Technique for Predicting the RF Field Strength Inside an Enclosure
NASA Technical Reports Server (NTRS)
Hallett, M.; Reddell, J.
1998-01-01
This Memorandum presents a simple analytical technique for predicting the RF electric field strength inside an enclosed volume in which radio frequency radiation occurs. The technique was developed to predict the radio frequency (RF) field strength within a launch vehicle's fairing from payloads launched with their telemetry transmitters radiating and to the impact of the radiation on the vehicle and payload. The RF field strength is shown to be a function of the surface materials and surface areas. The method accounts for RF energy losses within exposed surfaces, through RF windows, and within multiple layers of dielectric materials which may cover the surfaces. This Memorandum includes the rigorous derivation of all equations and presents examples and data to support the validity of the technique.
Performance of mixed RF/FSO systems in exponentiated Weibull distributed channels
NASA Astrophysics Data System (ADS)
Zhao, Jing; Zhao, Shang-Hong; Zhao, Wei-Hu; Liu, Yun; Li, Xuan
2017-12-01
This paper presented the performances of asymmetric mixed radio frequency (RF)/free-space optical (FSO) system with the amplify-and-forward relaying scheme. The RF channel undergoes Nakagami- m channel, and the Exponentiated Weibull distribution is adopted for the FSO component. The mathematical formulas for cumulative distribution function (CDF), probability density function (PDF) and moment generating function (MGF) of equivalent signal-to-noise ratio (SNR) are achieved. According to the end-to-end statistical characteristics, the new analytical expressions of outage probability are obtained. Under various modulation techniques, we derive the average bit-error-rate (BER) based on the Meijer's G function. The evaluation and simulation are provided for the system performance, and the aperture average effect is discussed as well.
Communication methods, systems, apparatus, and devices involving RF tag registration
Burghard, Brion J [W. Richland, WA; Skorpik, James R [Kennewick, WA
2008-04-22
One technique of the present invention includes a number of Radio Frequency (RF) tags that each have a different identifier. Information is broadcast to the tags from an RF tag interrogator. This information corresponds to a maximum quantity of tag response time slots that are available. This maximum quantity may be less than the total number of tags. The tags each select one of the time slots as a function of the information and a random number provided by each respective tag. The different identifiers are transmitted to the interrogator from at least a subset of the RF tags.
Time-Domain Receiver Function Deconvolution using Genetic Algorithm
NASA Astrophysics Data System (ADS)
Moreira, L. P.
2017-12-01
Receiver Functions (RF) are well know method for crust modelling using passive seismological signals. Many different techniques were developed to calculate the RF traces, applying the deconvolution calculation to radial and vertical seismogram components. A popular method used a spectral division of both components, which requires human intervention to apply the Water Level procedure to avoid instabilities from division by small numbers. One of most used method is an iterative procedure to estimate the RF peaks and applying the convolution with vertical component seismogram, comparing the result with the radial component. This method is suitable for automatic processing, however several RF traces are invalid due to peak estimation failure.In this work it is proposed a deconvolution algorithm using Genetic Algorithm (GA) to estimate the RF peaks. This method is entirely processed in the time domain, avoiding the time-to-frequency calculations (and vice-versa), and totally suitable for automatic processing. Estimated peaks can be used to generate RF traces in a seismogram format for visualization. The RF trace quality is similar for high magnitude events, although there are less failures for RF calculation of smaller events, increasing the overall performance for high number of events per station.
NASA Astrophysics Data System (ADS)
Wilde-Piorko, M.; Chrapkiewicz, K.; Lepore, S.; Polkowski, M.; Grad, M.
2016-12-01
The Trans-European Suture Zone (TESZ) is one of the most prominent suture zones in Europe separating the young Paleozoic Platform from the much older Precambrian East European Craton. The data recorded by "13 BB Star" broadband seismic stations (Grad et al., 2015) are analyzed to investigate the crustal and upper mantle structure of the margin of the Trans-European Suture Zone (TESZ) in northern Poland. Receiver function (RF) locally provides the signature of sharp seismic discontinuities and information about the shear wave (S-wave) velocity distribution beneath the seismic station. Recorded seismograms are rotated from ZNE to LQT system with method using the properties of RF (Wilde-Piórko, 2015). Different techniques of receiver function interpretation are applied, including 1-D inversion of RF, 1-D forward modeling of RF, 2.5D forward modeling of RF, 1-D join inversion of RF and dispersion curves of surface wave, to find the best S-wave velocity model of the TESZ margin. A high-resolution 3D P-wave velocity model in the area of Poland (Grad et al. 2016) are used as a starting model. National Science Centre Poland provided financial support for this work by NCN grant DEC-2011/02/A/ST10/00284.
Estimation of Characteristics of Echo Envelope Using RF Echo Signal from the Liver
NASA Astrophysics Data System (ADS)
Yamaguchi, Tadashi; Hachiya, Hiroyuki; Kamiyama, Naohisa; Ikeda, Kazuki; Moriyasu, Norifumi
2001-05-01
To realize quantitative diagnosis of liver cirrhosis, we have been analyzing the probability density function (PDF) of echo amplitude using B-mode images. However, the B-mode image is affected by the various signal and image processing techniques used in the diagnosis equipment, so a detailed and quantitative analysis is very difficult. In this paper, we analyze the PDF of echo amplitude using RF echo signal and B-mode images of normal and cirrhotic livers, and compare both results to examine the validity of the RF echo signal.
NASA Astrophysics Data System (ADS)
Piao, Daqing; Sun, Tengfei; Ranjan, Ashish
2017-02-01
Alternating magnetic field (AMF) configurable at a range of frequencies is a critical need for optimization of magnetic nanoparticle based hyperthermia, and for their application in targeted drug delivery. Currently, most commercial AMF devices including induction heaters operate at one factory-fixed frequency, thereby limiting customized frequency configuration required for triggered drug release at mild hyperthermia (40-42°C) and ablations (>55°C). Most AMF devices run as an inductor-capacitor resonance network that could allow AMF frequencies to be changed by changing the capacitor bank or the coil looped with it. When developing AMF inhouse, the most expensive component is usually the RF power amplifier, and arguably the most critical step of building a strong AMF field is impedance-matched coupling of RF power to the coolant-cooled AMF coil. AMF devices running at 10KA/m strength are quite common, but generating AMF at that level of field strength using RF power less than 1KW has remained challenging. We practiced a few techniques for building 10KA/m AMFs at different frequencies, by utilizing a 0.5KW 80-800KHz RF power amplifier. Among the techniques indispensable to the functioning of these AMFs, a simple cost-effective technique was the tapping methods for discretely or continuously adjusting the position of an RF-input-tap on a single-layer or the outer-layer of a multi-layer AMF coil for maximum power coupling into the AMF coil. These in-house techniques when combined facilitated 10KA/m AMF at frequencies of 88.8 KHz and higher as allowed by the inventory of capacitors using 0.5KW RF power, for testing heating of 10-15nm size magnetic particles and on-going evaluation of drug-release by low-level temperature-sensitive liposomes loaded with 15nm magnetic nanoparticles.
NASA Astrophysics Data System (ADS)
Tombak, Ali
The recent advancement in wireless communications demands an ever increasing improvement in the system performance and functionality with a reduced size and cost. This thesis demonstrates novel RF and microwave components based on ferroelectric and solid-state based tunable capacitor (varactor) technologies for the design of low-cost, small-size and multi-functional wireless communication systems. These include tunable lumped element VHF filters based on ferroelectric varactors, a beam-steering technique which, unlike conventional systems, does not require separate power divider and phase shifters, and a predistortion linearization technique that uses a varactor based tunable R-L-C resonator. Among various ferroelectric materials, Barium Strontium Titanate (BST) is actively being studied for the fabrication of high performance varactors at RF and microwave frequencies. BST based tunable capacitors are presented with typical tunabilities of 4.2:1 with the application of 5 to 10 V DC bias voltages and typical loss tangents in the range of 0.003--0.009 at VHF frequencies. Tunable lumped element lowpass and bandpass VHF filters based on BST varactors are also demonstrated with tunabilities of 40% and 57%, respectively. A new beam-steering technique is developed based on the extended resonance power dividing technique. Phased arrays based on this technique do not require separate power divider and phase shifters. Instead, the power division and phase shifting circuits are combined into a single circuit, which utilizes tunable capacitors. This results in a substantial reduction in the circuit complexity and cost. Phased arrays based on this technique can be employed in mobile multimedia services and automotive collision avoidance radars. A 2-GHz 4-antenna and a 10-GHz 8-antenna extended resonance phased arrays are demonstrated with scan ranges of 20 degrees and 18 degrees, respectively. A new predistortion linearization technique for the linearization of RF/microwave power amplifiers is also presented. This technique utilizes a varactor based tunable R-L-C resonator in shunt configuration. Due to the small number of circuit elements required, linearizers based on this technique offer low-cost and simple circuitry, hence can be utilized in handheld and cellular applications. A 1.8 GHz power amplifier with 9 dB gain is linearized using this technique. The linearizer improves the output 1-dB compression point of the power amplifier from 21 to 22.8 dBm. Adjacent channel power ratio (ACPR) is improved approximately 11 dB at an output RF power level of 17.5 dBm. The thesis is concluded by summarizing the main achievements and discussing the future work directions.
A survey of techniques for architecting and managing GPU register file
Mittal, Sparsh
2016-04-07
To support their massively-multithreaded architecture, GPUs use very large register file (RF) which has a capacity higher than even L1 and L2 caches. In total contrast, traditional CPUs use tiny RF and much larger caches to optimize latency. Due to these differences, along with the crucial impact of RF in determining GPU performance, novel and intelligent techniques are required for managing GPU RF. In this paper, we survey the techniques for designing and managing GPU RF. We discuss techniques related to performance, energy and reliability aspects of RF. To emphasize the similarities and differences between the techniques, we classify themmore » along several parameters. Lastly, the aim of this paper is to synthesize the state-of-art developments in RF management and also stimulate further research in this area.« less
A survey of techniques for architecting and managing GPU register file
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mittal, Sparsh
To support their massively-multithreaded architecture, GPUs use very large register file (RF) which has a capacity higher than even L1 and L2 caches. In total contrast, traditional CPUs use tiny RF and much larger caches to optimize latency. Due to these differences, along with the crucial impact of RF in determining GPU performance, novel and intelligent techniques are required for managing GPU RF. In this paper, we survey the techniques for designing and managing GPU RF. We discuss techniques related to performance, energy and reliability aspects of RF. To emphasize the similarities and differences between the techniques, we classify themmore » along several parameters. Lastly, the aim of this paper is to synthesize the state-of-art developments in RF management and also stimulate further research in this area.« less
A multitechnique evaluation of topical corticosteroid treatment.
Josse, G; Rouvrais, C; Mas, A; Haftek, M; Delalleau, A; Ferraq, Y; Ossant, F; George, J; Lagarde, J M; Schmitt, A M
2009-02-01
Corticosteroids are widely prescribed for systemic or local treatment of inflammatory autoimmune disorders. Long-term therapy is associated with side effects and causes cutaneous atrophy of the epidermis and the dermis. The present study aims to evaluate with several noninvasive techniques, the skin modifications observed during corticosteroids treatment. The potential of skin mechanical measurement and ultrasound radio frequency (RF) signal analysis are proposed as new measures more closely related to the functional impairments. Thirteen young healthy women volunteers had two applications per day on one arm of topical Clobetasol propionate 0.05% for 28 days, and they were followed for 28 days more. Skin modifications were studied by high-frequency ultrasound imaging, ultrasound RF signal analysis, optical coherence tomography and by the suction test. For all the techniques, a statistically significant change is observed with treatment. Large variations, around 30%, are observed for all techniques, but less for ultrasound imaging (10%). Dermis and epidermis thickness presented stable measurements on the nontreated zone. At the end of the study, measures returned to normal. The dynamic is mainly observed within the first 14 days of treatment and within the first 14 days after its cessation. Similar dynamics of skin modification during corticosteroid treatment was observed with very different techniques. Moreover, the potential of RF ultrasound analysis and mechanical skin measurement for characterizing skin structural and functional impairments has been evaluated.
Ballester, Pedro J; Mitchell, John B O
2010-05-01
Accurately predicting the binding affinities of large sets of diverse protein-ligand complexes is an extremely challenging task. The scoring functions that attempt such computational prediction are essential for analysing the outputs of molecular docking, which in turn is an important technique for drug discovery, chemical biology and structural biology. Each scoring function assumes a predetermined theory-inspired functional form for the relationship between the variables that characterize the complex, which also include parameters fitted to experimental or simulation data and its predicted binding affinity. The inherent problem of this rigid approach is that it leads to poor predictivity for those complexes that do not conform to the modelling assumptions. Moreover, resampling strategies, such as cross-validation or bootstrapping, are still not systematically used to guard against the overfitting of calibration data in parameter estimation for scoring functions. We propose a novel scoring function (RF-Score) that circumvents the need for problematic modelling assumptions via non-parametric machine learning. In particular, Random Forest was used to implicitly capture binding effects that are hard to model explicitly. RF-Score is compared with the state of the art on the demanding PDBbind benchmark. Results show that RF-Score is a very competitive scoring function. Importantly, RF-Score's performance was shown to improve dramatically with training set size and hence the future availability of more high-quality structural and interaction data is expected to lead to improved versions of RF-Score. pedro.ballester@ebi.ac.uk; jbom@st-andrews.ac.uk Supplementary data are available at Bioinformatics online.
NASA Astrophysics Data System (ADS)
Aumaille, K.; Granier, A.; Schmidt, M.; Grolleau, B.; Vallée, C.; Turban, G.
2000-08-01
Oxygen/tetraethoxysilane (O2/TEOS) plasmas created in a low-pressure (2 mTorr) rf helicon reactor have been studied by optical emission spectroscopy and mass spectrometry as a function of the rf (13.56 MHz) power injected into the plasma, which is varied from 25 to 300 W. Complementary measurements for the interpretation of the mass spectrometric data have also been carried out using the threshold ionization mass spectrometry technique. It is shown that valuable information on the parent molecules is obtained by both optical emission spectroscopy and threshold ionization mass spectrometry techniques. At low rf power TEOS molecules and organic compounds like hydrocarbons (CH4, C2H2) and alcohols (CH3CH2OH) as well as H2, H2O, CO, O2, CO2 are observed. At high rf power TEOS and O2 molecules are totally or mostly depleted, the share of hydrocarbons decreases and carbon monoxide, carbon dioxide, water and hydrogen become the essential parts of the gas phase.
NASA Astrophysics Data System (ADS)
Sternberg, Oren; Bednarski, Valerie R.; Perez, Israel; Wheeland, Sara; Rockway, John D.
2016-09-01
Non-invasive optical techniques pertaining to the remote sensing of power quality disturbances (PQD) are part of an emerging technology field typically dominated by radio frequency (RF) and invasive-based techniques. Algorithms and methods to analyze and address PQD such as probabilistic neural networks and fully informed particle swarms have been explored in industry and academia. Such methods are tuned to work with RF equipment and electronics in existing power grids. As both commercial and defense assets are heavily power-dependent, understanding electrical transients and failure events using non-invasive detection techniques is crucial. In this paper we correlate power quality empirical models to the observed optical response. We also empirically demonstrate a first-order approach to map household, office and commercial equipment PQD to user functions and stress levels. We employ a physics-based image and signal processing approach, which demonstrates measured non-invasive (remote sensing) techniques to detect and map the base frequency associated with the power source to the various PQD on a calibrated source.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rowe, Nathan C; Younkin, James R; Pickett, Chris A
Radio-Frequency (RF) devices have revolutionized many aspects of modern industrial processes. RF technology can enable wireless communication for tag identification, sensor communication, and asset tracking. Radio-frequency identification (RFID) is a technology that utilizes wireless communication to interrogate and identify an electronic tag attached to an item in order to identify the item. The technology can come in many forms: passive or active tags, low to ultra-wideband frequencies, small paper-thin tags to brick-sized units, and simple tags or highly integrated sensor packages. RF technology, and specifically RFID, has been applied widely in commercial markets for inventory, supply chain management, and assetmore » tracking. Several recent studies have demonstrated the safeguards benefits of utilizing RFID versus conventional inventory tagging methods for tracking nuclear material. These studies have indicated that the RF requirements for safeguards functions are more stringent than the RF requirements for other inventory tracking and accounting applications. Additionally, other requirements must be addressed, including environmental and operating conditions, authentication, and tag location and attachment. Facility restrictions on radio spectrum, method of tag attachment, and sensitivity of the data collected impact the tag selection and system design. More important, the intended use of the system must be considered. The requirements for using RF to simply replace or supplement container identifiers such as bar codes that facilitate the inventory function will differ greatly from the requirements for deploying RF for unattended monitoring applications. Several studies have investigated these considerations to advance commercial RF devices for safeguards use, and a number of system concepts have been developed. This paper will provide an overview of past studies and current technologies, and will investigate the requirements, existing gaps, and several potential next steps for advancing RF techniques for safeguards use.« less
The history of MR imaging as seen through the pages of radiology.
Edelman, Robert R
2014-11-01
The first reports in Radiology pertaining to magnetic resonance (MR) imaging were published in 1980, 7 years after Paul Lauterbur pioneered the first MR images and 9 years after the first human computed tomographic images were obtained. Historical advances in the research and clinical applications of MR imaging very much parallel the remarkable advances in MR imaging technology. These advances can be roughly classified into hardware (eg, magnets, gradients, radiofrequency [RF] coils, RF transmitter and receiver, MR imaging-compatible biopsy devices) and imaging techniques (eg, pulse sequences, parallel imaging, and so forth). Image quality has been dramatically improved with the introduction of high-field-strength superconducting magnets, digital RF systems, and phased-array coils. Hybrid systems, such as MR/positron emission tomography (PET), combine the superb anatomic and functional imaging capabilities of MR imaging with the unsurpassed capability of PET to demonstrate tissue metabolism. Supported by the improvements in hardware, advances in pulse sequence design and image reconstruction techniques have spurred dramatic improvements in imaging speed and the capability for studying tissue function. In this historical review, the history of MR imaging technology and developing research and clinical applications, as seen through the pages of Radiology, will be considered.
Belenky, Inna; Margulis, Ariel; Elman, Monica; Bar-Yosef, Udi; Paun, Silviu D
2012-03-01
Because of its high efficiency and safety, radiofrequency (RF) energy is widely used in the dermatological field for heating biological tissue in various esthetic applications, including skin tightening, skin lifting, body contouring, and cellulite reduction. This paper reviews the literature on the use of nonablative RF energy in the esthetic field and its scientific background. The purpose of this article is to describe in detail the extensive use of medical devices based on RF technology, the development of these medical devices over the years, and recent developments and trends in RF technology. The authors conducted a systematic search of publications that address safety and efficacy issues, technical system specifications, and clinical techniques. Finally, the authors focused on their own clinical experiences with the use of patented Channeling Optimized RF Energy technique and mechanical massage. An in-vivo study was conducted in domestic pigs, with a thermal video camera. Twenty-seven female patients participated in a cellulite and body shaping study. The treatments were conducted according to a three-phase protocol. An additional 16 females participated in a skin tightening case study. All of the patients underwent three treatment sessions at 3-week intervals, each according to a protocol specific to the area being treated. The review of the literature on RF-based systems revealed that these systems are safe, with low risks for potential side effects, and effective for cellulite, body contouring, and skin tightening procedures. The in-vivo measurements confirmed the theory that the penetration depth of RF is an inverse function of its frequency, and using a vacuum mechanism makes an additional contribution to the RF energy penetration. The heating effect of RF was also found to increase blood circulation and to induce collagen remodeling. The results from the cellulite and body shaping treatments showed an overall average improvement of 55% in the appearance of cellulite, with an average circumferential reduction of 3.31 cm in the buttocks, 2.94 cm in the thighs, and 2.14 cm in the abdomen. The results from the skin tightening procedure showed moderate improvement of skin appearance in 50% and significant improvement in 31%. At the follow-up visits the results were found to be sustained without any significant side effects. Of all tissue heating techniques, RF-based technologies appear to be the most established and clinically proven. The design and specifications of the described vacuumassisted bipolar RF device fall within the range of the specifications currently prescribed for esthetic, nonablative RF systems.
NASA Astrophysics Data System (ADS)
Holloway, Christopher L.; Simons, Matt T.; Gordon, Joshua A.; Dienstfrey, Andrew; Anderson, David A.; Raithel, Georg
2017-06-01
We investigate the relationship between the Rabi frequency (ΩRF, related to the applied electric field) and Autler-Townes (AT) splitting, when performing atom-based radio-frequency (RF) electric (E) field strength measurements using Rydberg states and electromagnetically induced transparency (EIT) in an atomic vapor. The AT splitting satisfies, under certain conditions, a well-defined linear relationship with the applied RF field amplitude. The EIT/AT-based E-field measurement approach derived from these principles is currently being investigated by several groups around the world as a means to develop a new SI-traceable RF E-field measurement technique. We establish conditions under which the measured AT-splitting is an approximately linear function of the RF electric field. A quantitative description of systematic deviations from the linear relationship is key to exploiting EIT/AT-based atomic-vapor spectroscopy for SI-traceable field measurement. We show that the linear relationship is valid and can be used to determine the E-field strength, with minimal error, as long as the EIT linewidth is small compared to the AT-splitting. We also discuss interesting aspects of the thermal dependence (i.e., hot- versus cold-atom) of this EIT-AT technique. An analysis of the transition from cold- to hot-atom EIT in a Doppler-mismatched cascade system reveals a significant change of the dependence of the EIT linewidth on the optical Rabi frequencies and of the AT-splitting on ΩRF.
Electron Energy Distribution function in a weakly magnetized expanding helicon plasma discharge
NASA Astrophysics Data System (ADS)
Sirse, Nishant; Harvey, Cleo; Gaman, Cezar; Ellingboe, Bert
2016-09-01
Helicon wave heating is well known to produce high-density plasma source for application in plasma thrusters, plasma processing and many more. Our previous study (B Ellingboe et al. APS Gaseous Electronics Conference 2015, abstract #KW2.005) has shown observation of helicon wave in a weakly magnetized inductively coupled plasma source excited by m =0 antenna at 13.56 MHz. In this paper, we investigated the Electron Energy Distribution Function (EEDF) in the same setup by using an RF compensated Langmuir probe. The ac signal superimposition technique (second harmonic technique) is used to determine EEDF. The EEDF is measured for 5-100 mTorr gas pressure, 100 W - 1.5 kW rf power and at different locations in the source chamber, boundary and diffusion chamber. This paper will discuss the change in the shape of EEDF for various heating mode transitions.
Na, X D; Zang, S Y; Wu, C S; Li, W L
2015-11-01
Knowledge of the spatial extent of forested wetlands is essential to many studies including wetland functioning assessment, greenhouse gas flux estimation, and wildlife suitable habitat identification. For discriminating forested wetlands from their adjacent land cover types, researchers have resorted to image analysis techniques applied to numerous remotely sensed data. While with some success, there is still no consensus on the optimal approaches for mapping forested wetlands. To address this problem, we examined two machine learning approaches, random forest (RF) and K-nearest neighbor (KNN) algorithms, and applied these two approaches to the framework of pixel-based and object-based classifications. The RF and KNN algorithms were constructed using predictors derived from Landsat 8 imagery, Radarsat-2 advanced synthetic aperture radar (SAR), and topographical indices. The results show that the objected-based classifications performed better than per-pixel classifications using the same algorithm (RF) in terms of overall accuracy and the difference of their kappa coefficients are statistically significant (p<0.01). There were noticeably omissions for forested and herbaceous wetlands based on the per-pixel classifications using the RF algorithm. As for the object-based image analysis, there were also statistically significant differences (p<0.01) of Kappa coefficient between results performed based on RF and KNN algorithms. The object-based classification using RF provided a more visually adequate distribution of interested land cover types, while the object classifications based on the KNN algorithm showed noticeably commissions for forested wetlands and omissions for agriculture land. This research proves that the object-based classification with RF using optical, radar, and topographical data improved the mapping accuracy of land covers and provided a feasible approach to discriminate the forested wetlands from the other land cover types in forestry area.
Electron Heating and Quasiparticle Tunnelling in Superconducting Charge Qubits
NASA Technical Reports Server (NTRS)
Shaw, M. D.; Bueno, J.; Delsing, P.; Echternach, P. M.
2008-01-01
We have directly measured non-equilibrium quasiparticle tunnelling in the time domain as a function of temperature and RF carrier power for a pair of charge qubits based on the single Cooper-pair box, where the readout is performed with a multiplexed quantum capacitance technique. We have extracted an effective electron temperature for each applied RF power, using the data taken at the lowest power as a reference curve. This data has been fit to a standard T? electron heating model, with a reasonable correspondence with established material parameters.
Does reflective functioning mediate the relationship between attachment and personality?
Nazzaro, Maria Paola; Boldrini, Tommaso; Tanzilli, Annalisa; Muzi, Laura; Giovanardi, Guido; Lingiardi, Vittorio
2017-10-01
Mentalization, operationalized as reflective functioning (RF), can play a crucial role in the psychological mechanisms underlying personality functioning. This study aimed to: (a) study the association between RF, personality disorders (cluster level) and functioning; (b) investigate whether RF and personality functioning are influenced by (secure vs. insecure) attachment; and (c) explore the potential mediating effect of RF on the relationship between attachment and personality functioning. The Shedler-Westen Assessment Procedure (SWAP-200) was used to assess personality disorders and levels of psychological functioning in a clinical sample (N = 88). Attachment and RF were evaluated with the Adult Attachment Interview (AAI) and Reflective Functioning Scale (RFS). Findings showed that RF had significant negative associations with cluster A and B personality disorders, and a significant positive association with psychological functioning. Moreover, levels of RF and personality functioning were influenced by attachment patterns. Finally, RF completely mediated the relationship between (secure/insecure) attachment and adaptive psychological features, and thus accounted for differences in overall personality functioning. Lack of mentalization seemed strongly associated with vulnerabilities in personality functioning, especially in patients with cluster A and B personality disorders. These findings provide support for the development of therapeutic interventions to improve patients' RF. Copyright © 2017 Elsevier B.V. All rights reserved.
Space Shuttle and Space Station Radio Frequency (RF) Exposure Analysis
NASA Technical Reports Server (NTRS)
Hwu, Shian U.; Loh, Yin-Chung; Sham, Catherine C.; Kroll, Quin D.
2005-01-01
This paper outlines the modeling techniques and important parameters to define a rigorous but practical procedure that can verify the compliance of RF exposure to the NASA standards for astronauts and electronic equipment. The electromagnetic modeling techniques are applied to analyze RF exposure in Space Shuttle and Space Station environments with reasonable computing time and resources. The modeling techniques are capable of taking into account the field interactions with Space Shuttle and Space Station structures. The obtained results illustrate the multipath effects due to the presence of the space vehicle structures. It's necessary to include the field interactions with the space vehicle in the analysis for an accurate assessment of the RF exposure. Based on the obtained results, the RF keep out zones are identified for appropriate operational scenarios, flight rules and necessary RF transmitter constraints to ensure a safe operating environment and mission success.
NASA Astrophysics Data System (ADS)
Goudarzi, Nasser
2016-04-01
In this work, two new and powerful chemometrics methods are applied for the modeling and prediction of the 19F chemical shift values of some fluorinated organic compounds. The radial basis function-partial least square (RBF-PLS) and random forest (RF) are employed to construct the models to predict the 19F chemical shifts. In this study, we didn't used from any variable selection method and RF method can be used as variable selection and modeling technique. Effects of the important parameters affecting the ability of the RF prediction power such as the number of trees (nt) and the number of randomly selected variables to split each node (m) were investigated. The root-mean-square errors of prediction (RMSEP) for the training set and the prediction set for the RBF-PLS and RF models were 44.70, 23.86, 29.77, and 23.69, respectively. Also, the correlation coefficients of the prediction set for the RBF-PLS and RF models were 0.8684 and 0.9313, respectively. The results obtained reveal that the RF model can be used as a powerful chemometrics tool for the quantitative structure-property relationship (QSPR) studies.
2-D Myocardial Deformation Imaging Based on RF-Based Nonrigid Image Registration.
Chakraborty, Bidisha; Liu, Zhi; Heyde, Brecht; Luo, Jianwen; D'hooge, Jan
2018-06-01
Myocardial deformation imaging is a well-established echocardiographic technique for the assessment of myocardial function. Although some solutions make use of speckle tracking of the reconstructed B-mode images, others apply block matching (BM) on the underlying radio frequency (RF) data in order to increase sensitivity to small interframe motion and deformation. However, for both approaches, lateral motion estimation remains a challenge due to the relatively poor lateral resolution of the ultrasound image in combination with the lack of phase information in this direction. Hereto, nonrigid image registration (NRIR) of B-mode images has previously been proposed as an attractive solution. However, hereby, the advantages of RF-based tracking were lost. The aim of this paper was, therefore, to develop an NRIR motion estimator adapted to RF data sets. The accuracy of this estimator was quantified using synthetic data and was contrasted against a state-of-the-art BM solution. The results show that RF-based NRIR outperforms BM in terms of tracking accuracy, particularly, as hypothesized, in the lateral direction. Finally, this RF-based NRIR algorithm was applied clinically, illustrating its ability to estimate both in-plane velocity components in vivo.
Comparative Analysis of RF Emission Based Fingerprinting Techniques for ZigBee Device Classification
quantify the differences invarious RF fingerprinting techniques via comparative analysis of MDA/ML classification results. The findings herein demonstrate...correct classification rates followed by COR-DNA and then RF-DNA in most test cases and especially in low Eb/N0 ranges, where ZigBee is designed to operate.
Source-to-accelerator quadrupole matching section for a compact linear accelerator
NASA Astrophysics Data System (ADS)
Seidl, P. A.; Persaud, A.; Ghiorso, W.; Ji, Q.; Waldron, W. L.; Lal, A.; Vinayakumar, K. B.; Schenkel, T.
2018-05-01
Recently, we presented a new approach for a compact radio-frequency (RF) accelerator structure and demonstrated the functionality of the individual components: acceleration units and focusing elements. In this paper, we combine these units to form a working accelerator structure: a matching section between the ion source extraction grids and the RF-acceleration unit and electrostatic focusing quadrupoles between successive acceleration units. The matching section consists of six electrostatic quadrupoles (ESQs) fabricated using 3D-printing techniques. The matching section enables us to capture more beam current and to match the beam envelope to conditions for stable transport in an acceleration lattice. We present data from an integrated accelerator consisting of the source, matching section, and an ESQ doublet sandwiched between two RF-acceleration units.
Guimaraes, Marcelo; Schonholz, Claudio; Hannegan, Christopher; Anderson, Michael Bret; Shi, June; Selby, Bayne
2012-08-01
To report the technique and acute technical results associated with the PowerWire Radiofrequency (RF) Guidewire used to recanalize central vein occlusions (CVOs) after the failure of conventional endovascular techniques. A retrospective study was conducted from January 2008 to December 2011, which identified all patients with CVOs who underwent treatment with a novel RF guide wire. Forty-two symptomatic patients (with swollen arm or superior vena cava [SVC] syndrome) underwent RF wire recanalization of 43 CVOs, which were then implanted with stents. The distribution of CVOs in central veins was as follows: six subclavian, 29 brachiocephalic, and eight SVC. All patients had a history of central venous catheter placement. Patients were monitored with regular clinical evaluations and central venography after treatment. All 42 patients had successful recanalization of CVOs facilitated by the RF wire technique. There was one complication, which was not directly related to the RF wire: one case of cardiac tamponade attributed to balloon angioplasty after stent placement. Forty of 42 patients (95.2%) had patent stents and were asymptomatic at 6 and 9 months after treatment. The present results suggest that the RF wire technique is a safe and efficient alternative in the recanalization of symptomatic and chronic CVOs when conventional endovascular techniques have failed. Copyright © 2012 SIR. Published by Elsevier Inc. All rights reserved.
Center conductor diagnostic for multipactor detection in inaccessible geometries.
Chaplin, Vernon H; Hubble, Aimee A; Clements, Kathryn A; Graves, Timothy P
2017-01-01
Electron collecting current probes are the most reliable diagnostic of multipactor and radiofrequency (RF) ionization breakdown; however, stand-alone probes can only be used in test setups where the breakdown region is physically accessible. This paper describes techniques for measuring multipactor current directly on the center conductor of a coaxial RF device (or more generally, on the signal line in any two-conductor RF system) enabling global multipactor detection with improved sensitivity compared to other common diagnostics such as phase null, third harmonic, and reflected power. The center conductor diagnostic may be AC coupled for use in systems with a low DC impedance between the center conductor and ground. The effect of DC bias on the breakdown threshold was studied: in coaxial geometry, the change in threshold was <1 dB for positive biases satisfying V DC /V RF0 <0.8, where V RF0 is the RF voltage amplitude at the unperturbed breakdown threshold. In parallel plate geometry, setting V DC /V RF0 <0.2 was necessary to avoid altering the threshold by more than 1 dB. In most cases, the center conductor diagnostic functions effectively with no bias at all-this is the preferred implementation, but biases in the range V DC =0-10V may be applied if necessary. The polarity of the detected current signal may be positive or negative depending on whether there is net electron collection or emission globally.
NASA Astrophysics Data System (ADS)
Deffenbaugh, Paul Issac
3D printing has garnered immense attention from many fields including in-office rapid prototyping of mechanical parts, outer-space satellite replication, garage functional firearm manufacture, and NASA rocket engine component fabrication. 3D printing allows increased design flexibility in the fabrication of electronics, microwave circuits and wireless antennas and has reached a level of maturity which allows functional parts to be printed. Much more work is necessary in order to perfect the processes of 3D printed electronics especially in the area of automation. Chapter 1 shows several finished prototypes of 3D printed electronics as well as newly developed techniques in fabrication. Little is known about the RF and microwave properties and applications of the standard materials which have been developed for 3D printing. Measurement of a wide variety of materials over a broad spectrum of frequencies up to 10 GHz using a variety of well-established measurement methods is performed throughout chapter 2. Several types of high frequency RF transmission lines are fabricated and valuable model-matched data is gathered and provided in chapter 3 for future designers' use. Of particular note is a fully 3D printed stripline which was automatically fabricated in one process on one machine. Some core advantages of 3D printing RF/microwave components include rapid manufacturing of complex, dimensionally sensitive circuits (such as antennas and filters which are often iteratively tuned) and the ability to create new devices that cannot be made using standard fabrication techniques. Chapter 4 describes an exemplary fully 3D printed curved inverted-F antenna.
Gold nanoparticles-decorated fluoroalkylsilane nano-assemblies for electrocatalytic applications
NASA Astrophysics Data System (ADS)
Ballarin, Barbara; Barreca, Davide; Cassani, Maria Cristina; Carraro, Giorgio; Maccato, Chiara; Mignani, Adriana; Lazzari, Dario; Bertola, Maurizio
2016-01-01
Metal/organosilane/oxide sandwich structures were prepared via a two-step self-assembly method. First, indium tin oxide (ITO) substrates were functionalized with the following fluoroalkylsilanes (FAS): RFC(O)N(H)(CH2)3Si(OMe)3 (1, RF = C5F11), containing an embedded amide between the perfluoroalkyl chain and the syloxanic moiety, and RF(CH2)2Si(OEt)3 (2, RF = C6F13). Subsequently, Au nanoparticles (AuNPs) introduction in the obtained systems was carried out by controlled immersion into a solution of citrate-stabilized AuNPs. The physico-chemical properties of the target materials were thoroughly investigated by using various complementary techniques. Finally, the application of such systems as catalysts for methanol electro-oxidation under alkaline conditions was investigated, revealing the synergistical role played by FAS and AuNPs in promoting a remarkable electrocatalytic activity.
Improved RF Measurements of SRF Cavity Quality Factors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holzbauer, J. P.; Contreras, C.; Pischalnikov, Y.
SRF cavity quality factors can be accurately measured using RF-power based techniques only when the cavity is very close to critically coupled. This limitation is from systematic errors driven by non-ideal RF components. When the cavity is not close to critically coupled, these systematic effects limit the accuracy of the measurements. The combination of the complex base-band envelopes of the cavity RF signals in combination with a trombone in the circuit allow the relative calibration of the RF signals to be extracted from the data and systematic effects to be characterized and suppressed. The improved calibration allows accurate measurements tomore » be made over a much wider range of couplings. Demonstration of these techniques during testing of a single-spoke resonator with a coupling factor of near 7 will be presented, along with recommendations for application of these techniques.« less
Local gate control in carbon nanotube quantum devices
NASA Astrophysics Data System (ADS)
Biercuk, Michael Jordan
This thesis presents transport measurements of carbon nanotube electronic devices operated in the quantum regime. Nanotubes are contacted by source and drain electrodes, and multiple lithographically-patterned electrostatic gates are aligned to each device. Transport measurements of device conductance or current as a function of local gate voltages reveal that local gates couple primarily to the proximal section of the nanotube, hence providing spatially localized control over carrier density along the nanotube length. Further, using several different techniques we are able to produce local depletion regions along the length of a tube. This phenomenon is explored in detail for different contact metals to the nanotube. We utilize local gating techniques to study multiple quantum dots in carbon nanotubes produced both by naturally occurring defects, and by the controlled application of voltages to depletion gates. We study double quantum dots in detail, where transport measurements reveal honeycomb charge stability diagrams. We extract values of energy-level spacings, capacitances, and interaction energies for this system, and demonstrate independent control over all relevant tunneling rates. We report rf-reflectometry measurements of gate-defined carbon nanotube quantum dots with integrated charge sensors. Aluminum rf-SETs are electrostatically coupled to carbon nanotube devices and detect single electron charging phenomena in the Coulomb blockade regime. Simultaneous correlated measurements of single electron charging are made using reflected rf power from the nanotube itself and from the rf-SET on microsecond time scales. We map charge stability diagrams for the nanotube quantum dot via charge sensing, observing Coulomb charging diamonds beyond the first order. Conductance measurements of carbon nanotubes containing gated local depletion regions exhibit plateaus as a function of gate voltage, spaced by approximately 1e2/h, the quantum of conductance for a single (non-degenerate) mode. Plateau structure is investigated as a function of bias voltage, temperature, and magnetic field. We speculate on the origin of this surprising quantization, which appears to lack band and spin degeneracy.
Theys, Catherine; Wouters, Jan; Ghesquière, Pol
2014-01-01
Advanced Magnetic Resonance Imaging (MRI) techniques such as Diffusion Tensor Imaging (DTI) and resting-state functional MRI (rfMRI) are widely used to study structural and functional neural connectivity. However, as these techniques are highly sensitive to motion artifacts and require a considerable amount of time for image acquisition, successful acquisition of these images can be challenging to complete with certain populations. This is especially true for young children. This paper describes a new approach termed the ‘submarine protocol’, designed to prepare 5- and 6-year-old children for advanced MRI scanning. The submarine protocol aims to ensure that successful scans can be acquired in a time- and resource-efficient manner, without the need for sedation. This manuscript outlines the protocol and details its outcomes, as measured through the number of children who completed the scanning procedure and analysis of the degree of motion present in the acquired images. Seventy-six children aged between 5.8 and 6.9 years were trained using the submarine protocol and subsequently underwent DTI and rfMRI scanning. After completing the submarine protocol, 75 of the 76 children (99%) completed their DTI-scan and 72 children (95%) completed the full 35-minute scan session. Results of diffusion data, acquired in 75 children, showed that the motion in 60 of the scans (80%) did not exceed the threshold for excessive motion. In the rfMRI scans, this was the case for 62 of the 71 scans (87%). When placed in the context of previous studies, the motion data of the 5- and 6-year-old children reported here were as good as, or better than those previously reported for groups of older children (i.e., 8-year-olds). Overall, this study shows that the submarine protocol can be used successfully to acquire DTI and rfMRI scans in 5 and 6-year-old children, without the need for sedation or lengthy training procedures. PMID:24718364
Lee, Seung-Hun; Kim, Hyoung-Jun; Song, Jong-In
2014-01-13
A broadband photonic single sideband (SSB) frequency up-converter based on the cross polarization modulation (XPolM) effect in a semiconductor optical amplifier (SOA) is proposed and experimentally demonstrated. An optical radio frequency (RF) signal in the form of an optical single sideband (OSSB) is generated by the photonic SSB frequency up-converter to solve the power fading problem caused by fiber chromatic dispersion. The generated OSSB RF signal has almost identical optical carrier power and optical sideband power. This SSB frequency up-conversion scheme shows an almost flat electrical RF power response as a function of the RF frequency in a range from 31 GHz to 75 GHz after 40 km single mode fiber (SMF) transmission. The photonic SSB frequency up-conversion technique shows negligible phase noise degradation. The phase noise of the up-converted RF signal at 49 GHz for an offset of 10 kHz is -93.17 dBc/Hz. Linearity analysis shows that the photonic SSB frequency up-converter has a spurious free dynamic range (SFDR) value of 79.51 dB · Hz(2/3).
Modeling Laser Effects on Imaging Spacecraft Using the SSM
NASA Astrophysics Data System (ADS)
Buehler, P.; Smith, J.; Farmer, J.; Bonn, D.
The Satellite Survivability Module (SSM) is an end-to-end, physics-based, performance prediction model for directed energy engagement of orbiting spacecraft. Two engagement types are currently supported: laser engagement of the focal plane array of an imaging spacecraft; and Radio Frequency (RF) engagement of spacecraft components. For laser engagements, the user creates a spacecraft, its optical system, any protection techniques used by the optical system, a laser threat, and an atmosphere through which the laser will pass. For RF engagements, the user creates a spacecraft (as a set of subsystem components), any protection techniques, and an RF source. SSM then models the engagement and its impact on the spacecraft using four impact levels: degradation, saturation, damage, and destruction. Protection techniques, if employed, will mitigate engagement effects. SSM currently supports several two laser and three RF protection techniques. SSM allows the user to create and implement a variety of "what if" scenarios. Satellites can be placed in a variety of orbits. Threats can be placed anywhere on the Earth. Satellites and threats can be mixed and matched to examine possibilities. Protection techniques for a particular spacecraft can be turned on or off individually; and can be arranged in any order to simulate more complicated protection schemes. Results can be displayed as 2-D or 3-D visualizations, or as textual reports. In order to test SSM capabilities, the Ball team used it to model engagement scenarios for a space experiment scheduled for the 2011 time frame. SSM was created by Ball Aerospace & Technologies Corp. Systems Engineering Solutions in Albuquerque, New Mexico as an add-on module for the Satellite Tool Kit (STK). The current version of SSM (1.0) interfaces with STK through the Programmer's Library (STK/PL). Future versions of SSM will employ STK/Connect to provide the user access to STK functionality. The work is currently funded by the Air Force Research Laboratory, Space Vehicles directorate at Kirtland AFB, New Mexico, under contract number FA9453-06-C-0096.
El Jalbout, Ramy; Cloutier, Guy; Cardinal, Marie-Hélène Roy; Henderson, Mélanie; Lapierre, Chantale; Soulez, Gilles; Dubois, Josée
2018-05-09
Common carotid artery intima-media thickness is a marker of subclinical atherosclerosis. In children, increased intima-media thickness is associated with obesity and the risk of cardiovascular events in adulthood. To compare intima-media thickness measurements using B-mode ultrasound, radiofrequency (RF) echo tracking, and RF speckle probability distribution in children with normal and increased body mass index (BMI). We prospectively measured intima-media thickness in 120 children randomly selected from two groups of a longitudinal cohort: normal BMI and increased BMI, defined by BMI ≥85th percentile for age and gender. We followed Mannheim recommendations. We used M'Ath-Std for automated B-mode imaging, M-line processing of RF signal amplitude for RF echo tracking, and RF signal segmentation and averaging using probability distributions defining image speckle. Statistical analysis included Wilcoxon and Mann-Whitney tests, and Pearson correlation coefficient and intra-class correlation coefficient (ICC). Children were 10-13 years old (mean: 11.7 years); 61% were boys. The mean age was 11.4 years (range: 10.0-13.1 years) for the normal BMI group and 12.0 years (range: 10.1-13.5 years) for the increased BMI group. The normal BMI group included 58% boys and the increased BMI group 63% boys. RF echo tracking method was successful in 79 children as opposed to 114 for the B-mode method and all 120 for the probability distribution method. Techniques were weakly correlated: ICC=0.34 (95% confidence interval [CI]: 0.27-0.39). Intima-media thickness was significantly higher in the increased BMI than normal BMI group using the RF techniques and borderline for the B-mode technique. Mean differences between weight groups were: B-mode, 0.02 mm (95% CI: 0.00 to 0.04), P=0.05; RF echo tracking, 0.03 mm (95% CI: 0.01 to 0.05), P=0.01; and RF speckle probability distribution, 0.03 mm (95% CI: 0.01 to 0.05), P=0.002. Though techniques are not interchangeable, all showed increased intima-media thickness in children with increased BMI. RF echo tracking method had the lowest success rate at calculating intima-media thickness. For patient follow-up and cohort comparisons, the same technique should be used throughout.
Chandra, Rohit; Balasingham, Ilangko
2015-01-01
A microwave imaging-based technique for 3D localization of an in-body RF source is presented. Such a technique can be useful for localization of an RF source as in wireless capsule endoscopes for positioning of any abnormality in the gastrointestinal tract. Microwave imaging is used to determine the dielectric properties (relative permittivity and conductivity) of the tissues that are required for a precise localization. A 2D microwave imaging algorithm is used for determination of the dielectric properties. Calibration method is developed for removing any error due to the used 2D imaging algorithm on the imaging data of a 3D body. The developed method is tested on a simple 3D heterogeneous phantom through finite-difference-time-domain simulations. Additive white Gaussian noise at the signal-to-noise ratio of 30 dB is added to the simulated data to make them more realistic. The developed calibration method improves the imaging and the localization accuracy. Statistics on the localization accuracy are generated by randomly placing the RF source at various positions inside the small intestine of the phantom. The cumulative distribution function of the localization error is plotted. In 90% of the cases, the localization accuracy was found within 1.67 cm, showing the capability of the developed method for 3D localization.
Gold nanoparticles as markers for fluorinated surfaces containing embedded amide groups
NASA Astrophysics Data System (ADS)
Ballarin, Barbara; Barreca, Davide; Bertola, Maurizio; Cristina Cassani, Maria; Carraro, Giorgio; Maccato, Chiara; Mignani, Adriana; Nanni, Daniele; Parise, Chiara; Ranieri, Silvia
2018-05-01
Indium tin oxide (ITO) substrates were functionalized with fluoroalkylsilanes (FAS) having formula RFC(O)N(R)(CH2)3Si(OMe)3 (1, R = H, RF = C5F11; 2, R = CH3, RF = C5F11;3, R = H, RF = C3F7) and containing embedded amide moieties between the perfluoroalkyl chain and the syloxanic moiety. Subsequently, Au nanoparticle deposition (AuNP) onto the ITO-FAS functionalized surfaces was carried out by immersion into a solution of citrate-stabilized AuNP. The ITO-FAS and AuNP/ITO-FAS modified systems were characterized by various complementary techniques and compared with AuNP/ITO modified with RF(CH2)2Si(OEt)3 (4, RF = C6F13), free from functional groups between the fluorinated tail and the syloxanic moiety. The results showed that only ITO glasses modified with 1, 2 and 3 displayed an oleophobic, as well as hydrophobic, behaviour and that the AuNP Surface Coverage (SC %) directly depended on the fluoroalkylsilane nature with the following trend: 60% ITO-2 > 16% ITO-3 > 9% ITO-1 > 3% ITO-4. The obtained results revealed that, in organosilane 2, the presence of a methyl group on the amide nitrogen increases the steric hindrance in the rotation around the Nsbnd CO bond, resulting in the co-presence of two stable conformers in comparable amounts. Their co-presence in solution, combined with the lack of intermolecular Nsbnd H⋯OCsbnd N hydrogen bonds among the anchored molecules, has dramatic influences on the functionalized ITO, yielding a disorderedly packed coating able to accommodate a large quantity of AuNP. These results indicate that AuNP can act as excellent probes to evaluate the coating layer quality but, at the same time, it is possible to tune the gold loading on electroactive surfaces depending on the chemical structure of the used fluorinated silane.
Currents and fields of thin conductors in rf saddle coils.
Carlson, J W
1986-10-01
The current distribution on thin conductors and rf field homogeneity for rf coils is described theoretically. After a pedagogical introduction to the techniques and an exact solution for the current or an isolated strip conductor, this article describes current distribution and field uniformity for a variety of conventional and quadrature rf coil designs.
NASA Astrophysics Data System (ADS)
Goldberg, S. Nahum; Gazelle, G. Scott
1998-04-01
Radiofrequency (RF) tumor ablation has been demonstrated as a reliable method for creating thermally induced coagulation necrosis using either a percutaneous approach with image- guidance or direct surgical application of thin electrodes into treated tissues. Early clinical trials with this technology have studied the treatment of hepatic, cerebral, and bony malignancies. The extent of coagulation necrosis induced with conventional monopolar radiofrequency electrodes is dependent on overall energy deposition, the duration of RF application, and RF electrode tip length and gauge. This article will discuss these technical considerations with the goal of defining optimal parameters for RF ablation. Strategies to further increase induced coagulation necrosis including: multiprobe and bipolar arrays, and internally-cooled RF electrodes, with or without pulsed-RF or cluster technique will be presented. The development and laboratory results for many of these radiofrequency techniques, initial clinical results, and potential biophysical limitations to RF induced coagulation, such as perfusion mediated tissue cooling (vascular flow) will likewise be discussed.
Rehearsals for Growth: A Methodology for Using Theater Improvisation in MFT.
ERIC Educational Resources Information Center
Wiener, Daniel J.
1997-01-01
Discusses Rehearsals for Growth (RfG), a method of using drama in the service of marital and family psychotherapy. It focuses on enhancing and developing skills that promote good relationship functioning and offering techniques for changing the stories that are cocreated about self and relationship. Describes games and exercises that illustrate…
Radiofrequency Wire Recanalization of Chronically Thrombosed TIPS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Majdalany, Bill S., E-mail: bmajdala@med.umich.edu; Elliott, Eric D., E-mail: eric.elliott@osumc.edu; Michaels, Anthony J., E-mail: Anthony.michaels@osumc.edu
Radiofrequency (RF) guide wires have been applied to cardiac interventions, recanalization of central venous thromboses, and to cross biliary occlusions. Herein, the use of a RF wire technique to revise chronically occluded transjugular intrahepatic portosystemic shunts (TIPS) is described. In both cases, conventional TIPS revision techniques failed to revise the chronically thrombosed TIPS. RF wire recanalization was successfully performed through each of the chronically thrombosed TIPS, demonstrating initial safety and feasibility in this application.
Technique for Predicting the Radio Frequency Field Strength Inside an Enclosure
NASA Technical Reports Server (NTRS)
Hallett, Michael P.; Reddell, Jerry P.
1997-01-01
This technical memo represents a simple analytical technique for predicting the Radio Frequency (RF) field inside an enclosed volume in which radio frequency occurs. The technique was developed to predict the RF field strength within a launch vehicle fairing in which some payloads desire to launch with their telemetry transmitter radiating. This technique considers both the launch vehicle and the payload aspects.
Novel radio-frequency gun structures for ultrafast relativistic electron diffraction.
Musumeci, P; Faillace, L; Fukasawa, A; Moody, J T; O'Shea, B; Rosenzweig, J B; Scoby, C M
2009-08-01
Radio-frequency (RF) photoinjector-based relativistic ultrafast electron diffraction (UED) is a promising new technique that has the potential to probe structural changes at the atomic scale with sub-100 fs temporal resolution in a single shot. We analyze the limitations on the temporal and spatial resolution of this technique considering the operating parameters of a standard 1.6 cell RF gun (which is the RF photoinjector used for the first experimental tests of relativistic UED at Stanford Linear Accelerator Center; University of California, Los Angeles; Brookhaven National Laboratory), and study the possibility of employing novel RF structures to circumvent some of these limits.
Analog and digital transport of RF channels over converged 5G wireless-optical networks
NASA Astrophysics Data System (ADS)
Binh, Le Nguyen
2016-02-01
Under the exponential increase demand by the emerging 5G wireless access networking and thus data-center based Internet, novel and economical transport of RF channels to and from wireless access systems. This paper presents the transport technologies of RF channels over the analog and digital domain so as to meet the demands of the transport capacity reaching multi-Tbps, in the followings: (i) The convergence of 5G broadband wireless and optical networks and its demands on capacity delivery and network structures; (ii) Analog optical technologies for delivery of both the information and RF carriers to and from multiple-input multiple-output (MIMO) antenna sites so as to control the beam steering of MIMO antenna in the mmW at either 28.6 GHz and 56.8 GHz RF carrier and delivery of channels of aggregate capacity reaching several Tbps; (ii) Transceiver employing advanced digital modulation formats and digital signal processing (DSP) so as to provide 100G and beyond transmission rate to meet the ultra-high capacity demands with flexible spectral grids, hence pay-on-demand services. The interplay between DSP-based and analog transport techniques is examined; (iii) Transport technologies for 5G cloud access networks and associate modulation and digital processing techniques for capacity efficiency; and (iv) Finally the integrated optic technologies with novel lasers, comb generators and simultaneous dual function photonic devices for both demultiplexing/multiplexing and modulation are proposed, hence a system on chip structure can be structured. Quantum dot lasers and matrixes of micro ring resonators are integrated on the same Si-on-Silica substrate are proposed and described.
Reticular Formation and Pain: The Past and the Future
Martins, Isabel; Tavares, Isaura
2017-01-01
The involvement of the reticular formation (RF) in the transmission and modulation of nociceptive information has been extensively studied. The brainstem RF contains several areas which are targeted by spinal cord afferents conveying nociceptive input. The arrival of nociceptive input to the RF may trigger alert reactions which generate a protective/defense reaction to pain. RF neurons located at the medulla oblongata and targeted by ascending nociceptive information are also involved in the control of vital functions that can be affected by pain, namely cardiovascular control. The RF contains centers that belong to the pain modulatory system, namely areas involved in bidirectional balance (decrease or enhancement) of pain responses. It is currently accepted that the imbalance of pain modulation towards pain facilitation accounts for chronic pain. The medullary RF has the peculiarity of harboring areas involved in bidirectional pain control namely by the existence of specific neuronal populations involved in antinociceptive or pronociceptive behavioral responses, namely at the rostroventromedial medulla (RVM) and the caudal ventrolateral medulla (VLM). Furthermore the dorsal reticular nucleus (also known as subnucleus reticularis dorsalis; DRt) may enhance nociceptive responses, through a reverberative circuit established with spinal lamina I neurons and inhibit wide-dynamic range (WDR) neurons of the deep dorsal horn. The components of the triad RVM-VLM-DRt are reciprocally connected and represent a key gateway for top-down pain modulation. The RVM-VLM-DRt triad also represents the neurobiological substrate for the emotional and cognitive modulation of pain, through pathways that involve the periaqueductal gray (PAG)-RVM connection. Collectively, we propose that the RVM-VLM-DRt triad represents a key component of the “dynamic pain connectome” with special features to provide integrated and rapid responses in situations which are life-threatening and involve pain. The new available techniques in neurobiological studies both in animal and human studies are producing new and fascinating data which allow to understand the complex role of the RF in pain modulation and its integration with several body functions and also how the RF accounts for chronic pain. PMID:28725185
Reticular Formation and Pain: The Past and the Future.
Martins, Isabel; Tavares, Isaura
2017-01-01
The involvement of the reticular formation (RF) in the transmission and modulation of nociceptive information has been extensively studied. The brainstem RF contains several areas which are targeted by spinal cord afferents conveying nociceptive input. The arrival of nociceptive input to the RF may trigger alert reactions which generate a protective/defense reaction to pain. RF neurons located at the medulla oblongata and targeted by ascending nociceptive information are also involved in the control of vital functions that can be affected by pain, namely cardiovascular control. The RF contains centers that belong to the pain modulatory system, namely areas involved in bidirectional balance (decrease or enhancement) of pain responses. It is currently accepted that the imbalance of pain modulation towards pain facilitation accounts for chronic pain. The medullary RF has the peculiarity of harboring areas involved in bidirectional pain control namely by the existence of specific neuronal populations involved in antinociceptive or pronociceptive behavioral responses, namely at the rostroventromedial medulla (RVM) and the caudal ventrolateral medulla (VLM). Furthermore the dorsal reticular nucleus (also known as subnucleus reticularis dorsalis; DRt) may enhance nociceptive responses, through a reverberative circuit established with spinal lamina I neurons and inhibit wide-dynamic range (WDR) neurons of the deep dorsal horn. The components of the triad RVM-VLM-DRt are reciprocally connected and represent a key gateway for top-down pain modulation. The RVM-VLM-DRt triad also represents the neurobiological substrate for the emotional and cognitive modulation of pain, through pathways that involve the periaqueductal gray (PAG)-RVM connection. Collectively, we propose that the RVM-VLM-DRt triad represents a key component of the "dynamic pain connectome" with special features to provide integrated and rapid responses in situations which are life-threatening and involve pain. The new available techniques in neurobiological studies both in animal and human studies are producing new and fascinating data which allow to understand the complex role of the RF in pain modulation and its integration with several body functions and also how the RF accounts for chronic pain.
FPGA-based RF interference reduction techniques for simultaneous PET–MRI
Gebhardt, P; Wehner, J; Weissler, B; Botnar, R; Marsden, P K; Schulz, V
2016-01-01
Abstract The combination of positron emission tomography (PET) and magnetic resonance imaging (MRI) as a multi-modal imaging technique is considered very promising and powerful with regard to in vivo disease progression examination, therapy response monitoring and drug development. However, PET–MRI system design enabling simultaneous operation with unaffected intrinsic performance of both modalities is challenging. As one of the major issues, both the PET detectors and the MRI radio-frequency (RF) subsystem are exposed to electromagnetic (EM) interference, which may lead to PET and MRI signal-to-noise ratio (SNR) deteriorations. Early digitization of electronic PET signals within the MRI bore helps to preserve PET SNR, but occurs at the expense of increased amount of PET electronics inside the MRI and associated RF field emissions. This raises the likelihood of PET-related MRI interference by coupling into the MRI RF coil unwanted spurious signals considered as RF noise, as it degrades MRI SNR and results in MR image artefacts. RF shielding of PET detectors is a commonly used technique to reduce PET-related RF interferences, but can introduce eddy-current-related MRI disturbances and hinder the highest system integration. In this paper, we present RF interference reduction methods which rely on EM field coupling–decoupling principles of RF receive coils rather than suppressing emitted fields. By modifying clock frequencies and changing clock phase relations of digital circuits, the resulting RF field emission is optimised with regard to a lower field coupling into the MRI RF coil, thereby increasing the RF silence of PET detectors. Our methods are demonstrated by performing FPGA-based clock frequency and phase shifting of digital silicon photo-multipliers (dSiPMs) used in the PET modules of our MR-compatible Hyperion IID PET insert. We present simulations and magnetic-field map scans visualising the impact of altered clock phase pattern on the spatial RF field distribution, followed by MRI noise and SNR scans performed with an operating PET module using different clock frequencies and phase patterns. The methods were implemented via firmware design changes without any hardware modifications. This introduces new means of flexibility by enabling adaptive RF interference reduction optimisations in the field, e.g. when using a PET insert with different MRI systems or when different MRI RF coil types are to be operated with the same PET detector. PMID:27049898
FPGA-based RF interference reduction techniques for simultaneous PET-MRI.
Gebhardt, P; Wehner, J; Weissler, B; Botnar, R; Marsden, P K; Schulz, V
2016-05-07
The combination of positron emission tomography (PET) and magnetic resonance imaging (MRI) as a multi-modal imaging technique is considered very promising and powerful with regard to in vivo disease progression examination, therapy response monitoring and drug development. However, PET-MRI system design enabling simultaneous operation with unaffected intrinsic performance of both modalities is challenging. As one of the major issues, both the PET detectors and the MRI radio-frequency (RF) subsystem are exposed to electromagnetic (EM) interference, which may lead to PET and MRI signal-to-noise ratio (SNR) deteriorations. Early digitization of electronic PET signals within the MRI bore helps to preserve PET SNR, but occurs at the expense of increased amount of PET electronics inside the MRI and associated RF field emissions. This raises the likelihood of PET-related MRI interference by coupling into the MRI RF coil unwanted spurious signals considered as RF noise, as it degrades MRI SNR and results in MR image artefacts. RF shielding of PET detectors is a commonly used technique to reduce PET-related RF interferences, but can introduce eddy-current-related MRI disturbances and hinder the highest system integration. In this paper, we present RF interference reduction methods which rely on EM field coupling-decoupling principles of RF receive coils rather than suppressing emitted fields. By modifying clock frequencies and changing clock phase relations of digital circuits, the resulting RF field emission is optimised with regard to a lower field coupling into the MRI RF coil, thereby increasing the RF silence of PET detectors. Our methods are demonstrated by performing FPGA-based clock frequency and phase shifting of digital silicon photo-multipliers (dSiPMs) used in the PET modules of our MR-compatible Hyperion II (D) PET insert. We present simulations and magnetic-field map scans visualising the impact of altered clock phase pattern on the spatial RF field distribution, followed by MRI noise and SNR scans performed with an operating PET module using different clock frequencies and phase patterns. The methods were implemented via firmware design changes without any hardware modifications. This introduces new means of flexibility by enabling adaptive RF interference reduction optimisations in the field, e.g. when using a PET insert with different MRI systems or when different MRI RF coil types are to be operated with the same PET detector.
FPGA-based RF interference reduction techniques for simultaneous PET-MRI
NASA Astrophysics Data System (ADS)
Gebhardt, P.; Wehner, J.; Weissler, B.; Botnar, R.; Marsden, P. K.; Schulz, V.
2016-05-01
The combination of positron emission tomography (PET) and magnetic resonance imaging (MRI) as a multi-modal imaging technique is considered very promising and powerful with regard to in vivo disease progression examination, therapy response monitoring and drug development. However, PET-MRI system design enabling simultaneous operation with unaffected intrinsic performance of both modalities is challenging. As one of the major issues, both the PET detectors and the MRI radio-frequency (RF) subsystem are exposed to electromagnetic (EM) interference, which may lead to PET and MRI signal-to-noise ratio (SNR) deteriorations. Early digitization of electronic PET signals within the MRI bore helps to preserve PET SNR, but occurs at the expense of increased amount of PET electronics inside the MRI and associated RF field emissions. This raises the likelihood of PET-related MRI interference by coupling into the MRI RF coil unwanted spurious signals considered as RF noise, as it degrades MRI SNR and results in MR image artefacts. RF shielding of PET detectors is a commonly used technique to reduce PET-related RF interferences, but can introduce eddy-current-related MRI disturbances and hinder the highest system integration. In this paper, we present RF interference reduction methods which rely on EM field coupling-decoupling principles of RF receive coils rather than suppressing emitted fields. By modifying clock frequencies and changing clock phase relations of digital circuits, the resulting RF field emission is optimised with regard to a lower field coupling into the MRI RF coil, thereby increasing the RF silence of PET detectors. Our methods are demonstrated by performing FPGA-based clock frequency and phase shifting of digital silicon photo-multipliers (dSiPMs) used in the PET modules of our MR-compatible Hyperion II D PET insert. We present simulations and magnetic-field map scans visualising the impact of altered clock phase pattern on the spatial RF field distribution, followed by MRI noise and SNR scans performed with an operating PET module using different clock frequencies and phase patterns. The methods were implemented via firmware design changes without any hardware modifications. This introduces new means of flexibility by enabling adaptive RF interference reduction optimisations in the field, e.g. when using a PET insert with different MRI systems or when different MRI RF coil types are to be operated with the same PET detector.
High temperature UF6 RF plasma experiments applicable to uranium plasma core reactors
NASA Technical Reports Server (NTRS)
Roman, W. C.
1979-01-01
An investigation was conducted using a 1.2 MW RF induction heater facility to aid in developing the technology necessary for designing a self critical fissioning uranium plasma core reactor. Pure, high temperature uranium hexafluoride (UF6) was injected into an argon fluid mechanically confined, steady state, RF heated plasma while employing different exhaust systems and diagnostic techniques to simulate and investigate some potential characteristics of uranium plasma core nuclear reactors. The development of techniques and equipment for fluid mechanical confinement of RF heated uranium plasmas with a high density of uranium vapor within the plasma, while simultaneously minimizing deposition of uranium and uranium compounds on the test chamber peripheral wall, endwall surfaces, and primary exhaust ducts, is discussed. The material tests and handling techniques suitable for use with high temperature, high pressure, gaseous UF6 are described and the development of complementary diagnostic instrumentation and measurement techniques to characterize the uranium plasma, effluent exhaust gases, and residue deposited on the test chamber and exhaust system components is reported.
NASA Astrophysics Data System (ADS)
Bianchi, Irene; Qorbani, Ehsan; Bokelmann, Götz
2016-04-01
As one of the rare observational tools for studying deformation and stress within the Earth, seismic anisotropy has been one of the focuses of geophysical studies over the last decade. In order to unravel the anisotropic properties of the crust, the teleseismic receiver functions (RF) methodology has started to be widely applied recently. Such effects of anisotropy on RF were illustrated in theoretical studies, showing the strong backazimuthal dependence of RF on the 3D characteristics of the media sampled by the waves. The use of teleseismic RF has the advantage of not being affected by a heterogeneous depth distribution of local earthquakes, since teleseismic rays sample the entire crust beneath the stations. The application of this technique however, needs to be critically assessed using a suitable field test. To test the technique, we need a crustal block where the underground structure is reasonably well-known, e.g., where there is extensive knowledge from local seismic experiments and drilling. A field experiment has thus been carried out around the KTB (Kontinental Tiefbohrung) site in the Oberpfalz area in Southeastern Germany, in order to compare with previous results from deep drilling, and high-frequency seismic experiments around the drill site. The investigated region has been studied extensively by local geophysical experiments, and geological studies. The deep borehole was placed into gneiss rocks of the Zone Erbendorf-Vohenstrauss. The drilling activity lasted from 1987 to 1994, and descended down to a depth of 9101 meters, sampling an alternating sequence of paragneiss and amphibolite, with metamorphism of upper amphibolite facies conditions, and ductile deformation produced a strong foliation of the rocks. The application of the RFs reveals strong seismic anisotropy in the upper crust related to the so-called Erbendorf body. The SKS shear-wave splitting method has been applied as well, revealing coherent results for the whole region with exception of the southernmost station, for which the seismic waves show larger delays. We use the RF observations to test the effect of crustal anisotropy on the SKS records, which sample entire crust and upper mantle.
[Percutaneous radiofrequency ablation of osteoid osteomas: technique and results].
Bruners, P; Penzkofer, T; Günther, R W; Mahnken, A
2009-08-01
Osteoid osteoma is a benign primary bone tumor that typically occurs in children and young adults. Besides local pain, which is often worse at night, prompt relief due to medication with acetylsalicylic acid (ASS) is characteristic for this bone lesion. Because long-term medication with ASS does not represent an alternative treatment strategy due to its potentially severe side effects, different minimally invasive image-guided techniques for the therapy of osteoid osteoma have been developed. In this context radiofrequency (RF) ablation in particular has become part of the clinical routine. The technique and results of image-guided RF ablation are compared to alternative treatment strategies. Using this technique, an often needle-shaped RF applicator is percutaneously placed into the tumor under image guidance. Then a high-frequency alternating current is applied by the tip of the applicator which leads to ionic motion within the tissue resulting in local heat development and thus in thermal destruction of the surrounding tissue including the tumor. The published primary and secondary success rates of this technique are 87 and 83 %, respectively. Surgical resection and open curettage show comparable success rates but are associated with higher complication rates. In addition image-guided RF ablation of osteoid osteomas is associated with low costs. In conclusion image-guided RF ablation can be considered the gold standard for the treatment of osteoid osteoma.
Additive manufacturing of RF absorbers
NASA Astrophysics Data System (ADS)
Mills, Matthew S.
The ability of additive manufacturing techniques to fabricate integrated electromagnetic absorbers tuned for specific radio frequency bands within structural composites allows for unique combinations of mechanical and electromagnetic properties. These composites and films can be used for RF shielding of sensitive electromagnetic components through in-plane and out-of-plane RF absorption. Structural composites are a common building block of many commercial platforms. These platforms may be placed in situations in which there is a need for embedded RF absorbing properties along with structural properties. Instead of adding radar absorbing treatments to the external surface of existing structures, which adds increased size, weight and cost; it could prove to be advantageous to integrate the microwave absorbing properties directly into the composite during the fabrication process. In this thesis, a method based on additive manufacturing techniques of composites structures with prescribed electromagnetic loss, within the frequency range 1 to 26GHz, is presented. This method utilizes screen printing and nScrypt micro dispensing to pattern a carbon based ink onto low loss substrates. The materials chosen for this study will be presented, and the fabrication technique that these materials went through to create RF absorbing structures will be described. The calibration methods used, the modeling of the RF structures, and the applications in which this technology can be utilized will also be presented.
Characterization of superconducting radiofrequency breakdown by two-mode excitation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eremeev, Grigory V.; Palczewski, Ari D.
2014-01-14
We show that thermal and magnetic contributions to the breakdown of superconductivity in radiofrequency (RF) fields can be separated by applying two RF modes simultaneously to a superconducting surface. We develop a simple model that illustrates how mode-mixing RF data can be related to properties of the superconductor. Within our model the data can be described by a single parameter, which can be derived either from RF or thermometry data. Our RF and thermometry data are in good agreement with the model. We propose to use mode-mixing technique to decouple thermal and magnetic effects on RF breakdown of superconductors.
Zhang, Xiaoliang; Martin, Alastair; Jordan, Caroline; Lillaney, Prasheel; Losey, Aaron; Pang, Yong; Hu, Jeffrey; Wilson, Mark; Cooke, Daniel; Hetts, Steven W
2017-04-01
It is technically challenging to design compact yet sensitive miniature catheter radio frequency (RF) coils for endovascular interventional MR imaging. In this work, a new design method for catheter RF coils is proposed based on the coaxial transmission line resonator (TLR) technique. Due to its distributed circuit, the TLR catheter coil does not need any lumped capacitors to support its resonance, which simplifies the practical design and construction and provides a straightforward technique for designing miniature catheter-mounted imaging coils that are appropriate for interventional neurovascular procedures. The outer conductor of the TLR serves as an RF shield, which prevents electromagnetic energy loss, and improves coil Q factors. It also minimizes interaction with surrounding tissues and signal losses along the catheter coil. To investigate the technique, a prototype catheter coil was built using the proposed coaxial TLR technique and evaluated with standard RF testing and measurement methods and MR imaging experiments. Numerical simulation was carried out to assess the RF electromagnetic field behavior of the proposed TLR catheter coil and the conventional lumped-element catheter coil. The proposed TLR catheter coil was successfully tuned to 64 MHz for proton imaging at 1.5 T. B 1 fields were numerically calculated, showing improved magnetic field intensity of the TLR catheter coil over the conventional lumped-element catheter coil. MR images were acquired from a dedicated vascular phantom using the TLR catheter coil and also the system body coil. The TLR catheter coil is able to provide a significant signal-to-noise ratio (SNR) increase (a factor of 200 to 300) over its imaging volume relative to the body coil. Catheter imaging RF coil design using the proposed coaxial TLR technique is feasible and advantageous in endovascular interventional MR imaging applications.
RF Microalgal lipid content characterization
Ahmad, Mahmoud Al; Al-Zuhair, Sulaiman; Taher, Hanifa; Hilal-Alnaqbi, Ali
2014-01-01
Most conventional techniques for the determination of microalgae lipid content are time consuming and in most cases are indirect and require excessive sample preparations. This work presents a new technique that utilizes radio frequency (RF) for rapid lipid quantification, without the need for sample preparation. Tests showed that a shift in the resonance frequency of a RF open-ended coaxial resonator and a gradual increase in its resonance magnitude may occur as the lipids content of microalgae cells increases. These response parameters can be then calibrated against actual cellular lipid contents and used for rapid determination of the cellular lipids. The average duration of lipid quantification using the proposed technique was of about 1 minute, which is significantly less than all other conventional techniques, and was achieved without the need for any time consuming treatment steps. PMID:24870372
Exploring Sedimentary Basins with High Frequency Receiver Function: the Dublin Basin Case Study
NASA Astrophysics Data System (ADS)
Licciardi, A.; Piana Agostinetti, N.
2015-12-01
The Receiver Function (RF) method is a widely applied seismological tool for the imaging of crustal and lithospheric structures beneath a single seismic station with one to tens kilometers of vertical resolution. However, detailed information about the upper crust (0-10 km depth) can also be retrieved by increasing the frequency content of the analyzed RF data-set (with a vertical resolution lower than 0.5km). This information includes depth of velocity contrasts, S-wave velocities within layers, as well as presence and location of seismic anisotropy or dipping interfaces (e.g., induced by faulting) at depth. These observables provides valuable constraints on the structural settings and properties of sedimentary basins both for scientific and industrial applications. To test the RF capabilities for this high resolution application, six broadband seismic stations have been deployed across the southwestern margin of the Dublin Basin (DB), Ireland, whose geothermal potential has been investigated in the last few years. With an inter-station distance of about 1km, this closely spaced array has been designed to provide a clear picture of the structural transition between the margin and the inner portion of the basin. In this study, a Bayesian approach is used to retrieve the posterior probability distributions of S-wave velocity at depth beneath each seismic station. A multi-frequency RF data-set is analyzed and RF and curves of apparent velocity are jointly inverted to better constrain absolute velocity variations. A pseudo 2D section is built to observe the lateral changes in elastic properties across the margin of the basin with a focus in the shallow portion of the crust. Moreover, by means of the harmonic decomposition technique, the azimuthal variations in the RF data-set are isolated and interpreted in terms of anisotropy and dipping interfaces associated with the major fault system in the area. These results are compared with the available information from previous seismic active surveys in the area, including boreholes data.
RF Bearing Estimation in Wireless Sensor Networks
2010-01-01
are the main design drivers. Techniques based on ultrasonic and infrared signal modalities have short range and require line-of-sight. Clearly, RF...generating a Doppler shifted RF signal . The small frequency change can be measured even on low cost resource constrained nodes using a radio...is already included in the power budget and RF range is superior to most other signals . Radio signal strength (RSS) based approaches are the most
Arya, Shobhit; Hadjievangelou, Nancy; Lei, Su; Kudo, Hiromi; Goldin, Robert D; Darzi, Ara W; Elson, Daniel S; Hanna, George B
2013-09-01
Bipolar radiofrequency (RF) induced tissue fusion is believed to have the potential to seal and anastomose intestinal tissue thereby providing an alternative to current techniques which are associated with technical and functional complications. This study examines the mechanical and cellular effects of RF energy and varying compressive pressures when applied to create ex vivo intestinal seals. A total of 299 mucosa-to-mucosa fusions were formed on ex vivo porcine small bowel segments using a prototype bipolar RF device powered by a closed-loop, feedback-controlled RF generator. Compressive pressures were increased at 0.05 MPa intervals from 0.00 to 0.49 MPa and RF energy was applied for a set time period to achieve bowel tissue fusion. Seal strength was subsequently assessed using burst pressure and tensile strength testing, whilst morphological changes were determined through light microscopy. To further identify the subcellular tissue changes that occur as a result of RF energy application, the collagen matrix in the fused area of a single bowel segment sealed at an optimal pressure was examined using transmission electron microscopy (TEM). An optimal applied compressive pressure range was observed between 0.10 and 0.25 MPa. Light microscopy demonstrated a step change between fused and unfused tissues but was ineffective in distinguishing between pressure levels once tissues were sealed. Non uniform collagen damage was observed in the sealed tissue area using TEM, with some areas showing complete collagen denaturation and others showing none, despite the seal being complete. This finding has not been described previously in RF-fused tissue and may have implications for in vivo healing. This study shows that both bipolar RF energy and optimal compressive pressures are needed to create strong intestinal seals. This finding suggests that RF fusion technology can be effectively applied for bowel sealing and may lead to the development of novel anastomosis tools.
