Sample records for function unique endocytic

  1. Quantum dot-loaded monofunctionalized DNA icosahedra for single-particle tracking of endocytic pathways.

    PubMed

    Bhatia, Dhiraj; Arumugam, Senthil; Nasilowski, Michel; Joshi, Himanshu; Wunder, Christian; Chambon, Valérie; Prakash, Ved; Grazon, Chloé; Nadal, Brice; Maiti, Prabal K; Johannes, Ludger; Dubertret, Benoit; Krishnan, Yamuna

    2016-12-01

    Functionalization of quantum dots (QDs) with a single biomolecular tag using traditional approaches in bulk solution has met with limited success. DNA polyhedra consist of an internal void bounded by a well-defined three-dimensional structured surface. The void can house cargo and the surface can be functionalized with stoichiometric and spatial precision. Here, we show that monofunctionalized QDs can be realized by encapsulating QDs inside DNA icosahedra and functionalizing the DNA shell with an endocytic ligand. We deployed the DNA-encapsulated QDs for real-time imaging of three different endocytic ligands-folic acid, galectin-3 (Gal3) and the Shiga toxin B-subunit (STxB). Single-particle tracking of Gal3- or STxB-functionalized QD-loaded DNA icosahedra allows us to monitor compartmental dynamics along endocytic pathways. These DNA-encapsulated QDs, which bear a unique stoichiometry of endocytic ligands, represent a new class of molecular probes for quantitative imaging of endocytic receptor dynamics.

  2. EHD proteins: Key conductors of endocytic transport

    PubMed Central

    Naslavsky, Naava; Caplan, Steve

    2010-01-01

    Regulation of endocytic transport is controlled by an elaborate network of proteins. Rab GTP-binding proteins and their effectors have well-defined roles in mediating specific endocytic transport steps, but until recently, less was known about the four mammalian dynamin-like C-terminal Eps15 Homology Domain (EHD) proteins that also regulate endocytic events. In recent years, however, great strides have been made in understanding the structure and function of these unique proteins. Indeed, a growing body of literature addresses EHD protein structure, interactions with binding partners, functions in mammalian cells, and the generation of various new model systems. Accordingly, this is now an opportune time to pause and review the function and mechanisms of action of EHD proteins, and to highlight some of the challenges and future directions for the field. PMID:21067929

  3. Chemical Shift Assignments of the C-terminal Eps15 Homology Domain-3 EH Domain*

    PubMed Central

    Caplan, Steve; Sorgen, Paul L.

    2013-01-01

    The C-terminal Eps15 homology (EH) domain 3 (EHD3) belongs to a eukaryotic family of endocytic regulatory proteins and is involved in the recycling of various receptors from the early endosome to the endocytic recycling compartment or in retrograde transport from the endosomes to the Golgi. EH domains are highly conserved in the EHD family and function as protein-protein interaction units that bind to Asn-Pro-Phe (NPF) motif-containing proteins. The EH domain of EHD1 was the first C-terminal EH domain from the EHD family to be solved by NMR. The differences observed between this domain and proteins with N-terminal EH domains helped describe a mechanism for the differential binding of NPF-containing proteins. Here, structural studies were expanded to include the EHD3 EH domain. While the EHD1 and EHD3 EH domains are highly homologous, they have different protein partners. A comparison of these structures will help determine the selectivity in protein binding between the EHD family members and lead to a better understanding of their unique roles in endocytic regulation. PMID:23754701

  4. Efficient Endocytic Uptake and Maturation in Drosophila Oocytes Requires Dynamitin/p50

    PubMed Central

    Liu, Guojun; Sanghavi, Paulomi; Bollinger, Kathryn E.; Perry, Libby; Marshall, Brendan; Roon, Penny; Tanaka, Tsubasa; Nakamura, Akira; Gonsalvez, Graydon B.

    2015-01-01

    Dynactin is a multi-subunit complex that functions as a regulator of the Dynein motor. A central component of this complex is Dynamitin/p50 (Dmn). Dmn is required for endosome motility in mammalian cell lines. However, the extent to which Dmn participates in the sorting of cargo via the endosomal system is unknown. In this study, we examined the endocytic role of Dmn using the Drosophila melanogaster oocyte as a model. Yolk proteins are internalized into the oocyte via clathrin-mediated endocytosis, trafficked through the endocytic pathway, and stored in condensed yolk granules. Oocytes that were depleted of Dmn contained fewer yolk granules than controls. In addition, these oocytes accumulated numerous endocytic intermediate structures. Particularly prominent were enlarged endosomes that were relatively devoid of Yolk proteins. Ultrastructural and genetic analyses indicate that the endocytic intermediates are produced downstream of Rab5. Similar phenotypes were observed upon depleting Dynein heavy chain (Dhc) or Lis1. Dhc is the motor subunit of the Dynein complex and Lis1 is a regulator of Dynein activity. We therefore propose that Dmn performs its function in endocytosis via the Dynein motor. Consistent with a role for Dynein in endocytosis, the motor colocalized with the endocytic machinery at the oocyte cortex in an endocytosis-dependent manner. Our results suggest a model whereby endocytic activity recruits Dynein to the oocyte cortex. The motor along with its regulators, Dynactin and Lis1, functions to ensure efficient endocytic uptake and maturation. PMID:26265702

  5. Clathrin-independent pathways do not contribute significantly to endocytic flux.

    PubMed

    Bitsikas, Vassilis; Corrêa, Ivan R; Nichols, Benjamin J

    2014-09-17

    Several different endocytic pathways have been proposed to function in mammalian cells. Clathrin-coated pits are well defined, but the identity, mechanism and function of alternative pathways have been controversial. Here we apply universal chemical labelling of plasma membrane proteins to define all primary endocytic vesicles, and labelling of specific proteins with a reducible SNAP-tag substrate. These approaches provide high temporal resolution and stringent discrimination between surface-connected and intracellular membranes. We find that at least 95% of the earliest detectable endocytic vesicles arise from clathrin-coated pits. GPI-anchored proteins, candidate cargoes for alternate pathways, are also found to enter the cell predominantly via coated pits. Experiments employing a mutated clathrin adaptor reveal distinct mechanisms for sorting into coated pits, and thereby explain differential effects on the uptake of transferrin and GPI-anchored proteins. These data call for a revision of models for the activity and diversity of endocytic pathways in mammalian cells.

  6. Clathrin-independent pathways do not contribute significantly to endocytic flux

    PubMed Central

    Bitsikas, Vassilis; Corrêa, Ivan R; Nichols, Benjamin J

    2014-01-01

    Several different endocytic pathways have been proposed to function in mammalian cells. Clathrin-coated pits are well defined, but the identity, mechanism and function of alternative pathways have been controversial. Here we apply universal chemical labelling of plasma membrane proteins to define all primary endocytic vesicles, and labelling of specific proteins with a reducible SNAP-tag substrate. These approaches provide high temporal resolution and stringent discrimination between surface-connected and intracellular membranes. We find that at least 95% of the earliest detectable endocytic vesicles arise from clathrin-coated pits. GPI-anchored proteins, candidate cargoes for alternate pathways, are also found to enter the cell predominantly via coated pits. Experiments employing a mutated clathrin adaptor reveal distinct mechanisms for sorting into coated pits, and thereby explain differential effects on the uptake of transferrin and GPI-anchored proteins. These data call for a revision of models for the activity and diversity of endocytic pathways in mammalian cells. DOI: http://dx.doi.org/10.7554/eLife.03970.001 PMID:25232658

  7. Decreased function of survival motor neuron protein impairs endocytic pathways.

    PubMed

    Dimitriadi, Maria; Derdowski, Aaron; Kalloo, Geetika; Maginnis, Melissa S; O'Hern, Patrick; Bliska, Bryn; Sorkaç, Altar; Nguyen, Ken C Q; Cook, Steven J; Poulogiannis, George; Atwood, Walter J; Hall, David H; Hart, Anne C

    2016-07-26

    Spinal muscular atrophy (SMA) is caused by depletion of the ubiquitously expressed survival motor neuron (SMN) protein, with 1 in 40 Caucasians being heterozygous for a disease allele. SMN is critical for the assembly of numerous ribonucleoprotein complexes, yet it is still unclear how reduced SMN levels affect motor neuron function. Here, we examined the impact of SMN depletion in Caenorhabditis elegans and found that decreased function of the SMN ortholog SMN-1 perturbed endocytic pathways at motor neuron synapses and in other tissues. Diminished SMN-1 levels caused defects in C. elegans neuromuscular function, and smn-1 genetic interactions were consistent with an endocytic defect. Changes were observed in synaptic endocytic proteins when SMN-1 levels decreased. At the ultrastructural level, defects were observed in endosomal compartments, including significantly fewer docked synaptic vesicles. Finally, endocytosis-dependent infection by JC polyomavirus (JCPyV) was reduced in human cells with decreased SMN levels. Collectively, these results demonstrate for the first time, to our knowledge, that SMN depletion causes defects in endosomal trafficking that impair synaptic function, even in the absence of motor neuron cell death.

  8. Decreased function of survival motor neuron protein impairs endocytic pathways

    PubMed Central

    Dimitriadi, Maria; Derdowski, Aaron; Kalloo, Geetika; Maginnis, Melissa S.; O’Hern, Patrick; Bliska, Bryn; Sorkaç, Altar; Nguyen, Ken C. Q.; Cook, Steven J.; Poulogiannis, George; Atwood, Walter J.; Hall, David H.; Hart, Anne C.

    2016-01-01

    Spinal muscular atrophy (SMA) is caused by depletion of the ubiquitously expressed survival motor neuron (SMN) protein, with 1 in 40 Caucasians being heterozygous for a disease allele. SMN is critical for the assembly of numerous ribonucleoprotein complexes, yet it is still unclear how reduced SMN levels affect motor neuron function. Here, we examined the impact of SMN depletion in Caenorhabditis elegans and found that decreased function of the SMN ortholog SMN-1 perturbed endocytic pathways at motor neuron synapses and in other tissues. Diminished SMN-1 levels caused defects in C. elegans neuromuscular function, and smn-1 genetic interactions were consistent with an endocytic defect. Changes were observed in synaptic endocytic proteins when SMN-1 levels decreased. At the ultrastructural level, defects were observed in endosomal compartments, including significantly fewer docked synaptic vesicles. Finally, endocytosis-dependent infection by JC polyomavirus (JCPyV) was reduced in human cells with decreased SMN levels. Collectively, these results demonstrate for the first time, to our knowledge, that SMN depletion causes defects in endosomal trafficking that impair synaptic function, even in the absence of motor neuron cell death. PMID:27402754

  9. Endocytosis of glycosylphosphatidylinositol-anchored proteins

    PubMed Central

    2009-01-01

    Glycosylphosphatidylinositol-anchored proteins (GPI-APs) represent an interesting amalgamation of the three basic kinds of cellular macromolecules viz. proteins, carbohydrates and lipids. An unusually hybrid moiety, the GPI-anchor is expressed in a diverse range of organisms from parasites to mammalian cells and serves to anchor a large number of functionally diverse proteins and has been the center of attention in scientific debate for some time now. Membrane organization of GPI-APs into laterally-organized cholesterol-sphingolipid ordered membrane domains or "rafts" and endocytosis of GPI-APs has been intensely debated. Inclusion into or exclusion from these membrane domains seems to be the critical factor in determining the endocytic mechanisms and intracellular destinations of GPI-APs. The intracellular signaling as well as endocytic trafficking of GPI-APs is critically dependent upon the cell surface organization of GPI-APs, and the associations with these lipid rafts play a vital role during these processes. The mechanism of endocytosis for GPI-APs may differ from other cellular endocytic pathways, such as those mediated by clathrin-coated pits (caveolae), and is necessary for unique biological functions. Numerous intracellular factors are involved in and regulate the endocytosis of GPI-APs, and these may be variably dependent on cell-type. The central focus of this article is to describe the significance of the endocytosis of GPI-APs on a multitude of biological processes, ranging from nutrient-uptake to more complex immune responses. Ultimately, a thorough elucidation of GPI-AP mediated signaling pathways and their regulatory elements will enhance our understanding of essential biological processes and benefit as components of disease intervention strategies. PMID:19832981

  10. Regulation of endocytic traffic by Rho GTPases.

    PubMed Central

    Qualmann, Britta; Mellor, Harry

    2003-01-01

    The members of the Rho subfamily of small GTPases are key regulators of the actin cytoskeleton. However, recent studies have provided evidence for multiple additional roles for these signalling proteins in controlling endocytic traffic. Here we review our current understanding of Rho GTPase action within the endocytic pathway and examine the potential points of convergence with the more established, actin-based functions of these signalling proteins. PMID:12564953

  11. Asymmetric segregation and self-renewal of hematopoietic stem and progenitor cells with endocytic Ap2a2.

    PubMed

    Ting, Stephen B; Deneault, Eric; Hope, Kristin; Cellot, Sonia; Chagraoui, Jalila; Mayotte, Nadine; Dorn, Jonas F; Laverdure, Jean-Philippe; Harvey, Michael; Hawkins, Edwin D; Russell, Sarah M; Maddox, Paul S; Iscove, Norman N; Sauvageau, Guy

    2012-03-15

    The stem cell-intrinsic model of self-renewal via asymmetric cell division (ACD) posits that fate determinants be partitioned unequally between daughter cells to either activate or suppress the stemness state. ACD is a purported mechanism by which hematopoietic stem cells (HSCs) self-renew, but definitive evidence for this cellular process remains open to conjecture. To address this issue, we chose 73 candidate genes that function within the cell polarity network to identify potential determinants that may concomitantly alter HSC fate while also exhibiting asymmetric segregation at cell division. Initial gene-expression profiles of polarity candidates showed high and differential expression in both HSCs and leukemia stem cells. Altered HSC fate was assessed by our established in vitro to in vivo screen on a subcohort of candidate polarity genes, which revealed 6 novel positive regulators of HSC function: Ap2a2, Gpsm2, Tmod1, Kif3a, Racgap1, and Ccnb1. Interestingly, live-cell videomicroscopy of the endocytic protein AP2A2 shows instances of asymmetric segregation during HSC/progenitor cell cytokinesis. These results contribute further evidence that ACD is functional in HSC self-renewal, suggest a role for Ap2a2 in HSC activity, and provide a unique opportunity to prospectively analyze progeny from HSC asymmetric divisions.

  12. Traffic jam hypothesis: Relationship between endocytic dysfunction and Alzheimer's disease.

    PubMed

    Kimura, Nobuyuki; Yanagisawa, Katsuhiko

    2017-07-08

    Membrane trafficking pathways, like the endocytic pathway, carry out fundamental cellular processes that are essential for normal functioning. One such process is regulation of cell surface receptor signaling. A growing body of evidence suggests that β-amyloid protein (Aβ) plays a key role in Alzheimer's disease (AD) pathogenesis. Cleavage of Aβ from its precursor, β-amyloid precursor protein (APP), occurs through the endocytic pathway in neuronal cells. In early-stage AD, intraneuronal accumulation of abnormally enlarged endosomes is common, indicating that endosome trafficking is disrupted. Strikingly, genome-wide association studies reveal that several endocytosis-related genes are associated with AD onset. Also, recent studies demonstrate that alteration in endocytosis induces not only Aβ pathology but also the propagation of tau protein pathology, another key pathological feature of AD. Endocytic dysfunction can disrupt neuronal physiological functions, such as synaptic vesicle transport and neurotransmitter release. Thus, "traffic jams" in the endocytic pathway may be involved in AD pathogenesis and may serve as a novel target for the development of new therapeutics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Structural and functional impairment of endocytic pathways by retinitis pigmentosa mutant rhodopsin-arrestin complexes

    PubMed Central

    Chuang, Jen-Zen; Vega, Carrie; Jun, Wenjin; Sung, Ching-Hwa

    2004-01-01

    Retinitis pigmentosa (RP) is a clinically and genetically heterogeneous degenerative eye disease. Mutations at Arg135 of rhodopsin are associated with a severe form of autosomal dominant RP. This report presents evidence that Arg135 mutant rhodopsins (e.g., R135L, R135G, and R135W) are hyperphosphorylated and bind with high affinity to visual arrestin. Mutant rhodopsin recruits the cytosolic arrestin to the plasma membrane, and the rhodopsin-arrestin complex is internalized into the endocytic pathway. Furthermore, the rhodopsin-arrestin complexes alter the morphology of endosomal compartments and severely damage receptor-mediated endocytic functions. The biochemical and cellular defects of Arg135 mutant rhodopsins are distinct from those previously described for class I and class II RP mutations, and, hence, we propose that they be named class III. Impaired endocytic activity may underlie the pathogenesis of RP caused by class III rhodopsin mutations. PMID:15232620

  14. miR-17-5p Regulates Endocytic Trafficking through Targeting TBC1D2/Armus

    PubMed Central

    Serva, Andrius; Knapp, Bettina; Tsai, Yueh-Tso; Claas, Christoph; Lisauskas, Tautvydas; Matula, Petr; Harder, Nathalie; Kaderali, Lars; Rohr, Karl; Erfle, Holger; Eils, Roland; Braga, Vania; Starkuviene, Vytaute

    2012-01-01

    miRNA cluster miR-17-92 is known as oncomir-1 due to its potent oncogenic function. miR-17-92 is a polycistronic cluster that encodes 6 miRNAs, and can both facilitate and inhibit cell proliferation. Known targets of miRNAs encoded by this cluster are largely regulators of cell cycle progression and apoptosis. Here, we show that miRNAs encoded by this cluster and sharing the seed sequence of miR-17 exert their influence on one of the most essential cellular processes – endocytic trafficking. By mRNA expression analysis we identified that regulation of endocytic trafficking by miR-17 can potentially be achieved by targeting of a number of trafficking regulators. We have thoroughly validated TBC1D2/Armus, a GAP of Rab7 GTPase, as a novel target of miR-17. Our study reveals regulation of endocytic trafficking as a novel function of miR-17, which might act cooperatively with other functions of miR-17 and related miRNAs in health and disease. PMID:23285084

  15. Mutations in the Transmembrane Domain and Cytoplasmic Tail of Hendra Virus Fusion Protein Disrupt Virus-Like-Particle Assembly.

    PubMed

    Cifuentes-Muñoz, Nicolás; Sun, Weina; Ray, Greeshma; Schmitt, Phuong Tieu; Webb, Stacy; Gibson, Kathleen; Dutch, Rebecca Ellis; Schmitt, Anthony P

    2017-07-15

    Hendra virus (HeV) is a zoonotic paramyxovirus that causes deadly illness in horses and humans. An intriguing feature of HeV is the utilization of endosomal protease for activation of the viral fusion protein (F). Here we investigated how endosomal F trafficking affects HeV assembly. We found that the HeV matrix (M) and F proteins each induced particle release when they were expressed alone but that their coexpression led to coordinated assembly of virus-like particles (VLPs) that were morphologically and physically distinct from M-only or F-only VLPs. Mutations to the F protein transmembrane domain or cytoplasmic tail that disrupted endocytic trafficking led to failure of F to function with M for VLP assembly. Wild-type F functioned normally for VLP assembly even when its cleavage was prevented with a cathepsin inhibitor, indicating that it is endocytic F trafficking that is important for VLP assembly, not proteolytic F cleavage. Under specific conditions of reduced M expression, we found that M could no longer induce significant VLP release but retained the ability to be incorporated as a passenger into F-driven VLPs, provided that the F protein was competent for endocytic trafficking. The F and M proteins were both found to traffic through Rab11-positive recycling endosomes (REs), suggesting a model in which F and M trafficking pathways converge at REs, enabling these proteins to preassemble before arriving at plasma membrane budding sites. IMPORTANCE Hendra virus and Nipah virus are zoonotic paramyxoviruses that cause lethal infections in humans. Unlike that for most paramyxoviruses, activation of the henipavirus fusion protein occurs in recycling endosomal compartments. In this study, we demonstrate that the unique endocytic trafficking pathway of Hendra virus F protein is required for proper viral assembly and particle release. These results advance our basic understanding of the henipavirus assembly process and provide a novel model for the interplay between glycoprotein trafficking and paramyxovirus assembly. Copyright © 2017 American Society for Microbiology.

  16. Generation of stable lipid raft microdomains in the enterocyte brush border by selective endocytic removal of non-raft membrane.

    PubMed

    Danielsen, E Michael; Hansen, Gert H

    2013-01-01

    The small intestinal brush border has an unusually high proportion of glycolipids which promote the formation of lipid raft microdomains, stabilized by various cross-linking lectins. This unique membrane organization acts to provide physical and chemical stability to the membrane that faces multiple deleterious agents present in the gut lumen, such as bile salts, digestive enzymes of the pancreas, and a plethora of pathogens. In the present work, we studied the constitutive endocytosis from the brush border of cultured jejunal explants of the pig, and the results indicate that this process functions to enrich the contents of lipid raft components in the brush border. The lipophilic fluorescent marker FM, taken up into early endosomes in the terminal web region (TWEEs), was absent from detergent resistant membranes (DRMs), implying an association with non-raft membrane. Furthermore, neither major lipid raft-associated brush border enzymes nor glycolipids were detected by immunofluorescence microscopy in subapical punctae resembling TWEEs. Finally, two model raft lipids, BODIPY-lactosylceramide and BODIPY-GM1, were not endocytosed except when cholera toxin subunit B (CTB) was present. In conclusion, we propose that constitutive, selective endocytic removal of non-raft membrane acts as a sorting mechanism to enrich the brush border contents of lipid raft components, such as glycolipids and the major digestive enzymes. This sorting may be energetically driven by changes in membrane curvature when molecules move from a microvillar surface to an endocytic invagination.

  17. Syndapin/SDPN-1 is required for endocytic recycling and endosomal actin association in the Caenorhabditis elegans intestine

    PubMed Central

    Gleason, Adenrele M.; Nguyen, Ken C. Q.; Hall, David H.; Grant, Barth D.

    2016-01-01

    Syndapin/pascin-family F-BAR domain proteins bind directly to membrane lipids and are associated with actin dynamics at the plasma membrane. Previous reports also implicated mammalian syndapin 2 in endosome function during receptor recycling, but precise analysis of a putative recycling function for syndapin in mammalian systems is difficult because of its effects on the earlier step of endocytic uptake and potential redundancy among the three separate genes that encode mammalian syndapin isoforms. Here we analyze the endocytic transport function of the only Caenorhabditis elegans syndapin, SDPN-1. We find that SDPN-1 is a resident protein of the early and basolateral recycling endosomes in the C. elegans intestinal epithelium, and sdpn-1 deletion mutants display phenotypes indicating a block in basolateral recycling transport. sdpn-1 mutants accumulate abnormal endosomes positive for early endosome and recycling endosome markers that are normally separate, and such endosomes accumulate high levels of basolateral recycling cargo. Furthermore, we observed strong colocalization of endosomal SDPN-1 with the F-actin biosensor Lifeact and found that loss of SDPN-1 greatly reduced Lifeact accumulation on early endosomes. Taken together, our results provide strong evidence for an in vivo function of syndapin in endocytic recycling and suggest that syndapin promotes transport via endosomal fission. PMID:27630264

  18. Population Distribution Analyses Reveal a Hierarchy of Molecular Players Underlying Parallel Endocytic Pathways

    PubMed Central

    Gupta, Gagan D.; Howes, Mark T.; Chandran, Ruma; Das, Anupam; Menon, Sindhu; Parton, Robert G.; Sowdhamini, R.; Thattai, Mukund; Mayor, Satyajit

    2014-01-01

    Single-cell-resolved measurements reveal heterogeneous distributions of clathrin-dependent (CD) and -independent (CLIC/GEEC: CG) endocytic activity in Drosophila cell populations. dsRNA-mediated knockdown of core versus peripheral endocytic machinery induces strong changes in the mean, or subtle changes in the shapes of these distributions, respectively. By quantifying these subtle shape changes for 27 single-cell features which report on endocytic activity and cell morphology, we organize 1072 Drosophila genes into a tree-like hierarchy. We find that tree nodes contain gene sets enriched in functional classes and protein complexes, providing a portrait of core and peripheral control of CD and CG endocytosis. For 470 genes we obtain additional features from separate assays and classify them into early- or late-acting genes of the endocytic pathways. Detailed analyses of specific genes at intermediate levels of the tree suggest that Vacuolar ATPase and lysosomal genes involved in vacuolar biogenesis play an evolutionarily conserved role in CG endocytosis. PMID:24971745

  19. HIP1: trafficking roles and regulation of tumorigenesis.

    PubMed

    Hyun, Teresa S; Ross, Theodora S

    2004-04-01

    During recent years, alterations in proteins of the endocytic pathway have been associated with tumors. Disrupted regulation of the endocytic pathway is a relatively unstudied mechanism of tumorigenesis, which can concomitantly disrupt several different signaling pathways to affect growth, differentiation and survival. Several endocytic proteins have been identified, either as part of tumor-associated translocations or to have the ability to transform cells. Here, we summarize the information known about huntingtin interacting protein 1 (HIP1), an endocytic protein with transforming properties that is involved in a cancer-causing translocation and which is overexpressed in a variety of human cancers. We describe the known normal functions of HIP1 in endocytosis and receptor trafficking, the evidence for its role as an oncoprotein and how HIP1 might be altered to promote tumorigenesis.

  20. The Endocytic Recycling Regulatory Protein EHD1 Is Required for Ocular Lens Development

    PubMed Central

    Arya, Priyanka; Rainey, Mark A.; Bhattacharyya, Sohinee; Mohapatra, Bhopal; George, Manju; Kuracha, Murali R; Storck, Matthew D.; Band, Vimla; Govindarajan, Venkatesh; Band, Hamid

    2015-01-01

    The C-terminal Eps15 homology domain-containing (EHD) proteins play a key role in endocytic recycling, a fundamental cellular process that ensures the return of endocytosed membrane components and receptors back to the cell surface. To define the in vivo biological functions of EHD1, we have generated Ehd1 knockout mice and previously reported a requirement of EHD1 for spermatogenesis. Here, we show that approximately 56% of the Ehd1-null mice displayed gross ocular abnormalities, including anophthalmia, aphakia, microphthalmia and congenital cataracts. Histological characterization of ocular abnormalities showed pleiotropic defects that include a smaller or absent lens, persistence of lens stalk and hyaloid vasculature, and deformed optic cups. To test whether these profound ocular defects resulted from the loss of EHD1 in the lens or in non-lenticular tissues, we deleted the Ehd1 gene selectively in the presumptive lens ectoderm using Le-Cre. Conditional Ehd1 deletion in the lens resulted in developmental defects that included thin epithelial layers, small lenses and absence of corneal endothelium. Ehd1 deletion in the lens also resulted in reduced lens epithelial proliferation, survival and expression of junctional proteins E-cadherin and ZO-1. Finally, Le-Cre-mediated deletion of Ehd1 in the lens led to defects in corneal endothelial differentiation. Taken together, these data reveal a unique role for EHD1 in early lens development and suggest a previously unknown link between the endocytic recycling pathway and regulation of key developmental processes including proliferation, differentiation and morphogenesis. PMID:26455409

  1. Vectorization of morpholino oligomers by the (R-Ahx-R)4 peptide allows efficient splicing correction in the absence of endosomolytic agents.

    PubMed

    Abes, Saïd; Moulton, Hong M; Clair, Philippe; Prevot, Paul; Youngblood, Derek S; Wu, Rebecca P; Iversen, Patrick L; Lebleu, Bernard

    2006-12-01

    The efficient and non-toxic nuclear delivery of steric-block oligonucleotides (ON) is a prerequisite for therapeutic strategies involving splice correction or exon skipping. Cationic cell penetrating peptides (CPPs) have given rise to much interest for the intracellular delivery of biomolecules, but their efficiency in promoting cytoplasmic or nuclear delivery of oligonucleotides has been hampered by endocytic sequestration and subsequent degradation of most internalized material in endocytic compartments. In the present study, we compared the splice correction activity of three different CPPs conjugated to PMO(705), a steric-block ON targeted against the mutated splicing site of human beta-globin pre-mRNA in the HeLa pLuc705 splice correction model. In contrast to Tat48-60 (Tat) and oligoarginine (R(9)F(2)) PMO(705) conjugates, the 6-aminohexanoic-spaced oligoarginine (R-Ahx-R)(4)-PMO(705) conjugate was able to promote an efficient splice correction in the absence of endosomolytic agents. Our mechanistic investigations about its uptake mechanisms lead to the conclusion that these three vectors are internalized using the same endocytic route involving proteoglycans, but that the (R-Ahx-R)(4)-PMO(705) conjugate has the unique ability to escape from lysosomial fate and to access to the nuclear compartment. This vector, which has displays an extremely low cytotoxicity, the ability to function without chloroquine adjunction and in the presence of serum proteins. It thus offers a promising lead for the development of vectors able to enhance the delivery of therapeutic steric-block ON in clinically relevant models.

  2. Drosophila Rolling Blackout Displays Lipase Domain-Dependent and Independent Endocytic Functions Downstream of Dynamin

    PubMed Central

    Vijayakrishnan, Niranjana; Phillips, Scott E.; Broadie, Kendal

    2010-01-01

    Drosophila temperature-sensitive rolling blackout (rbots) mutants display a total block of endocytosis in non-neuronal cells and a weaker, partial defect at neuronal synapses. RBO is an integral plasma membrane protein and is predicted to be a serine esterase. To determine if lipase activity is required for RBO function, we mutated the catalytic serine 358 to alanine in the G-X-S-X-G active site, and assayed genomic rescue of rbo mutant non-neuronal and neuronal phenotypes. The rboS358A mutant is unable to rescue rbo null 100% embryonic lethality, indicating that the lipase-domain is critical for RBO essential function. Likewise, the rboS358A mutant cannot provide any rescue of endocytic blockade in rbots Garland cells, demonstrating that the lipase-domain is indispensable for non-neuronal endocytosis. In contrast, rbots conditional paralysis, synaptic transmission block and synapse endocytic defects are all fully rescued by the rboS358A mutant, showing that the RBO lipase-domain is dispensable in neuronal contexts. We identified a synthetic lethal interaction between rbots and the well-characterized dynamin GTPase conditional shibire (shits1) mutant. In both non-neuronal cells and neuronal synapses, shits1;rbots phenocopies shits1 endocytic defects, indicating that dynamin and RBO act in the same pathway, with dynamin functioning upstream of RBO. We conclude that RBO possesses both lipase-domain dependent and scaffolding functions with differential requirements in non-neuronal versus neuronal endocytosis mechanisms downstream of dynamin GTPase activity. PMID:21029287

  3. The early endosome: a busy sorting station for proteins at the crossroads

    PubMed Central

    Jovic, Marko; Sharma, Mahak; Rahajeng, Juliati; Caplan, Steve

    2010-01-01

    Summary Endocytosis marks the entry of internalized receptors into the complex network of endocytic trafficking pathways. Endocytic vesicles are rapidly targeted to a distinct membrane-bound endocytic organelle referred to as the early endosome. Despite the existence of numerous internalization routes, early endosomes (EE) serve as a focal point of the endocytic pathway. Sorting events initiated at this compartment determine the subsequent fate of internalized proteins and lipids, destining them either for recycling to the plasma membrane, degradation in lysosomes or delivery to the trans-Golgi network. Sorting of endocytic cargo to the latter compartments is accomplished through the formation of distinct microdomains within early endosomes, through the coordinate recruitment and assembly of the sorting machinery. An elaborate network of interactions between endocytic regulatory proteins ensures synchronized sorting of cargo to microdomains followed by morphological changes at the early endosomal membranes. Consequently, the cargo targeted either for recycling back to the plasma membrane, or for retrograde transport to the trans-Golgi network, localizes to newly-formed tubular membranes. With a high ratio of membrane surface to lumenal volume, these tubules effectively concentrate the recycling cargo, ensuring efficient transport out of the EE. Conversely, receptors sorted for degradation cluster at the flat clathrin lattices involved in invaginations of the limiting membrane, associating with newly formed intralumenal vesicles. In this review we will discuss the characteristics of early endosomes, their role in the regulation of endocytic transport, and their aberrant function in a variety of diseases. PMID:19924646

  4. Evolutionary Changes on the Way to Clathrin-Mediated Endocytosis in Animals

    PubMed Central

    Dergai, Mykola; Iershov, Anton; Novokhatska, Olga; Pankivskyi, Serhii; Rynditch, Alla

    2016-01-01

    Endocytic pathways constitute an evolutionarily ancient system that significantly contributed to the eukaryotic cell architecture and to the diversity of cell type–specific functions and signaling cascades, in particular of metazoans. Here we used comparative proteomic studies to analyze the universal internalization route in eukaryotes, clathrin-mediated endocytosis (CME), to address the issues of how this system evolved and what are its specific features. Among 35 proteins crucially required for animal CME, we identified a subset of 22 proteins common to major eukaryotic branches and 13 gradually acquired during evolution. Based on exploration of structure–function relationship between conserved homologs in sister, distantly related and early diverged branches, we identified novel features acquired during evolution of endocytic proteins on the way to animals: Elaborated way of cargo recruitment by multiple sorting proteins, structural changes in the core endocytic complex AP2, the emergence of the Fer/Cip4 homology domain-only protein/epidermal growth factor receptor substrate 15/intersectin functional complex as an additional interaction hub and activator of AP2, as well as changes in late endocytic stages due to recruitment of dynamin/sorting nexin 9 complex and involvement of the actin polymerization machinery. The evolutionary reconstruction showed the basis of the CME process and its subsequent step-by-step development. Documented changes imply more precise regulation of the pathway, as well as CME specialization for the uptake of specific cargoes and cell type-specific functions. PMID:26872775

  5. Drosophila rolling blackout displays lipase domain-dependent and -independent endocytic functions downstream of dynamin.

    PubMed

    Vijayakrishnan, Niranjana; Phillips, Scott E; Broadie, Kendal

    2010-12-01

    Drosophila temperature-sensitive rolling blackout (rbo(ts) ) mutants display a total block of endocytosis in non-neuronal cells and a weaker, partial defect at neuronal synapses. RBO is an integral plasma membrane protein and is predicted to be a serine esterase. To determine if lipase activity is required for RBO function, we mutated the catalytic serine 358 to alanine in the G-X-S-X-G active site, and assayed genomic rescue of rbo mutant non-neuronal and neuronal phenotypes. The rbo(S358A) mutant is unable to rescue rbo null 100% embryonic lethality, indicating that the lipase domain is critical for RBO essential function. Likewise, the rbo(S358A) mutant cannot provide any rescue of endocytic blockade in rbo(ts) Garland cells, showing that the lipase domain is indispensable for non-neuronal endocytosis. In contrast, rbo(ts) conditional paralysis, synaptic transmission block and synapse endocytic defects are all fully rescued by the rbo(S358A) mutant, showing that the RBO lipase domain is dispensable in neuronal contexts. We identified a synthetic lethal interaction between rbo(ts) and the well-characterized dynamin GTPase conditional shibire (shi(ts1)) mutant. In both non-neuronal cells and neuronal synapses, shi(ts1); rbo(ts) phenocopies shi(ts1) endocytic defects, indicating that dynamin and RBO act in the same pathway, with dynamin functioning upstream of RBO. We conclude that RBO possesses both lipase domain-dependent and scaffolding functions with differential requirements in non-neuronal versus neuronal endocytosis mechanisms downstream of dynamin GTPase activity. © 2010 John Wiley & Sons A/S.

  6. Prolonged morphine treatment alters δ opioid receptor post-internalization trafficking

    PubMed Central

    Ong, E W; Xue, L; Olmstead, M C; Cahill, C M

    2015-01-01

    BACKGROUND AND PURPOSE The δ opioid receptor (DOP receptor) undergoes internalization both constitutively and in response to agonists. Previous work has shown that DOP receptors traffic from intracellular compartments to neuronal cell membranes following prolonged morphine treatment. Here, we examined the effects of prolonged morphine treatment on the post-internalization trafficking of DOP receptors. EXPERIMENTAL APPROACH Using primary cultures of dorsal root ganglia neurons, we measured the co-localization of endogenous DOP receptors with post-endocytic compartments following both prolonged and acute agonist treatments. KEY RESULTS A departure from the constitutive trafficking pathway was observed following acute DOP receptor agonist-induced internalization by deltorphin II. That is, the DOP receptor underwent distinct agonist-induced post-endocytic sorting. Following prolonged morphine treatment, constitutive DOP receptor trafficking was augmented. SNC80 following prolonged morphine treatment also caused non-constitutive DOP receptor agonist-induced post-endocytic sorting. The μ opioid receptor (MOP receptor) agonist DAMGO induced DOP receptor internalization and trafficking following prolonged morphine treatment. Finally, all of the alterations to DOP receptor trafficking induced by both DOP and MOP receptor agonists were inhibited or absent when those agonists were co-administered with a DOP receptor antagonist, SDM-25N. CONCLUSIONS AND IMPLICATIONS The results support the hypothesis that prolonged morphine treatment induces the formation of MOP–DOP receptor interactions and subsequent augmentation of the available cell surface DOP receptors, at least some of which are in the form of a MOP/DOP receptor species. The pharmacology and trafficking of this species appear to be unique compared to those of its individual constituents. LINKED ARTICLES This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-2 PMID:24819092

  7. Endosomal protein traffic meets nuclear signal transduction head on.

    PubMed

    Horazdovsky, Bruce

    2004-02-01

    Rab5 plays a key role in controlling protein traffic through the early stages of the endocytic pathway. Previous studies on the modulators and effectors of Rab5 protein function have tied the regulation of several signal transduction pathways to the movement of protein through endocytic compartments. In the February 6, 2004, issue of Cell, Miaczynska et al. describe a surprising new link between Rab5 function and the nucleus by uncovering two new Rab5 effectors as potential regulators of the nucleosome remodeling and histone deacetylase protein complex NuRD/MeCP1.

  8. Deconvoluting hepatic processing of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Alidori, Simone; Bowman, Robert L.; Yarilin, Dmitry; Romin, Yevgeniy; Barlas, Afsar; Mulvey, J. Justin; Fujisawa, Sho; Xu, Ke; Ruggiero, Alessandro; Riabov, Vladimir; Thorek, Daniel L. J.; Ulmert, Hans David S.; Brea, Elliott J.; Behling, Katja; Kzhyshkowska, Julia; Manova-Todorova, Katia; Scheinberg, David A.; McDevitt, Michael R.

    2016-07-01

    Single-wall carbon nanotubes present unique opportunities for drug delivery, but have not advanced into the clinic. Differential nanotube accretion and clearance from critical organs have been observed, but the mechanism not fully elucidated. The liver has a complex cellular composition that regulates a range of metabolic functions and coincidently accumulates most particulate drugs. Here we provide the unexpected details of hepatic processing of covalently functionalized nanotubes including receptor-mediated endocytosis, cellular trafficking and biliary elimination. Ammonium-functionalized fibrillar nanocarbon is found to preferentially localize in the fenestrated sinusoidal endothelium of the liver but not resident macrophages. Stabilin receptors mediate the endocytic clearance of nanotubes. Biocompatibility is evidenced by the absence of cell death and no immune cell infiltration. Towards clinical application of this platform, nanotubes were evaluated for the first time in non-human primates. The pharmacologic profile in cynomolgus monkeys is equivalent to what was reported in mice and suggests that nanotubes should behave similarly in humans.

  9. EARP, a multisubunit tethering complex involved in endocytic recycling

    PubMed Central

    Schindler, Christina; Chen, Yu; Pu, Jing; Guo, Xiaoli; Bonifacino, Juan S.

    2015-01-01

    Recycling of endocytic receptors to the cell surface involves passage through a series of membrane-bound compartments by mechanisms that are poorly understood. In particular, it is unknown if endocytic recycling requires the function of multisubunit tethering complexes, as is the case for other intracellular trafficking pathways. Herein we describe a tethering complex named Endosome-Associated Recycling Protein (EARP) that is structurally related to the previously described Golgi-Associated Retrograde Protein (GARP) complex. Both complexes share the Ang2, Vps52 and Vps53 subunits, but EARP comprises an uncharacterized protein, Syndetin, in place of the Vps54 subunit of GARP. This change determines differential localization of EARP to recycling endosomes and GARP to the Golgi complex. EARP interacts with the target-SNARE Syntaxin 6 and various cognate SNAREs. Depletion of Syndetin or Syntaxin 6 delays recycling of internalized transferrin to the cell surface. These findings implicate EARP in canonical membrane-fusion events in the process of endocytic recycling. PMID:25799061

  10. Regulation of endothelial barrier function by p120-catenin∙VE-cadherin interaction

    PubMed Central

    Garrett, Joshua P.; Lowery, Anthony M.; Adam, Alejandro P.; Kowalczyk, Andrew P.; Vincent, Peter A.

    2017-01-01

    Endothelial p120-catenin (p120) maintains the level of vascular endothelial cadherin (VE-Cad) by inhibiting VE-Cad endocytosis. Loss of p120 results in a decrease in VE-Cad levels, leading to the formation of monolayers with decreased barrier function (as assessed by transendothelial electrical resistance [TEER]), whereas overexpression of p120 increases VE-Cad levels and promotes a more restrictive monolayer. To test whether reduced endocytosis mediated by p120 is required for VE-Cad formation of a restrictive barrier, we restored VE-Cad levels using an endocytic-defective VE-Cad mutant. This endocytic-defective mutant was unable to rescue the loss of TEER associated with p120 or VE-Cad depletion. In contrast, the endocytic-defective mutant was able to prevent sprout formation in a fibrin bead assay, suggesting that p120•VE-Cad interaction regulates barrier function and angiogenic sprouting through different mechanisms. Further investigation found that depletion of p120 increases Src activity and that loss of p120 binding results in increased VE-Cad phosphorylation. In addition, expression of a Y658F–VE-Cad mutant or an endocytic-defective Y658F–VE-Cad double mutant were both able to rescue TEER independently of p120 binding. Our results show that in addition to regulating endocytosis, p120 also allows the phosphorylated form of VE-Cad to participate in the formation of a restrictive monolayer. PMID:27852896

  11. In Silico Prediction and In Vitro Characterization of Multifunctional Human RNase3

    PubMed Central

    Kuo, Ping-Hsueh; Chen, Chien-Jung; Chang, Hsiu-Hui; Fang, Shun-lung; Wu, Wei-Shuo; Lai, Yiu-Kay; Pai, Tun-Wen; Chang, Margaret Dah-Tsyr

    2013-01-01

    Human ribonucleases A (hRNaseA) superfamily consists of thirteen members with high-structure similarities but exhibits divergent physiological functions other than RNase activity. Evolution of hRNaseA superfamily has gained novel functions which may be preserved in a unique region or domain to account for additional molecular interactions. hRNase3 has multiple functions including ribonucleolytic, heparan sulfate (HS) binding, cellular binding, endocytic, lipid destabilization, cytotoxic, and antimicrobial activities. In this study, three putative multifunctional regions, 34RWRCK38 (HBR1), 75RSRFR79 (HBR2), and 101RPGRR105 (HBR3), of hRNase3 have been identified employing in silico sequence analysis and validated employing in vitro activity assays. A heparin binding peptide containing HBR1 is characterized to act as a key element associated with HS binding, cellular binding, and lipid binding activities. In this study, we provide novel insights to identify functional regions of hRNase3 that may have implications for all hRNaseA superfamily members. PMID:23484086

  12. Deconvoluting hepatic processing of carbon nanotubes

    DOE PAGES

    Alidori, Simone; Bowman, Robert L.; Yarilin, Dmitry; ...

    2016-07-29

    Single-wall carbon nanotubes present unique opportunities for drug delivery, but have not advanced into the clinic. Differential nanotube accretion and clearance from critical organs have been observed, but the mechanism not fully elucidated. The liver has a complex cellular composition that regulates a range of metabolic functions and coincidently accumulates most particulate drugs. Here we provide the unexpected details of hepatic processing of covalently functionalized nanotubes including receptor-mediated endocytosis, cellular trafficking and biliary elimination. Ammonium-functionalized fibrillar nanocarbon is found to preferentially localize in the fenestrated sinusoidal endothelium of the liver but not resident macrophages. Stabilin receptors mediate the endocytic clearancemore » of nanotubes. Biocompatibility is evidenced by the absence of cell death and no immune cell infiltration. Towards clinical application of this platform, nanotubes were evaluated for the first time in non-human primates. Lastly, the pharmacologic profile in cynomolgus monkeys is equivalent to what was reported in mice and suggests that nanotubes should behave similarly in humans.« less

  13. Deconvoluting hepatic processing of carbon nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alidori, Simone; Bowman, Robert L.; Yarilin, Dmitry

    Single-wall carbon nanotubes present unique opportunities for drug delivery, but have not advanced into the clinic. Differential nanotube accretion and clearance from critical organs have been observed, but the mechanism not fully elucidated. The liver has a complex cellular composition that regulates a range of metabolic functions and coincidently accumulates most particulate drugs. Here we provide the unexpected details of hepatic processing of covalently functionalized nanotubes including receptor-mediated endocytosis, cellular trafficking and biliary elimination. Ammonium-functionalized fibrillar nanocarbon is found to preferentially localize in the fenestrated sinusoidal endothelium of the liver but not resident macrophages. Stabilin receptors mediate the endocytic clearancemore » of nanotubes. Biocompatibility is evidenced by the absence of cell death and no immune cell infiltration. Towards clinical application of this platform, nanotubes were evaluated for the first time in non-human primates. Lastly, the pharmacologic profile in cynomolgus monkeys is equivalent to what was reported in mice and suggests that nanotubes should behave similarly in humans.« less

  14. Diverse functions of myosin VI elucidated by an isoform-specific α-helix domain

    PubMed Central

    Magistrati, Elisa; Molteni, Erika; Lupia, Michela; Soffientini, Paolo; Rottner, Klemens; Cavallaro, Ugo; Pozzoli, Uberto; Mapelli, Marina; Walters, Kylie J.; Polo, Simona

    2016-01-01

    Myosin VI functions in endocytosis and cell motility. Alternative splicing of myosin VI mRNA generates two distinct isoform types, myosin VIshort and myosin VIlong, which differ in the C-terminal region. Their physiological and pathological role remains unknown. Here we identified an isoform-specific regulatory helix, named α2-linker that defines specific conformations and hence determines the target selectivity of human myosin VI. The presence of the α2-linker structurally defines a novel clathrin-binding domain that is unique to myosin VIlong and masks the known RRL interaction motif. This finding is relevant to ovarian cancer, where alternative myosin VI splicing is aberrantly regulated, and exon skipping dictates cell addiction to myosin VIshort for tumor cell migration. The RRL interactor optineurin contributes to this process by selectively binding myosin VIshort. Thus the α2-linker acts like a molecular switch that assigns myosin VI to distinct endocytic (myosin VIlong) or migratory (myosin VIshort) functional roles. PMID:26950368

  15. Diverse functions of myosin VI elucidated by an isoform-specific α-helix domain.

    PubMed

    Wollscheid, Hans-Peter; Biancospino, Matteo; He, Fahu; Magistrati, Elisa; Molteni, Erika; Lupia, Michela; Soffientini, Paolo; Rottner, Klemens; Cavallaro, Ugo; Pozzoli, Uberto; Mapelli, Marina; Walters, Kylie J; Polo, Simona

    2016-04-01

    Myosin VI functions in endocytosis and cell motility. Alternative splicing of myosin VI mRNA generates two distinct isoform types, myosin VI(short) and myosin VI(long), which differ in the C-terminal region. Their physiological and pathological roles remain unknown. Here we identified an isoform-specific regulatory helix, named the α2-linker, that defines specific conformations and hence determines the target selectivity of human myosin VI. The presence of the α2-linker structurally defines a new clathrin-binding domain that is unique to myosin VI(long) and masks the known RRL interaction motif. This finding is relevant to ovarian cancer, in which alternative myosin VI splicing is aberrantly regulated, and exon skipping dictates cell addiction to myosin VI(short) in tumor-cell migration. The RRL interactor optineurin contributes to this process by selectively binding myosin VI(short). Thus, the α2-linker acts like a molecular switch that assigns myosin VI to distinct endocytic (myosin VI(long)) or migratory (myosin VI(short)) functional roles.

  16. Prolonged morphine treatment alters δ opioid receptor post-internalization trafficking.

    PubMed

    Ong, E W; Xue, L; Olmstead, M C; Cahill, C M

    2015-01-01

    The δ opioid receptor (DOP receptor) undergoes internalization both constitutively and in response to agonists. Previous work has shown that DOP receptors traffic from intracellular compartments to neuronal cell membranes following prolonged morphine treatment. Here, we examined the effects of prolonged morphine treatment on the post-internalization trafficking of DOP receptors. Using primary cultures of dorsal root ganglia neurons, we measured the co-localization of endogenous DOP receptors with post-endocytic compartments following both prolonged and acute agonist treatments. A departure from the constitutive trafficking pathway was observed following acute DOP receptor agonist-induced internalization by deltorphin II. That is, the DOP receptor underwent distinct agonist-induced post-endocytic sorting. Following prolonged morphine treatment, constitutive DOP receptor trafficking was augmented. SNC80 following prolonged morphine treatment also caused non-constitutive DOP receptor agonist-induced post-endocytic sorting. The μ opioid receptor (MOP receptor) agonist DAMGO induced DOP receptor internalization and trafficking following prolonged morphine treatment. Finally, all of the alterations to DOP receptor trafficking induced by both DOP and MOP receptor agonists were inhibited or absent when those agonists were co-administered with a DOP receptor antagonist, SDM-25N. The results support the hypothesis that prolonged morphine treatment induces the formation of MOP-DOP receptor interactions and subsequent augmentation of the available cell surface DOP receptors, at least some of which are in the form of a MOP/DOP receptor species. The pharmacology and trafficking of this species appear to be unique compared to those of its individual constituents. This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-2. © 2014 The Authors. British Journal of Pharmacology published by John Wiley & Sons Ltd on behalf of The British Pharmacological Society.

  17. A unique PDZ domain and arrestin-like fold interaction reveals mechanistic details of endocytic recycling by SNX27-retromer.

    PubMed

    Gallon, Matthew; Clairfeuille, Thomas; Steinberg, Florian; Mas, Caroline; Ghai, Rajesh; Sessions, Richard B; Teasdale, Rohan D; Collins, Brett M; Cullen, Peter J

    2014-09-02

    The sorting nexin 27 (SNX27)-retromer complex is a major regulator of endosome-to-plasma membrane recycling of transmembrane cargos that contain a PSD95, Dlg1, zo-1 (PDZ)-binding motif. Here we describe the core interaction in SNX27-retromer assembly and its functional relevance for cargo sorting. Crystal structures and NMR experiments reveal that an exposed β-hairpin in the SNX27 PDZ domain engages a groove in the arrestin-like structure of the vacuolar protein sorting 26A (VPS26A) retromer subunit. The structure establishes how the SNX27 PDZ domain simultaneously binds PDZ-binding motifs and retromer-associated VPS26. Importantly, VPS26A binding increases the affinity of the SNX27 PDZ domain for PDZ- binding motifs by an order of magnitude, revealing cooperativity in cargo selection. With disruption of SNX27 and retromer function linked to synaptic dysfunction and neurodegenerative disease, our work provides the first step, to our knowledge, in the molecular description of this important sorting complex, and more broadly describes a unique interaction between a PDZ domain and an arrestin-like fold.

  18. Epsin deficiency impairs endocytosis by stalling the actin-dependent invagination of endocytic clathrin-coated pits

    PubMed Central

    Messa, Mirko; Fernández-Busnadiego, Rubén; Sun, Elizabeth Wen; Chen, Hong; Czapla, Heather; Wrasman, Kristie; Wu, Yumei; Ko, Genevieve; Ross, Theodora; Wendland, Beverly; De Camilli, Pietro

    2014-01-01

    Epsin is an evolutionarily conserved endocytic clathrin adaptor whose most critical function(s) in clathrin coat dynamics remain(s) elusive. To elucidate such function(s), we generated embryonic fibroblasts from conditional epsin triple KO mice. Triple KO cells displayed a dramatic cell division defect. Additionally, a robust impairment in clathrin-mediated endocytosis was observed, with an accumulation of early and U-shaped pits. This defect correlated with a perturbation of the coupling between the clathrin coat and the actin cytoskeleton, which we confirmed in a cell-free assay of endocytosis. Our results indicate that a key evolutionary conserved function of epsin, in addition to other roles that include, as we show here, a low affinity interaction with SNAREs, is to help generate the force that leads to invagination and then fission of clathrin-coated pits. DOI: http://dx.doi.org/10.7554/eLife.03311.001 PMID:25122462

  19. Early recycling compartment trafficking of CD1a is essential for its intersection and presentation of lipid antigens.

    PubMed

    Cernadas, Manuela; Cavallari, Marco; Watts, Gerald; Mori, Lucia; De Libero, Gennaro; Brenner, Michael B

    2010-02-01

    A major step in understanding differences in the nature of Ag presentation was the realization that MHC class I samples peptides transported to the endoplasmic reticulum from the cytosol, whereas MHC class II samples peptides from lysosomes. In contrast to MHC class I and II molecules that present protein Ags, CD1 molecules present lipid Ags for recognition by specific T cells. Each of the five members of the CD1 family (CD1a-e) localizes to a distinct subcompartment of endosomes. Accordingly, it has been widely assumed that the distinct trafficking of CD1 isoforms must also have evolved to enable them to sample lipid Ags that traffic via different routes. Among the CD1 isoforms, CD1a is unusual because it does not have a tyrosine-based cytoplasmic sorting motif and uniquely localizes to the early endocytic recycling compartment. This led us to predict that CD1a might have evolved to focus on lipids that localize to early endocytic/recycling compartments. Strikingly, we found that the glycolipid Ag sulfatide also localized almost exclusively to early endocytic and recycling compartments. Consistent with colocalization of CD1a and sulfatide, wild-type CD1a molecules efficiently presented sulfatide to CD1a-restricted, sulfatide-specific T cells. In contrast, CD1a:CD1b tail chimeras, that retain the same Ag-binding capacity as CD1a but traffic based on the cytoplasmic tail of CD1b to lysosomes, failed to present sulfatide efficiently. Thus, the intracellular trafficking route of CD1a is essential for efficient presentation of lipid Ags that traffic through the early endocytic and recycling pathways.

  20. Ubiquitin-dependent endocytosis, trafficking and turnover of neuronal membrane proteins

    PubMed Central

    Schwarz, Lindsay A.; Patrick, Gentry N.

    2011-01-01

    Extracellular signaling between cells is often transduced via receptors that reside at the cell membrane. In neurons this receptor-mediated signaling can promote a variety of cellular events such as differentiation, axon outgrowth and guidance, synaptic development and function. Endocytic membrane trafficking of receptors can ensure that the strength and duration of an extracellular signal is properly regulated. The covalent modification of membrane proteins by ubiquitin is a key biological mechanism to control receptor internalization and endocytic sorting to recycling and degradative pathways in many cell types. In this review we highlight recent findings regarding the ubiquitin-dependent trafficking and turnover of receptors in neurons and the implications for neuronal development and function. PMID:21884797

  1. Evaluation of different photosensitizers for use in photochemical gene transfection.

    PubMed

    Prasmickaite, L; Høgset, A; Berg, K

    2001-04-01

    Many potentially therapeutic macromolecules, e.g. transgenes used in gene therapy, are taken into the cells by endocytosis, and have to be liberated from endocytic vesicles in order to express a therapeutic function. To achieve this we have developed a new technology, named photochemical internalization (PCI), based on photochemical reactions inducing rupture of endocytic vesicles. The aim of this study was to clarify which properties of photosensitizers are important for obtaining the PCI effect improving gene transfection. The photochemical effect on transfection of human melanoma THX cells has been studied employing photosensitizers with different physicochemical properties and using two gene delivery vectors: the cationic polypeptide polylysine and the cationic lipid 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP). Photochemical treatment by photosensitizers that do not localize in endocytic vesicles (tetra[3-hydroxyphenyl]porphyrin and 5-aminolevulinic acid-induced protoporphyrin IX) do not stimulate transfection, irrespective of the gene delivery vector. In contrast, photosensitizers localized in endocytic vesicles stimulate polylysine-mediated transfection, and amphiphilic photosensitizers (disulfonated aluminium phthalocyanine [AlPcS2a] and meso-tetraphenylporphynes) show the strongest positive effect, inducing approximately 10-fold increase in transfection efficiency. In contrast, DOTAP-mediated transfection is inhibited by all photochemical treatments irrespective of the photosensitizer used. Neither AlPcS2a nor Photofrin affects the uptake of the transfecting DNA over the plasma membrane, therefore photochemical permeabilization of endocytic vesicles seems to be the most likely mechanism responsible for the positive PCI effect on gene transfection.

  2. Endocytic Crosstalk: Cavins, Caveolins, and Caveolae Regulate Clathrin-Independent Endocytosis

    PubMed Central

    Chaudhary, Natasha; Gomez, Guillermo A.; Howes, Mark T.; Lo, Harriet P.; McMahon, Kerrie-Ann; Rae, James A.; Schieber, Nicole L.; Hill, Michelle M.; Gaus, Katharina; Yap, Alpha S.; Parton, Robert G.

    2014-01-01

    Several studies have suggested crosstalk between different clathrin-independent endocytic pathways. However, the molecular mechanisms and functional relevance of these interactions are unclear. Caveolins and cavins are crucial components of caveolae, specialized microdomains that also constitute an endocytic route. Here we show that specific caveolar proteins are independently acting negative regulators of clathrin-independent endocytosis. Cavin-1 and Cavin-3, but not Cavin-2 or Cavin-4, are potent inhibitors of the clathrin-independent carriers/GPI-AP enriched early endosomal compartment (CLIC/GEEC) endocytic pathway, in a process independent of caveola formation. Caveolin-1 (CAV1) and CAV3 also inhibit the CLIC/GEEC pathway upon over-expression. Expression of caveolar protein leads to reduction in formation of early CLIC/GEEC carriers, as detected by quantitative electron microscopy analysis. Furthermore, the CLIC/GEEC pathway is upregulated in cells lacking CAV1/Cavin-1 or with reduced expression of Cavin-1 and Cavin-3. Inhibition by caveolins can be mimicked by the isolated caveolin scaffolding domain and is associated with perturbed diffusion of lipid microdomain components, as revealed by fluorescence recovery after photobleaching (FRAP) studies. In the absence of cavins (and caveolae) CAV1 is itself endocytosed preferentially through the CLIC/GEEC pathway, but the pathway loses polarization and sorting attributes with consequences for membrane dynamics and endocytic polarization in migrating cells and adult muscle tissue. We also found that noncaveolar Cavin-1 can act as a modulator for the activity of the key regulator of the CLIC/GEEC pathway, Cdc42. This work provides new insights into the regulation of noncaveolar clathrin-independent endocytosis by specific caveolar proteins, illustrating multiple levels of crosstalk between these pathways. We show for the first time a role for specific cavins in regulating the CLIC/GEEC pathway, provide a new tool to study this pathway, identify caveola-independent functions of the cavins and propose a novel mechanism for inhibition of the CLIC/GEEC pathway by caveolin. PMID:24714042

  3. Kupffer cells express a unique combination of phenotypic and functional characteristics compared with splenic and peritoneal macrophages.

    PubMed

    Movita, Dowty; Kreefft, Kim; Biesta, Paula; van Oudenaren, Adri; Leenen, Pieter J M; Janssen, Harry L A; Boonstra, Andre

    2012-10-01

    The immunostimulatory role of Kupffer cells in various inflammatory liver diseases is still not fully understood. In this study, phenotypic and functional aspects of Kupffer cells from healthy C57BL/6 mice were analyzed and compared with those of splenic and peritoneal macrophages to generate a blueprint of the cells under steady-state conditions. In the mouse liver, only one population of Kupffer cells was identified as F4/80(high)CD11b(low) cells. We observed that freshy isolated Kupffer cells are endocytic and show a relatively high basal ROS content. Interestingly, despite expression of TLR mRNA on Kupffer cells, ligation of TLR4, TLR7/8, and TLR9 resulted in a weak induction of IL-10, low or undetectable levels of IL-12p40 and TNF, and up-regulation of CD40 on the surface. Kupffer cells and splenic macrophages show functional similarities, in comparison with peritoneal macrophages, as reflected by comparable levels of TLR4, TLR7/8, and TLR9 mRNA and low or undetectable levels of TNF and IL-12p40 produced upon TLR ligation. The unique, functional characteristics of Kupffer cells, demonstrated in this study, suggest that Kupffer cells under steady-state conditions are specialized as phagocytes to clear and degrade particulates and only play a limited immunoregulatory role via the release of soluble mediators.

  4. Differential effects of BDNF and neurotrophin 4 (NT4) on endocytic sorting of TrkB receptors.

    PubMed

    Proenca, Catia C; Song, Minseok; Lee, Francis S

    2016-08-01

    Neurotrophins are a family of growth factors playing key roles in the survival, development, and function of neurons. The neurotrophins brain-derived neurotrophic factor (BDNF) and NT4 both bind to and activate TrkB receptors, however, they mediate distinct neuronal functions. The molecular mechanism of how TrkB activation by BDNF and NT4 leads to diverse outcomes is unknown. Here, we report that BDNF and NT4 lead to differential endocytic sorting of TrkB receptors resulting in diverse biological functions in cultured cortical neurons. Fluorescent microscopy and surface biotinylation experiments showed that both neurotrophins stimulate internalization of TrkB with similar kinetics. Exposure to BDNF for 2-3 h reduced the surface pool of TrkB receptors to half, whereas a longer treatment (4-5 h) with NT4 was necessary to achieve a similar level of down-regulation. Although BDNF and NT4 induced TrkB phosphorylation with similar intensities, BDNF induced more rapid ubiquitination and degradation of TrkB than NT4. Interestingly, TrkB receptor ubiquitination by these ligands have substantially different pH sensitivities, resulting in varying degrees of receptor ubiquitination at lower pH levels. Consequently, NT4 was capable of maintaining longer sustained downstream signaling activation that correlated with reduced TrkB ubiquitination at endosomal pH. Thus, by leading to altered endocytic trafficking itineraries for TrkB receptors, BDNF and NT4 elicit differential TrkB signaling in terms of duration, intensity, and specificity, which may contribute to their functional differences in vivo. The neurotrophins, brain-derived neurotrophic factor (BDNF) and neurotrophin-4 (NT4), both bind to and activate TrkB receptors, however, they mediate distinct neuronal functions. Here, we propose that BDNF and NT4 lead to differential endocytic sorting of TrkB receptors resulting in diverse biological functions. BDNF induces more rapid ubiquitination and degradation of TrkB than NT4. Consequently, NT4 is capable of maintaining more sustained signaling downstream of TrkB receptors. © 2016 International Society for Neurochemistry.

  5. Intracisternal granules in the adipokinetic cells of locusts are not degraded and apparently function as supplementary stores of secretory material.

    PubMed

    Harthoorn, L F; Diederen, J H; Oudejans, R C; Verstegen, M M; Vullings, H G; Van der Horst, D J

    2000-01-01

    The intracisternal granules in locust adipokinetic cells appear to represent accumulations of secretory material within cisternae of the rough endoplasmic reticulum. An important question is whether these granules are destined for degradation or represent stores of (pro)hormones. Two strategies were used to answer this question. First, cytochemistry was applied to elucidate the properties of intracisternal granules. The endocytic tracers horseradish peroxidase and wheat-germ agglutinin-conjugated horseradish peroxidase were used to facilitate the identification of endocytic, autophagic, and lysosomal organelles, which may be involved in the degradation of intracisternal granules. No intracisternal granules could be found within autophagosomes, and granules fused with endocytic and lysosomal organelles were not observed, nor could tracer be found within the granules. The lysosomal enzyme acid phosphatase was absent from the granules. Second, biochemical analysis of the content of intracisternal granules revealed that these granules contain prohormones as well as hormones. Prohormones were present in relatively higher amounts compared with ordinary secretory granules. Since the intracisternal granules in locust adipokinetic cells are not degraded and contain intact (pro)hormones it is concluded that they function as supplementary stores of secretory material.

  6. The Sla1 adaptor-clathrin interaction regulates coat formation and progression of endocytosis.

    PubMed

    Tolsma, Thomas O; Cuevas, Lena M; Di Pietro, Santiago M

    2018-06-01

    Clathrin-mediated endocytosis is a fundamental transport pathway that depends on numerous protein-protein interactions. Testing the importance of the adaptor protein-clathrin interaction for coat formation and progression of endocytosis in vivo has been difficult due to experimental constrains. Here, we addressed this question using the yeast clathrin adaptor Sla1, which is unique in showing a cargo endocytosis defect upon substitution of 3 amino acids in its clathrin-binding motif (sla1 AAA ) that disrupt clathrin binding. Live-cell imaging showed an impaired Sla1-clathrin interaction causes reduced clathrin levels but increased Sla1 levels at endocytic sites. Moreover, the rate of Sla1 recruitment was reduced indicating proper dynamics of both clathrin and Sla1 depend on their interaction. sla1 AAA cells showed a delay in progression through the various stages of endocytosis. The Arp2/3-dependent actin polymerization machinery was present for significantly longer time before actin polymerization ensued, revealing a link between coat formation and activation of actin polymerization. Ultimately, in sla1 AAA cells a larger than normal actin network was formed, dramatically higher levels of various machinery proteins other than clathrin were recruited, and the membrane profile of endocytic invaginations was longer. Thus, the Sla1-clathrin interaction is important for coat formation, regulation of endocytic progression and membrane bending. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. The Disease Protein Tulp1 Is Essential for Periactive Zone Endocytosis in Photoreceptor Ribbon Synapses

    PubMed Central

    Wahl, Silke; Magupalli, Venkat Giri; Dembla, Mayur; Katiyar, Rashmi; Schwarz, Karin; Köblitz, Louise; Alpadi, Kannan; Krause, Elmar; Rettig, Jens; Sung, Ching-Hwa; Goldberg, Andrew F. X.

    2016-01-01

    Mutations in the Tulp1 gene cause severe, early-onset retinitis pigmentosa (RP14) in humans. In the retina, Tulp1 is mainly expressed in photoreceptors that use ribbon synapses to communicate with the inner retina. In the present study, we demonstrate that Tulp1 is highly enriched in the periactive zone of photoreceptor presynaptic terminals where Tulp1 colocalizes with major endocytic proteins close to the synaptic ribbon. Analyses of Tulp1 knock-out mice demonstrate that Tulp1 is essential to keep endocytic proteins enriched at the periactive zone and to maintain high levels of endocytic activity close to the synaptic ribbon. Moreover, we have discovered a novel interaction between Tulp1 and the synaptic ribbon protein RIBEYE, which is important to maintain synaptic ribbon integrity. The current findings suggest a new model for Tulp1-mediated localization of the endocytic machinery at the periactive zone of ribbon synapses and offer a new rationale and mechanism for vision loss associated with genetic defects in Tulp1. SIGNIFICANCE STATEMENT Mutations in the Tulp1 gene cause severe, early-onset retinitis pigmentosa (RP14) and Leber congenital amaurosis (LCA15) in human patients. In this study, we discovered that the phosphoinositol-4,5-bisphosphate-binding protein Tulp1 is essential for the structural and functional organization of the periactive zone in photoreceptor synapses. Using Tulp1 knock-out mice, we found that Tulp1 is required to enrich major endocytic proteins at the periactive zone next to the synaptic ribbon. We demonstrate that Tulp1 is needed to promote endocytic vesicle retrieval at the periactive zone. Moreover, we discovered a novel interaction between Tulp1 and the synaptic ribbon protein RIBEYE. This newly discovered disease-sensitive interaction provides a molecular model for the control of endocytosis close to the synaptic ribbon. PMID:26911694

  8. Mapping of the Lassa virus LAMP1 binding site reveals unique determinants not shared by other old world arenaviruses.

    PubMed

    Israeli, Hadar; Cohen-Dvashi, Hadas; Shulman, Anastasiya; Shimon, Amir; Diskin, Ron

    2017-04-01

    Cell entry of many enveloped viruses occurs by engagement with cellular receptors, followed by internalization into endocytic compartments and pH-induced membrane fusion. A previously unnoticed step of receptor switching was found to be critical during cell entry of two devastating human pathogens: Ebola and Lassa viruses. Our recent studies revealed the functional role of receptor switching to LAMP1 for triggering membrane fusion by Lassa virus and showed the involvement of conserved histidines in this switching, suggesting that other viruses from this family may also switch to LAMP1. However, when we investigated viruses that are genetically close to Lassa virus, we discovered that they cannot bind LAMP1. A crystal structure of the receptor-binding module from Morogoro virus revealed structural differences that allowed mapping of the LAMP1 binding site to a unique set of Lassa residues not shared by other viruses in its family, illustrating a key difference in the cell-entry mechanism of Lassa virus that may contribute to its pathogenicity.

  9. Sphingosine and Sphingosine Kinase 1 Involvement in Endocytic Membrane Trafficking*

    PubMed Central

    Lima, Santiago; Milstien, Sheldon; Spiegel, Sarah

    2017-01-01

    The balance between cholesterol and sphingolipids within the plasma membrane has long been implicated in endocytic membrane trafficking. However, in contrast to cholesterol functions, little is still known about the roles of sphingolipids and their metabolites. Perturbing the cholesterol/sphingomyelin balance was shown to induce narrow tubular plasma membrane invaginations enriched with sphingosine kinase 1 (SphK1), the enzyme that converts the bioactive sphingolipid metabolite sphingosine to sphingosine-1-phosphate, and suggested a role for sphingosine phosphorylation in endocytic membrane trafficking. Here we show that sphingosine and sphingosine-like SphK1 inhibitors induced rapid and massive formation of vesicles in diverse cell types that accumulated as dilated late endosomes. However, much smaller vesicles were formed in SphK1-deficient cells. Moreover, inhibition or deletion of SphK1 prolonged the lifetime of sphingosine-induced vesicles. Perturbing the plasma membrane cholesterol/sphingomyelin balance abrogated vesicle formation. This massive endosomal influx was accompanied by dramatic recruitment of the intracellular SphK1 and Bin/Amphiphysin/Rvs domain-containing proteins endophilin-A2 and endophilin-B1 to enlarged endosomes and formation of highly dynamic filamentous networks containing endophilin-B1 and SphK1. Together, our results highlight the importance of sphingosine and its conversion to sphingosine-1-phosphate by SphK1 in endocytic membrane trafficking. PMID:28049734

  10. Visualization of HIV T Cell Virological Synapses and Virus-Containing Compartments by Three-Dimensional Correlative Light and Electron Microscopy

    PubMed Central

    Wang, Lili; Eng, Edward T.; Law, Kenneth; Gordon, Ronald E.; Rice, William J.

    2016-01-01

    ABSTRACT Virological synapses (VS) are adhesive structures that form between infected and uninfected cells to enhance the spread of HIV-1. During T cell VS formation, viral proteins are actively recruited to the site of cell-cell contact where the viral material is efficiently translocated to target cells into heterogeneous, protease-resistant, antibody-inaccessible compartments. Using correlative light and electron microscopy (CLEM), we define the membrane topography of the virus-containing compartments (VCC) where HIV is found following VS-mediated transfer. Focused ion beam scanning electron microscopy (FIB-SEM) and serial sectioning transmission electron microscopy (SS-TEM) were used to better resolve the fluorescent Gag-containing structures within the VCC. We found that small punctate fluorescent signals correlated with single viral particles in enclosed vesicular compartments or surface-localized virus particles and that large fluorescent signals correlated with membranous Gag-containing structures with unknown pathological function. CLEM imaging revealed distinct pools of newly deposited viral proteins within endocytic and nonendocytic compartments in VS target T cells. IMPORTANCE This study directly correlates individual virus-associated objects observed in light microscopy with ultrastructural features seen by electron microscopy in the HIV-1 virological synapse. This approach elucidates which infection-associated ultrastructural features represent bona fide HIV protein complexes. We define the morphology of some HIV cell-to-cell transfer intermediates as true endocytic compartments and resolve unique synapse-associated viral structures created by transfer across virological synapses. PMID:27847357

  11. The HDAC complex and cytoskeleton.

    PubMed

    Kovacs, Jeffery J; Hubbert, Charlotte; Yao, Tso-Pang

    2004-01-01

    HDAC6 is a cytoplasmic deacetylase that dynamically associates with the microtubule and actin cytoskeletons. HDAC6 regulates growth factor-induced chemotaxis by its unique deacetylase activity towards microtubules or other substrates. Here we describe a non-catalytic structural domain that is essential for HDAC6 function and places HDAC6 as a critical mediator linking the acetylation and ubiquitination network. This evolutionarily conserved motif, termed the BUZ domain, has features of a zinc finger and binds both mono- and polyubiquitinated proteins. Furthermore, the BUZ domain promotes HDAC6 mono-ubiquitination. These results establish the BUZ domain, in addition to the UIM and CUE domains, as a novel motif that both binds ubiquitin and mediates mono-ubiquitination. Importantly, the BUZ domain is essential for HDAC6 to promote chemotaxis, indicating that communication with the ubiquitin network is critical for proper HDAC6 function. The unique presence of the UIM and CUE domains in proteins involved in endocytic trafficking suggests that HDAC6 might also regulate vesicle transport and protein degradation. Indeed, we have found that HDAC6 is actively transported and concentrated in vesicular compartments. We propose that an integration of reversible acetylation and ubiquitination by HDAC6 may be a novel component in regulating the cytoskeleton, vesicle transport and protein degradation.

  12. Interpretation of the FGF8 morphogen gradient is regulated by endocytic trafficking.

    PubMed

    Nowak, Matthias; Machate, Anja; Yu, Shuizi Rachel; Gupta, Mansi; Brand, Michael

    2011-02-01

    Forty years ago, it was proposed that during embryonic development and organogenesis, morphogen gradients provide positional information to the individual cells within a tissue leading to specific fate decisions. Recently, much insight has been gained into how such morphogen gradients are formed and maintained; however, which cellular mechanisms govern their interpretation within target tissues remains debated. Here we used in vivo fluorescence correlation spectroscopy and automated image analysis to assess the role of endocytic sorting dynamics on fibroblast growth factor 8 (Fgf8) morphogen gradient interpretation. By interfering with the function of the ubiquitin ligase Cbl, we found an expanded range of Fgf target gene expression and a delay of Fgf8 lysosomal transport. However, the extracellular Fgf8 morphogen gradient remained unchanged, indicating that the observed signalling changes are due to altered gradient interpretation. We propose that regulation of morphogen signalling activity through endocytic sorting allows fast feedback-induced changes in gradient interpretation during the establishment of complex patterns.

  13. Parkin Deficiency Reduces Hippocampal Glutamatergic Neurotransmission by Impairing AMPA Receptor Endocytosis.

    PubMed

    Cortese, Giuseppe P; Zhu, Mei; Williams, Damian; Heath, Sarah; Waites, Clarissa L

    2016-11-30

    Mutations in the gene encoding Parkin, an E3 ubiquitin ligase, lead to juvenile-onset Parkinson's disease by inducing the selective death of midbrain dopaminergic neurons. Accumulating evidence indicates that Parkin also has an important role in excitatory glutamatergic neurotransmission, although its precise mechanism of action remains unclear. Here, we investigate Parkin's role at glutamatergic synapses of rat hippocampal neurons. We find that Parkin-deficient neurons exhibit significantly reduced AMPA receptor (AMPAR)-mediated currents and cell-surface expression, and that these phenotypes result from decreased postsynaptic expression of the adaptor protein Homer1, which is necessary for coupling AMPAR endocytic zones with the postsynaptic density. Accordingly, Parkin loss of function leads to the reduced density of postsynaptic endocytic zones and to impaired AMPAR internalization. These findings demonstrate a novel and essential role for Parkin in glutamatergic neurotransmission, as a stabilizer of postsynaptic Homer1 and the Homer1-linked endocytic machinery necessary for maintaining normal cell-surface AMPAR levels. Mutations in Parkin, a ubiquitinating enzyme, lead to the selective loss of midbrain dopaminergic neurons and juvenile-onset Parkinson's disease (PD). Parkin loss of function has also been shown to alter hippocampal glutamatergic neurotransmission, providing a potential explanation for PD-associated cognitive impairment. However, very little is known about Parkin's specific sites or mechanisms of action at glutamatergic synapses. Here, we show that Parkin deficiency leads to decreased AMPA receptor-mediated activity due to disruption of the postsynaptic endocytic zones required for maintaining proper cell-surface AMPA receptor levels. These findings demonstrate a novel role for Parkin in synaptic AMPA receptor internalization and suggest a Parkin-dependent mechanism for hippocampal dysfunction that may explain cognitive deficits associated with some forms of PD. Copyright © 2016 the authors 0270-6474/16/3612243-16$15.00/0.

  14. The effect of the size of fluorescent dextran on its endocytic pathway.

    PubMed

    Li, Lei; Wan, Tao; Wan, Min; Liu, Bei; Cheng, Ran; Zhang, Rongying

    2015-05-01

    Fluorescent dextrans are commonly used as macropinocytic probes to study the properties of endocytic cargoes; however, the effect of the size of dextrans on endocytic mechanisms has not been carefully analyzed. By using chemical and siRNA inhibition of individual endocytic pathways, we evaluated the internalization of two commonly used dextrans, Dex10 (dextran 10 kDa) and Dex70 (dextran 70 kDa), in mammalian HeLa cells and Caenorhabditis elegans coelomocytes. We revealed that Dex70 enters these two cell types predominantly via clathrin- and dynamin-independent and amiloride-sensitive macropinocytosis process; Dex10, on the other hand, enters the two cell types through clathrin-/dynamin-dependent micropinocytosis in addition to macropinocytosis. In addition, although different-sized dextrans follow different endocytic processes, they share common post-endocytic events. Herein, though straightforward, our studies support that the size of nanomaterials could play a paramount role in their inclusion into endocytic vesicles and suggest that care should be taken while selecting endocytic pathway markers. Based on our results, we propose that Dex70 is a better probe for macropinocytosis, whereas Dex10 and smaller molecules are better for probing general fluid-phase endocytosis, which includes macropinocytic and micropinocytic processes. © 2015 International Federation for Cell Biology.

  15. Abnormal accumulation and recycling of glycoproteins visualized in Niemann–Pick type C cells using the chemical reporter strategy

    PubMed Central

    Mbua, Ngalle Eric; Flanagan-Steet, Heather; Johnson, Steven; Wolfert, Margreet A.; Boons, Geert-Jan; Steet, Richard

    2013-01-01

    Niemann–Pick type C (NPC) disease is characterized by impaired cholesterol efflux from late endosomes and lysosomes and secondary accumulation of lipids. Although impaired trafficking of individual glycoproteins and glycolipids has been noted in NPC cells and other storage disorders, there is currently no effective way to monitor their localization and movement en masse. Using a chemical reporter strategy in combination with pharmacologic treatments, we demonstrate a disease-specific and previously unrecognized accumulation of a diverse set of glycoconjugates in NPC1-null and NPC2-deficient fibroblasts within endocytic compartments. These labeled vesicles do not colocalize with the cholesterol-laden compartments of NPC cells. Experiments using the endocytic uptake marker dextran show that the endosomal accumulation of sialylated molecules can be largely attributed to impaired recycling as opposed to altered fusion of vesicles. Treatment of either NPC1-null or NPC2-deficient cells with cyclodextrin was effective in reducing cholesterol storage as well as the endocytic accumulation of sialoglycoproteins, demonstrating a direct link between cholesterol storage and abnormal recycling. Our data further demonstrate that this accumulation is largely glycoproteins, given that inhibitors of O-glycan initiation or N-glycan processing led to a significant reduction in staining intensity. Taken together, our results provide a unique perspective on the trafficking defects in NPC cells, and highlight the utility of this methodology in analyzing cells with altered recycling and turnover of glycoproteins. PMID:23733943

  16. Rab15 Effector Protein: A Novel Protein for Receptor Recycling from the Endocytic Recycling CompartmentD⃞

    PubMed Central

    Strick, David J.; Elferink, Lisa A.

    2005-01-01

    Sorting endosomes and the endocytic recycling compartment are critical intracellular stores for the rapid recycling of internalized membrane receptors to the cell surface in multiple cell types. However, the molecular mechanisms distinguishing fast receptor recycling from sorting endosomes and slow receptor recycling from the endocytic recycling compartment remain poorly understood. We previously reported that Rab15 differentially regulates transferrin receptor trafficking through sorting endosomes and the endocytic recycling compartment, suggesting a role for distinct Rab15-effector interactions at these endocytic compartments. In this study, we identified the novel protein Rab15 effector protein (REP15) as a binding partner for Rab15-GTP. REP15 is compartment specific, colocalizing with Rab15 and Rab11 on the endocytic recycling compartment but not with Rab15, Rab4, or early endosome antigen 1 on sorting endosomes. REP15 interacts directly with Rab15-GTP but not with Rab5 or Rab11. Consistent with its localization, REP15 overexpression and small interfering RNA-mediated depletion inhibited transferrin receptor recycling from the endocytic recycling compartment, without affecting receptor entry into or recycling from sorting endosomes. Our data identify REP15 as a compartment-specific protein for receptor recycling from the endocytic recycling compartment, highlighting that the rapid and slow modes of transferrin receptor recycling are mechanistically distinct pathways. PMID:16195351

  17. Parkin Modulates Endosomal Organization and Function of the Endo-Lysosomal Pathway.

    PubMed

    Song, Pingping; Trajkovic, Katarina; Tsunemi, Taiji; Krainc, Dimitri

    2016-02-24

    Mutations in PARK2 (parkin), which encodes Parkin protein, an E3 ubiquitin ligase, are associated with autosomal recessive early-onset Parkinson's disease (PD). While several studies implicated Parkin in the regulation of mitophagy and proteasomal degradation, the precise mechanism leading to neurodegeneration upon Parkin loss of function remains incompletely understood. In this study, we found that Parkin modulates the endocytic pathway through the regulation of endosomal structure and function. We showed that loss of Parkin function led to decreased endosomal tubulation and membrane association of vesicle protein sorting 35 (VPS35) and sorting nexin 1 (SNX1), as well as decreased mannose 6 phosphate receptor (M6PR), suggesting the impairment of retromer pathway in Parkin-deficient cells. We also found increased formation of intraluminal vesicles coupled with enhanced release of exosomes in the presence of mutant Parkin. To elucidate the molecular mechanism of these alterations in the endocytic pathway in Parkin-deficient cells, we found that Parkin regulates the levels and activity of Rab7 by promoting its ubiquitination on lysine 38 residue. Both endogenous Rab7 in Parkin-deficient cells and overexpressed K38 R-Rab7 mutant displayed decreased effector binding and membrane association. Furthermore, overexpression of K38R-Rab7 in HEK293 cells phenocopied the increased secretion of exosomes observed in Parkin-deficient cells, suggesting that Rab7 deregulation may be at least partially responsible for the endocytic phenotype observed in Parkin-deficient cells. These findings establish a role for Parkin in regulating the endo-lysosomal pathway and retromer function and raise the possibility that alterations in these pathways contribute to the development of pathology in Parkin-linked Parkinson's disease. Copyright © 2016 the authors 0270-6474/16/362425-13$15.00/0.

  18. Endocytosis and Signaling during Development

    PubMed Central

    Bökel, Christian

    2014-01-01

    The development of multicellular organisms relies on an intricate choreography of intercellular communication events that pattern the embryo and coordinate the formation of tissues and organs. It is therefore not surprising that developmental biology, especially using genetic model organisms, has contributed significantly to the discovery and functional dissection of the associated signal-transduction cascades. At the same time, biophysical, biochemical, and cell biological approaches have provided us with insights into the underlying cell biological machinery. Here we focus on how endocytic trafficking of signaling components (e.g., ligands or receptors) controls the generation, propagation, modulation, reception, and interpretation of developmental signals. A comprehensive enumeration of the links between endocytosis and signal transduction would exceed the limits of this review. We will instead use examples from different developmental pathways to conceptually illustrate the various functions provided by endocytic processes during key steps of intercellular signaling. PMID:24591521

  19. HLB1 Is a Tetratricopeptide Repeat Domain-Containing Protein That Operates at the Intersection of the Exocytic and Endocytic Pathways at the TGN/EE in Arabidopsis

    DOE PAGES

    Sparks, J. Alan; Kwon, Taegun; Renna, Luciana; ...

    2016-03-03

    The endomembrane system plays essential roles in plant development, but the proteome responsible for its function and organization remains largely uncharacterized in plants. For this study, we identified and characterized the HYPERSENSITIVE TO LATRUNCULIN B1 (HLB1) protein isolated through a forward-genetic screen in Arabidopsis thaliana for mutants with heightened sensitivity to actin-disrupting drugs. HLB1 is a plant-specific tetratricopeptide repeat domain-containing protein of unknown function encoded by a single Arabidopsis gene. HLB1 associated with the trans-Golgi network (TGN)/early endosome (EE) and tracked along filamentous actin, indicating that it could link post-Golgi traffic with the actin cytoskeleton in plants. HLB1 was foundmore » to interact with the ADP-ribosylation-factor guanine nucleotide exchange factor, MIN7/BEN1 (HOPM INTERACTOR7/BREFELDIN A-VISUALIZED ENDOCYTIC TRAFFICKING DEFECTIVE1) by coimmunoprecipitation. The min7/ben1 mutant phenocopied the mild root developmental defects and latrunculin B hypersensitivity of hlb1, and analyses of a hlb1/ min7/ben1 double mutant showed that hlb1 and min7/ben1 operate in common genetic pathways. Based on these data, we propose that HLB1 together with MIN7/BEN1 form a complex with actin to modulate the function of the TGN/EE at the intersection of the exocytic and endocytic pathways in plants.« less

  20. The Endocytic Receptor Megalin and its Associated Proteins in Proximal Tubule Epithelial Cells

    PubMed Central

    De, Shankhajit; Kuwahara, Shoji; Saito, Akihiko

    2014-01-01

    Receptor-mediated endocytosis in renal proximal tubule epithelial cells (PTECs) is important for the reabsorption and metabolization of proteins and other substances, including carrier-bound vitamins and trace elements, in glomerular filtrates. Impairment of this endocytic process results in the loss of such substances and development of proteinuria, which is an important clinical indicator of kidney diseases and is also a risk marker for cardiovascular disease. Megalin, a member of the low-density lipoprotein receptor gene family, is a multiligand receptor expressed in the apical membrane of PTECs and plays a central role in the endocytic process. Megalin interacts with various intracellular adaptor proteins for intracellular trafficking and cooperatively functions with other membrane molecules, including the cubilin-amnionless complex. Evidence suggests that megalin and the cubilin-amnionless complex are involved in the uptake of toxic substances into PTECs, which leads to the development of kidney disease. Studies of megalin and its associated molecules will be useful for future development of novel strategies for the diagnosis and treatment of kidney diseases. PMID:25019425

  1. A role of the Lowe syndrome protein OCRL in early steps of the endocytic pathway

    PubMed Central

    Erdmann, Kai S.; Mao, Yuxin; McCrea, Heather J.; Zoncu, Roberto; Lee, Sangyoon; Paradise, Summer; Modregger, Jan; Biemesderfer, Daniel; Toomre, Derek; De Camilli, Pietro

    2007-01-01

    Mutations in the inositol 5-phosphatase OCRL are responsible for Lowe syndrome, whose manifestations include mental retardation and renal Fanconi syndrome. OCRL has been implicated in membrane traffic, but disease mechanisms remain unclear. We show that OCRL visits late stage endocytic clathrin coated pits and binds the Rab5 effector APPL1 on peripheral early endosomes. The interaction with APPL1, which is mediated by the ASH-RhoGAP-like domains of OCRL and is abolished by disease mutations, provides a link to protein networks implicated in the reabsorptive function of kidney and in traffic and signaling of growth factor receptors in brain. Crystallographic studies reveal a role of the ASH-RhoGAP-like domains in positioning the phosphatase domain at the membrane interface and a clathrin box protruding from the RhoGAP-like domain. Our results support a role of OCRL in the early endocytic pathway consistent with the predominant localization of its preferred substrates, PI(4,5)P2 and PI(3,4,5)P3, at the cell surface. PMID:17765681

  2. CALM Regulates Clathrin-Coated Vesicle Size and Maturation by Directly Sensing and Driving Membrane Curvature

    PubMed Central

    Miller, Sharon E.; Mathiasen, Signe; Bright, Nicholas A.; Pierre, Fabienne; Kelly, Bernard T.; Kladt, Nikolay; Schauss, Astrid; Merrifield, Christien J.; Stamou, Dimitrios; Höning, Stefan; Owen, David J.

