. The professional rehabilitation sciences study how to provide best care with the goal of enabling people with health conditions experiencing or likely to experience disability to achieve and maintain optimal functioning in interaction with the environment. The organization of human functioning and rehabilitation research into the 5 distinct scientific fields facilitates the development of academic training programs and career building as well as the development of research structures dedicated to human functioning and rehabilitation research.
Pietrobon, Ricardo; Shah, Anand; Kuo, Paul; Harker, Matthew; McCready, Mariana; Butler, Christeen; Martins, Henrique; Moorman, C T; Jacobs, Danny O
2006-07-27
Although regulatory compliance in academic research is enforced by law to ensure high quality and safety to participants, its implementation is frequently hindered by cost and logistical barriers. In order to decrease these barriers, we have developed a Web-based application, Duke Surgery Research Central (DSRC), to monitor and streamline the regulatory research process. The main objective of DSRC is to streamline regulatory research processes. The application was built using a combination of paper prototyping for system requirements and Java as the primary language for the application, in conjunction with the Model-View-Controller design model. The researcher interface was designed for simplicity so that it could be used by individuals with different computer literacy levels. Analogously, the administrator interface was designed with functionality as its primary goal. DSRC facilitates the exchange of regulatory documents between researchers and research administrators, allowing for tasks to be tracked and documents to be stored in a Web environment accessible from an Intranet. Usability was evaluated using formal usability tests and field observations. Formal usability results demonstrated that DSRC presented good speed, was easy to learn and use, had a functionality that was easily understandable, and a navigation that was intuitive. Additional features implemented upon request by initial users included: extensive variable categorization (in contrast with data capture using free text), searching capabilities to improve how research administrators could search an extensive number of researcher names, warning messages before critical tasks were performed (such as deleting a task), and confirmatory e-mails for critical tasks (such as completing a regulatory task). The current version of DSRC was shown to have excellent overall usability properties in handling research regulatory issues. It is hoped that its release as an open-source application will promote improved and streamlined regulatory processes for individual academic centers as well as larger research networks.
Pietrobon, Ricardo; Shah, Anand; Kuo, Paul; Harker, Matthew; McCready, Mariana; Butler, Christeen; Martins, Henrique; Moorman, CT; Jacobs, Danny O
2006-01-01
Background Although regulatory compliance in academic research is enforced by law to ensure high quality and safety to participants, its implementation is frequently hindered by cost and logistical barriers. In order to decrease these barriers, we have developed a Web-based application, Duke Surgery Research Central (DSRC), to monitor and streamline the regulatory research process. Results The main objective of DSRC is to streamline regulatory research processes. The application was built using a combination of paper prototyping for system requirements and Java as the primary language for the application, in conjunction with the Model-View-Controller design model. The researcher interface was designed for simplicity so that it could be used by individuals with different computer literacy levels. Analogously, the administrator interface was designed with functionality as its primary goal. DSRC facilitates the exchange of regulatory documents between researchers and research administrators, allowing for tasks to be tracked and documents to be stored in a Web environment accessible from an Intranet. Usability was evaluated using formal usability tests and field observations. Formal usability results demonstrated that DSRC presented good speed, was easy to learn and use, had a functionality that was easily understandable, and a navigation that was intuitive. Additional features implemented upon request by initial users included: extensive variable categorization (in contrast with data capture using free text), searching capabilities to improve how research administrators could search an extensive number of researcher names, warning messages before critical tasks were performed (such as deleting a task), and confirmatory e-mails for critical tasks (such as completing a regulatory task). Conclusion The current version of DSRC was shown to have excellent overall usability properties in handling research regulatory issues. It is hoped that its release as an open-source application will promote improved and streamlined regulatory processes for individual academic centers as well as larger research networks. PMID:16872540
ERIC Educational Resources Information Center
Cusi, Annalisa; Morselli, Francesca; Sabena, Cristina
2017-01-01
This paper is based on a design-based research project investigating how to use digital resources to help activate formative assessment processes in the classroom. Performed as part of FaSMEd, a European Union project, our own project adopts a comprehensive theoretical framework, including the different functionalities of technology, formative…
ERIC Educational Resources Information Center
Rhoads, Christopher
2014-01-01
Recent publications have drawn attention to the idea of utilizing prior information about the correlation structure to improve statistical power in cluster randomized experiments. Because power in cluster randomized designs is a function of many different parameters, it has been difficult for applied researchers to discern a simple rule explaining…
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-03
... appropriate scientific and medical experts, on the design and conduct of studies required for the assessment... functions, including the design and conduct of research, the oversight of specific studies, and the... any time (see 21 CFR 10.115(g)(5)), to ensure that the Agency considers your comment on this draft...
Man-Vehicle Systems Research Facility - Design and operating characteristics
NASA Technical Reports Server (NTRS)
Shiner, Robert J.; Sullivan, Barry T.
1992-01-01
This paper describes the full-mission flight simulation facility at the NASA Ames Research Center. The Man-Vehicle Systems Research Facility (MVSRF) supports aeronautical human factors research and consists of two full-mission flight simulators and an air-traffic-control simulator. The facility is used for a broad range of human factors research in both conventional and advanced aviation systems. The objectives of the research are to improve the understanding of the causes and effects of human errors in aviation operations, and to limit their occurrence. The facility is used to: (1) develop fundamental analytical expressions of the functional performance characteristics of aircraft flight crews; (2) formulate principles and design criteria for aviation environments; (3) evaluate the integration of subsystems in contemporary flight and air traffic control scenarios; and (4) develop training and simulation technologies.
Aeroelastic Tailoring Study of N+2 Low-Boom Supersonic Commercial Transport Aircraft
NASA Technical Reports Server (NTRS)
Pak, Chan-gi
2015-01-01
The Lockheed Martins N+2 Low-boom Supersonic Commercial Transport (LSCT) aircraft is optimized in this study through the use of a multidisciplinary design optimization tool developed at the NASA Armstrong Flight Research Center. A total of 111 design variables are used in the first optimization run. Total structural weight is the objective function in this optimization run. Design requirements for strength, buckling, and flutter are selected as constraint functions during the first optimization run. The MSC Nastran code is used to obtain the modal, strength, and buckling characteristics. Flutter and trim analyses are based on ZAERO code and landing and ground control loads are computed using an in-house code.
A two-parameter design storm for Mediterranean convective rainfall
NASA Astrophysics Data System (ADS)
García-Bartual, Rafael; Andrés-Doménech, Ignacio
2017-05-01
The following research explores the feasibility of building effective design storms for extreme hydrological regimes, such as the one which characterizes the rainfall regime of the east and south-east of the Iberian Peninsula, without employing intensity-duration-frequency (IDF) curves as a starting point. Nowadays, after decades of functioning hydrological automatic networks, there is an abundance of high-resolution rainfall data with a reasonable statistic representation, which enable the direct research of temporal patterns and inner structures of rainfall events at a given geographic location, with the aim of establishing a statistical synthesis directly based on those observed patterns. The authors propose a temporal design storm defined in analytical terms, through a two-parameter gamma-type function. The two parameters are directly estimated from 73 independent storms identified from rainfall records of high temporal resolution in Valencia (Spain). All the relevant analytical properties derived from that function are developed in order to use this storm in real applications. In particular, in order to assign a probability to the design storm (return period), an auxiliary variable combining maximum intensity and total cumulated rainfall is introduced. As a result, for a given return period, a set of three storms with different duration, depth and peak intensity are defined. The consistency of the results is verified by means of comparison with the classic method of alternating blocks based on an IDF curve, for the above mentioned study case.
Measurement of Motion Transfer Functions for Mirror Suspensions
NASA Astrophysics Data System (ADS)
Stuver, Amber; Beilby, Mark; Glancy, Aran; Gonzalez, Gabriela
2001-04-01
Interferometric gravitational wave detectors, such as LIGO, use mirrors suspended in pendulums. The current LIGO dectors use simple pendulums, but advanced LIGO detectors will use multiple pendulums with some stages on soft vertical springs. A drawback of the a multiple pendulum design is that it is difficult to model and predict cross couplings from one vibrational mode to another due to slight unavoidable asymmetries in the real system. Of most concern are the couplings to motion along the optical axis and into angular motions, which have the most potential to contaminate data. Our research focuses on the experimental testing of the pendulum designs for cross couplings with a special dedicated shaking stage. The cross couplings in each degree of freedom, their isolation and damping are investigated in this research though the measurement of transfer functions as filtered though the suspension system. This research is supported by The Pennsylvania State University, the NSF Grant no. PHY-9870032, and the REU program at The Pennsylvania State University.
Synthesis of aircraft structures using integrated design and analysis methods
NASA Technical Reports Server (NTRS)
Sobieszczanski-Sobieski, J.; Goetz, R. C.
1978-01-01
A systematic research is reported to develop and validate methods for structural sizing of an airframe designed with the use of composite materials and active controls. This research program includes procedures for computing aeroelastic loads, static and dynamic aeroelasticity, analysis and synthesis of active controls, and optimization techniques. Development of the methods is concerned with the most effective ways of integrating and sequencing the procedures in order to generate structural sizing and the associated active control system, which is optimal with respect to a given merit function constrained by strength and aeroelasticity requirements.
The empowerment of sustainable design in food packaging as designer responsibilities
NASA Astrophysics Data System (ADS)
Setiadi, V.
2018-01-01
The purpose of this paper is emphasized on the empowerment of sustainable design in providing the dual function of a food packaging. Which can extend the life of paper, cardboard, plastic, aluminum foil so as to reduce the contribution of waste on earth. The methodology used in this research is using qualitative research. With the main approach taken on the layout of the packaging design, the approach that relies heavily on the data in the form of packaging design. For the process of observation, the authors should compare with the forms of food packaging designs that are contained in the diversity of food packaging types from products outside Indonesia. The purpose of this study is also intended as a recommendation through observation of data interviews and survey related products. Conclusion through material exploration, packaging structure exploration, efficient exploration of ink usage and packaging usage patterns.
Towards Universal Design Hotels in Denmark.
Grangaard, Sidse
2016-01-01
Based on the research project 'Accessible Hotel Rooms' that studies the balance between the experience of supply and demand regarding accessibility features in Danish hotel rooms, this paper demonstrates factors having an influence on Universal Design hotels in Denmark. The research project was financed by the Danish Transport and Construction Agency. Different notions in the hotel sector of the current supply and demand for Universal Design hotel rooms are identified, as well as future demand. Despite supplying accessible rooms, some hotels do not advertise their accessibility features on their website. There exists an attitude in the hotel sector that functions as a barrier for Universal Design: if there are enough guests, for example business travellers, then why market the hotel on Universal Design? The paper points out the coherence between the understanding of the users and the view of demand. Another important factor is Corporate Social Responsibility, which can be regarded as a strategy or platform towards Universal Design hotels.
Cimino, James J.; Ayres, Elaine J.; Remennik, Lyubov; Rath, Sachi; Freedman, Robert; Beri, Andrea; Chen, Yang; Huser, Vojtech
2013-01-01
The US National Institutes of Health (NIH) has developed the Biomedical Translational Research Information System (BTRIS) to support researchers’ access to translational and clinical data. BTRIS includes a data repository, a set of programs for loading data from NIH electronic health records and research data management systems, an ontology for coding the disparate data with a single terminology, and a set of user interface tools that provide access to identified data from individual research studies and data across all studies from which individually identifiable data have been removed. This paper reports on unique design elements of the system, progress to date and user experience after five years of development and operation. PMID:24262893
Man-vehicle systems research facility: Design and operating characteristics
NASA Technical Reports Server (NTRS)
1983-01-01
The Man-Vehicle Systems Research Facility (MVSRF) provides the capability of simulating aircraft (two with full crews), en route and terminal air traffic control and aircrew interactions, and advanced cockpit (1995) display representative of future generations of aircraft, all within the full mission context. The characteristics of this facility derive from research, addressing critical human factors issues that pertain to: (1) information requirements for the utilization and integration of advanced electronic display systems, (2) the interaction and distribution of responsibilities between aircrews and ground controllers, and (3) the automation of aircrew functions. This research has emphasized the need for high fidelity in simulations and for the capability to conduct full mission simulations of relevant aircraft operations. This report briefly describes the MVSRF design and operating characteristics.
A Review of Function Allocation and En Route Separation Assurance
NASA Technical Reports Server (NTRS)
Lewis, Timothy A.; Aweiss, Arwa S.; Guerreiro, Nelson M.; Daiker, Ronald J.
2016-01-01
Today's air traffic control system has reached a limit to the number of aircraft that can be safely managed at the same time. This air traffic capacity bottleneck is a critical problem along the path to modernization for air transportation. The design of the next separation assurance system to address this problem is a cornerstone of air traffic management research today. This report reviews recent work by NASA and others in the areas of function allocation and en route separation assurance. This includes: separation assurance algorithms and technology prototypes; concepts of operations and designs for advanced separation assurance systems; and specific investigations into air-ground and human-automation function allocation.
Rosa, Benoit; Machaidze, Zurab; Shin, Borami; Manjila, Sunil; Brown, David W; Baird, Christopher W; Mayer, John E; Dupont, Pierre E
2017-11-01
This paper provides detailed instructions for constructing low-cost bioprosthetic semilunar valves for animal research and clinical training. This work fills an important gap between existing simulator training valves and clinical valves by providing fully functioning designs that can be employed in ex vivo and in vivo experiments and can also be modified to model valvular disease. Valves are constructed in 4 steps consisting of creating a metal frame, covering it with fabric and attaching a suture ring and leaflets. Computer-aided design files are provided for making the frame from wire or by metal 3D printing. The covering fabric and suturing ring are made from materials readily available in a surgical lab, while the leaflets are made from pericardium. The entire fabrication process is described in figures and in a video. To demonstrate disease modelling, design modifications are described for producing paravalvular leaks, and these valves were evaluated in porcine ex vivo (n = 3) and in vivo (n = 6) experiments. Porcine ex vivo and acute in vivo experiments demonstrate that the valves can replicate the performance of clinical valves for research and training purposes. Surgical implantation is similar, and echocardiograms are comparable to clinical valves. Furthermore, valve leaflet function was satisfactory during acute in vivo tests with little central regurgitation, while the paravalvular leak modifications consistently produced leaks in the desired locations. The detailed design procedure presented here, which includes a tutorial video and computer-aided design files, should be of substantial benefit to researchers developing valve disease models and to clinicians developing realistic valve training systems. © The Author 2017. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.
GENESIS 2: Advanced lunar outpost
NASA Technical Reports Server (NTRS)
Moore, Gary T.
1991-01-01
Advanced, second-generation lunar habitats for astronauts and mission specialists working on the Moon are investigated. The work was based on design constraints set forth in previous publications. Design recommendations are based on environmental response to the lunar environment, habitability, safety, near-term technology, replaceability and modularity, and suitability for NASA lunar research missions in the early 21st century. Scientists, engineers, and architects from NASA/JSC, Wisconsin aeronautical industry, and area universities gave technical input and offered critiques at design reviews throughout the process. The recommended design uses a lunar lava tube, with construction using a combination of Space Station Freedom-derived modules and lightweight Kevlar-laminate inflatables. The outpost includes research laboratories and biotron, crew quarters and support facility, mission control, health maintenance facility, and related areas for functional and psychological requirements. Furniture, specialized equipment, and lighting are included in the design analysis.
Advanced control design for hybrid turboelectric vehicle
NASA Technical Reports Server (NTRS)
Abban, Joseph; Norvell, Johnesta; Momoh, James A.
1995-01-01
The new environment standards are a challenge and opportunity for industry and government who manufacture and operate urban mass transient vehicles. A research investigation to provide control scheme for efficient power management of the vehicle is in progress. Different design requirements using functional analysis and trade studies of alternate power sources and controls have been performed. The design issues include portability, weight and emission/fuel efficiency of induction motor, permanent magnet and battery. A strategic design scheme to manage power requirements using advanced control systems is presented. It exploits fuzzy logic, technology and rule based decision support scheme. The benefits of our study will enhance the economic and technical feasibility of technological needs to provide low emission/fuel efficient urban mass transit bus. The design team includes undergraduate researchers in our department. Sample results using NASA HTEV simulation tool are presented.
McFadd, Emily; Wilkinson, Krista
2010-06-01
For children with complex communication needs, augmentative and alternative communication (AAC) devices offer a functional way to communicate thoughts and feelings. Despite many significant advances in the field, effective and efficient aided communication can remain a challenge for some clients and their partners. One critical element of aided AAC intervention is systematic attention to the design of the communication display itself. A well-designed display will foster communication outcomes; a poorly designed one might have the opposite effect. Surprisingly, to our knowledge there are no studies of the strategies that clinicians actually employ when putting together a display. In this research note, we examine, on a case-by-case basis, the strategies six clinicians used when constructing display pages, as a means of highlighting potential areas that might warrant systematic research on display design.
ERIC Educational Resources Information Center
Moses, Tim
2008-01-01
Nine statistical strategies for selecting equating functions in an equivalent groups design were evaluated. The strategies of interest were likelihood ratio chi-square tests, regression tests, Kolmogorov-Smirnov tests, and significance tests for equated score differences. The most accurate strategies in the study were the likelihood ratio tests…
ERIC Educational Resources Information Center
Sung, Connie; Chiu, Chung-Yi; Lee, Eun-Jeong; Bezyak, Jill; Chan, Fong; Muller, Veronica
2013-01-01
The main objective of this study was to examine the mediational and moderational effect of exercise, diet, and stress management on the relationship between functional disability and health-related quality of life. Quantitative descriptive research design using multiple regression and correlation techniques was used. Participants were 215…
ERIC Educational Resources Information Center
Grenville-Briggs, Laura J.; Stansfield, Ian
2011-01-01
This report describes a linked series of Masters-level computer practical workshops. They comprise an advanced functional genomics investigation, based upon analysis of a microarray dataset probing yeast DNA damage responses. The workshops require the students to analyse highly complex transcriptomics datasets, and were designed to stimulate…
ERIC Educational Resources Information Center
Scholtz, Sandra
A management information system (MIS) is applied to a medium sized general museum to reflect the actual curatorial/registration functions. The recordkeeping functions of loan and conservation activities are examined since they too can be effectively handled by computer and constitute a complementary data base to the accession/catalog information.…
Web-Based OPACs in Indian Academic Libraries: A Functional Comparison
ERIC Educational Resources Information Center
Kapoor, Kanta; Goyal, O. P.
2007-01-01
Purpose: The paper seeks to provide a comparative analysis of the functionality of five web-based OPACs available in Indian academic libraries. Design/methodology/approach: Same-topic searches were carried out by three researchers on the web-based OPACs of Libsys, VTLS's iPortal, NewGenLib, Troodon, and Alice for Windows, implemented in five…
Sensitivity analysis of navy aviation readiness based sparing model
2017-09-01
variability. (See Figure 4.) Figure 4. Research design flowchart 18 Figure 4 lays out the four steps of the methodology , starting in the upper left-hand...as a function of changes in key inputs. We develop NAVARM Experimental Designs (NED), a computational tool created by applying a state-of-the-art...experimental design to the NAVARM model. Statistical analysis of the resulting data identifies the most influential cost factors. Those are, in order of
Design considerations for a servo optical projection system
NASA Astrophysics Data System (ADS)
Nadalsky, Michael; Allen, Daniel; Bien, Joseph
1987-01-01
The present servooptical projection system (SOPS) furnishes 'out-the-window' scenery for a pilot-training flight simulator; attention is given to the parametric tradeoffs made in the SOPS' optical design, as well as to its mechanical packaging and the servonetwork performance of the unit as integrated into a research/training helicopter flight simulator. The final SOPS configuration is a function of scan head design, assembly modularity, image deterioration method, and focal lengths and relative apertures.
Group functioning of a collaborative family research team.
Johnson, S K; Halm, M A; Titler, M G; Craft, M; Kleiber, C; Montgomery, L A; Nicholson, A; Buckwalter, K; Cram, E
1993-07-01
Collaborative research teams are an attractive means of conducting nursing research in the clinical setting because of the many opportunities that collaboration can supply. These opportunities include a chance to: (1) network with other nurses who have similar interests, (2) share knowledge and expertise for designing clinical studies that directly affect daily practice, (3) develop instruments, (4) write grant proposals, (5) collect and analyze data, and (6) prepare manuscripts for publication. The effectiveness of research teams, however, is strongly influenced by group functioning. This article describes the functioning of a collaborative family interventions research team of nursing faculty members and CNSs at a large Midwestern university setting. The formation of the group and membership characteristics are described, along with strategies used to identify the research focus and individual and group goals. Aspects related to the influence of the group on members and the internal operations of the group are also addressed. Future strategies to be explored will focus on the size of the group and joint authorship issues. The authors also set forth a number of recommendations for development of collaborative research groups.
2015-11-01
Genetic association studies of transplantation outcomes have been hampered by small samples and highly complex multifactorial phenotypes, hindering investigations of the genetic architecture of a range of comorbidities which significantly impact graft and recipient life expectancy. We describe here the rationale and design of the International Genetics & Translational Research in Transplantation Network. The network comprises 22 studies to date, including 16494 transplant recipients and 11669 donors, of whom more than 5000 are of non-European ancestry, all of whom have existing genomewide genotype data sets. We describe the rich genetic and phenotypic information available in this consortium comprising heart, kidney, liver, and lung transplant cohorts. We demonstrate significant power in International Genetics & Translational Research in Transplantation Network to detect main effect association signals across regions such as the MHC region as well as genomewide for transplant outcomes that span all solid organs, such as graft survival, acute rejection, new onset of diabetes after transplantation, and for delayed graft function in kidney only. This consortium is designed and statistically powered to deliver pioneering insights into the genetic architecture of transplant-related outcomes across a range of different solid-organ transplant studies. The study design allows a spectrum of analyses to be performed including recipient-only analyses, donor-recipient HLA mismatches with focus on loss-of-function variants and nonsynonymous single nucleotide polymorphisms.
OFMTutor: An operator function model intelligent tutoring system
NASA Technical Reports Server (NTRS)
Jones, Patricia M.
1989-01-01
The design, implementation, and evaluation of an Operator Function Model intelligent tutoring system (OFMTutor) is presented. OFMTutor is intended to provide intelligent tutoring in the context of complex dynamic systems for which an operator function model (OFM) can be constructed. The human operator's role in such complex, dynamic, and highly automated systems is that of a supervisory controller whose primary responsibilities are routine monitoring and fine-tuning of system parameters and occasional compensation for system abnormalities. The automated systems must support the human operator. One potentially useful form of support is the use of intelligent tutoring systems to teach the operator about the system and how to function within that system. Previous research on intelligent tutoring systems (ITS) is considered. The proposed design for OFMTutor is presented, and an experimental evaluation is described.
PREFACE: International Conference on Advanced Structural and Functional Materials Design 2008
NASA Astrophysics Data System (ADS)
Kakeshita, Tomoyuki
2009-07-01
The Ministry of Education, Culture, Sports, Science and Technology of Japan started the Priority Assistance for the Formation of Worldwide Renowned Centers of Research - Global COE Program. This program is based on the competitive principle where a third party evaluation decides which program to support and to give priority support to the formation of world-class centers of research. Our program Center of Excellence for Advanced Structural and Functional Materials Design was selected as one of 13 programs in the field of Chemistry and Materials Science. This center is composed of two materials-related Departments in the Graduate School of Engineering: Materials and Manufacturing Science and Adaptive Machine Systems, and 4 Research Institutes: Center for Atomic and Molecular Technologies, Welding and Joining Research Institute, Institute of Scientific and Industrial Research and Research Center for Ultra-High Voltage Electron Microscopy. Recently, materials research, particularly that of metallic materials, has specialized only in individual elemental characteristics and narrow specialty fields, and there is a feeling that the original role of materials research has been forgotten. The 6 educational and research organizations which make up the COE program cooperatively try to develop new advanced structural and functional materials and achieve technological breakthrough for their fabrication processes from electronic, atomic, microstructural and morphological standpoints, focusing on their design and application: development of high performance structural materials such as space plane and turbine blades operating under a severe environment, new fabrication and assembling methods for electronic devices, development of evaluation technique for materials reliability, and development of new biomaterials for regeneration of biological hard tissues. The aim of this international conference was to report the scientific progress in our Global COE program and also to discuss related research topics. The organizing committee gratefully thanks participants for presenting their recent results and for discussions with our COE members and international attendees. November 2008 Professor Tomoyuki Kakeshita Chairman of the Conference Vice Dean, Graduate School of Engineering, Osaka University, Division of Materials and Manufacturing Science, Graduate School of Engineering Leader of Global COE Program, Osaka University, ''Center of Excellence for Advanced Structural and Functional Materials Design'' Organization Chairman: T Kakeshita (Osaka University) Advisory Board:H Mehrer (University Münster, Germany), E K H Salje (University of Cambridge, United Kingdom), H-E Schaefer (University of Stuttgart, Germany), P Veyssiere (CNRS-ONERA, France) Organizing Committee: T Kakeshita, H Araki, H Fujii, S Fujimoto, Y Fujiwara, A Hirose, S Kirihara, M Mochizuki, H Mori, T Nagase, H Nakajima, T Nakano, R Nakatani, K Nogi, Y Setsuhara, Y Shiratsuchi, T Tanaka, T Terai, H Tsuchiya, N Tsuji, H Utsunomiya, H Yasuda, H Yasuda (Osaka University) Executive Committee: T Kakeshita, S Fujimoto, Y Fujiwara, A Hirose, T Tanaka, H Yasuda (Osaka University) Conference Secretariat: Y Fujiwara (Osaka University) Proceedings Editors: T Kakeshita and Y Fujiwara (Osaka University) Conference photograph
NASA Technical Reports Server (NTRS)
Morris, Robert A.
1990-01-01
The emphasis is on defining a set of communicating processes for intelligent spacecraft secondary power distribution and control. The computer hardware and software implementation platform for this work is that of the ADEPTS project at the Johnson Space Center (JSC). The electrical power system design which was used as the basis for this research is that of Space Station Freedom, although the functionality of the processes defined here generalize to any permanent manned space power control application. First, the Space Station Electrical Power Subsystem (EPS) hardware to be monitored is described, followed by a set of scenarios describing typical monitor and control activity. Then, the parallel distributed problem solving approach to knowledge engineering is introduced. There follows a two-step presentation of the intelligent software design for secondary power control. The first step decomposes the problem of monitoring and control into three primary functions. Each of the primary functions is described in detail. Suggestions for refinements and embelishments in design specifications are given.