Retrieving Coherent Receiver Function Images with Dense Arrays
NASA Astrophysics Data System (ADS)
Zhong, M.; Zhan, Z.
2016-12-01
Receiver functions highlight converted phases (e.g., Ps, PpPs, sP) and have been widely used to study seismic interfaces. With a dense array, receiver functions (RFs) at multiple stations form a RF image that can provide more robust/detailed constraints. However, due to noise in data, non-uniqueness of deconvolution, and local structures that cannot be detected across neighboring stations, traditional RF images are often noisy and hard to interpret. Previous attempts to enhance coherence by stacking RFs from multiple events or post-filtering the RF images have not produced satisfactory improvements. Here, we propose a new method to retrieve coherent RF images with dense arrays. We take advantage of the waveform coherency at neighboring stations and invert for a small number of coherent arrivals for their RFs. The new RF images contain only the coherent arrivals required to fit data well. Synthetic tests and preliminary applications on real data demonstrate that the new RF images are easier to interpret and improve our ability to infer Earth structures using receiver functions.
Dietrich, Markus; Hagen, Gunter; Reitmeier, Willibald; Burger, Katharina; Hien, Markus; Grass, Philippe; Kubinski, David; Visser, Jaco; Moos, Ralf
2017-01-01
The upcoming more stringent automotive emission legislations and current developments have promoted new technologies for more precise and reliable catalyst control. For this purpose, radio-frequency-based (RF) catalyst state determination offers the only approach for directly measuring the NH3 loading on selective catalytic reduction (SCR) catalysts and the state of other catalysts and filter systems. Recently, the ability of this technique to directly control the urea dosing on a current NH3 storing zeolite catalyst has been demonstrated on an engine dynamometer for the first time and this paper continues that work. Therefore, a well-known serial-type and zeolite-based SCR catalyst (Cu-SSZ-13) was investigated under deliberately chosen high space velocities. At first, the full functionality of the RF system with Cu-SSZ-13 as sample was tested successfully. By direct RF-based NH3 storage control, the influence of the storage degree on the catalyst performance, i.e., on NOx conversion and NH3 slip, was investigated in a temperature range between 250 and 400 °C. For each operation point, an ideal and a critical NH3 storage degree was found and analyzed in the whole temperature range. Based on the data of all experimental runs, temperature dependent calibration functions were developed as a basis for upcoming tests under transient conditions. Additionally, the influence of exhaust humidity was observed with special focus on cold start water and its effects to the RF signals. PMID:28704929
Dietrich, Markus; Hagen, Gunter; Reitmeier, Willibald; Burger, Katharina; Hien, Markus; Grass, Philippe; Kubinski, David; Visser, Jaco; Moos, Ralf
2017-07-12
The upcoming more stringent automotive emission legislations and current developments have promoted new technologies for more precise and reliable catalyst control. For this purpose, radio-frequency-based (RF) catalyst state determination offers the only approach for directly measuring the NH₃ loading on selective catalytic reduction (SCR) catalysts and the state of other catalysts and filter systems. Recently, the ability of this technique to directly control the urea dosing on a current NH₃ storing zeolite catalyst has been demonstrated on an engine dynamometer for the first time and this paper continues that work. Therefore, a well-known serial-type and zeolite-based SCR catalyst (Cu-SSZ-13) was investigated under deliberately chosen high space velocities. At first, the full functionality of the RF system with Cu-SSZ-13 as sample was tested successfully. By direct RF-based NH₃ storage control, the influence of the storage degree on the catalyst performance, i.e., on NO x conversion and NH₃ slip, was investigated in a temperature range between 250 and 400 °C. For each operation point, an ideal and a critical NH₃ storage degree was found and analyzed in the whole temperature range. Based on the data of all experimental runs, temperature dependent calibration functions were developed as a basis for upcoming tests under transient conditions. Additionally, the influence of exhaust humidity was observed with special focus on cold start water and its effects to the RF signals.
Measurement Techniques for Transmit Source Clock Jitter for Weak Serial RF Links
NASA Technical Reports Server (NTRS)
Lansdowne, Chatwin A.; Schlesinger, Adam M.
2010-01-01
Techniques for filtering clock jitter measurements are developed, in the context of controlling data modulation jitter on an RF carrier to accommodate low signal-to-noise ratio thresholds of high-performance error correction codes. Measurement artifacts from sampling are considered, and a tutorial on interpretation of direct readings is included.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yee, S; Ionascu, D; Wilson, G
2014-06-01
Purpose: In pre-clinical trials of cancer thermotherapy, hyperthermia can be induced by exposing localized super-paramagnetic iron oxide nanoparticles (SPION) to external alternating magnetic fields generated by a solenoid electrical circuit (Zhao et al., Theranostics 2012). Alternatively, an RF pulse technique implemented in a regular MRI system is explored as a possible hyperthermia induction technique . Methods: A new thermal RF pulse sequence was developed using the Philips pulse programming tool for the 3T Ingenia MRI system to provide a sinusoidal magnetic field alternating at the frequency of 1.43 kHz (multiples of sine waves of 0.7 ms period) before each excitationmore » RF pulse for imaging. The duration of each thermal RF pulse routine was approximately 3 min, and the thermal pulse was applied multiple times to a phantom that contains different concentrations (high, medium and low) of SPION samples. After applying the thermal pulse each time, the temperature change was estimated by measuring the phase changes in the T1-weighted inversion-prepared multi-shot turbo field echo (TFE) sequence (TR=5.5 ms, TE=2.7 ms, inversion time=200 ms). Results: The phase values and relative differences among them changed as the number of applied thermal RF pulses increased. After the 5th application of the thermal RF pulse, the relative phase differences increased significantly, suggesting the thermal activation of the SPION. The increase of the phase difference was approximately linear with the SPION concentration. Conclusion: A sinusoidal RF pulse from the MRI system may be utilized to selectively thermally activate tissues containing super-paramagnetic iron oxide nanoparticles.« less
Results of endocardial radiofrequency ablation of atrial fibrillation during mitral valve surgery.
Demirkilic, U; Bolcal, C; Gunay, C; Doganci, S; Temizkan, V; Kuralay, E; Tatar, H
2006-08-01
The aim of the study is to evaluate the efficacy of thermocontrolled endocardial radiofrequency (RF) ablation for the patients with mitral valve disorder and associated chronic atrial fibrillation during mitral valve replacement operation. Between February 2002 and January 2004, 43 patients with mitral valve disease and associated chronic atrial fibrillation underwent mitral valve replacement and thermocontrolled endocardial RF ablation with Cobra RF system flexible probe at Gulhane Military Academy of Medicine, Department of Cardiovascular Surgery. Eighteen of the patients (41.8%) were males, while the remaining 25 (58.2%) were females. The average age of the patients was 44+/-14.21 (18-66) years. Functional capacity of the patients was class II in 15 (34. 9%), class III in 24 (55.8%), class IV in 4 (9.3%) according to the NYHA classification. At the preoperative period all of the patients were evaluated routinely by twelve-lead ECG, chest film and transthoracic echocardiography (TTE). For the patients over 40 years of age, we performed additional coronary angiography to delineate any coronary lesions. The patients were evaluated at months 1, 3, 6 and annually by twelve-lead ECG, TTE and holter monitoring after discharge. There were not any complications related to the performed technique. No operative and hospital mortality were recorded. At the follow-up period for 35 of 43 patients (81.4%) sinus rhythm was restored. The mean follow-up time was 24.3+/-11.2 (12-35) months. Endocardial RF ablation especially during mitral valve surgery is a simple technique to be performed. Early and midterm results of the cohort are satisfying.
Zhang, Chi; Kang, Yi; Lundy, Robert F.
2010-01-01
The pontine parabrachial nucleus (PBN) and medullary reticular formation (RF) are hindbrain regions that, respectively, process sensory input and coordinate motor output related to ingestive behavior. Neural processing in each hindbrain site is subject to modulation originating from several forebrain structures including the insular gustatory cortex (IC), bed nucleus of the stria terminalis (BNST), central nucleus of the amygdala (CeA), and lateral hypothalamus (LH). The present study combined electrophysiology and retrograde tracing techniques to determine the extent of overlap between neurons within the IC, BNST, CeA and LH that target both the PBN and RF. One fluorescent retrograde tracer, red (RFB) or green (GFB) latex microbeads, was injected into the gustatory PBN under electrophysiological guidance and a different retrograde tracer, GFB or fluorogold (FG), into the ipsilateral RF using the location of gustatory NST as a point of reference. Brain tissue containing each forebrain region was sectioned, scanned using a confocal microscope, and scored for the number of single and double labeled neurons. Neurons innervating the RF only, the PBN only, or both the medullary RF and PBN were observed, largely intermingled, in each forebrain region. The CeA contained the largest number of cells retrogradely labeled after tracer injection into either hindbrain region. For each forebrain area except the IC, the origin of descending input to the RF and PBN was almost entirely ipsilateral. Axons from a small percentage of hindbrain projecting forebrain neurons targeted both the PBN and RF. Target specific and non specific inputs from a variety of forebrain nuclei to the hindbrain likely reflect functional specialization in the control of ingestive behaviors. PMID:21040715
Analog Techniques in CEBAF's RF Control System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hovater, J.; Fugitt, Jock
1988-01-01
Recent developments in high-speed analog technology have progressed into the areas of traditional RF technology.Diode-related devices are being replaced by analog IC's in the CEBAF RF control system.Complex phase modulators and attenuators have been successfully tested at 70 MHz.They have three advantages over existing technology: lower cost, less temperature sensitivity, and more linearity.RF signal conditioning components and how to implement the new analog IC's will be covered in this paper.
Drone based measurement system for radiofrequency exposure assessment.
Joseph, Wout; Aerts, Sam; Vandenbossche, Matthias; Thielens, Arno; Martens, Luc
2016-03-10
For the first time, a method to assess radiofrequency (RF) electromagnetic field (EMF) exposure of the general public in real environments with a true free-space antenna system is presented. Using lightweight electronics and multiple antennas placed on a drone, it is possible to perform exposure measurements. This technique will enable researchers to measure three-dimensional RF-EMF exposure patterns accurately in the future and at locations currently difficult to access. A measurement procedure and appropriate measurement settings have been developed. As an application, outdoor measurements are performed as a function of height up to 60 m for Global System for Mobile Communications (GSM) 900 MHz base station exposure. Bioelectromagnetics. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
identification. URE from ten MSP430F5529 16-bit microcontrollers were analyzed using: 1) RF distinct native attributes (RF-DNA) fingerprints paired with multiple...discriminant analysis/maximum likelihood (MDA/ML) classification, 2) RF-DNA fingerprints paired with generalized relevance learning vector quantized
NASA Technical Reports Server (NTRS)
Stevenson, Thomas; Aassime, Abdelhanin; Delsing, Per; Frunzio, Luigi; Li, Li-Qun; Prober, Daniel; Schoelkopf, Robert; Segall, Ken; Wilson, Chris; Stahle, Carl
2000-01-01
We report progress on using a new type of amplifier, the Radio-Frequency Single-Electron Transistor (RF-SET), to develop multi-channel sensor readout systems for fast and sensitive readout of high impedance cryogenic photodetectors such as Superconducting Tunnel Junctions and Single Quasiparticle Photon Counters. Although cryogenic, these detectors are desirable because of capabilities not other-wise attainable. However, high impedances and low output levels make low-noise, high-speed readouts challenging, and large format arrays would be facilitated by compact, low-power, on-chip integrated amplifiers. Well-suited for this application are RF-SETs, very high performance electrometers which use an rf readout technique to provide 100 MHz bandwidth. Small size, low power, and cryogenic operation allow direct integration with detectors, and using multiple rf carrier frequencies permits simultaneous readout of 20-50 amplifiers with a common electrical connection. We describe both the first 2-channel demonstration of this wavelength division multiplexing technique for RF-SETs, and Charge-Locked-Loop operation with 100 kHz of closed-loop bandwidth.
Reflective Functioning in Parents of School-Aged Children
Borelli, Jessica L.; St. John, H. Kate; Cho, Evelyn; Suchman, Nancy E.
2016-01-01
Parental reflective functioning (RF) has garnered tremendous support as a predictor of secure attachment in infancy, though little work has examined RF among parents of older children. In this study, we used a high-risk community sample of parent–child dyads (N = 117) to explore whether parental RF comprises self- and child-focused factors, whether parental RF is associated with parent and child attachment security, and whether parental RF mediates the association between parent and child attachment security. Results suggested that parental RF can be characterized as having both self- and child-focused components, and that child-focused parental RF is associated with child but not parent attachment security. Further, child-focused parental RF indirectly mediates the association between parent attachment avoidance and child attachment security. These findings extend previous work on parental RF to parents of school-age children and, in so doing, inform developmental models of attachment relationships in middle childhood. Discussion focuses on the importance of these findings in informing theory, prevention, clinical practice, and policy. PMID:26618938
Detector power linearity requirements and verification techniques for TMI direct detection receivers
NASA Technical Reports Server (NTRS)
Reinhardt, Victor S. (Inventor); Shih, Yi-Chi (Inventor); Toth, Paul A. (Inventor); Reynolds, Samuel C. (Inventor)
1997-01-01
A system (36, 98) for determining the linearity of an RF detector (46, 106). A first technique involves combining two RF signals from two stable local oscillators (38, 40) to form a modulated RF signal having a beat frequency, and applying the modulated RF signal to a detector (46) being tested. The output of the detector (46) is applied to a low frequency spectrum analyzer (48) such that a relationship between the power levels of the first and second harmonics generated by the detector (46) of the beat frequency of the modulated RF signal are measured by the spectrum analyzer (48) to determine the linearity of the detector (46). In a second technique, an RF signal from a local oscillator (100) is applied to a detector (106) being tested through a first attenuator (102) and a second attenuator (104). The output voltage of the detector (106) is measured when the first attenuator (102) is set to a particular attenuation value and the second attenuator (104) is switched between first and second attenuation values. Further, the output voltage of the detector (106) is measured when the first attenuator (102) is set to another attenuation value, and the second attenuator (104) is again switched between the first and second attenuation values. A relationship between the voltage outputs determines the linearity of the detector (106).
Psychodynamic profile and reflective functioning in patients with bulimia nervosa.
Mathiesen, Birgit Bork; Pedersen, Signe Holm; Sandros, Charlotte; Katznelson, Hannah; Wilczek, Alexander; Poulsen, Stig; Lunn, Susanne
2015-10-01
The aim of this study was to examine the general psychological functioning of patients suffering from bulimia nervosa (BN) using the Karolinska Psychodynamic Profile (KAPP). Furthermore, KAPP data and data from the Reflective Functioning scale (RF), measuring the ability to mentalize, were combined in order to examine differences in alexithymia, impulse control and affect regulation in patients with high or low RF. Seventy patients with BN were interviewed with both the KAPP and the Adult Attachment Interview (AAI) from which RF is coded. Differences in KAPP scores of patients with high or low RF were analyzed. Most of the patients with BN were found to have a personality structure within the normal or neurotic range (n=50 of 70). BN patients with a high RF had significantly lower scores on KAPP's alexithymia scale than patients with a low RF score, demonstrating that poor mentalizing is related to alexithymia. Concurrently, patients with high RF showed problems with impulse control and coping with aggressive affects according to KAPP scores. Although BN patients with high RF showed good capacities for describing their mental states, they still had difficulties regulating the emotions and impulses related to these states. Among patients suffering from BN, patients with high RF were significantly less alexithymic than low RF patients. The findings of this study are limited by the relatively small numbers of participants especially in the RF subgroups, posing a danger of not finding as significant existing differences in character pathology between high and low RF groups. Copyright © 2015 Elsevier Inc. All rights reserved.
Cathode Priming vs. RF Priming for Relativistic Magnetrons
NASA Astrophysics Data System (ADS)
White, W. M.; Spencer, T. A.; Price, D.
2005-10-01
Magnetron start-oscillation time, pulsewidth and pi-mode locking are experimentally compared for RF priming versus cathode priming on the Michigan-Titan relativistic magnetron (-300 kV, 2-10 kA, 300-500 ns). Cathode priming [1, 2] is an innovative technique first demonstrated experimentally at UM. In this technique, the cathode is fabricated with N/2 emitting strips or N/2-separate cathodes (for an N-cavity magnetron), which generate the desired number of spokes for pi-mode. Cathode priming yields 13% faster startup with more reproducible pi-mode oscillation. Radio Frequency (RF) priming is investigated as the baseline priming technique for magnetrons. The external priming source is a 100kW, 3μs pulsewidth magnetron on loan from AFRL. RF priming reduced startup delay by 15% and increased pulsewidth by 9%. [1] M.C. Jones, V.B. Neculaes, R.M. Gilgenbach, W.M. White, M.R. Lopez, Y.Y. Lau, T.A. Spencer, and D. Price, Rev. Sci. Inst., 75, 2976 (2004) [2] M.C. Jones, Doctoral Dissertation, University of Michigan, 2005
Adaptive Nonlinear RF Cancellation for Improved Isolation in Simultaneous Transmit–Receive Systems
NASA Astrophysics Data System (ADS)
Kiayani, Adnan; Waheed, Muhammad Zeeshan; Anttila, Lauri; Abdelaziz, Mahmoud; Korpi, Dani; Syrjala, Ville; Kosunen, Marko; Stadius, Kari; Ryynanen, Jussi; Valkama, Mikko
2018-05-01
This paper proposes an active radio frequency (RF) cancellation solution to suppress the transmitter (TX) passband leakage signal in radio transceivers supporting simultaneous transmission and reception. The proposed technique is based on creating an opposite-phase baseband equivalent replica of the TX leakage signal in the transceiver digital front-end through adaptive nonlinear filtering of the known transmit data, to facilitate highly accurate cancellation under a nonlinear TX power amplifier (PA). The active RF cancellation is then accomplished by employing an auxiliary transmitter chain, to generate the actual RF cancellation signal, and combining it with the received signal at the receiver (RX) low noise amplifier (LNA) input. A closed-loop parameter learning approach, based on the decorrelation principle, is also developed to efficiently estimate the coefficients of the nonlinear cancellation filter in the presence of a nonlinear TX PA with memory, finite passive isolation, and a nonlinear RX LNA. The performance of the proposed cancellation technique is evaluated through comprehensive RF measurements adopting commercial LTE-Advanced transceiver hardware components. The results show that the proposed technique can provide an additional suppression of up to 54 dB for the TX passband leakage signal at the RX LNA input, even at considerably high transmit power levels and with wide transmission bandwidths. Such novel cancellation solution can therefore substantially improve the TX-RX isolation, hence reducing the requirements on passive isolation and RF component linearity, as well as increasing the efficiency and flexibility of the RF spectrum use in the emerging 5G radio networks.
Performance of machine-learning scoring functions in structure-based virtual screening.
Wójcikowski, Maciej; Ballester, Pedro J; Siedlecki, Pawel
2017-04-25
Classical scoring functions have reached a plateau in their performance in virtual screening and binding affinity prediction. Recently, machine-learning scoring functions trained on protein-ligand complexes have shown great promise in small tailored studies. They have also raised controversy, specifically concerning model overfitting and applicability to novel targets. Here we provide a new ready-to-use scoring function (RF-Score-VS) trained on 15 426 active and 893 897 inactive molecules docked to a set of 102 targets. We use the full DUD-E data sets along with three docking tools, five classical and three machine-learning scoring functions for model building and performance assessment. Our results show RF-Score-VS can substantially improve virtual screening performance: RF-Score-VS top 1% provides 55.6% hit rate, whereas that of Vina only 16.2% (for smaller percent the difference is even more encouraging: RF-Score-VS top 0.1% achieves 88.6% hit rate for 27.5% using Vina). In addition, RF-Score-VS provides much better prediction of measured binding affinity than Vina (Pearson correlation of 0.56 and -0.18, respectively). Lastly, we test RF-Score-VS on an independent test set from the DEKOIS benchmark and observed comparable results. We provide full data sets to facilitate further research in this area (http://github.com/oddt/rfscorevs) as well as ready-to-use RF-Score-VS (http://github.com/oddt/rfscorevs_binary).
Changes in Quadriceps Muscle Activity During Sustained Recreational Alpine Skiing
Kröll, Josef; Müller, Erich; Seifert, John G.; Wakeling, James M.
2011-01-01
During a day of skiing thousands of repeated contractions take place. Previous research on prolonged recreational alpine skiing show that physiological changes occur and hence some level of fatigue is inevitable. In the present paper the effect of prolonged skiing on the recruitment and coordination of the muscle activity was investigated. Six subjects performed 24 standardized runs. Muscle activity during the first two (PREskiing) and the last two (POSTskiing) runs was measured from the vastus lateralis (VL) and rectus femoris (RF) using EMG and quantified using wavelet and principal component analysis. The frequency content of the EMG signal shifted in seven out of eight cases significantly towards lower frequencies with highest effects observed for RF on outside leg. A significant pronounced outside leg loading occurred during POSTskiing and the timing of muscle activity peaks occurred more towards turn completion. Specific EMG frequency changes were observed at certain time points throughout the time windows and not over the whole double turn. It is suggested that general muscular fatigue, where additional specific muscle fibers have to be recruited due to the reduced power output of other fibers did not occur. The EMG frequency decrease and intensity changes for RF and VL are caused by altered timing (coordination) within the turn towards a most likely more uncontrolled skiing technique. Hence, these data provide evidence to suggest recreational skiers alter their skiing technique before a potential change in muscle fiber recruitment occurs. Key points The frequency content of the EMG signal shifted in seven out of eight cases significantly towards lower frequencies with highest effects observed for RF. General muscular fatigue, where additional specific fibers have to be recruited due to the reduced power output of other fibers, did not occur. A modified skiing style towards a less functional and hence more uncontrolled skiing technique seems to be a key issue with respect to the influence on muscle recruitment for applied prolonged skiing session. PMID:24149299
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hashimoto, Yoshifumi; Kumagai, Naomichi; Hosoda, Nao
2014-03-14
Highlights: • So far, eRF3 has been thought to function exclusively in the cytoplasm. • eRF3 is a nucleo-cutoplasmic shuttling protein. • eRF3 has a leptomycin-sensitive nuclear export signal (NES). • Removal of NES by proteolytic cleavage allows eRF3 to translocate to the nucleus. • The processed eRF3 (p-eRF3) interacts with a nuclear tumor suppressor ARF. - Abstract: The eukaryotic releasing factor eRF3 is a multifunctional protein that plays pivotal roles in translation termination as well as the initiation of mRNA decay. eRF3 also functions in the regulation of apoptosis; eRF3 is cleaved at Ala73 by an as yet unidentifiedmore » protease into processed isoform of eRF3 (p-eRF3), which interacts with the inhibitors of apoptosis proteins (IAPs). The binding of p-eRF3 with IAPs leads to the release of active caspases from IAPs, which promotes apoptosis. Although full-length eRF3 is localized exclusively in the cytoplasm, p-eRF3 localizes in the nucleus as well as the cytoplasm. We here focused on the role of p-eRF3 in the nucleus. We identified leptomycin-sensitive nuclear export signal (NES) at amino acid residues 61–71 immediately upstream of the cleavage site Ala73. Thus, the proteolytic cleavage of eRF3 into p-eRF3 leads to release an amino-terminal fragment containing NES to allow the relocalization of eRF3 into the nucleus. Consistent with this, p-eRF3 more strongly interacted with the nuclear ARF tumor suppressor than full-length eRF3. These results suggest that while p-eRF3 interacts with IAPs to promote apoptosis in the cytoplasm, p-eRF3 also has some roles in regulating cell death in the nucleus.« less
Analyzing Single Giant Unilamellar Vesicles With a Slotline-Based RF Nanometer Sensor
Cui, Yan; Kenworthy, Anne K.; Edidin, Michael; ...
2016-03-11
Novel techniques that enable reagent free detection and analysis of single cells are of great interest for the development of biological and medical sciences, as well as point-of-care health service technologies. Highly sensitive and broadband RF sensors are promising candidates for such a technique. In this paper, we present a highly sensitive and tunable RF sensor, which is based on interference processes and built with a 100-nm slotline structure. The highly concentrated RF fields, up to ~ 1.76×10 7 V/m, enable strong interactions between giant unilamellar vesicles (GUVs) and fields for high-sensitivity operations. We also provide two modeling approaches tomore » extract cell dielectric properties from measured scattering parameters. GUVs of different molecular compositions are synthesized and analyzed with the RF sensor at ~ 2, ~ 2.5, and ~ 2.8 GHz with an initial |S 21| min of ~ -100 dB. Corresponding GUV dielectric properties are obtained. Finally, a one-dimensional scanning of single GUV is also demonstrated.« less
Jiang, Lili; Zuo, Xi-Nian
2015-01-01
Much effort has been made to understand the organizational principles of human brain function using functional magnetic resonance imaging (fMRI) methods, among which resting-state fMRI (rfMRI) is an increasingly recognized technique for measuring the intrinsic dynamics of the human brain. Functional connectivity (FC) with rfMRI is the most widely used method to describe remote or long-distance relationships in studies of cerebral cortex parcellation, interindividual variability, and brain disorders. In contrast, local or short-distance functional interactions, especially at a scale of millimeters, have rarely been investigated or systematically reviewed like remote FC, although some local FC algorithms have been developed and applied to the discovery of brain-based changes under neuropsychiatric conditions. To fill this gap between remote and local FC studies, this review will (1) briefly survey the history of studies on organizational principles of human brain function; (2) propose local functional homogeneity as a network centrality to characterize multimodal local features of the brain connectome; (3) render a neurobiological perspective on local functional homogeneity by linking its temporal, spatial, and individual variability to information processing, anatomical morphology, and brain development; and (4) discuss its role in performing connectome-wide association studies and identify relevant challenges, and recommend its use in future brain connectomics studies. PMID:26170004
Perdiguero-Alonso, Diana; Montero, Francisco E; Kostadinova, Aneta; Raga, Juan Antonio; Barrett, John
2008-10-01
Due to the complexity of host-parasite relationships, discrimination between fish populations using parasites as biological tags is difficult. This study introduces, to our knowledge for the first time, random forests (RF) as a new modelling technique in the application of parasite community data as biological markers for population assignment of fish. This novel approach is applied to a dataset with a complex structure comprising 763 parasite infracommunities in population samples of Atlantic cod, Gadus morhua, from the spawning/feeding areas in five regions in the North East Atlantic (Baltic, Celtic, Irish and North seas and Icelandic waters). The learning behaviour of RF is evaluated in comparison with two other algorithms applied to class assignment problems, the linear discriminant function analysis (LDA) and artificial neural networks (ANN). The three algorithms are used to develop predictive models applying three cross-validation procedures in a series of experiments (252 models in total). The comparative approach to RF, LDA and ANN algorithms applied to the same datasets demonstrates the competitive potential of RF for developing predictive models since RF exhibited better accuracy of prediction and outperformed LDA and ANN in the assignment of fish to their regions of sampling using parasite community data. The comparative analyses and the validation experiment with a 'blind' sample confirmed that RF models performed more effectively with a large and diverse training set and a large number of variables. The discrimination results obtained for a migratory fish species with largely overlapping parasite communities reflects the high potential of RF for developing predictive models using data that are both complex and noisy, and indicates that it is a promising tool for parasite tag studies. Our results suggest that parasite community data can be used successfully to discriminate individual cod from the five different regions of the North East Atlantic studied using RF.
A Comparative Study of Different Deblurring Methods Using Filters
NASA Astrophysics Data System (ADS)
Srimani, P. K.; Kavitha, S.
2011-12-01
This paper attempts to undertake the study of Restored Gaussian Blurred Images by using four types of techniques of deblurring image viz., Wiener filter, Regularized filter, Lucy Richardson deconvolution algorithm and Blind deconvolution algorithm with an information of the Point Spread Function (PSF) corrupted blurred image. The same is applied to the scanned image of seven months baby in the womb and they are compared with one another, so as to choose the best technique for restored or deblurring image. This paper also attempts to undertake the study of restored blurred image using Regualr Filter(RF) with no information about the Point Spread Function (PSF) by using the same four techniques after executing the guess of the PSF. The number of iterations and the weight threshold of it to choose the best guesses for restored or deblurring image of these techniques are determined.
Ensuring safety of implanted devices under MRI using reversed RF polarization.
Overall, William R; Pauly, John M; Stang, Pascal P; Scott, Greig C
2010-09-01
Patients with long-wire medical implants are currently prevented from undergoing magnetic resonance imaging (MRI) scans due to the risk of radio frequency (RF) heating. We have developed a simple technique for determining the heating potential for these implants using reversed radio frequency (RF) polarization. This technique could be used on a patient-to-patient basis as a part of the standard prescan procedure to ensure that the subject's device does not pose a heating risk. By using reversed quadrature polarization, the MR scan can be sensitized exclusively to the potentially dangerous currents in the device. Here, we derive the physical principles governing the technique and explore the primary sources of inaccuracy. These principles are verified through finite-difference simulations and through phantom scans of implant leads. These studies demonstrate the potential of the technique for sensitively detecting potentially dangerous coupling conditions before they can do any harm. 2010 Wiley-Liss, Inc.
RF/optical shared aperture for high availability wideband communication RF/FSO links
Ruggiero, Anthony J; Pao, Hsueh-yuan; Sargis, Paul
2014-04-29
An RF/Optical shared aperture is capable of transmitting and receiving optical signals and RF signals simultaneously. This technology enables compact wide bandwidth communications systems with 100% availability in clear air turbulence, rain and fog. The functions of an optical telescope and an RF reflector antenna are combined into a single compact package by installing an RF feed at either of the focal points of a modified Gregorian telescope.
RF/optical shared aperture for high availability wideband communication RF/FSO links
Ruggiero, Anthony J; Pao, Hsueh-yuan; Sargis, Paul
2015-03-24
An RF/Optical shared aperture is capable of transmitting and receiving optical signals and RF signals simultaneously. This technology enables compact wide bandwidth communications systems with 100% availability in clear air turbulence, rain and fog. The functions of an optical telescope and an RF reflector antenna are combined into a single compact package by installing an RF feed at either of the focal points of a modified Gregorian telescope.
Radio frequency switching network: a technique for infrared sensing
NASA Astrophysics Data System (ADS)
Mechtel, Deborah M.; Jenkins, R. Brian; Joyce, Peter J.; Nelson, Charles L.
2016-10-01
This paper describes a unique technique that implements photoconductive sensors in a radio frequency (RF) switching network designed to locate in real-time the position and intensity of IR radiation incident on a composite structure. In the implementation described here, photoconductive sensors act as rapid response switches in a two-layer RF network embedded in an FR-4 laminate. To detect radiation, phosphorous-doped silicon photoconductive sensors are inserted in GHz range RF transmission lines. By permitting signal propagation only when a sensor is illuminated, the RF signals are selectively routed from lower layer transmission lines to upper layer lines, thereby pinpointing the location and strength of incident radiation. Simulations based on a high frequency three-dimensional planar electromagnetics model are presented and compared to the experimental results. The experimental results are described for GHz range RF signal control for 300- and 180-mW incident energy from 975- to 1060-nm wavelength lasers, respectively, where upon illumination, RF transmission line signal output power doubled when compared to nonilluminated results. The experimental results are also reported for 100-W incident energy from a 1060-nm laser. Test results illustrate real-time signal processing would permit a structure to be controlled in response to incident radiation.
NASA Astrophysics Data System (ADS)
Schmidt, Barnet Michael
An optimal performance monitoring metric for a hybrid free space optical and radio-frequency (RF) wireless network, the Outage Capacity Objective Function, is analytically developed and studied. Current and traditional methods of performance monitoring of both optical and RF wireless networks are centered on measurement of physical layer parameters, the most common being signal-to-noise ratio, error rate, Q factor, and eye diagrams, occasionally combined with link-layer measurements such as data throughput, retransmission rate, and/or lost packet rate. Network management systems frequently attempt to predict or forestall network failures by observing degradations of these parameters and to attempt mitigation (such as offloading traffic, increasing transmitter power, reducing the data rate, or combinations thereof) prior to the failure. These methods are limited by the frequent low sensitivity of the physical layer parameters to the atmospheric optical conditions (measured by optical signal-to-noise ratio) and the radio frequency fading channel conditions (measured by signal-to-interference ratio). As a result of low sensitivity, measurements of this type frequently are unable to predict impending failures sufficiently in advance for the network management system to take corrective action prior to the failure. We derive and apply an optimal measure of hybrid network performance based on the outage capacity of the hybrid optical and RF channel, the outage capacity objective function. The objective function provides high sensitivity and reliable failure prediction, and considers both the effects of atmospheric optical impairments on the performance of the free space optical segment as well as the effect of RF channel impairments on the radio frequency segment. The radio frequency segment analysis considers the three most common RF channel fading statistics: Rayleigh, Ricean, and Nakagami-m. The novel application of information theory to the underlying physics of the gamma-gamma optical channel and radio fading channels in determining the joint hybrid channel outage capacity provides the best performance estimate under any given set of operating conditions. It is shown that, unlike traditional physical layer performance monitoring techniques, the objective function based upon the outage capacity of the hybrid channel at any combination of OSNR and SIR, is able to predict channel degradation and failure well in advance of the actual outage. An outage in the information-theoretic definition occurs when the offered load exceeds the outage capacity under the current conditions of OSNR and SIR. The optical channel is operated at the "long" mid-infrared wavelength of 10000 nm. which provides improved resistance to scattering compared to shorter wavelengths such as 1550 nm.
Plasma breakdown in a capacitively-coupled radiofrequency argon discharge
NASA Astrophysics Data System (ADS)
Smith, H. B.; Charles, C.; Boswell, R. W.
1998-10-01
Low pressure, capacitively-coupled rf discharges are widely used in research and commercial ventures. Understanding of the non-equilibrium processes which occur in these discharges during breakdown is of interest, both for industrial applications and for a deeper understanding of fundamental plasma behaviour. The voltage required to breakdown the discharge V_brk has long been known to be a strong function of the product of the neutral gas pressure and the electrode seperation (pd). This paper investigates the dependence of V_brk on pd in rf systems using experimental, computational and analytic techniques. Experimental measurements of V_brk are made for pressures in the range 1 -- 500 mTorr and electrode separations of 2 -- 20 cm. A Paschen-style curve for breakdown in rf systems is developed which has the minimum breakdown voltage at a much smaller pd value, and breakdown voltages which are significantly lower overall, than for Paschen curves obtained from dc discharges. The differences between the two systems are explained using a simple analytic model. A Particle-in-Cell simulation is used to investigate a similar pd range and examine the effect of the secondary emission coefficient on the rf breakdown curve, particularly at low pd values. Analytic curves are fitted to both experimental and simulation results.
Functional Outcomes of Persons Undergoing Dysvascular Lower Extremity Amputations
Sauter, Carley N.; Pezzin, Liliana E.; Dillingham, Timothy R.
2012-01-01
Objective To examine the effect of post-acute rehabilitation setting on functional outcomes among patients undergoing major lower extremity dysvascular amputations. Design A population-based, prospective cohort study conducted in Maryland and Wisconsin. Data collected from medical records and patient interviews conducted during acute hospitalization following amputation and at six-month following the acute care discharge were analyzed using multivariate models and instrumental variable techniques. Results A total of 297 patients were analyzed based on post-acute care rehabilitation setting: acute inpatient rehabilitation (IRF), skilled nursing facility (SNF) or home. The majority (43.4%) received care in IRF, 32% in SNF, and 24.6% at home. On SF-36 subscales, significantly improved outcomes were observed for patients receiving post-acute care at an IRF relative to those cared for at a SNF in physical function (PF), role physical (RF) and physical component score (PCS). Patients receiving post-acute care in IRFs also experienced better RF and PCS outcomes compared to those discharged directly home. In addition, patients receiving post-acute care at an IRF were significantly more likely to score in the top quartile for general health in IRF compared to SNF or home, and less likely to score in the lowest quartile for PF, RF and PCS in IRF compared to SNF. Lower ADL impairment was observed in IRF compared to SNF. Conclusions Among this large and diverse cohort of patients undergoing major dysvascular lower limb amputations, receipt of interdisciplinary rehabilitation services at an IRF yielded improved functional outcomes six months after amputation relative to care received at SNFs or home. PMID:23291599
Characterization of ZnO:SnO{sub 2} (50:50) thin film deposited by RF magnetron sputtering technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cynthia, S. R.; Sanjeeviraja, C.; Ponmudi, S.
2016-05-06
Zinc oxide (ZnO) and tin oxide (SnO{sub 2}) thin films have attracted significant interest recently for use in optoelectronic application such as solar cells, flat panel displays, photonic devices, laser diodes and gas sensors because of their desirable electrical and optical properties and wide band gap. In the present study, thin films of ZnO:SnO{sub 2} (50:50) were deposited on pre-cleaned microscopic glass substrate by RF magnetron sputtering technique. The substrate temperature and RF power induced changes in structural, surface morphological, compositional and optical properties of the films have been studied.
Using the ATL HDI 1000 to collect demodulated RF data for monitoring HIFU lesion formation
NASA Astrophysics Data System (ADS)
Anand, Ajay; Kaczkowski, Peter J.; Daigle, Ron E.; Huang, Lingyun; Paun, Marla; Beach, Kirk W.; Crum, Lawrence A.
2003-05-01
The ability to accurately track and monitor the progress of lesion formation during HIFU (High Intensity Focused Ultrasound) therapy is important for the success of HIFU-based treatment protocols. To aid in the development of algorithms for accurately targeting and monitoring formation of HIFU induced lesions, we have developed a software system to perform RF data acquisition during HIFU therapy using a commercially available clinical ultrasound scanner (ATL HDI 1000, Philips Medical Systems, Bothell, WA). The HDI 1000 scanner functions on a software dominant architecture, permitting straightforward external control of its operation and relatively easy access to quadrature demodulated RF data. A PC running a custom developed program sends control signals to the HIFU module via GPIB and to the HDI 1000 via Telnet, alternately interleaving HIFU exposures and RF frame acquisitions. The system was tested during experiments in which HIFU lesions were created in excised animal tissue. No crosstalk between the HIFU beam and the ultrasound imager was detected, thus demonstrating synchronization. Newly developed acquisition modes allow greater user control in setting the image geometry and scanline density, and enables high frame rate acquisition. This system facilitates rapid development of signal-processing based HIFU therapy monitoring algorithms and their implementation in image-guided thermal therapy systems. In addition, the HDI 1000 system can be easily customized for use with other emerging imaging modalities that require access to the RF data such as elastographic methods and new Doppler-based imaging and tissue characterization techniques.
Performance of machine-learning scoring functions in structure-based virtual screening
Wójcikowski, Maciej; Ballester, Pedro J.; Siedlecki, Pawel
2017-01-01
Classical scoring functions have reached a plateau in their performance in virtual screening and binding affinity prediction. Recently, machine-learning scoring functions trained on protein-ligand complexes have shown great promise in small tailored studies. They have also raised controversy, specifically concerning model overfitting and applicability to novel targets. Here we provide a new ready-to-use scoring function (RF-Score-VS) trained on 15 426 active and 893 897 inactive molecules docked to a set of 102 targets. We use the full DUD-E data sets along with three docking tools, five classical and three machine-learning scoring functions for model building and performance assessment. Our results show RF-Score-VS can substantially improve virtual screening performance: RF-Score-VS top 1% provides 55.6% hit rate, whereas that of Vina only 16.2% (for smaller percent the difference is even more encouraging: RF-Score-VS top 0.1% achieves 88.6% hit rate for 27.5% using Vina). In addition, RF-Score-VS provides much better prediction of measured binding affinity than Vina (Pearson correlation of 0.56 and −0.18, respectively). Lastly, we test RF-Score-VS on an independent test set from the DEKOIS benchmark and observed comparable results. We provide full data sets to facilitate further research in this area (http://github.com/oddt/rfscorevs) as well as ready-to-use RF-Score-VS (http://github.com/oddt/rfscorevs_binary). PMID:28440302
GNU Radio Sandia Utilities v. 1.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilbert, Jacob; Knee, Peter
This software adds a data handling module to the GNU Radio (GR) software defined radio (SDR) framework as well as some general-purpose function blocks (filters, metadata control, etc). This software is useful for processing bursty RF transmissions with GR, and serves as a base for applying SDR signal processing techniques to a whole burst of data at a time, as opposed to streaming data which GR has been primarily focused around.
Selective RF pulses in NMR and their effect on coupled and uncoupled spin systems
NASA Astrophysics Data System (ADS)
Slotboom, J.
1993-10-01
This thesis describes various aspects of the usage of shaped RF-pulses for volume selection and spectral editing. Contents: Introduction--The History of Magnetic Resonance in a Nutshell, and The Usage of RF Pulses in Contemporary MRS and MRI; Theoretical and Practical Aspects of Localized NMR Spectroscopy; The Effects of RF Pulse Shape Discretization on the Spatially Selective Performance; Design of Frequency-Selective RF Pulses by Optimizing a Small Number of Pulse Parameters; A Single-Shot Localization Pulse Sequence Suited for Coils with Inhomogeneous RF Fields Using Adiabatic Slice-Selective RF Pulses; The Bloch Equations for an AB System and the Design of Spin State Selective RF Pulses for Coupled Spin Systems; The Effects of Frequency Selective RF Pulses on J Coupled Spin-1/2 Systems; A Quantitative (1)H MRS in vivo Study of the Effects of L-Ornithine-L-Aspartate on the Development of Mild Encephalopathy Using a Single Shot Localization Technique Based on SAR Reduced Adiabatic 2(pi) Pulses.
NASA Astrophysics Data System (ADS)
Lian, Jianyu
In this work, modification of the cosine current distribution rf coil, PCOS, has been introduced and tested. The coil produces a very homogeneous rf magnetic field, and it is inexpensive to build and easy to tune for multiple resonance frequency. The geometrical parameters of the coil are optimized to produce the most homogeneous rf field over a large volume. To avoid rf field distortion when the coil length is comparable to a quarter wavelength, a parallel PCOS coil is proposed and discussed. For testing rf coils and correcting B _1 in NMR experiments, a simple, rugged and accurate NMR rf field mapping technique has been developed. The method has been tested and used in 1D, 2D, 3D and in vivo rf mapping experiments. The method has been proven to be very useful in the design of rf coils. To preserve the linear relation between rf output applied on an rf coil and modulating input for an rf modulating -amplifying system of NMR imaging spectrometer, a quadrature feedback loop is employed in an rf modulator with two orthogonal rf channels to correct the amplitude and phase non-linearities caused by the rf components in the rf system. The modulator is very linear over a large range and it can generate an arbitrary rf shape. A diffusion imaging sequence has been developed for measuring and imaging diffusion in the presence of background gradients. Cross terms between the diffusion sensitizing gradients and background gradients or imaging gradients can complicate diffusion measurement and make the interpretation of NMR diffusion data ambiguous, but these have been eliminated in this method. Further, the background gradients has been measured and imaged. A dipole random distribution model has been established to study background magnetic fields Delta B and background magnetic gradients G_0 produced by small particles in a sample when it is in a B_0 field. From this model, the minimum distance that a spin can approach a particle can be determined by measuring
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Rolland
Many present and future particle accelerators are limited by the maximum electric gradient and peak surface fields that can be realized in RF cavities. Despite considerable effort, a comprehensive theory of RF breakdown has not been achieved and mitigation techniques to improve practical maximum accelerating gradients have had only limited success. Part of the problem is that RF breakdown in an evacuated cavity involves a complex mixture of effects, which include the geometry, metallurgy, and surface preparation of the accelerating structures and the make-up and pressure of the residual gas in which plasmas form. Studies showed that high gradients canmore » be achieved quickly in 805 MHz RF cavities pressurized with dense hydrogen gas, as needed for muon cooling channels, without the need for long conditioning times, even in the presence of strong external magnetic fields. This positive result was expected because the dense gas can practically eliminate dark currents and multipacting. In this project we used this high pressure technique to suppress effects of residual vacuum and geometry that are found in evacuated cavities in order to isolate and study the role of the metallic surfaces in RF cavity breakdown as a function of magnetic field, frequency, and surface preparation. One of the interesting and useful outcomes of this project was the unanticipated collaborations with LANL and Fermilab that led to new insights as to the operation of evacuated normal-conducting RF cavities in high external magnetic fields. Other accomplishments included: (1) RF breakdown experiments to test the effects of SF6 dopant in H2 and He gases with Sn, Al, and Cu electrodes were carried out in an 805 MHz cavity and compared to calculations and computer simulations. The heavy corrosion caused by the SF6 components led to the suggestion that a small admixture of oxygen, instead of SF6, to the hydrogen would allow the same advantages without the corrosion in a practical muon beam line. (2) A 1.3 GHz RF test cell capable of operating both at high pressure and in vacuum with replaceable electrodes was designed, built, and power tested in preparation for testing the frequency and geometry effects of RF breakdown at Argonne National Lab. At the time of this report this cavity is still waiting for the 1.3 GHz klystron to be available at the Wakefield Test Facility. (3) Under a contract with Los Alamos National Lab, an 805 MHz RF test cavity, known as the All-Seasons Cavity (ASC), was designed and built by Muons, Inc. to operate either at high pressure or under vacuum. The LANL project to use the (ASC) was cancelled and the testing of the cavity has been continued under the grant reported on here using the Fermilab Mucool Test Area (MTA). The ASC is a true pillbox cavity that has performed under vacuum in high external magnetic field better than any other and has demonstrated that the high required accelerating gradients for many muon cooling beam line designs are possible. (4) Under ongoing support from the Muon Acceleration Program, microscopic surface analysis and computer simulations have been used to develop models of RF breakdown that apply to both pressurized and vacuum cavities. The understanding of RF breakdown will lead to better designs of RF cavities for many applications. An increase in the operating accelerating gradient, improved reliability and shorter conditioning times can generate very significant cost savings in many accelerator projects.« less
Nagao, Chioko; Nagano, Nozomi; Mizuguchi, Kenji
2014-01-01
Determining enzyme functions is essential for a thorough understanding of cellular processes. Although many prediction methods have been developed, it remains a significant challenge to predict enzyme functions at the fourth-digit level of the Enzyme Commission numbers. Functional specificity of enzymes often changes drastically by mutations of a small number of residues and therefore, information about these critical residues can potentially help discriminate detailed functions. However, because these residues must be identified by mutagenesis experiments, the available information is limited, and the lack of experimentally verified specificity determining residues (SDRs) has hindered the development of detailed function prediction methods and computational identification of SDRs. Here we present a novel method for predicting enzyme functions by random forests, EFPrf, along with a set of putative SDRs, the random forests derived SDRs (rf-SDRs). EFPrf consists of a set of binary predictors for enzymes in each CATH superfamily and the rf-SDRs are the residue positions corresponding to the most highly contributing attributes obtained from each predictor. EFPrf showed a precision of 0.98 and a recall of 0.89 in a cross-validated benchmark assessment. The rf-SDRs included many residues, whose importance for specificity had been validated experimentally. The analysis of the rf-SDRs revealed both a general tendency that functionally diverged superfamilies tend to include more active site residues in their rf-SDRs than in less diverged superfamilies, and superfamily-specific conservation patterns of each functional residue. EFPrf and the rf-SDRs will be an effective tool for annotating enzyme functions and for understanding how enzyme functions have diverged within each superfamily. PMID:24416252
Investigation of multipactor breakdown in communication satellite microwave co-axial systems
NASA Astrophysics Data System (ADS)
Nagesh, S. K.; Revannasiddiah, D.; Shastry, S. V. K.
2005-01-01
Multipactor breakdown or multipactor discharge is a form of high frequency discharge that may occur in microwave components operating at very low pressures. Some RF components of multi-channel communication satellites have co-axial geometry and handle high RF power under near-vacuum conditions. The breakdown occurs due to secondary electron resonance, wherein electrons move back and forth in synchronism with the RF voltage across the gap between the inner and outer conductors of the co-axial structure. If the yield of secondary electrons from the walls of the co-axial structure is greater than unity, then the electron density increases with time and eventually leads to the breakdown. In this paper, the current due to the oscillating electrons in the co-axial geometry has been treated as a radially oriented Hertzian dipole. The electric field, due to this dipole, at any point in the coaxial structure, may then be determined by employing the dyadic Green's function technique. This field has been compared with the field that would exist in the absence of multipactor.
Development of full wave code for modeling RF fields in hot non-uniform plasmas
NASA Astrophysics Data System (ADS)
Zhao, Liangji; Svidzinski, Vladimir; Spencer, Andrew; Kim, Jin-Soo
2016-10-01
FAR-TECH, Inc. is developing a full wave RF modeling code to model RF fields in fusion devices and in general plasma applications. As an important component of the code, an adaptive meshless technique is introduced to solve the wave equations, which allows resolving plasma resonances efficiently and adapting to the complexity of antenna geometry and device boundary. The computational points are generated using either a point elimination method or a force balancing method based on the monitor function, which is calculated by solving the cold plasma dispersion equation locally. Another part of the code is the conductivity kernel calculation, used for modeling the nonlocal hot plasma dielectric response. The conductivity kernel is calculated on a coarse grid of test points and then interpolated linearly onto the computational points. All the components of the code are parallelized using MPI and OpenMP libraries to optimize the execution speed and memory. The algorithm and the results of our numerical approach to solving 2-D wave equations in a tokamak geometry will be presented. Work is supported by the U.S. DOE SBIR program.
RF Testing Of Microwave Integrated Circuits
NASA Technical Reports Server (NTRS)
Romanofsky, R. R.; Ponchak, G. E.; Shalkhauser, K. A.; Bhasin, K. B.
1988-01-01
Fixtures and techniques are undergoing development. Four test fixtures and two advanced techniques developed in continuing efforts to improve RF characterization of MMIC's. Finline/waveguide test fixture developed to test submodules of 30-GHz monolithic receiver. Universal commercially-manufactured coaxial test fixture modified to enable characterization of various microwave solid-state devices in frequency range of 26.5 to 40 GHz. Probe/waveguide fixture is compact, simple, and designed for non destructive testing of large number of MMIC's. Nondestructive-testing fixture includes cosine-tapered ridge, to match impedance wavequide to microstrip. Advanced technique is microwave-wafer probing. Second advanced technique is electro-optical sampling.
NASA Astrophysics Data System (ADS)
Gnapareddy, Bramaramba; Dugasani, Sreekantha Reddy; Son, Junyoung; Park, Sung Ha
2018-02-01
DNA is considered as a useful building bio-material, and it serves as an efficient template to align functionalized nanomaterials. Riboflavin (RF)-doped synthetic double-crossover DNA (DX-DNA) lattices and natural salmon DNA (SDNA) thin films were constructed using substrate-assisted growth and drop-casting methods, respectively, and their topological, chemical and electro-optical characteristics were evaluated. The critical doping concentrations of RF ([RF]C, approx. 5 mM) at given concentrations of DX-DNA and SDNA were obtained by observing the phase transition (from crystalline to amorphous structures) of DX-DNA and precipitation of SDNA in solution above [RF]C. [RF]C are verified by analysing the atomic force microscopy images for DX-DNA and current, absorbance and photoluminescence (PL) for SDNA. We study the physical characteristics of RF-embedded SDNA thin films, using the Fourier transform infrared spectrum to understand the interaction between the RF and DNA molecules, current to evaluate the conductance, absorption to understand the RF binding to the DNA and PL to analyse the energy transfer between the RF and DNA. The current and UV absorption band of SDNA thin films decrease up to [RF]C followed by an increase above [RF]C. By contrast, the PL intensity illustrates the reverse trend, as compared to the current and UV absorption behaviour as a function of the varying [RF]. Owing to the intense PL characteristic of RF, the DNA lattices and thin films with RF might offer immense potential to develop efficient bio-sensors and useful bio-photonic devices.
Gnapareddy, Bramaramba; Son, Junyoung
2018-01-01
DNA is considered as a useful building bio-material, and it serves as an efficient template to align functionalized nanomaterials. Riboflavin (RF)-doped synthetic double-crossover DNA (DX-DNA) lattices and natural salmon DNA (SDNA) thin films were constructed using substrate-assisted growth and drop-casting methods, respectively, and their topological, chemical and electro-optical characteristics were evaluated. The critical doping concentrations of RF ([RF]C, approx. 5 mM) at given concentrations of DX-DNA and SDNA were obtained by observing the phase transition (from crystalline to amorphous structures) of DX-DNA and precipitation of SDNA in solution above [RF]C. [RF]C are verified by analysing the atomic force microscopy images for DX-DNA and current, absorbance and photoluminescence (PL) for SDNA. We study the physical characteristics of RF-embedded SDNA thin films, using the Fourier transform infrared spectrum to understand the interaction between the RF and DNA molecules, current to evaluate the conductance, absorption to understand the RF binding to the DNA and PL to analyse the energy transfer between the RF and DNA. The current and UV absorption band of SDNA thin films decrease up to [RF]C followed by an increase above [RF]C. By contrast, the PL intensity illustrates the reverse trend, as compared to the current and UV absorption behaviour as a function of the varying [RF]. Owing to the intense PL characteristic of RF, the DNA lattices and thin films with RF might offer immense potential to develop efficient bio-sensors and useful bio-photonic devices. PMID:29515837
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doleans, Marc
In this study, an in-situ plasma processing technique has been developed at the Spallation Neutron Source (SNS) to improve the performance of the superconducting radio-frequency (SRF) cavities in operation. The technique uses a low-density reactive neon-oxygen plasma at room-temperature to improve the surface work function, to help remove adsorbed gases on the RF surface and to reduce its secondary emission yield. SNS SRF cavities are six-cell elliptical cavities and the plasma typically ignites in the cell where the electric field is the highest. This article will detail a technique that was developed to ignite and monitor the plasma in eachmore » cell of the SNS cavities.« less
Doleans, Marc
2016-12-27
In this study, an in-situ plasma processing technique has been developed at the Spallation Neutron Source (SNS) to improve the performance of the superconducting radio-frequency (SRF) cavities in operation. The technique uses a low-density reactive neon-oxygen plasma at room-temperature to improve the surface work function, to help remove adsorbed gases on the RF surface and to reduce its secondary emission yield. SNS SRF cavities are six-cell elliptical cavities and the plasma typically ignites in the cell where the electric field is the highest. This article will detail a technique that was developed to ignite and monitor the plasma in eachmore » cell of the SNS cavities.« less
Measured thermal images of a gallium arsenide power MMIC with and without RF applied to the input
NASA Astrophysics Data System (ADS)
Oxley, C. H.; Coaker, B. M.; Priestley, N. E.
2003-04-01
A gallium arsenide microwave monolithic integrated circuit (MMIC) power amplifier (M/ACom type MAAM71100) has been measured using infra-red microscope technology, with and without the application of a RF input signal. A reduction of approximately 10 °C in chip temperature was observed with the application of a RF input signal, which will influence the MTTF of the chip. Further, the measurement technique may be used to monitor the thermal impedance and dynamic cooling of RF power devices under operational conditions in complex circuits.
Study of RF breakdown and multipacting in accelerator components
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pande, Manjiri; Singh, P., E-mail: manjiri@barc.gov.in, E-mail: psingh@barc.gov.in
2014-07-01
Radio frequency (RF) structures that are part of accelerators and energy sources, operate with sinusoidally varying electromagnetic fields under high RF energy. Here, RF breakdown and multipacting take place in RF structures and limit their performance. Electron field emission processes in a RF structure are precursors for breakdown processes. RF breakdown is a major phenomena affecting and causing the irreversible damage to RF structures. Breakdown rate and the damage induced by the breakdowns are its important properties. The damage is related to power absorbed during breakdown, while the breakdown rate is determined by the amplitudes of surface electric and magneticmore » fields, geometry, metal surface preparation and conditioning history. It limits working power and produces irreversible surface damage. The breakdown limit depends on the RF circuit, structure geometry, RF frequency, input RF power, pulse width, materials used, surface processing technique and surface electric and magnetic fields. Multipactor (MP) is a low power, electron multiplication based resonance breakdown phenomenon in vacuum and is often observed in RF structures. A multipactor discharge is undesirable, as it can create a reactive component that detunes the resonant cavities and components, generates noise in communication system and induces gas desorption from the conductor surfaces. In RF structures, certain conditions are required to generate multipacting. (author)« less
Advanced millimeter-wave security portal imaging techniques
NASA Astrophysics Data System (ADS)
Sheen, David M.; Bernacki, Bruce E.; McMakin, Douglas L.
2012-03-01
Millimeter-wave (mm-wave) imaging is rapidly gaining acceptance as a security tool to augment conventional metal detectors and baggage x-ray systems for passenger screening at airports and other secured facilities. This acceptance indicates that the technology has matured; however, many potential improvements can yet be realized. The authors have developed a number of techniques over the last several years including novel image reconstruction and display techniques, polarimetric imaging techniques, array switching schemes, and high-frequency high-bandwidth techniques. All of these may improve the performance of new systems; however, some of these techniques will increase the cost and complexity of the mm-wave security portal imaging systems. Reducing this cost may require the development of novel array designs. In particular, RF photonic methods may provide new solutions to the design and development of the sequentially switched linear mm-wave arrays that are the key element in the mm-wave portal imaging systems. Highfrequency, high-bandwidth designs are difficult to achieve with conventional mm-wave electronic devices, and RF photonic devices may be a practical alternative. In this paper, the mm-wave imaging techniques developed at PNNL are reviewed and the potential for implementing RF photonic mm-wave array designs is explored.
Phase stable RF transport system
Curtin, Michael T.; Natter, Eckard F.; Denney, Peter M.
1992-01-01
An RF transport system delivers a phase-stable RF signal to a load, such as an RF cavity of a charged particle accelerator. A circuit generates a calibration signal at an odd multiple frequency of the RF signal where the calibration signal is superimposed with the RF signal on a common cable that connects the RF signal with the load. Signal isolating diplexers are located at both the RF signal source end and load end of the common cable to enable the calibration to be inserted and extracted from the cable signals without any affect on the RF signal. Any phase shift in the calibration signal during traverse of the common cable is then functionally related to the phase shift in the RF signal. The calibration phase shift is used to control a phase shifter for the RF signal to maintain a stable RF signal at the load.
Role of Escherichia coli dnaG function in coliphage M13 DNA synthesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dasgupta, S.; Mitra, S.
Examination of the role of Escherichia coli dnaG function in different stages of M13 phage DNA synthesis by ultracentrifugal analysis of intracellular phage DNA in a thermosensitive dnaG mutant shows that: (a) the formation of parental double-strand replicative-form DNA (rfDNA) from the infecting virus is independent of dnaG function; (b) the synthesis of progeny rfDNA requires dnaG product; (c) after a pool of rfDNA is made up, dnaG function is not required for the progeny single-strand DNA (ssDNA) synthesis. The ssDNAs produced under nonpermissive condition are mostly circular and biologically functional.
The NASA B-757 HIRF Test Series: Flight Test Results
NASA Technical Reports Server (NTRS)
Moeller, Karl J.; Dudley, Kenneth L.
1997-01-01
In 1995, the NASA Langley Research Center conducted a series of aircraft tests aimed at characterizing the electromagnetic environment (EME) in and around a Boeing 757 airliner. Measurements were made of the electromagnetic energy coupled into the aircraft and the signals induced on select structures as the aircraft was flown past known RF transmitters. These measurements were conducted to provide data for the validation of computational techniques for the assessment of electromagnetic effects in commercial transport aircraft. This paper reports on the results of flight tests using RF radiators in the HF, VHF, and UHF ranges and on efforts to use computational and analytical techniques to predict RF field levels inside the airliner at these frequencies.
NASA Astrophysics Data System (ADS)
Gebhardt, Pierre; Wehner, Jakob; Weissler, Bjoern; Frach, Thomas; Marsden, Paul K.; Schulz, Volkmar
2015-06-01
Devices aiming at combined Positron Emission Tomography (PET) and Magnetic Resonance Imaging (MRI) to enable simultaneous PET/MR image acquisition have to fulfill demanding requirements to avoid mutual magneticas well as electromagnetic-field-related interferences which lead to image quality degradation. Particularly Radio-Frequency (RF)-field-related interferences between PET and MRI may lead to MRI SNR reduction, thereby deteriorating MR image quality. RF shielding of PET electronics is therefore commonly applied to reduce RF emission and lower the potential coupling into MRI RF coil(s). However, shields introduce eddy-current-induced MRI field distortions and should thus be minimized or ideally omitted. Although the MRI noise floor increase caused by a PET system might be acceptable for many MRI applications, some MRI protocols, such as fast or high-resolution MRI scans, typically suffer from low SNR and might need more attention regarding RF silence to preserve the intrinsic MRI SNR. For such cases, we propose RESCUE, an MRI-synchronously-gated PET data acquisition technique: By interrupting the PET acquisition during MR signal receive phases, PET-related RF emission may be minimized, leading to MRI SNR preservation. Our PET insert Hyperion IID using Philips Digital Photon Counting (DPC) sensors serves as the platform to demonstrate RESCUE. To make the DPC sensor suitable for RESCUE to be applied for many MRI sequences with acquisition time windows in the range of a few milliseconds, we present in this paper a new technique which enables rapid DPC sensor operation interruption by dramatically lowering the overhead time to interrupt and restart the sensor operation. Procedures to enter and leave gated PET data acquisition may imply sensitivity losses which add to the ones occurring during MRI RF acquisition. For the case of our PET insert, the new DPC quick-interruption technique yields a PET sensitivity loss reduction by a factor of 78 when compared to the loss introduced with the standard start/stop procedure. For instance, PET sensitivity losses related to overhead time are 2.9% in addition to the loss related to PET gating being equal to the MRI RF acquisition duty cycle (14.7%) for an exemplary T1-weighted 3D-FFE MRI sequence. MRI SNR measurement results obtained with one Singles Detection Module (SDM) using no RF shield demonstrate a noise floor reduction by a factor of 2.1, getting close to the noise floor level of the SNR reference scan (SDM off-powered) when RESCUE was active.
Comparing Pixel- and Object-Based Approaches in Effectively Classifying Wetland-Dominated Landscapes
Berhane, Tedros M.; Lane, Charles R.; Wu, Qiusheng; Anenkhonov, Oleg A.; Chepinoga, Victor V.; Autrey, Bradley C.; Liu, Hongxing
2018-01-01
Wetland ecosystems straddle both terrestrial and aquatic habitats, performing many ecological functions directly and indirectly benefitting humans. However, global wetland losses are substantial. Satellite remote sensing and classification informs wise wetland management and monitoring. Both pixel- and object-based classification approaches using parametric and non-parametric algorithms may be effectively used in describing wetland structure and habitat, but which approach should one select? We conducted both pixel- and object-based image analyses (OBIA) using parametric (Iterative Self-Organizing Data Analysis Technique, ISODATA, and maximum likelihood, ML) and non-parametric (random forest, RF) approaches in the Barguzin Valley, a large wetland (~500 km2) in the Lake Baikal, Russia, drainage basin. Four Quickbird multispectral bands plus various spatial and spectral metrics (e.g., texture, Non-Differentiated Vegetation Index, slope, aspect, etc.) were analyzed using field-based regions of interest sampled to characterize an initial 18 ISODATA-based classes. Parsimoniously using a three-layer stack (Quickbird band 3, water ratio index (WRI), and mean texture) in the analyses resulted in the highest accuracy, 87.9% with pixel-based RF, followed by OBIA RF (segmentation scale 5, 84.6% overall accuracy), followed by pixel-based ML (83.9% overall accuracy). Increasing the predictors from three to five by adding Quickbird bands 2 and 4 decreased the pixel-based overall accuracy while increasing the OBIA RF accuracy to 90.4%. However, McNemar’s chi-square test confirmed no statistically significant difference in overall accuracy among the classifiers (pixel-based ML, RF, or object-based RF) for either the three- or five-layer analyses. Although potentially useful in some circumstances, the OBIA approach requires substantial resources and user input (such as segmentation scale selection—which was found to substantially affect overall accuracy). Hence, we conclude that pixel-based RF approaches are likely satisfactory for classifying wetland-dominated landscapes. PMID:29707381
Berhane, Tedros M; Lane, Charles R; Wu, Qiusheng; Anenkhonov, Oleg A; Chepinoga, Victor V; Autrey, Bradley C; Liu, Hongxing
2018-01-01
Wetland ecosystems straddle both terrestrial and aquatic habitats, performing many ecological functions directly and indirectly benefitting humans. However, global wetland losses are substantial. Satellite remote sensing and classification informs wise wetland management and monitoring. Both pixel- and object-based classification approaches using parametric and non-parametric algorithms may be effectively used in describing wetland structure and habitat, but which approach should one select? We conducted both pixel- and object-based image analyses (OBIA) using parametric (Iterative Self-Organizing Data Analysis Technique, ISODATA, and maximum likelihood, ML) and non-parametric (random forest, RF) approaches in the Barguzin Valley, a large wetland (~500 km 2 ) in the Lake Baikal, Russia, drainage basin. Four Quickbird multispectral bands plus various spatial and spectral metrics (e.g., texture, Non-Differentiated Vegetation Index, slope, aspect, etc.) were analyzed using field-based regions of interest sampled to characterize an initial 18 ISODATA-based classes. Parsimoniously using a three-layer stack (Quickbird band 3, water ratio index (WRI), and mean texture) in the analyses resulted in the highest accuracy, 87.9% with pixel-based RF, followed by OBIA RF (segmentation scale 5, 84.6% overall accuracy), followed by pixel-based ML (83.9% overall accuracy). Increasing the predictors from three to five by adding Quickbird bands 2 and 4 decreased the pixel-based overall accuracy while increasing the OBIA RF accuracy to 90.4%. However, McNemar's chi-square test confirmed no statistically significant difference in overall accuracy among the classifiers (pixel-based ML, RF, or object-based RF) for either the three- or five-layer analyses. Although potentially useful in some circumstances, the OBIA approach requires substantial resources and user input (such as segmentation scale selection-which was found to substantially affect overall accuracy). Hence, we conclude that pixel-based RF approaches are likely satisfactory for classifying wetland-dominated landscapes.
NASA Astrophysics Data System (ADS)
Stork, Martina; Tavan, Paul
2007-04-01
In the preceding paper by Stork and Tavan, [J. Chem. Phys. 126, 165105 (2007)], the authors have reformulated an electrostatic theory which treats proteins surrounded by dielectric solvent continua and approximately solves the associated Poisson equation [B. Egwolf and P. Tavan, J. Chem. Phys. 118, 2039 (2003)]. The resulting solution comprises analytical expressions for the electrostatic reaction field (RF) and potential, which are generated within the protein by the polarization of the surrounding continuum. Here the field and potential are represented in terms of Gaussian RF dipole densities localized at the protein atoms. Quite like in a polarizable force field, also the RF dipole at a given protein atom is induced by the partial charges and RF dipoles at the other atoms. Based on the reformulated theory, the authors have suggested expressions for the RF forces, which obey Newton's third law. Previous continuum approaches, which were also built on solutions of the Poisson equation, used to violate the reactio principle required by this law, and thus were inapplicable to molecular dynamics (MD) simulations. In this paper, the authors suggest a set of techniques by which one can surmount the few remaining hurdles still hampering the application of the theory to MD simulations of soluble proteins and peptides. These techniques comprise the treatment of the RF dipoles within an extended Lagrangian approach and the optimization of the atomic RF polarizabilities. Using the well-studied conformational dynamics of alanine dipeptide as the simplest example, the authors demonstrate the remarkable accuracy and efficiency of the resulting RF-MD approach.
Electromagnetic properties of thin-film transformer-coupled superconducting tunnel junctions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Finnegan, T.F.; Lacquaniti, V.; Vaglio, R.
1981-09-01
Multisection superconducting microstrip transformers with designed output impedances below 0.1 ..cap omega.. have been fabricated via precise photolithographic techniques to investigate the electromagnetic properties of Nb-Nb oxide-Pb tunnel junctions. The low-impedance transformer sections incorporate a rf sputtered thin-film Ta-oxide dielectric, and the reproducible external coupling achievable with this type of geometry makes possible the systematic investigation of electromagnetic device parameters as a function of tunneling oxide thickness.
Quillet, Raphaëlle; Ayachi, Safia; Bihel, Frédéric; Elhabazi, Khadija; Ilien, Brigitte; Simonin, Frédéric
2016-04-01
RF-amide neuropeptides, with their typical Arg-Phe-NH2 signature at their carboxyl C-termini, belong to a lineage of peptides that spans almost the entire life tree. Throughout evolution, RF-amide peptides and their receptors preserved fundamental roles in reproduction and feeding, both in Vertebrates and Invertebrates. The scope of this review is to summarize the current knowledge on the RF-amide systems in Mammals from historical aspects to therapeutic opportunities. Taking advantage of the most recent findings in the field, special focus will be given on molecular and pharmacological properties of RF-amide peptides and their receptors as well as on their implication in the control of different physiological functions including feeding, reproduction and pain. Recent progress on the development of drugs that target RF-amide receptors will also be addressed. Copyright © 2016 Elsevier Inc. All rights reserved.
A Deep Machine Learning Algorithm to Optimize the Forecast of Atmospherics
NASA Astrophysics Data System (ADS)
Russell, A. M.; Alliss, R. J.; Felton, B. D.
Space-based applications from imaging to optical communications are significantly impacted by the atmosphere. Specifically, the occurrence of clouds and optical turbulence can determine whether a mission is a success or a failure. In the case of space-based imaging applications, clouds produce atmospheric transmission losses that can make it impossible for an electro-optical platform to image its target. Hence, accurate predictions of negative atmospheric effects are a high priority in order to facilitate the efficient scheduling of resources. This study seeks to revolutionize our understanding of and our ability to predict such atmospheric events through the mining of data from a high-resolution Numerical Weather Prediction (NWP) model. Specifically, output from the Weather Research and Forecasting (WRF) model is mined using a Random Forest (RF) ensemble classification and regression approach in order to improve the prediction of low cloud cover over the Haleakala summit of the Hawaiian island of Maui. RF techniques have a number of advantages including the ability to capture non-linear associations between the predictors (in this case physical variables from WRF such as temperature, relative humidity, wind speed and pressure) and the predictand (clouds), which becomes critical when dealing with the complex non-linear occurrence of clouds. In addition, RF techniques are capable of representing complex spatial-temporal dynamics to some extent. Input predictors to the WRF-based RF model are strategically selected based on expert knowledge and a series of sensitivity tests. Ultimately, three types of WRF predictors are chosen: local surface predictors, regional 3D moisture predictors and regional inversion predictors. A suite of RF experiments is performed using these predictors in order to evaluate the performance of the hybrid RF-WRF technique. The RF model is trained and tuned on approximately half of the input dataset and evaluated on the other half. The RF approach is validated using in-situ observations of clouds. All of the hybrid RF-WRF experiments demonstrated here significantly outperform the base WRF local low cloud cover forecasts in terms of the probability of detection and the overall bias. In particular, RF experiments that use only regional three-dimensional moisture predictors from the WRF model produce the highest accuracy when compared to RF experiments that use local surface predictors only or regional inversion predictors only. Furthermore, adding multiple types of WRF predictors and additional WRF predictors to the RF algorithm does not necessarily add more value in the resulting forecasts, indicating that it is better to have a small set of meaningful predictors than to have a vast set of indiscriminately-chosen predictors. This work also reveals that the WRF-based RF approach is highly sensitive to the time period over which the algorithm is trained and evaluated. Future work will focus on developing a similar WRF-based RF model for high cloud prediction and expanding the algorithm to two-dimensions horizontally.
Improving the work function of the niobium surface of SRF cavities by plasma processing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tyagi, P. V.; Doleans, M.; Hannah, B.
2016-01-01
An in situ plasma processing technique using chemically reactive oxygen plasma to remove hydrocarbons from superconducting radio frequency cavity surfaces at room temperature was developed at the spallation neutron source, at Oak Ridge National Laboratory. To understand better the interaction between the plasma and niobium surface, surface studies on small samples were performed. In this article, we report the results from those surface studies. The results show that plasma processing removes hydrocarbons from top surface and improves the surface work function by 0.5₋1.0 eV. Improving the work function of RF surface of cavities can help to improve their operational performance.
Multiple conversion between the genes encoding bacterial class-I release factors
Ishikawa, Sohta A.; Kamikawa, Ryoma; Inagaki, Yuji
2015-01-01
Bacteria require two class-I release factors, RF1 and RF2, that recognize stop codons and promote peptide release from the ribosome. RF1 and RF2 were most likely established through gene duplication followed by altering their stop codon specificities in the common ancestor of extant bacteria. This scenario expects that the two RF gene families have taken independent evolutionary trajectories after the ancestral gene duplication event. However, we here report two independent cases of conversion between RF1 and RF2 genes (RF1-RF2 gene conversion), which were severely examined by procedures incorporating the maximum-likelihood phylogenetic method. In both cases, RF1-RF2 gene conversion was predicted to occur in the region encoding nearly entire domain 3, of which functions are common between RF paralogues. Nevertheless, the ‘direction’ of gene conversion appeared to be opposite from one another—from RF2 gene to RF1 gene in one case, while from RF1 gene to RF2 gene in the other. The two cases of RF1-RF2 gene conversion prompt us to propose two novel aspects in the evolution of bacterial class-I release factors: (i) domain 3 is interchangeable between RF paralogues, and (ii) RF1-RF2 gene conversion have occurred frequently in bacterial genome evolution. PMID:26257102
Reaction of the immune system to low-level RF/MW exposures.
Szmigielski, Stanislaw
2013-06-01
Radiofrequency (RF) and microwave (MW) radiation have been used in the modern world for many years. The rapidly increasing use of cellular phones in recent years has seen increased interest in relation to the possible health effects of exposure to RF/MW radiation. In 2011 a group of international experts organized by the IARC (International Agency for Research on Cancer in Lyon) concluded that RF/MW radiations should be listed as a possible carcinogen (group 2B) for humans. The incomplete knowledge of RF/MW-related cancer risks has initiated searches for biological indicators sensitive enough to measure the "weak biological influence" of RF/MWs. One of the main candidates is the immune system, which is able to react in a measurable way to discrete environmental stimuli. In this review, the impacts of weak RF/MW fields, including cell phone radiation, on various immune functions, both in vitro and in vivo, are discussed. The bulk of available evidence clearly indicates that various shifts in the number and/or activity of immunocompetent cells are possible, however the results are inconsistent. For example, a number of lymphocyte functions have been found to be enhanced and weakened within single experiments based on exposure to similar intensities of MW radiation. Certain premises exist which indicate that, in general, short-term exposure to weak MW radiation may temporarily stimulate certain humoral or cellular immune functions, while prolonged irradiation inhibits the same functions. Copyright © 2013. Published by Elsevier B.V.
van der Ploeg, Tjeerd; Austin, Peter C; Steyerberg, Ewout W
2014-12-22
Modern modelling techniques may potentially provide more accurate predictions of binary outcomes than classical techniques. We aimed to study the predictive performance of different modelling techniques in relation to the effective sample size ("data hungriness"). We performed simulation studies based on three clinical cohorts: 1282 patients with head and neck cancer (with 46.9% 5 year survival), 1731 patients with traumatic brain injury (22.3% 6 month mortality) and 3181 patients with minor head injury (7.6% with CT scan abnormalities). We compared three relatively modern modelling techniques: support vector machines (SVM), neural nets (NN), and random forests (RF) and two classical techniques: logistic regression (LR) and classification and regression trees (CART). We created three large artificial databases with 20 fold, 10 fold and 6 fold replication of subjects, where we generated dichotomous outcomes according to different underlying models. We applied each modelling technique to increasingly larger development parts (100 repetitions). The area under the ROC-curve (AUC) indicated the performance of each model in the development part and in an independent validation part. Data hungriness was defined by plateauing of AUC and small optimism (difference between the mean apparent AUC and the mean validated AUC <0.01). We found that a stable AUC was reached by LR at approximately 20 to 50 events per variable, followed by CART, SVM, NN and RF models. Optimism decreased with increasing sample sizes and the same ranking of techniques. The RF, SVM and NN models showed instability and a high optimism even with >200 events per variable. Modern modelling techniques such as SVM, NN and RF may need over 10 times as many events per variable to achieve a stable AUC and a small optimism than classical modelling techniques such as LR. This implies that such modern techniques should only be used in medical prediction problems if very large data sets are available.