    2015-01-01

    Summary The size of endocytic clathrin-coated vesicles (CCVs) is remarkably uniform, suggesting that it is optimized to achieve the appropriate levels of cargo and lipid internalization. The three most abundant proteins in mammalian endocytic CCVs are clathrin and the two cargo-selecting, clathrin adaptors, CALM and AP2. Here we demonstrate that depletion of CALM causes a substantial increase in the ratio of “open” clathrin-coated pits (CCPs) to “necked”/“closed” CCVs and a doubling of CCP/CCV diameter, whereas AP2 depletion has opposite effects. Depletion of either adaptor, however, significantly inhibits endocytosis of transferrin and epidermal growth factor. The phenotypic effects of CALM depletion can be rescued by re-expression of wild-type CALM, but not with CALM that lacks a functional N-terminal, membrane-inserting, curvature-sensing/driving amphipathic helix, the existence and properties of which are demonstrated. CALM is thus a major factor in controlling CCV size and maturation and hence in determining the rates of endocytic cargo uptake. PMID:25898166

  3. Regulators of Lysosome Function and Dynamics in Caenorhabditis elegans

    PubMed Central

    Gee, Kevin; Zamora, Danniel; Horm, Teresa; George, Laeth; Upchurch, Cameron; Randall, Justin; Weaver, Colby; Sanford, Caitlin; Miller, Austin; Hernandez, Sebastian; Dang, Hope; Fares, Hanna

    2017-01-01

    Lysosomes, the major membrane-bound degradative organelles, have a multitude of functions in eukaryotic cells. Lysosomes are the terminal compartments in the endocytic pathway, though they display highly dynamic behaviors, fusing with each other and with late endosomes in the endocytic pathway, and with the plasma membrane during regulated exocytosis and for wound repair. After fusing with late endosomes, lysosomes are reformed from the resulting hybrid organelles through a process that involves budding of a nascent lysosome, extension of the nascent lysosome from the hybrid organelle, while remaining connected by a membrane bridge, and scission of the membrane bridge to release the newly formed lysosome. The newly formed lysosomes undergo cycles of homotypic fusion and fission reactions to form mature lysosomes. In this study, we used a forward genetic screen in Caenorhabditis elegans to identify six regulators of lysosome biology. We show that these proteins function in different steps of lysosome biology, regulating lysosome formation, lysosome fusion, and lysosome degradation. PMID:28122949

  4. Snapin-regulated late endosomal transport is critical for efficient autophagy-lysosomal function in neurons.

    PubMed

    Cai, Qian; Lu, Li; Tian, Jin-Hua; Zhu, Yi-Bing; Qiao, Haifa; Sheng, Zu-Hang

    2010-10-06

    Neuron maintenance and survival require late endocytic transport from distal processes to the soma where lysosomes are predominantly localized. Here, we report a role for Snapin in attaching dynein to late endosomes through its intermediate chain (DIC). snapin(-/-) neurons exhibit aberrant accumulation of immature lysosomes, clustering and impaired retrograde transport of late endosomes along processes, reduced lysosomal proteolysis due to impaired delivery of internalized proteins and hydrolase precursors from late endosomes to lysosomes, and impaired clearance of autolysosomes, combined with reduced neuron viability and neurodegeneration. The phenotypes are rescued by expressing the snapin transgene, but not the DIC-binding-defective Snapin-L99K mutant. Snapin overexpression in wild-type neurons enhances late endocytic transport and lysosomal function, whereas expressing the mutant defective in Snapin-DIC coupling shows a dominant-negative effect. Altogether, our study highlights new mechanistic insights into how Snapin-DIC coordinates retrograde transport and late endosomal-lysosomal trafficking critical for autophagy-lysosomal function, and thus neuronal homeostasis. Copyright © 2010 Elsevier Inc. All rights reserved.

  5. Expression and immunolocalisation of the endocytic receptors megalin and cubilin in the human yolk sac and placenta across gestation☆

    PubMed Central

    Burke, K.A.; Jauniaux, E.; Burton, G.J.; Cindrova-Davies, T.

    2013-01-01

    Megalin and cubilin are multifunctional endocytic receptors associated with many transporting epithelia. They play an essential role in transport of nutrients through the visceral yolk sac of rodents during embryogenesis. Here, we immunolocalise them to the endodermal layer of the human yolk sac, and to the syncytiotrophoblast and cytotrophoblast cells of placental villi. In villi, the protein level of both receptors increased with gestation. The mRNA for megalin remained constant, while that encoding cubilin increased with gestation. These results suggest megalin and cubilin may be important in human maternal–fetal transfer, and that they increase across gestation to facilitate this function. PMID:23978537

  6. Time-resolved Ultrastructural Detection of Phosphatidylinositol 3-phosphate

    PubMed Central

    Stuffers, Susanne; Malerød, Lene; Schink, Kay Oliver; Corvera, Silvia; Stenmark, Harald; Brech, Andreas

    2010-01-01

    Phosphatidylinositol 3-phosphate [PtdIns(3)P] plays an important role in recruitment of various effector proteins in the endocytic and autophagic pathways. In an attempt to follow the distribution of PtdIns(3)P at the ultrastructural level, we are using the Fab1, YOTB, Vac1, and EEA1 (FYVE) domain, which is a zinc finger motif specifically binding to PtdIns(3)P. To follow PtdIns(3)P trafficking during a defined time window, here we have used a monomeric dimerizable FYVE probe, which binds with high avidity to PtdIns(3)P only after rapalog-induced dimerization. The probe localized to early and late endocytic compartments according to the time period of dimerization, which indicates that PtdIns(3)P is turned over via the endocytic machinery. In the functional context of epidermal growth factor (EGF) stimulation, we observed that dimerization of the probe led to clustering of mainly early endocytic structures, leaving most of the probe localized to the limiting membrane of endosomes. Interestingly, these clustered endosomes contained coats positive for the PtdIns(3)P-binding protein hepatocyte growth factor–regulated tyrosine kinase substrate (Hrs), indicating that the probe did not displace Hrs binding. We conclude that the dimerizer-inducible probe is useful for the time-resolved detection of PtdIns(3)P at the ultrastructural level, but its effects on endosome morphology after EGF stimulation need to be taken into account. (J Histochem Cytochem 58:1025–1032, 2010) PMID:20713985

  7. Endocytosis of G protein-coupled receptors is regulated by clathrin light chain phosphorylation.

    PubMed

    Ferreira, Filipe; Foley, Matthew; Cooke, Alex; Cunningham, Margaret; Smith, Gemma; Woolley, Robert; Henderson, Graeme; Kelly, Eamonn; Mundell, Stuart; Smythe, Elizabeth

    2012-08-07

    Signaling by transmembrane receptors such as G protein-coupled receptors (GPCRs) occurs at the cell surface and throughout the endocytic pathway, and signaling from the cell surface may differ in magnitude and downstream output from intracellular signaling. As a result, the rate at which signaling molecules traverse the endocytic pathway makes a significant contribution to downstream output. Modulation of the core endocytic machinery facilitates differential uptake of individual cargoes. Clathrin-coated pits are a major entry portal where assembled clathrin forms a lattice around invaginating buds that have captured endocytic cargo. Clathrin assembles into triskelia composed of three clathrin heavy chains and associated clathrin light chains (CLCs). Despite the identification of clathrin-coated pits at the cell surface over 30 years ago, the functions of CLCs in endocytosis have been elusive. In this work, we identify a novel role for CLCs in the regulated endocytosis of specific cargoes. Small interfering RNA-mediated knockdown of either CLCa or CLCb inhibits the uptake of GPCRs. Moreover, we demonstrate that phosphorylation of Ser204 in CLCb is required for efficient endocytosis of a subset of GPCRs and identify G protein-coupled receptor kinase 2 (GRK2) as a kinase that can phosphorylate CLCb on Ser204. Overexpression of CLCb(S204A) specifically inhibits the endocytosis of those GPCRs whose endocytosis is GRK2-dependent. Together, these results indicate that CLCb phosphorylation acts as a discriminator for the endocytosis of specific GPCRs. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Fast and ultrafast endocytosis.

    PubMed

    Watanabe, Shigeki; Boucrot, Emmanuel

    2017-08-01

    Clathrin-mediated endocytosis (CME) is the main endocytic pathway supporting housekeeping functions in cells. However, CME may be too slow to internalize proteins from the cell surface during certain physiological processes such as reaction to stress hormones ('fight-or-flight' reaction), chemotaxis or compensatory endocytosis following exocytosis of synaptic vesicles or hormone-containing vesicles. These processes take place on a millisecond to second timescale and thus require very rapid cellular reaction to prevent overstimulation or exhaustion of the response. There are several fast endocytic processes identified so far: macropinocytosis, activity-dependent bulk endocytosis (ABDE), fast-endophilin-mediated endocytosis (FEME), kiss-and-run and ultrafast endocytosis. All are clathrin-independent and are not constitutively active but may use different molecular mechanisms to rapidly remove receptors and proteins from the cell surface. Here, we review our current understanding of fast and ultrafast endocytosis, their functions, and molecular mechanisms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Regulation of VEGF signaling by membrane traffic.

    PubMed

    Horowitz, Arie; Seerapu, Himabindu Reddy

    2012-09-01

    Recent findings have drawn attention to the role of membrane traffic in the signaling of vascular endothelial growth factor (VEGF). The significance of this development stems from the pivotal function of VEGF in vasculogenesis and angiogenesis. The outline of the regulation of VEGF receptor (VEGFR) signaling by membrane traffic is similar to that of the epidermal growth factor receptor (EGFR), a prototype of the intertwining between membrane traffic and signaling. There are, however, unique features in VEGFR signaling that are conferred in part by the involvement of the co-receptor neuropilin (Nrp). Nrp1 and VEGFR2 are integrated into membrane traffic through the adaptor protein synectin, which recruits myosin VI, a molecular motor that drives inward trafficking [17,21,64]. The recent detection of only mild vascular defects in a knockin mouse model that expresses Nrp1 lacking a cytoplasmic domain [104], questions the co-receptor's role in VEGF signaling and membrane traffic. The regulation of endocytosis by ephrin-B2 is another feature unique to VEGR2/3 [18,19], but it awaits a mechanistic explanation. Current models do not fully explain how membrane traffic bridges between VEGFR and the downstream effectors that produce its functional outcome, such as cell migration. VEGF-A appears to accomplish this task in part by recruiting endocytic vesicles carrying RhoA to internalized active VEGFR2 [58]. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. A Coincidence Detection Mechanism Controls PX-BAR Domain-Mediated Endocytic Membrane Remodeling via an Allosteric Structural Switch.

    PubMed

    Lo, Wen-Ting; Vujičić Žagar, Andreja; Gerth, Fabian; Lehmann, Martin; Puchkov, Dymtro; Krylova, Oxana; Freund, Christian; Scapozza, Leonardo; Vadas, Oscar; Haucke, Volker

    2017-11-20

    Clathrin-mediated endocytosis occurs by bending and remodeling of the membrane underneath the coat. Bin-amphiphysin-rvs (BAR) domain proteins are crucial for endocytic membrane remodeling, but how their activity is spatiotemporally controlled is largely unknown. We demonstrate that the membrane remodeling activity of sorting nexin 9 (SNX9), a late-acting endocytic PX-BAR domain protein required for constriction of U-shaped endocytic intermediates, is controlled by an allosteric structural switch involving coincident detection of the clathrin adaptor AP2 and phosphatidylinositol-3,4-bisphosphate (PI(3,4)P 2 ) at endocytic sites. Structural, biochemical, and cell biological data show that SNX9 is autoinhibited in solution. Binding to PI(3,4)P 2 via its PX-BAR domain, and concomitant association with AP2 via sequences in the linker region, releases SNX9 autoinhibitory contacts to enable membrane constriction. Our results reveal a mechanism for restricting the latent membrane remodeling activity of BAR domain proteins to allow spatiotemporal coupling of membrane constriction to the progression of the endocytic pathway. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Membrane order in the plasma membrane and endocytic recycling compartment.

    PubMed

    Iaea, David B; Maxfield, Frederick R

    2017-01-01

    The cholesterol content of membranes plays an important role in organizing membranes for signal transduction and protein trafficking as well as in modulating the biophysical properties of membranes. While the properties of model or isolated membranes have been extensively studied, there has been little evaluation of internal membranes in living cells. Here, we use a Nile Red based probe, NR12S, and ratiometric live cell imaging, to analyze the membrane order of the plasma membrane and endocytic recycling compartment. We find that after a brief incubation to allow endocytosis, NR12S is distributed between the plasma membrane and the endocytic recycling compartment. The NR12S reports that the endocytic recycling compartment is more highly ordered than the plasma membrane. We also find that the plasma membrane and the endocytic recycling compartment are differentially affected by altering cellular cholesterol levels. The membrane order of the plasma membrane, but not the endocytic recycling compartment, is altered significantly when cellular cholesterol content is increased or decreased by 20%. These results demonstrate that changes in cellular cholesterol differentially alter membrane order within different organelles.

  12. Sphingosine Kinase 1 Cooperates with Autophagy to Maintain Endocytic Membrane Trafficking.

    PubMed

    Young, Megan M; Takahashi, Yoshinori; Fox, Todd E; Yun, Jong K; Kester, Mark; Wang, Hong-Gang

    2016-11-01

    Sphingosine kinase 1 (Sphk1) associates with early endocytic membranes during endocytosis; however, the role of sphingosine or sphingosine-1-phosphate as the critical metabolite in endocytic trafficking has not been established. Here, we demonstrate that the recruitment of Sphk1 to sphingosine-enriched endocytic vesicles and the generation of sphingosine-1-phosphate facilitate membrane trafficking along the endosomal pathway. Exogenous sphingosine and sphingosine-based Sphk1 inhibitors induce the Sphk1-dependent fusion of endosomal membranes to accumulate enlarged late endosomes and amphisomes enriched in sphingolipids. Interestingly, Sphk1 also appears to facilitate endosomal fusion independent of its catalytic activity, given that catalytically inactive Sphk1 G82D is recruited to endocytic membranes by sphingosine or sphingosine-based Sphk1 inhibitor and promotes membrane fusion. Furthermore, we reveal that the clearance of enlarged endosomes is dependent on the activity of ceramide synthase, lysosomal biogenesis, and the restoration of autophagic flux. Collectively, these studies uncover intersecting roles for Sphk1, sphingosine, and autophagic machinery in endocytic membrane trafficking. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  13. Membrane order in the plasma membrane and endocytic recycling compartment

    PubMed Central

    Iaea, David B.; Maxfield, Frederick R.

    2017-01-01

    The cholesterol content of membranes plays an important role in organizing membranes for signal transduction and protein trafficking as well as in modulating the biophysical properties of membranes. While the properties of model or isolated membranes have been extensively studied, there has been little evaluation of internal membranes in living cells. Here, we use a Nile Red based probe, NR12S, and ratiometric live cell imaging, to analyze the membrane order of the plasma membrane and endocytic recycling compartment. We find that after a brief incubation to allow endocytosis, NR12S is distributed between the plasma membrane and the endocytic recycling compartment. The NR12S reports that the endocytic recycling compartment is more highly ordered than the plasma membrane. We also find that the plasma membrane and the endocytic recycling compartment are differentially affected by altering cellular cholesterol levels. The membrane order of the plasma membrane, but not the endocytic recycling compartment, is altered significantly when cellular cholesterol content is increased or decreased by 20%. These results demonstrate that changes in cellular cholesterol differentially alter membrane order within different organelles. PMID:29125865

  14. Antigen B from Echinococcus granulosus enters mammalian cells by endocytic pathways.

    PubMed

    da Silva, Edileuza Danieli; Cancela, Martin; Monteiro, Karina Mariante; Ferreira, Henrique Bunselmeyer; Zaha, Arnaldo

    2018-05-04

    Cystic hydatid disease is a zoonosis caused by the larval stage (hydatid) of Echinococcus granulosus (Cestoda, Taeniidae). The hydatid develops in the viscera of intermediate host as a unilocular structure filled by the hydatid fluid, which contains parasitic excretory/secretory products. The lipoprotein Antigen B (AgB) is the major component of E. granulosus metacestode hydatid fluid. Functionally, AgB has been implicated in immunomodulation and lipid transport. However, the mechanisms underlying AgB functions are not completely known. In this study, we investigated AgB interactions with different mammalian cell types and the pathways involved in its internalization. AgB uptake was observed in four different cell lines, NIH-3T3, A549, J774 and RH. Inhibition of caveolae/raft-mediated endocytosis causes about 50 and 69% decrease in AgB internalization by RH and A549 cells, respectively. Interestingly, AgB colocalized with the raft endocytic marker, but also showed a partial colocalization with the clathrin endocytic marker. Finally, AgB colocalized with an endolysosomal tracker, providing evidence for a possible AgB destination after endocytosis. The results indicate that caveolae/raft-mediated endocytosis is the main route to AgB internalization, and that a clathrin-mediated entry may also occur at a lower frequency. A possible fate for AgB after endocytosis seems to be the endolysosomal system. Cellular internalization and further access to subcellular compartments could be a requirement for AgB functions as a lipid carrier and/or immunomodulatory molecule, contributing to create a more permissive microenvironment to metacestode development and survival.

  15. Bovine milk exosome proteome

    USDA-ARS?s Scientific Manuscript database

    Exosomes are 40-100 nm membrane vesicles of endocytic origin and are found in blood, urine, amniotic fluid, bronchoalveolar lavage (BAL) fluid, as well as human and bovine milk. Exosomes are extracellular organelles important in intracellular communication/signaling, immune function, and biomarkers ...

  16. An Acidic Cluster in the Cytosolic Domain of Human Cytomegalovirus Glycoprotein B Is a Signal for Endocytosis from the Plasma Membrane

    PubMed Central

    Tugizov, Sharof; Maidji, Ekaterina; Xiao, Jianqiao; Pereira, Lenore

    1999-01-01

    We previously reported that human cytomegalovirus (CMV) glycoprotein B (gB) is transported to apical membranes in CMV-infected polarized retinal pigment epithelial (ARPE-19) cells and in Madin-Darby canine kidney (MDCK) epithelial cells constitutively expressing gB. The cytosolic domain of gB contains a cluster of acidic amino acids, a motif that plays a pivotal role in vectorial trafficking in polarized epithelial cells and may also function as a signal for entry into the endocytic pathway. Here we compared gB internalization and recycling to the plasma membrane in CMV-infected human fibroblasts (HF) and ARPE-19 cells by using antibody-internalization experiments. Immunofluorescence and quantitative assays showed that gB was internalized from the cell surface into clathrin-coated transport vesicles and then recycled to the plasma membrane. gB colocalized with clathrin-coated vesicles containing the transferrin receptor in the early endocytic/recycling pathway, indicating that gB traffics in this pathway. The specific role of the acidic cluster in regulating the sorting of gB-containing vesicles in the early endocytic/recycling pathway was examined in MDCK cells expressing mutated gB derivatives. Immunofluorescence assays showed that derivatives lacking the acidic cluster were impaired in internalization and failed to recycle. These findings, together with our earlier observation that the acidic cluster is a key determinant for targeting gB molecules to apical membranes in epithelial cells, establish that this signal is recognized by cellular proteins that participate in polarized sorting and transport in the early endocytic/recycling pathway. PMID:10482621

  17. Regulation of fibroblast growth factor receptor signalling and trafficking by Src and Eps8.

    PubMed

    Auciello, Giulio; Cunningham, Debbie L; Tatar, Tulin; Heath, John K; Rappoport, Joshua Z

    2013-01-15

    Fibroblast growth factor receptors (FGFRs) mediate a wide spectrum of cellular responses that are crucial for development and wound healing. However, aberrant FGFR activity leads to cancer. Activated growth factor receptors undergo stimulated endocytosis, but can continue to signal along the endocytic pathway. Endocytic trafficking controls the duration and intensity of signalling, and growth factor receptor signalling can lead to modifications of trafficking pathways. We have developed live-cell imaging methods for studying FGFR dynamics to investigate mechanisms that coordinate the interplay between receptor trafficking and signal transduction. Activated FGFR enters the cell following recruitment to pre-formed clathrin-coated pits (CCPs). However, FGFR activation stimulates clathrin-mediated endocytosis; FGF treatment increases the number of CCPs, including those undergoing endocytosis, and this effect is mediated by Src and its phosphorylation target Eps8. Eps8 interacts with the clathrin-mediated endocytosis machinery and depletion of Eps8 inhibits FGFR trafficking and immediate Erk signalling. Once internalized, FGFR passes through peripheral early endosomes en route to recycling and degredative compartments, through an Src- and Eps8-dependent mechanism. Thus Eps8 functions as a key coordinator in the interplay between FGFR signalling and trafficking. This work provides the first detailed mechanistic analysis of growth factor receptor clustering at the cell surface through signal transduction and endocytic trafficking. As we have characterised the Src target Eps8 as a key regulator of FGFR signalling and trafficking, and identified the early endocytic system as the site of Eps8-mediated effects, this work provides novel mechanistic insight into the reciprocal regulation of growth factor receptor signalling and trafficking.

  18. Rab14 and Its Exchange Factor FAM116 Link Endocytic Recycling and Adherens Junction Stability in Migrating Cells

    PubMed Central

    Linford, Andrea; Yoshimura, Shin-ichiro; Bastos, Ricardo Nunes; Langemeyer, Lars; Gerondopoulos, Andreas; Rigden, Daniel J.; Barr, Francis A.

    2012-01-01

    Summary Rab GTPases define the vesicle trafficking pathways underpinning cell polarization and migration. Here, we find that Rab4, Rab11, and Rab14 and the candidate Rab GDP-GTP exchange factors (GEFs) FAM116A and AVL9 are required for cell migration. Rab14 and its GEF FAM116A localize to and act on an intermediate compartment of the transferrin-recycling pathway prior to Rab11 and after Rab5 and Rab4. This Rab14 intermediate recycling compartment has specific functions in migrating cells discrete from early and recycling endosomes. Rab14-depleted cells show increased N-cadherin levels at junctional complexes and cannot resolve cell-cell junctions. This is due to decreased shedding of cell-surface N-cadherin by the ADAM family protease ADAM10/Kuzbanian. In FAM116A- and Rab14-depleted cells, ADAM10 accumulates in a transferrin-positive endocytic compartment, and the cell-surface level of ADAM10 is correspondingly reduced. FAM116 and Rab14 therefore define an endocytic recycling pathway needed for ADAM protease trafficking and regulation of cell-cell junctions. PMID:22595670

  19. Opioid Receptor Function Is Regulated by Post-endocytic Peptide Processing*

    PubMed Central

    Gupta, Achla; Gomes, Ivone; Wardman, Jonathan; Devi, Lakshmi A.

    2014-01-01

    Most neuroendocrine peptides are generated in the secretory compartment by proteolysis of the precursors at classical cleavage sites consisting of basic residues by well studied endopeptidases belonging to the subtilisin superfamily. In contrast, a subset of bioactive peptides is generated by processing at non-classical cleavage sites that do not contain basic residues. Neither the peptidases responsible for non-classical cleavages nor the compartment involved in such processing has been well established. Members of the endothelin-converting enzyme (ECE) family are considered good candidate enzymes because they exhibit functional properties that are consistent with such a role. In this study we have explored a role for ECE2 in endocytic processing of δ opioid peptides and its effect on modulating δ opioid receptor function by using selective inhibitors of ECE2 that we had identified previously by homology modeling and virtual screening of a library of small molecules. We found that agonist treatment led to intracellular co-localization of ECE2 with δ opioid receptors. Furthermore, selective inhibitors of ECE2 and reagents that increase the pH of the acidic compartment impaired receptor recycling by protecting the endocytosed peptide from degradation. This, in turn, led to a substantial decrease in surface receptor signaling. Finally, we showed that treatment of primary neurons with the ECE2 inhibitor during recycling led to increased intracellular co-localization of the receptors and ECE2, which in turn led to decreased receptor recycling and signaling by the surface receptors. Together, these results support a role for differential modulation of opioid receptor signaling by post-endocytic processing of peptide agonists by ECE2. PMID:24847082

  20. Dimerization drives EGFR endocytosis through two sets of compatible endocytic codes.

    PubMed

    Wang, Qian; Chen, Xinmei; Wang, Zhixiang

    2015-03-01

    We have shown previously that epidermal growth factor (EGF) receptor (EGFR) endocytosis is controlled by EGFR dimerization. However, it is not clear how the dimerization drives receptor internalization. We propose that EGFR endocytosis is driven by dimerization, bringing two sets of endocytic codes, one contained in each receptor monomer, in close proximity. Here, we tested this hypothesis by generating specific homo- or hetero-dimers of various receptors and their mutants. We show that ErbB2 and ErbB3 homodimers are endocytosis deficient owing to the lack of endocytic codes. Interestingly, EGFR-ErbB2 or EGFR-ErbB3 heterodimers are also endocytosis deficient. Moreover, the heterodimer of EGFR and the endocytosis-deficient mutant EGFRΔ1005-1017 is also impaired in endocytosis. These results indicate that two sets of endocytic codes are required for receptor endocytosis. We found that an EGFR-PDGFRβ heterodimer is endocytosis deficient, although both EGFR and PDGFRβ homodimers are endocytosis-competent, indicating that two compatible sets of endocytic codes are required. Finally, we found that to mediate the endocytosis of the receptor dimer, the two sets of compatible endocytic codes, one contained in each receptor molecule, have to be spatially coordinated. © 2015. Published by The Company of Biologists Ltd.

  1. The potential of tumor-derived exosomes for noninvasive cancer monitoring

    PubMed Central

    Whiteside, Theresa L.

    2016-01-01

    Tumor-derived exosomes (TEXs) are emerging as a new type of cancer biomarker. TEXs are membrane-bound, virus-size vesicles of endocytic origin present in all body fluids of cancer patients. Based on the expanding albeit incomplete knowledge of their biogenesis, secretion by tumor cells and cancer cell-specific molecular and genetic contents, TEXs are viewed as promising, clinically-relevant surrogates of cancer progression and response to therapy. Preliminary proteomic, genetic and functional profiling of tumor cell-derived or cancer plasma-derived exosomes confirms their unique characteristics. Alterations in protein or nucleic acid profiles of exosomes in plasma of cancer patients responding to therapies appear to correlate with clinical endpoints. However, methods for TEX isolation and separation from the bulk of human plasma-derived exosomes are not yet established and their role as biomarkers remains to be confirmed. Further development and validation of TEXs as noninvasive, liquid equivalents of tumor biopsies are necessary to move this effort forward. PMID:26289602

  2. Genome-wide RNAi screen reveals ALK1 mediates LDL uptake and transcytosis in endothelial cells

    PubMed Central

    Kraehling, Jan R.; Chidlow, John H.; Rajagopal, Chitra; Sugiyama, Michael G.; Fowler, Joseph W.; Lee, Monica Y.; Zhang, Xinbo; Ramírez, Cristina M.; Park, Eon Joo; Tao, Bo; Chen, Keyang; Kuruvilla, Leena; Larriveé, Bruno; Folta-Stogniew, Ewa; Ola, Roxana; Rotllan, Noemi; Zhou, Wenping; Nagle, Michael W.; Herz, Joachim; Williams, Kevin Jon; Eichmann, Anne; Lee, Warren L.; Fernández-Hernando, Carlos; Sessa, William C.

    2016-01-01

    In humans and animals lacking functional LDL receptor (LDLR), LDL from plasma still readily traverses the endothelium. To identify the pathways of LDL uptake, a genome-wide RNAi screen was performed in endothelial cells and cross-referenced with GWAS-data sets. Here we show that the activin-like kinase 1 (ALK1) mediates LDL uptake into endothelial cells. ALK1 binds LDL with lower affinity than LDLR and saturates only at hypercholesterolemic concentrations. ALK1 mediates uptake of LDL into endothelial cells via an unusual endocytic pathway that diverts the ligand from lysosomal degradation and promotes LDL transcytosis. The endothelium-specific genetic ablation of Alk1 in Ldlr-KO animals leads to less LDL uptake into the aortic endothelium, showing its physiological role in endothelial lipoprotein metabolism. In summary, identification of pathways mediating LDLR-independent uptake of LDL may provide unique opportunities to block the initiation of LDL accumulation in the vessel wall or augment hepatic LDLR-dependent clearance of LDL. PMID:27869117

  3. The potential of tumor-derived exosomes for noninvasive cancer monitoring.

    PubMed

    Whiteside, Theresa L

    2015-01-01

    Tumor-derived exosomes (TEX) are emerging as a new type of cancer biomarker. TEX are membrane-bound, virus-size vesicles of endocytic origin present in all body fluids of cancer patients. Based on the expanding albeit incomplete knowledge of their biogenesis, secretion by tumor cells and cancer cell-specific molecular and genetic contents, TEX are viewed as promising, clinically-relevant surrogates of cancer progression and response to therapy. Preliminary proteomic, genetic and functional profiling of tumor cell-derived or cancer plasma-derived exosomes confirms their unique characteristics. Alterations in protein or nucleic acid profiles of exosomes in plasma of cancer patients responding to therapies appear to correlate with clinical endpoints. However, methods for TEX isolation and separation from the bulk of human plasma-derived exosomes are not yet established and their role as biomarkers remains to be confirmed. Further development and validation of TEX as noninvasive, liquid equivalents of tumor biopsies are necessary to move this effort forward.

  4. Genome-wide RNAi screen reveals ALK1 mediates LDL uptake and transcytosis in endothelial cells.

    PubMed

    Kraehling, Jan R; Chidlow, John H; Rajagopal, Chitra; Sugiyama, Michael G; Fowler, Joseph W; Lee, Monica Y; Zhang, Xinbo; Ramírez, Cristina M; Park, Eon Joo; Tao, Bo; Chen, Keyang; Kuruvilla, Leena; Larriveé, Bruno; Folta-Stogniew, Ewa; Ola, Roxana; Rotllan, Noemi; Zhou, Wenping; Nagle, Michael W; Herz, Joachim; Williams, Kevin Jon; Eichmann, Anne; Lee, Warren L; Fernández-Hernando, Carlos; Sessa, William C

    2016-11-21

    In humans and animals lacking functional LDL receptor (LDLR), LDL from plasma still readily traverses the endothelium. To identify the pathways of LDL uptake, a genome-wide RNAi screen was performed in endothelial cells and cross-referenced with GWAS-data sets. Here we show that the activin-like kinase 1 (ALK1) mediates LDL uptake into endothelial cells. ALK1 binds LDL with lower affinity than LDLR and saturates only at hypercholesterolemic concentrations. ALK1 mediates uptake of LDL into endothelial cells via an unusual endocytic pathway that diverts the ligand from lysosomal degradation and promotes LDL transcytosis. The endothelium-specific genetic ablation of Alk1 in Ldlr-KO animals leads to less LDL uptake into the aortic endothelium, showing its physiological role in endothelial lipoprotein metabolism. In summary, identification of pathways mediating LDLR-independent uptake of LDL may provide unique opportunities to block the initiation of LDL accumulation in the vessel wall or augment hepatic LDLR-dependent clearance of LDL.

  5. Endocytic function is critical for influenza A virus infection via DC-SIGN and L-SIGN

    PubMed Central

    Gillespie, Leah; Roosendahl, Paula; Ng, Wy Ching; Brooks, Andrew G.; Reading, Patrick C.; Londrigan, Sarah L.

    2016-01-01

    The ubiquitous presence of cell-surface sialic acid (SIA) has complicated efforts to identify specific transmembrane glycoproteins that function as bone fide entry receptors for influenza A virus (IAV) infection. The C-type lectin receptors (CLRs) DC-SIGN (CD209) and L-SIGN (CD209L) enhance IAV infection however it is not known if they act as attachment factors, passing virions to other unknown receptors for virus entry, or as authentic entry receptors for CLR-mediated virus uptake and infection. Sialic acid-deficient Lec2 Chinese Hamster Ovary (CHO) cell lines were resistant to IAV infection whereas expression of DC-SIGN/L-SIGN restored susceptibility of Lec2 cells to pH- and dynamin-dependent infection. Moreover, Lec2 cells expressing endocytosis-defective DC-SIGN/L-SIGN retained capacity to bind IAV but showed reduced susceptibility to infection. These studies confirm that DC-SIGN and L-SIGN are authentic endocytic receptors for IAV entry and infection. PMID:26763587

  6. Disruption of the endocytic protein HIP1 results in neurological deficits and decreased AMPA receptor trafficking.

    PubMed

    Metzler, Martina; Li, Bo; Gan, Lu; Georgiou, John; Gutekunst, Claire-Anne; Wang, Yushan; Torre, Enrique; Devon, Rebecca S; Oh, Rosemary; Legendre-Guillemin, Valerie; Rich, Mark; Alvarez, Christine; Gertsenstein, Marina; McPherson, Peter S; Nagy, Andras; Wang, Yu Tian; Roder, John C; Raymond, Lynn A; Hayden, Michael R

    2003-07-01

    Huntingtin interacting protein 1 (HIP1) is a recently identified component of clathrin-coated vesicles that plays a role in clathrin-mediated endocytosis. To explore the normal function of HIP1 in vivo, we created mice with targeted mutation in the HIP1 gene (HIP1(-/-)). HIP1(-/-) mice develop a neurological phenotype by 3 months of age manifest with a failure to thrive, tremor and a gait ataxia secondary to a rigid thoracolumbar kyphosis accompanied by decreased assembly of endocytic protein complexes on liposomal membranes. In primary hippocampal neurons, HIP1 colocalizes with GluR1-containing AMPA receptors and becomes concentrated in cell bodies following AMPA stimulation. Moreover, a profound dose-dependent defect in clathrin-mediated internalization of GluR1-containing AMPA receptors was observed in neurons from HIP1(-/-) mice. Together, these data provide strong evidence that HIP1 regulates AMPA receptor trafficking in the central nervous system through its function in clathrin-mediated endocytosis.

  7. Rab2 promotes autophagic and endocytic lysosomal degradation

    PubMed Central

    Boda, Attila; Glatz, Gábor; Zobel, Martina; Bisi, Sara; Hegedűs, Krisztina; Scita, Giorgio

    2017-01-01

    Rab7 promotes fusion of autophagosomes and late endosomes with lysosomes in yeast and metazoan cells, acting together with its effector, the tethering complex HOPS. Here we show that another small GTPase, Rab2, is also required for autophagosome and endosome maturation and proper lysosome function in Drosophila melanogaster. We demonstrate that Rab2 binds to HOPS, and that its active, GTP-locked form associates with autolysosomes. Importantly, expression of active Rab2 promotes autolysosomal fusions unlike that of GTP-locked Rab7, suggesting that its amount is normally rate limiting. We also demonstrate that RAB2A is required for autophagosome clearance in human breast cancer cells. In conclusion, we identify Rab2 as a key factor for autophagic and endocytic cargo delivery to and degradation in lysosomes. PMID:28483915

  8. Photoinduced RNA interference.

    PubMed

    Matsushita-Ishiodori, Yuka; Ohtsuki, Takashi

    2012-07-17

    Because RNA interference (RNAi) can be applied to any gene, this technique has been widely used for studying gene functions. In addition, many researchers are attempting to use RNAi technology in RNAi-based therapies. However, several challenging and controversial issues have arisen during the widespread application of RNAi including target gene specificity, target cell specificity, and spatiotemporal control of gene silencing. To address these issues, several groups have utilized photochemistry to control the RNA release, both spatially and temporally. In this Account, we focus on recent studies using photocleavable protecting groups, photosensitizers, Hand gold nanoparticles for photoinduced RNAi. In 2005 the first report of photoinduced RNAi used a caged short interfering RNA (siRNA), an siRNA carrying a photocleavable protecting group. Caging groups block the bioactivities of target molecules, but allow for complete recovery of these functions via photoactivation. However, some RNAi activity can occur in these caged siRNAs, so it will be necessary to decrease this "leakage" and raise the RNAi activity restored after irradiation. This technique also uses UV light around 350 nm, which is cytotoxic, but in the near future we expect that it will be possible to use visible and near-infrared light We also examine the application of photochemical internalization (PCI) to RNAi technology, which involves a combination of photosensitizers and light. Instead of inducing RNAi using light, the strategy behind this method was to enhance RNAi using RNA carriers. Many wellknown RNA carriers deliver siRNAs into cells by endocytosis. The siRNAs are trapped in endocytic vesicles and have to be released into the cytoplasm in order to express their activity. To achieve the endosomal escape of siRNAs, PCI technology employed photosensitizers to generate light-dependent reactive oxygen species (ROS) that disrupted the endocytic vesicles. In most studies, RNAi-mediated knockdown of the target gene was detected even without PCI. Recently, a polymer capable of trapping the siRNA in endocytic vesicles controlled RNAi almost entirely by light. CLIP-RNAi uses photosensitizing carrier proteins that can be activated over a wide range of visible light wavelengths. With this method RNA carrier/siRNA complexes are completely trapped within endosomes, and RNAi is controlled strictly by light. Such precise, light-dependent control will open up new possibilities for cellular and molecular biology and therapy. Most recently, gold nanoparticles (AuNPs) conjugated to siRNA have provided temporal and spatial control of RNAi. The light-dependent melting of AuNPs accompanied by a shape transformation induces the release of thiolated siRNAs from AuNPs. In this method, the unique optical properties of the AuNP enable deep penetration of the excitation light into tissues at nearinfrared wavelengths. The development of photoinduced RNAi technology will lead to novel insights into gene functions and selective drug delivery, and many other scientific fields will continue to influence its progress.

  9. Localization and role of MYO-1, an endocytic protein in hyphae of Neurospora crassa.

    PubMed

    Lara-Rojas, Fernando; Bartnicki-García, Salomón; Mouriño-Pérez, Rosa R

    2016-03-01

    The subapical endocytic collar is a prominent feature of hyphae of Neurospora crassa. It comprises a dynamic collection of actin patches associated with a number of proteins required for endocytosis, namely, ARP-2/3 complex, fimbrin, coronin, etc. We presently show that MYO-1 is another key component of this endocytic collar. A myo-1 sequence was identified in the genome of N. crassa and used it to generate a strain with a myo-1-sgfp allele under the ccg1 promoter. Examination of living hyphae by confocal microscopy, revealed MYO-1-GFP located mainly as a dynamic collection of small patches arranged in collar-like fashion in the hyphal subapex. Dual tagging showed MYO-1-GFP partially colocalized with two other endocytic proteins, fimbrin and coronin. MYO-1 was also present during septum formation. By recovering a viable strain, albeit severely inhibited, after deletion of myo-1, it was possible to investigate the phenotypic consequences of the elimination of MYO-1. Deletion of myo-1 caused a severe reduction in growth rate (95%), near absence of aerial mycelium and no conidiation. A reduced uptake of the lipophilic dye FM4-64 indicated a deficiency in endocytosis in the Δmyo-1 mutant. Hyphae were produced by the Δmyo-1 mutant but their morphogenesis was severely affected; hyphal morphology was distorted displaying irregular periods of isotropic and polarized growth. The morphological alterations were accompanied, and presumably caused, by a disruption in the organization and dynamics of a myosin-deprived actin cytoskeleton that, ultimately, compromised the stability and function of the Spitzenkörper as a vesicle supply center. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Raft-dependent endocytic movement and intracellular cluster formation during T cell activation triggered by concanavalin A.

    PubMed

    Yabuuchi, Satomi; Endo, Satoshi; Baek, KeangOk; Hoshino, Kunihide; Tsujino, Yoshio; Vestergaard, Mun'delanji C; Takagi, Masahiro

    2017-12-01

    Certain food ingredients can stimulate the human immune system. A lectin, concanavalin A (ConA), from Canavalia ensiformis (jack bean) is one of the most well-known food-derived immunostimulants and mediates activation of cell-mediated immunity through T cell proliferation. Generally, T cell activation is known to be triggered by the interaction between T cells and antigen-presenting cells (APCs) via a juxtacrine (contact-dependent) signaling pathway. The mechanism has been well characterized and is referred to as formation of the immunological synapse (IS). We were interested in the mechanism behind the T cell activation by food-derived ConA which might be different from that of T cell activation by APCs. The purpose of this study was to characterize T cell activation by ConA with regard to (i) movement of raft domain, (ii) endocytic vesicular transport, (iii) the cytoskeleton (actin and microtubules), and (iv) cholesterol composition. We found that raft-dependent endocytic movement was important for T cell activation by ConA and this movement was dependent on actin, microtubules, and cholesterol. The T cell signaling mechanism triggered by ConA can be defined as endocrine signaling which is distinct from the activation process triggered by interaction between T cells and APCs by juxtacrine signaling. Therefore, we hypothesized that T cell activation by ConA includes both two-dimensional superficial raft movement on the membrane surface along actin filaments and three-dimensional endocytic movement toward the inside of the cell along microtubules. These findings are important for developing new methods for immune stimulation and cancer therapy based on the function of ConA. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  11. Functional Synergy between Rab5 Effector Rabaptin-5 and Exchange Factor Rabex-5 When Physically Associated in a Complex

    PubMed Central

    Lippé, Roger; Miaczynska, Marta; Rybin, Vladimir; Runge, Anja; Zerial, Marino

    2001-01-01

    Rab GTPases are central elements of the vesicular transport machinery. An emerging view is that downstream effectors of these GTPases are multiprotein complexes that include nucleotide exchange factors to ensure coupling between GTPase activation and effector function. We have previously shown that Rab5, which regulates various steps of transport along the early endocytic pathway, is activated by a complex consisting of Rabex-5, a Rab5 nucleotide exchange factor, and the effector Rabaptin-5. We postulated that the physical association of these two proteins is necessary for their activity in Rab5-dependent endocytic membrane transport. To evaluate the functional implications of such complex formation, we have reconstituted it with the use of recombinant proteins and characterized its properties. First, we show that Rabaptin-5 increases the exchange activity of Rabex-5 on Rab5. Second, Rab5-dependent recruitment of Rabaptin-5 to early endosomes is completely dependent on its physical association with Rabex-5. Third, complex formation between Rabaptin-5 and Rabex-5 is essential for early endosome homotypic fusion. These results reveal a functional synergy between Rabaptin-5 and Rabex-5 in the complex and have implications for the function of analogous complexes for Rab and Rho GTPases. PMID:11452015

  12. Distinct effect of actin cytoskeleton disassembly on exo- and endocytic events in a membrane patch of rat melanotrophs.

    PubMed

    Chowdhury, Helena H; Kreft, Marko; Zorec, Robert

    2002-12-15

    We used the cell-attached mode of patch-clamp technique to measure discrete attofarad steps in membrane capacitance (C(m)), reporting area changes in the plasma membrane due to unitary exocytic and endocytic events. To investigate the role of the actin cytoskeleton in elementary exocytic and endocytic events, neuroendocrine rat melanotrophs were treated with Clostridium spiroforme toxin (CST), which specifically depolymerises F-actin. The average amplitude of exocytic events was not significantly different in control and in CST-treated cells. However, the amplitude of endocytic events was significantly smaller in CST-treated cells as compared to controls. The frequency of exocytic events increased by 2-fold in CST-treated cells relative to controls. In control cells the average frequency of exocytic events (upsilon;(exo)) was lower than the frequency of endocytic events (upsilon;(endo)) with a ratio upsilon;(exo)/upsilon;(endo) < 1. In the toxin treated cells, the predominant process was exocytosis with a ratio (upsilon;(exo)/upsilon;(endo) > 1). To study the coupling between the two processes, the slopes of regression lines relating upsilon;(exo) and upsilon;(endo) in a given patch of membrane were studied. The slopes of regression lines were similar, whereas the line intercepts with the y-axis were significantly different. The increased frequency of unitary exocytic events in CST-treated cells is consistent with the view, that the actin cytoskeleton acts as a barrier for exocytosis. While the disassembly of the actin cytoskeleton diminishes the size of unitary endocytic events, suggesting an important role of the actin cytoskeleton in determining the size of endocytic vesicles, the coupling between exocytosis and endocytosis in a given patch of membrane was independent of the state of the actin cytoskeleton.

  13. Distinct effect of actin cytoskeleton disassembly on exo- and endocytic events in a membrane patch of rat melanotrophs

    PubMed Central

    Chowdhury, Helena H; Kreft, Marko; Zorec, Robert

    2002-01-01

    We used the cell-attached mode of patch-clamp technique to measure discrete attofarad steps in membrane capacitance (Cm), reporting area changes in the plasma membrane due to unitary exocytic and endocytic events. To investigate the role of the actin cytoskeleton in elementary exocytic and endocytic events, neuroendocrine rat melanotrophs were treated with Clostridium spiroforme toxin (CST), which specifically depolymerises F-actin. The average amplitude of exocytic events was not significantly different in control and in CST-treated cells. However, the amplitude of endocytic events was significantly smaller in CST-treated cells as compared to controls. The frequency of exocytic events increased by 2-fold in CST-treated cells relative to controls. In control cells the average frequency of exocytic events (νexo) was lower than the frequency of endocytic events (νendo) with a ratio νexo/νendo < 1. In the toxin treated cells, the predominant process was exocytosis with a ratio (νexo/νendo > 1). To study the coupling between the two processes, the slopes of regression lines relating νexo and νendo in a given patch of membrane were studied. The slopes of regression lines were similar, whereas the line intercepts with the y-axis were significantly different. The increased frequency of unitary exocytic events in CST-treated cells is consistent with the view, that the actin cytoskeleton acts as a barrier for exocytosis. While the disassembly of the actin cytoskeleton diminishes the size of unitary endocytic events, suggesting an important role of the actin cytoskeleton in determining the size of endocytic vesicles, the coupling between exocytosis and endocytosis in a given patch of membrane was independent of the state of the actin cytoskeleton. PMID:12482893

  14. Steric and not structure-specific factors dictate the endocytic mechanism of glycosylphosphatidylinositol-anchored proteins

    PubMed Central

    Bhagatji, Pinkesh; Leventis, Rania; Comeau, Jonathan; Refaei, Mohammad

    2009-01-01

    Diverse glycosylphosphatidylinositol (GPI)-anchored proteins enter mammalian cells via the clathrin- and dynamin-independent, Arf1-regulated GPI-enriched early endosomal compartment/clathrin-independent carrier endocytic pathway. To characterize the determinants of GPI protein targeting to this pathway, we have used fluorescence microscopic analyses to compare the internalization of artificial lipid-anchored proteins, endogenous membrane proteins, and membrane lipid markers in Chinese hamster ovary cells. Soluble proteins, anchored to cell-inserted saturated or unsaturated phosphatidylethanolamine (PE)-polyethyleneglycols (PEGs), closely resemble the GPI-anchored folate receptor but differ markedly from the transferrin receptor, membrane lipid markers, and even protein-free PE-PEGs, both in their distribution in peripheral endocytic vesicles and in the manner in which their endocytic uptake responds to manipulations of cellular Arf1 or dynamin activity. These findings suggest that the distinctive endocytic targeting of GPI proteins requires neither biospecific recognition of their GPI anchors nor affinity for ordered-lipid microdomains but is determined by a more fundamental property, the steric bulk of the lipid-anchored protein. PMID:19687251

  15. Role of turgor pressure in endocytosis in fission yeast

    PubMed Central

    Basu, Roshni; Munteanu, Emilia Laura; Chang, Fred

    2014-01-01

    Yeast and other walled cells possess high internal turgor pressure that allows them to grow and survive in the environment. This turgor pressure, however, may oppose the invagination of the plasma membrane needed for endocytosis. Here we study the effects of turgor pressure on endocytosis in the fission yeast Schizosaccharomyces pombe by time-lapse imaging of individual endocytic sites. Decreasing effective turgor pressure by addition of sorbitol to the media significantly accelerates early steps in the endocytic process before actin assembly and membrane ingression but does not affect the velocity or depth of ingression of the endocytic pit in wild-type cells. Sorbitol also rescues endocytic ingression defects of certain endocytic mutants and of cells treated with a low dose of the actin inhibitor latrunculin A. Endocytosis proceeds after removal of the cell wall, suggesting that the cell wall does not contribute mechanically to this process. These studies suggest that endocytosis is governed by a mechanical balance between local actin-dependent inward forces and opposing forces from high internal turgor pressure on the plasma membrane. PMID:24403609

  16. Distinct Requirements for Vacuolar Protein Sorting 34 Downstream Effector Phosphatidylinositol 3-Phosphate 5-Kinase in Podocytes Versus Proximal Tubular Cells

    PubMed Central

    Venkatareddy, Madhusudan; Verma, Rakesh; Kalinowski, Anne; Patel, Sanjeevkumar R.; Shisheva, Assia

    2016-01-01

    The mechanisms by which the glomerular filtration barrier prevents the loss of large macromolecules and simultaneously, maintains the filter remain poorly understood. Recent studies proposed that podocytes have an active role in both the endocytosis of filtered macromolecules and the maintenance of the filtration barrier. Deletion of a key endosomal trafficking regulator, the class 3 phosphatidylinositol (PtdIns) 3-kinase vacuolar protein sorting 34 (Vps34), in podocytes results in aberrant endosomal membrane morphology and podocyte dysfunction. We recently showed that the vacuolation phenotype in cultured Vps34–deficient podocytes is caused by the absence of a substrate for the Vps34 downstream effector PtdIns 3-phosphate 5-kinase (PIKfyve), which phosphorylates Vps34-generated PtdIns(3)P to produce PtdIns (3,5)P2. PIKfyve perturbation and PtdIns(3,5)P2 reduction result in massive membrane vacuolation along the endosomal system, but the cell-specific functions of PIKfyve in vivo remain unclear. We show here that the genetic deletion of PIKfyve in endocytically active proximal tubular cells resulted in the development of large cytoplasmic vacuoles caused by arrested endocytic traffic progression at a late-endosome stage. In contrast, deletion of PIKfyve in glomerular podocytes did not significantly alter the endosomal morphology, even in age 18-month-old mice. However, on culturing, the PIKfyve-deleted podocytes developed massive cytoplasmic vacuoles. In summary, these data suggest that glomerular podocytes and proximal tubules have different requirements for PIKfyve function, likely related to distinct in vivo needs for endocytic flux. PMID:26825532

  17. Human Papillomavirus 16 Infection Induces VAP-Dependent Endosomal Tubulation.

    PubMed

    Siddiqa, Abida; Massimi, Paola; Pim, David; Broniarczyk, Justyna; Banks, Lawrence

    2018-03-15

    Human papillomavirus (HPV) infection involves complex interactions with the endocytic transport machinery, which ultimately facilitates the entry of the incoming viral genomes into the trans -Golgi network (TGN) and their subsequent nuclear entry during mitosis. The endosomal pathway is a highly dynamic intracellular transport system, which consists of vesicular compartments and tubular extensions, although it is currently unclear whether incoming viruses specifically alter the endocytic machinery. In this study, using MICAL-L1 as a marker for tubulating endosomes, we show that incoming HPV-16 virions induce a profound alteration in global levels of endocytic tubulation. In addition, we also show a critical requirement for the endoplasmic reticulum (ER)-anchored protein VAP in this process. VAP plays an essential role in actin nucleation and endosome-to-Golgi transport. Indeed, the loss of VAP results in a dramatic decrease in the level of endosomal tubulation induced by incoming HPV-16 virions. This is also accompanied by a marked reduction in virus infectivity. In VAP knockdown cells, we see that the defect in virus trafficking occurs after capsid disassembly but prior to localization at the trans -Golgi network, with the incoming virion-transduced DNA accumulating in Vps29/TGN46-positive hybrid vesicles. Taken together, these studies demonstrate that infection with HPV-16 virions induces marked alterations of endocytic transport pathways, some of which are VAP dependent and required for the endosome-to-Golgi transport of the incoming viral L2/DNA complex. IMPORTANCE Human papillomavirus infectious entry involves multiple interactions with the endocytic transport machinery. In this study, we show that incoming HPV-16 virions induce a dramatic increase in endocytic tubulation. This tubulation requires ER-associated VAP, which plays a critical role in ensuring the delivery of cargoes from the endocytic compartments to the trans -Golgi network. Indeed, the loss of VAP blocks HPV infectious entry at a step after capsid uncoating but prior to localization at the trans -Golgi network. These results define a critical role for ER-associated VAP in endocytic tubulation and in HPV-16 infectious entry. Copyright © 2018 American Society for Microbiology.

  18. Regulation of endocytic recycling by C. elegans Rab35 and its regulator RME-4, a coated-pit protein

    PubMed Central

    Sato, Miyuki; Sato, Ken; Liou, Willisa; Pant, Saumya; Harada, Akihiro; Grant, Barth D

    2008-01-01

    Using Caenorhabditis elegans genetic screens, we identified receptor-mediated endocytosis (RME)-4 and RME-5/RAB-35 as important regulators of yolk endocytosis in vivo. In rme-4 and rab-35 mutants, yolk receptors do not accumulate on the plasma membrane as would be expected in an internalization mutant, rather the receptors are lost from cortical endosomes and accumulate in dispersed small vesicles, suggesting a defect in receptor recycling. Consistent with this, genetic tests indicate the RME-4 and RAB-35 function downstream of clathrin, upstream of RAB-7, and act synergistically with recycling regulators RAB-11 and RME-1. We find that RME-4 is a conserved DENN domain protein that binds to RAB-35 in its GDP-loaded conformation. GFP–RME-4 also physically interacts with AP-2, is enriched on clathrin-coated pits, and requires clathrin but not RAB-5 for cortical association. GFP–RAB-35 localizes to the plasma membrane and early endocytic compartments but is lost from endosomes in rme-4 mutants. We propose that RME-4 functions on coated pits and/or vesicles to recruit RAB-35, which in turn functions in the endosome to promote receptor recycling. PMID:18354496

  19. The C-type Lectin Langerin Functions as a Receptor for Attachment and Infectious Entry of Influenza A Virus

    PubMed Central

    Ng, Wy Ching; Londrigan, Sarah L.; Nasr, Najla; Cunningham, Anthony L.; Turville, Stuart; Brooks, Andrew G.

    2015-01-01

    ABSTRACT It is well established that influenza A virus (IAV) attachment to and infection of epithelial cells is dependent on sialic acid (SIA) at the cell surface, although the specific receptors that mediate IAV entry have not been defined and multiple receptors may exist. Lec2 Chinese hamster ovary (CHO) cells are SIA deficient and resistant to IAV infection. Here we demonstrate that the expression of the C-type lectin receptor langerin in Lec2 cells (Lec2-Lg) rendered them permissive to IAV infection, as measured by replication of the viral genome, transcription of viral mRNA, and synthesis of viral proteins. Unlike SIA-dependent infection of parental CHO cells, IAV attachment and infection of Lec2-Lg cells was mediated via lectin-mediated recognition of mannose-rich glycans expressed by the viral hemagglutinin glycoprotein. Lec2 cells expressing endocytosis-defective langerin bound IAV efficiently but remained resistant to IAV infection, confirming that internalization via langerin was essential for infectious entry. Langerin-mediated infection of Lec2-Lg cells was pH and dynamin dependent, occurred via clathrin- and caveolin-mediated endocytic pathways, and utilized early (Rab5+) but not late (Rab7+) endosomes. This study is the first to demonstrate that langerin represents an authentic receptor that binds and internalizes IAV to facilitate infection. Moreover, it describes a unique experimental system to probe specific pathways and compartments involved in infectious entry following recognition of IAV by a single cell surface receptor. IMPORTANCE On the surface of host cells, sialic acid (SIA) functions as the major attachment factor for influenza A viruses (IAV). However, few studies have identified specific transmembrane receptors that bind and internalize IAV to facilitate infection. Here we identify human langerin as a transmembrane glycoprotein that can act as an attachment factor and a bone fide endocytic receptor for IAV infection. Expression of langerin by an SIA-deficient cell line resistant to IAV rendered cells permissive to infection. As langerin represented the sole receptor for IAV infection in this system, we have defined the pathways and compartments involved in infectious entry of IAV into cells following recognition by langerin. PMID:26468543

  20. The polarity protein Par3 regulates APP trafficking and processing through the endocytic adaptor protein Numb.

    PubMed

    Sun, Miao; Asghar, Suwaiba Z; Zhang, Huaye

    2016-09-01

    The processing of amyloid precursor protein (APP) into β-amyloid peptide (Aβ) is a key step in the pathogenesis of Alzheimer's disease (AD), and trafficking dysregulations of APP and its secretases contribute significantly to altered APP processing. Here we show that the cell polarity protein Par3 plays an important role in APP processing and trafficking. We found that the expression of full length Par3 is significantly decreased in AD patients. Overexpression of Par3 promotes non-amyloidogenic APP processing, while depletion of Par3 induces intracellular accumulation of Aβ. We further show that Par3 functions by regulating APP trafficking. Loss of Par3 decreases surface expression of APP by targeting APP to the late endosome/lysosome pathway. Finally, we show that the effects of Par3 are mediated through the endocytic adaptor protein Numb, and Par3 functions by interfering with the interaction between Numb and APP. Together, our studies show a novel role for Par3 in regulating APP processing and trafficking. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Disruption of the endocytic protein HIP1 results in neurological deficits and decreased AMPA receptor trafficking

    PubMed Central

    Metzler, Martina; Li, Bo; Gan, Lu; Georgiou, John; Gutekunst, Claire-Anne; Wang, Yushan; Torre, Enrique; Devon, Rebecca S.; Oh, Rosemary; Legendre-Guillemin, Valerie; Rich, Mark; Alvarez, Christine; Gertsenstein, Marina; McPherson, Peter S.; Nagy, Andras; Wang, Yu Tian; Roder, John C.; Raymond, Lynn A.; Hayden, Michael R.

    2003-01-01

    Huntingtin interacting protein 1 (HIP1) is a recently identified component of clathrin-coated vesicles that plays a role in clathrin-mediated endocytosis. To explore the normal function of HIP1 in vivo, we created mice with targeted mutation in the HIP1 gene (HIP1–/–). HIP1–/– mice develop a neurological phenotype by 3 months of age manifest with a failure to thrive, tremor and a gait ataxia secondary to a rigid thoracolumbar kyphosis accompanied by decreased assembly of endocytic protein complexes on liposomal membranes. In primary hippocampal neurons, HIP1 colocalizes with GluR1-containing AMPA receptors and becomes concentrated in cell bodies following AMPA stimulation. Moreover, a profound dose-dependent defect in clathrin-mediated internalization of GluR1-containing AMPA receptors was observed in neurons from HIP1–/– mice. Together, these data provide strong evidence that HIP1 regulates AMPA receptor trafficking in the central nervous system through its function in clathrin-mediated endocytosis. PMID:12839988

  2. Structural inhibition of dynamin-mediated membrane fission by endophilin

    PubMed Central

    Galli, Valentina; Shen, Peter S; Humbert, Frédéric; De Camilli, Pietro

    2017-01-01

    Dynamin, which mediates membrane fission during endocytosis, binds endophilin and other members of the Bin-Amphiphysin-Rvs (BAR) protein family. How endophilin influences endocytic membrane fission is still unclear. Here, we show that dynamin-mediated membrane fission is potently inhibited in vitro when an excess of endophilin co-assembles with dynamin around membrane tubules. We further show by electron microscopy that endophilin intercalates between turns of the dynamin helix and impairs fission by preventing trans interactions between dynamin rungs that are thought to play critical roles in membrane constriction. In living cells, overexpression of endophilin delayed both fission and transferrin uptake. Together, our observations suggest that while endophilin helps shape endocytic tubules and recruit dynamin to endocytic sites, it can also block membrane fission when present in excess by inhibiting inter-dynamin interactions. The sequence of recruitment and the relative stoichiometry of the two proteins may be critical to regulated endocytic fission. PMID:28933693

  3. Diffusional spread and confinement of newly exocytosed synaptic vesicle proteins

    PubMed Central

    Gimber, Niclas; Tadeus, Georgi; Maritzen, Tanja; Schmoranzer, Jan; Haucke, Volker

    2015-01-01

    Neurotransmission relies on the calcium-triggered exocytic fusion of non-peptide neurotransmitter-containing small synaptic vesicles (SVs) with the presynaptic membrane at active zones (AZs) followed by compensatory endocytic retrieval of SV membranes. Here, we study the diffusional fate of newly exocytosed SV proteins in hippocampal neurons by high-resolution time-lapse imaging. Newly exocytosed SV proteins rapidly disperse within the first seconds post fusion until confined within the presynaptic bouton. Rapid diffusional spread and confinement is followed by slow reclustering of SV proteins at the periactive endocytic zone. Confinement within the presynaptic bouton is mediated in part by SV protein association with the clathrin-based endocytic machinery to limit diffusional spread of newly exocytosed SV proteins. These data suggest that diffusion, and axonal escape of newly exocytosed vesicle proteins, are counteracted by the clathrin-based endocytic machinery together with a presynaptic diffusion barrier. PMID:26399746

  4. In vitro fusion of endocytic vesicles is inhibited by cyclin A-cdc2 kinase.

    PubMed

    Woodman, P G; Adamczewski, J P; Hunt, T; Warren, G

    1993-05-01

    Receptor-mediated endocytosis and recycling are inhibited in mitotic mammalian cells, and previous studies have shown that inhibition of endocytic vesicle fusion in vitro occurs via cyclin B-cdc2 kinase. To test for the ability of cyclin A-cdc2 kinase to inhibit endocytic vesicle fusion, we employed recombinant cyclin A proteins. Addition of cyclin A to interphase extracts activated a histone kinase and markedly reduced the efficiency of endocytic vesicle fusion. By a number of criteria, inhibition of fusion was shown to be due to the action of cyclin A, via the mitosis-specific cdc2 kinase, and not an indirect effect through cyclin B. Two-stage incubations were used to demonstrate that at least one target of cyclin A-cdc2 kinase is a cytosolic component of the fusion apparatus. Reconstitution experiments showed that this component was also modified in mitotic cytosols and was unaffected by N-ethyl maleimide treatment.

  5. Diffusional spread and confinement of newly exocytosed synaptic vesicle proteins

    NASA Astrophysics Data System (ADS)

    Gimber, Niclas; Tadeus, Georgi; Maritzen, Tanja; Schmoranzer, Jan; Haucke, Volker

    2015-09-01

    Neurotransmission relies on the calcium-triggered exocytic fusion of non-peptide neurotransmitter-containing small synaptic vesicles (SVs) with the presynaptic membrane at active zones (AZs) followed by compensatory endocytic retrieval of SV membranes. Here, we study the diffusional fate of newly exocytosed SV proteins in hippocampal neurons by high-resolution time-lapse imaging. Newly exocytosed SV proteins rapidly disperse within the first seconds post fusion until confined within the presynaptic bouton. Rapid diffusional spread and confinement is followed by slow reclustering of SV proteins at the periactive endocytic zone. Confinement within the presynaptic bouton is mediated in part by SV protein association with the clathrin-based endocytic machinery to limit diffusional spread of newly exocytosed SV proteins. These data suggest that diffusion, and axonal escape of newly exocytosed vesicle proteins, are counteracted by the clathrin-based endocytic machinery together with a presynaptic diffusion barrier.

  6. Membrane recycling at the infranuclear pole of the outer hair cell

    NASA Astrophysics Data System (ADS)

    Harasztosi, Csaba; Harasztosi, Emese; Gummer, Anthony W.

    2015-12-01

    Rapid endocytic activity of outer hair cells (OHCs) in the guinea-pig cochlea has been already studied using the fluorescent membrane marker FM1-43. It was demonstrated that vesicles were endocytosed at the apical pole of OHCs and transcytosed to the basolateral membrane and through a central strand towards the nucleus. The significance of endocytic activity in the infranuclear region is still not clear. Therefore, in this study endocytic activity at the synaptic pole of OHCs was investigated. Confocal laser scanning microscopy was used to visualize dye uptake of OHCs isolated from the guinea-pig cochlea. Signal intensity changes were quantified in the apical and basal poles relative to the signal at the membrane. Data showed no significant difference in fluorescent signal intensity changes between the opposite poles of the OHC. These results suggest that endocytic activities in both the basal and the apical poles contribute equally to the membrane recycling of OHCs.

  7. Plant Endocytosis Requires the ER Membrane-Anchored Proteins VAP27-1 and VAP27-3.

    PubMed

    Stefano, Giovanni; Renna, Luciana; Wormsbaecher, Clarissa; Gamble, Jessie; Zienkiewicz, Krzysztof; Brandizzi, Federica

    2018-05-22

    Through yet-undefined mechanisms, the plant endoplasmic reticulum (ER) has a critical role in endocytosis. The plant ER establishes a close association with endosomes and contacts the plasma membrane (PM) at ER-PM contact sites (EPCSs) demarcated by the ER membrane-associated VAMP-associated-proteins (VAP). Here, we investigated two plant VAPs, VAP27-1 and VAP27-3, and found an interaction with clathrin and a requirement for the homeostasis of clathrin dynamics at endocytic membranes and endocytosis. We also demonstrated direct interaction of VAP27-proteins with phosphatidylinositol-phosphate lipids (PIPs) that populate endocytic membranes. These results support that, through interaction with PIPs, VAP27-proteins bridge the ER with endocytic membranes and maintain endocytic traffic, likely through their interaction with clathrin. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  8. Understanding the translocation mechanism of PLGA nanoparticles across round window membrane into the inner ear: a guideline for inner ear drug delivery based on nanomedicine

    PubMed Central

    Zhang, Liping; Xu, Yuan; Cao, Wenjuan; Xie, Shibao; Wen, Lu; Chen, Gang

    2018-01-01

    Background The round window membrane (RWM) functions as the primary biological barrier for therapeutic agents in the inner ear via local application. Previous studies on inner ear nano-drug delivery systems mostly focused on their pharmacokinetics and distribution in the inner ear, but seldom on the interaction with the RWM. Clarifying the transport mechanism of nanoparticulate carriers across RWM will shed more light on the optimum design of nano-drug delivery systems intended for meeting demands for their clinical application. Methods The poly (lactic-co-glycolic acid) nanoparticles (PLGA NPs) encapsulating coumarin-6 were prepared by emulsifying solvent evaporation method. We utilized confocal laser scanning microscope (CLSM) in combination with transmission electron microscope to investigate the transport pathway of PLGA NPs in the RWM. Simultaneously, the concentration and time dependence of NPs across the RWM were also determined. The endocytic mechanism of NPs through this membrane interface was classically analyzed by means of various endocytic inhibitors. The intracellular location of NPs into lysosomes was evaluated using CLSM scanning microscope colocalization analysis. The Golgi-related inhibitors were employed to probe into the function of Golgi and endoplasmic reticulum (ER) in the discharge of NPs out of cells. Results PLGA NPs were herein transported through the RWM of a sandwich-like structure into the perilymph via the transcellular pathway. NPs were internalized predominantly via macropinocytosis and caveolin-mediated endocytic pathways. After being internalized, the endocytosed cargos were entrapped within the lysosomal compartments and/or the endoplasmic reticulum/Golgi apparatus which mediated the exocytotic release of NPs. Conclusion For the first time, we showed the translocation itinerary of NPs in RWM, providing a guideline for the rational fabrication of inner ear nanoparticulate carriers with better therapeutic effects. PMID:29403277

  9. Ligand-activated epidermal growth factor receptor (EGFR) signaling governs endocytic trafficking of unliganded receptor monomers by non-canonical phosphorylation.

    PubMed

    Tanaka, Tomohiro; Zhou, Yue; Ozawa, Tatsuhiko; Okizono, Ryuya; Banba, Ayako; Yamamura, Tomohiro; Oga, Eiji; Muraguchi, Atsushi; Sakurai, Hiroaki

    2018-02-16

    The canonical description of transmembrane receptor function is initial binding of ligand, followed by initiation of intracellular signaling and then internalization en route to degradation or recycling to the cell surface. It is known that low concentrations of extracellular ligand lead to a higher proportion of receptor that is recycled and that non-canonical mechanisms of receptor activation, including phosphorylation by the kinase p38, can induce internalization and recycling. However, no connections have been made between these pathways; i.e. it has yet to be established what happens to unbound receptors following stimulation with ligand. Here we demonstrate that a minimal level of activation of epidermal growth factor receptor (EGFR) tyrosine kinase by low levels of ligand is sufficient to fully activate downstream mitogen-activated protein kinase (MAPK) pathways, with most of the remaining unbound EGFR molecules being efficiently phosphorylated at intracellular serine/threonine residues by activated mitogen-activated protein kinase. This non-canonical, p38-mediated phosphorylation of the C-tail of EGFR, near Ser-1015, induces the clathrin-mediated endocytosis of the unliganded EGFR monomers, which occurs slightly later than the canonical endocytosis of ligand-bound EGFR dimers via tyrosine autophosphorylation. EGFR endocytosed via the non-canonical pathway is largely recycled back to the plasma membrane as functional receptors, whereas p38-independent populations are mainly sorted for lysosomal degradation. Moreover, ligand concentrations balance these endocytic trafficking pathways. These results demonstrate that ligand-activated EGFR signaling controls unliganded receptors through feedback phosphorylation, identifying a dual-mode regulation of the endocytic trafficking dynamics of EGFR. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Mannose receptor induces T-cell tolerance via inhibition of CD45 and up-regulation of CTLA-4

    PubMed Central

    Schuette, Verena; Embgenbroich, Maria; Ulas, Thomas; Welz, Meike; Schulte-Schrepping, Jonas; Draffehn, Astrid M.; Quast, Thomas; Koch, Katharina; Nehring, Melanie; König, Jessica; Zweynert, Annegret; Harms, Frederike L.; Steiner, Nancy; Limmer, Andreas; Förster, Irmgard; Berberich-Siebelt, Friederike; Knolle, Percy A.; Wohlleber, Dirk; Kolanus, Waldemar; Beyer, Marc; Schultze, Joachim L.; Burgdorf, Sven

    2016-01-01

    The mannose receptor (MR) is an endocytic receptor involved in serum homeostasis and antigen presentation. Here, we identify the MR as a direct regulator of CD8+ T-cell activity. We demonstrate that MR expression on dendritic cells (DCs) impaired T-cell cytotoxicity in vitro and in vivo. This regulatory effect of the MR was mediated by a direct interaction with CD45 on the T cell, inhibiting its phosphatase activity, which resulted in up-regulation of cytotoxic T-lymphocyte–associated Protein 4 (CTLA-4) and the induction of T-cell tolerance. Inhibition of CD45 prevented expression of B-cell lymphoma 6 (Bcl-6), a transcriptional inhibitor that directly bound the CTLA-4 promoter and regulated its activity. These data demonstrate that endocytic receptors expressed on DCs contribute to the regulation of T-cell functionality. PMID:27601670

  11. Mannose receptor induces T-cell tolerance via inhibition of CD45 and up-regulation of CTLA-4.

    PubMed

    Schuette, Verena; Embgenbroich, Maria; Ulas, Thomas; Welz, Meike; Schulte-Schrepping, Jonas; Draffehn, Astrid M; Quast, Thomas; Koch, Katharina; Nehring, Melanie; König, Jessica; Zweynert, Annegret; Harms, Frederike L; Steiner, Nancy; Limmer, Andreas; Förster, Irmgard; Berberich-Siebelt, Friederike; Knolle, Percy A; Wohlleber, Dirk; Kolanus, Waldemar; Beyer, Marc; Schultze, Joachim L; Burgdorf, Sven

    2016-09-20

    The mannose receptor (MR) is an endocytic receptor involved in serum homeostasis and antigen presentation. Here, we identify the MR as a direct regulator of CD8(+) T-cell activity. We demonstrate that MR expression on dendritic cells (DCs) impaired T-cell cytotoxicity in vitro and in vivo. This regulatory effect of the MR was mediated by a direct interaction with CD45 on the T cell, inhibiting its phosphatase activity, which resulted in up-regulation of cytotoxic T-lymphocyte-associated Protein 4 (CTLA-4) and the induction of T-cell tolerance. Inhibition of CD45 prevented expression of B-cell lymphoma 6 (Bcl-6), a transcriptional inhibitor that directly bound the CTLA-4 promoter and regulated its activity. These data demonstrate that endocytic receptors expressed on DCs contribute to the regulation of T-cell functionality.

  12. Identification of Genes That Interact With Drosophila liquid facets

    PubMed Central

    Eun, Suk Ho; Lea, Kristi; Overstreet, Erin; Stevens, Samuel; Lee, Ji-Hoon; Fischer, Janice A.

    2007-01-01

    We have performed mutagenesis screens of the Drosophila X chromosome and the autosomes for dominant enhancers of the rough eye resulting from overexpression of liquid facets. The liquid facets gene encodes the homolog of vertebrate endocytic Epsin, an endocytic adapter protein. In Drosophila, Liquid facets is a core component of the Notch signaling pathway required in the signaling cells for ligand endocytosis and signaling. Why ligand internalization by the signaling cells is essential for signaling is a mystery. The requirement for Liquid facets is a hint at the answer, and the genes identified in this screen provide further clues. Mutant alleles of clathrin heavy chain, Rala, split ends, and auxilin were identified as enhancers. We describe the mutant alleles and mutant phenotypes of Rala and aux. We discuss the relevance of all of these genetic interactions to the function of Liquid facets in Notch signaling. PMID:17179082

  13. Cholesterol-dependent retention of GPI-anchored proteins in endosomes.

    PubMed Central

    Mayor, S; Sabharanjak, S; Maxfield, F R

    1998-01-01

    Several cell surface eukaryotic proteins have a glycosylphosphatidylinositol (GPI) modification at the Cterminal end that serves as their sole means of membrane anchoring. Using fluorescently labeled ligands and digital fluorescence microscopy, we show that contrary to the potocytosis model, GPI-anchored proteins are internalized into endosomes that contain markers for both receptor-mediated uptake (e.g. transferrin) and fluid phase endocytosis (e.g. dextrans). This was confirmed by immunogold electron microscopy and the observation that a fluorescent folate derivative bound to the GPI-anchored folate receptor is internalized into the same compartment as co-internalized horseradish peroxidase-transferrin; the folate fluorescence was quenched when cells subsequently were incubated with diaminobenzidine and H2O2. Most of the GPI-anchored proteins are recycled back to the plasma membrane but at a rate that is at least 3-fold slower than C6-NBD-sphingomyelin or recycling receptors. This endocytic retention is regulated by the level of cholesterol in cell membranes; GPI-anchored proteins are recycled back to the cell surface at the same rate as recycling transferrin receptors and C6-NBD-sphingomyelin in cholesterol-depleted cells. Cholesterol-dependent endocytic sorting of GPI-anchored proteins is consistent with the involvement of specialized lipid domains or 'rafts' in endocytic sorting. These results provide an alternative explanation for GPI-requiring functions of some GPI-anchored proteins. PMID:9707422

  14. Gap junction turnover is achieved by the internalization of small endocytic double-membrane vesicles.

    PubMed

    Falk, Matthias M; Baker, Susan M; Gumpert, Anna M; Segretain, Dominique; Buckheit, Robert W

    2009-07-01

    Double-membrane-spanning gap junction (GJ) channels cluster into two-dimensional arrays, termed plaques, to provide direct cell-to-cell communication. GJ plaques often contain circular, channel-free domains ( approximately 0.05-0.5 mum in diameter) identified >30 y ago and termed nonjunctional membrane (NM) domains. We show, by expressing the GJ protein connexin43 (Cx43) tagged with green fluorescent protein, or the novel photoconvertible fluorescent protein Dendra2, that NM domains appear to be remnants generated by the internalization of small GJ channel clusters that bud over time from central plaque areas. Channel clusters internalized within seconds forming endocytic double-membrane GJ vesicles ( approximately 0.18-0.27 mum in diameter) that were degraded by lysosomal pathways. Surprisingly, NM domains were not repopulated by surrounding channels and instead remained mobile, fused with each other, and were expelled at plaque edges. Quantification of internalized, photoconverted Cx43-Dendra2 vesicles indicated a GJ half-life of 2.6 h that falls within the estimated half-life of 1-5 h reported for GJs. Together with previous publications that revealed continuous accrual of newly synthesized channels along plaque edges and simultaneous removal of channels from plaque centers, our data suggest how the known dynamic channel replenishment of functional GJ plaques can be achieved. Our observations may have implications for the process of endocytic vesicle budding in general.

  15. ESCRT-II controls retinal axon growth by regulating DCC receptor levels and local protein synthesis

    PubMed Central

    Konopacki, Filip A.; Dwivedy, Asha; Bellon, Anaïs; Blower, Michael D.

    2016-01-01

    Endocytosis and local protein synthesis (LPS) act coordinately to mediate the chemotropic responses of axons, but the link between these two processes is poorly understood. The endosomal sorting complex required for transport (ESCRT) is a key regulator of cargo sorting in the endocytic pathway, and here we have investigated the role of ESCRT-II, a critical ESCRT component, in Xenopus retinal ganglion cell (RGC) axons. We show that ESCRT-II is present in RGC axonal growth cones (GCs) where it co-localizes with endocytic vesicle GTPases and, unexpectedly, with the Netrin-1 receptor, deleted in colorectal cancer (DCC). ESCRT-II knockdown (KD) decreases endocytosis and, strikingly, reduces DCC in GCs and leads to axon growth and guidance defects. ESCRT-II-depleted axons fail to turn in response to a Netrin-1 gradient in vitro and many axons fail to exit the eye in vivo. These defects, similar to Netrin-1/DCC loss-of-function phenotypes, can be rescued in whole (in vitro) or in part (in vivo) by expressing DCC. In addition, ESCRT-II KD impairs LPS in GCs and live imaging reveals that ESCRT-II transports mRNAs in axons. Collectively, our results show that the ESCRT-II-mediated endocytic pathway regulates both DCC and LPS in the axonal compartment and suggest that ESCRT-II aids gradient sensing in GCs by coupling endocytosis to LPS. PMID:27248654

  16. Membrane Transport across Polarized Epithelia.

    PubMed

    Garcia-Castillo, Maria Daniela; Chinnapen, Daniel J-F; Lencer, Wayne I

    2017-09-01

    Polarized epithelial cells line diverse surfaces throughout the body forming selective barriers between the external environment and the internal milieu. To cross these epithelial barriers, large solutes and other cargoes must undergo transcytosis, an endocytic pathway unique to polarized cell types, and significant for the development of cell polarity, uptake of viral and bacterial pathogens, transepithelial signaling, and immunoglobulin transport. Here, we review recent advances in our knowledge of the transcytotic pathway for proteins and lipids. We also discuss briefly the promise of harnessing the molecules that undergo transcytosis as vehicles for clinical applications in drug delivery. Copyright © 2017 Cold Spring Harbor Laboratory Press; all rights reserved.

  17. Single Vesicle Analysis of Endocytic Fission on Microtubules In Vitro

    PubMed Central

    Wolkoff, Allan W.

    2016-01-01

    Following endocytosis, internalized molecules are found within intracellular vesicles and tubules that move along the cytoskeleton and undergo fission, as demonstrated here using primary cultured rat hepatocytes. Although the use of depolymerizing drugs has shown that the cytoskeleton is not required to segregate endocytic protein, many studies suggest that the cytoskeleton is involved in the segregation of protein in normal cells. To investigate whether cytoskeletal-based movement results in the segregation of protein, we tracked the contents of vesicles during in vitro microscopy assays. These studies showed that the addition of ATP causes fission of endocytic contents along microtubules, resulting in the segregation of proteins that are targeted for different cellular compartments. The plasma membrane proteins, sodium (Na+) taurocholate cotransporting polypeptide (ntcp) and transferrin receptor, segregated from asialoorosomucoid (ASOR), an endocytic ligand that is targeted for degradation. Epidermal growth factor receptor, which is degraded, and the asialoglycoprotein receptor, which remains partially bound to ASOR, segregated less efficiently from ASOR. Vesicles containing ntcp and transferrin receptor had reduced fission in the absence of ASOR, suggesting that fission is regulated to allow proteins to segregate. A single round of fission resulted in 6.5-fold purification of ntcp from ASOR, and 25% of the resulting vesicles were completely depleted of the endocytic ligand. PMID:18284582

  18. Endocytosis as a mechanism of regulating natural killer cell function: unique endocytic and trafficking pathway for CD94/NKG2A.

    PubMed

    Peruzzi, Giovanna; Masilamani, Madhan; Borrego, Francisco; Coligan, John E

    2009-01-01

    Natural killer (NK) cells are lymphocytes generally recognized as sentinels of the innate immune system due to their inherent capacity to deal with diseased (stressed) cells, including malignant and infected. This ability to recognize many potentially pathogenic situations is due to the expression of a diverse panel of activation receptors. Because NK cell activation triggers an aggressive inflammatory response, it is important to have a means of throttling this response. Hence, NK cells also express a panel of inhibitory receptors that recognize ligands expressed by "normal" cells. Little or nothing is known about the endocytosis and trafficking of NK cell receptors, which are of great relevance to understanding how NK cells maintain the appropriate balance of activating and inhibitory receptors on their cell surface. In this review, we focus on the ITIM-containing inhibitory receptor CD94/NKG2A showing that it is endocytosed by a previously undescribed macropinocytic-like process that may be related to the maintenance of its surface expression.

  19. The low density lipoprotein receptor-related protein 1: Unique tissue-specific functions revealed by selective gene knockout studies

    PubMed Central

    Lillis, Anna P.; Van Duyn, Lauren B.; Murphy-Ullrich, Joanne E.; Strickland, Dudley K.

    2008-01-01

    The low-density lipoprotein (LDL) receptor-related protein (originally called LRP, but now referred to as LRP1) is a large endocytic receptor that is widely expressed in several tissues. LRP1 is a member of the LDL receptor family that plays diverse roles in various biological processes including lipoprotein metabolism, degradation of proteases, activation of lysosomal enzymes and cellular entry of bacterial toxins and viruses. Deletion of the LRP1 gene leads to lethality in mice, revealing a critical, but as of yet, undefined role in development. Tissue-specific gene deletion studies reveal an important contribution of LRP1 in the vasculature, central nervous system, in macrophages and in adipocytes. Three important properties of LRP1 dictate its diverse role in physiology: first, its ability to recognize more than thirty distinct ligands; second, its ability to bind a large number of cytoplasmic adaptor proteins via determinants located on its cytoplasmic domain in a phosphorylation-specific manner; and third, its ability to associate with and modulate the activity of other transmembrane receptors such as integrins and receptor tyrosine kinases. PMID:18626063

  20. Msx1-Positive Progenitors in the Retinal Ciliary Margin Give Rise to Both Neural and Non-neural Progenies in Mammals.

    PubMed

    Bélanger, Marie-Claude; Robert, Benoit; Cayouette, Michel

    2017-01-23

    In lower vertebrates, stem/progenitor cells located in a peripheral domain of the retina, called the ciliary margin zone (CMZ), cooperate with retinal domain progenitors to build the mature neural retina. In mammals, it is believed that the CMZ lacks neurogenic potential and that the retina develops from one pool of multipotent retinal progenitor cells (RPCs). Here we identify a population of Msx1-expressing progenitors in the mouse CMZ that is both molecularly and functionally distinct from RPCs. Using genetic lineage tracing, we report that Msx1 progenitors have unique developmental properties compared with RPCs. Msx1 lineages contain both neural retina and non-neural ciliary epithelial progenies and overall generate fewer photoreceptors than classical RPC lineages. Furthermore, we show that the endocytic adaptor protein Numb regulates the balance between neural and non-neural fates in Msx1 progenitors. These results uncover a population of CMZ progenitors, distinct from classical RPCs, that also contributes to mammalian retinogenesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. V-ATPase-dependent luminal acidification is required for endocytic recycling of a yeast cell wall stress sensor, Wsc1p

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ueno, Kazuma; Saito, Mayu; Nagashima, Makiko

    Highlights: •A targeted genome screen identified 5 gene groups affecting Wsc1p recycling. •V-ATPase-dependent luminal acidification is required for Wsc1p recycling. •Activity of V-ATPase might be required for cargo recognition by the retromer complex. -- Abstract: Wsc1p is a major cell wall sensor protein localized at the polarized cell surface. The localization of Wsc1p is maintained by endocytosis and recycling from endosomes back to the cell surface, but changes to the vacuole when cells are subjected to heat stress. Exploiting this unique property of Wsc1p, we screened for yeast single-gene deletion mutants exhibiting defects in Wsc1p trafficking. By expressing 3GFP-tagged Wsc1pmore » in mutants with deleted genes whose function is related to intracellular trafficking, we identified 5 gene groups affecting Wsc1p trafficking, impaired respectively in endocytic internalization, multivesicular body sorting, the GARP complex, endosomal maturation/vacuolar fusion, and V-ATPase. Interestingly, deletion of the VPH1 gene, encoding the V{sub o} subunit of vacuolar-type H{sup +}-ATPase (V-ATPase), led to mis-localization of Wsc1p from the plasma membrane to the vacuole. In addition, disruption of other V-ATPase subunits (vma mutants) also caused defects of Wsc1p trafficking and vacuolar acidification similar to those seen in the vph1Δ mutant. Moreover, we found that deletion of the VPS26 gene, encoding a subunit of the retromer complex, also caused a defect in Wsc1p recycling and mis-localization of Wsc1p to the vacuole. These findings clarified the previously unidentified Wsc1p recycling pathway and requirement of V-ATPase-dependent luminal acidification for Wsc1p recycling.« less

  2. Inhibiting post-translational core fucosylation protects against albumin-induced proximal tubular epithelial cell injury.

    PubMed

    Wang, Dapeng; Fang, Ming; Shen, Nan; Li, Longkai; Wang, Weidong; Wang, Lingyu; Lin, Hongli

    2017-01-01

    Albuminuria is an independent risk factor for renal interstitial fibrosis (RIF). Glomerular-filtered albumin in endocytic and non-endocytic pathways may injure proximal tubular epithelial cells (PTECs) via megalin and TGFβRII, respectively. Since megalin and TGFβRII are both modified by post-translational core fucosylation, which plays a critical role in RIF. Thus, we sought to identify whether core fucosylation is a potential target for reducing albumin-induced injury to PTECs. We constructed a human PTEC-derived cell line (HK-2 cells) and established an in vitro model of bovine serum albumin (BSA) injury. RNAi was used to inhibit the expression of megalin, TGFβRII, and Fut8. Western blotting, immunostaining, ELISA, lectin blotting, and fluorescence-activated cell sorting were used to identify BSA-induced endocytic and non-endocytic damage in HK-2 cells. Fut8 is a core fucosylation-related gene, which is significantly increased in HK-2 cells following an incubation with BSA. Fut8 siRNA significantly reduced the core fucosylation of megalin and TGFβRII and also inhibited the activation of the TGFβ/TGFβRII/Smad2/3 signaling pathway. Furthermore, Fut8 siRNA could reduce monocyte chemotactic protein-1, reactive oxygen species, and apoptosis, as well as significantly decrease the fibronectin and collagen I levels in BSA-overloaded HK-2 cells. Core fucosylation inhibition was more effective than inhibiting either megalin or TGFβRII for the prevention of albumin-induced injury to PTECs. Our findings indicate that post-translational core fucosylation is essential for the albumin-induced injury to PTECs. Thus, the inhibition of core fucosylation could effectively alleviate albumin-induced endocytic and non-endocytic injury to PTECs. Our study provides a potential therapeutic target for albuminuria-induced injury.