Optimizing Monitoring Designs under Alternative Objectives
Gastelum, Jason A.; USA, Richland Washington; Porter, Ellen A.; ...
2014-12-31
This paper describes an approach to identify monitoring designs that optimize detection of CO2 leakage from a carbon capture and sequestration (CCS) reservoir and compares the results generated under two alternative objective functions. The first objective function minimizes the expected time to first detection of CO2 leakage, the second more conservative objective function minimizes the maximum time to leakage detection across the set of realizations. The approach applies a simulated annealing algorithm that searches the solution space by iteratively mutating the incumbent monitoring design. The approach takes into account uncertainty by evaluating the performance of potential monitoring designs across amore » set of simulated leakage realizations. The approach relies on a flexible two-tiered signature to infer that CO2 leakage has occurred. This research is part of the National Risk Assessment Partnership, a U.S. Department of Energy (DOE) project tasked with conducting risk and uncertainty analysis in the areas of reservoir performance, natural leakage pathways, wellbore integrity, groundwater protection, monitoring, and systems level modeling.« less
Development of a portable multispectral thermal infrared camera
NASA Technical Reports Server (NTRS)
Osterwisch, Frederick G.
1991-01-01
The purpose of this research and development effort was to design and build a prototype instrument designated the 'Thermal Infrared Multispectral Camera' (TIRC). The Phase 2 effort was a continuation of the Phase 1 feasibility study and preliminary design for such an instrument. The completed instrument designated AA465 has application in the field of geologic remote sensing and exploration. The AA465 Thermal Infrared Camera (TIRC) System is a field-portable multispectral thermal infrared camera operating over the 8.0 - 13.0 micron wavelength range. Its primary function is to acquire two-dimensional thermal infrared images of user-selected scenes. Thermal infrared energy emitted by the scene is collected, dispersed into ten 0.5 micron wide channels, and then measured and recorded by the AA465 System. This multispectral information is presented in real time on a color display to be used by the operator to identify spectral and spatial variations in the scenes emissivity and/or irradiance. This fundamental instrument capability has a wide variety of commercial and research applications. While ideally suited for two-man operation in the field, the AA465 System can be transported and operated effectively by a single user. Functionally, the instrument operates as if it were a single exposure camera. System measurement sensitivity requirements dictate relatively long (several minutes) instrument exposure times. As such, the instrument is not suited for recording time-variant information. The AA465 was fabricated, assembled, tested, and documented during this Phase 2 work period. The detailed design and fabrication of the instrument was performed during the period of June 1989 to July 1990. The software development effort and instrument integration/test extended from July 1990 to February 1991. Software development included an operator interface/menu structure, instrument internal control functions, DSP image processing code, and a display algorithm coding program. The instrument was delivered to NASA in March 1991. Potential commercial and research uses for this instrument are in its primary application as a field geologists exploration tool. Other applications have been suggested but not investigated in depth. These are measurements of process control in commercial materials processing and quality control functions which require information on surface heterogeneity.
Cognitive Functioning in Space Exploration Missions: A Human Requirement
NASA Technical Reports Server (NTRS)
Fiedler, Edan; Woolford, Barbara
2005-01-01
Solving cognitive issues in the exploration missions will require implementing results from both Human Behavior and Performance, and Space Human Factors Engineering. Operational and research cognitive requirements need to reflect a coordinated management approach with appropriate oversight and guidance from NASA headquarters. First, this paper will discuss one proposed management method that would combine the resources of Space Medicine and Space Human Factors Engineering at JSC, other NASA agencies, the National Space Biomedical Research Institute, Wyle Labs, and other academic or industrial partners. The proposed management is based on a Human Centered Design that advocates full acceptance of the human as a system equal to other systems. Like other systems, the human is a system with many subsystems, each of which has strengths and limitations. Second, this paper will suggest ways to inform exploration policy about what is needed for optimal cognitive functioning of the astronaut crew, as well as requirements to ensure necessary assessment and intervention strategies for the human system if human limitations are reached. Assessment strategies will include clinical evaluation and fitness-to-perform evaluations. Clinical intervention tools and procedures will be available to the astronaut and space flight physician. Cognitive performance will be supported through systematic function allocation, task design, training, and scheduling. Human factors requirements and guidelines will lead to well-designed information displays and retrieval systems that reduce crew time and errors. Means of capturing process, design, and operational requirements to ensure crew performance will be discussed. Third, this paper will describe the current plan of action, and future challenges to be resolved before a lunar or Mars expedition. The presentation will include a proposed management plan for research, involvement of various organizations, and a timetable of deliverables.
QFD-ANP Approach for the Conceptual Design of Research Vessels: A Case Study
NASA Astrophysics Data System (ADS)
Venkata Subbaiah, Kambagowni; Yeshwanth Sai, Koneru; Suresh, Challa
2016-10-01
Conceptual design is a subset of concept art wherein a new idea of product is created instead of a visual representation which would directly be used in a final product. The purpose is to understand the needs of conceptual design which are being used in engineering designs and to clarify the current conceptual design practice. Quality function deployment (QFD) is a customer oriented design approach for developing new or improved products and services to enhance customer satisfaction. House of quality (HOQ) has been traditionally used as planning tool of QFD which translates customer requirements (CRs) into design requirements (DRs). Factor analysis is carried out in order to reduce the CR portions of HOQ. The analytical hierarchical process is employed to obtain the priority ratings of CR's which are used in constructing HOQ. This paper mainly discusses about the conceptual design of an oceanographic research vessel using analytical network process (ANP) technique. Finally the QFD-ANP integrated methodology helps to establish the importance ratings of DRs.
Defense AT and L. Volume 45, Issue 1
2016-02-01
and government organizations. She currently is a senior research analyst for the MCBL Science and Technology Branch at Fort Leavenworth, Kansas...core functionality and interface design. Analysts from the Army S&T and MC user communities participated, including MCBL, Army Research Laboratory...Mica R. Endsley, Ph.D. Programs can use the 60-year foundation of scientific research and engineering in the field of human factors to develop robust
A Study on the Campus Landscape Design of the National University of Singapore
NASA Astrophysics Data System (ADS)
Lin, Lusheng; Dong, Ya
2018-01-01
In this paper, we analyzed the functions, structure, layout, landscape and engineering measure of the campus of NUS by the way of such research methods as present situation research, interview and comparative study. And we get the spatial characteristics of landscape environment affected by political economy, human geography, geographical conditions which will provide a new perspective for building international, modern, high-level research universities.
Schell, Lawrence M.; Ravenscroft, Julia; Cole, Maxine; Jacobs, Agnes; Newman, Joan
2005-01-01
In this article we describe a research partnership between the Akwesasne Mohawk Nation and scientists at the University at Albany, State University of New York, initiated to address community and scientific concerns regarding environmental contamination and its health consequences (thyroid hormone function, social adjustment, and school functioning). The investigation focuses on cultural inputs into health disparities. It employs a risk-focusing model of biocultural interaction: behaviors expressing cultural identity and values allocate or focus risk, in this instance the risk of toxicant exposure, which alters health status through the effects of toxicants. As culturally based behaviors and activities fulfill a key role in the model, accurate assessment of subtle cultural and behavioral variables is required and best accomplished through integration of local expert knowledge from the community. As a partnership project, the investigation recognizes the cultural and socioeconomic impacts of research in small communities beyond the production of scientific knowledge. The components of sustainable partnerships are discussed, including strategies that helped promote equity between the partners such as hiring community members as key personnel, integrating local expertise into research design, and developing a local Community Outreach and Education Program. Although challenges arose during the design and implementation of the research project, a collaborative approach has benefited the community and facilitated research. PMID:16330372
Reliability optimization design of the gear modification coefficient based on the meshing stiffness
NASA Astrophysics Data System (ADS)
Wang, Qianqian; Wang, Hui
2018-04-01
Since the time varying meshing stiffness of gear system is the key factor affecting gear vibration, it is important to design the meshing stiffness to reduce vibration. Based on the effect of gear modification coefficient on the meshing stiffness, considering the random parameters, reliability optimization design of the gear modification is researched. The dimension reduction and point estimation method is used to estimate the moment of the limit state function, and the reliability is obtained by the forth moment method. The cooperation of the dynamic amplitude results before and after optimization indicates that the research is useful for the reduction of vibration and noise and the improvement of the reliability.
An integrated approach to system design, reliability, and diagnosis
NASA Technical Reports Server (NTRS)
Patterson-Hine, F. A.; Iverson, David L.
1990-01-01
The requirement for ultradependability of computer systems in future avionics and space applications necessitates a top-down, integrated systems ingeneering approach for design, implementation, testing, and operation. The functional analyses of hardware and software systems must be combined by models that are flexible enough to represent their interactions and behavior. The information contained in these models must be accessible throughout all phases of the system life cycle in order to maintain consistency and accuracy in design and operational decisions. One approach being taken by researchers at Ames Research Center is the creation of an object-oriented environment that integrates information about system components required in the reliability evaluation with behavioral information useful for diagnostic algorithms.
McEwan, Reed; Melton, Genevieve B; Knoll, Benjamin C; Wang, Yan; Hultman, Gretchen; Dale, Justin L; Meyer, Tim; Pakhomov, Serguei V
2016-01-01
Many design considerations must be addressed in order to provide researchers with full text and semantic search of unstructured healthcare data such as clinical notes and reports. Institutions looking at providing this functionality must also address the big data aspects of their unstructured corpora. Because these systems are complex and demand a non-trivial investment, there is an incentive to make the system capable of servicing future needs as well, further complicating the design. We present architectural best practices as lessons learned in the design and implementation NLP-PIER (Patient Information Extraction for Research), a scalable, extensible, and secure system for processing, indexing, and searching clinical notes at the University of Minnesota.
Research on AutoCAD secondary development and function expansion based on VBA technology
NASA Astrophysics Data System (ADS)
Zhang, Runmei; Gu, Yehuan
2017-06-01
AutoCAD is the most widely used drawing tool among the similar design drawing products. In the process of drawing different types of design drawings of the same product, there are a lot of repetitive and single work contents. The traditional manual method uses a drawing software AutoCAD drawing graphics with low efficiency, high error rate and high input cost shortcomings and many more. In order to solve these problems, the design of the parametric drawing system of the hot-rolled I-beam (steel beam) cross-section is completed by using the VBA secondary development tool and the Access database software with large-capacity storage data, and the analysis of the functional extension of the plane drawing and the parametric drawing design in this paper. For the secondary development of AutoCAD functions, the system drawing work will be simplified and work efficiency also has been greatly improved. This introduction of parametric design of AutoCAD drawing system to promote the industrial mass production and related industries economic growth rate similar to the standard I-beam hot-rolled products.
High-performance, multi-faceted research sonar electronics
NASA Astrophysics Data System (ADS)
Moseley, Julian W.
This thesis describes the design, implementation and testing of a research sonar system capable of performing complex applications such as coherent Doppler measurement and synthetic aperture imaging. Specifically, this thesis presents an approach to improve the precision of the timing control and increase the signal-to-noise ratio of an existing research sonar. A dedicated timing control subsystem, and hardware drivers are designed to improve the efficiency of the old sonar's timing operations. A low noise preamplifier is designed to reduce the noise component in the received signal arriving at the input of the system's data acquisition board. Noise analysis, frequency response, and timing simulation data are generated in order to predict the functionality and performance improvements expected when the subsystems are implemented. Experimental data, gathered using these subsys- tems, are presented, and are shown to closely match the simulation results, thus verifying performance.
Laboratory Design for Microbiological Safety
Phillips, G. Briggs; Runkle, Robert S.
1967-01-01
Of the large amount of funds spent each year in this country on construction and remodeling of biomedical research facilities, a significant portion is directed to laboratories handling infectious microorganisms. This paper is intended for the scientific administrators, architects, and engineers concerned with the design of new microbiological facilities. It develops and explains the concept of primary and secondary barriers for the containment of microorganisms. The basic objectives of a microbiological research laboratory, (i) protection of the experimenter and staff, (ii) protection of the surrounding community, and (iii) maintenance of experimental validity, are defined. In the design of a new infectious-disease research laboratory, early identification should be made of the five functional zones of the facility and their relation to each other. The following five zones and design criteria applicable to each are discussed: clean and transition, research area, animal holding and research area, laboratory support, engineering support. The magnitude of equipment and design criteria which are necessary to integrate these five zones into an efficient and safe facility are delineated. Images Fig. 1 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 10 Fig. 11 Fig. 12 Fig. 13 Fig. 14 Fig. 15 Fig. 16 Fig. 17 Fig. 18 Fig. 19 PMID:4961771
Anderson, Kim; Aito, Sergio; Atkins, Michal; Biering-Sørensen, Fin; Charlifue, Susan; Curt, Armin; Ditunno, John; Glass, Clive; Marino, Ralph; Marshall, Ruth; Mulcahey, Mary Jane; Post, Marcel; Savic, Gordana; Scivoletto, Giorgio; Catz, Amiram
2008-01-01
Background/Objective: The end goal of clinical care and clinical research involving spinal cord injury (SCI) is to improve the overall ability of persons living with SCI to function on a daily basis. Neurologic recovery does not always translate into functional recovery. Thus, sensitive outcome measures designed to assess functional status relevant to SCI are important to develop. Method: Evaluation of currently available SCI functional outcome measures by a multinational work group. Results: The 4 measures that fit the prespecified inclusion criteria were the Modified Barthel Index (MBI), the Functional Independence Measure (FIM), the Quadriplegia Index of Function (QIF), and the Spinal Cord Independence Measure (SCIM). The MBI and the QIF were found to have minimal evidence for validity, whereas the FIM and the SCIM were found to be reliable and valid. The MBI has little clinical utility for use in the SCI population. Likewise, the FIM applies mainly when measuring burden of care, which is not necessarily a reflection of functional recovery. The QIF is useful for measuring functional recovery but only in a subpopulation of people with SCI, and substantial validity data are still required. The SCIM is the only functional recovery outcome measure designed specifically for SCI. Conclusions: The multinational work group recommends that the latest version of the SCIM (SCIM III) continue to be refined and validated and subsequently implemented worldwide as the primary functional recovery outcome measure for SCI. The QIF may continue to be developed and validated for use as a supplemental tool for the nonambulatory tetraplegic population. PMID:18581660
NASA Technical Reports Server (NTRS)
Smith, Philip J.; Mccoy, C. Elaine
1991-01-01
The goals of this research were to develop design concepts to support the task of enroute flight planning. And within this context, to explore and evaluate general design concepts and principles to guide the development of cooperative problem solving systems. A detailed model is to be developed of the cognitive processes involved in flight planning. Included in this model will be the identification of individual differences of subjects. Of particular interest will be differences between pilots and dispatchers. The effect will be studied of the effect on performance of tools that support planning at different levels of abstraction. In order to conduct this research, the Flight Planning Testbed (FPT) was developed, a fully functional testbed environment for studying advanced design concepts for tools to aid in flight planning.
Bray, Jeremy W.; Kelly, Erin L.; Hammer, Leslie B.; Almeida, David M.; Dearing, James W.; King, Rosalind B.; Buxton, Orfeu M.
2013-01-01
Recognizing a need for rigorous, experimental research to support the efforts of workplaces and policymakers in improving the health and wellbeing of employees and their families, the National Institutes of Health and the Centers for Disease Control and Prevention formed the Work, Family & Health Network (WFHN). The WFHN is implementing an innovative multisite study with a rigorous experimental design (adaptive randomization, control groups), comprehensive multilevel measures, a novel and theoretically based intervention targeting the psychosocial work environment, and translational activities. This paper describes challenges and benefits of designing a multilevel and transdisciplinary research network that includes an effectiveness study to assess intervention effects on employees, families, and managers; a daily diary study to examine effects on family functioning and daily stress; a process study to understand intervention implementation; and translational research to understand and inform diffusion of innovation. Challenges were both conceptual and logistical, spanning all aspects of study design and implementation. In dealing with these challenges, however, the WFHN developed innovative, transdisciplinary, multi-method approaches to conducting workplace research that will benefit both the research and business communities. PMID:24618878
Inherited Retinal Degenerative Disease Clinical Trial Network
2012-10-01
strategies can be designed , tested and adopted as standard care. 2 While repeat evaluation and study of affected patients are vital to rigorously...following document is a summary of our experience and research in testing retinal structure and function in eyes with degenerative retinal diseases...Network PRINCIPAL INVESTIGATOR: Patricia Zilliox, Ph.D. CONTRACTING ORGANIZATION: National Neurovision Research Institute Owings
The Case for Fiction as Qualitative Research: Towards a Non-Referential Ground for Meaning
ERIC Educational Resources Information Center
Mus, Stijn
2012-01-01
In the wake of the crisis of representation, the qualitative approaches have gained momentum within the social sciences. This crisis has lead to a widespread awareness about the need to incorporate the subject's understanding in the research design. Yet, the validity of qualitative accounts is still regarded as a function of its representative…
SSD for R: A Comprehensive Statistical Package to Analyze Single-System Data
ERIC Educational Resources Information Center
Auerbach, Charles; Schudrich, Wendy Zeitlin
2013-01-01
The need for statistical analysis in single-subject designs presents a challenge, as analytical methods that are applied to group comparison studies are often not appropriate in single-subject research. "SSD for R" is a robust set of statistical functions with wide applicability to single-subject research. It is a comprehensive package…
Pathways over Time: Functional Genomics Research in an Introductory Laboratory Course.
Reeves, Todd D; Warner, Douglas M; Ludlow, Larry H; O'Connor, Clare M
2018-01-01
National reports have called for the introduction of research experiences throughout the undergraduate curriculum, but practical implementation at many institutions faces challenges associated with sustainability, cost, and large student populations. We describe a novel course-based undergraduate research experience (CURE) that introduces introductory-level students to research in functional genomics in a 3-credit, multisection laboratory class. In the Pathways over Time class project, students study the functional conservation of the methionine biosynthetic pathway between divergent yeast species. Over the five semesters described in this study, students ( N = 793) showed statistically significant and sizable growth in content knowledge ( d = 1.85) and in self-reported research methods skills ( d = 0.65), experimental design, oral and written communication, database use, and collaboration. Statistical analyses indicated that content knowledge growth was larger for underrepresented minority students and that growth in content knowledge, but not research skills, varied by course section. Our findings add to the growing body of evidence that CUREs can support the scientific development of large numbers of students with diverse characteristics. The Pathways over Time project is designed to be sustainable and readily adapted to other institutional settings. © 2018 T. D. Reeves et al. CBE—Life Sciences Education © 2018 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
A Conceptual Design for a Reliable Optical Bus (ROBUS)
NASA Technical Reports Server (NTRS)
Miner, Paul S.; Malekpour, Mahyar; Torres, Wilfredo
2002-01-01
The Scalable Processor-Independent Design for Electromagnetic Resilience (SPIDER) is a new family of fault-tolerant architectures under development at NASA Langley Research Center (LaRC). The SPIDER is a general-purpose computational platform suitable for use in ultra-reliable embedded control applications. The design scales from a small configuration supporting a single aircraft function to a large distributed configuration capable of supporting several functions simultaneously. SPIDER consists of a collection of simplex processing elements communicating via a Reliable Optical Bus (ROBUS). The ROBUS is an ultra-reliable, time-division multiple access broadcast bus with strictly enforced write access (no babbling idiots) providing basic fault-tolerant services using formally verified fault-tolerance protocols including Interactive Consistency (Byzantine Agreement), Internal Clock Synchronization, and Distributed Diagnosis. The conceptual design of the ROBUS is presented in this paper including requirements, topology, protocols, and the block-level design. Verification activities, including the use of formal methods, are also discussed.
Scenario for concurrent conceptual assembly line design: A case study
NASA Astrophysics Data System (ADS)
Mas, F.; Ríos, J.; Menéndez, J. L.
2012-04-01
The decision to design and build a new aircraft is preceded by years of research and study. Different disciplines work together throughout the lifecycle to ensure not only a complete functional definition of the product, but also a complete industrialization, a marketing plan, a maintenance plan, etc. This case study focuses on the conceptual design phase. During this phase, the design solutions that will meet the functional and industrial requirements are defined, i.e.: the basic requirements of industrialization. During this phase, several alternatives are studied, and the most attractive in terms of performance and cost requirements is selected. As a result of the study of these alternatives, it is possible to define an early conceptual design of the assembly line and its basic parameters. The plant needs, long cycle jigs & tools or industrial means and human resources with the necessary skills can be determined in advance.
Research on design method of the full form ship with minimum thrust deduction factor
NASA Astrophysics Data System (ADS)
Zhang, Bao-ji; Miao, Ai-qin; Zhang, Zhu-xin
2015-04-01
In the preliminary design stage of the full form ships, in order to obtain a hull form with low resistance and maximum propulsion efficiency, an optimization design program for a full form ship with the minimum thrust deduction factor has been developed, which combined the potential flow theory and boundary layer theory with the optimization technique. In the optimization process, the Sequential Unconstrained Minimization Technique (SUMT) interior point method of Nonlinear Programming (NLP) was proposed with the minimum thrust deduction factor as the objective function. An appropriate displacement is a basic constraint condition, and the boundary layer separation is an additional one. The parameters of the hull form modification function are used as design variables. At last, the numerical optimization example for lines of after-body of 50000 DWT product oil tanker was provided, which indicated that the propulsion efficiency was improved distinctly by this optimal design method.
NASA Astrophysics Data System (ADS)
Gin, Douglas
2003-03-01
The development of materials with controlled nanostructures is one of the most important new areas of scientific research in chemistry and engineering. Our research group has developed a novel approach for making nanostructured polymer materials with unique functional properties using liquid crystals as starting materials. In this approach, we design polymerizable organic building blocks based on lyotropic liquid crystals (LLCs) (i.e., amphiphiles or surfactants) that carry, or can accommodate, a functional property of general interest. Through appropriate molecular design, these monomers self-assemble in the presence of water into fluid, yet ordered phase-separated, water-hydrocarbon assemblies with predictable nanoscale geometries. The architectures of these LLC phases can range from stacked two-dimensional lamellae to hexagonally ordered cylindrical channels with uniform feature sizes in the 1-10 nm range. These LLC phases are then photopolymerized into robust polymer networks with preservation of their small-scale structures. This approach allows us to investigate the effect of nanometer-scale architecture on important bulk properties, as well as to engineer chemical environments on the nanometer-scale for several areas of application. In this talk, new functional materials based on the polymerization of the lyotropic inverted hexagonal phase will be presented as one example of our general approach. Issues in the design and photopolymerization of functional amphiphilic monomers that adopt this LC architecture will be discussed. More importantly, the use of the resulting nanostructured polymer networks in three areas of application will be presented: (1) as templates for the synthesis of functional nanocomposites; (2) as tunable heterogeneous catalysts, and (3) as nanoporous membrane and separation media. In particular, issues pertaining to the contribution of nanoscale architecture to the performance of these systems will be highlighted. Opportunities for tailoring the nanoscale chemical environment and architecture of these materials through molecular design will be presented. Finally, the development of methods for controlling macroscopic orientation through processing will also be discussed.
Gammon, Deede; Strand, Monica; Eng, Lillian Sofie
2014-01-09
The involvement of persons with lived experiences of mental illness and service use is increasingly viewed as key to improving the relevance and utility of mental health research and service innovation. Guided by the principles of Community-Based Participatory Research we developed an online tool for assisted self-help in mental health. The resulting tool, PsyConnect, is ready for testing in two communities starting 2014. This case study reports from the design phase which entailed clarifying very basic questions: Who is the primary target group? What are the aims? What functions are priorities? Roles and responsibilities? What types of evidence can legitimize tool design decisions? Here we highlight the views of service users as a basis for discussing implications of user involvement for service design and research. PsyConnect has become a tool for those who expect to need assistance over long periods of time regardless of their specific condition(s). The aim is to support service users in gaining greater overview and control, legitimacy, and sense of continuity in relationships. It has a personalized "my control panel" which depicts status → process → goals. Functionality includes support for: mapping life domains; medication overview; crisis management; coping exercises; secure messaging; and social support. While the types of evidence that can legitimize design decisions are scattered and indirectly relevant, recent trends in recovery research will be used to guide further refinements. PsyConnect has undoubtedly become something other than it would have been without careful attention to the views of service users. The tool invites a proactive approach that is likely to challenge treatment cultures that are reactive, disorder-focused and consultation-based. Service user representatives will need to play central roles in training peers and clinicians in order to increase the likelihood of tool usage in line with intentions. Similarly, their influence on tool design has implications for choice of methods for evaluation. Starting down the path of service user involvement in intervention design fosters commitment to follow through in the remaining implementation and research phases. While this can be time-consuming and less meriting for researchers, it is probably vital to increasing the likelihood of success of person-centered service innovations.
Urban Environment Development based on Universal Design Principles
NASA Astrophysics Data System (ADS)
Harsritanto, Bangun Ir
2018-02-01
Universal Design is a design which facilitated full range of human diversity. By applying Universal design principles, urban environment can be more functional and more user-friendly for everyone. This study examined five urban streets of South Korea as a country experienced on developing various urban street designs based on universal design. This study aimed to examine and compare the South Korea cases using seven principles of universal design. The research methods of this study are literature study, case study, and site observation. The results of this study are: South Korea cases are good practices, urgency of implementing the direction into local regulations; and change of urban development paradigm.
Designing Universitas Indonesia Molina EV Bus Dashboard Using ECQFD and TRIZ
NASA Astrophysics Data System (ADS)
Faiq Pradhila, Muhammad; Suzianti, Amalia; Putri Adinda, Prilly
2018-01-01
Universitas Indonesia is involved in the national electric car development program. One of the focus by the research team is to develop the Molina EV Bus which is planned to replace the current operational bus at UI so that it can be more environmental friendly. With UI developing facilities for the disabled, the Molina research team planned to make a new prototype of the Molina EV Bus to contribute to the facilities developed for the disabled. The new prototype is expected to increase the quality of the previous features of the EV Bus, including the dashboard that had been ignored. To support the development of the new prototype, this research was conducted to design a suitable dashboard for the new prototype. Design of the prototype are made using Autodesk Inventor. This research used the integration of ECQFD (Environmentally Conscious Quality Function Deployment) and TRIZ (Theory of Inventive Problem Solving) method. ECQFD was used to translate user needs into quality characteristics based on environmental aspects. TRIZ was used to translate the quality characteristics into technical specifications. This research has generated 3 sustainable, innovative, and user-preferred dashboard design recommendation for the new prototype.