Antonsen, Bjørnar T; Johansen, Merete S; Rø, Frida G; Kvarstein, Elfrida H; Wilberg, Theresa
2016-01-01
Mentalization is the capacity to understand behavior as the expression of various mental states and is assumed to be important in a range of psychopathologies, especially personality disorders (PDs). The first aim of the present study was to investigate the relationship between mentalization capacity, operationalized as reflective functioning (RF), and clinical manifestations before entering study treatment. The second aim was to investigate the relationship between baseline RF and long-term clinical outcome both independent of treatment (predictor analyses) and dependent on treatment (moderator analyses). Seventy-nine patients from a randomized clinical trial (Ullevål Personality Project) who had borderline and/or avoidant PD were randomly assigned to either a step-down treatment program, comprising short-term day-hospital treatment followed by outpatient combined group and individual psychotherapy, or to outpatient individual psychotherapy. Patients were evaluated on variables including symptomatic distress, psychosocial functioning, personality functioning, and self-esteem at baseline, 8 and 18months, and 3 and 6years. RF was significantly associated with a wide range of variables at baseline. In longitudinal analyses RF was not found to be a predictor of long-term clinical outcome. However, when considering treatment type, there were significant moderator effects of RF. Patients with low RF had better outcomes in outpatient individual therapy compared to the step-down program. In contrast, patients in the medium RF group achieved better results in the step-down program. These findings indicate that RF is associated with core aspects of personality pathology and capture clinically relevant phenomena in adult patients with PDs. Moreover, patients with different capacities for mentalization may need different kinds of therapeutic approaches. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
High-order multiband encoding in the heart.
Cunningham, Charles H; Wright, Graham A; Wood, Michael L
2002-10-01
Spatial encoding with multiband selective excitation (e.g., Hadamard encoding) has been restricted to a small number of slices because the RF pulse becomes unacceptably long when more than about eight slices are encoded. In this work, techniques to shorten multiband RF pulses, and thus allow larger numbers of slices, are investigated. A method for applying the techniques while retaining the capability of adaptive slice thickness is outlined. A tradeoff between slice thickness and pulse duration is shown. Simulations and experiments with the shortened pulses confirmed that motion-induced excitation profile blurring and phase accrual were reduced. The connection between gradient hardware limitations, slice thickness, and flow sensitivity is shown. Excitation profiles for encoding 32 contiguous slices of 1-mm thickness were measured experimentally, and the artifact resulting from errors in timing of RF pulse relative to gradient was investigated. A multiband technique for imaging 32 contiguous 2-mm slices, with adaptive slice thickness, was developed and demonstrated for coronary artery imaging in healthy subjects. With the ability to image high numbers of contiguous slices, using relatively short (1-2 ms) RF pulses, multiband encoding has been advanced further toward practical application. Copyright 2002 Wiley-Liss, Inc.
MR Fingerprinting Using The Quick Echo Splitting NMR Imaging Technique
Jiang, Yun; Ma, Dan; Jerecic, Renate; Duerk, Jeffrey; Seiberlich, Nicole; Gulani, Vikas; Griswold, Mark A.
2016-01-01
Purpose The purpose of the study is to develop a quantitative method for the relaxation properties with a reduced radio frequency (RF) power deposition by combining Magnetic Resonance Fingerprinting (MRF) technique with Quick Echo Splitting NMR Imaging Technique (QUEST). Methods A QUEST-based MRF sequence was implemented to acquire high order echoes by increasing the gaps between RF pulses. Bloch simulations were used to calculate a dictionary containing the range of physically plausible signal evolutions using a range of T1 and T2 values based on the pulse sequence. MRF-QUEST was evaluated by comparing to the results of spin-echo methods. The SAR of QUEST-MRF was compared to the clinically available methods. Results MRF-QUEST quantifies the relaxation properties with good accuracy at the estimated head Specific Absorption Rate (SAR) of 0.03 W/kg. T1 and T2 values estimated by MRF-QUEST are in good agreement with the traditional methods. Conclusion The combination of the MRF and the QUEST provides an accurate quantification of T1 and T2 simultaneously with reduced RF power deposition. The resulting lower SAR may provide a new acquisition strategy for MRF when RF energy deposition is problematic. PMID:26924639
[Variation of cognitive functions and glycemia during physical exercise in Ramadan fasting].
Lotfi, S; Madani, M; Tazi, A; Boumahmaza, M; Talbi, M
2010-01-01
During the month of Ramadan, Muslims fast every day from dawn to sunset. Several studies have shown that Ramadan fasting affects biochemical parameters, sleep/wake cycle, behaviour and food habits. The purpose of the study was to evaluate the effect of Ramadan fasting (RF) and physical exercise on cognitive functions, blood glucose. Eleven healthy male volunteers aged 20.45+/-1.65 years were assessed before RF (B.RF), during the 1st week (wk), 3rd wk and 1 wk B.RF, in blood sugar, work memory (WM), visual perception (VP), before exercise (B. Ex) and after exercise (A. Ex) exercise of 1000 m. Compared to control days (B.RF), there were no significant changes in body mass index. Physical performance declined significantly during 1st wk (p<0.001), 3th wk (p<0.013) and before (p<0.046) of RF. At the level of the glycemia, the results show a significant effect of Ramadan by increasing gradually during Ramadan but nevertheless, the values remain lower of 100mg/dl. No significant change was observed between B. Ex and A. Ex value in WM during RF. However, the WM A. Ex value increase significantly during and after RF (respectively 1st wk (p<0.013), 3rd wk (p<0.005) and before (p<0.003). The VP was significantly affected by fasting effect (F=16.84, p<0.001) and exercise effect (F=14.01, p<0.0001), and was progressively increased 15.56% in the 1st wk, 25.69%, the 3rd wk during RF, and 27.07% A.RF, but no significant change was found in errors performances of VP during and after RF. These results showed that the intermittent fasting imply differently effects on cognitive functions and physiological. Copyright © 2010 Elsevier Masson SAS. All rights reserved.
Center conductor diagnostic for multipactor detection in inaccessible geometries
NASA Astrophysics Data System (ADS)
Chaplin, Vernon H.; Hubble, Aimee A.; Clements, Kathryn A.; Graves, Timothy P.
2017-01-01
Electron collecting current probes are the most reliable diagnostic of multipactor and radiofrequency (RF) ionization breakdown; however, stand-alone probes can only be used in test setups where the breakdown region is physically accessible. This paper describes techniques for measuring multipactor current directly on the center conductor of a coaxial RF device (or more generally, on the signal line in any two-conductor RF system) enabling global multipactor detection with improved sensitivity compared to other common diagnostics such as phase null, third harmonic, and reflected power. The center conductor diagnostic may be AC coupled for use in systems with a low DC impedance between the center conductor and ground. The effect of DC bias on the breakdown threshold was studied: in coaxial geometry, the change in threshold was <1 dB for positive biases satisfying VD C/VR F 0 <0.8 , where VRF0 is the RF voltage amplitude at the unperturbed breakdown threshold. In parallel plate geometry, setting VD C/VR F 0 <0.2 was necessary to avoid altering the threshold by more than 1 dB. In most cases, the center conductor diagnostic functions effectively with no bias at all—this is the preferred implementation, but biases in the range VD C=0 -10 V may be applied if necessary. The polarity of the detected current signal may be positive or negative depending on whether there is net electron collection or emission globally.
Interview with Dr. Stuart O. Nelson
USDA-ARS?s Scientific Manuscript database
Research equipment and techniques used in exploring effects of radio-frequency (RF) dielectric heating on materials of interest in agriculture are described. Research findings are summarized for studies on stored-grain insect control by RF selective heating of the insects and resulting insect morta...
Lordêlo, Patrícia; Leal, Mariana Robatto Dantas; Brasil, Cristina Aires; Santos, Juliana Menezes; Lima, Maria Clara Neves Pavie Cardoso; Sartori, Marair Gracio Ferreira
2016-11-01
Female sexual behavior goes through cultural changes constantly, and recently, some women have shown the desire the ideal genitalia. In this study, we aimed to evaluate clinical responses to nonablative radiofrequency (RF) in terms of its cosmetic outcome in the female external genitalia and its effect on sexual function. A single-masking randomized controlled trial was conducted in 43 women (29 sexually active) who were unsatisfied with the appearance of their external genitalia. The women were divided into an RF group (n = 21, 14 sexually active) and a control group (n = 22, 15 sexually active). Eight sessions of RF were performed once a week. Photographs (taken before the first session and 8 days after the last session) were evaluated by the women and three blinded health professionals by using two 3-point Likert scales (unsatisfied, unchanged, and satisfied; and worst, unchanged, and improved). Sexual function was evaluated using the Female Sexual Function Index (FSFI) and analyzed using the Student t test. Women's satisfaction and health professional evaluation were analyzed using the chi-square test and inter- and intragroup binomial comparisons. Satisfaction response rates were 76 and 27 % for the RF and control groups, respectively (p = 0.001). All professionals found a clinical improvement association in the treated group with RF in comparison with the control group (p < 0.01). The overall FSFI sexual function score increased by 3.51 points in the RF group vs 0.1 points in the control group (p = 0.003). RF is an alternative for attaining a cosmetic outcome for the female external genitalia, with positives changes in patients' satisfaction and FSFI scores.
Tantawi, Sami G.; Vlieks, Arnold E.
1998-09-01
A compact high-power RF load comprises a series of very low Q resonators, or chokes [16], in a circular waveguide [10]. The sequence of chokes absorb the RF power gradually in a short distance while keeping the bandwidth relatively wide. A polarizer [12] at the input end of the load is provided to convert incoming TE.sub.10 mode signals to circularly polarized TE.sub.11 mode signals. Because the load operates in the circularly polarized mode, the energy is uniformly and efficiently absorbed and the load is more compact than a rectangular load. Using these techniques, a load having a bandwidth of 500 MHz can be produced with an average power dissipation level of 1.5 kW at X-band, and a peak power dissipation of 100 MW. The load can be made from common lossy materials, such as stainless steel, and is less than 15 cm in length. These techniques can also produce loads for use as an alternative to ordinary waveguide loads in small and medium RF accelerators, in radar systems, and in other microwave applications. The design is easily scalable to other RF frequencies and adaptable to the use of other lossy materials.
A Study of Direct Digital Manufactured RF/Microwave Packaging
NASA Astrophysics Data System (ADS)
Stratton, John W. I.
Various facets of direct digital manufactured (DDM) microwave packages are studied. The rippled surface inherent in fused deposition modeling (FDM) fabricated geometries is modeled in Ansoft HFSS, and its effect on the performance of microstrip transmission lines is assessed via simulation and measurement. The thermal response of DDM microstrip transmission lines is analyzed over a range of RF input powers, and linearity is confirmed over that range. Two IC packages are embedded into DDM printed circuit boards, and their performance is analyzed. The first is a low power RF switch, and the second is an RF front end device that includes a low noise amplifier (LNA) and a power amplifier (PA). The RF switch is shown to perform well, as compared to a layout designed for a Rogers 4003C microwave laminate substrate. The LNA performs within datasheet specifications. The power amplifier generates substantial heat, so a thermal management attempt is described. Finally, a capacitively loaded 6dB Wilkinson power divider is designed and fabricated using DDM techniques and materials. Its performance is analyzed and compared to simulation. The device is shown to compare favorably to a similar device fabricated on a Rogers 4003C microwave laminate using traditional printed circuit board techniques.
Lin, Shi-Ming; Lin, Chen-Chun; Chen, Wei-Ting; Chen, Yi-Chen; Hsu, Chao-Wei
2007-09-01
To compare the effectiveness of ablation techniques for hepatocellular carcinoma (HCC) with the use of four radiofrequency (RF) devices. One hundred patients with 133 HCC lesions no larger than 4 cm were treated with one of four RF devices: RF 2000 (maximum power, 100 W) and RF 3000 generators (maximum power, 200 W) with LeVeen expandable electrodes with a maximum dimension of 3.5 cm or 4 cm, internally cooled single electrode with a thermal dimension of 3 cm, and a RITA RF generator with expandable electrodes with a maximum dimension of 5 cm. Numbers of RF sessions needed per HCC to achieve complete necrosis were 1.4 +/- 0.5 with the RF 2000 device and greater than 1.1 +/- 0.3 with the other three devices (P < .05). The RF 2000 device required a more interactive algorithm than the RF 3000 device. Session times per patient were 31.7 minutes +/- 13.2 in the RF 2000 group and longer than 16.6 minutes +/- 7.5 in the RF 3000 group, 28.3 minutes +/- 12 in the RITA device group, and 27.1 minutes +/- 12 with the internally cooled electrode device (P < .005 for RF 2000 vs other devices and for RF 3000 vs RITA or internally cooled electrode device). Complete necrosis and local tumor progression rates at 2 years in the RF 2000, RF 3000, RITA, and internally cooled electrode device groups were 91.1%, 97.1%, 96.7%, and 96.8% and 12%, 8%, 8.2%, and 8.3%, respectively (P = .37). Ablation with the RF 3000 device required a shorter time than the other three devices and required a less interactive algorithm than the RF 2000 device. However, complete necrosis and local tumor progression rates were similar among devices.
Ion beam sputter etching and deposition of fluoropolymers
NASA Technical Reports Server (NTRS)
Banks, B. A.; Sovey, J. S.; Miller, T. B.; Crandall, K. S.
1978-01-01
Fluoropolymer etching and deposition techniques including thermal evaporation, RF sputtering, plasma polymerization, and ion beam sputtering are reviewed. Etching and deposition mechanism and material characteristics are discussed. Ion beam sputter etch rates for polytetrafluoroethylene (PTFE) were determined as a function of ion energy, current density and ion beam power density. Peel strengths were measured for epoxy bonds to various ion beam sputtered fluoropolymers. Coefficients of static and dynamic friction were measured for fluoropolymers deposited from ion bombarded PTFE.
Bourdillon, Pierre; Isnard, Jean; Catenoix, Hélène; Montavont, Alexandra; Rheims, Sylvain; Ryvlin, Philippe; Ostrowsky-Coste, Karine; Mauguiere, François; Guénot, Marc
2017-01-01
Stereo electroencephalography (SEEG)-guided radiofrequency thermocoagulation (SEEG-guided RF-TC) has been proposed since 2004 as a possible treatment of some focal drug-resistant epilepsy. The aim of this study is to provide extensive data about efficacy and safety of SEEG-guided RF-TC. Over a 10-year period, 162 patients with drug-resistant focal epilepsy were eligible for SEEG-guided RF-TG during phase II invasive investigation by SEEG. All follow-up and safety data were collected prospectively. The primary outcome was seizure freedom at 2 months and at 1 year after SEEG-guided RF-TC. Secondary outcomes were the responders' rate (patient with at least 50% decrease in seizure frequency) and their long-term follow-up. Twenty-five percent of patients were seizure-free at 2 months and 7% at 1 year. We reported 67% of responders at 2 months and 48% at 1 year; 58% of responders maintained their status during the long-term follow-up. The seizure outcome was significantly better when the SEEG-guided RF-TC involved the occipital region (p = 0.007). When surgery followed an SEEG-guided RF-TC, the positive predictive value of being a responder 2 months after an SEEG-guided RF-TC and to be Engel's class I or II after surgery was 93%. We reported 1.1% of permanent deficit and 2.4% of transient side effects. Our results, gathered in a large population over a 10-year period, confirm that SEEG-guided RF-TC is a safe technique, being efficient in many cases. More than two thirds of patients showed a short-term improvement, and almost half of them were responders at 1-year follow-up. The technique appears to be especially interesting for limited epileptic zone inaccessible to surgery and when epilepsy is related to a large unilateral network (network disruption by multiple RF-TC). Furthermore, SEEG-guided RF-TC effect is a predictor of outcome after conventional cortectomy in patients eligible for surgery. Wiley Periodicals, Inc. © 2016 International League Against Epilepsy.
Hegarty, Dominic
2016-01-01
Sacroiliac joint syndrome (SIJ) is diagnosed in 10% to 25% of cases of lower back pain. The response to traditional radiofrequency (RF) denervation of the SIJ has being inconsistent. The Simplicity III RF probe (Neruotherm. Inc.) offers a novel treatment option. To evaluate the long-term clinical outcome (12 months) refractory SIJ syndrome in terms of pain intensity and functional improvement. A 50% reduction in intensity pain intensity (VAS) at 12 months was deemed clinically significant. A 12-month retrospective observational evaluation all of adults treated with RF for refractory SIJ. Chronic pain management center. The medical records of all adults treated with this technique was retrospectively reviewed. The primary outcome was pain intensity scores (VAS) over a 12 months period; Secondary outcomes included Roland-Morris Functional scores (RMF), Brief Pain Inventory (BPI), general health assessment (Sf12), and patient satisfaction scores (GPI), which were recorded pre and post denervation. Pain Intensity improved by 4.7 points compared to pre-treatment representing a 61% reduction in pain at 12 months (n=11, P < 0.001). Significant improvements in (a) RMF (P < 0.01, W2 = 0.63 (large effect size); (b) BPI (P < 0.001, W2 = 0.72 (strong effect size); and (c) Sf12 (P < 0.01) were noted. Overall patients were satisfied with the outcome (GPI = 77.7%). The retrospective in nature of the study and the small sample size are limitations. As it was our policy to monitor the progress of the individuals since the introduction of this technique a reliable method of recording the baseline and outcome variables at each point of contact was in place. Access to a complete set of variables in all individuals over a 12-month period was therefore possible, which we feel contributes to the quality of the dataset. By creating a consistent radiofrequency lesion between the sacral foramen and the SIJ will reliably capture the innervation to the SIJ with significant long-term clinical improvement. This technique should be considered earlier in the treatment algorithm of individuals suffering from SIJ symptoms.
Using optimal control methods with constraints to generate singlet states in NMR
NASA Astrophysics Data System (ADS)
Rodin, Bogdan A.; Kiryutin, Alexey S.; Yurkovskaya, Alexandra V.; Ivanov, Konstantin L.; Yamamoto, Satoru; Sato, Kazunobu; Takui, Takeji
2018-06-01
A method is proposed for optimizing the performance of the APSOC (Adiabatic-Passage Spin Order Conversion) technique, which can be exploited in NMR experiments with singlet spin states. In this technique magnetization-to-singlet conversion (and singlet-to-magnetization conversion) is performed by using adiabatically ramped RF-fields. Optimization utilizes the GRAPE (Gradient Ascent Pulse Engineering) approach, in which for a fixed search area we assume monotonicity to the envelope of the RF-field. Such an approach allows one to achieve much better performance for APSOC; consequently, the efficiency of magnetization-to-singlet conversion is greatly improved as compared to simple model RF-ramps, e.g., linear ramps. We also demonstrate that the optimization method is reasonably robust to possible inaccuracies in determining NMR parameters of the spin system under study and also in setting the RF-field parameters. The present approach can be exploited in other NMR and EPR applications using adiabatic switching of spin Hamiltonians.
Studies of EUV contamination mitigation
NASA Astrophysics Data System (ADS)
Graham, Samual, Jr.; Malinowski, Michael E.; Steinhaus, Chip; Grunow, Philip A.; Klebanoff, Leonard E.
2002-07-01
Carbon contamination removal was investigated using remote RF-O2, RF-H2, and atomic hydrogen experiments. Samples consisted of silicon wafers coated with 100 Angstrom sputtered carbon, as well as bare Si-capped Mo/Si optics. Samples were exposed to atomic hydrogen or RF plasma discharges at 100 W, 200 W, and 300 W. Carbon removal rate, optic oxidation rate, at-wavelength (13.4 nm) peak reflectance, and optic surface roughness were characterized. Data show that RF- O2 removes carbon at a rate approximately 6 times faster RF- H2 for a given discharge power. However, both cleaning techniques induce Mo/Si optic degradation through the loss of reflectivity associated with surface oxide growth for RF-O2 and an unknown mechanism with hydrogen cleaning. Atomic hydrogen cleaning shows carbon removal rates sufficient for use as an in-situ cleaning strategy for EUVoptics with less risk of optic degradation from overexposures than RF-discharge cleaning. While hydrogen cleaning (RF and atomic) of EUV optics has proven effective in carbon removal, attempts to dissociate hydrogen in co-exposures with EUV radiation have resulted in no detectable removal of carbon contamination.
Shareef, Hussain; Mutlag, Ammar Hussein; Mohamed, Azah
2017-01-01
Many maximum power point tracking (MPPT) algorithms have been developed in recent years to maximize the produced PV energy. These algorithms are not sufficiently robust because of fast-changing environmental conditions, efficiency, accuracy at steady-state value, and dynamics of the tracking algorithm. Thus, this paper proposes a new random forest (RF) model to improve MPPT performance. The RF model has the ability to capture the nonlinear association of patterns between predictors, such as irradiance and temperature, to determine accurate maximum power point. A RF-based tracker is designed for 25 SolarTIFSTF-120P6 PV modules, with the capacity of 3 kW peak using two high-speed sensors. For this purpose, a complete PV system is modeled using 300,000 data samples and simulated using the MATLAB/SIMULINK package. The proposed RF-based MPPT is then tested under actual environmental conditions for 24 days to validate the accuracy and dynamic response. The response of the RF-based MPPT model is also compared with that of the artificial neural network and adaptive neurofuzzy inference system algorithms for further validation. The results show that the proposed MPPT technique gives significant improvement compared with that of other techniques. In addition, the RF model passes the Bland-Altman test, with more than 95 percent acceptability.
Shareef, Hussain; Mohamed, Azah
2017-01-01
Many maximum power point tracking (MPPT) algorithms have been developed in recent years to maximize the produced PV energy. These algorithms are not sufficiently robust because of fast-changing environmental conditions, efficiency, accuracy at steady-state value, and dynamics of the tracking algorithm. Thus, this paper proposes a new random forest (RF) model to improve MPPT performance. The RF model has the ability to capture the nonlinear association of patterns between predictors, such as irradiance and temperature, to determine accurate maximum power point. A RF-based tracker is designed for 25 SolarTIFSTF-120P6 PV modules, with the capacity of 3 kW peak using two high-speed sensors. For this purpose, a complete PV system is modeled using 300,000 data samples and simulated using the MATLAB/SIMULINK package. The proposed RF-based MPPT is then tested under actual environmental conditions for 24 days to validate the accuracy and dynamic response. The response of the RF-based MPPT model is also compared with that of the artificial neural network and adaptive neurofuzzy inference system algorithms for further validation. The results show that the proposed MPPT technique gives significant improvement compared with that of other techniques. In addition, the RF model passes the Bland–Altman test, with more than 95 percent acceptability. PMID:28702051
Machine learning in computational docking.
Khamis, Mohamed A; Gomaa, Walid; Ahmed, Walaa F
2015-03-01
The objective of this paper is to highlight the state-of-the-art machine learning (ML) techniques in computational docking. The use of smart computational methods in the life cycle of drug design is relatively a recent development that has gained much popularity and interest over the last few years. Central to this methodology is the notion of computational docking which is the process of predicting the best pose (orientation + conformation) of a small molecule (drug candidate) when bound to a target larger receptor molecule (protein) in order to form a stable complex molecule. In computational docking, a large number of binding poses are evaluated and ranked using a scoring function. The scoring function is a mathematical predictive model that produces a score that represents the binding free energy, and hence the stability, of the resulting complex molecule. Generally, such a function should produce a set of plausible ligands ranked according to their binding stability along with their binding poses. In more practical terms, an effective scoring function should produce promising drug candidates which can then be synthesized and physically screened using high throughput screening process. Therefore, the key to computer-aided drug design is the design of an efficient highly accurate scoring function (using ML techniques). The methods presented in this paper are specifically based on ML techniques. Despite many traditional techniques have been proposed, the performance was generally poor. Only in the last few years started the application of the ML technology in the design of scoring functions; and the results have been very promising. The ML-based techniques are based on various molecular features extracted from the abundance of protein-ligand information in the public molecular databases, e.g., protein data bank bind (PDBbind). In this paper, we present this paradigm shift elaborating on the main constituent elements of the ML approach to molecular docking along with the state-of-the-art research in this area. For instance, the best random forest (RF)-based scoring function on PDBbind v2007 achieves a Pearson correlation coefficient between the predicted and experimentally determined binding affinities of 0.803 while the best conventional scoring function achieves 0.644. The best RF-based ranking power ranks the ligands correctly based on their experimentally determined binding affinities with accuracy 62.5% and identifies the top binding ligand with accuracy 78.1%. We conclude with open questions and potential future research directions that can be pursued in smart computational docking; using molecular features of different nature (geometrical, energy terms, pharmacophore), advanced ML techniques (e.g., deep learning), combining more than one ML models. Copyright © 2015 Elsevier B.V. All rights reserved.
OPAL: prediction of MoRF regions in intrinsically disordered protein sequences.
Sharma, Ronesh; Raicar, Gaurav; Tsunoda, Tatsuhiko; Patil, Ashwini; Sharma, Alok
2018-06-01
Intrinsically disordered proteins lack stable 3-dimensional structure and play a crucial role in performing various biological functions. Key to their biological function are the molecular recognition features (MoRFs) located within long disordered regions. Computationally identifying these MoRFs from disordered protein sequences is a challenging task. In this study, we present a new MoRF predictor, OPAL, to identify MoRFs in disordered protein sequences. OPAL utilizes two independent sources of information computed using different component predictors. The scores are processed and combined using common averaging method. The first score is computed using a component MoRF predictor which utilizes composition and sequence similarity of MoRF and non-MoRF regions to detect MoRFs. The second score is calculated using half-sphere exposure (HSE), solvent accessible surface area (ASA) and backbone angle information of the disordered protein sequence, using information from the amino acid properties of flanks surrounding the MoRFs to distinguish MoRF and non-MoRF residues. OPAL is evaluated using test sets that were previously used to evaluate MoRF predictors, MoRFpred, MoRFchibi and MoRFchibi-web. The results demonstrate that OPAL outperforms all the available MoRF predictors and is the most accurate predictor available for MoRF prediction. It is available at http://www.alok-ai-lab.com/tools/opal/. ashwini@hgc.jp or alok.sharma@griffith.edu.au. Supplementary data are available at Bioinformatics online.
Evaluation of a role functioning computer adaptive test (RF-CAT).
Anatchkova, M; Rose, M; Ware, J; Bjorner, J B
2013-06-01
To evaluate the validity and participants' acceptance of an online assessment of role function using computer adaptive test (RF-CAT). The RF-CAT and a set of established quality of life instruments were administered in a cross-sectional study in a panel sample (n = 444) recruited from the general population with over-selection of participants with selected self-report chronic conditions (n = 225). The efficiency, score accuracy, validity, and acceptability of the RF-CAT were evaluated and compared to existing measures. The RF-CAT with a stopping rule of six items with content balancing used 25 of the available bank items and was completed on average in 66 s. RF-CAT and the legacy tools scores were highly correlated (.64-.84) and successfully discriminated across known groups. The RF-CAT produced a more precise assessment over a wider range than the SF-36 Role Physical scale. Patients' evaluations of the RF-CAT system were positive overall, with no differences in ratings observed between the CAT and static assessments. The RF-CAT was feasible, more precise than the static SF-36 RP and equally acceptable to participants as legacy measures. In empirical tests of validity, the better performance of the CAT was not uniformly statistically significant. Further research exploring the relationship between gained precision and discriminant power of the CAT assessment is needed.
Acoustic Wave Filter Technology-A Review.
Ruppel, Clemens C W
2017-09-01
Today, acoustic filters are the filter technology to meet the requirements with respect to performance dictated by the cellular phone standards and their form factor. Around two billion cellular phones are sold every year, and smart phones are of a very high percentage of approximately two-thirds. Smart phones require a very high number of filter functions ranging from the low double-digit range up to almost triple digit numbers in the near future. In the frequency range up to 1 GHz, surface acoustic wave (SAW) filters are almost exclusively employed, while in the higher frequency range, bulk acoustic wave (BAW) and SAW filters are competing for their shares. Prerequisites for the success of acoustic filters were the availability of high-quality substrates, advanced and highly reproducible fabrication technologies, optimum filter techniques, precise simulation software, and advanced design tools that allow the fast and efficient design according to customer specifications. This paper will try to focus on innovations leading to high volume applications of intermediate frequency (IF) and radio frequency (RF) acoustic filters, e.g., TV IF filters, IF filters for cellular phones, and SAW/BAW RF filters for the RF front-end of cellular phones.
Kinetic Modeling of RF Breakdown in High-Pressure Gas-filled Cavities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tollestrup, A. V.; Yonehara, K.; Byrd, J. M.
2012-05-01
Recent studies have shown that high gradients can be achieved quickly in high-pressure gas-filled cavities without the need for long conditioning times, because the dense gas can dramatically reduce dark currents and multipacting. In this proj ect we use this high pressure technique to suppress effects of residual vacuum and geometry found in evacuated cavities to isolate and study the role of the metallic surfaces in RF cavity breakdown as a function of radiofrequency and surface preparation. A series of experiments at 805 MHz using hydrogen fill pressures up to 0.01 g/cm3 of H2 have demonstrated high electric field gradientsmore » and scaling with the DC Paschen law limit, up to ~30 MV/m, depending on the choice of electrode material. For higher fi eld stresses, the breakdown characteristics deviate from the Paschen law scaling. Fully-kinetic 0D collisional particle-in-cell (PIC) simulations give breakdown characteristics in H2 and H2/SF6 mixtures in good agreement with the 805 MHz experimental resu lts below this field stress threshold. The impact of these results on gas-filled RF accelerating cavity design will be discussed.« less
Performance investigation of InAs based dual electrode tunnel FET on the analog/RF platform
NASA Astrophysics Data System (ADS)
Anand, Sunny; Sarin, R. K.
2016-09-01
In this paper for the first time, InAs based doping-less Tunnel FET is proposed and investigated. This paper also demonstrates and discusses the impact of gate stacking (SiO2 + HfO2) with equivalent oxide thickness EOT = 0.8 for analog/RF performance. The charge plasma technique is used to form source/drain region on an intrinsic InAs body by selecting proper work function of metal electrode. The paper compares different combinations of gate stacking (SiO2 and HfO2) on the basis of different analog and RF parameters such as transconductance (gm), transconductance to drive current ratio (gm/ID), output conductance (gd), intrinsic gain (AV), total gate capacitance (Cgg) and unity-gain cutoff frequency (fT). The proposed device produces an ON state current of ION ∼6 mA along with ION/IOFF ∼1012, point subthreshold slope (SS ∼ 1.9 mV/dec), average subthreshold slope (AV-SS ∼ 14.2 mV/dec) and cut-off frequency in Terahertz. The focus of this work is to eliminate the fabrication issues and providing the enhanced performance compared to doped device.
Properties of radio-frequency heated argon confined uranium plasmas
NASA Technical Reports Server (NTRS)
1976-01-01
Pure uranium hexafluoride (UF6) was injected into an argon confined, steady state, rf-heated plasma within a fused silica peripheral wall test chamber. Exploratory tests conducted using an 80 kW rf facility and different test chamber flow configurations permitted selection of the configuration demonstrating the best confinement characteristics and minimum uranium compound wall coating. The overall test results demonstrated applicable flow schemes and associated diagnostic techniques were developed for the fluid mechanical confinement and characterization of uranium within an rf plasma discharge when pure UF6 is injected for long test times into an argon-confined, high-temperature, high-pressure, rf-heated plasma.
CoPt/TiN films nanopatterned by RF plasma etching towards dot-patterned magnetic media
NASA Astrophysics Data System (ADS)
Szívós, János; Pothorszky, Szilárd; Soltys, Jan; Serényi, Miklós; An, Hongyu; Gao, Tenghua; Deák, András; Shi, Ji; Sáfrán, György
2018-03-01
CoPt thin films as possible candidates for Bit Patterned magnetic Media (BPM) were prepared and investigated by electron microscopy techniques and magnetic measurements. The structure and morphology of the Direct Current (DC) sputtered films with N incorporation were revealed in both as-prepared and annealed state. Nanopatterning of the samples was carried out by means of Radio Frequency (RF) plasma etching through a Langmuir-Blodgett film of silica nanospheres that is a fast and high throughput technique. As a result, the samples with hexagonally arranged 100 nm size separated dots of fct-phase CoPt were obtained. The influence of the order of nanopatterning and anneling on the nanostructure formation was revealed. The magnetic properties of the nanopatterned fct CoPt films were investigated by Vibrating Sample Magnetometer (VSM) and Magnetic Force Microscopy (MFM). The results show that CoPt thin film nanopatterned by means of the RF plasma etching technique is promising candidate to a possible realization of BPM. Furthermore, this technique is versatile and suitable for scaling up to technological and industrial applications.
Low-level exposure to radiofrequency electromagnetic fields: health effects and research needs.
Repacholi, M H
1998-01-01
The World Health Organization (WHO), the International Commission on Non-Ionizing Radiation Protection (ICNIRP), and the German and Austrian Governments jointly sponsored an international seminar in November of 1996 on the biological effects of low-level radiofrequency (RF) electromagnetic fields. For purposes of this seminar, RF fields having frequencies only in the range of about 10 MHz to 300 GHz were considered. This is one of a series of scientific review seminars held under the International Electromagnetic Field (EMF) Project to identify any health hazards from EMF exposure. The scientific literature was reviewed during the seminar and expert working groups formed to provide a status report on possible health effects from exposure to low-level RF fields and identify gaps in knowledge requiring more research to improve health risk assessments. It was concluded that, although hazards from exposure to high-level (thermal) RF fields were established, no known health hazards were associated with exposure to RF sources emitting fields too low to cause a significant temperature rise in tissue. Biological effects from low-level RF exposure were identified needing replication and further study. These included in vitro studies of cell kinetics and proliferation effects, effects on genes, signal transduction effects and alterations in membrane structure and function, and biophysical and biochemical mechanisms for RF field effects. In vivo studies should focus on the potential for cancer promotion, co-promotion and progression, as well as possible synergistic, genotoxic, immunological, and carcinogenic effects associated with chronic low-level RF exposure. Research is needed to determine whether low-level RF exposure causes DNA damage or influences central nervous system function, melatonin synthesis, permeability of the blood brain barrier (BBB), or reaction to neurotropic drugs. Reported RF-induced changes to eye structure and function should also be investigated. Epidemiological studies should investigate: the use of mobile telephones with hand-held antennae and incidence of various cancers; reports of headache, sleep disturbance, and other subjective effects that may arise from proximity to RF emitters, and laboratory studies should be conducted on people reporting these effects; cohorts with high occupational RF exposure for changes in cancer incidence; adverse pregnancy outcomes in various highly RF exposed occupational groups; and ocular pathologies in mobile telephone users and in highly RF exposed occupational groups. Studies of populations with residential exposure from point sources, such as broadcasting transmitters or mobile telephone base stations have caused widespread health concerns among the public, even though RF exposures are very low. Recent studies that may indicate an increased incidence of cancer in exposed populations should be investigated further.
RF switching network: a novel technique for IR sensing
NASA Astrophysics Data System (ADS)
Mechtel, Deborah M.; Jenkins, R. Brian; Joyce, Peter J.; Nelson, Charles L.
2016-05-01
Rapid sensing of near infrared (IR) energy on a composite structure would provide information that could mitigate damage to composite structures. This paper describes a novel technique that implements photoconductive sensors in a radio frequency (RF) switching network designed to locate in real time the position and intensity of IR radiation incident on a composite structure. In the implementation described here, photoconductive sensors act as rapid response switches in a two layer RF network embedded in an FR-4 laminate. To detect radiation, phosphorous doped silicon photoconductive sensors are inserted in GHz range RF transmission lines. Photoconductive sensors use semiconductor materials that are optically sensitive at material dependent wavelengths. Incident radiation at the appropriate wavelength produces hole-electron pairs, so that the semiconductor becomes a conductor. By permitting signal propagation only when a sensor is illuminated, the RF signals are selectively routed from the lower layer transmission lines to the upper layer lines, thereby pinpointing the location and strength of incident radiation on a structure. Simulations based on a high frequency 3D planar electromagnetics model are presented and compared to experimental results. Experimental results are described for GHz range RF signal control for 300 mW and 180 mW incident energy from 975 nm and 1060 nm wavelength lasers respectively, where upon illumination, RF transmission line signal output power doubled when compared to non-illuminated results. Experimental results are reported for 100 W incident energy from a 1060 nm laser. Test results illustrate that real-time signal processing would permit a structure or vehicle to be controlled in response to incident radiation
Choi, Sang-Jin; Mao, Wankai; Pan, Jae-Kyung
2013-01-01
We propose and experimentally demonstrate the novel radio-frequency (RF) interrogation of a fiber Bragg grating (FBG) sensor using bidirectional modulation of a Mach-Zehnder electro-optical modulator (MZ-EOM). Based on the microwave photonic technique and active detection, the transfer function of the proposed system was obtained, and the time delay was calculated from the change in the free spectral range (FSR) at different wavelengths over the optimal measuring range. The results show that the time delay and the wavelength variation have a good linear relationship, with a gradient of 9.31 ps/nm. An actual measurement taken with a sensing FBG for temperature variation shows the relationship with a gradient of 0.93 ps/10 °C. The developed system could be used for FBG temperature or strain sensing and other multiplexed sensor applications. PMID:23820744
Stamp transferred suspended graphene mechanical resonators for radio frequency electrical readout.
Song, Xuefeng; Oksanen, Mika; Sillanpää, Mika A; Craighead, H G; Parpia, J M; Hakonen, Pertti J
2012-01-11
We present a simple micromanipulation technique to transfer suspended graphene flakes onto any substrate and to assemble them with small localized gates into mechanical resonators. The mechanical motion of the graphene is detected using an electrical, radio frequency (RF) reflection readout scheme where the time-varying graphene capacitor reflects a RF carrier at f = 5-6 GHz producing modulation sidebands at f ± f(m). A mechanical resonance frequency up to f(m) = 178 MHz is demonstrated. We find both hardening/softening Duffing effects on different samples and obtain a critical amplitude of ~40 pm for the onset of nonlinearity in graphene mechanical resonators. Measurements of the quality factor of the mechanical resonance as a function of dc bias voltage V(dc) indicates that dissipation due to motion-induced displacement currents in graphene electrode is important at high frequencies and large V(dc). © 2011 American Chemical Society
Biochemical and physiological MR imaging of skeletal muscle at 7 tesla and above.
Chang, Gregory; Wang, Ligong; Cárdenas-Blanco, Arturo; Schweitzer, Mark E; Recht, Michael P; Regatte, Ravinder R
2010-06-01
Ultra-high field (UHF; >or=7 T) magnetic resonance imaging (MRI), with its greater signal-to-noise ratio, offers the potential for increased spatial resolution, faster scanning, and, above all, improved biochemical and physiological imaging of skeletal muscle. The increased spectral resolution and greater sensitivity to low-gamma nuclei available at UHF should allow techniques such as (1)H MR spectroscopy (MRS), (31)P MRS, and (23)Na MRI to be more easily implemented. Numerous technical challenges exist in the performance of UHF MRI, including changes in relaxation values, increased chemical shift and susceptibility artifact, radiofrequency (RF) coil design/B (1)(+) field inhomogeneity, and greater RF energy deposition. Nevertheless, the possibility of improved functional and metabolic imaging at UHF will likely drive research efforts in the near future to overcome these challenges and allow studies of human skeletal muscle physiology and pathophysiology to be possible at >or=7 T.
NASA Technical Reports Server (NTRS)
Vanleuven, K.
1989-01-01
The primary objective is to provide a concept of a radio frequency (RF) modal resonance technique which is being investigated as a method for gaging the quantities of subcritical cryogenic propellants in metallic tanks. Of special interest are the potential applications of the technique to microgravity propellant gaging situations. The results of concept testing using cryogenic oxygen, hydrogen, and nitrogen, as well as paraffin simulations of microgravity fluid orientations, are reported. These test results were positive and showed that the gaging concept was viable.
Wireless passive radiation sensor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pfeifer, Kent B; Rumpf, Arthur N; Yelton, William G
2013-12-03
A novel measurement technique is employed using surface acoustic wave (SAW) devices, passive RF, and radiation-sensitive films to provide a wireless passive radiation sensor that requires no batteries, outside wiring, or regular maintenance. The sensor is small (<1 cm.sup.2), physically robust, and will operate unattended for decades. In addition, the sensor can be insensitive to measurement position and read distance due to a novel self-referencing technique eliminating the need to measure absolute responses that are dependent on RF transmitter location and power.
Plasma core reactor simulations using RF uranium seeded argon discharges
NASA Technical Reports Server (NTRS)
Roman, W. C.
1976-01-01
Experimental results are described in which pure uranium hexafluoride was injected into an argon-confined, steady-state, RF-heated plasma to investigate characteristics of plasma core nuclear reactors. The 80 kW (13.56 MHz) and 1.2 MW (5.51 MHz) rf induction heater facilities were used to determine a test chamber flow scheme which offered best uranium confinement with minimum wall coating. The cylindrical fused-silica test chamber walls were 5.7-cm-ID by 10-cm-long. Test conditions included RF powers of 2-85 kW, chamber pressures of 1-12 atm, and uranium hexafluoride mass-flow rates of 0.005-0.13 g/s. Successful techniques were developed for fluid-mechanical confinement of RF-heated plasmas with pure uranium hexafluoride injection.
Study of energy transfer between riboflavin (vitamin B2) and AgNPs
NASA Astrophysics Data System (ADS)
Mokashi, Vidya V.; Walekar, Laxman S.; Anbhule, Prashant V.; Lee, Sang Hak; Patil, Shivajirao R.; Kolekar, Govind B.
2014-03-01
Here, we report the studies on the interaction and formation of nanobiocomplex between silver nanoparticle (AgNPs) and vitamin B2, i.e., riboflavin (RF). The binding study of AgNP to RF was studied by fluorescence, UV-Vis, and TEM techniques. AgNPs were prepared by reducing AgNO3 with trisodium citrate. Prepared nanoparticles size obtained at 20 nm having surface Plasmon resonance band at 426 nm. The absorbance band of RF at 264, 374, and 444 nm changes significantly in the presence of AgNPs suggests that there is change in the chemical environment surrounding AgNPs. A fluorescence spectral change for a solution of RF upon the addition of AgNPs and rapid quenching is suggestive of a rapid adsorption of RF on AgNPs.
Bioengineered riboflavin in nanotechnology.
Beztsinna, N; Solé, M; Taib, N; Bestel, I
2016-02-01
Riboflavin (RF) is an essential water-soluble vitamin with unique biological and physicochemical properties such as transporterspecific cell internalization, implication in redox reactions, fluorescence and photosensitizing. Due to these features RF attracted researchers in various fields from targeted drug delivery and tissue engineering to optoelectronics and biosensors. In this review we will give a brief reminder of RF chemistry, its optical, photosensitizing properties, RF transporter systems and its role in pathologies. We will point a special attention on the recent findings concerning RF applications in nanotechnologies such as RF functionalized nanoparticles, polymers, biomolecules, carbon nanotubes, hydrogels and implants for tissue engineering. Copyright © 2015 Elsevier Ltd. All rights reserved.
Optimization of process parameters for RF sputter deposition of tin-nitride thin-films
NASA Astrophysics Data System (ADS)
Jangid, Teena; Rao, G. Mohan
2018-05-01
Radio frequency Magnetron sputtering technique was employed to deposit Tin-nitride thin films on Si and glass substrate at different process parameters. Influence of varying parameters like substrate temperature, target-substrate distance and RF power is studied in detail. X-ray diffraction method is used as a key technique for analyzing the changes in the stoichiometric and structural properties of the deposited films. Depending on the combination of deposition parameters, crystalline as well as amorphous films were obtained. Pure tin-nitride thin films were deposited at 15W RF power and 600°C substrate temperature with target-substrate distance fixed at 10cm. Bandgap value of 1.6 eV calculated for the film deposited at optimum process conditions matches well with reported values.
Direct digital RF synthesis and modulation for MSAT mobile applications
NASA Technical Reports Server (NTRS)
Crozier, Stewart; Datta, Ravi; Sydor, John
1993-01-01
A practical method of performing direct digital RF synthesis using the Hilbert transform single sideband (SSB) technique is described. It is also shown that amplitude and phase modulation can be achieved directly at L-band with frequency stability and spurii performance exceeding stringent MSAT system requirements.
Virtual phantom magnetic resonance imaging (ViP MRI) on a clinical MRI platform.
Saint-Jalmes, Hervé; Bordelois, Alejandro; Gambarota, Giulio
2018-01-01
The purpose of this study was to implement Virtual Phantom Magnetic Resonance Imaging (ViP MRI), a technique that allows for generating reference signals in MR images using radiofrequency (RF) signals, on a clinical MR system and to test newly designed virtual phantoms. MRI experiments were conducted on a 1.5 T MRI scanner. Electromagnetic modelling of the ViP system was done using the principle of reciprocity. The ViP RF signals were generated using a compact waveform generator (dimensions of 26 cm × 18 cm × 16 cm), connected to a homebuilt 25 mm-diameter RF coil. The ViP RF signals were transmitted to the MRI scanner bore, simultaneously with the acquisition of the signal from the object of interest. Different types of MRI data acquisition (2D and 3D gradient-echo) as well as different phantoms, including the Shepp-Logan phantom, were tested. Furthermore, a uniquely designed virtual phantom - in the shape of a grid - was generated; this newly proposed phantom allows for the investigations of the vendor distortion correction field. High quality MR images of virtual phantoms were obtained. An excellent agreement was found between the experimental data and the inverse cube law, which was the expected functional dependence obtained from the electromagnetic modelling of the ViP system. Short-term time stability measurements yielded a coefficient of variation in the signal intensity over time equal to 0.23% and 0.13% for virtual and physical phantom, respectively. MR images of the virtual grid-shaped phantom were reconstructed with the vendor distortion correction; this allowed for a direct visualization of the vendor distortion correction field. Furthermore, as expected from the electromagnetic modelling of the ViP system, a very compact coil (diameter ~ cm) and very small currents (intensity ~ mA) were sufficient to generate a signal comparable to that of physical phantoms in MRI experiments. The ViP MRI technique was successfully implemented on a clinical MR system. One of the major advantages of ViP MRI over previous approaches is that the generation and transmission of RF signals can be achieved with a self-contained apparatus. As such, the ViP MRI technique is transposable to different platforms (preclinical and clinical) of different vendors. It is also shown here that ViP MRI could be used to generate signals whose characteristics cannot be reproduced by physical objects. This could be exploited to assess MRI system properties, such as the vendor distortion correction field. © 2017 American Association of Physicists in Medicine.
Renal angioplasty and stenting: is it still indicated after ASTRAL and STAR studies?
Henry, M; Benjelloun, A; Henry, I; Polydorou, A; Hugel, M
2010-10-01
A renal artery stenosis (RAS) is common among patients with atherosclerosis, up to a third of patients undergoing cardiac catheterization. Fibromuscular dysplasia is the next cause of RAS, commonly found in young women. Atherosclerosis RAS generally progresses overtime and is often associated with loss of renal mass and worsening renal function (RF). Percutaneous renal artery stent placement is the preferred method of revascularization for hemodynamically significant RAS according to ACC and AHA guidelines. Several randomized trials have shown the superiority of endovascular procedures to medical therapy alone. However, two studies ASTRAL and STAR studies were recently published and did not find any difference between renal stenting and medical therapy. But these studies have a lot of limitations and flaws as we will discuss (poor indications, poor results, numerous complications, failures, poor technique, inexperienced operators, ecc.). Despite these questionable studies, renal stenting keeps indications in patients with: uncontrolled hypertension; ischemic nephropathy; cardiac disturbance syndrome (e.g. "flash" pulmonary edema, uncontrolled heart failure or uncontrolled angina pectoris); solitary kidney. To improve the clinical response rates, a better selection of the patients and lesions is mandatory with: good non-invasive or invasive imaging; physiologic lesion assessment using transluminal pressure gradients; measurements of biomarkers (e.g., BNP); fractional flow reserve study. A problem remains after renal angioplasty stenting, the deterioration of the RF in 20-30% of the patients. Atheroembolism seems to play an important role and is probably the main cause of this R.F deterioration. The use of protection devices alone or in combination with IIb IIa inhibitors has been proposed and seems promising as shown in different recent reports. Renal angioplasty and stenting is still indicated but we need: a better patient and lesion selection; improvements in techniques and maybe the use of protection devices to reduce the risk of RF deterioration after renal stenting.
MR fingerprinting using the quick echo splitting NMR imaging technique.
Jiang, Yun; Ma, Dan; Jerecic, Renate; Duerk, Jeffrey; Seiberlich, Nicole; Gulani, Vikas; Griswold, Mark A
2017-03-01
The purpose of the study is to develop a quantitative method for the relaxation properties with a reduced radio frequency (RF) power deposition by combining magnetic resonance fingerprinting (MRF) technique with quick echo splitting NMR imaging technique (QUEST). A QUEST-based MRF sequence was implemented to acquire high-order echoes by increasing the gaps between RF pulses. Bloch simulations were used to calculate a dictionary containing the range of physically plausible signal evolutions using a range of T 1 and T 2 values based on the pulse sequence. MRF-QUEST was evaluated by comparing to the results of spin-echo methods. The specific absorption rate (SAR) of MRF-QUEST was compared with the clinically available methods. MRF-QUEST quantifies the relaxation properties with good accuracy at the estimated head SAR of 0.03 W/kg. T 1 and T 2 values estimated by MRF-QUEST are in good agreement with the traditional methods. The combination of the MRF and the QUEST provides an accurate quantification of T 1 and T 2 simultaneously with reduced RF power deposition. The resulting lower SAR may provide a new acquisition strategy for MRF when RF energy deposition is problematic. Magn Reson Med 77:979-988, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
Pfaffenrot, Viktor; Brunheim, Sascha; Rietsch, Stefan H G; Koopmans, Peter J; Ernst, Thomas M; Kraff, Oliver; Orzada, Stephan; Quick, Harald H
2018-02-09
To design and evaluate an 8/15-channel transmit/receive (Tx/Rx) head-neck RF coil combination with region-specific B1+ shimming for whole-brain MRI with focus on improved functional MRI of the cerebellum at 7 T. An 8-channel transceiver RF head coil was combined with a 7-channel receive-only array. The noise parameters and acceleration capabilities of this 8Tx/15Rx coil setup were compared with a commercially available 1Tx/32Rx RF head coil. Region-specific 8-channel B1+ shimming was applied when using the 8Tx/15Rx RF coil. To evaluate the capability for functional MRI of the cerebellum, temporal SNR and statistical nonparametric maps for finger-tapping experiments with 14 healthy subjects were derived by applying a variable slice thickness gradient-echo echo-planar functional MRI sequence. The 8Tx/15Rx setup had a lower maximum noise correlation between channels, but higher average correlations compared with the 1Tx/32Rx coil. Both RF coils exhibited identical g-factors in the cerebellum with R = 3 acceleration. The enlarged FOV of the 8Tx/15Rx coil in combination with region-specific B1+ shimming increased homogeneity of the transmission field and temporal SNR in caudal cerebellar regions. Temporal SNR losses in cranial parts were reduced, resulting in more highly significant voxels in the caudally activated areas and identical patterns in the cranial cerebellar parts during a finger-tapping task. Compared with the 1Tx/32Rx RF coil, the presented 8Tx/15Rx RF coil combination successfully improves functional MRI of the human cerebellum at 7 T while maintaining whole-brain coverage. A clear temporal SNR gain in caudal cerebellar regions is shown. © 2018 International Society for Magnetic Resonance in Medicine.
Li, Hui; Jing, Mengguo; Wong, Eileen Chin Mei
2017-01-01
This study examined the development of and possible predictors of interrogative forms and functions in early childhood Mandarin. All the interrogatives drawn from the Early Child Mandarin Corpus (168 children 2;6, 3;6, 4;6, and 5;6) were analyzed. The main results indicated that (i) there were significant age effects in interrogative forms and functions, with the periods between the ages of 3;6 and 4;6 and between the ages of 2;6 and 3;6 being critical in the early acquisition of interrogative forms and functions, respectively; (ii) the form-function preference was verified, with wh-questions being primarily used to seek information (RfI), and intonation/echo and rhetorical questions being used to request action (RfA); (iii) more than half (59·5%) of the Mandarin interrogatives were used for RfI, whereas only 38·9% of them were used for RfA; and (iv) age, TV viewing time, and parent-child conversation time were the significant predictors of interrogative development.
NASA Astrophysics Data System (ADS)
Qiang, Tian; Wang, Cong; Kim, Nam-Young
2017-08-01
A diplexer offering the advantages of compact size, high performance, and high reliability is proposed on the basis of advanced integrated passive device (IPD) fabrication techniques. The proposed diplexer is developed by combining a third-order low-pass filter (LPF) and a third-order high-pass filter (HPF), which are designed on the basis of the elliptic function prototype low-pass filter. Primary components, such as inductors and capacitors, are designed and fabricated with high Q-factor and appropriate values, and they are subsequently used to construct a compact diplexer having a chip area of 900 μm × 1100 μm (0.009 λ0 × 0.011 λ0, where λ0 is the guided wavelength). In addition, a small-outline transistor (SOT-6) packaging method is adopted, and reliability tests (including temperature, humidity, vibration, and pressure) are conducted to guarantee long-term stability and commercial success. The packaged measurement results indicate excellent RF performance with insertion losses of 1.39 dB and 0.75 dB at operation bands of 0.9 GHz and 1.8 GHz, respectively. The return loss is lower than 10 dB from 0.5 GHz to 4.0 GHz, while the isolation is higher than 15 dB from 0.5 GHz to 3.0 GHz. Thus, it can be concluded that the proposed SOT-6 packaged diplexer is a promising candidate for GSM/CDMA applications. Synthetic solution of diplexer design, RF performance optimization, fabrication process, packaging, RF response measurement, and reliability test is particularly explained and analyzed in this work.
Family behavior, adaptation, and treatment adherence of pediatric nephrology patients.
Davis, M C; Tucker, C M; Fennell, R S
1996-04-01
In this exploratory study we investigated the relationships among family behavior variables (e.g., family expressiveness), adaptive functioning skills, maladaptive behavior, and adherence to treatment in pediatric renal failure patients. The study included 22 pediatric outpatients with renal failure who had not yet received dialysis or transplantation (RF) and their parents, and 12 pediatric outpatients with kidney transplants (TX) and their parents. For the RF patients, significant correlations were found between some of their adaptive functioning skills and measures of their medication adherence, diet adherence, and clinic appointment adherence; however, for the TX patients significant correlations were found only between some of their adaptive functioning skills and measures of their medication adherence. For the RF patients only, some measures of their family behavior were significantly correlated with measures of their medication adherence and diet adherence. Additionally, some measures of the RF patients' family behavior were significantly related to their communication skills, socialization skills, overall adaptive functioning skills, and maladaptive behavior. For the TX patients, only their socialization skill level was significantly correlated with one measure of their family behavior. It is concluded that facilitation of adaptive and physical functioning among renal pediatric patients likely requires multidimensional training and/or counselling interventions with the children and their families, and that some of the content and/or emphasis of this training likely needs to differ for RF patients versus TX patients.
High efficiency RF amplifier development over wide dynamic range for accelerator application
NASA Astrophysics Data System (ADS)
Mishra, Jitendra Kumar; Ramarao, B. V.; Pande, Manjiri M.; Joshi, Gopal; Sharma, Archana; Singh, Pitamber
2017-10-01
Superconducting (SC) cavities in an accelerating section are designed to have the same geometrical velocity factor (βg). For these cavities, Radio Frequency (RF) power needed to accelerate charged particles varies with the particle velocity factor (β). RF power requirement from one cavity to other can vary by 2-5 dB within the accelerating section depending on the energy gain in the cavity and beam current. In this paper, we have presented an idea to improve operating efficiency of the SC RF accelerators using envelope tracking technique. A study on envelope tracking technique without feedback is carried out on a 1 kW, 325 MHz, class B (conduction angle of 180 degrees) tuned load power amplifier (PA). We have derived expressions for the efficiency and power output for tuned load amplifier operating on the envelope tracking technique. From the derived expressions, it is observed that under constant load resistance to the device (MOSFET), optimum amplifier efficiency is invariant whereas output power varies with the square of drain bias voltage. Experimental results on 1 kW PA module show that its optimum efficiency is always greater than 62% with variation less than 5% from mean value over 7 dB dynamic range. Low power amplifier modules are the basic building block for the high power amplifiers. Therefore, results for 1 kW PA modules remain valid for the high power solid state amplifiers built using these PA modules. The SC RF accelerators using these constant efficiency power amplifiers can improve overall accelerator efficiency.
Digital processing of RF signals from optical frequency combs
NASA Astrophysics Data System (ADS)
Cizek, Martin; Smid, Radek; Buchta, Zdeněk.; Mikel, Břetislav; Lazar, Josef; Cip, Ondřej
2013-01-01
The presented work is focused on digital processing of beat note signals from a femtosecond optical frequency comb. The levels of mixing products of single spectral components of the comb with CW laser sources are usually very low compared to products of mixing all the comb components together. RF counters are more likely to measure the frequency of the strongest spectral component rather than a weak beat note. Proposed experimental digital signal processing system solves this problem by analyzing the whole spectrum of the output RF signal and using software defined radio (SDR) algorithms. Our efforts concentrate in two main areas: Firstly, using digital servo-loop techniques for locking free running continuous laser sources on single components of the fs comb spectrum. Secondly, we are experimenting with digital signal processing of the RF beat note spectrum produced by f-2f 1 technique used for assessing the offset and repetition frequencies of the comb, resulting in digital servo-loop stabilization of the fs comb. Software capable of computing and analyzing the beat-note RF spectrums using FFT and peak detection was developed. A SDR algorithm performing phase demodulation on the f- 2f signal is used as a regulation error signal source for a digital phase-locked loop stabilizing the offset frequency of the fs comb.
Guxens, Mònica; Vermeulen, Roel; van Eijsden, Manon; Beekhuizen, Johan; Vrijkotte, Tanja G M; van Strien, Rob T; Kromhout, Hans; Huss, Anke
2016-10-01
Little is known about the exposure of young children to radiofrequency electromagnetic fields (RF-EMF) and potentially associated health effects. We assessed the relationship between residential RF-EMF exposure from mobile phone base stations, residential presence of indoor sources, personal cell phone and cordless phone use, and children's cognitive function at 5-6 years of age. Cross-sectional study on children aged 5-6 years from the Amsterdam Born Children and their Development (ABCD) study, the Netherlands (n=2354). Residential RF-EMF exposure from mobile phone base stations was estimated with a 3D geospatial radio wave propagation model. Residential presence of indoor sources (cordless phone base stations and Wi-Fi) and children's cell phone and cordless phone use was reported by the mother. Speed of information processing, inhibitory control, cognitive flexibility, and visuomotor coordination was assessed using the Amsterdam Neuropsychological Tasks. Residential presence of RF-EMF indoor sources was associated with an improved speed of information processing. Higher residential RF-EMF exposure from mobile phone base stations and presence of indoor sources was associated with an improved inhibitory control and cognitive flexibility whereas we observed a reduced inhibitory control and cognitive flexibility with higher personal cordless phone use. Higher residential RF-EMF exposure from mobile phone base stations was associated with a reduced visuomotor coordination whereas we observed an improved visuomotor coordination with residential presence of RF-EMF indoor sources and higher personal cell phone use. We found inconsistent associations between different sources of RF-EMF exposure and cognitive function in children aged 5-6 years. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Caneses, Juan Francisco; Blackwell, Boyd; Plasma Research Laboratory Team
2013-10-01
In this work we provide an analytical model that allows one to quantitatively assess the RF compensation performance and suitability of the double probe technique for use in RF generated plasma. The model is based in the theory of the self-bias effect as described in Braithwaite's work, which we extend to include the time resolved behavior of floating probes. We provide experimental verification for this model and show that the theory of transient RF self-bias probes and harmonic current detection probes are limiting cases of this extended model. Furthermore, the model shows that the RF compensation is solely dependent on the sheath impedance, the probe's stray capacitance to ground and RF frequency. In addition, we use these results to implement a double probe system for use in high density helicon plasma where heat loads could potentially damage the intricate components in an RF compensating circuit. Finally we use this model to (1) recommend ways to extend the operational regime of double probes where the plasma conditions would render them unsuitable and to (2) comment on the use of this model to aid design of RF compensated Langmuir probes.
Investigation and Prediction of RF Window Performance in APT Accelerators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Humphries, S. Jr.
1997-05-01
The work described in this report was performed between November 1996 and May 1997 in support of the APT (Accelerator Production of Tritium) Program at Los Alamos National Laboratory. The goal was to write and to test computer programs for charged particle orbits in RF fields. The well-documented programs were written in portable form and compiled for standard personal computers for easy distribution to LANL researchers. They will be used in several APT applications including the following. Minimization of multipactor effects in the moderate {beta} superconducting linac cavities under design for the APT accelerator. Investigation of suppression techniques for electronmore » multipactoring in high-power RF feedthroughs. Modeling of the response of electron detectors for the protection of high power RF vacuum windows. In the contract period two new codes, Trak{_}RF and WaveSim, were completed and several critical benchmark etests were carried out. Trak{_}RF numerically tracks charged particle orbits in combined electrostatic, magnetostatic and electromagnetic fields. WaveSim determines frequency-domain RF field solutions and provides a key input to Trak{_}RF. The two-dimensional programs handle planar or cylindrical geometries. They have several unique characteristics.« less
Enhanced dynamical stability with harmonic slip stacking
Eldred, Jeffrey; Zwaska, Robert
2016-10-26
We develop a configuration of radio-frequency (rf) cavities to dramatically improve the performance of slip-stacking. Slip-stacking is an accumulation technique used at Fermilab to nearly double proton intensity by maintaining two beams of different momenta in the same storage ring. The two particle beams are longitudinally focused in the Recycler by two 53 MHz 100 kV rf cavities with a small frequency difference between them. We propose an additional 106 MHz 20 kV rf cavity with a frequency at the double the average of the upper and lower main rf frequencies. We show the harmonic rf cavity cancels out themore » resonances generated between the two main rf cavities and we derive the relationship between the harmonic rf voltage and the main rf voltage. We find the area factors that can be used to calculate the available phase space area for any set of beam parameters without individual simulation. We establish Booster beam quality requirements to achieve 99\\% slip-stacking efficiency. We measure the longitudinal distribution of the Booster beam and use it to generate a realistic beam model for slip-stacking simulation. In conclusion, we demonstrate that the harmonic rf cavity can not only reduce particle loss during slip-stacking, but also reduce the final longitudinal emittance.« less
Enhanced dynamical stability with harmonic slip stacking
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eldred, Jeffrey; Zwaska, Robert
We develop a configuration of radio-frequency (rf) cavities to dramatically improve the performance of slip-stacking. Slip-stacking is an accumulation technique used at Fermilab to nearly double proton intensity by maintaining two beams of different momenta in the same storage ring. The two particle beams are longitudinally focused in the Recycler by two 53 MHz 100 kV rf cavities with a small frequency difference between them. We propose an additional 106 MHz 20 kV rf cavity with a frequency at the double the average of the upper and lower main rf frequencies. We show the harmonic rf cavity cancels out themore » resonances generated between the two main rf cavities and we derive the relationship between the harmonic rf voltage and the main rf voltage. We find the area factors that can be used to calculate the available phase space area for any set of beam parameters without individual simulation. We establish Booster beam quality requirements to achieve 99\\% slip-stacking efficiency. We measure the longitudinal distribution of the Booster beam and use it to generate a realistic beam model for slip-stacking simulation. In conclusion, we demonstrate that the harmonic rf cavity can not only reduce particle loss during slip-stacking, but also reduce the final longitudinal emittance.« less
Wireless powering and data telemetry for biomedical implants.
Young, Darrin J
2009-01-01
Wireless powering and data telemetry techniques for two biomedical implant studies based on (1) wireless in vivo EMG sensor for intelligent prosthetic control and (2) adaptively RF powered implantable bio-sensing microsystem for real-time genetically engineered mice monitoring are presented. Inductive-coupling-based RF powering and passive data telemetry is effective for wireless in vivo EMG sensing, where the internal and external RF coils are positioned with a small separation distance and fixed orientation. Adaptively controlled RF powering and active data transmission are critical for mobile implant application such as real-time physiological monitoring of untethered laboratory animals. Animal implant studies have been successfully completed to demonstrate the wireless and batteryless in vivo sensing capabilities.
Mohaupt, Henning; Duckert, Fanny
2016-01-01
Abstract Few studies have examined fathering in an intimate partner violence (IPV) context outside the US. The present study included 36 Norwegian men who were voluntarily participating in therapy after perpetrating acts of IPV. They were interviewed with the revised Parent Development Interview, which is designed to assess parental reflective functioning (parental RF), and screened for alcohol- and substance-use habits and trauma history. At the group level, participants exhibited poor parental RF, high relational trauma scores, and elevated alcohol intake. Parental RF did not correlate with education level, alcohol or substance use, or compound measures of trauma history. There was a moderate negative relationship between having experienced physical abuse in childhood and parental RF. PMID:28163804
Single frequency RF powered ECG telemetry system
NASA Technical Reports Server (NTRS)
Ko, W. H.; Hynecek, J.; Homa, J.
1979-01-01
It has been demonstrated that a radio frequency magnetic field can be used to power implanted electronic circuitry for short range telemetry to replace batteries. A substantial reduction in implanted volume can be achieved by using only one RF tank circuit for receiving the RF power and transmitting the telemetered information. A single channel telemetry system of this type, using time sharing techniques, was developed and employed to transmit the ECG signal from Rhesus monkeys in primate chairs. The signal from the implant is received during the period when the RF powering radiation is interrupted. The ECG signal is carried by 20-microsec pulse position modulated pulses, referred to the trailing edge of the RF powering pulse. Satisfactory results have been obtained with this single frequency system. The concept and the design presented may be useful for short-range long-term implant telemetry systems.
Thermal and dynamic range characterization of a photonics-based RF amplifier
NASA Astrophysics Data System (ADS)
Noque, D. F.; Borges, R. M.; Muniz, A. L. M.; Bogoni, A.; Cerqueira S., Arismar, Jr.
2018-05-01
This work reports a thermal and dynamic range characterization of an ultra-wideband photonics-based RF amplifier for microwave and mm-waves future 5G optical-wireless networks. The proposed technology applies the four-wave mixing nonlinear effect to provide RF amplification in analog and digital radio-over-fiber systems. The experimental analysis from 300 kHz to 50 GHz takes into account different figures of merit, such as RF gain, spurious-free dynamic range and RF output power stability as a function of temperature. The thermal characterization from -10 to +70 °C demonstrates a 27 dB flat photonics-assisted RF gain over the entire frequency range under real operational conditions of a base station for illustrating the feasibility of the photonics-assisted RF amplifier for 5G networks.
10 GHz dual loop opto-electronic oscillator without RF-amplifiers
NASA Astrophysics Data System (ADS)
Zhou, Weimin; Okusaga, Olukayode; Nelson, Craig; Howe, David; Carter, Gary
2008-02-01
We report the first demonstration of a 10 GHz dual-fiber-loop Opto-Electronic Oscillator (OEO) without RF-amplifiers. Using a recently developed highly efficient RF-Photonic link with RF-to-RF gain facilitated by a high power laser, highly efficient optical modulator and high power phototectectors, we have built an amplifier-less OEO that eliminates the phase noise produced by the electronic amplifier. The dual-loop approach can provide additional gain and reduce unwanted multi-mode spurs. However, we have observed RF phase noise produced by the high power laser include relative intensity noise (RIN) and noise related to the laser's electronic control system. In addition, stimulated Brillouin scattering limits the fiber loop's length to ~2km at the 40mW laser power needed to provide the RF gain which limits the system's quality factor, Q. We have investigated several different methods for solving these problems. One promising technique is the use of a multi-longitudinal-mode laser to carry the RF signal, maintaining the total optical power but reducing the optical power of each mode to eliminate the Brillouin scattering in a longer fiber thereby reducing the phase noise of the RF signal produced by the OEO. This work shows that improvement in photonic components increases the potential for more RF system applications such as an OEO's with higher performance and new capabilities.
Ibrahim, Tamer S; Tang, Lin
2007-06-01
To study the dependence of radiofrequency (RF) power deposition on B(0) field strength for different loads and excitation mechanisms. Studies were performed utilizing a finite difference time domain (FDTD) model that treats the transmit array and the load as a single system. Since it was possible to achieve homogenous excitations across the human head model by varying the amplitudes/phases of the voltages driving the transmit array, studies of the RF power/B(0) field strength (frequency) dependence were achievable under well-defined/fixed/homogenous RF excitation. Analysis illustrating the regime in which the RF power is dependent on the square of the operating frequency is presented. Detailed studies focusing on the RF power requirements as a function of number of excitation ports, driving mechanism, and orientations/positioning within the load are presented. With variable phase/amplitude excitation, as a function of frequency, the peak-then-decrease relation observed in the upper axial slices of brain with quadrature excitation becomes more evident in the lower slices as well. Additionally, homogeneity optimization targeted at minimizing the ratio of maximum/minimum B(1) (+) field intensity within the region of interest, typically results in increased RF power requirements (standard deviation was not considered in this study). Increasing the number of excitation ports, however, can result in significant RF power reduction. (c) 2007 Wiley-Liss, Inc.
NASA Astrophysics Data System (ADS)
Yang, Byungkuen; Cho, Jee-Hyun; Song, Simon
2016-11-01
For the use of clinical purpose magnetic resonance velocimeter (MRV) is a versatile flow visualization technique in that it allows opaque flow, complex geometry, no use of tracer particles and facile fast non-invasive measurements of 3 dimensional and 3 component velocity vectors. However, the spatial resolution of a commercial MR machine is lower than optics-based techniques like PIV. On the other hand, the use of MRV for clinical purposes like cardiovascular flow visualization requires accurate measurements or estimations on wall shear stress (WSS) with a high spatial resolution. We developed a custom-built solenoid RF coil for phase-contrast (PC) MRV to improve its resolution. We compared signal-to-noise ratio, WSS estimations, partial volume effects near wall between the custom RF coil and a commercial coil. Also, a Hagen-Poiseuille flow was analyzed with the custom RF coil. This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea government (MSIP) (No. 2016R1A2B3009541).
New Techniques For The Improvement Of The ICRH System ELM Tolerance On JET
NASA Astrophysics Data System (ADS)
Monakhov, I.; Blackman, T.; Walden, A.; Nightingale, M.; Whitehurst, A.; Durodie, F.; Jet Efda Contributors
2003-12-01
Two complementary improvements to the ELM tolerance of the existing A2 antennas on JET are being assessed. The use of external conjugate-T matching of straps of adjacent antenna arrays could reduce the VSWR levels at RF amplifier output during fast load perturbations. The scheme under consideration uses coaxial line-stretchers (trombones) for tuning the conjugate-T to low resistive impedance (3-6 Ohm) with subsequent stub/trombone circuit impedance transformation to 30 Ohms. Another technique is to modify the RF plant protection system logic to reduce the high VSWR trip duration to an absolute minimum corresponding to a typical ELM response (˜1-2ms) without compromising the plant safety. Both projects are presently being tested and could increase the average power delivered by RF plant into ELMy plasmas at JET.
Radiofrequency ablation for hepatic hemangiomas: A consensus from a Chinese panel of experts
Gao, Jun; Fan, Rui-Fang; Yang, Jia-Yin; Cui, Yan; Ji, Jian-Song; Ma, Kuan-Sheng; Li, Xiao-Long; Zhang, Long; Xu, Chong-Liang; Kong, Xin-Liang; Ke, Shan; Ding, Xue-Mei; Wang, Shao-Hong; Yang, Meng-Meng; Song, Jin-Jin; Zhai, Bo; Nin, Chun-Ming; Guo, Shi-Gang; Xin, Zong-Hai; Lu, Jun; Dong, Yong-Hong; Zhu, Hua-Qiang; Sun, Wen-Bing
2017-01-01
Recent studies have shown that radiofrequency (RF) ablation therapy is a safe, feasible, and effective procedure for hepatic hemangiomas, even huge hepatic hemangiomas. RF ablation has the following advantages in the treatment of hepatic hemangiomas: minimal invasiveness, definite efficacy, high safety, fast recovery, relatively simple operation, and wide applicability. It is necessary to formulate a widely accepted consensus among the experts in China who have extensive expertise and experience in the treatment of hepatic hemangiomas using RF ablation, which is important to standardize the application of RF ablation for the management of hepatic hemangiomas, regarding the selection of patients with suitable indications to receive RF ablation treatment, the technical details of the techniques, therapeutic effect evaluations, management of complications, etc. A final consensus by a Chinese panel of experts who have the expertise of using RF ablation to treat hepatic hemangiomas was reached by means of literature review, comprehensive discussion, and draft approval. PMID:29093616
Lindenschmidt, E G
1984-04-01
Rheumatoid factors (RF) are autoantibodies mainly directed against autologous IgG. They belong at most to the IgM class antibodies. It is demonstrated at groups with unsolved hepatitis B, rubella, syphilis and toxoplasmose infection that RF do occur not rarely at these patients even without rheumatoid arthritis. This is probably due to stimulation by antigen-IgG-complexes. During serologic detection of specific IgM antibodies they present an antigen independent mu-specificity. So the test for specific IgM might even loose its diagnostic and possibly therapy indicating value. It is shown how the disturbance by RF can be calculated after adsorption with aggregated IgG. Also RF can be titrated by an enzyme immunoassay (ELISA). With IgG coated latex particles RF can be eliminated prior to the IgM-test. Solid phase techniques which are applied with enzyme-coupled antigen instead of marked anti-IgM cannot be disturbed by RF significantly.
Zhou, Nanjia; Liu, Chengye; Lewis, Jennifer A; Ham, Donhee
2017-04-01
Radio-frequency (RF) electronics, which combine passive electromagnetic devices and active transistors to generate and process gigahertz (GHz) signals, provide a critical basis of ever-pervasive wireless networks. While transistors are best realized by top-down fabrication, relatively larger electromagnetic passives are within the reach of printing techniques. Here, direct writing of viscoelastic silver-nanoparticle inks is used to produce a broad array of RF passives operating up to 45 GHz. These include lumped devices such as inductors and capacitors, and wave-based devices such as transmission lines, their resonant networks, and antennas. Moreover, to demonstrate the utility of these printed RF passive structures in active RF electronic circuits, they are combined with discrete transistors to fabricate GHz self-sustained oscillators and synchronized oscillator arrays that provide RF references, and wireless transmitters clocked by the oscillators. This work demonstrates the synergy of direct ink writing and RF electronics for wireless applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Awojoyogbe, O. B.