  3. Clathrin-independent carriers form a high capacity endocytic sorting system at the leading edge of migrating cells

    PubMed Central

    Howes, Mark T.; Kirkham, Matthew; Riches, James; Cortese, Katia; Walser, Piers J.; Simpson, Fiona; Hill, Michelle M.; Jones, Alun; Lundmark, Richard; Lindsay, Margaret R.; Hernandez-Deviez, Delia J.; Hadzic, Gordana; McCluskey, Adam; Bashir, Rumasia; Liu, Libin; Pilch, Paul; McMahon, Harvey; Robinson, Phillip J.; Hancock, John F.; Mayor, Satyajit

    2010-01-01

    Although the importance of clathrin- and caveolin-independent endocytic pathways has recently emerged, key aspects of these routes remain unknown. Using quantitative ultrastructural approaches, we show that clathrin-independent carriers (CLICs) account for approximately three times the volume internalized by the clathrin-mediated endocytic pathway, forming the major pathway involved in uptake of fluid and bulk membrane in fibroblasts. Electron tomographic analysis of the 3D morphology of the earliest carriers shows that they are multidomain organelles that form a complex sorting station as they mature. Proteomic analysis provides direct links between CLICs, cellular adhesion turnover, and migration. Consistent with this, CLIC-mediated endocytosis of key cargo proteins, CD44 and Thy-1, is polarized at the leading edge of migrating fibroblasts, while transient ablation of CLICs impairs their ability to migrate. These studies provide the first quantitative ultrastructural analysis and molecular characterization of the major endocytic pathway in fibroblasts, a pathway that provides rapid membrane turnover at the leading edge of migrating cells. PMID:20713605

  4. Intracellular Route of Canine Parvovirus Entry

    PubMed Central

    Vihinen-Ranta, Maija; Kalela, Anne; Mäkinen, Päivi; Kakkola, Laura; Marjomäki, Varpu; Vuento, Matti

    1998-01-01

    The present study was designed to investigate the endocytic pathway involved in canine parvovirus (CPV) infection. Reduced temperature (18°C) or the microtubule-depolymerizing drug nocodazole was found to inhibit productive infection of canine A72 cells by CPV and caused CPV to be retained in cytoplasmic vesicles as indicated by immunofluorescence microscopy. Consistent with previously published results, these data indicate that CPV enters a host cell via an endocytic route and further suggest that microtubule-dependent delivery of CPV to late endosomes is required for productive infection. Cytoplasmic microinjection of CPV particles was used to circumvent the endocytosis and membrane fusion steps in the entry process. Microinjection experiments showed that CPV particles which were injected directly into the cytoplasm, thus avoiding the endocytic pathway, were unable to initiate progeny virus production. CPV treated at pH 5.0 prior to microinjection was unable to initiate virus production, showing that factors of the endocytic route other than low pH are necessary for the initiation of infection by CPV. PMID:9420290

  5. In vitro fusion of endocytic vesicles is inhibited by cyclin A-cdc2 kinase.

    PubMed Central

    Woodman, P G; Adamczewski, J P; Hunt, T; Warren, G

    1993-01-01

    Receptor-mediated endocytosis and recycling are inhibited in mitotic mammalian cells, and previous studies have shown that inhibition of endocytic vesicle fusion in vitro occurs via cyclin B-cdc2 kinase. To test for the ability of cyclin A-cdc2 kinase to inhibit endocytic vesicle fusion, we employed recombinant cyclin A proteins. Addition of cyclin A to interphase extracts activated a histone kinase and markedly reduced the efficiency of endocytic vesicle fusion. By a number of criteria, inhibition of fusion was shown to be due to the action of cyclin A, via the mitosis-specific cdc2 kinase, and not an indirect effect through cyclin B. Two-stage incubations were used to demonstrate that at least one target of cyclin A-cdc2 kinase is a cytosolic component of the fusion apparatus. Reconstitution experiments showed that this component was also modified in mitotic cytosols and was unaffected by N-ethyl maleimide treatment. Images PMID:8334308

  6. The F-Box Protein Rcy1p Is Involved in Endocytic Membrane Traffic and Recycling Out of an Early Endosome in Saccharomyces cerevisiae

    PubMed Central

    Wiederkehr, Andreas; Avaro, Sandrine; Prescianotto-Baschong, Cristina; Haguenauer-Tsapis, Rosine; Riezman, Howard

    2000-01-01

    In Saccharomyces cerevisiae, endocytic material is transported through different membrane-bound compartments before it reaches the vacuole. In a screen for mutants that affect membrane trafficking along the endocytic pathway, we have identified a novel mutant disrupted for the gene YJL204c that we have renamed RCY1 (recycling 1). Deletion of RCY1 leads to an early block in the endocytic pathway before the intersection with the vacuolar protein sorting pathway. Mutation of RCY1 leads to the accumulation of an enlarged compartment that contains the t-SNARE Tlg1p and lies close to areas of cell expansion. In addition, endocytic markers such as Ste2p and the fluorescent dyes, Lucifer yellow and FM4-64, were found in a similar enlarged compartment after their internalization. To determine whether rcy1Δ is defective for recycling, we have developed an assay that measures the recycling of previously internalized FM4-64. This method enables us to follow the recycling pathway in yeast in real time. Using this assay, it could be demonstrated that recycling of membranes is rapid in S. cerevisiae and that a major fraction of internalized FM4-64 is secreted back into the medium within a few minutes. The rcy1Δ mutant is strongly defective in recycling. PMID:10769031

  7. The CD20 homologue MS4A4 directs trafficking of KIT toward clathrin-independent endocytosis pathways and thus regulates receptor signaling and recycling

    PubMed Central

    Cruse, Glenn; Beaven, Michael A.; Music, Stephen C.; Bradding, Peter; Gilfillan, Alasdair M.; Metcalfe, Dean D.

    2015-01-01

    MS4A family members differentially regulate the cell cycle, and aberrant, or loss of, expression of MS4A family proteins has been observed in colon and lung cancer. However, the precise functions of MS4A family proteins and their mechanistic interactions remain unsolved. Here we report that MS4A4 facilitates trafficking of the receptor tyrosine kinase KIT through endocytic recycling rather than degradation pathways by a mechanism that involves recruitment of KIT to caveolin-1–enriched microdomains. Silencing of MS4A4 in human mast cells altered ligand-induced KIT endocytosis pathways and reduced receptor recycling to the cell surface, thus promoting KIT signaling in the endosomes while reducing that in the plasma membrane, as exemplified by Akt and PLCγ1 phosphorylation, respectively. The altered endocytic trafficking of KIT also resulted in an increase in SCF-induced mast cell proliferation and migration, which may reflect altered signaling in these cells. Our data reveal a novel function for MS4A family proteins in regulating trafficking and signaling, which could have implications in both proliferative and immunological diseases. PMID:25717186

  8. The Hsp90 chaperone complex regulates GDI-dependent Rab recycling.

    PubMed

    Chen, Christine Y; Balch, William E

    2006-08-01

    Rab GTPase regulated hubs provide a framework for an integrated coding system, the membrome network, that controls the dynamics of the specialized exocytic and endocytic membrane architectures found in eukaryotic cells. Herein, we report that Rab recycling in the early exocytic pathways involves the heat-shock protein (Hsp)90 chaperone system. We find that Hsp90 forms a complex with guanine nucleotide dissociation inhibitor (GDI) to direct recycling of the client substrate Rab1 required for endoplasmic reticulum (ER)-to-Golgi transport. ER-to-Golgi traffic is inhibited by the Hsp90-specific inhibitors geldanamycin (GA), 17-(dimethylaminoethylamino)-17-demethoxygeldanamycin (17-DMAG), and radicicol. Hsp90 activity is required to form a functional GDI complex to retrieve Rab1 from the membrane. Moreover, we find that Hsp90 is essential for Rab1-dependent Golgi assembly. The observation that the highly divergent Rab GTPases Rab1 involved in ER-to-Golgi transport and Rab3A involved in synaptic vesicle fusion require Hsp90 for retrieval from membranes lead us to now propose that the Hsp90 chaperone system may function as a general regulator for Rab GTPase recycling in exocytic and endocytic trafficking pathways involved in cell signaling and proliferation.

  9. A Role for EHD4 in the Regulation of Early Endosomal Transport

    PubMed Central

    Sharma, Mahak; Naslavsky, Naava; Caplan, Steve

    2009-01-01

    All four of the C-terminal Eps15 homology domain (EHD) proteins have been implicated in the regulation of endocytic trafficking. However, the high level of amino acid sequence identity among these proteins has made it challenging to elucidate the precise function of individual EHD proteins. We demonstrate here with specific peptide antibodies that endogenous EHD4 localizes to Rab5-, early embryonic antigen 1 (EEA1)- and Arf6-containing endosomes and colocalizes with internalized transferrin in the cell periphery. Knock-down of EHD4 expression by both small interfering RNA and short hairpin RNA leads to the generation of enlarged early endosomal structures that contain Rab5 and EEA1 as well as internalized transferrin or major histocompatibility complex class I molecules. In addition, cargo destined for degradation, such as internalized low-density lipoprotein, also accumulates in the enlarged early endosomes in EHD4-depleted cells. Moreover, we have demonstrated that these enlarged early endosomes are enriched in levels of the activated GTP-bound Rab5. Finally, we show that endogenous EHD4 and EHD1 interact in cells, suggesting coordinated involvement in the regulation of receptor transport along the early endosome to endocytic recycling compartment axis. The results presented herein provide evidence that EHD4 is involved in the control of trafficking at the early endosome and regulates exit of cargo toward both the recycling compartment and the late endocytic pathway. PMID:18331452

  10. The Endocytic Adaptor Eps15 Controls Marginal Zone B Cell Numbers

    PubMed Central

    Pozzi, Benedetta; Amodio, Stefania; Lucano, Caterina; Sciullo, Anna; Ronzoni, Simona; Castelletti, Daniela; Adler, Thure; Treise, Irina; Betsholtz, Ingrid Holmberg; Rathkolb, Birgit; Busch, Dirk H.; Wolf, Eckhard; Fuchs, Helmut; Gailus-Durner, Valérie; de Angelis, Martin Hrabě; Betsholtz, Christer; Casola, Stefano; Di Fiore, Pier Paolo; Offenhäuser, Nina

    2012-01-01

    Eps15 is an endocytic adaptor protein involved in clathrin and non-clathrin mediated endocytosis. In Caenorhabditis elegans and Drosophila melanogaster lack of Eps15 leads to defects in synaptic vesicle recycling and synapse formation. We generated Eps15-KO mice to investigate its function in mammals. Eps15-KO mice are born at the expected Mendelian ratio and are fertile. Using a large-scale phenotype screen covering more than 300 parameters correlated to human disease, we found that Eps15-KO mice did not show any sign of disease or neural deficits. Instead, altered blood parameters pointed to an immunological defect. By competitive bone marrow transplantation we demonstrated that Eps15-KO hematopoietic precursor cells were more efficient than the WT counterparts in repopulating B220+ bone marrow cells, CD19− thymocytes and splenic marginal zone (MZ) B cells. Eps15-KO mice showed a 2-fold increase in MZ B cell numbers when compared with controls. Using reverse bone marrow transplantation, we found that Eps15 regulates MZ B cell numbers in a cell autonomous manner. FACS analysis showed that although MZ B cells were increased in Eps15-KO mice, transitional and pre-MZ B cell numbers were unaffected. The increase in MZ B cell numbers in Eps15 KO mice was not dependent on altered BCR signaling or Notch activity. In conclusion, in mammals, the endocytic adaptor protein Eps15 is a regulator of B-cell lymphopoiesis. PMID:23226392

  11. New Regulators of Clathrin-Mediated Endocytosis Identified in Saccharomyces cerevisiae by Systematic Quantitative Fluorescence Microscopy

    PubMed Central

    Farrell, Kristen B.; Grossman, Caitlin; Di Pietro, Santiago M.

    2015-01-01

    Despite the importance of clathrin-mediated endocytosis (CME) for cell biology, it is unclear if all components of the machinery have been discovered and many regulatory aspects remain poorly understood. Here, using Saccharomyces cerevisiae and a fluorescence microscopy screening approach we identify previously unknown regulatory factors of the endocytic machinery. We further studied the top scoring protein identified in the screen, Ubx3, a member of the conserved ubiquitin regulatory X (UBX) protein family. In vivo and in vitro approaches demonstrate that Ubx3 is a new coat component. Ubx3-GFP has typical endocytic coat protein dynamics with a patch lifetime of 45 ± 3 sec. Ubx3 contains a W-box that mediates physical interaction with clathrin and Ubx3-GFP patch lifetime depends on clathrin. Deletion of the UBX3 gene caused defects in the uptake of Lucifer Yellow and the methionine transporter Mup1 demonstrating that Ubx3 is needed for efficient endocytosis. Further, the UBX domain is required both for localization and function of Ubx3 at endocytic sites. Mechanistically, Ubx3 regulates dynamics and patch lifetime of the early arriving protein Ede1 but not later arriving coat proteins or actin assembly. Conversely, Ede1 regulates the patch lifetime of Ubx3. Ubx3 likely regulates CME via the AAA-ATPase Cdc48, a ubiquitin-editing complex. Our results uncovered new components of the CME machinery that regulate this fundamental process. PMID:26362318

  12. Adaptor Protein-1 Complex Affects the Endocytic Trafficking and Function of Peptidylglycine α-Amidating Monooxygenase, a Luminal Cuproenzyme*

    PubMed Central

    Bonnemaison, Mathilde L.; Bäck, Nils; Duffy, Megan E.; Ralle, Martina; Mains, Richard E.; Eipper, Betty A.

    2015-01-01

    The adaptor protein-1 complex (AP-1), which transports cargo between the trans-Golgi network and endosomes, plays a role in the trafficking of Atp7a, a copper-transporting P-type ATPase, and peptidylglycine α-amidating monooxygenase (PAM), a copper-dependent membrane enzyme. Lack of any of the four AP-1 subunits impairs function, and patients with MEDNIK syndrome, a rare genetic disorder caused by lack of expression of the σ1A subunit, exhibit clinical and biochemical signs of impaired copper homeostasis. To explore the role of AP-1 in copper homeostasis in neuroendocrine cells, we used corticotrope tumor cells in which AP-1 function was diminished by reducing expression of its μ1A subunit. Copper levels were unchanged when AP-1 function was impaired, but cellular levels of Atp7a declined slightly. The ability of PAM to function was assessed by monitoring 18-kDa fragment-NH2 production from proopiomelanocortin. Reduced AP-1 function made 18-kDa fragment amidation more sensitive to inhibition by bathocuproine disulfonate, a cell-impermeant Cu(I) chelator. The endocytic trafficking of PAM was altered, and PAM-1 accumulated on the cell surface when AP-1 levels were reduced. Reduced AP-1 function increased the Atp7a presence in early/recycling endosomes but did not alter the ability of copper to stimulate its appearance on the plasma membrane. Co-immunoprecipitation of a small fraction of PAM and Atp7a supports the suggestion that copper can be transferred directly from Atp7a to PAM, a process that can occur only when both proteins are present in the same subcellular compartment. Altered luminal cuproenzyme function may contribute to deficits observed when the AP-1 function is compromised. PMID:26170456

  13. Membrane traffic and synaptic cross-talk during host cell entry by Trypanosoma cruzi.

    PubMed

    Butler, Claire E; Tyler, Kevin M

    2012-09-01

    It is widely accepted that Trypanosoma cruzi can exploit the natural exocytic response of the host to cell damage, utilizing host cell lysosomes as important effectors. It is, though, increasingly clear that the parasite also exploits endocytic mechanisms which allow for incorporation of plasma membrane into the parasitophorous vacuole. Further, that these endocytic mechanisms are involved in cross-talk with the exocytic machinery, in the recycling of vesicles and in the manipulation of the cytoskeleton. Here we review the mechanisms by which T. cruzi exploits features of the exocytic and endocytic pathways in epithelial and endothelial cells and the evidence for cross-talk between these pathways. © 2012 Blackwell Publishing Ltd.

  14. Switch-like Arp2/3 activation upon WASP and WIP recruitment to an apparent threshold level by multivalent linker proteins in vivo.

    PubMed

    Sun, Yidi; Leong, Nicole T; Jiang, Tommy; Tangara, Astou; Darzacq, Xavier; Drubin, David G

    2017-08-16

    Actin-related protein 2/3 (Arp2/3) complex activation by nucleation promoting factors (NPFs) such as WASP, plays an important role in many actin-mediated cellular processes. In yeast, Arp2/3-mediated actin filament assembly drives endocytic membrane invagination and vesicle scission. Here we used genetics and quantitative live-cell imaging to probe the mechanisms that concentrate NPFs at endocytic sites, and to investigate how NPFs regulate actin assembly onset. Our results demonstrate that SH3 (Src homology 3) domain-PRM (proline-rich motif) interactions involving multivalent linker proteins play central roles in concentrating NPFs at endocytic sites. Quantitative imaging suggested that productive actin assembly initiation is tightly coupled to accumulation of threshold levels of WASP and WIP, but not to recruitment kinetics or release of autoinhibition. These studies provide evidence that WASP and WIP play central roles in establishment of a robust multivalent SH3 domain-PRM network in vivo, giving actin assembly onset at endocytic sites a switch-like behavior.

  15. Endocytosis and membrane receptor internalization: implication of F-BAR protein Carom.

    PubMed

    Xu, Yanjie; Xia, Jixiang; Liu, Suxuan; Stein, Sam; Ramon, Cueto; Xi, Hang; Wang, Luqiao; Xiong, Xinyu; Zhang, Lixiao; He, Dingwen; Yang, William; Zhao, Xianxian; Cheng, Xiaoshu; Yang, Xiaofeng; Wang, Hong

    2017-03-01

    Endocytosis is a cellular process mostly responsible for membrane receptor internalization. Cell membrane receptors bind to their ligands and form a complex which can be internalized. We previously proposed that F-BAR protein initiates membrane curvature and mediates endocytosis via its binding partners. However, F-BAR protein partners involved in membrane receptor endocytosis and the regulatory mechanism remain unknown. In this study, we established database mining strategies to explore mechanisms underlying receptor-related endocytosis. We identified 34 endocytic membrane receptors and 10 regulating proteins in clathrin-dependent endocytosis (CDE), a major process of membrane receptor internalization. We found that F-BAR protein FCHSD2 (Carom) may facilitate endocytosis via 9 endocytic partners. Carom is highly expressed, along with highly expressed endocytic membrane receptors and partners, in endothelial cells and macrophages. We established 3 models of Carom-receptor complexes and their intracellular trafficking based on protein interaction and subcellular localization. We conclude that Carom may mediate receptor endocytosis and transport endocytic receptors to the cytoplasm for receptor signaling and lysosome/proteasome degradation, or to the nucleus for RNA processing, gene transcription and DNA repair.

  16. The CD63-Syntenin-1 Complex Controls Post-Endocytic Trafficking of Oncogenic Human Papillomaviruses.

    PubMed

    Gräßel, Linda; Fast, Laura Aline; Scheffer, Konstanze D; Boukhallouk, Fatima; Spoden, Gilles A; Tenzer, Stefan; Boller, Klaus; Bago, Ruzica; Rajesh, Sundaresan; Overduin, Michael; Berditchevski, Fedor; Florin, Luise

    2016-08-31

    Human papillomaviruses enter host cells via a clathrin-independent endocytic pathway involving tetraspanin proteins. However, post-endocytic trafficking required for virus capsid disassembly remains unclear. Here we demonstrate that the early trafficking pathway of internalised HPV particles involves tetraspanin CD63, syntenin-1 and ESCRT-associated adaptor protein ALIX. Following internalisation, viral particles are found in CD63-positive endosomes recruiting syntenin-1, a CD63-interacting adaptor protein. Electron microscopy and immunofluorescence experiments indicate that the CD63-syntenin-1 complex controls delivery of internalised viral particles to multivesicular endosomes. Accordingly, infectivity of high-risk HPV types 16, 18 and 31 as well as disassembly and post-uncoating processing of viral particles was markedly suppressed in CD63 or syntenin-1 depleted cells. Our analyses also present the syntenin-1 interacting protein ALIX as critical for HPV infection and CD63-syntenin-1-ALIX complex formation as a prerequisite for intracellular transport enabling viral capsid disassembly. Thus, our results identify the CD63-syntenin-1-ALIX complex as a key regulatory component in post-endocytic HPV trafficking.

  17. RhoB-dependent modulation of postendocytic traffic in polarized Madin-Darby canine kidney cells.

    PubMed

    Rondanino, Christine; Rojas, Raul; Ruiz, Wily G; Wang, Exing; Hughey, Rebecca P; Dunn, Kenneth W; Apodaca, Gerard

    2007-07-01

    The Rho family of GTPases is implicated in the control of endocytic and biosynthetic traffic of many cell types; however, the cellular distribution of RhoB remains controversial and its function is not well understood. Using confocal microscopy, we found that endogenous RhoB and green fluorescent protein-tagged wild-type RhoB were localized to early endosomes, and to a much lesser extent to recycling endosomes, late endosomes or Golgi complex of fixed or live polarized Madin-Darby canine kidney cells. Consistent with RhoB localization to early endosomes, we observed that expression of dominant-negative RhoBN19 or dominant-active RhoBV14 altered postendocytic traffic of ligand-receptor complexes that undergo recycling, degradation or transcytosis. In vitro assays established that RhoB modulated the basolateral-to-apical transcytotic pathway by regulating cargo exit from basolateral early endosomes. Our results indicate that RhoB is localized, in part, to early endosomes where it regulates receptor egress through the early endocytic system.

  18. COPI mediates recycling of an exocytic SNARE by recognition of a ubiquitin sorting signal

    PubMed Central

    Xu, Peng; Hankins, Hannah M; MacDonald, Chris; Erlinger, Samuel J; Frazier, Meredith N; Diab, Nicholas S; Piper, Robert C; Jackson, Lauren P; MacGurn, Jason A

    2017-01-01

    The COPI coat forms transport vesicles from the Golgi complex and plays a poorly defined role in endocytic trafficking. Here we show that COPI binds K63-linked polyubiquitin and this interaction is crucial for trafficking of a ubiquitinated yeast SNARE (Snc1). Snc1 is a v-SNARE that drives fusion of exocytic vesicles with the plasma membrane, and then recycles through the endocytic pathway to the Golgi for reuse in exocytosis. Removal of ubiquitin from Snc1, or deletion of a β'-COP subunit propeller domain that binds K63-linked polyubiquitin, disrupts Snc1 recycling causing aberrant accumulation in internal compartments. Moreover, replacement of the β'-COP propeller domain with unrelated ubiquitin-binding domains restores Snc1 recycling. These results indicate that ubiquitination, a modification well known to target membrane proteins to the lysosome or vacuole for degradation, can also function as recycling signal to sort a SNARE into COPI vesicles in a non-degradative pathway. PMID:29058666

  19. Selectivity of commonly used inhibitors of clathrin-mediated and caveolae-dependent endocytosis of G protein-coupled receptors.

    PubMed

    Guo, Shuohan; Zhang, Xiaohan; Zheng, Mei; Zhang, Xiaowei; Min, Chengchun; Wang, Zengtao; Cheon, Seung Hoon; Oak, Min-Ho; Nah, Seung-Yeol; Kim, Kyeong-Man

    2015-10-01

    Among the multiple G protein-coupled receptor (GPCR) endocytic pathways, clathrin-mediated endocytosis (CME) and caveolar endocytosis are more extensively characterized than other endocytic pathways. A number of endocytic inhibitors have been used to block CME; however, systemic studies to determine the selectivity of these inhibitors are needed. Clathrin heavy chain or caveolin1-knockdown cells have been employed to determine the specificity of various chemical and molecular biological tools for CME and caveolar endocytosis. Sucrose, concanavalin A, and dominant negative mutants of dynamin blocked other endocytic pathways, in addition to CME. In particular, concanavalin A nonspecifically interfered with the signaling of several GPCRs tested in the study. Decreased pH, monodansylcadaverine, and dominant negative mutants of epsin were more specific for CME than other treatments were. A recently introduced CME inhibitor, Pitstop2™, showed only marginal selectivity for CME and interfered with receptor expression on the cell surface. Blockade of receptor endocytosis by epsin mutants and knockdown of the clathrin heavy chain enhanced the β2AR-mediated ERK activation. Overall, our studies show that previous experimental results should be interpreted with discretion if they included the use of endocytic inhibitors that were previously thought to be CME-selective. In addition, our study shows that endocytosis of β2 adrenoceptor through clathrin-mediated pathway has negative effects on ERK activation. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. The yeast Arf-GAP Glo3p is required for the endocytic recycling of cell surface proteins.

    PubMed

    Kawada, Daiki; Kobayashi, Hiromu; Tomita, Tsuyoshi; Nakata, Eisuke; Nagano, Makoto; Siekhaus, Daria Elisabeth; Toshima, Junko Y; Toshima, Jiro

    2015-01-01

    Small GTP-binding proteins of the Ras superfamily play diverse roles in intracellular trafficking. Among them, the Rab, Arf, and Rho families function in successive steps of vesicle transport, in forming vesicles from donor membranes, directing vesicle trafficking toward target membranes and docking vesicles onto target membranes. These proteins act as molecular switches that are controlled by a cycle of GTP binding and hydrolysis regulated by guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs). In this study we explored the role of GAPs in the regulation of the endocytic pathway using fluorescently labeled yeast mating pheromone α-factor. Among 25 non-essential GAP mutants, we found that deletion of the GLO3 gene, encoding Arf-GAP protein, caused defective internalization of fluorescently labeled α-factor. Quantitative analysis revealed that glo3Δ cells show defective α-factor binding to the cell surface. Interestingly, Ste2p, the α-factor receptor, was mis-localized from the plasma membrane to the vacuole in glo3Δ cells. Domain deletion mutants of Glo3p revealed that a GAP-independent function, as well as the GAP activity, of Glo3p is important for both α-factor binding and Ste2p localization at the cell surface. Additionally, we found that deletion of the GLO3 gene affects the size and number of Arf1p-residing Golgi compartments and causes a defect in transport from the TGN to the plasma membrane. Furthermore, we demonstrated that glo3Δ cells were defective in the late endosome-to-TGN transport pathway, but not in the early endosome-to-TGN transport pathway. These findings suggest novel roles for Arf-GAP Glo3p in endocytic recycling of cell surface proteins. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. The C-type Lectin Langerin Functions as a Receptor for Attachment and Infectious Entry of Influenza A Virus.

    PubMed

    Ng, Wy Ching; Londrigan, Sarah L; Nasr, Najla; Cunningham, Anthony L; Turville, Stuart; Brooks, Andrew G; Reading, Patrick C

    2016-01-01

    It is well established that influenza A virus (IAV) attachment to and infection of epithelial cells is dependent on sialic acid (SIA) at the cell surface, although the specific receptors that mediate IAV entry have not been defined and multiple receptors may exist. Lec2 Chinese hamster ovary (CHO) cells are SIA deficient and resistant to IAV infection. Here we demonstrate that the expression of the C-type lectin receptor langerin in Lec2 cells (Lec2-Lg) rendered them permissive to IAV infection, as measured by replication of the viral genome, transcription of viral mRNA, and synthesis of viral proteins. Unlike SIA-dependent infection of parental CHO cells, IAV attachment and infection of Lec2-Lg cells was mediated via lectin-mediated recognition of mannose-rich glycans expressed by the viral hemagglutinin glycoprotein. Lec2 cells expressing endocytosis-defective langerin bound IAV efficiently but remained resistant to IAV infection, confirming that internalization via langerin was essential for infectious entry. Langerin-mediated infection of Lec2-Lg cells was pH and dynamin dependent, occurred via clathrin- and caveolin-mediated endocytic pathways, and utilized early (Rab5(+)) but not late (Rab7(+)) endosomes. This study is the first to demonstrate that langerin represents an authentic receptor that binds and internalizes IAV to facilitate infection. Moreover, it describes a unique experimental system to probe specific pathways and compartments involved in infectious entry following recognition of IAV by a single cell surface receptor. On the surface of host cells, sialic acid (SIA) functions as the major attachment factor for influenza A viruses (IAV). However, few studies have identified specific transmembrane receptors that bind and internalize IAV to facilitate infection. Here we identify human langerin as a transmembrane glycoprotein that can act as an attachment factor and a bone fide endocytic receptor for IAV infection. Expression of langerin by an SIA-deficient cell line resistant to IAV rendered cells permissive to infection. As langerin represented the sole receptor for IAV infection in this system, we have defined the pathways and compartments involved in infectious entry of IAV into cells following recognition by langerin. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  2. Controlled exosome release from the retinal pigment epithelium in situ.

    PubMed

    Locke, Christina J; Congrove, Nicole R; Dismuke, W Michael; Bowen, Trent J; Stamer, W Daniel; McKay, Brian S

    2014-12-01

    Retinal Pigment Epithelial cells (RPE) express both GPR143 and myocilin, which interact in a signal transduction-dependent manner. In heterologous systems, activation of GPR143 with ligand causes transient recruitment of myocilin to internalized receptors, which appears to be the entry point of myocilin to the endocytic pathway. In some but not all cells, myocilin also traffics through the multivesicular body (MVB) and is released on the surface of exosomes in a signal transduction-dependent fashion. Little is known regarding the role of exosomes in RPE, but they likely serve as a mode of communication between the RPE and the outer retina. In this study, we used posterior poles with retina removed from fresh human donor eyes as a model to test the relationship between GPR143, myocilin, and exosomes in an endogenous system. We isolated exosomes released by RPE using differential centrifugation of media conditioned by the RPE for 25 min, and then characterized the exosomes using nanoparticle tracking to determine the number and size of the exosomes. Next, we tested whether ligand stimulation of GPR143 using l-DOPA altered RPE exosome release. Finally, we investigated whether myocilin was present on the exosomes released by RPE and whether l-DOPA stimulation of GPR143 caused recruitment of myocilin to the endocytic pathway, as we have previously observed using cultured cells. Activation of GPR143 halted RPE exosome release, while simultaneously recruiting myocilin to the endocytic compartment. Together, our results indicate that GPR143 and myocilin function in a signal transduction system that can control exosome release from RPE. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. The kidney in vitamin B12 and folate homeostasis: characterization of receptors for tubular uptake of vitamins and carrier proteins.

    PubMed

    Birn, Henrik

    2006-07-01

    Over the past 10 years, animal studies have uncovered the molecular mechanisms for the renal tubular recovery of filtered vitamin and vitamin carrier proteins. Relatively few endocytic receptors are responsible for the proximal tubule uptake of a number of different vitamins, preventing urinary losses. In addition to vitamin conservation, tubular uptake by endocytosis is important to vitamin metabolism and homeostasis. The present review focuses on the receptors involved in renal tubular recovery of folate, vitamin B12, and their carrier proteins. The multiligand receptor megalin is important for the uptake and tubular accumulation of vitamin B12. During vitamin load, the kidney accumulates large amounts of free vitamin B12, suggesting a possible storage function. In addition, vitamin B12 is metabolized in the kidney, suggesting a role in vitamin homeostasis. The folate receptor is important for the conservation of folate, mediating endocytosis of the vitamin. Interaction between the structurally closely related, soluble folate-binding protein and megalin suggests that megalin plays an additional role in the uptake of folate bound to filtered folate-binding protein. A third endocytic receptor, the intrinsic factor-B12 receptor cubilin-amnionless complex, is essential to the renal tubular uptake of albumin, a carrier of folate. In conclusion, uptake is mediated by interaction with specific endocytic receptors also involved in the renal uptake of other vitamins and vitamin carriers. Little is known about the mechanisms regulating intracellular transport and release of vitamins, and whereas tubular uptake is a constitutive process, this may be regulated, e.g., by vitamin status.

  4. Surface LAMP-2 Is an Endocytic Receptor That Diverts Antigen Internalized by Human Dendritic Cells into Highly Immunogenic Exosomes.

    PubMed

    Leone, Dario Armando; Peschel, Andrea; Brown, Markus; Schachner, Helga; Ball, Miriam J; Gyuraszova, Marianna; Salzer-Muhar, Ulrike; Fukuda, Minoru; Vizzardelli, Caterina; Bohle, Barbara; Rees, Andrew J; Kain, Renate

    2017-07-15

    The lysosome-associated membrane protein (LAMP) family includes the dendritic cell endocytic receptors DC-LAMP and CD68, as well as LAMP-1 and LAMP-2. In this study we identify LAMP-1 (CD107a) and LAMP-2 (CD107b) on the surface of human monocyte-derived dendritic cells (MoDC) and show only LAMP-2 is internalized after ligation by specific Abs, including H4B4, and traffics rapidly but transiently to the MHC class II loading compartment, as does Ag conjugated to H4B4. However, pulsing MoDC with conjugates of primary (keyhole limpet hemocyanin; KLH) and recall (Bet v 1) Ags (H4B4*KLH and H4B4*Bet v 1) induced significantly less CD4 cell proliferation than pulsing with native Ag or Ag conjugated to control mAb (ISO*KLH and ISO*Bet v 1). In H4B4*KLH-pulsed MoDC, the duration of KLH residence in MHC class II loading compartments was significantly reduced, as were surface HLA-DR and DR-bound KLH-derived peptides. Paradoxically, MoDC pulsed with H4B4*KLH, but not the other KLH preparations, induced robust proliferation of CD4 cells separated from them by a transwell membrane, indicating factors in the supernatant were responsible. Furthermore, extracellular vesicles from supernatants of H4B4*KLH-pulsed MoDC contained significantly more HLA-DR and KLH than those purified from control MoDC, and KLH was concentrated specifically in exosomes that were a uniquely effective source of Ag in standard T cell proliferation assays. In summary, we identify LAMP-2 as an endocytic receptor on human MoDC that routes cargo into unusual Ag processing pathways, which reduces surface expression of Ag-derived peptides while selectively enriching Ag within immunogenic exosomes. This novel pathway has implications for the initiation of immune responses both locally and at distant sites. Copyright © 2017 by The American Association of Immunologists, Inc.

  5. Endocytosis and membrane receptor internalization: implication of F-BAR protein Carom

    PubMed Central

    Xu, Yanjie; Liu, Suxuan; Xia, Jixiang; Stein, Sam; Ramon, Cueto; Xi, Hang; Wang, Luqiao; Xiong, Xinyu; Zhang, Lixiao; He, Dingwen; Yang, William; Zhao, Xianxian; Cheng, Xiaoshu; Yang, Xiaofeng; Wang, Hong

    2016-01-01

    Endocytosis is a cellular process mostly responsible for membrane receptor internalization. Cell membrane receptors bind to their ligands and form a complex which can be internalized. We previously proposed that F-BAR protein initiates membrane curvature and mediates endocytosis via their binding partners. However, F-BAR protein partners involved in membrane receptor endocytosis and the regulatory mechanism remain unknown. In this study, we established a group of database mining strategies to explore mechanisms underlying receptor-related endocytosis. We identified 34 endocytic membrane receptors and 10 regulating proteins for vesicle formation in clathrin-dependent endocytosis (CDE), a major process of membrane receptor internalization. We found that F-BAR protein FCHSD2 (Carom) may facilitate endocytosis via 9 endocytic partners. Carom is highly expressed, along with highly expressed endocytic membrane receptors and partners, in endothelial cells and macrophages. We established 3 models of Carom-receptor complex and their intracellular trafficking based on protein-protein interaction and subcellular localization. We conclude that Carom may mediate receptor endocytosis and transport endocytic receptors to the cytoplasm for receptor signaling and lysosome/proteasome degradation, or to the nucleus for RNA processing, gene transcription and DNA repair. PMID:28199211

  6. The minute virus of mice exploits different endocytic pathways for cellular uptake

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcin, Pierre O.; Panté, Nelly, E-mail: pante@zoology.ubc.ca

    The minute virus of mice, prototype strain (MVMp), is a non-enveloped, single-stranded DNA virus of the family Parvoviridae. Unlike other parvoviruses, the mechanism of cellular uptake of MVMp has not been studied in detail. We analyzed MVMp endocytosis in mouse LA9 fibroblasts and a tumor cell line derived from epithelial–mesenchymal transition through polyomavirus middle T antigen transformation in transgenic mice. By a combination of immunofluorescence and electron microscopy, we found that MVMp endocytosis occurs at the leading edge of migrating cells in proximity to focal adhesion sites. By using drug inhibitors of various endocytic pathways together with immunofluorescence microscopy andmore » flow cytometry analysis, we discovered that MVMp can use a number of endocytic pathways, depending on the host cell type. At least three different mechanisms were identified: clathrin-, caveolin-, and clathrin-independent carrier-mediated endocytosis, with the latter occurring in transformed cells but not in LA9 fibroblasts. - Highlights: • MVMp uptake takes place at the leading edge of migrating cells. • MVMp exploits a variety of endocytic pathways. • MVMp could use clathrin- and caveolin-mediated endocytosis. • MVMp could also use clathrin-independent carriers for cellular uptake.« less

  7. Multiple polysaccharide-drug complex-loaded liposomes: A unique strategy in drug loading and cancer targeting.

    PubMed

    Ruttala, Hima Bindu; Ramasamy, Thiruganesh; Gupta, Biki; Choi, Han-Gon; Yong, Chul Soon; Kim, Jong Oh

    2017-10-01

    In the present study, a unique strategy was developed to develop nanocarriers containing multiple therapeutics with controlled release characteristics. In this study, we demonstrated the synthesis of dextran sulfate-doxorubicin (DS-DOX) and alginate-cisplatin (AL-CIS) polymer-drug complexes to produce a transferrin ligand-conjugated liposome. The targeted nanoparticles (TL-DDAC) were nano-sized and spherical. The targeted liposome exhibited a specific receptor-mediated endocytic uptake in cancer cells. The enhanced cellular uptake of TL-DDAC resulted in a significantly better anticancer effect in resistant and sensitive breast cancer cells compared to that of the free drugs. Specifically, DOX and CIS at a molar ratio of 1:1 exhibited better therapeutic performance compared to that of other combinations. The combination of an anthracycline-based topoisomerase II inhibitor (DOX) and a platinum compound (CIS) resulted in significantly higher cell apoptosis (early and late) in both types of cancer cells. In conclusion, treatment with DS-DOX and AL-CIS based combination liposomes modified with transferrin (TL-DDAC) was an effective cancer treatment strategy. Further investigation in clinically relevant animal models is warranted to prove the therapeutic efficacy of this unique strategy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Co-option of endocytic functions of cellular caveolae by pathogens

    PubMed Central

    Shin, J-S; Abraham, S N

    2001-01-01

    It is increasingly becoming clear that various immune cells are infected by the very pathogens that they are supposed to attack. Although many mechanisms for microbial entry exist, it appears that a common route of entry shared by certain bacteria, viruses and parasites involves cellular lipid-rich microdomains sometimes called caveolae. These cellular entities, which are characterized by their preferential accumulation of glycosylphosphatidylinositol (GPI)-anchored molecules, cholesterol and various glycolipids, and a distinct protein (caveolin), are present in many effector cells of the immune system including neutrophils, macrophages, mast cells and dendritic cells. These structures have an innate capacity to endocytoze various ligands and traffic them to different intracellular sites and sometimes, back to the extracellular cell surface. Because caveolae do not typically fuse with lysosomes, the ligands borne by caveolar vesicles are essentially intact, which is in marked contrast to ligands endocytozed via the classical endosome–lysosome pathway. A number of microbes or their exotoxins co-opt the unique features of caveolae to enter and traffic, without any apparent loss of viability and function, to different sites within immune and other host cells. In spite of their wide disparity in size and other structural attributes, we predict that a common feature among caveolae-utilizing pathogens and toxins is that their cognate receptor(s) are localized within plasmalemmal caveolae of the host cell. PMID:11168630

  9. A Novel Functional Role of Collagen Glycosylation

    PubMed Central

    Jürgensen, Henrik J.; Madsen, Daniel H.; Ingvarsen, Signe; Melander, Maria C.; Gårdsvoll, Henrik; Patthy, Laszlo; Engelholm, Lars H.; Behrendt, Niels

    2011-01-01

    Collagens make up the most abundant component of interstitial extracellular matrices and basement membranes. Collagen remodeling is a crucial process in many normal physiological events and in several pathological conditions. Some collagen subtypes contain specific carbohydrate side chains, the function of which is poorly known. The endocytic collagen receptor urokinase plasminogen activator receptor-associated protein (uPARAP)/Endo180 plays an important role in matrix remodeling through its ability to internalize collagen for lysosomal degradation. uPARAP/Endo180 is a member of the mannose receptor protein family. These proteins all include a fibronectin type II domain and a series of C-type lectin-like domains, of which only a minor part possess carbohydrate recognition activity. At least two of the family members, uPARAP/Endo180 and the mannose receptor, interact with collagens. The molecular basis for this interaction is known to involve the fibronectin type II domain but nothing is known about the function of the lectin domains in this respect. In this study, we have investigated a possible role of the single active lectin domain of uPARAP/Endo180 in the interaction with collagens. By expressing truncated recombinant uPARAP/Endo180 proteins and analyzing their interaction with collagens with high and low levels of glycosylation we demonstrated that this lectin domain interacts directly with glycosylated collagens. This interaction is functionally important because it was found to modulate the endocytic efficiency of the receptor toward highly glycosylated collagens such as basement membrane collagen IV. Surprisingly, this property was not shared by the mannose receptor, which internalized glycosylated collagens independently of its lectin function. This role of modulating its uptake efficiency by a specific receptor is a previously unrecognized function of collagen glycosylation. PMID:21768090

  10. A Distributed Set of Interactions Controls μ2 Functionality in the Role of AP-2 as a Sorting Adaptor in Synaptic Vesicle Endocytosis*♦

    PubMed Central

    Kim, Sung Hyun; Ryan, Timothy A.

    2009-01-01

    The mechanisms of how, following exocytosis, the approximately nine types of synaptic vesicle (SV) transmembrane proteins are accurately resorted to form SVs are poorly understood. The time course of SV endocytosis is very sensitive to perturbations in clathrin and dynamin, supporting the model that SV endocytosis occurs through a clathrin-mediated pathway. We recently demonstrated that removal of the clathrin adaptor protein AP-2, the key protein thought to coordinate cargo selection into clathrin-coated pits, results in a significant impairment in endocytosis kinetics. Endocytosis, however, still proceeds in the absence of AP-2, bringing into question the role of AP-2 in cargo sorting in this process. Using quantitative endocytosis assays at nerve terminals, we examined how endocytosis depends on the integrity of μ2 function. Our experiments indicate that no single perturbation in μ2 prevents restoration of endocytic function when mutated μ2 replaces native μ2, whereas introduction of multiple distributed mutations significantly impairs endocytosis. We also examined whether the presence of AP-2 is important for the functionality of the previously identified endocytic motif in an SV cargo protein, the dileucine motif in vGlut-1. These data show that while mutations in the dileucine motif slow the retrieval of vGlut-1, they only do so in the presence of AP-2. These data thus indicate that AP-2 plays a role in cargo selection but that no single aspect of μ2 function is critical, implying that a more distributed network of interactions supports AP-2 function in SV endocytosis. PMID:19762466

  11. Nanosized complexation assemblies housed inside reverse micelles churn out monocytic delivery cores for bendamustine hydrochloride.

    PubMed

    Singh, Yuvraj; Chandrashekhar, Anumandla; Meher, Jaya Gopal; Durga Rao Viswanadham, K K; Pawar, Vivek K; Raval, Kavit; Sharma, Komal; Singh, Pankaj K; Kumar, Animesh; Chourasia, Manish K

    2017-04-01

    We explore a plausible method of targeting bendamustine hydrochloride (BM) to circulatory monocytes by exploiting their intrinsic endocytic/phagocytic capability. We do so by complexation of sodium alginate and chitosan inside dioctyl sulfo succinate sodium (AOT) reverse micelles to form bendamustine hydrochloride loaded nanoparticles (CANPs). Dynamic light scattering, electrophoretic mobility and UV spectroscopy were used to detail intra-micellar complexation dynamics and to prove that drug was co-captured during interaction of carbohydrate polymers. A fluorescent conjugate of drug (RBM) was used to trace its intracellular fate after its loading into nanoparticles. CANPs were sized below 150nm, had 75% drug entrapment and negative zeta potential (-30mV). Confocal microscopy demonstrated that developed chitosan alginate nanoparticles had the unique capability to carry BM specifically to its site of action. Quantitative and mechanism based cell uptake studies revealed that monocytes had voracious capacity to internalize CANPs via simultaneous scavenger receptor based endocytic and phagocytic mechanism. Comparative in vitro pharmacokinetic studies revealed obtainment of significantly greater intracellular drug levels when cells were treated with CANPs. This caused reduction in IC 50 (22.5±2.1μg/mL), enhancement in G 2 M cell cycle arrest, greater intracellular reactive oxygen species generation, and increased apopotic potential of bendamustine hydrochloride in THP-1 cells. Selective monocytic targeting of bendamustine hydrochloride using carbohydrate constructs can prove advantageous in case of leukemic disorders displaying overabundance of such cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Nexus of signaling and endocytosis in oncogenesis driven by non-small cell lung cancer-associated epidermal growth factor receptor mutants

    PubMed Central

    Chung, Byung Min; Tom, Eric; Zutshi, Neha; Bielecki, Timothy Alan; Band, Vimla; Band, Hamid

    2014-01-01

    Epidermal growth factor receptor (EGFR) controls a wide range of cellular processes, and aberrant EGFR signaling as a result of receptor overexpression and/or mutation occurs in many types of cancer. Tumor cells in non-small cell lung cancer (NSCLC) patients that harbor EGFR kinase domain mutations exhibit oncogene addiction to mutant EGFR, which confers high sensitivity to tyrosine kinase inhibitors (TKIs). As patients invariably develop resistance to TKIs, it is important to delineate the cell biological basis of mutant EGFR-induced cellular transformation since components of these pathways can serve as alternate therapeutic targets to preempt or overcome resistance. NSCLC-associated EGFR mutants are constitutively-active and induce ligand-independent transformation in nonmalignant cell lines. Emerging data suggest that a number of factors are critical for the mutant EGFR-dependent tumorigenicity, and bypassing the effects of TKIs on these pathways promotes drug resistance. For example, activation of downstream pathways such as Akt, Erk, STAT3 and Src is critical for mutant EGFR-mediated biological processes. It is now well-established that the potency and spatiotemporal features of cellular signaling by receptor tyrosine kinases such as EGFR, as well as the specific pathways activated, is determined by the nature of endocytic traffic pathways through which the active receptors traverse. Recent evidence indicates that NSCLC-associated mutant EGFRs exhibit altered endocytic trafficking and they exhibit reduced Cbl ubiquitin ligase-mediated lysosomal downregulation. More recent work has shown that mutant EGFRs undergo ligand-independent traffic into the endocytic recycling compartment, a behavior that plays a key role in Src pathway activation and oncogenesis. These studies are beginning to delineate the close nexus between signaling and endocytic traffic of EGFR mutants as a key driver of oncogenic processes. Therefore, in this review, we will discuss the links between mutant EGFR signaling and endocytic properties, and introduce potential mechanisms by which altered endocytic properties of mutant EGFRs may alter signaling and vice versa as well as their implications for NSCLC therapy. PMID:25493220

  13. Cortical Recruitment and Nuclear–Cytoplasmic Shuttling of Scd5p, a Protein Phosphatase-1-targeting Protein Involved in Actin Organization and EndocytosisD⃞

    PubMed Central

    Chang, Ji Suk; Henry, Kenneth; Geli, María Isabel; Lemmon, Sandra K.

    2006-01-01

    Scd5p regulates endocytosis and cortical actin organization as a targeting subunit for the Ser/Thr protein phosphatase-1 (PP1) in yeast. To identify localization signals in Scd5p required for cell surface recruitment, visualization of GFP-tagged Scd5 truncations and deletions was performed. Scd5p contains a PP1 binding site, a 3-repeat region of 20 amino acids (3R), and a 9-repeat region of 12 amino acids (9R). We found that the 9R is critical for cortical localization of Scd5p, but cortical recruitment is not essential for Scd5p's function in actin organization and endocytosis. We propose that Scd5p can target PP1 to endocytic factors in the cytoplasm that have been disassembled and/or inactivated by phosphorylation. We also found that Scd5p undergoes nuclear-cytoplasmic shuttling in a Crm1p-dependent manner. Scd5p-ΔCT lacking the 9R region and its nuclear export signal (NES) accumulates in the nucleus, causing cortical actin and endocytic defects. Cytoplasmic localization and function of Scd5p-ΔCT is restored by NES addition. However, removal of Scd5p's nuclear localization signal prevents nuclear entry, but endocytosis and actin organization remain relatively normal. These results indicate that nuclear-cytoplasmic shuttling is not required for regulation of Scd5p's cortical function and suggest that Scd5p has an independent nuclear function. PMID:16251346

  14. Rab4b controls an early endosome sorting event by interacting with the γ-subunit of the clathrin adaptor complex 1.

    PubMed

    Perrin, Laura; Laura, Perrin; Lacas-Gervais, Sandra; Sandra, Lacas-Gervais; Gilleron, Jérôme; Jérôme, Gilleron; Ceppo, Franck; Franck, Ceppo; Prodon, François; François, Prodon; Benmerah, Alexandre; Alexandre, Benmerah; Tanti, Jean-François; Jean-François, Tanti; Cormont, Mireille; Mireille, Cormont

    2013-11-01

    The endocytic pathway is essential for cell homeostasis and numerous small Rab GTPases are involved in its control. The endocytic trafficking step controlled by Rab4b has not been elucidated, although recent data suggested it could be important for glucose homeostasis, synaptic homeostasis or adaptive immunity. Here, we show that Rab4b is required for early endosome sorting of transferrin receptors (TfRs) to the recycling endosomes, and we identified the AP1γ subunit of the clathrin adaptor AP-1 as a Rab4b effector and key component of the machinery of early endosome sorting. We show that internalised transferrin (Tf) does not reach Vamp3/Rab11 recycling endosomes in the absence of Rab4b, whereas it is rapidly recycled back to the plasma membrane. By contrast, overexpression of Rab4b leads to the accumulation of internalised Tf within AP-1- and clathrin-coated vesicles. These vesicles are poor in early and recycling endocytic markers except for TfR and require AP1γ for their formation. Furthermore, the targeted overexpression of the Rab4b-binding domain of AP1γ to early endosome upon its fusion with FYVE domains inhibited the interaction between Rab4b and endogenous AP1γ, and perturbed Tf traffic. We thus proposed that the interaction between early endocytic Rab4b and AP1γ could allow the budding of clathrin-coated vesicles for subsequent traffic to recycling endosomes. The data also uncover a novel type of endosomes, characterised by low abundance of either early or recycling endocytic markers, which could potentially be generated in cell types that naturally express high level of Rab4b.

  15. A Kinase Inhibitor Screen Reveals Protein Kinase C-dependent Endocytic Recycling of ErbB2 in Breast Cancer Cells*

    PubMed Central

    Bailey, Tameka A.; Luan, Haitao; Tom, Eric; Bielecki, Timothy Alan; Mohapatra, Bhopal; Ahmad, Gulzar; George, Manju; Kelly, David L.; Natarajan, Amarnath; Raja, Srikumar M.; Band, Vimla; Band, Hamid

    2014-01-01

    ErbB2 overexpression drives oncogenesis in 20–30% cases of breast cancer. Oncogenic potential of ErbB2 is linked to inefficient endocytic traffic into lysosomes and preferential recycling. However, regulation of ErbB2 recycling is incompletely understood. We used a high-content immunofluorescence imaging-based kinase inhibitor screen on SKBR-3 breast cancer cells to identify kinases whose inhibition alters the clearance of cell surface ErbB2 induced by Hsp90 inhibitor 17-AAG. Less ErbB2 clearance was observed with broad-spectrum PKC inhibitor Ro 31-8220. A similar effect was observed with Go 6976, a selective inhibitor of classical Ca2+-dependent PKCs (α, β1, βII, and γ). PKC activation by PMA promoted surface ErbB2 clearance but without degradation, and ErbB2 was observed to move into a juxtanuclear compartment where it colocalized with PKC-α and PKC-δ together with the endocytic recycling regulator Arf6. PKC-α knockdown impaired the juxtanuclear localization of ErbB2. ErbB2 transit to the recycling compartment was also impaired upon PKC-δ knockdown. PMA-induced Erk phosphorylation was reduced by ErbB2 inhibitor lapatinib, as well as by knockdown of PKC-δ but not that of PKC-α. Our results suggest that activation of PKC-α and -δ mediates a novel positive feedback loop by promoting ErbB2 entry into the endocytic recycling compartment, consistent with reported positive roles for these PKCs in ErbB2-mediated tumorigenesis. As the endocytic recycling compartment/pericentrion has emerged as a PKC-dependent signaling hub for G-protein-coupled receptors, our findings raise the possibility that oncogenesis by ErbB2 involves previously unexplored PKC-dependent endosomal signaling. PMID:25225290

  16. Endocytic pathways downregulate the L1-type cell adhesion molecule neuroglian to promote dendrite pruning in Drosophila.

    PubMed

    Zhang, Heng; Wang, Yan; Wong, Jack Jing Lin; Lim, Kah-Leong; Liou, Yih-Cherng; Wang, Hongyan; Yu, Fengwei

    2014-08-25

    Pruning of unnecessary axons and/or dendrites is crucial for maturation of the nervous system. However, little is known about cell adhesion molecules (CAMs) that control neuronal pruning. In Drosophila, dendritic arborization neurons, ddaCs, selectively prune their larval dendrites. Here, we report that Rab5/ESCRT-mediated endocytic pathways are critical for dendrite pruning. Loss of Rab5 or ESCRT function leads to robust accumulation of the L1-type CAM Neuroglian (Nrg) on enlarged endosomes in ddaC neurons. Nrg is localized on endosomes in wild-type ddaC neurons and downregulated prior to dendrite pruning. Overexpression of Nrg alone is sufficient to inhibit dendrite pruning, whereas removal of Nrg causes precocious dendrite pruning. Epistasis experiments indicate that Rab5 and ESCRT restrain the inhibitory role of Nrg during dendrite pruning. Thus, this study demonstrates the cell-surface molecule that controls dendrite pruning and defines an important mechanism whereby sensory neurons, via endolysosomal pathway, downregulate the cell-surface molecule to trigger dendrite pruning. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. 1 Ubiquitination as a mechanism to transport soluble mycobacterial and eukaryotic proteins to exosomes

    PubMed Central

    Smith, Victoria L.; Jackson, Liam; Schorey, Jeffrey S.

    2015-01-01

    Exosomes are extracellular vesicles of endocytic origin, which function in intercellular communication. Our previous studies indicate that exosomes released from M. tuberculosis infected macrophages contain soluble mycobacterial proteins. However, it was unclear how these secreted proteins were targeted to exosomes. In this study we determined that exosome production by the murine macrophage cell line RAW264.7 requires the endosomal sorting complexes required for transport (ESCRT) and that trafficking of mycobacterial proteins from phagocytosed bacilli to exosomes was dependent on protein ubiquitination. Moreover, soluble mycobacterial proteins when added exogenously to RAW264.7 or human HEK 293 cells were endocytosed, ubiquitinated and released via exosomes. This suggested that endocytosed proteins could be recycled from cells through exosomes. This hypothesis was supported using the tumor–associated protein He4 which when endocytosed by RAW264.7 or HEK 293 cells was transported to exosomes in an ubiquitin-dependent manner. Our data suggest that ubiquitination is a modification sufficient for trafficking soluble proteins within the phagocytic/endocytic network to exosomes. PMID:26246139

  18. Sch proteins are localized on endoplasmic reticulum membranes and are redistributed after tyrosine kinase receptor activation.

    PubMed Central

    Lotti, L V; Lanfrancone, L; Migliaccio, E; Zompetta, C; Pelicci, G; Salcini, A E; Falini, B; Pelicci, P G; Torrisi, M R

    1996-01-01

    The intracellular localization of Shc proteins was analyzed by immunofluorescence and immunoelectron microscopy in normal cells and cells expressing the epidermal growth factor receptor or the EGFR/erbB2 chimera. In unstimulated cells, the immunolabeling was localized in the central perinuclear area of the cell and mostly associated with the cytosolic side of rough endoplasmic reticulum membranes. Upon epidermal growth factor treatment and receptor tyrosine kinase activation, the immunolabeling became peripheral and was found to be associated with the cytosolic surface of the plasma membrane and endocytic structures, such as coated pits and endosomes, and with the peripheral cytosol. Receptor activation in cells expressing phosphorylation-defective mutants of Shc and erbB-2 kinase showed that receptor autophosphorylation, but not Shc phosphorylation, is required for redistribution of Shc proteins. The rough endoplasmic reticulum localization of Shc proteins in unstimulated cells and their massive recruitment to the plasma membrane, endocytic structures, and peripheral cytosol following receptor tyrosine kinase activation could account for multiple putative functions of the adaptor protein. PMID:8628261

  19. The Rab7 effector PLEKHM1 binds Arl8b to promote cargo traffic to lysosomes

    PubMed Central

    Marwaha, Rituraj; Arya, Subhash B.; Jagga, Divya; Kaur, Harmeet

    2017-01-01

    Endocytic, autophagic, and phagocytic vesicles move on microtubule tracks to fuse with lysosomes. Small GTPases, such as Rab7 and Arl8b, recruit their downstream effectors to mediate this transport and fusion. However, the potential cross talk between these two GTPases is unclear. Here, we show that the Rab7 effector PLEKHM1 simultaneously binds Rab7 and Arl8b, bringing about clustering and fusion of late endosomes and lysosomes. We show that the N-terminal RUN domain of PLEKHM1 is necessary and sufficient for interaction with Arl8b and its subsequent localization to lysosomes. Notably, we also demonstrate that Arl8b mediates recruitment of HOPS complex to PLEKHM1-positive vesicle contact sites. Consequently, Arl8b binding to PLEKHM1 is required for its function in delivery and, therefore, degradation of endocytic and autophagic cargo in lysosomes. Finally, we also show that PLEKHM1 competes with SKIP for Arl8b binding, which dictates lysosome positioning. These findings suggest that Arl8b, along with its effectors, orchestrates lysosomal transport and fusion. PMID:28325809

  20. Mutations in the gene encoding the Sigma 2 subunit of the adaptor protein 1 complex, AP1S2, cause X-linked mental retardation.

    PubMed

    Tarpey, Patrick S; Stevens, Claire; Teague, Jon; Edkins, Sarah; O'Meara, Sarah; Avis, Tim; Barthorpe, Syd; Buck, Gemma; Butler, Adam; Cole, Jennifer; Dicks, Ed; Gray, Kristian; Halliday, Kelly; Harrison, Rachel; Hills, Katy; Hinton, Jonathon; Jones, David; Menzies, Andrew; Mironenko, Tatiana; Perry, Janet; Raine, Keiran; Richardson, David; Shepherd, Rebecca; Small, Alexandra; Tofts, Calli; Varian, Jennifer; West, Sofie; Widaa, Sara; Yates, Andy; Catford, Rachael; Butler, Julia; Mallya, Uma; Moon, Jenny; Luo, Ying; Dorkins, Huw; Thompson, Deborah; Easton, Douglas F; Wooster, Richard; Bobrow, Martin; Carpenter, Nancy; Simensen, Richard J; Schwartz, Charles E; Stevenson, Roger E; Turner, Gillian; Partington, Michael; Gecz, Jozef; Stratton, Michael R; Futreal, P Andrew; Raymond, F Lucy

    2006-12-01

    In a systematic sequencing screen of the coding exons of the X chromosome in 250 families with X-linked mental retardation (XLMR), we identified two nonsense mutations and one consensus splice-site mutation in the AP1S2 gene on Xp22 in three families. Affected individuals in these families showed mild-to-profound mental retardation. Other features included hypotonia early in life and delay in walking. AP1S2 encodes an adaptin protein that constitutes part of the adaptor protein complex found at the cytoplasmic face of coated vesicles located at the Golgi complex. The complex mediates the recruitment of clathrin to the vesicle membrane. Aberrant endocytic processing through disruption of adaptor protein complexes is likely to result from the AP1S2 mutations identified in the three XLMR-affected families, and such defects may plausibly cause abnormal synaptic development and function. AP1S2 is the first reported XLMR gene that encodes a protein directly involved in the assembly of endocytic vesicles.

  1. Clathrin- and AP-2-binding sites in HIP1 uncover a general assembly role for endocytic accessory proteins.

    PubMed

    Mishra, S K; Agostinelli, N R; Brett, T J; Mizukami, I; Ross, T S; Traub, L M

    2001-12-07

    Clathrin-mediated endocytosis is a major pathway for the internalization of macromolecules into the cytoplasm of eukaryotic cells. The principle coat components, clathrin and the AP-2 adaptor complex, assemble a polyhedral lattice at plasma membrane bud sites with the aid of several endocytic accessory proteins. Here, we show that huntingtin-interacting protein 1 (HIP1), a binding partner of huntingtin, copurifies with brain clathrin-coated vesicles and associates directly with both AP-2 and clathrin. The discrete interaction sequences within HIP1 that facilitate binding are analogous to motifs present in other accessory proteins, including AP180, amphiphysin, and epsin. Bound to a phosphoinositide-containing membrane surface via an epsin N-terminal homology (ENTH) domain, HIP1 associates with AP-2 to provide coincident clathrin-binding sites that together efficiently recruit clathrin to the bilayer. Our data implicate HIP1 in endocytosis, and the similar modular architecture and function of HIP1, epsin, and AP180 suggest a common role in lipid-regulated clathrin lattice biogenesis.

  2. A clathrin coat assembly role for the muniscin protein central linker revealed by TALEN-mediated gene editing

    PubMed Central

    Umasankar, Perunthottathu K; Ma, Li; Thieman, James R; Jha, Anupma; Doray, Balraj; Watkins, Simon C; Traub, Linton M

    2014-01-01

    Clathrin-mediated endocytosis is an evolutionarily ancient membrane transport system regulating cellular receptivity and responsiveness. Plasmalemma clathrin-coated structures range from unitary domed assemblies to expansive planar constructions with internal or flanking invaginated buds. Precisely how these morphologically-distinct coats are formed, and whether all are functionally equivalent for selective cargo internalization is still disputed. We have disrupted the genes encoding a set of early arriving clathrin-coat constituents, FCHO1 and FCHO2, in HeLa cells. Endocytic coats do not disappear in this genetic background; rather clustered planar lattices predominate and endocytosis slows, but does not cease. The central linker of FCHO proteins acts as an allosteric regulator of the prime endocytic adaptor, AP-2. By loading AP-2 onto the plasma membrane, FCHO proteins provide a parallel pathway for AP-2 activation and clathrin-coat fabrication. Further, the steady-state morphology of clathrin-coated structures appears to be a manifestation of the availability of the muniscin linker during lattice polymerization. DOI: http://dx.doi.org/10.7554/eLife.04137.001 PMID:25303365

  3. The Na+-Taurocholate Cotransporting Polypeptide Traffics with the Epidermal Growth Factor Receptor

    PubMed Central

    Wang, Xintao; Wang, Pijun; Wang, Wenjun; Murray, John W.; Wolkoff, Allan W.

    2015-01-01

    Na+-taurocholate cotransporting polypeptide (ntcp) mediates uptake of bile acids as well as serving as the receptor for hepatitis B virus in human liver. Previous studies showed that ntcp traffics on microtubules between the cell surface and endocytic vesicles. Specific inhibition of protein kinase C (PKC)ζ resulted in loss of microtubule-based motility of these vesicles in vitro and in living cells. The aim of the present study was to characterize the PKCζ target. Incubation of ntcp-containing endocytic vesicles with γ-32P-ATP revealed a 180 kDa phosphoglycoprotein that was identified as the EGF receptor (EGFR). Surface biotinylation of HuH7 cells expressing GFP-ntcp revealed substantially reduced trafficking of ntcp to the cell surface with EGFR knockdown. Microtubule-based motility of ntcp-containing endocytic vesicles was also significantly reduced when they were not associated with EGFR. Ntcp was also found to undergo cellular redistribution upon stimulation of cells with EGF, consistent with a model in which ntcp and EGF-EGFR internalize into common endocytic vesicles from which they segregate, trafficking EGF-EGFR to lysosomes and recycling ntcp to the plasma membrane. EGF regulation of ntcp trafficking may play a heretofore unanticipated role in subcellular targeting of ntcp ligands such as hepatitis B. PMID:26650232

  4. Rab1a regulates sorting of early endocytic vesicles

    PubMed Central

    Mukhopadhyay, Aparna; Quiroz, Jose A.

    2014-01-01

    We previously reported that Rab1a is associated with asialoorosomucoid (ASOR)-containing early endocytic vesicles, where it is required for their microtubule-based motility. In Rab1a knockdown (KD) cell lines, ASOR failed to segregate from its receptor and, consequently, did not reach lysosomes for degradation, indicating a defect in early endosome sorting. Although Rab1 is required for Golgi/endoplasmic reticulum trafficking, this process was unaffected, likely due to retained expression of Rab1b in these cells. The present study shows that Rab1a has a more general role in endocytic vesicle processing that extends to EGF and transferrin (Tfn) trafficking. Compared with results in control Huh7 cells, EGF accumulated in aggregates within Rab1a KD cells, failing to reach lysosomal compartments. Tfn, a prototypical example of recycling cargo, accumulated in a Rab11-mediated slow-recycling compartment in Rab1a KD cells, in contrast to control cells, which sort Tfn into a fast-recycling Rab4 compartment. These data indicate that Rab1a is an important regulator of early endosome sorting for multiple cargo species. The effectors and accessory proteins recruited by Rab1a to early endocytic vesicles include the minus-end-directed kinesin motor KifC1, while others remain to be discovered. PMID:24407591

  5. Green fluorescent protein (GFP): is seeing believing and is that enough?

    PubMed

    Shorter, Susan A; Pettit, Marie W; Dyer, Paul D R; Coakley Youngs, Emma; Gorringe-Pattrick, Monique A M; El-Daher, Samer; Richardson, Simon

    Intracellular compartmentalisation is a significant barrier to the successful nucleocytosolic delivery of biologics. The endocytic system has been shown to be responsible for compartmentalisation, providing an entry point, and trigger(s) for the activation of drug delivery systems. Consequently, many of the technologies used to understand endocytosis have found utility within the field of drug delivery. The use of fluorescent proteins as markers denoting compartmentalisation within the endocytic system has become commonplace. Several of the limitations associated with the use of green fluorescent protein (GFP) within the context of drug delivery have been explored here by asking a series of related questions: (1) Are molecules that regulate fusion to a specific compartment (i.e. Rab- or SNARE-GFP fusions) a good choice of marker for that compartment? (2) How reliable was GFP-marker overexpression when used to define a given endocytic compartment? (3) Can glutathione-s-transferase (GST) fused in frame with GFP (GST-GFP) act as a fluid phase endocytic probe? (4) Was GFP fluorescence a robust indicator of (GFP) protein integrity? This study concluded that there are many appropriate and useful applications for GFP; however, thought and an understanding of the biological and physicochemical character of these markers are required for the generation of meaningful data.

  6. Probiotics promote endocytic allergen degradation in gut epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Chun-Hua; Liu, Zhi-Qiang; Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON

    Highlights: Black-Right-Pointing-Pointer Knockdown of A20 compromised the epithelial barrier function. Black-Right-Pointing-Pointer The fusion of endosome/lysosome was disturbed in the A20-deficient HT-29 cells. Black-Right-Pointing-Pointer Antigens transported across A20-deficient HT-29 monolayers conserved antigenicity. Black-Right-Pointing-Pointer Probiotic proteins increased the expression of A20 in HT-29 cells. -- Abstract: Background and aims: Epithelial barrier dysfunction plays a critical role in the pathogenesis of allergic diseases; the mechanism is to be further understood. The ubiquitin E3 ligase A20 (A20) plays a role in the endocytic protein degradation in the cells. This study aims to elucidate the role of A20 in the maintenance of gut epithelial barriermore » function. Methods: Gut epithelial cell line, HT-29 cell, was cultured into monolayers to evaluate the barrier function in transwells. RNA interference was employed to knock down the A20 gene in HT-29 cells to test the role of A20 in the maintenance of epithelial barrier function. Probiotic derived proteins were extracted from the culture supernatants using to enhance the expression of A20 in HT-29 cells. Results: The results showed that the knockdown of A20 compromised the epithelial barrier function in HT-29 monolayers, mainly increased the intracellular permeability. The fusion of endosome/lysosome was disturbed in the A20-deficient HT-29 cells. Allergens collected from the transwell basal chambers of A20-deficient HT-29 monolayers still conserved functional antigenicity. Treating with probiotic derived proteins increased the expression of A20 in HT-29 cells and promote the barrier function. Conclusion: A20 plays an important role in the maintenance of epithelial barrier function as shown by HT-29 monolayer. Probiotic derived protein increases the expression of A20 and promote the HT-29 monolayer barrier function.« less

  7. Differential Actions of the Endocytic Collagen Receptor uPARAP/Endo180 and the Collagenase MMP-2 in Bone Homeostasis

    PubMed Central

    Madsen, Daniel H.; Jürgensen, Henrik J.; Ingvarsen, Signe; Melander, Maria C.; Albrechtsen, Reidar; Hald, Andreas; Holmbeck, Kenn; Bugge, Thomas H.; Behrendt, Niels; Engelholm, Lars H.

    2013-01-01

    A well-coordinated remodeling of uncalcified collagen matrices is a pre-requisite for bone development and homeostasis. Collagen turnover proceeds through different pathways, either involving extracellular reactions exclusively, or being dependent on endocytic processes. Extracellular collagen degradation requires the action of secreted or membrane attached collagenolytic proteases, whereas the alternative collagen degradation pathway proceeds intracellularly after receptor-mediated uptake and delivery to the lysosomes. In this study we have examined the functional interplay between the extracellular collagenase, MMP-2, and the endocytic collagen receptor, uPARAP, by generating mice with combined deficiency of both components. In both uPARAP-deficient and MMP-2-deficient adult mice the length of the tibia and femur was decreased, along with a reduced bone mineral density and trabecular bone quality. An additional decrease in bone length was observed when combining the two deficiencies, pointing to both components being important for the remodeling processes in long bone growth. In agreement with results found by others, a different effect of MMP-2 deficiency was observed in the distinct bone structures of the calvaria. These membranous bones were found to be thickened in MMP-2-deficient mice, an effect likely to be related to an accompanying defect in the canalicular system. Surprisingly, both of the latter defects in MMP-2-deficient mice were counteracted by concurrent uPARAP deficiency, demonstrating that the collagen receptor does not support the same matrix remodeling processes as the MMP in the growth of the skull. We conclude that both uPARAP and MMP-2 take part in matrix turnover processes important for bone growth. However, in some physiological situations, these two components do not support the same step in the growth process. PMID:23940733

  8. The pollen-specific R-SNARE/longin PiVAMP726 mediates fusion of endo- and exocytic compartments in pollen tube tip growth

    PubMed Central

    Guo, Feng; McCubbin, Andrew G.

    2012-01-01

    The growing pollen tube apex is dedicated to balancing exo- and endocytic processes to form a rapidly extending tube. As perturbation of either tends to cause a morphological phenotype, this system provides tractable model for studying these processes. Vesicle-associated membrane protein 7s (VAMP7s) are members of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) family that mediate cognate membrane fusion but their role in pollen tube growth has not been investigated. This manuscript identifies PiVAMP726 of Petunia inflata as a pollen-specific VAMP7 that localizes to the inverted cone of transport vesicles at the pollen tube tip. The endocytic marker FM4-64 was found to colocalize with yellow fluorescent protein (YFP)-PiVAMP726, which is consistent with PiVAMP726 containing an amino-acid motif implicated in endosomal localization, At high overexpression levels, YFP- PiVAMP726 inhibited growth and caused the formation of novel membrane compartments within the pollen tube tip. Functional dissection of PiVAMP726 implicated the N-terminal longin domain in negative regulation of the SNARE activity, but not localization of PiVAMP726. Expression of the constitutively active C-terminal SNARE domain alone, in pollen tubes, generated similar phenotypes to the full-length protein, but the truncated domain was more potent than the wild-type protein at both inhibiting growth and forming the novel membrane compartments. Both endo- and exocytic markers localized to these compartments in addition to YFP-PiVAMP726, leading to the speculation that PiVAMP726 might be involved in the recycling of endocytic vesicles in tip growth. PMID:22345643

  9. Synaptic Vesicle Endocytosis

    PubMed Central

    Saheki, Yasunori; De Camilli, Pietro

    2012-01-01

    Neurons can sustain high rates of synaptic transmission without exhausting their supply of synaptic vesicles. This property relies on a highly efficient local endocytic recycling of synaptic vesicle membranes, which can be reused for hundreds, possibly thousands, of exo-endocytic cycles. Morphological, physiological, molecular, and genetic studies over the last four decades have provided insight into the membrane traffic reactions that govern this recycling and its regulation. These studies have shown that synaptic vesicle endocytosis capitalizes on fundamental and general endocytic mechanisms but also involves neuron-specific adaptations of such mechanisms. Thus, investigations of these processes have advanced not only the field of synaptic transmission but also, more generally, the field of endocytosis. This article summarizes current information on synaptic vesicle endocytosis with an emphasis on the underlying molecular mechanisms and with a special focus on clathrin-mediated endocytosis, the predominant pathway of synaptic vesicle protein internalization. PMID:22763746

  10. Endocytic reawakening of motility in jammed epithelia

    NASA Astrophysics Data System (ADS)

    Malinverno, Chiara; Corallino, Salvatore; Giavazzi, Fabio; Bergert, Martin; Li, Qingsen; Leoni, Marco; Disanza, Andrea; Frittoli, Emanuela; Oldani, Amanda; Martini, Emanuele; Lendenmann, Tobias; Deflorian, Gianluca; Beznoussenko, Galina V.; Poulikakos, Dimos; Ong, Kok Haur; Uroz, Marina; Trepat, Xavier; Parazzoli, Dario; Maiuri, Paolo; Yu, Weimiao; Ferrari, Aldo; Cerbino, Roberto; Scita, Giorgio

    2017-05-01

    Dynamics of epithelial monolayers has recently been interpreted in terms of a jamming or rigidity transition. How cells control such phase transitions is, however, unknown. Here we show that RAB5A, a key endocytic protein, is sufficient to induce large-scale, coordinated motility over tens of cells, and ballistic motion in otherwise kinetically arrested monolayers. This is linked to increased traction forces and to the extension of cell protrusions, which align with local velocity. Molecularly, impairing endocytosis, macropinocytosis or increasing fluid efflux abrogates RAB5A-induced collective motility. A simple model based on mechanical junctional tension and an active cell reorientation mechanism for the velocity of self-propelled cells identifies regimes of monolayer dynamics that explain endocytic reawakening of locomotion in terms of a combination of large-scale directed migration and local unjamming. These changes in multicellular dynamics enable collectives to migrate under physical constraints and may be exploited by tumours for interstitial dissemination.

  11. Integrins: masters and slaves of endocytic transport.

    PubMed

    Caswell, Patrick T; Vadrevu, Suryakiran; Norman, Jim C

    2009-12-01

    Since it has become clear that adhesion receptors are trafficked through the endosomal pathway and that this can influence their function, much effort has been invested in obtaining detailed descriptions of the molecular machinery responsible for internalizing and recycling integrins. New findings indicate that integrin trafficking dictates the nature of Rho GTPase signalling during cytokinesis and cell migration. Furthermore, integrins can exert control over the trafficking of other receptors in a way that drives cancer cell invasion and tumour angiogenesis.

  12. EGFR and ADAMs Cooperate to Regulate Shedding and Endocytic Trafficking of the Desmosomal Cadherin Desmoglein 2

    PubMed Central

    Klessner, Jodi L.; Desai, Bhushan V.; Amargo, Evangeline V.; Getsios, Spiro

    2009-01-01

    Regulation of classic cadherins plays a critical role in tissue remodeling during development and cancer; however, less attention has been paid to the importance of desmosomal cadherins. We previously showed that EGFR inhibition results in accumulation of the desmosomal cadherin, desmoglein 2 (Dsg2), at cell–cell interfaces accompanied by inhibition of matrix metalloprotease (MMP)-dependent shedding of the Dsg2 ectodomain and tyrosine phosphorylation of its cytoplasmic domain. Here, we show that EGFR inhibition stabilizes Dsg2 at intercellular junctions by interfering with its accumulation in an internalized cytoplasmic pool. Furthermore, MMP inhibition and ADAM17 RNAi, blocked shedding and depleted internalized Dsg2, but less so E-cadherin, in highly invasive SCC68 cells. ADAM9 and 15 silencing also impaired Dsg2 processing, supporting the idea that this desmosomal cadherin can be regulated by multiple ADAM family members. In contrast, ADAM10 siRNA enhanced accumulation of a 100-kDa Dsg2 cleavage product and internalized pool of Dsg2. Although both MMP and EGFR inhibition increased intercellular adhesive strength in control cells, the response to MMP-inhibition was Dsg2-dependent. These data support a role for endocytic trafficking in regulating desmosomal cadherin turnover and function and raise the possibility that internalization and regulation of desmosomal and classic cadherin function can be uncoupled mechanistically. PMID:18987342

  13. Real-Time Sensing of Enteropathogenic E. coli-Induced Effects on Epithelial Host Cell Height, Cell-Substrate Interactions, and Endocytic Processes by Infrared Surface Plasmon Spectroscopy

    PubMed Central

    Zlotkin-Rivkin, Efrat; Rund, David; Melamed-Book, Naomi; Zahavi, Eitan Erez; Perlson, Eran; Mercone, Silvana; Golosovsky, Michael; Davidov, Dan; Aroeti, Benjamin

    2013-01-01

    Enteropathogenic Escherichia coli (EPEC) is an important, generally non-invasive, bacterial pathogen that causes diarrhea in humans. The microbe infects mainly the enterocytes of the small intestine. Here we have applied our newly developed infrared surface plasmon resonance (IR-SPR) spectroscopy approach to study how EPEC infection affects epithelial host cells. The IR-SPR experiments showed that EPEC infection results in a robust reduction in the refractive index of the infected cells. Assisted by confocal and total internal reflection microscopy, we discovered that the microbe dilates the intercellular gaps and induces the appearance of fluid-phase-filled pinocytic vesicles in the lower basolateral regions of the host epithelial cells. Partial cell detachment from the underlying substratum was also observed. Finally, the waveguide mode observed by our IR-SPR analyses showed that EPEC infection decreases the host cell's height to some extent. Together, these observations reveal novel impacts of the pathogen on the host cell architecture and endocytic functions. We suggest that these changes may induce the infiltration of a watery environment into the host cell, and potentially lead to failure of the epithelium barrier functions. Our findings also indicate the great potential of the label-free IR-SPR approach to study the dynamics of host-pathogen interactions with high spatiotemporal sensitivity. PMID:24194932

  14. Rapid analytical and preparative isolation of functional endosomes by free flow electrophoresis.

    PubMed

    Marsh, M; Schmid, S; Kern, H; Harms, E; Male, P; Mellman, I; Helenius, A

    1987-04-01

    Endosomes are prelysosomal organelles that serve as an intracellular site for the sorting, distribution, and processing of receptors, ligands, fluid phase components, and membrane proteins internalized by endocytosis. Whereas the overall functions of endosomes are increasingly understood, little is known about endosome structure, composition, or biogenesis. In this paper, we describe a rapid procedure that permits analytical and preparative isolation of endosomes from a variety of tissue culture cells. The procedure relies on a combination of density gradient centrifugation and free flow electrophoresis. It yields a fraction of highly purified, functionally intact organelles. As markers for endosomes in Chinese hamster ovary cells, we used endocytosed horseradish peroxidase, FITC-conjugated dextran, and [35S]methionine-labeled Semliki Forest virus. Total postnuclear supernatants, crude microsomal pellets, or partially purified Golgi fractions were subjected to free flow electrophoresis. Endosomes and lysosomes migrated together as a single anodally deflected peak separated from most other organelles (plasma membrane, mitochondria, endoplasmic reticulum, and Golgi). The endosomes and lysosomes were then resolved by centrifugation in Percoll density gradients. Endosomes prepared in this way were enriched up to 70-fold relative to the initial homogenate and were still capable of ATP-dependent acidification. By electron microscopy, the isolated organelles were found to consist of electron lucent vacuoles and tubules, many of which could be shown to contain an endocytic tracer (e.g., horseradish peroxidase). SDS PAGE analysis of integral and peripheral membrane proteins (separated from each other by condensation in Triton X-114) revealed a unique and restricted subset of proteins when compared with lysosomes, the unshifted free flow electrophoresis peak, and total cell protein. Altogether, the purification procedure takes 5-6 h and yields amounts of endosomes (150-200 micrograms protein) sufficient for biochemical, immunological, and functional analysis.

  15. Porphyromonas gingivalis outer membrane vesicles enter human epithelial cells via an endocytic pathway and are sorted to lysosomal compartments.

    PubMed

    Furuta, Nobumichi; Tsuda, Kayoko; Omori, Hiroko; Yoshimori, Tamotsu; Yoshimura, Fuminobu; Amano, Atsuo

    2009-10-01

    Porphyromonas gingivalis, a periodontal pathogen, secretes outer membrane vesicles (MVs) that contain major virulence factors, including major fimbriae and proteases termed gingipains, although it is not confirmed whether MVs enter host cells. In this study, we analyzed the mechanisms involved in the interactions of P. gingivalis MVs with human epithelial cells. Our results showed that MVs swiftly adhered to HeLa and immortalized human gingival epithelial cells in a fimbria-dependent manner and then entered via a lipid raft-dependent endocytic pathway. The intracellular MVs were subsequently routed to early endosome antigen 1-associated compartments and then were sorted to lysosomal compartments within 90 min, suggesting that intracellular MVs were ultimately degraded by the cellular digestive machinery. However, P. gingivalis MVs remained there for over 24 h and significantly induced acidified compartment formation after being taken up by the cellular digestive machinery. In addition, MV entry was shown to be mediated by a novel pathway for transmission of bacterial products into host cells, a Rac1-regulated pinocytic pathway that is independent of caveolin, dynamin, and clathrin. Our findings indicate that P. gingivalis MVs efficiently enter host cells via an endocytic pathway and survive within the endocyte organelles for an extended period, which provides better understanding of the role of MVs in the etiology of periodontitis.

  16. Porphyromonas gingivalis Outer Membrane Vesicles Enter Human Epithelial Cells via an Endocytic Pathway and Are Sorted to Lysosomal Compartments ▿

    PubMed Central

    Furuta, Nobumichi; Tsuda, Kayoko; Omori, Hiroko; Yoshimori, Tamotsu; Yoshimura, Fuminobu; Amano, Atsuo

    2009-01-01

    Porphyromonas gingivalis, a periodontal pathogen, secretes outer membrane vesicles (MVs) that contain major virulence factors, including major fimbriae and proteases termed gingipains, although it is not confirmed whether MVs enter host cells. In this study, we analyzed the mechanisms involved in the interactions of P. gingivalis MVs with human epithelial cells. Our results showed that MVs swiftly adhered to HeLa and immortalized human gingival epithelial cells in a fimbria-dependent manner and then entered via a lipid raft-dependent endocytic pathway. The intracellular MVs were subsequently routed to early endosome antigen 1-associated compartments and then were sorted to lysosomal compartments within 90 min, suggesting that intracellular MVs were ultimately degraded by the cellular digestive machinery. However, P. gingivalis MVs remained there for over 24 h and significantly induced acidified compartment formation after being taken up by the cellular digestive machinery. In addition, MV entry was shown to be mediated by a novel pathway for transmission of bacterial products into host cells, a Rac1-regulated pinocytic pathway that is independent of caveolin, dynamin, and clathrin. Our findings indicate that P. gingivalis MVs efficiently enter host cells via an endocytic pathway and survive within the endocyte organelles for an extended period, which provides better understanding of the role of MVs in the etiology of periodontitis. PMID:19651865

  17. Loss of endocytic clathrin-coated pits upon acute depletion of phosphatidylinositol 4,5-bisphosphate.

    PubMed

    Zoncu, Roberto; Perera, Rushika M; Sebastian, Rafael; Nakatsu, Fubito; Chen, Hong; Balla, Tamas; Ayala, Guillermo; Toomre, Derek; De Camilli, Pietro V

    2007-03-06

    Phosphatidylinositol 4,5-bisphosphate [PI(4,5)P(2)], a phosphoinositide concentrated predominantly in the plasma membrane, binds endocytic clathrin adaptors, many of their accessory factors, and a variety of actin-regulatory proteins. Here we have used fluorescent fusion proteins and total internal reflection fluorescence microscopy to investigate the effect of acute PI(4,5)P(2) breakdown on the dynamics of endocytic clathrin-coated pit components and of the actin regulatory complex, Arp2/3. PI(4,5)P(2) breakdown was achieved by the inducible recruitment to the plasma membrane of an inositol 5-phosphatase module through the rapamycin/FRB/FKBP system or by treatment with ionomycin. PI(4,5)P(2) depletion resulted in a dramatic loss of clathrin puncta, which correlated with a massive dissociation of endocytic adaptors from the plasma membrane. Remaining clathrin spots at the cell surface had only weak fluorescence and were static over time. Dynamin and the p20 subunit of the Arp2/3 actin regulatory complex, which were concentrated at late-stage clathrin-coated pits and in lamellipodia, also dissociated from the plasma membrane, and these changes correlated with an arrest of motility at the cell edge. These findings demonstrate the critical importance of PI(4,5)P(2) in clathrin coat dynamics and Arp2/3-dependent actin regulation.

  18. Cofilin, But Not Profilin, Is Required for Myosin-I-Induced Actin Polymerization and the Endocytic Uptake in Yeast

    PubMed Central

    Idrissi, Fatima-Zahra; Wolf, Bianka L.; Geli, M. Isabel

    2002-01-01

    Mutations in the budding yeast myosins-I (MYO3 and MYO5) cause defects in the actin cytoskeleton and in the endocytic uptake. Robust evidence also indicates that these proteins induce Arp2/3-dependent actin polymerization. Consistently, we have recently demonstrated, using fluorescence microscopy, that Myo5p is able to induce cytosol-dependent actin polymerization on the surface of Sepharose beads. Strikingly, we now observed that, at short incubation times, Myo5p induced the formation of actin foci that resembled the yeast cortical actin patches, a plasma membrane-associated structure that might be involved in the endocytic uptake. Analysis of the machinery required for the formation of the Myo5p-induced actin patches in vitro demonstrated that the Arp2/3 complex was necessary but not sufficient in the assay. In addition, we found that cofilin was directly involved in the process. Strikingly though, the cofilin requirement seemed to be independent of its ability to disassemble actin filaments and profilin, a protein that closely cooperates with cofilin to maintain a rapid actin filament turnover, was not needed in the assay. In agreement with these observations, we found that like the Arp2/3 complex and the myosins-I, cofilin was essential for the endocytic uptake in vivo, whereas profilin was dispensable. PMID:12429847

  19. Network analyses reveal novel aspects of ALS pathogenesis.

    PubMed

    Sanhueza, Mario; Chai, Andrea; Smith, Colin; McCray, Brett A; Simpson, T Ian; Taylor, J Paul; Pennetta, Giuseppa

    2015-03-01

    Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disease characterized by selective loss of motor neurons, muscle atrophy and paralysis. Mutations in the human VAMP-associated protein B (hVAPB) cause a heterogeneous group of motor neuron diseases including ALS8. Despite extensive research, the molecular mechanisms underlying ALS pathogenesis remain largely unknown. Genetic screens for key interactors of hVAPB activity in the intact nervous system, however, represent a fundamental approach towards understanding the in vivo function of hVAPB and its role in ALS pathogenesis. Targeted expression of the disease-causing allele leads to neurodegeneration and progressive decline in motor performance when expressed in the adult Drosophila, eye or in its entire nervous system, respectively. By using these two phenotypic readouts, we carried out a systematic survey of the Drosophila genome to identify modifiers of hVAPB-induced neurotoxicity. Modifiers cluster in a diverse array of biological functions including processes and genes that have been previously linked to hVAPB function, such as proteolysis and vesicular trafficking. In addition to established mechanisms, the screen identified endocytic trafficking and genes controlling proliferation and apoptosis as potent modifiers of ALS8-mediated defects. Surprisingly, the list of modifiers was mostly enriched for proteins linked to lipid droplet biogenesis and dynamics. Computational analysis reveals that most modifiers can be linked into a complex network of interacting genes, and that the human genes homologous to the Drosophila modifiers can be assembled into an interacting network largely overlapping with that in flies. Identity markers of the endocytic process were also found to abnormally accumulate in ALS patients, further supporting the relevance of the fly data for human biology. Collectively, these results not only lead to a better understanding of hVAPB function but also point to potentially relevant targets for therapeutic intervention.