Communications network design and costing model users manual
NASA Technical Reports Server (NTRS)
Logan, K. P.; Somes, S. S.; Clark, C. A.
1983-01-01
The information and procedures needed to exercise the communications network design and costing model for performing network analysis are presented. Specific procedures are included for executing the model on the NASA Lewis Research Center IBM 3033 computer. The concepts, functions, and data bases relating to the model are described. Model parameters and their format specifications for running the model are detailed.
ERIC Educational Resources Information Center
Shih, Ching-Hsiang; Wang, Shu-Hui; Chang, Man-Ling; Shih, Ching-Hsiang
2012-01-01
The latest researches have adopted software technology, turning the Nintendo Wii Remote Controller into a high performance three-dimensional object orientation detector. This study extended Wii Remote Controller functionality to assess whether two people with developmental disabilities would be able to actively perform designated simple…
The Influence of Elective Surgery on Functional Health in Veterans with PTSD
2012-12-21
elective surgery in veterans with PTSD. Design : A longitudinal, mixed method, quasi-experimental, nonequivalent control group study was conducted...longitudinal, mixed method, quasi-experimental, nonequivalent control group study was conducted. Methods and Sample: Physical and mental health...Methods Procedures." In Research design : qualitative, quantitative , and mixed methods approaches, 203-226. Thousand Oaks, Calif.: Sage Publications
An Open-Structure Treadmill Gait Trainer: From Research to Application.
Li, Jian; Chen, Diansheng; Fan, Yubo
2017-01-01
Lower limb rehabilitation robots are designed to enhance gait function in individuals with motor impairments. Although numerous rehabilitation robots have been developed, only few of these robots have been used in practical health care, particularly in China. The objective of this study is to construct a lower limb rehabilitation robot and bridge the gap between research and application. Open structure to facilitate practical application was created for the whole robot. Three typical movement patterns of a single leg were adopted in designing the exoskeletons, and force models for patient training were established and analyzed under three different conditions, respectively, and then a control system and security strategy were introduced. After establishing the robot, a preliminary experiment on the actual use of a prototype by patients was conducted to validate the functionality of the robot. The experiment showed that different patients and stages displayed different performances, and results on the trend variations across patients and across stages confirmed the validity of the robot and suggested that the design may lead to a system that could be successful in the treatment of patients with walking disorders in China. Furthermore, this study could provide a reference for a similar application design.
Operator Support System Design forthe Operation of RSG-GAS Research Reactor
NASA Astrophysics Data System (ADS)
Santoso, S.; Situmorang, J.; Bakhri, S.; Subekti, M.; Sunaryo, G. R.
2018-02-01
The components of RSG-GAS main control room are facing the problem of material ageing and technology obsolescence as well, and therefore the need for modernization and refurbishment are essential. The modernization in control room can be applied on the operator support system which bears the function in providing information for assisting the operator in conducting diagnosis and actions. The research purpose is to design an operator support system for RSG-GAS control room. The design was developed based on the operator requirement in conducting task operation scenarios and the reactor operation characteristics. These scenarios include power operation, low power operation and shutdown/scram reactor. The operator support system design is presented in a single computer display which contains structure and support system elements e.g. operation procedure, status of safety related components and operational requirements, operation limit condition of parameters, alarm information, and prognosis function. The prototype was developed using LabView software and consisted of components structure and features of the operator support system. Information of each component in the operator support system need to be completed before it can be applied and integrated in the RSG-GAS main control room.
Designation and verification of road markings detection and guidance method
NASA Astrophysics Data System (ADS)
Wang, Runze; Jian, Yabin; Li, Xiyuan; Shang, Yonghong; Wang, Jing; Zhang, JingChuan
2018-01-01
With the rapid development of China's space industry, digitization and intelligent is the tendency of the future. This report is present a foundation research about guidance system which based on the HSV color space. With the help of these research which will help to design the automatic navigation and parking system for the frock transport car and the infrared lamp homogeneity intelligent test equipment. The drive mode, steer mode as well as the navigation method was selected. In consideration of the practicability, it was determined to use the front-wheel-steering chassis. The steering mechanism was controlled by the stepping motors, and it is guided by Machine Vision. The optimization and calibration of the steering mechanism was made. A mathematical model was built and the objective functions was constructed for the steering mechanism. The extraction method of the steering line was studied and the motion controller was designed and optimized. The theory of HSV, RGB color space and analysis of the testing result will be discussed Using the function library OPENCV on the Linux system to fulfill the camera calibration. Based on the HSV color space to design the guidance algorithm.
Leite-Moreira, Adelino F; Lourenço, André P; Balligand, Jean-Luc; Bauersachs, Johann; Clerk, Angela; De Windt, Leon J; Heymans, Stephane; Hilfiker-Kleiner, Denise; Hirsch, Emilio; Iaccarino, Guido; Kaminski, Karol A; Knöll, Ralph; Mayr, Manuel; Tarone, Guido; Thum, Thomas; Tocchetti, Carlo G
2014-05-01
The right ventricle has become an increasing focus in cardiovascular research. In this position paper, we give a brief overview of the specific pathophysiological features of the right ventricle, with particular emphasis on functional and molecular modifications as well as therapeutic strategies in chronic overload, highlighting the differences from the left ventricle. Importantly, we put together recommendations on promising topics of research in the field, experimental study design, and functional evaluation of the right ventricle in experimental models, from non-invasive methodologies to haemodynamic evaluation and ex vivo set-ups. © 2014 The Authors. European Journal of Heart Failure © 2014 European Society of Cardiology.
NASA Astrophysics Data System (ADS)
Echavarria, E.; Tomiyama, T.; van Bussel, G. J. W.
2007-07-01
The objective of this on-going research is to develop a design methodology to increase the availability for offshore wind farms, by means of an intelligent maintenance system capable of responding to faults by reconfiguring the system or subsystems, without increasing service visits, complexity, or costs. The idea is to make use of the existing functional redundancies within the system and sub-systems to keep the wind turbine operational, even at a reduced capacity if necessary. Re-configuration is intended to be a built-in capability to be used as a repair strategy, based on these existing functionalities provided by the components. The possible solutions can range from using information from adjacent wind turbines, such as wind speed and direction, to setting up different operational modes, for instance re-wiring, re-connecting, changing parameters or control strategy. The methodology described in this paper is based on qualitative physics and consists of a fault diagnosis system based on a model-based reasoner (MBR), and on a functional redundancy designer (FRD). Both design tools make use of a function-behaviour-state (FBS) model. A design methodology based on the re-configuration concept to achieve self-maintained wind turbines is an interesting and promising approach to reduce stoppage rate, failure events, maintenance visits, and to maintain energy output possibly at reduced rate until the next scheduled maintenance.
Spreading activation in nonverbal memory networks.
Foster, Paul S; Wakefield, Candias; Pryjmak, Scott; Roosa, Katelyn M; Branch, Kaylei K; Drago, Valeria; Harrison, David W; Ruff, Ronald
2017-09-01
Theories of spreading activation primarily involve semantic memory networks. However, the existence of separate verbal and visuospatial memory networks suggests that spreading activation may also occur in visuospatial memory networks. The purpose of the present investigation was to explore this possibility. Specifically, this study sought to create and describe the design frequency corpus and to determine whether this measure of visuospatial spreading activation was related to right hemisphere functioning and spreading activation in verbal memory networks. We used word frequencies taken from the Controlled Oral Word Association Test and design frequencies taken from the Ruff Figural Fluency Test as measures of verbal and visuospatial spreading activation, respectively. Average word and design frequencies were then correlated with measures of left and right cerebral functioning. The results indicated that a significant relationship exists between performance on a test of right posterior functioning (Block Design) and design frequency. A significant negative relationship also exists between spreading activation in semantic memory networks and design frequency. Based on our findings, the hypotheses were supported. Further research will need to be conducted to examine whether spreading activation exists in visuospatial memory networks as well as the parameters that might modulate this spreading activation, such as the influence of neurotransmitters.
Islam, Naz Niamul; Hannan, M A; Shareef, Hussain; Mohamed, Azah; Salam, M A
2014-01-01
Power oscillation damping controller is designed in linearized model with heuristic optimization techniques. Selection of the objective function is very crucial for damping controller design by optimization algorithms. In this research, comparative analysis has been carried out to evaluate the effectiveness of popular objective functions used in power system oscillation damping. Two-stage lead-lag damping controller by means of power system stabilizers is optimized using differential search algorithm for different objective functions. Linearized model simulations are performed to compare the dominant mode's performance and then the nonlinear model is continued to evaluate the damping performance over power system oscillations. All the simulations are conducted in two-area four-machine power system to bring a detailed analysis. Investigated results proved that multiobjective D-shaped function is an effective objective function in terms of moving unstable and lightly damped electromechanical modes into stable region. Thus, D-shape function ultimately improves overall system damping and concurrently enhances power system reliability.
23 CFR 470.115 - Approval authority.
Code of Federal Regulations, 2010 CFR
2010-04-01
... FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PLANNING AND RESEARCH HIGHWAY SYSTEMS Federal... Federal-aid highway system actions involving the designation, or revision, of routes on the Interstate...) The Federal Highway Administrator will approve functional classification actions. ...
NASA Technical Reports Server (NTRS)
Culbert, Chris
1990-01-01
Although they have reached a point of commercial viability, expert systems were originally developed in artificial intelligence (AI) research environments. Many of the available tools still work best in such environments. These environments typically utilize special hardware such as LISP machines and relatively unfamiliar languages such as LISP or Prolog. Space Station applications will require deep integration of expert system technology with applications developed in conventional languages, specifically Ada. The ability to apply automation to Space Station functions could be greatly enhanced by widespread availability of state-of-the-art expert system tools based on Ada. Although there have been some efforts to examine the use of Ada for AI applications, there are few, if any, existing products which provide state-of-the-art AI capabilities in an Ada tool. The goal of the ART/Ada Design Project is to conduct research into the implementation in Ada of state-of-the-art hybrid expert systems building tools (ESBT's). This project takes the following approach: using the existing design of the ART-IM ESBT as a starting point, analyze the impact of the Ada language and Ada development methodologies on that design; redesign the system in Ada; and analyze its performance. The research project will attempt to achieve a comprehensive understanding of the potential for embedding expert systems in Ada systems for eventual application in future Space Station Freedom projects. During Phase 1 of the project, initial requirements analysis, design, and implementation of the kernel subset of ART-IM functionality was completed. During Phase 2, the effort has been focused on the implementation and performance analysis of several versions with increasing functionality. Since production quality ART/Ada tools will not be available for a considerable time, and additional subtask of this project will be the completion of an Ada version of the CLIPS expert system shell developed by NASA. This tool will provide full syntactic compatibility with any eventual products of the ART/Ada design while allowing SSFP developers early access to this technology.
The Structure and Function of Non-Collagenous Bone Proteins
NASA Technical Reports Server (NTRS)
Hook, Magnus; McQuillan, David J.
1997-01-01
The research done under the cooperative research agreement for the project titled 'The structure and function of non-collagenous bone proteins' represented the first phase of an ongoing program to define the structural and functional relationships of the principal noncollagenous proteins in bone. An ultimate goal of this research is to enable design and execution of useful pharmacological compounds that will have a beneficial effect in treatment of osteoporosis, both land-based and induced by long-duration space travel. The goals of the now complete first phase were as follows: 1. Establish and/or develop powerful recombinant protein expression systems; 2. Develop and refine isolation and purification of recombinant proteins; 3. Express wild-type non-collagenous bone proteins; 4. Express site-specific mutant proteins and domains of wild-type proteins to enhance likelihood of crystal formation for subsequent solution of structure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rolfe, R.M.
1976-12-01
The goal of the research was to investigate proton scattering on nuclei at intermediate energies and in particular to investigate proton scattering on helium. A theoretical investigation of the helium nucleus and the nature of the intermediate energy interaction, design and optimization of an energy-loss spectrometer facility for proton-nucleus scattering, and the unique superfluid helium target and experimental design are discussed.
Social factors in space station interiors
NASA Technical Reports Server (NTRS)
Cranz, Galen; Eichold, Alice; Hottes, Klaus; Jones, Kevin; Weinstein, Linda
1987-01-01
Using the example of the chair, which is often written into space station planning but which serves no non-cultural function in zero gravity, difficulties in overcoming cultural assumptions are discussed. An experimental approach is called for which would allow designers to separate cultural assumptions from logistic, social and psychological necessities. Simulations, systematic doubt and monitored brainstorming are recommended as part of basic research so that the designer will approach the problems of space module design with a complete program.
1994-03-01
asked whether the planned structure considered (a) all objectives, (b) all functions, (c) all relevant units of analysis such as the plant , the...literature and provides an integrative model of design for high perfor-ming organizations. The model is based on an analysis of current theories of...important midrange theories underlie much of the work on organizational analysis . 0 Systems Approaches. These approaches emphasize the rational, goal
1984-05-01
transform (FFT) techniques achieve the required azi- muthal compression of the SAR Doppler history (Ausherman, 1980). Specially- designed digital...processors have also been designed for 3 -[RIM RADAR DIVISION real-time processing of SAR data aboard the aircraft for display or transmission to a ground...included a multi-sided box pattern designed to image the dominant waves from various directions. Figure 2 presents the results obtained as a function of
The Long-Term Effects of Rape on Lifestyle and Psychological Functioning.
ERIC Educational Resources Information Center
Esper, Jody A.; Runge, Christopher J.
Research has shown rape to be an act of violence which affects the lives of many individuals each year. For many survivors of rape, effects on psychological functioning and lifestyle may endure for many years. This study was undertaken to develop and pilot the Rape Assessment Schedule, an interview schedule designed to assess the very long-term…
ERIC Educational Resources Information Center
Owen, Rebecca L.; Breyer, Emelita D.
2005-01-01
The Molecular Genetics and Protein Structure and Function workshop is one of a series of workshops offered by the National Science Foundation-funded Center for Workshops in the Chemical Sciences. The workshop provides a hands-on introduction to current topics and techniques in molecular genetics and protein structure/function as applied to…
ERIC Educational Resources Information Center
Shultz, Gwendolyn Joy; Havens, Nathan; Gurney, Beth Newberry; Burt, Jon
2017-01-01
Managing problematic classroom behavior is a challenge for many teachers, regardless of population. The website, www.basicfba.com, designed by researchers at Portland State University, offers teachers and practitioners a wealth of materials to assist them in conducting and maintaining a functional behavior assessment and behavior support plan.…
Smart Radiation Therapy Biomaterials.
Ngwa, Wilfred; Boateng, Francis; Kumar, Rajiv; Irvine, Darrell J; Formenti, Silvia; Ngoma, Twalib; Herskind, Carsten; Veldwijk, Marlon R; Hildenbrand, Georg Lars; Hausmann, Michael; Wenz, Frederik; Hesser, Juergen
2017-03-01
Radiation therapy (RT) is a crucial component of cancer care, used in the treatment of over 50% of cancer patients. Patients undergoing image guided RT or brachytherapy routinely have inert RT biomaterials implanted into their tumors. The single function of these RT biomaterials is to ensure geometric accuracy during treatment. Recent studies have proposed that the inert biomaterials could be upgraded to "smart" RT biomaterials, designed to do more than 1 function. Such smart biomaterials include next-generation fiducial markers, brachytherapy spacers, and balloon applicators, designed to respond to stimuli and perform additional desirable functions like controlled delivery of therapy-enhancing payloads directly into the tumor subvolume while minimizing normal tissue toxicities. More broadly, smart RT biomaterials may include functionalized nanoparticles that can be activated to boost RT efficacy. This work reviews the rationale for smart RT biomaterials, the state of the art in this emerging cross-disciplinary research area, challenges and opportunities for further research and development, and a purview of potential clinical applications. Applications covered include using smart RT biomaterials for boosting cancer therapy with minimal side effects, combining RT with immunotherapy or chemotherapy, reducing treatment time or health care costs, and other incipient applications. Copyright © 2016 Elsevier Inc. All rights reserved.
Construction of Nanowire Heterojunctions: Photonic Function-Oriented Nanoarchitectonics.
Li, Yong Jun; Yan, Yongli; Zhao, Yong Sheng; Yao, Jiannian
2016-02-10
Nanophotonics has received broad research interest because it may provide an alternative opportunity to overcome the fundamental limitations of electronic circuits. So far, diverse photonic functions, such as light generation, modulation, and detection, have been realized based on various nano-materials. The exact structural features of these material systems, including geometric characteristics, surface morphology, and material composition, play a key role in determining the photonic functions. Therefore, rational designs and constructions of materials on both morphological and componential levels, namely nanoarchitectonics, are indispensable for any photonic device with specific functionalities. Recently, a series of nanowire heterojunctions (NWHJs), which are usually made from two or more kinds of material compositions, were constructed for novel photonic applications based on various interactions between different materials at the junctions, for instance, energy transfer, exciton-plasmon coupling, or photon-plasmon coupling. A summary of these works is necessary to get a more comprehensive understanding of the relationship between photonic functions and architectonics of NWHJs, which will be instructive for designing novel photonic devices towards integrated circuits. Here, photonic function oriented nanoarchitectonics based on recent breakthroughs in nanophotonic devices are discussed, with emphasis on the design mechanisms, fabrication strategies, and excellent performances. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Understanding facilities design parameters for a remanufacturing system
NASA Astrophysics Data System (ADS)
Topcu, Aysegul; Cullinane, Thomas
2005-11-01
Remanufacturing is rapidly becoming a very important element in the economies of the world. Products such as washing machines, clothes driers, automobile parts, cell phones and a wide range of consumer durable goods are being reclaimed and sent through processes that restore these products to levels of operating performance that are as good or better than their new product performance. The operations involved in the remanufacturing process add several new dimensions to the work that must be performed. Disassembly is an operation that rarely appears on the operations chart of a typical production facility. The inspection and test functions in remanufacturing most often involve several more tasks than those involved in the first time manufacturing cycle. A close evaluation of most any remanufacturing operation reveals several points in the process in which parts must be cleaned, tested and stored. Although several researchers have focused their work on optimizing the disassembly function and the inspection, test and store functions, very little research has been devoted to studying the impact of the facilities design on the effectiveness of the remanufacturing process. The purpose of this paper will be to delineate the differences between first time manufacturing operations and remanufacturing operations for durable goods and to identify the features of the facilities design that must be considered if the remanufacturing operations are to be effective.
Eadie, Leila H; Taylor, Paul; Gibson, Adam P
2012-04-01
Computer-assisted diagnosis (CAD) describes a diverse, heterogeneous range of applications rather than a single entity. The aims and functions of CAD systems vary considerably and comparing studies and systems is challenging due to methodological and design differences. In addition, poor study quality and reporting can reduce the value of some publications. Meta-analyses of CAD are therefore difficult and may not provide reliable conclusions. Aiming to determine the major sources of heterogeneity and thereby what CAD researchers could change to allow this sort of assessment, this study reviews a sample of 147 papers concerning CAD used with imaging for cancer diagnosis. It discusses sources of variability, including the goal of the CAD system, learning methodology, study population, design, outcome measures, inclusion of radiologists, and study quality. Based upon this evidence, recommendations are made to help researchers optimize the quality and comparability of their trial design and reporting. Copyright © 2011 Elsevier Inc. All rights reserved.
Peck, Jessica A.; Levashina, Julia
2017-01-01
Impression management (IM) is pervasive in interview and job performance settings. We meta-analytically examine IM by self- and other-focused tactics to establish base rates of tactic usage, to understand the impact of tactics on interview and job performance ratings, and to examine the moderating effects of research design. Our results suggest IM is used more frequently in the interview rather than job performance settings. Self-focused tactics are more effective in the interview rather than in job performance settings, and other-focused tactics are more effective in job performance settings rather than in the interview. We explore several research design moderators including research fidelity, rater, and participants. IM has a somewhat stronger impact on interview ratings in lab settings than field settings. IM also has a stronger impact on interview ratings when the target of IM is also the rater of performance than when the rater of performance is an observer. Finally, labor market participants use IM more frequently and more effectively than students in interview settings. Our research has implications for understanding how different IM tactics function in interview and job performance settings and the effects of research design on IM frequency and impact. PMID:28261135
An evaluation of health information technology outsourcing success.
Malovec, Shannon N; Borycki, Elizabeth M; Kushniruk, Andre W
2015-01-01
Outsourcing involves contracting out functions performed by an organization to another organization. Many healthcare organizations are exploring outsourcing as a way to address demands for health information technology (HIT). This study researches the success of outsourcing in the health informatics industry in Canada. The study is designed to help understand whether outsourcing four functions of HIT (i.e. development, implementation, operations, and maintenance) can prove successful for an organization. Findings demonstrate that outsourcing these four functions occurs in Canada; however, the research from the semi-structured interviews finds that operations and maintenance may be more commonly outsourced in Canada, over development and implementation functions. Despite this, findings from this research suggest that outsourcing development and implementation may offer more benefits and fewer challenges than outsourcing operations and maintenance. The research also finds that there can be benefits of outsourcing, such as gaining access to expertise and improving service levels. A weakness of outsourcing may be that internal knowledge is lost and having to manage the change required from outsourcing. The study proposes that there are many factors that need to be considered when outsourcing to ensure it is successful.
Mohr, David C; Lyon, Aaron R; Lattie, Emily G; Reddy, Madhu; Schueller, Stephen M
2017-05-10
Mental health problems are common and pose a tremendous societal burden in terms of cost, morbidity, quality of life, and mortality. The great majority of people experience barriers that prevent access to treatment, aggravated by a lack of mental health specialists. Digital mental health is potentially useful in meeting the treatment needs of large numbers of people. A growing number of efficacy trials have shown strong outcomes for digital mental health treatments. Yet despite their positive findings, there are very few examples of successful implementations and many failures. Although the research-to-practice gap is not unique to digital mental health, the inclusion of technology poses unique challenges. We outline some of the reasons for this gap and propose a collection of methods that can result in sustainable digital mental health interventions. These methods draw from human-computer interaction and implementation science and are integrated into an Accelerated Creation-to-Sustainment (ACTS) model. The ACTS model uses an iterative process that includes 2 basic functions (design and evaluate) across 3 general phases (Create, Trial, and Sustain). The ultimate goal in using the ACTS model is to produce a functioning technology-enabled service (TES) that is sustainable in a real-world treatment setting. We emphasize the importance of the service component because evidence from both research and practice has suggested that human touch is a critical ingredient in the most efficacious and used digital mental health treatments. The Create phase results in at least a minimally viable TES and an implementation blueprint. The Trial phase requires evaluation of both effectiveness and implementation while allowing optimization and continuous quality improvement of the TES and implementation plan. Finally, the Sustainment phase involves the withdrawal of research or donor support, while leaving a functioning, continuously improving TES in place. The ACTS model is a step toward bringing implementation and sustainment into the design and evaluation of TESs, public health into clinical research, research into clinics, and treatment into the lives of our patients. ©David C. Mohr, Aaron R Lyon, Emily G Lattie, Madhu Reddy, Stephen M Schueller. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 10.05.2017.
Du, Q; Mezey, P G
1998-09-01
In this research we test and compare three possible atom-based screening functions used in the heuristic molecular lipophilicity potential (HMLP). Screening function 1 is a power distance-dependent function, bi/[formula: see text] Ri-r [formula: see text] gamma, screening function 2 is an exponential distance-dependent function, bi exp(-[formula: see text] Ri-r [formula: see text]/d0), and screening function 3 is a weighted distance-dependent function, sign(bi) exp[-xi [formula: see text] Ri-r [formula: see text]/magnitude of bi)]. For every screening function, the parameters (gamma, d0, and xi) are optimized using 41 common organic molecules of 4 types of compounds: aliphatic alcohols, aliphatic carboxylic acids, aliphatic amines, and aliphatic alkanes. The results of calculations show that screening function 3 cannot give chemically reasonable results, however, both the power screening function and the exponential screening function give chemically satisfactory results. There are two notable differences between screening functions 1 and 2. First, the exponential screening function has larger values in the short distance than the power screening function, therefore more influence from the nearest neighbors is involved using screening function 2 than screening function 1. Second, the power screening function has larger values in the long distance than the exponential screening function, therefore screening function 1 is effected by atoms at long distance more than screening function 2. For screening function 1, the suitable range of parameter gamma is 1.0 < gamma < 3.0, gamma = 2.3 is recommended, and gamma = 2.0 is the nearest integral value. For screening function 2, the suitable range of parameter d0 is 1.5 < d0 < 3.0, and d0 = 2.0 is recommended. HMLP developed in this research provides a potential tool for computer-aided three-dimensional drug design.
Designing automation for human use: empirical studies and quantitative models.
Parasuraman, R
2000-07-01
An emerging knowledge base of human performance research can provide guidelines for designing automation that can be used effectively by human operators of complex systems. Which functions should be automated and to what extent in a given system? A model for types and levels of automation that provides a framework and an objective basis for making such choices is described. The human performance consequences of particular types and levels of automation constitute primary evaluative criteria for automation design when using the model. Four human performance areas are considered--mental workload, situation awareness, complacency and skill degradation. Secondary evaluative criteria include such factors as automation reliability, the risks of decision/action consequences and the ease of systems integration. In addition to this qualitative approach, quantitative models can inform design. Several computational and formal models of human interaction with automation that have been proposed by various researchers are reviewed. An important future research need is the integration of qualitative and quantitative approaches. Application of these models provides an objective basis for designing automation for effective human use.
fMRI paradigm designing and post-processing tools
James, Jija S; Rajesh, PG; Chandran, Anuvitha VS; Kesavadas, Chandrasekharan
2014-01-01
In this article, we first review some aspects of functional magnetic resonance imaging (fMRI) paradigm designing for major cognitive functions by using stimulus delivery systems like Cogent, E-Prime, Presentation, etc., along with their technical aspects. We also review the stimulus presentation possibilities (block, event-related) for visual or auditory paradigms and their advantage in both clinical and research setting. The second part mainly focus on various fMRI data post-processing tools such as Statistical Parametric Mapping (SPM) and Brain Voyager, and discuss the particulars of various preprocessing steps involved (realignment, co-registration, normalization, smoothing) in these software and also the statistical analysis principles of General Linear Modeling for final interpretation of a functional activation result. PMID:24851001
Research in mathematical theory of computation. [computer programming applications
NASA Technical Reports Server (NTRS)
Mccarthy, J.