2004-08-01
Various biological and physiological properties of living tissue can be studied by means of nuclear magnetic resonance techniques. Unfortunately, the basic physics of extracting the relevant information from the solution of Bloch nuclear magnetic resource (NMR) equations to accurately monitor the clinical state of biological systems is still not yet fully understood. Presently, there are no simple closed solutions known to the Bloch equations for a general RF excitation. Therefore the translational mechanical analysis of the Bloch NMR equations presented in this study, which can be taken as definitions of new functions to be studied in detail may reveal very important information from which various NMR flow parameters can be derived. Fortunately, many of the most important but hidden applications of blood flow parameters can be revealed without too much difficulty if appropriate mathematical techniques are used to solve the equations. In this study we are concerned with a mathematical study of the laws of NMR physics from the point of view of translational mechanical theory. The important contribution of this study is that solutions to the Bloch NMR flow equations do always exist and can be found as accurately as desired. We shall restrict our attention to cases where the radio frequency field can be treated by simple analytical methods. First we shall derive a time dependant second-order non-homogeneous linear differential equation from the Bloch NMR equation in term of the equilibrium magnetization M0, RF B1( t) field, T1 and T2 relaxation times. Then, we would develop a general method of solving the differential equation for the cases when RF B1( t)=0, and when RF B1( t)≠0. This allows us to obtain the intrinsic or natural behavior of the NMR system as well as the response of the system under investigation to a specific influence of external force to the system. Specifically, we consider the case where the RF B1 varies harmonically with time. Here the complete motion of the system consists of two parts. The first part describes the motion of the transverse magnetization My in the absence of RF B( t) field. The second part of the motion described by the particular integral of the derived differential equation does not decay with time but continues its periodic behavior indefinitely. The complete motion of the NMR flow system is then quantitatively and qualitatively described.
Embolic protection for renal artery stenting.
Henry, M; Henry, I; Polydorou, A; Hugel, M
2008-10-01
A renal artery stenosis (RAS) is frequent and usually caused by atherosclerosis. Percutaneous renal artery angioplasty (PTRA) and stenting gives good immediate and long-term Concern has arisen in the postprocedural deterioration of the renal function (RF), which may occur in 20-40% of the patients therefore limiting the immediate benefits of the technique. Atheroembolism seems to play an important role in postprocedural deterioration. The authors postulated that the use of renal embolic protection devices could reduce the risk of renal embolism and avoid deterioration of the RF. One hundred forty-eight PTRA and stenting procedures were performed under protection in 121 hypertensive patients (M: 85), mean age: 64.5+/-11.8 years (22-87) with atherosclerotic renal artery stenosis. Eleven patients had solitary kidneys and 48 had renal insufficiency. Both occlusion balloons (N=46) and filters (N=95) were used. Of the 95 filters, the new FiberNet EP system (Lumen Biomedical) was included. This filter has the ability to capture particles as small as 30-40 microns without compromising flow. Generated debris was then removed and analysed, and blood pressure and serum creatinine levels were followed. Immediate technical success: was achieved in 100% os the cases. 112/141 lesions were stented directly. Visible debris with Percusurge (Medtronic) was aspirated and removed under aspiration from all patients and in 80% of the cases with filters. Debris was aspirated in 100% of the cases completed with the FiberNet). The mean particulate retrieved with the Percusurge system was 98.1+/-60.0 mu with a mean diameter ranging from 201+/-76 m (38-6 206). Mean occlusion time was 6.55+/-2.46 min and mean time in situ (filters) 4.2+/-1.1 min. Five times more particulate was removed with the FiberNet than with current available filters. One acute RF deterioration was observed. The mean follow-up was 29.6+/-14 months and the mean creatinine level remained constant during follow-up. At 6 months (101 patients) one deterioration of the RF in a patient with renal insufficiency at baseline was observed, 25 improvements in patients with renal insufficiency were noted, and 73 stabilizations. In conclusion 99% of the patients were stabilized or improved. After 2 years (84 patients) 95% of the patients remained stabilized (N=60) or showed improvements (N=20), and 4 patients had deterioration of RF (5%). The preliminary results suggest the feasibility and safety of distal protection during renal interventions to protect against atheroembolism and consequential deterioration of RF after the procedure. The beneficial effects of this technique should be evaluated further in randomized studies.
Instrumentation for localized superconducting cavity diagnostics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Conway, Z. A.; Ge, M.; Iwashita, Y.
2017-01-12
Superconducting accelerator cavities are now routinely operated at levels approaching the theoretical limit of niobium. To achieve these operating levels more information than is available from the RF excitation signal is required to characterize and determine fixes for the sources of performance limitations. This information is obtained using diagnostic techniques which complement the analysis of the RF signal. In this paper we describe the operation and select results from three of these diagnostic techniques: the use of large scale thermometer arrays, second sound wave defect location and high precision cavity imaging with the Kyoto camera.
Sengupta, Pracheta; Raman, Sukanya; Chowdhury, Rajdeep; Lohitesh, K.; Saini, Heena; Mukherjee, Sudeshna; Paul, Atish
2017-01-01
Cancer is a multifactorial disease and hence can be effectively overcome by a multi-constituently therapeutic strategy. Medicinal plant extracts represent a perfect example of such stratagem. However, minimal studies have been done till date that portray the effect of extraction techniques on the phyto-constituent profile of plant extracts and its impact on anticancer activity. In the present study, we have evaluated the anticancer potential of methanolic extracts of Berberis aristata root and Azadirachta indica seeds prepared by various extraction techniques in human osteosarcoma (HOS) cells. Soxhlation extract of B. aristata (BAM-SX) and sonication extract of A. indica (AIM-SO) were most effective in inducing apoptosis in parental drug sensitive, as well as resistant cell type developed by repeated drug exposure. Generation of reactive oxygen species and cell cycle arrest preceded caspase-mediated apoptosis in HOS cells. Interestingly, inhibition of autophagy enhanced cell death suggesting the cytoprotective role of autophagy. Combination studies of different methanolic extracts of BAM and AIM were performed, among which, the combination of BAM-SO and AIM-SO (BAAISO) was found to show synergism (IC50 10.27 µg/ml) followed by combination of BAM-MC and AIM-MC (BAAIMC) with respect to other combinations in the ratio of 1:1. BAAISO also showed synergism when it was added to cisplatin-resistant HOS cells (HCR). Chromatographic profiling of BAM-SX and AIM-SO by high performance thin layer chromatography resulted in identification of berberine (Rf 0.55), palmitine (Rf 0.50) in BAM-SX and azadirachtin A (Rf 0.36), azadirachtin B (Rf 0.56), nimbin (Rf 0.80), and nimbolide (Rf 0.43) in AIM-SO. The cytotoxic sensitivity obtained can be attributed to the above compounds. Our results highlight the importance of extraction technique and subsequent mechanism of action of multi-constituential B. aristata and A. indica against both sensitive and drug refractory HOS cells. PMID:29312880
Radiofrequency treatment enhances the catalytic function of an immobilized nanobiohybrid catalyst
NASA Astrophysics Data System (ADS)
San, Boi Hoa; Ha, Eun-Ju; Paik, Hyun-Jong; Kim, Kyeong Kyu
2014-05-01
Biocatalysis, the use of enzymes in chemical transformation, has undergone intensive development for a wide range of applications. As such, maximizing the functionality of enzymes for biocatalysis is a major priority to enable industrial use. To date, many innovative technologies have been developed to address the future demand of enzymes for these purposes, but maximizing the catalytic activity of enzymes remains a challenge. In this study, we demonstrated that the functionality of a nanobiocatalyst could be enhanced by combining immobilization and radiofrequency (RF) treatment. Aminopeptidase PepA-encapsulating 2 nm platinum nanoparticles (PepA-PtNPs) with the catalytic activities of hydrolysis and hydrogenation were employed as multifunctional nanobiocatalysts. Immobilizing the nanobiocatalysts in a hydrogel using metal chelation significantly enhanced their functionalities, including catalytic power, thermal-stability, pH tolerance, organic solvent tolerance, and reusability. Most importantly, RF treatment of the hydrogel-immobilized PepA-PtNPs increased their catalytic power by 2.5 fold greater than the immobilized PepA. Our findings indicate that the catalytic activities and functionalities of PepA-PtNPs are greatly enhanced by the combination of hydrogel-immobilization and RF treatment. Based on our findings, we propose that RF treatment of nanobiohybrid catalysts immobilized on the bulk hydrogel represents a new strategy for achieving efficient biocatalysis.Biocatalysis, the use of enzymes in chemical transformation, has undergone intensive development for a wide range of applications. As such, maximizing the functionality of enzymes for biocatalysis is a major priority to enable industrial use. To date, many innovative technologies have been developed to address the future demand of enzymes for these purposes, but maximizing the catalytic activity of enzymes remains a challenge. In this study, we demonstrated that the functionality of a nanobiocatalyst could be enhanced by combining immobilization and radiofrequency (RF) treatment. Aminopeptidase PepA-encapsulating 2 nm platinum nanoparticles (PepA-PtNPs) with the catalytic activities of hydrolysis and hydrogenation were employed as multifunctional nanobiocatalysts. Immobilizing the nanobiocatalysts in a hydrogel using metal chelation significantly enhanced their functionalities, including catalytic power, thermal-stability, pH tolerance, organic solvent tolerance, and reusability. Most importantly, RF treatment of the hydrogel-immobilized PepA-PtNPs increased their catalytic power by 2.5 fold greater than the immobilized PepA. Our findings indicate that the catalytic activities and functionalities of PepA-PtNPs are greatly enhanced by the combination of hydrogel-immobilization and RF treatment. Based on our findings, we propose that RF treatment of nanobiohybrid catalysts immobilized on the bulk hydrogel represents a new strategy for achieving efficient biocatalysis. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr00407h
Active stabilization of ion trap radiofrequency potentials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, K. G.; Wong-Campos, J. D.; Restelli, A.
2016-05-15
We actively stabilize the harmonic oscillation frequency of a laser-cooled atomic ion confined in a radiofrequency (rf) Paul trap by sampling and rectifying the high voltage rf applied to the trap electrodes. We are able to stabilize the 1 MHz atomic oscillation frequency to be better than 10 Hz or 10 ppm. This represents a suppression of ambient noise on the rf circuit by 34 dB. This technique could impact the sensitivity of ion trap mass spectrometry and the fidelity of quantum operations in ion trap quantum information applications.
USDA-ARS?s Scientific Manuscript database
Cytoplasmic male sterility (CMS), a maternally inherited trait and characterized as an inability to produce functional pollen , is an important biological system for economically producing hybrid seed to enhance crop yield and studying cytoplasmic and nuclear gene interactions. In cultivated tetrapl...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balcazar, Mario D.; Yonehara, Katsuya; Moretti, Alfred
Intense neutrino beam is a unique probe for researching beyond the standard model. Fermilab is the main institution to produce the most powerful and widespectrum neutrino beam. From that respective, a radiation robust beam diagnostic system is a critical element in order to maintain the quality of the neutrino beam. Within this context, a novel radiation-resistive beam profile monitor based on a gasfilled RF cavity is proposed. The goal of this measurement is to study a tunable Qfactor RF cavity to determine the accuracy of the RF signal as a function of the quality factor. Specifically, measurement error of themore » Q-factor in the RF calibration is investigated. Then, the RF system will be improved to minimize signal error.« less
Parenting and Adolescent Adjustment: The Role of Parental Reflective Function
ERIC Educational Resources Information Center
Benbassat, Naomi; Priel, Beatriz
2012-01-01
Reflective function (RF) is the capacity to reflect on one's own mental experiences and those of others. This study examined the relationship between parental RF and adolescent adjustment. One hundred and five adolescents, aged 14-18, and their mothers and fathers were interviewed and completed questionnaires during home visits. We measured…
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
Smart grids are susceptible to cyber-attack as a result of new communication, control and computation techniques employed in the grid. In this paper, we characterize and analyze the resiliency of smart grid communication architecture, specifically an RF mesh based architecture, under cyber attacks. We analyze the resiliency of the communication architecture by studying the performance of high-level smart grid functions such as metering, and demand response which depend on communication. Disrupting the operation of these functions impacts the operational resiliency of the smart grid. Our analysis shows that it takes an attacker only a small fraction of meters to compromisemore » the communication resiliency of the smart grid. We discuss the implications of our result to critical smart grid functions and to the overall security of the smart grid.« less
NASA Technical Reports Server (NTRS)
Britt, C. L., Jr.
1975-01-01
The development of an RF Multilateration system to provide accurate position and velocity measurements during the approach and landing phase of Vertical Takeoff Aircraft operation is discussed. The system uses an angle-modulated ranging signal to provide both range and range rate measurements between an aircraft transponder and multiple ground stations. Range and range rate measurements are converted to coordinate measurements and the coordinate and coordinate rate information is transmitted by an integral data link to the aircraft. Data processing techniques are analyzed to show advantages and disadvantages. Error analyses are provided to permit a comparison of the various techniques.
Proposed Cavity for Reduced Slip-Stacking Loss
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eldred, J.; Zwaska, R.
This paper employs a novel dynamical mechanism to improve the performance of slip-stacking. Slip-stacking in an accumulation technique used at Fermilab since 2004 which nearly double the proton intensity. During slip-stacking, the Recycler or the Main Injector stores two particles beams that spatially overlap but have different momenta. The two particle beams are longitudinally focused by two 53 MHz 100 kV RF cavities with a small frequency difference between them. We propose an additional 106 MHz 20 kV RF cavity, with a frequency at the double the average of the upper and lower main RF frequencies. In simulation, we findmore » the proposed RF cavity significantly enhances the stable bucket area and reduces slip-stacking losses under reasonable injection scenarios. We quantify and map the stability of the parameter space for any accelerator implementing slip-stacking with the addition of a harmonic RF cavity.« less
Wideband aperture array using RF channelizers and massively parallel digital 2D IIR filterbank
NASA Astrophysics Data System (ADS)
Sengupta, Arindam; Madanayake, Arjuna; Gómez-García, Roberto; Engeberg, Erik D.
2014-05-01
Wideband receive-mode beamforming applications in wireless location, electronically-scanned antennas for radar, RF sensing, microwave imaging and wireless communications require digital aperture arrays that offer a relatively constant far-field beam over several octaves of bandwidth. Several beamforming schemes including the well-known true time-delay and the phased array beamformers have been realized using either finite impulse response (FIR) or fast Fourier transform (FFT) digital filter-sum based techniques. These beamforming algorithms offer the desired selectivity at the cost of a high computational complexity and frequency-dependant far-field array patterns. A novel approach to receiver beamforming is the use of massively parallel 2-D infinite impulse response (IIR) fan filterbanks for the synthesis of relatively frequency independent RF beams at an order of magnitude lower multiplier complexity compared to FFT or FIR filter based conventional algorithms. The 2-D IIR filterbanks demand fast digital processing that can support several octaves of RF bandwidth, fast analog-to-digital converters (ADCs) for RF-to-bits type direct conversion of wideband antenna element signals. Fast digital implementation platforms that can realize high-precision recursive filter structures necessary for real-time beamforming, at RF radio bandwidths, are also desired. We propose a novel technique that combines a passive RF channelizer, multichannel ADC technology, and single-phase massively parallel 2-D IIR digital fan filterbanks, realized at low complexity using FPGA and/or ASIC technology. There exists native support for a larger bandwidth than the maximum clock frequency of the digital implementation technology. We also strive to achieve More-than-Moore throughput by processing a wideband RF signal having content with N-fold (B = N Fclk/2) bandwidth compared to the maximum clock frequency Fclk Hz of the digital VLSI platform under consideration. Such increase in bandwidth is achieved without use of polyphase signal processing or time-interleaved ADC methods. That is, all digital processors operate at the same Fclk clock frequency without phasing, while wideband operation is achieved by sub-sampling of narrower sub-bands at the the RF channelizer outputs.
NASA Astrophysics Data System (ADS)
Curry, Matthew; England, Troy; Wendt, Joel; Pluym, Tammy; Lilly, Michael; Carr, Stephen; Carroll, Malcolm
Single-shot readout is a requirement for many implementations of quantum information processing. The single-shot readout fidelity is dependent on the signal-to-noise-ratio (SNR) and bandwidth of the readout detection technique. Several different approaches are being pursued to enhance read-out including RF-reflectometry, RF-transmission, parametric amplification, and transistor-based cryogenic preamplification. The transistor-based cryogenic preamplifier is attractive in part because of the reduced experimental complexity compared with the RF techniques. Here we present single-shot charge readout using a cryogenic Heterojunction-Bipolar-Transistor (HBT) inline with a silicon SET charge-sensor at millikelvin temperatures. For the relevant range of HBT DC-biasing, the current gain is 100 to 2000 and the power dissipation is 50 nW to 5 μW, with the microfabricated SET and discrete HBT in an integrated package mounted to the mixing chamber stage of a dilution refrigerator. We experimentally demonstrate a SNR of up to 10 with a bandwidth of 1 MHz, corresponding to a single-shot time-domain charge-sensitivity of approximately 10-4 e / √Hz. This measured charge-sensitivity is comparable to the values reported using the RF techniques. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000.
Block, Andrew R; Marek, Ryan J; Ben-Porath, Yossef S; Kukal, Deborah
2017-01-01
Spinal cord stimulation (SCS) has variable effectiveness in controlling chronic pain. Previous research has demonstrated that psychosocial factors are associated with diminished results of SCS. The objective of this investigation is to examine associations between pre-implant psychological functioning as measured by the Minnesota Multiphasic Personality Inventory-2-Restructured Form (MMPI-2-RF) and SCS outcomes. SCS candidates at two sites (total N = 319) completed the MMPI-2-RF and measures of pain, emotional distress, and functional ability as part of a pre-implant psychological evaluation. At an average of 5 months post-implant, patients completed the measures of pain and emotional distress a second time. Poorer SCS outcomes and poorer patient satisfaction were associated with higher pre-implant MMPI-2-RF scores on scales used to assess emotional dysfunction, somatic/cognitive complaints, and interpersonal problems. Ways through which pre-implant psychological evaluations of spinal cord stimulator candidates can be informed by MMPI-2-RF findings are discussed. © The Author(s) 2015.
Trasobares, J.; Vuillaume, D.; Théron, D.; Clément, N.
2016-01-01
Molecular electronics originally proposed that small molecules sandwiched between electrodes would accomplish electronic functions and enable ultimate scaling to be reached. However, so far, functional molecular devices have only been demonstrated at low frequency. Here, we demonstrate molecular diodes operating up to 17.8 GHz. Direct current and radio frequency (RF) properties were simultaneously measured on a large array of molecular junctions composed of gold nanocrystal electrodes, ferrocenyl undecanethiol molecules and the tip of an interferometric scanning microwave microscope. The present nanometre-scale molecular diodes offer a current density increase by several orders of magnitude compared with that of micrometre-scale molecular diodes, allowing RF operation. The measured S11 parameters show a diode rectification ratio of 12 dB which is linked to the rectification behaviour of the direct current conductance. From the RF measurements, we extrapolate a cut-off frequency of 520 GHz. A comparison with the silicon RF-Schottky diodes, architecture suggests that the RF-molecular diodes are extremely attractive for scaling and high-frequency operation. PMID:27694833
Eccentric superconducting RF cavity separator structure
Aggus, John R.; Giordano, Salvatore T.; Halama, Henry J.
1976-01-01
Accelerator apparatus having an eccentric-shaped, iris-loaded deflecting cavity for an rf separator for a high energy high momentum, charged particle accelerator beam. In one embodiment, the deflector is superconducting, and the apparatus of this invention provides simplified machining and electron beam welding techniques. Model tests have shown that the electrical characteristics provide the desired mode splitting without adverse effects.
Imaging the Variscan suture at the KTB deep drilling site, Germany
NASA Astrophysics Data System (ADS)
Bianchi, Irene; Bokelmann, Götz
2018-06-01
The upper crust of the KTB (Kontinentales Tiefbohrprogramm) area in the Southeastern Germany is a focal point for the Earth Science community due to the huge amount of information collected throughout the last 30 yr. In this study, we explore the crustal structure of the KTB area through the application of the Receiver Function (RF) technique to a new data set recorded by nine temporary seismic stations and one permanent station. We aim to unravel the isotropic structure and compare our results with previous information from the reflection profiles collected during the initial site investigations. Due to the large amount of information collected by previous studies, in terms of P-wave velocity, depth and location of major reflectors, depth reconstruction of major faults zones, this area represents a unique occasion to test the resolution capability of a passive seismological study performed by the application of the RF. We aim to verify which contribution could be given by the application of the RF technique, for future studies, in order to get clear images of the deep structure and up to which resolution. The RF technique has apparently not been applied in the area before, yet it may give useful additional insight in subsurface structure, particularly at depths larger than the maximum depth reached by drilling, but also on structures in the upper crust, around the area that has been studied in detail previously. In our results vS-depth profiles for stations located on the same geological units display common features and show shallow S-wave velocities typical of the outcropping geological units (i.e. sedimentary basin, granites and metamorphic rocks). At around 10 km depth, we observe a strong velocity increase beneath all stations. For the stations located in the centre of the area, this variation is weaker, which we assume to be the signature of the main tectonic suture in the area (i.e. the Saxothuringian-Moldanubian suture), along a west-to-east extended region, may be due to the presence of the allochthonous klippe trapped between the main crustal terrains that came in touch during the Variscan orogeny. In the lower crust we see only small variations throughout the area, at the resolution that is possible with a small temporary experiment with just 10 stations.
Theranostic Iron Oxide/Gold Ion Nanoprobes for MR Imaging and Noninvasive RF Hyperthermia.
Fazal, Sajid; Paul-Prasanth, Bindhu; Nair, Shantikumar V; Menon, Deepthy
2017-08-30
This work focuses on the development of a nanoparticulate system that can be used for magnetic resonance (MR) imaging and E-field noninvasive radiofrequency (RF) hyperthermia. For this purpose, an amine-functional gold ion complex (GIC), [Au(III)(diethylenetriamine)Cl]Cl 2 , which generates heat upon RF exposure, was conjugated to carboxyl-functional poly(acrylic acid)-capped iron-oxide nanoparticles (IO-PAA NPs) to form IO-GIC NPs of size ∼100 nm. The multimodal superparamagnetic IO-GIC NPs produced T2-contrast on MR imaging and unlike IO-PAA NPs generated heat on RF exposure. The RF heating response of IO-GIC NPs was found to be dependent on the RF power, exposure period, and particle concentration. IO-GIC NPs at a concentration of 2.5 mg/mL showed a high heating response (δT) of ∼40 °C when exposed to 100 W RF power for 1 min. In vitro cytotoxicity measurements on NIH-3T3 fibroblast cells and 4T1 cancer cells showed that IO-GIC NPs are cytocompatible at high NP concentrations for up to 72 h. Upon in vitro RF exposure (100 W, 1 min), a high thermal response leads to cell death of 4T1 cancer cells incubated with IO-GIC NPs (1 mg/mL). Hematoxylin and eosin imaging of rat liver tissues injected with 100 μL of 2.5 mg/mL IO-GIC NPs and exposed to low RF power of 20 W for 10 min showed significant loss of tissue morphology at the site of injection, as against RF-exposed or nanoparticle-injected controls. In vivo MR imaging and noninvasive RF exposure of 4T1-tumor-bearing mice after IO-GIC NP administration showed T2 contrast enhancement and a localized generation of high temperatures in tumors, leading to tumor tissue damage. Furthermore, the administration of IO-GIC NPs followed by RF exposure showed no adverse acute toxicity effects in vivo. Thus, IO-GIC NPs show good promise as a theranostic agent for magnetic resonance imaging and noninvasive RF hyperthermia for cancer.
Matta, Leann Lerie; Karuppuswami, Saranraj; Chahal, Premjeet; Alocilja, Evangelyn C
2018-07-15
Rapid detection techniques of pathogenic bacteria in the liquid food supply chain are of significant research interest due to their pivotal role in preventing foodborne outbreaks, and in maintaining high standards of public health and safety. Milk and dairy products are of particular interest due to their widespread consumption across the globe. In this paper, a biosensor for detecting pathogenic bacteria in milk using dextrin-capped gold nanoparticles (d-AuNP) as labels decoded at microwave frequencies is presented. The SPEL (sensing pathogens electrically in liquids) biosensor consists of a 3D printed vial and uses an RF reader and an RFID (radio-frequency identification) compatible Split Ring Resonator (SRR) based tag. The SPEL biosensor is capable of detecting bacteria at 5 log CFU/mL within 75 min, with the possibility of testing multiple concurrent samples. Detection is based on impedance loading of SRR by d-AuNP bound to pathogenic bacteria. Spectrophotometry, along with carbohydrate-functionalized magnetic nanoparticle (MNP) cell capture, is used to verify the sensitivity of the SPEL biosensor with respect to d-AuNP presence. The proof-of-concept device, along with challenges and opportunities for commercialization, are also outlined. Copyright © 2018. Published by Elsevier B.V.
Rational design of Ag/TiO2 nanosystems by a combined RF-sputtering/sol-gel approach.
Armelao, Lidia; Barreca, Davide; Bottaro, Gregorio; Gasparotto, Alberto; Maccato, Chiara; Tondello, Eugenio; Lebedev, Oleg I; Turner, Stuart; Van Tendeloo, Gustaaf; Sada, Cinzia; Stangar, Urska Lavrencic
2009-12-21
The present work is devoted to the preparation of Ag/TiO(2) nanosystems by an original synthetic strategy, based on the radio-frequency (RF) sputtering of silver particles on titania-based xerogels prepared by the sol-gel (SG) route. This approach takes advantage of the synergy between the microporous xerogel structure and the infiltration power characterizing RF-sputtering, whose combination enables the obtainment of a tailored dispersion of Ag-containing particles into the titania matrix. In addition, the system's chemico-physical features can be tuned further through proper ex situ thermal treatments in air at 400 and 600 degrees C. The synthesized composites are extensively characterized by the joint use of complementary techniques, that is, X-ray photoelectron and X-ray excited Auger electron spectroscopies (XPS, XE-AES), secondary ion mass spectrometry (SIMS), glancing incidence X-ray diffraction (GIXRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), electron diffraction (ED), high-angle annular dark field scanning TEM (HAADF-STEM), energy-filtered TEM (EF-TEM) and optical absorption spectroscopy. Finally, the photocatalytic performances of selected samples in the decomposition of the azo-dye Plasmocorinth B are preliminarily investigated. The obtained results highlight the possibility of tailoring the system characteristics over a broad range, directly influencing their eventual functional properties.
NASA Astrophysics Data System (ADS)
Li, Manchun; Ma, Lei; Blaschke, Thomas; Cheng, Liang; Tiede, Dirk
2016-07-01
Geographic Object-Based Image Analysis (GEOBIA) is becoming more prevalent in remote sensing classification, especially for high-resolution imagery. Many supervised classification approaches are applied to objects rather than pixels, and several studies have been conducted to evaluate the performance of such supervised classification techniques in GEOBIA. However, these studies did not systematically investigate all relevant factors affecting the classification (segmentation scale, training set size, feature selection and mixed objects). In this study, statistical methods and visual inspection were used to compare these factors systematically in two agricultural case studies in China. The results indicate that Random Forest (RF) and Support Vector Machines (SVM) are highly suitable for GEOBIA classifications in agricultural areas and confirm the expected general tendency, namely that the overall accuracies decline with increasing segmentation scale. All other investigated methods except for RF and SVM are more prone to obtain a lower accuracy due to the broken objects at fine scales. In contrast to some previous studies, the RF classifiers yielded the best results and the k-nearest neighbor classifier were the worst results, in most cases. Likewise, the RF and Decision Tree classifiers are the most robust with or without feature selection. The results of training sample analyses indicated that the RF and adaboost. M1 possess a superior generalization capability, except when dealing with small training sample sizes. Furthermore, the classification accuracies were directly related to the homogeneity/heterogeneity of the segmented objects for all classifiers. Finally, it was suggested that RF should be considered in most cases for agricultural mapping.
Convex optimization of MRI exposure for mitigation of RF-heating from active medical implants.
Córcoles, Juan; Zastrow, Earl; Kuster, Niels
2015-09-21
Local RF-heating of elongated medical implants during magnetic resonance imaging (MRI) may pose a significant health risk to patients. The actual patient risk depends on various parameters including RF magnetic field strength and frequency, MR coil design, patient's anatomy, posture, and imaging position, implant location, RF coupling efficiency of the implant, and the bio-physiological responses associated with the induced local heating. We present three constrained convex optimization strategies that incorporate the implant's RF-heating characteristics, for the reduction of local heating of medical implants during MRI. The study emphasizes the complementary performances of the different formulations. The analysis demonstrates that RF-induced heating of elongated metallic medical implants can be carefully controlled and balanced against MRI quality. A reduction of heating of up to 25 dB can be achieved at the cost of reduced uniformity in the magnitude of the B(1)(+) field of less than 5%. The current formulations incorporate a priori knowledge of clinically-specific parameters, which is assumed to be available. Before these techniques can be applied practically in the broader clinical context, further investigations are needed to determine whether reduced access to a priori knowledge regarding, e.g. the patient's anatomy, implant routing, RF-transmitter, and RF-implant coupling, can be accepted within reasonable levels of uncertainty.
Microfluidic stretchable RF electronics.
Cheng, Shi; Wu, Zhigang
2010-12-07
Stretchable electronics is a revolutionary technology that will potentially create a world of radically different electronic devices and systems that open up an entirely new spectrum of possibilities. This article proposes a microfluidic based solution for stretchable radio frequency (RF) electronics, using hybrid integration of active circuits assembled on flex foils and liquid alloy passive structures embedded in elastic substrates, e.g. polydimethylsiloxane (PDMS). This concept was employed to implement a 900 MHz stretchable RF radiation sensor, consisting of a large area elastic antenna and a cluster of conventional rigid components for RF power detection. The integrated radiation sensor except the power supply was fully embedded in a thin elastomeric substrate. Good electrical performance of the standalone stretchable antenna as well as the RF power detection sub-module was verified by experiments. The sensor successfully detected the RF radiation over 5 m distance in the system demonstration. Experiments on two-dimensional (2D) stretching up to 15%, folding and twisting of the demonstrated sensor were also carried out. Despite the integrated device was severely deformed, no failure in RF radiation sensing was observed in the tests. This technique illuminates a promising route of realizing stretchable and foldable large area integrated RF electronics that are of great interest to a variety of applications like wearable computing, health monitoring, medical diagnostics, and curvilinear electronics.
Convex optimization of MRI exposure for mitigation of RF-heating from active medical implants
NASA Astrophysics Data System (ADS)
Córcoles, Juan; Zastrow, Earl; Kuster, Niels
2015-09-01
Local RF-heating of elongated medical implants during magnetic resonance imaging (MRI) may pose a significant health risk to patients. The actual patient risk depends on various parameters including RF magnetic field strength and frequency, MR coil design, patient’s anatomy, posture, and imaging position, implant location, RF coupling efficiency of the implant, and the bio-physiological responses associated with the induced local heating. We present three constrained convex optimization strategies that incorporate the implant’s RF-heating characteristics, for the reduction of local heating of medical implants during MRI. The study emphasizes the complementary performances of the different formulations. The analysis demonstrates that RF-induced heating of elongated metallic medical implants can be carefully controlled and balanced against MRI quality. A reduction of heating of up to 25 dB can be achieved at the cost of reduced uniformity in the magnitude of the B1+ field of less than 5%. The current formulations incorporate a priori knowledge of clinically-specific parameters, which is assumed to be available. Before these techniques can be applied practically in the broader clinical context, further investigations are needed to determine whether reduced access to a priori knowledge regarding, e.g. the patient’s anatomy, implant routing, RF-transmitter, and RF-implant coupling, can be accepted within reasonable levels of uncertainty.
Post, Richard F.
2016-02-23
A circuit-based technique enhances the power output of electrostatic generators employing an array of axially oriented rods or tubes or azimuthal corrugated metal surfaces for their electrodes. During generator operation, the peak voltage across the electrodes occurs at an azimuthal position that is intermediate between the position of minimum gap and maximum gap. If this position is also close to the azimuthal angle where the rate of change of capacity is a maximum, then the highest rf power output possible for a given maximum allowable voltage at the minimum gap can be attained. This rf power output is then coupled to the generator load through a coupling condenser that prevents suppression of the dc charging potential by conduction through the load. Optimized circuit values produce phase shifts in the rf output voltage that allow higher power output to occur at the same voltage limit at the minimum gap position.
Single-shot readout of accumulation mode Si/SiGe spin qubits using RF reflectometry
NASA Astrophysics Data System (ADS)
Volk, Christian; Martins, Frederico; Malinowski, Filip; Marcus, Charles M.; Kuemmeth, Ferdinand
Spin qubits based on gate-defined quantum dots are promising systems for realizing quantum computation. Due to their low concentration of nuclear-spin-carrying isotopes, Si/SiGe heterostructures are of particular interest. While high fidelities have been reported for single-qubit and two-qubit gate operations, qubit initialization and measurement times are relatively slow. In order to develop fast read-out techniques compatible with the operation of spin qubits, we characterize double and triple quantum dots confined in undoped Si/Si0.7Ge0.3 heterostructures using accumulation and depletion gates and a nearby RF charge sensor dot. We implement a RF reflectometry technique that allows single-shot charge read-out at integration times on the order of a few μs. We show our recent advancement towards implementing spin qubits in these structures, including spin-selective single-shot read-out.
NASA Technical Reports Server (NTRS)
Stevenson, T. R.; Hsieh, W.-T.; Li, M. J.; Prober, D. E.; Rhee, K. W.; Schoelkopf, R. J.; Stahle, C. M.; Teufel, J.; Wollack, E. J.
2004-01-01
For high resolution imaging and spectroscopy in the FIR and submillimeter, space observatories will demand sensitive, fast, compact, low-power detector arrays with 104 pixels and sensitivity less than 10(exp -20) W/Hz(sup 0.5). Antenna-coupled superconducting tunnel junctions with integrated rf single-electron transistor readout amplifiers have the potential for achieving this high level of sensitivity, and can take advantage of an rf multiplexing technique. The device consists of an antenna to couple radiation into a small superconducting volume and cause quasiparticle excitations, and a single-electron transistor to measure current through junctions contacting the absorber. We describe optimization of device parameters, and results on fabrication techniques for producing devices with high yield for detector arrays. We also present modeling of expected saturation power levels, antenna coupling, and rf multiplexing schemes.
NASA Astrophysics Data System (ADS)
Razzak, M. Abdur; Takamura, Shuichi; Uesugi, Yoshihiko; Ohno, Noriyasu
A radio frequency (rf) inductive discharge in atmospheric pressure range requires high voltage in the initial startup phase and high power during the steady state sustainment phase. It is, therefore, necessary to inject high rf power into the plasma ensuring the maximum use of the power source, especially where the rf power is limited. In order to inject the maximum possible rf power into the plasma with a moderate rf power source of few kilowatts range, we employ the immittance conversion topology by converting a constant voltage source into a constant current source to generate efficient rf discharge by inductively coupled plasma (ICP) technique at a gas pressure with up to one atmosphere in argon. A novel T-LCL immittance circuit is designed for constant-current high-power operation, which is practically very important in the high-frequency range, to provide high effective rf power to the plasma. The immittance conversion system combines the static induction transistor (SIT)-based radio frequency (rf) high-power inverter circuit and the immittance conversion elements including the rf induction coil. The basic properties of the immittance circuit are studied by numerical analysis and verified the results by experimental measurements with the inductive plasma as a load at a relatively high rf power of about 4 kW. The performances of the immittance circuit are also evaluated and compared with that of the conventional series resonance circuit in high-pressure induction plasma generation. The experimental results reveal that the immittance conversion circuit confirms injecting higher effective rf power into the plasma as much as three times than that of the series resonance circuit under the same operating conditions and same dc supply voltage to the inverter, thereby enhancing the plasma heating efficiency to generate efficient rf inductive discharges.
Sommer, C M; Lemm, G; Hohenstein, E; Bellemann, N; Stampfl, U; Goezen, A S; Rassweiler, J; Kauczor, H U; Radeleff, B A; Pereira, P L
2013-06-01
This study was designed to evaluate the clinical efficacy of CT-guided bipolar and multipolar radiofrequency ablation (RF ablation) of renal cell carcinoma (RCC) and to analyze specific technical aspects between both technologies. We included 22 consecutive patients (3 women; age 74.2 ± 8.6 years) after 28 CT-guided bipolar or multipolar RF ablations of 28 RCCs (diameter 2.5 ± 0.8 cm). Procedures were performed with a commercially available RF system (Celon AG Olympus, Berlin, Germany). Technical aspects of RF ablation procedures (ablation mode [bipolar or multipolar], number of applicators and ablation cycles, overall ablation time and deployed energy, and technical success rate) were analyzed. Clinical results (local recurrence-free survival and local tumor control rate, renal function [glomerular filtration rate (GFR)]) and complication rates were evaluated. Bipolar RF ablation was performed in 12 procedures and multipolar RF ablation in 16 procedures (2 applicators in 14 procedures and 3 applicators in 2 procedures). One ablation cycle was performed in 15 procedures and two ablation cycles in 13 procedures. Overall ablation time and deployed energy were 35.0 ± 13.6 min and 43.7 ± 17.9 kJ. Technical success rate was 100 %. Major and minor complication rates were 4 and 14 %. At an imaging follow-up of 15.2 ± 8.8 months, local recurrence-free survival was 14.4 ± 8.8 months and local tumor control rate was 93 %. GFR did not deteriorate after RF ablation (50.8 ± 16.6 ml/min/1.73 m(2) before RF ablation vs. 47.2 ± 11.9 ml/min/1.73 m(2) after RF ablation; not significant). CT-guided bipolar and multipolar RF ablation of RCC has a high rate of clinical success and low complication rates. At short-term follow-up, clinical efficacy is high without deterioration of the renal function.
Borelli, Jessica L; Brugnera, Agostino; Zarbo, Cristina; Rabboni, Massimo; Bondi, Emi; Tasca, Giorgio A; Compare, Angelo
2018-06-04
This study investigated the effects of adolescents' attachment security and reflective functioning (RF) (assessed by the adult attachment interview [AAI]) in the prediction of well-being in adulthood. Adolescents (N = 79; M = 14.6 years old; SD = 3.5 years) completed the AAI at Time 1 (T1), which was subsequently coded for inferred attachment experiences, narrative coherence, and RF by three nonoverlapping teams of raters. Participants completed the Psychological General Well-being Index at T1 and 8 years later (Time 2, T2). Analyses showed that (a) both adolescent narrative coherence and RF were significant predictors of almost all indices of well-being at T2 in adulthood; (b) both narrative coherence and RF indirectly linked inferred loving parental care and T2 well-being; (c) when included in the same model, RF was a significant indirect effect linking inferred loving parental care and T2 well-being. These findings contribute to theory in suggesting that both RF and narrative coherence are predictive of subsequent psychological well-being and operate as links between inferred parental care and subsequent adjustment. Possible mechanisms underlying these findings are discussed.
Cortical depth dependent population receptive field attraction by spatial attention in human V1.
Klein, Barrie P; Fracasso, Alessio; van Dijk, Jelle A; Paffen, Chris L E; Te Pas, Susan F; Dumoulin, Serge O
2018-04-27
Visual spatial attention concentrates neural resources at the attended location. Recently, we demonstrated that voluntary spatial attention attracts population receptive fields (pRFs) toward its location throughout the visual hierarchy. Theoretically, both a feed forward or feedback mechanism could underlie pRF attraction in a given cortical area. Here, we use sub-millimeter ultra-high field functional MRI to measure pRF attraction across cortical depth and assess the contribution of feed forward and feedback signals to pRF attraction. In line with previous findings, we find consistent attraction of pRFs with voluntary spatial attention in V1. When assessed as a function of cortical depth, we find pRF attraction in every cortical portion (deep, center and superficial), although the attraction is strongest in deep cortical portions (near the gray-white matter boundary). Following the organization of feed forward and feedback processing across V1, we speculate that a mixture of feed forward and feedback processing underlies pRF attraction in V1. Specifically, we propose that feedback processing contributes to the pRF attraction in deep cortical portions. Copyright © 2018. Published by Elsevier Inc.
Integrated Inductors for RF Transmitters in CMOS/MEMS Smart Microsensor Systems
Kim, Jong-Wan; Takao, Hidekuni; Sawada, Kazuaki; Ishida, Makoto
2007-01-01
This paper presents the integration of an inductor by complementary metal-oxide-semiconductor (CMOS) compatible processes for integrated smart microsensor systems that have been developed to monitor the motion and vital signs of humans in various environments. Integration of radio frequency transmitter (RF) technology with complementary metal-oxide-semiconductor/micro electro mechanical systems (CMOS/MEMS) microsensors is required to realize the wireless smart microsensors system. The essential RF components such as a voltage controlled RF-CMOS oscillator (VCO), spiral inductors for an LC resonator and an integrated antenna have been fabricated and evaluated experimentally. The fabricated RF transmitter and integrated antenna were packaged with subminiature series A (SMA) connectors, respectively. For the impedance (50 Ω) matching, a bonding wire type inductor was developed. In this paper, the design and fabrication of the bonding wire inductor for impedance matching is described. Integrated techniques for the RF transmitter by CMOS compatible processes have been successfully developed. After matching by inserting the bonding wire inductor between the on-chip integrated antenna and the VCO output, the measured emission power at distance of 5 m from RF transmitter was -37 dBm (0.2 μW).
Schmidtmann, Gunnar; Kingdom, Frederick A A
2017-05-01
Radial frequency (RF) patterns, which are sinusoidal modulations of a radius in polar coordinates, are commonly used to study shape perception. Previous studies have argued that the detection of RF patterns is either achieved globally by a specialized global shape mechanism, or locally using as cue the maximum tangent orientation difference between the RF pattern and the circle. Here we challenge both ideas and suggest instead a model that accounts not only for the detection of RF patterns but also for line frequency patterns (LF), i.e. contours sinusoidally modulated around a straight line. The model has two features. The first is that the detection of both RF and LF patterns is based on curvature differences along the contour. The second is that this curvature metric is subject to what we term the Curve Frequency Sensitivity Function, or CFSF, which is characterized by a flat followed by declining response to curvature as a function of modulation frequency, analogous to the modulation transfer function of the eye. The evidence that curvature forms the basis for detection is that at very low modulation frequencies (1-3 cycles for the RF pattern) there is a dramatic difference in thresholds between the RF and LF patterns, a difference however that disappears at medium and high modulation frequencies. The CFSF feature on the other hand explains why thresholds, rather than continuously declining with modulation frequency, asymptote at medium and high modulation frequencies. In summary, our analysis suggests that the detection of shape modulations is processed by a common curvature-sensitive mechanism that is subject to a shape-frequency-dependent transfer function. This mechanism is independent of whether the modulation is applied to a circle or a straight line. Copyright © 2017 Elsevier Ltd. All rights reserved.
Imaging the Variscan suture at the KTB deep drilling site, Germany
NASA Astrophysics Data System (ADS)
Bianchi, Irene; Bokelmann, Götz
2018-03-01
The upper crust of the KTB (Kontinentales Tiefbohrprogramm) area in Southeastern Germany is a focal point for the Earth Science community due to the huge amount of information collected throughout the last thirty years. In this study we explore the crustal structure of the KTB area through the application of the receiver function (RF) technique to a new data set recorded by 9 temporary seismic stations and 1 permanent station. We aim to unravel the isotropic structure and compare our results with previous information from the reflection profiles collected during the initial site investigations. Due to the large amount of information collected by previous studies, in terms of P-wave velocity, depth and location of major reflectors, depth reconstruction of major faults zones, this area represents a unique occasion to test the resolution capability of a passive seismological study performed by the application of the RF. We aim to verify which contribution could be given by the application of the receiver functions technique, for future studies, in order to get clear images of the deep structure, and up to which resolution. The RF technique has apparently not been applied in the area before, yet it may give useful additional insight in subsurface structure, particularly at depths larger than the maximum depth reached by drilling, but also on structures in the upper crust, around the area that has been studied in detail previously. In our results vS-depth profiles for stations located on the same geological units display common features and show shallow S-wave velocities typical of the outcropping geological units (i.e. sedimentary basin, granites, metamorphic rocks). At around 10 km depth we observe a strong velocity increase beneath all stations. For the stations located in the center of the area, this variation is weaker, which we assume to be the signature of the main tectonic suture in the area (i.e. the Saxothuringian-Moldanubian suture), along an West-to-East extended region, may be due to the presence of the allochthonous klippe trapped between the main crustal terrains that came in touch during the Variscan orogeny. In the lower crust we see only small variations throughout the area, at the resolution that is possible with a small temporary experiment with just 10 stations.
ERIC Educational Resources Information Center
Li, Hui; Wong, Eileen Chin Mei; Tse, Shek Kam; Leung, Shing On; Ye, Qianling
2015-01-01
Request for information (RfI) is believed to be the universally dominant function of young children's questioning, whereas request for action (RfA) has been reported to be the leading interrogative form used in early child Cantonese. The possibility of crosslinguistic variability prompts further research and comparison with additional languages.…
An extraordinary tabletop speed of light apparatus
NASA Astrophysics Data System (ADS)
Pegna, Guido
2017-09-01
A compact, low-cost, pre-aligned apparatus of the modulation type is described. The apparatus allows accurate determination of the speed of light in free propagation with an accuracy on the order of one part in 104. Due to the 433.92 MHz radio frequency (rf) modulation of its laser diode, determination of the speed of light is possible within a sub-meter measuring base and in small volumes (some cm3) of transparent solids or liquids. No oscilloscope is necessary, while the required function generators, power supplies, and optical components are incorporated into the design of the apparatus and its receiver can slide along the optical bench while maintaining alignment with the laser beam. Measurement of the velocity factor of coaxial cables is also easily performed. The apparatus detects the phase difference between the rf modulation of the laser diode by further modulating the rf signal with an audio frequency signal; the phase difference between these signals is then observed as the loudness of the audio signal. In this way, the positions at which the minima of the audio signal are found determine where the rf signals are completely out of phase. This phase detection method yields a much increased sensitivity with respect to the display of coincidence of two signals of questionable arrival time and somewhat distorted shape on an oscilloscope. The displaying technique is also particularly suitable for large audiences as well as in unattended exhibits in museums and science centers. In addition, the apparatus can be set up in less than one minute.
NASA Astrophysics Data System (ADS)
Wilby, W. A.; Brett, A. R. H.
Frequency set on techniques used in ECM applications include repeater jammers, frequency memory loops (RF and optical), coherent digital RF memories, and closed loop VCO set on systems. Closed loop frequency set on systems using analog phase and frequency locking are considered to have a number of cost and performance advantages. Their performance is discussed in terms of frequency accuracy, bandwidth, locking time, stability, and simultaneous signals. Some experimental results are presented which show typical locking performance. Future ECM systems might require a response to very short pulses. Acoustooptic and fiber-optic pulse stretching techniques can be used to meet such requirements.
Non-Destructive Testing with Atmospheric Pressure Radio-Frequency Plasma
NASA Astrophysics Data System (ADS)
May, A.; Andarawis, E.
2007-03-01
We summarize our recent work using radio-frequency (RF) atmospheric pressure plasma (APP) for non-destructive evaluation (NDE), specifically for: (1) Clearance sensing (0-5mm) on rotating components, and (2) Generation of broadband ultrasound in air at 900kHz. RF-APP showed potential in both of these common NDE requirements, but further work is required to better characterize and optimize the performance of the new techniques. Application of RF-APP to other NDE disciplines, such as plasma spectroscopy and gas flow measurement, is also likely to be advantageous, especially in harsh environments where existing approaches are prohibitively expensive or complex.
NASA Astrophysics Data System (ADS)
Dahanayaka, Daminda; Wong, Andrew; Kaszuba, Philip; Moszkowicz, Leon; Slinkman, James; IBM SPV Lab Team
2014-03-01
Silicon-On-Insulator (SOI) technology has proved beneficial for RF cell phone technologies, which have equivalent performance to GaAs technologies. However, there is evident parasitic inversion layer under the Buried Oxide (BOX) at the interface with the high resistivity Si substrate. The latter is inferred from capacitance-voltage measurements on MOSCAPs. The inversion layer has adverse effects on RF device performance. We present data which, for the first time, show the extent of the inversion layer in the underlying substrate. This knowledge has driven processing techniques to suppress the inversion.
Landler, Lukas; Painter, Michael S.; Youmans, Paul W.; Hopkins, William A.; Phillips, John B.
2015-01-01
We investigated spontaneous magnetic alignment (SMA) by juvenile snapping turtles using exposure to low-level radio frequency (RF) fields at the Larmor frequency to help characterize the underlying sensory mechanism. Turtles, first introduced to the testing environment without the presence of RF aligned consistently towards magnetic north when subsequent magnetic testing conditions were also free of RF (‘RF off → RF off’), but were disoriented when subsequently exposed to RF (‘RF off → RF on’). In contrast, animals initially introduced to the testing environment with RF present were disoriented when tested without RF (‘RF on → RF off’), but aligned towards magnetic south when tested with RF (‘RF on → RF on’). Sensitivity of the SMA response of yearling turtles to RF is consistent with the involvement of a radical pair mechanism. Furthermore, the effect of RF appears to result from a change in the pattern of magnetic input, rather than elimination of magnetic input altogether, as proposed to explain similar effects in other systems/organisms. The findings show that turtles first exposed to a novel environment form a lasting association between the pattern of magnetic input and their surroundings. However, under natural conditions turtles would never experience a change in the pattern of magnetic input. Therefore, if turtles form a similar association of magnetic cues with the surroundings each time they encounter unfamiliar habitat, as seems likely, the same pattern of magnetic input would be associated with multiple sites/localities. This would be expected from a sensory input that functions as a global reference frame, helping to place multiple locales (i.e., multiple local landmark arrays) into register to form a global map of familiar space. PMID:25978736
Landler, Lukas; Painter, Michael S; Youmans, Paul W; Hopkins, William A; Phillips, John B
2015-01-01
We investigated spontaneous magnetic alignment (SMA) by juvenile snapping turtles using exposure to low-level radio frequency (RF) fields at the Larmor frequency to help characterize the underlying sensory mechanism. Turtles, first introduced to the testing environment without the presence of RF aligned consistently towards magnetic north when subsequent magnetic testing conditions were also free of RF ('RF off → RF off'), but were disoriented when subsequently exposed to RF ('RF off → RF on'). In contrast, animals initially introduced to the testing environment with RF present were disoriented when tested without RF ('RF on → RF off'), but aligned towards magnetic south when tested with RF ('RF on → RF on'). Sensitivity of the SMA response of yearling turtles to RF is consistent with the involvement of a radical pair mechanism. Furthermore, the effect of RF appears to result from a change in the pattern of magnetic input, rather than elimination of magnetic input altogether, as proposed to explain similar effects in other systems/organisms. The findings show that turtles first exposed to a novel environment form a lasting association between the pattern of magnetic input and their surroundings. However, under natural conditions turtles would never experience a change in the pattern of magnetic input. Therefore, if turtles form a similar association of magnetic cues with the surroundings each time they encounter unfamiliar habitat, as seems likely, the same pattern of magnetic input would be associated with multiple sites/localities. This would be expected from a sensory input that functions as a global reference frame, helping to place multiple locales (i.e., multiple local landmark arrays) into register to form a global map of familiar space.
Skyrme forces and decay of the Rf266*104 nucleus synthesized via different incoming channels
NASA Astrophysics Data System (ADS)
Niyti, Deep, Aman; Kharab, Rajesh; Chopra, Sahila; Gupta, Raj K.
2017-03-01
The excitation functions for the production of 262Rf, 261Rf, and 260Rf isotopes via 4 n -, 5 n -, and 6 n -decay channels from the *266Rf compound nucleus are studied within the dynamical cluster-decay model (DCM), including deformations β2 i and so-called hot-optimum orientations θi which support symmetric fission, in agreement with experiments. The data are available for 18O+248Cm and 22Ne+244Pu reactions, respectively, at the energy ranges of Elab=88.2 to 101.3 and 109.0 to 124.8 MeV. For the nuclear interaction potentials, we use the Skyrme energy density functional (SEDF) based on semiclassical extended Thomas Fermi (ETF) approach, which means an extension of the earlier study of excitation functions of *266Rf formed in 18O+248Cm reaction, based on the DCM using the pocket formula for nuclear proximity potential, showing interaction dependence. The Skyrme forces used here are the old SIII and SIV and new GSkI and KDE0(v1) given for both normal and isospin-rich nuclei, with densities added in frozen density approximation. Interestingly, the DCM gives an excellent fit to the measured data on fusion evaporation residue (ER) for both the incoming channels (18O+248Cm and 22Ne+244Pu ) at the energy range Elab=88.2 to 124.8 MeV, independent of the entrance channel and Skyrme force used. The possible fusion-fission (ff) and quasifission (qf) mass regions of fragments on DCM are also predicted. The DCM with Skyrme forces is further used to look for all the possible target-projectile (t-p) combinations forming the cold compound nucleus (CN) *266Rf at the CN excitation energy of Elab for hot compact configurations. The fusion evaporation residue cross sections, for the proposed new reactions in synthesizing the CN *266Rf, are also estimated for the future experiments, and role of mass asymmetry of nuclei is indicated.
Bandwidth controller for phase-locked-loop
NASA Technical Reports Server (NTRS)
Brockman, Milton H. (Inventor)
1992-01-01
A phase locked loop utilizing digital techniques to control the closed loop bandwidth of the RF carrier phase locked loop in a receiver provides high sensitivity and a wide dynamic range for signal reception. After analog to digital conversion, a digital phase locked loop bandwidth controller provides phase error detection with automatic RF carrier closed loop tracking bandwidth control to accommodate several modes of transmission.
Thin transparent titania (TiO2) films were coated on the surface of flexible poly (ethylene terephthalate) (PET) surface using standard sol gel techniques. The TiO2/PET thin film surfaces were further modified by exposing the films to a RF glow discharge oxygen plasma. The exposu...
Novel Amorphous Fe-Zr-Si(Cu) Boron-free Alloys
NASA Astrophysics Data System (ADS)
Kopcewicz, M.; Grabias, A.; Latuch, J.; Kowalczyk, M.
2010-07-01
Novel amorphous Fe80(ZrxSi20-x-y)Cuy boron-free alloys, in which boron was completely replaced by silicon as a glass forming element, have been prepared in the form of ribbons by a melt quenching technique. The X-ray diffraction and Mössbauer spectroscopy measurements revealed that the as-quenched ribbons with the composition of x = 6-10 at. % and y = 0, 1 at. % are predominantly amorphous. DSC measurements allowed the estimation of the crystallization temperatures of the amorphous alloys. The soft magnetic properties have been studied by the specialized rf-Mössbauer technique in which the spectra were recorded during an exposure of the samples to the rf field of 0 to 20 Oe at 61.8 MHz. Since the rf-collapse effect observed is very sensitive to the local anisotropy fields it was possible to evaluate the soft magnetic properties of amorphous alloys studied. The rf-Mössbauer studies were accompanied by the conventional measurements of the quasi-static hysteresis loops from which the magnetization and coercive fields were estimated. It was found that amorphous Fe-Zr-Si(Cu) alloys are magnetically very soft, comparable with those of the conventional amorphous B-containing Fe-based alloys.
Demonstration of Space Optical Transmitter Development for Multiple High Frequency Bands
NASA Technical Reports Server (NTRS)
Nguyen, Hung; Simons, Rainee; Wintucky, Edwin; Freeman, Jon
2013-01-01
As the demand for multiple radio frequency carrier bands continues to grow in space communication systems, the design of a cost-effective compact optical transmitter that is capable of transmitting selective multiple RF bands is of great interest, particularly for NASA Space Communications Network Programs. This paper presents experimental results that demonstrate the feasibility of a concept based on an optical wavelength division multiplexing (WDM) technique that enables multiple microwave bands with different modulation formats and bandwidths to be combined and transmitted all in one unit, resulting in many benefits to space communication systems including reduced size, weight and complexity with corresponding savings in cost. Experimental results will be presented including the individual received RF signal power spectra for the L, C, X, Ku, Ka, and Q frequency bands, and measurements of the phase noise associated with each RF frequency. Also to be presented is a swept RF frequency power spectrum showing simultaneous multiple RF frequency bands transmission. The RF frequency bands in this experiment are among those most commonly used in NASA space environment communications.
Alcidi, L; Beneforti, E; Maresca, M; Santosuosso, U; Zoppi, M
2007-01-01
To investigate the analgesic effect of low power radiofrequency electromagnetic radiation (RF) in osteoarthritis (OA) of the knee. In a randomized study on 40 patients the analgesic effect of RF was compared with the effect of transcutaneous electrical nerve stimulation (TENS). RF and TENS applications were repeated every day for a period of 5 days. The therapeutic effect was evaluated by a visual analogue scale (VAS) and by Lequesne's index: tests were performed before, immediately after and 30 days after therapy. RF therapy induced a statistically significant and long lasting decrease of VAS and of Lequesne's index; TENS induced a decrease of VAS and of Lequesne's index which was not statistically significant. A therapeutic effect of RF was therefore demonstrated on pain and disability due to knee OA. This effect was better than the effect of TENS, which is a largely used analgesic technique. Such a difference of the therapeutic effect may be due to the fact that TENS acts only on superficial tissues and nerve terminals, while RF acts increasing superficial and deep tissue temperature.
Structure and optical properties of silica-supported Ag-Au nanoparticles.
Barreca, Davide; Gasparotto, Alberto; Maragno, Cinzia; Tondello, Eugenio; Gialanella, Stefano
2007-07-01
Bimetallic Ag-Au nanoparticles are synthesized by sequential deposition of Au and Ag on amorphous silica by Radio Frequency (RF)-sputtering under mild conditions. Specimens are thoroughly characterized by a multi-technique approach, aimed at investigating the system properties as a function of the Ag/Au content, as well as the evolution induced by ex-situ annealing under inert (N2) or reducing (4% H2/N2) atmospheres. The obtained results demonstrate the possibility to obtain Ag-Au alloyed nanoparticles with controllable size, shape, structure, and dispersion under mild conditions, so that the optical properties can be finely tuned as a function of the synthesis and thermal treatment conditions.
RF to millimeter wave integration and module technologies
NASA Astrophysics Data System (ADS)
Vähä-Heikkilä, T.
2015-04-01
Radio Frequency (RF) consumer applications have boosted silicon integrated circuits (IC) and corresponding technologies. More and more functions are integrated to ICs and their performance is also increasing. However, RF front-end modules with filters and switches as well as antennas still need other way of integration. This paper focuses to RF front-end module and antenna developments as well as to the integration of millimeter wave radios. VTT Technical Research Centre of Finland has developed both Low Temperature Co-fired Ceramics (LTCC) and Integrated Passive Devices (IPD) integration platforms for RF and millimeter wave integrated modules. In addition to in-house technologies, VTT is using module and component technologies from other commercial sources.
Forced-rupture of cell-adhesion complexes reveals abrupt switch between two brittle states
NASA Astrophysics Data System (ADS)
Toan, Ngo Minh; Thirumalai, D.
2018-03-01
Cell adhesion complexes (CACs), which are activated by ligand binding, play key roles in many cellular functions ranging from cell cycle regulation to mediation of cell extracellular matrix adhesion. Inspired by single molecule pulling experiments using atomic force spectroscopy on leukocyte function-associated antigen-1 (LFA-1), expressed in T-cells, bound to intercellular adhesion molecules (ICAM), we performed constant loading rate (rf) and constant force (F) simulations using the self-organized polymer model to describe the mechanism of ligand rupture from CACs. The simulations reproduce the major experimental finding on the kinetics of the rupture process, namely, the dependence of the most probable rupture forces (f*s) on ln rf (rf is the loading rate) exhibits two distinct linear regimes. The first, at low rf, has a shallow slope, whereas the slope at high rf is much larger, especially for a LFA-1/ICAM-1 complex with the transition between the two occurring over a narrow rf range. Locations of the two transition states (TSs) extracted from the simulations show an abrupt change from a high value at low rf or constant force, F, to a low value at high rf or F. This unusual behavior in which the CACs switch from one brittle (TS position is a constant over a range of forces) state to another brittle state is not found in forced-rupture in other protein complexes. We explain this novel behavior by constructing the free energy profiles, F(Λ)s, as a function of a collective reaction coordinate (Λ), involving many key charged residues and a critical metal ion (Mg2+). The TS positions in F(Λ), which quantitatively agree with the parameters extracted using the Bell-Evans model, change abruptly at a critical force, demonstrating that it, rather than the molecular extension, is a good reaction coordinate. Our combined analyses using simulations performed in both the pulling modes (constant rf and F) reveal a new mechanism for the two loading regimes observed in the rupture kinetics in CACs.
Design, development and manufacture of a breadboard radio frequency mass gauging system
NASA Technical Reports Server (NTRS)
1975-01-01
The feasibility of the RF gauging mode, counting technique was demonstrated for gauging liquid hydrogen and liquid oxygen under all attitude conditions. With LH2, it was also demonstrated under dynamic fluid conditions, in which the fluid assumes ever changing positions within the tank, that the RF gauging technique on the average provides a very good indication of mass. It is significant that the distribution of the mode count data at each fill level during dynamic LH2 and LOX orientation testing does approach a statistical normal distribution. Multiple space-diversity probes provide better coupling to the resonant modes than utilization of a single probe element. The variable sweep rate generator technique provides a more uniform mode versus time distribution for processing.
Xue, Weiqi; Sales, Salvador; Capmany, José; Mørk, Jesper
2009-04-01
We suggest and experimentally demonstrate a method for increasing the tunable rf phase shift of semiconductor waveguides while at the same time enabling control of the rf power. This method is based on the use of slow- and fast-light effects in a cascade of semiconductor optical amplifiers combined with the use of spectral filtering to enhance the role of refractive index dynamics. A continuously tunable phase shift of approximately 240 degrees at a microwave frequency of 19 GHz is demonstrated in a cascade of two semiconductor optical amplifiers, while maintaining an rf power change of less than 1.6 dB. The technique is scalable to more amplifiers and should allow realization of an rf phase shift of 360 degrees.
ITO/InP solar cells: A comparison of devices fabricated by ion beam and RF sputtering of the ITO
NASA Technical Reports Server (NTRS)
Coutts, T. J.
1987-01-01
This work was performed with the view of elucidating the behavior of indium tin oxide/indium phosphide (ITO/InP) solar cells prepared by RF and ion beam sputtering. It was found that using RF sputter deposition of the ITO always leads to more efficient devices than ion beam sputter deposition. An important aspect of the former technique is the exposure of the single crystal p-InP substrates to a very low plasma power prior to deposition. Substrates treated in this manner have also been used for ion beam deposition of ITO. In this case the cells behave very similarly to the RF deposited cells, thus suggesting that the lower power plasma exposure (LPPE) is the crucial process step.
Rodenbeck, Christopher T.; Tracey, Keith J.; Barkley, Keith R.; ...
2014-08-01
This paper introduces a technique for improving the sensitivity of RF subsamplers in radar and coherent receiver applications. The technique, referred to herein as “delta modulation” (DM), feeds the time-average output of a monobit analog-to-digital converter (ADC) back to the ADC input, but with opposite polarity. Assuming pseudo-stationary modulation statistics on the sampled RF waveform, the feedback signal corrects for aggregate DC offsets present in the ADC that otherwise degrade ADC sensitivity. Two RF integrated circuits (RFICs) are designed to demonstrate the approach. One uses analog DM to create the feedback signal; the other uses digital DM to achieve themore » same result. A series of tests validates the designs. The dynamic time-domain response confirms the feedback loop’s basic operation. Measured output quantization imbalance, under noise-only input drive, significantly improves with the use of the DM circuit, even for large, deliberately induced DC offsets and wide temperature variation from -55°C to +85 °C. Examination of the corrected vs. uncorrected baseband spectrum under swept input signal-tonoise ratio (SNR) conditions demonstrates the effectiveness of this approach for realistic radar and coherent receiver applications. In conclusion, two-tone testing shows no impact of the DM technique on ADC linearity.« less
Electron Beam Instrumentation Techniques Using Coherent Radiation
NASA Astrophysics Data System (ADS)
Wang, D. X.
1997-05-01
In recent years, there has been increasing interest in short electron bunches for different applications such as short wavelength FELs, linear colliders, advanced accelerators such as laser or plasma wakefield accelerators, and Compton backscattering X-ray sources. A short bunch length is needed to meet various requirements such as high peak current, low momentum spread, high luminosity, small ratio of bunch length to plasma wavelength, or accurate timing. Meanwhile, much progress has been made on photoinjectors and different magnetic and RF bunching schemes to produce very short bunches. Measurement of those short bunches becomes essential to develop, characterize, and operate such demanding machines. Conventionally, bunch duration of short electron bunches is measured by transverse RF deflecting cavities or streak camera. With such devices it becomes very challenging to measure bunch length down to a few hundred femtoseconds. Many frequency domain techniques have been recently developed, based on a relation between bunch profile and coherent radiation spectrum. These techniques provide excellent performance for short bunches. In this paper, coherent radiation and its applications to bunch length measurement will be discussed. A strategy for bunch length control at Jefferson Lab will be presented, which includes a noninvasive coherent synchrotron radiation (CSR) monitor, a zero-phasing technique used to calibrate the CSR detector, and phase transfer measurement used to correct RF phase drifts.
Perroud, Nader; Badoud, Deborah; Weibel, Sébastien; Nicastro, Rosetta; Hasler, Roland; Küng, Anne-Lise; Luyten, Patrick; Fonagy, Peter; Dayer, Alexandre; Aubry, Jean-Michel; Prada, Paco; Debbané, Martin
2017-10-01
Emotion dysregulation and interpersonal hardships constitute core features of borderline personality disorder (BPD). Research has established the link between these core dysregulations and fluctuations in the capacity to appreciate the mental states that underlie behavior (mentalizing, operationalized as reflective functioning (RF)). As emotion dysregulation and interpersonal hardships also characterize adults with attention deficit hyperactivity disorder (ADHD), this study sought to examine the potential RF impairments affecting this population. 101 adults with ADHD, 108 with BPD and 236 controls were assessed using the RF questionnaire (RFQ), evaluating how individuals employ information about mental states to better understand their own and others' behaviors. The RFQ comprises two dimensions, certainty (RF_c) and uncertainty (RF_u) about mental states. RF scores helped distinguish ADHD from controls, but also from BPD (F = 48.1 (2/441) ; p < 0.0001 for RF_c and F = 92.5 (2/441) ; p < 0.0001 for RF_u). The ADHD group showed intermediary RF scores compared to the controls (b = -0.70; p < 0.0001 and b = 0.89; p < 0.0001 for RF_c and RF_u) and BPD group (b = 0.44; p = 0.001 and b = -0.56; p = 0.001 for RF_c and RF_u). Lower RF scores correlated with poor anger control and high levels of impulsivity. Higher severity of ADHD (more attentional and hyperactive/impulsive symptoms) was correlated with RF impairments. In conclusion, RF may constitute an important process underlying attentional, hyperactive/impulsive as well as emotional symptoms in ADHD; it should therefore be considered in the assessment of these patients. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edelen, J. P.; Sun, Y.; Harris, J. R.
In this paper we derive analytical expressions for the output current of an un-gated thermionic cathode RF gun in the presence of back-bombardment heating. We provide a brief overview of back-bombardment theory and discuss comparisons between the analytical back-bombardment predictions and simulation models. We then derive an expression for the output current as a function of the RF repetition rate and discuss relationships between back-bombardment, fieldenhancement, and output current. We discuss in detail the relevant approximations and then provide predictions about how the output current should vary as a function of repetition rate for some given system configurations.
Self-referenced locking of optical coherence by single-detector electronic-frequency tagging
NASA Astrophysics Data System (ADS)
Shay, T. M.; Benham, Vincent; Spring, Justin; Ward, Benjamin; Ghebremichael, F.; Culpepper, Mark A.; Sanchez, Anthony D.; Baker, J. T.; Pilkington, D.; Berdine, Richard
2006-02-01
We report a novel coherent beam combining technique. This is the first actively phase locked optical fiber array that eliminates the need for a separate reference beam. In addition, only a single photodetector is required. The far-field central spot of the array is imaged onto the photodetector to produce the phase control loop signals. Each leg of the fiber array is phase modulated with a separate RF frequency, thus tagging the optical phase shift for each leg by a separate RF frequency. The optical phase errors for the individual array legs are separated in the electronic domain. In contrast with the previous active phase locking techniques, in our system the reference beam is spatially overlapped with all the RF modulated fiber leg beams onto a single detector. The phase shift between the optical wave in the reference leg and in the RF modulated legs is measured separately in the electronic domain and the phase error signal is feedback to the LiNbO 3 phase modulator for that leg to minimize the phase error for that leg relative to the reference leg. The advantages of this technique are 1) the elimination of the reference beam and beam combination optics and 2) the electronic separation of the phase error signals without any degradation of the phase locking accuracy. We will present the first theoretical model for self-referenced LOCSET and describe experimental results for a 3 x 3 array.
NASA Astrophysics Data System (ADS)
Dutta, Arka; Koley, Kalyan; Sarkar, Chandan K.
2014-11-01
In this paper, a systematic RF performance analysis of double-gate strained silicon (DGSS) nMOSFETs is presented. The analysis is focused upon impact of Germanium mole-fraction variation on RF performance of underlap engineered DGSS nMOSFET. The RF performance of the device is analysed as a function of intrinsic RF figure of merits (FOMs) including non-quasi static effects (NQS). The RF FOMs are represented by the intrinsic gate to source/drain capacitance (Cgs and Cgd) and resistance (Rgs and Rgd), the transport delay (τm), the intrinsic inductance (Lsd), the cut-off frequency (fT), and the maximum oscillation frequency (fMAX). The results of the study suggested a significant improvement in the device performance, up to 40% increase in Germanium mole fraction (χ).
Effect of fatigue on force production and force application technique during repeated sprints.
Morin, Jean-Benoit; Samozino, Pierre; Edouard, Pascal; Tomazin, Katja
2011-10-13
We investigated the changes in the technical ability of force application/orientation against the ground vs. the physical capability of total force production after a multiple-set repeated sprints series. Twelve male physical education students familiar with sprint running performed four sets of five 6-s sprints (24s of passive rest between sprints, 3min between sets). Sprints were performed from a standing start on an instrumented treadmill, allowing the computation of vertical (F(V)), net horizontal (F(H)) and total (F(Tot)) ground reaction forces for each step. Furthermore, the ratio of forces was calculated as RF=F(H)F(Tot)(-1), and the index of force application technique (D(RF)) representing the decrement in RF with increase in speed was computed as the slope of the linear RF-speed relationship. Changes between pre- (first two sprints) and post-fatigue (last two sprints) were tested using paired t-tests. Performance decreased significantly (e.g. top speed decreased by 15.7±5.4%; P<0.001), and all the mechanical variables tested significantly changed. F(H) showed the largest decrease, compared to F(V) and F(Tot). D(RF) significantly decreased (P<0.001, effect size=1.20), and the individual magnitudes of change of D(RF) were significantly more important than those of F(Tot) (19.2±20.9 vs. 5.81±5.76%, respectively; P<0.01). During a multiple-set repeated sprint series, both the total force production capability and the technical ability to apply force effectively against the ground are altered, the latter to a larger extent than the former. Copyright © 2011 Elsevier Ltd. All rights reserved.
Borelli, Jessica L; Palmer, Alexandra; Vanwoerden, Salome; Sharp, Carla
2017-12-13
Although convergence in parent-youth reports of adolescent psychopathology is critical for treatment planning, research documents a pervasive lack of agreement in ratings of adolescents' symptoms. Attachment insecurity (particularly disorganized attachment) and impoverished reflective functioning (RF) are 2 theoretically implicated predictors of low convergence that have not been examined in the literature. In a cross-sectional investigation of adolescents receiving inpatient psychiatric treatment, we examined whether disorganized attachment and low (adolescent and parent) RF were associated with patterns of convergence in adolescent internalizing and externalizing symptoms. Compared with organized adolescents, disorganized adolescents had lower parent-youth convergence in reports of their internalizing symptoms and higher convergence in reports of their externalizing symptoms; low adolescent self-focused RF was associated with low convergence in parent-adolescent reports of internalizing symptoms, whereas low adolescent global RF was associated with high convergence in parent-adolescent reports of externalizing symptoms. Among adolescents receiving inpatient psychiatric treatment, disorganized attachment and lower RF were associated with weaker internalizing symptom convergence and greater externalizing symptom convergence, which if replicated, could inform assessment strategies and treatment planning in this setting.
Analyzing Resiliency of the Smart Grid Communication Architectures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anas AlMajali, Anas; Viswanathan, Arun; Neuman, Clifford
Smart grids are susceptible to cyber-attack as a result of new communication, control and computation techniques employed in the grid. In this paper, we characterize and analyze the resiliency of smart grid communication architecture, specifically an RF mesh based architecture, under cyber attacks. We analyze the resiliency of the communication architecture by studying the performance of high-level smart grid functions such as metering, and demand response which depend on communication. Disrupting the operation of these functions impacts the operational resiliency of the smart grid. Our analysis shows that it takes an attacker only a small fraction of meters to compromisemore » the communication resiliency of the smart grid. We discuss the implications of our result to critical smart grid functions and to the overall security of the smart grid.« less
Wang, D.; Antipov, S.; Jing, C.; ...
2016-02-05
Electron beam interaction with high frequency structures (beyond microwave regime) has a great impact on future high energy frontier machines. We report on the generation of multimegawatt pulsed rf power at 91 GHz in a planar metallic accelerating structure driven by an ultrarelativistic electron bunch train. This slow-wave wakefield device can also be used for high gradient acceleration of electrons with a stable rf phase and amplitude which are controlled by manipulation of the bunch train. To achieve precise control of the rf pulse properties, a two-beam wakefield interferometry method was developed in which the rf pulse, due to themore » interference of the wakefields from the two bunches, was measured as a function of bunch separation. As a result, measurements of the energy change of a trailing electron bunch as a function of the bunch separation confirmed the interferometry method.« less
Quick, Harald H; Zenge, Michael O; Kuehl, Hilmar; Kaiser, Gernot; Aker, Stephanie; Massing, Sandra; Bosk, Silke; Ladd, Mark E
2005-02-01
Active instrument visualization strategies for interventional MR angiography (MRA) require vascular instruments to be equipped with some type of radiofrequency (RF) coil or dipole RF antenna for MR signal detection. Such visualization strategies traditionally necessitate a connection to the scanner with either coaxial cable or laser fibers. In order to eliminate any wire connection, RF resonators that inductively couple their signal to MR surface coils were implemented into catheters to enable wireless active instrument visualization. Instrument background to contrast-to-noise ratio was systematically investigated as a function of the excitation flip angle. Signal coupling between the catheter RF coil and surface RF coils was evaluated qualitatively and quantitatively as a function of the catheter position and orientation with regard to the static magnetic field B0 and to the surface coils. In vivo evaluation of the instruments was performed in interventional MRA procedures on five pigs under MR guidance. Cartesian and projection reconstruction TrueFISP imaging enabled simultaneous visualization of the instruments and vascular morphology in real time. The implementation of RF resonators enabled robust visualization of the catheter curvature to the very tip. Additionally, the active visualization strategy does not require any wire connection to the scanner and thus does not hamper the interventionalist during the course of an intervention.
Investigation of Noise in Photonic Links and Components
2017-10-24
radio-frequency (RF) domain were studied : double Rayleigh scattering-induced relative intensity noise and component-induced phase noise. Techniques to...oscillators were built and characterized, one of which incorporated a method to potentially minimize close-in RF phase noise that entailed using the...phase noise impressed on one continuous-wave laser wavelength to cancel that impressed on another. 24-10-2017 Memorandum Office of Naval Research One
Exploitation of RF-DNA for Device Classification and Verification Using GRLVQI Processing
2012-12-01
5 FLD Fisher’s Linear Discriminant . . . . . . . . . . . . . . . . . . . 6 kNN K-Nearest Neighbor...Neighbor ( kNN ), Support Vector Machine (SVM), and simple cross-correlation techniques [40, 57, 82, 88, 94, 95]. The RF-DNA fingerprinting research in...Expansion and the Dis- crete Gabor Transform on a Non-Separable Lattice”. 2000 IEEE Int’l Conf on Acoustics, Speech , and Signal Processing (ICASSP00
Accoustic Localization of Breakdown in Radio Frequency Accelerating Cavities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lane, Peter Gwin
Current designs for muon accelerators require high-gradient radio frequency (RF) cavities to be placed in solenoidal magnetic fields. These fields help contain and efficiently reduce the phase space volume of source muons in order to create a usable muon beam for collider and neutrino experiments. In this context and in general, the use of RF cavities in strong magnetic fields has its challenges. It has been found that placing normal conducting RF cavities in strong magnetic fields reduces the threshold at which RF cavity breakdown occurs. To aid the effort to study RF cavity breakdown in magnetic fields, it wouldmore » be helpful to have a diagnostic tool which can localize the source of breakdown sparks inside the cavity. These sparks generate thermal shocks to small regions of the inner cavity wall that can be detected and localized using microphones attached to the outer cavity surface. Details on RF cavity sound sources as well as the hardware, software, and algorithms used to localize the source of sound emitted from breakdown thermal shocks are presented. In addition, results from simulations and experiments on three RF cavities, namely the Aluminum Mock Cavity, the High-Pressure Cavity, and the Modular Cavity, are also given. These results demonstrate the validity and effectiveness of the described technique for acoustic localization of breakdown.« less
A z-gradient array for simultaneous multi-slice excitation with a single-band RF pulse.