  20. Planar Cell Polarity Pathway Regulates Nephrin Endocytosis in Developing Podocytes

    PubMed Central

    Babayeva, Sima; Rocque, Brittany; Aoudjit, Lamine; Zilber, Yulia; Li, Jane; Baldwin, Cindy; Kawachi, Hiroshi; Takano, Tomoko; Torban, Elena

    2013-01-01

    The noncanonical Wnt/planar cell polarity (PCP) pathway controls a variety of cell behaviors such as polarized protrusive cell activity, directional cell movement, and oriented cell division and is crucial for the normal development of many tissues. Mutations in the PCP genes cause malformation in multiple organs. Recently, the PCP pathway was shown to control endocytosis of PCP and non-PCP proteins necessary for cell shape remodeling and formation of specific junctional protein complexes. During formation of the renal glomerulus, the glomerular capillary becomes enveloped by highly specialized epithelial cells, podocytes, that display unique architecture and are connected via specialized cell-cell junctions (slit diaphragms) that restrict passage of protein into the urine; podocyte differentiation requires active remodeling of cytoskeleton and junctional protein complexes. We report here that in cultured human podocytes, activation of the PCP pathway significantly stimulates endocytosis of the core slit diaphragm protein, nephrin, via a clathrin/β-arrestin-dependent endocytic route. In contrast, depletion of the PCP protein Vangl2 leads to an increase of nephrin at the cell surface; loss of Vangl2 functions in Looptail mice results in disturbed glomerular maturation. We propose that the PCP pathway contributes to podocyte development by regulating nephrin turnover during junctional remodeling as the cells differentiate. PMID:23824190

  1. Recycling Endosomes and Viral Infection.

    PubMed

    Vale-Costa, Sílvia; Amorim, Maria João

    2016-03-08

    Many viruses exploit specific arms of the endomembrane system. The unique composition of each arm prompts the development of remarkably specific interactions between viruses and sub-organelles. This review focuses on the viral-host interactions occurring on the endocytic recycling compartment (ERC), and mediated by its regulatory Ras-related in brain (Rab) GTPase Rab11. This protein regulates trafficking from the ERC and the trans-Golgi network to the plasma membrane. Such transport comprises intricate networks of proteins/lipids operating sequentially from the membrane of origin up to the cell surface. Rab11 is also emerging as a critical factor in an increasing number of infections by major animal viruses, including pathogens that provoke human disease. Understanding the interplay between the ERC and viruses is a milestone in human health. Rab11 has been associated with several steps of the viral lifecycles by unclear processes that use sophisticated diversified host machinery. For this reason, we first explore the state-of-the-art on processes regulating membrane composition and trafficking. Subsequently, this review outlines viral interactions with the ERC, highlighting current knowledge on viral-host binding partners. Finally, using examples from the few mechanistic studies available we emphasize how ERC functions are adjusted during infection to remodel cytoskeleton dynamics, innate immunity and membrane composition.

  2. Recycling Endosomes and Viral Infection

    PubMed Central

    Vale-Costa, Sílvia; Amorim, Maria João

    2016-01-01

    Many viruses exploit specific arms of the endomembrane system. The unique composition of each arm prompts the development of remarkably specific interactions between viruses and sub-organelles. This review focuses on the viral–host interactions occurring on the endocytic recycling compartment (ERC), and mediated by its regulatory Ras-related in brain (Rab) GTPase Rab11. This protein regulates trafficking from the ERC and the trans-Golgi network to the plasma membrane. Such transport comprises intricate networks of proteins/lipids operating sequentially from the membrane of origin up to the cell surface. Rab11 is also emerging as a critical factor in an increasing number of infections by major animal viruses, including pathogens that provoke human disease. Understanding the interplay between the ERC and viruses is a milestone in human health. Rab11 has been associated with several steps of the viral lifecycles by unclear processes that use sophisticated diversified host machinery. For this reason, we first explore the state-of-the-art on processes regulating membrane composition and trafficking. Subsequently, this review outlines viral interactions with the ERC, highlighting current knowledge on viral-host binding partners. Finally, using examples from the few mechanistic studies available we emphasize how ERC functions are adjusted during infection to remodel cytoskeleton dynamics, innate immunity and membrane composition. PMID:27005655

  3. The cell-based L-glutathione protection assays to study endocytosis and recycling of plasma membrane proteins.

    PubMed

    Cihil, Kristine M; Swiatecka-Urban, Agnieszka

    2013-12-13

    Membrane trafficking involves transport of proteins from the plasma membrane to the cell interior (i.e. endocytosis) followed by trafficking to lysosomes for degradation or to the plasma membrane for recycling. The cell based L-glutathione protection assays can be used to study endocytosis and recycling of protein receptors, channels, transporters, and adhesion molecules localized at the cell surface. The endocytic assay requires labeling of cell surface proteins with a cell membrane impermeable biotin containing a disulfide bond and the N-hydroxysuccinimide (NHS) ester at 4 ºC - a temperature at which membrane trafficking does not occur. Endocytosis of biotinylated plasma membrane proteins is induced by incubation at 37 ºC. Next, the temperature is decreased again to 4 ºC to stop endocytic trafficking and the disulfide bond in biotin covalently attached to proteins that have remained at the plasma membrane is reduced with L-glutathione. At this point, only proteins that were endocytosed remain protected from L-glutathione and thus remain biotinylated. After cell lysis, biotinylated proteins are isolated with streptavidin agarose, eluted from agarose, and the biotinylated protein of interest is detected by western blotting. During the recycling assay, after biotinylation cells are incubated at 37 °C to load endocytic vesicles with biotinylated proteins and the disulfide bond in biotin covalently attached to proteins remaining at the plasma membrane is reduced with L-glutathione at 4 ºC as in the endocytic assay. Next, cells are incubated again at 37 °C to allow biotinylated proteins from endocytic vesicles to recycle to the plasma membrane. Cells are then incubated at 4 ºC, and the disulfide bond in biotin attached to proteins that recycled to the plasma membranes is reduced with L-glutathione. The biotinylated proteins protected from L-glutathione are those that did not recycle to the plasma membrane.

  4. Automated Selection of Regions of Interest for Intensity-based FRET Analysis of Transferrin Endocytic Trafficking in Normal vs. Cancer Cells

    PubMed Central

    Talati, Ronak; Vanderpoel, Andrew; Eladdadi, Amina; Anderson, Kate; Abe, Ken; Barroso, Margarida

    2013-01-01

    The overexpression of certain membrane-bound receptors is a hallmark of cancer progression and it has been suggested to affect the organization, activation, recycling and down-regulation of receptor-ligand complexes in human cancer cells. Thus, comparing receptor trafficking pathways in normal vs. cancer cells requires the ability to image cells expressing dramatically different receptor expression levels. Here, we have presented a significant technical advance to the analysis and processing of images collected using intensity based Förster resonance energy transfer (FRET) confocal microscopy. An automated Image J macro was developed to select region of interests (ROI) based on intensity and statistical-based thresholds within cellular images with reduced FRET signal. Furthermore, SSMD (strictly standardized mean differences), a statistical signal-to-noise ratio (SNR) evaluation parameter, was used to validate the quality of FRET analysis, in particular of ROI database selection. The Image J ROI selection macro together with SSMD as an evaluation parameter of SNR levels, were used to investigate the endocytic recycling of Tfn-TFR complexes at nanometer range resolution in human normal vs. breast cancer cells expressing significantly different levels of endogenous TFR. Here, the FRET-based assay demonstrates that Tfn-TFR complexes in normal epithelial vs. breast cancer cells show a significantly different E% behavior during their endocytic recycling pathway. Since E% is a relative measure of distance, we propose that these changes in E% levels represent conformational changes in Tfn-TFR complexes during endocytic pathway. Thus, our results indicate that Tfn-TFR complexes undergo different conformational changes in normal vs. cancer cells, indicating that the organization of Tfn-TFR complexes at the nanometer range is significantly altered during the endocytic recycling pathway in cancer cells. In summary, improvements in the automated selection of FRET ROI datasets allowed us to detect significant changes in E% with potential biological significance in human normal vs. cancer cells. PMID:23994873

  5. Purification of Lysosomes Using Supraparamagnetic Iron Oxide Nanoparticles (SPIONs).

    PubMed

    Rofe, Adam P; Pryor, Paul R

    2016-04-01

    Lysosomes can be rapidly isolated from tissue culture cells using supraparamagnetic iron oxide particles (SPIONs). In this protocol, colloidal iron dextran (FeDex) particles, a type of SPION, are taken up by cultured mouse macrophage cells via the endocytic pathway. The SPIONs accumulate in lysosomes, the end point of the endocytic pathway, permitting the lysosomes to be isolated magnetically. The purified lysosomes are suitable for in vitro fusion assays or for proteomic analysis. © 2016 Cold Spring Harbor Laboratory Press.

  6. The Rab7 effector PLEKHM1 binds Arl8b to promote cargo traffic to lysosomes.

    PubMed

    Marwaha, Rituraj; Arya, Subhash B; Jagga, Divya; Kaur, Harmeet; Tuli, Amit; Sharma, Mahak

    2017-04-03

    Endocytic, autophagic, and phagocytic vesicles move on microtubule tracks to fuse with lysosomes. Small GTPases, such as Rab7 and Arl8b, recruit their downstream effectors to mediate this transport and fusion. However, the potential cross talk between these two GTPases is unclear. Here, we show that the Rab7 effector PLEKHM1 simultaneously binds Rab7 and Arl8b, bringing about clustering and fusion of late endosomes and lysosomes. We show that the N-terminal RUN domain of PLEKHM1 is necessary and sufficient for interaction with Arl8b and its subsequent localization to lysosomes. Notably, we also demonstrate that Arl8b mediates recruitment of HOPS complex to PLEKHM1-positive vesicle contact sites. Consequently, Arl8b binding to PLEKHM1 is required for its function in delivery and, therefore, degradation of endocytic and autophagic cargo in lysosomes. Finally, we also show that PLEKHM1 competes with SKIP for Arl8b binding, which dictates lysosome positioning. These findings suggest that Arl8b, along with its effectors, orchestrates lysosomal transport and fusion. © 2017 Marwaha et al.

  7. Endocytic Uptake, Transport and Macromolecular Interactions of Anionic PAMAM Dendrimers within Lung Tissue.

    PubMed

    Morris, Christopher J; Aljayyoussi, Ghaith; Mansour, Omar; Griffiths, Peter; Gumbleton, Mark

    2017-12-01

    Polyamidoamine (PAMAM) dendrimers are a promising class of nanocarrier with applications in both small and large molecule drug delivery. Here we report a comprehensive evaluation of the uptake and transport pathways that contribute to the lung disposition of dendrimers. Anionic PAMAM dendrimers and control dextran probes were applied to an isolated perfused rat lung (IPRL) model and lung epithelial monolayers. Endocytosis pathways were examined in primary alveolar epithelial cultures by confocal microscopy. Molecular interactions of dendrimers with protein and lipid lung fluid components were studied using small angle neutron scattering (SANS). Dendrimers were absorbed across the intact lung via a passive, size-dependent transport pathway at rates slower than dextrans of similar molecular sizes. SANS investigations of concentration-dependent PAMAM transport in the IPRL confirmed no aggregation of PAMAMs with either albumin or dipalmitoylphosphatidylcholine lung lining fluid components. Distinct endocytic compartments were identified within primary alveolar epithelial cells and their functionality in the rapid uptake of fluorescent dendrimers and model macromolecular probes was confirmed by co-localisation studies. PAMAM dendrimers display favourable lung biocompatibility but modest lung to blood absorption kinetics. These data support the investigation of dendrimer-based carriers for controlled-release drug delivery to the deep lung.

  8. Clathrin-independent internalization and recycling

    PubMed Central

    Gong, Qiang; Huntsman, Christopher; Ma, Dzwokai

    2008-01-01

    Abstract The functionality of receptor and channel proteins depends directly upon their expression level on the plasma membrane. Therefore, the ability to selectively adjust the surface level of a particular receptor or channel protein is pivotal to many cellular signalling events. The internalization and recycling pathway plays a major role in the regulation of protein surface level, and thus has been a focus of research for many years. Although several endocytic pathways have been identified, most of our knowledge has come from the clathrin-dependent pathway, while the other pathways remain much less well defined. Considering that clathrin-independent internalization may account for as much as 50% of the total endocytic activity in the cell, the lack of such knowledge constitutes a major gap in our efforts to understand how different internalization pathways are utilized and co-ordinated. Recent studies have provided valuable insights into this area, yet many more questions still remain. In this review, we will give a panoramic introduction to the current knowledge of various internalization and recycling pathways, with an emphasis on the latest findings that have broadened our view of the clathrin-independent pathways. We will also dedicate one section to the emerging studies of the clathrin-independent internalization pathways in neuronal cells. PMID:18039352

  9. Synuclein impairs trafficking and signaling of BDNF in a mouse model of Parkinson's disease.

    PubMed

    Fang, Fang; Yang, Wanlin; Florio, Jazmin B; Rockenstein, Edward; Spencer, Brian; Orain, Xavier M; Dong, Stephanie X; Li, Huayan; Chen, Xuqiao; Sung, Kijung; Rissman, Robert A; Masliah, Eliezer; Ding, Jianqing; Wu, Chengbiao

    2017-06-20

    Recent studies have demonstrated that hyperphosphorylation of tau protein plays a role in neuronal toxicities of α-synuclein (ASYN) in neurodegenerative disease such as familial Alzheimer's disease (AD), dementia with Lewy bodies (DLB) and Parkinson's disease. Using a transgenic mouse model of Parkinson's disease (PD) that expresses GFP-ASYN driven by the PDGF-β promoter, we investigated how accumulation of ASYN impacted axonal function. We found that retrograde axonal trafficking of brain-derived neurotrophic factor (BDNF) in DIV7 cultures of E18 cortical neurons was markedly impaired at the embryonic stage, even though hyperphosphorylation of tau was not detectable in these neurons at this stage. Interestingly, we found that overexpressed ASYN interacted with dynein and induced a significant increase in the activated levels of small Rab GTPases such as Rab5 and Rab7, both key regulators of endocytic processes. Furthermore, expression of ASYN resulted in neuronal atrophy in DIV7 cortical cultures of either from E18 transgenic mouse model or from rat E18 embryos that were transiently transfected with ASYN-GFP for 72 hrs. Our studies suggest that excessive ASYN likely alters endocytic pathways leading to axonal dysfunction in embryonic cortical neurons in PD mouse models.

  10. Clathrin and AP1 are required for apical sorting of glycosyl phosphatidyl inositol-anchored proteins in biosynthetic and recycling routes in Madin-Darby canine kidney cells.

    PubMed

    Castillon, Guillaume A; Burriat-Couleru, Patricia; Abegg, Daniel; Criado Santos, Nina; Watanabe, Reika

    2018-03-01

    Recently, studies in animal models demonstrate potential roles for clathrin and AP1 in apical protein sorting in epithelial tissue. However, the precise functions of these proteins in apical protein transport remain unclear. Here, we reveal mistargeting of endogenous glycosyl phosphatidyl inositol-anchored proteins (GPI-APs) and soluble secretory proteins in Madin-Darby canine kidney (MDCK) cells upon clathrin heavy chain or AP1 subunit knockdown (KD). Using a novel directional endocytosis and recycling assay, we found that these KD cells are not only affected for apical sorting of GPI-APs in biosynthetic pathway but also for their apical recycling and basal-to-apical transcytosis routes. The apical distribution of the t-SNARE syntaxin 3, which is known to be responsible for selective targeting of various apical-destined cargo proteins in both biosynthetic and endocytic routes, is compromised suggesting a molecular explanation for the phenotype in KD cells. Our results demonstrate the importance of biosynthetic and endocytic routes for establishment and maintenance of apical localization of GPI-APs in polarized MDCK cells. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Graf regulates hematopoiesis through GEEC endocytosis of EGFR.

    PubMed

    Kim, Sungdae; Nahm, Minyeop; Kim, Najin; Kwon, Yumi; Kim, Joohyung; Choi, Sukwoo; Choi, Eun Young; Shim, Jiwon; Lee, Cheolju; Lee, Seungbok

    2017-11-15

    GTPase regulator associated with focal adhesion kinase 1 (GRAF1) is an essential component of the GPI-enriched endocytic compartment (GEEC) endocytosis pathway. Mutations in the human GRAF1 gene are associated with acute myeloid leukemia, but its normal role in myeloid cell development remains unclear. We show that Graf, the Drosophila ortholog of GRAF1, is expressed and specifically localizes to GEEC endocytic membranes in macrophage-like plasmatocytes. We also find that loss of Graf impairs GEEC endocytosis, enhances EGFR signaling and induces a plasmatocyte overproliferation phenotype that requires the EGFR signaling cascade. Mechanistically, Graf-dependent GEEC endocytosis serves as a major route for EGFR internalization at high, but not low, doses of the predominant Drosophila EGFR ligand Spitz (Spi), and is indispensable for efficient EGFR degradation and signal attenuation. Finally, Graf interacts directly with EGFR in a receptor ubiquitylation-dependent manner, suggesting a mechanism by which Graf promotes GEEC endocytosis of EGFR at high Spi. Based on our findings, we propose a model in which Graf functions to downregulate EGFR signaling by facilitating Spi-induced receptor internalization through GEEC endocytosis, thereby restraining plasmatocyte proliferation. © 2017. Published by The Company of Biologists Ltd.

  12. Distinct roles for Arp2/3 regulators in actin assembly and endocytosis.

    PubMed

    Galletta, Brian J; Chuang, Dennis Y; Cooper, John A

    2008-01-01

    The Arp2/3 complex is essential for actin assembly and motility in many cell processes, and a large number of proteins have been found to bind and regulate it in vitro. A critical challenge is to understand the actions of these proteins in cells, especially in settings where multiple regulators are present. In a systematic study of the sequential multicomponent actin assembly processes that accompany endocytosis in yeast, we examined and compared the roles of WASp, two type-I myosins, and two other Arp2/3 activators, along with that of coronin, which is a proposed inhibitor of Arp2/3. Quantitative analysis of high-speed fluorescence imaging revealed individual functions for the regulators, manifested in part by novel phenotypes. We conclude that Arp2/3 regulators have distinct and overlapping roles in the processes of actin assembly that drive endocytosis in yeast. The formation of the endocytic actin patch, the creation of the endocytic vesicle, and the movement of the vesicle into the cytoplasm display distinct dependencies on different Arp2/3 regulators. Knowledge of these roles provides insight into the in vivo relevance of the dendritic nucleation model for actin assembly.

  13. Glycobiology of the ocular surface: Mucins and lectins

    PubMed Central

    Argüeso, Pablo

    2013-01-01

    Glycosylation is an important and common form of posttranscriptional modification of proteins in cells. A vast array of biological functions has been ascribed to glycans during the last decade thanks to a rapid evolution in glycomic technologies. Glycogenes highly expressed at the human ocular surface include families of glycosyltransferases, proteoglycans, glycan degradation proteins, as well as mucins and carbohydrate-binding proteins such as the galectins. On the apical glycocalyx, mucin O-glycans promote boundary lubrication, prevent bacterial adhesion and endocytic activity, and maintain epithelial barrier function through interactions with galectins. The emerging roles attributed to glycans are contributing to the appreciation of their biological capabilities at the ocular surface. PMID:23325272

  14. Exosomes surf on filopodia to enter cells at endocytic hot spots, traffic within endosomes, and are targeted to the ER.

    PubMed

    Heusermann, Wolf; Hean, Justin; Trojer, Dominic; Steib, Emmanuelle; von Bueren, Stefan; Graff-Meyer, Alexandra; Genoud, Christel; Martin, Katrin; Pizzato, Nicolas; Voshol, Johannes; Morrissey, David V; Andaloussi, Samir E L; Wood, Matthew J; Meisner-Kober, Nicole C

    2016-04-25

    Exosomes are nanovesicles released by virtually all cells, which act as intercellular messengers by transfer of protein, lipid, and RNA cargo. Their quantitative efficiency, routes of cell uptake, and subcellular fate within recipient cells remain elusive. We quantitatively characterize exosome cell uptake, which saturates with dose and time and reaches near 100% transduction efficiency at picomolar concentrations. Highly reminiscent of pathogenic bacteria and viruses, exosomes are recruited as single vesicles to the cell body by surfing on filopodia as well as filopodia grabbing and pulling motions to reach endocytic hot spots at the filopodial base. After internalization, exosomes shuttle within endocytic vesicles to scan the endoplasmic reticulum before being sorted into the lysosome as their final intracellular destination. Our data quantify and explain the efficiency of exosome internalization by recipient cells, establish a new parallel between exosome and virus host cell interaction, and suggest unanticipated routes of subcellular cargo delivery. © 2016 Heusermann et al.

  15. Fluorescent nanocolloids for differential labeling of the endocytic pathway and drug delivery applications

    NASA Astrophysics Data System (ADS)

    Delehanty, James B.; Spillmann, Christopher M.; Naciri, Jawad; Algar, W. Russ; Ratna, Banahalli R.; Medintz, Igor L.

    2013-02-01

    The demonstration of fine control over nanomaterials within biological systems, particularly in live cells, is integral for the successful implementation of nanoparticles (NPs) in biomedical applications. Here, we show the ability to differentially label the endocytic pathway of mammalian cells in a spatiotemporal manner utilizing fluorescent nanocolloids (NCs) doped with a perylene-based dye. EDC-based conjugation of green- and red-emitting NCs to the iron transport protein transferrin resulted in stable bioconjugates that were efficiently endocytosed by HEK 293T/17 cells. The staggered delivery of the bioconjugates allowed for the time-resolved, differential labeling of distinct vesicular compartments along the endocytic pathway in a nontoxic manner. We further demonstrated the ability of the NCs to be impregnated with the anticancer therapeutic, doxorubicin. Delivery of the drug-doped nanoconjugates resulted in the intracellular release and nuclear accumulation of doxorubicin in a time- and dose-dependent manner. We discuss our results in the context of the utility of such materials for NP-mediated drug delivery applications.

  16. Exosomes surf on filopodia to enter cells at endocytic hot spots, traffic within endosomes, and are targeted to the ER

    PubMed Central

    Hean, Justin; Trojer, Dominic; Steib, Emmanuelle; von Bueren, Stefan; Graff-Meyer, Alexandra; Genoud, Christel; Martin, Katrin; Pizzato, Nicolas; Voshol, Johannes; Morrissey, David V.; Andaloussi, Samir E.L.; Wood, Matthew J.

    2016-01-01

    Exosomes are nanovesicles released by virtually all cells, which act as intercellular messengers by transfer of protein, lipid, and RNA cargo. Their quantitative efficiency, routes of cell uptake, and subcellular fate within recipient cells remain elusive. We quantitatively characterize exosome cell uptake, which saturates with dose and time and reaches near 100% transduction efficiency at picomolar concentrations. Highly reminiscent of pathogenic bacteria and viruses, exosomes are recruited as single vesicles to the cell body by surfing on filopodia as well as filopodia grabbing and pulling motions to reach endocytic hot spots at the filopodial base. After internalization, exosomes shuttle within endocytic vesicles to scan the endoplasmic reticulum before being sorted into the lysosome as their final intracellular destination. Our data quantify and explain the efficiency of exosome internalization by recipient cells, establish a new parallel between exosome and virus host cell interaction, and suggest unanticipated routes of subcellular cargo delivery. PMID:27114500

  17. Ubiquitin turnover and endocytic trafficking in yeast are regulated by Ser57 phosphorylation of ubiquitin

    PubMed Central

    Lee, Sora; Tumolo, Jessica M; Ehlinger, Aaron C; Jernigan, Kristin K; Qualls-Histed, Susan J; Hsu, Pi-Chiang; McDonald, W Hayes; Chazin, Walter J

    2017-01-01

    Despite its central role in protein degradation little is known about the molecular mechanisms that sense, maintain, and regulate steady state concentration of ubiquitin in the cell. Here, we describe a novel mechanism for regulation of ubiquitin homeostasis that is mediated by phosphorylation of ubiquitin at the Ser57 position. We find that loss of Ppz phosphatase activity leads to defects in ubiquitin homeostasis that are at least partially attributable to elevated levels of Ser57 phosphorylated ubiquitin. Phosphomimetic mutation at the Ser57 position of ubiquitin conferred increased rates of endocytic trafficking and ubiquitin turnover. These phenotypes are associated with bypass of recognition by endosome-localized deubiquitylases - including Doa4 which is critical for regulation of ubiquitin recycling. Thus, ubiquitin homeostasis is significantly impacted by the rate of ubiquitin flux through the endocytic pathway and by signaling pathways that converge on ubiquitin itself to determine whether it is recycled or degraded in the vacuole. PMID:29130884

  18. CCM-3/STRIPAK promotes seamless tube extension through endocytic recycling.

    PubMed

    Lant, Benjamin; Yu, Bin; Goudreault, Marilyn; Holmyard, Doug; Knight, James D R; Xu, Peter; Zhao, Linda; Chin, Kelly; Wallace, Evan; Zhen, Mei; Gingras, Anne-Claude; Derry, W Brent

    2015-03-06

    The mechanisms governing apical membrane assembly during biological tube development are poorly understood. Here, we show that extension of the C. elegans excretory canal requires cerebral cavernous malformation 3 (CCM-3), independent of the CCM1 orthologue KRI-1. Loss of ccm-3 causes canal truncations and aggregations of canaliculular vesicles, which form ectopic lumen (cysts). We show that CCM-3 localizes to the apical membrane, and in cooperation with GCK-1 and STRIPAK, promotes CDC-42 signalling, Golgi stability and endocytic recycling. We propose that endocytic recycling is mediated through the CDC-42-binding kinase MRCK-1, which interacts physically with CCM-3-STRIPAK. We further show canal membrane integrity to be dependent on the exocyst complex and the actin cytoskeleton. This work reveals novel in vivo roles of CCM-3·STRIPAK in regulating tube extension and membrane integrity through small GTPase signalling and vesicle dynamics, which may help explain the severity of CCM3 mutations in patients.

  19. The Role of Monoubiquitination in Endocytic Degradation of Human Ether-a-go-go-related Gene (hERG) Channels under Low K+ Conditions*

    PubMed Central

    Sun, Tao; Guo, Jun; Shallow, Heidi; Yang, Tonghua; Xu, Jianmin; Li, Wentao; Hanson, Christian; Wu, James G.; Li, Xian; Massaeli, Hamid; Zhang, Shetuan

    2011-01-01

    A reduction in extracellular K+ concentration ([K+]o) causes cardiac arrhythmias and triggers internalization of the cardiac rapidly activating delayed rectifier potassium channel (IKr) encoded by the human ether-a-go-go-related gene (hERG). We investigated the role of ubiquitin (Ub) in endocytic degradation of hERG channels stably expressed in HEK cells. Under low K+ conditions, UbKO, a lysine-less mutant Ub that only supports monoubiquitination, preferentially interacted and selectively enhanced degradation of the mature hERG channels. Overexpression of Vps24 protein, also known as charged multivesicular body protein 3, significantly accelerated degradation of mature hERG channels, whereas knockdown of Vps24 impeded this process. Moreover, the lysosomal inhibitor bafilomycin A1 inhibited degradation of the internalized mature hERG channels. Thus, monoubiquitination directs mature hERG channels to degrade through the multivesicular body/lysosome pathway. Interestingly, the protease inhibitor lactacystin inhibited the low K+-induced hERG endocytosis and concomitantly led to an accumulation of monoubiquitinated mature hERG channels, suggesting that deubiquitination is also required for the endocytic degradation. Consistently, overexpression of the endosomal deubiquitinating enzyme signal transducing adaptor molecule-binding protein significantly accelerated whereas knockdown of endogenous signal transducing adaptor molecule-binding protein impeded degradation of the mature hERG channels under low K+ conditions. Thus, monoubiquitin dynamically mediates endocytic degradation of mature hERG channels under low K+ conditions. PMID:21177251

  20. CPG2 Recruits Endophilin B2 to the Cytoskeleton for Activity-Dependent Endocytosis of Synaptic Glutamate Receptors.

    PubMed

    Loebrich, Sven; Benoit, Marc Robert; Konopka, Jaclyn Aleksandra; Cottrell, Jeffrey Richard; Gibson, Joanne; Nedivi, Elly

    2016-02-08

    Internalization of glutamate receptors at the postsynaptic membrane via clathrin-mediated endocytosis (CME) is a key mechanism for regulating synaptic strength. A role for the F-actin cytoskeleton in CME is well established, and recently, PKA-dependent association of candidate plasticity gene 2 (CPG2) with the spine-cytoskeleton has been shown to mediate synaptic glutamate receptor internalization. Yet, how the endocytic machinery is physically coupled to the actin cytoskeleton to facilitate glutamate receptor internalization has not been demonstrated. Moreover, there has been no distinction of endocytic-machinery components that are specific to activity-dependent versus constitutive glutamate receptor internalization. Here, we show that CPG2, through a direct physical interaction, recruits endophilin B2 (EndoB2) to F-actin, thus anchoring the endocytic machinery to the spine cytoskeleton and facilitating glutamate receptor internalization. Regulation of CPG2 binding to the actin cytoskeleton by protein kinase A directly impacts recruitment of EndoB2 and clathrin. Specific disruption of EndoB2 or the CPG2-EndoB2 interaction impairs activity-dependent, but not constitutive, internalization of both NMDA- and AMPA-type glutamate receptors. These results demonstrate that, through direct interactions with F-actin and EndoB2, CPG2 physically bridges the spine cytoskeleton and the endocytic machinery, and this tripartite association is critical specifically for activity-dependent CME of synaptic glutamate receptors. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. The small GTPase Arl8b regulates assembly of the mammalian HOPS complex on lysosomes

    PubMed Central

    Khatter, Divya; Raina, Vivek B.; Dwivedi, Devashish; Sindhwani, Aastha; Bahl, Surbhi; Sharma, Mahak

    2015-01-01

    The homotypic fusion and protein sorting (HOPS) complex is a multi-subunit complex conserved from yeast to mammals that regulates late endosome and lysosome fusion. However, little is known about how the HOPS complex is recruited to lysosomes in mammalian cells. Here, we report that the small GTPase Arl8b, but not Rab7 (also known as RAB7A), is essential for membrane localization of the human (h)Vps41 subunit of the HOPS complex. Assembly of the core HOPS subunits to Arl8b- and hVps41-positive lysosomes is guided by their subunit–subunit interactions. RNA interference (RNAi)-mediated depletion of hVps41 resulted in the impaired degradation of EGFR that was rescued upon expression of wild-type but not an Arl8b-binding-defective mutant of hVps41, suggesting that Arl8b-dependent lysosomal localization of hVps41 is required for its endocytic function. Furthermore, we have also identified that the Arl8b effector SKIP (also known as PLEKHM2) interacts with and recruits HOPS subunits to Arl8b and kinesin-positive peripheral lysosomes. Accordingly, RNAi-mediated depletion of SKIP impaired lysosomal trafficking and degradation of EGFR. These findings reveal that Arl8b regulates the association of the human HOPS complex with lysosomal membranes, which is crucial for the function of this tethering complex in endocytic degradation. PMID:25908847

  2. Dictyostelium discoideum mutants with temperature-sensitive defects in endocytosis

    PubMed Central

    1994-01-01

    We have isolated and characterized temperature-sensitive endocytosis mutants in Dictyostelium discoideum. Dictyostelium is an attractive model for genetic studies of endocytosis because of its high rates of endocytosis, its reliance on endocytosis for nutrient uptake, and tractable molecular genetics. Endocytosis-defective mutants were isolated by a fluorescence-activated cell sorting (FACS) as cells unable to take up a fluorescent marker. One temperature-sensitive mutant (indy1) was characterized in detail and found to exhibit a complete block in fluid phase endocytosis at the restrictive temperature, but normal rates of endocytosis at the permissive temperature. Likewise, a potential cell surface receptor that was rapidly internalized in wild-type cells and indy1 cells at the permissive temperature was poorly internalized in indy1 under restrictive conditions. Growth was also completely arrested at the restrictive temperature. The endocytosis block was rapidly induced upon shift to the restrictive temperature and reversed upon return to normal conditions. Inhibition of endocytosis was also specific, as other membrane-trafficking events such as phagocytosis, secretion of lysosomal enzymes, and contractile vacuole function were unaffected at the restrictive temperature. Because recycling and transport to late endocytic compartments were not affected, the site of the defect's action is probably at an early step in the endocytic pathway. Additionally, indy1 cells were unable to proceed through the normal development program at the restrictive temperature. Given the tight functional and growth phenotypes, the indy1 mutant provides an opportunity to isolate genes responsible for endocytosis in Dictyostelium by complementation cloning. PMID:7929583

  3. Functional Analysis of RNA Interference-Related Soybean Pod Borer (Lepidoptera) Genes Based on Transcriptome Sequences.

    PubMed

    Meng, Fanli; Yang, Mingyu; Li, Yang; Li, Tianyu; Liu, Xinxin; Wang, Guoyue; Wang, Zhanchun; Jin, Xianhao; Li, Wenbin

    2018-01-01

    RNA interference (RNAi) is useful for controlling pests of agriculturally important crops. The soybean pod borer (SPB) is the most important soybean pest in Northeastern Asia. In an earlier study, we confirmed that the SPB could be controlled via transgenic plant-mediated RNAi. Here, the SPB transcriptome was sequenced to identify RNAi-related genes, and also to establish an RNAi-of-RNAi assay system for evaluating genes involved in the SPB systemic RNAi response. The core RNAi genes, as well as genes potentially involved in double-stranded RNA (dsRNA) uptake were identified based on SPB transcriptome sequences. A phylogenetic analysis and the characterization of these core components as well as dsRNA uptake related genes revealed that they contain conserved domains essential for the RNAi pathway. The results of the RNAi-of-RNAi assay involving Laccas e 2 (a critical cuticle pigmentation gene) as a marker showed that genes encoding the sid-like ( Sil1 ), scavenger receptor class C ( Src ), and scavenger receptor class B ( Srb3 and Srb4 ) proteins of the endocytic pathway were required for SPB cellular uptake of dsRNA. The SPB response was inferred to contain three functional small RNA pathways (i.e., miRNA, siRNA, and piRNA pathways). Additionally, the SPB systemic RNA response may rely on systemic RNA interference deficient transmembrane channel-mediated and receptor-mediated endocytic pathways. The results presented herein may be useful for developing RNAi-mediated methods to control SPB infestations in soybean.

  4. Safeguards of Neurotransmission: Endocytic Adaptors as Regulators of Synaptic Vesicle Composition and Function

    PubMed Central

    Kaempf, Natalie; Maritzen, Tanja

    2017-01-01

    Communication between neurons relies on neurotransmitters which are released from synaptic vesicles (SVs) upon Ca2+ stimuli. To efficiently load neurotransmitters, sense the rise in intracellular Ca2+ and fuse with the presynaptic membrane, SVs need to be equipped with a stringently controlled set of transmembrane proteins. In fact, changes in SV protein composition quickly compromise neurotransmission and most prominently give rise to epileptic seizures. During exocytosis SVs fully collapse into the presynaptic membrane and consequently have to be replenished to sustain neurotransmission. Therefore, surface-stranded SV proteins have to be efficiently retrieved post-fusion to be used for the generation of a new set of fully functional SVs, a process in which dedicated endocytic sorting adaptors play a crucial role. The question of how the precise reformation of SVs is achieved is intimately linked to how SV membranes are retrieved. For a long time both processes were believed to be two sides of the same coin since Clathrin-mediated endocytosis (CME), the proposed predominant SV recycling mode, will jointly retrieve SV membranes and proteins. However, with the recent proposal of Clathrin-independent SV recycling pathways SV membrane retrieval and SV reformation turn into separable events. This review highlights the progress made in unraveling the molecular mechanisms mediating the high-fidelity retrieval of SV proteins and discusses how the gathered knowledge about SV protein recycling fits in with the new notions of SV membrane endocytosis. PMID:29085282

  5. Functional Analysis of RNA Interference-Related Soybean Pod Borer (Lepidoptera) Genes Based on Transcriptome Sequences

    PubMed Central

    Meng, Fanli; Yang, Mingyu; Li, Yang; Li, Tianyu; Liu, Xinxin; Wang, Guoyue; Wang, Zhanchun; Jin, Xianhao; Li, Wenbin

    2018-01-01

    RNA interference (RNAi) is useful for controlling pests of agriculturally important crops. The soybean pod borer (SPB) is the most important soybean pest in Northeastern Asia. In an earlier study, we confirmed that the SPB could be controlled via transgenic plant-mediated RNAi. Here, the SPB transcriptome was sequenced to identify RNAi-related genes, and also to establish an RNAi-of-RNAi assay system for evaluating genes involved in the SPB systemic RNAi response. The core RNAi genes, as well as genes potentially involved in double-stranded RNA (dsRNA) uptake were identified based on SPB transcriptome sequences. A phylogenetic analysis and the characterization of these core components as well as dsRNA uptake related genes revealed that they contain conserved domains essential for the RNAi pathway. The results of the RNAi-of-RNAi assay involving Laccase 2 (a critical cuticle pigmentation gene) as a marker showed that genes encoding the sid-like (Sil1), scavenger receptor class C (Src), and scavenger receptor class B (Srb3 and Srb4) proteins of the endocytic pathway were required for SPB cellular uptake of dsRNA. The SPB response was inferred to contain three functional small RNA pathways (i.e., miRNA, siRNA, and piRNA pathways). Additionally, the SPB systemic RNA response may rely on systemic RNA interference deficient transmembrane channel-mediated and receptor-mediated endocytic pathways. The results presented herein may be useful for developing RNAi-mediated methods to control SPB infestations in soybean. PMID:29773992

  6. Select Rab GTPases Regulate the Pulmonary Endothelium via Endosomal Trafficking of Vascular Endothelial-Cadherin.

    PubMed

    Chichger, Havovi; Braza, Julie; Duong, Huetran; Boni, Geraldine; Harrington, Elizabeth O

    2016-06-01

    Pulmonary edema occurs in settings of acute lung injury, in diseases, such as pneumonia, and in acute respiratory distress syndrome. The lung interendothelial junctions are maintained in part by vascular endothelial (VE)-cadherin, an adherens junction protein, and its surface expression is regulated by endocytic trafficking. The Rab family of small GTPases are regulators of endocytic trafficking. The key trafficking pathways are regulated by Rab4, -7, and -9. Rab4 regulates the recycling of endosomes to the cell surface through a rapid-shuttle process, whereas Rab7 and -9 regulate trafficking to the late endosome/lysosome for degradation or from the trans-Golgi network to the late endosome, respectively. We recently demonstrated a role for the endosomal adaptor protein, p18, in regulation of the pulmonary endothelium through enhanced recycling of VE-cadherin to adherens junction. Thus, we hypothesized that Rab4, -7, and -9 regulate pulmonary endothelial barrier function through modulating trafficking of VE-cadherin-positive endosomes. We used Rab mutants with varying activities and associations to the endosome to study endothelial barrier function in vitro and in vivo. Our study demonstrates a key role for Rab4 activation and Rab9 inhibition in regulation of vascular permeability through enhanced VE-cadherin expression at the interendothelial junction. We further showed that endothelial barrier function mediated through Rab4 is dependent on extracellular signal-regulated kinase phosphorylation and activity. Thus, we demonstrate that Rab4 and -9 regulate VE-cadherin levels at the cell surface to modulate the pulmonary endothelium through extracellular signal-regulated kinase-dependent and -independent pathways, respectively. We propose that regulating select Rab GTPases represents novel therapeutic strategies for patients suffering with acute respiratory distress syndrome.

  7. A novel requirement for C. elegans Alix/ALX-1 in RME-1 mediated membrane transport

    PubMed Central

    Shi, Anbing; Pant, Saumya; Balklava, Zita; Chen, Carlos Chih-Hsiung; Figueroa, Vanesa; Grant, Barth D.

    2007-01-01

    Summary Background Alix/Bro1p family proteins have recently been identified as important components of multivesicular endosomes (MVEs) involved in the sorting of endocytosed integral membrane proteins, interacting with components of the ESCRT complex, the unconventional phospholipid LBPA, and other known endocytosis regulators. During infection Alix can be co-opted by enveloped retroviruses, including HIV, providing an important function during virus budding from the plasma membrane. In addition Alix is associated with the actin cytoskeleton and may regulate cytoskeletal dynamics. Results Here we demonstrate a novel physical interaction between the only apparent Alix/Bro1p family protein in C. elegans, ALX-1, and a key regulator of receptor recycling from endosomes to the plasma membrane called RME-1. Analysis of alx-1 mutants indicates that ALX-1 is required for endocytic recycling of specific basolateral cargo in the C. elegans intestine, a pathway previously defined by analysis of rme-1 mutants. Expression of truncated human Alix in HeLa cells disrupts recycling of MHCI, a known Ehd1/RME-1 dependent transport step, suggesting phylogenetic conservation of this function. We show that the interaction of ALX-1 with RME-1 in C. elegans, mediated by RME-1/YPSL and ALX-1/NPF motifs, is required for this recycling process. In the C. elegans intestine ALX-1 localizes to both recycling endosomes and MVEs, but the ALX-1/RME-1 interaction appears dispensable for ALX-1 function in MVEs/late endosomes. Conclusions This work provides the first demonstration of a requirement for an Alix/Bro1p family member in the endocytic recycling pathway in association with the recycling regulator RME-1. PMID:17997305

  8. NMDA receptor function and NMDA receptor-dependent phosphorylation of huntingtin is altered by the endocytic protein HIP1.

    PubMed

    Metzler, Martina; Gan, Lu; Wong, Tak Pan; Liu, Lidong; Helm, Jeffrey; Liu, Lili; Georgiou, John; Wang, Yushan; Bissada, Nagat; Cheng, Kevin; Roder, John C; Wang, Yu Tian; Hayden, Michael R

    2007-02-28

    Huntingtin-interacting protein 1 (HIP1) is an endocytic adaptor protein that plays a role in clathrin-mediated endocytosis and the ligand-induced internalization of AMPA receptors (AMPARs) (Metzler et al., 2003). In the present study, we investigated the role of HIP1 in NMDA receptor (NMDAR) function by analyzing NMDA-dependent transport and NMDA-induced excitotoxicity in neurons from HIP1-/- mice. HIP1 colocalizes with NMDARs in hippocampal and cortical neurons and affinity purifies with NMDARs by GST (glutathione S-transferase) pull down and coimmunoprecipitation. A profound decrease in NMDA-induced AMPAR internalization of 75% occurs in neurons from HIP1-/- mice compared with wild type, using a quantitative single-cell-based internalization assay. This defect in NMDA-dependent removal of surface AMPARs is in agreement with the observed defect in long-term depression induction in hippocampal brain slices of HIP1-/- mice and supports a role of HIP1 in AMPAR internalization in vivo. HIP1-/- neurons are partially protected from NMDA-induced excitotoxicity as assessed by LDH (lactate dehydrogenase) release, TUNEL (terminal deoxynucleotidyl transferase-mediated biotinylated dUTP nick end labeling) and caspase-3 activation assays, which points to a role of HIP1 in NMDA-induced cell death. Interestingly, phosphorylation of Akt and its substrate huntingtin (htt) decreases during NMDA-induced excitotoxicity by 48 and 31%, respectively. This decrease is significantly modulated by HIP1, resulting in 94 and 48% changes in P-Akt and P-htt levels in HIP1-/- neurons, respectively. In summary, we have shown that HIP1 influences important NMDAR functions and that both HIP1 and htt participate in NMDA-induced cell death. These findings may provide novel insights into the cellular mechanisms underlying enhanced NMDA-induced excitotoxicity in Huntington's disease.

  9. Endocytic recycling via the TGN underlies the polarized hyphal mode of life.

    PubMed

    Hernández-González, Miguel; Bravo-Plaza, Ignacio; Pinar, Mario; de Los Ríos, Vivian; Arst, Herbert N; Peñalva, Miguel A

    2018-04-01

    Intracellular traffic in Aspergillus nidulans hyphae must cope with the challenges that the high rates of apical extension (1μm/min) and the long intracellular distances (>100 μm) impose. Understanding the ways in which the hyphal tip cell coordinates traffic to meet these challenges is of basic importance, but is also of considerable applied interest, as fungal invasiveness of animals and plants depends critically upon maintaining these high rates of growth. Rapid apical extension requires localization of cell-wall-modifying enzymes to hyphal tips. By combining genetic blocks in different trafficking steps with multidimensional epifluorescence microscopy and quantitative image analyses we demonstrate that polarization of the essential chitin-synthase ChsB occurs by indirect endocytic recycling, involving delivery/exocytosis to apices followed by internalization by the sub-apical endocytic collar of actin patches and subsequent trafficking to TGN cisternae, where it accumulates for ~1 min before being re-delivered to the apex by a RAB11/TRAPPII-dependent pathway. Accordingly, ChsB is stranded at the TGN by Sec7 inactivation but re-polarizes to the apical dome if the block is bypassed by a mutation in geaAgea1 that restores growth in the absence of Sec7. That polarization is independent of RAB5, that ChsB predominates at apex-proximal cisternae, and that upon dynein impairment ChsB is stalled at the tips in an aggregated endosome indicate that endocytosed ChsB traffics to the TGN via sorting endosomes functionally located upstream of the RAB5 domain and that this step requires dynein-mediated basipetal transport. It also requires RAB6 and its effector GARP (Vps51/Vps52/Vps53/Vps54), whose composition we determined by MS/MS following affinity chromatography purification. Ablation of any GARP component diverts ChsB to vacuoles and impairs growth and morphology markedly, emphasizing the important physiological role played by this pathway that, we propose, is central to the hyphal mode of growth.

  10. Role of flotillins in the endocytosis of GPCR in salivary gland epithelial cells.

    PubMed

    Park, Moon-Yong; Kim, Nahyun; Wu, Li-Ling; Yu, Guang-Yan; Park, Kyungpyo

    2016-08-05

    Endocytosis has numerous functions in cellular homeostasis. Defects in the endocytic pathway of receptors may lead to dysfunction of salivary gland secretion. Therefore, elucidating the complex mechanisms of endocytosis may facilitate solutions for disease treatment and prevention. The muscarinic type 3 receptor (M3R), a G-protein-coupled receptor (GPCR) located in the plasma membrane, is involved in numerous physiological activities such as smooth muscle contraction and saliva secretion. M3R enters cells through clathrin-mediated endocytosis (CME), while flotillins (flot-1 and -2), highly conserved proteins residing in lipid-raft microdomains, make use of clathrin-independent endocytosis (CIE) for their internalization. Since these two proteins use two discrete pathways for endocytic entry, the association of flotillins with CME is poorly understood. We examined whether flotillins play a role in CME of M3R using immunoblotting, immunocytochemistry, confocal immunofluorescence microscopy, co-immunoprecipitation, and RNA interference techniques in secretory epithelial cells. Upon stimulation with a cholinergic agonist, M3R, flot-1, and flot-2 each internalized from the plasma membrane into intracellular sites. The addition of chlorpromazine and cytochalasin D, well-known inhibitors of CME, inhibited internalization of M3R via CME. Filipin III and methyl-β-cyclodextrin (mβCD) acting as lipid raft inhibitors disrupted internalization of flot-1/2 via CIE. Interestingly, filipin III and mβCD slightly reduced expression level of M3R whereas chlorpromazine and cytochalasin D did not affect internalization of the flotillin isoforms. M3R and flot-1/2 colocalized and interacted with each other as they entered the cytosol during limited periods of incubation. Moreover, knockdown of flot-1 or -2 by flotillin-specific siRNA prevented internalization and reduced the endocytic efficiency of M3R. Our results suggest that flot-1 and -2 are partially involved in CME of M3R by facilitating its internalization. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Neratinib induces ErbB2 ubiquitylation and endocytic degradation via HSP90 dissociation in breast cancer cells.

    PubMed

    Zhang, Yingqiu; Zhang, Jinrui; Liu, Congcong; Du, Sha; Feng, Lu; Luan, Xuelin; Zhang, Yayun; Shi, Yulin; Wang, Taishu; Wu, Yue; Cheng, Wei; Meng, Songshu; Li, Man; Liu, Han

    2016-11-28

    Receptor tyrosine kinase ErbB2/HER2 is frequently observed to be overexpressed in human cancers, leading to over activation of downstream signaling modules. HER2 positive is a major type of breast cancer for which ErbB2 targeting is already proving to be an effective therapeutic strategy. Apart from antibodies against ErbB2, the small molecule tyrosine kinase inhibitor lapatinib has had successful clinical outcomes, and other inhibitors such as neratinib are currently undergoing clinical investigations. In this study we report the effects of lapatinib and neratinib on the mRNA and protein levels of the ErbB2 receptor. We provide evidence that neratinib-induced down regulation of ErbB2 occurs through ubiquitin-mediated endocytic sorting and lysosomal degradation. At the mechanistic level, neratinib treatment leads to HSP90 release from ErbB2 and its subsequent ubiquitylation and endocytic degradation. Our findings provide novel insights into the mechanism of ErbB2 inhibition by neratinib. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. APPL endosomes are not obligatory endocytic intermediates but act as stable cargo-sorting compartments

    PubMed Central

    Kalaidzidis, Inna; Miaczynska, Marta; Brewińska-Olchowik, Marta; Hupalowska, Anna; Ferguson, Charles; Parton, Robert G.; Kalaidzidis, Yannis

    2015-01-01

    Endocytosis allows cargo to enter a series of specialized endosomal compartments, beginning with early endosomes harboring Rab5 and its effector EEA1. There are, however, additional structures labeled by the Rab5 effector APPL1 whose role in endocytic transport remains unclear. It has been proposed that APPL1 vesicles are transport intermediates that convert into EEA1 endosomes. Here, we tested this model by analyzing the ultrastructural morphology, kinetics of cargo transport, and stability of the APPL1 compartment over time. We found that APPL1 resides on a tubulo-vesicular compartment that is capable of sorting cargo for recycling or degradation and that displays long lifetimes, all features typical of early endosomes. Fitting mathematical models to experimental data rules out maturation of APPL1 vesicles into EEA1 endosomes as a primary mechanism for cargo transport. Our data suggest instead that APPL1 endosomes represent a distinct population of Rab5-positive sorting endosomes, thus providing important insights into the compartmental organization of the early endocytic pathway. PMID:26459602

  13. N-glycans are direct determinants of CFTR folding and stability in secretory and endocytic membrane traffic.

    PubMed

    Glozman, Rina; Okiyoneda, Tsukasa; Mulvihill, Cory M; Rini, James M; Barriere, Herve; Lukacs, Gergely L

    2009-03-23

    N-glycosylation, a common cotranslational modification, is thought to be critical for plasma membrane expression of glycoproteins by enhancing protein folding, trafficking, and stability through targeting them to the ER folding cycles via lectin-like chaperones. In this study, we show that N-glycans, specifically core glycans, enhance the productive folding and conformational stability of a polytopic membrane protein, the cystic fibrosis transmembrane conductance regulator (CFTR), independently of lectin-like chaperones. Defective N-glycosylation reduces cell surface expression by impairing both early secretory and endocytic traffic of CFTR. Conformational destabilization of the glycan-deficient CFTR induces ubiquitination, leading to rapid elimination from the cell surface. Ubiquitinated CFTR is directed to lysosomal degradation instead of endocytic recycling in early endosomes mediated by ubiquitin-binding endosomal sorting complex required for transport (ESCRT) adaptors Hrs (hepatocyte growth factor-regulated tyrosine kinase substrate) and TSG101. These results suggest that cotranslational N-glycosylation can exert a chaperone-independent profolding change in the energetic of CFTR in vivo as well as outline a paradigm for the peripheral trafficking defect of membrane proteins with impaired glycosylation.

  14. A role of OCRL in clathrin-coated pit dynamics and uncoating revealed by studies of Lowe syndrome cells

    PubMed Central

    Nández, Ramiro; Balkin, Daniel M; Messa, Mirko; Liang, Liang; Paradise, Summer; Czapla, Heather; Hein, Marco Y; Duncan, James S; Mann, Matthias; De Camilli, Pietro

    2014-01-01

    Mutations in the inositol 5-phosphatase OCRL cause Lowe syndrome and Dent's disease. Although OCRL, a direct clathrin interactor, is recruited to late-stage clathrin-coated pits, clinical manifestations have been primarily attributed to intracellular sorting defects. Here we show that OCRL loss in Lowe syndrome patient fibroblasts impacts clathrin-mediated endocytosis and results in an endocytic defect. These cells exhibit an accumulation of clathrin-coated vesicles and an increase in U-shaped clathrin-coated pits, which may result from sequestration of coat components on uncoated vesicles. Endocytic vesicles that fail to lose their coat nucleate the majority of the numerous actin comets present in patient cells. SNX9, an adaptor that couples late-stage endocytic coated pits to actin polymerization and which we found to bind OCRL directly, remains associated with such vesicles. These results indicate that OCRL acts as an uncoating factor and that defects in clathrin-mediated endocytosis likely contribute to pathology in patients with OCRL mutations. DOI: http://dx.doi.org/10.7554/eLife.02975.001 PMID:25107275

  15. ARH directs megalin to the endocytic recycling compartment to regulate its proteolysis and gene expression

    PubMed Central

    Shah, Mehul; Baterina, Oscar Y.; Taupin, Vanessa

    2013-01-01

    Receptors internalized by endocytosis can return to the plasma membrane (PM) directly from early endosomes (EE; fast recycling) or they can traffic from EE to the endocytic recycling compartment (ERC) and recycle from there (slow recycling). How receptors are sorted for trafficking along these two pathways remains unclear. Here we show that autosomal recessive hypercholesterolemia (ARH) is required for trafficking of megalin, a member of the LDL receptor family, from EE to the ERC by coupling it to dynein; in the absence of ARH, megalin returns directly to the PM from EE via the connecdenn2/Rab35 fast recycling pathway. Binding of ARH to the endocytic adaptor AP-2 prevents fast recycling of megalin. ARH-mediated trafficking of megalin to the ERC is necessary for γ-secretase mediated cleavage of megalin and release of a tail fragment that mediates transcriptional repression. These results identify a novel mechanism for sorting receptors for trafficking to the ERC and link ERC trafficking to regulated intramembrane proteolysis (RIP) and expression of megalin. PMID:23836931

  16. Spatial and Temporal Regulation of Receptor Endocytosis in Neuronal Dendrites Revealed by Imaging of Single Vesicle Formation.

    PubMed

    Rosendale, Morgane; Jullié, Damien; Choquet, Daniel; Perrais, David

    2017-02-21

    Endocytosis in neuronal dendrites is known to play a critical role in synaptic transmission and plasticity such as long-term depression (LTD). However, the inability to detect endocytosis directly in living neurons has hampered studies of its dynamics and regulation. Here, we visualized the formation of individual endocytic vesicles containing pHluorin-tagged receptors with high temporal resolution in the dendrites of cultured hippocampal neurons. We show that transferrin receptors (TfRs) are constitutively internalized at optically static clathrin-coated structures. These structures are slightly enriched near synapses that represent preferential sites for the endocytosis of postsynaptic AMPA-type receptors (AMPARs), but not for non-synaptic TfRs. Moreover, the frequency of AMPAR endocytosis events increases after the induction of NMDAR-dependent chemical LTD, but the activity of perisynaptic endocytic zones is not differentially regulated. We conclude that endocytosis is a highly dynamic and stereotyped process that internalizes receptors in precisely localized endocytic zones. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  17. WASH and Tsg101/ALIX-dependent diversion of stress-internalized EGFR from the canonical endocytic pathway

    PubMed Central

    Tomas, Alejandra; Vaughan, Simon O.; Burgoyne, Thomas; Sorkin, Alexander; Hartley, John A.; Hochhauser, Daniel; Futter, Clare E.

    2015-01-01

    Stress exposure triggers ligand-independent EGF receptor (EGFR) endocytosis, but its post-endocytic fate and role in regulating signalling are unclear. We show that the p38 MAP kinase-dependent, EGFR tyrosine kinase (TK)-independent EGFR internalization induced by ultraviolet light C (UVC) or the cancer therapeutic cisplatin, is followed by diversion from the canonical endocytic pathway. Instead of lysosomal degradation or plasma membrane recycling, EGFR accumulates in a subset of LBPA-rich perinuclear multivesicular bodies (MVBs) distinct from those carrying EGF-stimulated EGFR. Stress-internalized EGFR co-segregates with exogenously expressed pre-melanosomal markers OA1 and fibrillar PMEL, following early endosomal sorting by the actin polymerization-promoting WASH complex. Stress-internalized EGFR is retained intracellularly by continued p38 activity in a mechanism involving ubiquitin-independent, ESCRT/ALIX-dependent incorporation onto intraluminal vesicles (ILVs) of MVBs. In contrast to the internalization-independent EGF-stimulated activation, UVC/cisplatin-triggered EGFR activation depends on EGFR internalization and intracellular retention. EGFR signalling from this MVB subpopulation delays apoptosis and might contribute to chemoresistance. PMID:26066081

  18. The endocytic recycling compartment maintains cargo segregation acquired upon exit from the sorting endosome

    PubMed Central

    Xie, Shuwei; Bahl, Kriti; Reinecke, James B.; Hammond, Gerald R. V.; Naslavsky, Naava; Caplan, Steve

    2016-01-01

    The endocytic recycling compartment (ERC) is a series of perinuclear tubular and vesicular membranes that regulates recycling to the plasma membrane. Despite evidence that cargo is sorted at the early/sorting endosome (SE), whether cargo mixes downstream at the ERC or remains segregated is an unanswered question. Here we use three-dimensional (3D) structured illumination microscopy and dual-channel and 3D direct stochastic optical reconstruction microscopy (dSTORM) to obtain new information about ERC morphology and cargo segregation. We show that cargo internalized either via clathrin-mediated endocytosis (CME) or independently of clathrin (CIE) remains segregated in the ERC, likely on distinct carriers. This suggests that no further sorting occurs upon cargo exit from SE. Moreover, 3D dSTORM data support a model in which some but not all ERC vesicles are tethered by contiguous “membrane bridges.” Furthermore, tubular recycling endosomes preferentially traffic CIE cargo and may originate from SE membranes. These findings support a significantly altered model for endocytic recycling in mammalian cells in which sorting occurs in peripheral endosomes and segregation is maintained at the ERC. PMID:26510502

  19. Dissociation of Recombinant Prion Protein Fibrils into Short Protofilaments: Implications for the Endocytic Pathway and Involvement of the N-Terminal Domain

    PubMed Central

    Qi, Xu; Moore, Roger A.; McGuirl, Michele A.

    2012-01-01

    Fibril dissociation is necessary for efficient conversion of normal prion protein to its misfolded state and continued propagation into amyloid. Recent studies have revealed that conversion occurs along the endocytic pathway. To better understand the dissociation process, we have investigated the effect of low pH on the stability of recombinant prion fibrils. We show that under conditions that mimic the endocytic environment, amyloid fibrils made from full length prion protein dissociate both laterally and axially to form protofilaments. About 5% of the protofilaments are short enough to be considered soluble and contain ~100–300 monomers per structure; these also retain the biophysical characteristics of the filaments. We propose that protonation of His residues and charge repulsion in the N-terminal domain trigger fibril dissociation. Our data suggest that lysosomes and late endosomes are competent milieus for propagating the misfolded state not only by destabilizing the normal prion protein, but by accelerating fibril dissociation into smaller structures that may act as seeds. PMID:22591453

  20. Hydrodynamic liver gene transfer mechanism involves transient sinusoidal blood stasis and massive hepatocyte endocytic vesicles.

    PubMed

    Crespo, A; Peydró, A; Dasí, F; Benet, M; Calvete, J J; Revert, F; Aliño, S F

    2005-06-01

    The present study contributes to clarify the mechanism underlying the high efficacy of hepatocyte gene transfer mediated by hydrodynamic injection. Gene transfer experiments were performed employing the hAAT gene, and the efficacy and differential identification in mouse plasma of human transgene versus mouse gene was assessed by ELISA and proteomic procedures, respectively. By applying different experimental strategies such as cumulative dose-response efficacy, hemodynamic changes reflected by venous pressures, intravital microscopy, and morphological changes established by transmission electron microscopy, we found that: (a) cumulative multiple doses of transgene by hydrodynamic injection are efficient and well tolerated, resulting in therapeutic plasma levels of hAAT; (b) hydrodynamic injection mediates a transient inversion of intrahepatic blood flow, with circulatory stasis for a few minutes mainly in pericentral vein sinusoids; (c) transmission electron microscopy shows hydrodynamic injection to promote massive megafluid endocytic vesicles among hepatocytes around the central vein but not in hepatocytes around the periportal vein. We suggest that the mechanism of hydrodynamic liver gene transfer involves transient inversion of intrahepatic flow, sinusoidal blood stasis, and massive fluid endocytic vesicles in pericentral vein hepatocytes.

  1. Residues in the Hendra Virus Fusion Protein Transmembrane Domain Are Critical for Endocytic Recycling

    PubMed Central

    Popa, Andreea; Carter, James R.; Smith, Stacy E.; Hellman, Lance; Fried, Michael G.

    2012-01-01

    Hendra virus is a highly pathogenic paramyxovirus classified as a biosafety level four agent. The fusion (F) protein of Hendra virus is critical for promoting viral entry and cell-to-cell fusion. To be fusogenically active, Hendra virus F must undergo endocytic recycling and cleavage by the endosomal/lysosomal protease cathepsin L, but the route of Hendra virus F following internalization and the recycling signals involved are poorly understood. We examined the intracellular distribution of Hendra virus F following endocytosis and showed that it is primarily present in Rab5- and Rab4-positive endosomal compartments, suggesting that cathepsin L cleavage occurs in early endosomes. Hendra virus F transmembrane domain (TMD) residues S490 and Y498 were found to be important for correct Hendra virus F recycling, with the hydroxyl group of S490 and the aromatic ring of Y498 important for this process. In addition, changes in association of isolated Hendra virus F TMDs correlated with alterations to Hendra virus F recycling, suggesting that appropriate TMD interactions play an important role in endocytic trafficking. PMID:22238299

  2. Partially overlapping distribution of epsin1 and HIP1 at the synapse: analysis by immunoelectron microscopy.

    PubMed

    Yao, Pamela J; Bushlin, Ittai; Petralia, Ronald S

    2006-01-10

    Synapses of neurons use clathrin-mediated endocytic pathways for recycling of synaptic vesicles and trafficking of neurotransmitter receptors. Epsin 1 and huntingtin-interacting protein 1 (HIP1) are endocytic accessory proteins. Both proteins interact with clathrin and the AP2 adaptor complex and also bind to the phosphoinositide-containing plasma membrane via an epsin/AP180 N-terminal homology (ENTH/ANTH) domain. Epsin1 and HIP1 are found in neurons; however, their precise roles in synapses remain largely unknown. Using immunogold electron microscopy, we examine and compare the synaptic distribution of epsin1 and HIP1 in rat CA1 hippocampal synapse. We find that epsin1 is located across both sides of the synapse, whereas HIP1 displays a preference for the postsynaptic compartment. Within the synaptic compartments, espin1 is distributed similarly throughout, whereas postsynaptic HIP1 is concentrated near the plasma membrane. Our results suggest a dual role for epsin1 and HIP1 in the synapse: as broadly required factors for promoting clathrin assembly and as adaptors for specific endocytic pathways.

  3. Toxoplasma gondii sequesters lysosomes from mammalian hosts in the vacuolar space.

    PubMed

    Coppens, Isabelle; Dunn, Joe Dan; Romano, Julia D; Pypaert, Marc; Zhang, Hui; Boothroyd, John C; Joiner, Keith A

    2006-04-21

    The intracellular compartment harboring Toxoplasma gondii satisfies the parasite's nutritional needs for rapid growth in mammalian cells. We demonstrate that the parasitophorous vacuole (PV) of T. gondii accumulates material coming from the host mammalian cell via the exploitation of the host endo-lysosomal system. The parasite actively recruits host microtubules, resulting in selective attraction of endo-lysosomes to the PV. Microtubule-based invaginations of the PV membrane serve as conduits for the delivery of host endo-lysosomes within the PV. These tubular conduits are decorated by a parasite coat, including the tubulogenic protein GRA7, which acts like a garrote that sequesters host endocytic organelles in the vacuolar space. These data define an unanticipated process allowing the parasite intimate and concentrated access to a diverse range of low molecular weight components produced by the endo-lysosomal system. More generally, they identify a unique mechanism for unidirectional transport and sequestration of host organelles.

  4. Differential Requirements in Endocytic Trafficking for Penetration of Dengue Virus

    PubMed Central

    Acosta, Eliana G.; Castilla, Viviana; Damonte, Elsa B.

    2012-01-01

    The entry of DENV into the host cell appears to be a very complex process which has been started to be studied in detail. In this report, the route of functional intracellular trafficking after endocytic uptake of dengue virus serotype 1 (DENV-1) strain HW, DENV-2 strain NGC and DENV-2 strain 16681 into Vero cells was studied by using a susceptibility to ammonium chloride assay, dominant negative mutants of several members of the family of cellular Rab GTPases that participate in regulation of transport through endosome vesicles and immunofluorescence colocalization. Together, the results presented demonstrate that in spite of the different internalization route among viral serotypes in Vero cells and regardless of the viral strain, DENV particles are first transported to early endosomes in a Rab5-dependent manner. Then a Rab7-dependent pathway guides DENV-2 16681 to late endosomes, whereas a yet unknown sorting event controls the transport of DENV-2 NGC, and most probably DENV-1 HW, to the perinuclear recycling compartments where fusion membrane would take place releasing nucleocapsid into the cytoplasm. Besides the demonstration of a different intracellular trafficking for two DENV-2 strains that shared the initial clathrin-independent internalization route, these studies proved for the first time the involvement of the slow recycling pathway for DENV-2 productive infection. PMID:22970315

  5. Evidence for recycling of invariant surface transmembrane domain proteins in African trypanosomes.

    PubMed

    Koumandou, V Lila; Boehm, Cordula; Horder, Katy A; Field, Mark C

    2013-02-01

    Intracellular trafficking is a vital component of both virulence mechanisms and drug interactions in Trypanosoma brucei, the causative agent of human African trypanosomiasis and n'agana of cattle. Both maintaining the surface proteome composition within a life stage and remodeling the composition when progressing between life stages are important features of immune evasion and development for trypanosomes. Our recent work implicates the abundant transmembrane invariant surface glycoproteins (ISGs) in the uptake of first-line therapeutic suramin, suggesting a potential therapeutic route into the cell. RME-8 is a mediator of recycling pathways in higher eukaryotes and is one of a small cohort of intracellular transport gene products upregulated in mammal-infective trypanosomes, suggesting a role in controlling the copy number of surface proteins in trypanosomes. Here we investigate RME-8 function and its contribution to intracellular trafficking and stability of ISGs. RME-8 is a highly conserved protein and is broadly distributed across multiple endocytic compartments. By knockdown we find that RME-8 is essential and mediates delivery of endocytic probes to late endosomal compartments. Further, we find ISG accumulation within endosomes, but that RME-8 knockdown also increases ISG turnover; combined with previous data, this suggests that it is most probable that ISGs are recycled, and that RME-8 is required to support recycling.

  6. BAD-LAMP defines a subset of early endocytic organelles in subpopulations of cortical projection neurons.

    PubMed

    David, Alexandre; Tiveron, Marie-Catherine; Defays, Axel; Beclin, Christophe; Camosseto, Voahirana; Gatti, Evelina; Cremer, Harold; Pierre, Philippe

    2007-01-15

    The brain-associated LAMP-like molecule (BAD-LAMP) is a new member of the family of lysosome associated membrane proteins (LAMPs). In contrast to other LAMPs, which show a widespread expression, BAD-LAMP expression in mice is confined to the postnatal brain and therein to neuronal subpopulations in layers II/III and V of the neocortex. Onset of expression strictly parallels cortical synaptogenesis. In cortical neurons, the protein is found in defined clustered vesicles, which accumulate along neurites where it localizes with phosphorylated epitopes of neurofilament H. In primary neurons, BAD-LAMP is endocytosed, but is not found in classical lysosomal/endosomal compartments. Modification of BAD-LAMP by addition of GFP revealed a cryptic lysosomal retention motif, suggesting that the cytoplasmic tail of BAD-LAMP is actively interacting with, or modified by, molecules that promote its sorting away from lysosomes. Analysis of BAD-LAMP endocytosis in transfected HeLa cells provided evidence that the protein recycles to the plasma membrane through a dynamin/AP2-dependent mechanism. Thus, BAD-LAMP is an unconventional LAMP-like molecule and defines a new endocytic compartment in specific subtypes of cortical projection neurons. The striking correlation between the appearance of BAD-LAMP and cortical synatogenesis points towards a physiological role of this vesicular determinant for neuronal function.

  7. Review: Post-translational cross-talk between brassinosteroid and sucrose signaling.

    PubMed

    Kühn, Christina

    2016-07-01

    A direct link has been elucidated between brassinosteroid function and perception, and sucrose partitioning and transport. Sucrose regulation and brassinosteroid signaling cross-talk at various levels, including the well-described regulation of transcriptional gene expression: BZR-like transcription factors link the signaling pathways. Since brassinosteroid responses depend on light quality and quantity, a light-dependent alternative pathway was postulated. Here, the focus is on post-translational events. Recent identification of sucrose transporter-interacting partners raises the question whether brassinosteroid and sugars jointly affect plant innate immunity and plant symbiotic interactions. Membrane permeability and sensitivity depends on the number of cell surface receptors and transporters. More than one endocytic route has been assigned to specific components, including brassinosteroid-receptors. The number of such proteins at the plasma membrane relies on endocytic recycling, internalization and/or degradation. Therefore, vesicular membrane trafficking is gaining considerable attention with regard to plant immunity. The organization of pattern recognition receptors (PRRs), other receptors or transporters in membrane microdomains participate in endocytosis and the formation of specific intracellular compartments, potentially impacting biotic interactions. This minireview focuses on post-translational events affecting the subcellular compartmentation of membrane proteins involved in signaling, transport, and defense, and on the cross-talk between brassinosteroid signals and sugar availability. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. Intersectin goes nuclear: secret life of an endocytic protein.

    PubMed

    Alvisi, Gualtiero; Paolini, Lucia; Contarini, Andrea; Zambarda, Chiara; Di Antonio, Veronica; Colosini, Antonella; Mercandelli, Nicole; Timmoneri, Martina; Palù, Giorgio; Caimi, Luigi; Ricotta, Doris; Radeghieri, Annalisa

    2018-04-27

    Intersectin 1-short (ITSN1-s) is a 1220 amino acid ubiquitously expressed scaffold protein presenting a multidomain structure that allows to spatiotemporally regulate the functional interaction of a plethora of proteins. Besides its well-established role in endocytosis, ITSN1-s is involved in the regulation of cell signaling and is implicated in tumorigenesis processes, although the signaling pathways involved are still poorly understood. Here, we identify ITSN1-s as a nucleocytoplasmic trafficking protein. We show that, by binding to importin (IMP)α, a small fraction of ITSN1-s localizes in the cell nucleus at the steady state, where it preferentially associates with the nuclear envelope and interacts with lamin A/C. However, upon pharmacological ablation of chromosome region maintenance 1 (CRM-1)-dependent nuclear export pathway, the protein accumulates into the nucleus, thus revealing its moonlighting nature. Analysis of deletion mutants revealed that the coiled coil (CC) and Src homology (SH3) regions play the major role in its nucleocytoplasmic shuttling. While no evidence of nuclear localization signal (NLS) was detected in the CC region, a functional bipartite NLS was identified within the SH3D region of ITSN1-s (RKKNPGGWWEGELQARGKKRQIGW-1127), capable of conferring energy-dependent nuclear accumulation to reporter proteins and whose mutational ablation affects nuclear import of the whole SH3 region. Thus, ITSN1-s is an endocytic protein, which shuttles between the nucleus and the cytoplasm in a CRM-1- and IMPα-dependent fashion. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  9. Endocytic pathway rapidly delivers internalized molecules to lysosomes: an analysis of vesicle trafficking, clustering and mass transfer.

    PubMed

    Pangarkar, Chinmay; Dinh, Anh-Tuan; Mitragotri, Samir

    2012-08-20

    Lysosomes play a critical role in intracellular drug delivery. For enzyme-based therapies, they represent a potential target site whereas for nucleic acid or many protein drugs, they represent the potential degradation site. Either way, understanding the mechanisms and processes involved in routing of materials to lysosomes after cellular entry is of high interest to the field of drug delivery. Most therapeutic cargoes other than small hydrophobic molecules enter the cells through endocytosis. Endocytosed cargoes are routed to lysosomes via microtubule-based transport and are ultimately shared by various lysosomes via tethering and clustering of endocytic vesicles followed by exchange of their contents. Using a combined experimental and numerical approach, here we studied the rates of mass transfer into and among the endocytic vesicles in a model cell line, 3T3 fibroblasts. In order to understand the relationship of mass transfer with microtubular transport and vesicle clustering, we varied both properties through various pharmacological agents. At the same time, microtubular transport and vesicle clustering were modeled through diffusion-advection equations and the Smoluchowski equations, respectively. Our analysis revealed that the rate of mass transfer is optimally related to microtubular transport and clustering properties of vesicles. Further, the rate of mass transfer is highest in the innate state of the cell. Any perturbation to either microtubular transport or vesicle aggregation led to reduced mass transfer to lysosome. These results suggest that in the absence of an external intervention the endocytic pathway appears to maximize molecular delivery to lysosomes. Strategies are discussed to reduce mass transfer to lysosomes so as to extend the residence time of molecules in endosomes or late endosomes, thus potentially increasing the likelihood of their escape before disposition in the lysosomes. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Overlapping Role of Dynamin Isoforms in Synaptic Vesicle Endocytosis

    PubMed Central

    Raimondi, Andrea; Ferguson, Shawn M.; Lou, Xuelin; Armbruster, Moritz; Paradise, Summer; Giovedi, Silvia; Messa, Mirko; Kono, Nao; Takasaki, Junko; Cappello, Valentina; O’Toole, Eileen; Ryan, Timothy A.; De Camilli, Pietro

    2011-01-01

    The existence of neuron specific endocytic protein isoforms raises questions about their importance for specialized neuronal functions. Dynamin, a GTPase implicated in the fission reaction of endocytosis, is encoded by three genes, two of which, dynamin 1 and 3, are highly expressed in neurons. We show that dynamin 3, thought to play a predominantly postsynaptic role, has a major presynaptic function. While lack of dynamin 3 does not produce an overt phenotype in mice, it worsens the dynamin 1 KO phenotype, leading to perinatal lethality and a more severe defect in activity-dependent synaptic vesicle endocytosis. Thus, dynamin 1 and 3, which together account for the overwhelming majority of brain dynamin, cooperate in supporting optimal rates of synaptic vesicle endocytosis. Persistence of synaptic transmission in their absence indicates that if dynamin plays essential functions in neurons, such functions can be achieved by the very low levels of dynamin 2. PMID:21689597

  11. EphA2 is a functional receptor for the growth factor progranulin.

    PubMed

    Neill, Thomas; Buraschi, Simone; Goyal, Atul; Sharpe, Catherine; Natkanski, Elizabeth; Schaefer, Liliana; Morrione, Andrea; Iozzo, Renato V

    2016-12-05

    Although the growth factor progranulin was discovered more than two decades ago, the functional receptor remains elusive. Here, we discovered that EphA2, a member of the large family of Ephrin receptor tyrosine kinases, is a functional signaling receptor for progranulin. Recombinant progranulin bound with high affinity to EphA2 in both solid phase and solution. Interaction of progranulin with EphA2 caused prolonged activation of the receptor, downstream stimulation of mitogen-activated protein kinase and Akt, and promotion of capillary morphogenesis. Furthermore, we found an autoregulatory mechanism of progranulin whereby a feed-forward loop occurred in an EphA2-dependent manner that was independent of the endocytic receptor sortilin. The discovery of a functional signaling receptor for progranulin offers a new avenue for understanding the underlying mode of action of progranulin in cancer progression, tumor angiogenesis, and perhaps neurodegenerative diseases. © 2016 Neill et al.

  12. EphA2 is a functional receptor for the growth factor progranulin

    PubMed Central

    Neill, Thomas; Goyal, Atul; Sharpe, Catherine

    2016-01-01

    Although the growth factor progranulin was discovered more than two decades ago, the functional receptor remains elusive. Here, we discovered that EphA2, a member of the large family of Ephrin receptor tyrosine kinases, is a functional signaling receptor for progranulin. Recombinant progranulin bound with high affinity to EphA2 in both solid phase and solution. Interaction of progranulin with EphA2 caused prolonged activation of the receptor, downstream stimulation of mitogen-activated protein kinase and Akt, and promotion of capillary morphogenesis. Furthermore, we found an autoregulatory mechanism of progranulin whereby a feed-forward loop occurred in an EphA2-dependent manner that was independent of the endocytic receptor sortilin. The discovery of a functional signaling receptor for progranulin offers a new avenue for understanding the underlying mode of action of progranulin in cancer progression, tumor angiogenesis, and perhaps neurodegenerative diseases. PMID:27903606

  13. The late endocytic Rab39a GTPase regulates the interaction between multivesicular bodies and chlamydial inclusions.

    PubMed

    Gambarte Tudela, Julian; Capmany, Anahi; Romao, Maryse; Quintero, Cristian; Miserey-Lenkei, Stephanie; Raposo, Graca; Goud, Bruno; Damiani, Maria Teresa

    2015-08-15

    Given their obligate intracellular lifestyle, Chlamydia trachomatis ensure that they have access to multiple host sources of essential lipids by interfering with vesicular transport. These bacteria hijack Rab6-, Rab11- and Rab14-controlled trafficking pathways to acquire sphingomyelin from the Golgi complex. Another important source of sphingolipids, phospholipids and cholesterol are multivesicular bodies (MVBs). Despite their participation in chlamydial inclusion development and bacterial replication, the molecular mechanisms mediating the interaction between MVBs and chlamydial inclusions remain unknown. In the present study, we demonstrate that Rab39a labels a subset of late endocytic vesicles - mainly MVBs - that move along microtubules. Moreover, Rab39a is actively recruited to chlamydial inclusions throughout the pathogen life cycle by a bacterial-driven process that depends on the Rab39a GTP- or GDP-binding state. Interestingly, Rab39a participates in the delivery of MVBs and host sphingolipids to maturing chlamydial inclusions, thereby promoting inclusion growth and bacterial development. Taken together, our findings indicate that Rab39a favours chlamydial replication and infectivity. This is the first report showing that a late endocytic Rab GTPase is involved in chlamydial infection development. © 2015. Published by The Company of Biologists Ltd.

  14. Endocytic pathway mediates refractoriness of insect Bactrocera dorsalis to RNA interference

    PubMed Central

    Li, Xiaoxue; Dong, Xiaolong; Zou, Cong; Zhang, Hongyu

    2015-01-01

    RNA interference (RNAi) is a powerful and convenient tool for sequence-specific gene silencing, and it is triggered by double-stranded RNA (dsRNA). RNAi can be easily achieved in many eukaryotes by either injecting or feeding dsRNAs. This mechanism has demonstrated its potential in fundamental research on genetics, medicine and agriculture. However, the possibility that insects might develop refractoriness to RNAi remains unexplored. In this study, we report that the oriental fruit fly, Bactrocera dorsalis, became refractory to RNAi using orally administered dsRNA targeting endogenous genes. Furthermore, refractoriness to RNAi is not gene-specific, and its duration depends on the dsRNA concentration. RNAi blockage requires the endocytic pathway. Fluorescence microscopy indicated that in RNAi refractory flies, dsRNA uptake is blocked. Genes involved in the entry of dsRNAs into cells, including chc, cog3, light and others, are down-regulated in RNAi refractory flies. Increasing the endocytic capacity by improving F-actin polymerization disrupts RNAi refractoriness after both primary and secondary dsRNA exposures. Our results demonstrate that an insect can become refractory to RNAi by preventing the entry of dsRNA into its cells. PMID:25731667

  15. Endocytic pathway mediates refractoriness of insect Bactrocera dorsalis to RNA interference.

    PubMed

    Li, Xiaoxue; Dong, Xiaolong; Zou, Cong; Zhang, Hongyu

    2015-03-03

    RNA interference (RNAi) is a powerful and convenient tool for sequence-specific gene silencing, and it is triggered by double-stranded RNA (dsRNA). RNAi can be easily achieved in many eukaryotes by either injecting or feeding dsRNAs. This mechanism has demonstrated its potential in fundamental research on genetics, medicine and agriculture. However, the possibility that insects might develop refractoriness to RNAi remains unexplored. In this study, we report that the oriental fruit fly, Bactrocera dorsalis, became refractory to RNAi using orally administered dsRNA targeting endogenous genes. Furthermore, refractoriness to RNAi is not gene-specific, and its duration depends on the dsRNA concentration. RNAi blockage requires the endocytic pathway. Fluorescence microscopy indicated that in RNAi refractory flies, dsRNA uptake is blocked. Genes involved in the entry of dsRNAs into cells, including chc, cog3, light and others, are down-regulated in RNAi refractory flies. Increasing the endocytic capacity by improving F-actin polymerization disrupts RNAi refractoriness after both primary and secondary dsRNA exposures. Our results demonstrate that an insect can become refractory to RNAi by preventing the entry of dsRNA into its cells.

  16. Purification of the Membrane Compartment for Endoplasmic Reticulum-associated Degradation of Exogenous Antigens in Cross-presentation.

    PubMed

    Imai, Jun; Otani, Mayu; Sakai, Takahiro; Hatta, Shinichi

    2017-08-21

    Dendritic cells (DCs) are highly capable of processing and presenting internalized exogenous antigens upon major histocompatibility class (MHC) I molecules also known as cross-presentation (CP). CP plays an important role not only in the stimulation of naïve CD8 + T cells and memory CD8 + T cells for infectious and tumor immunity but also in the inactivation of self-acting naïve T cells by T cell anergy or T cell deletion. Although the critical molecular mechanism of CP remains to be elucidated, accumulating evidence indicates that exogenous antigens are processed through endoplasmic reticulum-associated degradation (ERAD) after export from non-classical endocytic compartments. Until recently, characterizations of these endocytic compartments were limited because there were no specific molecular markers other than exogenous antigens. The method described here is a new vesicle isolation protocol, which allows for the purification of these endocytic compartments. Using this purified microsome, we reconstituted the ERAD-like transport, ubiquitination, and processing of the exogenous antigen in vitro, suggesting that the ubiquitin-proteasome system processed the exogenous antigen after export from this cellular compartment. This protocol can be further applied to other cell types to clarify the molecular mechanism of CP.

  17. The role of endocytic Rab GTPases in regulation of growth factor signaling and the migration and invasion of tumor cells

    PubMed Central

    Porther, N; Barbieri, MA

    2015-01-01

    Metastasis is characterized pathologically by uncontrolled cell invasion, proliferation, migration and angiogenesis. It is a multistep process that encompasses the modulation of membrane permeability and invasion, cell spreading, cell migration and proliferation of the extracellular matrix, increase in cell adhesion molecules and interaction, decrease in cell attachment and induced survival signals and propagation of nutrient supplies (blood vessels). In cancer, a solid tumor cannot expand and spread without a series of synchronized events. Changes in cell adhesion receptor molecules (e.g., integrins, cadherin-catenins) and protease expressions have been linked to tumor invasion and metastasis. It has also been determined that ligand-growth factor receptor interactions have been associated with cancer development and metastasis via the endocytic pathway. Specifically, growth factors, which include IGF-1 and IGF-2 therapy, have been associated with most if not all of the features of metastasis. In this review, we will revisit some of the key findings on perhaps one of the most important hallmarks of cancer metastasis: cell migration and cell invasion and the role of the endocytic pathway in mediating this phenomenon PMID:26317377

  18. Mechanisms of EHD/RME-1 Protein Function in Endocytic Transport

    PubMed Central

    Grant, Barth D.; Caplan, Steve

    2009-01-01

    The evolutionarily conserved Eps15 homology domain (EHD)/receptor-mediated endocytosis (RME)-1 family of C-terminal EH domain proteins has recently come under intense scrutiny because of its importance in intracellular membrane transport, especially with regard to the recycling of receptors from endosomes to the plasma membrane. Recent studies have shed new light on the mode by which these adenosine triphosphatases function on endosomal membranes in mammals and Caenorhabditis elegans. This review highlights our current understanding of the physiological roles of these proteins in vivo, discussing conserved features as well as emerging functional differences between individual mammalian paralogs. In addition, these findings are discussed in light of the identification of novel EHD/RME-1 protein and lipid interactions and new structural data for proteins in this family, indicating intriguing similarities to the Dynamin superfamily of large guanosine triphosphatases. PMID:18801062

  19. Deficiency in the Lipid Exporter ABCA1 Impairs Retrograde Sterol Movement and Disrupts Sterol Sensing at the Endoplasmic Reticulum*♦

    PubMed Central

    Yamauchi, Yoshio; Iwamoto, Noriyuki; Rogers, Maximillian A.; Abe-Dohmae, Sumiko; Fujimoto, Toyoshi; Chang, Catherine C. Y.; Ishigami, Masato; Kishimoto, Takuma; Kobayashi, Toshihide; Ueda, Kazumitsu; Furukawa, Koichi; Chang, Ta-Yuan; Yokoyama, Shinji

    2015-01-01

    Cellular cholesterol homeostasis involves sterol sensing at the endoplasmic reticulum (ER) and sterol export from the plasma membrane (PM). Sterol sensing at the ER requires efficient sterol delivery from the PM; however, the macromolecules that facilitate retrograde sterol transport at the PM have not been identified. ATP-binding cassette transporter A1 (ABCA1) mediates cholesterol and phospholipid export to apolipoprotein A-I for the assembly of high density lipoprotein (HDL). Mutations in ABCA1 cause Tangier disease, a familial HDL deficiency. Several lines of clinical and experimental evidence suggest a second function of ABCA1 in cellular cholesterol homeostasis in addition to mediating cholesterol efflux. Here, we report the unexpected finding that ABCA1 also plays a key role in facilitating retrograde sterol transport from the PM to the ER for sterol sensing. Deficiency in ABCA1 delays sterol esterification at the ER and activates the SREBP-2 cleavage pathway. The intrinsic ATPase activity in ABCA1 is required to facilitate retrograde sterol transport. ABCA1 deficiency causes alternation of PM composition and hampers a clathrin-independent endocytic activity that is required for ER sterol sensing. Our finding identifies ABCA1 as a key macromolecule facilitating bidirectional sterol movement at the PM and shows that ABCA1 controls retrograde sterol transport by modulating a certain clathrin-independent endocytic process. PMID:26198636

  20. Intravital Imaging Reveals Angiotensin II–Induced Transcytosis of Albumin by Podocytes

    PubMed Central

    Schießl, Ina Maria; Hammer, Anna; Kattler, Veronika; Gess, Bernhard; Theilig, Franziska; Witzgall, Ralph

    2016-01-01

    Albuminuria is a hallmark of kidney disease of various etiologies and usually caused by deterioration of glomerular filtration barrier integrity. We recently showed that angiotensin II (Ang II) acutely increases albumin filtration in the healthy kidney. Here, we used intravital microscopy to assess the effects of Ang II on podocyte function in rats. Acute infusion of 30, 60, or 80 ng/kg per minute Ang II enhanced the endocytosis of albumin by activation of the type 1 Ang II receptor and resulted in an average (±SEM) of 3.7±2.2, 72.3±18.6 (P<0.001), and 239.4±34.6 µm3 (P<0.001) albumin-containing vesicles per glomerulus, respectively, compared with none at baseline or 10 ng/kg per minute Ang II. Immunostaining of Ang II–infused kidneys confirmed the presence of albumin-containing vesicles, which colocalized with megalin, in podocin-positive cells. Furthermore, podocyte endocytosis of albumin was markedly reduced in the presence of gentamicin, a competitive inhibitor of megalin-dependent endocytosis. Ang II infusion increased the concentration of albumin in the subpodocyte space, a potential source for endocytic protein uptake, and gentamicin further increased this concentration. Some endocytic vesicles were acidified and colocalized with LysoTracker. Most vesicles migrated from the capillary to the apical aspect of the podocyte and were eventually released into the urinary space. This transcytosis accounted for approximately 10% of total albumin filtration. In summary, the transcellular transport of proteins across the podocyte constitutes a new pathway of glomerular protein filtration. Ang II enhances the endocytosis and transcytosis of plasma albumin by podocytes, which may eventually impair podocyte function. PMID:26116357

  1. Biological Functionalization of Drug Delivery Carriers to Bypass Size Restrictions of Receptor-Mediated Endocytosis Independently from Receptor Targeting

    PubMed Central

    Ansar, Maria; Serrano, Daniel; Papademetriou, Iason; Bhowmick, Tridib Kumar; Muro, Silvia

    2014-01-01

    Targeting of drug carriers to cell-surface receptors involved in endocytosis is commonly used for intracellular drug delivery. However, most endocytic receptors mediate uptake via clathrin or caveolar pathways associated with ≤200-nm vesicles, restricting carrier design. We recently showed that endocytosis mediated by intercellular adhesion molecule 1 (ICAM-1), which differs from clathrin- and caveolar-mediated pathways, allows uptake of nano- and micro-carriers in cell culture and in vivo due to recruitment of cellular sphingomyelinases to the plasmalemma. This leads to ceramide generation at carrier binding sites and formation of actin stress-fibers, enabling engulfment and uptake of a wide size-range of carriers. Here we adapted this paradigm to enhance uptake of drug carriers targeted to receptors associated with size-restricted pathways. We coated sphingomyelinase onto model (polystyrene) submicro- and micro-carriers targeted to clathrin-associated mannose-6-phosphate receptor. In endothelial cells, this provided ceramide enrichment at the cell surface and actin stress-fiber formation, modifying the uptake pathway and enhancing carrier endocytosis without affecting targeting, endosomal transport, cell-associated degradation, or cell viability. This improvement depended on the carrier size and enzyme dose, and similar results were observed for other receptors (transferrin receptor) and cell types (epithelial cells). This phenomenon also enhanced tissue accumulation of carriers after intravenous injection in mice. Hence, it is possible to maintain targeting toward a selected receptor while bypassing natural size-restrictions of its associated endocytic route by functionalization of drug carriers with biological elements mimicking the ICAM-1 pathway. This strategy holds considerable promise to enhance flexibility of design of targeted drug delivery systems. PMID:24237309

  2. Biological functionalization of drug delivery carriers to bypass size restrictions of receptor-mediated endocytosis independently from receptor targeting.