1973-01-01
Research progress in the following areas is reviewed: (1) new version of computer program LCF (logic for computable functions) including a facility to search for proofs automatically; (2) the description of the language PASCAL in terms of both LCF and in first order logic; (3) discussion of LISP semantics in LCF and attempt to prove the correctness of the London compilers in a formal way; (4) design of both special purpose and domain independent proving procedures specifically program correctness in mind; (5) design of languages for describing such proof procedures; and (6) the embedding of ideas in the first order checker.
The petrographic microscope: Evolution of a mineralogical research instrument
Kile, D.E.
2003-01-01
The petrographic microscope, designed to observe and measure the optical properties of minerals as a means of identifying them, has provided a foundation for mineralogical and petrological research for more than 120 years. Much of what is known today in these fields is attributable to this instrument, the development of which paralleled an evolution of fundamental optical theory and its correlation with mineral structure and composition. This instrument and its related accessories have evolved through a range of models and designs, which are in themselves distinctive for their scientific function and elegant construction, and are today prized by collectors of scientific instruments.
NASA Astrophysics Data System (ADS)
Zhang, Min; He, Weiyi
2018-06-01
Under the guidance of principal-agent theory and modular theory, the collaborative innovation of green technology-based companies, design contractors and project builders based on united agency will provide direction for the development of green construction supply chain in the future. After analyzing the existing independent agencies, this paper proposes the industry-university-research bilateral collaborative innovation network architecture and modularization with the innovative function of engineering design in the context of non-standard transformation interfaces, analyzes the innovation responsibility center, and gives some countermeasures and suggestions to promote the performance of bilateral cooperative innovation network.
Guilbert, Theresa W; Morgan, Wayne J; Krawiec, Marzena; Lemanske, Robert F; Sorkness, Chris; Szefler, Stanley J; Larsen, Gary; Spahn, Joseph D; Zeiger, Robert S; Heldt, Gregory; Strunk, Robert C; Bacharier, Leonard B; Bloomberg, Gordon R; Chinchilli, Vernon M; Boehmer, Susan J; Mauger, Elizabeth A; Mauger, David T; Taussig, Lynn M; Martinez, Fernando D
2004-06-01
Pediatric asthma remains an important public health concern as its prevalence and cost to the health care system is rising. In order to promote innovative research in asthma therapies, the National Heart, Lung and Blood Institute created the Childhood Asthma Research and Education Network in 1999. As its first study, the steering committee of the Childhood Asthma Research and Education Network designed a randomized clinical trial to determine if persistent asthma could be prevented in children at a high risk to develop the disease. This communication presents the design of its first clinical trial, the Prevention of Asthma in Kids (PEAK) trial and the organization of the Childhood Asthma Research and Education Network that developed and implemented this trial. Studies of the natural history of asthma have shown that, in persistent asthma, the initial asthma-like symptoms and loss of lung function occur predominately during the first years of life. Therefore, in the Prevention of Asthma in Kids study, children 2 and 3 years old with a positive asthma predictive index were randomized to twice daily treatment with fluticasone 88 microg or placebo via metered-dose inhaler and Aerochamber for 2 years. The double blind treatment period was followed by a 1-year observational period. Lung function was measured by spirometry and oscillometry technique at 4-month intervals throughout the study. Bronchodilator reversibility and exhaled nitric oxide (ENO) studies were performed at the end of the treatment and observation periods. The primary outcome measure was the number of asthma-free days. Other secondary outcomes included number of exacerbations, use of asthma medications and lung function. These measures were chosen to reflect the progression of the disease from intermittent wheezing to persistent asthma and measurement of the extent of airflow limitation and airway reactivity.
Randell, Elizabeth; McNamara, Rachel; Subramanian, Leena; Hood, Kerenza; Linden, David
2018-04-01
A core principle of creating a scientific evidence base is that results can be replicated in independent experiments and in health intervention research. The TIDieR (Template for Intervention Description and Replication) checklist has been developed to aid in summarising key items needed when reporting clinical trials and other well designed evaluations of complex interventions in order that findings can be replicated or built on reliably. Neurofeedback (NF) using functional MRI (fMRI) is a multicomponent intervention that should be considered a complex intervention. The TIDieR checklist (with minor modification to increase applicability in this context) was distributed to NF researchers as a survey of current practice in the design and conduct of clinical studies. The aim was to document practice and convergence between research groups, highlighting areas for discussion and providing a basis for recommendations for harmonisation and standardisation. The TIDieR checklist was interpreted and expanded (21 questions) to make it applicable to neurofeedback research studies. Using the web-based Bristol Online Survey (BOS) tool, the revised checklist was disseminated to researchers in the BRAINTRAIN European research collaborative network (supported by the European Commission) and others in the fMRI-neurofeedback community. There were 16 responses to the survey. Responses were reported under eight main headings which covered the six domains of the TIDieR checklist: What, Why, When, How, Where and Who. This piece of work provides encouraging insight into the ability to be able to map neuroimaging interventions to a structured framework for reporting purposes. Regardless of the considerable variability of design components, all studies could be described in standard terms of diagnostic groups, dose/duration, targeted areas/signals, and psychological strategies and learning models. Recommendations are made which include providing detailed rationale of intervention design in study protocols. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
ERIC Educational Resources Information Center
Cowin, Roy; Reyes-Guerra, David
1977-01-01
Engineers may be involved in various functions such as research, development, planning, design (analysis and synthesis), construction, operation and management of engineering projects. This article discusses some branches of accredited engineering curricula, employment opportunities, the preparation for management, minimum education needed, women…
Research of the master-slave robot surgical system with the function of force feedback.
Shi, Yunyong; Zhou, Chaozheng; Xie, Le; Chen, Yongjun; Jiang, Jun; Zhang, Zhenfeng; Deng, Ze
2017-12-01
Surgical robots lack force feedback, which may lead to operation errors. In order to improve surgical outcomes, this research developed a new master-slave surgical robot, which was designed with an integrated force sensor. The new structure designed for the master-slave robot employs a force feedback mechanism. A six-dimensional force sensor was mounted on the tip of the slave robot's actuator. Sliding model control was adopted to control the slave robot. According to the movement of the master system manipulated by the surgeon, the slave's movement and the force feedback function were validated. The motion was completed, the standard deviation was calculated, and the force data were detected. Hence, force feedback was realized in the experiment. The surgical robot can help surgeons to complete trajectory motions with haptic sensation. Copyright © 2017 John Wiley & Sons, Ltd.
Medium Duty ARRA Data Reporting and Analysis; NREL (National Renewable Energy Laboratory)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelly, Kenneth; Duran, Adam; Ragatz, Adam
Medium-duty (MD) electric vehicle (EV) data collection and analysis will help drive design, purchase, and research investments. Over 4 million miles and 160,000 driving days of EV driving data were collected under this project. Publicly available data help drive technology research, development, and deployment. Feeding the vocational database for future analysis will lead to a better understanding of usage and will result in better design optimization and technology implementation. The performance of a vehicle varies with drive cycle and cargo load - MD vehicles are 'multi-functional.' Environment and accessory loads affect vehicle range and in turn add cost by addingmore » battery capacity. MD EV vehicles can function in vocations traditionally serviced by gasoline or diesel vehicles. Facility implications (i.e., demand charges) need to be understood as part of site-based analysis for EV implementation.« less
Behavioral Criteria in Research and the Study of Racism: Performing the Jackal Function (Part I).
ERIC Educational Resources Information Center
Hilliard, Asa G.; And Others
This document presents a synthesis of research and theories used as background for a study designed to identify racist behaviors and to observe change in racist behaviors resulting from an intervention. The first chapter defines racism and discusses problems in creating a paradigm for the study of behavioral change. The second chapter contains a…
Science exchange in an era of diminished capacity: recreation management in the U.S. Forest Service
Clare M. Ryan; Lee K. Cerveny
2010-01-01
Promotion of effective science exchange between government scientists and managers requires thoughtful arrangement and operation of research and management functions. The U.S. Forest Service was established at the peak of the Progressive Era, when science exchange was designed to occur between researchers and resource managers who worked in distinct arms of the agency...
Designing effective animations for computer science instruction
NASA Astrophysics Data System (ADS)
Grillmeyer, Oliver
This study investigated the potential for animations of Scheme functions to help novice computer science students understand difficult programming concepts. These animations used an instructional framework inspired by theories of constructivism and knowledge integration. The framework had students make predictions, reflect, and specify examples to animate to promote autonomous learning and result in more integrated knowledge. The framework used animated pivotal cases to help integrate disconnected ideas and restructure students' incomplete ideas by illustrating weaknesses in their existing models. The animations scaffolded learners, making the thought processes of experts more visible by modeling complex and tacit information. The animation design was guided by prior research and a methodology of design and refinement. Analysis of pilot studies led to the development of four design concerns to aid animation designers: clearly illustrate the mapping between objects in animations with the actual objects they represent, show causal connections between elements, draw attention to the salient features of the modeled system, and create animations that reduce complexity. Refined animations based on these design concerns were compared to computer-based tools, text-based instruction, and simpler animations that do not embody the design concerns. Four studies comprised this dissertation work. Two sets of animated presentations of list creation functions were compared to control groups. No significant differences were found in support of animations. Three different animated models of traces of recursive functions ranging from concrete to abstract representations were compared. No differences in learning gains were found between the three models in test performance. Three models of animations of applicative operators were compared with students using the replacement modeler and the Scheme interpreter. Significant differences were found favoring animations that addressed causality and salience in their design. Lastly, two binary tree search algorithm animations designed to reduce complexity were compared with hand-tracing of calls. Students made fewer mistakes in predicting the tree traversal when guided by the animations. However, the posttest findings were inconsistent. In summary, animations designed based on the design concerns did not consistently add value to instruction in the form investigated in this research.
Developing an electronic health record (EHR) for methadone treatment recording and decision support
2011-01-01
Background In this paper, we give an overview of methadone treatment in Ireland and outline the rationale for designing an electronic health record (EHR) with extensibility, interoperability and decision support functionality. Incorporating several international standards, a conceptual model applying a problem orientated approach in a hierarchical structure has been proposed for building the EHR. Methods A set of archetypes has been designed in line with the current best practice and clinical guidelines which guide the information-gathering process. A web-based data entry system has been implemented, incorporating elements of the paper-based prescription form, while at the same time facilitating the decision support function. Results The use of archetypes was found to capture the ever changing requirements in the healthcare domain and externalises them in constrained data structures. The solution is extensible enabling the EHR to cover medicine management in general as per the programme of the HRB Centre for Primary Care Research. Conclusions The data collected via this Irish system can be aggregated into a larger dataset, if necessary, for analysis and evidence-gathering, since we adopted the openEHR standard. It will be later extended to include the functionalities of prescribing drugs other than methadone along with the research agenda at the HRB Centre for Primary Care Research in Ireland. PMID:21284849
Bioinspiration: applying mechanical design to experimental biology.
Flammang, Brooke E; Porter, Marianne E
2011-07-01
The production of bioinspired and biomimetic constructs has fostered much collaboration between biologists and engineers, although the extent of biological accuracy employed in the designs produced has not always been a priority. Even the exact definitions of "bioinspired" and "biomimetic" differ among biologists, engineers, and industrial designers, leading to confusion regarding the level of integration and replication of biological principles and physiology. By any name, biologically-inspired mechanical constructs have become an increasingly important research tool in experimental biology, offering the opportunity to focus research by creating model organisms that can be easily manipulated to fill a desired parameter space of structural and functional repertoires. Innovative researchers with both biological and engineering backgrounds have found ways to use bioinspired models to explore the biomechanics of organisms from all kingdoms to answer a variety of different questions. Bringing together these biologists and engineers will hopefully result in an open discourse of techniques and fruitful collaborations for experimental and industrial endeavors.
A Review of Water Reclamation Research in China Urban Landscape Design and Planning Practice
NASA Astrophysics Data System (ADS)
Gan, Wei; Zeng, Tianran
2018-04-01
With the continuously growing demand for better living environment, more and more attention and efforts have been paid to the improvement of urban landscape. However, the expansion of green area and water features are at the cost of high consumption of water resources, which has become prominent problems in cities that suffer from water shortage. At the same time, with the water shortage and water environment deterioration problems that shared globally, water conservation has become an inevitable choice to achieve sustainable social development. Urban landscape is not simply a consuming body of water resources, but also are of water-saving potential and able to perform the function of water storage. Thus, recycling the limited water resources becomes a challenge for every landscape designer. This paper is intended to overview the existing effort of reclaimed water recycle research in China landscape designing fields, and raise recommendations for future research and development.
Protein Engineering Approaches in the Post-Genomic Era.
Singh, Raushan K; Lee, Jung-Kul; Selvaraj, Chandrabose; Singh, Ranjitha; Li, Jinglin; Kim, Sang-Yong; Kalia, Vipin C
2018-01-01
Proteins are one of the most multifaceted macromolecules in living systems. Proteins have evolved to function under physiological conditions and, therefore, are not usually tolerant of harsh experimental and environmental conditions. The growing use of proteins in industrial processes as a greener alternative to chemical catalysts often demands constant innovation to improve their performance. Protein engineering aims to design new proteins or modify the sequence of a protein to create proteins with new or desirable functions. With the emergence of structural and functional genomics, protein engineering has been invigorated in the post-genomic era. The three-dimensional structures of proteins with known functions facilitate protein engineering approaches to design variants with desired properties. There are three major approaches of protein engineering research, namely, directed evolution, rational design, and de novo design. Rational design is an effective method of protein engineering when the threedimensional structure and mechanism of the protein is well known. In contrast, directed evolution does not require extensive information and a three-dimensional structure of the protein of interest. Instead, it involves random mutagenesis and selection to screen enzymes with desired properties. De novo design uses computational protein design algorithms to tailor synthetic proteins by using the three-dimensional structures of natural proteins and their folding rules. The present review highlights and summarizes recent protein engineering approaches, and their challenges and limitations in the post-genomic era. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Okada, Kensuke; Hoshino, Takahiro
2017-04-01
In psychology, the reporting of variance-accounted-for effect size indices has been recommended and widely accepted through the movement away from null hypothesis significance testing. However, most researchers have paid insufficient attention to the fact that effect sizes depend on the choice of the number of levels and their ranges in experiments. Moreover, the functional form of how and how much this choice affects the resultant effect size has not thus far been studied. We show that the relationship between the population effect size and number and range of levels is given as an explicit function under reasonable assumptions. Counterintuitively, it is found that researchers may affect the resultant effect size to be either double or half simply by suitably choosing the number of levels and their ranges. Through a simulation study, we confirm that this relation also applies to sample effect size indices in much the same way. Therefore, the variance-accounted-for effect size would be substantially affected by the basic research design such as the number of levels. Simple cross-study comparisons and a meta-analysis of variance-accounted-for effect sizes would generally be irrational unless differences in research designs are explicitly considered.
Pruitt, Wendy M.; Robinson, Lucy C.
2008-01-01
Research based laboratory courses have been shown to stimulate student interest in science and to improve scientific skills. We describe here a project developed for a semester-long research-based laboratory course that accompanies a genetics lecture course. The project was designed to allow students to become familiar with the use of bioinformatics tools and molecular biology and genetic approaches while carrying out original research. Students were required to present their hypotheses, experiments, and results in a comprehensive lab report. The lab project concerned the yeast casein kinase 1 (CK1) protein kinase Yck2. CK1 protein kinases are present in all organisms and are well conserved in primary structure. These enzymes display sequence features that differ from other protein kinase subfamilies. Students identified such sequences within the CK1 subfamily, chose a sequence to analyze, used available structural data to determine possible functions for their sequences, and designed mutations within the sequences. After generating the mutant alleles, these were expressed in yeast and tested for function by using two growth assays. The student response to the project was positive, both in terms of knowledge and skills increases and interest in research, and several students are continuing the analysis of mutant alleles as summer projects. PMID:19047427
Hybrid function projective synchronization in complex dynamical networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei, Qiang; Wang, Xing-yuan, E-mail: wangxy@dlut.edu.cn; Hu, Xiao-peng
2014-02-15
This paper investigates hybrid function projective synchronization in complex dynamical networks. When the complex dynamical networks could be synchronized up to an equilibrium or periodic orbit, a hybrid feedback controller is designed to realize the different component of vector of node could be synchronized up to different desired scaling function in complex dynamical networks with time delay. Hybrid function projective synchronization (HFPS) in complex dynamical networks with constant delay and HFPS in complex dynamical networks with time-varying coupling delay are researched, respectively. Finally, the numerical simulations show the effectiveness of theoretical analysis.
NASA Astrophysics Data System (ADS)
Kolhar, Poornima
The areas of drug delivery and tissue engineering have experienced extraordinary growth in recent years with the application of engineering principles and their potential to support and improve the field of medicine. The tremendous progress in nanotechnology and biotechnology has lead to this explosion of research and development in biomedical applications. Biomaterials can now be engineered at a nanoscale and their specific interactions with the biological tissues can be modulated. Various design parameters are being established and researched for design of drug-delivery carriers and scaffolds to be implanted into humans. Nanoparticles made from versatile biomaterial can deliver both small-molecule drugs and various classes of bio-macromolecules, such as proteins and oligonucleotides. Similarly in the field of tissue engineering, current approaches emphasize nanoscale control of cell behavior by mimicking the natural extracellular matrix (ECM) unlike, traditional scaffolds. Drug delivery and tissue engineering are closely connected fields and both of these applications require materials with exceptional physical, chemical, biological, and biomechanical properties to provide superior therapy. In the current study the surface functionalization and the geometric features of the biomaterials has been explored. In particular, a synthetic surface for culture of human embryonic stem cells has been developed, demonstrating the importance of surface functionalization in maintaining the pluripotency of hESCs. In the second study, the geometric features of the drug delivery carriers are investigated and the polymeric nanoneedles mediated cellular permeabilization and direct cytoplasmic delivery is reported. In the third study, the combined effect of surface functionalization and geometric modification of carriers for vascular targeting is enunciated. These studies illustrate how the biomaterials can be designed to achieve various cellular behaviors and control the interactions with cells in vivo .
McEwan, Reed; Melton, Genevieve B.; Knoll, Benjamin C.; Wang, Yan; Hultman, Gretchen; Dale, Justin L.; Meyer, Tim; Pakhomov, Serguei V.
2016-01-01
Many design considerations must be addressed in order to provide researchers with full text and semantic search of unstructured healthcare data such as clinical notes and reports. Institutions looking at providing this functionality must also address the big data aspects of their unstructured corpora. Because these systems are complex and demand a non-trivial investment, there is an incentive to make the system capable of servicing future needs as well, further complicating the design. We present architectural best practices as lessons learned in the design and implementation NLP-PIER (Patient Information Extraction for Research), a scalable, extensible, and secure system for processing, indexing, and searching clinical notes at the University of Minnesota. PMID:27570663
Life sciences payload definition and integration study. Volume 1: Management summary
NASA Technical Reports Server (NTRS)
1972-01-01
The objectives of a study program to determine the life sciences payloads required for conducting biomedical experiments during space missions are presented. The objectives are defined as: (1) to identify the research functions which must be performed aboard life sciences spacecraft laboratories and the equipment needed to support these functions and (2) to develop layouts and preliminary conceptual designs of several potential baseline payloads for the accomplishment of life research in space. Payload configurations and subsystems are described and illustrated. Tables of data are included to identify the material requirements for the space missions.
ERIC Educational Resources Information Center
Shih, Ching-Hsiang; Chung, Chiao-Chen; Shih, Ching-Tien; Chen, Ling-Che
2011-01-01
The latest researches have adopted software technology turning the Nintendo Wii Balance Board into a high performance standing location detector. This study extended Wii Balance Board functionality to assess whether two people with developmental disabilities would be able to actively perform designated physical activities according to simple…
ERIC Educational Resources Information Center
Bexar County School Board, San Antonio, TX.
The goal of the POR FIN research design was to develop a language-based curriculum emphasizing the audiolingual approach and integrating academic and social-functioning subject matter. The modular curriculum is designed so that each lesson is independent and complete in itself, and provides a high degree of motivation, retention, and achievement…
Effects of checklist interface on non-verbal crew communications
NASA Technical Reports Server (NTRS)
Segal, Leon D.
1994-01-01
The investigation looked at the effects of the spatial layout and functionality of cockpit displays and controls on crew communication. Specifically, the study focused on the intra-cockpit crew interaction, and subsequent task performance, of airline pilots flying different configurations of a new electronic checklist, designed and tested in a high-fidelity simulator at NASA Ames Research Center. The first part of this proposal establishes the theoretical background for the assumptions underlying the research, suggesting that in the context of the interaction between a multi-operator crew and a machine, the design and configuration of the interface will affect interactions between individual operators and the machine, and subsequently, the interaction between operators. In view of the latest trends in cockpit interface design and flight-deck technology, in particular, the centralization of displays and controls, the introduction identifies certain problems associated with these modern designs and suggests specific design issues to which the expected results could be applied. A detailed research program and methodology is outlined and the results are described and discussed. Overall, differences in cockpit design were shown to impact the activity within the cockpit, including interactions between pilots and aircraft and the cooperative interactions between pilots.
2011-08-01
challenges in new design methodologies . Particular examples involve an in-circuit functional timing testing of systems with millions of cores. I...TECHNIQUES Chair: Dwight Woolard, U.S. Army Research Office (ARO) 8:40-9:05 EXPERIMENTAL DESIGN OF SINGLE-CRYSTAL DNA FOR THZ SPECTROSCOPY...Detection Based Techniques EXPERIMENTAL DESIGN OF SINGLE-CRYSTAL DNA FOR THZ SPECTROSCOPY E. R. Brown, M.L. Norton, M. Rahman, W. Zhang Wright
1998-01-01
including the surface they lie on and the edge curves that bind them. Also stored is topological information indicating how all these elements are connected...microchip. This technology researched by Texas Instruments is referred to as a Digital Micromirror Device (DMD) (Burdea & Coiffet, 1994). It has the...stereoscopic imaging system designed to resemble traditional designer drafting boards. The Visionarium uses a 180 degree curved screen providing users with
Hinderer, Svenja; Brauchle, Eva
2015-01-01
Current clinically applicable tissue and organ replacement therapies are limited in the field of cardiovascular regenerative medicine. The available options do not regenerate damaged tissues and organs, and, in the majority of the cases, show insufficient restoration of tissue function. To date, anticoagulant drug‐free heart valve replacements or growing valves for pediatric patients, hemocompatible and thrombus‐free vascular substitutes that are smaller than 6 mm, and stem cell‐recruiting delivery systems that induce myocardial regeneration are still only visions of researchers and medical professionals worldwide and far from being the standard of clinical treatment. The design of functional off‐the‐shelf biomaterials as well as automatable and up‐scalable biomaterial processing methods are the focus of current research endeavors and of great interest for fields of tissue engineering and regenerative medicine. Here, various approaches that aim to overcome the current limitations are reviewed, focusing on biomaterials design and generation methods for myocardium, heart valves, and blood vessels. Furthermore, novel contact‐ and marker‐free biomaterial and extracellular matrix assessment methods are highlighted. PMID:25778713
Kibsgård, Thomas J; Røise, Olav; Stuge, Britt
2014-03-15
The fusion of the pelvic joints in patients with severe pelvic girdle pain (PGP) is a controversial and insufficiently studied procedure. The aims of this study were to evaluate physical function and pain after sacroiliac joint (SIJ) fusion. A single-subject research design study with repeated measurements was conducted; pre-operatively and at 3, 6 and 12 months post-operatively. The outcome measures considered were the Oswestry disability index (ODI), visual analogue scale (VAS), and SF-36. Eight patients with severe PGP received open-accessed unilateral anterior SIJ fusion and fusion of the pubic symphysis. Seven patients reported positive results from the surgery. At 1 year post-operation, significant (p < 0.001) reductions in ODI (54 to 37) and VAS (82 to 57) were reported. The physical functioning, bodily pain, and social functioning scores in the SF-36 were also improved. Positive and significant changes in disability and pain at 1 year after SIJ fusion were observed. Despite these positive results, open accessed anterior fusion of the SIJ was associated with adverse events and complications such as infection and nerve damage.
Conflict adaptation in patients diagnosed with schizophrenia.
Abrahamse, Elger; Ruitenberg, Marit; Boddewyn, Sarah; Oreel, Edith; de Schryver, Maarten; Morrens, Manuel; van Dijck, Jean-Philippe
2017-11-01
Cognitive control impairments may contribute strongly to the overall cognitive deficits observed in patients diagnosed with schizophrenia. In the current study we explore a specific cognitive control function referred to as conflict adaptation. Previous studies on conflict adaptation in schizophrenia showed equivocal results, and, moreover, were plagued by confounded research designs. Here we assessed for the first time conflict adaptation in schizophrenia with a design that avoided the major confounds of feature integration and stimulus-response contingency learning. Sixteen patients diagnosed with schizophrenia and sixteen healthy, matched controls performed a vocal Stroop task to determine the congruency sequence effect - a marker of conflict adaptation. A reliable congruency sequence effect was observed for both healthy controls and patients diagnosed with schizophrenia. These findings indicate that schizophrenia is not necessarily accompanied by impaired conflict adaptation. As schizophrenia has been related to abnormal functioning in core conflict adaptation areas such as anterior cingulate and dorsolateral prefrontal cortex, further research is required to better understand the precise impact of such abnormal brain functioning at the behavioral level. Copyright © 2017 Elsevier B.V. All rights reserved.