Ertan, Koray; Taraghinia, Soheil; Sadeghi, Alireza; Atalar, Ergin
2018-07-01
Multi-slice radiofrequency (RF) pulses have higher specific absorption rates, more peak RF power, and longer pulse durations than single-slice RF pulses. Gradient field design techniques using a z-gradient array are investigated for exciting multiple slices with a single-band RF pulse. Two different field design methods are formulated to solve for the required current values of the gradient array elements for the given slice locations. The method requirements are specified, optimization problems are formulated for the minimum current norm and an analytical solution is provided. A 9-channel z-gradient coil array driven by independent, custom-designed gradient amplifiers is used to validate the theory. Performance measures such as normalized slice thickness error, gradient strength per unit norm current, power dissipation, and maximum amplitude of the magnetic field are provided for various slice locations and numbers of slices. Two and 3 slices are excited by a single-band RF pulse in simulations and phantom experiments. The possibility of multi-slice excitation with a single-band RF pulse using a z-gradient array is validated in simulations and phantom experiments. Magn Reson Med 80:400-412, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
Acoustic localization of breakdown in radio frequency accelerating cavities
NASA Astrophysics Data System (ADS)
Lane, Peter
Current designs for muon accelerators require high-gradient radio frequency (RF) cavities to be placed in solenoidal magnetic fields. These fields help contain and efficiently reduce the phase space volume of source muons in order to create a usable muon beam for collider and neutrino experiments. In this context and in general, the use of RF cavities in strong magnetic fields has its challenges. It has been found that placing normal conducting RF cavities in strong magnetic fields reduces the threshold at which RF cavity breakdown occurs. To aid the effort to study RF cavity breakdown in magnetic fields, it would be helpful to have a diagnostic tool which can localize the source of breakdown sparks inside the cavity. These sparks generate thermal shocks to small regions of the inner cavity wall that can be detected and localized using microphones attached to the outer cavity surface. Details on RF cavity sound sources as well as the hardware, software, and algorithms used to localize the source of sound emitted from breakdown thermal shocks are presented. In addition, results from simulations and experiments on three RF cavities, namely the Aluminum Mock Cavity, the High-Pressure Cavity, and the Modular Cavity, are also given. These results demonstrate the validity and effectiveness of the described technique for acoustic localization of breakdown.
NASA Astrophysics Data System (ADS)
Hong, Haoyuan; Pourghasemi, Hamid Reza; Pourtaghi, Zohre Sadat
2016-04-01
Landslides are an important natural hazard that causes a great amount of damage around the world every year, especially during the rainy season. The Lianhua area is located in the middle of China's southern mountainous area, west of Jiangxi Province, and is known to be an area prone to landslides. The aim of this study was to evaluate and compare landslide susceptibility maps produced using the random forest (RF) data mining technique with those produced by bivariate (evidential belief function and frequency ratio) and multivariate (logistic regression) statistical models for Lianhua County, China. First, a landslide inventory map was prepared using aerial photograph interpretation, satellite images, and extensive field surveys. In total, 163 landslide events were recognized in the study area, with 114 landslides (70%) used for training and 49 landslides (30%) used for validation. Next, the landslide conditioning factors-including the slope angle, altitude, slope aspect, topographic wetness index (TWI), slope-length (LS), plan curvature, profile curvature, distance to rivers, distance to faults, distance to roads, annual precipitation, land use, normalized difference vegetation index (NDVI), and lithology-were derived from the spatial database. Finally, the landslide susceptibility maps of Lianhua County were generated in ArcGIS 10.1 based on the random forest (RF), evidential belief function (EBF), frequency ratio (FR), and logistic regression (LR) approaches and were validated using a receiver operating characteristic (ROC) curve. The ROC plot assessment results showed that for landslide susceptibility maps produced using the EBF, FR, LR, and RF models, the area under the curve (AUC) values were 0.8122, 0.8134, 0.7751, and 0.7172, respectively. Therefore, we can conclude that all four models have an AUC of more than 0.70 and can be used in landslide susceptibility mapping in the study area; meanwhile, the EBF and FR models had the best performance for Lianhua County, China. Thus, the resultant susceptibility maps will be useful for land use planning and hazard mitigation aims.
A New First-Principles Calculation of Field-Dependent RF Surface Impedance of BCS Superconductor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao, Binping; Reece, Charles E.
2014-02-01
There is a need to understand the intrinsic limit of radiofrequency (RF) surface impedance that determines the performance of superconducting RF cavities in particle accelerators. Here we present a field-dependent derivation of Mattis-Bardeen theory of the RF surface impedance of BCS superconductors based on the shifted density of states resulting from coherently moving Cooper pairs. Our theoretical prediction of the effective BCS RF surface resistance (Rs) of niobium as a function of peak surface magnetic field amplitude agrees well with recently reported record low loss resonant cavity measurements from JLab and FNAL with carefully, yet differently, prepared niobium material. Themore » surprising reduction in resistance with increasing field is explained to be an intrinsic effect.« less
An alternative way to increase the power gain of resonant rings
NASA Astrophysics Data System (ADS)
Zhuang, Dehao; Liu, Yunqi; Wang, Fang; Lin, Lin; Feng, Liwen; Quan, Shengwen; Liu, Kexin
2018-03-01
Resonant rings which can amplify RF power through the coupling of waves are used for high power breakdown tests, unidirectional filters, or pulse-shaping techniques. Usually, the RF output terminal of a resonant ring is connected to a matched load. For the resonant ring at Peking University, the matched load has been replaced by a waveguide shorting plate to obtain higher conditioning power for the 1.3 GHz capacitive type power couplers. The power gain is increased significantly with this short termination with the same input RF power. Working mechanism analysis, experiments, and results of this modified resonant ring will be presented.
The Pelleve procedure: an effective method for facial wrinkle reduction and skin tightening.
Stampar, Michael
2011-05-01
Devices using radiofrequency (RF) energy and electrical energy to deliver a controlled thermal injury to heat skin have proliferated within the nonablative skin treatment market since the introduction of Thermage in 2002. By delivering continuous monopolar RF energy, rather than pulsed heating, and repeatedly bringing the skin to therapeutic temperatures until maximal contraction is obtained, the Pelleve Procedure can give obvious cosmetic results confluently over all treated areas painlessly and with no downtime. In this article, the technique, mechanism of continuous RF heating, and apparent treatment requirements to produce these results are presented. Some controversies are also addressed. Copyright © 2011 Elsevier Inc. All rights reserved.
Quasi-regenerative mode locking in a compact all-polarisation-maintaining-fibre laser
NASA Astrophysics Data System (ADS)
Nyushkov, B. N.; Ivanenko, A. V.; Kobtsev, S. M.; Pivtsov, V. S.; Farnosov, S. A.; Pokasov, P. V.; Korel, I. I.
2017-12-01
A novel technique of mode locking in erbium-doped all-polarisation-maintaining-fibre laser has been developed and preliminary investigated. The proposed quasi-regenerative technique combines the advantages of conventional active mode locking (when an intracavity modulator is driven by an independent RF oscillator) and regenerative mode locking (when a modulator is driven by an intermode beat signal from the laser itself). This scheme is based on intracavity intensity modulation driven by an RF oscillator being phase-locked to the actual intermode frequency of the laser. It features also possibilities of operation at multiple frequencies and harmonic mode-locking operation.
Multiparametric imaging with heterogeneous radiofrequency fields
NASA Astrophysics Data System (ADS)
Cloos, Martijn A.; Knoll, Florian; Zhao, Tiejun; Block, Kai T.; Bruno, Mary; Wiggins, Graham C.; Sodickson, Daniel K.
2016-08-01
Magnetic resonance imaging (MRI) has become an unrivalled medical diagnostic technique able to map tissue anatomy and physiology non-invasively. MRI measurements are meticulously engineered to control experimental conditions across the sample. However, residual radiofrequency (RF) field inhomogeneities are often unavoidable, leading to artefacts that degrade the diagnostic and scientific value of the images. Here we show that, paradoxically, these artefacts can be eliminated by deliberately interweaving freely varying heterogeneous RF fields into a magnetic resonance fingerprinting data-acquisition process. Observations made based on simulations are experimentally confirmed at 7 Tesla (T), and the clinical implications of this new paradigm are illustrated with in vivo measurements near an orthopaedic implant at 3T. These results show that it is possible to perform quantitative multiparametric imaging with heterogeneous RF fields, and to liberate MRI from the traditional struggle for control over the RF field uniformity.
Hybrid Ground Station Technology for RF and Optical Communication Links
NASA Technical Reports Server (NTRS)
Davarian, Faramaz; Hoppe, D.; Charles, J.; Vilnrotter, V.; Sehic, A.; Hanson, T.; Gam, E.
2012-01-01
To support future enhancements of NASA's deep space and planetary communications and tracking services, the Jet Propulsion Laboratory is developing a hybrid ground station that will be capable of simultaneously supporting RF and optical communications. The main reason for adding optical links to the existing RF links is to significantly increase the capacity of deep space communications in support of future solar system exploration. It is envisioned that a mission employing an optical link will also use an RF link for telemetry and emergency purposes, hence the need for a hybrid ground station. A hybrid station may also reduce operations cost by requiring fewer staff than would be required to operate two stations. A number of approaches and techniques have been examined. The most promising ones have been prototyped for field examination and validation.
Waveguide to Core: A New Approach to RF Modelling
NASA Astrophysics Data System (ADS)
Wright, John; Shiraiwa, Syunichi; Rf-Scidac Team
2017-10-01
A new technique for the calculation of RF waves in toroidal geometry enables the simultaneous incorporation of antenna geometry, plasma facing components (PFCs), the scrape off-layer (SOL) and core propagation [Shiraiwa, NF 2017]. Calculations with this technique naturally capture wave propagation in the SOL and its interactions with non-conforming PFCs permitting self-consistent calculation of core absorption and edge power loss. The main motivating insight is that the core plasma region having closed flux surfaces requires a hot plasma dielectric while the open field line region in the scrape-off layer needs only a cold plasma dielectric. Spectral approaches work well for the former and finite elements work well for the latter. The validity of this process follows directly from the superposition principle of Maxwell's equations making this technique exact. The method is independent of the codes or representations used and works for any frequency regime. Applications to minority heating in Alcator C-Mod and ITER and high harmonic heating in NSTX-U will be presented in single pass and multi-pass regimes. Support from DoE Grant Number DE-FG02-91-ER54109 (theory and computer resources) and DE-FC02-01ER54648 (RF SciDAC).
Fractional-N phase-locked loop for split and direct automatic frequency control in A-GPS
NASA Astrophysics Data System (ADS)
Park, Chester Sungchung; Park, Sungkyung
2018-07-01
A low-power mixed-signal phase-locked loop (PLL) is modelled and designed for the DigRF interface between the RF chip and the modem chip. An assisted-GPS or A-GPS multi-standard system includes the DigRF interface and uses the split automatic frequency control (AFC) technique. The PLL circuitry uses the direct AFC technique and is based on the fractional-N architecture using a digital delta-sigma modulator along with a digital counter, fulfilling simple ultra-high-resolution AFC with robust digital circuitry and its timing. Relative to the output frequency, the measured AFC resolution or accuracy is <5 parts per billion (ppb) or on the order of a Hertz. The cycle-to-cycle rms jitter is <6 ps and the typical settling time is <30 μs. A spur reduction technique is adopted and implemented as well, demonstrating spur reduction without employing dithering. The proposed PLL includes a low-leakage phase-frequency detector, a low-drop-out regulator, power-on-reset circuitry and precharge circuitry. The PLL is implemented in a 90-nm CMOS process technology with 1.2 V single supply. The overall PLL draws about 1.1 mA from the supply.
Hunter, Helen K; Bolinskey, P Kevin; Novi, Jonathan H; Hudak, Daniel V; James, Alison V; Myers, Kevin R; Schuder, Kelly M
2014-01-01
This study investigates the extent to which the Minnesota Multiphasic Personality Inventory-2 Restructured Form (MMPI-2-RF) profiles of 52 individuals making up a psychometrically identified schizotypes (SZT) sample could be successfully discriminated from the protocols of 52 individuals in a matched comparison (MC) sample. Replication analyses were performed with an additional 53 pairs of SZT and MC participants. Results showed significant differences in mean T-score values between these 2 groups across a variety of MMPI-2-RF scales. Results from discriminant function analyses indicate that schizotypy can be predicted effectively using 4 MMPI-2-RF scales and that this method of classification held up on replication. Additional results demonstrated that these MMPI-2-RF scales nominally outperformed MMPI-2 scales suggested by previous research as being indicative of schizophrenia liability. Directions for future research with the MMPI-2-RF are suggested.
Reccia, Isabella; Kumar, Jayant; Kusano, Tomokazu; Zanellato, Artur; Draz, Ahmed; Spalding, Duncan; Habib, Nagy; Pai, Madhava
2017-09-01
Laparoscopic liver resection has progressively gained acceptance as a safe and effective procedure in the treatment of benign and malignant liver neoplasms. However, blood loss remains the major challenge in liver surgery. Several techniques and devices have been introduced in liver surgery in order to minimize intraoperative haemorrhage during parenchymal transection. Radiofrequency (RF)-assisted liver resection has been shown to be an effective method to minimize bleeding in open and laparoscopic liver resection. A number of RF devices for parenchymal transection have been designed to assist laparoscopic liver resections. Here we have reviewed the results of various RF devices in laparoscopic liver resection. A total 15 article were considered relevant for the evaluation of technical aspects and outcomes of RF-assisted liver resections in laparoscopic procedures. In these studies, 176 patients had laparoscopic liver resection using RF-assisted parenchymal coagulation. Two monopolar and three bipolar devices were employed. Blood loss was limited in most of the studies. The need of blood transfusions was limited to two cases in all the series. Conversion was necessary due to bleeding in 3 cases. Operative and transection times varied between studies. However, RF-assisted resection with bipolar devices appeared to have taken less time in comparison to other RF devices. RF-related complications were minimum, and only one case of in-hospital death due to hepatic failure was reported. Although RF has been used in a small minority of laparoscopic liver resections, laparoscopic RF-assisted liver resection for benign and malignant disease is a safe and feasible procedure associated with reduction in blood loss, low morbidity, and lower hospital mortality rates. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Lal, Shankar; Pant, K. K.; Krishnagopal, S.
2011-12-01
Developing a photocathode RF gun with the desired RF properties of the π-mode, such as field balance (eb) ˜1, resonant frequency fπ = 2856 MHz, and waveguide-to-cavity coupling coefficient βπ ˜1, requires precise tuning of the resonant frequencies of the independent full- and half-cells (ff and fh), and of the waveguide-to-full-cell coupling coefficient (βf). While contemporary electromagnetic codes and precision machining capability have made it possible to design and tune independent cells of a photocathode RF gun for desired RF properties, thereby eliminating the need for tuning, access to such computational resources and quality of machining is not very widespread. Therefore, many such structures require tuning after machining by employing conventional tuning techniques that are iterative in nature. Any procedure that improves understanding of the tuning process and consequently reduces the number of iterations and the associated risks in tuning a photocathode gun would, therefore, be useful. In this paper, we discuss a method devised by us to tune a photocathode RF gun for desired RF properties under operating conditions. We develop and employ a simple scaling law that accounts for inter-dependence between frequency of independent cells and waveguide-to-cavity coupling coefficient, and the effect of brazing clearance for joining of the two cells. The method has been employed to successfully develop multiple 1.6 cell BNL/SLAC/UCLA type S-band photocathode RF guns with the desired RF properties, without the need to tune them by a tiresome cut-and-measure process. Our analysis also provides a physical insight into how the geometrical dimensions affect the RF properties of the photo-cathode RF gun.
Clarençon, Frédéric; Jean, Betty; Pham, Hang-Phuong; Cormier, Evelyne; Bensimon, Gilbert; Rose, Michèle; Maksud, Philippe; Chiras, Jacques
2013-01-01
To evaluate the effectiveness of percutaneous radiofrequency (RF) ablation with or without percutaneous vertebroplasty (PV) on pain relief, functional recovery and local recurrence at 6 months' follow-up (FU), in patients with painful osseous metastases. Thirty RF ablations were performed in 24 patients (mean age: 61 years) with bone metastases. Half of the patients had an additional PV. The primary end point was pain relief evaluated by a visual analogue scale (VAS) before treatment, and at 1 and 6 months' FU. Functional outcome was assessed according to the evolution of their ability to walk at 6 months' FU. Imaging FU was available in 20 out of 24 patients with a mean delay of 4.7 months. Reduction of pain was obtained at 6 months FU in 81% of cases (15 out of 18). Mean pretreatment VAS was 6.4 (±2.7). Mean VAS was 1.9 (±2.4) at 1 month FU, and 2.3 (±2.9) at 6 months' FU. Pain was significantly reduced at 6 months FU (mean VAS reduction = 4.1; P < 0.00001). Functional improvement was obtained in 74% of the cases. Major complications rate was 12.5 % (3 out of 24) with 2 skin burns, and 1 case of myelopathy. Local tumour recurrence or progression was recorded in 5 cases. Radiofrequency ablation is an effective technique in terms of pain relief and functional recovery for the treatment of bone metastases, which provides a relatively low rate of local recurrence.
Devgan, Preetpaul S; Diehl, John F; Urick, Vincent J; Sunderman, Christopher E; Williams, Keith J
2009-05-25
We present a technique using a dual-output Mach-Zehnder modulator (MZM) with two wavelength inputs, one operating at low-bias and the other operating at high-bias, in order to cancel unwanted even-order harmonics in analog optical links. By using a dual-output MZM, this technique allows for two suppressed optical carriers to be transmitted to the receiver. Combined with optical amplification and balanced differential detection, the RF power of the fundamental is increased by 2 dB while the even-order harmonic is reduced by 47 dB, simultaneously. The RF noise figure and third-order spurious-free dynamic range (SFDR(3)) are improved by 5.4 dB and 3.6 dB, respectively. Using a wavelength sensitive, low V(pi) MZM allows the two wavelengths to be within 5.5 nm of each other for a frequency band from 10 MHz to 100 MHz and 10 nm for 1 GHz.
Laboratory-scale uranium RF plasma confinement experiments
NASA Technical Reports Server (NTRS)
Roman, W. C.
1976-01-01
An experimental investigation was conducted using 80 kW and 1.2 MW RF induction heater facilities to aid in developing the technology necessary for designing a self-critical fissioning uranium plasma core reactor. Pure uranium hexafluoride (UF6) was injected into argon-confined, steady-state, RF-heated plasmas in different uranium plasma confinement tests to investigate the characteristics of plamas core nuclear reactors. The objectives were: (1) to confine as high a density of uranium vapor as possible within the plasma while simultaneously minimizing the uranium compound wall deposition; (2) to develop and test materials and handling techniques suitable for use with high-temperature, high-pressure gaseous UF6; and (3) to develop complementary diagnostic instrumentation and measurement techniques to characterize the uranium plasma and residue deposited on the test chamber components. In all tests, the plasma was a fluid-mechanically-confined vortex-type contained within a fused-silica cylindrical test chamber. The test chamber peripheral wall was 5.7 cm ID by 10 cm long.
Substrate dependent hierarchical structures of RF sputtered ZnS films
NASA Astrophysics Data System (ADS)
Chalana, S. R.; Mahadevan Pillai, V. P.
2018-05-01
RF magnetron sputtering technique was employed to fabricate ZnS nanostructures with special emphasis given to study the effect of substrates (quartz, glass and quartz substrate pre-coated with Au, Ag, Cu and Pt) on the structure, surface evolution and optical properties. Type of substrate has a significant influence on the crystalline phase, film morphology, thickness and surface roughness. The present study elucidates the suitability of quartz substrate for the deposition of stable and highly crystalline ZnS films. We found that the role of metal layer on quartz substrate is substantial in the preparation of hierarchical ZnS structures and these structures are of great importance due to its high specific area and potential applications in various fields. A mechanism for morphological evolution of ZnS structures is also presented based on the roughness of substrates and primary nonlocal effects in sputtering. Furthermore, the findings suggest that a controlled growth of hierarchical ZnS structures may be achieved with an ordinary RF sputtering technique by changing the substrate type.
Novel Percutaneous Radiofrequency Ablation of Portal Vein Tumor Thrombus: Safety and Feasibility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mizandari, Malkhaz; Ao, Guokun; Zhang Yaojun
2013-02-15
We report our experience of the safety of partial recanalization of the portal vein using a novel endovascular radiofrequency (RF) catheter for portal vein tumor thrombosis. Six patients with liver cancer and tumor thrombus in the portal vein underwent percutaneous intravascular radiofrequency ablation (RFA) using an endovascular bipolar RF device. A 0.035-inch guidewire was introduced into a tributary of the portal vein and through which a 5G guide catheter was introduced into the main portal vein. After manipulation of the guide catheter over the thrombus under digital subtraction angiography, the endovascular RF device was inserted and activated around the thrombus.more » There were no observed technique specific complications, such as hemorrhage, vessel perforation, or infection. Post-RFA portography showed partial recanalization of portal vein. RFA of portal vein tumor thrombus in patients with hepatocellular carcinoma is technically feasible and warrants further investigation to assess efficacy compared with current recanalization techniques.« less
NASA Technical Reports Server (NTRS)
Stevenson, T. R.; Hsieh, W.-T.; Li, M. J.; Stahle, C. M.; Wollack, E. J.; Schoelkopf, R. J.; Krebs, Carolyn (Technical Monitor)
2002-01-01
The science drivers for the SPIRIT/SPECS missions demand sensitive, fast, compact, low-power, large-format detector arrays for high resolution imaging and spectroscopy in the far infrared and submillimeter. Detector arrays with 10,000 pixels and sensitivity less than 10(exp 20)-20 W/Hz(exp 20)0.5 are needed. Antenna-coupled superconducting tunnel junction detectors with integrated rf single-electron transistor readout amplifiers have the potential for achieving this high level of sensitivity, and can take advantage of an rf multiplexing technique when forming arrays. The device consists of an antenna structure to couple radiation into a small superconducting volume and cause quasiparticle excitations, and a single-electron transistor to measure currents through tunnel junction contacts to the absorber volume. We will describe optimization of device parameters, and recent results on fabrication techniques for producing devices with high yield for detector arrays. We will also present modeling of expected saturation power levels, antenna coupling, and rf multiplexing schemes.
Dynamic brain glucose metabolism identifies anti-correlated cortical-cerebellar networks at rest.
Tomasi, Dardo G; Shokri-Kojori, Ehsan; Wiers, Corinde E; Kim, Sunny W; Demiral, Şukru B; Cabrera, Elizabeth A; Lindgren, Elsa; Miller, Gregg; Wang, Gene-Jack; Volkow, Nora D
2017-12-01
It remains unclear whether resting state functional magnetic resonance imaging (rfMRI) networks are associated with underlying synchrony in energy demand, as measured by dynamic 2-deoxy-2-[ 18 F]fluoroglucose (FDG) positron emission tomography (PET). We measured absolute glucose metabolism, temporal metabolic connectivity (t-MC) and rfMRI patterns in 53 healthy participants at rest. Twenty-two rfMRI networks emerged from group independent component analysis (gICA). In contrast, only two anti-correlated t-MC emerged from FDG-PET time series using gICA or seed-voxel correlations; one included frontal, parietal and temporal cortices, the other included the cerebellum and medial temporal regions. Whereas cerebellum, thalamus, globus pallidus and calcarine cortex arose as the strongest t-MC hubs, the precuneus and visual cortex arose as the strongest rfMRI hubs. The strength of the t-MC linearly increased with the metabolic rate of glucose suggesting that t-MC measures are strongly associated with the energy demand of the brain tissue, and could reflect regional differences in glucose metabolism, counterbalanced metabolic network demand, and/or differential time-varying delivery of FDG. The mismatch between metabolic and functional connectivity patterns computed as a function of time could reflect differences in the temporal characteristics of glucose metabolism as measured with PET-FDG and brain activation as measured with rfMRI.
Cleaning of first mirrors in ITER by means of radio frequency discharges.
Leipold, F; Reichle, R; Vorpahl, C; Mukhin, E E; Dmitriev, A M; Razdobarin, A G; Samsonov, D S; Marot, L; Moser, L; Steiner, R; Meyer, E
2016-11-01
First mirrors of optical diagnostics in ITER are subject to charge exchange fluxes of Be, W, and potentially other elements. This may degrade the optical performance significantly via erosion or deposition. In order to restore reflectivity, cleaning by applying radio frequency (RF) power to the mirror itself and thus creating a discharge in front of the mirror will be used. The plasma generated in front of the mirror surface sputters off deposition, restoring its reflectivity. Although the functionality of such a mirror cleaning technique is proven in laboratory experiments, the technical implementation in ITER revealed obstacles which needs to be overcome: Since the discharge as an RF load in general is not very well matched to the power generator and transmission line, power reflections will occur leading to a thermal load of the cable. Its implementation for ITER requires additional R&D. This includes the design of mirrors as RF electrodes, as well as feeders and matching networks inside the vacuum vessel. Mitigation solutions will be evaluated and discussed. Furthermore, technical obstacles (i.e., cooling water pipes for the mirrors) need to be solved. Since cooling water lines are usually on ground potential at the feed through of the vacuum vessel, a solution to decouple the ground potential from the mirror would be a major simplification. Such a solution will be presented.
Active integrated filters for RF-photonic channelizers.
El Nagdi, Amr; Liu, Ke; LaFave, Tim P; Hunt, Louis R; Ramakrishna, Viswanath; Dabkowski, Mieczyslaw; MacFarlane, Duncan L; Christensen, Marc P
2011-01-01
A theoretical study of RF-photonic channelizers using four architectures formed by active integrated filters with tunable gains is presented. The integrated filters are enabled by two- and four-port nano-photonic couplers (NPCs). Lossless and three individual manufacturing cases with high transmission, high reflection, and symmetric couplers are assumed in the work. NPCs behavior is dependent upon the phenomenon of frustrated total internal reflection. Experimentally, photonic channelizers are fabricated in one single semiconductor chip on multi-quantum well epitaxial InP wafers using conventional microelectronics processing techniques. A state space modeling approach is used to derive the transfer functions and analyze the stability of these filters. The ability of adapting using the gains is demonstrated. Our simulation results indicate that the characteristic bandpass and notch filter responses of each structure are the basis of channelizer architectures, and optical gain may be used to adjust filter parameters to obtain a desired frequency magnitude response, especially in the range of 1-5 GHz for the chip with a coupler separation of ∼9 mm. Preliminarily, the measurement of spectral response shows enhancement of quality factor by using higher optical gains. The present compact active filters on an InP-based integrated photonic circuit hold the potential for a variety of channelizer applications. Compared to a pure RF channelizer, photonic channelizers may perform both channelization and down-conversion in an optical domain.
Katchamart, Wanruchada; Koolvisoot, Ajchara; Aromdee, Emvalee; Chiowchanwesawakit, Praveena; Muengchan, Chayawee
2015-10-01
The objective of this study was to investigate the association of rheumatoid factor (RF) and anti-citrullinated peptide antibodies (ACPA) status with disease progression and treatment outcomes in patients with rheumatoid arthritis (RA). A total of 276 adult patients who fulfilled the American College of Rheumatology 1987 classification criteria for RA were recruited from the Rheumatology clinic, Siriraj Hospital, from January 2011 to December 2012. Demographic, clinical, and laboratory data were collected at baseline and every 3 months up to 1 year of follow-up. RF and ACPA were measured at baseline. Radiography of the hands and feet was performed at baseline and 1 year. Patients with RF+/ACPA+ had significantly more severe disease activity and impaired functional status than those who had RF-/ACPA-. Although they received more aggressive treatment with methotrexate and combination of non-biologic, disease-modifying antirheumatic drug than other groups, fewer patients in this group achieved remission at 1 year of follow-up, especially when compared to RF-/ACPA- group (12 vs. 18 %). For radiographic erosion, patients with the presence of either RF or ACPA had a higher proportion of hand erosion than seronegative patients at baseline (77, 73, 83, and 32 %, p < 0.001 for RF+/ACPA+, RF+/ACPA-, RF-/ACPA+, and RF-/ACPA-, respectively). After 1 year of follow-up, patients who developed new erosion at the hands were more prevalent in RF+/ACPA+ (32 %) and RF+/ACPA- (33 %) groups. However, "newly developed" feet erosion was most common in RF+/ACPA- group (40 %) than in other groups. Patients with positive either RF or ACPA or both have more severe and aggressive disease that requires intensive treatment to improve outcomes.
Multi-carrier transmission for hybrid radio frequency with optical wireless communications
NASA Astrophysics Data System (ADS)
Wang, Gang; Chen, Genshe; Shen, Dan; Pham, Khanh; Blasch, Erik; Nguyen, Tien M.
2015-05-01
Radio frequency (RF) wireless communication is reaching its capacity to support large data rate transmissions due to hardware constraints (e.g., silicon processes), software strategies (e.g., information theory), and consumer desire for timely large file exchanges (e.g., big data and mobile cloud computing). A high transmission rate performance must keep pace with the generated huge volumes of data for real-time processing. Integrated RF and optical wireless communications (RF/OWC) could be the next generation transmission technology to satisfy both the increased data rate exchange and the communications constraints. However, with the promising benefits of RF/OWC, challenges remain to fully develop hybrid RF with wireless optical communications such as uniform waveform design for information transmission and detection. In this paper, an orthogonal frequency division multiplexing (OFDM) transmission scheme, which widely employed in RF communications, is developed for optical communications. The traditional high peak-to-average power ratio (PAPR) in OFDM is reduced to improve system performance. The proposed multi-carrier waveform is evaluated with a frequency-selective fading channel. The results demonstrate that bit error rate (BER) performance of our proposed optical OFDM transmission technique outperforms the traditional OWC on-off keying (OOK) transmission scheme.
MIMIC For Millimeter Wave Integrated Circuit Radars
NASA Astrophysics Data System (ADS)
Seashore, C. R.
1987-09-01
A significant program is currently underway in the U.S. to investigate, develop and produce a variety of GaAs analog circuits for use in microwave and millimeter wave sensors and systems. This represents a "new wave" of RF technology which promises to significantly change system engineering thinking relative to RF Architectures. At millimeter wave frequencies, we look forward to a relatively high level of critical component integration based on MESFET and HEMT device implementations. These designs will spawn more compact RF front ends with colocated antenna/transceiver functions and innovative packaging concepts which will survive and function in a typical military operational environment which includes challenging temperature, shock and special handling requirements.
NASA Technical Reports Server (NTRS)
Simons, Rainee N.
2002-01-01
The paper presents a novel on-wafer, antenna far field pattern measurement technique for microelectromechanical systems (MEMS) based reconfigurable patch antennas. The measurement technique significantly reduces the time and the cost associated with the characterization of printed antennas, fabricated on a semiconductor wafer or dielectric substrate. To measure the radiation patterns, the RF probe station is modified to accommodate an open-ended rectangular waveguide as the rotating linearly polarized sampling antenna. The open-ended waveguide is attached through a coaxial rotary joint to a Plexiglas(Trademark) arm and is driven along an arc by a stepper motor. Thus, the spinning open-ended waveguide can sample the relative field intensity of the patch as a function of the angle from bore sight. The experimental results include the measured linearly polarized and circularly polarized radiation patterns for MEMS-based frequency reconfigurable rectangular and polarization reconfigurable nearly square patch antennas, respectively.
Advanced RF and microwave functions based on an integrated optical frequency comb source.
Xu, Xingyuan; Wu, Jiayang; Nguyen, Thach G; Shoeiby, Mehrdad; Chu, Sai T; Little, Brent E; Morandotti, Roberto; Mitchell, Arnan; Moss, David J
2018-02-05
We demonstrate advanced transversal radio frequency (RF) and microwave functions based on a Kerr optical comb source generated by an integrated micro-ring resonator. We achieve extremely high performance for an optical true time delay aimed at tunable phased array antenna applications, as well as reconfigurable microwave photonic filters. Our results agree well with theory. We show that our true time delay would yield a phased array antenna with features that include high angular resolution and a wide range of beam steering angles, while the microwave photonic filters feature high Q factors, wideband tunability, and highly reconfigurable filtering shapes. These results show that our approach is a competitive solution to implementing reconfigurable, high performance and potentially low cost RF and microwave signal processing functions for applications including radar and communication systems.
Marini, C; Fossa, F; Paoli, C; Bellingeri, M; Gnone, G; Vassallo, P
2015-03-01
Habitat modeling is an important tool to investigate the quality of the habitat for a species within a certain area, to predict species distribution and to understand the ecological processes behind it. Many species have been investigated by means of habitat modeling techniques mainly to address effective management and protection policies and cetaceans play an important role in this context. The bottlenose dolphin (Tursiops truncatus) has been investigated with habitat modeling techniques since 1997. The objectives of this work were to predict the distribution of bottlenose dolphin in a coastal area through the use of static morphological features and to compare the prediction performances of three different modeling techniques: Generalized Linear Model (GLM), Generalized Additive Model (GAM) and Random Forest (RF). Four static variables were tested: depth, bottom slope, distance from 100 m bathymetric contour and distance from coast. RF revealed itself both the most accurate and the most precise modeling technique with very high distribution probabilities predicted in presence cells (90.4% of mean predicted probabilities) and with 66.7% of presence cells with a predicted probability comprised between 90% and 100%. The bottlenose distribution obtained with RF allowed the identification of specific areas with particularly high presence probability along the coastal zone; the recognition of these core areas may be the starting point to develop effective management practices to improve T. truncatus protection. Copyright © 2014 Elsevier Ltd. All rights reserved.
Design and Development of a Package for a Diluted Waveguide Electro-Absorption Modulator
2008-11-01
the coupling efficiency. A design including mechanical, optical and RF elements was developed. A Newport Laser Welding system was utilized for...results, a design including mechanical, optical and RF elements was developed. A Newport Laser Welding system was utilized for fiber placement and...fixation. The laser welding techniques were customized in order to meet the needs of the EAM package design. Keywords: Electroabsorption
Recombination Processes on Low Bandgap Antimonides for Thermophotovoltaic Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saroop, Sudesh
1999-09-01
Recombination processes in antimonide-based (TPV) devices have been investigated using a technique, in which a Nd-YAG pulsed laser is materials for thermophotovoltaic radio-frequency (RF) photoreflectance used to excite excess carriers and the short-pulse response and photoconductivity decay are monitored with an inductively-coupled non-contacting RF probe. The system has been used to characterize surface and bulk recombination mechanisms in Sb-based materials.
Thermally Stabilized Transmit/Receive Modules
NASA Technical Reports Server (NTRS)
Hoffman, James; DelCastillo, Linda; Miller, Jennifer; Birur, Gaj
2011-01-01
RF-hybrid technologies enable smaller packaging and mass reduction in radar instruments, especially for subsystems with dense electronics, such as electronically steered arrays. We are designing thermally stabilized RF-hybrid T/R modules using new materials for improved thermal performance of electronics. We are combining advanced substrate and housing materials with a thermal reservoir material, and develop new packaging techniques to significantly improve thermal-cycling reliability and performance stability over temperature.
Unfurlable satellite antennas - A review
NASA Technical Reports Server (NTRS)
Roederer, Antoine G.; Rahmat-Samii, Yahia
1989-01-01
A review of unfurlable satellite antennas is presented. Typical application requirements for future space missions are first outlined. Then, U.S. and European mesh and inflatable antenna concepts are described. Precision deployables using rigid panels or petals are not included in the survey. RF modeling and performance analysis of gored or faceted mesh reflector antennas are then reviewed. Finally, both on-ground and in-orbit RF test techniques for large unfurlable antennas are discussed.
Digital processing of signals from femtosecond combs
NASA Astrophysics Data System (ADS)
Čížek, Martin; Šmíd, Radek; Buchta, Zdeněk.; Mikel, Břetislav; Lazar, Josef; Číp, Ondrej
2012-01-01
The presented work is focused on digital processing of beat note signals from a femtosecond optical frequency comb. The levels of mixing products of single spectral components of the comb with CW laser sources are usually very low compared to products of mixing all the comb components together. RF counters are more likely to measure the frequency of the strongest spectral component rather than a weak beat note. Proposed experimental digital signal processing system solves this problem by analyzing the whole spectrum of the output RF signal and using software defined radio (SDR) algorithms. Our efforts concentrate in two main areas: Firstly, we are experimenting with digital signal processing of the RF beat note spectrum produced by f-2f 1 technique and with fully digital servo-loop stabilization of the fs comb. Secondly, we are using digital servo-loop techniques for locking free running continuous laser sources on single components of the fs comb spectrum. Software capable of computing and analyzing the beat-note RF spectrums using FFT and peak detection was developed. A SDR algorithm performing phase demodulation on the f- 2f signal is used as a regulation error signal source for a digital phase-locked loop stabilizing the offset and repetition frequencies of the fs comb.
Chaimanonart, Nattapon; Young, Darrin J
2009-01-01
A wireless, batteryless, and implantable EKG and core body temperature sensing microsystem with adaptive RF powering for untethered genetically engineered mice real-time monitoring is designed, implemented, and in vivo characterized. A packaged microsystem, exhibiting a total size of 9 mm x 7 mm x 3 mm with a weight of 400 mg including a pair of stainless-steel EKG electrodes, is implanted in a mouse abdomen for real-time monitoring. A low power 2 mm x 2 mm ASIC, consisting of an EKG amplifier, a proportional-to-absolute-temperature (PTAT)-based temperature sensor, an RF power sensing circuit, an RF-DC power converter, an 8-bit ADC, digital control circuitry, and a 433 MHz FSK transmitter, is powered by an adaptively controlled external RF energy source at 4 MHz to ensure a stable 2V supply with 156microA current driving capability for the overall microsystem. An electrical model for analyzing 60 Hz interference based on 2-electrode and 3-electrode configurations is proposed and compared with in vivo evaluation results. Due to the small laboratory animal chest area, a 60 Hz suppression technique by employing input termination resistors is chosen for two-EKG-electrode implant configuration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tynan, George
This was a collaboration between UCSD and MIT to study the effective application of ion-cyclotron heating (ICRH) on the EAST tokamak, located in China. The original goal was for UCSD to develop a diagnostic that would allow measurement of the steady state, or DC, convection pattern that develops on magnetic field lines that attach or connect to the ICRH antenna. This diagnostic would then be used to develop techniques and approaches that minimize or even eliminate such DC convection during application of strong ICRH heating. This was thought to then indicate reduction or elimination of parasitic losses of heating power,more » and thus be an indicator of effective RF heating. The original plan to use high speed digital gas-puff imaging (GPI) of the antenna-edge plasma region in EAST was ultimately unsuccessful due to limitations in machine and camera operations. We then decided to attempt the same experiment on the ALCATOR C-MOD tokamak at MIT which had a similar instrument already installed. This effort was ultimately successful, and demonstrated that the underlying idea of using GPI as a diagnostic for ICRH antenna physics would, in fact, work. The two-dimensional velocity fields of the turbulent structures, which are advected by RF-induced E x B flows, are obtained via the time-delay estimation (TDE) techniques. Both the magnitude and radial extension of the radial electric field E-r were observed to increase with the toroidal magnetic field strength B and the ICRF power. The TDE estimations of RF-induced plasma potentials are consistent with previous results based on the probe measurements of poloidal phase velocity. The results suggest that effective ICRH heating with reduced impurity production is possible when the antenna/box system is designed so as to reduce the RF-induced image currents that flow in the grounded conducting antenna frame elements that surround the RF antenna current straps.« less
PADF RF localization experiments with multi-agent caged-MAV platforms
NASA Astrophysics Data System (ADS)
Barber, Christopher; Gates, Miguel; Selmic, Rastko; Al-Issa, Huthaifa; Ordonez, Raul; Mitra, Atindra
2011-06-01
This paper provides a summary of preliminary RF direction finding results generated within an AFOSR funded testbed facility recently developed at Louisiana Tech University. This facility, denoted as the Louisiana Tech University Micro- Aerial Vehicle/Wireless Sensor Network (MAVSeN) Laboratory, has recently acquired a number of state-of-the-art MAV platforms that enable us to analyze, design, and test some of our recent results in the area of multiplatform position-adaptive direction finding (PADF) [1] [2] for localization of RF emitters in challenging embedded multipath environments. Discussions within the segmented sections of this paper include a description of the MAVSeN Laboratory and the preliminary results from the implementation of mobile platforms with the PADF algorithm. This novel approach to multi-platform RF direction finding is based on the investigation of iterative path-loss based (i.e. path loss exponent) metrics estimates that are measured across multiple platforms in order to develop a control law that robotically/intelligently positionally adapt (i.e. self-adjust) the location of each distributed/cooperative platform. The body of this paper provides a summary of our recent results on PADF and includes a discussion on state-of-the-art Sensor Mote Technologies as applied towards the development of sensor-integrated caged-MAV platform for PADF applications. Also, a discussion of recent experimental results that incorporate sample approaches to real-time singleplatform data pruning is included as part of a discussion on potential approaches to refining a basic PADF technique in order to integrate and perform distributed self-sensitivity and self-consistency analysis as part of a PADF technique with distributed robotic/intelligent features. These techniques are extracted in analytical form from a parallel study denoted as "PADF RF Localization Criteria for Multi-Model Scattering Environments". The focus here is on developing and reporting specific approaches to self-sensitivity and self-consistency within this experimental PADF framework via the exploitation of specific single-agent caged-MAV trajectories that are unique to this experiment set.
Ritter, Markus; Hummer, Allan; Ledolter, Anna A; Holder, Graham E; Windischberger, Christian; Schmidt-Erfurth, Ursula M
2018-04-26
The present study describes retinotopic mapping of the primary visual cortex using functional MRI (fMRI) in patients with retinal disease. It addresses the relationship between fMRI data and data obtained by conventional assessment including microperimetry (MP) and structural imaging. Initial testing involved eight patients with central retinal disease (Stargardt disease, STGD) and eight with peripheral retinal disease (retinitis pigmentosa, RP), who were examined using fMRI and MP (Nidek MP-1). All had a secure clinical diagnosis supported by electrophysiological data. fMRI used population-receptive field (pRF) mapping to provide retinotopic data that were then compared with the results of MP, optical coherence tomography and fundus autofluorescence imaging. Full analysis, following assessment of fMRI data reliability criteria, was performed in five patients with STGD and seven patients with RP; unstable fixation was responsible for unreliable pRF measurements in three patients excluded from final analysis. The macular regions in patients with STGD with central visual field defects and outer retinal atrophy (ORA) at the macula correlated well with pRF coverage maps showing reduced density of activated voxels at the occipital pole. Patients with RP exhibited peripheral ORA and concentric visual field defects both on MP and pRF mapping. Anterior V1 voxels, corresponding to peripheral regions, showed no significant activation. Correspondence between MP and pRF mapping was quantified by calculating the simple matching coefficient. Retinotopic maps acquired by fMRI provide a valuable adjunct in the assessment of retinal dysfunction. The addition of microperimetric data to pRF maps allowed better assessment of macular function than MP alone. Unlike MP, pRF mapping provides objective data independent of psychophysical perception from the patient. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Bornemann, Rahel; Jansen, Tom R; Kabir, Koroush; Pennekamp, Peter H; Stüwe, Brit; Wirtz, Dieter C; Pflugmacher, Robert
2017-04-01
A retrospective study. The aim of this study was the evaluation of the safety and effectiveness of radiofrequency-targeted vertebral augmentation (RF-TVA) in comparison with balloon kyphoplasty (BK) for the treatment of acute painful vertebral compression fractures (VCFs) on the basis of matched pairs. Vertebroplasty and BK are the common surgical interventions for the treatment of VCF. Both are effective and safe but pose some risks such as adjacent fractures and cement leakage. In 2009, RF-TVA was introduced as an innovative augmentation procedure for the treatment of VCF. A total of 192 patients (116 female; 51-90 y) with VCF (n=303) at 1 to 3 levels were treated with RF-TVA or BK. Functionality (Oswestry Disability Index), pain (visual analogue scale), vertebral height (anterior, middle), and kyphotic angle were evaluated over a 2-year period (postoperatively, 3-4 d, 3, 6, 12, and 24 mo). In addition, operating time and occurrence of cement leakage were recorded. Pain and functionality were significantly improved after both treatments. In both groups, there was an increase in the vertebral height and a decrease in the kyphotic angle, which remained relatively consistent during 24 months. The incidence of cement leakage was 9.4% (n=9) in the RF-TVA group and 24.0% (n=25) in the BK group. The mean operating time with radiofrequency kyphoplasty was 25.9±9.9 minutes, and with balloon kyphoplasty 48.0±18.4 minutes. RF-TVA is a safe and effective procedure for the treatment of vertebral compression fractures when compared with BK. Improvement in pain and functional scores after RF-TVA are durable through 24 months postprocedure and remained better than those after BK at long-term follow-up. Operating time for RF-TVA is shorter and the risk of cement leakage is lower. Both procedures provided similar results in vertebral height restoration and reduction in the kyphotic angle.
NASA Astrophysics Data System (ADS)
Puiu, A.; Becker, D.; Bennett, D.; Faverzani, M.; Ferri, E.; Fowler, J.; Gard, J.; Hays-Wehle, J.; Hilton, G.; Giachero, A.; Maino, M.; Mates, J.; Nucciotti, A.; Schmidt, D.; Swetz, D.; Ullom, J.; Vale, L.
2017-09-01
Measuring the neutrino mass is one the most compelling issue in particle physics. HOLMES is an experiment funded by the European Research Council for a direct measurement of neutrino mass. HOLMES will perform a precise measurement of the end point of the Electron Capture decay spectrum of 163Ho in order to extract information on neutrino mass with a sensitivity as low as 1 eV. HOLMES, in its final configuration will deploy a 1000 pixel array of low temperature microcalorimeters: each calorimeter consists of an absorber, where the Ho atoms will be implanted, coupled to a Transition Edge Sensor thermometer. The detectors will be kept at the working temperature of ˜70 mK using a dilution refrigerator. In order to gather the required 3 × 1013 events in a three year long data taking with a pile up fraction as low as 10-4, detectors must fulfill rather high speed and resolution requirements, i.e. 10 µs rise time and 4 eV resolution. To ensure such performances with an efficient read out technique for very large detectors array kept at low temperature inside a cryostat is no trivial matter: at the moment, the most appealing read out technique applicable to large arrays of Transition Edge Sensors is rf-SQUID multiplexing. It is based on the use of rf-SQUIDs as input devices with flux ramp modulation for linearisation purposes; the rf-SQUID is then coupled to a super-conductive λ/4-wave resonator in the GHz range, and the modulated signal is finally read out using the homodyne technique.
Integral electrical characteristics and local plasma parameters of a RF ion thruster
DOE Office of Scientific and Technical Information (OSTI.GOV)
Masherov, P. E.; Riaby, V. A., E-mail: riaby2001@yahoo.com; Godyak, V. A.
2016-02-15
Comprehensive diagnostics has been carried out for a RF ion thruster based on inductively coupled plasma (ICP) source with an external flat antenna coil enhanced by ferrite core. The ICP was confined within a cylindrical chamber with low aspect ratio to minimize plasma loss to the chamber wall. Integral diagnostics of the ICP electrical parameters (RF power balance and coil current) allowed for evaluation of the antenna coils, matching networks, and eddy current loss and the true RF power deposited to plasma. Spatially resolved electron energy distribution functions, plasma density, electron temperatures, and plasma potentials were measured with movable Langmuirmore » probes.« less
Rapid cycling medical synchrotron and beam delivery system
Peggs, Stephen G [Port Jefferson, NY; Brennan, J Michael [East Northport, NY; Tuozzolo, Joseph E [Sayville, NY; Zaltsman, Alexander [Commack, NY
2008-10-07
A medical synchrotron which cycles rapidly in order to accelerate particles for delivery in a beam therapy system. The synchrotron generally includes a radiofrequency (RF) cavity for accelerating the particles as a beam and a plurality of combined function magnets arranged in a ring. Each of the combined function magnets performs two functions. The first function of the combined function magnet is to bend the particle beam along an orbital path around the ring. The second function of the combined function magnet is to focus or defocus the particle beam as it travels around the path. The radiofrequency (RF) cavity is a ferrite loaded cavity adapted for high speed frequency swings for rapid cycling acceleration of the particles.
Directed Energy Non-lethal Weapons
2010-06-16
technologies that alter skeletal muscle contraction and/or neural functioning (i.e., neurosecretion) via radiofrequency (RF)/microwave (MW...chromaffin cells and 2) completion of studies on the effect of 0.75 to 1 GHz RF fields on skeletal muscle contraction , using in each study fixed
Space vehicle onboard command encoder
NASA Technical Reports Server (NTRS)
1975-01-01
A flexible onboard encoder system was designed for the space shuttle. The following areas were covered: (1) implementation of the encoder design into hardware to demonstrate the various encoding algorithms/code formats, (2) modulation techniques in a single hardware package to maintain comparable reliability and link integrity of the existing link systems and to integrate the various techniques into a single design using current technology. The primary function of the command encoder is to accept input commands, generated either locally onboard the space shuttle or remotely from the ground, format and encode the commands in accordance with the payload input requirements and appropriately modulate a subcarrier for transmission by the baseband RF modulator. The following information was provided: command encoder system design, brassboard hardware design, test set hardware and system packaging, and software.
Joint design of large-tip-angle parallel RF pulses and blipped gradient trajectories.
Cao, Zhipeng; Donahue, Manus J; Ma, Jun; Grissom, William A
2016-03-01
To design multichannel large-tip-angle kT-points and spokes radiofrequency (RF) pulses and gradient waveforms for transmit field inhomogeneity compensation in high field magnetic resonance imaging. An algorithm to design RF subpulse weights and gradient blip areas is proposed to minimize a magnitude least-squares cost function that measures the difference between realized and desired state parameters in the spin domain, and penalizes integrated RF power. The minimization problem is solved iteratively with interleaved target phase updates, RF subpulse weights updates using the conjugate gradient method with optimal control-based derivatives, and gradient blip area updates using the conjugate gradient method. Two-channel parallel transmit simulations and experiments were conducted in phantoms and human subjects at 7 T to demonstrate the method and compare it to small-tip-angle-designed pulses and circularly polarized excitations. The proposed algorithm designed more homogeneous and accurate 180° inversion and refocusing pulses than other methods. It also designed large-tip-angle pulses on multiple frequency bands with independent and joint phase relaxation. Pulses designed by the method improved specificity and contrast-to-noise ratio in a finger-tapping spin echo blood oxygen level dependent functional magnetic resonance imaging study, compared with circularly polarized mode refocusing. A joint RF and gradient waveform design algorithm was proposed and validated to improve large-tip-angle inversion and refocusing at ultrahigh field. © 2015 Wiley Periodicals, Inc.
Borelli, Jessica L.; West, Jessica L.; Decoste, Cindy; Suchman, Nancy E.
2012-01-01
Parenting and emotion regulation are two known, and potentially interrelated, areas of impairment among substance-abusing mothers. In this study, we examine substance -abusing mothers’ (positive and negative) emotion language word use during their discussion of negative parenting experiences on the Parent Development Interview for its association with reflective functioning (RF), recent substance-use history, and sensitivity to child cues. Within a sample of 47 methadone-maintained mothers, we evaluate the hypothesis that linguistic evidence of emotional avoidance (more frequent positive feeling words and less frequent negative emotion words) will be associated with lower RF, more recent substance use, and more insensitive parenting. Further, we evaluate whether language use mediates the association between self-focused RF and insensitive parenting. Results of hierarchical regressions suggest that more frequent positive feeling word use, but not negative emotion word use, is associated with lower RF, more recent substance use, and lower sensitivity to child cues. Positive feeling word use partially mediates the association between self-focused RF and insensitive parenting. Results are discussed in the context of their contribution to the literature on emotion and parenting in substance-abusing populations. PMID:23049148
Precision vector control of a superconducting RF cavity driven by an injection locked magnetron
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chase, Brian; Pasquinelli, Ralph; Cullerton, Ed
The technique presented in this paper enables the regulation of both radio frequency amplitude and phase in narrow band devices such as a Superconducting RF (SRF) cavity driven by constant power output devices i.e. magnetrons [1]. The ability to use low cost high efficiency magnetrons for accelerator RF power systems, with tight vector regulation, presents a substantial cost savings in both construction and operating costs - compared to current RF power system technology. An operating CW system at 2.45 GHz has been experimentally developed. Vector control of an injection locked magnetron has been extensively tested and characterized with a SRFmore » cavity as the load. Amplitude dynamic range of 30 dB, amplitude stability of 0.3% r.m.s, and phase stability of 0.26 degrees r.m.s. has been demonstrated.« less
Beam-Switch Transient Effects in the RF Path of the ICAPA Receive Phased Array Antenna
NASA Technical Reports Server (NTRS)
Sands, O. Scott
2003-01-01
When the beam of a Phased Array Antenna (PAA) is switched from one pointing direction to another, transient effects in the RF path of the antenna are observed. Testing described in the report has revealed implementation-specific transient effects in the RF channel that are associated with digital clocking pulses that occur with transfer of data from the Beam Steering Controller (BSC) to the digital electronics of the PAA under test. The testing described here provides an initial assessment of the beam-switch phenomena by digitally acquiring time series of the RF communications channel, under CW excitation, during the period of time that the beam switch transient occurs. Effects are analyzed using time-frequency distributions and instantaneous frequency estimation techniques. The results of tests conducted with CW excitation supports further Bit-Error-Rate (BER) testing of the PAA communication channel.
Precision vector control of a superconducting RF cavity driven by an injection locked magnetron
Chase, Brian; Pasquinelli, Ralph; Cullerton, Ed; ...
2015-03-01
The technique presented in this paper enables the regulation of both radio frequency amplitude and phase in narrow band devices such as a Superconducting RF (SRF) cavity driven by constant power output devices i.e. magnetrons [1]. The ability to use low cost high efficiency magnetrons for accelerator RF power systems, with tight vector regulation, presents a substantial cost savings in both construction and operating costs - compared to current RF power system technology. An operating CW system at 2.45 GHz has been experimentally developed. Vector control of an injection locked magnetron has been extensively tested and characterized with a SRFmore » cavity as the load. Amplitude dynamic range of 30 dB, amplitude stability of 0.3% r.m.s, and phase stability of 0.26 degrees r.m.s. has been demonstrated.« less
Inelastic Light Scattering Processes
NASA Technical Reports Server (NTRS)
Fouche, Daniel G.; Chang, Richard K.
1973-01-01
Five different inelastic light scattering processes will be denoted by, ordinary Raman scattering (ORS), resonance Raman scattering (RRS), off-resonance fluorescence (ORF), resonance fluorescence (RF), and broad fluorescence (BF). A distinction between fluorescence (including ORF and RF) and Raman scattering (including ORS and RRS) will be made in terms of the number of intermediate molecular states which contribute significantly to the scattered amplitude, and not in terms of excited state lifetimes or virtual versus real processes. The theory of these processes will be reviewed, including the effects of pressure, laser wavelength, and laser spectral distribution on the scattered intensity. The application of these processes to the remote sensing of atmospheric pollutants will be discussed briefly. It will be pointed out that the poor sensitivity of the ORS technique cannot be increased by going toward resonance without also compromising the advantages it has over the RF technique. Experimental results on inelastic light scattering from I(sub 2) vapor will be presented. As a single longitudinal mode 5145 A argon-ion laser line was tuned away from an I(sub 2) absorption line, the scattering was observed to change from RF to ORF. The basis, of the distinction is the different pressure dependence of the scattered intensity. Nearly three orders of magnitude enhancement of the scattered intensity was measured in going from ORF to RF. Forty-seven overtones were observed and their relative intensities measured. The ORF cross section of I(sub 2) compared to the ORS cross section of N2 was found to be 3 x 10(exp 6), with I(sub 2) at its room temperature vapor pressure.
Demas, Vasiliki; Bernhardt, Anthony; Malba, Vince; Adams, Kristl L; Evans, Lee; Harvey, Christopher; Maxwell, Robert S; Herberg, Julie L
2009-09-01
Nuclear magnetic resonance (NMR) offers a non-destructive, powerful, structure-specific analytical method for the identification of chemical and biological systems. The use of radio frequency (RF) microcoils has been shown to increase the sensitivity in mass-limited samples. Recent advances in micro-receiver technology have further demonstrated a substantial increase in mass sensitivity [D.L. Olson, T.L. Peck, A.G. Webb, R.L. Magin, J.V. Sweedler, High-resolution microcoil H-1-NMR for mass-limited, nanoliter-volume samples, Science 270 (5244) (1995) 1967-1970]. Lithographic methods for producing solenoid microcoils possess a level of flexibility and reproducibility that exceeds previous production methods, such as hand winding microcoils. This paper presents electrical characterizations of RF microcoils produced by a unique laser lithography system that can pattern three dimensional surfaces and compares calculated and experimental results to those for wire wound RF microcoils. We show that existing optimization conditions for RF coil design still hold true for RF microcoils produced by lithography. Current lithographic microcoils show somewhat inferior performance to wire wound RF microcoils due to limitations in the existing electroplating technique. In principle, however, when the pitch of the RF microcoil is less than 100mum lithographic coils should show comparable performance to wire wound coils. In the cases of larger pitch, wire cross sections can be significantly larger and resistances lower than microfabricated conductors.
NASA Astrophysics Data System (ADS)
Jenkins, Thomas G.; Held, Eric D.
2015-09-01
Neoclassical tearing modes are macroscopic (L ∼ 1 m) instabilities in magnetic fusion experiments; if unchecked, these modes degrade plasma performance and may catastrophically destroy plasma confinement by inducing a disruption. Fortunately, the use of properly tuned and directed radiofrequency waves (λ ∼ 1 mm) can eliminate these modes. Numerical modeling of this difficult multiscale problem requires the integration of separate mathematical models for each length and time scale (Jenkins and Kruger, 2012 [21]); the extended MHD model captures macroscopic plasma evolution while the RF model tracks the flow and deposition of injected RF power through the evolving plasma profiles. The scale separation enables use of the eikonal (ray-tracing) approximation to model the RF wave propagation. In this work we demonstrate a technique, based on methods of computational geometry, for mapping the ensuing RF data (associated with discrete ray trajectories) onto the finite-element/pseudospectral grid that is used to model the extended MHD physics. In the new representation, the RF data can then be used to construct source terms in the equations of the extended MHD model, enabling quantitative modeling of RF-induced tearing mode stabilization. Though our specific implementation uses the NIMROD extended MHD (Sovinec et al., 2004 [22]) and GENRAY RF (Smirnov et al., 1994 [23]) codes, the approach presented can be applied more generally to any code coupling requiring the mapping of ray tracing data onto Eulerian grids.
Low reflectance high power RF load
Ives, R. Lawrence; Mizuhara, Yosuke M.
2016-02-02
A load for traveling microwave energy has an absorptive volume defined by cylindrical body enclosed by a first end cap and a second end cap. The first end cap has an aperture for the passage of an input waveguide with a rotating part that is coupled to a reflective mirror. The inner surfaces of the absorptive volume consist of a resistive material or are coated with a coating which absorbs a fraction of incident RF energy, and the remainder of the RF energy reflects. The angle of the reflector and end caps is selected such that reflected RF energy dissipates an increasing percentage of the remaining RF energy at each reflection, and the reflected RF energy which returns to the rotating mirror is directed to the back surface of the rotating reflector, and is not coupled to the input waveguide. Additionally, the reflector may have a surface which generates a more uniform power distribution function axially and laterally, to increase the power handling capability of the RF load. The input waveguide may be corrugated for HE11 mode input energy.
Methods and devices based on brillouin selective sideband amplification
NASA Technical Reports Server (NTRS)
Yao, X. Steve (Inventor)
2003-01-01
Opto-electronic devices and techniques using Brillouin scattering to select a sideband in a modulated optical carrier signal for amplification. Two lasers respectively provide a carrier signal beam and a Brillouin pump beam which are fed into an Brillouin optical medium in opposite directions. The relative frequency separation between the lasers is adjusted to align the frequency of the backscattered Brillouin signal with a desired sideband in the carrier signal to effect a Brillouin gain on the sideband. This effect can be used to implement photonic RF signal mixing and conversion with gain, conversion from phase modulation to amplitude modulation, photonic RF frequency multiplication, optical and RF pulse generation and manipulation, and frequency-locking of lasers.
Behavioral Modeling and Characterization of Nonlinear Operation in RF and Microwave Systems
2005-01-01
the model further reinforces the intuition gained by employing this modeling technique. 84 Chapter 5 Remote Characterization of RF Devices 5.1...was used to extract the power series coefficients, 21 dBm. This further reinforces the conclusion that the nonlinear coefficients should be extracted...are becoming important. The fit of the odd-ordered model reinforces this hypothesis since the phase component of the fit roughly splits the
Riva Crugnola, Cristina; Ierardi, Elena; Canevini, Maria Paola
2018-02-01
The study evaluated reflective functioning (RF), maternal attachment, mind-mindedness, and emotional availability among 44 adolescent mother-infant dyads and 41 adult mother-infant dyads. At infant age 3 months, mother-infant interaction was coded with the mind-mindedness coding system and Emotional Availability Scales; mother attachment and RF were evaluated with the Adult Attachment Interview (AAI). Adolescent mothers (vs. adult mothers) were more insecure and had lower RF; they were also less sensitive, more intrusive and hostile, and less structuring of their infant's activity; they used fewer attuned mind-related comments and fewer mind-related comments appropriate to infant development. In adult mothers, the Mother Idealizing and Lack of Memory AAI scales were correlated to non-attuned mind-related comments and the Father Anger scale to negative mind-related comments. In adult mothers, RF was associated with sensitivity. This was not the case with adolescent mothers. In both groups of mothers, there were no associations between sensitivity and mind-mindedness.
Analytical response function for planar Ge detectors
NASA Astrophysics Data System (ADS)
García-Alvarez, Juan A.; Maidana, Nora L.; Vanin, Vito R.; Fernández-Varea, José M.
2016-04-01
We model the response function (RF) of planar HPGe x-ray spectrometers for photon energies between around 10 keV and 100 keV. The RF is based on the proposal of Seltzer [1981. Nucl. Instrum. Methods 188, 133-151] and takes into account the full-energy absorption in the Ge active volume, the escape of Ge Kα and Kβ x-rays and the escape of photons after one Compton interaction. The relativistic impulse approximation is employed instead of the Klein-Nishina formula to describe incoherent photon scattering in the Ge crystal. We also incorporate a simple model for the continuous component of the spectrum produced by the escape of photo-electrons from the active volume. In our calculations we include external interaction contributions to the RF: (i) the incoherent scattering effects caused by the detector's Be window and (ii) the spectrum produced by photo-electrons emitted in the Ge dead layer that reach the active volume. The analytical RF model is compared with pulse-height spectra simulated using the PENELOPE Monte Carlo code.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gokdogan, Gozde Kahriman, E-mail: gozdekahriman@gmail.com; Anutgan, Tamila, E-mail: tamilaanutgan@karabuk.edu.tr
2016-03-25
This contribution provides the comparison between micro- and macro-structure of hydrogenated nanocrystalline silicon (nc-Si:H) thin films grown by plasma enhanced chemical vapor deposition (PECVD) technique under different RF power densities (P{sub RF}: 100−444 mW/cm{sup 2}). Micro-structure is assessed through grazing angle X-ray diffraction (GAXRD), while macro-structure is followed by surface and cross-sectional morphology via field emission scanning electron microscopy (FE-SEM). The nanocrystallite size (∼5 nm) and FE-SEM surface conglomerate size (∼40 nm) decreases with increasing P{sub RF}, crystalline volume fraction reaches maximum at 162 mW/cm{sup 2}, FE-SEM cross-sectional structure is columnar except for the film grown at 162 mW/cm{sup 2}. The dependence of previously determinedmore » ‘oxygen content–refractive index’ correlation on obtained macro-structure is investigated. Also, the effect of P{sub RF} is discussed in the light of plasma parameters during film deposition process and nc-Si:H film growth models.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lamba, O.S.; Badola, Richa; Baloda, Suman
The paper describes voltage break down phenomenon and preventive measures in components of 250 KW CW, C band Klystron under development at CEERI Pilani. The Klystron operates at a beam voltage of 50 kV and delivers 250 kW RF power at 5 GHz frequency. The Klystron consists of several key components and regions, which are subject to high electrical stress. The most important regions of electrical breakdown are electron gun, the RF ceramic window and output cavity gap area. In the critical components voltage breakdown considered at design stage by proper gap and other techniques. All these problems discussed, asmore » well as solution to alleviate this problem. The electron gun consists basically of cathode, BFE and anode. The cathode is operated at a voltage of 50 kV. In order to maintain the voltage standoff between cathode and anode a high voltage alumina seal and RF window have been designed developed and successfully used in the tube. (author)« less
Leistra, Abigail N; Han, Jong Hyun; Tang, Shengzhuang; Orr, Bradford G; Banaszak Holl, Mark M; Choi, Seok Ki; Sinniah, Kumar
2015-05-07
Putative riboflavin receptors are considered as biomarkers due to their overexpression in breast and prostate cancers. Hence, these receptors can be potentially exploited for use in targeted drug delivery systems where dendrimer nanoparticles with multivalent ligand attachments can lead to greater specificity in cellular interactions. In this study, the single molecule force spectroscopy technique was used to assess the physical strength of multivalent interactions by employing a riboflavin (RF)-conjugated generation 5 PAMAM dendrimer G5(RF)n nanoparticle. By varying the average RF ligand valency (n = 0, 3, 5), the rupture force was measured between G5(RF)n and the riboflavin binding protein (RFBP). The rupture force increased when the valency of RF increased. We observed at the higher valency (n = 5) three binding events that increased in rupture force with increasing loading rate. Assuming a single energy barrier, the Bell-Evans model was used to determine the kinetic off-rate and barrier width for all binding interactions. The analysis of our results appears to indicate that multivalent interactions are resulting in changes to rupture force and kinetic off-rates.
RF Priming Experiments and Simulations of Magnetic Priming in Relativistic Magnetrons
NASA Astrophysics Data System (ADS)
White, W. M.; Gilgenbach, R. M.; Jones, M. C.; Neculaes, V. B.; Lau, Y. Y.; Jordan, N.; Pengvanich, P.; Edgar, R.; Hoff, B.; Spencer, T. A.; Price, D.
2004-11-01
We investigate 2 priming techniques in relativistic magnetrons for rapid startup and mode-locking: RF priming experiments with 0.1-1 MW from a 2nd magnetron; Magnetic-priming simulations by azimuthally-varying-axial magnetic field. Experiments utilize MELBA-C with a Titan 6-vane magnetron: V = -300kV, I = 1-10kA, e-beam T = 0.5 μs, microwave power = 100-500 MW, f= 1-1.3 GHz, base vacuum= 8.5 x 10-10 Torr. The AFRL RF priming magnetron is at 0.1-2 MW, 3 μsec, 1.27-1.32 GHz. About 0.2-0.3 MW is injected into 1 of 3 open coupling slots in the relativistic magnetron. Analysis of the relativistic magnetron's microwave output shows a clear effect of RF priming. Simulations of magnetic priming in the pi-mode are run in MAGIC code by imposing N/2 azimuthal-variations in the axial magnetic field of an N-vane magnetron. Faster startup and mode-locking are simulated by rapid-electron spoke formation and excitation of RF fields.
NASA Astrophysics Data System (ADS)
Thakur, S. K.; Kumar, Y.
2018-05-01
This paper described the detailed design, development and testing of high voltage power supply (‑30 kV, 3.2 A) and different power supplies for biasing electrodes of Inductive Output Tube (IOT) based high power Radio Frequency (RF) amplifier. This IOT based RF amplifier is further used for pursuing research and development activity in superconducting RF cavity project at Variable Energy Cyclotron Centre (VECC) Kolkata. The state-of-the-art technology of IOT-based high power RF amplifier is designed, developed, and tested at VECC which is the first of its kind in India. A high voltage power supply rated at negative polarity of 30 kV dc/3.2 A is required for biasing cathode of IOT with crowbar protection circuit. This power supply along with crowbar protection system is designed, developed and tested at VECC for testing the complete setup. The technical difficulties and challenges occured during the design of cathode power supply, its crowbar protection techniques along with other supported power supplies i.e. grid and ion pump power supplies are discussed in this paper.
High power tests of an electroforming cavity operating at 11.424 GHz
NASA Astrophysics Data System (ADS)
Dolgashev, V. A.; Gatti, G.; Higashi, Y.; Leonardi, O.; Lewandowski, J. R.; Marcelli, A.; Rosenzweig, J.; Spataro, B.; Tantawi, S. G.; Yeremian, D. A.
2016-03-01
The achievement of ultra high accelerating gradients is mandatory in order to fabricate compact accelerators at 11.424 GHz for scientific and industrial applications. An extensive experimental and theoretical program to determine a reliable ultra high gradient operation of the future linear accelerators is under way in many laboratories. In particular, systematic studies on the 11.424 GHz frequency accelerator structures, R&D on new materials and the associated microwave technology are in progress to achieve accelerating gradients well above 120 MeV/m. Among the many, the electroforming procedure is a promising approach to manufacture high performance RF devices in order to avoid the high temperature brazing and to produce precise RF structures. We report here the characterization of a hard high gradient RF accelerating structure at 11.424 GHz fabricated using the electroforming technique. Low-level RF measurements and high power RF tests carried out at the SLAC National Accelerator Laboratory on this prototype are presented and discussed. In addition, we present also a possible layout where the water-cooling of irises based on the electroforming process has been considered for the first time.
NASA Astrophysics Data System (ADS)
Sung, Z. H.; Polyanskii, A. A.; Lee, P. J.; Gurevich, A.; Larbalestier, D. C.
2011-03-01
Significant performance degradation of superconducting RF (radio frequency) niobium cavities in high RF field is strongly associated with the breakdown of superconductivity on localized multi-scale surface defects lying within the 40 nm penetration depth. These defects may be on the nanometer scale, like grain boundaries and dislocations or even at the much larger scale of surface roughness and welding pits. By combining multiple superconducting characterization techniques including magneto-optical (MO) imaging and direct transport measurement with non-contact characterization of the surface topology using scanning confocal microscopy, we were able to show clear evidence of suppression of surface superconductivity at chemically treated RF-quality niobium. We found that pinning of vortices along GBs is weaker than pinning of vortices in the grains, which may indicate suppressed superfluid density on GBs. We also directly measured the local magnetic characteristics of BCP-treated Nb sample surface using a micro-Hall sensor in order to further understanding of the effect of surface topological features on the breakdown of superconducting state in RF mode.
Noncoherent sampling technique for communications parameter estimations
NASA Technical Reports Server (NTRS)
Su, Y. T.; Choi, H. J.
1985-01-01
This paper presents a method of noncoherent demodulation of the PSK signal for signal distortion analysis at the RF interface. The received RF signal is downconverted and noncoherently sampled for further off-line processing. Any mismatch in phase and frequency is then compensated for by the software using the estimation techniques to extract the baseband waveform, which is needed in measuring various signal parameters. In this way, various kinds of modulated signals can be treated uniformly, independent of modulation format, and additional distortions introduced by the receiver or the hardware measurement instruments can thus be eliminated. Quantization errors incurred by digital sampling and ensuing software manipulations are analyzed and related numerical results are presented also.
Jo, Yeong Deuk; Ha, Yeaseong; Lee, Joung-Ho; Park, Minkyu; Bergsma, Alex C; Choi, Hong-Il; Goritschnig, Sandra; Kloosterman, Bjorn; van Dijk, Peter J; Choi, Doil; Kang, Byoung-Cheorl
2016-10-01
Using fine mapping techniques, the genomic region co-segregating with Restorer - of - fertility ( Rf ) in pepper was delimited to a region of 821 kb in length. A PPR gene in this region, CaPPR6 , was identified as a strong candidate for Rf based on expression pattern and characteristics of encoding sequence. Cytoplasmic-genic male sterility (CGMS) has been used for the efficient production of hybrid seeds in peppers (Capsicum annuum L.). Although the mitochondrial candidate genes that might be responsible for cytoplasmic male sterility (CMS) have been identified, the nuclear Restorer-of-fertility (Rf) gene has not been isolated. To identify the genomic region co-segregating with Rf in pepper, we performed fine mapping using an Rf-segregating population consisting of 1068 F2 individuals, based on BSA-AFLP and a comparative mapping approach. Through six cycles of chromosome walking, the co-segregating region harboring the Rf locus was delimited to be within 821 kb of sequence. Prediction of expressed genes in this region based on transcription analysis revealed four candidate genes. Among these, CaPPR6 encodes a pentatricopeptide repeat (PPR) protein with PPR motifs that are repeated 14 times. Characterization of the CaPPR6 protein sequence, based on alignment with other homologs, showed that CaPPR6 is a typical Rf-like (RFL) gene reported to have undergone diversifying selection during evolution. A marker developed from a sequence near CaPPR6 showed a higher prediction rate of the Rf phenotype than those of previously developed markers when applied to a panel of breeding lines of diverse origin. These results suggest that CaPPR6 is a strong candidate for the Rf gene in pepper.
NASA Technical Reports Server (NTRS)
Williams, W. Dan; Collins, Michael; Boroson, Don M.; Lesh, James; Biswas, Abihijit; Orr, Richard; Schuchman, Leonard; Sands, O. Scott
2007-01-01
As NASA proceeds with plans for increased science data return and higher data transfer capacity for science missions, both RF and optical communications are viable candidates for significantly higher-rate communications from deep space to Earth. With the inherent advantages, smaller apertures and larger bandwidths, of optical communications, it is reasonable to expect that at some point in time and combination of increasing distance and data rate, the rapidly emerging optical capabilities would become more advantageous than the more mature and evolving RF techniques. This paper presents a comparison of the burden to a spacecraft by both RF and optical communications systems for data rates of 10, 100, and 1000 Mbps and large distances. Advanced technology for RF and optical communication systems have been considered for projecting capabilities in the 2020 timeframe. For the comparisons drawn, the optical and RF ground terminals were selected to be similar in cost. The RF system selected is composed of forty-five 12-meter antennas, whereas the selected optical system is equivalent to a 10-meter optical telescope. Potential differences in availability are disregarded since the focus of this study is on spacecraft mass and power burden for high-rate mission data, under the assumption that essential communications will be provided by low-rate, high availability RF. For both the RF and optical systems, the required EIRP, for a given data rate and a given distance, was achieved by a design that realized the lowest possible communications subsystem mass (power + aperture) consistent with achieving the lowest technology risk. A key conclusion of this paper is that optical communications has great potential for high data rates and distances of 2.67 AU and beyond, but requires R&D and flight demonstrations to prove out technologies.
Radio Frequency Microelectromechanical Systems [Book Chapter Manuscript
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nordquist, Christopher; Olsson, Roy H.
2014-12-15
Radio frequency microelectromechanical system (RF MEMS) devices are microscale devices that achieve superior performance relative to other technologies by taking advantage of the accuracy, precision, materials, and miniaturization available through microfabrication. To do this, these devices use their mechanical and electrical properties to perform a specific RF electrical function such as switching, transmission, or filtering. RF MEMS has been a popular area of research since the early 1990s, and within the last several years, the technology has matured sufficiently for commercialization and use in commercial market systems.