    PubMed

    Ansar, Maria; Serrano, Daniel; Papademetriou, Iason; Bhowmick, Tridib Kumar; Muro, Silvia

    2013-12-23

    Targeting of drug carriers to cell-surface receptors involved in endocytosis is commonly used for intracellular drug delivery. However, most endocytic receptors mediate uptake via clathrin or caveolar pathways associated with ≤200-nm vesicles, restricting carrier design. We recently showed that endocytosis mediated by intercellular adhesion molecule 1 (ICAM-1), which differs from clathrin- and caveolae-mediated pathways, allows uptake of nano- and microcarriers in cell culture and in vivo due to recruitment of cellular sphingomyelinases to the plasmalemma. This leads to ceramide generation at carrier binding sites and formation of actin stress-fibers, enabling engulfment and uptake of a wide size-range of carriers. Here we adapted this paradigm to enhance uptake of drug carriers targeted to receptors associated with size-restricted pathways. We coated sphingomyelinase onto model (polystyrene) submicro- and microcarriers targeted to clathrin-associated mannose-6-phosphate receptor. In endothelial cells, this provided ceramide enrichment at the cell surface and actin stress-fiber formation, modifying the uptake pathway and enhancing carrier endocytosis without affecting targeting, endosomal transport, cell-associated degradation, or cell viability. This improvement depended on the carrier size and enzyme dose, and similar results were observed for other receptors (transferrin receptor) and cell types (epithelial cells). This phenomenon also enhanced tissue accumulation of carriers after intravenous injection in mice. Hence, it is possible to maintain targeting toward a selected receptor while bypassing natural size restrictions of its associated endocytic route by functionalization of drug carriers with biological elements mimicking the ICAM-1 pathway. This strategy holds considerable promise to enhance flexibility of design of targeted drug delivery systems.

  3. The collagen receptor uPARAP/Endo180 as a novel target for antibody-drug conjugate mediated treatment of mesenchymal and leukemic cancers

    PubMed Central

    Nielsen, Christoffer Fagernæs; van Putten, Sander Maarten; Lund, Ida Katrine; Melander, Maria Carlsén; Nørregaard, Kirstine Sandal; Jürgensen, Henrik Jessen; Reckzeh, Kristian; Christensen, Kristine Rothaus; Ingvarsen, Signe Ziir; Gårdsvoll, Henrik; Jensen, Kamilla Ellermann; Hamerlik, Petra; Engelholm, Lars Henning; Behrendt, Niels

    2017-01-01

    A key task in developing the field of personalized cancer therapy is the identification of novel molecular targets that enable treatment of cancers not susceptible to other means of specific therapy. The collagen receptor uPARAP/Endo180 is overexpressed by malignant cells in several non-epithelial cancers, notably including sarcomas, glioblastomas and subsets of acute myeloid leukemia. In contrast, in healthy adult individuals, expression is restricted to minor subsets of mesenchymal cells. Functionally, uPARAP/Endo180 is a rapidly recycling endocytic receptor that delivers its cargo directly into the endosomal-lysosomal system, thus opening a potential route of entry into receptor-positive cells. This combination of specific expression and endocytic function appears well suited for targeting of uPARAP/Endo180-positive cancers by antibody-drug conjugate (ADC) mediated drug delivery. Therefore, we utilized a specific monoclonal antibody against uPARAP/Endo180, raised through immunization of a uPARAP/Endo180 knock-out mouse, which reacts with both the human and the murine receptor, to construct a uPARAP-directed ADC. This antibody was coupled to the highly toxic dolastatin derivative, monomethyl auristatin E, via a cathepsin-labile valine-citrulline linker. With this ADC, we show strong and receptor-dependent cytotoxicity in vitro in uPARAP/Endo180-positive cancer cell lines of sarcoma, glioblastoma and leukemic origin. Furthermore, we demonstrate the potency of the ADC in vivo in a xenograft mouse model with human uPARAP/Endo180-positive leukemic cells, obtaining a complete cure of all tested mice following intravenous ADC treatment with no sign of adverse effects. Our study identifies uPARAP/Endo180 as a promising target for novel therapy against several highly malignant cancer types. PMID:28574834

  4. The N-terminal region of the dopamine D2 receptor, a rhodopsin-like GPCR, regulates correct integration into the plasma membrane and endocytic routes

    PubMed Central

    Cho, DI; Min, C; Jung, KS; Cheong, SY; Zheng, M; Cheong, SJ; Oak, MH; Cheong, JH; Lee, BK; Kim, KM

    2012-01-01

    BACKGROUND AND PURPOSE Functional roles of the N-terminal region of rhodopsin-like GPCR family remain unclear. Using dopamine D2 and D3 receptors as a model system, we probed the roles of the N-terminal region in the signalling, intracellular trafficking of receptor proteins, and explored the critical factors that determine the functionality of the N-terminal region. EXPERIMENTAL APPROACH The N-terminal region of the D2 receptor was gradually shortened or switched with that of the D3 receptor or a non-specific sequence (FLAG), or potential N-terminal glycosylation sites were mutated. Effects of these manipulations on surface expression, internalization, post-endocytic behaviours and signalling were determined. KEY RESULTS Shortening the N-terminal region of the D2 receptor enhanced receptor internalization and impaired surface expression and signalling; ligand binding, desensitization and down-regulation were not affected but their association with a particular microdomain, caveolae, was disrupted. Replacement of critical residues within the N-terminal region with the FLAG epitope failed to restore surface expression but partially restored the altered internalization and signalling. When the N-terminal regions were switched between D2 and D3 receptors, cell surface expression pattern of each receptor was switched. Mutations of potential N-terminal glycosylation sites inhibited surface expression but enhanced internalization of D2 receptors. CONCLUSIONS AND IMPLICATIONS Shortening of N-terminus or mutation of glycosylation sites located within the N-terminus enhanced receptor internalization but impaired the surface expression of D2 receptors. The N-terminal region of the D2 receptor, in a sequence-specific manner, controls the receptor's conformation and integration into the plasma membrane, which determine its subcellular localization, intracellular trafficking and signalling properties. PMID:22117524

  5. Ehd4 is required to attain normal pre-pubertal testis size but dispensable for fertility in male mice

    PubMed Central

    George, Manju; Rainey, Mark A.; Naramura, Mayumi; Ying, GuoGuang; Harms, Don W.; Vitaterna, Martha H.; Doglio, Lynn; Crawford, Susan E.; Hess, Rex A.; Band, Vimla; Band, Hamid

    2010-01-01

    The four highly homologous members of the C-terminal EH domain-containing (EHD) protein family (EHD1-4) regulates endocytic recycling. To delineate the role of EHD4 in normal physiology and development, mice with a conditional knockout of the Ehd4 gene were generated. PCR of genomic DNA and Western blotting of organ lysates from Ehd4−/− mice confirmed EHD4 deletion. Ehd4−/− mice were viable and born at expected Mendelian ratios; however, males showed a 50% reduction in testis weight, obvious from postnatal day 31. An early (day 10) increase in germ cell proliferation and apoptosis and a later increase in apoptosis (day 31) were seen in the Ehd4−/− testis. Other defects included a progressive reduction in seminiferous tubule diameter, dysregulation of seminiferous epithelium and head abnormalities in elongated spermatids. As a consequence, lower sperm counts and reduced fertility were observed in Ehd4−/− males. Interestingly, EHD protein expression was seen to be temporally regulated in the testis and levels peaked between days 10 and 15. In the adult testis, EHD4 was highly expressed in primary spermatocytes and EHD4 deletion altered the levels of other EHD proteins in an age-dependent manner. We conclude that high levels of EHD1in the adult Ehd4−/− testis functionally compensate for lack of EHD4 and prevents the development of severe fertility defects. Our results suggest a role for EHD4 in the proper development of post-mitotic and post-meiotic germ cells and implicate EHD protein-mediated endocytic recycling as an important process in germ cell development and testis function. PMID:20213691

  6. Apparent loss-of-function mutant GPCRs revealed as constitutively desensitized receptors.

    PubMed

    Wilbanks, Alyson M; Laporte, Stéphane A; Bohn, Laura M; Barak, Larry S; Caron, Marc G

    2002-10-08

    The DRY motif is a triplet amino acid sequence (aspartic acid, arginine, and tyrosine) that is highly conserved in G protein-coupled receptors (GPCRs). Recently, we have shown that a molecular determinant for nephrogenic diabetes insipidus, the vasopressin receptor with a substitution at the DRY motif arginine (V2R R137H), is a constitutively desensitized receptor that is unable to couple to G proteins due to its constitutive association with beta-arrestin [Barak, L. S. (2001) Proc. Natl. Acad. Sci. U.S.A. 98, 93-98]. Additionally, the mutant receptors are localized in endocytic vesicles, identical to wild-type receptors stimulated with agonist. In this study, we asked whether the constitutively desensitized phenotype observed in the V2R R137H represents a general paradigm that may be extended to other GPCRs. We show that arginine substitutions in the DRY motifs of the alpha(1B) adrenergic receptor (alpha(1B)-AR) and angiotensin II type 1A receptor (AT(1A)R) result in receptors that are uncoupled from G proteins, associated with beta-arrestins, and found localized in endocytic vesicles rather than at the plasma membrane in the absence of agonists. The localization of the alpha(1B)-ARs and AT(1A)Rs with arginine substitutions can be restored to the plasma membrane by either using selective antagonists or preventing the endocytosis of the beta-arrestin-receptor complexes. These results indicate that the arginine residue of the DRY motif is essential for preserving the localization of the inactive receptor complex. Furthermore, constitutive desensitization may underlie some loss-of-function receptor phenotypes and represent an unappreciated mechanism of hormonal resistance.

  7. ARF6 and GASP-1 are post-endocytic sorting proteins selectively involved in the intracellular trafficking of dopamine D2 receptors mediated by GRK and PKC in transfected cells

    PubMed Central

    Cho, DI; Zheng, M; Min, C; Kwon, KJ; Shin, CY; Choi, HK; Kim, KM

    2013-01-01

    Background and Purpose GPCRs undergo both homologous and heterologous regulatory processes in which receptor phosphorylation plays a critical role. The protein kinases responsible for each pathway are well established; however, other molecular details that characterize each pathway remain unclear. In this study, the molecular mechanisms that determine the differences in the functional roles and intracellular trafficking between homologous and PKC-mediated heterologous internalization pathways for the dopamine D2 receptor were investigated. Experimental Approach All of the S/T residues located within the intracellular loops of D2 receptor were mutated, and the residues responsible for GRK- and PKC-mediated internalization were determined in HEK-293 cells and SH-SY5Y cells. The functional role of receptor internalization and the cellular components that determine the post-endocytic fate of internalized D2 receptors were investigated in the transfected cells. Key Results T134, T225/S228/S229 and S325 were involved in PKC-mediated D2 receptor desensitization. S229 and adjacent S/T residues mediated the PKC-dependent internalization of D2 receptors, which induced down-regulation and desensitization. S/T residues within the second intracellular loop and T225 were the major residues involved in GRK-mediated internalization of D2 receptors, which induced receptor resensitization. ARF6 mediated the recycling of D2 receptors internalized in response to agonist stimulation. In contrast, GASP-1 mediated the down-regulation of D2 receptors internalized in a PKC-dependent manner. Conclusions and Implications GRK- and PKC-mediated internalizations of D2 receptors occur through different intracellular trafficking pathways and mediate distinct functional roles. Distinct S/T residues within D2 receptors and different sorting proteins are involved in the dissimilar regulation of D2 receptors by GRK2 and PKC. PMID:23082996

  8. The C2 Domain Protein Cts1 Functions in the Calcineurin Signaling Circuit during High-Temperature Stress Responses in Cryptococcus neoformans ▿ †

    PubMed Central

    Aboobakar, Eanas F.; Wang, Xuying; Heitman, Joseph; Kozubowski, Lukasz

    2011-01-01

    Calcineurin is a conserved calcium/calmodulin-dependent serine/threonine-specific protein phosphatase that acts in cell stress responses. Calcineurin is essential for growth at 37°C and for virulence of the human fungal pathogen Cryptococcus neoformans, but its substrates remain unknown. The C2 domain-containing, phospholipid-binding protein Cts1 was previously identified as a multicopy suppressor of a calcineurin mutation in C. neoformans. Here we further characterize the function of Cts1 and the links between Cts1 and calcineurin. GFP-Cts1 localizes to cytoplasmic puncta and colocalizes with the endosomal marker FM4-64. The cts1Δ mutant shows a distinct FM4-64 staining pattern, suggesting involvement of Cts1 in endocytic trafficking. In large budded cells, GFP-Cts1 localizes transiently at the mother bud neck, as a single ring that undergoes contraction. mCherry-Cts1 colocalizes with the GFP-tagged calcineurin catalytic subunit Cna1 at sites of mRNA processing at 37°C, suggesting that Cts1 and calcineurin function coordinately during thermal stress. GFP-Cts1 exhibits slower electrophoretic mobility for cells grown at 37°C than for cells grown at 24°C, and the shift to a higher molecular weight is more pronounced in the presence of the calcineurin inhibitor FK506. In vitro treatment with calf intestinal alkaline phosphatase (CIP) restores faster electrophoretic mobility to GFP-Cts1, suggesting that Cts1 is phosphorylated at 37°C and may be dephosphorylated in a calcineurin-dependent manner. mCherry-Cts1 also coimmunoprecipitates with GFP-Cna1, with greater complex formation at 37°C than at 24°C. Taken together, these findings support potential roles for Cts1 in endocytic trafficking, mRNA processing, and cytokinesis and suggest that Cts1 is a substrate of calcineurin during high-temperature stress responses. PMID:22002655

  9. KCNE Regulation of K+ Channel Trafficking – a Sisyphean Task?

    PubMed Central

    Kanda, Vikram A.; Abbott, Geoffrey W.

    2012-01-01

    Voltage-gated potassium (Kv) channels shape the action potentials of excitable cells and regulate membrane potential and ion homeostasis in excitable and non-excitable cells. With 40 known members in the human genome and a variety of homomeric and heteromeric pore-forming α subunit interactions, post-translational modifications, cellular locations, and expression patterns, the functional repertoire of the Kv α subunit family is monumental. This versatility is amplified by a host of interacting proteins, including the single membrane-spanning KCNE ancillary subunits. Here, examining both the secretory and the endocytic pathways, we review recent findings illustrating the surprising virtuosity of the KCNE proteins in orchestrating not just the function, but also the composition, diaspora and retrieval of channels formed by their Kv α subunit partners. PMID:22754540

  10. A role for the deep orange and carnation eye color genes in lysosomal delivery in Drosophila.

    PubMed

    Sevrioukov, E A; He, J P; Moghrabi, N; Sunio, A; Krämer, H

    1999-10-01

    Deep orange and carnation are two of the classic eye color genes in Drosophila. Here, we demonstrate that Deep orange is part of a protein complex that localizes to endosomal compartments. A second component of this complex is Carnation, a homolog of Sec1p-like regulators of membrane fusion. Because complete loss of deep orange function is lethal, the role of this complex in intracellular trafficking was analyzed in deep orange mutant clones. Retinal cells devoid of deep orange function completely lacked pigmentation and exhibited exaggerated multivesicular structures. Furthermore, a defect in endocytic trafficking was visualized in developing photoreceptor cells. These results provide direct evidence that eye color mutations of the granule group also disrupt vesicular trafficking to lysosomes.

  11. Lamp1 Increases the Efficiency of Lassa Virus Infection by Promoting Fusion in Less Acidic Endosomal Compartments.

    PubMed

    Hulseberg, Christine E; Fénéant, Lucie; Szymańska, Katarzyna M; White, Judith M

    2018-01-02

    Lassa virus (LASV) is an arenavirus whose entry into host cells is mediated by a glycoprotein complex (GPC) comprised of a receptor binding subunit, GP1, a fusogenic transmembrane subunit, GP2, and a stable signal peptide. After receptor-mediated internalization, arenaviruses converge in the endocytic pathway, where they are thought to undergo low-pH-triggered, GPC-mediated fusion with a late endosome membrane. A unique feature of LASV entry is a pH-dependent switch from a primary cell surface receptor (α-dystroglycan) to an endosomal receptor, lysosomal-associated membrane protein (Lamp1). Despite evidence that the interaction between LASV GP1 and Lamp1 is critical, the function of Lamp1 in promoting LASV infection remains poorly characterized. Here we used wild-type (WT) and Lamp1 knockout (KO) cells to show that Lamp1 increases the efficiency of, but is not absolutely required for, LASV entry and infection. We then used cell-cell and pseudovirus-cell surface fusion assays to demonstrate that LASV GPC-mediated fusion occurs at a significantly higher pH when Lamp1 is present compared to when Lamp1 is missing. Correspondingly, we found that LASV entry occurs through less acidic endosomes in WT (Lamp1-positive) versus Lamp1 KO cells. We propose that, by elevating the pH threshold for fusion, Lamp1 allows LASV particles to exit the endocytic pathway before they encounter an increasingly acidic and harsh proteolytic environment, which could inactivate a significant percentage of incoming viruses. In this manner Lamp1 increases the overall efficiency of LASV entry and infection. IMPORTANCE Lassa virus is the most clinically important member of the Arenaviridae , a family that includes six additional biosafety level 4 (BSL4) hemorrhagic fever viruses. The lack of specific antiviral therapies for Lassa fever drives an urgent need to identify druggable targets, and interventions that block infection at the entry stage are particularly attractive. Lassa virus is only the second virus known to employ an intracellular receptor, the first being Ebola virus. Here we show that interaction with its intracellular receptor, Lamp1, enhances and upwardly shifts the pH dependence of fusion and consistently permits Lassa virus entry into cells through less acidic endosomes. We propose that in this manner, Lamp1 increases the overall efficiency of Lassa virus infection. Copyright © 2018 Hulseberg et al.

  12. The SRC homology 2 domain of Rin1 mediates its binding to the epidermal growth factor receptor and regulates receptor endocytosis.

    PubMed

    Barbieri, M Alejandro; Kong, Chen; Chen, Pin-I; Horazdovsky, Bruce F; Stahl, Philip D

    2003-08-22

    Activated epidermal growth factor receptors (EGFRs) recruit intracellular proteins that mediate receptor signaling and endocytic trafficking. Rin1, a multifunctional protein, has been shown to regulate EGFR internalization (1). Here we show that EGF stimulation induces a specific, rapid, and transient membrane recruitment of Rin1 and that recruitment is dependent on the Src homology 2 (SH2) domain of Rin1. Immunoprecipitation of EGFR is accompanied by co-immunoprecipitation of Rin1 in a time- and ligand-dependent manner. Association of Rin1 and specifically the SH2 domain of Rin1 with the EGFR was dependent on tyrosine phosphorylation of the intracellular domain of the EGFR. The recruitment of Rin1, observed by light microscopy, indicated that although initially cytosolic, Rin1 was recruited to both plasma membrane and endosomes following EGF addition. Moreover, the expression of the SH2 domain of Rin1 substantially impaired the internalization of EGF without affecting internalization of transferrin. Finally, we found that Rin1 co-immunoprecipitated with a number of tyrosine kinase receptors but not with cargo endocytic receptors. These results indicate that Rin1 provides a link via its SH2 domain between activated tyrosine kinase receptors and the endocytic pathway through the recruitment and activation of Rab5a.

  13. Rapid kinetics of endocytosis at rod photoreceptor synapses depends upon endocytic load and calcium.

    PubMed

    Cork, Karlene M; Thoreson, Wallace B

    2014-05-01

    Release from rods is triggered by the opening of L-type Ca2+ channels that lie beneath synaptic ribbons. After exocytosis, vesicles are retrieved by compensatory endocytosis. Previous work showed that endocytosis is dynamin-dependent in rods but dynamin-independent in cones. We hypothesized that fast endocytosis in rods may also differ from cones in its dependence upon the amount of Ca2+ influx and/or endocytic load. We measured exocytosis and endocytosis from membrane capacitance (C m) changes evoked by depolarizing steps in voltage clamped rods from tiger salamander retinal slices. Similar to cones, the time constant for endocytosis in rods was quite fast, averaging <200 ms. We manipulated Ca2+ influx and the amount of vesicle release by altering the duration and voltage of depolarizing steps. Unlike cones, endocytosis kinetics in rods slowed after increasing Ca2+ channel activation with longer step durations or more strongly depolarized voltage steps. Endocytosis kinetics also slowed as Ca2+ buffering was decreased by replacing BAPTA (10 or 1 mM) with the slower Ca2+ buffer EGTA (5 or 0.5 mM) in the pipette solution. These data provide further evidence that endocytosis mechanisms differ in rods and cones and suggest that endocytosis in rods is regulated by both endocytic load and local Ca2+ levels.

  14. Cooperation of MICAL-L1, syndapin2, and phosphatidic acid in tubular recycling endosome biogenesis.

    PubMed

    Giridharan, Sai Srinivas Panapakkam; Cai, Bishuang; Vitale, Nicolas; Naslavsky, Naava; Caplan, Steve

    2013-06-01

    Endocytic transport necessitates the generation of membrane tubules and their subsequent fission to transport vesicles for sorting of cargo molecules. The endocytic recycling compartment, an array of tubular and vesicular membranes decorated by the Eps15 homology domain protein, EHD1, is responsible for receptor and lipid recycling to the plasma membrane. It has been proposed that EHD dimers bind and bend membranes, thus generating recycling endosome (RE) tubules. However, recent studies show that molecules interacting with CasL-Like1 (MICAL-L1), a second, recently identified RE tubule marker, recruits EHD1 to preexisting tubules. The mechanisms and events supporting the generation of tubular recycling endosomes were unclear. Here, we propose a mechanism for the biogenesis of RE tubules. We demonstrate that MICAL-L1 and the BAR-domain protein syndapin2 bind to phosphatidic acid, which we identify as a novel lipid component of RE. Our studies demonstrate that direct interactions between these two proteins stabilize their association with membranes, allowing for nucleation of tubules by syndapin2. Indeed, the presence of phosphatidic acid in liposomes enhances the ability of syndapin2 to tubulate membranes in vitro. Overall our results highlight a new role for phosphatidic acid in endocytic recycling and provide new insights into the mechanisms by which tubular REs are generated.

  15. Rapid kinetics of endocytosis at rod photoreceptor synapses depends upon endocytic load and calcium

    PubMed Central

    CORK, KARLENE M.; THORESON, WALLACE B.

    2015-01-01

    Release from rods is triggered by the opening of L-type Ca2+ channels that lie beneath synaptic ribbons. After exocytosis, vesicles are retrieved by compensatory endocytosis. Previous work showed that endocytosis is dynamin-dependent in rods but dynamin-independent in cones. We hypothesized that fast endocytosis in rods may also differ from cones in its dependence upon the amount of Ca2+ influx and/or endocytic load. We measured exocytosis and endocytosis from membrane capacitance (Cm) changes evoked by depolarizing steps in voltage clamped rods from tiger salamander retinal slices. Similar to cones, the time constant for endocytosis in rods was quite fast, averaging <200 ms. We manipulated Ca2+ influx and the amount of vesicle release by altering the duration and voltage of depolarizing steps. Unlike cones, endocytosis kinetics in rods slowed after increasing Ca2+ channel activation with longer step durations or more strongly depolarized voltage steps. Endocytosis kinetics also slowed as Ca2+ buffering was decreased by replacing BAPTA (10 or 1 mM) with the slower Ca2+ buffer EGTA (5 or 0.5 mM) in the pipette solution. These data provide further evidence that endocytosis mechanisms differ in rods and cones and suggest that endocytosis in rods is regulated by both endocytic load and local Ca2+ levels. PMID:24735554

  16. Stochastic Modeling of the Clathrin-dependent and -independent Endocytic Pathways

    NASA Astrophysics Data System (ADS)

    Deng, Hua; Dutta, Prashanta; Liu, Jin

    2017-11-01

    Endocytosis is one of the important processes that bioparticles use to enter the cells. During endocytosis the membrane-bound vesicles are formed by the invagination of plasma membrane as a result of interactions among many proteins and cytoskeletons. The clathrin-mediated endocytosis is one of the most significant form of endocytosis, where the dynamic assembly of clathrin-coated pits play a critical role. While herpes simplex virus-1 has recently shown to infect cell by a novel phagocytosis-like endocytic pathway where actin polymerization may facilitate the viral entry. In this work, we propose a stochastic model for both clathrin-dependent and -independent endocytic pathways based on Monte Carlo simulations. The important roles of clathrin coating and actin cytoskeleton as well as the impact of other biological parameters are studied. Our preliminary results indicate that there exist an intermediate particle size and ligand density that maximize the internalization efficiency. Below a critical size or surface ligand density, it is difficult for the entry of a single particle, which means clustering may needed for more efficient internalization. We also find that lower membrane bending rigidity may help promote the bioparticle entry. Research reported in this publication was supported by the National Institute of General Medical Sciences of the National Institutes of Health under Award Number R01GM122081.

  17. Over-Expression of Rififylin, a New RING Finger and FYVE-like Domain-containing Protein, Inhibits Recycling from the Endocytic Recycling Compartment

    PubMed Central

    Coumailleau, Franck; Das, Vincent; Alcover, Andres; Raposo, Graça; Vandormael-Pournin, Sandrine; Le Bras, Stéphanie; Baldacci, Patricia; Dautry-Varsat, Alice; Babinet, Charles; Cohen-Tannoudji, Michel

    2004-01-01

    Endocytosed membrane components are recycled to the cell surface either directly from early/sorting endosomes or after going through the endocytic recycling compartment (ERC). Studying recycling mechanisms is difficult, in part due to the fact that specific tools to inhibit this process are scarce. In this study, we have characterized a novel widely expressed protein, named Rififylin (Rffl) for RING Finger and FYVE-like domain-containing protein, that, when overexpressed in HeLa cells, induced the condensation of transferrin receptor-, Rab5-, and Rab11-positive recycling tubulovesicular membranes in the perinuclear region. Internalized transferrin was able to access these condensed endosomes but its exit from this compartment was delayed. Using deletion mutants, we show that the carboxy-terminal RING finger of Rffl is dispensable for its action. In contrast, the amino-terminal domain of Rffl, which shows similarities with the phosphatidylinositol-3-phosphate–binding FYVE finger, is critical for the recruitment of Rffl to recycling endocytic membranes and for the inhibition of recycling, albeit in a manner that is independent of PtdIns(3)-kinase activity. Rffl overexpression represents a novel means to inhibit recycling that will help to understand the mechanisms involved in recycling from the ERC to the plasma membrane. PMID:15229288

  18. Over-expression of Rififylin, a new RING finger and FYVE-like domain-containing protein, inhibits recycling from the endocytic recycling compartment.

    PubMed

    Coumailleau, Franck; Das, Vincent; Alcover, Andres; Raposo, Graça; Vandormael-Pournin, Sandrine; Le Bras, Stéphanie; Baldacci, Patricia; Dautry-Varsat, Alice; Babinet, Charles; Cohen-Tannoudji, Michel

    2004-10-01

    Endocytosed membrane components are recycled to the cell surface either directly from early/sorting endosomes or after going through the endocytic recycling compartment (ERC). Studying recycling mechanisms is difficult, in part due to the fact that specific tools to inhibit this process are scarce. In this study, we have characterized a novel widely expressed protein, named Rififylin (Rffl) for RING Finger and FYVE-like domain-containing protein, that, when overexpressed in HeLa cells, induced the condensation of transferrin receptor-, Rab5-, and Rab11-positive recycling tubulovesicular membranes in the perinuclear region. Internalized transferrin was able to access these condensed endosomes but its exit from this compartment was delayed. Using deletion mutants, we show that the carboxy-terminal RING finger of Rffl is dispensable for its action. In contrast, the amino-terminal domain of Rffl, which shows similarities with the phosphatidylinositol-3-phosphate-binding FYVE finger, is critical for the recruitment of Rffl to recycling endocytic membranes and for the inhibition of recycling, albeit in a manner that is independent of PtdIns(3)-kinase activity. Rffl overexpression represents a novel means to inhibit recycling that will help to understand the mechanisms involved in recycling from the ERC to the plasma membrane.

  19. Multiplexed multi-scale imaging: novel roles for the scaffold protein IQGAP1 in epithelial cell development (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Schweikhard, Volker

    2016-02-01

    The precise sub-cellular spatial localization of multi-protein complexes is increasingly recognized as a key mechanism governing the organization of mammalian cells. Consequently, there is a need for novel microscopy techniques capable of investigating such sub-cellular architectures in comprehensive detail. Here, we applied a novel multiplexed STORM super-resolution microscopy technique, in combination with high-throughput immunofluorescence microscopy and live-cell imaging, to investigate the roles of the scaffold protein IQGAP1 in epithelial cells. IQGAP1 is known to orchestrate a wide range of biological processes, including intracellular signaling, cytoskeletal regulation, cell-cell adhesion, and protein trafficking, by forming distinct complexes with a number of known interaction partners, and recruiting these complexes to specific subcellular locations. Our results demonstrate that, in addition to supporting epithelial adherens junctions by associating with specialized cortical actin structures, IQGAP1 plays a second role in which it controls the confinement of a unique, previously undocumented class of membranous compartments to the basal actin cortex. These largely immotile yet highly dynamic structures appear transiently as cells merge into clusters and establish of apical-basolateral (epithelial) polarity, and are identified as an intermediate compartment in the endocytic recycling pathways for cell junction complexes and cell surface receptors. Although these two functions of IQGAP1 occur in parallel and largely independently of each other, they both support the maturation and maintenance of polarized epithelial cell architectures.

  20. Anti-microbial peptide facilitated cytosolic delivery of metallic gold nanomaterials

    NASA Astrophysics Data System (ADS)

    Kapur, Anshika; Wang, Wentao; Diaz Hernandez, Juan; Medina, Scott; Schneider, Joel P.; Mattoussi, Hedi

    2018-02-01

    The unique photophysical properties of gold nanomaterials combined with progress in developing effective surfacefunctionalization strategies has motivated researchers to employ them as tools for use in biomedical imaging, biosensing, diagnostics, photothermal therapy, and as drug and gene delivery vehicles. However, a major challenge limiting these advancements has been the unavailability of effective strategies to deliver these and other nanocrystals into the cytoplasm of live cells. In this study, we demonstrate that the use of a chemically-synthesized anti-microbial peptide, SVS-1, can promote non-endocytic uptake of both small size gold nanoparticles (AuNPs) and larger size gold nanorods (AuNRs) into mammalian cells. For this, colloidally stable AuNP and AuNRs, surface ligated with an amine-functionalized polymer, His-PIMA-PEG-OCH3/NH2 were prepared. The amine groups allow dual, covalent attachment of cysteine terminated SVS-1 (via a thioether linkage) and NHS-ester-Texas-Red dye onto the nanocrystal surfaces. We use fluorescence microscopy to demonstrate nanocrystal staining throughout the cytoplasmic volume of the cells incubated with these conjugates. More importantly, we have conducted additional endocytosis inhibition experiments where cells were incubated with the conjugates at 4°C. Here too, the imaging data have shown significant levels of nanocrystal uptake, further verifying that physical translocation of these conjugates takes place through the cell membrane independent of endocytosis. These findings are promising and can provide critical support for the widespread applications of nanomaterials in the field of biology.

  1. Proteomics on the rims; insights into the biology of the nuclear envelope and flagellar pocket of trypanosomes

    PubMed Central

    Field, Mark C.; Adung’a, Vincent; Obado, Samson; Chait, Brian T.; Rout, Michael P.

    2014-01-01

    SUMMERY Trypanosomatids represent the causative agents of major diseases in humans, livestock and plants, with inevitable suffering and economic hardship as a result. They are also evolutionarily highly divergent organisms, and the many unique aspects of trypanosome biology provide opportunities in terms of identification of drug targets, the challenge of exploiting these putative targets, and at the same time significant scope for exploration of novel and divergent cell biology. We can estimate from genome sequences that the degree of divergence of trypanosomes from animals and fungi is extreme, with perhaps one third to one half of predicted trypanosome proteins having no known function based on homology or recognizable protein domains/architecture. Two highly important aspects of trypanosome biology are the flagellar pocket and the nuclear envelope, where in silico analysis clearly suggests great potential divergence in the proteome. The flagellar pocket is the sole site of endo- and exocytosis in trypanosomes and plays important roles in immune evasion via variant surface glycoprotein (VSG) trafficking and providing a location for sequestration of various invariant receptors. The trypanosome nuclear envelope has been largely unexplored, but by analogy with higher eukaryotes, roles in the regulation of chromatin and most significantly, in controlling VSG gene expression are expected. Here we discuss recent successful proteomics-based approaches towards characterization of the nuclear envelope and the endocytic apparatus, the identification of conserved and novel trypanosomatid-specific features, and the implications of these findings. PMID:22309600

  2. Helicobacter pylori VacA Toxin Promotes Bacterial Intracellular Survival in Gastric Epithelial Cells▿ †

    PubMed Central

    Terebiznik, M. R.; Vazquez, C. L.; Torbicki, K.; Banks, D.; Wang, T.; Hong, W.; Blanke, S. R.; Colombo, M. I.; Jones, N. L.

    2006-01-01

    Helicobacter pylori colonizes the gastric epithelium of at least 50% of the world's human population, playing a causative role in the development of chronic gastritis, peptic ulcers, and gastric adenocarcinoma. Current evidence indicates that H. pylori can invade epithelial cells in the gastric mucosa. However, relatively little is known about the biology of H. pylori invasion and survival in host cells. Here, we analyze both the nature of and the mechanisms responsible for the formation of H. pylori's intracellular niche. We show that in AGS cells infected with H. pylori, bacterium-containing vacuoles originate through the fusion of late endocytic organelles. This process is mediated by the VacA-dependent retention of the small GTPase Rab7. In addition, functional interactions between Rab7 and its downstream effector, Rab-interacting lysosomal protein (RILP), are necessary for the formation of the bacterial compartment since expression of mutant forms of RILP or Rab7 that fail to bind each other impaired the formation of this unique bacterial niche. Moreover, the VacA-mediated sequestration of active Rab7 disrupts the full maturation of vacuoles as assessed by the lack of both colocalization with cathepsin D and degradation of internalized cargo in the H. pylori-containing vacuole. Based on these findings, we propose that the VacA-dependent isolation of the H. pylori-containing vacuole from bactericidal components of the lysosomal pathway promotes bacterial survival and contributes to the persistence of infection. PMID:17000720

  3. The biology, function and clinical implications of exosomes in lung cancer.

    PubMed

    Zhou, Li; Lv, Tangfeng; Zhang, Qun; Zhu, Qingqing; Zhan, Ping; Zhu, Suhua; Zhang, Jianya; Song, Yong

    2017-10-28

    Exosomes are 30-100 nm small membrane vesicles of endocytic origin that are secreted by all types of cells, and can also be found in various body fluids. Increasing evidence implicates that exosomes confer stability and can deliver their cargos such as proteins and nucleic acids to specific cell types, which subsequently serve as important messengers and carriers in lung carcinogenesis. Here, we describe the biogenesis and components of exosomes mainly in lung cancer, we summarize their function in lung carcinogenesis (epithelial mesenchymal transition, oncogenic cell transformation, angiogenesis, metastasis and immune response in tumor microenvironment), and importantly we focus on the clinical potential of exosomes as biomarkers and therapeutics in lung cancer. In addition, we also discuss current challenges that might impede the clinical use of exosomes. Further studies on the functional roles of exosomes in lung cancer requires thorough research. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Anaesthetics stop diverse plant organ movements, affect endocytic vesicle recycling and ROS homeostasis, and block action potentials in Venus flytraps.

    PubMed

    Yokawa, K; Kagenishi, T; Pavlovic, A; Gall, S; Weiland, M; Mancuso, S; Baluška, F

    2017-12-11

    Anaesthesia for medical purposes was introduced in the 19th century. However, the physiological mode of anaesthetic drug actions on the nervous system remains unclear. One of the remaining questions is how these different compounds, with no structural similarities and even chemically inert elements such as the noble gas xenon, act as anaesthetic agents inducing loss of consciousness. The main goal here was to determine if anaesthetics affect the same or similar processes in plants as in animals and humans. A single-lens reflex camera was used to follow organ movements in plants before, during and after recovery from exposure to diverse anaesthetics. Confocal microscopy was used to analyse endocytic vesicle trafficking. Electrical signals were recorded using a surface AgCl electrode. Mimosa leaves, pea tendrils, Venus flytraps and sundew traps all lost both their autonomous and touch-induced movements after exposure to anaesthetics. In Venus flytrap, this was shown to be due to the loss of action potentials under diethyl ether anaesthesia. The same concentration of diethyl ether immobilized pea tendrils. Anaesthetics also impeded seed germination and chlorophyll accumulation in cress seedlings. Endocytic vesicle recycling and reactive oxygen species (ROS) balance, as observed in intact Arabidopsis root apex cells, were also affected by all anaesthetics tested. Plants are sensitive to several anaesthetics that have no structural similarities. As in animals and humans, anaesthetics used at appropriate concentrations block action potentials and immobilize organs via effects on action potentials, endocytic vesicle recycling and ROS homeostasis. Plants emerge as ideal model objects to study general questions related to anaesthesia, as well as to serve as a suitable test system for human anaesthesia. © The Authors 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. A fixable probe for visualizing flagella and plasma membranes of the African trypanosome.

    PubMed

    Wiedeman, Justin; Mensa-Wilmot, Kojo

    2018-01-01

    The protozoan Trypanosoma brucei sp. cause diseases in humans and animals. Studies of T. brucei cell biology have revealed unique features, such as major endocytic events being limited to a single region, and mitochondrial genome segregation mediated via basal bodies. Further understanding of trypanosome cell biology can be facilitated with super-resolution fluorescence microscopy. Lack of a plasma membrane probe for fixed trypanosomes remains a persistent problem in need of a working solution. Herein, we report protocols developed using mCLING in super-resolution structured illumination fluorescence microscopy (SR-SIM). mCLING comprehensively labels flagellar membranes, including nascent intracellular stages. To extend its usefulness for trypanosome biology we optimized mCLING in combination with organelle-specific antibodies for immunofluorescence of basal bodies or mitochondria. Then in work with live trypanosomes, we demonstrated internalization of mCLING into endocytic stations that overlap with LysoTracker in acidic organelles. Greater detail of the intracellular location of mCLING was obtained with SR-SIM after pulsing trypanosomes with the probe, and allowing continuous uptake of fluorescent concanavalin A (ConA) destined for lysosomes. In most cases, ConA and mCLING vesicles were juxtaposed but not coincident. A video of the complete image stack at the 15 min time point shows zones of mCLING staining surrounding patches of ConA, consistent with persistence of mCLING in membranes of compartments that contain luminal ConA. In summary, these studies establish mCLING as a versatile trypanosome membrane probe compatible with super-resolution microscopy that can be used for detailed analysis of flagellar membrane biogenesis. In addition, mCLING can be used for immunofluorescence in fixed, permeabilized trypanosomes. Its robust staining of the plasma membrane eliminates a need to overlay transmitted light images on fluorescence pictures obtained from widefield, confocal, or super-resolution microscopy.

  6. Interplay of autophagy, receptor tyrosine kinase signalling and endocytic trafficking

    PubMed Central

    Fraser, Jane; Cabodevilla, Ainara G.; Simpson, Joanne; Gammoh, Noor

    2017-01-01

    Vesicular trafficking events play key roles in the compartmentalization and proper sorting of cellular components. These events have crucial roles in sensing external signals, regulating protein activities and stimulating cell growth or death decisions. Although mutations in vesicle trafficking players are not direct drivers of cellular transformation, their activities are important in facilitating oncogenic pathways. One such pathway is the sensing of external stimuli and signalling through receptor tyrosine kinases (RTKs). The regulation of RTK activity by the endocytic pathway has been extensively studied. Compelling recent studies have begun to highlight the association between autophagy and RTK signalling. The influence of this interplay on cellular status and its relevance in disease settings will be discussed here. PMID:29233871

  7. Sorting nexin 9 recruits clathrin heavy chain to the mitotic spindle for chromosome alignment and segregation.

    PubMed

    Ma, Maggie P C; Robinson, Phillip J; Chircop, Megan

    2013-01-01

    Sorting nexin 9 (SNX9) and clathrin heavy chain (CHC) each have roles in mitosis during metaphase. Since the two proteins directly interact for their other cellular function in endocytosis we investigated whether they also interact for metaphase and operate on the same pathway. We report that SNX9 and CHC functionally interact during metaphase in a specific molecular pathway that contributes to stabilization of mitotic spindle kinetochore (K)-fibres for chromosome alignment and segregation. This function is independent of their endocytic role. SNX9 residues in the clathrin-binding low complexity domain are required for CHC association and for targeting both CHC and transforming acidic coiled-coil protein 3 (TACC3) to the mitotic spindle. Mutation of these sites to serine increases the metaphase plate width, indicating inefficient chromosome congression. Therefore SNX9 and CHC function in the same molecular pathway for chromosome alignment and segregation, which is dependent on their direct association.

  8. Sorting Nexin 9 Recruits Clathrin Heavy Chain to the Mitotic Spindle for Chromosome Alignment and Segregation

    PubMed Central

    Ma, Maggie P. C.; Robinson, Phillip J.; Chircop, Megan

    2013-01-01

    Sorting nexin 9 (SNX9) and clathrin heavy chain (CHC) each have roles in mitosis during metaphase. Since the two proteins directly interact for their other cellular function in endocytosis we investigated whether they also interact for metaphase and operate on the same pathway. We report that SNX9 and CHC functionally interact during metaphase in a specific molecular pathway that contributes to stabilization of mitotic spindle kinetochore (K)-fibres for chromosome alignment and segregation. This function is independent of their endocytic role. SNX9 residues in the clathrin-binding low complexity domain are required for CHC association and for targeting both CHC and transforming acidic coiled-coil protein 3 (TACC3) to the mitotic spindle. Mutation of these sites to serine increases the metaphase plate width, indicating inefficient chromosome congression. Therefore SNX9 and CHC function in the same molecular pathway for chromosome alignment and segregation, which is dependent on their direct association. PMID:23861900

  9. ECM turnover-stimulated gene delivery through collagen-mimetic peptide-plasmid integration in collagen.

    PubMed

    Urello, Morgan A; Kiick, Kristi L; Sullivan, Millicent O

    2017-10-15

    Gene therapies have great potential in regenerative medicine; however, clinical translation has been inhibited by low stability and limited transfection efficiencies. Herein, we incorporate collagen-mimetic peptide (CMP)-linked polyplexes in collagen scaffolds to increase DNA stability by up to 400% and enable tailorable in vivo transgene expression at 100-fold higher levels and 10-fold longer time periods. These improvements were directly linked to a sustained interaction between collagen and polyplexes that persisted during cellular remodeling, polyplex uptake, and intracellular trafficking. Specifically, incorporation of CMPs into polyethylenimine (PEI) polyplexes preserved serum-exposed polyplex-collagen activity over a period of 14days, with 4 orders-of-magnitude more intact DNA present in CMP-modified polyplex-collagen relative to unmodified polyplex-collagen after a 10day incubation under cell culture conditions. CMP-modification also altered endocytic uptake, as indicated by gene silencing studies showing a nearly 50% decrease in transgene expression in response to caveolin-1 silencing in modified samples versus only 30% in unmodified samples. Furthermore, cellular internalization studies demonstrated that polyplex-collagen association persisted within cells in CMP polyplexes, but not in unmodified polyplexes, suggesting that CMP linkage to collagen regulates intracellular transport. Moreover, experiments in an in vivo repair model showed that CMP modification enabled tailoring of transgene expression from 4 to 25days over a range of concentrations. Overall, these findings demonstrate that CMP decoration provides substantial improvements in gene retention, altered release kinetics, improved serum-stability, and improved gene activity in vivo. This versatile technique has great potential for multiple applications in regenerative medicine. In this work, we demonstrate a novel approach for stably integrating DNA into collagen scaffolds to exploit the natural process of collagen remodelling for high efficiency non-viral gene delivery. The incorporation of CMPs into DNA polyplexes, coupled with the innate affinity between CMPs and collagen, not only permitted improved control over polyplex retention and release, but also provided a series of substantial and highly unique benefits via the stable and persistent linkage between CMP-polyplexes and collagen fragments. Specifically, CMP-modification of polyplexes was demonstrated to (i) control release for nearly a month, (ii) improve vector stability under physiological-like conditions, and (iii) provide ligands able to efficiently transfer genes via endocytic collagen pathways. These unique properties overcome key barriers inhibiting non-viral gene therapy. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  10. ICAM-1 Binding Rhinoviruses A89 and B14 Uncoat in Different Endosomal Compartments

    PubMed Central

    Conzemius, Rick; Ganjian, Haleh; Blaas, Dieter

    2016-01-01

    ABSTRACT Human rhinovirus A89 (HRV-A89) and HRV-B14 bind to and are internalized by intercellular adhesion molecule 1 (ICAM-1); as demonstrated earlier, the RNA genome of HRV-B14 penetrates into the cytoplasm from endosomal compartments of the lysosomal pathway. Here, we show by immunofluorescence microscopy that HRV-A89 but not HRV-B14 colocalizes with transferrin in the endocytic recycling compartment (ERC). Applying drugs differentially interfering with endosomal recycling and with the pathway to lysosomes, we demonstrate that these two major-group HRVs productively uncoat in distinct endosomal compartments. Overexpression of constitutively active (Rab11-GTP) and dominant negative (Rab11-GDP) mutants revealed that uncoating of HRV-A89 depends on functional Rab11. Thus, two ICAM-1 binding HRVs are routed into distinct endosomal compartments for productive uncoating. IMPORTANCE Based on similarity of their RNA genomic sequences, the more than 150 currently known common cold virus serotypes were classified as species A, B, and C. The majority of HRV-A viruses and all HRV-B viruses use ICAM-1 for cell attachment and entry. Our results highlight important differences of two ICAM-1 binding HRVs with respect to their intracellular trafficking and productive uncoating; they demonstrate that serotypes belonging to species A and B, but entering the cell via the same receptors, direct the endocytosis machinery to ferry them along distinct pathways toward different endocytic compartments for uncoating. PMID:27334586

  11. Clathrin-dependent internalization, signaling, and metabolic processing of guanylyl cyclase/natriuretic peptide receptor-A.

    PubMed

    Somanna, Naveen K; Mani, Indra; Tripathi, Satyabha; Pandey, Kailash N

    2018-04-01

    Cardiac hormones, atrial and brain natriuretic peptides (ANP and BNP), have pivotal roles in renal hemodynamics, neuroendocrine signaling, blood pressure regulation, and cardiovascular homeostasis. Binding of ANP and BNP to the guanylyl cyclase/natriuretic peptide receptor-A (GC-A/NPRA) induces rapid internalization and trafficking of the receptor via endolysosomal compartments, with concurrent generation of cGMP. However, the mechanisms of the endocytotic processes of NPRA are not well understood. The present study, using 125 I-ANP binding assay and confocal microscopy, examined the function of dynamin in the internalization of NPRA in stably transfected human embryonic kidney-293 (HEK-293) cells. Treatment of recombinant HEK-293 cells with ANP time-dependently accelerated the internalization of receptor from the cell surface to the cell interior. However, the internalization of ligand-receptor complexes of NPRA was drastically decreased by the specific inhibitors of clathrin- and dynamin-dependent receptor internalization, almost 85% by monodansylcadaverine, 80% by chlorpromazine, and 90% by mutant dynamin, which are specific blockers of endocytic vesicle formation. Visualizing the internalization of NPRA and enhanced GFP-tagged NPRA in HEK-293 cells by confocal microscopy demonstrated the formation of endocytic vesicles after 5 min of ANP treatment; this effect was blocked by the inhibitors of clathrin and by mutant dynamin construct. Our results suggest that NPRA undergoes internalization via clathrin-mediated endocytosis as part of its normal itinerary, including trafficking, signaling, and metabolic degradation.

  12. A combination of two antibodies recognizing non-overlapping epitopes of HER2 induces kinase activity-dependent internalization of HER2.

    PubMed

    Szymanska, Monika; Fosdahl, Anne M; Nikolaysen, Filip; Pedersen, Mikkel W; Grandal, Michael M; Stang, Espen; Bertelsen, Vibeke

    2016-10-01

    The human epidermal growth factor receptor 2 (HER2/ErbB2) is overexpressed in a number of human cancers. HER2 is the preferred heterodimerization partner for other epidermal growth factor receptor (EGFR) family members and is considered to be resistant to endocytic down-regulation, properties which both contribute to the high oncogenic potential of HER2. Antibodies targeting members of the EGFR family are powerful tools in cancer treatment and can function by blocking ligand binding, preventing receptor dimerization, inhibiting receptor activation and/or inducing receptor internalization and degradation. With respect to antibody-induced endocytosis of HER2, various results are reported, and the effect seems to depend on the HER2 expression level and whether antibodies are given as individual antibodies or as mixtures of two or more. In this study, the effect of a mixture of two monoclonal antibodies against non-overlapping epitopes of HER2 was investigated with respect to localization and stability of HER2. Individual antibodies had limited effect, but the combination of antibodies induced internalization and degradation of HER2 by multiple endocytic pathways. In addition, HER2 was phosphorylated and ubiquitinated upon incubation with the antibody combination, and the HER2 kinase activity was found to be instrumental in antibody-induced HER2 down-regulation. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  13. Venezuelan equine encephalitis virus entry mechanism requires late endosome formation and resists cell membrane cholesterol depletion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kolokoltsov, Andrey A.; Fleming, Elisa H.; Davey, Robert A.

    2006-04-10

    Virus envelope proteins determine receptor utilization and host range. The choice of receptor not only permits specific targeting of cells that express it, but also directs the virus into specific endosomal trafficking pathways. Disrupting trafficking can result in loss of virus infectivity due to redirection of virions to non-productive pathways. Identification of the pathway or pathways used by a virus is, thus, important in understanding virus pathogenesis mechanisms and for developing new treatment strategies. Most of our understanding of alphavirus entry has focused on the Old World alphaviruses, such as Sindbis and Semliki Forest virus. In comparison, very little ismore » known about the entry route taken by more pathogenic New World alphaviruses. Here, we use a novel contents mixing assay to identify the cellular requirements for entry of a New World alphavirus, Venezuelan equine encephalitis virus (VEEV). Expression of dominant negative forms of key endosomal trafficking genes shows that VEEV must access clathrin-dependent endocytic vesicles for membrane fusion to occur. Unexpectedly, the exit point is different from Old World alphaviruses that leave from early endosomes. Instead, VEEV also requires functional late endosomes. Furthermore, unlike the Old World viruses, VEEV entry is insensitive to cholesterol sequestration from cell membranes and may reflect a need to access an endocytic compartment that lacks cholesterol. This indicates fundamental differences in the entry route taken by VEEV compared to Old World alphaviruses.« less

  14. betaPIX controls cell motility and neurite extension by regulating the distribution of GIT1.

    PubMed

    Za, Lorena; Albertinazzi, Chiara; Paris, Simona; Gagliani, Mariacristina; Tacchetti, Carlo; de Curtis, Ivan

    2006-07-01

    Cell motility entails the reorganization of the cytoskeleton and membrane trafficking for effective protrusion. GIT1/p95-APP1 is a member of a family of GTPase-activating proteins for ARF GTPases that affect endocytosis, adhesion and migration. GIT1 associates with paxillin and a complex including the Rac/Cdc42 exchanging factors PIX/Cool and the kinase PAK. In this study, we show that overexpression of betaPIX induces the accumulation of endogenous and overexpressed GIT1 at large structures similar to those induced by an ArfGAP-defective mutant of GIT1 (p95-C2). Immunohistochemical analysis and immunoelectron microscopy reveal that these structures include the endogenous transferrin receptor. Time-lapse analysis during motogenic stimuli shows that the formation and perinuclear accumulation of the p95-C2-positive structures is paralleled by inhibition of lamellipodium formation and cell retraction. Both dimerization and a functional SH3 domain of betaPIX are required for the accumulation of GIT1 in fibroblasts, which is prevented by the monomeric PIX-PG-DeltaLZ. This mutant also prevents the formation of endocytic aggregates and inhibition of neurite outgrowth in retinal neurons expressing p95-C2. Our results indicate that betaPIX is an important regulator of the subcellular distribution of GIT1, and suggest that alteration in the level of expression of the complex affects the endocytic compartment and cell motility.

  15. On the translocation of botulinum and tetanus neurotoxins across the membrane of acidic intracellular compartments.

    PubMed

    Pirazzini, Marco; Azarnia Tehran, Domenico; Leka, Oneda; Zanetti, Giulia; Rossetto, Ornella; Montecucco, Cesare

    2016-03-01

    Tetanus and botulinum neurotoxins are produced by anaerobic bacteria of the genus Clostridium and are the most poisonous toxins known, with 50% mouse lethal dose comprised within the range of 0.1-few nanograms per Kg, depending on the individual toxin. Botulinum neurotoxins are similarly toxic to humans and can therefore be considered for potential use in bioterrorism. At the same time, their neurospecificity and reversibility of action make them excellent therapeutics for a growing and heterogeneous number of human diseases that are characterized by a hyperactivity of peripheral nerve terminals. The complete crystallographic structure is available for some botulinum toxins, and reveals that they consist of four domains functionally related to the four steps of their mechanism of neuron intoxication: 1) binding to specific receptors of the presynaptic membrane; 2) internalization via endocytic vesicles; 3) translocation across the membrane of endocytic vesicles into the neuronal cytosol; 4) catalytic activity of the enzymatic moiety directed towards the SNARE proteins. Despite the many advances in understanding the structure-mechanism relationship of tetanus and botulinum neurotoxins, the molecular events involved in the translocation step have been only partially elucidated. Here we will review recent advances that have provided relevant insights on the process and discuss possible models that can be experimentally tested. This article is part of a Special Issue entitled: Pore-Forming Toxins edited by Mauro Dalla Serra and Franco Gambale. Copyright © 2015. Published by Elsevier B.V.

  16. Rab7: roles in membrane trafficking and disease.

    PubMed

    Zhang, Ming; Chen, Li; Wang, Shicong; Wang, Tuanlao

    2009-06-01

    The endocytosis pathway controls multiple cellular and physiological events. The lysosome is the destination of newly synthesized lysosomal hydrolytic enzymes. Internalized molecules or particles are delivered to the lysosome for degradation through sequential transport along the endocytic pathway. The endocytic pathway is also emerging as a signalling platform, in addition to the well-known role of the plasma membrane for signalling. Rab7 is a late endosome-/lysosome-associated small GTPase, perhaps the only lysosomal Rab protein identified to date. Rab7 plays critical roles in the endocytic processes. Through interaction with its partners (including upstream regulators and downstream effectors), Rab7 participates in multiple regulation mechanisms in endosomal sorting, biogenesis of lysosome [or LRO (lysosome-related organelle)] and phagocytosis. These processes are closely related to substrates degradation, antigen presentation, cell signalling, cell survival and microbial pathogen infection. Consistently, mutations or dysfunctions of Rab7 result in traffic disorders, which cause various diseases, such as neuropathy, cancer and lipid metabolism disease. Rab7 also plays important roles in microbial pathogen infection and survival, as well as in participating in the life cycle of viruses. Here, we give a brief review on the central role of Rab7 in endosomal traffic and summarize the studies focusing on the participation of Rab7 in disease pathogenesis. The underlying mechanism governed by Rab7 and its partners will also be discussed.

  17. Cooperation of MICAL-L1, syndapin2, and phosphatidic acid in tubular recycling endosome biogenesis

    PubMed Central

    Giridharan, Sai Srinivas Panapakkam; Cai, Bishuang; Vitale, Nicolas; Naslavsky, Naava; Caplan, Steve

    2013-01-01

    Endocytic transport necessitates the generation of membrane tubules and their subsequent fission to transport vesicles for sorting of cargo molecules. The endocytic recycling compartment, an array of tubular and vesicular membranes decorated by the Eps15 homology domain protein, EHD1, is responsible for receptor and lipid recycling to the plasma membrane. It has been proposed that EHD dimers bind and bend membranes, thus generating recycling endosome (RE) tubules. However, recent studies show that molecules interacting with CasL-Like1 (MICAL-L1), a second, recently identified RE tubule marker, recruits EHD1 to preexisting tubules. The mechanisms and events supporting the generation of tubular recycling endosomes were unclear. Here, we propose a mechanism for the biogenesis of RE tubules. We demonstrate that MICAL-L1 and the BAR-domain protein syndapin2 bind to phosphatidic acid, which we identify as a novel lipid component of RE. Our studies demonstrate that direct interactions between these two proteins stabilize their association with membranes, allowing for nucleation of tubules by syndapin2. Indeed, the presence of phosphatidic acid in liposomes enhances the ability of syndapin2 to tubulate membranes in vitro. Overall our results highlight a new role for phosphatidic acid in endocytic recycling and provide new insights into the mechanisms by which tubular REs are generated. PMID:23596323

  18. Interaction study between synthetic glycoconjugate ligands and endocytic receptors using flow cytometry.

    PubMed

    Yura, Hirofumi; Ishihara, Masayuki; Kanatani, Yasuhiro; Takase, Bonpei; Hattori, Hidemi; Suzuki, Shinya; Kawakami, Mitsuyuki; Matsui, Takemi

    2006-04-01

    Flow cytometric analysis of synthetic galactosyl polymers, asialofetuin and LDL derivatives labeled with FITC (Fluorescein Isothiocyanate) was carried out to determine the phenotypes of endocytic receptors, such as asialoglycoprotein (ASPG) and the LDL receptor, on various types of cells. When FITC-labeled galactosyl polystyrene (GalCPS), being a synthetic ligand of ASPG, was applied to rat hepatocytes and human cancer cells (Hep G2 and Chang Liver), surface fluorescence intensities varied according to receptor expression on the cells. The fluorescence intensity originates from the calcium-dependent binding of the FITC-labeled GalCPS. Although unaltered by pre-treatment with glucosyl polystyrene (GluCPS), fetuin and LDL, the fluorescence intensity was suppressed by pre-treatment with (non-labeled) GalCPS and asialofetuin. Flow cytometry allowed us to demonstrate that the calcium-dependent binding of FITC-labeled LDL (prepared from rabbits) upon the addition of 17alpha-ethinyl estradiol enhances LDL receptor expression, and the expression is suppressed upon the addition of a monoclonal antibody to the LDL receptor. The binding efficiency based on the combination of FITC-labeled ligands suggests a possible application for the classification of cell types and conditions corresponding to endocytic receptor expression without the need for immuno-active antibodies or radiolabeled substances. Furthermore, the synthetic glycoconjugate (GalCPS) is shown to be a sensitive and useful marker for classification based on cell phenotype using flow cytometry.

  19. A role for microtubules in sorting endocytic vesicles in rat hepatocytes.

    PubMed Central

    Goltz, J S; Wolkoff, A W; Novikoff, P M; Stockert, R J; Satir, P

    1992-01-01

    The vectorial nature of hepatocyte receptor-mediated endocytosis (RME) and its susceptibility to cytoskeletal disruptors has suggested that a polarized network of microtubules plays a vital role in directed movement during sorting. Using as markers a well-known ligand, asialoorosomucoid, and its receptor, we have isolated endocytic vesicles that bind directly to and interact with stabilized endogenous hepatocyte microtubules at specific times during a synchronous, experimentally initiated, single wave of RME. Both ligand- and receptor-containing vesicles copelleted with microtubules in the absence of ATP but did not pellet under similar conditions when microtubules were not polymerized. When 5 mM ATP was added to preparations of microtubule-bound vesicles, ligand-containing vesicles were released into the supernatant, while receptor-containing vesicles remained immobilized on the microtubules. Release of ligand-containing vesicles from microtubules was prevented by monensin treatment during the endocytic wave. Several proteins, including the microtubule motor protein cytoplasmic dynein, were present in these preparations and were released from microtubule pellets by ATP addition concomitantly with ligand. These results suggest that receptor domains within the endosome can be immobilized by attachment to microtubules so that, following monensin-sensitive dissociation of ligand from receptor, ligand-containing vesicles can be pulled along microtubules away from the receptor domains by a motor molecule, such as cytoplasmic dynein, thereby delineating sorting. Images PMID:1353884

  20. Using Chou's general PseAAC to analyze the evolutionary relationship of receptor associated proteins (RAP) with various folding patterns of protein domains.

    PubMed

    Muthu Krishnan, S

    2018-05-14

    The receptor-associated protein (RAP) is an inhibitor of endocytic receptors that belong to the lipoprotein receptor gene family. In this study, a computational approach was tried to find the evolutionarily related fold of the RAP proteins. Through the structural and sequence-based analysis, found various protein folds that are very close to the RAP folds. Remote homolog datasets were used potentially to develop a different support vector machine (SVM) methods to recognize the homologous RAP fold. This study helps in understanding the relationship of RAP homologs folds based on the structure, function and evolutionary history. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Membrane-trafficking sorting hubs: cooperation between PI4P and small GTPases at the trans-Golgi Network

    PubMed Central

    Santiago-Tirado, Felipe H.; Bretscher, Anthony

    2011-01-01

    Cell polarity in eukaryotes requires constant sorting, packaging, and transport of membrane-bound cargo within the cell. These processes occur in two sorting hubs: the recycling endosome for incoming material, and the trans-Golgi Network for outgoing. Phosphatidylinositol 3-phosphate and 4–5 phosphate are enriched at the endocytic and exocytic sorting hubs, respectively, where they act together with small GTPases to recruit factors to segregate cargo and regulate carrier formation and transport. In this review, we summarize the current understanding of how these lipids and GTPases directly regulate membrane trafficking, emphasizing the recent discoveries of phosphatidylinositol 4-phosphate functions at the trans-Golgi Network. PMID:21764313

  2. The process of lipid storage in insect oocytes: The involvement of β-chain of ATP synthase in lipophorin-mediated lipid transfer in the chagas' disease vector Panstrongylus megistus (Hemiptera: Reduviidae).

    PubMed

    Fruttero, Leonardo L; Leyria, Jimena; Ramos, Fabián O; Stariolo, Raúl; Settembrini, Beatriz P; Canavoso, Lilián E

    2017-01-01

    Lipophorin is the main lipoprotein in the hemolymph of insects. During vitellogenesis, lipophorin delivers its hydrophobic cargo to developing oocytes by its binding to non-endocytic receptors at the plasma membrane of the cells. In some species however, lipophorin may also be internalized to some extent, thus maximizing the storage of lipid resources in growing oocytes. The ectopic β chain of ATP synthase (β-ATPase) was recently described as a putative non-endocytic lipophorin receptor in the anterior midgut of the hematophagous insect Panstrongylus megistus. In the present work, females of this species at the vitellogenic stage of the reproductive cycle were employed to investigate the role of β-ATPase in the transfer of lipids to the ovarian tissue. Subcellular fractionation and western blot revealed the presence of β-ATPase in the microsomal membranes of the ovarian tissue, suggesting its localization in the plasma membrane. Immunofluorescence assays showed partial co-localization of β-ATPase and lipophorin in the membrane of oocytes as well as in the basal domain of the follicular epithelial cells. Ligand blotting and co-immunoprecipitation approaches confirmed the interaction between lipophorin and β-ATPase. In vivo experiments with an anti-β-ATPase antibody injected to block such an interaction demonstrated that the antibody significantly impaired the transfer of fatty acids from lipophorin to the oocyte. However, the endocytic pathway of lipophorin was not affected. On the other hand, partial inhibition of ATP synthase activity did not modify the transfer of lipids from lipophorin to oocytes. When the assays were performed at 4°C to diminish endocytosis, the results showed that the antibody interfered with lipophorin binding to the oocyte plasma membrane as well as with the transfer of fatty acids from the lipoprotein to the oocyte. The findings strongly support that β-ATPase plays a role as a docking lipophorin receptor at the ovary of P. megistus, similarly to its function in the midgut of such a vector. In addition, the role of β-ATPase as a docking receptor seems to be independent of the enzymatic ATP synthase activity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Synaptotagmin-11 inhibits clathrin-mediated and bulk endocytosis.

    PubMed

    Wang, Changhe; Wang, Yeshi; Hu, Meiqin; Chai, Zuying; Wu, Qihui; Huang, Rong; Han, Weiping; Zhang, Claire Xi; Zhou, Zhuan

    2016-01-01

    Precise and efficient endocytosis is essential for vesicle recycling during a sustained neurotransmission. The regulation of endocytosis has been extensively studied, but inhibitors have rarely been found. Here, we show that synaptotagmin-11 (Syt11), a non-Ca(2+)-binding Syt implicated in schizophrenia and Parkinson's disease, inhibits clathrin-mediated endocytosis (CME) and bulk endocytosis in dorsal root ganglion neurons. The frequency of both types of endocytic event increases in Syt11 knockdown neurons, while the sizes of endocytosed vesicles and the kinetics of individual bulk endocytotic events remain unaffected. Specifically, clathrin-coated pits and bulk endocytosis-like structures increase on the plasma membrane in Syt11-knockdown neurons. Structural-functional analysis reveals distinct domain requirements for Syt11 function in CME and bulk endocytosis. Importantly, Syt11 also inhibits endocytosis in hippocampal neurons, implying a general role of Syt11 in neurons. Taken together, we propose that Syt11 functions to ensure precision in vesicle retrieval, mainly by limiting the sites of membrane invagination at the early stage of endocytosis. © 2015 The Authors.

  4. Change in the immune function of porcine iliac artery endothelial cells infected with porcine circovirus type 2 and its inhibition on monocyte derived dendritic cells maturation

    PubMed Central

    Liu, Shiyu; Zou, Zhanming; Zhu, Linlin; Liu, Xinyu; Zhou, Shuanghai

    2017-01-01

    Porcine circovirus-associated disease is caused by porcine circovirus type 2 (PCV2) infection, which targets iliac artery endothelial cells (PIECs); it leads to severe immunopathologies and is associated with major economic losses in the porcine industry. Here, we report that in vitro PCV2 infection of PIECs causes cell injury, which affects DC function as well as adaptive immunity. Specifically, PCV2 infection downregulated PIEC antigen-presenting molecule expression, upregulated cytokines involved in the immune and inflammatory response causing cell damage and repair, and altered the migratory capacity of PIECs. In addition, PCV2-infected PIECs inhibited DC maturation, enhanced the endocytic ability of DCs, and weakened the stimulatory effect of DCs on T lymphocytes. Together, these findings indicate that profound functional impairment of DCs in the presence of PCV2-infected PIECs may be a potential pathogenic mechanism associated with PCV2-induced porcine disease. PMID:29073194

  5. Dendritic cell targeted vaccines: Recent progresses and challenges

    PubMed Central

    Chen, Pengfei; Liu, Xinsheng; Sun, Yuefeng; Zhou, Peng; Wang, Yonglu; Zhang, Yongguang

    2016-01-01

    ABSTRACT Dendritic cells (DCs) are known to be a set of morphology, structure and function of heterogeneous professional antigen presenting cells (APCs), as well as the strongest functional antigen presenting cells, which can absorb, process and present antigens. As the key regulators of innate and adaptive immune responses, DCs are at the center of the immune system and capable of interacting with both B cells and T cells, thereby manipulating the humoral and cellular immune responses. DCs provide an essential link between the innate and adaptive immunity, and the strong immune activation function of DCs and their properties of natural adjuvants, make them a valuable target for antigen delivery. Targeting antigens to DC-specific endocytic receptors in combination with the relevant antibodies or ligands along with immunostimulatory adjuvants has been recently recognized as a promising strategy for designing an effective vaccine that elicits a strong and durable T cell response against intracellular pathogens and cancer. This opinion article provides a brief summary of the rationales, superiorities and challenges of existing DC-targeting approaches. PMID:26513200

  6. Phosphorylation of Nephrin Triggers Its Internalization by Raft-Mediated Endocytosis

    PubMed Central

    Qin, Xiao-Song; Shono, Akemi; Yamamoto, Akitsugu; Kurihara, Hidetake; Doi, Toshio

    2009-01-01

    Proper localization of nephrin determines integrity of the glomerular slit diaphragm. Slit diaphragm proteins assemble into functional signaling complexes on a raft-based platform, but how the trafficking of these proteins coordinates with their signaling function is unknown. Here, we demonstrate that a raft-mediated endocytic (RME) pathway internalizes nephrin. Nephrin internalization was slower with raft-mediated endocytosis than with classic clathrin-mediated endocytosis. Ultrastructurally, the RME pathway consisted of noncoated invaginations and was dependent on cholesterol and dynamin. Nephrin constituted a stable, signaling-competent microdomain through interaction with Fyn, a Src kinase, and podocin, a scaffold protein. Tyrosine phosphorylation of nephrin triggered its own RME-mediated internalization. Protamine-induced hyperphosphorylation of nephrin led to noncoated invaginations predominating over coated pits. These results demonstrate that an RME pathway couples nephrin internalization to its own signaling, suggesting that RME promotes proper spatiotemporal assembly of slit diaphragms during podocyte development or injury. PMID:19850954

  7. Role of Intermediate Filaments in Vesicular Traffic.

    PubMed

    Margiotta, Azzurra; Bucci, Cecilia

    2016-04-25

    Intermediate filaments are an important component of the cellular cytoskeleton. The first established role attributed to intermediate filaments was the mechanical support to cells. However, it is now clear that intermediate filaments have many different roles affecting a variety of other biological functions, such as the organization of microtubules and microfilaments, the regulation of nuclear structure and activity, the control of cell cycle and the regulation of signal transduction pathways. Furthermore, a number of intermediate filament proteins have been involved in the acquisition of tumorigenic properties. Over the last years, a strong involvement of intermediate filament proteins in the regulation of several aspects of intracellular trafficking has strongly emerged. Here, we review the functions of intermediate filaments proteins focusing mainly on the recent knowledge gained from the discovery that intermediate filaments associate with key proteins of the vesicular membrane transport machinery. In particular, we analyze the current understanding of the contribution of intermediate filaments to the endocytic pathway.

  8. Sepiolite as a New Nanocarrier for DNA Transfer into Mammalian Cells: Proof of Concept, Issues and Perspectives.

    PubMed

    Piétrement, Olivier; Castro-Smirnov, Fidel Antonio; Le Cam, Eric; Aranda, Pilar; Ruiz-Hitzky, Eduardo; Lopez, Bernard S

    2017-12-29

    Sepiolite is a nanofibrous natural silicate that can be used as a nanocarrier for DNA transfer thanks to its strong interaction with DNA molecules and its ability to be naturally internalized into mammalian cells through both non-endocytic and endocytic pathways. Sepiolite, due to its ability to bind various biomolecules, could be a good candidate for use as a nanocarrier for the simultaneous vectorization of diverse biological molecules. In this paper, we review our recent work, issued from a starting collaboration with Prof. Ruiz-Hitzky, that includes diverse aspects on the characterization and main features of sepiolite/DNA nanohybrids, and we present an outlook for the further development of sepiolite for DNA transfer. © 2017 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. A Fusion-Inhibiting Peptide against Rift Valley Fever Virus Inhibits Multiple, Diverse Viruses

    PubMed Central

    Koehler, Jeffrey W.; Smith, Jeffrey M.; Ripoll, Daniel R.; Spik, Kristin W.; Taylor, Shannon L.; Badger, Catherine V.; Grant, Rebecca J.; Ogg, Monica M.; Wallqvist, Anders; Guttieri, Mary C.; Garry, Robert F.; Schmaljohn, Connie S.

    2013-01-01

    For enveloped viruses, fusion of the viral envelope with a cellular membrane is critical for a productive infection to occur. This fusion process is mediated by at least three classes of fusion proteins (Class I, II, and III) based on the protein sequence and structure. For Rift Valley fever virus (RVFV), the glycoprotein Gc (Class II fusion protein) mediates this fusion event following entry into the endocytic pathway, allowing the viral genome access to the cell cytoplasm. Here, we show that peptides analogous to the RVFV Gc stem region inhibited RVFV infectivity in cell culture by inhibiting the fusion process. Further, we show that infectivity can be inhibited for diverse, unrelated RNA viruses that have Class I (Ebola virus), Class II (Andes virus), or Class III (vesicular stomatitis virus) fusion proteins using this single peptide. Our findings are consistent with an inhibition mechanism similar to that proposed for stem peptide fusion inhibitors of dengue virus in which the RVFV inhibitory peptide first binds to both the virion and cell membranes, allowing it to traffic with the virus into the endocytic pathway. Upon acidification and rearrangement of Gc, the peptide is then able to specifically bind to Gc and prevent fusion of the viral and endocytic membranes, thus inhibiting viral infection. These results could provide novel insights into conserved features among the three classes of viral fusion proteins and offer direction for the future development of broadly active fusion inhibitors. PMID:24069485

  10. Distinct subcellular trafficking resulting from monomeric vs multimeric targeting to endothelial ICAM-1: implications for drug delivery.

    PubMed

    Ghaffarian, Rasa; Muro, Silvia

    2014-12-01

    Ligand-targeted, receptor-mediated endocytosis is commonly exploited for intracellular drug delivery. However, cells-surface receptors may follow distinct endocytic fates when bound by monomeric vs multimeric ligands. Our purpose was to study this paradigm using ICAM-1, an endothelial receptor involved in inflammation, to better understand its regulation and potential for drug delivery. Our procedure involved fluorescence microscopy of human endothelial cells to determine the endocytic behavior of unbound ICAM-1 vs ICAM-1 bound by model ligands: monomeric (anti-ICAM) vs multimeric (anti-ICAM biotin-streptavidin conjugates or anti-ICAM coated onto 100 nm nanocarriers). Our findings suggest that both monomeric and multimeric ligands undergo a similar endocytic pathway sensitive to amiloride (∼50% inhibition), but not inhibitors of clathrin-pits or caveoli. After 30 min, ∼60-70% of both ligands colocalized with Rab11a-compartments. By 3-5 h, ∼65-80% of multimeric anti-ICAM colocalized with perinuclear lysosomes with ∼60-80% degradation, while 70% of monomeric anti-ICAM remained associated with Rab11a at the cell periphery and recycled to and from the cell-surface with minimal (<10%) lysosomal colocalization and minimal (≤15%) degradation. In the absence of ligands, ICAM-1 also underwent amiloride-sensitive endocytosis with peripheral distribution, suggesting that monomeric (not multimeric) anti-ICAM follows the route of this receptor. In conclusion, ICAM-1 can mediate different intracellular itineraries, revealing new insight into this biological pathway and alternative avenues for drug delivery.

  11. Quantitative Measurement of GPCR Endocytosis via Pulse-Chase Covalent Labeling

    PubMed Central

    Fujishiro, Mitsuhiro; Okamura, Tomohisa; Fujio, Keishi; Okazaki, Hiroaki; Nomura, Seitaro; Takeda, Norifumi; Harada, Mutsuo; Toko, Haruhiro; Takimoto, Eiki; Akazawa, Hiroshi; Morita, Hiroyuki; Suzuki, Jun-ichi; Yamazaki, Tsutomu; Yamamoto, Kazuhiko; Komuro, Issei; Yanagisawa, Masashi

    2015-01-01

    G protein-coupled receptors (GPCRs) play a critical role in many physiological systems and represent one of the largest families of signal-transducing receptors. The number of GPCRs at the cell surface regulates cellular responsiveness to their cognate ligands, and the number of GPCRs, in turn, is dynamically controlled by receptor endocytosis. Recent studies have demonstrated that GPCR endocytosis, in addition to affecting receptor desensitization and resensitization, contributes to acute G protein-mediated signaling. Thus, endocytic GPCR behavior has a significant impact on various aspects of physiology. In this study, we developed a novel GPCR internalization assay to facilitate characterization of endocytic GPCR behavior. We genetically engineered chimeric GPCRs by fusing HaloTag (a catalytically inactive derivative of a bacterial hydrolase) to the N-terminal end of the receptor (HT-GPCR). HaloTag has the ability to form a stable covalent bond with synthetic HaloTag ligands that contain fluorophores or a high-affinity handle (such as biotin) and the HaloTag reactive linker. We selectively labeled HT-GPCRs at the cell surface with a HaloTag PEG ligand, and this pulse-chase covalent labeling allowed us to directly monitor the relative number of internalized GPCRs after agonist stimulation. Because the endocytic activities of GPCR ligands are not necessarily correlated with their agonistic activities, applying this novel methodology to orphan GPCRs, or even to already characterized GPCRs, will increase the likelihood of identifying currently unknown ligands that have been missed by conventional pharmacological assays. PMID:26020647

  12. Compartment-specific immunity in the human gut: properties and functions of dendritic cells in the colon versus the ileum.

    PubMed

    Mann, Elizabeth R; Bernardo, David; English, Nicholas R; Landy, Jon; Al-Hassi, Hafid O; Peake, Simon T C; Man, Ripple; Elliott, Timothy R; Spranger, Henning; Lee, Gui Han; Parian, Alyssa; Brant, Steven R; Lazarev, Mark; Hart, Ailsa L; Li, Xuhang; Knight, Stella C

    2016-02-01

    Dendritic cells (DC) mediate intestinal immune tolerance. Despite striking differences between the colon and the ileum both in function and bacterial load, few studies distinguish between properties of immune cells in these compartments. Furthermore, information of gut DC in humans is scarce. We aimed to characterise human colonic versus ileal DC. Human DC from paired colonic and ileal samples were characterised by flow cytometry, electron microscopy or used to stimulate T cell responses in a mixed leucocyte reaction. A lower proportion of colonic DC produced pro-inflammatory cytokines (tumour necrosis factor-α and interleukin (IL)-1β) compared with their ileal counterparts and exhibited an enhanced ability to generate CD4(+)FoxP3(+)IL-10(+) (regulatory) T cells. There were enhanced proportions of CD103(+)Sirpα(-) DC in the colon, with increased proportions of CD103(+)Sirpα(+) DC in the ileum. A greater proportion of colonic DC subsets analysed expressed the lymph-node-homing marker CCR7, alongside enhanced endocytic capacity, which was most striking in CD103(+)Sirpα(+) DC. Expression of the inhibitory receptor ILT3 was enhanced on colonic DC. Interestingly, endocytic capacity was associated with CD103(+) DC, in particular CD103(+)Sirpα(+) DC. However, expression of ILT3 was associated with CD103(-) DC. Colonic and ileal DC differentially expressed skin-homing marker CCR4 and small-bowel-homing marker CCR9, respectively, and this corresponded to their ability to imprint these homing markers on T cells. The regulatory properties of colonic DC may represent an evolutionary adaptation to the greater bacterial load in the colon. The colon and the ileum should be regarded as separate entities, each comprising DC with distinct roles in mucosal immunity and imprinting. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  13. Impairment of autophagosome-lysosome fusion in the buff mutant mice with the VPS33AD251E mutation

    PubMed Central

    Zhen, Yuanli; Li, Wei

    2015-01-01

    The HOPS (homotypic fusion and protein sorting) complex functions in endocytic and autophagic pathways in both lower eukaryotes and mammalian cells through its involvement in fusion events between endosomes and lysosomes or autophagosomes and lysosomes. However, the differential molecular mechanisms underlying these fusion processes are largely unknown. Buff (bf) is a mouse mutant that carries an Asp251-to-Glu point mutation (D251E) in the VPS33A protein, a tethering protein and a core subunit of the HOPS complex. Bf mice showed impaired spontaneous locomotor activity, motor learning, and autophagic activity. Although the gross anatomy of the brain was apparently normal, the number of Purkinje cells was significantly reduced. Furthermore, we found that fusion between autophagosomes and lysosomes was defective in bf cells without compromising the endocytic pathway. The direct association of mutant VPS33AD251E with the autophagic SNARE complex, STX17 (syntaxin 17)-VAMP8-SNAP29, was enhanced. In addition, the VPS33AD251E mutation enhanced interactions with other HOPS subunits, namely VPS41, VPS39, VPS18, and VPS11, except for VPS16. Reduction of the interactions between VPS33AY440D and several other HOPS subunits led to decreased association with STX17. These results suggest that the VPS33AD251E mutation plays dual roles by increasing the HOPS complex assembly and its association with the autophagic SNARE complex, which selectively affects the autophagosome-lysosome fusion that impairs basal autophagic activity and induces Purkinje cell loss. PMID:26259518

  14. Deciphering the mechanisms of cellular uptake of engineered nanoparticles by accurate evaluation of internalization using imaging flow cytometry

    PubMed Central

    2013-01-01

    Background The uptake of nanoparticles (NPs) by cells remains to be better characterized in order to understand the mechanisms of potential NP toxicity as well as for a reliable risk assessment. Real NP uptake is still difficult to evaluate because of the adsorption of NPs on the cellular surface. Results Here we used two approaches to distinguish adsorbed fluorescently labeled NPs from the internalized ones. The extracellular fluorescence was either quenched by Trypan Blue or the uptake was analyzed using imaging flow cytometry. We used this novel technique to define the inside of the cell to accurately study the uptake of fluorescently labeled (SiO2) and even non fluorescent but light diffracting NPs (TiO2). Time course, dose-dependence as well as the influence of surface charges on the uptake were shown in the pulmonary epithelial cell line NCI-H292. By setting up an integrative approach combining these flow cytometric analyses with confocal microscopy we deciphered the endocytic pathway involved in SiO2 NP uptake. Functional studies using energy depletion, pharmacological inhibitors, siRNA-clathrin heavy chain induced gene silencing and colocalization of NPs with proteins specific for different endocytic vesicles allowed us to determine macropinocytosis as the internalization pathway for SiO2 NPs in NCI-H292 cells. Conclusion The integrative approach we propose here using the innovative imaging flow cytometry combined with confocal microscopy could be used to identify the physico-chemical characteristics of NPs involved in their uptake in view to redesign safe NPs. PMID:23388071

  15. A Targeted RNAi Screen Identifies Endocytic Trafficking Factors That Control GLP-1 Receptor Signaling in Pancreatic β-Cells.

    PubMed

    Buenaventura, Teresa; Kanda, Nisha; Douzenis, Phoebe C; Jones, Ben; Bloom, Stephen R; Chabosseau, Pauline; Corrêa, Ivan R; Bosco, Domenico; Piemonti, Lorenzo; Marchetti, Piero; Johnson, Paul R; Shapiro, A M James; Rutter, Guy A; Tomas, Alejandra

    2018-03-01

    The glucagon-like peptide 1 (GLP-1) receptor (GLP-1R) is a key target for type 2 diabetes (T2D) treatment. Because endocytic trafficking of agonist-bound receptors is one of the most important routes for regulation of receptor signaling, a better understanding of this process may facilitate the development of new T2D therapeutic strategies. Here, we screened 29 proteins with known functions in G protein-coupled receptor trafficking for their role in GLP-1R potentiation of insulin secretion in pancreatic β-cells. We identify five (clathrin, dynamin1, AP2, sorting nexins [SNX] SNX27, and SNX1) that increase and four (huntingtin-interacting protein 1 [HIP1], HIP14, GASP-1, and Nedd4) that decrease insulin secretion from murine insulinoma MIN6B1 cells in response to the GLP-1 analog exendin-4. The roles of HIP1 and the endosomal SNX1 and SNX27 were further characterized in mouse and human β-cell lines and human islets. While HIP1 was required for the coupling of cell surface GLP-1R activation with clathrin-dependent endocytosis, the SNXs were found to control the balance between GLP-1R plasma membrane recycling and lysosomal degradation and, in doing so, determine the overall β-cell incretin responses. We thus identify key modulators of GLP-1R trafficking and signaling that might provide novel targets to enhance insulin secretion in T2D. © 2017 by the American Diabetes Association.