Zhang, Yahui; Mao, Huiling; Xu, Weiquan; Shi, Jianbing; Cai, Zhengxu; Tong, Bin; Dong, Yuping
2018-05-29
Organic functional materials, including conjugated molecules and fluorescent dyes, have been rapidly developed in recent years because they can be applied in many fields, such as solar cells, biosensing and bioimaging, and medical adjuvant therapy. Organic functional materials with aggregation-induced emission or aggregation-enhanced emission (AIE/AEE) characteristics have increasingly attracted attention due to their high quantum efficiency in the aggregated or solid state. A large variety of AIE/AEE materials have been designed and applied during the exponential growth of research interest in the abovementioned fields. Multiphenyl-substituted 1,3-butadiene (MPB), as a core structure that includes tetraphenyl-1,3-butadiene, hexaphenyl-1,3-butadiene and their derivatives, show a typical AIE/AEE feature and can be potentially used in all the abovementioned fields. This review summarizes the design principles, the corresponding syntheses, and the structure-property relationships of MPBs, as well as their excellent innovative functionalities and applications. This review will be very useful for scientists conducting chemistry, materials, and biomedical research in AIE/AEE-related fields. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
[Design of a conceptual model on the transference of public health research results in Honduras].
Macías-Chapula, César A
2012-01-01
To design a conceptual model on the transference of public health research results at the local, context level. Using systems thinking concepts, a soft systems approach (SSM) was used to analyse and solve what was perceived as a problem situation related to the transference of research results within Honduras public health system. A bibliometric analysis was also conducted to enrich the problem situation. Six root definitions were defined and modeled as relevant to the expressed problem situation. This led to the development of the conceptual model. The model obtained identified four levels of resolution as derived from the human activities involved in the transference of research results: 1) those of the researchers; 2) the information/documentation professionals; 3) health staff; and 4) the population/society. These actors/ clients and their activities were essential to the functioning of the model since they represent what the model is and does. SSM helped to design the conceptual model. The bibliometric analysis was relevant to construct the rich image of the problem situation.
On the design of computer-based models for integrated environmental science.
McIntosh, Brian S; Jeffrey, Paul; Lemon, Mark; Winder, Nick
2005-06-01
The current research agenda in environmental science is dominated by calls to integrate science and policy to better understand and manage links between social (human) and natural (nonhuman) processes. Freshwater resource management is one area where such calls can be heard. Designing computer-based models for integrated environmental science poses special challenges to the research community. At present it is not clear whether such tools, or their outputs, receive much practical policy or planning application. It is argued that this is a result of (1) a lack of appreciation within the research modeling community of the characteristics of different decision-making processes including policy, planning, and (2) participation, (3) a lack of appreciation of the characteristics of different decision-making contexts, (4) the technical difficulties in implementing the necessary support tool functionality, and (5) the socio-technical demands of designing tools to be of practical use. This article presents a critical synthesis of ideas from each of these areas and interprets them in terms of design requirements for computer-based models being developed to provide scientific information support for policy and planning. Illustrative examples are given from the field of freshwater resources management. Although computer-based diagramming and modeling tools can facilitate processes of dialogue, they lack adequate simulation capabilities. Component-based models and modeling frameworks provide such functionality and may be suited to supporting problematic or messy decision contexts. However, significant technical (implementation) and socio-technical (use) challenges need to be addressed before such ambition can be realized.
ERIC Educational Resources Information Center
Brendefur, Jonathan
2014-01-01
Much research has been conducted on how elementary students develop mathematical understanding and subsequently how teachers might use this information. This article builds on this type of work by investigating how one high-school algebra teacher designs and conducts a lesson on exponential functions. Through a lesson study format she studies with…
ERIC Educational Resources Information Center
Palmer, Mary E.
2013-01-01
This study investigated the direct impact of team cohesiveness and student-athletes' perceptions of coaching behavior/leadership functions on the success of NCAA Division I Women's basketball, based on the teams' win/loss records. The research collection was quantitative in nature. Statistical design and analysis provided justification for the use…
ERIC Educational Resources Information Center
Benner, Gregory J.; Beaudoin, Kathleen M.; Chen, Pei-Yu; Davis, Carol; Ralston, Nicole C.
2010-01-01
The two purposes of the pre-post naturalistic research design were to: 1) Investigate the impact of positive behavioral interventions and supports (PBIS) on the behavioral functioning of students with emotional disturbance (ED) (N = 37) served in self-contained settings; and 2) examine the extent to which teacher fidelity of PBIS implementation…
Research Program for Vibration Control in Structures
NASA Technical Reports Server (NTRS)
Mingori, D. L.; Gibson, J. S.
1986-01-01
Purpose of program to apply control theory to large space structures (LSS's) and design practical compensator for suppressing vibration. Program models LSS as distributed system. Control theory applied to produce compensator described by functional gains and transfer functions. Used for comparison of robustness of low- and high-order compensators that control surface vibrations of realistic wrap-rib antenna. Program written in FORTRAN for batch execution.
ERIC Educational Resources Information Center
Abd-Elaziz, Saieda Abd-Elhameed; Khedr, Eman M.; Ahmed, Hanaa Abd Elhakiem; Ibrahim, Hoda Diab Fahmy
2015-01-01
Cognitive impairment is a frequent consequence of stroke. The study aimed to measure the effect of cognitive rehabilitation of elderly patients with stroke on their cognitive function and activities of daily living. Quasi experimental research design were used in this study. This study was conducted at neuropsychiatric, physical medicine and…
Protein Conformational Populations and Functionally Relevant Sub-states
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agarwal, Pratul K; Burger, Virginia; Savol, Andrej
2013-01-01
Functioning proteins do not remain fixed in a unique structure, but instead they sample a range of conformations facilitated by motions within the protein. Even in the native state, a protein exists as a collection of interconverting conformations driven by thermodynamic fluctuations. Motions on the fast time scale allow a protein to sample conformations in the nearby area of its conformational landscape, while motions on slower time scales give it access to conformations in distal areas of the landscape. Emerging evidence indicates that protein landscapes contain conformational substates with dynamic and structural features that support the designated function of themore » protein. Nuclear magnetic resonance (NMR) experiments provide information about conformational ensembles of proteins. X-ray crystallography allows researchers to identify the most populated states along the landscape, and computational simulations give atom-level information about the conformational substates of different proteins. This ability to characterize and obtain quantitative information about the conformational substates and the populations of proteins within them is allowing researchers to better understand the relationship between protein structure and dynamics and the mechanisms of protein function. In this Account, we discuss recent developments and challenges in the characterization of functionally relevant conformational populations and substates of proteins. In some enzymes, the sampling of functionally relevant conformational substates is connected to promoting the overall mechanism of catalysis. For example, the conformational landscape of the enzyme dihydrofolate reductase has multiple substates, which facilitate the binding and the release of the cofactor and substrate and catalyze the hydride transfer. For the enzyme cyclophilin A, computational simulations reveal that the long time scale conformational fluctuations enable the enzyme to access conformational substates that allow it to attain the transition state, therefore promoting the reaction mechanism. In the long term, this emerging view of proteins with conformational substates has broad implications for improving our understanding of enzymes, enzyme engineering, and better drug design. Researchers have already used photoactivation to modulate protein conformations as a strategy to develop a hypercatalytic enzyme. In addition, the alteration of the conformational substates through binding of ligands at locations other than the active site provides the basis for the design of new medicines through allosteric modulation.« less
Using research literature to develop a perceptual retraining treatment protocol.
Neistadt, M E
1994-01-01
Treatment protocols derived from research literature can help therapists provide more rigorous treatment and more systematic assessment of client progress. This study applied research findings about the influence of task, subject, and feedback parameters on adult performance with block designs to an occupational therapy treatment protocol for parquetry block assembly--an activity occupational therapists use to remediate constructional deficits. Task parameter research suggests that parquetry tasks can be graded according to the features of the design cards, with cards having all block boundaries drawn in being easier than those with some block boundaries omitted. Subject parameter findings suggest that clients' lesions and initial constructional competence can influence their approaches to parquetry tasks. Feedback parameter research suggests that a combination of perceptual and planning cues is most effective for parquetry tasks. Methods to help clients transfer constructional skills from parquetry to functional tasks are also discussed.
Sperber, A D; Gwee, K A; Hungin, A P; Corazziari, E; Fukudo, S; Gerson, C; Ghoshal, U C; Kang, J-Y; Levy, R L; Schmulson, M; Dumitrascu, D; Gerson, M-J; Chen, M; Myung, S-J; Quigley, E M M; Whorwell, P J; Zarzar, K; Whitehead, W E
2014-11-01
Cross-cultural, multinational research can advance the field of functional gastrointestinal disorders (FGIDs). Cross-cultural comparative research can make a significant contribution in areas such as epidemiology, genetics, psychosocial modulators, symptom reporting and interpretation, extra-intestinal co-morbidity, diagnosis and treatment, determinants of disease severity, health care utilisation, and health-related quality of life, all issues that can be affected by geographical region, culture, ethnicity and race. To identify methodological challenges for cross-cultural, multinational research, and suggest possible solutions. This report, which summarises the full report of a working team established by the Rome Foundation that is available on the Internet, reflects an effort by an international committee of FGID clinicians and researchers. It is based on comprehensive literature reviews and expert opinion. Cross-cultural, multinational research is important and feasible, but has barriers to successful implementation. This report contains recommendations for future research relating to study design, subject recruitment, availability of appropriate study instruments, translation and validation of study instruments, documenting confounders, statistical analyses and reporting of results. Advances in study design and methodology, as well as cross-cultural research competence, have not matched technological advancements. The development of multinational research networks and cross-cultural research collaboration is still in its early stages. This report is intended to be aspirational rather than prescriptive, so we present recommendations, not guidelines. We aim to raise awareness of these issues and to pose higher standards, but not to discourage investigators from doing what is feasible in any particular setting. © 2014 John Wiley & Sons Ltd.
Preliminary Design of a Manned Nuclear Electric Propulsion Vehicle Using Genetic Algorithms
NASA Technical Reports Server (NTRS)
Irwin, Ryan W.; Tinker, Michael L.
2005-01-01
Nuclear electric propulsion (NEP) vehicles will be needed for future manned missions to Mars and beyond. Candidate designs must be identified for further detailed design from a large array of possibilities. Genetic algorithms have proven their utility in conceptual design studies by effectively searching a large design space to pinpoint unique optimal designs. This research combined analysis codes for NEP subsystems with a genetic algorithm. The use of penalty functions with scaling ratios was investigated to increase computational efficiency. Also, the selection of design variables for optimization was considered to reduce computation time without losing beneficial design search space. Finally, trend analysis of a reference mission to the asteroids yielded a group of candidate designs for further analysis.
Functional food awareness and perceptions in relation to information sources in older adults.
Vella, Meagan N; Stratton, Laura M; Sheeshka, Judy; Duncan, Alison M
2014-05-17
The functional food industry has experienced innovative and economic expansion, yet research into consumer perceptions of functional foods and their associated health claims is limited. Among consumers, older adults could benefit from functional foods due to age-related issues pertaining to food and health. The purpose of this research was to identify the need for information related to functional foods among older adults (≥60 years old) and to assess awareness and perceptions of health claims on functional food packages. Community-dwelling older adults (n = 200) completed a researcher administered questionnaire designed to collect information about functional foods including current consumption, motivating factors for consumption, perceived need for information, sources of information for functional foods and awareness of health claims. Prevalence of functional food consumption among participants was 93.0%. Increased awareness and knowledge was the most commonly reported factor that would promote functional food consumption (85.5%) and 63.5% of participants wanted more information about functional foods with preferred sources being newspapers/magazines/books (68.5%) and food labels (66.1%). Participants were predominately (93.5%) aware of health claims on functional foods and those with more education were more likely to report being aware of health claims (p = 0.045). Although functional food consumption among older adults in this sample is high, there is a need for further information regarding functional foods. These results inform stakeholders regarding the potential for information to influence functional food acceptance among older adult consumers.
AHMCT Intelligent Roadway Information System (IRIS) technical support and testing
DOT National Transportation Integrated Search
2011-12-31
This report documents the research project AHMCT IRIS Technical Support and Testing, : performed under contract 65A0275, Task ID 1777. It presents an overview of the Intelligent : Roadway Information System (IRIS), and its design and function. ...
AHMCT Intelligent Roadway Information System (IRIS) technical support and testing.
DOT National Transportation Integrated Search
2011-12-01
This report documents the research project AHMCT IRIS Technical Support and Testing, : performed under contract 65A0275, Task ID 1777. It presents an overview of the Intelligent : Roadway Information System (IRIS), and its design and function. ...
Policy for the Unpredictable (Uncertainty Research and Policy).
ERIC Educational Resources Information Center
Glass, Gene V.
1979-01-01
Most of the variance in educational effectiveness studies is inexplicable in terms of influences that can be measured and controlled. Nevertheless, it is still possible to design educational policy that will function well under conditions of uncertainty. (Author/RLV)
Multiscale design and life-cycle based sustainability assessment of polymer nanocomposite coatings
NASA Astrophysics Data System (ADS)
Uttarwar, Rohan G.
In recent years, nanocoatings with exceptionally improved and new performance properties have found numerous applications in the automotive, aerospace, ship-making, chemical, electronics, steel, construction, and many other industries. Especially the formulations providing multiple functionalities to cured paint films are believed to dominate the coatings market in the near future. It has shifted the focus of research towards building sustainable coating recipes which can deliver multiple functionalities through applied films. The challenge to this exciting area of research arrives from the insufficient knowledge about structure-property correlations of nanocoating materials and their design complexity. Experimental efforts have been successful in developing certain types of nanopaints exhibiting improved properties. However, multifunctional nanopaint design optimality is extremely difficult to address if not impossible solely through experiments. In addition to this, the environmental implications and societal risks associated with this growing field of nanotechnology raise several questions related to its sustainable development. This research focuses on the study of a multiscale sustainable nanocoating design which can have the application from novel function envisioning and idea refinement point of view, to knowledge discovery and design solution derivation, and further to performance testing in industrial applications. The nanocoating design is studied using computational simulations of nano- to macro- scale models and sustainability assessment study over the life-cycle. Computational simulations aim at integrating top-down, goals/means, inductive systems engineering and bottom-up, cause and effect, deductive systems engineering approaches for material development. The in-silico paint resin system is a water-dispersible acrylic polymer with hydrophilic nanoparticles incorporated into it. The nano-scale atomistic and micro-scale coarse-grained (CG) level simulations are performed using molecular dynamics methodology to study several structural and morphological features such as effect of polymer molecular weight, polydispersity, rheology, nanoparticle volume fraction, size, shape and chemical nature on the bulk mechanical and self-cleaning properties of the coating film. At macro-scale, a paint spray system which is used for automotive coating application is studied by using CFD-based simulation methodology to generate crucial information about the effects of nanocoating technology on environmental emissions and coating film quality. The cradle-to-grave life-cycle based sustainability assessment study address all the critical issues related to economic benefits, environmental implications and societal effects of nanocoating technology through case studies of automotive coating systems. It is accomplished by identifying crucial correlations among measurable parameters at different stages and developing sustainability indicator matrices for analysis of each stage of life-cycle. The findings from the research can have great potential to draft useful conclusions in favor of future development of coating systems with novel functionalities and improved sustainability.
Introduction to the Wetland Book 1: Wetland structure and function, management, and nethods
Davidson, Nick C.; Middleton, Beth A.; McInnes, Robert J.; Everard, Mark; Irvine, Kenneth; Van Dam, Anne A.; Finlayson, C. Max; Finlayson, C. Max; Everard, Mark; Irvine, Kenneth; McInnes, Robert J.; Middleton, Beth A.; Van Dam, Anne A.; Davidson, Nick C.
2016-01-01
The Wetland Book 1 is designed as a ‘first port-of-call’ reference work for information on the structure and functions of wetlands, current approaches to wetland management, and methods for researching and understanding wetlands. Contributions by experts summarize key concepts, orient the reader to the major issues, and support further research on such issues by individuals and multidisciplinary teams. The Wetland Book 1 is organized in three parts - Wetland structure and function; Wetland management; and Wetland methods - each of which is divided into a number of thematic Sections. Each Section starts with one or more overview chapters, supported by chapters providing further information and case studies on different aspects of the theme.
NASA Technical Reports Server (NTRS)
Henriksen, Mina D.
1995-01-01
The research performed was a small portion of the patent to be submitted by Dr. Alan T. Pope entitled 'A Method of Providing Veridical Non-Invasive Endoscopic Feedback for Learning of Voluntary Control of Physiological Functioning'. The focus of this study is to incorporate the emerging technology of virtual reality with the forms of biofeedback already in existance producing a life-like, real-time model of the body's functioning without using invasive procedures, yet still producing the equivalent of a picture from an invasive endoscopic procedure in the region of interest. The portion of the project designated to me was to research and report as many possible uses for such technology as possible.
Dai, Yilin; Guo, Ling; Li, Meng; Chen, Yi-Bu
2012-06-08
Microarray data analysis presents a significant challenge to researchers who are unable to use the powerful Bioconductor and its numerous tools due to their lack of knowledge of R language. Among the few existing software programs that offer a graphic user interface to Bioconductor packages, none have implemented a comprehensive strategy to address the accuracy and reliability issue of microarray data analysis due to the well known probe design problems associated with many widely used microarray chips. There is also a lack of tools that would expedite the functional analysis of microarray results. We present Microarray Я US, an R-based graphical user interface that implements over a dozen popular Bioconductor packages to offer researchers a streamlined workflow for routine differential microarray expression data analysis without the need to learn R language. In order to enable a more accurate analysis and interpretation of microarray data, we incorporated the latest custom probe re-definition and re-annotation for Affymetrix and Illumina chips. A versatile microarray results output utility tool was also implemented for easy and fast generation of input files for over 20 of the most widely used functional analysis software programs. Coupled with a well-designed user interface, Microarray Я US leverages cutting edge Bioconductor packages for researchers with no knowledge in R language. It also enables a more reliable and accurate microarray data analysis and expedites downstream functional analysis of microarray results.
Rippon, Gina; Jordan-Young, Rebecca; Kaiser, Anelis; Fine, Cordelia
2014-01-01
Neuroimaging (NI) technologies are having increasing impact in the study of complex cognitive and social processes. In this emerging field of social cognitive neuroscience, a central goal should be to increase the understanding of the interaction between the neurobiology of the individual and the environment in which humans develop and function. The study of sex/gender is often a focus for NI research, and may be motivated by a desire to better understand general developmental principles, mental health problems that show female-male disparities, and gendered differences in society. In order to ensure the maximum possible contribution of NI research to these goals, we draw attention to four key principles—overlap, mosaicism, contingency and entanglement—that have emerged from sex/gender research and that should inform NI research design, analysis and interpretation. We discuss the implications of these principles in the form of constructive guidelines and suggestions for researchers, editors, reviewers and science communicators. PMID:25221493
Neuroimaging in aphasia treatment research: Consensus and practical guidelines for data analysis
Meinzer, Marcus; Beeson, Pélagie M.; Cappa, Stefano; Crinion, Jenny; Kiran, Swathi; Saur, Dorothee; Parrish, Todd; Crosson, Bruce; Thompson, Cynthia K.
2012-01-01
Functional magnetic resonance imaging is the most widely used imaging technique to study treatment-induced recovery in post-stroke aphasia. The longitudinal design of such studies adds to the challenges researchers face when studying patient populations with brain damage in cross-sectional settings. The present review focuses on issues specifically relevant to neuroimaging data analysis in aphasia treatment research identified in discussions among international researchers at the Neuroimaging in Aphasia Treatment Research Workshop held at Northwestern University (Evanston, Illinois, USA). In particular, we aim to provide the reader with a critical review of unique problems related to the pre-processing, statistical modeling and interpretation of such data sets. Despite the fact that data analysis procedures critically depend on specific design features of a given study, we aim to discuss and communicate a basic set of practical guidelines that should be applicable to a wide range of studies and useful as a reference for researchers pursuing this line of research. PMID:22387474
Rippon, Gina; Jordan-Young, Rebecca; Kaiser, Anelis; Fine, Cordelia
2014-01-01
Neuroimaging (NI) technologies are having increasing impact in the study of complex cognitive and social processes. In this emerging field of social cognitive neuroscience, a central goal should be to increase the understanding of the interaction between the neurobiology of the individual and the environment in which humans develop and function. The study of sex/gender is often a focus for NI research, and may be motivated by a desire to better understand general developmental principles, mental health problems that show female-male disparities, and gendered differences in society. In order to ensure the maximum possible contribution of NI research to these goals, we draw attention to four key principles-overlap, mosaicism, contingency and entanglement-that have emerged from sex/gender research and that should inform NI research design, analysis and interpretation. We discuss the implications of these principles in the form of constructive guidelines and suggestions for researchers, editors, reviewers and science communicators.
Animal coloration research: why it matters
2017-01-01
While basic research on animal coloration is the theme of this special edition, here we highlight its applied significance for industry, innovation and society. Both the nanophotonic structures producing stunning optical effects and the colour perception mechanisms in animals are extremely diverse, having been honed over millions of years of evolution for many different purposes. Consequently, there is a wealth of opportunity for biomimetic and bioinspired applications of animal coloration research, spanning colour production, perception and function. Fundamental research on the production and perception of animal coloration is contributing to breakthroughs in the design of new materials (cosmetics, textiles, paints, optical coatings, security labels) and new technologies (cameras, sensors, optical devices, robots, biomedical implants). In addition, discoveries about the function of animal colour are influencing sport, fashion, the military and conservation. Understanding and applying knowledge of animal coloration is now a multidisciplinary exercise. Our goal here is to provide a catalyst for new ideas and collaborations between biologists studying animal coloration and researchers in other disciplines. This article is part of the themed issue ‘Animal coloration: production, perception, function and application’. PMID:28533451
Animal coloration research: why it matters.
Caro, Tim; Stoddard, Mary Caswell; Stuart-Fox, Devi
2017-07-05
While basic research on animal coloration is the theme of this special edition, here we highlight its applied significance for industry, innovation and society. Both the nanophotonic structures producing stunning optical effects and the colour perception mechanisms in animals are extremely diverse, having been honed over millions of years of evolution for many different purposes. Consequently, there is a wealth of opportunity for biomimetic and bioinspired applications of animal coloration research, spanning colour production, perception and function. Fundamental research on the production and perception of animal coloration is contributing to breakthroughs in the design of new materials (cosmetics, textiles, paints, optical coatings, security labels) and new technologies (cameras, sensors, optical devices, robots, biomedical implants). In addition, discoveries about the function of animal colour are influencing sport, fashion, the military and conservation. Understanding and applying knowledge of animal coloration is now a multidisciplinary exercise. Our goal here is to provide a catalyst for new ideas and collaborations between biologists studying animal coloration and researchers in other disciplines.This article is part of the themed issue 'Animal coloration: production, perception, function and application'. © 2017 The Author(s).
Statistical power as a function of Cronbach alpha of instrument questionnaire items.
Heo, Moonseong; Kim, Namhee; Faith, Myles S
2015-10-14
In countless number of clinical trials, measurements of outcomes rely on instrument questionnaire items which however often suffer measurement error problems which in turn affect statistical power of study designs. The Cronbach alpha or coefficient alpha, here denoted by C(α), can be used as a measure of internal consistency of parallel instrument items that are developed to measure a target unidimensional outcome construct. Scale score for the target construct is often represented by the sum of the item scores. However, power functions based on C(α) have been lacking for various study designs. We formulate a statistical model for parallel items to derive power functions as a function of C(α) under several study designs. To this end, we assume fixed true score variance assumption as opposed to usual fixed total variance assumption. That assumption is critical and practically relevant to show that smaller measurement errors are inversely associated with higher inter-item correlations, and thus that greater C(α) is associated with greater statistical power. We compare the derived theoretical statistical power with empirical power obtained through Monte Carlo simulations for the following comparisons: one-sample comparison of pre- and post-treatment mean differences, two-sample comparison of pre-post mean differences between groups, and two-sample comparison of mean differences between groups. It is shown that C(α) is the same as a test-retest correlation of the scale scores of parallel items, which enables testing significance of C(α). Closed-form power functions and samples size determination formulas are derived in terms of C(α), for all of the aforementioned comparisons. Power functions are shown to be an increasing function of C(α), regardless of comparison of interest. The derived power functions are well validated by simulation studies that show that the magnitudes of theoretical power are virtually identical to those of the empirical power. Regardless of research designs or settings, in order to increase statistical power, development and use of instruments with greater C(α), or equivalently with greater inter-item correlations, is crucial for trials that intend to use questionnaire items for measuring research outcomes. Further development of the power functions for binary or ordinal item scores and under more general item correlation strutures reflecting more real world situations would be a valuable future study.
Zhang, Dan; Wei, Bin
2017-01-01
Currently, the uses of robotics are limited with respect to performance capabilities. Improving the performance of robotic mechanisms is and still will be the main research topic in the next decade. In this paper, design and integration for improving performance of robotic systems are achieved through three different approaches, i.e., structure synthesis design approach, dynamic balancing approach, and adaptive control approach. The purpose of robotic mechanism structure synthesis design is to propose certain mechanism that has better kinematic and dynamic performance as compared to the old ones. For the dynamic balancing design approach, it is normally accomplished based on employing counterweights or counter-rotations. The potential issue is that more weight and inertia will be included in the system. Here, reactionless based on the reconfiguration concept is put forward, which can address the mentioned problem. With the mechanism reconfiguration, the control system needs to be adapted thereafter. One way to address control system adaptation is by applying the “divide and conquer” methodology. It entails modularizing the functionalities: breaking up the control functions into small functional modules, and from those modules assembling the control system according to the changing needs of the mechanism. PMID:28075360
NASA Technical Reports Server (NTRS)
Ellis, David L.; Calder, James; Siamidis, John
2011-01-01
A full-scale radiator for a lunar fission surface power application was manufactured by Material innovations, Inc., for the NASA Glenn Research Center. The radiator was designed to reject 6 kWt with an inlet water temperature of 400 K and a water mass flow rate of 0.5 kg/s. While not flight hardware, the radiator incorporated many potential design features and manufacturing techniques for future flight hardware. The radiator was tested at NASA Glenn Research Center for heat rejection performance. The results showed that the radiator design was capable of rejecting over 6 kWt when operating at the design conditions. The actual performance of the radiator as a function of operational manifolds, inlet water temperature and facility sink temperature was compared to the predictive model developed by NASA Glenn Research Center. The results showed excellent agreement with the model with the actual average face sheet temperature being within 1% of the predicted value. The results will be used in the design and production of NASA s next generation fission power heat rejection systems. The NASA Glenn Research Center s Technology Demonstration Unit will be the first project to take advantage of the newly developed manufacturing techniques and analytical models.