Parham, Fred; Portier, Christopher J.; Chang, Xiaoqing; Mevissen, Meike
2016-01-01
Using in vitro data in human cell lines, several research groups have investigated changes in gene expression in cellular systems following exposure to extremely low frequency (ELF) and radiofrequency (RF) electromagnetic fields (EMF). For ELF EMF, we obtained five studies with complete microarray data and three studies with only lists of significantly altered genes. Likewise, for RF EMF, we obtained 13 complete microarray datasets and 5 limited datasets. Plausible linkages between exposure to ELF and RF EMF and human diseases were identified using a three-step process: (a) linking genes associated with classes of human diseases to molecular pathways, (b) linking pathways to ELF and RF EMF microarray data, and (c) identifying associations between human disease and EMF exposures where the pathways are significantly similar. A total of 60 pathways were associated with human diseases, mostly focused on basic cellular functions like JAK–STAT signaling or metabolic functions like xenobiotic metabolism by cytochrome P450 enzymes. ELF EMF datasets were sporadically linked to human diseases, but no clear pattern emerged. Individual datasets showed some linkage to cancer, chemical dependency, metabolic disorders, and neurological disorders. RF EMF datasets were not strongly linked to any disorders but strongly linked to changes in several pathways. Based on these analyses, the most promising area for further research would be to focus on EMF and neurological function and disorders. PMID:27656641
A low feed-through 3D vacuum packaging technique with silicon vias for RF MEMS resonators
NASA Astrophysics Data System (ADS)
Zhao, Jicong; Yuan, Quan; Kan, Xiao; Yang, Jinling; Yang, Fuhua
2017-01-01
This paper presents a wafer-level three-dimensional (3D) vacuum packaging technique for radio frequency microelectromechanical systems (RF MEMS) resonators. A Sn-rich Au-Sn solder bonding is employed to provide a vacuum encapsulation as well as electrical conductions. Vertical silicon vias are micro-fabricated by glass reflow process. The optimized grounding, via pitch, and all-round shielding effectively reduce feed-through capacitance. Thus the signal-to-background ratios (SBRs) of the transmission signals increase from 17 dB to 20 dB, and the quality factor (Q) values of the packaged resonators go from around 8000 up to more than 9500. The measured average leak rate and shear strength are (2.55 ± 0.9) × 10-8 atm-cc s-1 and 42.53 ± 4.19 MPa, respectively. Furthermore, thermal cycling test between -40 °C and 100 °C and high temperature storage test at 150 °C show that the resonant-frequency drifts are less than ±7 ppm. In addition, the SBRs and the Q values have no obvious change after the tests. The experimental results demonstrated that the proposed encapsulation technique is well suited for the applications of RF MEMS devices.
Guo, Doudou; Juan, Jiaxiang; Chang, Liying; Zhang, Jingjin; Huang, Danfeng
2017-08-15
Plant-based sensing on water stress can provide sensitive and direct reference for precision irrigation system in greenhouse. However, plant information acquisition, interpretation, and systematical application remain insufficient. This study developed a discrimination method for plant root zone water status in greenhouse by integrating phenotyping and machine learning techniques. Pakchoi plants were used and treated by three root zone moisture levels, 40%, 60%, and 80% relative water content. Three classification models, Random Forest (RF), Neural Network (NN), and Support Vector Machine (SVM) were developed and validated in different scenarios with overall accuracy over 90% for all. SVM model had the highest value, but it required the longest training time. All models had accuracy over 85% in all scenarios, and more stable performance was observed in RF model. Simplified SVM model developed by the top five most contributing traits had the largest accuracy reduction as 29.5%, while simplified RF and NN model still maintained approximately 80%. For real case application, factors such as operation cost, precision requirement, and system reaction time should be synthetically considered in model selection. Our work shows it is promising to discriminate plant root zone water status by implementing phenotyping and machine learning techniques for precision irrigation management.
Two-layer wireless distributed sensor/control network based on RF
NASA Astrophysics Data System (ADS)
Feng, Li; Lin, Yuchi; Zhou, Jingjing; Dong, Guimei; Xia, Guisuo
2006-11-01
A project of embedded Wireless Distributed Sensor/Control Network (WDSCN) based on RF is presented after analyzing the disadvantages of traditional measure and control system. Because of high-cost and complexity, such wireless techniques as Bluetooth and WiFi can't meet the needs of WDSCN. The two-layer WDSCN is designed based on RF technique, which operates in the ISM free frequency channel with low power and high transmission speed. Also the network is low cost, portable and moveable, integrated with the technologies of computer network, sensor, microprocessor and wireless communications. The two-layer network topology is selected in the system; a simple but efficient self-organization net protocol is designed to fit the periodic data collection, event-driven and store-and-forward. Furthermore, adaptive frequency hopping technique is adopted for anti-jamming apparently. The problems about power reduction and synchronization of data in wireless system are solved efficiently. Based on the discussion above, a measure and control network is set up to control such typical instruments and sensors as temperature sensor and signal converter, collect data, and monitor environmental parameters around. This system works well in different rooms. Experiment results show that the system provides an efficient solution to WDSCN through wireless links, with high efficiency, low power, high stability, flexibility and wide working range.
The Escherichia coli O157:H7 bovine rumen fluid proteome reflects adaptive bacterial responses.
Kudva, Indira T; Stanton, Thaddeus B; Lippolis, John D
2014-02-21
To obtain insights into Escherichia coli O157:H7 (O157) survival mechanisms in the bovine rumen, we defined the growth characteristics and proteome of O157 cultured in rumen fluid (RF; pH 6.0-7.2 and low volatile fatty acid content) obtained from rumen-fistulated cattle fed low protein content "maintenance diet" under diverse in vitro conditions. Bottom-up proteomics (LC-MS/MS) of whole cell-lysates of O157 cultured under anaerobic conditions in filter-sterilized RF (fRF; devoid of normal ruminal microbiota) and nutrient-depleted and filtered RF (dRF) resulted in an anaerobic O157 fRF-and dRF-proteome comprising 35 proteins functionally associated with cell structure, motility, transport, metabolism and regulation, but interestingly, not with O157 virulence. Shotgun proteomics-based analysis using isobaric tags for relative and absolute quantitation used to further study differential protein expression in unfiltered RF (uRF; RF containing normal rumen microbial flora) complemented these results. Our results indicate that in the rumen, the first anatomical compartment encountered by this human pathogen within the cattle gastrointestinal tract (GIT), O157 initiates a program of specific gene expression that enables it to adapt to the in vivo environment, and successfully transit to its colonization sites in the bovine GIT. Further experiments in vitro using uRF from animals fed different diets and with additional O157 strains, and in vivo using rumen-fistulated cattle will provide a comprehensive understanding of the adaptive mechanisms involved, and help direct evolution of novel modalities for blocking O157 infection of cattle.
Pajulo, Marjukka; Pyykkönen, Nina; Kalland, Mirjam; Sinkkonen, Jari; Helenius, Hans; Punamäki, Raija-Leena; Suchman, Nancy
2012-01-01
A residential treatment program has been developed specifically for substance-abusing pregnant and parenting women in Finland, focusing on simultaneously supporting maternal abstinence from substances and the mother–baby relationship. The aims of the study are to explore maternal pre- and postnatal reflective functioning and its association with background factors, maternal exposure to trauma, and psychiatric symptoms, postnatal interaction, child development, and later child foster care placement. Participants were 34 mother–baby pairs living in three residential program units during the pre- to postnatal period. We employed self-report questionnaires on background, trauma history, and psychiatric symptoms (Brief Symptom Inventory: L.R. Derogatis, 1993; Edinburgh Postnatal Depression Scale: J.L. Cox, J.M. Holden, & R. Sagovsky, 1987; Traumatic Antecedents Questionnaire: B. Van der Kolk, 2003), videotaped mother–child interactions coded for sensitivity, control, and unresponsiveness (Care Index for Infants and Toddlers: P. Crittenden, 2003); a standardized test of child development (Bayley Scales of Infant Development-II: N. Bayley, 1993); and semistructured interviews for maternal reflective functioning (Pregnancy Interview: A. Slade, E. Bernbach, J. Grienenberger, D.W. Levy, & A. Locker, 2002; Parent Development Interview: A. Slade et al., 2005). Pre- and postnatal maternal reflective functioning (RF) was on average low, but varied considerably across participants. Average RF increased significantly during the intervention. Increase in RF level was found to be associated with type of abused substance and maternal trauma history. Mothers who showed lower postnatal RF levels relapsed to substance use more often after completing a residential treatment period, and their children were more likely to be placed in foster care. The intensive focus on maternal RF is an important direction in the development of efficacious treatment for this very high risk population. PMID:22899872
Kim, Hyuk; Park, Kui Young; Choi, Sun Young; Koh, Hyun-Ju; Park, Sun-Young; Park, Won-Seok; Bae, Il-Hong
2014-01-01
Background Recent advances in hyaluronic acid (HA) fillers and radiofrequency (RF) devices have been made in the context of skin rejuvenation and cosmetic surgery. Moreover, combination regimens with both techniques are currently being developed. Objective The present study was designed to examine the clinical and histologic effects of a new needle that incorporates an RF device for HA injections. Methods A new intradermal needle RF device (INNOfill; Pacific Pharma, Korea) was assessed in the present study. In the animal arm, procollagen production was measured by using enzyme-linked immunosorbent assay, the filler volume was quantified by incorporating a dye with filler, and the filler distribution was assessed through the changes in tissue structure. In the human arm, the efficacy of the combination regimen was assessed by using the wrinkle severity rating scale (WSRS). Results In the animal study, RF treatment increased procollagen production in a time-dependent fashion. The total volume was significantly increased with the RF treatment when compared with the filler injections alone, and lasted for up to 7 weeks after treatment. Additionally, the filler distribution was reduced in animals treated with RF when compared with the untreated group. In the human study, the nasolabial folds of subjects treated with RF before filler injections exhibited a significantly greater change in the WSRS score from baseline when compared with the nasolabial folds treated with filler injections alone. Conclusion A new device incorporating RF treatment before HA filler injection may represent a biocompatible and long-lasting advance in skin rejuvenation. PMID:25143672
Franz, Annabel O; Harrop, Tiffany M; McCord, David M
2017-01-01
This study aimed to examine the construct validity of the Minnesota Multiphasic Personality Inventory-2 Restructured Form (MMPI-2-RF) interpersonal functioning scales (Ben-Porath & Tellegen, 2008/2011 ) using as a criterion measure the Computerized Adaptive Test of Personality Disorder-Static Form (CAT-PD-SF; Simms et al., 2011 ). Participants were college students (n = 98) recruited through the university subject pool. A series of a priori hypotheses were developed for each of the 6 interpersonal functioning scales of the MMPI-2-RF, expressed as predicted correlations with construct-relevant CAT-PD-SF scales. Of the 27 specific predictions, 21 were supported by substantial (≥ |.30|) correlations. The MMPI-2-RF Family Problems scale (FML) demonstrated the strongest correlations with CAT-PD-SF scales Anhedonia and Mistrust; Cynicism (RC3) was most highly correlated with Mistrust and Norm Violation; Interpersonal Passivity (IPP) was most highly correlated with Domineering and Rudeness; Social Avoidance (SAV) was most highly correlated with Social Withdrawal and Anhedonia; Shyness (SHY) was most highly correlated with Social Withdrawal and Anxioiusness; and Disaffiliativeness (DSF) was most highly correlated with Emotional Detachment and Mistrust. Results are largely consistent with hypotheses suggesting support for both models of constructs relevant to interpersonal functioning. Future research designed to more precisely differentiate Social Avoidance (SAV) and Shyness (SHY) is suggested.
Thermal Ablation for Benign Thyroid Nodules: Radiofrequency and Laser
Lee, Jeong Hyun; Valcavi, Roberto; Pacella, Claudio M.; Rhim, Hyunchul; Na, Dong Gyu
2011-01-01
Although ethanol ablation has been successfully used to treat cystic thyroid nodules, this procedure is less effective when the thyroid nodules are solid. Radiofrequency (RF) ablation, a newer procedure used to treat malignant liver tumors, has been valuable in the treatment of benign thyroid nodules regardless of the extent of the solid component. This article reviews the basic physics, techniques, applications, results, and complications of thyroid RF ablation, in comparison to laser ablation. PMID:21927553
Low RF Reflectivity Spacecraft Thermal Blanket by Using High-Impedance Surface Absorbers
NASA Astrophysics Data System (ADS)
Costa, F.; Monorchio, A.; Carrubba, E.; Zolesi, V.
2012-05-01
A technique for designing a low-RF reflectivity thermal blanket is presented. Multi-layer insulation (MLI) blankets are employed to stabilize the temperature on spacecraft unit but they can be responsible of passive intermodulation products and high-mutual coupling between antennas since they are realized with metallic materials. The possibility to replace the last inner layer of a MLI blanket with an ultra-thin absorbing layer made of high-impedance surface absorber is discussed.
Radio-frequency response of single pores and artificial ion channels
NASA Astrophysics Data System (ADS)
Kim, H. S.; Ramachandran, S.; Stava, E.; van der Weide, D. W.; Blick, R. H.
2011-09-01
Intercellular communication relies on ion channels and pores in cell membranes. These protein-formed channels enable the exchange of ions and small molecules to electrically and/or chemically interact with the cells. Traditionally, recordings on single-ion channels and pores are performed in the dc regime, due to the extremely high impedance of these molecular junctions. This paper is intended as an introduction to radio-frequency (RF) recordings of single-molecule junctions in bilipid membranes. First, we demonstrate how early approaches to using microwave circuitry as readout devices for ion channel formation were realized. The second step will then focus on how to engineer microwave coupling into the high-impedance channel by making use of bio-compatible micro-coaxial lines. We then demonstrate integration of an ultra-broadband microwave circuit for the direct sampling of single α-hemolysin pores in a suspended bilipid membrane. Simultaneous direct current recordings reveal that we can monitor and correlate the RF transmission signal. This enables us to relate the open-close states of the direct current to the RF signal. Altogether, our experiments lay the ground for an RF-readout technique to perform real-time in vitro recordings of pores. The technique thus holds great promise for research and drug screening applications. The possible enhancement of sampling rates of single channels and pores by the large recording bandwidth will allow us to track the passage of single ions.
Quek, Jeremy; Newman, Louise K; Bennett, Clair; Gordon, Michael S; Saeedi, Naysun; Melvin, Glenn A
2017-10-01
Deficits in mentalizing, particularly within the context of attachment relationships i.e., reflective function (RF), are posited to result from childhood maltreatment and to influence the development of borderline personality disorder (BPD). Whilst a mentalization-based model of BPD provides a theoretical explanation, direct empirical support for this model, in linking childhood maltreatment to borderline pathology remains limited. This study examined the interrrelationships between childhood maltreatment, RF, and borderline pathology in a mixed adolescent sample, consisting of adolescents with BPD (n=26) and a group of non-clinical adolescents (n=25). With the aim of directly testing the mentalization-based model of BPD, we additionally investigated the influence of each form of childhood maltreatment within this developmental pathway. Self-report data supported the hypothesized indirect effect of childhood maltreatment on elevated borderline pathology through lowered RF in adolescents. Both emotional abuse and emotional neglect were found to indirectly influence borderline pathology through adolescent RF, however, only emotional abuse indirectly influenced borderline pathology through RF, after all other maltreatment types were controlled for. Findings support the promotion of mentalization, within attachment-related contexts, as an intervention target for adolescents with borderline pathology and as a potential target of prevention for at-risk children and adolescents with histories of childhood maltreatment, especially emotional abuse. Future research should delineate other underlying mechanisms, independent of RF, which may also link the influence of childhood maltreatment, and in particular, emotional abuse, to BPD. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Seo, Jeung-Hoon; Han, Sang-Doc; Kim, Kyoung-Nam
2015-06-01
The proper design of birdcage (BC) coils plays a very important role in the acquisition of highresolution magnetic resonance imaging (MRI) of small animals such as rodents. In this context, we investigate multiple-leg (8-, 16-, 32-, 64-, and 128-leg) BC coils operating at ultra-high fields (UHF) of 7.0 T and 11.7 T and a high-field (HF) of 4.7 T for rodent magnetic resonance imaging (MRI). Primarily, Our study comparatively examines the parameters of the radiofrequency (RF) transmission (|B1 +|)-field, the magnetic flux (|B1|)-field, and RF power deposition (RF-PD) as functions of the number of BC-coil legs via finite-difference time-domain (FDTD) calculations under realistic loading conditions with a biological phantom. In particular, the specific ratio |E/B1 +| is defined for predicting RF-PD values in different coil structures. Our results indicate that the optimal number of legs of the BC coil can be chosen for different resonance frequencies of 200 MHz, 300 MHz, and 500 MHz and that this choice can be lead to superior |B1 +|-field intensity and |B1|-field homogeneity and decreased RF-PD. We believe that our approach to determining the optimal number of legs for a BC coil can contribute to rodent MR imaging.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gudino, N., E-mail: natalia.gudino@nih.gov; Sonmez, M.; Nielles-Vallespin, S.
2015-01-15
Purpose: To provide a rapid method to reduce the radiofrequency (RF) E-field coupling and consequent heating in long conductors in an interventional MRI (iMRI) setup. Methods: A driving function for device heating (W) was defined as the integration of the E-field along the direction of the wire and calculated through a quasistatic approximation. Based on this function, the phases of four independently controlled transmit channels were dynamically changed in a 1.5 T MRI scanner. During the different excitation configurations, the RF induced heating in a nitinol wire immersed in a saline phantom was measured by fiber-optic temperature sensing. Additionally, amore » minimization of W as a function of phase and amplitude values of the different channels and constrained by the homogeneity of the RF excitation field (B{sub 1}) over a region of interest was proposed and its results tested on the benchtop. To analyze the validity of the proposed method, using a model of the array and phantom setup tested in the scanner, RF fields and SAR maps were calculated through finite-difference time-domain (FDTD) simulations. In addition to phantom experiments, RF induced heating of an active guidewire inserted in a swine was also evaluated. Results: In the phantom experiment, heating at the tip of the device was reduced by 92% when replacing the body coil by an optimized parallel transmit excitation with same nominal flip angle. In the benchtop, up to 90% heating reduction was measured when implementing the constrained minimization algorithm with the additional degree of freedom given by independent amplitude control. The computation of the optimum phase and amplitude values was executed in just 12 s using a standard CPU. The results of the FDTD simulations showed similar trend of the local SAR at the tip of the wire and measured temperature as well as to a quadratic function of W, confirming the validity of the quasistatic approach for the presented problem at 64 MHz. Imaging and heating reduction of the guidewire were successfully performed in vivo with the proposed hardware and phase control. Conclusions: Phantom and in vivo data demonstrated that additional degrees of freedom in a parallel transmission system can be used to control RF induced heating in long conductors. A novel constrained optimization approach to reduce device heating was also presented that can be run in just few seconds and therefore could be added to an iMRI protocol to improve RF safety.« less
Nonlinear Dynamics of Vortices in Different Types of Grain Boundaries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheikhzada, Ahmad
As a major component of linear particle accelerators, superconducting radio-frequency (SRF) resonator cavities are required to operate with lowest energy dissipation and highest accelerating gradient. SRF cavities are made of polycrystalline materials in which grain boundaries can limit maximum RF currents and produce additional power dissipation sources due to local penetration of Josephson vortices. The essential physics of vortex penetration and mechanisms of dissipation of vortices driven by strong RF currents along networks of grain boundaries and their contribution to the residual surface resistance have not been well understood. To evaluate how GBs can limit the performance of SRF materials,more » particularly Nb and Nb3Sn, we performed extensive numerical simulations of nonlinear dynamics of Josephson vortices in grain boundaries under strong dc and RF fields. The RF power due to penetration of vortices both in weakly-coupled and strongly-coupled grain boundaries was calculated as functions of the RF field and frequency. The result of this calculation manifested a quadratic dependence of power to field amplitude at strong RF currents, an illustration of resistive behavior of grain boundaries. Our calculations also showed that the surface resistance is a complicated function of field controlled by penetration and annihilation of vortices and antivortices in strong RF fields which ultimately saturates to normal resistivity of grain boundary. We found that Cherenkov radiation of rapidly moving vortices in grain boundaries can produce a new instability causing generation of expanding vortex-antivortex pair which ultimately drives the entire GB in a resistive state. This effect is more pronounced in polycrystalline thin film and multilayer coating structures in which it can cause significant increase in power dissipation and results in hysteresis effects in I-V characteristics, particularly at low temperatures.« less
TOPICAL REVIEW: Spatial localization in nuclear magnetic resonance spectroscopy
NASA Astrophysics Data System (ADS)
Keevil, Stephen F.
2006-08-01
The ability to select a discrete region within the body for signal acquisition is a fundamental requirement of in vivo NMR spectroscopy. Ideally, it should be possible to tailor the selected volume to coincide exactly with the lesion or tissue of interest, without loss of signal from within this volume or contamination with extraneous signals. Many techniques have been developed over the past 25 years employing a combination of RF coil properties, static magnetic field gradients and pulse sequence design in an attempt to meet these goals. This review presents a comprehensive survey of these techniques, their various advantages and disadvantages, and implications for clinical applications. Particular emphasis is placed on the reliability of the techniques in terms of signal loss, contamination and the effect of nuclear relaxation and J-coupling. The survey includes techniques based on RF coil and pulse design alone, those using static magnetic field gradients, and magnetic resonance spectroscopic imaging. Although there is an emphasis on techniques currently in widespread use (PRESS, STEAM, ISIS and MRSI), the review also includes earlier techniques, in order to provide historical context, and techniques that are promising for future use in clinical and biomedical applications.
Wang, Jianfeng; Zhao, Lizhen; Zhou, Chuanguo; Gao, Kun; Huang, Qiang; Wei, Baojie; Gao, Jun
2016-04-01
Although radiofrequency (RF) ablation has been accepted as a curative treatment modality for solid organ tumors, intraductal RF ablation for malignant biliary obstruction has not been widely described. The aim of this study was to evaluate the feasibility, safety, and efficacy (in terms of stent patency and survival) of intraductal RF ablation combined with biliary stent placement for nonresectable malignant biliary obstruction. A search of the nonresectable malignant extrahepatic biliary obstruction database (179 patients) identified 18 consecutive patients who were treated with biliary intraluminal RF ablation during percutaneous transhepatic cholangiodrainage and inner stent placement (RF ablation group) and 18 patients who underwent inner stent placement without biliary intraluminal RF ablation (control group). The patients were matched for tumor type, location of obstruction, tumor stage, and Child-Pugh class status. Primary endpoints included safety, stent patency time, and survival rates. The secondary endpoint was effectiveness of the technique. The RF ablation and control groups were closely matched in terms of age, diagnosis, presence of metastases, presence of locally advanced tumor, American Society of Anesthesiologists (ASA) grade, and chemotherapy regimen (all P > 0.05). The technical success rate for both groups was 100%. The median time of stent patency in the RF ablation and control groups were 5.8 (2.8-11.5) months and 4.5 (2.4-8.0) months, respectively (Kaplan-Meier analysis: P = 0.03). The median survival times in the RF ablation and control groups were 6.1 (4.8-15.2) months and 5.8 (4.2-16.5) months, with no significant difference according to Kaplan-Meier analysis (P = 0.45). In univariate and multivariate analyses, poorer overall survival was associated with advanced age and presence of metastases (P < 0.05). Intraductal RF ablation combined with biliary stent placement for nonresectable malignant biliary obstruction is safe and feasible and effectively increases stent patency time. However, it does not improve patient survival.
Random forest meteorological normalisation models for Swiss PM10 trend analysis
NASA Astrophysics Data System (ADS)
Grange, Stuart K.; Carslaw, David C.; Lewis, Alastair C.; Boleti, Eirini; Hueglin, Christoph
2018-05-01
Meteorological normalisation is a technique which accounts for changes in meteorology over time in an air quality time series. Controlling for such changes helps support robust trend analysis because there is more certainty that the observed trends are due to changes in emissions or chemistry, not changes in meteorology. Predictive random forest models (RF; a decision tree machine learning technique) were grown for 31 air quality monitoring sites in Switzerland using surface meteorological, synoptic scale, boundary layer height, and time variables to explain daily PM10 concentrations. The RF models were used to calculate meteorologically normalised trends which were formally tested and evaluated using the Theil-Sen estimator. Between 1997 and 2016, significantly decreasing normalised PM10 trends ranged between -0.09 and -1.16 µg m-3 yr-1 with urban traffic sites experiencing the greatest mean decrease in PM10 concentrations at -0.77 µg m-3 yr-1. Similar magnitudes have been reported for normalised PM10 trends for earlier time periods in Switzerland which indicates PM10 concentrations are continuing to decrease at similar rates as in the past. The ability for RF models to be interpreted was leveraged using partial dependence plots to explain the observed trends and relevant physical and chemical processes influencing PM10 concentrations. Notably, two regimes were suggested by the models which cause elevated PM10 concentrations in Switzerland: one related to poor dispersion conditions and a second resulting from high rates of secondary PM generation in deep, photochemically active boundary layers. The RF meteorological normalisation process was found to be robust, user friendly and simple to implement, and readily interpretable which suggests the technique could be useful in many air quality exploratory data analysis situations.
Development of high-efficiency power amplifiers for PIP2 (Project X), Phase II
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raab, Frederick
The Fermi Lab PIP II (formerly Project X) accelerator will require the generation of over a megawatt of radio-frequency (RF) power at 325 and 650 MHz. This Phase-II SBIR grant developed techniques to generate this RF power efficienly. The basis of this approach is a system comprising high-efficiency RF power amplifiers, high-efficiency class-S modulators to maintain efficiency at all power levels, and low-loss power combiners. A digital signal processor adjusts signal parameters to obtain the maximum efficiency while producing a signal of the desired amplitude and phase. Components of 4-kW prototypes were designed, assembled, and tested. The 500-W modules producemore » signals at 325 MHz with an overall efficiency of 83 percent and signals at 650 MHz with an overall efficiency of 79 percent. This efficiency is nearly double that available from conventional techniques, which makes it possible to cut the power consumption nearly in half. The system is designed to be scalable to the multi-kilowatt level and can be adapted to other DoE applications.« less
The effect of dehydration conditions on the functionality of anhydrous amorphous raffinose.
Chamarthy, Sai Prasanth; Khalef, Nawel; Trasi, Niraj; Bakri, Aziz; Carvajal, M Teresa; Pinal, Rodolfo
2010-06-14
The purpose of this investigation is to study the effect of dehydration conditions of raffinose pentahydrate (RF.5H2O) on the physical properties and functionality of the resulting material. Crystalline RF.5H2O was dehydrated at two temperatures, 80 degrees C and 110 degrees C, producing the amorphous anhydrous form (RF.am). The dehydration temperature had no effect on a number of physical properties of the obtained RF.am, including X-ray powder diffraction, surface energy and water uptake. However, despite resulting on the same dynamics and extent of water sorption, different dehydration temperatures produced amorphous samples with drastically different recrystallization tendencies. Thermodynamic parameters show that despite the similarities on certain physical attributes, different dehydration temperature results in samples with significantly different free energy, hence stability. The difference in free energy produced by the dehydration temperature is attributed to differences in supramolecular structure that persist even in the liquid domain (above T(g)) of the amorphous samples. Evidence of such effects is observed as fluctuations in heat capacity present in RF.am but absent in the freshly prepared glass and also supported by the presence of molecular mobility modes observed using thermal polarization measurements. Copyright 2010 Elsevier B.V. All rights reserved.
Exploration and design of smart home circuit based on ZigBee
NASA Astrophysics Data System (ADS)
Luo, Huirong
2018-05-01
To apply ZigBee technique in smart home circuit design, in the hardware design link of ZigBee node, TI Company's ZigBee wireless communication chip CC2530 was used to complete the design of ZigBee RF module circuit and peripheral circuit. In addition, the function demand and the overall scheme of the intelligent system based on smart home furnishing were proposed. Finally, the smart home system was built by combining ZigBee network and intelligent gateway. The function realization, reliability and power consumption of ZigBee network were tested. The results showed that ZigBee technology was applied to smart home system, making it have some advantages in terms of flexibility, scalability, power consumption and indoor aesthetics. To sum up, the system has high application value.
Dynamic Multi-Coil Technique (DYNAMITE) Shimming of the Rat Brain at 11.7 Tesla
Juchem, Christoph; Herman, Peter; Sanganahalli, Basavaraju G.; Brown, Peter B.; McIntyre, Scott; Nixon, Terence W.; Green, Dan; Hyder, Fahmeed; de Graaf, Robin A.
2014-01-01
The in vivo rat model is a workhorse in neuroscience research, preclinical studies and drug development. A repertoire of MR tools has been developed for its investigation, however, high levels of B0 magnetic field homogeneity are required for meaningful results. The homogenization of magnetic fields in the rat brain, i.e. shimming, is a difficult task due to a multitude of complex, susceptibility-induced field distortions. Conventional shimming with spherical harmonic (SH) functions is capable of compensating shallow field distortions in limited areas, e.g. in the cortex, but performs poorly in difficult-to-shim subcortical structures or for the entire brain. Based on the recently introduced multi-coil approach for magnetic field modeling, the DYNAmic Multi-coIl TEchnique (DYNAMITE) is introduced for magnetic field shimming of the in vivo rat brain and its benefits for gradient-echo echo-planar imaging (EPI) are demonstrated. An integrated multi-coil/radio-frequency (MC/RF) system comprising 48 individual localized DC coils for B0 shimming and a surface transceive RF coil has been developed that allows MR investigations of the anesthetized rat brain in vivo. DYNAMITE shimming with this MC/RF setup is shown to reduce the B0 standard deviation to a third of that achieved with current shim technology employing static first through third order SH shapes. The EPI signal over the rat brain increased by 31% and a 24% gain in usable EPI voxels could be realized. DYNAMITE shimming is expected to critically benefit a wide range of preclinical and neuroscientific MR research. Improved magnetic field homogeneity, along with the achievable large brain coverage of this method will be crucial when signal pathways, cortical circuitry or the brain’s default network are studied. Along with the efficiency gains of MC-based shimming compared to SH approaches demonstrated recently, DYNAMITE shimming has the potential to replace conventional SH shim systems in small bore animal scanners. PMID:24839167
Machine Learning to Assess Grassland Productivity in Southeastern Arizona
NASA Astrophysics Data System (ADS)
Ponce-Campos, G. E.; Heilman, P.; Armendariz, G.; Moser, E.; Archer, V.; Vaughan, R.
2015-12-01
We present preliminary results of machine learning (ML) techniques modeling the combined effects of climate, management, and inherent potential on productivity of grazed semi-arid grasslands in southeastern Arizona. Our goal is to support public land managers determine if agency management policies are meeting objectives and where to focus attention. Monitoring in the field is becoming more and more limited in space and time. Remotely sensed data cover the entire allotments and go back in time, but do not consider the key issue of species composition. By estimating expected vegetative production as a function of site potential and climatic inputs, management skill can be assessed through time, across individual allotments, and between allotments. Here we present the use of Random Forest (RF) as the main ML technique, in this case for the purpose of regression. Our response variable is the maximum annual NDVI, a surrogate for grassland productivity, as generated by the Google Earth Engine cloud computing platform based on Landsat 5, 7, and 8 datasets. PRISM 33-year normal precipitation (1980-2013) was resampled to the Landsat scale. In addition, the GRIDMET climate dataset was the source for the calculation of the annual SPEI (Standardized Precipitation Evapotranspiration Index), a drought index. We also included information about landscape position, aspect, streams, ponds, roads and fire disturbances as part of the modeling process. Our results show that in terms of variable importance, the 33-year normal precipitation, along with SPEI, are the most important features affecting grasslands productivity within the study area. The RF approach was compared to a linear regression model with the same variables. The linear model resulted in an r2 = 0.41, whereas RF showed a significant improvement with an r2 = 0.79. We continue refining the model by comparison with aerial photography and to include grazing intensity and infrastructure from units/allotments to assess the effect of management practices on vegetation production.
Spin transfer driven resonant expulsion of a magnetic vortex core for efficient rf detector
NASA Astrophysics Data System (ADS)
Menshawy, S.; Jenkins, A. S.; Merazzo, K. J.; Vila, L.; Ferreira, R.; Cyrille, M.-C.; Ebels, U.; Bortolotti, P.; Kermorvant, J.; Cros, V.
2017-05-01
Spin transfer magnetization dynamics have led to considerable advances in Spintronics, including opportunities for new nanoscale radiofrequency devices. Among the new functionalities is the radiofrequency (rf) detection using the spin diode rectification effect in spin torque nano-oscillators (STNOs). In this study, we focus on a new phenomenon, the resonant expulsion of a magnetic vortex in STNOs. This effect is observed when the excitation vortex radius, due to spin torques associated to rf currents, becomes larger than the actual radius of the STNO. This vortex expulsion is leading to a sharp variation of the voltage at the resonant frequency. Here we show that the detected frequency can be tuned by different parameters; furthermore, a simultaneous detection of different rf signals can be achieved by real time measurements with several STNOs having different diameters. This result constitutes a first proof-of-principle towards the development of a new kind of nanoscale rf threshold detector.
RF Noise Generation in High-Pressure Short-Arc DC Xenon Lamps
NASA Astrophysics Data System (ADS)
Minayeva, Olga; Doughty, Douglas
2007-10-01
Continuous direct current xenon arcs will generate RF noise under certain circumstance, which can lead to excessive electro- magnetic interference in systems that use these arcs as light sources. Phenomenological observations are presented for xenon arcs having arc gaps ˜1 mm, cold fill pressures of ˜2.5 MPa, and currents up to 30 amps. Using a loop antenna in the vicinity of an operating lamp, it is observed that as the current to the arc is lowered there is a reproducible threshold at which the RF noise generation begins. This threshold is accompanied by a small abrupt drop in voltage (˜0.2 volts). The RF emission appears in pulses ˜150 nsec wide separated by ˜300 nec - the pulse interval decreases with decreasing current. The properties of the RF emission as a function of arc parameters (such as pressure, arc gap, electrode design) will be discussed and a semi-quantitative model presented.
Biophysics and pathology of catheter energy delivery systems.
Nath, S; Haines, D E
1995-01-01
Catheter ablation has rapidly emerged as the treatment of choice for many symptomatic cardiac arrhythmias. The initial experience with catheter ablation used high-energy DC as the energy source. However, over the last several years radiofrequency (RF) catheter ablation has become the dominant mode of energy delivery. Currently, a major limitation of RF ablation is the small lesion size created by this technique that has reduced its success rate in ablation of larger arrhythmogenic substrates such as coronary artery disease-related ventricular tachycardia. Alternate energy sources such as microwave or ultrasound catheter ablation are being developed that have the potential for producing larger lesions than RF ablation. This review will discuss the biophysics and pathophysiology of the various energy modalities used in catheter ablation.
Characterization on RF magnetron sputtered niobium pentoxide thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Usha, N.; Sivakumar, R., E-mail: krsivakumar1979@yahoo.com; Sanjeeviraja, C.
2014-10-15
Niobium pentoxide (Nb{sub 2}O{sub 5}) thin films with amorphous nature were deposited on microscopic glass substrates at 100°C by rf magnetron sputtering technique. The effect of rf power on the structural, morphological, optical, and vibrational properties of Nb{sub 2}O{sub 5} films have been investigated. Optical study shows the maximum average transmittance of about 87% and the optical energy band gap (indirect allowed) changes between 3.70 eV and 3.47 eV. AFM result indicates the smooth surface nature of the samples. Photoluminescence measurement showed the better optical quality of the deposited films. Raman spectra show the LO-TO splitting of Nb-O stretching ofmore » Nb{sub 2}O{sub 5} films.« less
Fabrication and Characterization of Thermoresponsive Films Deposited by an RF Plasma Reactor
Lucero, Adrianne E.; Reed, Jamie A.; Wu, Xiaomei; Canavan, Heather E.
2014-01-01
Summary Poly(N-isopropyl acrylamide) (pNIPAM) undergoes a sharp property change in response to a moderate thermal stimulus at physiological temperatures. In this work, we constructed a radio frequency (RF) plasma reactor for the plasma polymerization of pNIPAM. RF deposition is a method that coats surfaces of any geometry producing surfaces that are sterile and uniform, making this technique useful for forming biocompatible films. The films generated are characterized using X-ray photoelectron spectroscopy (XPS), contact angles, cell culture, and interferometry. We find that a plasma with a decreasing series of power settings (i.e., from 100W to 1W) at a pressure of 140 millitorr yields the most favorable results. PMID:24634643
System for near real-time crustal deformation monitoring
NASA Technical Reports Server (NTRS)
Macdoran, P. F. (Inventor)
1979-01-01
A system is described for use in detecting earth crustal deformation using an RF interferometer technique for such purposes as earthquake predictive research and eventual operational predictions. A lunar based RF transmission or transmissions from earth orbiting satellites are received at two locations on Earth, and a precise time dependent phase measurement is made of the RF signal as received at the two locations to determine two or three spatial parameters of the antenna relative positions. The received data are precisely time tagged and land-line routed to a central station for real-time phase comparison and analysis. By monitoring the antenna relative positions over an extended period of months or years, crustal deformation of the Earth can be detected.
Tissue velocity imaging of coronary artery by rotating-type intravascular ultrasound.
Saijo, Yoshifumi; Tanaka, Akira; Owada, Naoki; Akino, Yoshihisa; Nitta, Shinichi
2004-04-01
Intravascular ultrasound (IVUS) provides not only the dimensions of coronary artery but the information of tissue components. In catheterization laboratory, soft and hard plaques are classified by visual inspection of echo intensity. So-called soft plaque contains lipid core or thrombus and it is believed to be more vulnerable than a hard plaque. However, it is not simple to analyze the echo signals quantitatively. When we look at a reflection signal, the intensity is affected by the distance of the object, the medium between transducer and objects and the fluctuation caused by rotation of IVUS probe. The time of flight is also affected by the sound speed of the medium and Doppler shift caused by tissue motion but usually those can be neglected. Thus, the analysis of RF signal in time domain can be more quantitative than intensity of RF signal. In the present study, a novel imaging technique called "intravascular tissue velocity imaging" was developed for searching a vulnerable plaque. Radio-frequency (RF) signal from a clinically used IVUS apparatus was digitized at 500 MSa/s and stored in a workstation. First, non-uniform rotation was corrected by maximizing the correlation coefficient of circumferential RF signal distribution in two consecutive frames. Then, the correlation and displacement were calculated by analyzing the radial difference of RF signal. Tissue velocity was determined by the displacement and the frame rate. The correlation image of normal and atherosclerotic coronary arteries clearly showed the internal and external borders of arterial wall. Soft plaque with low echo area in the intima showed high velocity while the calcified lesion showed the very low tissue velocity. This technique provides important information on tissue character of coronary artery.
NASA Astrophysics Data System (ADS)
Isoe, G. M.; Wassin, S.; Gamatham, R. R. G.; Leitch, A. W. R.; Gibbon, T. B.
2017-11-01
Optical fibre communication technologies are playing important roles in data centre networks (DCNs). Techniques for increasing capacity and flexibility for the inter-rack/pod communications in data centres have drawn remarkable attention in recent years. In this work, we propose a low complexity, reliable, alternative technique for increasing DCN capacity and flexibility through multi-signal modulation onto a single mode VCSEL carrier. A 20 Gbps 4-PAM data signal is directly modulated on a single mode 10 GHz bandwidth VCSEL carrier at 1310 nm, therefore, doubling the network bit rate. Carrier spectral efficiency is further maximized by modulating its phase attribute with a 2 GHz reference frequency (RF) clock signal. We, therefore, simultaneously transmit a 20 Gbps 4-PAM data signal and a phase modulated 2 GHz RF signal using a single mode 10 GHz bandwidth VCSEL carrier. It is the first time a single mode 10 GHz bandwidth VCSEL carrier is reported to simultaneously transmit a directly modulated 4-PAM data signal and a phase modulated RF clock signal. A receiver sensitivity of -10. 52 dBm was attained for a 20 Gbps 4-PAM VCSEL transmission. The 2 GHz phase modulated RF clock signal introduced a power budget penalty of 0.21 dB. Simultaneous distribution of both data and timing signals over shared infrastructure significantly increases the aggregated data rate at different optical network units within the DCN, without expensive optics investment. We further demonstrate on the design of a software-defined digital signal processing assisted receiver to efficiently recover the transmitted signal without employing costly receiver hardware.
Ball, Richard D
2014-01-01
Radiofrequency ablation (RFA) is a safe and effective pain therapy used to create sensory dysfunction in appropriate nerves via thermal damage. While commonly viewed as a simple process, RF heating is actually quite complex from an electrical engineering standpoint, and it is difficult for the non-electrical engineer to achieve a thorough understanding of the events that occur. RFA is highly influenced by the configuration and properties of the peri-electrode tissues. To rationally discuss the science of RFA requires that examples be procedure-specific, and lumbar RFA is the procedure selected for this review. Adequate heating of the lumbar medial branch has many potential failure points, and the underlying science is discussed with recommendations to reduce the frequency of failure in heating target tissues. Important technical details of the procedure that are not generally appreciated are discussed, and the status quo is challenged on several aspects of accepted technique. The rationale underlying electrode placement and the limitations of RF heating are, for the most part, commonly misunderstood, and there may even need to be significant changes in how lumbar radiofrequency rhizotomy (RFR) is performed. A new paradigm for heating target tissue may be of value. Foremost in developing best practices for this procedure is avoiding pitfalls. Good RF heating and medial branch lesioning are the rewards for understanding how the process functions, attention to detail, and meticulous attention to electrode positioning.
Measured radiofrequency exposure during various mobile-phone use scenarios.
Kelsh, Michael A; Shum, Mona; Sheppard, Asher R; McNeely, Mark; Kuster, Niels; Lau, Edmund; Weidling, Ryan; Fordyce, Tiffani; Kühn, Sven; Sulser, Christof
2011-01-01
Epidemiologic studies of mobile phone users have relied on self reporting or billing records to assess exposure. Herein, we report quantitative measurements of mobile-phone power output as a function of phone technology, environmental terrain, and handset design. Radiofrequency (RF) output data were collected using software-modified phones that recorded power control settings, coupled with a mobile system that recorded and analyzed RF fields measured in a phantom head placed in a vehicle. Data collected from three distinct routes (urban, suburban, and rural) were summarized as averages of peak levels and overall averages of RF power output, and were analyzed using analysis of variance methods. Technology was the strongest predictor of RF power output. The older analog technology produced the highest RF levels, whereas CDMA had the lowest, with GSM and TDMA showing similar intermediate levels. We observed generally higher RF power output in rural areas. There was good correlation between average power control settings in the software-modified phones and power measurements in the phantoms. Our findings suggest that phone technology, and to a lesser extent, degree of urbanization, are the two stronger influences on RF power output. Software-modified phones should be useful for improving epidemiologic exposure assessment.
Blind source separation in retinal videos
NASA Astrophysics Data System (ADS)
Barriga, Eduardo S.; Truitt, Paul W.; Pattichis, Marios S.; Tüso, Dan; Kwon, Young H.; Kardon, Randy H.; Soliz, Peter
2003-05-01
An optical imaging device of retina function (OID-RF) has been developed to measure changes in blood oxygen saturation due to neural activity resulting from visual stimulation of the photoreceptors in the human retina. The video data that are collected represent a mixture of the functional signal in response to the retinal activation and other signals from undetermined physiological activity. Measured changes in reflectance in response to the visual stimulus are on the order of 0.1% to 1.0% of the total reflected intensity level which makes the functional signal difficult to detect by standard methods since it is masked by the other signals that are present. In this paper, we apply principal component analysis (PCA), blind source separation (BSS), using Extended Spatial Decorrelation (ESD) and independent component analysis (ICA) using the Fast-ICA algorithm to extract the functional signal from the retinal videos. The results revealed that the functional signal in a stimulated retina can be detected through the application of some of these techniques.
TiN Coating of Accelerator Beamline Chambers
NASA Astrophysics Data System (ADS)
Leung, K. N.; Gough, R. A.; Mashaw, A.; Lee, Y.; Wutte, D.
1997-05-01
One of the problems encountered in many high-power rf systems is multipactoring inside vacuum cavities. The potential for multipactoring occurs whenever the secondary electron emission (SEM) coefficient of the surface exceeds unity. The secondary electtron emission coefficient of titanium-nitride is always less than unity. Therefore, a TiN coating can reduce multipactoring and also reduce photoemission electron from beam-pipe surfaces. The TiN film is very stable. A new technique is being explored at LBNL that will allow an efficient way to coat differently shaped surfaces. In this technique, rf-induction discharge with an exposed Ti induction antenna is used. Tests are being performed using argon, nitrogen, and a mixture of argon/nitrogen gases. Results of this testing will be presented.
Optical characterization of Mg-doped ZnO thin films deposited by RF magnetron sputtering technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Satyendra Kumar; Tripathi, Shweta; Hazra, Purnima
2016-05-06
This paper reports the in-depth analysis on optical characteristics of magnesium (Mg) doped zinc oxide (ZnO) thin films grown on p-silicon (Si) substrates by RF magnetron sputtering technique. The variable angle ellipsometer is used for the optical characterization of as-deposited thin films. The optical reflectance, transmission spectra and thickness of as-deposited thin films are measured in the spectral range of 300-800 nm with the help of the spectroscopic ellipsometer. The effect of Mg-doping on optical parameters such as optical bandgap, absorption coefficient, absorbance, extinction coefficient, refractive Index and dielectric constant for as-deposited thin films are extracted to show its application inmore » optoelectronic and photonic devices.« less
NASA Astrophysics Data System (ADS)
De, Rajnarayan; Haque, S. Maidul; Tripathi, S.; Prathap, C.; Rao, K. Divakar; Sahoo, N. K.
2016-05-01
A non-conventional magnetron sputtering technique was explored to deposit magnesium fluoride thin films using the concept of fluorine gas trapping without the introduction of additional fluorine gas flow inside the chamber. The effect of magnetron power from 50 W to 250 W has been explored on structural, optical and physical properties of the samples. Polycrystalline nature with tetragonal crystallinity of the films has been confirmed by GIXRD measurements along with thickness dependency. Monotonic increase of attenuation coefficient (k) with RF power has been explained in terms of target compound dissociation probability. In conclusion, with fluorine trapping method, the samples deposited at lower RF powers (<100 W) are found to be more suitable for optical applications.
Polovina, Marija; Potpara, Tatjana; Giga, Vojislav; Ostojić, Miodrag
2009-10-01
Brachial artery flow-mediated dilation (FMD) is extensively used for non-invasive assessment of endothelial function. Traditionally, FMD is calculated as a percent change of arterial diameter from the baseline value at an arbitrary time point after cuff deflation (usually 60 seconds). Considerable individual differences in brachial artery temporal response to hyperemic stimulus have been observed, potentially influenced by the presence of atherosclerotic risk factors (RF). The importance of such differences for the evaluation of endothelial function has not been well established. The aim of the study was to determine the time course of maximal brachial artery endothelium-dependent dilation in healthy adults with and without RF, to explore the correlation of RF with brachial artery temporal response and to evaluate the importance of individual differences in temporal response for the assessment of endothelial function. A total of 115 healthy volunteers were included in the study. Out of them, 58 had no RF (26 men, mean age 44 +/-14 years) and 57 had at least one RF (29 men, mean age 45 +/-14 years). High-resolution color Doppler vascular ultrasound was used for brachial artery imaging. To determine maximal arterial diameter after cuff deflation and the time-point of maximal vasodilation off-line sequential measurements were performed every 10 seconds from 0 to 240 seconds after cuff release. True maximal FMD value was calculated as a percent change of the true maximal diameter from the baseline, and compared with FMD value calculated assuming that every participant reached maximal dilation at 60 seconds post cuff deflation (FMD60). Correlation of different RF with brachial artery temporal response was assessed. A maximal brachial artery endothelium-dependent vasodilation occurred from 30-120 seconds after cuff release, and the mean time of endothelium-dependent dilation was 68 +/-20 seconds. Individuals without RF had faster endothelium-dependent dilation (mean time 62 +/-17 seconds), and a shorter time-span (30 to 100 seconds), than participants with RF (mean time 75 +/-21 seconds, time-span 40 to 120 seconds) (p < 0.001). Time when the maximal endothelium-dependent dilation occurred was independently associated with age, serum lipid fractions (total cholesterol, LDL and HDL cholesterol), smoking, physical activity and C-reactive protein. True maximal FMD value in the whole group (6.7 +/-3.0%) was significantly higher (p < 0.001) than FMD60 (5.2 +/-3.5%). The same results were demonstrated for individuals with RF (4.9 +/- 1.7% vs 3.1 +/- 2.3%, p < 0.001) and without RF (8.4 +/- 2.9% vs 7.2 +/- 3.2%, p < 0.05). The temporal response of endothelium-dependent dilation is influenced by the presence of coronary FR and individually heterogeneous. When calculated according to the commonly used approach, i.e. 60 seconds after cuff deflation, FMD is significantly lower than the true maximal FMD. The routinely used measurement time-points for FMD assessment may not be adequate for the detection of true peak vasodilation in individual persons. More precise evaluation of endothelial function can be achieved with sequential measurement of arterial diameter after hyperemic stimulus.
Effect of RF Gradient upon the Performance of the Wisconsin SRF Electron Gun
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bosch, Robert; Legg, Robert A.
2013-12-01
The performance of the Wisconsin 200-MHz SRF electron gun is simulated for several values of the RF gradient. Bunches with charge of 200 pC are modeled for the case where emittance compensation is completed during post-acceleration to 85 MeV in a TESLA module. We first perform simulations in which the initial bunch radius is optimal for the design gradient of 41 MV/m. We then optimize the radius as a function of RF gradient to improve the performance for low gradients.
High efficiency low cost monolithic module for SARSAT distress beacons
NASA Technical Reports Server (NTRS)
Petersen, Wendell C.; Siu, Daniel P.
1992-01-01
The program objectives were to develop a highly efficient, low cost RF module for SARSAT beacons; achieve significantly lower battery current drain, amount of heat generated, and size of battery required; utilize MMIC technology to improve efficiency, reliability, packaging, and cost; and provide a technology database for GaAs based UHF RF circuit architectures. Presented in viewgraph form are functional block diagrams of the SARSAT distress beacon and beacon RF module as well as performance goals, schematic diagrams, predicted performances, and measured performances for the phase modulator and power amplifier.
Interaction between high harmonic fast waves and fast ions in NSTX/NSTX-U plasmas
NASA Astrophysics Data System (ADS)
Bertelli, N.; Valeo, E. J.; Gorelenkova, M.; Green, D. L.; RF SciDAC Team
2016-10-01
Fast wave (FW) heating in the ion cyclotron range of frequency (ICRF) has been successfully used to sustain and control the fusion plasma performance, and it will likely play an important role in the ITER experiment. As demonstrated in the NSTX and DIII-D experiments the interactions between fast waves and fast ions can be so strong to significantly modify the fast ion population from neutral beam injection. In fact, it has been recently found in NSTX that FWs can modify and, under certain conditions, even suppress the energetic particle driven instabilities, such as toroidal Alfvén eigenmodes and global Alfvén eigenmodes and fishbones. This paper examines such interactions in NSTX/NSTX-U plasmas by using the recent extension of the RF full-wave code TORIC to include non-Maxwellian ions distribution functions. Particular attention is given to the evolution of the fast ions distribution function w/ and w/o RF. Tests on the RF kick-operator implemented in the Monte-Carlo particle code NUBEAM is also discussed in order to move towards a self consistent evaluation of the RF wave-field and the ion distribution functions in the TRANSP code. Work supported by US DOE Contract DE-AC02-09CH11466.
Graphene rectenna for efficient energy harvesting at terahertz frequencies
NASA Astrophysics Data System (ADS)
Dragoman, Mircea; Aldrigo, Martino
2016-09-01
In this paper, we propose a graphene rectenna that encompasses two distinct functions in a single device, namely, antenna and rectifier, which till now were two separate components. In this way, the rectenna realizes an efficient energy harvesting technique due to the absence of impedance mismatch between antenna and diode. In particular, we have obtained a maximum conversion efficiency of 58.43% at 897 GHz for the graphene rectenna on n-doped GaAs, which is a very good value, close to the performance of an RF harvesting system. A comparison with a classical metallic antenna with an HfO2-based metal-insulator-metal diode is also provided.
Takao, Masato; Miyamoto, Wataru; Matsui, Kentaro; Sasahara, Jun; Matsushita, Takashi
2012-02-01
There have been several reports showing 20% to 40% failure after nonoperative functional treatment for acute lateral ligament disruption of the ankle. Functional treatment after primary surgical repair has the advantage of decreasing the failure rate in comparison with functional treatment alone. Cohort study; Level of evidence, 3. A total of 132 feet of 132 patients were included in this study. Of these, 78 patients were treated with functional treatment alone (group F), and the remaining 54 patients were treated with functional treatment after primary surgical repair (group RF). The clinical results were evaluated using the Japanese Society for Surgery of the Foot Ankle-Hindfoot scale (JSSF) score, measuring the talar tilt angle and the anterior displacement of the talus in stress radiography, and noting the elapsed time between the injury and the return to the full athletic activity with no external supports. The mean JSSF scores at 2 years after injury were 95.6 ± 5.0 points in group F and 97.5 ± 2.6 points in group RF (P = .0669). The differences of the talar tilt angles compared with the contralateral side and displacement of the talus on stress radiography at 2 years after injury were 1.1° ± 1.5° and 3.6 ± 1.6 mm in group F, and 0.8° ± 0.9° and 3.2 ± 0.8 mm in group RF, respectively (P = .4093, .1883). In group F, 8 cases showed fair to poor results, with JSSF scores below 80 points and instability at 2 years after injury. In group RF, 9 cases (9.4%) showed dorsum foot pain along the superficial peroneal nerve, which disappeared within a month. The time elapsed between the injury and the patient's return to full athletic activity without any external supports was 16.0 ± 5.6 weeks in group F and 10.1 ± 1.8 weeks in group RF (P < .0001). Nonoperative functional treatment alone and functional treatment after primary surgical repair showed similar overall results after acute lateral ankle sprain, but functional treatment alone had an approximately 10% failure rate and a slower return to full athletic activity. The authors recommend that treatment be tailored to suit each individual athlete.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, R.; Lu, R.; Gong, S.
We demonstrate a room-temperature semiconductor-based photodetector where readout is achieved using a resonant radio-frequency (RF) circuit consisting of a microstrip split-ring resonator coupled to a microstrip busline, fabricated on a semiconductor substrate. The RF resonant circuits are characterized at RF frequencies as function of resonator geometry, as well as for their response to incident IR radiation. The detectors are modeled analytically and using commercial simulation software, with good agreement to our experimental results. Though the detector sensitivity is weak, the detector architecture offers the potential for multiplexing arrays of detectors on a single read-out line, in addition to high speedmore » response for either direct coupling of optical signals to RF circuitry, or alternatively, carrier dynamics characterization of semiconductor, or other, material systems.« less
Analysis of an Optical Channelization Technique for Microwave Applications
2007-06-27
optical heterodyne RF signal generation using a mode- locked - laser frequency comb: theory and experiments,” in... optical carrier where +5 dBm RF tones at 9 GHz and 12 GHz were applied to the MZM biased at quadrature. The labels applied to this plot correspond to...Fig. 2 and Table I assuming ω1=2π· 9 GHz and ω2=2π·12 GHz . The laser -only spectrum illustrates the limitation set by the OSA. 7 -80 -60 -40 -20
Moneuse, M
2001-01-01
In France, RF and microwave techniques are now mature. They are commercialized by industries having now reliable references in different fields of manufacturing industry. The present situation is the result of many studies and collaborations where universities and public technical centers were strongly involved during the last three decades. During this period, the "Club Rayonnements" sponsored by EDF has been a real "melting pot" for people coming from university, industry and technical centers.
Silicon Technologies Adjust to RF Applications
NASA Technical Reports Server (NTRS)
Reinecke Taub, Susan; Alterovitz, Samuel A.
1994-01-01
Silicon (Si), although not traditionally the material of choice for RF and microwave applications, has become a serious challenger to other semiconductor technologies for high-frequency applications. Fine-line electron- beam and photolithographic techniques are now capable of fabricating silicon gate sizes as small as 0.1 micron while commonly-available high-resistivity silicon wafers support low-loss microwave transmission lines. These advances, coupled with the recent development of silicon-germanium (SiGe), arm silicon integrated circuits (ICs) with the speed required for increasingly higher-frequency applications.
DC and analog/RF performance optimisation of source pocket dual work function TFET
NASA Astrophysics Data System (ADS)
Raad, Bhagwan Ram; Sharma, Dheeraj; Kondekar, Pravin; Nigam, Kaushal; Baronia, Sagar
2017-12-01
We investigate a systematic study of source pocket tunnel field-effect transistor (SP TFET) with dual work function of single gate material by using uniform and Gaussian doping profile in the drain region for ultra-low power high frequency high speed applications. For this, a n+ doped region is created near the source/channel junction to decrease the depletion width results in improvement of ON-state current. However, the dual work function of the double gate is used for enhancement of the device performance in terms of DC and analog/RF parameters. Further, to improve the high frequency performance of the device, Gaussian doping profile is considered in the drain region with different characteristic lengths which decreases the gate to drain capacitance and leads to drastic improvement in analog/RF figures of merit. Furthermore, the optimisation is performed with different concentrations for uniform and Gaussian drain doping profile and for various sectional length of lower work function of the gate electrode. Finally, the effect of temperature variation on the device performance is demonstrated.
RF pulse compression for future linear colliders
NASA Astrophysics Data System (ADS)
Wilson, Perry B.
1995-07-01
Future (nonsuperconducting) linear colliders will require very high values of peak rf power per meter of accelerating structure. The role of rf pulse compression in producing this power is examined within the context of overall rf system design for three future colliders at energies of 1.0-1.5 TeV, 5 TeV, and 25 TeV. In order to keep the average AC input power and the length of the accelerator within reasonable limits, a collider in the 1.0-1.5 TeV energy range will probably be built at an x-band rf frequency, and will require a peak power on the order of 150-200 MW per meter of accelerating structure. A 5 TeV collider at 34 GHz with a reasonable length (35 km) and AC input power (225 MW) would require about 550 MW per meter of structure. Two-beam accelerators can achieve peak powers of this order by applying dc pulse compression techniques (induction linac modules) to produce the drive beam. Klystron-driven colliders achieve high peak power by a combination of dc pulse compression (modulators) and rf pulse compression, with about the same overall rf system efficiency (30-40%) as a two-beam collider. A high gain (6.8) three-stage binary pulse compression system with high efficiency (80%) is described, which (compared to a SLED-II system) can be used to reduce the klystron peak power by about a factor of two, or alternatively, to cut the number of klystrons in half for a 1.0-1.5 TeV x-band collider. For a 5 TeV klystron-driven collider, a high gain, high efficiency rf pulse compression system is essential.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ali, Elsayed; Nyiri, Balazs
Purpose: The HexaPOD™ six degree of freedom couchtop is equipped with an optical tracking system, consisting of a stereoscopic camera and a reference frame (RF) carrying infrared reflective markers. The manufacturer recommends placing the RF within 50 cm from linac isocenter (ISO), which is a serious limitation since the RF does not fit around the shoulders of most brain patients. This study quantifies the impact of extended RF distances from ISO on positional accuracy. Methods: An in-house tool with an estimated resolution of 0.3 mm and 0.1° was used. It is a large cube and a mathematical model of HexaPODmore » motion to determine the intersection of room lasers with the ruled cube edges. Combinations of translations (±1 and ±3 cm) and rotations (±2.5°) were executed on two HexaPOD couchtops for multiple RF distances from ISO (35 to 77 cm). For each combination, ten laser readings were fed into a least squares algorithm to determine the executed translations and rotations while minimizing operator reading errors. Results: The usable tracking volume is up to an RF distance of 82 cm from ISO. Positional accuracy of the HexaPOD/iGuide system is 0.6 mm and 0.1° (95% confidence). Positional accuracy variations versus RF distance from ISO are statistically insignificant (p = 0.05). Our results generally confirm recent internal estimates by the manufacturer (for future release). Conclusions: RF distances up to 77 cm from ISO are clinically acceptable, provided performing a patient safety study with a verification scan.« less
An assessment of the effectiveness of a random forest classifier for land-cover classification
NASA Astrophysics Data System (ADS)
Rodriguez-Galiano, V. F.; Ghimire, B.; Rogan, J.; Chica-Olmo, M.; Rigol-Sanchez, J. P.
2012-01-01
Land cover monitoring using remotely sensed data requires robust classification methods which allow for the accurate mapping of complex land cover and land use categories. Random forest (RF) is a powerful machine learning classifier that is relatively unknown in land remote sensing and has not been evaluated thoroughly by the remote sensing community compared to more conventional pattern recognition techniques. Key advantages of RF include: their non-parametric nature; high classification accuracy; and capability to determine variable importance. However, the split rules for classification are unknown, therefore RF can be considered to be black box type classifier. RF provides an algorithm for estimating missing values; and flexibility to perform several types of data analysis, including regression, classification, survival analysis, and unsupervised learning. In this paper, the performance of the RF classifier for land cover classification of a complex area is explored. Evaluation was based on several criteria: mapping accuracy, sensitivity to data set size and noise. Landsat-5 Thematic Mapper data captured in European spring and summer were used with auxiliary variables derived from a digital terrain model to classify 14 different land categories in the south of Spain. Results show that the RF algorithm yields accurate land cover classifications, with 92% overall accuracy and a Kappa index of 0.92. RF is robust to training data reduction and noise because significant differences in kappa values were only observed for data reduction and noise addition values greater than 50 and 20%, respectively. Additionally, variables that RF identified as most important for classifying land cover coincided with expectations. A McNemar test indicates an overall better performance of the random forest model over a single decision tree at the 0.00001 significance level.
The 30-GHz monolithic receive module
NASA Technical Reports Server (NTRS)
Sokolov, V.; Geddes, J.; Bauhahn, P.
1983-01-01
Key requirements for a 30 GHz GaAs monolithic receive module for spaceborne communication antenna feed array applications include an overall receive module noise figure of 5 dB, a 30 dB RF to IF gain with six levels of intermediate gain control, a five-bit phase shifter, and a maximum power consumption of 250 mW. The RF designs for each of the four submodules (low noise amplifier, some gain control, phase shifter, and RF to IF sub-module) are presented. Except for the phase shifter, high frequency, low noise FETs with sub-half micron gate lengths are employed in the submodules. For the gain control, a two stage dual gate FET amplifier is used. The phase shifter is of the passive switched line type and consists of 5-bits. It uses relatively large gate width FETs (with zero drain to source bias) as the switching elements. A 20 GHz local oscillator buffer amplifier, a FET compatible balanced mixer, and a 5-8 GHz IF amplifier constitute the RF/IF sub-module. Phase shifter fabrication using ion implantation and a self-aligned gate technique is described. Preliminary RF results obtained on such phase shifters are included.
An agile frequency synthesizer/RF generator for the SCAMP terminal
NASA Astrophysics Data System (ADS)
Wolfson, Harry M.
1992-09-01
This report describes a combination agile synthesizer and reference frequency generator called the RF Generator, which was developed for use in the Advanced SCAMP (ASCAMP) program. The ASCAMP is a hand-carried, battery-powered, man-portable ground terminal that is being developed for EHF satellite communications. In order to successfully achieve a truly portable terminal, all of the subsystems and components in ASCAMP were designed with the following critical goals: low power, lightweight, and small size. The RF Generator is based on a hybrid design approach of direct digital and direct analog synthesis techniques that was optimized for small size, low power consumption, fast tuning, low spurious, and low phase noise. The RF Generator was conceived with the philosophy that simplicity of design would lead to a synthesizer that differentiates itself from those used in the past by its ease of fabrication and tuning. By avoiding more complex design approaches, namely, indirect analog (phase lock loops), a more easily produceable design could be achieved. An effort was made to minimize the amount of circuitry in the RF Generator, thereby making trade-offs in performance versus complexity and parts count when it was appropriate.
Analysis of RF emissions from laser induced breakdown of atmospheric air and metals
NASA Astrophysics Data System (ADS)
Paturi, Prem Kiran; Lakshmi, Vinoth Kumar; Elle, Manikanta; Chelikani, Leela
2013-10-01
The low frequency (RF, microwave) emissions from laser produced plasma (LPP) are of great interest because of their variety of applications. The RF waves emitted by the nanosecond LPP of atmospheric air and metal (Al, Cu) targets were detected using antennas over frequency ranges (30 MHz-18 GHz) and were monitored using a spectrum analyzer (3 Hz-50 GHz). With different target materials, the dominant emission lines were observed to fall in different specific frequency ranges within the detection limit. The emissions from Cu were in the higher frequency range (100-200 MHz) than that of Al (30-100 MHz) may be due to the higher electron density of Cu, which contributes to the LPP conductivity. From the LPP of atmospheric air, the RF output was found to be increasing with the input laser energy up to certain value, beyond which almost no emission was observed. This effect is attributed to the modification in the net induced dipole moment due to the multiple plasma sources in the LPP at higher input laser energies. The detected radiation was observed to be dependent on laser and antenna polarization. Further studies may lead to an efficient technique for material identification from the RF characteristic peaks.
RF induced energy for partially implanted catheters: a computational study
Lucano, Elena; Liberti, Micaela; Lloyd, Tom; Apollonio, Francesca; Wedan, Steve; Kainz, Wolfgang; Angelone, Leonardo M.
2018-01-01
Magnetic Resonance Imaging (MRI) is a radiological imaging technique widely used in clinical practice. MRI has been proposed to guide the catheters for interventional procedures, such as cardiac ablation. However, there are risks associated with this procedure, such as RF-induced heating of tissue near the catheters. The aim of this study is to develop a quantitative RF-safety method for patients with partially implanted leads at 64 MHz. RF-induced heating is related to the electric field incident along the catheter, which in turns depends on several variables, including the position of the RF feeding sources and the orientation of the polarization, which are however often unknown. This study evaluates the electric field profile along the lead trajectory using simulations with an anatomical human model landmarked at the heart. The energy absorbed in the volume near the tip of ageneric partially implanted lead was computed for all source positions and field orientation. The results showed that varying source positions and field orientation may result in changes of up to 18% for the E-field magnitude and up to 60% for the 10g-averaged specific absorption rate (SAR) in the volume surrounding the tip of the lead. PMID:28268553
Photonically enabled Ka-band radar and infrared sensor subscale testbed
NASA Astrophysics Data System (ADS)
Lohr, Michele B.; Sova, Raymond M.; Funk, Kevin B.; Airola, Marc B.; Dennis, Michael L.; Pavek, Richard E.; Hollenbeck, Jennifer S.; Garrison, Sean K.; Conard, Steven J.; Terry, David H.
2014-10-01
A subscale radio frequency (RF) and infrared (IR) testbed using novel RF-photonics techniques for generating radar waveforms is currently under development at The Johns Hopkins University Applied Physics Laboratory (JHU/APL) to study target scenarios in a laboratory setting. The linearity of Maxwell's equations allows the use of millimeter wavelengths and scaled-down target models to emulate full-scale RF scene effects. Coupled with passive IR and visible sensors, target motions and heating, and a processing and algorithm development environment, this testbed provides a means to flexibly and cost-effectively generate and analyze multi-modal data for a variety of applications, including verification of digital model hypotheses, investigation of correlated phenomenology, and aiding system capabilities assessment. In this work, concept feasibility is demonstrated for simultaneous RF, IR, and visible sensor measurements of heated, precessing, conical targets and of a calibration cylinder. Initial proof-of-principle results are shown of the Ka-band subscale radar, which models S-band for 1/10th scale targets, using stretch processing and Xpatch models.
NASA Astrophysics Data System (ADS)
Li, Qiang; Zhang, Yuantao; Feng, Lungang; Wang, Zuming; Wang, Tao; Yun, Feng
2018-04-01
Tin-doped indium oxide (ITO) nanowires are successfully fabricated using a radio frequency (RF) sputtering technique with a high RF power of 250 W. The fabrication of the ITO nanowires is optimized through the study of oxygen flow rates, temperatures and RF power. The difference in the morphology of the ITO nanowires prepared by using a new target and a used target is observed and the mechanism for the difference is discussed in detail. A hollow structure and air voids within the nanowires are formed during the process of the nanowire growth. The ITO nanowires fabricated by this method demonstrated good conductivity (15 Ω sq-1) and a transmittance of more than 64% at a wavelength longer than 550 nm after annealing. Furthermore, detailed microstructure studies show that the ITO nanowires exhibit a large number of oxygen vacancies. As a result, it is expected that they can be useful for the fabrication of gas sensor devices.
Design and Development of Amplitude and phase measurement of RF signal with Digital I-Q Demodulator
NASA Astrophysics Data System (ADS)
Soni, Dipal; Rajnish, Kumar; Verma, Sriprakash; Patel, Hriday; Trivedi, Rajesh; Mukherjee, Aparajita
2017-04-01
ITER-India, working as a nodal agency from India for ITER project [1], is responsible to deliver one of the packages, called Ion Cyclotron Heating & Current Drive (ICH&CD) - Radio Frequency Power Sources (RFPS). RFPS is having two cascaded amplifier chains (10 kW, 130 kW & 1.5 MW) combined to get 2.5 MW RF power output. Directional couplers are inserted at the output of each stage to extract forward power and reflected power as samples for measurement of amplitude and phase. Using passive mixer, forward power and reflected power are down converted to 1MHz Intermediate frequency (IF). This IF signal is used as an input to the Digital IQ Demodulator (DIQDM). DIQDM is realized using National Instruments make PXI hardware & LabVIEW software tool. In this paper, Amplitude and Phase measurement of RF signal with DIQDM technique is described. Also test results with dummy signals and signal generated from low power RF systems is discussed here.
RF critical field measurement of MgB2 thin films coated on Nb
NASA Astrophysics Data System (ADS)
Tajima, T.; Eremeev, G.; Zou, G.; Dolgashev, V.; Martin, D.; Nantista, C.; Tantawi, S.; Yoneda, C.; Moeckly, B. H.; Campisi, I.
2010-06-01
Niobium (Nb) Superconducting RF (SRF) cavities have been used or will be used for a number of particle accelerators. The fundamental limit of the accelerating gradient has been thought to be around 50 MV/m due to its RF critical magnetic field of around 200 mT. This limit will prevent new projects requiring higher gradient and compact accelerators from considering SRF structures. There is a theory, however, that promises to overcome this limitation by coating thin (less than the penetration depth) superconductors on Nb. We initiated measurements of critical magnetic fields of Nb coated with various thin film superconductors, starting with MgB2 films deposited using reactive evaporation technique, with the goal to apply this coating to SRF cavities. This paper will present first test results of the RF critical magnetic field of a system consisting of a 10 nm B and a 100 nm MgB2 films deposited on a chemically polished 2-inch single grain Nb substrate.
Studies of RF sheaths and diagnostics on IShTAR
NASA Astrophysics Data System (ADS)
Crombé, K.; Devaux, S.; D'Inca, R.; Faudot, E.; Faugel, H.; Fünfgelder, H.; Heuraux, S.; Jacquot, J.; Louche, F.; Moritz, J.; Ochoukov, R.; Tripsky, M.; Van Eester, D.; Wauters, T.; Noterdaeme, J.-M.
2015-12-01
IShTAR (Ion cyclotron Sheath Test ARrangement) is a linear magnetised plasma test facility for RF sheaths studies at the Max-Planck-Institut für Plasmaphysik in Garching. In contrast to a tokamak, a test stand provides more liberty to impose the parameters and gives better access for the instrumentation and antennas. The project will support the development of diagnostic methods for characterising RF sheaths and validate and improve theoretical predictions. The cylindrical vacuum vessel has a diameter of 1 m and is 1.1 m long. The plasma is created by an external cylindrical plasma source equipped with a helical antenna that has been designed to excite the m=1 helicon mode. In inductive mode, plasma densities and electron temperatures have been characterised with a planar Langmuir probe as a function of gas pressure and input RF power. A 2D array of RF compensated Langmuir probes and a spectrometer are planned. A single strap RF antenna has been designed; the plasma-facing surface is aligned to the cylindrical plasma to ease the modelling. The probes will allow direct measurements of plasma density profiles in front of the RF antenna, and thus a detailed study of the density modifications induced by RF sheaths, which influences the coupling. The RF antenna frequency has been chosen to study different plasma wave interactions: the accessible plasma density range includes an evanescent and propagative behaviour of slow or fast waves, and allows the study of the effect of the lower hybrid resonance layer.
NASA Astrophysics Data System (ADS)
Shabani, Farzin; Kumar, Lalit; Solhjouy-fard, Samaneh
2017-08-01
The aim of this study was to have a comparative investigation and evaluation of the capabilities of correlative and mechanistic modeling processes, applied to the projection of future distributions of date palm in novel environments and to establish a method of minimizing uncertainty in the projections of differing techniques. The location of this study on a global scale is in Middle Eastern Countries. We compared the mechanistic model CLIMEX (CL) with the correlative models MaxEnt (MX), Boosted Regression Trees (BRT), and Random Forests (RF) to project current and future distributions of date palm ( Phoenix dactylifera L.). The Global Climate Model (GCM), the CSIRO-Mk3.0 (CS) using the A2 emissions scenario, was selected for making projections. Both indigenous and alien distribution data of the species were utilized in the modeling process. The common areas predicted by MX, BRT, RF, and CL from the CS GCM were extracted and compared to ascertain projection uncertainty levels of each individual technique. The common areas identified by all four modeling techniques were used to produce a map indicating suitable and unsuitable areas for date palm cultivation for Middle Eastern countries, for the present and the year 2100. The four different modeling approaches predict fairly different distributions. Projections from CL were more conservative than from MX. The BRT and RF were the most conservative methods in terms of projections for the current time. The combination of the final CL and MX projections for the present and 2100 provide higher certainty concerning those areas that will become highly suitable for future date palm cultivation. According to the four models, cold, hot, and wet stress, with differences on a regional basis, appears to be the major restrictions on future date palm distribution. The results demonstrate variances in the projections, resulting from different techniques. The assessment and interpretation of model projections requires reservations, especially in correlative models such as MX, BRT, and RF. Intersections between different techniques may decrease uncertainty in future distribution projections. However, readers should not miss the fact that the uncertainties are mostly because the future GHG emission scenarios are unknowable with sufficient precision. Suggestions towards methodology and processing for improving projections are included.
NASA Astrophysics Data System (ADS)
Millet, F.; Bodin, T.; Rondenay, S.
2017-12-01
The teleseismic scattered seismic wavefield contains valuable information about heterogeneities and discontinuities inside the Earth. By using fast Receiver Function (RF) migration techniques such as classic Common Conversion Point (CCP) stacks, one can easily interpret structural features down to a few hundred kilometers in the mantle. However, strong simplifying 1D assumptions limit the scope of these methods to structures that are relatively planar and sub-horizontal at local-to-regional scales, such as the Lithosphere-Asthenosphere Boundary and the Mantle Transition Zone discontinuities. Other more robust 2D and 2.5D methods rely on fewer assumptions but require considerable, sometime prohibitive, computation time. Following the ideas of Cheng (2017), we have implemented a simple fully 3D Prestack Kirchhoff RF migration scheme which uses the FM3D fast Eikonal solver to compute travel times and scattering angles. The method accounts for 3D elastic point scattering and includes free surface multiples, resulting in enhanced images of laterally varying dipping structures, such as subducted slabs. The method is tested for subduction structures using 2.5D synthetics generated with Raysum and 3D synthetics generated with specfem3D. Results show that dip angles, depths and lateral variations can be recovered almost perfectly. The approach is ideally suited for applications to dense regional datasets, including those collected across the Cascadia and Alaska subduction zones by USArray.