  16. Investigation of endosome and lysosome biology by ultra pH-sensitive nanoprobes.

    PubMed

    Wang, Chensu; Zhao, Tian; Li, Yang; Huang, Gang; White, Michael A; Gao, Jinming

    2017-04-01

    Endosomes and lysosomes play a critical role in various aspects of cell physiology such as nutrient sensing, receptor recycling, protein/lipid catabolism, and cell death. In drug delivery, endosomal release of therapeutic payloads from nanocarriers is also important in achieving efficient delivery of drugs to reach their intracellular targets. Recently, we invented a library of ultra pH-sensitive (UPS) nanoprobes with exquisite fluorescence response to subtle pH changes. The UPS nanoprobes also displayed strong pH-specific buffer effect over small molecular bases with broad pH responses (e.g., chloroquine and NH 4 Cl). Tunable pH transitions from 7.4 to 4.0 of UPS nanoprobes cover the entire physiological pH of endocytic organelles (e.g., early and late endosomes) and lysosomes. These unique physico-chemical properties of UPS nanoprobes allowed a 'detection and perturbation' strategy for the investigation of luminal pH in cell signaling and metabolism, which introduces a nanotechnology-enabled paradigm for the biological studies of endosomes and lysosomes. Published by Elsevier B.V.

  17. Curcumin (1,7-bis(4-hydroxy-3-methoxyphenyl)-1, 6-heptadiene-3,5-dione) Blocks the Chemotaxis of Neutrophils by Inhibiting Signal Transduction through IL-8 Receptors

    PubMed Central

    Takahashi, Masafumi; Ishiko, Takatoshi; Kamohara, Hidenobu; Hidaka, Hideaki; Ikeda, Osamu; Ogawa, Michio; Baba, Hideo

    2007-01-01

    We investigated the impact of curcumin on neutrophils. Chemotactic activity via human recombinant IL-8 (hrIL-8) was significantly inhibited by curcumin. Curcumin reduced calcium ion flow induced by internalization of the IL-8 receptor. We analyzed flow cytometry to evaluate the status of the IL-8 receptor after curcumin treatment. The change in the distribution of receptors intracellularly and on the cell surface suggested that curcumin may affect the receptor trafficking pathway intracellulary. Rab11 is a low molecular weight G protein associated with the CXCR recycling pathway. Following curcumin treatment, immunoprecipitation studies showed that the IL-8 receptor was associated with larger amounts of active Rab11 than that in control cells. These data suggest that curcumin induces the stacking of the Rab11 vesicle complex with CXCR1 and CXCR2 in the endocytic pathway. The mechanism for antiinflammatory response by curcumin may involve unique regulation of the Rab11 trafficking molecule in recycling of IL-8 receptors. PMID:17710245

  18. Cellular trafficking of low molecular weight heparin incorporated in layered double hydroxide nanoparticles in rat vascular smooth muscle cells.

    PubMed

    Gu, Zi; Rolfe, Barbara E; Thomas, Anita C; Campbell, Julie H; Lu, G Q Max; Xu, Zhi P

    2011-10-01

    This paper reports a clear elucidation of the pathway for the cellular delivery of layered double hydroxide (LDH) nanoparticles intercalated with anti-restenotic low molecular weight heparin (LMWH). Cellular uptake of LMWH-LDH conjugates into cultured rat vascular smooth muscle cells (SMCs) measured via flow cytometry was more than ten times greater than that of LMWH alone. Confocal and transmission electron microscopy showed LMWH-LDH conjugates taken up by endosomes, then released into the cytoplasm. We propose that LMWH-LDH is taken up via a unique 'modified endocytic' pathway, whereby the conjugate is internalized by SMCs in early endosomes, sorted in late endosomes, and quickly released from late endosomes/lysosomes, avoiding degradation. Treatment of cells with LMWH-LDH conjugates suppressed the activation of ERK1/2 in response to foetal calf serum (FCS) for up to 24h, unlike unconjugated LMWH which had no significant effect at 24h. Improved understanding of the intracellular pathway of LMWH-LDH nanohybrids in SMC will allow for refinement of design for LDH nanomedicine applications. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Cryo-EM structures of the human endolysosomal TRPML3 channel in three distinct states.

    PubMed

    Zhou, Xiaoyuan; Li, Minghui; Su, Deyuan; Jia, Qi; Li, Huan; Li, Xueming; Yang, Jian

    2017-12-01

    TRPML3 channels are mainly localized to endolysosomes and play a critical role in the endocytic pathway. Their dysfunction causes deafness and pigmentation defects in mice. TRPML3 activity is inhibited by low endolysosomal pH. Here we present cryo-electron microscopy (cryo-EM) structures of human TRPML3 in the closed, agonist-activated, and low-pH-inhibited states, with resolutions of 4.06, 3.62, and 4.65 Å, respectively. The agonist ML-SA1 lodges between S5 and S6 and opens an S6 gate. A polycystin-mucolipin domain (PMD) forms a luminal cap. S1 extends into this cap, forming a 'gating rod' that connects directly to a luminal pore loop, which undergoes dramatic conformational changes in response to low pH. S2 extends intracellularly and interacts with several intracellular regions to form a 'gating knob'. These unique structural features, combined with the results of electrophysiological studies, indicate a new mechanism by which luminal pH and other physiological modulators such as PIP 2 regulate TRPML3 by changing S1 and S2 conformations.

  20. Inter-Cellular Exchange of Cellular Components via VE-Cadherin-Dependent Trans-Endocytosis

    PubMed Central

    Sakurai, Takashi; Woolls, Melissa J.; Jin, Suk-Won

    2014-01-01

    Cell-cell communications typically involve receptor-mediated signaling initiated by soluble or cell-bound ligands. Here, we report a unique mode of endocytosis: proteins originating from cell-cell junctions and cytosolic cellular components from the neighboring cell are internalized, leading to direct exchange of cellular components between two adjacent endothelial cells. VE-cadherins form transcellular bridges between two endothelial cells that are the basis of adherence junctions. At such adherens junction sites, we observed the movement of the entire VE-cadherin molecule from one endothelial cell into the other with junctional and cytoplasmic components. This phenomenon, here termed trans-endocytosis, requires the establishment of a VE-cadherin homodimer in trans with internalization proceeding in a Rac1-, and actomyosin-dependent manner. Importantly, the trans-endocytosis is not dependent on any known endocytic pathway including clathrin-dependent endocytosis, macropinocytosis or phagocytosis. This novel form of cell-cell communications, leading to a direct exchange of cellular components, was observed in 2D and 3D-cultured endothelial cells as well as in the developing zebrafish vasculature. PMID:24603875

  1. Early stages of functional diversification in the Rab GTPase gene family revealed by genomic and localization studies in Paramecium species

    PubMed Central

    Bright, Lydia J.; Gout, Jean-Francois; Lynch, Michael

    2017-01-01

    New gene functions arise within existing gene families as a result of gene duplication and subsequent diversification. To gain insight into the steps that led to the functional diversification of paralogues, we tracked duplicate retention patterns, expression-level divergence, and subcellular markers of functional diversification in the Rab GTPase gene family in three Paramecium aurelia species. After whole-genome duplication, Rab GTPase duplicates are more highly retained than other genes in the genome but appear to be diverging more rapidly in expression levels, consistent with early steps in functional diversification. However, by localizing specific Rab proteins in Paramecium cells, we found that paralogues from the two most recent whole-genome duplications had virtually identical localization patterns, and that less closely related paralogues showed evidence of both conservation and diversification. The functionally conserved paralogues appear to target to compartments associated with both endocytic and phagocytic recycling functions, confirming evolutionary and functional links between the two pathways in a divergent eukaryotic lineage. Because the functionally diversifying paralogues are still closely related to and derived from a clade of functionally conserved Rab11 genes, we were able to pinpoint three specific amino acid residues that may be driving the change in the localization and thus the function in these proteins. PMID:28251922

  2. Recombinant antibody mediated delivery of organelle-specific DNA pH sensors along endocytic pathways

    NASA Astrophysics Data System (ADS)

    Modi, Souvik; Halder, Saheli; Nizak, Clément; Krishnan, Yamuna

    2013-12-01

    DNA has been used to build nanomachines with potential in cellulo and in vivo applications. However their different in cellulo applications are limited by the lack of generalizable strategies to deliver them to precise intracellular locations. Here we describe a new molecular design of DNA pH sensors with response times that are nearly 20 fold faster. Further, by changing the sequence of the pH sensitive domain of the DNA sensor, we have been able to tune their pH sensitive regimes and create a family of DNA sensors spanning ranges from pH 4 to 7.6. To enable a generalizable targeting methodology, this new sensor design also incorporates a `handle' domain. We have identified, using a phage display screen, a set of three recombinant antibodies (scFv) that bind sequence specifically to the handle domain. Sequence analysis of these antibodies revealed several conserved residues that mediate specific interactions with the cognate DNA duplex. We also found that all three scFvs clustered into different branches indicating that their specificity arises from mutations in key residues. When one of these scFvs is fused to a membrane protein (furin) that traffics via the cell surface, the scFv-furin chimera binds the `handle' and ferries a family of DNA pH sensors along the furin endocytic pathway. Post endocytosis, all DNA nanodevices retain their functionality in cellulo and provide spatiotemporal pH maps of retrogradely trafficking furin inside living cells. This new molecular technology of DNA-scFv-protein chimeras can be used to site-specifically complex DNA nanostructures for bioanalytical applications.DNA has been used to build nanomachines with potential in cellulo and in vivo applications. However their different in cellulo applications are limited by the lack of generalizable strategies to deliver them to precise intracellular locations. Here we describe a new molecular design of DNA pH sensors with response times that are nearly 20 fold faster. Further, by changing the sequence of the pH sensitive domain of the DNA sensor, we have been able to tune their pH sensitive regimes and create a family of DNA sensors spanning ranges from pH 4 to 7.6. To enable a generalizable targeting methodology, this new sensor design also incorporates a `handle' domain. We have identified, using a phage display screen, a set of three recombinant antibodies (scFv) that bind sequence specifically to the handle domain. Sequence analysis of these antibodies revealed several conserved residues that mediate specific interactions with the cognate DNA duplex. We also found that all three scFvs clustered into different branches indicating that their specificity arises from mutations in key residues. When one of these scFvs is fused to a membrane protein (furin) that traffics via the cell surface, the scFv-furin chimera binds the `handle' and ferries a family of DNA pH sensors along the furin endocytic pathway. Post endocytosis, all DNA nanodevices retain their functionality in cellulo and provide spatiotemporal pH maps of retrogradely trafficking furin inside living cells. This new molecular technology of DNA-scFv-protein chimeras can be used to site-specifically complex DNA nanostructures for bioanalytical applications. Electronic supplementary information (ESI) available: Detailed description of all oligonucleotide sequences used in this study; list of figures that support claims from the main text. Mainly these show sensor sequences, phage display results, scFv purification and binding data, cell images clamped at different pH and co-localization studies with endocytic tracers. See DOI: 10.1039/c3nr03769j

  3. Therapeutic Targeting of Siglecs using Antibody- and Glycan-based Approaches

    PubMed Central

    Angata, Takashi; Nycholat, Corwin M.; Macauley, Matthew S.

    2015-01-01

    The sialic acid-binding immunoglobulin-like lectins (Siglecs) are a family of immunomodulatory receptors whose functions are regulated by their glycan ligands. Siglecs are attractive therapeutic targets because of their cell-type specific expression pattern, endocytic properties, high expression on certain lymphomas/leukemias, and ability to modulate receptor signaling. Siglec-targeting approaches with therapeutic potential encompass antibody- and glycan-based strategies. Several antibody-based therapies are in clinical trials and continue to be developed for the treatment of lymphoma/leukemia and autoimmune disease, while the therapeutic potential of glycan-based strategies for cargo-delivery and immunomodulation is a promising new approach. Here, we review these strategies with special emphasis on emerging approaches and disease areas that may benefit from targeting the Siglec family. PMID:26435210

  4. Imaging galectin-3 dependent endocytosis with lattice light-sheet microscopy

    NASA Astrophysics Data System (ADS)

    Baek, Jongho; Lou, Jieqiong; Coelho, Simao; Lim, Yean Jin; Seidlitz, Silvia; Nicovich, Philip R.; Wunder, Christian; Johannes, Ludger; Gaus, Katharina

    2017-04-01

    Lattice light-sheet (LLS) microscopy provides ultrathin light sheets of a two-dimensional optical lattice that allows us imaging three-dimensional (3D) objects for hundreds of time points at sub-second intervals and at or below the diffraction limit. Galectin-3 (Gal3), a carbohydrate-binding protein, triggers glycosphingolipid (GSL)-dependent biogenesis of morphologically distinct endocytic vesicles that are cargo specific and clathrin independent. In this study, we apply LLS microscopy to study the dynamics of Gal3 dependent endocytosis in live T cells. This will allow us to observe Gal3-mediated endocytosis at high temporal and excellent 3D spatial resolution, which may shed light on our understanding of the mechanism and physiological function of Gal3-induced endocytosis.

  5. Endocytosis and Endosomal Trafficking in Plants.

    PubMed

    Paez Valencia, Julio; Goodman, Kaija; Otegui, Marisa S

    2016-04-29

    Endocytosis and endosomal trafficking are essential processes in cells that control the dynamics and turnover of plasma membrane proteins, such as receptors, transporters, and cell wall biosynthetic enzymes. Plasma membrane proteins (cargo) are internalized by endocytosis through clathrin-dependent or clathrin-independent mechanism and delivered to early endosomes. From the endosomes, cargo proteins are recycled back to the plasma membrane via different pathways, which rely on small GTPases and the retromer complex. Proteins that are targeted for degradation through ubiquitination are sorted into endosomal vesicles by the ESCRT (endosomal sorting complex required for transport) machinery for degradation in the vacuole. Endocytic and endosomal trafficking regulates many cellular, developmental, and physiological processes, including cellular polarization, hormone transport, metal ion homeostasis, cytokinesis, pathogen responses, and development. In this review, we discuss the mechanisms that mediate the recognition and sorting of endocytic and endosomal cargos, the vesiculation processes that mediate their trafficking, and their connection to cellular and physiological responses in plants.

  6. Monensin inhibits intracellular dissociation of asialoglycoproteins from their receptor

    PubMed Central

    1983-01-01

    Treatment of short-term monolayer cultures of rat hepatocytes with the proton ionophore, monensin, abolishes asialoglycoprotein degradation, despite little effect of the drug on either surface binding of ligand or internalization of prebound ligand. Centrifuging cell homogenates on Percoll density gradients indicates that, as a result of monensin treatment, ligand does not enter lysosomes but sediments instead in a lower density subcellular fraction that is likely an endocytic vesicle. Analyzing the degree of receptor association of intracellular ligand revealed that monensin prevents the dissociation of the receptor-ligand complex that normally occurs subsequent to endocytosis. The weak base, chloroquine, also blocks this intracellular dissociation. Evidence from sequential substitution experiments is presented, indicating that monensin and chloroquine act at the same point in the sequence of events leading to ligand dissociation. These data are discussed in terms of a pH-mediated dissociation of the receptor-ligand complex within a prelysosomal endocytic vesicle. PMID:6304116

  7. Identification of a Novel Recycling Sequence in the C-tail of FPR2/ALX Receptor

    PubMed Central

    Thompson, Dawn; McArthur, Simon; Hislop, James N.; Flower, Roderick J.; Perretti, Mauro

    2014-01-01

    Formyl-peptide receptor type 2 (FPR2; also called ALX because it is the receptor for lipoxin A4) sustains a variety of biological responses relevant to the development and control of inflammation, yet the cellular regulation of this G-protein-coupled receptor remains unexplored. Here we report that, in response to peptide agonist activation, FPR2/ALX undergoes β-arrestin-mediated endocytosis followed by rapid recycling to the plasma membrane. We identify a transplantable recycling sequence that is both necessary and sufficient for efficient receptor recycling. Furthermore, removal of this C-terminal recycling sequence alters the endocytic fate of FPR2/ALX and evokes pro-apoptotic effects in response to agonist activation. This study demonstrates the importance of endocytic recycling in the anti-apoptotic properties of FPR2/ALX and identifies the molecular determinant required for modulation of this process fundamental for the control of inflammation. PMID:25326384

  8. The multivesicular body is the major internal site of prion conversion

    PubMed Central

    Yim, Yang-In; Park, Bum-Chan; Yadavalli, Rajgopal; Zhao, Xiaohong; Eisenberg, Evan; Greene, Lois E.

    2015-01-01

    ABSTRACT The conversion of the properly folded prion protein, PrPc, to its misfolded amyloid form, PrPsc, occurs as the two proteins traffic along the endocytic pathway and PrPc is exposed to PrPsc. To determine the specific site of prion conversion, we knocked down various proteins in the endocytic pathway including Rab7a, Tsg101 and Hrs (also known as HGS). PrPsc was markedly reduced in two chronically infected cell lines by preventing the maturation of the multivesicular body, a process that begins in the early endosome and ends with the sorting of cargo to the lysosome. By contrast, knocking down proteins in the retromer complex, which diverts cargo away from the multivesicular body caused an increase in PrPsc levels. These results suggest that the multivesicular body is the major site for intracellular conversion of PrPc to PrPsc. PMID:25663703

  9. Effects of vascularization on cancer nanochemotherapy outcomes

    NASA Astrophysics Data System (ADS)

    Paiva, L. R.; Ferreira, S. C.; Martins, M. L.

    2016-08-01

    Cancer therapy requires anticancer agents capable of efficient and uniform systemic delivery. One promising route to their development is nanotechnology. Here, a previous model for cancer chemotherapy based on a nanosized drug carrier (Paiva et al., 2011) is extended by including tissue vasculature and a three-dimensional growth. We study through computer simulations the therapy against tumors demanding either large or small nutrient supplies growing under different levels of tissue vascularization. Our results indicate that highly vascularized tumors demand more aggressive therapies (larger injected doses administrated at short intervals) than poorly vascularized ones. Furthermore, nanoparticle endocytic rate by tumor cells, not its selectivity, is the major factor that determines the therapeutic success. Finally, our finds indicate that therapies combining cytotoxic agents with antiangiogenic drugs that reduce the abnormal tumor vasculature, instead of angiogenic drugs that normalize it, can lead to successful treatments using feasible endocytic rates and administration intervals.

  10. Visualization of the endocytic pathway in the filamentous fungus Aspergillus oryzae using an EGFP-fused plasma membrane protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Higuchi, Yujiro; Nakahama, Tomoyuki; Shoji, Jun-ya

    2006-02-17

    Endocytosis is an important process for cellular activities. However, in filamentous fungi, the existence of endocytosis has been so far elusive. In this study, we used AoUapC-EGFP, the fusion protein of a putative uric acid-xanthine permease with enhanced green fluorescent protein (EGFP) in Aspergillus oryzae, to examine whether the endocytic process occurs or not. Upon the addition of ammonium into the medium the fusion protein was internalized from the plasma membrane. The internalization of AoUapC-EGFP was completely blocked by sodium azide, cold, and cytochalasin A treatments, suggesting that the internalization possesses the general features of endocytosis. These results demonstrate themore » occurrence of endocytosis in filamentous fungi. Moreover, we discovered that the endosomal compartments appeared upon the induction of endocytosis and moved in a microtubule-dependent manner.« less

  11. Germline Proliferation Is Regulated by Somatic Endocytic Genes via JNK and BMP Signaling in Drosophila.

    PubMed

    Tang, Yaning; Geng, Qing; Chen, Di; Zhao, Shaowei; Liu, Xian; Wang, Zhaohui

    2017-05-01

    Signals derived from the microenvironment contribute greatly to tumorigenesis . The underlying mechanism requires thorough investigation. Here, we use Drosophila testis as a model system to address this question, taking the advantage of the ease to distinguish germline and somatic cells and to track the cell numbers. In an EMS mutagenesis screen, we identified Rab5 , a key factor in endocytosis, for its nonautonomous role in germline proliferation. The disruption of Rab5 in somatic cyst cells, which escort the development of germline lineage, induced the overproliferation of underdifferentiated but genetically wild-type germ cells. We demonstrated that this nonautonomous effect was mediated by the transcriptional activation of Dpp [the fly homolog of bone morphogenetic protein (BMP)] by examining the Dpp-reporter expression and knocking down Dpp to block germline overgrowth. Consistently, the protein levels of Bam, the germline prodifferentiation factor normally accumulated in the absence of BMP/Dpp signaling, decreased in the overproliferating germ cells. Further, we discovered that the JNK signaling pathway operated between Rab5 and Dpp, because simultaneously inhibiting the JNK pathway and Rab5 in cyst cells prevented both dpp transcription and germline tumor growth. Additionally, we found that multiple endocytic genes, such as avl , TSG101 , Vps25 , or Cdc42 , were required in the somatic cyst cells to restrict germline amplification. These findings indicate that when the endocytic state of the surrounding cells is impaired, genetically wild-type germ cells overgrow. This nonautonomous model of tumorigenesis provides a simple system to dissect the relation between tumor and its niche. Copyright © 2017 by the Genetics Society of America.

  12. Physiological stimuli evoke two forms of endocytosis in bovine chromaffin cells.

    PubMed

    Chan, S A; Smith, C

    2001-12-15

    1. Exocytosis and endocytosis were measured following single, or trains of, simulated action potentials (sAP) in bovine adrenal chromaffin cells. Catecholamine secretion was measured by oxidative amperometry and cell membrane turnover was measured by voltage clamp cell capacitance measurements. 2. The sAPs evoked inward Na(+) and Ca(2+) currents that were statistically identical to those evoked by native action potential waveforms. On average, a single secretory granule underwent fusion following sAP stimulation. An equivalent amount of membrane was then quickly internalised (tau = 560 ms). 3. Stimulation with sAP trains revealed a biphasic relationship between cell firing rate and endocytic activity. At basal stimulus frequencies (single to 0.5 Hz) cells exhibited a robust membrane internalisation that then diminished as firing increased to intermediate levels (1.9 and 6 Hz). However at the higher stimulation rates (10 and 16 Hz) endocytic activity rebounded and was again able to effectively maintain cell surface near pre-stimulus levels. 4. Treatment with cyclosporin A and FK506, inhibitors of the phosphatase calcineurin, left endocytosis characteristics unaltered at the lower basal stimulus levels, but blocked the resurgence in endocytosis seen in control cells at higher sAP frequencies. 5. Based on these findings we propose that, under physiological electrical stimulation, chromaffin cells internalise membrane via two distinct pathways that are separable. One is prevalent at basal stimulus frequencies, is lessened with increased firing, and is insensitive to cyclosporin A and FK506. A second endocytic form is activated by increased firing frequencies, and is selectively blocked by cyclosporin A and FK506.

  13. Physiological stimuli evoke two forms of endocytosis in bovine chromaffin cells

    PubMed Central

    Chan, Shyue-An; Smith, Corey

    2001-01-01

    Exocytosis and endocytosis were measured following single, or trains of, simulated action potentials (sAP) in bovine adrenal chromaffin cells. Catecholamine secretion was measured by oxidative amperometry and cell membrane turnover was measured by voltage clamp cell capacitance measurements. The sAPs evoked inward Na+ and Ca2+ currents that were statistically identical to those evoked by native action potential waveforms. On average, a single secretory granule underwent fusion following sAP stimulation. An equivalent amount of membrane was then quickly internalised (τ = 560 ms). Stimulation with sAP trains revealed a biphasic relationship between cell firing rate and endocytic activity. At basal stimulus frequencies (single to 0.5 Hz) cells exhibited a robust membrane internalisation that then diminished as firing increased to intermediate levels (1.9 and 6 Hz). However at the higher stimulation rates (10 and 16 Hz) endocytic activity rebounded and was again able to effectively maintain cell surface near pre-stimulus levels. Treatment with cyclosporin A and FK506, inhibitors of the phosphatase calcineurin, left endocytosis characteristics unaltered at the lower basal stimulus levels, but blocked the resurgence in endocytosis seen in control cells at higher sAP frequencies. Based on these findings we propose that, under physiological electrical stimulation, chromaffin cells internalise membrane via two distinct pathways that are separable. One is prevalent at basal stimulus frequencies, is lessened with increased firing, and is insensitive to cyclosporin A and FK506. A second endocytic form is activated by increased firing frequencies, and is selectively blocked by cyclosporin A and FK506. PMID:11744761

  14. Brain Region-Specific Trafficking of the Dopamine Transporter

    PubMed Central

    Block, Ethan R.; Nuttle, Jacob; Balcita-Pedicino, Judith Joyce; Caltagarone, John; Watkins, Simon C.

    2015-01-01

    The dopamine (DA) transporter (DAT) controls dopaminergic neurotransmission by removing extracellular DA. Although DA reuptake is proposed to be regulated by DAT traffic to and from the cell surface, the membrane trafficking system involved in the endocytic cycling of DAT in the intact mammalian brain has not been characterized. Hence, we performed immunolabeling and quantitative analysis of the subcellular and regional distribution of DAT using the transgenic knock-in mouse expressing hemagglutinin (HA) epitope-tagged DAT (HA-DAT) and by using a combination of electron microscopy and a novel method for immunofluorescence labeling of HA-DAT in acute sagittal brain slices. Both approaches demonstrated that, in midbrain somatodendritic regions, HA-DAT was present in the plasma membrane, endoplasmic reticulum, and Golgi complex, with a small fraction in early and recycling endosomes and an even smaller fraction in late endosomes and lysosomes. In the striatum and in axonal tracts between the midbrain and striatum, HA-DAT was detected predominantly in the plasma membrane, and quantitative analysis revealed increased DAT density in striatal compared with midbrain plasma membranes. Endosomes were strikingly rare and lysosomes were absent in striatal axons, in which there was little intracellular HA-DAT. Acute administration of amphetamine in vivo (60 min) or to slices ex vivo (10–60 min) did not result in detectable changes in DAT distribution. Altogether, these data provide evidence for regional differences in DAT plasma membrane targeting and retention and suggest a surprisingly low level of endocytic trafficking of DAT in the striatum along with limited DAT endocytic activity in somatodendritic areas. SIGNIFICANCE STATEMENT The dopamine transporter (DAT) is the key regulator of the dopamine neurotransmission in the CNS. In the present study, we developed a new approach for studying DAT localization and dynamics in intact neurons in acute sagittal brain slices from the knock-in mouse expressing epitope-tagged DAT. For the first time, the fluorescence imaging analysis of DAT was combined with the immunogold labeling of DAT and quantitative electron microscopy. In contrast to numerous studies of DAT trafficking in heterologous expression systems and dissociated cultured neurons, studies in intact neurons revealed a surprisingly low amount of endocytic trafficking of DAT at steady state and after acute amphetamine treatment and suggested that non-vesicular transport could be the main mechanism establishing DAT distribution within the dopaminergic neuron. PMID:26377471

  15. Inflammatory Monocytes Recruited to the Liver within 24 Hours after Virus-Induced Inflammation Resemble Kupffer Cells but Are Functionally Distinct

    PubMed Central

    Movita, Dowty; Biesta, Paula; Kreefft, Kim; Haagmans, Bart; Zuniga, Elina; Herschke, Florence; De Jonghe, Sandra; Janssen, Harry L. A.; Gama, Lucio; Boonstra, Andre

    2015-01-01

    ABSTRACT Due to a scarcity of immunocompetent animal models for viral hepatitis, little is known about the early innate immune responses in the liver. In various hepatotoxic models, both pro- and anti-inflammatory activities of recruited monocytes have been described. In this study, we compared the effect of liver inflammation induced by the Toll-like receptor 4 ligand lipopolysaccharide (LPS) with that of a persistent virus, lymphocytic choriomeningitis virus (LCMV) clone 13, on early innate intrahepatic immune responses in mice. LCMV infection induces a remarkable influx of inflammatory monocytes in the liver within 24 h, accompanied by increased transcript levels of several proinflammatory cytokines and chemokines in whole liver. Importantly, while a single LPS injection results in similar recruitment of inflammatory monocytes to the liver, the functional properties of the infiltrating cells are dramatically different in response to LPS versus LCMV infection. In fact, intrahepatic inflammatory monocytes are skewed toward a secretory phenotype with impaired phagocytosis in LCMV-induced liver inflammation but exhibit increased endocytic capacity after LPS challenge. In contrast, F4/80high-Kupffer cells retain their steady-state endocytic functions upon LCMV infection. Strikingly, the gene expression levels of inflammatory monocytes dramatically change upon LCMV exposure and resemble those of Kupffer cells. Since inflammatory monocytes outnumber Kupffer cells 24 h after LCMV infection, it is highly likely that inflammatory monocytes contribute to the intrahepatic inflammatory response during the early phase of infection. Our findings are instrumental in understanding the early immunological events during virus-induced liver disease and point toward inflammatory monocytes as potential target cells for future treatment options in viral hepatitis. IMPORTANCE Insights into how the immune system deals with hepatitis B virus (HBV) and HCV are scarce due to the lack of adequate animal model systems. This knowledge is, however, crucial to developing new antiviral strategies aimed at eradicating these chronic infections. We model virus-host interactions during the initial phase of liver inflammation 24 h after inoculating mice with LCMV. We show that infected Kupffer cells are rapidly outnumbered by infiltrating inflammatory monocytes, which secrete proinflammatory cytokines but are less phagocytic. Nevertheless, these recruited inflammatory monocytes start to resemble Kupffer cells on a transcript level. The specificity of these cellular changes for virus-induced liver inflammation is corroborated by demonstrating opposite functions of monocytes after LPS challenge. Overall, this demonstrates the enormous functional and genetic plasticity of infiltrating monocytes and identifies them as an important target cell for future treatment regimens. PMID:25673700

  16. Anthrax edema toxin disrupts distinct steps in Rab11-dependent junctional transport

    PubMed Central

    Guichard, Annabel; Jain, Prashant; Moayeri, Mahtab; Cruz-Moreno, Beatriz; Leppla, Stephen H.; Nizet, Victor

    2017-01-01

    Various bacterial toxins circumvent host defenses through overproduction of cAMP. In a previous study, we showed that edema factor (EF), an adenylate cyclase from Bacillus anthracis, disrupts endocytic recycling mediated by the small GTPase Rab11. As a result, cargo proteins such as cadherins fail to reach inter-cellular junctions. In the present study, we provide further mechanistic dissection of Rab11 inhibition by EF using a combination of Drosophila and mammalian systems. EF blocks Rab11 trafficking after the GTP-loading step, preventing a constitutively active form of Rab11 from delivering cargo vesicles to the plasma membrane. Both of the primary cAMP effector pathways -PKA and Epac/Rap1- contribute to inhibition of Rab11-mediated trafficking, but act at distinct steps of the delivery process. PKA acts early, preventing Rab11 from associating with its effectors Rip11 and Sec15. In contrast, Epac functions subsequently via the small GTPase Rap1 to block fusion of recycling endosomes with the plasma membrane, and appears to be the primary effector of EF toxicity in this process. Similarly, experiments conducted in mammalian systems reveal that Epac, but not PKA, mediates the activity of EF both in cell culture and in vivo. The small GTPase Arf6, which initiates endocytic retrieval of cell adhesion components, also contributes to junctional homeostasis by counteracting Rab11-dependent delivery of cargo proteins at sites of cell-cell contact. These studies have potentially significant practical implications, since chemical inhibition of either Arf6 or Epac blocks the effect of EF in cell culture and in vivo, opening new potential therapeutic avenues for treating symptoms caused by cAMP-inducing toxins or related barrier-disrupting pathologies. PMID:28945820

  17. RGD-containing peptides activate S6K1 through beta3 integrin in adult cardiac muscle cells.

    PubMed

    Balasubramanian, Sundaravadivel; Kuppuswamy, Dhandapani

    2003-10-24

    The enzyme p70S6 kinase (S6K1) is critical for cell growth, and we have reported its activation during cardiac hypertrophy. Because cardiac hypertrophy also involves integrin activation, we analyzed whether integrins could contribute to S6K1 activation. Using adult feline cardiomyocytes, here we report that integrin-interacting Arg-Gly-Asp (RGD) peptides activate S6K1 as observed by band shifting, kinase activity and phosphorylation at Thr-389 and Thr-421/Ser-424 of S6K1, and S6 protein phosphorylation. Perturbation of specific integrin function with blocking antibodies and by overexpressing the beta1A cytoplasmic tail revealed that beta3 but not beta1 integrin mediates the RGD-induced S6K1 activation. This activation is focal adhesion complex-independent and is accompanied by the activation of extracellular signal-regulated kinases 1/2 (ERK) and mammalian target of rapamycin (mTOR). Studies using specific inhibitors and dominant negative c-Raf expression in cardiomyocytes indicate that the S6K1 activation involves mTOR, MEK/ERK, and phosphatidylinositol 3-kinase pathways and is independent of protein kinase C and c-Raf. Finally, addition of fluorescent-labeled RGD peptide to cardiomyocytes exhibits its internalization and localization to the endocytic vesicles, and pretreatment of cardiomyocytes with endocytic inhibitors reduced the S6K1 activation. These data suggest that RGD interaction with beta3 integrin and its subsequent endocytosis trigger specific signaling pathway(s) for S6K1 activation in cardiomyocytes and that this process may contribute to hypertrophic growth and remodeling of myocardium.

  18. Mosquito Cellular Factors and Functions in Mediating the Infectious entry of Chikungunya Virus

    PubMed Central

    Lee, Regina Ching Hua; Hapuarachchi, Hapuarachchige Chanditha; Chen, Karen Caiyun; Hussain, Khairunnisa' Mohamed; Chen, Huixin; Low, Swee Ling; Ng, Lee Ching; Lin, Raymond; Ng, Mary Mah-Lee; Chu, Justin Jang Hann

    2013-01-01

    Chikungunya virus (CHIKV) is an arthropod-borne virus responsible for recent epidemics in the Asia Pacific regions. A customized gene expression microarray of 18,760 transcripts known to target Aedes mosquito genome was used to identify host genes that are differentially regulated during the infectious entry process of CHIKV infection on C6/36 mosquito cells. Several genes such as epsin I (EPN1), epidermal growth factor receptor pathway substrate 15 (EPS15) and Huntingtin interacting protein I (HIP1) were identified to be differentially expressed during CHIKV infection and known to be involved in clathrin-mediated endocytosis (CME). Transmission electron microscopy analyses further revealed the presence of CHIKV particles within invaginations of the plasma membrane, resembling clathrin-coated pits. Characterization of vesicles involved in the endocytic trafficking processes of CHIKV revealed the translocation of the virus particles to the early endosomes and subsequently to the late endosomes and lysosomes. Treatment with receptor-mediated endocytosis inhibitor, monodansylcadaverine and clathrin-associated drug inhibitors, chlorpromazine and dynasore inhibited CHIKV entry, whereas no inhibition was observed with caveolin-related drug inhibitors. Inhibition of CHIKV entry upon treatment with low-endosomal pH inhibitors indicated that low pH is essential for viral entry processes. CHIKV entry by clathrin-mediated endocytosis was validated via overexpression of a dominant-negative mutant of Eps15, in which infectious entry was reduced, while siRNA-based knockdown of genes associated with CME, low endosomal pH and RAB trafficking proteins exhibited significant levels of CHIKV inhibition. This study revealed, for the first time, that the infectious entry of CHIKV into mosquito cells is mediated by the clathrin-dependent endocytic pathway. PMID:23409203

  19. Xanthomonas filamentous hemagglutinin-like protein Fha1 interacts with pepper hypersensitive-induced reaction protein CaHIR1 and functions as a virulence factor in host plants.

    PubMed

    Choi, Hyong Woo; Kim, Dae Sung; Kim, Nak Hyun; Jung, Ho Won; Ham, Jong Hyun; Hwang, Byung Kook

    2013-12-01

    Pathogens have evolved a variety of virulence factors to infect host plants successfully. We previously identified the pepper plasma-membrane-resident hypersensitive-induced reaction protein (CaHIR1) as a regulator of plant disease- and immunity-associated cell death. Here, we identified the small filamentous hemagglutinin-like protein (Fha1) of Xanthomonas campestris pv. vesicatoria as an interacting partner of CaHIR1 using yeast two-hybrid screening. Coimmunoprecipitation and bimolecular fluorescence complementation experiments revealed that Fha1 specifically interacts with CaHIR1 in planta. The endocytic tracker FM4-64 staining showed that the CaHIR1-Fha1 complex localizes in the endocytic vesicle-like structure. The X. campestris pv. vesicatoria Δfha1 mutant strain exhibited significantly increased surface adherence but reduced swarming motility. Mutation of fha1 inhibited the growth of X. campestris pv. vesicatoria and X. campestris pv. vesicatoria ΔavrBsT in tomato and pepper leaves, respectively, suggesting that Fha1 acts as a virulence factor in host plants. Transient expression of fha1 and also infiltration with purified Fha1 proteins induced disease-associated cell death response through the interaction with CaHIR1 and suppressed the expression of pathogenesis-related (PR) genes. Silencing of CaHIR1 in pepper significantly reduced ΔavrBsT growth and Fha1-triggered susceptibility cell death. Overexpression of fha1 in Arabidopsis retarded plant growth and triggered disease-associated cell death, resulting in altered disease susceptibility. Taken together, these results suggest that the X. campestris pv. vesicatoria virulence factor Fha1 interacts with CaHIR1, induces susceptibility cell death, and suppresses PR gene expression in host plants.

  20. Anthrax edema toxin disrupts distinct steps in Rab11-dependent junctional transport.

    PubMed

    Guichard, Annabel; Jain, Prashant; Moayeri, Mahtab; Schwartz, Ruth; Chin, Stephen; Zhu, Lin; Cruz-Moreno, Beatriz; Liu, Janet Z; Aguilar, Bernice; Hollands, Andrew; Leppla, Stephen H; Nizet, Victor; Bier, Ethan

    2017-09-01

    Various bacterial toxins circumvent host defenses through overproduction of cAMP. In a previous study, we showed that edema factor (EF), an adenylate cyclase from Bacillus anthracis, disrupts endocytic recycling mediated by the small GTPase Rab11. As a result, cargo proteins such as cadherins fail to reach inter-cellular junctions. In the present study, we provide further mechanistic dissection of Rab11 inhibition by EF using a combination of Drosophila and mammalian systems. EF blocks Rab11 trafficking after the GTP-loading step, preventing a constitutively active form of Rab11 from delivering cargo vesicles to the plasma membrane. Both of the primary cAMP effector pathways -PKA and Epac/Rap1- contribute to inhibition of Rab11-mediated trafficking, but act at distinct steps of the delivery process. PKA acts early, preventing Rab11 from associating with its effectors Rip11 and Sec15. In contrast, Epac functions subsequently via the small GTPase Rap1 to block fusion of recycling endosomes with the plasma membrane, and appears to be the primary effector of EF toxicity in this process. Similarly, experiments conducted in mammalian systems reveal that Epac, but not PKA, mediates the activity of EF both in cell culture and in vivo. The small GTPase Arf6, which initiates endocytic retrieval of cell adhesion components, also contributes to junctional homeostasis by counteracting Rab11-dependent delivery of cargo proteins at sites of cell-cell contact. These studies have potentially significant practical implications, since chemical inhibition of either Arf6 or Epac blocks the effect of EF in cell culture and in vivo, opening new potential therapeutic avenues for treating symptoms caused by cAMP-inducing toxins or related barrier-disrupting pathologies.

  1. Characterization and Comprehensive Proteome Profiling of Exosomes Secreted by Hepatocytes

    PubMed Central

    Conde-Vancells, Javier; Rodriguez-Suarez, Eva; Embade, Nieves; Gil, David; Matthiesen, Rune; Valle, Mikel; Elortza, Felix; Lu, Shelly C.; Mato, Jose M.; Falcon-Perez, Juan M.

    2009-01-01

    Synopsis Exosomes constitute a discrete population of nanometer-sized (30-150 nm) vesicles formed in endocytic compartments and released to the extracellular environment by different cell types. In this work we demonstrated by electron microscopic, western blotting and proteomic analyses that primary hepatocytes secrete exosome-like vesicles containing proteins involved in metabolizing lipoproteins, endogenous compounds as well as xenobiotics. These new findings contribute to improve our knowledge about biology's hepatocyte and may have important diagnostic, prognosis and therapeutic implications in liver diseases Exosomes represent a discrete population of vesicles that are secreted from various cell types to the extracellular media. Their protein and lipid composition are a consequence of sorting events at the level of the multivesicular body, a central organelle which integrates endocytic and secretory pathways. Characterization of exosomes from different biological samples has shown the presence of common as well as cell-type specific proteins. Remarkably, the protein content of the exosomes is modified upon pathological or stress conditions. Hepatocytes play a central role in the body response to stress metabolizing potentially harmful endogenous substances as well as xenobiotics. In the present study we described and characterized for first time exosome secretion in non-tumoral hepatocytes, and using a systematic proteomic approach, we establish the first extensive proteome of a hepatocyte-derived exosome population which should be useful in furthering our understanding of the hepatic function and in the identification of components that may serve as biomarkers for hepatic alterations. Our analysis identifies a significant number of proteins previously described among exosomes derived from others cell types as well as proteins involved in metabolizing lipoproteins, endogenous compounds and xenobiotics, not previously described in exosomes. Furthermore, we demonstrated that exosomal membrane proteins can constitute an interesting tool to express non-exosomal proteins into exosomes with therapeutic purposes. PMID:19367702

  2. Pituitary adenylate cyclase 1 receptor internalization and endosomal signaling mediate the pituitary adenylate cyclase activating polypeptide-induced increase in guinea pig cardiac neuron excitability.

    PubMed

    Merriam, Laura A; Baran, Caitlin N; Girard, Beatrice M; Hardwick, Jean C; May, Victor; Parsons, Rodney L

    2013-03-06

    After G-protein-coupled receptor activation and signaling at the plasma membrane, the receptor complex is often rapidly internalized via endocytic vesicles for trafficking into various intracellular compartments and pathways. The formation of signaling endosomes is recognized as a mechanism that produces sustained intracellular signals that may be distinct from those generated at the cell surface for cellular responses including growth, differentiation, and survival. Pituitary adenylate cyclase activating polypeptide (PACAP; Adcyap1) is a potent neurotransmitter/neurotrophic peptide and mediates its diverse cellular functions in part through internalization of its cognate G-protein-coupled PAC1 receptor (PAC1R; Adcyap1r1). In the present study, we examined whether PAC1R endocytosis participates in the regulation of neuronal excitability. Although PACAP increased excitability in 90% of guinea pig cardiac neurons, pretreatment with Pitstop 2 or dynasore to inhibit clathrin and dynamin I/II, respectively, suppressed the PACAP effect. Subsequent addition of inhibitor after the PACAP-induced increase in excitability developed gradually attenuated excitability with no changes in action potential properties. Likewise, the PACAP-induced increase in excitability was markedly decreased at ambient temperature. Receptor trafficking studies with GFP-PAC1 cell lines demonstrated the efficacy of Pitstop 2, dynasore, and low temperatures at suppressing PAC1R endocytosis. In contrast, brefeldin A pretreatments to disrupt Golgi vesicle trafficking did not blunt the PACAP effect, and PACAP/PAC1R signaling still increased neuronal cAMP production even with endocytic blockade. Our results demonstrate that PACAP/PAC1R complex endocytosis is a key step for the PACAP modulation of cardiac neuron excitability.

  3. CD163-L1 is an endocytic macrophage protein strongly regulated by mediators in the inflammatory response.

    PubMed

    Moeller, Jesper B; Nielsen, Marianne J; Reichhardt, Martin P; Schlosser, Anders; Sorensen, Grith L; Nielsen, Ole; Tornøe, Ida; Grønlund, Jørn; Nielsen, Maria E; Jørgensen, Jan S; Jensen, Ole N; Mollenhauer, Jan; Moestrup, Søren K; Holmskov, Uffe

    2012-03-01

    CD163-L1 belongs to the group B scavenger receptor cysteine-rich family of proteins, where the CD163-L1 gene arose by duplication of the gene encoding the hemoglobin scavenger receptor CD163 in late evolution. The current data demonstrate that CD163-L1 is highly expressed and colocalizes with CD163 on large subsets of macrophages, but in contrast to CD163 the expression is low or absent in monocytes and in alveolar macrophages, glia, and Kupffer cells. The expression of CD163-L1 increases when cultured monocytes are M-CSF stimulated to macrophages, and the expression is further increased by the acute-phase mediator IL-6 and the anti-inflammatory mediator IL-10 but is suppressed by the proinflammatory mediators IL-4, IL-13, TNF-α, and LPS/IFN-γ. Furthermore, we show that CD163-L1 is an endocytic receptor, which internalizes independently of cross-linking through a clathrin-mediated pathway. Two cytoplasmic splice variants of CD163-L1 are differentially expressed and have different subcellular distribution patterns. Despite its many similarities to CD163, CD163-L1 does not possess measurable affinity for CD163 ligands such as the haptoglobin-hemoglobin complex or various bacteria. In conclusion, CD163-L1 exhibits similarity to CD163 in terms of structure and regulated expression in cultured monocytes but shows clear differences compared with the known CD163 ligand preferences and expression pattern in the pool of tissue macrophages. We postulate that CD163-L1 functions as a scavenger receptor for one or several ligands that might have a role in resolution of inflammation.

  4. Native KCC2 interactome reveals PACSIN1 as a critical regulator of synaptic inhibition.

    PubMed

    Mahadevan, Vivek; Khademullah, C Sahara; Dargaei, Zahra; Chevrier, Jonah; Uvarov, Pavel; Kwan, Julian; Bagshaw, Richard D; Pawson, Tony; Emili, Andrew; De Koninck, Yves; Anggono, Victor; Airaksinen, Matti; Woodin, Melanie A

    2017-10-13

    KCC2 is a neuron-specific K + -Cl - cotransporter essential for establishing the Cl - gradient required for hyperpolarizing inhibition in the central nervous system (CNS). KCC2 is highly localized to excitatory synapses where it regulates spine morphogenesis and AMPA receptor confinement. Aberrant KCC2 function contributes to human neurological disorders including epilepsy and neuropathic pain. Using functional proteomics, we identified the KCC2-interactome in the mouse brain to determine KCC2-protein interactions that regulate KCC2 function. Our analysis revealed that KCC2 interacts with diverse proteins, and its most predominant interactors play important roles in postsynaptic receptor recycling. The most abundant KCC2 interactor is a neuronal endocytic regulatory protein termed PACSIN1 (SYNDAPIN1). We verified the PACSIN1-KCC2 interaction biochemically and demonstrated that shRNA knockdown of PACSIN1 in hippocampal neurons increases KCC2 expression and hyperpolarizes the reversal potential for Cl - . Overall, our global native-KCC2 interactome and subsequent characterization revealed PACSIN1 as a novel and potent negative regulator of KCC2.

  5. Native KCC2 interactome reveals PACSIN1 as a critical regulator of synaptic inhibition

    PubMed Central

    Mahadevan, Vivek; Chevrier, Jonah; Uvarov, Pavel; Kwan, Julian; Bagshaw, Richard D; Pawson, Tony; Emili, Andrew; De Koninck, Yves; Anggono, Victor; Airaksinen, Matti

    2017-01-01

    KCC2 is a neuron-specific K+-Cl– cotransporter essential for establishing the Cl- gradient required for hyperpolarizing inhibition in the central nervous system (CNS). KCC2 is highly localized to excitatory synapses where it regulates spine morphogenesis and AMPA receptor confinement. Aberrant KCC2 function contributes to human neurological disorders including epilepsy and neuropathic pain. Using functional proteomics, we identified the KCC2-interactome in the mouse brain to determine KCC2-protein interactions that regulate KCC2 function. Our analysis revealed that KCC2 interacts with diverse proteins, and its most predominant interactors play important roles in postsynaptic receptor recycling. The most abundant KCC2 interactor is a neuronal endocytic regulatory protein termed PACSIN1 (SYNDAPIN1). We verified the PACSIN1-KCC2 interaction biochemically and demonstrated that shRNA knockdown of PACSIN1 in hippocampal neurons increases KCC2 expression and hyperpolarizes the reversal potential for Cl-. Overall, our global native-KCC2 interactome and subsequent characterization revealed PACSIN1 as a novel and potent negative regulator of KCC2. PMID:29028184

  6. What lysosomes actually tell us about Parkinson's disease?

    PubMed

    Bourdenx, Mathieu; Dehay, Benjamin

    2016-12-01

    Parkinson's disease is a common neurodegenerative disorder of unknown origin mainly characterized by the loss of neuromelanin-containing dopaminergic neurons in the substantia nigra pars compacta and the presence of intraneuronal proteinaceous inclusions called Lewy bodies. Lysosomes are dynamic organelles that degrade, in a controlled manner, cellular components delivered via the secretory, endocytic, autophagic and phagocytic membrane-trafficking pathways. Increasing amounts of evidence suggest a central role of lysosomal impairment in PD aetiology. This review provides an update on how genetic evidence support this connection and highlights how the neuropathologic and mechanistic evidence might relate to the disease process in sporadic forms of Parkinson's disease. Finally, we discuss the influence of ageing on lysosomal impairment and PD aetiology and therapeutic strategies targeting lysosomal function. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Exosomes participate in the carcinogenesis and the malignant behavior of gastric cancer.

    PubMed

    Yan, Yunmeng; Fu, Guangzhen; Ye, Yafei; Ming, Liang

    2017-05-01

    In order to summarize the role of exosomes in invasion and metastasis in gastric cancer (GC). Exosomes are vesicles of endocytic origin ranging from 30 to 100 nm in size; they are composed of a lipid bilayer and contain DNA, mRNA, miRNA, circular RNA and multiple proteins. Recently, increasing evidence shows that exosomes play a crucial role in the tumorigenesis of GC. In this review, we focus on the latest findings on GC exosomes, mainly summarizing their role in invasion and metastasis in GC. Then, exosomes? potential functions as novel diagnostic and therapeutic biomarkers for GC are briefly discussed. At last, we prospect the clinical application perspective of exosomes in GC. Exosomes play a vital role in gastric cancer carcinogenesis and metastasis.

  8. Surface modification of microparticles causes differential uptake responses in normal and tumoral human breast epithelial cells

    PubMed Central

    Patiño, Tania; Soriano, Jorge; Barrios, Lleonard; Ibáñez, Elena; Nogués, Carme

    2015-01-01

    The use of micro- and nanodevices as multifunctional systems for biomedical applications has experienced an exponential growth during the past decades. Although a large number of studies have focused on the design and fabrication of new micro- and nanosystems capable of developing multiple functions, a deeper understanding of their interaction with cells is required. In the present study, we evaluated the effect of different microparticle surfaces on their interaction with normal and tumoral human breast epithelial cell lines. For this, AlexaFluor488 IgG functionalized polystyrene microparticles (3 μm) were coated with Polyethyleneimine (PEI) at two different molecular weights, 25 and 750 kDa. The effect of microparticle surface properties on cytotoxicity, cellular uptake and endocytic pathways were assessed for both normal and tumoral cell lines. Results showed a differential response between the two cell lines regarding uptake efficiency and mechanisms of endocytosis, highlighting the potential role of microparticle surface tunning for specific cell targeting. PMID:26068810

  9. Selective integrin endocytosis is driven by interactions between the integrin α-chain and AP2

    PubMed Central

    De Franceschi, Nicola; Arjonen, Antti; Elkhatib, Nadia; Denessiouk, Konstantin; Wrobel, Antoni G; Wilson, Thomas A; Pouwels, Jeroen; Montagnac, Guillaume; Owen, David J; Ivaska, Johanna

    2016-01-01

    Integrins are heterodimeric cell-surface adhesion molecules comprising one of possible 18 α-chains and one of possible 8 β-chains. They control a range of cell functions in a matrix- and ligand-specific manner. Integrins can be internalised by clathrin-mediated endocytosis (CME) through β subunit-based motifs found in all integrin heterodimers. However, whether specific integrin heterodimers can be selectively endocytosed was unknown. Here, we found that a subset of α subunits contain an evolutionarily conserved and functional YxxΦ motif directing integrins to selective internalisation by the most abundant endocytic clathrin adaptor, AP2. We determined the structure of the human integrin α4-tail motif in complex with AP2 C-µ2 subunit and confirmed the interaction by isothermal titration calorimetry. Mutagenesis of the motif impaired selective heterodimer endocytosis and attenuated integrin-mediated cell migration. We propose that integrins evolved to enable selective integrin-receptor turnover in response to changing matrix conditions. PMID:26779610

  10. Selective integrin endocytosis is driven by interactions between the integrin α-chain and AP2.

    PubMed

    De Franceschi, Nicola; Arjonen, Antti; Elkhatib, Nadia; Denessiouk, Konstantin; Wrobel, Antoni G; Wilson, Thomas A; Pouwels, Jeroen; Montagnac, Guillaume; Owen, David J; Ivaska, Johanna

    2016-02-01

    Integrins are heterodimeric cell-surface adhesion molecules comprising one of 18 possible α-chains and one of eight possible β-chains. They control a range of cell functions in a matrix- and ligand-specific manner. Integrins can be internalized by clathrin-mediated endocytosis (CME) through β subunit-based motifs found in all integrin heterodimers. However, whether specific integrin heterodimers can be selectively endocytosed was unknown. Here, we found that a subset of α subunits contain an evolutionarily conserved and functional YxxΦ motif directing integrins to selective internalization by the most abundant endocytic clathrin adaptor, AP2. We determined the structure of the human integrin α4-tail motif in complex with the AP2 C-μ2 subunit and confirmed the interaction by isothermal titration calorimetry. Mutagenesis of the motif impaired selective heterodimer endocytosis and attenuated integrin-mediated cell migration. We propose that integrins evolved to enable selective integrin-receptor turnover in response to changing matrix conditions.

  11. The U24 Protein from Human Herpesvirus 6 and 7 Affects Endocytic Recycling▿

    PubMed Central

    Sullivan, Brian M.; Coscoy, Laurent

    2010-01-01

    Modulation of T-cell receptor expression and signaling is essential to the survival of many viruses. The U24 protein expressed by human herpesvirus 6A, a ubiquitous human pathogen, has been previously shown to downregulate the T-cell receptor. Here, we show that U24 also mediates cell surface downregulation of a canonical early endosomal recycling receptor, the transferrin receptor, indicating that this viral protein acts by blocking early endosomal recycling. We present evidence that U24 is a C-tail-anchored protein that is dependent for its function on TRC40/Asna-1, a component of a posttranslational membrane insertion pathway. Finally, we find that U24 proteins from other roseoloviruses have a similar genetic organization and a conserved function that is dependent on a proline-rich motif. Inhibition of a basic cellular process by U24 has interesting implications not only for the pathogenicity of roseoloviruses but also for our understanding of the biology of endosomal transport. PMID:19923186

  12. Planar cell polarity controls directional Notch signaling in the Drosophila leg

    PubMed Central

    Capilla, Amalia; Johnson, Ruth; Daniels, Maki; Benavente, María; Bray, Sarah J.; Galindo, Máximo Ibo

    2012-01-01

    The generation of functional structures during development requires tight spatial regulation of signaling pathways. Thus, in Drosophila legs, in which Notch pathway activity is required to specify joints, only cells distal to ligand-producing cells are capable of responding. Here, we show that the asymmetric distribution of planar cell polarity (PCP) proteins correlates with this spatial restriction of Notch activation. Frizzled and Dishevelled are enriched at distal sides of each cell and hence localize at the interface with ligand-expressing cells in the non-responding cells. Elimination of PCP gene function in cells proximal to ligand-expressing cells is sufficient to alleviate the repression, resulting in ectopic Notch activity and ectopic joint formation. Mutations that compromise a direct interaction between Dishevelled and Notch reduce the efficacy of repression. Likewise, increased Rab5 levels or dominant-negative Deltex can suppress the ectopic joints. Together, these results suggest that PCP coordinates the spatial activity of the Notch pathway by regulating endocytic trafficking of the receptor. PMID:22736244

  13. Surface modification of microparticles causes differential uptake responses in normal and tumoral human breast epithelial cells

    NASA Astrophysics Data System (ADS)

    Patiño, Tania; Soriano, Jorge; Barrios, Lleonard; Ibáñez, Elena; Nogués, Carme

    2015-06-01

    The use of micro- and nanodevices as multifunctional systems for biomedical applications has experienced an exponential growth during the past decades. Although a large number of studies have focused on the design and fabrication of new micro- and nanosystems capable of developing multiple functions, a deeper understanding of their interaction with cells is required. In the present study, we evaluated the effect of different microparticle surfaces on their interaction with normal and tumoral human breast epithelial cell lines. For this, AlexaFluor488 IgG functionalized polystyrene microparticles (3 μm) were coated with Polyethyleneimine (PEI) at two different molecular weights, 25 and 750 kDa. The effect of microparticle surface properties on cytotoxicity, cellular uptake and endocytic pathways were assessed for both normal and tumoral cell lines. Results showed a differential response between the two cell lines regarding uptake efficiency and mechanisms of endocytosis, highlighting the potential role of microparticle surface tunning for specific cell targeting.

  14. Surface modification of microparticles causes differential uptake responses in normal and tumoral human breast epithelial cells.

    PubMed

    Patiño, Tania; Soriano, Jorge; Barrios, Lleonard; Ibáñez, Elena; Nogués, Carme

    2015-06-12

    The use of micro- and nanodevices as multifunctional systems for biomedical applications has experienced an exponential growth during the past decades. Although a large number of studies have focused on the design and fabrication of new micro- and nanosystems capable of developing multiple functions, a deeper understanding of their interaction with cells is required. In the present study, we evaluated the effect of different microparticle surfaces on their interaction with normal and tumoral human breast epithelial cell lines. For this, AlexaFluor488 IgG functionalized polystyrene microparticles (3 μm) were coated with Polyethyleneimine (PEI) at two different molecular weights, 25 and 750 kDa. The effect of microparticle surface properties on cytotoxicity, cellular uptake and endocytic pathways were assessed for both normal and tumoral cell lines. Results showed a differential response between the two cell lines regarding uptake efficiency and mechanisms of endocytosis, highlighting the potential role of microparticle surface tunning for specific cell targeting.

  15. A new role for the architecture of microvillar actin bundles in apical retention of membrane proteins.

    PubMed

    Revenu, Céline; Ubelmann, Florent; Hurbain, Ilse; El-Marjou, Fatima; Dingli, Florent; Loew, Damarys; Delacour, Delphine; Gilet, Jules; Brot-Laroche, Edith; Rivero, Francisco; Louvard, Daniel; Robine, Sylvie

    2012-01-01

    Actin-bundling proteins are identified as key players in the morphogenesis of thin membrane protrusions. Until now, functional redundancy among the actin-bundling proteins villin, espin, and plastin-1 has prevented definitive conclusions regarding their role in intestinal microvilli. We report that triple knockout mice lacking these microvillar actin-bundling proteins suffer from growth delay but surprisingly still develop microvilli. However, the microvillar actin filaments are sparse and lack the characteristic organization of bundles. This correlates with a highly inefficient apical retention of enzymes and transporters that accumulate in subapical endocytic compartments. Myosin-1a, a motor involved in the anchorage of membrane proteins in microvilli, is also mislocalized. These findings illustrate, in vivo, a precise role for local actin filament architecture in the stabilization of apical cargoes into microvilli. Hence, the function of actin-bundling proteins is not to enable microvillar protrusion, as has been assumed, but to confer the appropriate actin organization for the apical retention of proteins essential for normal intestinal physiology.

  16. STAM Adaptor Proteins Interact with COPII Complexes and Function in ER-to-Golgi Trafficking

    PubMed Central

    Rismanchi, Neggy; Puertollano, Rosa; Blackstone, Craig

    2009-01-01

    Signal transducing adaptor molecules (STAMs) are involved in growth factor and cytokine signaling as well as receptor degradation, and they form complexes with a number of endocytic proteins, including Hrs and Eps15. Here we demonstrate that STAM proteins also localize prominently to early exocytic compartments and profoundly regulate Golgi morphology. Upon STAM overexpression in cells the Golgi apparatus becomes extensively fragmented and dispersed, but when STAMs are depleted the Golgi becomes highly condensed. Under both scenarios, vesicular stomatitis virus G protein (VSVG)-GFP trafficking to the plasma membrane is markedly inhibited, and recovery of Golgi morphology after brefeldin A treatment is substantially impaired in STAM-depleted cells. Furthermore, STAM proteins interact with COPII proteins, probably at endoplasmic reticulum (ER) exit sites, and Sar1 activity is required to maintain the localization of STAMs at discrete sites. Thus, in addition to their roles in signaling and endocytosis, STAMs function prominently in ER-to-Golgi trafficking, most likely through direct interactions with the COPII complex. PMID:19054391

  17. The role of endomembrane-localized VHA-c in plant growth.

    PubMed

    Zhou, Aimin; Takano, Tetsuo; Liu, Shenkui

    2018-01-02

    In plant cells, the vacuolar-type H + -ATPase (V-ATPase), a large multis`ubunit endomembrane proton pump, plays an important role in acidification of subcellular organelles, pH and ion homeostasis, and endocytic and secretory trafficking. V-ATPase subunit c (VHA-c) is essential for V-ATPase assembly, and is directly responsible for binding and transmembrane transport of protons. In previous studies, we identified a PutVHA-c gene from Puccinellia tenuiflora, and investigated its function in plant growth. Subcellular localization revealed that PutVHA-c is mainly localized in endosomal compartments. Overexpression of PutVHA-c enhanced V-ATPase activity and promoted plant growth in transgenic Arabidopsis. Furthermore, the activity of V-ATPase affected intracellular transport of the Golgi-derived endosomes. Our results showed that endomembrane localized-VHA-c contributes to plant growth by influencing V-ATPase-dependent endosomal trafficking. Here, we discuss these recent findings and speculate on the VHA-c mediated molecular mechanisms involved in plant growth, providing a better understanding of the functions of VHA-c and V-ATPase.

  18. HIP1 functions in clathrin-mediated endocytosis through binding to clathrin and adaptor protein 2.

    PubMed

    Metzler, M; Legendre-Guillemin, V; Gan, L; Chopra, V; Kwok, A; McPherson, P S; Hayden, M R

    2001-10-19

    Polyglutamine expansion in huntingtin is the underlying mutation leading to neurodegeneration in Huntington disease. This mutation influences the interaction of huntingtin with different proteins, including huntingtin-interacting protein 1 (HIP1), in which affinity to bind to mutant huntingtin is profoundly reduced. Here we demonstrate that HIP1 colocalizes with markers of clathrin-mediated endocytosis in neuronal cells and is highly enriched on clathrin-coated vesicles (CCVs) purified from brain homogenates. HIP1 binds to the clathrin adaptor protein 2 (AP2) and the terminal domain of the clathrin heavy chain, predominantly through a small fragment encompassing amino acids 276-335. This region, which contains consensus clathrin- and AP2-binding sites, functions in conjunction with the coiled-coil domain to target HIP1 to CCVs. Expression of various HIP1 fragments leads to a potent block of clathrin-mediated endocytosis. Our findings demonstrate that HIP1 is a novel component of the endocytic machinery.

  19. EGF receptor lysosomal degradation is delayed in the cells stimulated with EGF-Quantum dot bioconjugate but earlier key events of endocytic degradative pathway are similar to that of native EGF

    PubMed Central

    Leontieva, Ekaterina A.; Kornilova, Elena S.

    2017-01-01

    Quantum dots (QDs) complexed to ligands recognizing surface receptors undergoing internalization are an attractive tool for live cell imaging of ligand-receptor complexes behavior and for specific tracking of the cells of interest. However, conjugation of quasi-multivalent large QD-particle to monovalent small growth factors like EGF that bound their tyrosine-kinase receptors may affect key endocytic events tightly bound to signaling. Here, by means of confocal microscopy we have addressed the key endocytic events of lysosomal degradative pathway stimulated by native EGF or EGF-QD bioconjugate. We have demonstrated that the decrease in endosome number, increase in mean endosome integrated density and the pattern of EEA1 co-localization with EGF-EGFR complexes at early stages of endocytosis were similar for the both native and QD-conjugated ligands. In both cases enlarged hollow endosomes appeared after wortmannin treatment. This indicates that early endosomal fusions and their maturation proceed similar for both ligands. EGF-QD and native EGF similarly accumulated in juxtanuclear region, and live cell imaging of endosome motion revealed the behavior described elsewhere for microtubule-facilitated motility. Finally, EGF-QD and the receptor were found in lysosomes. However, degradation of receptor part of QD-EGF-EGFR-complex was delayed compared to native EGF, but not inhibited, while QDs fluorescence was detected in lysosomes even after 24 hours. Importantly, in HeLa and A549 cells the both ligands behaved similarly. We conclude that during endocytosis EGF-QD behaves as a neutral marker for degradative pathway up to lysosomal stage and can also be used as a long-term cell marker. PMID:28574831

  20. Dysregulated post-synaptic density and endocytic zone in the amygdala of human heroin and cocaine abusers

    PubMed Central

    Ökvist, Anna; Fagergren, Pernilla; Whittard, John; Garcia-Osta, Ana; Drakenberg, Katarina; Horvath, Monika Cs.; Schmidt, Carl J.; Keller, Eva; Bannon, Michael J.; Hurd, Yasmin L.

    2010-01-01

    Background Glutamatergic transmission in the amygdala is hypothesized as an important mediator of stimulus-reward associations contributing to drug-seeking behavior and relapse. Insight is, however, lacking regarding the amygdala glutamatergic system in human drug abusers. Methods We examined glutamate receptors and scaffolding proteins associated with the post-synaptic density (PSD) of excitatory synapses in the human post-mortem amygdala. mRNA or protein levels were studied in a multi-drug (7 heroin, 8 cocaine, 7 heroin/cocaine and 7 control) or predominant heroin (29 heroin and 15 control) population of subjects. Results The amygdala of drug abusers was characterized by a striking positive correlation (r > 0.8) between AMPA GluA1 and post-synaptic protein-95 (PSD-95) mRNA levels, which was not evident in controls. Structural equation multi-group analysis of protein correlations also identified the relationship between GluA1 and PSD-95 protein levels as the distinguishing feature of abusers. In line with the GluA1—PSD-95 implications of enhanced synaptic plasticity, Homer 1b/c protein expression was significantly increased in both heroin and cocaine users as was its binding partner dynamin-3, localized to the endocytic zone. Furthermore, there was a positive relationship between Homer 1b/c and dynamin-3 in drug abusers that reflected an increase in the direct physical coupling between the proteins. A noted age-related decline of Homer 1b/c—dynamin-3 interactions, as well as GluA1 levels, was blunted in abusers. Conclusions Impairment of key components of the amygdala PSD and coupling to the endocytic zone, critical for the regulation of glutamate receptor cycling, may underlie heightened synaptic plasticity in human drug abusers. PMID:21126734

  1. 5-Aminolevulinic acid-based photochemical internalization of the immunotoxin MOC31-gelonin generates synergistic cytotoxic effects in vitro.

    PubMed

    Selbo, P K; Kaalhus, O; Sivam, G; Berg, K

    2001-08-01

    Photochemical internalization (PCI) is a novel method for the endosomal or lysosomal release of membrane-impermeable molecules into the cytosol of target cells. This novel technology is based on the photodynamically induced rupture of endocytic vesicles preloaded with molecules of therapeutic interest. PCI of the ribosome-inactivating plant toxin gelonin and the immunotoxin monoclonal antibody 31 (MOC31) gelonin has been performed previously by the use of the endocytic vesicle-localizing photosensitizers TPPS2a and AIPcS2a and light, demonstrating synergistic toxicity against the more than 20 different cell lines tested, most of them of neoplastic origin. In this study we demonstrate that 5-aminolevulinic acid (5-ALA)-induced protoporphyrin IX (PpIX) is also capable of inducing PCI of MOC31-gelonin in the human colon adenocarcinoma cell line WiDr. The cells were incubated with 1 mM 5-ALA for up to 8 h in serum-free medium and from 24 to 96 h in serum-containing medium. Fluorescence microscopical studies indicate a partial plasma membrane localization of PpIX when 5-ALA was applied under serum-free conditions. This plasma membrane localization was not seen when 5-ALA was given in the presence of serum. There was a granular component of the PpIX localization in addition to a diffuse cytoplasmic localization. The granular component resembled the localization of the fluorescent dye conjugate Alexa-gelonin and the lysosomal localizing dye acridine orange. Our present results provide evidence for an endocytic vesicle-associated fraction of PpIX after 5-ALA incubation of the WiDr cells. We demonstrate that PCI, by combining 5-ALA, MOC31-gelonin and light, induces a synergistic cytotoxic effect against the WiDr cells.

  2. Combining endocytic and freezing-induced trehalose uptake for cryopreservation of mammalian cells.

    PubMed

    Zhang, Miao; Oldenhof, Harriëtte; Sieme, Harald; Wolkers, Willem F

    2017-01-01

    Fibroblasts take up trehalose during freezing and thawing, which facilitates cryosurvival of the cells. The aim of this study was to investigate if trehalose uptake via fluid-phase endocytosis prefreeze increases cryosurvival. To determine endocytic trehalose uptake in attached as well as suspended fibroblasts, intracellular trehalose concentrations were determined during incubation at 37°C using an enzymatically based trehalose assay. In addition, freezing-induced trehalose uptake of extracellularly added trehalose was determined. Cryosurvival rates were determined via trypan blue staining. Intracellular trehalose contents of attached as well as suspended cells were found to increase linearly with time, consistent with fluid-phase endocytosis. Furthermore, the intracellular trehalose concentration increased with increasing extracellular trehalose concentration (0-100 mM) in a linear fashion. Prefreeze loading of cells with trehalose via fluid-phase endocytosis only showed increased cryosurvival rates at extracellular trehalose concentrations lower than 50 mM in the cryopreservation medium. To obtain satisfactory cryosurvival rates after endocytic preloading, extracellular trehalose is needed to prevent efflux of trehalose during freezing and thawing and for freezing-induced trehalose uptake. At trehalose concentrations greater than 100 mM, cryosurvival rates were similar or slightly higher if cells were not loaded with trehalose prefreeze. Cells that were grown in the presence of trehalose showed a tendency to aggregate after harvesting. It is concluded that it is particularly freezing-induced trehalose uptake that facilitates cryosurvival when trehalose is used as the sole cryoprotectant for cryopreservation of fibroblasts. Preloading with trehalose does not increase cryosurvival rates if trehalose is also added as extracellular protectant. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:229-230, 2017. © 2016 American Institute of Chemical Engineers.

  3. Akt recruits Dab2 to albumin endocytosis in the proximal tubule.

    PubMed

    Koral, Kelly; Li, Hui; Ganesh, Nandita; Birnbaum, Morris J; Hallows, Kenneth R; Erkan, Elif

    2014-12-15

    Proximal tubule epithelial cells have a highly sophisticated endocytic machinery to retrieve the albumin in the glomerular filtrate. The megalin-cubilin complex and the endocytic adaptor disabled-2 (Dab2) play a pivotal role in albumin endocytosis. We previously demonstrated that protein kinase B (Akt) regulates albumin endocytosis in the proximal tubule through an interaction with Dab2. Here, we examined the nature of Akt-Dab2 interaction. The pleckstrin homology (PH) and catalytic domains (CD) of Akt interacted with the proline-rich domain (PRD) of Dab2 based on yeast-two hybrid (Y2H) experiments. Pull-down experiments utilizing the truncated constructs of Dab2 demonstrated that the initial 11 amino acids of Dab2-PRD were sufficient to mediate the interaction between Akt and Dab2. Endocytosis experiments utilizing Akt1- and Akt2-silencing RNA revealed that both Akt1 and Akt2 mediate albumin endocytosis in proximal tubule epithelial cells; therefore, Akt1 and Akt2 may play a compensatory role in albumin endocytosis. Furthermore, both Akt isoforms phosphorylated Dab2 at Ser residues 448 and 449. Ser-to-Ala mutations of these Dab2 residues inhibited albumin endocytosis and resulted in a shift in location of Dab2 from the peripheral to the perinuclear area, suggesting the physiological relevance of these phosphorylation sites in albumin endocytosis. We conclude that both Akt1 and Akt2 are involved in albumin endocytosis, and phosphorylation of Dab2 by Akt induces albumin endocytosis in proximal tubule epithelial cells. Further delineation of how Akt affects expression/phosphorylation of endocytic adaptors and receptors will enhance our understanding of the molecular network triggered by albumin overload in the proximal tubule. Copyright © 2014 the American Physiological Society.

  4. Altered TGF-β endocytic trafficking contributes to the increased signaling in Marfan syndrome.

    PubMed

    Siegert, Anna-Maria; Serra-Peinado, Carla; Gutiérrez-Martínez, Enric; Rodríguez-Pascual, Fernando; Fabregat, Isabel; Egea, Gustavo

    2018-02-01

    The main cardiovascular alteration in Marfan syndrome (MFS) is the formation of aortic aneurysms in which augmented TGF-β signaling is reported. However, the primary role of TGF-β signaling as a molecular link between the genetic mutation of fibrillin-1 and disease onset is controversial. The compartmentalization of TGF-β endocytic trafficking has been shown to determine a signaling response in which clathrin-dependent internalization leads to TGF-β signal propagation, and caveolin-1 (CAV-1) associated internalization leads to signal abrogation. We here studied the contribution of endocytic trafficking compartmentalization to increased TGF-β signaling in vascular smooth muscle cells (VSMC) from MFS patients. We examined molecular components involved in clathrin- (SARA, SMAD2) and caveolin-1- (SMAD7, SMURF2) dependent endocytosis. Marfan VSMC showed higher recruitment of SARA and SMAD2 to membranes and their increased interaction with TGF-β receptor II, as well as higher colocalization of SARA with the early endosome marker EEA1. We assessed TGF-β internalization using a biotinylated ligand (b-TGF-β), which colocalized equally with either EEA1 or CAV-1 in VSMC from Marfan patients and controls. However, in Marfan cells, colocalization of b-TGF-β with SARA and EEA1 was increased and accompanied by decreased colocalization with CAV-1 at EEA1-positive endosomes. Moreover, Marfan VSMC showed higher transcriptional levels and membrane enrichment of RAB5. Our results indicate that increased RAB5-associated SARA localization to early endosomes facilitates its TGF-β receptor binding and phosphorylation of signaling mediator SMAD2 in Marfan VSMC. This is accompanied by a reduction of TGF-β sorting into multifunctional vesicles containing cargo from both internalization pathways. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Inhibition of Na+−H+ exchange impairs receptor-mediated albumin endocytosis in renal proximal tubule-derived epithelial cells from opossum

    PubMed Central

    Gekle, Michael; Drumm, Karina; Mildenberger, Sigrid; Freudinger, Ruth; Gaßner, Birgit; Silbernagl, Stefan

    1999-01-01

    Receptor-mediated endocytosis is an important mechanism for transport of macromolecules and regulation of cell-surface receptor expression. In renal proximal tubules, receptor-mediated endocytosis mediates the reabsorption of filtered albumin. Acidification of the endocytic compartments is essential because it interferes with ligand-receptor dissociation, vesicle trafficking, fusion events and coat formation. Here we show that the activity of Na+−H+ exchanger isoform 3 (NHE3) is important for proper receptor-mediated endocytosis of albumin and endosomal pH homeostasis in a renal proximal tubular cell line (opossum kidney cells) which expresses NHE3 only. Depending on their inhibitory potency with respect to NHE3 and their lipophilicity, the NHE inhibitors EIPA, amiloride and HOE694 differentially reduced albumin endocytosis. The hydrophilic inhibitor HOE642 had no effect. Inhibition of NHE3 led to an alkalinization of early endosomes and to an acidification of the cytoplasm, indicating that Na+−H+ exchange contributes to the acidification of the early endosomal compartment due to the existence of a sufficient Na+ gradient across the endosomal membrane. Exclusive acidification of the cytoplasm with propionic acid or by removal of Na+ induced a significantly smaller reduction in endocytosis than that induced by inhibition of Na+−H+ exchange. Analysis of the inhibitory profiles indicates that in early endosomes and endocytic vesicles NHE3 is of major importance, whereas plasma membrane NHE3 plays a minor role. Thus, NHE3-mediated acidification along the first part of the endocytic pathway plays an important role in receptor-mediated endocytosis. Furthermore, the involvement of NHE3 offers new ways to explain the regulation of receptor-mediated endocytosis. PMID:10545138

  6. Endocytic pathways involved in PLGA nanoparticle uptake by grapevine cells and role of cell wall and membrane in size selection.

    PubMed

    Palocci, Cleofe; Valletta, Alessio; Chronopoulou, Laura; Donati, Livia; Bramosanti, Marco; Brasili, Elisa; Baldan, Barbara; Pasqua, Gabriella

    2017-12-01

    PLGA NPs' cell uptake involves different endocytic pathways. Clathrin-independent endocytosis is the main internalization route. The cell wall plays a more prominent role than the plasma membrane in NPs' size selection. In the last years, many studies on absorption and cell uptake of nanoparticles by plants have been conducted, but the understanding of the internalization mechanisms is still largely unknown. In this study, polydispersed and monodispersed poly(lactic-co-glycolic) acid nanoparticles (PLGA NPs) were synthesized, and a strategy combining the use of transmission electron microscopy (TEM), confocal analysis, fluorescently labeled PLGA NPs, a probe for endocytic vesicles (FM4-64), and endocytosis inhibitors (i.e., wortmannin, ikarugamycin, and salicylic acid) was employed to shed light on PLGA NP cell uptake in grapevine cultured cells and to assess the role of the cell wall and plasma membrane in size selection of PLGA NPs. The ability of PLGA NPs to cross the cell wall and membrane was confirmed by TEM and fluorescence microscopy. A strong adhesion of PLGA NPs to the outer side of the cell wall was observed, presumably due to electrostatic interactions. Confocal microscopy and treatment with endocytosis inhibitors suggested the involvement of both clathrin-dependent and clathrin-independent endocytosis in cell uptake of PLGA NPs and the latter appeared to be the main internalization pathway. Experiments on grapevine protoplasts revealed that the cell wall plays a more prominent role than the plasma membrane in size selection of PLGA NPs. While the cell wall prevents the uptake of PLGA NPs with diameters over 50 nm, the plasma membrane can be crossed by PLGA NPs with a diameter of 500-600 nm.

  7. Amiloride-enhanced gene transfection of octa-arginine functionalized calcium phosphate nanoparticles.

    PubMed

    Vanegas Sáenz, Juan Ramón; Tenkumo, Taichi; Kamano, Yuya; Egusa, Hiroshi; Sasaki, Keiichi

    2017-01-01

    Nanoparticles represent promising gene delivery systems in biomedicine to facilitate prolonged gene expression with low toxicity compared to viral vectors. Specifically, nanoparticles of calcium phosphate (nCaP), the main inorganic component of human bone, exhibit high biocompatibility and good biodegradability and have been reported to have high affinity for protein or DNA, having thus been used as gene transfer vectors. On the other hand, Octa-arginine (R8), which has a high permeability to cell membrane, has been reported to improve intracellular delivery systems. Here, we present an optimized method for nCaP-mediated gene delivery using an octa-arginine (R8)-functionalized nCaP vector containing a marker or functional gene construct. nCaP particle size was between 220-580 nm in diameter and all R8-functionalized nCaPs carried a positive charge. R8 concentration significantly improved nCaP transfection efficiency with high cell compatibility in human mesenchymal stem cells (hMSC) and human osteoblasts (hOB) in particular, suggesting nCaPs as a good option for non-viral vector gene delivery. Furthermore, pre-treatment with different endocytosis inhibitors identified that the endocytic pathway differed among cell lines and functionalized nanoparticles, with amiloride increasing transfection efficiency of R8-functionalized nCaPs in hMSC and hOB.

  8. Bioinformatic and Comparative Localization of Rab Proteins Reveals Functional Insights into the Uncharacterized GTPases Ypt10p and Ypt11p†

    PubMed Central

    Buvelot Frei, Stéphanie; Rahl, Peter B.; Nussbaum, Maria; Briggs, Benjamin J.; Calero, Monica; Janeczko, Stephanie; Regan, Andrew D.; Chen, Catherine Z.; Barral, Yves; Whittaker, Gary R.; Collins, Ruth N.

    2006-01-01

    A striking characteristic of a Rab protein is its steady-state localization to the cytosolic surface of a particular subcellular membrane. In this study, we have undertaken a combined bioinformatic and experimental approach to examine the evolutionary conservation of Rab protein localization. A comprehensive primary sequence classification shows that 10 out of the 11 Rab proteins identified in the yeast (Saccharomyces cerevisiae) genome can be grouped within a major subclass, each comprising multiple Rab orthologs from diverse species. We compared the locations of individual yeast Rab proteins with their localizations following ectopic expression in mammalian cells. Our results suggest that green fluorescent protein-tagged Rab proteins maintain localizations across large evolutionary distances and that the major known player in the Rab localization pathway, mammalian Rab-GDI, is able to function in yeast. These findings enable us to provide insight into novel gene functions and classify the uncharacterized Rab proteins Ypt10p (YBR264C) as being involved in endocytic function and Ypt11p (YNL304W) as being localized to the endoplasmic reticulum, where we demonstrate it is required for organelle inheritance. PMID:16980630

  9. Huntingtin-interacting protein 1 influences worm and mouse presynaptic function and protects Caenorhabditis elegans neurons against mutant polyglutamine toxicity.

    PubMed

    Parker, J Alex; Metzler, Martina; Georgiou, John; Mage, Marilyne; Roder, John C; Rose, Ann M; Hayden, Michael R; Néri, Christian

    2007-10-10

    Huntingtin-interacting protein 1 (HIP1) was identified through its interaction with htt (huntingtin), the Huntington's disease (HD) protein. HIP1 is an endocytic protein that influences transport and function of AMPA and NMDA receptors in the brain. However, little is known about its contribution to neuronal dysfunction in HD. We report that the Caenorhabditis elegans HIP1 homolog hipr-1 modulates presynaptic activity and the abundance of synaptobrevin, a protein involved in synaptic vesicle fusion. Presynaptic function was also altered in hippocampal brain slices of HIP1-/- mice demonstrating delayed recovery from synaptic depression and a reduction in paired-pulse facilitation, a form of presynaptic plasticity. Interestingly, neuronal dysfunction in transgenic nematodes expressing mutant N-terminal huntingtin was specifically enhanced by hipr-1 loss of function. A similar effect was observed with several other mutant proteins that are expressed at the synapse and involved in endocytosis, such as unc-11/AP180, unc-26/synaptojanin, and unc-57/endophilin. Thus, HIP1 is involved in presynaptic nerve terminal activity and modulation of mutant polyglutamine-induced neuronal dysfunction. Moreover, synaptic proteins involved in endocytosis may protect neurons against amino acid homopolymer expansion.

  10. Cell-penetrating peptides and antimicrobial peptides: how different are they?

    PubMed Central

    Henriques, Sónia Troeira; Melo, Manuel Nuno; Castanho, Miguel A. R. B.

    2006-01-01

    Some cationic peptides, referred to as CPPs (cell-penetrating peptides), have the ability to translocate across biological membranes in a non-disruptive way and to overcome the impermeable nature of the cell membrane. They have been successfully used for drug delivery into mammalian cells; however, there is no consensus about the mechanism of cellular uptake. Both endocytic and non-endocytic pathways are supported by experimental evidence. The observation that some AMPs (antimicrobial peptides) can enter host cells without damaging their cytoplasmic membrane, as well as kill pathogenic agents, has also attracted attention. The capacity to translocate across the cell membrane has been reported for some of these AMPs. Like CPPs, AMPs are short and cationic sequences with a high affinity for membranes. Similarities between CPPs and AMPs prompted us to question if these two classes of peptides really belong to unrelated families. In this Review, a critical comparison of the mechanisms that underlie cellular uptake is undertaken. A reflection and a new perspective about CPPs and AMPs are presented. PMID:16956326

  11. Regulation of raft-dependent endocytosis

    PubMed Central

    Lajoie, P; Nabi, IR

    2007-01-01

    Abstract Raft-dependent endocytosis is in large part defined as the cholesterol-sensitive, clathrin-independent internalization of ligands and receptors from the plasma membrane. It encompasses the endocytosis of caveo-lae, smooth plasmalemmal vesicles that form a subdomain of cholesterol and sphingolipid-rich lipid rafts and that are enriched for caveolin-1. While sharing common mechanisms, like cholesterol sensitivity, raft endocytic routes show differential regulation by various cellular components including caveolin-1, dynamin-2 and regulators of the actin cytoskeleton. Dynamin-dependent raft pathways, mediated by caveolae and morphologically equivalent non-caveolin vesicular intermediates, are referred to as caveolae/raft-dependent endocytosis. In contrast, dynamin-independent raft pathways are mediated by non-caveolar intermediates. Raft-dependent endocytosis is regulated by tyrosine kinase inhibitors and, through the regulation of the internalization of various ligands, receptors and effectors, is also a determinant of cellular signaling. In this review, we characterize and discuss the regulation of raft-dependent endocytic pathways and the role of key regulators such as caveolin-1. PMID:17760830

  12. All known patient mutations in the ASH-RhoGAP domains of OCRL affect targeting and APPL1 binding

    PubMed Central

    McCrea, Heather J.; Paradise, Summer; Tomasini, Livia; Addis, Maria; Melis, Maria Antonietta; De Matteis, Maria Antonietta; De Camilli, Pietro

    2008-01-01

    Mutations in the inositol 5-phosphatase OCRL are responsible for Lowe syndrome, an X-linked disorder characterized by bilateral cataracts, mental retardation, neonatal hypotonia, and renal Fanconi syndrome, and for Dent disease, another X-linked condition characterized by kidney reabsorption defects. We have previously described an interaction of OCRL with the endocytic adaptor APPL1 that links OCRL to protein networks involved in the disease phenotype. Here we provide new evidence showing that among the interactions which target OCRL to membranes of the endocytic pathway, binding to APPL1 is the only one abolished by all known disease-causing missense mutations in the ASH-RhoGAP domains of the protein. Furthermore, we demonstrate that APPL1 and rab5 independently contribute to recruit OCRL to enlarged endosomes induced by the expression of constitutively active Rab5. Thus, binding to APPL1 helps localize OCRL at specific cellular sites, and disruption of this interaction may play a role in disease. PMID:18307981

  13. Compromised fidelity of endocytic synaptic vesicle protein sorting in the absence of stonin 2

    PubMed Central

    Kononenko, Natalia L.; Diril, M. Kasim; Puchkov, Dmytro; Kintscher, Michael; Koo, Seong Joo; Pfuhl, Gerit; Winter, York; Wienisch, Martin; Klingauf, Jürgen; Breustedt, Jörg; Schmitz, Dietmar; Maritzen, Tanja; Haucke, Volker

    2013-01-01

    Neurotransmission depends on the exocytic fusion of synaptic vesicles (SVs) and their subsequent reformation either by clathrin-mediated endocytosis or budding from bulk endosomes. How synapses are able to rapidly recycle SVs to maintain SV pool size, yet preserve their compositional identity, is poorly understood. We demonstrate that deletion of the endocytic adaptor stonin 2 (Stn2) in mice compromises the fidelity of SV protein sorting, whereas the apparent speed of SV retrieval is increased. Loss of Stn2 leads to selective missorting of synaptotagmin 1 to the neuronal surface, an elevated SV pool size, and accelerated SV protein endocytosis. The latter phenotype is mimicked by overexpression of endocytosis-defective variants of synaptotagmin 1. Increased speed of SV protein retrieval in the absence of Stn2 correlates with an up-regulation of SV reformation from bulk endosomes. Our results are consistent with a model whereby Stn2 is required to preserve SV protein composition but is dispensable for maintaining the speed of SV recycling. PMID:23345427

  14. Protein Corona Influences Cellular Uptake of Gold Nanoparticles by Phagocytic and Nonphagocytic Cells in a Size-Dependent Manner.

    PubMed

    Cheng, Xiaju; Tian, Xin; Wu, Anqing; Li, Jianxiang; Tian, Jian; Chong, Yu; Chai, Zhifang; Zhao, Yuliang; Chen, Chunying; Ge, Cuicui

    2015-09-23

    The interaction at nanobio is a critical issue in designing safe nanomaterials for biomedical applications. Recent studies have reported that it is nanoparticle-protein corona rather than bare nanoparticle that determines the nanoparticle-cell interactions, including endocytic pathway and biological responses. Here, we demonstrate the effects of protein corona on cellular uptake of different sized gold nanoparticles in different cell lines. The experimental results show that protein corona significantly decreases the internalization of Au NPs in a particle size- and cell type-dependent manner. Protein corona exhibits much more significant inhibition on the uptake of large-sized Au NPs by phagocytic cell than that of small-sized Au NPs by nonphagocytic cell. The endocytosis experiment indicates that different endocytic pathways might be responsible for the differential roles of protein corona in the interaction of different sized Au NPs with different cell lines. Our findings can provide useful information for rational design of nanomaterials in biomedical application.