Evaluation on an ergonomic design of functional clothing for wheelchair users.
Wang, Yunyi; Wu, Daiwei; Zhao, Mengmeng; Li, Jun
2014-05-01
Researchers have pointed out that people with physical disabilities find it difficult to obtain suitable clothing. In this study a set of wheelchair user oriented functional clothing was designed. Attention was paid to the wheelchair users' daily living activities related with clothing. An evaluating system combined with sports tournament and rehabilitation medicine was introduced to assess the new designed clothing. Six wheelchair users (3 males and 3 females) were invited to wear the clothing. A set of normal functional clothing was employed as a comparison (Control). The time required to complete three different daily living activities, i.e. dressing and undressing, going to toilet and bathing were recorded. Results showed that with the new clothing wheelchair users' competence of managing toilet was increased by 52.9%. The time needed for toilet was reduced by 45.7%. Their capability of managing dressing and undressing was improved by 24.6%. The study indicated that the newly designed clothing could facilitate wheelchair users' daily living activities related with clothing. Copyright © 2013 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Properties of a center/surround retinex. Part 2: Surround design
NASA Technical Reports Server (NTRS)
Jobson, Daniel J.; Woodell, Glenn A.
1995-01-01
The last version of Edwin Land's retinex model for human vision's lightness and color constancy has been implemented. Previous research has established the mathematical foundations of Land's retinex but has not examined specific design issues and their effects on the properties of the retinex operation. We have sought to define a practical implementation of the retinex without particular concern for its validity as a model for human lightness and color perception. Here we describe issues involved in designing the surround function. We find that there is a trade-off between rendition and dynamic range compression that is governed by the surround space constant. Various functional forms for the retinex surround are evaluated and a Gaussian form is found to perform better than the inverse square suggested by Land. Preliminary testing led to the design of a Gaussian surround with a space constant of 80 pixels as a reasonable compromise between dynamic range compression and rendition.
Prospects of application of additive technologies for increasing the efficiency of impeller machines
NASA Astrophysics Data System (ADS)
Belova, O. V.; Borisov, Yu. A.
2017-08-01
Impeller machine is a device in which the flow path carries out the supply (or retraction) of mechanical energy to the flow of a working fluid passing through the machine. To increase the efficiency of impeller machines, it is necessary to use design modern technologies, namely the use of numerical methods for conducting research in the field of gas dynamics, as well as additive manufacturing (AM) for the of both prototypes and production model. AM technologies are deservedly rightly called revolutionary because they give unique possibility for manufacturing products, creating perfect forms, both light and durable. The designers face the challenge of developing a new design methodology, since AM allows the use of the concept of "Complexity For Free". The "Complexity For Free" conception is based on: complexity of the form; hierarchical complexity; complexity of the material; functional complexity. The new technical items design method according to a functional principle is also investigated.
NASA Astrophysics Data System (ADS)
Adams, Christopher; Tate, Derrick
Patent textual descriptions provide a wealth of information that can be used to understand the underlying design approaches that result in the generation of novel and innovative technology. This article will discuss a new approach for estimating Degree of Ideality and Level of Invention metrics from the theory of inventive problem solving (TRIZ) using patent textual information. Patent text includes information that can be used to model both the functions performed by a design and the associated costs and problems that affect a design’s value. The motivation of this research is to use patent data with calculation of TRIZ metrics to help designers understand which combinations of system components and functions result in creative and innovative design solutions. This article will discuss in detail methods to estimate these TRIZ metrics using natural language processing and machine learning with the use of neural networks.
Design Research of TIANDITU (Map Worl)-Based Geographic Information System for Travelling Service
NASA Astrophysics Data System (ADS)
Zhang, J.; Zhang, H.; Wang, C.
2014-04-01
TIANDITU (Map World) is the public version of the National Platform for Common Geospatial Information Service, and the travelling channel is TIANDITU-based geographic information platform for travelling service. With the development of tourism, traditional ways for providing travelling information cannot meet the needs of travelers. As such, the travelling channel of TIANDITU focuses on providing travel information abundantly and precisely, which integrated the geographic information data of TIANDITU Version 2.0 and the authoritative information resources from China National Tourism Administration. Furthermore, spatial positioning, category and information query of various travelling information were offered for the public in the travelling channel. This research mainly involves three important parts: the system design, key technologies of the system design and application examples. Firstly, this paper introduced the design of TIANDITU-based geographic information system for travelling service, and the general and database design were described in detail. The designs for general, database and travelling service above should consider lots of factors which illustrated in the paper in order to guarantee the efficient service. The process of system construction, the content of geographic information for travelling and system functions of geographic information for travelling are also proposed via diagram in this part. Then several key technologies were discussed, including the travelling information integration for main node and among nodes, general architecture design and management system for travelling channel, web portals and system interface. From the perspective of main technologies, this part describes how TIANDITU travelling channel can realize various functions and reach the requirements from different users. Finally, three application examples about travelling information query were listed shortly. The functions and search results are shown clearly in this part. In all, TIANDITU-based geographic information system for travelling service aimed to integrate the travelling information resources from national, provincial and municipal levels, and finally realized to provide "one stop" travelling service for users in the end.
Recent Progresses in Nanobiosensing for Food Safety Analysis
Yang, Tao; Huang, Huifen; Zhu, Fang; Lin, Qinlu; Zhang, Lin; Liu, Junwen
2016-01-01
With increasing adulteration, food safety analysis has become an important research field. Nanomaterials-based biosensing holds great potential in designing highly sensitive and selective detection strategies necessary for food safety analysis. This review summarizes various function types of nanomaterials, the methods of functionalization of nanomaterials, and recent (2014–present) progress in the design and development of nanobiosensing for the detection of food contaminants including pathogens, toxins, pesticides, antibiotics, metal contaminants, and other analytes, which are sub-classified according to various recognition methods of each analyte. The existing shortcomings and future perspectives of the rapidly growing field of nanobiosensing addressing food safety issues are also discussed briefly. PMID:27447636
Recent Progresses in Nanobiosensing for Food Safety Analysis.
Yang, Tao; Huang, Huifen; Zhu, Fang; Lin, Qinlu; Zhang, Lin; Liu, Junwen
2016-07-19
With increasing adulteration, food safety analysis has become an important research field. Nanomaterials-based biosensing holds great potential in designing highly sensitive and selective detection strategies necessary for food safety analysis. This review summarizes various function types of nanomaterials, the methods of functionalization of nanomaterials, and recent (2014-present) progress in the design and development of nanobiosensing for the detection of food contaminants including pathogens, toxins, pesticides, antibiotics, metal contaminants, and other analytes, which are sub-classified according to various recognition methods of each analyte. The existing shortcomings and future perspectives of the rapidly growing field of nanobiosensing addressing food safety issues are also discussed briefly.
Life sciences payloads for Shuttle
NASA Technical Reports Server (NTRS)
Dunning, R. W.
1974-01-01
The Life Sciences Program for utilization of the Shuttle in the 1980's is presented. Requirements for life sciences research experiments in space flight are discussed along with study results of designs to meet these requirements. The span of life sciences interests in biomedicine, biology, man system integration, bioinstrumentation and life support/protective systems is described with a listing of the research areas encompassed in these descriptions. This is followed by a description of the approach used to derive from the life sciences disciplines, the research functions and instrumentation required for an orbital research program. Space Shuttle design options for life sciences experiments are identified and described. Details are presented for Spacelab laboratories for dedicated missions, mini-labs with carry on characteristics and carry on experiments for shared payload missions and free flying satellites to be deployed and retrieved by the Shuttle.
Behavior analytic approaches to problem behavior in intellectual disabilities.
Hagopian, Louis P; Gregory, Meagan K
2016-03-01
The purpose of the current review is to summarize recent behavior analytic research on problem behavior in individuals with intellectual disabilities. We have focused our review on studies published from 2013 to 2015, but also included earlier studies that were relevant. Behavior analytic research on problem behavior continues to focus on the use and refinement of functional behavioral assessment procedures and function-based interventions. During the review period, a number of studies reported on procedures aimed at making functional analysis procedures more time efficient. Behavioral interventions continue to evolve, and there were several larger scale clinical studies reporting on multiple individuals. There was increased attention on the part of behavioral researchers to develop statistical methods for analysis of within subject data and continued efforts to aggregate findings across studies through evaluative reviews and meta-analyses. Findings support continued utility of functional analysis for guiding individualized interventions and for classifying problem behavior. Modifications designed to make functional analysis more efficient relative to the standard method of functional analysis were reported; however, these require further validation. Larger scale studies on behavioral assessment and treatment procedures provided additional empirical support for effectiveness of these approaches and their sustainability outside controlled clinical settings.
Puzzle Pieces: Neural Structure and Function in Prader-Willi Syndrome
Manning, Katherine E.; Holland, Anthony J.
2015-01-01
Prader-Willi syndrome (PWS) is a neurodevelopmental disorder of genomic imprinting, presenting with a behavioural phenotype encompassing hyperphagia, intellectual disability, social and behavioural difficulties, and propensity to psychiatric illness. Research has tended to focus on the cognitive and behavioural investigation of these features, and, with the exception of eating behaviour, the neural physiology is currently less well understood. A systematic review was undertaken to explore findings relating to neural structure and function in PWS, using search terms designed to encompass all published articles concerning both in vivo and post-mortem studies of neural structure and function in PWS. This supported the general paucity of research in this area, with many articles reporting case studies and qualitative descriptions or focusing solely on the overeating behaviour, although a number of systematic investigations were also identified. Research to date implicates a combination of subcortical and higher order structures in PWS, including those involved in processing reward, motivation, affect and higher order cognitive functions, with both anatomical and functional investigations indicating abnormalities. It appears likely that PWS involves aberrant activity across distributed neural networks. The characterisation of neural structure and function warrants both replication and further systematic study. PMID:28943631
Puzzle Pieces: Neural Structure and Function in Prader-Willi Syndrome.
Manning, Katherine E; Holland, Anthony J
2015-12-17
Prader-Willi syndrome (PWS) is a neurodevelopmental disorder of genomic imprinting, presenting with a behavioural phenotype encompassing hyperphagia, intellectual disability, social and behavioural difficulties, and propensity to psychiatric illness. Research has tended to focus on the cognitive and behavioural investigation of these features, and, with the exception of eating behaviour, the neural physiology is currently less well understood. A systematic review was undertaken to explore findings relating to neural structure and function in PWS, using search terms designed to encompass all published articles concerning both in vivo and post-mortem studies of neural structure and function in PWS. This supported the general paucity of research in this area, with many articles reporting case studies and qualitative descriptions or focusing solely on the overeating behaviour, although a number of systematic investigations were also identified. Research to date implicates a combination of subcortical and higher order structures in PWS, including those involved in processing reward, motivation, affect and higher order cognitive functions, with both anatomical and functional investigations indicating abnormalities. It appears likely that PWS involves aberrant activity across distributed neural networks. The characterisation of neural structure and function warrants both replication and further systematic study.
Colombo, Barbara; Balzarotti, Stefania; Mazzucchelli, Nicla
2016-04-01
Prior research has shown that right dorsolateral prefrontal cortex may be crucial in cognitive control of affective impulses during decision making. The present study examines whether modulation of r-DLPFC with transcranial direct current stimulation influences attentional behavior and decision-making in a purchase task requiring participants to choose either emotional/attractive or functional/useful objects. 30 participants were shown sixteen pairs of emotionally or functionally designed products while their eye-movements were recorded. Participants were asked to judge aesthetics and usefulness of each object, and to decide which object of each pair they would buy. Results revealed that participants decided to buy the functionally designed objects more often regardless of condition; however, participants receiving anodal stimulation were faster in decision making. Although stimulation of r-DLPFC did not affect the actual purchasing choice and had little effect on visual exploration during decision making, it influenced perceived usefulness and attractiveness, with temporary inhibition of r-DLPFC leading to evaluate functional objects as less attractive. Finally, anodal stimulation led to judge the objects as more useful. The implications of these results are discussed. Copyright © 2016 Elsevier Inc. All rights reserved.
Saunders, Gabrielle H; Biswas, Kousick; Serpi, Tracey; McGovern, Stephanie; Groer, Shirley; Stock, Eileen M; Magruder, Kathryn M; Storzbach, Daniel; Skelton, Kelly; Abrams, Thad; McCranie, Mark; Richerson, Joan; Dorn, Patricia A; Huang, Grant D; Fallon, Michael T
2017-11-01
Posttraumatic stress disorder (PTSD) is a leading cause of impairments in quality of life and functioning among Veterans. Service dogs have been promoted as an effective adjunctive intervention for PTSD, however published research is limited and design and implementation flaws in published studies limit validated conclusions. This paper describes the rationale for the study design, a detailed methodological description, and implementation challenges of a multisite randomized clinical trial examining the impact of service dogs on the on the functioning and quality of life of Veterans with PTSD. Trial design considerations prioritized participant and intervention (dog) safety, selection of an intervention comparison group that would optimize enrollment in all treatment arms, pragmatic methods to ensure healthy well-trained dogs, and the selection of outcomes for achieving scientific and clinical validity in a Veteran PTSD population. Since there is no blueprint for conducting a randomized clinical trial examining the impact of dogs on PTSD of this size and scope, it is our primary intent that the successful completion of this trial will set a benchmark for future trial design and scientific rigor, as well as guiding researchers aiming to better understand the role that dogs can have in the management of Veterans experiencing mental health conditions such as PTSD. Published by Elsevier Inc.
Flat-plate solar array project. Volume 6: Engineering sciences and reliability
NASA Technical Reports Server (NTRS)
Ross, R. G., Jr.; Smokler, M. I.
1986-01-01
The Flat-Plate Solar Array (FSA) Project activities directed at developing the engineering technology base required to achieve modules that meet the functional, safety, and reliability requirements of large scale terrestrial photovoltaic systems applications are reported. These activities included: (1) development of functional, safety, and reliability requirements for such applications; (2) development of the engineering analytical approaches, test techniques, and design solutions required to meet the requirements; (3) synthesis and procurement of candidate designs for test and evaluation; and (4) performance of extensive testing, evaluation, and failure analysis of define design shortfalls and, thus, areas requiring additional research and development. A summary of the approach and technical outcome of these activities are provided along with a complete bibliography of the published documentation covering the detailed accomplishments and technologies developed.
Baune, Bernhard T.; Air, Tracy
2016-01-01
Cross-sectional and longitudinal studies exploring clinical, functional, and biological correlates of major depressive disorder are frequent. In this type of research, depression is most commonly defined as a categorical diagnosis based on studies using diagnostic instruments. Given the phenotypic and biological heterogeneity of depression, we chose to focus the phenotypic assessments on three cognitive dimensions of depression including (a) cognitive performance, (b) emotion processing, and (c) social cognitive functioning. Hence, the overall aim of the study is to investigate the long-term clinical course of these cognitive dimensions in depression and its functional (psychosocial) correlates. We also aim to identify biological “genomic” correlates of these three cognitive dimensions of depression. To address the above overall aim, we created the Cognition and Mood Study (CoFaMS) with the key objective to investigate the clinical, functional, and biological correlates of cognitive dimensions of depression by employing a prospective study design and including a healthy control group. The study commenced in April 2015, including patients with a primary diagnosis of a major depressive episode of major depressive disorder or bipolar disorder according to DSM-IV-TR criteria. The assessments cover the three cognitive dimensions of depression (cognitive performance, emotion processing, and social cognition), cognitive function screening instrument, plus functional scales to assess general, work place, and psychosocial function, depression symptom scales, and clinical course of illness. Blood is collected for comprehensive genomic discovery analyses of biological correlates of cognitive dimensions of depression. The CoFaM-Study represents an innovative approach focusing on cognitive dimensions of depression and its functional and biological “genomic” correlates. The CoFaMS team welcomes collaborations with both national and international researchers. PMID:27616997
Baune, Bernhard T; Air, Tracy
2016-01-01
Cross-sectional and longitudinal studies exploring clinical, functional, and biological correlates of major depressive disorder are frequent. In this type of research, depression is most commonly defined as a categorical diagnosis based on studies using diagnostic instruments. Given the phenotypic and biological heterogeneity of depression, we chose to focus the phenotypic assessments on three cognitive dimensions of depression including (a) cognitive performance, (b) emotion processing, and (c) social cognitive functioning. Hence, the overall aim of the study is to investigate the long-term clinical course of these cognitive dimensions in depression and its functional (psychosocial) correlates. We also aim to identify biological "genomic" correlates of these three cognitive dimensions of depression. To address the above overall aim, we created the Cognition and Mood Study (CoFaMS) with the key objective to investigate the clinical, functional, and biological correlates of cognitive dimensions of depression by employing a prospective study design and including a healthy control group. The study commenced in April 2015, including patients with a primary diagnosis of a major depressive episode of major depressive disorder or bipolar disorder according to DSM-IV-TR criteria. The assessments cover the three cognitive dimensions of depression (cognitive performance, emotion processing, and social cognition), cognitive function screening instrument, plus functional scales to assess general, work place, and psychosocial function, depression symptom scales, and clinical course of illness. Blood is collected for comprehensive genomic discovery analyses of biological correlates of cognitive dimensions of depression. The CoFaM-Study represents an innovative approach focusing on cognitive dimensions of depression and its functional and biological "genomic" correlates. The CoFaMS team welcomes collaborations with both national and international researchers.
NASA Technical Reports Server (NTRS)
Wolf, M.
1982-01-01
The historical progression of efficiency improvements, cost reductions, and performance improvements in modules and photovoltaic systems are described. The potential for future improvements in photovoltaic device efficiencies and cost reductions continues as device concepts, designs, processes, and automated production capabilities mature. Additional step-function improvements can be made as today's simpler devices are replaced by more sophisticated devices.
ERIC Educational Resources Information Center
Coombs, Philip H.; Ahmed, Manzoor
Designed to assist rural planners and policy makers of developing countries in the use of nonformal education programs, this book analyzes the findings of a two-year irternational research study. Emphasizing a functional view of education and equating education with learning, the focus is on: (1) preplanning diagnosis, (2) educational delivery…
NASA Technical Reports Server (NTRS)
Shelhamer, M.; Mindock, J.; Lumpkins, S.
2015-01-01
NASA supports research to mitigate risks to health and performance on extended missions. Typically these risks are investigated independently. In reality, physiological systems are tightly coupled, and related to psychological and inter-individual factors (team cohesion, conflict). We draw on ideas from network theory to assess these interactions and better design a research framework to address them.
ERIC Educational Resources Information Center
Angrist, Joshua; Pischke, Jorn-Steffen
2010-01-01
This essay reviews progress in empirical economics since Leamer'rs (1983) critique. Leamer highlighted the benefits of sensitivity analysis, a procedure in which researchers show how their results change with changes in specification or functional form. Sensitivity analysis has had a salutary but not a revolutionary effect on econometric practice.…
Lyon, Aaron R; Lattie, Emily G; Reddy, Madhu; Schueller, Stephen M
2017-01-01
Mental health problems are common and pose a tremendous societal burden in terms of cost, morbidity, quality of life, and mortality. The great majority of people experience barriers that prevent access to treatment, aggravated by a lack of mental health specialists. Digital mental health is potentially useful in meeting the treatment needs of large numbers of people. A growing number of efficacy trials have shown strong outcomes for digital mental health treatments. Yet despite their positive findings, there are very few examples of successful implementations and many failures. Although the research-to-practice gap is not unique to digital mental health, the inclusion of technology poses unique challenges. We outline some of the reasons for this gap and propose a collection of methods that can result in sustainable digital mental health interventions. These methods draw from human-computer interaction and implementation science and are integrated into an Accelerated Creation-to-Sustainment (ACTS) model. The ACTS model uses an iterative process that includes 2 basic functions (design and evaluate) across 3 general phases (Create, Trial, and Sustain). The ultimate goal in using the ACTS model is to produce a functioning technology-enabled service (TES) that is sustainable in a real-world treatment setting. We emphasize the importance of the service component because evidence from both research and practice has suggested that human touch is a critical ingredient in the most efficacious and used digital mental health treatments. The Create phase results in at least a minimally viable TES and an implementation blueprint. The Trial phase requires evaluation of both effectiveness and implementation while allowing optimization and continuous quality improvement of the TES and implementation plan. Finally, the Sustainment phase involves the withdrawal of research or donor support, while leaving a functioning, continuously improving TES in place. The ACTS model is a step toward bringing implementation and sustainment into the design and evaluation of TESs, public health into clinical research, research into clinics, and treatment into the lives of our patients. PMID:28490417
Team-Centered Perspective for Adaptive Automation Design
NASA Technical Reports Server (NTRS)
Prinzel, Lawrence J., III
2003-01-01
Automation represents a very active area of human factors research. The journal, Human Factors, published a special issue on automation in 1985. Since then, hundreds of scientific studies have been published examining the nature of automation and its interaction with human performance. However, despite a dramatic increase in research investigating human factors issues in aviation automation, there remain areas that need further exploration. This NASA Technical Memorandum describes a new area of automation design and research, called adaptive automation. It discusses the concepts and outlines the human factors issues associated with the new method of adaptive function allocation. The primary focus is on human-centered design, and specifically on ensuring that adaptive automation is from a team-centered perspective. The document shows that adaptive automation has many human factors issues common to traditional automation design. Much like the introduction of other new technologies and paradigm shifts, adaptive automation presents an opportunity to remediate current problems but poses new ones for human-automation interaction in aerospace operations. The review here is intended to communicate the philosophical perspective and direction of adaptive automation research conducted under the Aerospace Operations Systems (AOS), Physiological and Psychological Stressors and Factors (PPSF) project.
Integrated Design of a Telerobotic Workstation
NASA Technical Reports Server (NTRS)
Rochlis, Jennifer L.; Clarke, John-Paul
2001-01-01
The experiments described in this paper are part of a larger joint MIT/NASA research effort that focuses on the development of a methodology for designing and evaluating integrated interfaces for highly dexterous and multi-functional telerobots. Specifically, a telerobotic workstation is being designed for an Extravehicular Activity (EVA) anthropomorphic space station telerobot. Previous researchers have designed telerobotic workstations based upon performance of discrete subsets of tasks (for example, peg-in-hole, tracking, etc.) without regard for transitions that operators go through between tasks performed sequentially in the context of larger integrated tasks. The exploratory research experiments presented here took an integrated approach and assessed how subjects operating a full-immersion telerobot perform during the transitions between sub-tasks of two common EVA tasks. Preliminary results show that up to 30% of total task time is spent gaining and maintaining Situation Awareness (SA) of their task space and environment during transitions. Although task performance improves over the two trial days, the percentage of time spent on SA remains the same. This method identifies areas where workstation displays and feedback mechanisms are most needed to increase operator performance and decrease operator workload - areas that previous research methods have not been able to address.
Space station group activities habitability module study
NASA Technical Reports Server (NTRS)
Nixon, David
1986-01-01
This study explores and analyzes architectural design approaches for the interior of the Space Station Habitability Module (originally defined as Habitability Module 1 in Space Station Reference Configuration Decription, JSC-19989, August 1984). In the Research Phase, architectural program and habitability design guidelines are specified. In the Schematic Design Phase, a range of alternative concepts is described and illustrated with drawings, scale-model photographs and design analysis evaluations. Recommendations are presented on the internal architectural, configuration of the Space Station Habitability Module for such functions as the wardroom, galley, exercise facility, library and station control work station. The models show full design configurations for on-orbit performance.
Series: Practical guidance to qualitative research. Part 2: Context, research questions and designs.
Korstjens, Irene; Moser, Albine
2017-12-01
In the course of our supervisory work over the years, we have noticed that qualitative research tends to evoke a lot of questions and worries, so-called frequently asked questions (FAQs). This series of four articles intends to provide novice researchers with practical guidance for conducting high-quality qualitative research in primary care. By 'novice' we mean Master's students and junior researchers, as well as experienced quantitative researchers who are engaging in qualitative research for the first time. This series addresses their questions and provides researchers, readers, reviewers and editors with references to criteria and tools for judging the quality of qualitative research papers. This second article addresses FAQs about context, research questions and designs. Qualitative research takes into account the natural contexts in which individuals or groups function to provide an in-depth understanding of real-world problems. The research questions are generally broad and open to unexpected findings. The choice of a qualitative design primarily depends on the nature of the research problem, the research question(s) and the scientific knowledge one seeks. Ethnography, phenomenology and grounded theory are considered to represent the 'big three' qualitative approaches. Theory guides the researcher through the research process by providing a 'lens' to look at the phenomenon under study. Since qualitative researchers and the participants of their studies interact in a social process, researchers influence the research process. The first article described the key features of qualitative research, the third article will focus on sampling, data collection and analysis, while the last article focuses on trustworthiness and publishing.
Soft computing methods in design of superalloys
NASA Technical Reports Server (NTRS)
Cios, K. J.; Berke, L.; Vary, A.; Sharma, S.
1995-01-01
Soft computing techniques of neural networks and genetic algorithms are used in the design of superalloys. The cyclic oxidation attack parameter K(sub a), generated from tests at NASA Lewis Research Center, is modeled as a function of the superalloy chemistry and test temperature using a neural network. This model is then used in conjunction with a genetic algorithm to obtain an optimized superalloy composition resulting in low K(sub a) values.
Soft Computing Methods in Design of Superalloys
NASA Technical Reports Server (NTRS)
Cios, K. J.; Berke, L.; Vary, A.; Sharma, S.
1996-01-01
Soft computing techniques of neural networks and genetic algorithms are used in the design of superalloys. The cyclic oxidation attack parameter K(sub a), generated from tests at NASA Lewis Research Center, is modelled as a function of the superalloy chemistry and test temperature using a neural network. This model is then used in conjunction with a genetic algorithm to obtain an optimized superalloy composition resulting in low K(sub a) values.