Knee Muscular Control During Jump Landing in Multidirections.
Sinsurin, Komsak; Vachalathiti, Roongtiwa; Jalayondeja, Wattana; Limroongreungrat, Weerawat
2016-06-01
Jump landing is a complex movement in sports. While competing and practicing, athletes frequently perform multi-planar jump landing. Anticipatory muscle activity could influence the amount of knee flexion and prepare the knee for dynamic weight bearing such as landing tasks. The aim of the present study was to examine knee muscle function and knee flexion excursion as athletes naturally performed multi-direction jump landing. Eighteen male athletes performed the jump-landing test in four directions: forward (0°), 30° diagonal, 60° diagonal, and lateral (90°). Muscles tested were vastus medialis (VM), vastus lateralis (VL), rectus femoris (RF), semitendinosus (ST), and biceps femoris (BF). A Vicon(TM) 612 workstation collected the kinematic data. An electromyography was synchronized with the Vicon(TM) Motion system to quantify dynamic muscle function. Repeated measure ANOVA was used to analyze the data. Jump-landing direction significantly influenced (P < 0.05) muscle activities of VL, RF, and ST and knee flexion excursion. Jumpers landed with a trend of decreasing knee flexion excursion and ST muscle activity 100 ms before foot contact progressively from forward to lateral directions of jump landing. A higher risk of knee injury might occur during lateral jump landing than forward and diagonal directions. Athletes should have more practice in jump landing in lateral direction to avoid injury. Landing technique with high knee flexion in multi-directions should be taught to jumpers for knee injury prevention.
DC currents collected by a RF biased electrode quasi-parallel to the magnetic field
NASA Astrophysics Data System (ADS)
Faudot, E.; Devaux, S.; Moritz, J.; Bobkov, V.; Heuraux, S.
2017-10-01
Local plasma biasings due to RF sheaths close to ICRF antennas result mainly in a negative DC current collection on the antenna structure. In some specific cases, we may observe positive currents when the ion mobility (seen from the collecting surface) overcomes the electron one or/and when the collecting surface on the antenna side becomes larger than the other end of the flux tube connected to the wall. The typical configuration is when the antenna surface is almost parallel to the magnetic field lines and the other side perpendicular. To test the optimal case where the magnetic field is quasi-parallel to the electrode surface, one needs a linear magnetic configuration as our magnetized RF discharge experiment called Aline. The magnetic field angle is in our case lower than 1 relative to the RF biased surface. The DC current flowing through the discharge has been measured as a function of the magnetic field strength, neutral gas (He) pressure and RF power. The main result is the reversal of the DC current depending on the magnetic field, collision frequency and RF power level.
Low reflectance radio frequency load
Ives, R. Lawrence; Mizuhara, Yosuke M
2014-04-01
A load for traveling microwave energy has an absorptive volume defined by cylindrical body enclosed by a first end cap and a second end cap. The first end cap has an aperture for the passage of an input waveguide with a rotating part that is coupled to a reflective mirror. The inner surfaces of the absorptive volume consist of a resistive material or are coated with a coating which absorbs a fraction of incident RF energy, and the remainder of the RF energy reflects. The angle of the reflector and end caps is selected such that reflected RF energy dissipates an increasing percentage of the remaining RF energy at each reflection, and the reflected RF energy which returns to the rotating mirror is directed to the back surface of the rotating reflector, and is not coupled to the input waveguide. Additionally, the reflector may have a surface which generates a more uniform power distribution function axially and laterally, to increase the power handling capability of the RF load. The input waveguide may be corrugated for HE11 mode input energy.
Nurminen, Lauri; Angelucci, Alessandra
2014-01-01
The responses of neurons in primary visual cortex (V1) to stimulation of their receptive field (RF) are modulated by stimuli in the RF surround. This modulation is suppressive when the stimuli in the RF and surround are of similar orientation, but less suppressive or facilitatory when they are cross-oriented. Similarly, in human vision surround stimuli selectively suppress the perceived contrast of a central stimulus. Although the properties of surround modulation have been thoroughly characterized in many species, cortical areas and sensory modalities, its role in perception remains unknown. Here we argue that surround modulation in V1 consists of multiple components having different spatio-temporal and tuning properties, generated by different neural circuits and serving different visual functions. One component arises from LGN afferents, is fast, untuned for orientation, and spatially restricted to the surround region nearest to the RF (the near-surround); its function is to normalize V1 cell responses to local contrast. Intra-V1 horizontal connections contribute a slower, narrowly orientation-tuned component to near-surround modulation, whose function is to increase the coding efficiency of natural images in manner that leads to the extraction of object boundaries. The third component is generated by topdown feedback connections to V1, is fast, broadly orientation-tuned, and extends into the far-surround; its function is to enhance the salience of behaviorally relevant visual features. Far- and near-surround modulation, thus, act as parallel mechanisms: the former quickly detects and guides saccades/attention to salient visual scene locations, the latter segments object boundaries in the scene. PMID:25204770
Narrow field electromagnetic sensor system and method
McEwan, Thomas E.
1996-01-01
A narrow field electromagnetic sensor system and method of sensing a characteristic of an object provide the capability to realize a characteristic of an object such as density, thickness, or presence, for any desired coordinate position on the object. One application is imaging. The sensor can also be used as an obstruction detector or an electronic trip wire with a narrow field without the disadvantages of impaired performance when exposed to dirt, snow, rain, or sunlight. The sensor employs a transmitter for transmitting a sequence of electromagnetic signals in response to a transmit timing signal, a receiver for sampling only the initial direct RF path of the electromagnetic signal while excluding all other electromagnetic signals in response to a receive timing signal, and a signal processor for processing the sampled direct RF path electromagnetic signal and providing an indication of the characteristic of an object. Usually, the electromagnetic signal is a short RF burst and the obstruction must provide a substantially complete eclipse of the direct RF path. By employing time-of-flight techniques, a timing circuit controls the receiver to sample only the initial direct RF path of the electromagnetic signal while not sampling indirect path electromagnetic signals. The sensor system also incorporates circuitry for ultra-wideband spread spectrum operation that reduces interference to and from other RF services while allowing co-location of multiple electronic sensors without the need for frequency assignments.
Narrow field electromagnetic sensor system and method
McEwan, T.E.
1996-11-19
A narrow field electromagnetic sensor system and method of sensing a characteristic of an object provide the capability to realize a characteristic of an object such as density, thickness, or presence, for any desired coordinate position on the object. One application is imaging. The sensor can also be used as an obstruction detector or an electronic trip wire with a narrow field without the disadvantages of impaired performance when exposed to dirt, snow, rain, or sunlight. The sensor employs a transmitter for transmitting a sequence of electromagnetic signals in response to a transmit timing signal, a receiver for sampling only the initial direct RF path of the electromagnetic signal while excluding all other electromagnetic signals in response to a receive timing signal, and a signal processor for processing the sampled direct RF path electromagnetic signal and providing an indication of the characteristic of an object. Usually, the electromagnetic signal is a short RF burst and the obstruction must provide a substantially complete eclipse of the direct RF path. By employing time-of-flight techniques, a timing circuit controls the receiver to sample only the initial direct RF path of the electromagnetic signal while not sampling indirect path electromagnetic signals. The sensor system also incorporates circuitry for ultra-wideband spread spectrum operation that reduces interference to and from other RF services while allowing co-location of multiple electronic sensors without the need for frequency assignments. 12 figs.
Photoacoustic characterization of human ovarian tissue
NASA Astrophysics Data System (ADS)
Aguirre, Andres; Ardeshirpour, Yasaman; Sanders, Mary M.; Brewer, Molly; Zhu, Quing
2010-02-01
Ovarian cancer has a five-year survival rate of only 30%, which represents the highest mortality of all gynecologic cancers. The reason for that is that the current imaging techniques are not capable of detecting ovarian cancer early. Therefore, new imaging techniques, like photoacoustic imaging, that can provide functional and molecular contrasts are needed for improving the specificity of ovarian cancer detection and characterization. Using a coregistered photoacoustic and ultrasound imaging system we have studied thirty-one human ovaries ex vivo, including normal and diseased. In order to compare the photoacoustic imaging results from all the ovaries, a new parameter using the RF data has been derived. The preliminary results show higher optical absorption for abnormal and malignant ovaries than for normal postmenopausal ones. To estimate the quantitative optical absorption properties of the ovaries, additional ultrasound-guided diffuse optical tomography images have been acquired. Good agreement between the two techniques has been observed. These results demonstrate the potential of a co-registered photoacoustic and ultrasound imaging system for the diagnosis of ovarian cancer.
NASA Astrophysics Data System (ADS)
Viswan, Anchu; Chou, Han; Sugiura, Kuniaki; Nagatsu, Masaaki
2016-09-01
Graphite-encapsulated iron nanoparticles with an average diameter of 20 nm were synthesized using the DC arc discharge method. For biomedical application, the nanoparticles were functionalized with amino groups using an inductively coupled radio-frequency (RF) plasma. The Ar, NH3, and Ar/NH3 plasmas that were used for functionalization were diagnosed using optical emission spectroscopy, confirming the presence of the required elements. The best conditions for functionalization were optimized by changing various parameters. The pretreatment time with Ar plasma was varied from 0 to 12.5 min, the post-treatment time from 30 s to 3 min. The dependence of the RF power and the gas mixture ratio of Ar/NH3 on the amino group population was also analyzed. From Raman spectroscopy, x-ray photoelectron spectroscopy, and determination of absolute number of amino groups through chemical derivatization, it was found that 5 min of Ar pretreatment and 6%NH3/94%Ar plasma post-treatment for 3 min with an RF power of 80 W gives the best result of about 5 × 104 amino groups per particle. The nanoparticles that were amino functionalized under optimized conditions and immobilized with an Escherichia coli (E.coli) antibody on their surface were incubated with E.coli bacteria to determine the efficiency of collection by direct culture assay.
NASA Astrophysics Data System (ADS)
Mathias, Gerald; Egwolf, Bernhard; Nonella, Marco; Tavan, Paul
2003-06-01
We present a combination of the structure adapted multipole method with a reaction field (RF) correction for the efficient evaluation of electrostatic interactions in molecular dynamics simulations under periodic boundary conditions. The algorithm switches from an explicit electrostatics evaluation to a continuum description at the maximal distance that is consistent with the minimum image convention, and, thus, avoids the use of a periodic electrostatic potential. A physically motivated switching function enables charge clusters interacting with a given charge to smoothly move into the solvent continuum by passing through the spherical dielectric boundary surrounding this charge. This transition is complete as soon as the cluster has reached the so-called truncation radius Rc. The algorithm is used to examine the dependence of thermodynamic properties and correlation functions on Rc in the three point transferable intermolecular potential water model. Our test simulations on pure liquid water used either the RF correction or a straight cutoff and values of Rc ranging from 14 Å to 40 Å. In the RF setting, the thermodynamic properties and the correlation functions show convergence for Rc increasing towards 40 Å. In the straight cutoff case no such convergence is found. Here, in particular, the dipole-dipole correlation functions become completely artificial. The RF description of the long-range electrostatics is verified by comparison with the results of a particle-mesh Ewald simulation at identical conditions.
NASA Technical Reports Server (NTRS)
Nuckolls, C.; Frank, Mark
1990-01-01
The overall goal of this study was to develop new concepts and technology for the Comet Rendezvous Asteroid Flyby (CRAF), Cassini, and other future deep space missions which maximally conform to the Functional Specification for the NASA X-Band Transponder (NXT), FM513778 (preliminary, revised July 26, 1988). The study is composed of two tasks. The first task was to investigate a new digital signal processing technique which involves the processing of 1-bit samples and has the potential for significant size, mass, power, and electrical performance improvements over conventional analog approaches. The entire X-band receiver tracking loop was simulated on a digital computer using a high-level programming language. Simulations on this 'software breadboard' showed the technique to be well-behaved and a good approximation to its analog predecessor from threshold to strong signal levels in terms of tracking-loop performance, command signal-to-noise ratio and ranging signal-to-noise ratio. The successful completion of this task paves the way for building a hardware breadboard, the recommended next step in confirming this approach is ready for incorporation into flight hardware. The second task in this study was to investigate another technique which provides considerable simplification in the synthesis of the receiver first LO over conventional phase-locked multiplier schemes and in this approach, provides down-conversion for an S-band emergency receive mode without the need of an additional LO. The objective of this study was to develop methodology and models to predict the conversion loss, input RF bandwidth, and output RF bandwidth of a series GaAs FET sampling mixer and to breadboard and test a circuit design suitable for the X and S-band down-conversion applications.
Full-Field Spectroscopy at Megahertz-frame-rates: Application of Coherent Time-Stretch Transform
NASA Astrophysics Data System (ADS)
DeVore, Peter Thomas Setsuda
Outliers or rogue events are found extensively in our world and have incredible effects. Also called rare events, they arise in the distribution of wealth (e.g., Pareto index), finance, network traffic, ocean waves, and e-commerce (selling less of more). Interest in rare optical events exploded after the sighting of optical rogue waves in laboratory experiments at UCLA. Detecting such tail events in fast streams of information necessitates real-time measurements. The Coherent Time-Stretch Transform chirps a pulsed source of radiation so that its temporal envelope matches its spectral profile (analogous to the far field regime of spatial diffraction), and the mapped spectral electric field is slow enough to be captured by a real-time digitizer. Combining this technique with spectral encoding, the time stretch technique has enabled a new class of ultra-high performance spectrometers and cameras (30+ MHz), and analog-to-digital converters that have led to the discovery of optical rogue waves and detection of cancer cells in blood with one in a million sensitivity. Conventionally, the Coherent Time-Stretch Transform maps the spectrum into the temporal electric field, but the time-dilation process along with inherent fiber losses results in reduction of peak power and loss of sensitivity, a problem exacerbated by extremely narrow molecular linewidths. The loss issue notwithstanding, in many cases the requisite dispersive optical device is not available. By extending the Coherent Time-Stretch Transform to the temporal near field, I have demonstrated, for the first time, phase-sensitive absorption spectroscopy of a gaseous sample at millions of frames per second. As the Coherent Time-Stretch Transform may capture both near and far field optical waves, it is a complete spectro-temporal optical characterization tool. This is manifested as an amplitude-dependent chirp, which implies the ability to measure the complex refractive index dispersion at megahertz frame rates. This technique is not only four orders of magnitude faster than even the fastest (kHz) spectrometers, but will also enable capture of real-time complex dielectric function dynamics of plasmas and chemical reactions (e.g. combustion). It also has applications in high-energy physics, biology, and monitoring fast high-throughput industrial processes. Adding an electro-optic modulator to the Time-Stretch Transform yields time-to-time mapping of electrical waveforms. Known as TiSER, it is an analog slow-motion processor that uses light to reduce the bandwidth of broadband RF signals for capture by high-sensitivity analog-to-digital converters (ADC). However, the electro-optic modulator limits the electrical bandwidth of TiSER. To solve this, I introduced Optical Sideband-only Amplification, wherein electro-optically generated modulation (containing the RF information) is amplified at the expense of the carrier, addressing the two most important problems plaguing electro-optic modulators: (1) low RF bandwidth and (2) high required RF drive voltages. I demonstrated drive voltage reductions of 5x at 10 GHz and 10x at 50 GHz, while simultaneously increasing the RF bandwidth.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shimizu, S.; Shimizu, T.; Thomas, H. M.
2011-11-15
We demonstrate the levitation of diamond fine particles in a H{sub 2} rf plasma chamber equipped with a hot filament and heated electrodes. The levitation conditions should be carefully chosen to compensate the strong thermophoretic forces caused by the filament and the electrodes. This levitation technique with the existence of a hot filament can be applied, e.g., for the efficient growth of diamond layers on seed particles injected and levitated in an rf plasma with reactive gases, e.g., CH{sub 4}/H{sub 2}. Additionally, the method for direct capture of levitated particles on a planar substrate was established, which is useful ifmore » it is necessary to analyze the particles after the levitation.« less
Adapting High Brightness Relativistic Electron Beams for Ultrafast Science
NASA Astrophysics Data System (ADS)
Scoby, Cheyne Matthew
This thesis explores the use of ultrashort bunches generated by a radiofrequency electron photoinjector driven by a femtosecond laser. Rf photoinjector technology has been developed to generate ultra high brightness beams for advanced accelerators and to drive advanced light source applications. The extremely good quality of the beams generated by this source has played a key role in the development of 4th generation light sources such as the Linac Coherent Light Source, thus opening the way to studies of materials science and biological systems with high temporal and spatial resolution. At the Pegasus Photoinjector Lab, we have developed the application of a BNL/SLAC/UCLA 1.6-cell rf photoinjector as a tool for ultrafast science in its own right. It is the aim of this work to explore the generation of ultrashort electron bunches, give descriptions of the novel ultrafast diagnostics developed to be able to characterize the electron bunch and synchronize it with a pump laser, and share some of the scientific results that were obtained with this technology at the UCLA Pegasus laboratory. This dissertation explains the requirements of the drive laser source and describes the principles of rf photoinjector design and operation necessary to produce electron bunches with an rms longitudinal length < 100 femtoseconds containing 107 - 108 electrons per bunch. In this condition, when the laser intensity is sufficiently high, multiphoton photoemission is demonstrated to be more efficient in terms of charge yield than single photon photoemission. When a short laser pulse hits the cathode the resulting beam dynamics are dominated by a strong space charge driven longitudinal expansion which leads to the creation of a nearly ideal uniformly filled ellipsoidal distribution. These beam distributions are characterized by linear space charge forces and hence by high peak brightness and small transverse emittances. This regime of operation of the RF photoinjector is also termed the “blow-out regime.” When the beam charge is maintained low, ultrashort electron bunches can be obtained enabling novel applications such as single shot Femtosecond Relativistic Electron Diffraction (FRED). High precision temporal diagnostic and synchronization techniques are integral to the use of femtosecond electron bunches for ultrafast science. An x-band rf streak camera provides measurements of the longitudinal profiles of sub-ps electron bunches. Spatial encoded electro-optic timestamping is developed to overcome the inherent rf-laser synchronization errors in rf photoinjectors. The ultrafast electron beams generated with the RF photoenjector are employed in pump-probe experiments wherein a target is illuminated with an intense pump laser to induce a transient behavior in the sample. FRED is used to study the melting of gold after heating with an intense femtosecond laser pulse. In a first experiment we study the process by taking different single-shot diffraction patterns at varying delays between the pump an probe beams. In a second experiment a variation of the technique is employed using the rf streak camera to time-stretch the beam after it has diffraction from the sample in order to capture the full melting dynamics in a single shot. Finally, relativistic ultrashort electron bunches are used as a probe of plasma dynamics in electron radiography/shadowgraphy experiments. This technique is used to study photoemission with intense laser pulses and the evolution of electromagnetic fields in a photoinduced dense plasma. This experiment is also performed in two different modes: one where different pictures are acquired at different time delays, and the other where a single streak image is used to obtain visualization of the propagation electromagnetic fields with an unprecedented 35 femtosecond resolution.
Precursor and Neutral Loss Scans in an RF Scanning Linear Quadrupole Ion Trap
NASA Astrophysics Data System (ADS)
Snyder, Dalton T.; Szalwinski, Lucas J.; Schrader, Robert L.; Pirro, Valentina; Hilger, Ryan; Cooks, R. Graham
2018-03-01
Methodology for performing precursor and neutral loss scans in an RF scanning linear quadrupole ion trap is described and compared to the unconventional ac frequency scan technique. In the RF scanning variant, precursor ions are mass selectively excited by a fixed frequency resonance excitation signal at low Mathieu q while the RF amplitude is ramped linearly to pass ions through the point of excitation such that the excited ion's m/z varies linearly with time. Ironically, a nonlinear ac frequency scan is still required for ejection of the product ions since their frequencies vary nonlinearly with the linearly varying RF amplitude. In the case of the precursor scan, the ejection frequency must be scanned so that it is fixed on a product ion m/z throughout the RF scan, whereas in the neutral loss scan, it must be scanned to maintain a constant mass offset from the excited precursor ions. Both simultaneous and sequential permutation scans are possible; only the former are demonstrated here. The scans described are performed on a variety of samples using different ionization sources: protonated amphetamine ions generated by nanoelectrospray ionization (nESI), explosives ionized by low-temperature plasma (LTP), and chemical warfare agent simulants sampled from a surface and analyzed with swab touch spray (TS). We lastly conclude that the ac frequency scan variant of these MS/MS scans is preferred due to electronic simplicity. In an accompanying manuscript, we thus describe the implementation of orthogonal double resonance precursor and neutral loss scans on the Mini 12 using constant RF voltage. [Figure not available: see fulltext.
NASA Astrophysics Data System (ADS)
Yeung, Sai Ho; Pradhan, Raunaq; Feng, Xiaohua; Zheng, Yuanjin
2015-09-01
Recently, the design concept of magnetic resonant coupling has been adapted to electromagnetic therapy applications such as non-invasive radiofrequency (RF) stimulation. This technique can significantly increase the electric field radiated from the magnetic coil at the stimulation target, and hence enhancing the current flowing through the nerve, thus enabling stimulation. In this paper, the developed magnetic resonant coupling (MRC) stimulation, magnetic stimulation (MS) and transcutaneous electrical nerve stimulation (TENS) are compared. The differences between the MRC RF stimulation and other techniques are presented in terms of the operating mechanism, ex-vivo tissue voltage measurement and electromagnetic simulation analysis. The ev-vivo tissue voltage measurement experiment is performed on the compared devices based on measuring the voltage induced by electromagnetic induction at the tissue. The focusing effect, E field and voltage induced across the tissue, and the attenuation due to the increase of separation between the coil and the target are analyzed. The electromagnetic stimulation will also be performed to obtain the electric field and magnetic field distribution around the biological medium. The electric field intensity is proportional to the induced current and the magnetic field is corresponding to the electromagnetic induction across the biological medium. The comparison between the MRC RF stimulator and the MS and TENS devices revealed that the MRC RF stimulator has several advantages over the others for the applications of inducing current in the biological medium for stimulation purposes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yeung, Sai Ho; Pradhan, Raunaq; Feng, Xiaohua
Recently, the design concept of magnetic resonant coupling has been adapted to electromagnetic therapy applications such as non-invasive radiofrequency (RF) stimulation. This technique can significantly increase the electric field radiated from the magnetic coil at the stimulation target, and hence enhancing the current flowing through the nerve, thus enabling stimulation. In this paper, the developed magnetic resonant coupling (MRC) stimulation, magnetic stimulation (MS) and transcutaneous electrical nerve stimulation (TENS) are compared. The differences between the MRC RF stimulation and other techniques are presented in terms of the operating mechanism, ex-vivo tissue voltage measurement and electromagnetic simulation analysis. The ev-vivo tissuemore » voltage measurement experiment is performed on the compared devices based on measuring the voltage induced by electromagnetic induction at the tissue. The focusing effect, E field and voltage induced across the tissue, and the attenuation due to the increase of separation between the coil and the target are analyzed. The electromagnetic stimulation will also be performed to obtain the electric field and magnetic field distribution around the biological medium. The electric field intensity is proportional to the induced current and the magnetic field is corresponding to the electromagnetic induction across the biological medium. The comparison between the MRC RF stimulator and the MS and TENS devices revealed that the MRC RF stimulator has several advantages over the others for the applications of inducing current in the biological medium for stimulation purposes.« less
Radiofrequency facial rejuvenation: evidence-based effect.
el-Domyati, Moetaz; el-Ammawi, Tarek S; Medhat, Walid; Moawad, Osama; Brennan, Donna; Mahoney, My G; Uitto, Jouni
2011-03-01
Multiple therapies involving ablative and nonablative techniques have been developed for rejuvenation of photodamaged skin. Monopolar radiofrequency (RF) is emerging as a gentler, nonablative skin-tightening device that delivers uniform heat to the dermis at a controlled depth. We evaluated the clinical effects and objectively quantified the histologic changes of the nonablative RF device in the treatment of photoaging. Six individuals of Fitzpatrick skin type III to IV and Glogau class I to II wrinkles were subjected to 3 months of treatment (6 sessions at 2-week intervals). Standard photographs and skin biopsy specimens were obtained at baseline, and at 3 and 6 months after the start of treatment. We performed quantitative evaluation of total elastin, collagen types I and III, and newly synthesized collagen using computerized histometric and immunohistochemical techniques. Blinded photographs were independently scored for wrinkle improvement. RF produced noticeable clinical results, with high satisfaction and corresponding facial skin improvement. Compared with the baseline, there was a statistically significant increase in the mean of collagen types I and III, and newly synthesized collagen, while the mean of total elastin was significantly decreased, at the end of treatment and 3 months posttreatment. A limitation of this study is the small number of patients, yet the results show a significant improvement. Although the results may not be as impressive as those obtained by ablative treatments, RF is a promising treatment option for photoaging with fewer side effects and downtime. Copyright © 2010 American Academy of Dermatology, Inc. Published by Mosby, Inc. All rights reserved.
Machine Learning Estimation of Atom Condensed Fukui Functions.
Zhang, Qingyou; Zheng, Fangfang; Zhao, Tanfeng; Qu, Xiaohui; Aires-de-Sousa, João
2016-02-01
To enable the fast estimation of atom condensed Fukui functions, machine learning algorithms were trained with databases of DFT pre-calculated values for ca. 23,000 atoms in organic molecules. The problem was approached as the ranking of atom types with the Bradley-Terry (BT) model, and as the regression of the Fukui function. Random Forests (RF) were trained to predict the condensed Fukui function, to rank atoms in a molecule, and to classify atoms as high/low Fukui function. Atomic descriptors were based on counts of atom types in spheres around the kernel atom. The BT coefficients assigned to atom types enabled the identification (93-94 % accuracy) of the atom with the highest Fukui function in pairs of atoms in the same molecule with differences ≥0.1. In whole molecules, the atom with the top Fukui function could be recognized in ca. 50 % of the cases and, on the average, about 3 of the top 4 atoms could be recognized in a shortlist of 4. Regression RF yielded predictions for test sets with R(2) =0.68-0.69, improving the ability of BT coefficients to rank atoms in a molecule. Atom classification (as high/low Fukui function) was obtained with RF with sensitivity of 55-61 % and specificity of 94-95 %. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Wang, Yue; Wang, Ping; Liu, Xiaoxia; Cao, Tian
2018-03-01
The performance of decode-and-forward dual-hop mixed radio frequency / free-space optical system in urban area is studied. The RF link is modeled by the Nakagami-m distribution and the FSO link is described by the composite exponentiated Weibull (EW) fading channels with nonzero boresight pointing errors (NBPE). For comparison, the ABER results without pointing errors (PE) and those with zero boresight pointing errors (ZBPE) are also provided. The closed-form expression for the average bit error rate (ABER) in RF link is derived with the help of hypergeometric function, and that in FSO link is obtained by Meijer's G and generalized Gauss-Laguerre quadrature functions. Then, the end-to-end ABERs with binary phase shift keying modulation are achieved on the basis of the computed ABER results of RF and FSO links. The end-to-end ABER performance is further analyzed with different Nakagami-m parameters, turbulence strengths, receiver aperture sizes and boresight displacements. The result shows that with ZBPE and NBPE considered, FSO link suffers a severe ABER degradation and becomes the dominant limitation of the mixed RF/FSO system in urban area. However, aperture averaging can bring significant ABER improvement of this system. Monte Carlo simulation is provided to confirm the validity of the analytical ABER expressions.
NASA Astrophysics Data System (ADS)
Siegel, Peter H.; Pikov, Victor
2010-02-01
As the application and commercial use of millimeter- and submillimeter-wavelength radiation become more widespread, there is a growing need to understand and quantify both the coupling mechanisms and the impact of this long wavelength energy on biological function. Independent of the health impact of high doses of radio frequency (RF) energy on full organisms, which has been extensively investigated, there exists the potential for more subtle effects, which can best be quantified in studies which examine real-time changes in cellular functions as RF energy is applied. In this paper we present the first real time examination of RF induced changes in cellular activity at absorbed power levels well below the existing safe exposure limits. Fluorescence microscopy imaging of immortalized epithelial and neuronal cells in vitro indicate increased cellular membrane permeability and nanoporation after short term exposure to modest levels (10-50 mW/cm2) of RF power at 60 GHz. Sensitive patch clamp measurements on pyramidal neurons in cortical slices of neonatal rats showed a dramatic increase in cellular membrane permeability resulting either in suppression or facilitation of neuronal activity during exposure to sub-μW/cm2 of RF power at 60 GHz. Non-invasive modulation of neuronal activity could prove useful in a variety of health applications from suppression of peripheral neuropathic pain to treatment of central neurological disorders.
Rahman, Md Mahmudur; Bhattacharya, Prabir; Desai, Bipin C
2007-01-01
A content-based image retrieval (CBIR) framework for diverse collection of medical images of different imaging modalities, anatomic regions with different orientations and biological systems is proposed. Organization of images in such a database (DB) is well defined with predefined semantic categories; hence, it can be useful for category-specific searching. The proposed framework consists of machine learning methods for image prefiltering, similarity matching using statistical distance measures, and a relevance feedback (RF) scheme. To narrow down the semantic gap and increase the retrieval efficiency, we investigate both supervised and unsupervised learning techniques to associate low-level global image features (e.g., color, texture, and edge) in the projected PCA-based eigenspace with their high-level semantic and visual categories. Specially, we explore the use of a probabilistic multiclass support vector machine (SVM) and fuzzy c-mean (FCM) clustering for categorization and prefiltering of images to reduce the search space. A category-specific statistical similarity matching is proposed in a finer level on the prefiltered images. To incorporate a better perception subjectivity, an RF mechanism is also added to update the query parameters dynamically and adjust the proposed matching functions. Experiments are based on a ground-truth DB consisting of 5000 diverse medical images of 20 predefined categories. Analysis of results based on cross-validation (CV) accuracy and precision-recall for image categorization and retrieval is reported. It demonstrates the improvement, effectiveness, and efficiency achieved by the proposed framework.
Directions for rf-controlled intelligent microvalve
NASA Astrophysics Data System (ADS)
Enderling, Stefan; Varadan, Vijay K.; Abbott, Derek
2001-03-01
In this paper, we consider the novel concept of a Radio Frequency (RF) controllable microvalve for different medical applications. Wireless communication via a Surface Acoustic Wave Identification-mark (SAW ID-tag) is used to control, drive and locate the microvalve inside the human body. The energy required for these functions is provided by RF pulses, which are transmitted to the valve and back by a reader/transmitter system outside of the body. These RF bursts are converted into Surface Acoustic Waves (SAWs), which propagate along the piezoelectric actuator material of the microvalve. These waves cause deflections, which are employed to open and close the microvalve. We identified five important areas of application of the microvalve in biomedicine: 1) fertility control; 2) artificial venous valves; 3) flow cytometry; 4) drug delivery and 5) DNA mapping.
NASA Astrophysics Data System (ADS)
Akahoshi, Hikaru; Takahashi, Kazunori; Ando, Akira
2018-03-01
High temperature electrons generated near a radial wall of a cylindrical source tube in a radiofrequency (rf) inductively-coupled plasma is filtered by an axisymmetric radial magnetic field formed near the source exit by locating annular permanent magnets, where the axial magnetic field strength in the radially central region is fairly uniform inside the source tube and is close to zero near the source exit. The source is operated at 3 mTorr in argon and the rf antenna is powered by a 13.56 MHz and 400 W rf generator. Measurement of electron energy probability functions shows the presence of the peripheral high temperature electrons inside the source, while the temperature of the peripheral electrons downstream of the source is observed to be reduced.
NASA Astrophysics Data System (ADS)
Sosnin, D.; Kudryashov, D.; Mozharov, A.
2017-11-01
Titanium nitride is a promising material due to its low resistivity, high hardness and chemical inertness. Titanium nitride (TiN) can be applied as an ohmic contact for n-GaN and rectifying contact for p-GaN and also as a part of perovskite solar cell. A technology of TiN low temperature reactive rf-magnetron sputtering has been developed. Electrical and optical properties of titanium nitride were studied as a function of the rf-power and gas mixture composition. Reflectance and transmittance spectra were measured. Cross-section and surface SEM image were obtained. 250 nm thin films of TiN with a resistivity of 23.6 μOm cm were obtained by rf-magnetron sputtering at low temperature.
NASA Technical Reports Server (NTRS)
Wilson, Lonnie A.
1987-01-01
Bragg-cell receivers are employed in specialized Electronic Warfare (EW) applications for the measurement of frequency. Bragg-cell receiver characteristics are fully characterized for simple RF emitter signals. This receiver is early in its development cycle when compared to the IFM receiver. Functional mathematical models are derived and presented in this report for the Bragg-cell receiver. Theoretical analysis is presented and digital computer signal processing results are presented for the Bragg-cell receiver. Probability density function analysis are performed for output frequency. Probability density function distributions are observed to depart from assumed distributions for wideband and complex RF signals. This analysis is significant for high resolution and fine grain EW Bragg-cell receiver systems.
NASA Astrophysics Data System (ADS)
DeBardelaben, James A.; Miller, Jeremy K.; Myrick, Wilbur L.; Miller, Joel B.; Gilbreath, G. Charmaine; Bajramaj, Blerta
2012-06-01
Nuclear quadrupole resonance (NQR) is a radio frequency (RF) magnetic spectroscopic technique that has been shown to detect and identify a wide range of explosive materials containing quadrupolar nuclei. The NQR response signal provides a unique signature of the material of interest. The signal is, however, very weak and can be masked by non-stationary RF interference (RFI) and thermal noise, limiting detection distance. In this paper, we investigate the bounds on the NQR detection range for ammonium nitrate. We leverage a low-cost RFI data acquisition system composed of inexpensive B-field sensing and commercial-off-the-shelf (COTS) software-defined radios (SDR). Using collected data as RFI reference signals, we apply adaptive filtering algorithms to mitigate RFI and enable NQR detection techniques to approach theoretical range bounds in tactical environments.
Studies of RF sheaths and diagnostics on IShTAR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crombé, K., E-mail: Kristel.Crombe@UGent.be; LPP-ERM/KMS, Royal Military Academy, Brussels; Devaux, S.
2015-12-10
IShTAR (Ion cyclotron Sheath Test ARrangement) is a linear magnetised plasma test facility for RF sheaths studies at the Max-Planck-Institut für Plasmaphysik in Garching. In contrast to a tokamak, a test stand provides more liberty to impose the parameters and gives better access for the instrumentation and antennas. The project will support the development of diagnostic methods for characterising RF sheaths and validate and improve theoretical predictions. The cylindrical vacuum vessel has a diameter of 1 m and is 1.1 m long. The plasma is created by an external cylindrical plasma source equipped with a helical antenna that has been designed tomore » excite the m=1 helicon mode. In inductive mode, plasma densities and electron temperatures have been characterised with a planar Langmuir probe as a function of gas pressure and input RF power. A 2D array of RF compensated Langmuir probes and a spectrometer are planned. A single strap RF antenna has been designed; the plasma-facing surface is aligned to the cylindrical plasma to ease the modelling. The probes will allow direct measurements of plasma density profiles in front of the RF antenna, and thus a detailed study of the density modifications induced by RF sheaths, which influences the coupling. The RF antenna frequency has been chosen to study different plasma wave interactions: the accessible plasma density range includes an evanescent and propagative behaviour of slow or fast waves, and allows the study of the effect of the lower hybrid resonance layer.« less
NASA Astrophysics Data System (ADS)
Vinding, Mads S.; Maximov, Ivan I.; Tošner, Zdeněk; Nielsen, Niels Chr.
2012-08-01
The use of increasingly strong magnetic fields in magnetic resonance imaging (MRI) improves sensitivity, susceptibility contrast, and spatial or spectral resolution for functional and localized spectroscopic imaging applications. However, along with these benefits come the challenges of increasing static field (B0) and rf field (B1) inhomogeneities induced by radial field susceptibility differences and poorer dielectric properties of objects in the scanner. Increasing fields also impose the need for rf irradiation at higher frequencies which may lead to elevated patient energy absorption, eventually posing a safety risk. These reasons have motivated the use of multidimensional rf pulses and parallel rf transmission, and their combination with tailoring of rf pulses for fast and low-power rf performance. For the latter application, analytical and approximate solutions are well-established in linear regimes, however, with increasing nonlinearities and constraints on the rf pulses, numerical iterative methods become attractive. Among such procedures, optimal control methods have recently demonstrated great potential. Here, we present a Krotov-based optimal control approach which as compared to earlier approaches provides very fast, monotonic convergence even without educated initial guesses. This is essential for in vivo MRI applications. The method is compared to a second-order gradient ascent method relying on the Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton method, and a hybrid scheme Krotov-BFGS is also introduced in this study. These optimal control approaches are demonstrated by the design of a 2D spatial selective rf pulse exciting the letters "JCP" in a water phantom.
Telecommunications end-to-end systems monitoring on TOPEX/Poseidon: Tools and techniques
NASA Technical Reports Server (NTRS)
Calanche, Bruno J.
1994-01-01
The TOPEX/Poseidon Project Satellite Performance Analysis Team's (SPAT) roles and responsibilities have grown to include functions that are typically performed by other teams on JPL Flight Projects. In particular, SPAT Telecommunication's role has expanded beyond the nominal function of monitoring, assessing, characterizing, and trending the spacecraft (S/C) RF/Telecom subsystem to one of End-to-End Information Systems (EEIS) monitoring. This has been accomplished by taking advantage of the spacecraft and ground data system structures and protocols. By processing both the received spacecraft telemetry minor frame ground generated CRC flags and NASCOM block poly error flags, bit error rates (BER) for each link segment can be determined. This provides the capability to characterize the separate link segments, determine science data recovery, and perform fault/anomaly detection and isolation. By monitoring and managing the links, TOPEX has successfully recovered approximately 99.9 percent of the science data with an integrity (BER) of better than 1 x 10(exp 8). This paper presents the algorithms used to process the above flags and the techniques used for EEIS monitoring.
NASA Technical Reports Server (NTRS)
Mitchell, Jason W.; Baldwin, Philip J.; Kurichh, Rishi; Naasz, Bo J.; Luquette, Richard J.
2007-01-01
The Formation Flying Testbed (FFTB) at the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) provides a hardware-in-the-loop test environment for formation navigation and control. The facility is evolving as a modular, hybrid, dynamic simulation facility for end-to-end guidance, navigation and. control (GN&C) design and analysis of formation flying spacecraft. The core capabilities of the FFTB, as a platform for testing critical hardware and software algorithms in-the-loop, have expanded to include S-band Radio Frequency (RF) modems for inter-spacecraft communication and ranging. To enable realistic simulations that require RF ranging sensors for relative navigation, a mechanism is needed to buffer the RF signals exchanged between spacecraft that accurately emulates the dynamic environment through which the RF signals travel, including the effects of medium, moving platforms, and radiated power. The Path Emulator for RF Signals (PERFS), currently under development at NASA GSFC, provides this capability. The function and performance of a prototype device are presented.
Photocatalytic fluoroalkylation reactions of organic compounds.
Barata-Vallejo, Sebastián; Bonesi, Sergio M; Postigo, Al
2015-12-14
Photocatalytic methods for fluoroalkyl-radical generation provide more convenient alternatives to the classical perfluoroalkyl-radical (Rf) production through chemical initiators, such as azo or peroxide compounds or the employment of transition metals through a thermal electron transfer (ET) initiation process. The mild photocatalytic reaction conditions tolerate a variety of functional groups and, thus, are handy to the late-stage modification of bioactive molecules. Transition metal-photocatalytic reactions for Rf radical generation profit from the redox properties of coordinatively saturated Ru or Ir organocomplexes to act as both electron donor and reductive species, thus allowing for the utilization of electron accepting and donating fluoroalkylating agents for Rf radical production. On the other hand, laboratory-available and inexpensive photoorgano catalysts (POC), in the absence of transition metals, can also act as electron exchange species upon excitation, resulting in ET reactions that produce Rf radicals. In this work, a critical account of transition metal and transition metal-free Rf radical production will be described with photoorgano catalysts, studying classical examples and the most recent investigations in the field.
Attraction of position preference by spatial attention throughout human visual cortex.
Klein, Barrie P; Harvey, Ben M; Dumoulin, Serge O
2014-10-01
Voluntary spatial attention concentrates neural resources at the attended location. Here, we examined the effects of spatial attention on spatial position selectivity in humans. We measured population receptive fields (pRFs) using high-field functional MRI (fMRI) (7T) while subjects performed an attention-demanding task at different locations. We show that spatial attention attracts pRF preferred positions across the entire visual field, not just at the attended location. This global change in pRF preferred positions systematically increases up the visual hierarchy. We model these pRF preferred position changes as an interaction between two components: an attention field and a pRF without the influence of attention. This computational model suggests that increasing effects of attention up the hierarchy result primarily from differences in pRF size and that the attention field is similar across the visual hierarchy. A similar attention field suggests that spatial attention transforms different neural response selectivities throughout the visual hierarchy in a similar manner. Copyright © 2014 Elsevier Inc. All rights reserved.
Combinatorial study of zinc tin oxide thin-film transistors
NASA Astrophysics Data System (ADS)
McDowell, M. G.; Sanderson, R. J.; Hill, I. G.
2008-01-01
Groups of thin-film transistors using a zinc tin oxide semiconductor layer have been fabricated via a combinatorial rf sputtering technique. The ZnO :SnO2 ratio of the film varies as a function of position on the sample, from pure ZnO to SnO2, allowing for a study of zinc tin oxide transistor performance as a function of channel stoichiometry. The devices were found to have mobilities ranging from 2to12cm2/Vs, with two peaks in mobility in devices at ZnO fractions of 0.80±0.03 and 0.25±0.05, and on/off ratios as high as 107. Transistors composed predominantly of SnO2 were found to exhibit light sensitivity which affected both the on/off ratios and threshold voltages of these devices.
NASA Astrophysics Data System (ADS)
Piana Agostinetti, Nicola; Licciardi, Andrea; Piccinini, Davide; Mazzarini, Francesco; Musumeci, Giovanni; Saccorotti, Gilberto
2017-04-01
The Larderello field (Tuscany, Italy) is the oldest example in the world of geothermal energy exploitation for industrial purposes. Despite its century long history of exploration and exploitation, the deep structure (4-8km depth) of the Larderello field is still poorly known, due to (a) the lack of resolution of the applied exploration techniques and (b) the lack of interest in the investigation of deep geothermal reservoirs, given the abundant amount of energy extracted from the shallow reservoirs. Recently, the increasing demand of green-energy promoted a renewed interest in the geothermal industrial sector, which translated into new exploration efforts, especially to obtain a detailed characterization of deep geothermal sources. We investigate the seismic structure of the Larderello geothermal field using Receiver Function (RF) analysis. Crustal seismic structures are routinely investigated using the RF methodology, where teleseismic P-wave are analysed to extract P-to-S converted phases that can be related to the propagation of the P-wave across a seismic discontinuity. We compute RF from 26 seismic stations, belonging to both temporary and permanent networks: the GAPSS and RETREAT experiments and the Italian Seismic Network. The RF data-set is migrated at depth and decomposed into azimuthal harmonics. Computing the first, k=0, and the second, k=1, harmonics allows to separate the "isotropic" contribution, due to the change of the isotropic properties of the sampled materials (recorded on the k=0 harmonics), from the "anisotropic" contribution, where the energy is related to the propagation of the P-wave through anisotropic materials (recorded on the k=1 harmonics). Preliminary results allow us: (1) to infer the position of the main S-wave velocity discontinuities in the study area, mainly a shallow Tyrrhenian Moho and a very-low S-wave velocity body in the center of the Larderello dome, at about 5-15km depth; and (2) to map the presence of anisotropic materials at depth beneath the central part of the geothermal field. Our finding are discussed in relation to the distribution of local microseismicity recorded during the GAPSS experiment and to the geometry of the main seismic interfaces inferred from the analysis of active seismic data.
Rajabi, Majid; Behzad, Mehdi
2014-04-01
In nonlinear acoustic regime, a body insonified by a sound field is known to experience a steady force that is called the acoustic radiation force (RF). This force is a second-order quantity of the velocity potential function of the ambient medium. Exploiting the sufficiency of linear solution representation of potential function in RF formulation, and following the classical resonance scattering theorem (RST) which suggests the scattered field as a superposition of the resonant field and a background (non-resonant) component, we will show that the radiation force is a composition of three components: background part, resonant part and their interaction. Due to the nonlinearity effects, each part contains the contribution of pure partial waves in addition to their mutual interaction. The numerical results propose the residue component (i.e., subtraction of the background component from the RF) as a good indicator of the contribution of circumferential surface waves in RF. Defining the modal series of radiation force function and its components, it will be shown that within each partial wave, the resonance contribution can be synthesized as the Breit-Wigner form for adequately none-close resonant frequencies. The proposed formulation may be helpful essentially due to its inherent value as a canonical subject in physical acoustics. Furthermore, it may make a tunnel through the circumferential resonance reducing effects on radiation forces. Copyright © 2013 Elsevier B.V. All rights reserved.
Lobo, S M; Liu, Z-J; Yu, N C; Humphries, S; Ahmed, M; Cosman, E R; Lenkinski, R E; Goldberg, W; Goldberg, S N
2005-05-01
This study determined the effects of thermal conductivity on RF ablation tissue heating using mathematical modelling and computer simulations of RF heating coupled to thermal transport. Computer simulation of the Bio-Heat equation coupled with temperature-dependent solutions for RF electric fields (ETherm) was used to generate temperature profiles 2 cm away from a 3 cm internally-cooled electrode. Multiple conditions of clinically relevant electrical conductivities (0.07-12 S m-1) and 'tumour' radius (5-30 mm) at a given background electrical conductivity (0.12 S m-1) were studied. Temperature response surfaces were plotted for six thermal conductivities, ranging from 0.3-2 W m-1 degrees C (the range of anticipated clinical and experimental systems). A temperature response surface was obtained for each thermal conductivity at 25 electrical conductivities and 17 radii (n=425 temperature data points). The simulated temperature response was fit to a mathematical model derived from prior phantom data. This mathematical model is of the form (T=a+bRc exp(dR) s(f) exp(g)(s)) for RF generator-energy dependent situations and (T=h+k exp(mR)+n?exp(p)(s)) for RF generator-current limited situations, where T is the temperature (degrees C) 2 cm from the electrode and a, b, c, d, f, g, h, k, m, n and p are fitting parameters. For each of the thermal conductivity temperature profiles generated, the mathematical model fit the response surface to an r2 of 0.97-0.99. Parameters a, b, c, d, f, k and m were highly correlated to thermal conductivity (r2=0.96-0.99). The monotonic progression of fitting parameters permitted their mathematical expression using simple functions. Additionally, the effect of thermal conductivity simplified the above equation to the extent that g, h, n and p were found to be invariant. Thus, representation of the temperature response surface could be accurately expressed as a function of electrical conductivity, radius and thermal conductivity. As a result, the non-linear temperature response of RF induced heating can be adequately expressed mathematically as a function of electrical conductivity, radius and thermal conductivity. Hence, thermal conductivity accounts for some of the previously unexplained variance. Furthermore, the addition of this variable into the mathematical model substantially simplifies the equations and, as such, it is expected that this will permit improved prediction of RF ablation induced temperatures in clinical practice.
The surface modification of clay particles by RF plasma technique
NASA Astrophysics Data System (ADS)
Lee, Sang-Keol
In this study, the surface coatings of ball clay, organoclay and exfoliated clay prepared by sol-gel process were done by RF plasma polymerization to improve the surface activity of the clay filler. Characterization of the above plasma-treated clays has been carried out by various techniques. The effects of plasma-treated clays as substitute of carbon black in styrene-butadiene rubber (SBR) and ethylene-propylene-diene monomer (EPDM) on the curing and mechanical properties were investigated. After plasma treatment, the tensile properties of organo and exfoliated clay were not unsatisfactory to that of carbon black filler system. Moreover, only 10 phr filler loading of plasma-treated organoclay in EPDM vulcanizates showed better results than 40 phr filler loading of carbon black in EPDM vulcanizates. The main objective of this study was to verify the applicability of the plasma technique for modifying clay surfaces for their use in the tire manufacturing industry. Another purpose was to reveal the advantage of the plasma technique used to obtain modified-clay and improved properties that those materials can display.
On the dynamic rounding-off in analogue and RF optimal circuit sizing
NASA Astrophysics Data System (ADS)
Kotti, Mouna; Fakhfakh, Mourad; Fino, Maria Helena
2014-04-01
Frequently used approaches to solve discrete multivariable optimisation problems consist of computing solutions using a continuous optimisation technique. Then, using heuristics, the variables are rounded-off to their nearest available discrete values to obtain a discrete solution. Indeed, in many engineering problems, and particularly in analogue circuit design, component values, such as the geometric dimensions of the transistors, the number of fingers in an integrated capacitor or the number of turns in an integrated inductor, cannot be chosen arbitrarily since they have to obey to some technology sizing constraints. However, rounding-off the variables values a posteriori and can lead to infeasible solutions (solutions that are located too close to the feasible solution frontier) or degradation of the obtained results (expulsion from the neighbourhood of a 'sharp' optimum) depending on how the added perturbation affects the solution. Discrete optimisation techniques, such as the dynamic rounding-off technique (DRO) are, therefore, needed to overcome the previously mentioned situation. In this paper, we deal with an improvement of the DRO technique. We propose a particle swarm optimisation (PSO)-based DRO technique, and we show, via some analog and RF-examples, the necessity to implement such a routine into continuous optimisation algorithms.
Performance analysis for mixed FSO/RF Nakagami-m and Exponentiated Weibull dual-hop airborne systems
NASA Astrophysics Data System (ADS)
Jing, Zhao; Shang-hong, Zhao; Wei-hu, Zhao; Ke-fan, Chen
2017-06-01
In this paper, the performances of mixed free-space optical (FSO)/radio frequency (RF) systems are presented based on the decode-and-forward relaying. The Exponentiated Weibull fading channel with pointing error effect is adopted for the atmospheric fluctuation of FSO channel and the RF link undergoes the Nakagami-m fading. We derived the analytical expression for cumulative distribution function (CDF) of equivalent signal-to-noise ratio (SNR). The novel mathematical presentations of outage probability and average bit-error-rate (BER) are developed based on the Meijer's G function. The analytical results show an accurately match to the Monte-Carlo simulation results. The outage and BER performance for the mixed system by decode-and-forward relay are investigated considering atmospheric turbulence and pointing error condition. The effect of aperture averaging is evaluated in all atmospheric turbulence conditions as well.
Analysis of signal to noise enhancement using a highly selective modulation tracking filter
NASA Technical Reports Server (NTRS)
Haden, C. R.; Alworth, C. W.
1972-01-01
Experiments are reported which utilize photodielectric effects in semiconductor loaded superconducting resonant circuits for suppressing noise in RF communication systems. The superconducting tunable cavity acts as a narrow band tracking filter for detecting conventional RF signals. Analytical techniques were developed which lead to prediction of signal-to-noise improvements. Progress is reported in optimization of the experimental variables. These include improved Q, new semiconductors, improved optics, and simplification of the electronics. Information bearing signals were passed through the system, and noise was introduced into the computer model.
Development of an X-band 25 watt traveling-wave tube
NASA Technical Reports Server (NTRS)
Roberts, L. A.; Knight, R. I.
1972-01-01
The development of a 25 watt high efficiency travelingwave tube at 8.5 GHz for space communications and telemetry applications is reported. Described is the design basis for the tube, which is known as the WJ-3703. Because of the combined high efficiency and high frequency requirements, the helix and body dimensions are very small and require special techniques for various assembly and construction procedures. These are described in detail. Measurement results of focusing tests and RF operation are given, but only pulsed RF performance of the tubes was obtained.
Diago-Navarro, Elizabeth; Mora, Liliana; Buckingham, Richard H; Díaz-Orejas, Ramón; Lemonnier, Marc
2009-01-01
Novel mutations in prfA, the gene for the polypeptide release factor RF1 of Escherichia coli, were isolated using a positive genetic screen based on the parD (kis, kid) toxin-antitoxin system. This original approach allowed the direct selection of mutants with altered translational termination efficiency at UAG codons. The isolated prfA mutants displayed a approximately 10-fold decrease in UAG termination efficiency with no significant changes in RF1 stability in vivo. All three mutations, G121S, G301S and R303H, were situated close to the nonsense codon recognition site in RF1:ribosome complexes. The prfA mutants displayed increased sensitivity to the RelE toxin encoded by the relBE system of E. coli, thus providing in vivo support for the functional interaction between RF1 and RelE. The prfA mutants also showed increased sensitivity to the Kid toxin. Since this toxin can cleave RNA in a ribosome-independent manner, this result was not anticipated and provided first evidence for the involvement of RF1 in the pathway of Kid toxicity. The sensitivity of the prfA mutants to RelE and Kid was restored to normal levels upon overproduction of the wild-type RF1 protein. We discuss these results and their utility for the design of novel antibacterial strategies in the light of the recently reported structure of ribosome-bound RF1.
NASA Astrophysics Data System (ADS)
Faudot, E.; Heuraux, S.; Colas, L.
2005-09-01
Understanding DC potential generation in front of ICRF antennas is crucial for long pulse high RF power systems. DC potentials are produced by sheath rectification of these RF potentials. To reach this goal, near RF parallel electric fields have to be computed in 3D and integrated along open magnetic field lines to yield a 2D RF potential map in a transverse plane. DC potentials are produced by sheath rectification of these RF potentials. As RF potentials are spatially inhomogeneous, transverse polarization currents are created, modifying RF and DC maps. Such modifications are quantified on a `test map' having initially a Gaussian shape and assuming that the map remains Gaussian near its summit,the time behavior of the peak can be estimated analytically in presence of polarization current as a function of its width r0 and amplitude φ0 (normalized to a characteristic length for transverse transport and to the local temperature). A `peaking factor' is built from the DC peak potential normalized to φ0, and validated with a 2D fluid code and a 2D PIC code (XOOPIC). In an unexpected way transverse currents can increase this factor. Realistic situations of a Tore Supra antenna are also studied, with self-consistent near fields provided by ICANT code. Basic processes will be detailed and an evaluation of the `peaking factor' for ITER will be presented for a given configuration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Faudot, E.; Heuraux, S.; Colas, L.
2005-09-26
Understanding DC potential generation in front of ICRF antennas is crucial for long pulse high RF power systems. DC potentials are produced by sheath rectification of these RF potentials. To reach this goal, near RF parallel electric fields have to be computed in 3D and integrated along open magnetic field lines to yield a 2D RF potential map in a transverse plane. DC potentials are produced by sheath rectification of these RF potentials. As RF potentials are spatially inhomogeneous, transverse polarization currents are created, modifying RF and DC maps. Such modifications are quantified on a 'test map' having initially amore » Gaussian shape and assuming that the map remains Gaussian near its summit,the time behavior of the peak can be estimated analytically in presence of polarization current as a function of its width r0 and amplitude {phi}0 (normalized to a characteristic length for transverse transport and to the local temperature). A 'peaking factor' is built from the DC peak potential normalized to {phi}0, and validated with a 2D fluid code and a 2D PIC code (XOOPIC). In an unexpected way transverse currents can increase this factor. Realistic situations of a Tore Supra antenna are also studied, with self-consistent near fields provided by ICANT code. Basic processes will be detailed and an evaluation of the 'peaking factor' for ITER will be presented for a given configuration.« less
Rubio-Sanz, L.; Prieto, R. I.; Imperial, J.; Brito, B.
2013-01-01
A gene encoding a homolog to the cation diffusion facilitator protein DmeF from Cupriavidus metallidurans has been identified in the genome of Rhizobium leguminosarum UPM791. The R. leguminosarum dmeF gene is located downstream of an open reading frame (designated dmeR) encoding a protein homologous to the nickel- and cobalt-responsive transcriptional regulator RcnR from Escherichia coli. Analysis of gene expression showed that the R. leguminosarum dmeRF genes are organized as a transcriptional unit whose expression is strongly induced by nickel and cobalt ions, likely by alleviating the repressor activity of DmeR on dmeRF transcription. An R. leguminosarum dmeRF mutant strain displayed increased sensitivity to Co(II) and Ni(II), whereas no alterations of its resistance to Cd(II), Cu(II), or Zn(II) were observed. A decrease of symbiotic performance was observed when pea plants inoculated with an R. leguminosarum dmeRF deletion mutant strain were grown in the presence of high concentrations of nickel and cobalt. The same mutant induced significantly lower activity levels of NiFe hydrogenase in microaerobic cultures. These results indicate that the R. leguminosarum DmeRF system is a metal-responsive efflux mechanism acting as a key element for metal homeostasis in R. leguminosarum under free-living and symbiotic conditions. The presence of similar dmeRF gene clusters in other Rhizobiaceae suggests that the dmeRF system is a conserved mechanism for metal tolerance in legume endosymbiotic bacteria. PMID:23934501
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gates, Jacklyn M; Gates, J.M.; Garcia, M.A.
2008-01-15
Isotopes of rutherfordium (258-261Rf) were produced in irradiations of 238U targets with 26Mg beams. Excitation functions were measured for the 4n, 5n and 6n exit channels. Production of 261Rf in the 3n exit channel with a cross section of 28+92-26 pb was observed. Alpha decay of 258Rf was observed for the first time with an alpha-particle energy of 9.05+-0.03 MeV and an alpha/total decay branching ratio of 0.31+-0.11. In 259Rf, the electron capture/total decay branching ratio was measured to be 0.15+-0.04. The measured half-lives for 258Rf, 259Rf and 260Rf were 14.7+1.2-1.0 ms, 2.5+0.4-0.3 s and 22.2+3.0-2.4 ms, respectively, in agreementmore » with literature data. The systematics of the alpha decay Q values and of the partial spontaneous fission half-lives were evaluated for even-even nuclides in the region of the N = 152, Z = 100 deformed shell. The influence of the N = 152 shell on the alpha decay Q values for rutherfordium was observed to be similar to that of the lighter elements (96<_ Z<_ 102). However, the N = 152 shell does not stabilize the rutherfordium isotopes against spontaneous fission, as it does in the lighter elements (96<_ Z<_102).« less
Sellbom, Martin; Arbisi, Paul A
2017-01-01
This special section considers 9 independent articles that seek to link the Minnesota Multiphasic Personality Inventory-2-Restructured Form (MMPI-2-RF; Ben-Porath & Tellegen, 2008/ 2011 ) to contemporary models of psychopathology. Sellbom ( this issue ) maps the Specific Problems scales onto hierarchical psychopathology structures, whereas Romero, Toorabally, Burchett, Tarescavage, and Glassmire ( this issue ) and Shkalim, Almagor, and Ben-Porath ( this issue ) show evidence of linking the instruments' scales to diagnostic representations of common higher order psychopathology constructs. McCord, Achee, Cannon, Harrop, and Poynter ( this issue ) link the MMPI-2-RF scales to psychophysiological constructs inspired by the National Institute of Mental Health (NIMH) Research Domain Criteria. Sellbom and Smith ( this issue ) find support for MMPI-2-RF scale hypotheses in covering personality psychopathology in general, whereas Klein Haneveld, Kamphuis, Smid, and Forbey ( this issue ) and Kutchen et al. ( this issue ) demonstrate the utility of the MMPI-2-RF in capturing contemporary conceptualizations of the psychopathic personality. Finally, Franz, Harrop, and McCord ( this issue ) and Rogers et al. ( this issue ) mapped the MMPI-2-RF scales onto more specific transdiagnostic constructs reflecting interpersonal functioning and suicide behavior proneness, respectively.
Tarescavage, Anthony M; Corey, David M; Ben-Porath, Yossef S
2015-02-01
The purpose of this study was to investigate the predictive validity of the Minnesota Multiphasic Personality Inventory-2-Restructured Form (MMPI-2-RF) in a sample of law enforcement officers. MMPI-2-RF scores were collected from preemployment psychological evaluations of 136 male police officers, and supervisor ratings of performance and problem behavior were subsequently obtained during the initial probationary period. The sample produced meaningfully lower and less variant substantive scale scores than the general population and the MMPI-2-RF Police Candidate comparison group, which significantly affected effect sizes for the zero-order correlations. After applying a correction for range restriction, MMPI-2-RF substantive scales demonstrated moderate to strong associations with criteria, particularly in the Emotional Dysfunction and Interpersonal Functioning domains. Relative risk ratio analyses showed that cutoffs of 45T and 50T maintained reasonable selection ratios because of the exceptionally low scores in this sample and were associated with significantly increased risk for problematic behavior. These results provide support for the predictive validity of the MMPI-2-RF substantive scales in this setting. Implications of these findings and limitations of these results are discussed. © The Author(s) 2014.
NASA Astrophysics Data System (ADS)
Jain, P.; Recchia, M.; Cavenago, M.; Fantz, U.; Gaio, E.; Kraus, W.; Maistrello, A.; Veltri, P.
2018-04-01
Neutral beam injection (NBI) for plasma heating and current drive is necessary for International Thermonuclear Experimental reactor (ITER) tokamak. Due to its various advantages, a radio frequency (RF) driven plasma source type was selected as a reference ion source for the ITER heating NBI. The ITER relevant RF negative ion sources are inductively coupled (IC) devices whose operational working frequency has been chosen to be 1 MHz and are characterized by high RF power density (˜9.4 W cm-3) and low operational pressure (around 0.3 Pa). The RF field is produced by a coil in a cylindrical chamber leading to a plasma generation followed by its expansion inside the chamber. This paper recalls different concepts based on which a methodology is developed to evaluate the efficiency of the RF power transfer to hydrogen plasma. This efficiency is then analyzed as a function of the working frequency and in dependence of other operating source and plasma parameters. The study is applied to a high power IC RF hydrogen ion source which is similar to one simplified driver of the ELISE source (half the size of the ITER NBI source).
NASA Astrophysics Data System (ADS)
Butcher, K. S. A.; Terziyska, P. T.; Gergova, R.; Georgiev, V.; Georgieva, D.; Binsted, P. W.; Skerget, S.
2017-01-01
It is shown that attractive electrostatic interactions between regions of positive charge in RF plasmas and the negative charge of metal wetting layers, present during compound semiconductor film growth, can have a greater influence than substrate temperature on film morphology. Using GaN and InN film growth as examples, the DC field component of a remote RF plasma is demonstrated to electrostatically affect metal wetting layers to the point of actually determining the mode of film growth. Examples of enhanced self-seeded nanopillar growth are provided in the case where the substrate is directly exposed to the DC field generated by the plasma. In another case, we show that electrostatic shielding of the DC field from the substrate can result in the growth of Ga-face GaN layers from gallium metal wetting layers at 490 °C with root-mean-square roughness values as low as 0.6 nm. This study has been carried out using a migration enhanced deposition technique with pulsed delivery of the metal precursor allowing the identification of metal wetting layers versus metal droplets as a function of the quantity of metal source delivered per cycle. It is also shown that electrostatic interactions with the plasma can affect metal rich growth limits, causing metal droplet formation for lower metal flux than would otherwise occur. Accordingly, film growth rates can be increased when shielding the substrate from the positive charge region of the plasma. For the example shown here, growth rates were more than doubled using a shielding grid.
Ma, Li; Fan, Suohai
2017-03-14
The random forests algorithm is a type of classifier with prominent universality, a wide application range, and robustness for avoiding overfitting. But there are still some drawbacks to random forests. Therefore, to improve the performance of random forests, this paper seeks to improve imbalanced data processing, feature selection and parameter optimization. We propose the CURE-SMOTE algorithm for the imbalanced data classification problem. Experiments on imbalanced UCI data reveal that the combination of Clustering Using Representatives (CURE) enhances the original synthetic minority oversampling technique (SMOTE) algorithms effectively compared with the classification results on the original data using random sampling, Borderline-SMOTE1, safe-level SMOTE, C-SMOTE, and k-means-SMOTE. Additionally, the hybrid RF (random forests) algorithm has been proposed for feature selection and parameter optimization, which uses the minimum out of bag (OOB) data error as its objective function. Simulation results on binary and higher-dimensional data indicate that the proposed hybrid RF algorithms, hybrid genetic-random forests algorithm, hybrid particle swarm-random forests algorithm and hybrid fish swarm-random forests algorithm can achieve the minimum OOB error and show the best generalization ability. The training set produced from the proposed CURE-SMOTE algorithm is closer to the original data distribution because it contains minimal noise. Thus, better classification results are produced from this feasible and effective algorithm. Moreover, the hybrid algorithm's F-value, G-mean, AUC and OOB scores demonstrate that they surpass the performance of the original RF algorithm. Hence, this hybrid algorithm provides a new way to perform feature selection and parameter optimization.
Tees, D F; Waugh, R E; Hammer, D A
2001-01-01
A microcantilever technique was used to apply force to receptor-ligand molecules involved in leukocyte rolling on blood vessel walls. E-selectin was adsorbed onto 3-microm-diameter, 4-mm-long glass fibers, and the selectin ligand, sialyl Lewis(x), was coupled to latex microspheres. After binding, the microsphere and bound fiber were retracted using a computerized loading protocol that combines hydrodynamic and Hookean forces on the fiber to produce a range of force loading rates (force/time), r(f). From the distribution of forces at failure, the average force was determined and plotted as a function of ln r(f). The slope and intercept of the plot yield the unstressed reverse reaction rate, k(r)(o), and a parameter that describes the force dependence of reverse reaction rates, r(o). The ligand was titrated so adhesion occurred in approximately 30% of tests, implying that >80% of adhesive events involve single bonds. Monte Carlo simulations show that this level of multiple bonding has little effect on parameter estimation. The estimates are r(o) = 0.048 and 0.016 nm and k(r)(o) = 0.72 and 2.2 s(-1) for loading rates in the ranges 200-1000 and 1000-5000 pN s(-1), respectively. Levenberg-Marquardt fitting across all values of r(f) gives r(o) = 0.034 nm and k(r)(o) = 0.82 s(-1). The values of these parameters are in the range required for rolling, as suggested by adhesive dynamics simulations. PMID:11159435
Systematic Morphometry of Catecholamine Nuclei in the Brainstem.
Bucci, Domenico; Busceti, Carla L; Calierno, Maria T; Di Pietro, Paola; Madonna, Michele; Biagioni, Francesca; Ryskalin, Larisa; Limanaqi, Fiona; Nicoletti, Ferdinando; Fornai, Francesco
2017-01-01
Catecholamine nuclei within the brainstem reticular formation (RF) play a pivotal role in a variety of brain functions. However, a systematic characterization of these nuclei in the very same experimental conditions is missing so far. Tyrosine hydroxylase (TH) immune-positive cells of the brainstem correspond to dopamine (DA)-, norepinephrine (NE)-, and epinephrine (E)-containing cells. Here, we report a systematic count of TH-positive neurons in the RF of the mouse brainstem by using stereological morphometry. All these nuclei were analyzed for anatomical localization, rostro-caudal extension, volume, neuron number, neuron density, and mean neuronal area for each nucleus. The present data apart from inherent informative value wish to represent a reference for neuronal mapping in those studies investigating the functional anatomy of the brainstem RF. These include: the sleep-wake cycle, movement control, muscle tone modulation, mood control, novelty orienting stimuli, attention, archaic responses to internal and external stressful stimuli, anxiety, breathing, blood pressure, and innumerable activities modulated by the archaic iso-dendritic hard core of the brainstem RF. Most TH-immune-positive cells fill the lateral part of the RF, which indeed possesses a high catecholamine content. A few nuclei are medial, although conventional nosography considers all these nuclei as part of the lateral column of the RF. Despite the key role of these nuclei in psychiatric and neurological disorders, only a few of them aspired a great attention in biomedical investigation, while most of them remain largely obscure although intense research is currently in progress. A simultaneous description of all these nuclei is not simply key to comprehend the variety of brainstem catecholamine reticular neurons, but probably represents an intrinsically key base for understanding brain physiology and physiopathology.
Systematic Morphometry of Catecholamine Nuclei in the Brainstem
Bucci, Domenico; Busceti, Carla L.; Calierno, Maria T.; Di Pietro, Paola; Madonna, Michele; Biagioni, Francesca; Ryskalin, Larisa; Limanaqi, Fiona; Nicoletti, Ferdinando; Fornai, Francesco
2017-01-01
Catecholamine nuclei within the brainstem reticular formation (RF) play a pivotal role in a variety of brain functions. However, a systematic characterization of these nuclei in the very same experimental conditions is missing so far. Tyrosine hydroxylase (TH) immune-positive cells of the brainstem correspond to dopamine (DA)-, norepinephrine (NE)-, and epinephrine (E)-containing cells. Here, we report a systematic count of TH-positive neurons in the RF of the mouse brainstem by using stereological morphometry. All these nuclei were analyzed for anatomical localization, rostro-caudal extension, volume, neuron number, neuron density, and mean neuronal area for each nucleus. The present data apart from inherent informative value wish to represent a reference for neuronal mapping in those studies investigating the functional anatomy of the brainstem RF. These include: the sleep-wake cycle, movement control, muscle tone modulation, mood control, novelty orienting stimuli, attention, archaic responses to internal and external stressful stimuli, anxiety, breathing, blood pressure, and innumerable activities modulated by the archaic iso-dendritic hard core of the brainstem RF. Most TH-immune-positive cells fill the lateral part of the RF, which indeed possesses a high catecholamine content. A few nuclei are medial, although conventional nosography considers all these nuclei as part of the lateral column of the RF. Despite the key role of these nuclei in psychiatric and neurological disorders, only a few of them aspired a great attention in biomedical investigation, while most of them remain largely obscure although intense research is currently in progress. A simultaneous description of all these nuclei is not simply key to comprehend the variety of brainstem catecholamine reticular neurons, but probably represents an intrinsically key base for understanding brain physiology and physiopathology. PMID:29163071
Huang, Lijie; Huang, Taicheng; Zhen, Zonglei; Liu, Jia
2016-03-15
We present a test-retest dataset for evaluation of long-term reliability of measures from structural and resting-state functional magnetic resonance imaging (sMRI and rfMRI) scans. The repeated scan dataset was collected from 61 healthy adults in two sessions using highly similar imaging parameters at an interval of 103-189 days. However, as the imaging parameters were not completely identical, the reliability estimated from this dataset shall reflect the lower bounds of the true reliability of sMRI/rfMRI measures. Furthermore, in conjunction with other test-retest datasets, our dataset may help explore the impact of different imaging parameters on reliability of sMRI/rfMRI measures, which is especially critical for assessing datasets collected from multiple centers. In addition, intelligence quotient (IQ) was measured for each participant using Raven's Advanced Progressive Matrices. The data can thus be used for purposes other than assessing reliability of sMRI/rfMRI alone. For example, data from each single session could be used to associate structural and functional measures of the brain with the IQ metrics to explore brain-IQ association.
Chen, Wei; Chen, Jie-Jie; Lu, Rui; Qian, Chen; Li, Wen-Wei; Yu, Han-Qing
2014-08-01
Riboflavin (RF), the primary redox active component of flavin, is involved in many redox processes in biogeochemical systems. Despite of its wide distribution and important roles in environmental remediation, its redox behaviors and reaction mechanisms in hydrophobic sites remain unclear yet. In this study, spectroelectrochemical analysis and density functional theory (DFT) calculation were integrated to explore the redox behaviors of RF in dimethyl sulfoxide (DMSO), which was used to create a hydrophobic environment. Specifically, cyclic voltafluorometry (CVF) and derivative cyclic voltafluorometry (DCVF) were employed to track the RF concentration changing profiles. It was found that the reduction contained a series of proton-coupled electron transfers dependent of potential driving force. In addition to the electron transfer-chemical reaction-electron transfer process, a disproportionation (DISP1) process was also identified to be involved in the reduction. The redox potential and free energy of each step obtained from the DFT calculations further confirmed the mechanisms proposed based on the experimental results. The combination of experimental and theoretical approaches yields a deep insight into the characteristics of RF in environmental remediation and better understanding about the proton-coupled electron transfer mechanisms. Copyright © 2014 Elsevier B.V. All rights reserved.
Stabilization of self-mode-locked quantum dash lasers by symmetric dual-loop optical feedback
NASA Astrophysics Data System (ADS)
Asghar, Haroon; Wei, Wei; Kumar, Pramod; Sooudi, Ehsan; McInerney, John. G.
2018-02-01
We report experimental studies of the influence of symmetric dual-loop optical feedback on the RF linewidth and timing jitter of self-mode-locked two-section quantum dash lasers emitting at 1550 nm. Various feedback schemes were investigated and optimum levels determined for narrowest RF linewidth and low timing jitter, for single-loop and symmetric dual-loop feedback. Two symmetric dual-loop configurations, with balanced and unbalanced feedback ratios, were studied. We demonstrate that unbalanced symmetric dual loop feedback, with the inner cavity resonant and fine delay tuning of the outer loop, gives narrowest RF linewidth and reduced timing jitter over a wide range of delay, unlike single and balanced symmetric dual-loop configurations. This configuration with feedback lengths 80 and 140 m narrows the RF linewidth by 4-67x and 10-100x, respectively, across the widest delay range, compared to free-running. For symmetric dual-loop feedback, the influence of different power split ratios through the feedback loops was determined. Our results show that symmetric dual-loop feedback is markedly more effective than single-loop feedback in reducing RF linewidth and timing jitter, and is much less sensitive to delay phase, making this technique ideal for applications where robustness and alignment tolerance are essential.
Long pulse EBW start-up experiments in MAST
Shevchenko, V. F.; Baranov, Y. F.; Bigelow, T.; ...
2015-03-12
Start-up technique reported here relies on a double mode conversion (MC) for electron Bernstein wave (EBW) excitation. It consists of MC of the ordinary (O) mode, entering the plasma from the low field side of the tokamak, into the extraordinary (X) mode at a mirror-polarizer located at the high field side. The X mode propagates back to the plasma, passes through electron cyclotron resonance (ECR) and experiences a subsequent X to EBW MC near the upper hybrid resonance (UHR). Finally the excited EBW mode is totally absorbed at the Doppler shifted ECR. The absorption of EBW remains high even inmore » cold rarefied plasmas. Furthermore, EBW can generate significant plasma current giving the prospect of a fully solenoid-free plasma start-up. First experiments using this scheme were carried out on MAST [1]. Plasma currents up to 33 kA have been achieved using 28 GHz 100kW 90ms RF pulses. Recently experimental results were extended to longer RF pulses showing further increase of plasma currents generated by RF power alone. A record current of 73kA has been achieved with 450ms RF pulse of similar power. The current drive enhancement was mainly achieved due to RF pulse extension and further optimisation of the start-up scenario.« less
Long pulse EBW start-up experiments in MAST
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shevchenko, V. F.; Baranov, Y. F.; Bigelow, T.
Start-up technique reported here relies on a double mode conversion (MC) for electron Bernstein wave (EBW) excitation. It consists of MC of the ordinary (O) mode, entering the plasma from the low field side of the tokamak, into the extraordinary (X) mode at a mirror-polarizer located at the high field side. The X mode propagates back to the plasma, passes through electron cyclotron resonance (ECR) and experiences a subsequent X to EBW MC near the upper hybrid resonance (UHR). Finally the excited EBW mode is totally absorbed at the Doppler shifted ECR. The absorption of EBW remains high even inmore » cold rarefied plasmas. Furthermore, EBW can generate significant plasma current giving the prospect of a fully solenoid-free plasma start-up. First experiments using this scheme were carried out on MAST [1]. Plasma currents up to 33 kA have been achieved using 28 GHz 100kW 90ms RF pulses. Recently experimental results were extended to longer RF pulses showing further increase of plasma currents generated by RF power alone. A record current of 73kA has been achieved with 450ms RF pulse of similar power. The current drive enhancement was mainly achieved due to RF pulse extension and further optimisation of the start-up scenario.« less
Long Pulse EBW Start-up Experiments in MAST
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shevchenko, V. F.; Bigelow, Tim S; Caughman, J. B. O.