  15. Actin Is Crucial for All Kinetically Distinguishable Forms of Endocytosis at Synapses.

    PubMed

    Wu, Xin-Sheng; Lee, Sung Hoon; Sheng, Jiansong; Zhang, Zhen; Zhao, Wei-Dong; Wang, Dongsheng; Jin, Yinghui; Charnay, Patrick; Ervasti, James M; Wu, Ling-Gang

    2016-12-07

    Mechanical force is needed to mediate endocytosis. Whether actin, the most abundant force-generating molecule, is essential for endocytosis is highly controversial in mammalian cells, particularly synapses, likely due to the use of actin blockers, the efficiency and specificity of which are often unclear in the studied cell. Here we addressed this issue using a knockout approach combined with measurements of membrane capacitance and fission pore conductance, imaging of vesicular protein endocytosis, and electron microscopy. We found that two actin isoforms, β- and γ-actin, are crucial for slow, rapid, bulk, and overshoot endocytosis at large calyx-type synapses, and for slow endocytosis and bulk endocytosis at small hippocampal synapses. Polymerized actin provides mechanical force to form endocytic pits. Actin also facilitates replenishment of the readily releasable vesicle pool, likely via endocytic clearance of active zones. We conclude that polymerized actin provides mechanical force essential for all kinetically distinguishable forms of endocytosis at synapses. Published by Elsevier Inc.

  16. Actin is crucial for all kinetically distinguishable forms of endocytosis at synapses

    PubMed Central

    Wu, Xin-Sheng; Lee, Sunghoon; Sheng, Jiansong; Zhang, Zhen; Zhao, Weidong; Wang, Dongsheng; Jin, Yinghui; Charnay, Patrick; Ervasti, James M.; Wu, Ling-Gang

    2016-01-01

    Summary Mechanical force is needed to mediate endocytosis. Whether actin, the most abundant force-generating molecule, is essential for endocytosis is highly controversial in mammalian cells, particularly synapses, likely due to the use of actin blockers, the efficiency and specificity of which are often unclear in the studied cell. Here we addressed this issue using knockout approach combined with measurements of membrane capacitance and fission pore conductance, imaging of vesicular protein endocytosis, and electron microscopy. We found that two actin isoforms, β- and γ-actin, are crucial for slow, rapid, bulk, and overshoot endocytosis at large calyx-type synapses, and for slow endocytosis and bulk endocytosis at small hippocampal synapses. Polymerized actin provides mechanical force to form endocytic pits. Actin also facilitates replenishment of the readily releasable vesicle pool, likely via endocytic clearance of active zones. We conclude that polymerized actin provides mechanical force essential for all kinetically distinguishable forms of endocytosis at synapses. PMID:27840001

  17. CD22 is a recycling receptor that can shuttle cargo between the cell surface and endosomal compartments of B cells.

    PubMed

    O'Reilly, Mary K; Tian, Hua; Paulson, James C

    2011-02-01

    CD22 is a member of the sialic acid-binding Ig-like lectin (Siglec) family that is known to be a regulator of B cell signaling. Its B cell-specific expression makes it an attractive target for immunotoxin-mediated B cell depletion therapy for the treatment of B cell lymphomas and autoimmune diseases. Although CD22 is well documented to be an endocytic receptor, it is believed that after internalization, it is targeted for degradation. We show in this study that CD22 is instead constitutively recycled to the cell surface. We also find that glycan ligand-based cargo is released from CD22 and accumulates intracellularly as CD22 recycles between the cell surface and endosomal compartments. In contrast, Abs to CD22 do not accumulate but remain bound to CD22 and recycle to the cell surface. The results have implications for development of agents that target CD22 as an endocytic receptor for delivery of cytotoxic cargo to B cells.

  18. Distinct cargo-specific response landscapes underpin the complex and nuanced role of galectin-glycan interactions in clathrin-independent endocytosis.

    PubMed

    Mathew, Mohit P; Donaldson, Julie G

    2018-05-11

    Clathrin-independent endocytosis (CIE) is a form of endocytosis that lacks a defined cytoplasmic machinery. Here, we asked whether glycan interactions, acting from the outside, could be a part of that endocytic machinery. We show that the perturbation of global cellular patterns of protein glycosylation by modulation of metabolic flux affects CIE. Interestingly, these changes in glycosylation had cargo-specific effects. For example, in HeLa cells, GlcNAc treatment, which increases glycan branching, increased major histocompatibility complex class I (MHCI) internalization but inhibited CIE of the glycoprotein CD59 molecule (CD59). The effects of knocking down the expression of galectin 3, a carbohydrate-binding protein and an important player in galectin-glycan interactions, were also cargo-specific and stimulated CD59 uptake. By contrast, inhibition of all galectin-glycan interactions by lactose inhibited CIE of both MHCI and CD59. None of these treatments affected clathrin-mediated endocytosis, implying that glycosylation changes specifically affect CIE. We also found that the galectin lattice tailors membrane fluidity and cell spreading. Furthermore, changes in membrane dynamics mediated by the galectin lattice affected macropinocytosis, an altered form of CIE, in HT1080 cells. Our results suggest that glycans play an important and nuanced role in CIE, with each cargo being affected uniquely by alterations in galectin and glycan profiles and their interactions. We conclude that galectin-driven effects exist on a continuum from stimulatory to inhibitory, with distinct CIE cargo proteins having unique response landscapes and with different cell types starting at different positions on these conceptual landscapes.

  19. Distinct Protein Sorting and Localization to Premelanosomes, Melanosomes, and Lysosomes in Pigmented Melanocytic Cells✪

    PubMed Central

    Raposo, Graça; Tenza, Danielle; Murphy, Diane M.; Berson, Joanne F.; Marks, Michael S.

    2001-01-01

    Melanosomes and premelanosomes are lysosome-related organelles with a unique structure and cohort of resident proteins. We have positioned these organelles relative to endosomes and lysosomes in pigmented melanoma cells and melanocytes. Melanosome resident proteins Pmel17 and TRP1 localized to separate vesicular structures that were distinct from those enriched in lysosomal proteins. In immunogold-labeled ultrathin cryosections, Pmel17 was most enriched along the intralumenal striations of premelanosomes. Increased pigmentation was accompanied by a decrease in Pmel17 and by an increase in TRP1 in the limiting membrane. Both proteins were largely excluded from lysosomal compartments enriched in LAMP1 and cathepsin D. By kinetic analysis of fluid phase uptake and immunogold labeling, premelanosomal proteins segregated from endocytic markers within an unusual endosomal compartment. This compartment contained Pmel17, was accessed by BSA–gold after 15 min, was acidic, and displayed a cytoplasmic planar coat that contained clathrin. Our results indicate that premelanosomes and melanosomes represent a distinct lineage of organelles, separable from conventional endosomes and lysosomes within pigmented cells. Furthermore, they implicate an unusual clathrin-coated endosomal compartment as a site from which proteins destined for premelanosomes and lysosomes are sorted. PMID:11266471

  20. Wild-Type Monomeric α-Synuclein Can Impair Vesicle Endocytosis and Synaptic Fidelity via Tubulin Polymerization at the Calyx of Held.

    PubMed

    Eguchi, Kohgaku; Taoufiq, Zacharie; Thorn-Seshold, Oliver; Trauner, Dirk; Hasegawa, Masato; Takahashi, Tomoyuki

    2017-06-21

    α-Synuclein is a presynaptic protein the function of which has yet to be identified, but its neuronal content increases in patients of synucleinopathies including Parkinson's disease. Chronic overexpression of α-synuclein reportedly expresses various phenotypes of synaptic dysfunction, but the primary target of its toxicity has not been determined. To investigate this, we acutely loaded human recombinant α-synuclein or its pathological mutants in their monomeric forms into the calyces of Held presynaptic terminals in slices from auditorily mature and immature rats of either sex. Membrane capacitance measurements revealed significant and specific inhibitory effects of WT monomeric α-synuclein on vesicle endocytosis throughout development. However, the α-synuclein A53T mutant affected vesicle endocytosis only at immature calyces, whereas the A30P mutant had no effect throughout. The endocytic impairment by WT α-synuclein was rescued by intraterminal coloading of the microtubule (MT) polymerization blocker nocodazole. Furthermore, it was reversibly rescued by presynaptically loaded photostatin-1, a photoswitcheable inhibitor of MT polymerization, in a light-wavelength-dependent manner. In contrast, endocytic inhibition by the A53T mutant at immature calyces was not rescued by nocodazole. Functionally, presynaptically loaded WT α-synuclein had no effect on basal synaptic transmission evoked at a low frequency, but significantly attenuated exocytosis and impaired the fidelity of neurotransmission during prolonged high-frequency stimulation. We conclude that monomeric WT α-synuclein primarily inhibits vesicle endocytosis via MT overassembly, thereby impairing high-frequency neurotransmission. SIGNIFICANCE STATEMENT Abnormal α-synuclein abundance is associated with synucleinopathies including Parkinson's disease, but neither the primary target of α-synuclein toxicity nor its mechanism is identified. Here, we loaded monomeric α-synuclein directly into mammalian glutamatergic nerve terminals and found that it primarily inhibits vesicle endocytosis and subsequently impairs exocytosis and neurotransmission fidelity during prolonged high-frequency stimulation. Such α-synuclein toxicity could be rescued by blocking microtubule polymerization, suggesting that microtubule overassembly underlies the toxicity of acutely elevated α-synuclein in the nerve terminal. Copyright © 2017 the authors 0270-6474/17/376043-10$15.00/0.

  1. Ascorbic acid increases SVCT2 localization at the plasma membrane by accelerating its trafficking from early secretory compartments and through the endocytic-recycling pathway.

    PubMed

    Covarrubias-Pinto, A; Acuña, A I; Boncompain, G; Papic, E; Burgos, P V; Perez, F; Castro, M A

    2018-05-20

    Ascorbic acid (Asc) is an antioxidant molecule essential for physiological functions. The concentration of extracellular Asc increases during synaptic transmission and renal reabsorption. These phenomena induce an increase of the Sodium-dependent-Vitamin-C-transporter 2 (SVCT2) at plasma membrane (PM) localization, as we previously demonstrated in neuronal and non-neuronal cells. Hence, the aim of this study was to evaluate intracellular SVCT2 trafficking kinetics in response to Asc. We observed two peaks of SVCT2 localization and function at the PM (at 5-10 min, "acute response", and 30-60 min, "post-acute response") when cells were incubated with Asc. We defined that the post-acute response was dependent on SVCT2 located in early secretory compartments, and its trafficking was abolished with Tunicamycin and Brefeldin A treatment. Moreover, using the RUSH system to retain and synchronize cargo secretion through the secretory pathway we demonstrated that the post-acute response increases SVCT2 trafficking kinetics from the ER to the PM suggesting the retention of SVCT2 at the early secretory pathway when Asc is absent. However, these observations do not explain the increased SVCT2 levels at the PM during the "acute" response, suggesting the involvement of a faster mechanism in close proximity with the PM. To investigate the possible role of endosomal compartments, we tested the effect of endocytosis inhibition. Expression of dominant-negative (DN) versions of the GTPase-dynamin II and clathrin-accessory protein AP180 showed a significant increase in SVCT2 levels at the PM. Moreover, expression of Rab11-DN, a GTPase implicated in cargo protein recycling from endosomes to the PM showed a similar outcome, strongly indicating that Asc impacts SVCT2 trafficking during the acute response. Therefore, our results revealed two mechanisms by which Asc modulates SVCT2 levels at the PM, one at the early secretory pathway and another at the endocytic compartments. We propose that these two mechanisms have key protective implications in the homeostasis of metabolically active and specialized tissues. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. NPC1L1 and Cholesterol Transport

    PubMed Central

    Betters, Jenna L.; Yu, Liqing

    2010-01-01

    The polytopic transmembrane protein, Niemann-Pick C1-Like 1 (NPC1L1), is enriched in the apical membrane of small intestine absorptive enterocytes where it mediates extracellular sterol transport across the brush border membrane. It is essential for intestinal sterol absorption and is the molecular target of ezetimibe, a potent cholesterol absorption inhibitor that lowers blood cholesterol in humans. NPC1L1 is also highly expressed in human liver. The hepatic function of NPC1L1 may be to limit excessive biliary cholesterol loss. NPC1L1-dependent sterol uptake seems to be a clathrin-mediated endocytic process and is regulated by cellular cholesterol content. Recently, NPC1L1 inhibition has been shown to have beneficial effects on components of the metabolic syndrome, such as obesity, insulin resistance, fatty liver, in addition to atherosclerosis. PMID:20307540

  3. Time-Resolved Proteomic Visualization of Dendrimer Cellular Entry and Trafficking.

    PubMed

    Wang, Linna; Yang, Li; Pan, Li; Kadasala, Naveen Reddy; Xue, Liang; Schuster, Robert J; Parker, Laurie L; Wei, Alexander; Tao, W Andy

    2015-10-14

    Our understanding of the complex cell entry pathways would greatly benefit from a comprehensive characterization of key proteins involved in this dynamic process. Here we devise a novel proteomic strategy named TITAN (Tracing Internalization and TrAfficking of Nanomaterials) to reveal real-time protein-dendrimer interactions using a systems biology approach. Dendrimers functionalized with photoreactive cross-linkers were internalized by HeLa cells and irradiated at set time intervals, then isolated and subjected to quantitative proteomics. In total, 809 interacting proteins cross-linked with dendrimers were determined by TITAN in a detailed temporal manner during dendrimer internalization, traceable to at least two major endocytic mechanisms, clathrin-mediated and caveolar/raft-mediated endocytosis. The direct involvement of the two pathways was further established by the inhibitory effect of dynasore on dendrimer uptake and changes in temporal profiles of key proteins.

  4. Granulocytes of the red claw crayfish Cherax quadricarinatus can endocytose beads, E. coli and WSSV, but in different ways.

    PubMed

    Duan, Hu; Jin, Songjun; Zhang, Yan; Li, Fuhua; Xiang, Jianhai

    2014-10-01

    The hemocytes of the red claw crayfish Cherax quadricarinatus are classified by morphologic observation into the following types: hyalinocytes (H), semi-granulocytes (SG) and granulocytes (G). Density gradient centrifugation with Percoll was developed to separate these three subpopulations of hemocytes. Beads, Escherichia coli, and FITC labeling WSSV were used to investigate the characteristics of granulocytes by using scanning electron microscope, transmission electron microscope, and laser scan confocal microscope. Results showed that granulocytes could phagocytose beads and E. coli by endocytic pathways. WSSV could rely on caveolae-mediated endocytosis to mainly enter into granulocytes. These results could elucidate the mechanism of the innate immunity function of granulocytes, and it also showed the mechanism by which WSSV invaded granulocytes in the red claw crayfish. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Single-molecule analysis of a molecular disassemblase reveals the mechanism of Hsc70-driven clathrin uncoating

    PubMed Central

    Böcking, Till; Aguet, François; Harrison, Stephen C.; Kirchhausen, Tomas

    2010-01-01

    Heat shock cognate protein 70 (Hsc70) supports remodeling of protein complexes -- for example, disassembly of clathrin coats on endocytic coated vesicles. To understand how a simple ATP driven molecular clamp catalyzes a large-scale disassembly reaction, we have used single-particle fluorescence imaging to track the dynamics of Hsc70 and its clathrin substrate in real time. Hsc70 accumulates to a critical level, determined by kinetic modeling to be one Hsc70 for every two functional attachment sites; rapid, all-or-none uncoating then ensues. We propose that Hsc70 traps conformational distortions, seen previously by electron cryomicroscopy, in the vicinity of each occupied site and that accumulation of local strains destabilises the clathrin lattice. Capture of conformational fluctuations may be a general mechanism for chaperone-driven disassembly of protein complexes. PMID:21278753

  6. Determination of Rab5 activity in the cell by effector pull-down assay.

    PubMed

    Qi, Yaoyao; Liang, Zhimin; Wang, Zonghua; Lu, Guodong; Li, Guangpu

    2015-01-01

    Rab5 targets to early endosomes and is a master regulator of early endosome fusion and endocytosis in all eukaryotic cells. Like other GTPases, Rab5 functions as a molecular switch by alternating between GTP-bound and GDP-bound forms, with the former being biologically active via interactions with multiple effector proteins. Thus the Rab5-GTP level in the cell reflects Rab5 activity in promoting endosome fusion and endocytosis and is indicative of cellular endocytic activity. In this chapter, we describe a Rab5 activity assay by using GST fusion proteins with the Rab5 effectors such as Rabaptin-5, Rabenosyn-5, and EEA1 that specifically bind to GTP-bound Rab5. We compare the efficiencies of the three GST fusion proteins in the pull-down of mammalian and fungal Rab5 proteins.

  7. Dynamin 2 regulation of integrin endocytosis, but not VEGF signaling, is crucial for developmental angiogenesis

    PubMed Central

    Lee, Monica Y.; Skoura, Athanasia; Park, Eon Joo; Landskroner-Eiger, Shira; Jozsef, Levente; Luciano, Amelia K.; Murata, Takahisa; Pasula, Satish; Dong, Yunzhou; Bouaouina, Mohamed; Calderwood, David A.; Ferguson, Shawn M.; De Camilli, Pietro; Sessa, William C.

    2014-01-01

    Here we show that dynamin 2 (Dnm2) is essential for angiogenesis in vitro and in vivo. In cultured endothelial cells lacking Dnm2, vascular endothelial growth factor (VEGF) signaling and receptor levels are augmented whereas cell migration and morphogenesis are impaired. Mechanistically, the loss of Dnm2 increases focal adhesion size and the surface levels of multiple integrins and reduces the activation state of β1 integrin. In vivo, the constitutive or inducible loss of Dnm2 in endothelium impairs branching morphogenesis and promotes the accumulation of β1 integrin at sites of failed angiogenic sprouting. Collectively, our data show that Dnm2 uncouples VEGF signaling from function and coordinates the endocytic turnover of integrins in a manner that is crucially important for angiogenesis in vitro and in vivo. PMID:24598168

  8. Huntingtin interacting protein 1 modulates the transcriptional activity of nuclear hormone receptors.

    PubMed

    Mills, Ian G; Gaughan, Luke; Robson, Craig; Ross, Theodora; McCracken, Stuart; Kelly, John; Neal, David E

    2005-07-18

    Internalization of activated receptors regulates signaling, and endocytic adaptor proteins are well-characterized in clathrin-mediated uptake. One of these adaptor proteins, huntingtin interacting protein 1 (HIP1), induces cellular transformation and is overexpressed in some prostate cancers. We have discovered that HIP1 associates with the androgen receptor through a central coiled coil domain and is recruited to DNA response elements upon androgen stimulation. HIP1 is a novel androgen receptor regulator, significantly repressing transcription when knocked down using a silencing RNA approach and activating transcription when overexpressed. We have also identified a functional nuclear localization signal at the COOH terminus of HIP1, which contributes to the nuclear translocation of the protein. In conclusion, we have discovered that HIP1 is a nucleocytoplasmic protein capable of associating with membranes and DNA response elements and regulating transcription.

  9. Characterization of porcine CD205

    USDA-ARS?s Scientific Manuscript database

    Dendritic cells (DC) express a cell-surface receptor, CD205, that plays a role in antigen capture and delivery to the endocytic pathway. Besides DCs, high CD205 expression is also detected on thymic epithelial cells, but B cells, macrophages, and T cells have limited or no expression. CD205 has be...

  10. Amiloride-enhanced gene transfection of octa-arginine functionalized calcium phosphate nanoparticles

    PubMed Central

    Tenkumo, Taichi; Kamano, Yuya; Egusa, Hiroshi; Sasaki, Keiichi

    2017-01-01

    Nanoparticles represent promising gene delivery systems in biomedicine to facilitate prolonged gene expression with low toxicity compared to viral vectors. Specifically, nanoparticles of calcium phosphate (nCaP), the main inorganic component of human bone, exhibit high biocompatibility and good biodegradability and have been reported to have high affinity for protein or DNA, having thus been used as gene transfer vectors. On the other hand, Octa-arginine (R8), which has a high permeability to cell membrane, has been reported to improve intracellular delivery systems. Here, we present an optimized method for nCaP-mediated gene delivery using an octa-arginine (R8)-functionalized nCaP vector containing a marker or functional gene construct. nCaP particle size was between 220–580 nm in diameter and all R8-functionalized nCaPs carried a positive charge. R8 concentration significantly improved nCaP transfection efficiency with high cell compatibility in human mesenchymal stem cells (hMSC) and human osteoblasts (hOB) in particular, suggesting nCaPs as a good option for non-viral vector gene delivery. Furthermore, pre-treatment with different endocytosis inhibitors identified that the endocytic pathway differed among cell lines and functionalized nanoparticles, with amiloride increasing transfection efficiency of R8-functionalized nCaPs in hMSC and hOB. PMID:29145481

  11. Japanese encephalitis virus invasion of cell: allies and alleys.

    PubMed

    Nain, Minu; Abdin, Malik Z; Kalia, Manjula; Vrati, Sudhanshu

    2016-03-01

    The mosquito-borne flavivirus, Japanese encephalitis virus (JEV), is the leading cause of virus-induced encephalitis globally and a major public health concern of several countries in Southeast Asia, with the potential to become a global pathogen. The virus is neurotropic, and the disease ranges from mild fever to severe hemorrhagic and encephalitic manifestations and death. The early steps of the virus life cycle, binding, and entry into the cell are crucial determinants of infection and are potential targets for the development of antiviral therapies. JEV can infect multiple cell types; however, the key receptor molecule(s) still remains elusive. JEV also has the capacity to utilize multiple endocytic pathways for entry into cells of different lineages. This review not only gives a comprehensive update on what is known about the virus attachment and receptor system (allies) and the endocytic pathways (alleys) exploited by the virus to gain entry into the cell and establish infection but also discusses crucial unresolved issues. We also highlight common themes and key differences between JEV and other flaviviruses in these contexts. Copyright © 2015 John Wiley & Sons, Ltd.

  12. Nipah virus entry can occur by macropinocytosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pernet, Olivier; Pohl, Christine; Ainouze, Michelle

    2009-12-20

    Nipah virus (NiV) is a zoonotic biosafety level 4 paramyxovirus that emerged recently in Asia with high mortality in man. NiV is a member, with Hendra virus (HeV), of the Henipavirus genus in the Paramyxoviridae family. Although NiV entry, like that of other paramyxoviruses, is believed to occur via pH-independent fusion with the host cell's plasma membrane we present evidence that entry can occur by an endocytic pathway. The NiV receptor ephrinB2 has receptor kinase activity and we find that ephrinB2's cytoplasmic domain is required for entry but is dispensable for post-entry viral spread. The mutation of a single tyrosinemore » residue (Y304F) in ephrinB2's cytoplasmic tail abrogates NiV entry. Moreover, our results show that NiV entry is inhibited by constructions and drugs specific for the endocytic pathway of macropinocytosis. Our findings could potentially permit the rapid development of novel low-cost antiviral treatments not only for NiV but also HeV.« less

  13. IRS-1 acts as an endocytic regulator of IGF-I receptor to facilitate sustained IGF signaling.

    PubMed

    Yoneyama, Yosuke; Lanzerstorfer, Peter; Niwa, Hideaki; Umehara, Takashi; Shibano, Takashi; Yokoyama, Shigeyuki; Chida, Kazuhiro; Weghuber, Julian; Hakuno, Fumihiko; Takahashi, Shin-Ichiro

    2018-04-11

    Insulin-like growth factor-I receptor (IGF-IR) preferentially regulates the long-term IGF activities including growth and metabolism. Kinetics of ligand-dependent IGF-IR endocytosis determines how IGF induces such downstream signaling outputs. Here, we find that the insulin receptor substrate (IRS)-1 modulates how long ligand-activated IGF-IR remains at the cell surface before undergoing endocytosis in mammalian cells. IRS-1 interacts with the clathrin adaptor complex AP2. IRS-1, but not an AP2-binding-deficient mutant, delays AP2-mediated IGF-IR endocytosis after the ligand stimulation. Mechanistically, IRS-1 inhibits the recruitment of IGF-IR into clathrin-coated structures; for this reason, IGF-IR avoids rapid endocytosis and prolongs its activity on the cell surface. Accelerating IGF-IR endocytosis via IRS-1 depletion induces the shift from sustained to transient Akt activation and augments FoxO-mediated transcription. Our study establishes a new role for IRS-1 as an endocytic regulator of IGF-IR that ensures sustained IGF bioactivity, independent of its classic role as an adaptor in IGF-IR signaling. © 2018, Yoneyama et al.

  14. Subdiffractional tracking of internalized molecules reveals heterogeneous motion states of synaptic vesicles

    PubMed Central

    Morrow, Isabel C.; Harper, Callista B.

    2016-01-01

    Our understanding of endocytic pathway dynamics is severely restricted by the diffraction limit of light microscopy. To address this, we implemented a novel technique based on the subdiffractional tracking of internalized molecules (sdTIM). This allowed us to image anti–green fluorescent protein Atto647N-tagged nanobodies trapped in synaptic vesicles (SVs) from live hippocampal nerve terminals expressing vesicle-associated membrane protein 2 (VAMP2)–pHluorin with 36-nm localization precision. Our results showed that, once internalized, VAMP2–pHluorin/Atto647N–tagged nanobodies exhibited a markedly lower mobility than on the plasma membrane, an effect that was reversed upon restimulation in presynapses but not in neighboring axons. Using Bayesian model selection applied to hidden Markov modeling, we found that SVs oscillated between diffusive states or a combination of diffusive and transport states with opposite directionality. Importantly, SVs exhibiting diffusive motion were relatively less likely to switch to the transport motion. These results highlight the potential of the sdTIM technique to provide new insights into the dynamics of endocytic pathways in a wide variety of cellular settings. PMID:27810917

  15. Dimerization and endocytosis of the sucrose transporter StSUT1 in mature sieve elements

    PubMed Central

    Liesche, Johannes; Schulz, Alexander; Krügel, Undine; Grimm, Bernhard

    2008-01-01

    The sucrose transporter StSUT1 from Solanum tuberosum was shown to be regulated post-translationally by redox reagents. Its activity is increased at least 10-fold in the presence of oxidizing agents if expressed in yeast. Oxidation has also an effect on plasma membrane targeting and dimerization of the protein. In response to oxidizing agents, StSUT1 is targeted to lipid raft-like microdomains and SUT1 protein is detectable in the detergent resistant membrane fraction of plant plasma membranes. Interestingly, StSUT1 treated with brefeldin A seems to aggregate in endocytic compartments in mature sieve elements.1 Further analysis of SUT1 targeting will certainly provide more information about the putative involvement of lipid raft-like microdomains in endocytic events. We provide here additional information on the dimerization and endocytosis of the SUT1 protein. The oligomerization of overexpressed SoSUT1 from Spinacia oleracea in transgenic potato plants was analyzed by two-dimensional gel electrophoresis and endocytosis of the StSUT1 protein was confirmed by immunogold labeling. PMID:19704459

  16. Interferon-induced Sus scrofa Mx1 blocks endocytic traffic of incoming influenza A virus particles.

    PubMed

    Palm, Mélanie; Garigliany, Mutien-Marie; Cornet, François; Desmecht, Daniel

    2010-01-01

    The interferon-induced Mx proteins of vertebrates are dynamin-like GTPases, some isoforms of which can additionally inhibit the life cycle of certain RNA viruses. Here we show that the porcine Mx1 protein (poMx1) inhibits replication of influenza A virus and we attempt to identify the step at which the viral life cycle is blocked. In infected cells expressing poMx1, the level of transcripts encoding the viral nucleoprotein is significantly lower than normal, even when secondary transcription is prevented by exposure to cycloheximide. This reveals that a pretranscriptional block participates to the anti-influenza activity. Binding and internalization of incoming virus particles are normal in the presence of poMx1 but centripetal traffic to the late endosomes is interrupted. Surprisingly but decisively, poMx1 significantly alters binding of early endosome autoantigen 1 to early endosomes and/or early endosome size and spatial distribution. This is compatible with impairment of traffic of the endocytic vesicles to the late endosomes. INRA, EDP Sciences, 2010.

  17. Uncommon endocytic and trafficking pathway of the natural killer cell CD94/NKG2A inhibitory receptor.

    PubMed

    Masilamani, Madhan; Narayanan, Sriram; Prieto, Martha; Borrego, Francisco; Coligan, John E

    2008-06-01

    The CD94/NKG2A inhibitory receptor, expressed by natural killer and T cells, is constantly exposed to its HLA-E ligand expressed by surrounding cells. Ligand exposure often induces receptor downregulation. For CD94/NKG2A, this could potentiate activation receptor(s) induced responses to normal bystander cells. We investigated CD94/NKG2A endocytosis and found that it occurs by an amiloride-sensitive, Rac1-dependent macropinocytic-like process; however, it does not require clathrin, dynamin, ADP ribosylation factor-6, phosphoinositide-3 kinase or the actin cytoskeleton. Once endocytosed, CD94/NKG2A traffics to early endosomal antigen 1(+), Rab5(+) early endosomes. It does appear in Rab4(+) early/sorting endosome, but, in the time period examined, fails to reach Rab11(+) recycling or Rab7(+) late endosomes or lysosome-associated membrane protein-1(+) lysosomes. These results indicate that CD94/NKG2A utilizes a previously undescribed endocytic mechanism coupled with an abbreviated trafficking pattern, perhaps to insure surface expression.

  18. Integrated control of transporter endocytosis and recycling by the arrestin-related protein Rod1 and the ubiquitin ligase Rsp5.

    PubMed

    Becuwe, Michel; Léon, Sébastien

    2014-11-07

    After endocytosis, membrane proteins can recycle to the cell membrane or be degraded in lysosomes. Cargo ubiquitylation favors their lysosomal targeting and can be regulated by external signals, but the mechanism is ill-defined. Here, we studied the post-endocytic trafficking of Jen1, a yeast monocarboxylate transporter, using microfluidics-assisted live-cell imaging. We show that the ubiquitin ligase Rsp5 and the glucose-regulated arrestin-related trafficking adaptors (ART) protein Rod1, involved in the glucose-induced internalization of Jen1, are also required for the post-endocytic sorting of Jen1 to the yeast lysosome. This new step takes place at the trans-Golgi network (TGN), where Rod1 localizes dynamically upon triggering endocytosis. Indeed, transporter trafficking to the TGN after internalization is required for their degradation. Glucose removal promotes Rod1 relocalization to the cytosol and Jen1 deubiquitylation, allowing transporter recycling when the signal is only transient. Therefore, nutrient availability regulates transporter fate through the localization of the ART/Rsp5 ubiquitylation complex at the TGN.

  19. IRS-1 acts as an endocytic regulator of IGF-I receptor to facilitate sustained IGF signaling

    PubMed Central

    Yoneyama, Yosuke; Lanzerstorfer, Peter; Niwa, Hideaki; Umehara, Takashi; Shibano, Takashi; Yokoyama, Shigeyuki; Chida, Kazuhiro; Weghuber, Julian

    2018-01-01

    Insulin-like growth factor-I receptor (IGF-IR) preferentially regulates the long-term IGF activities including growth and metabolism. Kinetics of ligand-dependent IGF-IR endocytosis determines how IGF induces such downstream signaling outputs. Here, we find that the insulin receptor substrate (IRS)−1 modulates how long ligand-activated IGF-IR remains at the cell surface before undergoing endocytosis in mammalian cells. IRS-1 interacts with the clathrin adaptor complex AP2. IRS-1, but not an AP2-binding-deficient mutant, delays AP2-mediated IGF-IR endocytosis after the ligand stimulation. Mechanistically, IRS-1 inhibits the recruitment of IGF-IR into clathrin-coated structures; for this reason, IGF-IR avoids rapid endocytosis and prolongs its activity on the cell surface. Accelerating IGF-IR endocytosis via IRS-1 depletion induces the shift from sustained to transient Akt activation and augments FoxO-mediated transcription. Our study establishes a new role for IRS-1 as an endocytic regulator of IGF-IR that ensures sustained IGF bioactivity, independent of its classic role as an adaptor in IGF-IR signaling. PMID:29661273

  20. Identification of a Novel Lysosomal Trafficking Peptide using Phage Display Biopanning Coupled with Endocytic Selection Pressure

    PubMed Central

    2015-01-01

    Methods to select ligands that accumulate specifically in cancer cells and traffic through a defined endocytic pathway may facilitate rapid pairing of ligands with linkers suitable for drug conjugate therapies. We performed phage display biopanning on cancer cells that are treated with selective inhibitors of a given mechanism of endocytosis. Using chlorpromazine to inhibit clathrin-mediated endocytosis in H1299 nonsmall cell lung cancer cells, we identified two clones, ATEPRKQYATPRVFWTDAPG (15.1) and a novel peptide LQWRRDDNVHNFGVWARYRL (H1299.3). The peptides segregate by mechanism of endocytosis and subsequent location of subcellular accumulation. The H1299.3 peptide primarily utilizes clathrin-mediated endocytosis and colocalizes with Lamp1, a lysosomal marker. Conversely, the 15.1 peptide is clathrin-independent and localizes to a perinuclear region. Thus, this novel phage display scheme allows for selection of peptides that selectively internalize into cells via a known mechanism of endocytosis. These types of selections may allow for better matching of linker with targeting ligand by selecting ligands that internalize and traffic to known subcellular locations. PMID:25188559

  1. Dimerization and endocytosis of the sucrose transporter StSUT1 in mature sieve elements.

    PubMed

    Liesche, Johannes; Schulz, Alexander; Krügel, Undine; Grimm, Bernhard; Kühn, Christina

    2008-12-01

    The sucrose transporter StSUT1 from Solanum tuberosum was shown to be regulated post-translationally by redox reagents. Its activity is increased at least 10-fold in the presence of oxidizing agents if expressed in yeast. Oxidation has also an effect on plasma membrane targeting and dimerization of the protein. In response to oxidizing agents, StSUT1 is targeted to lipid raft-like microdomains and SUT1 protein is detectable in the detergent resistant membrane fraction of plant plasma membranes. Interestingly, StSUT1 treated with brefeldin A seems to aggregate in endocytic compartments in mature sieve elements.1 Further analysis of SUT1 targeting will certainly provide more information about the putative involvement of lipid raft-like microdomains in endocytic events. We provide here additional information on the dimerization and endocytosis of the SUT1 protein. The oligomerization of overexpressed SoSUT1 from Spinacia oleracea in transgenic potato plants was analyzed by two-dimensional gel electrophoresis and endocytosis of the StSUT1 protein was confirmed by immunogold labeling.

  2. CIN85 regulates dopamine receptor endocytosis and governs behaviour in mice

    PubMed Central

    Shimokawa, Noriaki; Haglund, Kaisa; Hölter, Sabine M; Grabbe, Caroline; Kirkin, Vladimir; Koibuchi, Noriyuki; Schultz, Christian; Rozman, Jan; Hoeller, Daniela; Qiu, Chun-Hong; Londoño, Marina B; Ikezawa, Jun; Jedlicka, Peter; Stein, Birgit; Schwarzacher, Stephan W; Wolfer, David P; Ehrhardt, Nicole; Heuchel, Rainer; Nezis, Ioannis; Brech, Andreas; Schmidt, Mirko H H; Fuchs, Helmut; Gailus-Durner, Valerie; Klingenspor, Martin; Bogler, Oliver; Wurst, Wolfgang; Deller, Thomas; de Angelis, Martin Hrabé; Dikic, Ivan

    2010-01-01

    Despite extensive investigations of Cbl-interacting protein of 85 kDa (CIN85) in receptor trafficking and cytoskeletal dynamics, little is known about its functions in vivo. Here, we report the study of a mouse deficient of the two CIN85 isoforms expressed in the central nervous system, exposing a function of CIN85 in dopamine receptor endocytosis. Mice lacking CIN85 exon 2 (CIN85Δex2) show hyperactivity phenotypes, characterized by increased physical activity and exploratory behaviour. Interestingly, CIN85Δex2 animals display abnormally high levels of dopamine and D2 dopamine receptors (D2DRs) in the striatum, an important centre for the coordination of animal behaviour. Importantly, CIN85 localizes to the post-synaptic compartment of striatal neurons in which it co-clusters with D2DRs. Moreover, it interacts with endocytic regulators such as dynamin and endophilins in the striatum. Absence of striatal CIN85 causes insufficient complex formation of endophilins with D2DRs in the striatum and ultimately decreased D2DR endocytosis in striatal neurons in response to dopamine stimulation. These findings indicate an important function of CIN85 in the regulation of dopamine receptor functions and provide a molecular explanation for the hyperactive behaviour of CIN85Δex2 mice. PMID:20551902

  3. The role of endocytic pathways in cellular uptake of plasma non-transferrin iron

    PubMed Central

    Sohn, Yang-Sung; Ghoti, Hussam; Breuer, William; Rachmilewitz, Eliezer; Attar, Samah; Weiss, Guenter; Cabantchik, Z. Ioav

    2012-01-01

    Background In transfusional siderosis, the iron binding capacity of plasma transferrin is often surpassed, with concomitant generation of non-transferrin-bound iron. Although implicated in tissue siderosis, non-transferrin-bound iron modes of cell ingress remain undefined, largely because of its variable composition and association with macromolecules. Using fluorescent tracing of labile iron in endosomal vesicles and cytosol, we examined the hypothesis that non-transferrin-bound iron fractions detected in iron overloaded patients enter cells via bulk endocytosis. Design and Methods Fluorescence microscopy and flow cytometry served as analytical tools for tracing non-transferrin-bound iron entry into endosomes with the redox-reactive macromolecular probe Oxyburst-Green and into the cytosol with cell-laden calcein green and calcein blue. Non-transferrin-bound iron-containing media were from sera of polytransfused thalassemia major patients and model iron substances detected in thalassemia major sera; cell models were cultured macrophages, and cardiac myoblasts and myocytes. Results Exposure of cells to ferric citrate together with albumin, or to non-transferrin-bound iron-containing sera from thalassemia major patients caused an increase in labile iron content of endosomes and cytosol in macrophages and cardiac cells. This increase was more striking in macrophages, but in both cell types was largely reduced by co-exposure to non-transferrin-bound iron-containing media with non-penetrating iron chelators or apo-transferrin, or by treatment with inhibitors of endocytosis. Endosomal iron accumulation traced with calcein-green was proportional to input non-transferrin-bound iron levels (r2=0.61) and also preventable by pre-chelation. Conclusions Our studies indicate that macromolecule-associated non-transferrin-bound iron can initially gain access into various cells via endocytic pathways, followed by iron translocation to the cytosol. Endocytic uptake of plasma non-transferrin-bound iron is a possible mechanism that can contribute to iron loading of cell types engaged in bulk/adsorptive endocytosis, highlighting the importance of its prevention by iron chelation. PMID:22180428

  4. Characterization of early and late endocytic compartments of the transferrin cycle. Transferrin receptor antibody blocks erythroid differentiation by trapping the receptor in the early endosome.

    PubMed

    Killisch, I; Steinlein, P; Römisch, K; Hollinshead, R; Beug, H; Griffiths, G

    1992-09-01

    We describe a detailed morphological characterization of the endocytic pathway in differentiating chicken erythroblasts transformed by a temperature-sensitive mutant of avian erythroblastosis virus (AEV). These cells express high levels of transferrin receptors (TfR) when induced to differentiate at 42 degrees C. Biochemical analysis showed that most (approximately 90%) of the internalized 125I-Tf recycled within approximately 30 min while a smaller fraction of 125I-Tf required up to 2 h for recycling. By immunocytochemistry, the bulk of Tf and TfR was localized at the plasma membrane and in tubuloreticular early endosomes. This structure contained coated buds that labelled with an antibody specific for the clathrin light chain. Decreasing amounts of both Tf and TfR were detected in two distal compartments, spherical endosome vesicles resembling multivesicular bodies and the prelysosomal compartment (PLC) enriched in cation-independent mannose 6-phosphate receptor. As shown by fluorescent (FITC-Tf) labelling of living cells, the movement of Tf/TfR complex into these late structures was accompanied by a significant drop in pH from about 6, the value displayed by early endosomes, to values below pH 5.0. Since no detectable 125I-Tf degradation was observed during a 4 h period we believe that the Tf/TfR detected in these late endocytic structures avoids degradation and recycles back to the cell surface. The addition of an anti-TfR monoclonal antibody to the culture medium of these cells blocks their differentiation. Under this condition the antibody-TfR complex was trapped in an early endosome compartment that enlarged to more than twice its normal size. However, this condition did not affect the transport kinetics of horseradish peroxidase from the medium to the PLC.

  5. Intracellular Targeting Specificity of Novel Phthalocyanines Assessed in a Host-Parasite Model for Developing Potential Photodynamic Medicine

    PubMed Central

    Dutta, Sujoy; Ongarora, Benson G.; Li, Hairong; Vicente, Maria da Graca H.; Kolli, Bala K.; Chang, Kwang Poo

    2011-01-01

    Photodynamic therapy, unlikely to elicit drug-resistance, deserves attention as a strategy to counter this outstanding problem common to the chemotherapy of all diseases. Previously, we have broadened the applicability of this modality to photodynamic vaccination by exploiting the unusual properties of the trypanosomatid protozoa, Leishmania, i.e., their innate ability of homing to the phagolysosomes of the antigen-presenting cells and their selective photolysis therein, using transgenic mutants endogenously inducible for porphyrin accumulation. Here, we extended the utility of this host-parasite model for in vitro photodynamic therapy and vaccination by exploring exogenously supplied photosensitizers. Seventeen novel phthalocyanines (Pcs) were screened in vitro for their photolytic activity against cultured Leishmania. Pcs rendered cationic and soluble (csPcs) for cellular uptake were phototoxic to both parasite and host cells, i.e., macrophages and dendritic cells. The csPcs that targeted to mitochondria were more photolytic than those restricted to the endocytic compartments. Treatment of infected cells with endocytic csPcs resulted in their accumulation in Leishmania-containing phagolysosomes, indicative of reaching their target for photodynamic therapy, although their parasite versus host specificity is limited to a narrow range of csPc concentrations. In contrast, Leishmania pre-loaded with csPc were selectively photolyzed intracellularly, leaving host cells viable. Pre-illumination of such csPc-loaded Leishmania did not hinder their infectivity, but ensured their intracellular lysis. Ovalbumin (OVA) so delivered by photo-inactivated OVA transfectants to mouse macrophages and dendritic cells were co-presented with MHC Class I molecules by these antigen presenting cells to activate OVA epitope-specific CD8+T cells. The in vitro evidence presented here demonstrates for the first time not only the potential of endocytic csPcs for effective photodynamic therapy against Leishmania but also their utility in photo-inactivation of Leishmania to produce a safe carrier to express and deliver a defined antigen with enhanced cell-mediated immunity. PMID:21673971

  6. Temperature-, concentration- and cholesterol-dependent translocation of L- and D-octa-arginine across the plasma and nuclear membrane of CD34+ leukaemia cells

    PubMed Central

    Fretz, Marjan M.; Penning, Neal A.; Al-Taei, Saly; Futaki, Shiroh; Takeuchi, Toshihide; Nakase, Ikuhiko; Storm, Gert; Jones, Arwyn T.

    2007-01-01

    Delineating the mechanisms by which cell-penetrating peptides, such as HIV-Tat peptide, oligoarginines and penetratin, gain access to cells has recently received intense scrutiny. Heightened interest in these entities stems from their ability to enhance cellular delivery of associated macromolecules, such as genes and proteins, suggesting that they may have widespread applications as drug-delivery vectors. Proposed uptake mechanisms include energy-independent plasma membrane translocation and energy-dependent vesicular uptake and internalization through endocytic pathways. In the present study, we investigated the effects of temperature, peptide concentration and plasma membrane cholesterol levels on the uptake of a model cell-penetrating peptide, L-octa-arginine (L-R8) and its D-enantiomer (D-R8) in CD34+ leukaemia cells. We found that, at 4–12 °C, L-R8 uniformly labels the cytoplasm and nucleus, but in cells incubated with D-R8 there is additional labelling of the nucleolus which is still prominent at 30 °C incubations. At temperatures between 12 and 30 °C, the peptides are also localized to endocytic vesicles which consequently appear as the only labelled structures in cells incubated at 37 °C. Small increases in the extracellular peptide concentration in 37 °C incubations result in a dramatic increase in the fraction of the peptide that is localized to the cytosol and promoted the binding of D-R8 to the nucleolus. Enhanced labelling of the cytosol, nucleus and nucleolus was also achieved by extraction of plasma membrane cholesterol with methyl-β-cyclodextrin. The data argue for two, temperature-dependent, uptake mechanism for these peptides and for the existence of a threshold concentration for endocytic uptake that when exceeded promotes direct translocation across the plasma membrane. PMID:17217340

  7. Role of Scd5, a protein phosphatase-1 targeting protein, in phosphoregulation of Sla1 during endocytosis

    PubMed Central

    Chi, Richard J.; Torres, Onaidy T.; Segarra, Verónica A.; Lansley, Tanya; Chang, Ji Suk; Newpher, Thomas M.; Lemmon, Sandra K.

    2012-01-01

    Summary Phosphorylation regulates assembly and disassembly of proteins during endocytosis. In yeast, Prk1 and Ark1 phosphorylate factors after vesicle internalization leading to coat disassembly. Scd5, a protein phosphatase-1 (PP1)-targeting subunit, is proposed to regulate dephosphorylation of Prk1/Ark1 substrates to promote new rounds of endocytosis. In this study we analyzed scd5-PP1Δ2, a mutation causing impaired PP1 binding. scd5-PP1Δ2 caused hyperphosphorylation of several Prk1 endocytic targets. Live-cell imaging of 15 endocytic components in scd5-PP1Δ2 revealed that most factors arriving before the invagination/actin phase of endocytosis had delayed lifetimes. Severely affected were early factors and Sla2 (Hip1R homolog), whose lifetime was extended nearly fourfold. In contrast, the lifetime of Sla1, a Prk1 target, was extended less than twofold, but its cortical recruitment was significantly reduced. Delayed Sla2 dynamics caused by scd5-PP1Δ2 were suppressed by SLA1 overexpression. This was dependent on the LxxQxTG repeats (SR) of Sla1, which are phosphorylated by Prk1 and bind Pan1, another Prk1 target, in the dephosphorylated state. Without the SR, Sla1ΔSR was still recruited to the cell surface, but was less concentrated in cortical patches than Pan1. sla1ΔSR severely impaired endocytic progression, but this was partially suppressed by overexpression of LAS17, suggesting that without the SR region the SH3 region of Sla1 causes constitutive negative regulation of Las17 (WASp). These results demonstrate that Scd5/PP1 is important for recycling Prk1 targets to initiate new rounds of endocytosis and provide new mechanistic information on the role of the Sla1 SR domain in regulating progression to the invagination/actin phase of endocytosis. PMID:22825870

  8. CD4- and dynamin-dependent endocytosis of HIV-1 into plasmacytoid dendritic cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pritschet, Kathrin; Donhauser, Norbert; Schuster, Philipp

    Chronic immune activation, triggered by plasmacytoid dendritic cell (PDC) interferon (IFN)-alpha production, plays an important role in HIV-1 pathogenesis. As the entry of HIV-1 seems to be important for the activation of PDC, we directly characterized the viral entry into these cells using immuno-electron microscopy, cellular fractionation, confocal imaging, and functional experiments. After attachment to PDC, viruses were taken up in an energy-dependent manner. The virions were located in compartments positive for caveolin; early endosomal antigen 1; Rab GTPases 5, 7 and 9; lysosomal-associated membrane protein 1. PDC harbored more virus in endocytic vesicles than CD4+ T cells (p

  9. New tools for “hot-wiring” clathrin-mediated endocytosis with temporal and spatial precision

    PubMed Central

    2017-01-01

    Clathrin-mediated endocytosis (CME) is the major route of receptor internalization at the plasma membrane. Analysis of constitutive CME is difficult because the initiation of endocytic events is unpredictable. When and where a clathrin-coated pit will form and what cargo it will contain are difficult to foresee. Here we describe a series of genetically encoded reporters that allow the initiation of CME on demand. A clathrin-binding protein fragment (“hook”) is inducibly attached to an “anchor” protein at the plasma membrane, which triggers the formation of new clathrin-coated vesicles. Our design incorporates temporal and spatial control by the use of chemical and optogenetic methods for inducing hook–anchor attachment. Moreover, the cargo is defined. Because several steps in vesicle creation are bypassed, we term it “hot-wiring.” We use hot-wired endocytosis to describe the functional interactions between clathrin and AP2. Two distinct sites on the β2 subunit, one on the hinge and the other on the appendage, are necessary and sufficient for functional clathrin engagement. PMID:28954824

  10. α–Synuclein and PolyUnsaturated Fatty Acids Promote Clathrin Mediated Endocytosis and Synaptic Vesicle Recycling

    PubMed Central

    Ben Gedalya, Tziona; Loeb, Virginie; Israeli, Eitan; Altschuler, Yoram; Selkoe, Dennis J.; Sharon, Ronit

    2009-01-01

    α-Synuclein (αS) is an abundant neuronal cytoplasmic protein implicated in Parkinson’s disease (PD), but its physiological function remains unknown. Consistent with its having structural motifs shared with class A1 apolipoproteins, αS can reversibly associate with membranes and help regulate membrane fatty acid (FA) composition. We previously observed that variations in αS expression level in dopaminergic cultured cells or brains are associated with changes in polyunsaturated fatty acid (PUFA) levels and altered membrane fluidity. We now report that αS acts with PUFAs to enhance the internalization of the membrane-binding dye, FM 1-43. Specifically, αS expression coupled with exposure to physiological levels of certain PUFAs enhanced clathrin-mediated endocytosis in neuronal and non-neuronal cultured cells. Moreover, αS expression and PUFA enhanced basal and evoked synaptic vesicle endocytosis in primary hippocampal cultures of wt and genetically depleted αS mouse brains. We suggest that αS, and PUFAs normally functions in endocytic mechanisms and are specifically involved in synaptic vesicle recycling upon neuronal stimulation. PMID:18980610

  11. Discerning the role of mechanosensors in regulating proximal tubule function

    PubMed Central

    Weisz, Ora A.

    2015-01-01

    All cells in the body experience external mechanical forces such as shear stress and stretch. These forces are sensed by specialized structures in the cell known as mechanosensors. Cells lining the proximal tubule (PT) of the kidney are continuously exposed to variations in flow rates of the glomerular ultrafiltrate, which manifest as changes in axial shear stress and radial stretch. Studies suggest that these cells respond acutely to variations in flow by modulating their ion transport and endocytic functions to maintain glomerulotubular balance. Conceptually, changes in the axial shear stress in the PT could be sensed by three known structures, namely, the microvilli, the glycocalyx, and primary cilia. The orthogonal component of the force produced by flow exhibits as radial stretch and can cause expansion of the tubule. Forces of stretch are transduced by integrins, by stretch-activated channels, and by cell-cell contacts. This review summarizes our current understanding of flow sensing in PT epithelia, discusses challenges in dissecting the role of individual flow sensors in the mechanosensitive responses, and identifies potential areas of opportunity for new study. PMID:26662200

  12. Effect of endosomal acidification on small ion transport through the anthrax toxin PA63 channel.

    PubMed

    Kalu, Nnanya; Alcaraz, Antonio; Yamini, Goli; Momben Abolfath, Sanaz; Lucas, Laura; Kenney, Clare; Aguilella, Vicente M; Nestorovich, Ekaterina M

    2017-11-01

    Tight regulation of pH is critical for the structure and function of cells and organelles. The pH environment changes dramatically along the endocytic pathway, an internalization transport process that is 'hijacked' by many intracellularly active bacterial exotoxins, including the anthrax toxin. Here, we investigate the role of pH on single-channel properties of the anthrax toxin protective antigen (PA 63 ). Using conductance and current noise analysis, blocker binding, ion selectivity, and poly(ethylene glycol) partitioning measurements, we show that the channel exists in two different open states ('maximum' and 'main') at pH ≥ 5.5, while only a maximum conductance state is detected at pH < 5.5. We describe two substantially distinct patterns of PA 63 conductance dependence on KCl concentration uncovered at pH 6.5 and 4.5. © 2017 Federation of European Biochemical Societies.

  13. Molecular Mechanisms for the Coupling of Endocytosis to Exocytosis in Neurons

    PubMed Central

    Xie, Zhenli; Long, Jiangang; Liu, Jiankang; Chai, Zuying; Kang, Xinjiang; Wang, Changhe

    2017-01-01

    Neuronal communication and brain function mainly depend on the fundamental biological events of neurotransmission, including the exocytosis of presynaptic vesicles (SVs) for neurotransmitter release and the subsequent endocytosis for SV retrieval. Neurotransmitters are released through the Ca2+- and SNARE-dependent fusion of SVs with the presynaptic plasma membrane. Following exocytosis, endocytosis occurs immediately to retrieve SV membrane and fusion machinery for local recycling and thus maintain the homeostasis of synaptic structure and sustained neurotransmission. Apart from the general endocytic machinery, recent studies have also revealed the involvement of SNARE proteins (synaptobrevin, SNAP25 and syntaxin), synaptophysin, Ca2+/calmodulin, and members of the synaptotagmin protein family (Syt1, Syt4, Syt7 and Syt11) in the balance and tight coupling of exo-endocytosis in neurons. Here, we provide an overview of recent progress in understanding how these neuron-specific adaptors coordinate to ensure precise and efficient endocytosis during neurotransmission. PMID:28348516

  14. The deubiquitinases USP33 and USP20 coordinate beta2 adrenergic receptor recycling and resensitization.

    PubMed

    Berthouze, Magali; Venkataramanan, Vidya; Li, Yi; Shenoy, Sudha K

    2009-06-17

    Agonist-induced ubiquitination of the beta(2) adrenergic receptor (beta(2)AR) functions as an important post-translational modification to sort internalized receptors to the lysosomes for degradation. We now show that this ubiquitination is reversed by two deubiquitinating enzymes, ubiquitin-specific proteases (USPs) 20 and 33, thus, inhibiting lysosomal trafficking when concomitantly promoting receptor recycling from the late-endosomal compartments as well as resensitization of recycled receptors at the cell surface. Dissociation of constitutively bound endogenously expressed USPs 20 and 33 from the beta(2)AR immediately after agonist stimulation and reassociation on prolonged agonist treatment allows receptors to first become ubiquitinated and then deubiquitinated, thus, providing a 'trip switch' between degradative and recycling pathways at the late-endosomal compartments. Thus, USPs 20 and 33 serve as novel regulators that dictate both post-endocytic sorting as well as the intensity and extent of beta(2)AR signalling from the cell surface.

  15. APC Inhibits Ligand-Independent Wnt Signaling by the Clathrin Endocytic Pathway.

    PubMed

    Saito-Diaz, Kenyi; Benchabane, Hassina; Tiwari, Ajit; Tian, Ai; Li, Bin; Thompson, Joshua J; Hyde, Annastasia S; Sawyer, Leah M; Jodoin, Jeanne N; Santos, Eduardo; Lee, Laura A; Coffey, Robert J; Beauchamp, R Daniel; Williams, Christopher S; Kenworthy, Anne K; Robbins, David J; Ahmed, Yashi; Lee, Ethan

    2018-03-12

    Adenomatous polyposis coli (APC) mutations cause Wnt pathway activation in human cancers. Current models for APC action emphasize its role in promoting β-catenin degradation downstream of Wnt receptors. Unexpectedly, we find that blocking Wnt receptor activity in APC-deficient cells inhibits Wnt signaling independently of Wnt ligand. We also show that inducible loss of APC is rapidly followed by Wnt receptor activation and increased β-catenin levels. In contrast, APC2 loss does not promote receptor activation. We show that APC exists in a complex with clathrin and that Wnt pathway activation in APC-deficient cells requires clathrin-mediated endocytosis. Finally, we demonstrate conservation of this mechanism in Drosophila intestinal stem cells. We propose a model in which APC and APC2 function to promote β-catenin degradation, and APC also acts as a molecular "gatekeeper" to block receptor activation via the clathrin pathway. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. SNX9 - a prelude to vesicle release.

    PubMed

    Lundmark, Richard; Carlsson, Sven R

    2009-01-01

    The sorting nexin SNX9 has, in the past few years, been singled out as an important protein that participates in fundamental cellular activities. SNX9 binds strongly to dynamin and is partly responsible for the recruitment of this GTPase to sites of endocytosis. SNX9 also has a high capacity for modulation of the membrane and might therefore participate in the formation of the narrow neck of endocytic vesicles before scission occurs. Once assembled on the membrane, SNX9 stimulates the GTPase activity of dynamin to facilitate the scission reaction. It has also become clear that SNX9 has the ability to activate the actin regulator N-WASP in a membrane-dependent manner to coordinate actin polymerization with vesicle release. In this Commentary, we summarize several aspects of SNX9 structure and function in the context of membrane remodeling, discuss its interplay with various interaction partners and present a model of how SNX9 might work in endocytosis.

  17. Carrier of Wingless (Cow), a Secreted Heparan Sulfate Proteoglycan, Promotes Extracellular Transport of Wingless

    PubMed Central

    Chang, Yung-Heng; Sun, Yi Henry

    2014-01-01

    Morphogens are signaling molecules that regulate growth and patterning during development by forming a gradient and activating different target genes at different concentrations. The extracellular distribution of morphogens is tightly regulated, with the Drosophila morphogen Wingless (Wg) relying on Dally-like (Dlp) and transcytosis for its distribution. However, in the absence of Dlp or endocytic activity, Wg can still move across cells along the apical (Ap) surface. We identified a novel secreted heparan sulfate proteoglycan (HSPG) that binds to Wg and promotes its extracellular distribution by increasing Wg mobility, which was thus named Carrier of Wg (Cow). Cow promotes the Ap transport of Wg, independent of Dlp and endocytosis, and this function addresses a previous gap in the understanding of Wg movement. This is the first example of a diffusible HSPG acting as a carrier to promote the extracellular movement of a morphogen. PMID:25360738

  18. Huntingtin interacting protein 1 modulates the transcriptional activity of nuclear hormone receptors

    PubMed Central

    Mills, Ian G.; Gaughan, Luke; Robson, Craig; Ross, Theodora; McCracken, Stuart; Kelly, John; Neal, David E.

    2005-01-01

    Internalization of activated receptors regulates signaling, and endocytic adaptor proteins are well-characterized in clathrin-mediated uptake. One of these adaptor proteins, huntingtin interacting protein 1 (HIP1), induces cellular transformation and is overexpressed in some prostate cancers. We have discovered that HIP1 associates with the androgen receptor through a central coiled coil domain and is recruited to DNA response elements upon androgen stimulation. HIP1 is a novel androgen receptor regulator, significantly repressing transcription when knocked down using a silencing RNA approach and activating transcription when overexpressed. We have also identified a functional nuclear localization signal at the COOH terminus of HIP1, which contributes to the nuclear translocation of the protein. In conclusion, we have discovered that HIP1 is a nucleocytoplasmic protein capable of associating with membranes and DNA response elements and regulating transcription. PMID:16027218

  19. Engagement of the small GTPase Rab31 protein and its effector, early endosome antigen 1, is important for trafficking of the ligand-bound epidermal growth factor receptor from the early to the late endosome.

    PubMed

    Chua, Christelle En Lin; Tang, Bor Luen

    2014-05-02

    Rab31 is a member of the Rab5 subfamily of Rab GTPases. Although localized largely to the trans-Golgi network, it shares common guanine nucleotide exchange factors and effectors with other Rab5 subfamily members that have been implicated in endocytic membrane traffic. We investigated whether Rab31 also has a role in the trafficking of the ligand-bound EGF receptor (EGFR) internalized through receptor-mediated endocytosis. We found that loss of Rab31 inhibits, but overexpression enhances, EGFR trafficking to the late endosomes and that the effect of Rab31 silencing could be specifically rescued by overexpression of a silencing-resistant form of Rab31. Rab31 was found to interact with the EGFR by coimmunoprecipitation and affinity pulldown analyses, and the primarily trans-Golgi network-localized Rab31 has increased colocalization with the EGFR in A431 cells 30 min after pulsing with EGF. A glycerol gradient sedimentation assay suggested that Rab31 is sequestered into a high molecular weight complex after stimulation with EGF, as was early endosome antigen 1 (EEA1), a factor responsible for endosomal tethering and fusion events. We found that loss of EEA1 reduced the interaction between Rab31 and the EGFR and abrogated the effect of Rab31 overexpression on the trafficking of the EGFR. Likewise, loss of GAPex5, a Rab31 guanine nucleotide exchange factor that has a role in ubiquitination and degradation of the EGFR, reduced the interaction of Rab31 with the EGFR and its effect on EGFR trafficking. Taken together, our results suggest that Rab31 is an important regulator of endocytic trafficking of the EGFR and functions in an EGFR trafficking complex that includes EEA1 and GAPex5.

  20. Engagement of the Small GTPase Rab31 Protein and Its Effector, Early Endosome Antigen 1, Is Important for Trafficking of the Ligand-bound Epidermal Growth Factor Receptor from the Early to the Late Endosome*

    PubMed Central

    Chua, Christelle En Lin; Tang, Bor Luen

    2014-01-01

    Rab31 is a member of the Rab5 subfamily of Rab GTPases. Although localized largely to the trans-Golgi network, it shares common guanine nucleotide exchange factors and effectors with other Rab5 subfamily members that have been implicated in endocytic membrane traffic. We investigated whether Rab31 also has a role in the trafficking of the ligand-bound EGF receptor (EGFR) internalized through receptor-mediated endocytosis. We found that loss of Rab31 inhibits, but overexpression enhances, EGFR trafficking to the late endosomes and that the effect of Rab31 silencing could be specifically rescued by overexpression of a silencing-resistant form of Rab31. Rab31 was found to interact with the EGFR by coimmunoprecipitation and affinity pulldown analyses, and the primarily trans-Golgi network-localized Rab31 has increased colocalization with the EGFR in A431 cells 30 min after pulsing with EGF. A glycerol gradient sedimentation assay suggested that Rab31 is sequestered into a high molecular weight complex after stimulation with EGF, as was early endosome antigen 1 (EEA1), a factor responsible for endosomal tethering and fusion events. We found that loss of EEA1 reduced the interaction between Rab31 and the EGFR and abrogated the effect of Rab31 overexpression on the trafficking of the EGFR. Likewise, loss of GAPex5, a Rab31 guanine nucleotide exchange factor that has a role in ubiquitination and degradation of the EGFR, reduced the interaction of Rab31 with the EGFR and its effect on EGFR trafficking. Taken together, our results suggest that Rab31 is an important regulator of endocytic trafficking of the EGFR and functions in an EGFR trafficking complex that includes EEA1 and GAPex5. PMID:24644286

  1. A Myo6 mutation destroys coordination between the myosin heads, revealing new functions of myosin VI in the stereocilia of mammalian inner ear hair cells.

    PubMed

    Hertzano, Ronna; Shalit, Ella; Rzadzinska, Agnieszka K; Dror, Amiel A; Song, Lin; Ron, Uri; Tan, Joshua T; Shitrit, Alina Starovolsky; Fuchs, Helmut; Hasson, Tama; Ben-Tal, Nir; Sweeney, H Lee; de Angelis, Martin Hrabe; Steel, Karen P; Avraham, Karen B

    2008-10-03

    Myosin VI, found in organisms from Caenorhabditis elegans to humans, is essential for auditory and vestibular function in mammals, since genetic mutations lead to hearing impairment and vestibular dysfunction in both humans and mice. Here, we show that a missense mutation in this molecular motor in an ENU-generated mouse model, Tailchaser, disrupts myosin VI function. Structural changes in the Tailchaser hair bundles include mislocalization of the kinocilia and branching of stereocilia. Transfection of GFP-labeled myosin VI into epithelial cells and delivery of endocytic vesicles to the early endosome revealed that the mutant phenotype displays disrupted motor function. The actin-activated ATPase rates measured for the D179Y mutation are decreased, and indicate loss of coordination of the myosin VI heads or 'gating' in the dimer form. Proper coordination is required for walking processively along, or anchoring to, actin filaments, and is apparently destroyed by the proximity of the mutation to the nucleotide-binding pocket. This loss of myosin VI function may not allow myosin VI to transport its cargoes appropriately at the base and within the stereocilia, or to anchor the membrane of stereocilia to actin filaments via its cargos, both of which lead to structural changes in the stereocilia of myosin VI-impaired hair cells, and ultimately leading to deafness.

  2. Endosomal NOX2 oxidase exacerbates virus pathogenicity and is a target for antiviral therapy.

    PubMed

    To, Eunice E; Vlahos, Ross; Luong, Raymond; Halls, Michelle L; Reading, Patrick C; King, Paul T; Chan, Christopher; Drummond, Grant R; Sobey, Christopher G; Broughton, Brad R S; Starkey, Malcolm R; van der Sluis, Renee; Lewin, Sharon R; Bozinovski, Steven; O'Neill, Luke A J; Quach, Tim; Porter, Christopher J H; Brooks, Doug A; O'Leary, John J; Selemidis, Stavros

    2017-07-12

    The imminent threat of viral epidemics and pandemics dictates a need for therapeutic approaches that target viral pathology irrespective of the infecting strain. Reactive oxygen species are ancient processes that protect plants, fungi and animals against invading pathogens including bacteria. However, in mammals reactive oxygen species production paradoxically promotes virus pathogenicity by mechanisms not yet defined. Here we identify that the primary enzymatic source of reactive oxygen species, NOX2 oxidase, is activated by single stranded RNA and DNA viruses in endocytic compartments resulting in endosomal hydrogen peroxide generation, which suppresses antiviral and humoral signaling networks via modification of a unique, highly conserved cysteine residue (Cys98) on Toll-like receptor-7. Accordingly, targeted inhibition of endosomal reactive oxygen species production abrogates influenza A virus pathogenicity. We conclude that endosomal reactive oxygen species promote fundamental molecular mechanisms of viral pathogenicity, and the specific targeting of this pathogenic process with endosomal-targeted reactive oxygen species inhibitors has implications for the treatment of viral disease.Production of reactive oxygen species is an ancient antimicrobial mechanism, but its role in antiviral defense in mammals is unclear. Here, To et al. show that virus infection activates endosomal NOX2 oxidase and restricts TLR7 signaling, and that an endosomal NOX2 inhibitor decreases viral pathogenicity.

  3. Structures of human folate receptors reveal biological trafficking states and diversity in folate and antifolate recognition.

    PubMed

    Wibowo, Ardian S; Singh, Mirage; Reeder, Kristen M; Carter, Joshua J; Kovach, Alexander R; Meng, Wuyi; Ratnam, Manohar; Zhang, Faming; Dann, Charles E

    2013-09-17

    Antifolates, folate analogs that inhibit vitamin B9 (folic acid)-using cellular enzymes, have been used over several decades for the treatment of cancer and inflammatory diseases. Cellular uptake of the antifolates in clinical use occurs primarily via widely expressed facilitative membrane transporters. More recently, human folate receptors (FRs), high affinity receptors that transport folate via endocytosis, have been proposed as targets for the specific delivery of new classes of antifolates or folate conjugates to tumors or sites of inflammation. The development of specific, FR-targeted antifolates would be accelerated if additional biophysical data, particularly structural models of the receptors, were available. Here we describe six distinct crystallographic models that provide insight into biological trafficking of FRs and distinct binding modes of folate and antifolates to these receptors. From comparison of the structures, we delineate discrete structural conformations representative of key stages in the endocytic trafficking of FRs and propose models for pH-dependent conformational changes. Additionally, we describe the molecular details of human FR in complex with three clinically prevalent antifolates, pemetrexed (also Alimta), aminopterin, and methotrexate. On the whole, our data form the basis for rapid design and implementation of unique, FR-targeted, folate-based drugs for the treatment of cancer and inflammatory diseases.

  4. Purification and proteomics of pathogen-modified vacuoles and membranes

    PubMed Central

    Herweg, Jo-Ana; Hansmeier, Nicole; Otto, Andreas; Geffken, Anna C.; Subbarayal, Prema; Prusty, Bhupesh K.; Becher, Dörte; Hensel, Michael; Schaible, Ulrich E.; Rudel, Thomas; Hilbi, Hubert

    2015-01-01

    Certain pathogenic bacteria adopt an intracellular lifestyle and proliferate in eukaryotic host cells. The intracellular niche protects the bacteria from cellular and humoral components of the mammalian immune system, and at the same time, allows the bacteria to gain access to otherwise restricted nutrient sources. Yet, intracellular protection and access to nutrients comes with a price, i.e., the bacteria need to overcome cell-autonomous defense mechanisms, such as the bactericidal endocytic pathway. While a few bacteria rupture the early phagosome and escape into the host cytoplasm, most intracellular pathogens form a distinct, degradation-resistant and replication-permissive membranous compartment. Intracellular bacteria that form unique pathogen vacuoles include Legionella, Mycobacterium, Chlamydia, Simkania, and Salmonella species. In order to understand the formation of these pathogen niches on a global scale and in a comprehensive and quantitative manner, an inventory of compartment-associated host factors is required. To this end, the intact pathogen compartments need to be isolated, purified and biochemically characterized. Here, we review recent progress on the isolation and purification of pathogen-modified vacuoles and membranes, as well as their proteomic characterization by mass spectrometry and different validation approaches. These studies provide the basis for further investigations on the specific mechanisms of pathogen-driven compartment formation. PMID:26082896

  5. Decreasing the expression of PICALM reduces endocytosis and the activity of β-secretase: implications for Alzheimer's disease.

    PubMed

    Thomas, Rhian S; Henson, Alex; Gerrish, Amy; Jones, Lesley; Williams, Julie; Kidd, Emma J

    2016-07-18

    Polymorphisms in the gene for phosphatidylinositol binding clathrin assembly protein (PICALM), an endocytic-related protein, are associated with a small, increased risk of developing Alzheimer's disease (AD), strongly suggesting that changes in endocytosis are involved in the aetiology of the disease. We have investigated the involvement of PICALM in the processing of amyloid precursor protein (APP) to understand how PICALM could be linked to the development of AD. We used siRNA to deplete levels of PICALM, its isoforms and clathrin heavy chain in the human brain-derived H4 neuroglioma cell line that expresses endogenous levels of APP. We then used Western blotting, ELISA and immunohistochemistry to detect intra- and extracellular protein levels of endocytic-related proteins, APP and APP metabolites including β-amyloid (Aβ). Levels of functional endocytosis were quantified using ALEXA 488-conjugated transferrin and flow cytometry as a marker of clathrin-mediated endocytosis (CME). Following depletion of all the isoforms of PICALM by siRNA in H4 cells, levels of intracellular APP, intracellular β-C-terminal fragment (β-CTF) and secreted sAPPβ (APP fragments produced by β-secretase cleavage) were significantly reduced but Aβ40 was not affected. Functional endocytosis was significantly reduced after both PICALM and clathrin depletion, highlighting the importance of PICALM in this process. However, depletion of clathrin did not affect APP but did reduce β-CTF levels. PICALM depletion altered the intracellular distribution of clathrin while clathrin reduction affected the subcellular pattern of PICALM labelling. Both PICALM and clathrin depletion reduced the expression of BACE1 mRNA and PICALM siRNA reduced protein levels. Individual depletion of PICALM isoforms 1 and 2 did not affect APP levels while clathrin depletion had a differential effect on the isoforms, increasing isoform 1 while decreasing isoform 2 expression. The depletion of PICALM in brain-derived cells has significant effects on the processing of APP, probably by reducing CME. In particular, it affects the production of β-CTF which is increasingly considered to be an important mediator in AD independent of Aβ. Thus a decrease in PICALM expression in the brain could be beneficial to slow or prevent the development of AD.

  6. Contributions of herpes simplex virus type 1 envelope proteins to entry by endocytosis

    USDA-ARS?s Scientific Manuscript database

    Herpes simplex virus (HSV) proteins specifically required for endocytic entry but not direct penetration have not been identified. HSVs deleted of gE, gG, gI, gJ, gM, UL45, or Us9 entered cells via either pH-dependent or pH-independent endocytosis and were inactivated by mildly acidic pH. Thus, the ...

  7. Chimeric forms of furin and TGN38 are transported with the plasma membrane in the trans-Golgi network via distinct endosomal pathways.

    PubMed

    Mallet, W G; Maxfield, F R

    1999-07-26

    Furin and TGN38 are menbrane proteins that cycle between the plasma membrane and the trans-Golgi network (TGN), each maintaining a predominant distribution in the TGN. We have used chimeric proteins with an extracellular Tac domain and the cytoplasmic domain of TGN38 or furin to study the trafficking of these proteins in endosomes. Previously, we demonstrated that the postendocytic trafficking of Tac-TGN38 to the TGN is via the endocytic recycling pathway (Ghosh, R.N.,W.G. Mallet,T.T. Soe,T.E.McGraw, and F.R. Maxfield.1998.J. Cell Biol.142:923-936). Here we show that internalized Tac-furin is delivered to the TGN through late endosomes, bypassing the endocytic recycling compartment. The transport of Tac-furin from late endosomes to the TGN appears to proceed via an efficient, single-pass mechanism. Delivery of Tac-furin but not Tac-TGN38 to the TGN is blocked by nocodazole, and the two pathways are also differentially affected by wortmannin. These studies demonstrate the existence of two independentpathways for endosomal transport of proteins to the TGN from the plasma membrane.

  8. Direct Delivery of Antigens to Dendritic Cells via Antibodies Specific for Endocytic Receptors as a Promising Strategy for Future Therapies

    PubMed Central

    Lehmann, Christian H. K.; Heger, Lukas; Heidkamp, Gordon F.; Baranska, Anna; Lühr, Jennifer J.; Hoffmann, Alana; Dudziak, Diana

    2016-01-01

    Dendritic cells (DCs) are the most potent professional antigen presenting cells and are therefore indispensable for the control of immunity. The technique of antibody mediated antigen targeting to DC subsets has been the basis of intense research for more than a decade. Many murine studies have utilized this approach of antigen delivery to various kinds of endocytic receptors of DCs both in vitro and in vivo. Today, it is widely accepted that different DC subsets are important for the induction of select immune responses. Nevertheless, many questions still remain to be answered, such as the actual influence of the targeted receptor on the initiation of the immune response to the delivered antigen. Further efforts to better understand the induction of antigen-specific immune responses will support the transfer of this knowledge into novel treatment strategies for human diseases. In this review, we will discuss the state-of-the-art aspects of the basic principles of antibody mediated antigen targeting approaches. A table will also provide a broad overview of the latest studies using antigen targeting including addressed DC subset, targeted receptors, outcome, and applied coupling techniques. PMID:27043640

  9. Identification and characterization of intracellular proteins that bind oligonucleotides with phosphorothioate linkages

    PubMed Central

    Liang, Xue-hai; Sun, Hong; Shen, Wen; Crooke, Stanley T.

    2015-01-01

    Although the RNase H-dependent mechanism of inhibition of gene expression by chemically modified antisense oligonucleotides (ASOs) has been well characterized, little is known about the interactions between ASOs and intracellular proteins that may alter cellular localization and/or potency of ASOs. Here, we report the identification of 56 intracellular ASO-binding proteins using multi-step affinity selection approaches. Many of the tested proteins had no significant effect on ASO activity; however, some proteins, including La/SSB, NPM1, ANXA2, VARS and PC4, appeared to enhance ASO activities, likely through mechanisms related to subcellular distribution. VARS and ANXA2 co-localized with ASOs in endocytic organelles, and reduction in the level of VARS altered lysosome/ASO localization patterns, implying that these proteins may facilitate ASO release from the endocytic pathway. Depletion of La and NPM1 reduced nuclear ASO levels, suggesting potential roles in ASO nuclear accumulation. On the other hand, Ku70 and Ku80 proteins inhibited ASO activity, most likely by competition with RNase H1 for ASO/RNA duplex binding. Our results demonstrate that phosphorothioate-modified ASOs bind a set of cellular proteins that affect ASO activity via different mechanisms. PMID:25712094

  10. Newly synthesized and recycling pools of the apical protein gp135 do not occupy the same compartments.

    PubMed

    Stoops, Emily H; Hull, Michael; Caplan, Michael J

    2016-12-01

    Polarized epithelial cells sort newly synthesized and recycling plasma membrane proteins into distinct trafficking pathways directed to either the apical or basolateral membrane domains. While the trans-Golgi network is a well-established site of protein sorting, increasing evidence indicates a key role for endosomes in the initial trafficking of newly synthesized proteins. Both basolateral and apical proteins have been shown to traverse endosomes en route to the plasma membrane. In particular, apical proteins traffic through either subapical early or recycling endosomes. Here we use the SNAP tag system to analyze the trafficking of the apical protein gp135, also known as podocalyxin. We show that newly synthesized gp135 traverses the apical recycling endosome, but not the apical early endosomes (AEEs). In contrast, post-endocytic gp135 is delivered to the AEE before recycling back to the apical membrane. The pathways pursued by the newly synthesized and recycling gp135 populations do not detectably intersect, demonstrating that the biosynthetic and post-endocytic pools of this protein are subjected to distinct sorting processes. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. The interaction of bacterial magnetosomes and human liver cancer cells in vitro

    NASA Astrophysics Data System (ADS)

    Wang, Pingping; Chen, Chuanfang; Chen, Changyou; Li, Yue; Pan, Weidong; Song, Tao

    2017-04-01

    As the biogenic magnetic nanomaterial, bacterial magnetic nanoparticles, namely magnetosomes, provide many advantages for potential biomedical applications. As such, interactions among magnetosomes and target cells should be elucidated to develop their bioapplications and evaluate their biocompatibilities. In this study, the interaction of magnetosomes and human liver cancer HepG2 cells was examined. Prussian blue staining revealed numerous stained particles in or on the cells. Intracellular iron concentrations, measured through inductively coupled plasma optical emission spectroscopy, increased with the increasing concentration of the magnetosomes. Transmission electron microscopy images showed that magnetosomes could be internalized in cells, mainly encapsulated in membrane vesicles, such as endosomes and lysosomes, and partly found as free particles in the cytosol. Some of the magnetosomes on cellular surfaces were encapsulated through cell membrane ruffling, which is the initiating process of endocytosis. Applying low temperature treatment and using specific endocytic inhibitors, we validated that macropinocytosis and clathrin-mediated endocytosis were involved in magnetosome uptake by HepG2 cells. Consequently, we revealed the interaction and intrinsic endocytic mechanisms of magnetosomes and HepG2 cells. This study provides a basis for the further research on bacterial magnetosome applications in liver diseases.

  12. Nanoscale manipulation of membrane curvature for probing endocytosis in live cells.

    PubMed

    Zhao, Wenting; Hanson, Lindsey; Lou, Hsin-Ya; Akamatsu, Matthew; Chowdary, Praveen D; Santoro, Francesca; Marks, Jessica R; Grassart, Alexandre; Drubin, David G; Cui, Yi; Cui, Bianxiao

    2017-08-01

    Clathrin-mediated endocytosis (CME) involves nanoscale bending and inward budding of the plasma membrane, by which cells regulate both the distribution of membrane proteins and the entry of extracellular species. Extensive studies have shown that CME proteins actively modulate the plasma membrane curvature. However, the reciprocal regulation of how the plasma membrane curvature affects the activities of endocytic proteins is much less explored, despite studies suggesting that membrane curvature itself can trigger biochemical reactions. This gap in our understanding is largely due to technical challenges in precisely controlling the membrane curvature in live cells. In this work, we use patterned nanostructures to generate well-defined membrane curvatures ranging from +50 nm to -500 nm radius of curvature. We find that the positively curved membranes are CME hotspots, and that key CME proteins, clathrin and dynamin, show a strong preference towards positive membrane curvatures with a radius <200 nm. Of ten CME-related proteins we examined, all show preferences for positively curved membrane. In contrast, other membrane-associated proteins and non-CME endocytic protein caveolin1 show no such curvature preference. Therefore, nanostructured substrates constitute a novel tool for investigating curvature-dependent processes in live cells.

  13. Investigation of pathways of advanced glycation end-products accumulation in macrophages.

    PubMed

    Nagai, Ryoji; Fujiwara, Yukio; Mera, Katsumi; Otagiri, Masaki

    2007-04-01

    Advanced glycation end-products (AGE) play a role in the pathogenesis of several diseases, including diabetic complications and atherosclerosis. In atherosclerotic lesions of human aortas, AGE are localized in the extracellular matrix and intracellularly in foam cells. Two interpretations are possible for AGE accumulation inside macrophages, one is endocytic uptake of extracellular AGE-proteins by scavenger receptors; the other is intracellular AGE formation inside the macrophages. In the present study, we determined the pathways involved in AGE accumulation inside macrophages. RAW 264.7 cells, a murine macrophage cell line, incubated with BSA and 1600 mM glucose for 40 weeks, recognized heavily modified AGE- BSA. In contrast, the cells showed no ligand activity for mildly modified AGE-BSA, prepared by incubating BSA with 50 mM glucose for 24 weeks. Nepsilon-(carboxymethyl)lysine (CML)-modified proteins of about 65 kDa were detected in human monocyte-derived macrophages incubated for 7 days with 30 mM glucose and phorbol myristate acetate. Furthermore, CML was generated when glycated protein was incubated with hypochloric acid. Taken together, our results indicate that AGE detected inside foam cells in atherosclerotic lesions are generated intracellularly rather than representing endocytic uptake of extracellular AGE-proteins by scavenger receptors.

  14. Role of STARD4 in sterol transport between the endocytic recycling compartment and the plasma membrane

    PubMed Central

    Iaea, David B.; Mao, Shu; Lund, Frederik W.; Maxfield, Frederick R.

    2017-01-01

    Cholesterol is an essential constituent of membranes in mammalian cells. The plasma membrane and the endocytic recycling compartment (ERC) are both highly enriched in cholesterol. The abundance and distribution of cholesterol among organelles are tightly controlled by a combination of mechanisms involving vesicular and nonvesicular sterol transport processes. Using the fluorescent cholesterol analogue dehydroergosterol, we examined sterol transport between the plasma membrane and the ERC using fluorescence recovery after photobleaching and a novel sterol efflux assay. We found that sterol transport between these organelles in a U2OS cell line has a t1/2 =12–15 min. Approximately 70% of sterol transport is ATP independent and therefore is nonvesicular. Increasing cellular cholesterol levels dramatically increases bidirectional transport rate constants, but decreases in cholesterol levels have only a modest effect. A soluble sterol transport protein, STARD4, accounts for ∼25% of total sterol transport and ∼33% of nonvesicular sterol transport between the plasma membrane and ERC. This study shows that nonvesicular sterol transport mechanisms and STARD4 in particular account for a large fraction of sterol transport between the plasma membrane and the ERC. PMID:28209730

  15. Amnionless function is required for cubilin brush-border expression and intrinsic factor-cobalamin (vitamin B12) absorption in vivo

    PubMed Central

    He, Qianchuan; Madsen, Mette; Kilkenney, Adam; Gregory, Brittany; Christensen, Erik I.; Vorum, Henrik; Højrup, Peter; Schäffer, Alejandro A.; Kirkness, Ewen F.; Tanner, Stephan M.; de la Chapelle, Albert; Giger, Urs; Moestrup, Søren K.; Fyfe, John C.

    2005-01-01

    Amnionless (AMN) and cubilin gene products appear to be essential functional subunits of an endocytic receptor called cubam. Mutation of either gene causes autosomal recessive Imerslund-Gräsbeck syndrome (I-GS, OMIM no. 261100) in humans, a disorder characterized by selective intestinal malabsorption of cobalamin (vitamin B12) and urinary loss of several specific low-molecular-weight proteins. Vital insight into the molecular pathology of I-GS has been obtained from studies of dogs with a similar syndrome. In this work, we show that I-GS segregates in a large canine kindred due to an in-frame deletion of 33 nucleotides in exon 10 of AMN. In a second, unrelated I-GS kindred, affected dogs exhibit a homozygous substitution in the AMN translation initiation codon. Studies in vivo demonstrated that both mutations abrogate AMN expression and block cubilin processing and targeting to the apical membrane. The essential features of AMN dysfunction observed in vivo are recapitulated in a heterologous cell-transfection system, thus validating the system for analysis of AMN-cubilin interactions. Characterization of canine AMN mutations that cause I-GS establishes the canine model as an ortholog of the human disorder well suited to studies of AMN function and coevolution with cubilin. (Blood. 2005;106:1447-1453) PMID:15845892

  16. Activated Cdc42 kinase regulates Dock localization in male germ cells during Drosophila spermatogenesis.

    PubMed

    Abdallah, Abbas M; Zhou, Xin; Kim, Christine; Shah, Kushani K; Hogden, Christopher; Schoenherr, Jessica A; Clemens, James C; Chang, Henry C

    2013-06-15

    Deregulation of the non-receptor tyrosine kinase ACK1 (Activated Cdc42-associated kinase) correlates with poor prognosis in cancers and has been implicated in promoting metastasis. To further understand its in vivo function, we have characterized the developmental defects of a null mutation in Drosophila Ack, which bears a high degree of sequence similarity to mammalian ACK1 but lacks a CRIB domain. We show that Ack, while not essential for viability, is critical for sperm formation. This function depends on Ack tyrosine kinase activity and is required cell autonomously in differentiating male germ cells at or after the spermatocyte stage. Ack associates predominantly with endocytic clathrin sites in spermatocytes, but disruption of Ack function has no apparent effect on clathrin localization and receptor-mediated internalization of Boss (Bride of sevenless) protein in eye discs. Instead, Ack is required for the subcellular distribution of Dock (dreadlocks), the Drosophila homolog of the SH2- and SH3-containing adaptor protein Nck. Moreover, Dock forms a complex with Ack, and the localization of Dock in male germ cells depends on its SH2 domain. Together, our results suggest that Ack-dependent tyrosine phosphorylation recruits Dock to promote sperm differentiation. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Measles Virus Enters Breast and Colon Cancer Cell Lines through a PVRL4-Mediated Macropinocytosis Pathway

    PubMed Central

    Delpeut, Sebastien; Sisson, Gary; Black, Karen M.