Concrete Growth and Fatigue Analysis of Chickamauga Lock Miter Gate Anchorages
2017-09-19
owners. The findings of this report are not to be construed as an official Department of the Army position unless so designated by other authorized...confinement. However, since the steel A-frame structures are functioning under circumstances well beyond their original design and intent and because the...known to affect airfields, pavements , bridges, and other infrastructure. While ongoing research to better understand the underlying mechanisms
ERIC Educational Resources Information Center
van der Linden, Wim J.; Boekkooi-Timminga, Ellen
A "maximin" model for item response theory based test design is proposed. In this model only the relative shape of the target test information function is specified. It serves as a constraint subject to which a linear programming algorithm maximizes the information in the test. In the practice of test construction there may be several…
NASA Technical Reports Server (NTRS)
Stoica, A.; Keymeulen, D.; Zebulum, R. S.; Ferguson, M. I.; Guo, X.
2002-01-01
This paper comments on some directions of growth for evolvable hardware, proposes research directions that address the scalability problem and gives examples of results in novel areas approached by EHW.
Subbase and subgrade performance investigation and design guidelines for concrete pavement.
DOT National Transportation Integrated Search
2012-03-01
The main issue associated with this research is if cheaper alternatives can be configured for subbase : construction. Subbase layers have certain functions that need to be fulfilled in order to assure adequate pavement : performance. One key aspect i...
Learning from Failures: Archiving and Designing with Failure and Risk
NASA Technical Reports Server (NTRS)
VanWie, Michael; Bohm, Matt; Barrientos, Francesca; Turner, Irem; Stone, Robert
2005-01-01
Identifying and mitigating risks during conceptual design remains an ongoing challenge. This work presents the results of collaborative efforts between The University of Missouri-Rolla and NASA Ames Research Center to examine how an early stage mission design team at NASA addresses risk, and, how a computational support tool can assist these designers in their tasks. Results of our observations are given in addition to a brief example of our implementation of a repository based computational tool that allows users to browse and search through archived failure and risk data as related to either physical artifacts or functionality.
Butterfly effects: novel functional materials inspired from the wings scales.
Zhang, Wang; Gu, Jiajun; Liu, Qinglei; Su, Huilan; Fan, Tongxiang; Zhang, Di
2014-10-07
Through millions of years of evolutionary selection, nature has created biological materials with various functional properties for survival. Many complex natural architectures, such as shells, bones, and honeycombs, have been studied and imitated in the design and fabrication of materials with enhanced hardness and stiffness. Recently, more and more researchers have started to research the wings of butterflies, mostly because of their dazzling colors. It was found that most of these iridescent colors are caused by periodic photonic structures on the scales that make up the surfaces of these wings. These materials have recently become a focus of multidiscipline research because of their promising applications in the display of structural colors, and in advanced sensors, photonic crystals, and solar cells. This paper review aims to provide a perspective overview of the research inspired by these wing structures in recent years.
Recent advances in automated protein design and its future challenges.
Setiawan, Dani; Brender, Jeffrey; Zhang, Yang
2018-04-25
Protein function is determined by protein structure which is in turn determined by the corresponding protein sequence. If the rules that cause a protein to adopt a particular structure are understood, it should be possible to refine or even redefine the function of a protein by working backwards from the desired structure to the sequence. Automated protein design attempts to calculate the effects of mutations computationally with the goal of more radical or complex transformations than are accessible by experimental techniques. Areas covered: The authors give a brief overview of the recent methodological advances in computer-aided protein design, showing how methodological choices affect final design and how automated protein design can be used to address problems considered beyond traditional protein engineering, including the creation of novel protein scaffolds for drug development. Also, the authors address specifically the future challenges in the development of automated protein design. Expert opinion: Automated protein design holds potential as a protein engineering technique, particularly in cases where screening by combinatorial mutagenesis is problematic. Considering solubility and immunogenicity issues, automated protein design is initially more likely to make an impact as a research tool for exploring basic biology in drug discovery than in the design of protein biologics.
Lyon, Aaron R; Connors, Elizabeth; Jensen-Doss, Amanda; Landes, Sara J; Lewis, Cara C; McLeod, Bryce D; Rutt, Christopher; Stanick, Cameo; Weiner, Bryan J
2017-09-01
The advancement of implementation science is dependent on identifying assessment strategies that can address implementation and clinical outcome variables in ways that are valid, relevant to stakeholders, and scalable. This paper presents a measurement agenda for implementation science that integrates the previously disparate assessment traditions of idiographic and nomothetic approaches. Although idiographic and nomothetic approaches are both used in implementation science, a review of the literature on this topic suggests that their selection can be indiscriminate, driven by convenience, and not explicitly tied to research study design. As a result, they are not typically combined deliberately or effectively. Thoughtful integration may simultaneously enhance both the rigor and relevance of assessments across multiple levels within health service systems. Background on nomothetic and idiographic assessment is provided as well as their potential to support research in implementation science. Drawing from an existing framework, seven structures (of various sequencing and weighting options) and five functions (Convergence, Complementarity, Expansion, Development, Sampling) for integrating conceptually distinct research methods are articulated as they apply to the deliberate, design-driven integration of nomothetic and idiographic assessment approaches. Specific examples and practical guidance are provided to inform research consistent with this framework. Selection and integration of idiographic and nomothetic assessments for implementation science research designs can be improved. The current paper argues for the deliberate application of a clear framework to improve the rigor and relevance of contemporary assessment strategies.
Design and validation of Segment--freely available software for cardiovascular image analysis.
Heiberg, Einar; Sjögren, Jane; Ugander, Martin; Carlsson, Marcus; Engblom, Henrik; Arheden, Håkan
2010-01-11
Commercially available software for cardiovascular image analysis often has limited functionality and frequently lacks the careful validation that is required for clinical studies. We have already implemented a cardiovascular image analysis software package and released it as freeware for the research community. However, it was distributed as a stand-alone application and other researchers could not extend it by writing their own custom image analysis algorithms. We believe that the work required to make a clinically applicable prototype can be reduced by making the software extensible, so that researchers can develop their own modules or improvements. Such an initiative might then serve as a bridge between image analysis research and cardiovascular research. The aim of this article is therefore to present the design and validation of a cardiovascular image analysis software package (Segment) and to announce its release in a source code format. Segment can be used for image analysis in magnetic resonance imaging (MRI), computed tomography (CT), single photon emission computed tomography (SPECT) and positron emission tomography (PET). Some of its main features include loading of DICOM images from all major scanner vendors, simultaneous display of multiple image stacks and plane intersections, automated segmentation of the left ventricle, quantification of MRI flow, tools for manual and general object segmentation, quantitative regional wall motion analysis, myocardial viability analysis and image fusion tools. Here we present an overview of the validation results and validation procedures for the functionality of the software. We describe a technique to ensure continued accuracy and validity of the software by implementing and using a test script that tests the functionality of the software and validates the output. The software has been made freely available for research purposes in a source code format on the project home page http://segment.heiberg.se. Segment is a well-validated comprehensive software package for cardiovascular image analysis. It is freely available for research purposes provided that relevant original research publications related to the software are cited.
Estiri, Hossein; Lovins, Terri; Afzalan, Nader; Stephens, Kari A.
2016-01-01
We applied a participatory design approach to define the objectives, characteristics, and features of a “data profiling” tool for primary care Electronic Health Data (EHD). Through three participatory design workshops, we collected input from potential tool users who had experience working with EHD. We present 15 recommended features and characteristics for the data profiling tool. From these recommendations we derived three overarching objectives and five properties for the tool. A data profiling tool, in Biomedical Informatics, is a visual, clear, usable, interactive, and smart tool that is designed to inform clinical and biomedical researchers of data utility and let them explore the data, while conveniently orienting the users to the tool’s functionalities. We suggest that developing scalable data profiling tools will provide new capacities to disseminate knowledge about clinical data that will foster translational research and accelerate new discoveries. PMID:27570651
Lawrence, Christian; Mason, Timothy
2012-01-01
The strategies for housing zebrafish used in biomedical research have evolved considerably over the past three decades. To keep pace with the rapid expansion and development of the zebrafish model system, the field has generally moved from keeping fish at the level of aquarium hobbyist to that of industrialized, recirculating aquaculture. Numerous commercial system vendors now offer increasingly sophisticated housing systems based on design principles that maximize the number of animals that can be housed in a given space footprint, and they are thus able to support large and diverse research programs. This review is designed to provide managers, lab animal veterinarians, investigators, and other parties responsible for care and use of these animals with a comprehensive overview of the basic operating and design principles of zebrafish housing systems. This information can be used to help plan the construction of new facilities and/or the upgrade and maintenance of existing operations.
The design and development of a triaxial wear-testing joint simulator.
Green, A S; O'Connell, M K; Lyons, A S; James, S P
1999-01-01
Most of the existing wear testers created to wear test total hip replacements, specifically the acetabular component, are designed to exert only an axial force and provide rotation in a close approximation of the actual femoral movement. The Rocky Mountain Joint Simulator was designed to exert three orthogonal forces and provide rotations about the X-, Y- and Z-axes to more closely simulate the physiological forces and motions found in the human gait cycle. The RMJS was also designed with adaptability for other joints, such as knees or canine hips, through the use of hydraulics and a computer-programmable control system. Such adaptability and functionality allows the researcher to more closely model a gait cycle, thereby obtaining wear patterns that resemble those found in retrieved implants more closely than existing simulators. Research is ongoing into the tuning and evaluation of the machine and preliminary acetabular component wear test results will be presented at the conference.
The Cornell Kitchen: Housing and Design Research in Postwar America.
Penner, Barbara
2018-01-01
The Cornell Kitchen (1950-55) was produced at Cornell University by a multidisciplinary team with expertise in home economics, engineering, architecture, and psychology. It promised to deliver rational design, functional principles, aesthetic appeal, and emotional satisfaction in one prefabricated, easy-to-install package. This article sets out the kitchen's history from its design to its field-testing phase to its impact on postwar kitchens. It argues that the kitchen represents an important effort to approach housing in a more scientific way; scientific methods were deployed to understand both the physical and socio-psychological problems of dwelling. The project also sought to introduce a specific model for leveraging housing research into the real world, partnering with industry to mass produce scientific designs. Social scientific methods were hence used to create not only more livable but also more saleable products in an effort to appeal to manufacturers and consumers alike.
Mukaino, Masahiko; Ono, Takashi; Shindo, Keiichiro; Fujiwara, Toshiyuki; Ota, Tetsuo; Kimura, Akio; Liu, Meigen; Ushiba, Junichi
2014-04-01
Brain computer interface technology is of great interest to researchers as a potential therapeutic measure for people with severe neurological disorders. The aim of this study was to examine the efficacy of brain computer interface, by comparing conventional neuromuscular electrical stimulation and brain computer interface-driven neuromuscular electrical stimulation, using an A-B-A-B withdrawal single-subject design. A 38-year-old male with severe hemiplegia due to a putaminal haemorrhage participated in this study. The design involved 2 epochs. In epoch A, the patient attempted to open his fingers during the application of neuromuscular electrical stimulation, irrespective of his actual brain activity. In epoch B, neuromuscular electrical stimulation was applied only when a significant motor-related cortical potential was observed in the electroencephalogram. The subject initially showed diffuse functional magnetic resonance imaging activation and small electro-encephalogram responses while attempting finger movement. Epoch A was associated with few neurological or clinical signs of improvement. Epoch B, with a brain computer interface, was associated with marked lateralization of electroencephalogram (EEG) and blood oxygenation level dependent responses. Voluntary electromyogram (EMG) activity, with significant EEG-EMG coherence, was also prompted. Clinical improvement in upper-extremity function and muscle tone was observed. These results indicate that self-directed training with a brain computer interface may induce activity- dependent cortical plasticity and promote functional recovery. This preliminary clinical investigation encourages further research using a controlled design.
The NASA Specialized Center of Research and Training (NSCORT) in Gravitational Biology
NASA Technical Reports Server (NTRS)
Spooner, B. S.; Guikema, J. A.
1992-01-01
The Life Sciences Division of NASA has initiated a NASA Specialized Centers of Research and Training (NSCORT) program. Three Centers were designated in late 1990, as the culmination of an in-depth peer review analysis of proposals from universities across the nation and around the world. Kansas State University was selected as the NSCORT in Gravitational Biology. This Center is headquartered in the KSU Division of Biology and has a research, training, and outreach function that focuses on cellular and developmental biology.
2015-01-05
in a research position that will apply her skills at granular experiment and modeling to important issues related to pharmaceutical processing...MONITOR’S ACRONYM(S) (ES) ARO U.S. Anny Research Office 11 . SPONSOR/MONITOR’S REPORT P.O. Box 12211 NUMBER(S) Research Triangle Park, NC 27709-2211...decision, unless so designated by other documentation. 14. ABSTRACT This project, j oint with Antoinette Tordesillas ofUniversity of Melbomn e
NASA Technical Reports Server (NTRS)
Chen, R. T. N.; Daughaday, H.; Andrisani, D., II; Till, R. D.; Weingarten, N. C.
1975-01-01
The results of a feasibility study and preliminary design for active control research and validation using the Total In-Flight Simulator (TIFS) aircraft are documented. Active control functions which can be demonstrated on the TIFS aircraft and the cost of preparing, equipping, and operating the TIFS aircraft for active control technology development are determined. It is shown that the TIFS aircraft is as a suitable test bed for inflight research and validation of many ACT concepts.
Design of a resistive exercise device for use on the Space Shuttle
NASA Technical Reports Server (NTRS)
Carlson, Dennis L.; Durrani, Mohammed; Redilla, Christi L.
1992-01-01
The National Aeronautics and Space Administration in conjunction with the Universities Space Research Association sponsored the design of a Resistive Exercise Device (RED) for use on the Space Shuttle. The device must enable the astronauts to perform a number of exercises to prevent skeletal muscle atrophy and neuromuscular deconditioning in microgravity environments. The RED must fit the requirements for limited volume and weight and must provide a means of restraint during exercise. The design team divided the functions of the device into three major groups: methods of supplying force, methods of adjusting force, and methods of transmitting the force to the user. After analyzing the three main functions of the RED and developing alternatives for each, the design team used a comparative decision process to choose the most feasible components for the overall design. The design team selected the constant force spring alternative for further embodiment. The device consists of an array of different sized constant force springs which can be pinned in different combinations to produce the required output forces. The force is transmitted by means of a shaft and gear system. The final report is divided into four sections. An introduction section discusses the sponsor background, problem background and requirements of the device. The second section covers the alternative designs for each of the main functions. The design solution and pertinent calculations comprises the third section. The final section contains design conclusions and recommendations including topics of future work.
ERIC Educational Resources Information Center
Douglas, Pamela A.
2013-01-01
This quantitative, nonexperimental study used survey research design and nonparametric statistics to investigate Birnbaum's (1988) theory that there is a relationship between the constructs of leadership and organization, as depicted in his five higher education models of organizational functioning: bureaucratic, collegial, political,…
NASA Astrophysics Data System (ADS)
Baltes, Henry; Brand, Oliver; Fedder, Gary K.; Hierold, Christofer; Korvink, Jan G.; Tabata, Osamu; Löhe, Detlef; Haußelt, Jürgen
2005-09-01
Microstructures, electronics, nanotechnology - these vast fields of research are growing together as the size gap narrows and many different materials are combined. Current research, engineering sucesses and newly commercialized products hint at the immense innovative potentials and future applications that open up once mankind controls shape and function from the atomic level right up to the visible world without any gaps. In this volume, authors from three major competence centres for microengineering illustrate step by step the process from designing and simulating microcomponents of metallic and ceramic materials to replicating micro-scale components by injection molding.
McClements, David Julian
2013-12-01
The oral bioavailability of many lipophilic bioactives, such as pharmaceuticals and nutraceuticals, is relatively low due to their poor solubility, permeability and/or chemical stability within the human gastrointestinal tract (GIT). The oral bioavailability of lipophilic bioactives can be improved by designing food matrices that control their release, solubilization, transport and absorption within the GIT. This article discusses the challenges associated with delivering lipophilic bioactive components, the impact of food composition and structure on oral bioavailability and the design of functional and medical foods for improving the oral bioavailability of lipophilic bioactives. Food-based delivery systems can be used to improve the oral bioavailability of lipophilic bioactives. There are a number of potential advantages to delivering lipophilic bioactives using functional or medical foods: greater compliance than conventional delivery forms; increased bioavailability and efficacy; and reduced variability in biological effects. However, food matrices are structurally complex multicomponent materials and research is still needed to identify optimum structures and compositions for particular bioactives.
Molecular structures guide the engineering of chromatin
Tekel, Stefan J.
2017-01-01
Abstract Chromatin is a system of proteins, RNA, and DNA that interact with each other to organize and regulate genetic information within eukaryotic nuclei. Chromatin proteins carry out essential functions: packing DNA during cell division, partitioning DNA into sub-regions within the nucleus, and controlling levels of gene expression. There is a growing interest in manipulating chromatin dynamics for applications in medicine and agriculture. Progress in this area requires the identification of design rules for the chromatin system. Here, we focus on the relationship between the physical structure and function of chromatin proteins. We discuss key research that has elucidated the intrinsic properties of chromatin proteins and how this information informs design rules for synthetic systems. Recent work demonstrates that chromatin-derived peptide motifs are portable and in some cases can be customized to alter their function. Finally, we present a workflow for fusion protein design and discuss best practices for engineering chromatin to assist scientists in advancing the field of synthetic epigenetics. PMID:28609787
NASA Technical Reports Server (NTRS)
Churchill, G. B.; Gerdes, R. M.
1984-01-01
The design criteria and control and handling qualities of the Automatic Flight Control System (AFCS), developed in the framework of the XV-15 tilt-rotor research aircraft, are evaluated, differentiating between the stability and control criteria. A technically aggressive SCAS control law was implemented, demonstrating that significant benefits accrue when stability criteria are separated from design criteria; the design analyses for application of the control law are presented, and the limit bandwidth for stabilization in hovering flight is shown to be defined by rotor or control lag functions. Flight tests of the aircraft resulted in a rating of 3 on the Cooper-Harper scale; a possibility of achieving a rating of 2 is expected if the system is applied to the yaw and heave control modes.
Functional categories for future flight deck designs
NASA Technical Reports Server (NTRS)
Abbott, Terence S.
1993-01-01
With the addition of each new system on the flight deck, the danger of increasing overall operator workload while reducing crew understanding of critical mission information exists. The introduction of more powerful onboard computers, larger databases, and the increased use of electronic display media may lead to a situation of flight deck 'sophistication' at the expense of losses in flight crew capabilities and situational awareness. To counter this potentially negative impact of new technology, research activities are underway to reassess the flight deck design process. The fundamental premise of these activities is that a human-centered, systems-oriented approach to the development of advanced civil aircraft flight decks will be required for future designs to remain ergonomically sound and economically competitive. One of the initial steps in an integrated flight deck process is to define the primary flight deck functions needed to support the mission goals of the vehicle. This would allow the design team to evaluate candidate concepts in relation to their effectiveness in meeting the functional requirements. In addition, this would provide a framework to aid in categorizing and bookkeeping all of the activities that are required to be performed on the flight deck, not just activities of the crew or of a specific system. This could then allow for a better understanding and allocation of activities in the design, an understanding of the impact of a specific system on overall system performance, and an awareness of the total crew performance requirements for the design. One candidate set of functional categories that could be used to guide an advanced flight deck design are described.
A robotic system for automation of logistics functions on the Space Station
NASA Technical Reports Server (NTRS)
Martin, J. C.; Purves, R. B.; Hosier, R. N.; Krein, B. A.
1988-01-01
Spacecraft inventory management is currently performed by the crew and as systems become more complex, increased crew time will be required to perform routine logistics activities. If future spacecraft are to function effectively as research labs and production facilities, the efficient use of crew time as a limited resource for performing mission functions must be employed. The use of automation and robotics technology, such as automated warehouse and materials handling functions, can free the crew from many logistics tasks and provide more efficient use of crew time. Design criteria for a Space Station Automated Logistics Inventory Management System is focused on through the design and demonstration of a mobile two armed terrestrial robot. The system functionally represents a 0 gravity automated inventory management system and the problems associated with operating in such an environment. Features of the system include automated storage and retrieval, item recognition, two armed robotic manipulation, and software control of all inventory item transitions and queries.
ESTABLISHING VERBAL REPERTOIRES IN CHILDREN WITH AUTISM USING FUNCTION-BASED VIDEO MODELING
Plavnick, Joshua B; Ferreri, Summer J
2011-01-01
Previous research suggests that language-training procedures for children with autism might be enhanced following an assessment of conditions that evoke emerging verbal behavior. The present investigation examined a methodology to teach recognizable mands based on environmental variables known to evoke participants' idiosyncratic communicative responses in the natural environment. An alternating treatments design was used during Experiment 1 to identify the variables that were functionally related to gestures emitted by 4 children with autism. Results showed that gestures functioned as requests for attention for 1 participant and as requests for assistance to obtain a preferred item or event for 3 participants. Video modeling was used during Experiment 2 to compare mand acquisition when video sequences were either related or unrelated to the results of the functional analysis. An alternating treatments within multiple probe design showed that participants repeatedly acquired mands during the function-based condition but not during the nonfunction-based condition. In addition, generalization of the response was observed during the former but not the latter condition. PMID:22219527
Establishing verbal repertoires in children with autism using function-based video modeling.
Plavnick, Joshua B; Ferreri, Summer J
2011-01-01
Previous research suggests that language-training procedures for children with autism might be enhanced following an assessment of conditions that evoke emerging verbal behavior. The present investigation examined a methodology to teach recognizable mands based on environmental variables known to evoke participants' idiosyncratic communicative responses in the natural environment. An alternating treatments design was used during Experiment 1 to identify the variables that were functionally related to gestures emitted by 4 children with autism. Results showed that gestures functioned as requests for attention for 1 participant and as requests for assistance to obtain a preferred item or event for 3 participants. Video modeling was used during Experiment 2 to compare mand acquisition when video sequences were either related or unrelated to the results of the functional analysis. An alternating treatments within multiple probe design showed that participants repeatedly acquired mands during the function-based condition but not during the nonfunction-based condition. In addition, generalization of the response was observed during the former but not the latter condition.
Bioinspired Functional Surfaces for Technological Applications
NASA Astrophysics Data System (ADS)
Sharma, Vipul; Kumar, Suneel; Reddy, Kumbam Lingeshwar; Bahuguna, Ashish; Krishnan, Venkata
2016-08-01
Biological matters have been in continuous encounter with extreme environmental conditions leading to their evolution over millions of years. The fittest have survived through continuous evolution, an ongoing process. Biological surfaces are the important active interfaces between biological matters and the environment, and have been evolving over time to a higher state of intelligent functionality. Bioinspired surfaces with special functionalities have grabbed attention in materials research in the recent times. The microstructures and mechanisms behind these functional biological surfaces with interesting properties have inspired scientists to create artificial materials and surfaces which possess the properties equivalent to their counterparts. In this review, we have described the interplay between unique multiscale (micro- and nano-scale) structures of biological surfaces with intrinsic material properties which have inspired researchers to achieve the desired wettability and functionalities. Inspired by naturally occurring surfaces, researchers have designed and fabricated novel interfacial materials with versatile functionalities and wettability, such as superantiwetting surfaces (superhydrophobic and superoleophobic), omniphobic, switching wettability and water collecting surfaces. These strategies collectively enable functional surfaces to be utilized in different applications such as fog harvesting, surface-enhanced Raman spectroscopy (SERS), catalysis, sensing and biological applications. This paper delivers a critical review of such inspiring biological surfaces and artificial bioinspired surfaces utilized in different applications, where material science and engineering have merged by taking inspiration from the natural systems.
A Study of Technical Engineering Peer Reviews at NASA
NASA Technical Reports Server (NTRS)
Chao, Lawrence P.; Tumer, Irem Y.; Bell, David G.
2003-01-01
This report describes the state of practices of design reviews at NASA and research into what can be done to improve peer review practices. There are many types of reviews at NASA: required and not, formalized and informal, programmatic and technical. Standing project formal reviews such as the Preliminary Design Review and Critical Design Review are a required part of every project and mission development. However, the technical, engineering peer reviews that support teams' work on such projects are informal, some times ad hoc, and inconsistent across the organization. The goal of this work is to identify best practices and lessons learned from NASA's experience, supported by academic research and methodologies to ultimately improve the process. This research has determined that the organization, composition, scope, and approach of the reviews impact their success. Failure Modes and Effects Analysis (FMEA) can identify key areas of concern before or in the reviews. Product definition tools like the Project Priority Matrix, engineering-focused Customer Value Chain Analysis (CVCA), and project or system-based Quality Function Deployment (QFD) help prioritize resources in reviews. The use of information technology and structured design methodologies can strengthen the engineering peer review process to help NASA work towards error-proofing the design process.
Integrating research, clinical care, and education in academic health science centers.
King, Gillian; Thomson, Nicole; Rothstein, Mitchell; Kingsnorth, Shauna; Parker, Kathryn
2016-10-10
Purpose One of the major issues faced by academic health science centers (AHSCs) is the need for mechanisms to foster the integration of research, clinical, and educational activities to achieve the vision of evidence-informed decision making (EIDM) and optimal client care. The paper aims to discuss this issue. Design/methodology/approach This paper synthesizes literature on organizational learning and collaboration, evidence-informed organizational decision making, and learning-based organizations to derive insights concerning the nature of effective workplace learning in AHSCs. Findings An evidence-informed model of collaborative workplace learning is proposed to aid the alignment of research, clinical, and educational functions in AHSCs. The model articulates relationships among AHSC academic functions and sub-functions, cross-functional activities, and collaborative learning processes, emphasizing the importance of cross-functional activities in enhancing collaborative learning processes and optimizing EIDM and client care. Cross-functional activities involving clinicians, researchers, and educators are hypothesized to be a primary vehicle for integration, supported by a learning-oriented workplace culture. These activities are distinct from interprofessional teams, which are clinical in nature. Four collaborative learning processes are specified that are enhanced in cross-functional activities or teamwork: co-constructing meaning, co-learning, co-producing knowledge, and co-using knowledge. Practical implications The model provides an aspirational vision and insight into the importance of cross-functional activities in enhancing workplace learning. The paper discusses the conceptual and empirical basis to the model, its contributions and limitations, and implications for AHSCs. Originality/value The model's potential utility for health care is discussed, with implications for organizational culture and the promotion of cross-functional activities.