Start-up technique reported here relies on a double mode conversion (MC) for electron Bernstein wave (EBW) excitation. It consists of MC of the ordinary (0) mode, entering the plasma from the low field side of the tokamak, into the extraordinary (X) mode at a mirror-polarizer located at the high field side. The X mode propagates back to the plasma, passes through electron cyclotron resonance (ECR) and experiences a subsequent X to EBW MC near the upper hybrid resonance (UHR). Finally the excited EBW mode is totally absorbed at the Doppler shifted ECR. The absorption of EBW remains high even inmore » cold rarefied plasmas. Furthermore, EBW can generate significant plasma current giving the prospect of a fully solenoid-free plasma start-up. First experiments using this scheme were carried out on MAST [1]. Plasma currents up to 33 kA have been achieved using 28 GHz 100kW 90ms RF pulses. Recently experimental results were extended to longer RF pulses showing further increase of plasma currents generated by RF power alone. A record current of 73kA has been achieved with 450ms RF pulse of similar power. The current drive enhancement was mainly achieved due to RF pulse extension and further optimisation of the start-up scenario.« less
Kumamoto, Etsuko; Takahashi, Akihiro; Matsuoka, Yuichiro; Morita, Yoshinori; Kutsumi, Hiromu; Azuma, Takeshi; Kuroda, Kagayaki
2013-01-01
The MR-endoscope system can perform magnetic resonance (MR) imaging during endoscopy and show the images obtained by using endoscope and MR. The MR-endoscope system can acquire a high-spatial resolution MR image with an intraluminal radiofrequency (RF) coil, and the navigation system shows the scope's location and orientation inside the human body and indicates MR images with a scope view. In order to conveniently perform an endoscopy and MR procedure, the design of the user interface is very important because it provides useful information. In this study, we propose a navigation system using a wireless accelerometer-based controller with Bluetooth technology and a navigation technique to set the intraluminal RF coil using the navigation system. The feasibility of using this wireless controller in the MR shield room was validated via phantom examinations of the influence on MR procedures and navigation accuracy. In vitro examinations using an isolated porcine stomach demonstrated the effectiveness of the navigation technique using a wireless remote-control device.
NASA Astrophysics Data System (ADS)
Adib, George A.; Sabry, Yasser M.; Khalil, Diaa
2016-03-01
The characterization of long fiber cavities is essential for many systems to predict the system practical performance. The conventional techniques for optical cavity characterization are not suitable for long fiber cavities due to the cavities' small free spectral ranges and due to the length variations caused by the environmental effects. In this work, we present a novel technique to characterize long fiber cavities using multi-longitudinal mode fiber laser source and RF spectrum analyzer. The fiber laser source is formed in a ring configuration, where the fiber laser cavity length is chosen to be 15 km to ensure that the free spectral range is much smaller than the free spectral range of the characterized passive fiber cavities. The method has been applied experimentally to characterize ring cavities with lengths of 6.2 m and 2.4 km. The results are compared to theoretical predictions with very good agreement.
NASA Astrophysics Data System (ADS)
Hlondo, L. R.; Lalremruata, B.; Punte, L. R. M.; Rebecca, L.; Lalnunthari, J.; Thanga, H. H.
2016-04-01
Self-excited push-pull vacuum tube oscillator is one of the most commonly used oscillators in radio frequency (RF)-ion plasma sources for generation of ions using radio frequency. However, in spite of its fundamental role in the process of plasma formation, the working and operational characteristics are the most frequently skip part in the descriptions of RF ion sources in literatures. A more detailed treatment is given in the present work on the RF oscillator alone using twin beam power tetrodes 829B and GI30. The circuit operates at 102 MHz, and the oscillation conditions, stability in frequency, and RF output power are studied and analyzed. A modified form of photometric method and RF peak voltage detection method are employed to study the variation of the oscillator output power with plate voltage. The power curves obtained from these measurements are quadratic in nature and increase with increase in plate voltage. However, the RF output power as measured by photometric methods is always less than the value calculated from peak voltage measurements. This difference is due to the fact that the filament coil of the ordinary light bulb used as load/detector in photometric method is not a perfect inductor. The effect of inductive reactance on power transfer to load was further investigated and a technique is developed to estimate the amount of power correction needed in the photometric measurement result.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hlondo, L. R.; Lalremruata, B.; Punte, L. R. M.
Self-excited push-pull vacuum tube oscillator is one of the most commonly used oscillators in radio frequency (RF)-ion plasma sources for generation of ions using radio frequency. However, in spite of its fundamental role in the process of plasma formation, the working and operational characteristics are the most frequently skip part in the descriptions of RF ion sources in literatures. A more detailed treatment is given in the present work on the RF oscillator alone using twin beam power tetrodes 829B and GI30. The circuit operates at 102 MHz, and the oscillation conditions, stability in frequency, and RF output power aremore » studied and analyzed. A modified form of photometric method and RF peak voltage detection method are employed to study the variation of the oscillator output power with plate voltage. The power curves obtained from these measurements are quadratic in nature and increase with increase in plate voltage. However, the RF output power as measured by photometric methods is always less than the value calculated from peak voltage measurements. This difference is due to the fact that the filament coil of the ordinary light bulb used as load/detector in photometric method is not a perfect inductor. The effect of inductive reactance on power transfer to load was further investigated and a technique is developed to estimate the amount of power correction needed in the photometric measurement result.« less
Hlondo, L R; Lalremruata, B; Punte, L R M; Rebecca, L; Lalnunthari, J; Thanga, H H
2016-04-01
Self-excited push-pull vacuum tube oscillator is one of the most commonly used oscillators in radio frequency (RF)-ion plasma sources for generation of ions using radio frequency. However, in spite of its fundamental role in the process of plasma formation, the working and operational characteristics are the most frequently skip part in the descriptions of RF ion sources in literatures. A more detailed treatment is given in the present work on the RF oscillator alone using twin beam power tetrodes 829B and GI30. The circuit operates at 102 MHz, and the oscillation conditions, stability in frequency, and RF output power are studied and analyzed. A modified form of photometric method and RF peak voltage detection method are employed to study the variation of the oscillator output power with plate voltage. The power curves obtained from these measurements are quadratic in nature and increase with increase in plate voltage. However, the RF output power as measured by photometric methods is always less than the value calculated from peak voltage measurements. This difference is due to the fact that the filament coil of the ordinary light bulb used as load/detector in photometric method is not a perfect inductor. The effect of inductive reactance on power transfer to load was further investigated and a technique is developed to estimate the amount of power correction needed in the photometric measurement result.
Antiviral screening of forty-two Egyptian medicinal plants.
Soltan, Maha Mohamed; Zaki, Adel Kamal
2009-10-29
Egyptian medicinal plants are well known by their diverse uses in traditional folk medicine to cure various ailments including infectious diseases. Forty-two Egyptian medicinal plant species were selected from local market and were subjected to antiviral screening bioassay to investigate and to evaluate their biological activities. Hydro-alcoholic extracts of each species were separately prepared and tested against three viruses: herpes simplex-1 virus (HSV), poliomyelitis-1 virus (POLIO) and vesicular stomatitis virus (VSV). The antiviral activity were determined by means of the end point titration technique (EPTT) that depends on the ability of plant extract dilutions to inhibit the produced cytopathogenic effect (CPE) and expressed as reduction factor (Rf) of the viral titer. Achillea fragrantissima, Jasonia montana and Globularia arabica are found to have antiviral activity against POLIO in a concentration dependent manner at complete non-toxic concentration range 10-100 microg/ml (Rf 10(6)), 10-100 microg/ml (Rf 10(5)) and 50-100 microg/ml (Rf 10(4)), respectively while Tanacetum sinaicum are found to have moderate antiviral activity against POLIO at concentration of 50-100 microg/ml (Rf 10(2)). Ephedra alata and Moringa peregrina are found to have antiviral activity against HSV (Rf 10(4)). Also, the results revealed that Capparis sinaica, Tamarix nilotica and Cyperus rotundus are found to have virucidal effect against HSV. All the forty-two plant species are found to have no reliable antiviral activity against VSV. The specific indications claimed by the traditional healers are confirmed by antiviral test.
Denis, Romain; Wilkinson, Jennifer; De Vito, Giuseppe
2011-09-01
The purpose of this study was to investigate whether changes in angular velocity would alter vastus lateralis (VL) and rectus femoris (RF) oxygenation status during maximal isokinetic knee extension exercises. Eleven recreationally active male participants randomly performed ten maximal knee extensions at 30, 60, 120 and 240° s(-1). Tissue oxygenation index (TOI) and total haemoglobin concentration ([tHb]) were acquired from the VL and RF muscles by means of near-infrared spectroscopy (NIRS). Breath-by-breath pulmonary oxygen consumption (VO(2p)) was recorded throughout the tests. Peak torque and VO(2p) significantly decreased as a function of velocity (P<0·05). Interestingly, RF and VL TOI significantly increased as a function of velocity (P<0·05), whereas [tHb] significantly decreased as a function of velocity (P<0·05). A greater number of muscle fibre recruited at slow velocity, where the torque and VO(2p) were the highest, might explain the lower VL and RF TOI observed herein. Furthermore, the increase in local blood flow (suggested by [tHb] changes) during isokinetic knee extension exercises performed at slow angular velocity might have been induced by a higher intramuscular pressure during the contraction phases as well as a greater microcirculatory vasodilatation during relaxation phases. Implementing slow-velocity isokinetic exercises in rehabilitation or other training programmes could delay the short-term anoxia generated by such exercises and result in muscle metabolism enhancement. © 2011 The Authors. Clinical Physiology and Functional Imaging © 2011 Scandinavian Society of Clinical Physiology and Nuclear Medicine.
DESIGN AND INSTRUMENTATION OF A POUND-WATKINS NUCLEAR MAGNETIC-RESONANCE SPECTROMETER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geiger, F.E. Jr.
Problems of instrumentation of a Pound-Watkins nuclear magnetic- resonance spectrometer were investigated. Experimertal data were collected for the sensitivity of the os cillator to a signal from a Watkins calibrator as a function of modulation frequencies from 30 cps to 5 kc and rf tank voltsges from 0.05 to 0.7v/sub rms/. The results confirm Watkins" oscillator theory. An expression was derived for the amount of frequency modulation of the rf oscillator by the Watkins calibrator. For representative values of rf circuit components, this frequency modulation is roughly 0.5 cps at 10 Mc. The rf sample probes constructed for this projectmore » are almost free of modulation pickup in modulation fields as high as 23.5 oersteds (280 cps) and a steady field of 7000 oersteds. (auth)« less
Deposition of silicon nitride from SiCl4 and NH3 in a low pressure RF plasma
NASA Technical Reports Server (NTRS)
Ron, Y.; Raveh, A.; Carmi, U.; Inspektor, A.; Avni, R.
1983-01-01
Silicon nitride coatings were deposited in a low-pressure (1-10 Torr) RF plasma from SiCl4 and NH3 in the presence of argon onto stainless martensitic steel grounded and floating substrates at 300 C and 440 C respectively. The heating of the substrates depends mainly on the position and the induced RF power. The coatings were identified as silicon nitride by X-ray investigation and were found to contain chlorine by energy-dispersive analysis of X-rays. The growth rate, the microhardness and the chlorine concentration of the coatings were determined as a function of the total gas pressure, the RF power input and the NH3-to-SiCl4 ratio. It was observed that the coatings on the floating substrates have higher deposition rates and are of superior quality.
Design and test of a double-nuclear RF coil for 1H MRI and 13C MRSI at 7 T
NASA Astrophysics Data System (ADS)
Rutledge, Omar; Kwak, Tiffany; Cao, Peng; Zhang, Xiaoliang
2016-06-01
RF coil operation at the ultrahigh field of 7 T is fraught with technical challenges that limit the advancement of novel human in vivo applications at 7 T. In this work, a hybrid technique combining a microstrip transmission line and a lumped-element L-C loop coil to form a double-nuclear RF coil for proton magnetic resonance imaging and carbon magnetic resonance spectroscopy at 7 T was proposed and investigated. Network analysis revealed a high Q-factor and excellent decoupling between the coils. Proton images and localized carbon spectra were acquired with high sensitivity. The successful testing of this novel double-nuclear coil demonstrates the feasibility of this hybrid design for double-nuclear MR imaging and spectroscopy studies at the ultrahigh field of 7 T.
Shielded microstrip array for 7T human MR imaging.
Wu, Bing; Wang, Chunsheng; Kelley, Douglas A C; Xu, Duan; Vigneron, Daniel B; Nelson, Sarah J; Zhang, Xiaoliang
2010-01-01
The high-frequency transceiver array based on the microstrip transmission line design is a promising technique for ultrahigh field magnetic resonance imaging (MRI) signal excitation and reception. However, with the increase of radio-frequency (RF) channels, the size of the ground plane in each microstrip coil element is usually not sufficient to provide a perfect ground. Consequently, the transceiver array may suffer from cable resonance, lower Q-factors, and imaging quality degradations. In this paper, we present an approach to improving the performance of microstrip transceiver arrays by introducing RF shielding outside the microstrip array and the feeding coaxial cables. This improvement reduced interactions among cables, increased resonance stability, and Q-factors, and thus improved imaging quality. An experimental method was also introduced and utilized for quantitative measurement and evaluation of RF coil resonance stability or "cable resonance" behavior.
Shielded Microstrip Array for 7T Human MR Imaging
Wu, Bing; Wang, Chunsheng; Kelley, Douglas A. C.; Xu, Duan; Vigneron, Daniel B.; Nelson, Sarah J.
2010-01-01
The high-frequency transceiver array based on the microstrip transmission line design is a promising technique for ultrahigh field magnetic resonance imaging (MRI) signal excitation and reception. However, with the increase of radio-frequency (RF) channels, the size of the ground plane in each microstrip coil element is usually not sufficient to provide a perfect ground. Consequently, the transceiver array may suffer from cable resonance, lower Q-factors, and imaging quality degradations. In this paper, we present an approach to improving the performance of microstrip transceiver arrays by introducing RF shielding outside the microstrip array and the feeding coaxial cables. This improvement reduced interactions among cables, increased resonance stability, and Q-factors, and thus improved imaging quality. An experimental method was also introduced and utilized for quantitative measurement and evaluation of RF coil resonance stability or “cable resonance” behavior. PMID:19822470
NASA Astrophysics Data System (ADS)
Lee, J.; Gao, W.; Li, Z.; Hodgson, M.; Metson, J.; Gong, H.; Pal, U.
2005-05-01
Zinc oxide thin films were prepared by dc (direct current) and rf (radio frequency) magnetron sputtering on glass substrates. ZnO films produced by dc sputtering have a high resistance, while the films produced using rf sputtering are significantly more conductive. While the conductive films have a compact nodular surface morphology, the resistive films have a relatively porous surface with columnar structures in cross section. Compared to the dc sputtered films, rf sputtered films have a microstructure with smaller d spacing, lower internal stress, higher band gap energy and higher density. Dependence of conductivity on the deposition technique and the resulting d spacing , stress, density, band gap, film thickness and Al doping are discussed. Correlations between the electrical conductivity, microstructural parameters and optical properties of the films have been made.
Coherent detection of THz laser signals in optical fiber systems.
Folland, Thomas G; Marshall, Owen P; Beere, Harvey E; Ritchie, David A; Chakraborty, Subhasish
2017-10-16
Terahertz (THz) coherent detectors are crucial for the stabilization and measurement of the properties of quantum cascade lasers (QCLs). This paper describes the exploitation of intra-cavity sum frequency generation to up-convert the emission of a THz QCL to the near infrared for detection with fiber optic coupled components alone. Specifically, a low cost infrared photodiode is used to detect a radio frequency (RF) signal with a signal-to-noise ratio of approximately 20dB, generated by beating the up-converted THz wave and a near infrared local oscillator. This RF beat note allows direct analysis of the THz QCL emission in time and frequency domains. The application of this technique for QCL characterization is demonstrated by analyzing the continuous tuning of the RF signal over 2 GHz, which arises from mode tuning across the QCL's operational current range.
RF Photonic Technology in Optical Fiber Links
NASA Astrophysics Data System (ADS)
Chang, William S. C.
2007-06-01
List of contributors; Introduction and preface; 1. Figures of merit and performance analysis of photonic microwave links Charles Cox and William S. C. Chang; 2. RF subcarrier links in local access networks Xiaolin Lu; 3. Analog modulation of semiconductor lasers Joachim Piprek and John E. Bowers; 4. LiNbO3 external modulators and their use in high performance analog links Gary E. Betts; 5. Broadband traveling wave modulators in LiNbO3 Marta M. Howerton and William K. Burns; 6. Multiple quantum well electroabsorption modulators for RF photonic links William S. C. Chang; 7. Polymer modulators for RF photonics Timothy Van Eck; 8. Photodiodes for high performance analog links P. K. L. Yu and Ming C. Wu; 9. Opto-electronic oscillators X. Steve Yao; 10. Photonic link techniques for microwave frequency conversion Stephen A. Pappert, Roger Helkey and Ronald T. Logan Jr; 11. Antenna-coupled millimeter-wave electro-optical modulators William B. Bridges; 12. System design and performance of wideband photonic phased array antennas Greg L. Tangonan, Willie Ng, Daniel Yap and Ron Stephens; Acknowledgements; References; Index.
NASA Astrophysics Data System (ADS)
Janik, Dieter; Inoue, T.; Michaud, A.
2006-01-01
This report summarizes the results and the measuring methods of an international key comparison between twelve national metrology institutes (NMIs) and is concerning the calibration factor of RF power sensors in the coaxial 3.5 mm line for frequencies up to 26 GHz. Two RF power travelling standards fitted with male PC 3.5 mm connectors were measured at seven frequencies. The following NMIs participated: NMIJ (Japan), NRC (Canada), NIST (USA), METAS (Switzerland), CSIR-NML (South Africa), NMIA (Australia), NPL (UK), SiQ (Slovenia), IEN (Italy), VNIIFTRI (Russian Federation), SPRING (Singapore) and PTB (Germany), as the pilot laboratory. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCEM, according to the provisions of the CIPM Mutual Recognition Arrangement (MRA).
Recovering area-to-mass ratio of resident space objects through data mining
NASA Astrophysics Data System (ADS)
Peng, Hao; Bai, Xiaoli
2018-01-01
The area-to-mass ratio (AMR) of a resident space object (RSO) is an important parameter for improved space situation awareness capability due to its effect on the non-conservative forces including the atmosphere drag force and the solar radiation pressure force. However, information about AMR is often not provided in most space catalogs. The present paper investigates recovering the AMR information from the consistency error, which refers to the difference between the orbit predicted from an earlier estimate and the orbit estimated at the current epoch. A data mining technique, particularly the random forest (RF) method, is used to discover the relationship between the consistency error and the AMR. Using a simulation-based space catalog environment as the testbed, this paper demonstrates that the classification RF model can determine the RSO's category AMR and the regression RF model can generate continuous AMR values, both with good accuracies. Furthermore, the paper reveals that by recording additional information besides the consistency error, the RF model can estimate the AMR with even higher accuracy.
Prototyping high-gradient mm-wave accelerating structures
Nanni, Emilio A.; Dolgashev, Valery A.; Haase, Andrew; ...
2017-01-01
We present single-cell accelerating structures designed for high-gradient testing at 110 GHz. The purpose of this work is to study the basic physics of ultrahigh vacuum RF breakdown in high-gradient RF accelerators. The accelerating structures are π-mode standing-wave cavities fed with a TM 01 circular waveguide. The structures are fabricated using precision milling out of two metal blocks, and the blocks are joined with diffusion bonding and brazing. The impact of fabrication and joining techniques on the cell geometry and RF performance will be discussed. First prototypes had a measured Q 0 of 2800, approaching the theoretical design value ofmore » 3300. The geometry of these accelerating structures are as close as practical to singlecell standing-wave X-band accelerating structures more than 40 of which were tested at SLAC. This wealth of X-band data will serve as a baseline for these 110 GHz tests. Furthermore, the structures will be powered with short pulses from a MW gyrotron oscillator. RF power of 1 MW may allow an accelerating gradient of 400 MeV/m to be reached.« less
Röösli, Martin
2008-06-01
This article is a systematic review of whether everyday exposure to radiofrequency electromagnetic field (RF-EMF) causes symptoms, and whether some individuals are able to detect low-level RF-EMF (below the ICNIRP [International Commission on Non-Ionizing Radiation Protection] guidelines). Peer-reviewed articles published before August 2007 were identified by means of a systematic literature search. Meta-analytic techniques were used to pool the results from studies investigating the ability to discriminate active from sham RF-EMF exposure. RF-EMF discrimination was investigated in seven studies including a total of 182 self-declared electromagnetic hypersensitive (EHS) individuals and 332 non-EHS individuals. The pooled correct field detection rate was 4.2% better than expected by chance (95% CI: -2.1 to 10.5). There was no evidence that EHS individuals could detect presence or absence of RF-EMF better than other persons. There was little evidence that short-term exposure to a mobile phone or base station causes symptoms based on the results of eight randomized trials investigating 194 EHS and 346 non-EHS individuals in a laboratory. Some of the trials provided evidence for the occurrence of nocebo effects. In population based studies an association between symptoms and exposure to RF-EMF in the everyday environment was repeatedly observed. This review showed that the large majority of individuals who claims to be able to detect low level RF-EMF are not able to do so under double-blind conditions. If such individuals exist, they represent a small minority and have not been identified yet. The available observational studies do not allow differentiating between biophysical from EMF and nocebo effects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roeoesli, Martin
2008-06-15
This article is a systematic review of whether everyday exposure to radiofrequency electromagnetic field (RF-EMF) causes symptoms, and whether some individuals are able to detect low-level RF-EMF (below the ICNIRP [International Commission on Non-Ionizing Radiation Protection] guidelines). Peer-reviewed articles published before August 2007 were identified by means of a systematic literature search. Meta-analytic techniques were used to pool the results from studies investigating the ability to discriminate active from sham RF-EMF exposure. RF-EMF discrimination was investigated in seven studies including a total of 182 self-declared electromagnetic hypersensitive (EHS) individuals and 332 non-EHS individuals. The pooled correct field detection rate wasmore » 4.2% better than expected by chance (95% CI: -2.1 to 10.5). There was no evidence that EHS individuals could detect presence or absence of RF-EMF better than other persons. There was little evidence that short-term exposure to a mobile phone or base station causes symptoms based on the results of eight randomized trials investigating 194 EHS and 346 non-EHS individuals in a laboratory. Some of the trials provided evidence for the occurrence of nocebo effects. In population based studies an association between symptoms and exposure to RF-EMF in the everyday environment was repeatedly observed. This review showed that the large majority of individuals who claims to be able to detect low level RF-EMF are not able to do so under double-blind conditions. If such individuals exist, they represent a small minority and have not been identified yet. The available observational studies do not allow differentiating between biophysical from EMF and nocebo effects.« less
Distributed Spectral Monitoring For Emitter Localization
2018-02-12
localization techniques in a DSA sensor network. The results of the research are presented through simulation of localization algorithms, emulation of a...network on a wireless RF environment emulator, and field tests. The results of the various tests in both the lab and field are obtained and analyzed to... are two main classes of localization techniques, and the technique to use will depend on the information available with the emitter. The first class
Schmitter, Sebastian; Wu, Xiaoping; Auerbach, Edward J; Adriany, Gregor; Pfeuffer, Josef; Hamm, Michael; Uğurbil, Kâmil; van de Moortele, Pierre-François
2014-05-01
Ultrahigh magnetic fields of 7 T or higher have proven to significantly enhance the contrast in time-of-flight (TOF) imaging, one of the most commonly used non-contrast-enhanced magnetic resonance angiography techniques. Compared with lower field strength, however, the required radiofrequency (RF) power is increased at 7 T and the contrast obtained with a conventional head transmit RF coil is typically spatially heterogeneous.In this work, we addressed the contrast heterogeneity in multislab TOF acquisitions by optimizing the excitation flip angle homogeneity while constraining the RF power using 3-dimensional tailored RF pulses ("spokes") with a 16-channel parallel transmission system and a 16-channel transceiver head coil. We investigated in simulations and in vivo experiments flip angle homogeneity and angiogram quality with a same 3-slab TOF protocol for different excitations including 1-, 2-, and 3-spoke parallel transmit RF pulses and compared the results with a circularly polarized (CP) phase setting similar to a birdcage excitation. B1 and B0 calibration maps were obtained in multiple slices, and the RF pulse for each slab was designed on the basis of 3 calibration slices located at the bottom/middle/top of each slab, respectively. By design, all excitations were computed to generate the same total RF power for the same flip angle. In 8 subjects, we quantified the excitation homogeneity and the distribution of the RF power to individual channels. In addition, we investigated the consequences of local flip angle variations at the junction between adjacent slabs as well as the impact of ΔB0 on image quality. The flip angle heterogeneity, expressed as the coefficient of variation, averaged over all volunteers and all slabs could be reduced from 29.4% for CP mode excitation to 14.1% for a 1-spoke excitation and to 7.3% for 2-spoke excitations. A separate detailed analysis shows only a marginal improvement for 3-spoke compared with the 2-spoke excitation. The strong improvement in flip angle homogeneity particularly impacted the junction between adjacent TOF slabs, where significant residual artifacts observed with 1-spoke excitation could be efficiently mitigated using a 2-spoke excitation with same RF power and same average flip angle. Although the total RF power is maintained at the same level than that in CP mode excitation, the energy distribution is fairly heterogeneous through the 16 transmit channels for 1- and 2-spoke excitations, with the highest energy for 1 channel being a factor of 2.4 (1 spoke) and 2.2 (2 spokes) higher than that in CP mode. In vivo experiments demonstrated the necessity for including ΔB0 spatial variations during 2-spoke RF pulse design, particularly in areas with strong local susceptibility variations such as the lower frontal lobe. Significant improvement in excitation fidelity leading to improved TOF contrast, particularly in the brain periphery, as well as smooth slab transitions can be achieved with 2-spoke excitation while maintaining the same excitation energy as that in CP mode. These results suggest that expanding parallel transmit methods, including the use of multidimensional spatially selective excitation, will also be very beneficial for other techniques, such as perfusion imaging.
Schmitter, Sebastian; Wu, Xiaoping; Auerbach, Edward J.; Adriany, Gregor; Pfeuffer, Josef; Hamm, Michael; Ugurbil, Kamil; Van de Moortele, Pierre-Francois
2015-01-01
Objectives Ultra high magnetic fields of ≥7 Tesla have proven to significantly enhance the contrast in time-of-flight (TOF) imaging, one of the most commonly used non-contrast enhanced MR angiography techniques. Compared to lower field strength, however, the required RF power is increased at 7 Tesla and the contrast obtained with a conventional head transmit RF coil is typically spatially heterogeneous. In this work we address the contrast heterogeneity in multi-slab TOF acquisitions by optimizing the excitation flip angle homogeneity while constraining the RF power using 3D tailored RF pulses (“spokes”) with a 16 channel parallel transmission system and a 16 channel transceiver head coil. Material and Methods We investigate in simulations and in-vivo experiments flip angle homogeneity and angiogram quality with a same 3-slab TOF protocol for different excitations including 1-, 2- and 3-spoke parallel transmit RF pulses and compare the results with a circularly polarized (CP) phase setting similar to a birdcage excitation. B1 and B0 calibration maps were obtained in multiple slices and the RF pulse for each slab was designed based on 3 calibration slices located at the bottom/middle/top of each slab respectively. By design, all excitations were computed to generate the same total RF power for the same flip angle. In 8 subjects we quantify the excitation homogeneity and the distribution of the RF power to individual channels. In addition, we investigate the consequences of local flip angle variations at the junction between adjacent slabs as well as the impact of ΔB0 on image quality. Results The flip angle heterogeneity, expressed as the coefficient of variation, averaged over all volunteers and all slabs could be reduced from 29.4% for CP mode excitation to 14.1% for a 1-spoke excitation and to 7.3% for a 2-spoke excitations. A separate detailed analysis shows only a marginal improvement for 3-spoke compared to the 2-spoke excitation. The strong improvement in flip angle homogeneity particularly impacted the junction between adjacent TOF slabs, where significant residual artifacts observed with 1-spoke excitation could be efficiently mitigated using a 2-spoke excitation with same RF power and same average flip angle. Even though the total RF power is maintained at the same level than in CP mode excitation, the energy distribution is fairly heterogeneous through the 16 transmit channels for 1- and 2-spoke excitation, with the highest energy for one channel being a factor of 2.4 (1-spoke) and 2.2 (2-spoke) higher than in CP mode. In vivo experiments demonstrate the necessity of including ΔB0 spatial variations during 2-spoke RF pulse design, in particular in areas with strong local susceptibility variations such as the lower frontal lobe. Conclusion Significant improvement in excitation fidelity leading to improved TOF contrast, particularly in the brain periphery, as well as smooth slab transitions can be achieved with 2-spoke excitation while maintaining the same excitation energy as in CP mode. These results suggest that expanding parallel transmit methods, including the use of multi-dimensional spatially selective excitation, will also be very beneficial for other techniques, such as perfusion imaging. PMID:24598439
Alizadeh, Zahra; Halabchi, Farzin; Mazaheri, Reza; Abolhasani, Maryam; Tabesh, Mastaneh
2016-10-01
Today, different kinds of non-invasive body contouring modalities, including cryolipolysis, radiofrequency (RF), low-level laser therapy (LLLT), and high-intensity focused ultrasound (HIFU) are available for reducing the volume of subcutaneous adipose tissue or cellulite. Each procedure has distinct mechanisms for stimulating apoptosis or necrosis adipose tissue. In addition to the mentioned techniques, some investigations are underway for analyzing the efficacy of other techniques such as whole body vibration (WBV) and extracorporeal shockwave therapy (ESWT). In the present review the mechanisms, effects and side effects of the mentioned methods have been discussed. The effect of these devices on cellulite or subcutaneous fat reduction has been assessed. We searched pubmed, google scholar and the cochrane databases for systemic reviews, review articles, meta-analysis and randomized clinical trials up to February 2015. The keywords were subcutaneous fat, cellulite, obesity, noninvasive body contouring, cryolipolysis, RF, LLLT, HIFU, ESWT and WBV with full names and abbreviations. We included seven reviews and 66 original articles in the present narrative review. Most of them were applied on normal weight or overweight participants (body mass index < 30 kg/m 2 ) in both genders with broad range of ages (18 to 50 years on average). In the original articles, the numbers of included methods were: 10 HIFU, 13 RF, 22 cryolipolysis, 11 LLLT, 5 ESWT and 4 WBV therapies. Six of the articles evaluated combination therapies and seven compared the effects of different devices. Some of the noninvasive body contouring devices in animal and human studies such as cryolipolysis, RF, LLLT and HIFU showed statistical significant effects on body contouring, removing unwanted fat and cellulite in some body areas. However, the clinical effects are mild to moderate, for example 2 - 4 cm circumference reduction as a sign of subcutaneous fat reduction during total treatment sessions. Overall, there is no definitive noninvasive treatment method for cellulite. Additionally, due to the methodological differences in the existing evidence, comparing the techniques is difficult.
Li, Ye; Yu, Baiying; Pang, Yong; Vigneron, Daniel B; Zhang, Xiaoliang
2013-01-01
The use of quadrature RF magnetic fields has been demonstrated to be an efficient method to reduce transmit power and to increase the signal-to-noise (SNR) in magnetic resonance (MR) imaging. The goal of this project was to develop a new method using the common-mode and differential-mode (CMDM) technique for compact, planar, distributed-element quadrature transmit/receive resonators for MR signal excitation and detection and to investigate its performance for MR imaging, particularly, at ultrahigh magnetic fields. A prototype resonator based on CMDM method implemented by using microstrip transmission line was designed and fabricated for 7T imaging. Both the common mode (CM) and the differential mode (DM) of the resonator were tuned and matched at 298MHz independently. Numerical electromagnetic simulation was performed to verify the orthogonal B1 field direction of the two modes of the CMDM resonator. Both workbench tests and MR imaging experiments were carried out to evaluate the performance. The intrinsic decoupling between the two modes of the CMDM resonator was demonstrated by the bench test, showing a better than -36 dB transmission coefficient between the two modes at resonance frequency. The MR images acquired by using each mode and the images combined in quadrature showed that the CM and DM of the proposed resonator provided similar B1 coverage and achieved SNR improvement in the entire region of interest. The simulation and experimental results demonstrate that the proposed CMDM method with distributed-element transmission line technique is a feasible and efficient technique for planar quadrature RF coil design at ultrahigh fields, providing intrinsic decoupling between two quadrature channels and high frequency capability. Due to its simple and compact geometry and easy implementation of decoupling methods, the CMDM quadrature resonator can possibly be a good candidate for design blocks in multichannel RF coil arrays.
Murbach, Manuel; Neufeld, Esra; Cabot, Eugenia; Zastrow, Earl; Córcoles, Juan; Kainz, Wolfgang; Kuster, Niels
2016-09-01
To assess the effect of radiofrequency (RF) shimming of a 3 Tesla (T) two-port body coil on B1 + uniformity, the local specific absorption rate (SAR), and the local temperature increase as a function of the thermoregulatory response. RF shimming alters induced current distribution, which may result in large changes in the level and location of absorbed RF energy. We investigated this effect with six anatomical human models from the Virtual Population in 10 imaging landmarks and four RF coils. Three thermoregulation models were applied to estimate potential local temperature increases, including a newly proposed model for impaired thermoregulation. Two-port RF shimming, compared to circular polarization mode, can increase the B1 + uniformity on average by +32%. Worst-case SAR excitations increase the local RF power deposition on average by +39%. In the first level controlled operating mode, induced peak temperatures reach 42.5°C and 45.6°C in patients with normal and impaired thermoregulation, respectively. Image quality with 3T body coils can be significantly increased by RF shimming. Exposure in realistic scan scenarios within guideline limits can be considered safe for a broad patient population with normal thermoregulation. Patients with impaired thermoregulation should not be scanned outside of the normal operating mode. Magn Reson Med 76:986-997, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
Comparing different stimulus configurations for population receptive field mapping in human fMRI
Alvarez, Ivan; de Haas, Benjamin; Clark, Chris A.; Rees, Geraint; Schwarzkopf, D. Samuel
2015-01-01
Population receptive field (pRF) mapping is a widely used approach to measuring aggregate human visual receptive field properties by recording non-invasive signals using functional MRI. Despite growing interest, no study to date has systematically investigated the effects of different stimulus configurations on pRF estimates from human visual cortex. Here we compared the effects of three different stimulus configurations on a model-based approach to pRF estimation: size-invariant bars and eccentricity-scaled bars defined in Cartesian coordinates and traveling along the cardinal axes, and a novel simultaneous “wedge and ring” stimulus defined in polar coordinates, systematically covering polar and eccentricity axes. We found that the presence or absence of eccentricity scaling had a significant effect on goodness of fit and pRF size estimates. Further, variability in pRF size estimates was directly influenced by stimulus configuration, particularly for higher visual areas including V5/MT+. Finally, we compared eccentricity estimation between phase-encoded and model-based pRF approaches. We observed a tendency for more peripheral eccentricity estimates using phase-encoded methods, independent of stimulus size. We conclude that both eccentricity scaling and polar rather than Cartesian stimulus configuration are important considerations for optimal experimental design in pRF mapping. While all stimulus configurations produce adequate estimates, simultaneous wedge and ring stimulation produced higher fit reliability, with a significant advantage in reduced acquisition time. PMID:25750620
RF current distribution and topology of RF sheath potentials in front of ICRF antennae
NASA Astrophysics Data System (ADS)
Colas, L.; Heuraux, S.; Brémond, S.; Bosia, G.
2005-08-01
The 2D (radial/poloidal) spatial topology of RF-induced convective cells developing radially in front of ion cyclotron range of frequency (ICRF) antennae is investigated, in relation to the spatial distribution of RF currents over the metallic structure of the antenna. This is done via a Green's function, determined from the ICRF wave coupling equations, and well-suited to open field lines extending toroidally far away on both sides of the antenna. Using such formalism, combined with a full-wave calculation using the 3D antenna code ICANT (Pécoul S. et al 2000 Comput. Phys. Commun. 146 166-87), two classes of convective cells are analysed. The first one appears in front of phased arrays of straps, and depending on the strap phasing, its topology is interpreted using the poloidal profiles of either the RF current or the RF voltage of the strip line theory. The other class of convective cells is specific to antenna box corners and is evidenced for the first time. Based on such analysis, general design rules are worked out in order to reduce the RF-sheath potentials, which generalize those proposed in the earlier literature, and concrete antenna design options are tested numerically. The merits of aligning all strap centres on the same (tilted) flux tube, and of reducing the antenna box toroidal conductivity in its lower and upper parts, are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joo, Youngdo, E-mail: Ydjoo77@postech.ac.kr; Yu, Inha; Park, Insoo
After three years of upgrading work, the Pohang Light Source-II (PLS-II) is now successfully operating. The final quantitative goal of PLS-II is a top-up user-service operation with beam current of 400 mA to be completed by the end of 2014. During the beam store test up to 400 mA in the storage ring (SR), it was observed that the vacuum pressure around the radio frequency (RF) window of the superconducting cavity rapidly increases over the interlock level limiting the availability of the maximum beam current storing. Although available beam current is enhanced by setting a higher RF accelerating voltage, it is bettermore » to keep the RF accelerating voltage as low as possible in the long time top-up operation. We investigated the cause of the window vacuum pressure increment by studying the changes in the electric field distribution at the superconducting cavity and waveguide according to the beam current. In our simulation, an equivalent physical modeling was developed using a finite-difference time-domain code. The simulation revealed that the electric field amplitude at the RF window is exponentially increased as the beam current increases, thus this high electric field amplitude causes a RF breakdown at the RF window, which comes with the rapid increase of window vacuum pressure. The RF accelerating voltage of PLS-II RF system was set to 4.95 MV, which was estimated using the maximum available beam current that works as a function of RF voltage, and the top-up operation test with the beam current of 400 mA was successfully carried out.« less
Circadian Rhythmicity of Antioxidant Markers in Rats Exposed to 1.8 GHz Radiofrequency Fields
Cao, Honglong; Qin, Fenju; Liu, Xueguan; Wang, Jiajun; Cao, Yi; Tong, Jian; Zhao, Heming
2015-01-01
Background: The potential health risks of exposure to Radiofrequency Fields (RF) emitted by mobile phones are currently of considerable public interest, such as the adverse effects on the circadian rhythmicities of biological systems. To determine whether circadian rhythms of the plasma antioxidants (Mel, GSH-Px and SOD) are affected by RF, we performed a study on male Sprague Dawley rats exposed to the 1.8 GHz RF. Methods: All animals were divided into seven groups. The animals in six groups were exposed to 1.8 GHz RF (201.7 μW/cm2 power density, 0.05653 W/kg specific absorption rate) at a specific period of the day (3, 7, 11, 15, 19 and 23 h GMT, respectively), for 2 h/day for 32 consecutive days. The rats in the seventh group were used as sham-exposed controls. At the end of last RF exposure, blood samples were collected from each rat every 4 h (total period of 24 h) and also at similar times from sham-exposed animals. The concentrations of three antioxidants (Mel, GSH-Px and SOD) were determined. The data in RF-exposed rats were compared with those in sham-exposed animals. Results: circadian rhythms in the synthesis of Mel and antioxidant enzymes, GSH-Px and SOD, were shifted in RF-exposed rats compared to sham-exposed animals: the Mel, GSH-Px and SOD levels were significantly decreased when RF exposure was given at 23 and 3 h GMT. Conclusion: The overall results indicate that there may be adverse effects of RF exposure on antioxidant function, in terms of both the daily antioxidative levels, as well as the circadian rhythmicity. PMID:25685954
Multiple View Zenith Angle Observations of Reflectance From Ponderosa Pine Stands
NASA Technical Reports Server (NTRS)
Johnson, Lee F.; Lawless, James G. (Technical Monitor)
1994-01-01
Reflectance factors (RF(lambda)) from dense and sparse ponderosa pine (Pinus ponderosa) stands, derived from radiance data collected in the solar principal plane by the Advanced Solid-State Array Spectro-radiometer (ASAS), were examined as a function of view zenith angle (theta(sub v)). RF(lambda) was maximized with theta(sub v) nearest the solar retrodirection, and minimized near the specular direction throughout the ASAS spectral region. The dense stand had much higher RF anisotropy (ma)dmurn RF is minimum RF) in the red region than did the sparse stand (relative differences of 5.3 vs. 2.75, respectively), as a function of theta(sub v), due to the shadow component in the canopy. Anisotropy in the near-infrared (NIR) was more similar between the two stands (2.5 in the dense stand and 2.25 in the sparse stand); the dense stand exhibited a greater hotspot effect than 20 the sparse stand in this spectral region. Two common vegetation transforms, the NIR/red ratio and the normalized difference vegetation index (NDVI), both showed a theta(sub v) dependence for the dense stand. Minimum values occurred near the retrodirection and maximum values occurred near the specular direction. Greater relative differences were noted for the NIR/red ratio (2.1) than for the NDVI (1.3). The sparse stand showed no obvious dependence on theta(sub v) for either transform, except for slightly elevated values toward the specular direction.
Trošić, Ivančica; Mataušić-Pišl, Mirjana; Pavičić, Ivan; Marjanović, Ana Marija
2013-12-01
The unfavourable outcomes of mobile phone use on male fertility have still not been fully elaborated. To establish the potentially adverse effects of everyday exposure to radiofrequency radiation (RF) on humans, we performed a controlled animal study that aimed to investigate the influence of RF radiation on rat testis histology as well as the amount, mobility, and structure of epididymal free sperm cell population. Eighteen adult male rats were divided into two groups of nine. One group comprised sham-exposed control animals, while the other group endured total body irradiation for an hour daily during two weeks. A 915 MHz RF field, power density of 2.4 W m(-2) and strength of 30 V m(-1) was generated in a Gigahertz Transversal Electromagnetic chamber. The specific absorption rate (SAR) was 0.6 W kg(-1). Body mass and temperature were measured before and after each exposure treatment. Immediately after the last exposure, the animals were sacrificed and testes removed and prepared for histological analysis. The free sperm cells were collected from the cauda epididymis and their quantity, quality, and morphology were microscopically determined using a haemocytometer. No statistically significant alteration in any of the endpoints was observed. This study found no evidence of an unfavourable effect of the applied RF radiation on testicular function or structure. Based on these results, we can conclude that short-time intermittent exposure to RF radiation does not represent a significant risk factor for rat reproductive functions.
A sequential adaptation technique and its application to the Mark 12 IFF system
NASA Astrophysics Data System (ADS)
Bailey, John S.; Mallett, John D.; Sheppard, Duane J.; Warner, F. Neal; Adams, Robert
1986-07-01
Sequential adaptation uses only two sets of receivers, correlators, and A/D converters which are time multiplexed to effect spatial adaptation in a system with (N) adaptive degrees of freedom. This technique can substantially reduce the hardware cost over what is realizable in a parallel architecture. A three channel L-band version of the sequential adapter was built and tested for use with the MARK XII IFF (identify friend or foe) system. In this system the sequentially determined adaptive weights were obtained digitally but implemented at RF. As a result, many of the post RF hardware induced sources of error that normally limit cancellation, such as receiver mismatch, are removed by the feedback property. The result is a system that can yield high levels of cancellation and be readily retrofitted to currently fielded equipment.
NASA Astrophysics Data System (ADS)
Ahmed, Oumer S.; Franklin, Steven E.; Wulder, Michael A.; White, Joanne C.
2015-03-01
Many forest management activities, including the development of forest inventories, require spatially detailed forest canopy cover and height data. Among the various remote sensing technologies, LiDAR (Light Detection and Ranging) offers the most accurate and consistent means for obtaining reliable canopy structure measurements. A potential solution to reduce the cost of LiDAR data, is to integrate transects (samples) of LiDAR data with frequently acquired and spatially comprehensive optical remotely sensed data. Although multiple regression is commonly used for such modeling, often it does not fully capture the complex relationships between forest structure variables. This study investigates the potential of Random Forest (RF), a machine learning technique, to estimate LiDAR measured canopy structure using a time series of Landsat imagery. The study is implemented over a 2600 ha area of industrially managed coastal temperate forests on Vancouver Island, British Columbia, Canada. We implemented a trajectory-based approach to time series analysis that generates time since disturbance (TSD) and disturbance intensity information for each pixel and we used this information to stratify the forest land base into two strata: mature forests and young forests. Canopy cover and height for three forest classes (i.e. mature, young and mature and young (combined)) were modeled separately using multiple regression and Random Forest (RF) techniques. For all forest classes, the RF models provided improved estimates relative to the multiple regression models. The lowest validation error was obtained for the mature forest strata in a RF model (R2 = 0.88, RMSE = 2.39 m and bias = -0.16 for canopy height; R2 = 0.72, RMSE = 0.068% and bias = -0.0049 for canopy cover). This study demonstrates the value of using disturbance and successional history to inform estimates of canopy structure and obtain improved estimates of forest canopy cover and height using the RF algorithm.
Neutron resonance spin echo with longitudinal DC fields
NASA Astrophysics Data System (ADS)
Krautloher, Maximilian; Kindervater, Jonas; Keller, Thomas; Häußler, Wolfgang
2016-12-01
We report on the design, construction, and performance of a neutron resonance spin echo (NRSE) instrument employing radio frequency (RF) spin flippers combining RF fields with DC fields, the latter oriented parallel (longitudinal) to the neutron propagation direction (longitudinal NRSE (LNRSE)). The advantage of the longitudinal configuration is the inherent homogeneity of the effective magnetic path integrals. In the center of the RF coils, the sign of the spin precession phase is inverted by a π flip of the neutron spins, such that non-uniform spin precession at the boundaries of the RF flippers is canceled. The residual inhomogeneity can be reduced by Fresnel- or Pythagoras-coils as in the case of conventional spin echo instruments (neutron spin echo (NSE)). Due to the good intrinsic homogeneity of the B0 coils, the current densities required for the correction coils are at least a factor of three less than in conventional NSE. As the precision and the current density of the correction coils are the limiting factors for the resolution of both NSE and LNRSE, the latter has the intrinsic potential to surpass the energy resolution of present NSE instruments. Our prototype LNRSE spectrometer described here was implemented at the resonance spin echo for diverse applications (RESEDA) beamline at the MLZ in Garching, Germany. The DC fields are generated by B0 coils, based on resistive split-pair solenoids with an active shielding for low stray fields along the beam path. One pair of RF flippers at a distance of 2 m generates a field integral of ˜0.5 Tm. The LNRSE technique is a future alternative for high-resolution spectroscopy of quasi-elastic excitations. In addition, it also incorporates the MIEZE technique, which allows to achieve spin echo resolution for spin depolarizing samples and sample environments. Here we present the results of numerical optimization of the coil geometry and first data from the prototype instrument.
Comparison of stream invertebrate response models for bioassessment metric
Waite, Ian R.; Kennen, Jonathan G.; May, Jason T.; Brown, Larry R.; Cuffney, Thomas F.; Jones, Kimberly A.; Orlando, James L.
2012-01-01
We aggregated invertebrate data from various sources to assemble data for modeling in two ecoregions in Oregon and one in California. Our goal was to compare the performance of models developed using multiple linear regression (MLR) techniques with models developed using three relatively new techniques: classification and regression trees (CART), random forest (RF), and boosted regression trees (BRT). We used tolerance of taxa based on richness (RICHTOL) and ratio of observed to expected taxa (O/E) as response variables and land use/land cover as explanatory variables. Responses were generally linear; therefore, there was little improvement to the MLR models when compared to models using CART and RF. In general, the four modeling techniques (MLR, CART, RF, and BRT) consistently selected the same primary explanatory variables for each region. However, results from the BRT models showed significant improvement over the MLR models for each region; increases in R2 from 0.09 to 0.20. The O/E metric that was derived from models specifically calibrated for Oregon consistently had lower R2 values than RICHTOL for the two regions tested. Modeled O/E R2 values were between 0.06 and 0.10 lower for each of the four modeling methods applied in the Willamette Valley and were between 0.19 and 0.36 points lower for the Blue Mountains. As a result, BRT models may indeed represent a good alternative to MLR for modeling species distribution relative to environmental variables.
Larin, Alexander; Womble, Phillip C.; Dobrokhotov, Vladimir
2016-01-01
In this paper, we present a chemiresistive metal oxide (MOX) sensor for detection of hydrogen sulfide. Compared to the previous reports, the overall sensor performance was improved in multiple characteristics, including: sensitivity, selectivity, stability, activation time, response time, recovery time, and activation temperature. The superior sensor performance was attributed to the utilization of hybrid SnO2/TiO2 oxides as interactive catalytic layers deposited using a magnetron radio frequency (RF) sputtering technique. The unique advantage of the RF sputtering for sensor fabrication is the ability to create ultra-thin films with precise control of geometry, morphology and chemical composition of the product of synthesis. Chemiresistive films down to several nanometers can be fabricated as sensing elements. The RF sputtering technique was found to be very robust for bilayer and multilayer oxide structure fabrication. The geometry, morphology, chemical composition and electronic structure of interactive layers were evaluated in relation to their gas sensing performance, using scanning electron microscopy (SEM), X-ray diffraction technique (XRD), atomic force microscopy (AFM), Energy Dispersive X-ray Spectroscopy (EDAX), UV visible spectroscopy, and Kelvin probe measurements. A sensor based on multilayer SnO2/TiO2 catalytic layer with 10% vol. content of TiO2 demonstrated the best gas sensing performance in all characteristics. Based on the pattern relating material’s characteristics to gas sensing performance, the optimization strategy for hydrogen sulfide sensor fabrication was suggested. PMID:27618900
Topkara, Veli K; Williams, Mathew R; Barili, Fabio; Bastos, Renata; Liu, Judy F; Liberman, Elyse A; Russo, Mark J; Oz, Mehmet C; Argenziano, Michael
2006-01-01
Due to its complexity and risk of bleeding, the Maze III procedure has been largely replaced by surgical ablation for atrial fibrillation (AF) using alternative energy sources. Radiofrequency (RF) and microwave (MW) are the most commonly used energy forms. In this study, we sought to compare these energy modalities in terms of clinical outcomes. Two hundred five patients underwent surgical ablation of AF, from October 1999 to May 2004 at our institution via an endocardial approach. Patients were categorized into 2 groups: RF and MW. Baseline characteristics, operative details, and clinical outcomes were compared between the 2 groups. Rhythm success was defined as freedom from AF and atrial flutter as determined by postoperative electrocardiograms. One hundred twenty patients (58.5%) were ablated using RF, whereas 85 (41.5%) were ablated with MW. Most of the patients had persistent AF in both the RF and MW groups (85.7% versus 80.0%, respectively; P = .363). Intraoperative left atrial size was 6.4 +/- 1.7 cm for the RF group and 6.4 +/- 1.7 cm for the MW group (P = .820). Postoperative rhythm success at 6 and 12 months was 72.4% versus 71.4% (P +/- .611) and 75.0% versus 66.7% (P = .909) for the RF and MW groups, respectively. Hospital length of stay was comparable for both groups (15.4 +/- 14.0 versus 13.3 +/- 13.9 days; P = .307). Postoperative survival at 6 months, 1 year, and 3 years was 90.4%, 89.5%, and 86.1% for RF patients compared to 87.9%, 86.5%, and 84.4% for MW patients, respectively (log rank P = .490). RF and MW energy forms yield comparable postoperative rhythm success, hospital length of stay, and postoperative survival. Both sources are rapid, safe, and effective alternatives to "cut and sew" techniques for surgical treatment of AF.
A dual-stimuli-responsive fluorescent switch ultrathin film
NASA Astrophysics Data System (ADS)
Li, Zhixiong; Liang, Ruizheng; Liu, Wendi; Yan, Dongpeng; Wei, Min
2015-10-01
Stimuli-responsive fluorescent switches have shown broad applications in optical devices, biological materials and intelligent responses. Herein, we describe the design and fabrication of a dual-stimuli-responsive fluorescent switch ultrathin film (UTF) via a three-step layer-by-layer (LBL) technique: (i) encapsulation of spiropyran (SP) within an amphiphilic block copolymer (PTBEM) to give the (SP@PTBEM) micelle; (ii) the mixture of riboflavin (Rf) and poly(styrene 4-sulfonate) (PSS) to enhance the adhesion ability of small molecules; (iii) assembly of negatively charged SP@PTBEM and Rf-PSS with cationic layered double hydroxide (LDH) nanoplatelets to obtain the (Rf-PSS/LDH/SP@PTBEM)n UTFs (n: bilayer number). The assembly process of the UTFs and their luminescence properties, as monitored by fluorescence spectroscopy and scanning electron microscopy (SEM), present a uniform and ordered layered structure with stepwise growth. The resulting Rf-PSS/LDH/SP@PTBEM UTF serves as a three-state switchable multicolor (green, yellow, and red) luminescent system based on stimulation from UV/Vis light and pH, with an acceptable reversibility. Therefore, this work provides a facile way to fabricate stimuli-responsive solid-state film switches with tunable-color luminescence, which have potential applications in the areas of displays, sensors, and rewritable optical memory and fluorescent logic devices.Stimuli-responsive fluorescent switches have shown broad applications in optical devices, biological materials and intelligent responses. Herein, we describe the design and fabrication of a dual-stimuli-responsive fluorescent switch ultrathin film (UTF) via a three-step layer-by-layer (LBL) technique: (i) encapsulation of spiropyran (SP) within an amphiphilic block copolymer (PTBEM) to give the (SP@PTBEM) micelle; (ii) the mixture of riboflavin (Rf) and poly(styrene 4-sulfonate) (PSS) to enhance the adhesion ability of small molecules; (iii) assembly of negatively charged SP@PTBEM and Rf-PSS with cationic layered double hydroxide (LDH) nanoplatelets to obtain the (Rf-PSS/LDH/SP@PTBEM)n UTFs (n: bilayer number). The assembly process of the UTFs and their luminescence properties, as monitored by fluorescence spectroscopy and scanning electron microscopy (SEM), present a uniform and ordered layered structure with stepwise growth. The resulting Rf-PSS/LDH/SP@PTBEM UTF serves as a three-state switchable multicolor (green, yellow, and red) luminescent system based on stimulation from UV/Vis light and pH, with an acceptable reversibility. Therefore, this work provides a facile way to fabricate stimuli-responsive solid-state film switches with tunable-color luminescence, which have potential applications in the areas of displays, sensors, and rewritable optical memory and fluorescent logic devices. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr05376e
Balazs, D J; Triandafillu, K; Wood, P; Chevolot, Y; van Delden, C; Harms, H; Hollenstein, C; Mathieu, H J
2004-05-01
Medical-grade poly(vinyl chloride) (PVC) was chemically modified to study how the incorporation of monovalent silver influences Pseudomonas aeruginosa adhesion and colonization. The modification investigated consisted of a radio frequency-oxygen (RF-O(2)) glow discharge pre-functionalization, followed by a two-step wet-treatment in sodium hydroxide and silver nitrate solutions. X-ray photoelectron spectroscopy (XPS) analysis and contact angle measurements were used to investigate the chemical nature and surface wettability of the films following each step of the modification. XPS analysis proved that the RF-O(2) plasma pre-functionalization of native PVC reproducibly increased the amount of functional groups representative of PVC additives, including ether/alcohol, esters and carboxyl groups. More specifically, we demonstrated that the O-C=O groups representative of the phthalic ester and zinc carboxylate additives identified for native PVC increased by two-fold following the RF-O(2) plasma pre-functionalization step. Although RF-O(2) pre-functionalization did not have an effect on the silver content of the NaOH/AgNO(3) treated substrates, such a modification was necessary for biomaterial products that did not have reproducible surfaces amongst production lots. XPS analysis also demonstrated that saponification with sodium hydroxide (NaOH) of esters, like those of the phthalic ester additives of PVC is a simple, irreversible method of hydrolysis, which produced sodium carboxylate and sodium phthalate salts. Exposure of native PVC to NaOH resulted in an increased surface hydrophilicity (from ca 90 degrees to ca 60 degrees ) due to dechlorination. XPS analysis following further incubation in silver nitrate demonstrated that silver ions can be trapped when the sodium of sodium carboxylate is replaced by silver after performing a second treatment with a monovalent silver-containing solution. The creation of silver salt on native PVC resulted in an ultra-hydrophobic (>120 degrees ) surface. The chemical modifications using NaOH and AgNO(3) wet treatments completely inhibited bacterial adhesion of four strains of P. aeruginosa to both native and oxygen-pre-functionalized PVC, and efficiently prevented colonization over longer periods (72 h). Our results suggest that surface modifications that incorporate silver ions would be extremely effective at reducing bacterial colonization to medical devices.
Non-Lethal Weapons The Use Radiofrequency/Microwave Energy for Stunning/Immobilization
2008-11-26
0.75 to 1 GHz RF fields on skeletal muscle contraction using fixed frequencies and just recently implementing frequency sweep paradigms; 4) initiation...This basic research initiative is geared ultimately toward developing effective and safe non-lethal technologies that alter skeletal muscle ... contraction and/or neural functioning via radiofrequency (RF)/microwave (MW) electromagnetic radiation. Major accomplishments included 1) near completion of
Non-Lethal Weapons for Use Rediofrequency/Microwave Energy for Stunning/Immobilization
2008-11-14
of 0.75 to 1 GHz RF fields on skeletal muscle contraction using fixed frequencies and just recently implementing frequency sweep paradigms; (4...This basic research initiative is geared ultimately toward developing effective and safe non-lethal technologies that alter skeletal muscle ... contraction and/or neural functioning via radiofrequency (RF)/microwave (MW) electromagnetic radiation. Major accomplishments included: (1) near completion of
NASA Astrophysics Data System (ADS)
Licciardi, A.; Piana Agostinetti, N.
2016-06-01
Information about seismic anisotropy is embedded in the variation of the amplitude of the Ps pulses as a function of the azimuth, on both the Radial and the Transverse components of teleseismic receiver functions (RF). We develop a semi-automatic method to constrain the presence and the depth of anisotropic layers beneath a single seismic broad-band station. An algorithm is specifically designed to avoid trial and error methods and subjective crustal parametrizations in RF inversions, providing a suitable tool for large-size data set analysis. The algorithm couples together information extracted from a 1-D VS profile and from a harmonic decomposition analysis of the RF data set. This information is used to determine the number of anisotropic layers and their approximate position at depth, which, in turn, can be used to, for example, narrow the search boundaries for layer thickness and S-wave velocity in a subsequent parameter space search. Here, the output of the algorithm is used to invert an RF data set by means of the Neighbourhood Algorithm (NA). To test our methodology, we apply the algorithm to both synthetic and observed data. We make use of synthetic RF with correlated Gaussian noise to investigate the resolution power for multiple and thin (1-3 km) anisotropic layers in the crust. The algorithm successfully identifies the number and position of anisotropic layers at depth prior the NA inversion step. In the NA inversion, strength of anisotropy and orientation of the symmetry axis are correctly retrieved. Then, the method is applied to field measurement from station BUDO in the Tibetan Plateau. Two consecutive layers of anisotropy are automatically identified with our method in the first 25-30 km of the crust. The data are then inverted with the retrieved parametrization. The direction of the anisotropic axis in the uppermost layer correlates well with the orientation of the major planar structure in the area. The deeper anisotropic layer is associated with an older phase of crustal deformation. Our results are compared with previous anisotropic RF studies at the same station, showing strong similarities.
The effects of radiofrequency electromagnetic radiation on sperm function.
Houston, B J; Nixon, B; King, B V; De Iuliis, G N; Aitken, R J
2016-12-01
Mobile phone usage has become an integral part of our lives. However, the effects of the radiofrequency electromagnetic radiation (RF-EMR) emitted by these devices on biological systems and specifically the reproductive systems are currently under active debate. A fundamental hindrance to the current debate is that there is no clear mechanism of how such non-ionising radiation influences biological systems. Therefore, we explored the documented impacts of RF-EMR on the male reproductive system and considered any common observations that could provide insights on a potential mechanism. Among a total of 27 studies investigating the effects of RF-EMR on the male reproductive system, negative consequences of exposure were reported in 21. Within these 21 studies, 11 of the 15 that investigated sperm motility reported significant declines, 7 of 7 that measured the production of reactive oxygen species (ROS) documented elevated levels and 4 of 5 studies that probed for DNA damage highlighted increased damage due to RF-EMR exposure. Associated with this, RF-EMR treatment reduced the antioxidant levels in 6 of 6 studies that discussed this phenomenon, whereas consequences of RF-EMR were successfully ameliorated with the supplementation of antioxidants in all 3 studies that carried out these experiments. In light of this, we envisage a two-step mechanism whereby RF-EMR is able to induce mitochondrial dysfunction leading to elevated ROS production. A continued focus on research, which aims to shed light on the biological effects of RF-EMR will allow us to test and assess this proposed mechanism in a variety of cell types. © 2016 Society for Reproduction and Fertility.
Diago-Navarro, Elizabeth; Mora, Liliana; Buckingham, Richard H; Díaz-Orejas, Ramón; Lemonnier, Marc
2008-01-01
Novel mutations in prfA, the gene for the polypeptide release factor RF1 of Escherichia coli, were isolated using a positive genetic screen based on the parD (kis, kid) toxin–antitoxin system. This original approach allowed the direct selection of mutants with altered translational termination efficiency at UAG codons. The isolated prfA mutants displayed a ∼10-fold decrease in UAG termination efficiency with no significant changes in RF1 stability in vivo. All three mutations, G121S, G301S and R303H, were situated close to the nonsense codon recognition site in RF1:ribosome complexes. The prfA mutants displayed increased sensitivity to the RelE toxin encoded by the relBE system of E. coli, thus providing in vivo support for the functional interaction between RF1 and RelE. The prfA mutants also showed increased sensitivity to the Kid toxin. Since this toxin can cleave RNA in a ribosome-independent manner, this result was not anticipated and provided first evidence for the involvement of RF1 in the pathway of Kid toxicity. The sensitivity of the prfA mutants to RelE and Kid was restored to normal levels upon overproduction of the wild-type RF1 protein. We discuss these results and their utility for the design of novel antibacterial strategies in the light of the recently reported structure of ribosome-bound RF1. PMID:19019162
NASA Astrophysics Data System (ADS)
Colas, Laurent; Lu, Ling-Feng; Křivská, Alena; Jacquot, Jonathan; Hillairet, Julien; Helou, Walid; Goniche, Marc; Heuraux, Stéphane; Faudot, Eric
2017-02-01
We investigate theoretically how sheath radio-frequency (RF) oscillations relate to the spatial structure of the near RF parallel electric field E ∥ emitted by ion cyclotron (IC) wave launchers. We use a simple model of slow wave (SW) evanescence coupled with direct current (DC) plasma biasing via sheath boundary conditions in a 3D parallelepiped filled with homogeneous cold magnetized plasma. Within a ‘wide-sheath’ asymptotic regime, valid for large-amplitude near RF fields, the RF part of this simple RF + DC model becomes linear: the sheath oscillating voltage V RF at open field line boundaries can be re-expressed as a linear combination of individual contributions by every emitting point in the input field map. SW evanescence makes individual contributions all the larger as the wave emission point is located closer to the sheath walls. The decay of |V RF| with the emission point/sheath poloidal distance involves the transverse SW evanescence length and the radial protrusion depth of lateral boundaries. The decay of |V RF| with the emitter/sheath parallel distance is quantified as a function of the parallel SW evanescence length and the parallel connection length of open magnetic field lines. For realistic geometries and target SOL plasmas, poloidal decay occurs over a few centimeters. Typical parallel decay lengths for |V RF| are found to be smaller than IC antenna parallel extension. Oscillating sheath voltages at IC antenna side limiters are therefore mainly sensitive to E ∥ emission by active or passive conducting elements near these limiters, as suggested by recent experimental observations. Parallel proximity effects could also explain why sheath oscillations persist with antisymmetric strap toroidal phasing, despite the parallel antisymmetry of the radiated field map. They could finally justify current attempts at reducing the RF fields induced near antenna boxes to attenuate sheath oscillations in their vicinity.
Theory and Practice in ICRF Antennas for Long Pulse Operation
NASA Astrophysics Data System (ADS)
Colas, L.; Faudot, E.; Brémond, S.; Heuraux, S.; Mitteau, R.; Chantant, M.; Goniche, M.; Basiuk, V.; Bosia, G.; Tore Supra Team
2005-09-01
Long plasma discharges on the Tore Supra (TS) tokamak were extended in 2004 towards higher powers and plasma densities by combined Lower Hybrid (LH) and Ion Cyclotron Range of Frequencies (ICRF) waves. RF pulses of 20s×8MW and 60s×4MW were produced. TS is equipped with 3 ICRF antennas, whose front faces are ready for CW operation. This paper reports on their behaviour over high power long pulses, as observed with infrared (IR) thermography and calorimetric measurements. Edge parasitic losses, although modest, are concentrated on a small surface and can raise surface temperatures close to operational limits. A complex hot spot pattern was revealed with at least 3 physical processes involved : convected power, electron acceleration in the LH near field, and a RF-specific phenomenon compatible with RF sheaths. LH coupling was also perturbed in the antenna shadow. This was attributed to RF-induced DC E×B0 convection. This motivated sheath modelling in two directions. First, the 2D topology of RF potentials was investigated in relation with the RF current distribution over the antenna, via a Green's function formalism and full-wave calculation using the ICANT code. In front of phased arrays of straps, convective cells were interpreted using the RF current profiles of strip line theory. Another class of convective cells, specific to antenna box corners, was evidenced for the first time. Within 1D sheath models assuming independent flux tubes, RF and rectified DC potentials are proportional. 2D fluid models couple nearby flux tubes via transverse polarisation currents. Unexpectedly this does not necessarily smooth RF potential maps. Peak DC potentials can even be enhanced. The experience gained on TS and the numerical tools are valuable for designing steady state high power antennas for next step devices. General rules to reduce RF potentials as well as concrete design options are discussed.
Theory and Practice in ICRF Antennas for Long Pulse Operation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Colas, L.; Bremond, S.; Mitteau, R.
2005-09-26
Long plasma discharges on the Tore Supra (TS) tokamak were extended in 2004 towards higher powers and plasma densities by combined Lower Hybrid (LH) and Ion Cyclotron Range of Frequencies (ICRF) waves. RF pulses of 20sx8MW and 60sx4MW were produced. TS is equipped with 3 ICRF antennas, whose front faces are ready for CW operation. This paper reports on their behaviour over high power long pulses, as observed with infrared (IR) thermography and calorimetric measurements. Edge parasitic losses, although modest, are concentrated on a small surface and can raise surface temperatures close to operational limits. A complex hot spot patternmore » was revealed with at least 3 physical processes involved : convected power, electron acceleration in the LH near field, and a RF-specific phenomenon compatible with RF sheaths. LH coupling was also perturbed in the antenna shadow. This was attributed to RF-induced DC ExB0 convection. This motivated sheath modelling in two directions. First, the 2D topology of RF potentials was investigated in relation with the RF current distribution over the antenna, via a Green's function formalism and full-wave calculation using the ICANT code. In front of phased arrays of straps, convective cells were interpreted using the RF current profiles of strip line theory. Another class of convective cells, specific to antenna box corners, was evidenced for the first time. Within 1D sheath models assuming independent flux tubes, RF and rectified DC potentials are proportional. 2D fluid models couple nearby flux tubes via transverse polarisation currents. Unexpectedly this does not necessarily smooth RF potential maps. Peak DC potentials can even be enhanced. The experience gained on TS and the numerical tools are valuable for designing steady state high power antennas for next step devices. General rules to reduce RF potentials as well as concrete design options are discussed.« less
Murbach, Manuel; Christopoulou, Maria; Crespo-Valero, Pedro; Achermann, Peter; Kuster, Niels
2012-09-01
A novel exposure system for double-blind human electromagnetic provocation studies has been developed that satisfies the precision, control of fields and potential artifacts, and provides the flexibility to investigate the response of hypotheses-driven electromagnetic field exposure schemes on brain function, ranging from extremely low frequency (ELF) to radio frequency (RF) fields. The system can provide the same exposure of the lateral cerebral cortex at two different RF frequencies (900 and 2140 MHz) but with different exposure levels at subcortical structures, and also allows uniform ELF magnetic field exposure of the brain. The RF modulation and ELF signal are obtained by a freely programmable arbitrary signal generator allowing a wide range of worst-case exposure scenarios to be simulated, including those caused by wireless devices. The maximum achievable RF exposure is larger than 60 W/kg peak spatial specific absorption rate averaged over 10 g of tissue. The maximum ELF magnetic field exposure of the brain is 800 A/m at 50 Hz with a deviation from uniformity of 8% (SD). Copyright © 2012 Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
Yao, X. S.; Maleki, L.
1995-01-01
We report a novel oscillator for photonic RF systems. This oscillator is capable of generating high-frequency signals up to 70 GHz in both electrical and optical domains and is a special voltage-controlled oscillator with an optical output port. It can be used to make a phase-locked loop (PLL) and perform all functions that a PLL is capable of for photonic systems. It can be synchronized to a reference source by means of optical injection locking, electrical injection locking, and PLL. It can also be self-phase locked and self-injection locked to generate a high-stability photonic RF reference. Its applications include high-frequency reference regeneration and distribution, high-gain frequency multiplication, comb-frequecy and square-wave generation, carrier recovery, and clock recovery. We anticipate that such photonic voltage-controlled oscillators (VCOs) will be as important to photonic RF systems as electrical VCOs are to electrical RF systems.
Radiofrequency Ablation for Tumor-Related Massive Hematuria
Neeman, Ziv; Sarin, Shawn; Coleman, Jonathan; Fojo, Tito; Wood, Bradford J.
2008-01-01
To determine whether radiofrequency (RF) ablation targeting the tumor-collecting system interface has a durable effect in patients with transfusion-dependent kidney tumor-related hematuria, four patients aged 61-71 years were successfully treated with RF ablation, with a mean follow up of 12 months. Baseline creatinine levels varied from 2.0 mg/dL to 3.7 mg/dL. All patients had received red blood cell transfusions in the days and hours before RF ablation. No subsequent surgical or interventional procedures were required for management of hematuria. Gross hematuria resolved in 24-48 hours in all four patients. Two of the patients are alive with stable renal function and two died of causes unrelated to treatment. RF ablation may be an effective therapeutic option for transfusion-dependent cancer-related hematuria in patients with renal insufficiency, solitary kidney, or comorbidities, or after failed conventional therapies in patients who are not candidates for surgery. PMID:15758142
Radiofrequency ablation for tumor-related massive hematuria.
Neeman, Ziv; Sarin, Shawn; Coleman, Jonathan; Fojo, Tito; Wood, Bradford J
2005-03-01
To determine whether radiofrequency (RF) ablation targeting the tumor-collecting system interface has a durable effect in patients with transfusion-dependent kidney tumor-related hematuria, four patients aged 61-71 years were successfully treated with RF ablation, with a mean follow up of 12 months. Baseline creatinine levels varied from 2.0 mg/dL to 3.7 mg/dL. All patients had received red blood cell transfusions in the days and hours before RF ablation. No subsequent surgical or interventional procedures were required for management of hematuria. Gross hematuria resolved in 24-48 hours in all four patients. Two of the patients are alive with stable renal function and two died of causes unrelated to treatment. RF ablation may be an effective therapeutic option for transfusion-dependent cancer-related hematuria in patients with renal insufficiency, solitary kidney, or comorbidities, or after failed conventional therapies in patients who are not candidates for surgery.
Carbon Cryogel and Carbon Paper-Based Silicon Composite Anode Materials for Lithium-Ion Batteries
NASA Technical Reports Server (NTRS)
Woodworth, James; Baldwin, Richard; Bennett, William
2010-01-01
A variety of materials are under investigation for use as anode materials in lithium-ion batteries, of which, the most promising are those containing silicon. 6 One such material is a composite formed via the dispersion of silicon in a resorcinol-formaldehyde (RF) gel followed by pyrolysis. Two silicon-carbon composite materials, carbon microspheres and nanofoams produced from nano-phase silicon impregnated RF gel precursors have been synthesized and investigated. Carbon microspheres are produced by forming the silicon-containing RF gel into microspheres whereas carbon nano-foams are produced by impregnating carbon fiber paper with the silicon containing RF gel to create a free standing electrode. 1-5 Both materials have demonstrated their ability to function as anodes and utilize the silicon present in the material. Stable reversible capacities above 400 mAh/g for the bulk material and above 1000 mAh/g of Si have been observed.
NASA Technical Reports Server (NTRS)
Woodworth, James; Baldwin, Richard; Bennett, William
2010-01-01
A variety of materials are under investigation for use as anode materials in lithium-ion batteries, of which, the most promising are those containing silicon. One such material is a composite formed via the dispersion of silicon in a resorcinol-formaldehyde (RF) gel followed by pyrolysis. Two silicon-carbon composite materials, carbon microspheres and nanofoams produced from nano-phase silicon impregnated RF gel precursors have been synthesized and investigated. Carbon microspheres are produced by forming the silicon-containing RF gel into microspheres whereas carbon nanofoams are produced by impregnating carbon fiber paper with the silicon containing RF gel to create a free standing electrode. Both materials have demonstrated their ability to function as anodes and utilize the silicon present in the material. Stable reversible capacities above 400 mAh/g for the bulk material and above 1000 mAh/g of Si have been observed.
Carbon Cryogel Silicon Composite Anode Materials for Lithium Ion Batteries
NASA Technical Reports Server (NTRS)
Woodworth James; Baldwin, Richard; Bennett, William
2010-01-01
A variety of materials are under investigation for use as anode materials in lithium-ion batteries, of which, the most promising are those containing silicon. 10 One such material is a composite formed via the dispersion of silicon in a resorcinol-formaldehyde (RF) gel followed by pyrolysis. Two silicon-carbon composite materials, carbon microspheres and nanofoams produced from nano-phase silicon impregnated RF gel precursors have been synthesized and investigated. Carbon microspheres are produced by forming the silicon-containing RF gel into microspheres whereas carbon nano-foams are produced by impregnating carbon fiber paper with the silicon containing RF gel to create a free standing electrode. 1-4,9 Both materials have demonstrated their ability to function as anodes and utilize the silicon present in the material. Stable reversible capacities above 400 mAh/g for the bulk material and above 1000 mAh/g of Si have been observed.
NASA Astrophysics Data System (ADS)
Sinder, M.; Pelleg, J.; Meerovich, V.; Sokolovsky, V.
2018-03-01
RF heating kinetics of a nano-graphene layer/silicon substrate structure is analyzed theoretically as a function of the thickness and sheet resistance of the graphene layer, the dimensions and thermal parameters of the structure, as well as of cooling conditions and of the amplitude and frequency of the applied RF magnetic field. It is shown that two regimes of the heating can be realized. The first one is characterized by heating of the structure up to a finite temperature determined by equilibrium between the dissipated loss power caused by induced eddy-currents and the heat transfer to environment. The second regime corresponds to a fast unlimited temperature increase (heat explosion). The criterions of realization of these regimes are presented in the analytical form. Using the criterions and literature data, it is shown the possibility of the heat explosion regime for a graphene layer/silicon substrate structure at RF heating.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palczewski, Ari; Ciovati, Gianluigi; Li, Yongming
Centrifugal barrel polishing (cbp) for SRF application is becoming more wide spread as the technique for cavity surface preparation. CBP is now being used in some form at SRF laboratories around the world including in the US, Europe and Asia. Before the process can become as mature as wet chemistry like eletro-polishing (EP) and buffered chemical polishing (BCP) there are many questions which remain unanswered. One of these topics includes the uniformity of removal as a function of cavity shape and material type. In this presentation we show CBP removal rates for various media types on 1.3 GHz TESLA andmore » 1.5 GHz CEBAF large/fine grain niobium cavities, and 1.3GHz low surface field copper cavity. The data will also include calculated RF frequency shift modeling non-uniform removal as a function of cavity position and comparing them with CBP results.« less