Advanced flight deck/crew station simulator functional requirements
NASA Technical Reports Server (NTRS)
Wall, R. L.; Tate, J. L.; Moss, M. J.
1980-01-01
This report documents a study of flight deck/crew system research facility requirements for investigating issues involved with developing systems, and procedures for interfacing transport aircraft with air traffic control systems planned for 1985 to 2000. Crew system needs of NASA, the U.S. Air Force, and industry were investigated and reported. A matrix of these is included, as are recommended functional requirements and design criteria for simulation facilities in which to conduct this research. Methods of exploiting the commonality and similarity in facilities are identified, and plans for exploiting this in order to reduce implementation costs and allow efficient transfer of experiments from one facility to another are presented.
Transparent Information Systems through Gateways, Front Ends, Intermediaries, and Interfaces.
ERIC Educational Resources Information Center
Williams, Martha E.
1986-01-01
Provides overview of design requirements for transparent information retrieval (implies that user sees through complexity of retrieval activities sequence). Highlights include need for transparent systems; history of transparent retrieval research; information retrieval functions (automated converters, routers, selectors, evaluators/analyzers);…
Response of plain concrete to a state of biaxial fatigue loading : equipment and technique.
DOT National Transportation Integrated Search
1974-01-01
The fatigue strength of concrete is an important factor in the design of certain structures, particularly those associated with transportation functions. A considerable body of research has been developed on fatigue using specimens subjected to uniax...
Responding to Industry Demands: Advanced Technology Centers.
ERIC Educational Resources Information Center
Smith, Elizabeth Brient
1991-01-01
Discusses characteristics identified by the Center for Occupational Research and Development as indicative of fully functioning advanced technology centers, including the provision of training and retraining in such areas as design, manufacturing, materials science, and electro-optics; technology transfer; demonstration sites; needs assessment;…
Paraprofessional Support and Perceptions of a Function-Based Classroom Intervention
ERIC Educational Resources Information Center
Hendrix, Nicole M.; Vancel, Samantha M.; Bruhn, Allison L.; Wise, Sara; Kang, Sungeun
2018-01-01
Paraprofessionals carry out behavior interventions for students with challenging behavior in inclusive classroom settings. Examination of paraprofessional involvement in behavior interventions informs how paraprofessionals may best support intervention implementation. The researchers used a withdrawal design to evaluate the effects of a…
NASA Technical Reports Server (NTRS)
Uhran, M. L.; Youngblood, W. W.; Georgekutty, T.; Fiske, M. R.; Wear, W. O.
1986-01-01
Taking advantage of the microgravity environment of space NASA has initiated the preliminary design of a permanently manned space station that will support technological advances in process science and stimulate the development of new and improved materials having applications across the commercial spectrum. Previous studies have been performed to define from the researcher's perspective, the requirements for laboratory equipment to accommodate microgravity experiments on the space station. Functional requirements for the identified experimental apparatus and support equipment were determined. From these hardware requirements, several items were selected for concept designs and subsequent formulation of development plans. This report documents the concept designs and development plans for two items of experiment apparatus - the Combustion Tunnel and the Advanced Modular Furnace, and two items of support equipment the Laser Diagnostic System and the Integrated Electronics Laboratory. For each concept design, key technology developments were identified that are required to enable or enhance the development of the respective hardware.
Zadpoor, Amir A
2017-07-25
Recent advances in additive manufacturing (AM) techniques in terms of accuracy, reliability, the range of processable materials, and commercial availability have made them promising candidates for production of functional parts including those used in the biomedical industry. The complexity-for-free feature offered by AM means that very complex designs become feasible to manufacture, while batch-size-indifference enables fabrication of fully patient-specific medical devices. Design for AM (DfAM) approaches aim to fully utilize those features for development of medical devices with substantially enhanced performance and biomaterials with unprecedented combinations of favorable properties that originate from complex geometrical designs at the micro-scale. This paper reviews the most important approaches in DfAM particularly those applicable to additive bio-manufacturing including image-based design pipelines, parametric and non-parametric designs, metamaterials, rational and computationally enabled design, topology optimization, and bio-inspired design. Areas with limited research have been identified and suggestions have been made for future research. The paper concludes with a brief discussion on the practical aspects of DfAM and the potential of combining AM with subtractive and formative manufacturing processes in so-called hybrid manufacturing processes.
Zadpoor, Amir A.
2017-01-01
Recent advances in additive manufacturing (AM) techniques in terms of accuracy, reliability, the range of processable materials, and commercial availability have made them promising candidates for production of functional parts including those used in the biomedical industry. The complexity-for-free feature offered by AM means that very complex designs become feasible to manufacture, while batch-size-indifference enables fabrication of fully patient-specific medical devices. Design for AM (DfAM) approaches aim to fully utilize those features for development of medical devices with substantially enhanced performance and biomaterials with unprecedented combinations of favorable properties that originate from complex geometrical designs at the micro-scale. This paper reviews the most important approaches in DfAM particularly those applicable to additive bio-manufacturing including image-based design pipelines, parametric and non-parametric designs, metamaterials, rational and computationally enabled design, topology optimization, and bio-inspired design. Areas with limited research have been identified and suggestions have been made for future research. The paper concludes with a brief discussion on the practical aspects of DfAM and the potential of combining AM with subtractive and formative manufacturing processes in so-called hybrid manufacturing processes. PMID:28757572
NASA Astrophysics Data System (ADS)
Mulyono, Grace; Thamrin, Diana; Antoni
2017-09-01
The development of public parks into green city facilities in Surabaya has triggered the need of outdoor furniture designs that can resist the tropical wet and dry weather conditions while also having a certain mobility to support flexible park arrangement. However, present furniture designs made of concrete material are generally heavy and immovable. Flexible designs are needed for various activities that can take place at the same time such as sitting and playing, and to support changes in arrangement to keep the green open spaces attractive from time to time. This research develops the idea of a modular outdoor furniture design using cellular lightweight concrete (CLC) as the main material as a result from observing its resistance towards weather change and its relative light weight. It starts with analysis of problems, formulation of design concept, creation of design alternatives, selection of design, calculation of mouldings, adaptation of design to the mouldings and production of a scaled mock-up using CLC. Findings of this research reveal that the modular design along with the CLC material used not only support the flexibility of change in function and arrangement but also make these furniture resistant to the hot and humid weather of Surabaya.
Enhanced Internet firewall design using stateful filters final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hutchins, J.A.; Simons, R.W.
1997-08-01
The current state-of-the-art in firewall design provides a lot of security for company networks, but normally at the expense of performance and/or functionality. Sandia researched a new approach to firewall design which incorporates a highly stateful approach, allowing much more flexibility for protocol checking and manipulation while retaining performance. A prototype system was built and multiple protocol policy modules implemented to test the concept. The resulting system, though implemented on a low-power workstation, performed almost at the same performance as Sandia`s current firewall.
Space Operations Center system analysis study extension. Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
1982-01-01
The analysis fo Space Operations Center (SOC) systems is summarized. Design considerations, configurations of the manned orbital space station, planned operational and research missions, and subsystem tradeoffs are considered. Integration into the space transportation system is discussed. A modular design concept permitting growth of the SOC as its functions are expanded is described. Additional considerations are special requirements for habitat modules, design modifications needed to operate in geosynchronous orbits, and use of the external tank for cryogenic propellant storage or as a pressurized hangar. A cost summary is presented.
Optical design and testing: introduction.
Liang, Chao-Wen; Koshel, John; Sasian, Jose; Breault, Robert; Wang, Yongtian; Fang, Yi Chin
2014-10-10
Optical design and testing has numerous applications in industrial, military, consumer, and medical settings. Assembling a complete imaging or nonimage optical system may require the integration of optics, mechatronics, lighting technology, optimization, ray tracing, aberration analysis, image processing, tolerance compensation, and display rendering. This issue features original research ranging from the optical design of image and nonimage optical stimuli for human perception, optics applications, bio-optics applications, 3D display, solar energy system, opto-mechatronics to novel imaging or nonimage modalities in visible and infrared spectral imaging, modulation transfer function measurement, and innovative interferometry.
Bruner, D W; Boyd, C P
1999-12-01
Cancer and cancer therapies impair sexual health in a multitude of ways. The promotion of sexual health is therefore vital for preserving quality of life and is an integral part of total or holistic cancer management. Nursing, to provide holistic care, requires research that is meaningful to patients as well as the profession to develop educational and interventional studies to promote sexual health and coping. To obtain meaningful research data instruments that are reliable, valid, and pertinent to patients' needs are required. Several sexual functioning instruments were reviewed for this study and found to be lacking in either a conceptual foundation or psychometric validation. Without a defined conceptual framework, authors of the instruments must have made certain assumptions regarding what women undergoing cancer therapy experience and what they perceive as important. To check these assumptions before assessing women's sexuality after cancer therapies in a larger study, a pilot study was designed to compare what women experience and perceive as important regarding their sexuality with what is assessed in several currently available research instruments, using the focus group technique. Based on the focus group findings, current sexual functioning questionnaires may be lacking in pertinent areas of concern for women treated for breast or gynecologic malignancies. Better conceptual foundations may help future questionnaire design. Self-regulation theory may provide an acceptable conceptual framework from which to develop a sexual functioning questionnaire.
Jamshidi, N; Rostami, M; Najarian, S; Menhaj, M B; Saadatnia, M; Firooz, S
2009-04-01
This paper deals with the dynamic modelling of human walking. The main focus of this research was to optimise the function of the orthosis in patients with neuropathic feet, based on the kinematics data from different categories of neuropathic patients. The patient's body on the sagittal plane was modelled for calculating the torques generated in joints. The kinematics data required for mathematical modelling of the patients were obtained from the films of patients captured by high speed camera, and then the films were analysed through a motion analysis software. An inverse dynamic model was used for estimating the spring coefficient. In our dynamic model, the role of muscles was substituted by adding a spring-damper between the shank and ankle that could compensate for their weakness by designing ankle-foot orthoses based on the kinematics data obtained from the patients. The torque generated in the ankle was varied by changing the spring constant. Therefore, it was possible to decrease the torque generated in muscles which could lead to the design of more comfortable and efficient orthoses. In this research, unlike previous research activities, instead of studying the abnormal gait or modelling the ankle-foot orthosis separately, the function of the ankle-foot orthosis on the abnormal gait has been quantitatively improved through a correction of the torque.
Wound Models for Periodontal and Bone Regeneration: the role of biological research
Sculean, Anton; Chapple, Iain L.C.; Giannobile, William V.
2015-01-01
The ultimate goal of periodontal therapy remains the complete regeneration of those periodontal tissues lost to the destructive inflammatory-immune response, or to trauma, with tissues that possess the same structure and function, and to reestablish and sustain a heath promoting biofilm from one characterised by dysbiosis. This volume discusses the multiple facets of a transition during the late 1960’s to the present day, towards regenerative therapies founded upon a clearer understanding of the biophysiology of normal structure and function, rather than empiricism. This introductory manuscript provides an overview on the requirements of appropriate in-vitro laboratory models (e.g. cell culture), of pre-clinical (i.e. animal) models and human studies for periodontal wound and bone repair. Laboratory studies may provide valuable fundamental insights into basic mechanisms involved in wound repair and regeneration, but also suffer from a uni-dimensional and simplistic approach that does not account for the complexities of the in vivo situation, where multiple cell types and interactions all contribute to definitive outcomes. Therefore, such laboratory studies require validatory research employing preclinical models specifically designed to demonstrate proof-of-concept efficacy, preliminary safety and adaptation to human disease scenarios. Small animal models provide the most economic and logistically feasible preliminary approaches, but outcomes do not necessarily translate to larger animal or human models. The advantages and limitations of all periodontal regeneration models need to be carefully considered when planning investigations to ensure that the optimal design is adopted to answer the specific research question posed. Future challenges lie in the areas of stem cell research, scaffold designs, cell delivery and choice of growth factors, along with research to ensure appropriate gingival coverage in order to prevent gingival recession during the healing phase. PMID:25867976
Functional food awareness and perceptions in relation to information sources in older adults
2014-01-01
Background The functional food industry has experienced innovative and economic expansion, yet research into consumer perceptions of functional foods and their associated health claims is limited. Among consumers, older adults could benefit from functional foods due to age-related issues pertaining to food and health. The purpose of this research was to identify the need for information related to functional foods among older adults (≥60 years old) and to assess awareness and perceptions of health claims on functional food packages. Methods Community-dwelling older adults (n = 200) completed a researcher administered questionnaire designed to collect information about functional foods including current consumption, motivating factors for consumption, perceived need for information, sources of information for functional foods and awareness of health claims. Results Prevalence of functional food consumption among participants was 93.0%. Increased awareness and knowledge was the most commonly reported factor that would promote functional food consumption (85.5%) and 63.5% of participants wanted more information about functional foods with preferred sources being newspapers/magazines/books (68.5%) and food labels (66.1%). Participants were predominately (93.5%) aware of health claims on functional foods and those with more education were more likely to report being aware of health claims (p = 0.045). Conclusions Although functional food consumption among older adults in this sample is high, there is a need for further information regarding functional foods. These results inform stakeholders regarding the potential for information to influence functional food acceptance among older adult consumers. PMID:24886306
A functional architecture of the human brain: Emerging insights from the science of emotion
Lindquist, Kristen A.; Barrett, Lisa Feldman
2012-01-01
The ‘faculty psychology’ approach to the mind, which attempts to explain mental function in terms of categories that reflect modular ‘faculties’, such as emotions, cognitions, and perceptions, has dominated research into the mind and its physical correlates. In this paper, we argue that brain organization does not respect the commonsense categories belonging to the faculty psychology approach. We review recent research from the science of emotion demonstrating that the human brain contains broadly distributed functional networks that can each be re-described as basic psychological operations that interact to produce a range of mental states, including, but not limited to, anger, sadness, fear, disgust, and so on. When compared to the faculty psychology approach, this ‘constructionist’ approach provides an alternative functional architecture to guide the design and interpretation of experiments in cognitive neuroscience. PMID:23036719
[Functional magnetic resonance imaging in psychiatry and psychotherapy].
Derntl, B; Habel, U; Schneider, F
2010-01-01
technical improvements, functional magnetic resonance imaging (fMRI) has become the most popular and versatile imaging method in psychiatric research. The scope of this manuscript is to briefly introduce the basics of MR physics, the blood oxygenation level-dependent (BOLD) contrast as well as the principles of MR study design and functional data analysis. The presentation of exemplary studies on emotion recognition and empathy in schizophrenia patients will highlight the importance of MR methods in psychiatry. Finally, we will demonstrate insights into new developments that will further boost MR techniques in clinical research and will help to gain more insight into dysfunctional neural networks underlying cognitive and emotional deficits in psychiatric patients. Moreover, some techniques such as neurofeedback seem promising for evaluation of therapy effects on a behavioral and neural level.
Accelerating Biomedical Research in Designing Diagnostic Assays, Drugs, and Vaccines
2010-10-01
biodefense. For example, USAMRIID researchers are using Dovis to initiate drug discovery efforts against the ricin A-chain toxin and the Ebola virus...in host cell invasion and bacterial toxin production). Traditional experimental methods to determine the functions of proteins encoded in genomic...readily modeled. A second study involved determining the pro- tein structure of VP24, the smallest protein in the Ebola and Marburg virus genomes.9
Fault Injection and Monitoring Capability for a Fault-Tolerant Distributed Computation System
NASA Technical Reports Server (NTRS)
Torres-Pomales, Wilfredo; Yates, Amy M.; Malekpour, Mahyar R.
2010-01-01
The Configurable Fault-Injection and Monitoring System (CFIMS) is intended for the experimental characterization of effects caused by a variety of adverse conditions on a distributed computation system running flight control applications. A product of research collaboration between NASA Langley Research Center and Old Dominion University, the CFIMS is the main research tool for generating actual fault response data with which to develop and validate analytical performance models and design methodologies for the mitigation of fault effects in distributed flight control systems. Rather than a fixed design solution, the CFIMS is a flexible system that enables the systematic exploration of the problem space and can be adapted to meet the evolving needs of the research. The CFIMS has the capabilities of system-under-test (SUT) functional stimulus generation, fault injection and state monitoring, all of which are supported by a configuration capability for setting up the system as desired for a particular experiment. This report summarizes the work accomplished so far in the development of the CFIMS concept and documents the first design realization.
Treating Offenders with Mental Illness: A Research Synthesis
Morgan, Robert D.; Flora, David B.; Kroner, Daryl G.; Mills, Jeremy F.; Varghese, Femina; Steffan, Jarrod S.
2011-01-01
The purpose of this research synthesis was to examine treatment effects across studies of the service providers to offenders with mental illness. Meta-analytic techniques were applied to 26 empirical studies obtained from a review of 12,154 research documents. Outcomes of interest in this review included measures of both psychiatric and criminal functioning. Although meta-analytic results are based on a small sample of available studies, results suggest interventions with offenders with mental illness effectively reduced symptoms of distress, improving offender’s ability to cope with their problems, and resulted in improved behavioral markers including institutional adjustment and behavioral functioning. Furthermore, interventions specifically designed to meet the psychiatric and criminal justice needs of offenders with mental illness have shown to produce significant reductions in psychiatric and criminal recidivism. Finally, this review highlighted admission policies and treatment strategies (e.g., use of homework), which produced the most positive benefits. Results of this research synthesis are directly relevant for service providers in both criminal justice and mental health systems (e.g., psychiatric hospitals) as well as community settings by informing treatment strategies for the first time, which are based on empirical evidence. In addition, the implications of these results to policy makers tasked with the responsibility of designating services for this special needs population are highlighted. PMID:22471384
Measuring language lateralisation with different language tasks: a systematic review
Thompson, Paul A.; Wilson, Alexander C.; Bishop, Dorothy V.M.; Woodhead, Zoe V.J.
2017-01-01
Language lateralisation refers to the phenomenon in which one hemisphere (typically the left) shows greater involvement in language functions than the other. Measurement of laterality is of interest both to researchers investigating the neural organisation of the language system and to clinicians needing to establish an individual’s hemispheric dominance for language prior to surgery, as in patients with intractable epilepsy. Recently, there has been increasing awareness of the possibility that different language processes may develop hemispheric lateralisation independently, and to varying degrees. However, it is not always clear whether differences in laterality across language tasks with fMRI are reflective of meaningful variation in hemispheric lateralisation, or simply of trivial methodological differences between paradigms. This systematic review aims to assess different language tasks in terms of the strength, reliability and robustness of the laterality measurements they yield with fMRI, to look at variability that is both dependent and independent of aspects of study design, such as the baseline task, region of interest, and modality of the stimuli. Recommendations are made that can be used to guide task design; however, this review predominantly highlights that the current high level of methodological variability in language paradigms prevents conclusions as to how different language functions may lateralise independently. We conclude with suggestions for future research using tasks that engage distinct aspects of language functioning, whilst being closely matched on non-linguistic aspects of task design (e.g., stimuli, task timings etc); such research could produce more reliable and conclusive insights into language lateralisation. This systematic review was registered as a protocol on Open Science Framework: https://osf.io/5vmpt/. PMID:29085748
Life sciences payload definition and integration study, task C and D. Volume 1: Management summary
NASA Technical Reports Server (NTRS)
1973-01-01
The findings of a study to define the required payloads for conducting life science experiments in space are presented. The primary objectives of the study are: (1) identify research functions to be performed aboard life sciences spacecraft laboratories and necessary equipment, (2) develop conceptual designs of potential payloads, (3) integrate selected laboratory designs with space shuttle configurations, and (4) establish cost analysis of preliminary program planning.
Robust, synergistic regulation of human gene expression using TALE activators.
Maeder, Morgan L; Linder, Samantha J; Reyon, Deepak; Angstman, James F; Fu, Yanfang; Sander, Jeffry D; Joung, J Keith
2013-03-01
Artificial activators designed using transcription activator-like effector (TALE) technology have broad utility, but previous studies suggest that these monomeric proteins often exhibit low activities. Here we demonstrate that TALE activators can robustly function individually or in synergistic combinations to increase expression of endogenous human genes over wide dynamic ranges. These findings will encourage applications of TALE activators for research and therapy, and guide design of monomeric TALE-based fusion proteins.
NASA Technical Reports Server (NTRS)
Barhydt, Richard; Palmer, Michael T.; Eischeid, Todd M.
2004-01-01
NASA Langley Research Center is developing an Autonomous Operations Planner (AOP) that functions as an Airborne Separation Assurance System for autonomous flight operations. This development effort supports NASA s Distributed Air-Ground Traffic Management (DAG-TM) operational concept, designed to significantly increase capacity of the national airspace system, while maintaining safety. Autonomous aircraft pilots use the AOP to maintain traffic separation from other autonomous aircraft and managed aircraft flying under today's Instrument Flight Rules, while maintaining traffic flow management constraints assigned by Air Traffic Service Providers. AOP is designed to facilitate eventual implementation through careful modeling of its operational environment, interfaces with other aircraft systems and data links, and conformance with established flight deck conventions and human factors guidelines. AOP uses currently available or anticipated data exchanged over modeled Arinc 429 data buses and an Automatic Dependent Surveillance Broadcast 1090 MHz link. It provides pilots with conflict detection, prevention, and resolution functions and works with the Flight Management System to maintain assigned traffic flow management constraints. The AOP design has been enhanced over the course of several experiments conducted at NASA Langley and is being prepared for an upcoming Joint Air/Ground Simulation with NASA Ames Research Center.
Providing the Missing Link: the Exposure Science Ontology ...
Although knowledge-discovery tools are new to the exposure science community, these tools are critical for leveraging exposure information to design health studies and interpret results for improved public health decisions. Standardized ontologies define relationships, allow for automated reasoning, and facilitate meta-analyses. ExO will facilitate development of biologically relevant exposure metrics, design of in vitro toxicity tests, and incorporation of information on susceptibility and background exposures for risk assessment. In this approach, there are multiple levels of organization, from the global environment down through ecosystems, communities, indoor spaces, populations, organisms, tissues, and cells. We anticipate that the exposure science and environmental health community will adopt and contribute to this work, as wide acceptance is key to integration and federated searching of exposure data to support environmental and public health research. In particular, we anticipate acceptance of the concept that exposure science provides the spatial/temporal narrative about the intensity (concentration) of a stressor at the boundary between two systems: one functioning as an “environment” (stressor) and one functioning as a target (receptor). An agreed-upon exposure ontology with clear definitions and relationships should help to facilitate decision-making, study design and prioritization of research initiatives by enhancing the capacity for data colle
Moyé, Lemuel A; Lai, Dejian; Jing, Kaiyan; Baraniuk, Mary Sarah; Kwak, Minjung; Penn, Marc S; Wu, Colon O
2011-01-01
The assumptions that anchor large clinical trials are rooted in smaller, Phase II studies. In addition to specifying the target population, intervention delivery, and patient follow-up duration, physician-scientists who design these Phase II studies must select the appropriate response variables (endpoints). However, endpoint measures can be problematic. If the endpoint assesses the change in a continuous measure over time, then the occurrence of an intervening significant clinical event (SCE), such as death, can preclude the follow-up measurement. Finally, the ideal continuous endpoint measurement may be contraindicated in a fraction of the study patients, a change that requires a less precise substitution in this subset of participants.A score function that is based on the U-statistic can address these issues of 1) intercurrent SCE's and 2) response variable ascertainments that use different measurements of different precision. The scoring statistic is easy to apply, clinically relevant, and provides flexibility for the investigators' prospective design decisions. Sample size and power formulations for this statistic are provided as functions of clinical event rates and effect size estimates that are easy for investigators to identify and discuss. Examples are provided from current cardiovascular cell therapy research.
Final Report - Regulatory Considerations for Adaptive Systems
NASA Technical Reports Server (NTRS)
Wilkinson, Chris; Lynch, Jonathan; Bharadwaj, Raj
2013-01-01
This report documents the findings of a preliminary research study into new approaches to the software design assurance of adaptive systems. We suggest a methodology to overcome the software validation and verification difficulties posed by the underlying assumption of non-adaptive software in the requirementsbased- testing verification methods in RTCA/DO-178B and C. An analysis of the relevant RTCA/DO-178B and C objectives is presented showing the reasons for the difficulties that arise in showing satisfaction of the objectives and suggested additional means by which they could be satisfied. We suggest that the software design assurance problem for adaptive systems is principally one of developing correct and complete high level requirements and system level constraints that define the necessary system functional and safety properties to assure the safe use of adaptive systems. We show how analytical techniques such as model based design, mathematical modeling and formal or formal-like methods can be used to both validate the high level functional and safety requirements, establish necessary constraints and provide the verification evidence for the satisfaction of requirements and constraints that supplements conventional testing. Finally the report identifies the follow-on research topics needed to implement this methodology.
Soft Functionals for Hard Matter
NASA Astrophysics Data System (ADS)
Cooper, Valentino R.; Yuk, Simuck F.; Krogel, Jaron T.
Theory and computation are critical to the materials discovery process. While density functional theory (DFT) has become the standard for predicting materials properties, it is often plagued by inaccuracies in the underlying exchange-correlation functionals. Using high-throughput DFT calculations we explore the accuracy of various exchange-correlation functionals for modeling the structural and thermodynamic properties of a wide range of complex oxides. In particular, we examine the feasibility of using the nonlocal van der Waals density correlation functional with C09 exchange (C09x), which was designed for sparsely packed soft matter, for investigating the properties of hard matter like bulk oxides. Preliminary results show unprecedented performance for some prototypical bulk ferroelectrics, which can be correlated with similarities between C09x and PBEsol. This effort lays the groundwork for understanding how these soft functionals can be employed as general purpose functionals for studying a wide range of materials where strong internal bonds and nonlocal interactions coexist. Research was sponsored by the US DOE, Office of Science, BES, MSED and Early Career Research Programs and used resources at NERSC.