    2017-01-01

    ABSTRACT Measles virus (MeV) is a member of the family Paramixoviridae that causes a highly contagious respiratory disease but has emerged as a promising oncolytic platform. Previous studies of MeV entry focused on the identification of cellular receptors. However, the endocytic and trafficking pathways utilized during MeV entry remain poorly described. The contribution of each endocytic pathway has been examined in cells that express the MeV receptors SLAM (signaling lymphocyte-activating molecule) and PVRL4 (poliovirus receptor-like 4) (nectin-4). Recombinant MeVs expressing either firefly luciferase or green fluorescent protein together with a variety of inhibitors were used. The results showed that MeV uptake was dynamin independent in the Vero.hPVRL4, Vero.hSLAM, and PVRL4-positive MCF7 breast cancer cell lines. However, MeV infection was blocked by 5-(N-ethyl-N-propyl)amiloride (EIPA), the hallmark inhibitor of macropinocytosis, as well as inhibitors of actin polymerization. By using phalloidin staining, MeV entry was shown to induce actin rearrangements and the formation of membrane ruffles accompanied by transient elevated fluid uptake. Small interfering RNA (siRNA) knockdown of p21-activated kinase 1 (PAK1) demonstrated that MeV enters both Vero.hPVRL4 and Vero.hSLAM cells in a PAK1-independent manner using a macropinocytosis-like pathway. In contrast, MeV entry into MCF7 human breast cancer cells relied upon Rac1 and its effector PAK1 through a PVRL4-mediated macropinocytosis pathway. MeV entry into DLD-1 colon and HTB-20 breast cancer cells also appeared to use the same pathway. Overall, these findings provide new insight into the life cycle of MeV, which could lead to therapies that block virus entry or methods that improve the uptake of MeV by cancer cells during oncolytic therapy. IMPORTANCE In the past decades, measles virus (MeV) has emerged as a promising oncolytic platform. Previous studies concerning MeV entry focused mainly on the identification of putative receptors for MeV. Nectin-4 (PVRL4) was recently identified as the epithelial cell receptor for MeV. However, the specific endocytic and trafficking pathways utilized during MeV infections are poorly documented. In this study, we demonstrated that MeV enters host cells via a dynamin-independent and actin-dependent endocytic pathway. Moreover, we show that MeV gains entry into MCF7, DLD-1, and HTB-20 cancer cells through a PVRL4-mediated macropinocytosis pathway and identified the typical cellular GTPase and kinase involved. Our findings provide new insight into the life cycle of MeV, which may lead to the development of therapies that block the entry of the virus into the host cell or alternatively promote the uptake of oncolytic MeV into cancer cells. PMID:28250131

  18. Early stages of functional diversification in the Rab GTPase gene family revealed by genomic and localization studies in Paramecium species.

    PubMed

    Bright, Lydia J; Gout, Jean-Francois; Lynch, Michael

    2017-04-15

    New gene functions arise within existing gene families as a result of gene duplication and subsequent diversification. To gain insight into the steps that led to the functional diversification of paralogues, we tracked duplicate retention patterns, expression-level divergence, and subcellular markers of functional diversification in the Rab GTPase gene family in three Paramecium aurelia species. After whole-genome duplication, Rab GTPase duplicates are more highly retained than other genes in the genome but appear to be diverging more rapidly in expression levels, consistent with early steps in functional diversification. However, by localizing specific Rab proteins in Paramecium cells, we found that paralogues from the two most recent whole-genome duplications had virtually identical localization patterns, and that less closely related paralogues showed evidence of both conservation and diversification. The functionally conserved paralogues appear to target to compartments associated with both endocytic and phagocytic recycling functions, confirming evolutionary and functional links between the two pathways in a divergent eukaryotic lineage. Because the functionally diversifying paralogues are still closely related to and derived from a clade of functionally conserved Rab11 genes, we were able to pinpoint three specific amino acid residues that may be driving the change in the localization and thus the function in these proteins. © 2017 Bright et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  19. Multivesicular Bodies in Neurons: Distribution, Protein Content, and Trafficking Functions

    PubMed Central

    VON BARTHELD, CHRISTOPHER S.; ALTICK, AMY L.

    2011-01-01

    Summary Multivesicular bodies (MVBs) are intracellular endosomal organelles characterized by multiple internal vesicles that are enclosed within a single outer membrane. MVBs were initially regarded as purely prelysosomal structures along the degradative endosomal pathway of internalized proteins. MVBs are now known to be involved in numerous endocytic and trafficking functions, including protein sorting, recycling, transport, storage, and release. This review of neuronal MVBs summarizes their research history, morphology, distribution, accumulation of cargo and constitutive proteins, transport, and theories of functions of MVBs in neurons and glia. Due to their complex morphologies, neurons have expanded trafficking and signaling needs, beyond those of “geometrically simpler” cells, but it is not known whether neuronal MVBs perform additional transport and signaling functions. This review examines the concept of compartment-specific MVB functions in endosomal protein trafficking and signaling within synapses, axons, dendrites and cell bodies. We critically evaluate reports of the accumulation of neuronal MVBs based on evidence of stress-induced MVB formation. Furthermore, we discuss potential functions of neuronal and glial MVBs in development, in dystrophic neuritic syndromes, injury, disease, and aging. MVBs may play a role in Alzheimer’s, Huntington’s, and Niemann-Pick diseases, some types of frontotemporal dementia, prion and virus trafficking, as well as in adaptive responses of neurons to trauma and toxin or drug exposure. Functions of MVBs in neurons have been much neglected, and major gaps in knowledge currently exist. Developing truly MVB-specific markers would help to elucidate the roles of neuronal MVBs in intra- and intercellular signaling of normal and diseased neurons. PMID:21216273

  20. Evaluation of nanoparticles as endocytic tracers in cellular microbiology

    NASA Astrophysics Data System (ADS)

    Zhang, Yuying; Hensel, Michael

    2013-09-01

    The study of pathogen interactions with eukaryotic host cells requires the introduction of fluorescent probes to visualize processes such as endocytosis, intracellular transport or host cell manipulation by the pathogen. Here, three types of fluorescent nanoparticles (NPs), i.e. Rhodamine-labeled polymethacrylate (PMA) NPs, silica NPs and gold NPs, were employed to label the host cellular endolysosomal system and monitor manipulations by the pathogen Salmonella enterica. Using live cell imaging, we investigated the performance of NPs in cellular uptake, labeling of endocytic vesicles and lysosomes, as well as interaction with the pathogen. We show that fluorescent gold and silica, but not PMA NPs appropriately label host cell structures and efficiently track rearrangements of the host endosomal system by the activities of intracellular Salmonella. Silica NPs slightly aggregated and located in Salmonella-induced compartments as isolated dots, while gold NPs distributed uniformly inside such structures. Both silica and gold NPs exhibited no adverse impact on either host cells or pathogens, and are versatile tools for infection biology.The study of pathogen interactions with eukaryotic host cells requires the introduction of fluorescent probes to visualize processes such as endocytosis, intracellular transport or host cell manipulation by the pathogen. Here, three types of fluorescent nanoparticles (NPs), i.e. Rhodamine-labeled polymethacrylate (PMA) NPs, silica NPs and gold NPs, were employed to label the host cellular endolysosomal system and monitor manipulations by the pathogen Salmonella enterica. Using live cell imaging, we investigated the performance of NPs in cellular uptake, labeling of endocytic vesicles and lysosomes, as well as interaction with the pathogen. We show that fluorescent gold and silica, but not PMA NPs appropriately label host cell structures and efficiently track rearrangements of the host endosomal system by the activities of intracellular Salmonella. Silica NPs slightly aggregated and located in Salmonella-induced compartments as isolated dots, while gold NPs distributed uniformly inside such structures. Both silica and gold NPs exhibited no adverse impact on either host cells or pathogens, and are versatile tools for infection biology. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr01550e

  1. A Comprehensive Proteomics Analysis Reveals a Secretory Path- and Status-Dependent Signature of Exosomes Released from Tumor-Associated Macrophages.

    PubMed

    Zhu, Yinghui; Chen, Xianwei; Pan, Qingfei; Wang, Yang; Su, Siyuan; Jiang, Cuicui; Li, Yang; Xu, Ningzhi; Wu, Lin; Lou, Xiaomin; Liu, Siqi

    2015-10-02

    Exosomes are 30-120 nm-sized membrane vesicles of endocytic origin that are released into the extracellular environment and play roles in cell-cell communication. Tumor-associated macrophages (TAMs) are important constituents of the tumor microenvironment; thus, it is critical to study the features and complex biological functions of TAM-derived exosomes. Here, we constructed a TAM cell model from a mouse macrophage cell line, Ana-1, and performed comparative proteomics on exosomes, exosome-free media, and cells between TAMs and Ana-1. Proteomic analysis between exosome and exosome-free fractions indicated that the functions of exosome dominant proteins were mainly enriched in RNA processing and proteolysis. TAM status dramatically affected the abundances of 20S proteasome subunits and ribosomal proteins in their exosomes. The 20S proteasome activity assay strongly indicated that TAM exosomes possessed higher proteolytic activity. In addition, Ana-1- and TAM-derived exosomes have different RNA profiles, which may result from differential RNA processing proteins. Taken together, our comprehensive proteomics study provides novel views for understanding the complicated roles of macrophage-derived exosomes in the tumor microenvironment.

  2. Neurobeachin and the Kinesin KIF21B Are Critical for Endocytic Recycling of NMDA Receptors and Regulate Social Behavior.

    PubMed

    Gromova, Kira V; Muhia, Mary; Rothammer, Nicola; Gee, Christine E; Thies, Edda; Schaefer, Irina; Kress, Sabrina; Kilimann, Manfred W; Shevchuk, Olga; Oertner, Thomas G; Kneussel, Matthias

    2018-05-29

    Autism spectrum disorders (ASDs) are associated with mutations affecting synaptic components, including GluN2B-NMDA receptors (NMDARs) and neurobeachin (NBEA). NBEA participates in biosynthetic pathways to regulate synapse receptor targeting, synaptic function, cognition, and social behavior. However, the role of NBEA-mediated transport in specific trafficking routes is unclear. Here, we highlight an additional function for NBEA in the local delivery and surface re-insertion of synaptic receptors in mouse neurons. NBEA dynamically interacts with Rab4-positive recycling endosomes, transiently enters spines in an activity-dependent manner, and regulates GluN2B-NMDAR recycling. Furthermore, we show that the microtubule growth inhibitor kinesin KIF21B constrains NBEA dynamics and is present in the NBEA-recycling endosome-NMDAR complex. Notably, Kif21b knockout decreases NMDAR surface expression and alters social behavior in mice, consistent with reported social deficits in Nbea mutants. The influence of NBEA-KIF21B interactions on GluN2B-NMDAR local recycling may be relevant to mechanisms underlying ASD etiology. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Inositol Depletion Restores Vesicle Transport in Yeast Phospholipid Flippase Mutants

    PubMed Central

    Yamagami, Kanako; Yamamoto, Takaharu; Sakai, Shota; Mioka, Tetsuo; Sano, Takamitsu; Igarashi, Yasuyuki; Tanaka, Kazuma

    2015-01-01

    In eukaryotic cells, type 4 P-type ATPases function as phospholipid flippases, which translocate phospholipids from the exoplasmic leaflet to the cytoplasmic leaflet of the lipid bilayer. Flippases function in the formation of transport vesicles, but the mechanism remains unknown. Here, we isolate an arrestin-related trafficking adaptor, ART5, as a multicopy suppressor of the growth and endocytic recycling defects of flippase mutants in budding yeast. Consistent with a previous report that Art5p downregulates the inositol transporter Itr1p by endocytosis, we found that flippase mutations were also suppressed by the disruption of ITR1, as well as by depletion of inositol from the culture medium. Interestingly, inositol depletion suppressed the defects in all five flippase mutants. Inositol depletion also partially restored the formation of secretory vesicles in a flippase mutant. Inositol depletion caused changes in lipid composition, including a decrease in phosphatidylinositol and an increase in phosphatidylserine. A reduction in phosphatidylinositol levels caused by partially depleting the phosphatidylinositol synthase Pis1p also suppressed a flippase mutation. These results suggest that inositol depletion changes the lipid composition of the endosomal/TGN membranes, which results in vesicle formation from these membranes in the absence of flippases. PMID:25781026

  4. Common Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) Epitopes Mediate Multiple Routes for Internalization and Function

    PubMed Central

    DeVay, Rachel M.; Yamamoto, Lynn; Shelton, David L.; Liang, Hong

    2015-01-01

    Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a soluble protein that directs membrane-bound receptors to lysosomes for degradation. In the most studied example of this, PCSK9 binding leads to the degradation of low density lipoprotein receptor (LDLR), significantly affecting circulating LDL-C levels. The mechanism mediating this degradation, however, is not completely understood. We show here that LDLR facilitates PCSK9 interactions with amyloid precursor like protein 2 (APLP2) at neutral pH leading to PCSK9 internalization, although direct binding between PCSK9 and LDLR is not required. Moreover, binding to APLP2 or LDLR is independently sufficient for PCSK9 endocytosis in hepatocytes, while LDL can compete with APLP2 for PCSK9 binding to indirectly mediate PCSK9 endocytosis. Finally, we show that APLP2 and LDLR are also required for the degradation of another PCSK9 target, APOER2, necessitating a general role for LDLR and APLP2 in PCSK9 function. Together, these findings provide evidence that PCSK9 has at least two endocytic epitopes that are utilized by a variety of internalization mechanisms and clarifies how PCSK9 may direct proteins to lysosomes. PMID:25905719

  5. Storage vesicles in neurons are related to Golgi complex alterations in mucopolysaccharidosis IIIB.

    PubMed

    Vitry, Sandrine; Bruyère, Julie; Hocquemiller, Michaël; Bigou, Stéphanie; Ausseil, Jérôme; Colle, Marie-Anne; Prévost, Marie-Christine; Heard, Jean Michel

    2010-12-01

    The accumulation of intracellular storage vesicles is a hallmark of lysosomal storage diseases. Neither the identity nor origin of these implicated storage vesicles have yet been established. The vesicles are often considered as lysosomes, endosomes, and/or autophagosomes that are engorged with undigested materials. Our studies in the mouse model of mucopolysaccharidosis type IIIB, a lysosomal storage disease that induces neurodegeneration, showed that large storage vesicles in cortical neurons did not receive material from either the endocytic or autophagy pathway, which functioned normally. Storage vesicles expressed GM130, a Golgi matrix protein, which mediates vesicle tethering in both pre- and cis-Golgi compartments. However, other components of the tethering/fusion complex were not associated with GM130 on storage vesicles, likely accounting for both the resistance of the vesicles to brefeldin A and the alteration of Golgi ribbon architecture, which comprised distended cisterna connected to LAMP1-positive storage vesicles. We propose that alteration in the GM130-mediated control of vesicle trafficking in pre-Golgi and Golgi compartments affects Golgi biogenesis and gives rise to a dead-end storage compartment. Vesicle accumulation, Golgi disorganization, and alterations of other GM130 functions may account for neuron dysfunction and death.

  6. Caveolae.

    PubMed

    Parton, Robert G; Tillu, Vikas A; Collins, Brett M

    2018-04-23

    Caveolae are one of the most abundant and striking features of the plasma membrane of many mammalian cell types. These surface pits have fascinated biologists since their discovery by the pioneers of electron microscopy in the middle of the last century, but we are only just starting to understand their multiple functions. Molecular understanding of caveolar formation is advancing rapidly and we now know that sculpting the membrane to generate the characteristic bulb-shaped caveolar pit involves the coordinated action of integral membrane proteins and peripheral membrane coat proteins in a process dependent on their multiple interactions with membrane lipids. The resulting structure is further stabilised by protein complexes at the caveolar neck. Caveolae can bud to generate an endocytic carrier but can also be disassembled in response to specific stimuli to function as a mechanoprotective device. These structures have also been linked to numerous signalling pathways. Here, we will briefly summarise the current molecular and structural understanding of caveolar formation and dynamics, discuss how the crucial structural components of caveolae work together to generate a dynamic sensing domain, and discuss the implications of recent studies on the diverse roles proposed for caveolae in different cells and tissues. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Rab5 GTPase controls chromosome alignment through Lamin disassembly and relocation of the NuMA-like protein Mud to the poles during mitosis

    PubMed Central

    Capalbo, Luisa; D'Avino, Pier Paolo; Archambault, Vincent; Glover, David M.

    2011-01-01

    The small GTPase Rab5 is a conserved regulator of membrane trafficking; it regulates the formation of early endosomes, their transport along microtubules, and the fusion to the target organelles. Although several members of the endocytic pathway were recently implicated in spindle organization, it is unclear whether Rab5 has any role during mitosis. Here, we describe that Rab5 is required for proper chromosome alignment during Drosophila mitoses. We also found that Rab5 associated in vivo with nuclear Lamin and mushroom body defect (Mud), the Drosophila counterpart of nuclear mitotic apparatus protein (NuMA). Consistent with this finding, Rab5 was required for the disassembly of the nuclear envelope at mitotic entry and the accumulation of Mud at the spindle poles. Furthermore, Mud depletion caused chromosome misalignment defects that resembled the defects of Rab5 RNAi cells, and double-knockdown experiments indicated that the two proteins function in a linear pathway. Our results indicate a role for Rab5 in mitosis and reinforce the emerging view of the contributions made by cell membrane dynamics to spindle function. PMID:21987826

  8. Peptide mediated intracellular delivery of semiconductor quantum dots

    NASA Astrophysics Data System (ADS)

    Kapur, Anshika; Safi, Malak; Domitrovic, Tatiana; Medina, Scott; Palui, Goutam; Johnson, John E.; Schneider, Joel; Mattoussi, Hedi

    2017-02-01

    As control over the growth, stabilization and functionalization of inorganic nanoparticles continue to advance, interest in integrating these materials with biological systems has steadily grown in the past decade. Much attention has been directed towards identifying effective approaches to promote cytosolic internalization of the nanoparticles while avoiding endocytosis. We describe the use of NωV virus derived gamma peptide and a chemically synthesized anticancer peptide, SVS-1 peptide, as vehicles to promote the non-endocytic uptake of luminescent quantum dots (QDs) inside live cells. The gamma peptide is expressed in E. coli as a fusion protein with poly-his tagged MBP (His-MBP-γ) to allow self-assembly onto QDs via metal-histidine conjugation. Conversely, the N-terminal cysteine residue of the SVS-1 peptide is attached to the functionalized QDs via covalent coupling chemistry. Epi-fluorescence microscopy images show that the QD-conjugate staining is distributed throughout the cytoplasm of cell cultures. Additionally, the QD staining does not show co-localization with transferrin-dye-labelled endosomes or DAPI stained nuclei. The QD uptake observed in the presence of physical and pharmacological endocytosis inhibitors further suggest that a physical translocation of QDs through the cell membrane is the driving mechanism for the uptake.

  9. WASH and WAVE actin regulators of the Wiskott-Aldrich syndrome protein (WASP) family are controlled by analogous structurally related complexes.

    PubMed

    Jia, Da; Gomez, Timothy S; Metlagel, Zoltan; Umetani, Junko; Otwinowski, Zbyszek; Rosen, Michael K; Billadeau, Daniel D

    2010-06-08

    We recently showed that the Wiskott-Aldrich syndrome protein (WASP) family member, WASH, localizes to endosomal subdomains and regulates endocytic vesicle scission in an Arp2/3-dependent manner. Mechanisms regulating WASH activity are unknown. Here we show that WASH functions in cells within a 500 kDa core complex containing Strumpellin, FAM21, KIAA1033 (SWIP), and CCDC53. Although recombinant WASH is constitutively active toward the Arp2/3 complex, the reconstituted core assembly is inhibited, suggesting that it functions in cells to regulate actin dynamics through WASH. FAM21 interacts directly with CAPZ and inhibits its actin-capping activity. Four of the five core components show distant (approximately 15% amino acid sequence identify) but significant structural homology to components of a complex that negatively regulates the WASP family member, WAVE. Moreover, biochemical and electron microscopic analyses show that the WASH and WAVE complexes are structurally similar. Thus, these two distantly related WASP family members are controlled by analogous structurally related mechanisms. Strumpellin is mutated in the human disease hereditary spastic paraplegia, and its link to WASH suggests that misregulation of actin dynamics on endosomes may play a role in this disorder.

  10. The Recycling Endosome of Madin-Darby Canine Kidney Cells Is a Mildly Acidic Compartment Rich in Raft Components

    PubMed Central

    Gagescu, Raluca; Demaurex, Nicolas; Parton, Robert G.; Hunziker, Walter; Huber, Lukas A.; Gruenberg, Jean

    2000-01-01

    We present a biochemical and morphological characterization of recycling endosomes containing the transferrin receptor in the epithelial Madin-Darby canine kidney cell line. We find that recycling endosomes are enriched in molecules known to regulate transferrin recycling but lack proteins involved in early endosome membrane dynamics, indicating that recycling endosomes are distinct from conventional early endosomes. We also find that recycling endosomes are less acidic than early endosomes because they lack a functional vacuolar ATPase. Furthermore, we show that recycling endosomes can be reached by apically internalized tracers, confirming that the apical endocytic pathway intersects the transferrin pathway. Strikingly, recycling endosomes are enriched in the raft lipids sphingomyelin and cholesterol as well as in the raft-associated proteins caveolin-1 and flotillin-1. These observations may suggest that a lipid-based sorting mechanism operates along the Madin-Darby canine kidney recycling pathway, contributing to the maintenance of cell polarity. Altogether, our data indicate that recycling endosomes and early endosomes differ functionally and biochemically and thus that different molecular mechanisms regulate protein sorting and membrane traffic at each step of the receptor recycling pathway. PMID:10930469

  11. Cell-permeable nanobodies for targeted immunolabelling and antigen manipulation in living cells

    NASA Astrophysics Data System (ADS)

    Herce, Henry D.; Schumacher, Dominik; Schneider, Anselm F. L.; Ludwig, Anne K.; Mann, Florian A.; Fillies, Marion; Kasper, Marc-André; Reinke, Stefan; Krause, Eberhard; Leonhardt, Heinrich; Cardoso, M. Cristina; Hackenberger, Christian P. R.

    2017-08-01

    Functional antibody delivery in living cells would enable the labelling and manipulation of intracellular antigens, which constitutes a long-thought goal in cell biology and medicine. Here we present a modular strategy to create functional cell-permeable nanobodies capable of targeted labelling and manipulation of intracellular antigens in living cells. The cell-permeable nanobodies are formed by the site-specific attachment of intracellularly stable (or cleavable) cyclic arginine-rich cell-penetrating peptides to camelid-derived single-chain VHH antibody fragments. We used this strategy for the non-endocytic delivery of two recombinant nanobodies into living cells, which enabled the relocalization of the polymerase clamp PCNA (proliferating cell nuclear antigen) and tumour suppressor p53 to the nucleolus, and thereby allowed the detection of protein-protein interactions that involve these two proteins in living cells. Furthermore, cell-permeable nanobodies permitted the co-transport of therapeutically relevant proteins, such as Mecp2, into the cells. This technology constitutes a major step in the labelling, delivery and targeted manipulation of intracellular antigens. Ultimately, this approach opens the door towards immunostaining in living cells and the expansion of immunotherapies to intracellular antigen targets.

  12. Noncanonical Gβ Gib2 is a scaffolding protein promoting cAMP signaling through functions of Ras1 and Cac1 proteins in Cryptococcus neoformans.

    PubMed

    Wang, Yanli; Shen, Gui; Gong, Jinjun; Shen, Danyu; Whittington, Amy; Qing, Jiang; Treloar, Joshua; Boisvert, Scott; Zhang, Zhengguang; Yang, Cai; Wang, Ping

    2014-05-02

    Gβ-like/RACK1 functions as a key mediator of various pathways and contributes to numerous cellular functions in eukaryotic organisms. In the pathogenic fungus Cryptococcus neoformans, noncanonical Gβ Gib2 promotes cAMP signaling in cells lacking normal Gpa1 function while displaying versatility in interactions with Gα Gpa1, protein kinase Pkc1, and endocytic intersectin Cin1. To elucidate the Gib2 functional mechanism(s), we demonstrate that Gib2 is required for normal growth and virulence. We show that Gib2 directly binds to Gpa1 and Gγ Gpg1/Gpg2 and that it interacts with phosphodiesterase Pde2 and monomeric GTPase Ras1. Pde2 remains functionally dispensable, but Ras1 is found to associate with adenylyl cyclase Cac1 through the conserved Ras association domain. In addition, the ras1 mutant exhibits normal capsule formation, whereas the ras1 gpa1 mutant displays enhanced capsule formation, and the ras1 gpa1 cac1 mutant is acapsular. Collectively, these findings suggest that Gib2 promotes cAMP levels by relieving an inhibitory function of Ras1 on Cac1 in the absence of Gpa1. In addition, using GST affinity purification combined with mass spectrometry, we identified 47 additional proteins that interact with Gib2. These proteins have putative functions ranging from signal transduction, energy generation, metabolism, and stress response to ribosomal function. After establishing and validating a protein-protein interactive network, we believe Gib2 to be a key adaptor/scaffolding protein that drives the formation of various protein complexes required for growth and virulence. Our study reveals Gib2 as an essential component in deciphering the complexity of regulatory networks that control growth and virulence in C. neoformans.

  13. Highly specific detection of muscarinic M3 receptor, G protein interaction and intracellular trafficking in human detrusor using Proximity Ligation Assay (PLA).

    PubMed

    Berndt-Paetz, Mandy; Herbst, Luise; Weimann, Annett; Gonsior, Andreas; Stolzenburg, Jens-Uwe; Neuhaus, Jochen

    2018-05-01

    Muscarinic acetylcholine receptors (mAChRs) regulate a number of important physiological functions. Alteration of mAChR expression or function has been associated in the etiology of several pathologies including functional bladder disorders (e.g bladder pain syndrome/interstitial cystitis - BPS/IC). In a previous study we found specific mAChR expression patterns associated with BPS/IC, while correlation between protein and gene expression was lacking. Posttranslational regulatory mechanisms, e.g. altered intracellular receptor trafficking, could explain those differences. In addition, alternative G protein (GP) coupling could add to the pathophysiology via modulation of muscarinic signaling. In our proof-of-principle study, we addressed these questions in situ. We established PLA in combination with confocal laserscanning microscopy (CLSM) and 3D object reconstruction for highly specific detection and analysis of muscarinic 3 receptors (M3), G protein (GP) coupling and intracellular trafficking in human detrusor samples. Paraffin sections of formalin-fixed bladder tissue (FFPE) of BPS/IC patients receiving transurethral biopsy were examined by Cy3-PLA for M3 expression, coupling of M3 to GPs (G αq/11 , G αs , G αi ) and interaction of M3 with endocytic regulator proteins. Membranes were labeled with wheat germ agglutinin-Alexa Fluor ® 488, nuclei were stained with DAPI. Object density and co-localization were analyzed in 3D-reconstruction of high resolution confocal z-stacks. Confocal image stack processing resulted in well demarcated objects. Calculated receptor densities correlated significantly with existing confocal expression data, while significantly improved specificity of M3 detection by PLA was verified using bladder tissue samples from transgenic mice. 50-60% of the M3 receptor complexes were plasma membrane associated in human bladder detrusor. Application of PLA for M3 and GPs allowed visualization of M3-GP interactions and revealed individual GP-subtype coupling patterns. Detection of M3 interactions with endocytic trafficking proteins by PLA resulted in object sizes correlating with well-documented vesicle sizes of the endocytosis pathway. PLA enabled highly specific detection of M3 receptor expression, demonstration of M3/GP differential coupling and intracellular M3 trafficking in human detrusor smooth muscle cells. This new approach minimized background fluorescence and antibody cross-reactions resulting from single antibody application, and enhanced specificity due to the use of two primary antibodies. Use of subcellular markers allowed visualization of subcellular receptor location. PLA/CLSM allows analyses of muscarinic "receptor - G protein - promiscuity" and intracellular trafficking even in bladder paraffin sections and may give new insights into the etiology and pathology of BPS/IC. Copyright © 2018 Elsevier GmbH. All rights reserved.

  14. Delivery of Small Interfering RNA by Peptide-Targeted Mesoporous Silica Nanoparticle-Supported Lipid Bilayers

    PubMed Central

    Ashley, Carlee E.; Carnes, Eric C.; Epler, Katharine E.; Padilla, David P.; Phillips, Genevieve K.; Castillo, Robert E.; Wilkinson, Dan C.; Wilkinson, Brian S.; Burgard, Cameron A.; Sewell, Robin M.; Townson, Jason L.; Chackerian, Bryce; Willman, Cheryl L.; Peabody, David S.; Wharton, Walker; Brinker, C. Jeffrey

    2012-01-01

    The therapeutic potential of small interfering RNAs (siRNAs) is severely limited by the availability of delivery platforms that protect siRNA from degradation, deliver it to the target cell with high specificity and efficiency, and promote its endosomal escape and cytosolic dispersion. Here we report that mesoporous silica nanoparticle-supported lipid bilayers (or ‘protocells’), exhibit multiple properties that overcome many of the limitations of existing delivery platforms. Protocells have a 10- to 100-fold greater capacity for siRNA than corresponding lipid nanoparticles and are markedly more stable when incubated under physiological conditions. Protocells loaded with a cocktail of siRNAs bind to cells in a manner dependent on the presence of an appropriate targeting peptide and, through an endocytic pathway followed by endosomal disruption, promote delivery of the silencing nucleotides to the cytoplasm. The expression of each of the genes targeted by the siRNAs was shown to be repressed at the protein level, resulting in a potent induction of growth arrest and apoptosis. Incubation of control cells that lack expression of the antigen recognized by the targeting peptide with siRNA-loaded protocells induced neither repression of protein expression nor apoptosis, indicating the precise specificity of cytotoxic activity. In terms of loading capacity, targeting capabilities, and potency of action, protocells provide unique attributes as a delivery platform for therapeutic oligonucleotides. PMID:22309035

  15. The ESCRT regulator Did2 maintains the balance between long-distance endosomal transport and endocytic trafficking

    PubMed Central

    Haag, Carl

    2017-01-01

    In highly polarised cells, like fungal hyphae, early endosomes function in both endocytosis as well as long-distance transport of various cargo including mRNA and protein complexes. However, knowledge on the crosstalk between these seemingly different trafficking processes is scarce. Here, we demonstrate that the ESCRT regulator Did2 coordinates endosomal transport in fungal hyphae of Ustilago maydis. Loss of Did2 results in defective vacuolar targeting, less processive long-distance transport and abnormal shuttling of early endosomes. Importantly, the late endosomal protein Rab7 and vacuolar protease Prc1 exhibit increased shuttling on these aberrant endosomes suggesting defects in endosomal maturation and identity. Consistently, molecular motors fail to attach efficiently explaining the disturbed processive movement. Furthermore, the endosomal mRNP linker protein Upa1 is hardly present on endosomes resulting in defects in long-distance mRNA transport. In conclusion, the ESCRT regulator Did2 coordinates precise maturation of endosomes and thus provides the correct membrane identity for efficient endosomal long-distance transport. PMID:28422978

  16. Mechanism of hyperinsulinemia after reticuloendothelial system phagocytosis.

    PubMed

    Filkins, J P; Yelich, M R

    1982-02-01

    Endocytic loading of the reticuloendothelial system (RES) results in acute hyperinsulinemia and functional hyperinsulinism. Colloidal carbon blockade of the RES in rats resulted in elevations of both portal vein and systemic serum immunoreactive insulin and increases in the hepatic portal vein insulin glucose ratios. Two mechanisms for the hyperinsulinemia were evaluated: 1) decreased removal of insulin by the postendocytic liver and 2) increased secretion of insulin by the isolated perfused pancreas. Colloidal carbon blockade did not alter removal of 125I-insulin as evaluated in the isolated perfused rat liver. Pancreases from postendocytic donor rats when perfused according to the technique of Grodsky manifested enhanced insulin secretion. Macrophage culture-conditioned media enhanced glucose-mediated insulin secretion both as assayed in vivo and in the isolated perfused rat pancreas. The data suggest that postendocytic activated macrophages secrete a monokine that alters insulin release and thus produces the hyperinsulinemia of RES blockade. The acronym MIRA for macrophage insulin-releasing activity is proposed for the monokine.

  17. Antimycotic-Antibiotic Amphotericin B Promotes Influenza Virus Replication in Cell Culture ▿

    PubMed Central

    Roethl, Elisabeth; Gassner, Manuela; Krenn, Brigitte M.; Romanovskaya-Romanko, Ekaterina A.; Seper, Helena; Romanova, Julia; Nakowitsch, Sabine; Sturlan, Sanda; Wolschek, Markus; Sirotkin, Alexej; Kiselev, Oleg; Muster, Thomas; Egorov, Andrej

    2011-01-01

    In general, antibiotics are not rated as substances that inhibit or support influenza virus replication. We describe here the enhancing effect of the polyene antibiotic amphotericin B (AmB) on influenza virus growth in Vero cells. We show that isolation rates of influenza A and B viruses from clinical samples can be dramatically enhanced by adding AmB to the culture medium. We demonstrate that AmB promotes the viral uptake and endocytic processing of the virus particles. This effect is specific for Vero and human nasal epithelial cells and was not observed in Madin-Darby canine kidney cells. The effect of AmB was subtype specific and more prominent for human seasonal influenza strains but absent for H5N1 human viruses. The AmB-enhancing effect seemed to be solely due to the viral hemagglutinin function. Our results indicate that the use of AmB may facilitate influenza virus isolation and production in Vero cells. PMID:21849438

  18. Co-factors Required for TLR7- and TLR9- dependent Innate Immune Responses

    PubMed Central

    Chiang, Chih-yuan; Engel, Alex; Opaluch, Amanda M.; Ramos, Irene; Maestre, Ana M.; Secundino, Ismael; De Jesus, Paul D.; Nguyen, Quy T.; Welch, Genevieve; Bonamy, Ghislain M.C.; Miraglia, Loren J.; Orth, Anthony P.; Nizet, Victor; Fernandez-Sesma, Ana; Zhou, Yingyao; Barton, Gregory M.; Chanda, Sumit K.

    2012-01-01

    SUMMARY Pathogens commonly utilize endocytic pathways to gain cellular access. The endosomal pattern recognition receptors TLR7 and TLR9 detect pathogen-encoded nucleic acids to initiate MyD88-dependent pro-inflammatory responses to microbial infection. Using genome-wide RNAi screening and integrative systems-based analysis we identify 190 co-factors required for TLR7- and TLR9-directed signaling responses. A set of co-factors were cross-profiled for their activities downstream of several immunoreceptors, and then functionally mapped based on the known architecture of NF-κB signaling pathways. Protein complexes and pathways involved in ubiquitin-protein ligase activities, sphingolipid metabolism, chromatin modifications, and ancient stress responses were found to modulate innate recognition of endosomal nucleic acids. Additionally, hepatocyte growth factor-regulated tyrosine kinase substrate (HRS) was characterized as necessary for ubiquitin-dependent TLR9 targeting to the endolysosome. Proteins and pathways identified here should prove useful in delineating strategies to manipulate innate responses for treatment of autoimmune disorders and microbial infection. PMID:22423970

  19. dOCRL maintains immune cell quiescence by regulating endosomal traffic

    PubMed Central

    Del Signore, Steven J.; Biber, Sarah A.; Lehmann, Katherine S.; Heimler, Stephanie R.; Rosenfeld, Benjamin H.; Eskin, Tania L.

    2017-01-01

    Lowe Syndrome is a developmental disorder characterized by eye, kidney, and neurological pathologies, and is caused by mutations in the phosphatidylinositol-5-phosphatase OCRL. OCRL plays diverse roles in endocytic and endolysosomal trafficking, cytokinesis, and ciliogenesis, but it is unclear which of these cellular functions underlie specific patient symptoms. Here, we show that mutation of Drosophila OCRL causes cell-autonomous activation of hemocytes, which are macrophage-like cells of the innate immune system. Among many cell biological defects that we identified in docrl mutant hemocytes, we pinpointed the cause of innate immune cell activation to reduced Rab11-dependent recycling traffic and concomitantly increased Rab7-dependent late endosome traffic. Loss of docrl amplifies multiple immune-relevant signals, including Toll, Jun kinase, and STAT, and leads to Rab11-sensitive mis-sorting and excessive secretion of the Toll ligand Spåtzle. Thus, docrl regulation of endosomal traffic maintains hemocytes in a poised, but quiescent state, suggesting mechanisms by which endosomal misregulation of signaling may contribute to symptoms of Lowe syndrome. PMID:29028801

  20. Phosphatidylserine is polarized and required for proper Cdc42 localization and for development of cell polarity.

    PubMed

    Fairn, Gregory D; Hermansson, Martin; Somerharju, Pentti; Grinstein, Sergio

    2011-10-02

    Polarity is key to the function of eukaryotic cells. On the establishment of a polarity axis, cells can vectorially target secretion, generating an asymmetric distribution of plasma membrane proteins. From Saccharomyces cerevisiae to mammals, the small GTPase Cdc42 is a pivotal regulator of polarity. We used a fluorescent probe to visualize the distribution of phosphatidylserine in live S. cerevisiae. Remarkably, phosphatidylserine was polarized in the plasma membrane, accumulating in bud necks, the bud cortex and the tips of mating projections. Polarization required vectorial delivery of phosphatidylserine-containing secretory vesicles, and phosphatidylserine was largely excluded from endocytic vesicles, contributing to its polarized retention. Mutants lacking phosphatidylserine synthase had impaired polarization of the Cdc42 complex, leading to a delay in bud emergence, and defective mating. The addition of lysophosphatidylserine resulted in resynthesis and polarization of phosphatidylserine, as well as repolarization of Cdc42. The results indicate that phosphatidylserine--and presumably its polarization--are required for optimal Cdc42 targeting and activation during cell division and mating.

  1. Neuron Specific Rab4 Effector GRASP-1 Coordinates Membrane Specialization and Maturation of Recycling Endosomes

    PubMed Central

    Hoogenraad, Casper C.; Popa, Ioana; Futai, Kensuke; Sanchez-Martinez, Emma; Wulf, Phebe S.; van Vlijmen, Thijs; Dortland, Bjorn R.; Oorschot, Viola; Govers, Roland; Monti, Maria; Heck, Albert J. R.; Sheng, Morgan; Klumperman, Judith; Rehmann, Holger; Jaarsma, Dick; Kapitein, Lukas C.; van der Sluijs, Peter

    2010-01-01

    The endosomal pathway in neuronal dendrites is essential for membrane receptor trafficking and proper synaptic function and plasticity. However, the molecular mechanisms that organize specific endocytic trafficking routes are poorly understood. Here, we identify GRIP-associated protein-1 (GRASP-1) as a neuron-specific effector of Rab4 and key component of the molecular machinery that coordinates recycling endosome maturation in dendrites. We show that GRASP-1 is necessary for AMPA receptor recycling, maintenance of spine morphology, and synaptic plasticity. At the molecular level, GRASP-1 segregates Rab4 from EEA1/Neep21/Rab5-positive early endosomal membranes and coordinates the coupling to Rab11-labelled recycling endosomes by interacting with the endosomal SNARE syntaxin 13. We propose that GRASP-1 connects early and late recycling endosomal compartments by forming a molecular bridge between Rab-specific membrane domains and the endosomal SNARE machinery. The data uncover a new mechanism to achieve specificity and directionality in neuronal membrane receptor trafficking. PMID:20098723

  2. How half-coated janus particles enter cells.

    PubMed

    Gao, Yuan; Yu, Yan

    2013-12-26

    Janus particles possess functional asymmetry and directionality within a single entity and thus are predicted to enable many promising biomedical applications that are not offered by homogeneous particles. However, it remains elusive what role the Janus principle plays in Janus particle-cell interactions, particularly in cellular uptake. We studied how asymmetric distribution of ligands on half-coated Janus microparticles dictates the membrane dynamics during receptor-mediated particle uptake, and found key differences from those characteristic of homogeneous particles. Live-cell fluorescence imaging combined with single-particle level quantification of particle-cell membrane interactions shows that the asymmetric distribution of ligands leads to a three-step endocytic process: membrane cup formation on the ligand-coated hemisphere, stalling at the Janus interface, and rapid membrane protrusion on the ligand-absent hemisphere to complete the particle engulfment. The direct correlation between the spatial presentation of ligands on Janus particles and the temporal changes of membrane dynamics revealed in this work elucidates the potential of using the Janus principle to fine-tune particle-cell interactions.

  3. Dynamic clustering of dynamin-amphiphysin helices regulates membrane constriction and fission coupled with GTP hydrolysis

    PubMed Central

    Kozai, Toshiya; Yang, Huiran; Ishikuro, Daiki; Seyama, Kaho; Kumagai, Yusuke; Abe, Tadashi; Yamada, Hiroshi; Uchihashi, Takayuki

    2018-01-01

    Dynamin is a mechanochemical GTPase essential for membrane fission during clathrin-mediated endocytosis. Dynamin forms helical complexes at the neck of clathrin-coated pits and their structural changes coupled with GTP hydrolysis drive membrane fission. Dynamin and its binding protein amphiphysin cooperatively regulate membrane remodeling during the fission, but its precise mechanism remains elusive. In this study, we analyzed structural changes of dynamin-amphiphysin complexes during the membrane fission using electron microscopy (EM) and high-speed atomic force microscopy (HS-AFM). Interestingly, HS-AFM analyses show that the dynamin-amphiphysin helices are rearranged to form clusters upon GTP hydrolysis and membrane constriction occurs at protein-uncoated regions flanking the clusters. We also show a novel function of amphiphysin in size control of the clusters to enhance biogenesis of endocytic vesicles. Our approaches using combination of EM and HS-AFM clearly demonstrate new mechanistic insights into the dynamics of dynamin-amphiphysin complexes during membrane fission. PMID:29357276

  4. Novel microscopy-based screening method reveals regulators of contact-dependent intercellular transfer

    PubMed Central

    Michael Frei, Dominik; Hodneland, Erlend; Rios-Mondragon, Ivan; Burtey, Anne; Neumann, Beate; Bulkescher, Jutta; Schölermann, Julia; Pepperkok, Rainer; Gerdes, Hans-Hermann; Kögel, Tanja

    2015-01-01

    Contact-dependent intercellular transfer (codeIT) of cellular constituents can have functional consequences for recipient cells, such as enhanced survival and drug resistance. Pathogenic viruses, prions and bacteria can also utilize this mechanism to spread to adjacent cells and potentially evade immune detection. However, little is known about the molecular mechanism underlying this intercellular transfer process. Here, we present a novel microscopy-based screening method to identify regulators and cargo of codeIT. Single donor cells, carrying fluorescently labelled endocytic organelles or proteins, are co-cultured with excess acceptor cells. CodeIT is quantified by confocal microscopy and image analysis in 3D, preserving spatial information. An siRNA-based screening using this method revealed the involvement of several myosins and small GTPases as codeIT regulators. Our data indicates that cellular protrusions and tubular recycling endosomes are important for codeIT. We automated image acquisition and analysis to facilitate large-scale chemical and genetic screening efforts to identify key regulators of codeIT. PMID:26271723

  5. GGA3 mediates TrkA endocytic recycling to promote sustained Akt phosphorylation and cell survival

    PubMed Central

    Li, Xuezhi; Lavigne, Pierre; Lavoie, Christine

    2015-01-01

    Although TrkA postendocytic sorting significantly influences neuronal cell survival and differentiation, the molecular mechanism underlying TrkA receptor sorting in the recycling or degradation pathways remains poorly understood. Here we demonstrate that Golgi-localized, γ adaptin-ear–containing ADP ribosylation factor-binding protein 3 (GGA3) interacts directly with the TrkA cytoplasmic tail through an internal DXXLL motif and mediates the functional recycling of TrkA to the plasma membrane. We find that GGA3 depletion by siRNA delays TrkA recycling, accelerates TrkA degradation, attenuates sustained NGF-induced Akt activation, and reduces cell survival. We also show that GGA3’s effect on TrkA recycling is dependent on the activation of Arf6. This work identifies GGA3 as a key player in a novel DXXLL-mediated endosomal sorting machinery that targets TrkA to the plasma membrane, where it prolongs the activation of Akt signaling and survival responses. PMID:26446845

  6. Assembly and intracellular delivery of quantum dot-fluorescent protein bioconjugates

    NASA Astrophysics Data System (ADS)

    Medintz, Igor L.; Pons, Thomas; Delehanty, James B.; Susumu, Kimihiro; Dawson, Philip E.; Mattoussi, Hedi

    2008-02-01

    We have previously assembled semiconductor quantum dot (QD)-based fluorescence resonance energy transfer (FRET) sensors that can specifically detect nutrients, explosives or enzymatic activity. These sensors utilized the inherent benefits of QDs as FRET donors to optimize signal transduction. In this report we functionalize QDs with the multi-subunit multi-chromophore b-phycoerythrin (b-PE) light harvesting complex using biotin-Streptavidin binding. FRET and gel electrophoretic analyses were used to characterize and confirm the QD-b-PE self-assembly. We found that immobilizing additional cell-penetrating peptides on the nanocrystal surface along with the b-PE was the key factor allowing the mixed surface QD-cargos to undergo endocytosis and intracellular delivery. Our findings on the intracellular uptake promoted by CPP were compared to those collected using microinjection technique, where QD-assemblies were delivered directly into the cytoplasm; this strategy allows bypassing of the endocytic uptake pathway. Intracellular delivery of multifunctional QD-fluorescent protein assemblies has potential applications for use in protein tracking, sensing and diagnostics.

  7. A nanobuffer reporter library for fine-scale imaging and perturbation of endocytic organelles

    PubMed Central

    Wang, Chensu; Wang, Yiguang; Li, Yang; Bodemann, Brian; Zhao, Tian; Ma, Xinpeng; Huang, Gang; Hu, Zeping; DeBerardinis, Ralph J.; White, Michael A.; Gao, Jinming

    2015-01-01

    Endosomes, lysosomes and related catabolic organelles are a dynamic continuum of vacuolar structures that impact a number of cell physiological processes such as protein/lipid metabolism, nutrient sensing and cell survival. Here we develop a library of ultra-pH-sensitive fluorescent nanoparticles with chemical properties that allow fine-scale, multiplexed, spatio-temporal perturbation and quantification of catabolic organelle maturation at single organelle resolution to support quantitative investigation of these processes in living cells. Deployment in cells allows quantification of the proton accumulation rate in endosomes; illumination of previously unrecognized regulatory mechanisms coupling pH transitions to endosomal coat protein exchange; discovery of distinct pH thresholds required for mTORC1 activation by free amino acids versus proteins; broad-scale characterization of the consequence of endosomal pH transitions on cellular metabolomic profiles; and functionalization of a context-specific metabolic vulnerability in lung cancer cells. Together, these biological applications indicate the robustness and adaptability of this nanotechnology-enabled ‘detection and perturbation' strategy. PMID:26437053

  8. Tailored delivery of analgesic ziconotide across a blood brain barrier model using viral nanocontainers

    NASA Astrophysics Data System (ADS)

    Anand, Prachi; O'Neil, Alison; Lin, Emily; Douglas, Trevor; Holford, Mandë

    2015-08-01

    The blood brain barrier (BBB) is often an insurmountable obstacle for a large number of candidate drugs, including peptides, antibiotics, and chemotherapeutic agents. Devising an adroit delivery method to cross the BBB is essential to unlocking widespread application of peptide therapeutics. Presented here is an engineered nanocontainer for delivering peptidic drugs across the BBB encapsulating the analgesic marine snail peptide ziconotide (Prialt®). We developed a bi-functional viral nanocontainer based on the Salmonella typhimurium bacteriophage P22 capsid, genetically incorporating ziconotide in the interior cavity, and chemically attaching cell penetrating HIV-Tat peptide on the exterior of the capsid. Virus like particles (VLPs) of P22 containing ziconotide were successfully transported in several BBB models of rat and human brain microvascular endothelial cells (BMVEC) using a recyclable noncytotoxic endocytic pathway. This work demonstrates proof in principle for developing a possible alternative to intrathecal injection of ziconotide using a tunable VLP drug delivery nanocontainer to cross the BBB.

  9. Regulation of T-type Ca2+ channel expression by herpes simplex virus-1 infection in sensory-like ND7 cells

    PubMed Central

    Zhang, Qiaojuan; Hsia, Shao-Chung

    2017-01-01

    Infection of sensory neurons by herpes simplex virus (HSV)-1 disrupts electrical excitability, altering pain sensory transmission. Because of their low threshold for activation, functional expression of T-type Ca2+ channels regulates various cell functions, including neuronal excitability and neuronal communication. In this study, we have tested the effect of HSV-1 infection on the functional expression of T-type Ca2+ channels in differentiated ND7-23 sensory-like neurons. Voltage-gated Ca2+ currents were measured using whole cell patch clamp recordings in differentiated ND7-23 neurons under various culture conditions. Differentiation of ND7-23 cells evokes a significant increase in T-type Ca2+ current densities. Increased T-type Ca2+ channel expression promotes the morphological differentiation of ND7-23 cells and triggers a rebound depolarization. HSV-1 infection of differentiated ND7-23 cells causes a significant loss of T-type Ca2+ channels from the membrane. HSV-1 evoked reduction in the functional expression of T-type Ca2+ channels is mediated by several factors, including decreased expression of Cav3.2 T-type Ca2+ channel subunits and disruption of endocytic transport. Decreased functional expression of T-type Ca2+ channels by HSV-1 infection requires protein synthesis and viral replication, but occurs independently of Egr-1 expression. These findings suggest that infection of neuron-like cells by HSV-1 causes a significant disruption in the expression of T-type Ca2+ channels, which can results in morphological and functional changes in electrical excitability. PMID:28639215

  10. Mechanism of Action of Presynaptic Neurotoxins

    DTIC Science & Technology

    1985-09-01

    Asialoglycoproteins in Cultured Hepatocytes . Ches. =7, 3191-3197. Harford, J., Klausner, R. D., and Ashwell, G. (1984) Inhibition of the Endocytic Pathway...valid marker for neurons in the CNS and neuronal cells when grown in culture ( Mirsky et al., 1978). Recently, the binding interactions have been...Gangliosides in Nervous Tissue Cultures and Binding of I-Labelled Tetanus Toxin, a Neuronal Marker . L. f ocA . 12, 329-334. Dimpfel, V., and

  11. Morphofunctional study of the haemocytes of the bivalve mollusc Mytilus galloprovincialis with emphasis on the endolysosomal compartment.

    PubMed

    Cajaraville, M P; Pal, S G

    1995-10-01

    In the present work the haemocytes of mussels Mytilus galloprovincialis (Mollusca, Bivalvia) have been studied by light and electron microscopy in order to describe their main morphological features and to relate these to their roles in immune defence. The haemocytes belong to two definitive differentiated types, hyalinocytes and granulocytes. The former shows the presence of several fine pseudopodial protrusions, large nucleus with clumps of dense chromatin, scant cytoplasm, a well developed Golgi apparatus, lysosomes, several mitochondria (some with characteristic inclusions), coated pits and peripherally placed membrane-bound endocytic vesicles, considerable amounts of endoplasmic reticulum and ribosomes. The granulocytes generally possess an organelle-free ectoplasmic zone, numerous membrane-delimited dense granules of various types, coated pits and vesicles, endocytic and phagocytic vesicles, multivesicular bodies, several peroxisome-like organelles, mitochondria with inclusions, scant endoplasmic reticulum and small Golgi apparatus. These cells show the presence of few lipid droplets and variable amounts of glycogen particles. Some of the substructural features of the granules are documented here to indicate their probable biogenesis, growth and relationship with the endolysosomal compartment. In addition, in vitro phagocytosis experiments demonstrate that both hyalinocytes and granulocytes uptake latex and zymosan particles, granulocytes being much more active in phagocytosis than hyalinocytes.

  12. High-speed superresolution imaging of the proteins in fission yeast clathrin-mediated endocytic actin patches

    PubMed Central

    Arasada, Rajesh; Sayyad, Wasim A.; Berro, Julien; Pollard, Thomas D.

    2018-01-01

    To internalize nutrients and cell surface receptors via clathrin-mediated endocytosis, cells assemble at least 50 proteins, including clathrin, clathrin-interacting proteins, actin filaments, and actin binding proteins, in a highly ordered and regulated manner. The molecular mechanism by which actin filament polymerization deforms the cell membrane is unknown, largely due to lack of knowledge about the organization of the regulatory proteins and actin filaments. We used high-speed superresolution localization microscopy of live fission yeast cells to improve the spatial resolution to ∼35 nm with 1-s temporal resolution. The nucleation promoting factors Wsp1p (WASp) and Myo1p (myosin-I) define two independent pathways that recruit Arp2/3 complex, which assembles two zones of actin filaments. Myo1p concentrates at the site of endocytosis and initiates a zone of actin filaments assembled by Arp2/3 complex. Wsp1p appears simultaneously at this site but subsequently moves away from the cell surface as it stimulates Arp2/3 complex to assemble a second zone of actin filaments. Cells lacking either nucleation-promoting factor assemble only one, stationary, zone of actin filaments. These observations support our two-zone hypothesis to explain endocytic tubule elongation and vesicle scission in fission yeast. PMID:29212877

  13. FRET analysis of transmembrane flipping of FM4-64 in plant cells: is FM4-64 a robust marker for endocytosis?

    PubMed

    Griffing, L R

    2008-08-01

    Although the styryl dye FM4-64 is now used routinely to monitor endocytosis in plants, the argument about its potential to cytoplasmically and non-endocytically relocate into a selective set of vesicular compartments persists. To address this question, we determined whether fluorescence resonance energy transfer (FRET) could occur between a cytoplasmically expressed, short-wavelength excitation green fluorescent protein (GFP) and FM4-64 in Nicotiana benthaminana. After exposure to FM4-64, the root hair plasma membrane and internal organelles became labelled. Under these conditions, no FRET with cytoplasmic GFP was seen. However, if the cells were treated with a low concentration of quillajasaponin, a membrane permeabilization agent, the cells continued to stream and FRET was detected. Thereby, we demonstrate that under conditions that do not severely compromise cell viability, the FM4-64 dye becomes a suitable FRET partner for the cytoplasmically localized GFP. Under normal conditions, FM4-64 does not significantly enter the cytosolic side of the membrane, but remains at the plasma membrane or trapped in the organelles of the endocytic pathway. Hence, when the structure or permeability of the plasma membrane is unaltered, FM4-64 dye is a robust marker for endocytosis.

  14. Autophagy and Mis-targeting of Therapeutic Enzyme in Skeletal Muscle in Pompe Disease

    PubMed Central

    Fukuda, Tokiko; Ahearn, Meghan; Roberts, Ashley; Mattaliano, Robert J.; Zaal, Kristien; Ralston, Evelyn; Plotz, Paul H.; Raben, Nina

    2009-01-01

    Enzyme replacement therapy (ERT) became a reality for patients with Pompe disease, a fatal cardiomyopathy and skeletal muscle myopathy caused by a deficiency of glycogen-degrading lysosomal enzyme acid alpha-glucosidase (GAA). The therapy, which relies on receptor-mediated endocytosis of recombinant human GAA (rhGAA), appears to be effective in cardiac muscle, but less so in skeletal muscle. We have previously shown a profound disturbance of the lysosomal degradative pathway (autophagy) in therapy-resistant muscle of GAA knockout mice (KO). Our findings here demonstrate a progressive age-dependent autophagic build-up in addition to enlargement of glycogen-filled lysosomes in multiple muscle groups in the KO. Trafficking and processing of the therapeutic enzyme along the endocytic pathway appear to be affected by the autophagy. Confocal microscopy of live single muscle fibers exposed to fluorescently labeled rhGAA indicates that a significant portion of the endocytosed enzyme in the KO was trapped as a partially processed form in the autophagic areas instead of reaching its target – the lysosomes. A fluid-phase endocytic marker was similarly mis-targeted and accumulated in vesicular structures within the autophagic areas. These findings may explain why ERT often falls short of reversing the disease process, and point to new avenues for the development of pharmacological intervention. PMID:17008131

  15. LRP in amyloid-beta production and metabolism.

    PubMed

    Bu, Guojun; Cam, Judy; Zerbinatti, Celina

    2006-11-01

    Amyloid-beta peptide (Abeta) production and accumulation in the brain is a central event in the pathogenesis of Alzheimer's disease (AD). Recent studies have shown that apolipoprotein E (apoE) receptors, members of the low-density lipoprotein receptor (LDLR) family, modulate Abeta production as well as Abeta cellular uptake. Abeta is derived from proteolytic processing of the amyloid precursor protein (APP), which interacts with several members of the LDLR family. Studies from our laboratory have focused on two members of the LDLR family, the LDLR-related protein (LRP) and LRP1B. Our in vitro studies have shown that while LRP's rapid endocytosis facilitates APP endocytic trafficking and processing to Abeta, LRP1B's slow endocytosis inhibits these processes. In addition to modulating APP endocytic trafficking, LRP's rapid endocytosis also facilitates Abeta cellular uptake by binding to Abeta either directly or via LRP ligands such as apoE. Our in vivo studies using transgenic mice have shown that overexpression of LRP in central nervous system (CNS) neurons increases soluble brain Abeta and this increase correlates with deficits in memory. Together our studies demonstrate that members of the LDLR family modulate APP processing and Abeta metabolism by several independent mechanisms. Understanding the pathways that modulate brain Abeta metabolism may enable the rational design of molecular medicine to treat AD.

  16. Vitellogenesis in Bufo arenarum: Identification, characterization and immunolocalization of high molecular mass lipovitellin during oogenesis

    PubMed Central

    O’Brien, Emma D.; Salicioni, Ana M.; Cabada, Marcelo O.; Arranz, Silvia E.

    2009-01-01

    Vitellogenin (Vtg), a large lipoglycophosphoprotein, is the most important precursor of the yolk proteins, and the major source of nutrients for the developing embryo in oviparous species. After its uptake by the oocytes, Vtg is converted into lipovitellins (high and light) and phosvitin, which are deposited into crystalline yolk platelets. We describe here the presence of two high molecular mass lipovitellins isoforms in Bufo arenarum mature oocytes with masses of 113 and 100 kDa, respectively. The amino acid sequence analysis of p113 and p100 peptides showed a high sequence homology between both polypeptides and the complete reported sequences of Xenopus laevis vitellogenin. Using specific antibodies, we determined that the Vtg uptake begins early during oogenesis, at the previtellogenic stage, and continues until oocytes have reached their mature status. In addition, we found that large endocytic vesicles mediate Vtg uptake in stage I oocytes, and that the size of the endocytic vesicles declines with oogenesis progression. In terms of the Vtg protein trafficking, we detected the Vtg precursor (190 kDa) in the liver of estradiol-injected females. Finally, we propose a subclassification of B. arenarum stage-II oocytes into three physiologically and morphologically distinct periods (early, mid and late). PMID:19932187

  17. Vitellogenesis in Bufo arenarum: identification, characterization and immunolocalization of high molecular mass lipovitellin during oogenesis.

    PubMed

    O'Brien, Emma D; Salicioni, Ana M; Cabada, Marcelo O; Arranz, Silvia E

    2010-03-01

    Vitellogenin (Vtg), a large lipoglycophosphoprotein, is the most important precursor of the yolk proteins, and the major source of nutrients for the developing embryo in oviparous species. After its uptake by the oocytes, Vtg is converted into lipovitellins (high and light) and phosvitin, which are deposited into crystalline yolk platelets. We describe here the presence of two high molecular mass lipovitellin isoforms in Bufo arenarum mature oocytes with masses of 113 and 100 kDa, respectively. The amino acid sequence analysis of p113 and p100 peptides showed a high sequence homology between both polypeptides and the complete reported sequences of Xenopus laevis vitellogenin. Using specific antibodies, we determined that the Vtg uptake begins early during oogenesis, at the previtellogenic stage, and continues until oocytes have reached their mature status. In addition, we found that large endocytic vesicles mediate Vtg uptake in stage I oocytes, and that the size of the endocytic vesicles declines with oogenesis progression. In terms of the Vtg protein trafficking, we detected the Vtg precursor (190 kDa) in the liver of estradiol-injected females. Finally, we propose a subclassification of B. arenarum stage II oocytes into three physiologically and morphologically distinct periods (early, mid and late). 2009 Elsevier Inc. All rights reserved.

  18. Design and application of cationic amphiphilic β-cyclodextrin derivatives as gene delivery vectors

    NASA Astrophysics Data System (ADS)

    Wan, Ning; Huan, Meng-Lei; Ma, Xi-Xi; Jing, Zi-Wei; Zhang, Ya-Xuan; Li, Chen; Zhou, Si-Yuan; Zhang, Bang-Le

    2017-11-01

    The nano self-assembly profiles of amphiphilic gene delivery vectors could improve the density of local cationic head groups to promote their DNA condensation capability and enhance the interaction between cell membrane and hydrophobic tails, thus increasing cellular uptake and gene transfection. In this paper, two series of cationic amphiphilic β-cyclodextrin (β-CD) derivatives were designed and synthesized by using 6-mono-OTs-β-CD (1) as the precursor to construct amphiphilic gene vectors with different building blocks in a selective and controlled manner. The effect of different type and degree of cationic head groups on transfection and the endocytic mechanism of β-CD derivatives/DNA nanocomplexes were also investigated. The results demonstrated that the designed β-cyclodextrin derivatives were able to compact DNA to form stable nanocomplexes and exhibited low cytotoxicity. Among them, PEI-1 with PEI head group showed enhanced transfection activity, significantly higher than commercially available agent PEI25000 especially in the presence of serum, showing potential application prospects in clinical trials. Moreover, the endocytic uptake mechanism involved in the gene transfection of PEI-1 was mainly through caveolae-mediated endocytosis, which could avoid the lysosomal degradation of loaded gene, and had great importance for improving gene transfection activity.

  19. The dynamics and endocytosis of Flot1 protein in response to flg22 in Arabidopsis.

    PubMed

    Yu, Meng; Liu, Haijiao; Dong, Ziyi; Xiao, Jianwei; Su, Bodan; Fan, Lusheng; Komis, George; Šamaj, Jozef; Lin, Jinxing; Li, Ruili

    2017-08-01

    Membrane microdomains play vital roles in the process of bacterial infection. The membrane microdomain-associated protein Flot1 acts in an endocytic pathway and is required for seedling development, however, whether Flot1 is a part of host defense mechanisms remains unknown. During an analysis of callose deposition, we found that Flot1 amiRNAi mutants exhibited defects in response to flg22. Using variable-angle total internal reflection fluorescence microscopy (VA-TIRFM), structured illumination microscopy (SIM) and fluorescence cross spectroscopy (FCS), we determined that the dynamic behavior of GFP-Flot1 in Arabidopsis thaliana cotyledon epidermal cells changed significantly in plants treated with the elicitor flg22. Moreover, we found that Flot1 was constitutively recycled via an endocytic pathway and that flg22 could promote endocytosis. Importantly, targeting of Flot1 to the late endosome/vacuole for degradation increased in response to flg22 treatment; immunoblot analysis showed that when triggered by flg22, GFP-Flot1 was gradually degraded in a time-dependent manner. Taken together, these findings support the hypothesis that the changing of dynamics and oligomeric states can promote the endocytosis and degradation of Flot1 under flg22 treatment in plant cells. Copyright © 2017 Elsevier GmbH. All rights reserved.

  20. Regulation of synaptic vesicle recycling by complex formation between intersectin 1 and the clathrin adaptor complex AP2

    PubMed Central

    Pechstein, Arndt; Bacetic, Jelena; Vahedi-Faridi, Ardeschir; Gromova, Kira; Sundborger, Anna; Tomlin, Nikolay; Krainer, Georg; Vorontsova, Olga; Schäfer, Johannes G.; Owe, Simen G.; Cousin, Michael A.; Saenger, Wolfram; Shupliakov, Oleg; Haucke, Volker

    2010-01-01

    Clathrin-mediated synaptic vesicle (SV) recycling involves the spatiotemporally controlled assembly of clathrin coat components at phosphatidylinositiol (4, 5)-bisphosphate [PI(4,5)P2]-enriched membrane sites within the periactive zone. Such spatiotemporal control is needed to coordinate SV cargo sorting with clathrin/AP2 recruitment and to restrain membrane fission and synaptojanin-mediated uncoating until membrane deformation and clathrin coat assembly are completed. The molecular events underlying these control mechanisms are unknown. Here we show that the endocytic SH3 domain-containing accessory protein intersectin 1 scaffolds the endocytic process by directly associating with the clathrin adaptor AP2. Acute perturbation of the intersectin 1-AP2 interaction in lamprey synapses in situ inhibits the onset of SV recycling. Structurally, complex formation can be attributed to the direct association of hydrophobic peptides within the intersectin 1 SH3A-B linker region with the “side sites” of the AP2 α- and β-appendage domains. AP2 appendage association of the SH3A-B linker region inhibits binding of the inositol phosphatase synaptojanin 1 to intersectin 1. These data identify the intersectin-AP2 complex as an important regulator of clathrin-mediated SV recycling in synapses. PMID:20160082

  1. Equine herpesvirus 1 entry via endocytosis is facilitated by alphaV integrins and an RSD motif in glycoprotein D.

    PubMed

    Van de Walle, Gerlinde R; Peters, Sarah T; VanderVen, Brian C; O'Callaghan, Dennis J; Osterrieder, Nikolaus

    2008-12-01

    Equine herpesvirus 1 (EHV-1) is a member of the Alphaherpesvirinae, and its broad tissue tropism suggests that EHV-1 may use multiple receptors to initiate virus entry. EHV-1 entry was thought to occur exclusively through fusion at the plasma membrane, but recently entry via the endocytic/phagocytic pathway was reported for Chinese hamster ovary cells (CHO-K1 cells). Here we show that cellular integrins, and more specifically those recognizing RGD motifs such as alphaVbeta5, are important during the early steps of EHV-1 entry via endocytosis in CHO-K1 cells. Moreover, mutational analysis revealed that an RSD motif in the EHV-1 envelope glycoprotein D (gD) is critical for entry via endocytosis. In addition, we show that EHV-1 enters peripheral blood mononuclear cells predominantly via the endocytic pathway, whereas in equine endothelial cells entry occurs mainly via fusion at the plasma membrane. Taken together, the data in this study provide evidence that EHV-1 entry via endocytosis is triggered by the interaction between cellular integrins and the RSD motif present in gD and, moreover, that EHV-1 uses different cellular entry pathways to infect important target cell populations of its natural host.

  2. Identification and characterization of intracellular proteins that bind oligonucleotides with phosphorothioate linkages.

    PubMed

    Liang, Xue-hai; Sun, Hong; Shen, Wen; Crooke, Stanley T

    2015-03-11

    Although the RNase H-dependent mechanism of inhibition of gene expression by chemically modified antisense oligonucleotides (ASOs) has been well characterized, little is known about the interactions between ASOs and intracellular proteins that may alter cellular localization and/or potency of ASOs. Here, we report the identification of 56 intracellular ASO-binding proteins using multi-step affinity selection approaches. Many of the tested proteins had no significant effect on ASO activity; however, some proteins, including La/SSB, NPM1, ANXA2, VARS and PC4, appeared to enhance ASO activities, likely through mechanisms related to subcellular distribution. VARS and ANXA2 co-localized with ASOs in endocytic organelles, and reduction in the level of VARS altered lysosome/ASO localization patterns, implying that these proteins may facilitate ASO release from the endocytic pathway. Depletion of La and NPM1 reduced nuclear ASO levels, suggesting potential roles in ASO nuclear accumulation. On the other hand, Ku70 and Ku80 proteins inhibited ASO activity, most likely by competition with RNase H1 for ASO/RNA duplex binding. Our results demonstrate that phosphorothioate-modified ASOs bind a set of cellular proteins that affect ASO activity via different mechanisms. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  3. Design and application of cationic amphiphilic β-cyclodextrin derivatives as gene delivery vectors.

    PubMed

    Wan, Ning; Huan, Meng-Lei; Ma, Xi-Xi; Jing, Zi-Wei; Zhang, Ya-Xuan; Li, Chen; Zhou, Si-Yuan; Zhang, Bang-Le

    2017-11-17

    The nano self-assembly profiles of amphiphilic gene delivery vectors could improve the density of local cationic head groups to promote their DNA condensation capability and enhance the interaction between cell membrane and hydrophobic tails, thus increasing cellular uptake and gene transfection. In this paper, two series of cationic amphiphilic β-cyclodextrin (β-CD) derivatives were designed and synthesized by using 6-mono-OTs-β-CD (1) as the precursor to construct amphiphilic gene vectors with different building blocks in a selective and controlled manner. The effect of different type and degree of cationic head groups on transfection and the endocytic mechanism of β-CD derivatives/DNA nanocomplexes were also investigated. The results demonstrated that the designed β-cyclodextrin derivatives were able to compact DNA to form stable nanocomplexes and exhibited low cytotoxicity. Among them, PEI-1 with PEI head group showed enhanced transfection activity, significantly higher than commercially available agent PEI25000 especially in the presence of serum, showing potential application prospects in clinical trials. Moreover, the endocytic uptake mechanism involved in the gene transfection of PEI-1 was mainly through caveolae-mediated endocytosis, which could avoid the lysosomal degradation of loaded gene, and had great importance for improving gene transfection activity.

  4. Entry of Porphyromonas gingivalis outer membrane vesicles into epithelial cells causes cellular functional impairment.

    PubMed

    Furuta, Nobumichi; Takeuchi, Hiroki; Amano, Atsuo

    2009-11-01

    Porphyromonas gingivalis, a periodontal pathogen, secretes outer membrane vesicles (MVs) that contain major virulence factors, including proteases termed gingipains (Arg-gingipain [Rgp] and Lys-gingipain [Kgp]). We recently showed that P. gingivalis MVs swiftly enter host epithelial cells via an endocytosis pathway and are finally sorted to lytic compartments. However, it remains unknown whether MV entry impairs cellular function. Herein, we analyzed cellular functional impairment following entry of P. gingivalis into epithelial cells, including HeLa and immortalized human gingival epithelial (IHGE) cells. After being taken up by endocytic vacuoles, MVs degraded the cellular transferrin receptor (TfR) and integrin-related signaling molecules, such as paxillin and focal adhesion kinase (FAK), which resulted in depletion of intracellular transferrin and inhibition of cellular migration. Few Rgp-null MVs entered the cells, and these negligibly degraded TfR, whereas paxillin and FAK degradation was significant. In contrast, Kgp-null MVs clearly entered the cells and degraded TfR, while they scarcely degraded paxillin and FAK. In addition, both wild-type and Kgp-null MVs significantly impaired cellular migration, whereas the effect of Rgp-null MVs was limited. Our findings suggest that, following entry of P. gingivalis MVs into host cells, MV-associated gingipains degrade cellular functional molecules such as TfR and paxillin/FAK, resulting in cellular impairment, indicating that P. gingivalis MVs are potent vehicles for transmission of virulence factors into host cells and are involved in the etiology of periodontitis.

  5. Deletion of Numb/Numblike in glutamatergic neurons leads to anxiety-like behavior in mice.

    PubMed

    Qian, Wenyu; Hong, Yang; Zhu, Minyan; Zhou, Liang; Li, Hongchang; Li, Huashun

    2017-06-15

    Endocytic adaptor protein Numb is the first identified cell fate determinant in Drosophila melanogaster. It has been implicated in Notch signaling pathway and regulation of neural stem cells proliferation in the central nervous system. Numb is also expressed in postmitotic neurons, in vitro studies showed that Numb is involved in neuronal morphologic development, such as neurite growth, axonal growth and spine development. However, in vivo functions of Numb in the postmitotic neurons are largely unknown. Here we show that deletion of Numb/Numblike in glutamatergic neurons causes anxiety-like behavior in mouse. In this study, we conditionally deleted Numb and its homologous gene Numblike in the glutamatergic neurons in dorsal forebrain, and thoroughly characterized the behavioral phenotypes of mutant mice. On a battery of tests for anxiety-like behavior, the conditional double knockout mice showed increased anxiety-like behavior on light/dark exploration and novel open field tests, but not on elevated zero maze tests. The conditional double knockout mice also displayed novelty induced hyperactivity in novel open field test. Control measures of general health, motor functions, startle response, sensorimotor gating, depression-related behaviors did not show differences between genotypes. Our present findings provide new insight into the indispensable functions of Numb/Numblike in the brain and behavior, and suggest that Numb/Numblike may play a role in mediating neuronal functions that underlie behaviors related to anxiety. Copyright © 2017. Published by Elsevier B.V.

  6. Entry of Porphyromonas gingivalis Outer Membrane Vesicles into Epithelial Cells Causes Cellular Functional Impairment▿

    PubMed Central

    Furuta, Nobumichi; Takeuchi, Hiroki; Amano, Atsuo

    2009-01-01

    Porphyromonas gingivalis, a periodontal pathogen, secretes outer membrane vesicles (MVs) that contain major virulence factors, including proteases termed gingipains (Arg-gingipain [Rgp] and Lys-gingipain [Kgp]). We recently showed that P. gingivalis MVs swiftly enter host epithelial cells via an endocytosis pathway and are finally sorted to lytic compartments. However, it remains unknown whether MV entry impairs cellular function. Herein, we analyzed cellular functional impairment following entry of P. gingivalis into epithelial cells, including HeLa and immortalized human gingival epithelial (IHGE) cells. After being taken up by endocytic vacuoles, MVs degraded the cellular transferrin receptor (TfR) and integrin-related signaling molecules, such as paxillin and focal adhesion kinase (FAK), which resulted in depletion of intracellular transferrin and inhibition of cellular migration. Few Rgp-null MVs entered the cells, and these negligibly degraded TfR, whereas paxillin and FAK degradation was significant. In contrast, Kgp-null MVs clearly entered the cells and degraded TfR, while they scarcely degraded paxillin and FAK. In addition, both wild-type and Kgp-null MVs significantly impaired cellular migration, whereas the effect of Rgp-null MVs was limited. Our findings suggest that, following entry of P. gingivalis MVs into host cells, MV-associated gingipains degrade cellular functional molecules such as TfR and paxillin/FAK, resulting in cellular impairment, indicating that P. gingivalis MVs are potent vehicles for transmission of virulence factors into host cells and are involved in the etiology of periodontitis. PMID:19737899

  7. Cyclic adenosine monophosphate levels and the function of skin microvascular endothelial cells.

    PubMed

    Tuder, R M; Karasek, M A; Bensch, K G

    1990-02-01

    The maintenance of the normal epithelioid morphology of human dermal microvascular endothelial cells (MEC) grown in vitro depends strongly on the presence of factors that increase intracellular levels of cyclic AMP. Complete removal of dibutyryl cAMP and isobutylmethylxanthine (IMX) from the growth medium results in a progressive transition from an epithelioid to a spindle-shaped cell line. This transition cannot be reversed by the readdition of dibutyryl cAMP and IMX to the growth medium or by addition of agonists that increase cAMP levels. Spindle-shaped MEC lose the ability to express Factor VIII rAG and DR antigens and to bind peripheral blood mononuclear leukocyte (PBML). Ultrastructural analyses of transitional cells and spindle-shaped cells show decreased numbers of Weibel-Palade bodies in transitional cells and their complete absence in spindle-shaped cells. Interferon-gamma alters several functional properties of both epithelioid and spindle-shaped cells. In the absence of dibutyryl cAMP it accelerates the transition from epithelial to spindle-shaped cells, whereas in the presence of cyclic AMP interferon-gamma increases the binding of PBMLs to both epithelioid and spindle-shaped MEC and the endocytic activity of the endothelial cells. These results suggest that cyclic AMP is an important second messenger in the maintenance of several key functions of microvascular endothelial cells. Factors that influence the levels of this messenger in vivo can be expected to influence the angiogenic and immunologic functions of the microvasculature.

  8. A Neuron-Specific Antiviral Mechanism Prevents Lethal Flaviviral Infection of Mosquitoes

    PubMed Central

    Xiao, Xiaoping; Zhang, Rudian; Pang, Xiaojing; Liang, Guodong; Wang, Penghua; Cheng, Gong

    2015-01-01

    Mosquitoes are natural vectors for many etiologic agents of human viral diseases. Mosquito-borne flaviviruses can persistently infect the mosquito central nervous system without causing dramatic pathology or influencing the mosquito behavior and lifespan. The mechanism by which the mosquito nervous system resists flaviviral infection is still largely unknown. Here we report that an Aedes aegypti homologue of the neural factor Hikaru genki (AaHig) efficiently restricts flavivirus infection of the central nervous system. AaHig was predominantly expressed in the mosquito nervous system and localized to the plasma membrane of neural cells. Functional blockade of AaHig enhanced Dengue virus (DENV) and Japanese encephalitis virus (JEV), but not Sindbis virus (SINV), replication in mosquito heads and consequently caused neural apoptosis and a dramatic reduction in the mosquito lifespan. Consistently, delivery of recombinant AaHig to mosquitoes reduced viral infection. Furthermore, the membrane-localized AaHig directly interfaced with a highly conserved motif in the surface envelope proteins of DENV and JEV, and consequently interrupted endocytic viral entry into mosquito cells. Loss of either plasma membrane targeting or virion-binding ability rendered AaHig nonfunctional. Interestingly, Culex pipien pallens Hig also demonstrated a prominent anti-flavivirus activity, suggesting a functionally conserved function for Hig. Our results demonstrate that an evolutionarily conserved antiviral mechanism prevents lethal flaviviral infection of the central nervous system in mosquitoes, and thus may facilitate flaviviral transmission in nature. PMID:25915054

  9. Yeast Gup1(2) Proteins Are Homologues of the Hedgehog Morphogens Acyltransferases HHAT(L): Facts and Implications

    PubMed Central

    Lucas, Cândida; Ferreira, Célia; Cazzanelli, Giulia; Franco-Duarte, Ricardo; Tulha, Joana

    2016-01-01

    In multiple tissues, the Hedgehog secreted morphogen activates in the receiving cells a pathway involved in cell fate, proliferation and differentiation in the receiving cells. This pathway is particularly important during embryogenesis. The protein HHAT (Hedgehog O-acyltransferase) modifies Hh morphogens prior to their secretion, while HHATL (Hh O-acyltransferase-like) negatively regulates the pathway. HHAT and HHATL are homologous to Saccharomyces cerevisiae Gup2 and Gup1, respectively. In yeast, Gup1 is associated with a high number and diversity of biological functions, namely polarity establishment, secretory/endocytic pathway functionality, vacuole morphology and wall and membrane composition, structure and maintenance. Phenotypes underlying death, morphogenesis and differentiation are also included. Paracrine signalling, like the one promoted by the Hh pathway, has not been shown to occur in microbial communities, despite the fact that large aggregates of cells like biofilms or colonies behave as proto-tissues. Instead, these have been suggested to sense the population density through the secretion of quorum-sensing chemicals. This review focuses on Gup1/HHATL and Gup2/HHAT proteins. We review the functions and physiology associated with these proteins in yeasts and higher eukaryotes. We suggest standardisation of the presently chaotic Gup-related nomenclature, which includes KIAA117, c3orf3, RASP, Skinny, Sightless and Central Missing, in order to avoid the disclosure of otherwise unnoticed information. PMID:29615596

  10. Unique associations between young adult men's emotional functioning and their body dissatisfaction and disordered eating.

    PubMed

    Griffiths, Scott; Angus, Douglas; Murray, Stuart B; Touyz, Stephen

    2014-03-01

    Research on emotional functioning, body dissatisfaction, and disordered eating in males is predominated by studies of negative affect and emotion regulation. Other aspects of emotional functioning, namely emotion recognition and attentional biases toward emotional stimuli, have received little empirical attention. The present study investigated the unique associations between different aspects of men's emotional functioning and their disordered eating attitudes, muscularity dissatisfaction, and body fat dissatisfaction. Results from 132 male undergraduates showed that muscularity dissatisfaction was uniquely associated with both emotion regulation difficulties and an attentional bias toward rejecting faces. Body fat dissatisfaction was not uniquely associated with any aspect of emotional functioning. Disordered eating was uniquely associated with emotion regulation difficulties. Collectively, the results indicate differences in the patterns of associations between men's emotional functioning and their body dissatisfaction and disordered eating. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Loss of functionally unique species may gradually undermine ecosystems

    PubMed Central

    O'Gorman, Eoin J.; Yearsley, Jon M.; Crowe, Tasman P.; Emmerson, Mark C.; Jacob, Ute; Petchey, Owen L.

    2011-01-01

    Functionally unique species contribute to the functional diversity of natural systems, often enhancing ecosystem functioning. An abundance of weakly interacting species increases stability in natural systems, suggesting that loss of weakly linked species may reduce stability. Any link between the functional uniqueness of a species and the strength of its interactions in a food web could therefore have simultaneous effects on ecosystem functioning and stability. Here, we analyse patterns in 213 real food webs and show that highly unique species consistently tend to have the weakest mean interaction strength per unit biomass in the system. This relationship is not a simple consequence of the interdependence of both measures on body size and appears to be driven by the empirical pattern of size structuring in aquatic systems and the trophic position of each species in the web. Food web resolution also has an important effect, with aggregation of species into higher taxonomic groups producing a much weaker relationship. Food webs with fewer unique and less weakly interacting species also show significantly greater variability in their levels of primary production. Thus, the loss of highly unique, weakly interacting species may eventually lead to dramatic state changes and unpredictable levels of ecosystem functioning. PMID:21106593

  12. Cone photoreceptor sensitivities and unique hue chromatic responses: correlation and causation imply the physiological basis of unique hues.

    PubMed

    Pridmore, Ralph W

    2013-01-01

    This paper relates major functions at the start and end of the color vision process. The process starts with three cone photoreceptors transducing light into electrical responses. Cone sensitivities were once expected to be Red Green Blue color matching functions (to mix colors) but microspectrometry proved otherwise: they instead peak in yellowish, greenish, and blueish hues. These physiological functions are an enigma, unmatched with any set of psychophysical (behavioral) functions. The end-result of the visual process is color sensation, whose essential percepts are unique (or pure) hues red, yellow, green, blue. Unique hues cannot be described by other hues, but can describe all other hues, e.g., that hue is reddish-blue. They are carried by four opponent chromatic response curves but the literature does not specify whether each curve represents a range of hues or only one hue (a unique) over its wavelength range. Here the latter is demonstrated, confirming that opponent chromatic responses define, and may be termed, unique hue chromatic responses. These psychophysical functions also are an enigma, unmatched with any physiological functions or basis. Here both enigmas are solved by demonstrating the three cone sensitivity curves and the three spectral chromatic response curves are almost identical sets (Pearson correlation coefficients r from 0.95-1.0) in peak wavelengths, curve shapes, math functions, and curve crossover wavelengths, though previously unrecognized due to presentation of curves in different formats, e.g., log, linear. (Red chromatic response curve is largely nonspectral and thus derives from two cones.) Close correlation combined with deterministic causation implies cones are the physiological basis of unique hues. This match of three physiological and three psychophysical functions is unique in color vision.

  13. Cone Photoreceptor Sensitivities and Unique Hue Chromatic Responses: Correlation and Causation Imply the Physiological Basis of Unique Hues

    PubMed Central

    Pridmore, Ralph W.

    2013-01-01

    This paper relates major functions at the start and end of the color vision process. The process starts with three cone photoreceptors transducing light into electrical responses. Cone sensitivities were once expected to be Red Green Blue color matching functions (to mix colors) but microspectrometry proved otherwise: they instead peak in yellowish, greenish, and blueish hues. These physiological functions are an enigma, unmatched with any set of psychophysical (behavioral) functions. The end-result of the visual process is color sensation, whose essential percepts are unique (or pure) hues red, yellow, green, blue. Unique hues cannot be described by other hues, but can describe all other hues, e.g., that hue is reddish-blue. They are carried by four opponent chromatic response curves but the literature does not specify whether each curve represents a range of hues or only one hue (a unique) over its wavelength range. Here the latter is demonstrated, confirming that opponent chromatic responses define, and may be termed, unique hue chromatic responses. These psychophysical functions also are an enigma, unmatched with any physiological functions or basis. Here both enigmas are solved by demonstrating the three cone sensitivity curves and the three spectral chromatic response curves are almost identical sets (Pearson correlation coefficients r from 0.95–1.0) in peak wavelengths, curve shapes, math functions, and curve crossover wavelengths, though previously unrecognized due to presentation of curves in different formats, e.g., log, linear. (Red chromatic response curve is largely nonspectral and thus derives from two cones.) Close correlation combined with deterministic causation implies cones are the physiological basis of unique hues. This match of three physiological and three psychophysical functions is unique in color vision. PMID:24204755

  14. Exosomes: From Garbage Bins to Promising Therapeutic Targets

    PubMed Central

    H. Rashed, Mohammed; Bayraktar, Emine; K. Helal, Gouda; Abd-Ellah, Mohamed F.; Amero, Paola; Chavez-Reyes, Arturo; Rodriguez-Aguayo, Cristian

    2017-01-01

    Intercellular communication via cell-released vesicles is a very important process for both normal and tumor cells. Cell communication may involve exosomes, small vesicles of endocytic origin that are released by all types of cells and are found in abundance in body fluids, including blood, saliva, urine, and breast milk. Exosomes have been shown to carry lipids, proteins, mRNAs, non-coding RNAs, and even DNA out of cells. They are more than simply molecular garbage bins, however, in that the molecules they carry can be taken up by other cells. Thus, exosomes transfer biological information to neighboring cells and through this cell-to-cell communication are involved not only in physiological functions such as cell-to-cell communication, but also in the pathogenesis of some diseases, including tumors and neurodegenerative conditions. Our increasing understanding of why cells release exosomes and their role in intercellular communication has revealed the very complex and sophisticated contribution of exosomes to health and disease. The aim of this review is to reveal the emerging roles of exosomes in normal and pathological conditions and describe the controversial biological role of exosomes, as it is now understood, in carcinogenesis. We also summarize what is known about exosome biogenesis, composition, functions, and pathways and discuss the potential clinical applications of exosomes, especially as biomarkers and novel therapeutic agents. PMID:28257101

  15. Lysosomal exocytosis and lipid storage disorders

    PubMed Central

    Samie, Mohammad Ali; Xu, Haoxing

    2014-01-01

    Lysosomes are acidic compartments in mammalian cells that are primarily responsible for the breakdown of endocytic and autophagic substrates such as membranes, proteins, and lipids into their basic building blocks. Lysosomal storage diseases (LSDs) are a group of metabolic disorders caused by genetic mutations in lysosomal hydrolases required for catabolic degradation, mutations in lysosomal membrane proteins important for catabolite export or membrane trafficking, or mutations in nonlysosomal proteins indirectly affecting these lysosomal functions. A hallmark feature of LSDs is the primary and secondary excessive accumulation of undigested lipids in the lysosome, which causes lysosomal dysfunction and cell death, and subsequently pathological symptoms in various tissues and organs. There are more than 60 types of LSDs, but an effective therapeutic strategy is still lacking for most of them. Several recent in vitro and in vivo studies suggest that induction of lysosomal exocytosis could effectively reduce the accumulation of the storage materials. Meanwhile, the molecular machinery and regulatory mechanisms for lysosomal exocytosis are beginning to be revealed. In this paper, we first discuss these recent developments with the focus on the functional interactions between lipid storage and lysosomal exocytosis. We then discuss whether lysosomal exocytosis can be manipulated to correct lysosomal and cellular dysfunction caused by excessive lipid storage, providing a potentially general therapeutic approach for LSDs. PMID:24668941

  16. Synergistic effect of methionine encephalin (MENK) combined with pidotimod(PTD) on the maturation of murine dendritic cells (DCs)

    PubMed Central

    Meng, Yiming; Wang, Qiushi; Zhang, Zhenjie; Wang, Enhua; Plotnikoff, Nicollas P.; Shan, Fengping

    2013-01-01

    To gain new insight into the functional interaction between dendritic cells and methionine encephalin (MENK) combined with pidotimod (PTD), we have analyzed the effect of MENK plus PTD on the morphology, phenotype and functions of murine bone-marrow derived dendritic cells (BMDCs) in vitro. The maturation of BMDCs cultured in the presence of either MENK or PTD alone, or MENK in combination with PTD, was detected. The cell proliferation was measured by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxy-methoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt/phenazinemethosulphate (MTS/PMS). The changes of BMDCs morphology were confirmed with light microscopy, transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The BMDCs treated with MENK combined with PTD displayed a higher expression of typical maturation markers of CD40, CD80, CD83, CD86 and MHC-IIidentified by fluorescence activated cell sorting (FACS), and stronger ability to drive T cells. The decrease of the endocytic ability was assayed by DAB kit, FITC-dextran and cellular immunohistochemistry. Finally upregulation of cytokines production of IL-12 and TNF-α was determined by ELISA. These data indicate that MENK combined with PTD could exert synergistic action on BMDC maturation. PMID:23470544

  17. Rapid Endolysosomal Escape and Controlled Intracellular Trafficking of Cell Surface Mimetic Quantum-Dots-Anchored Peptides and Glycopeptides.

    PubMed

    Tan, Roger S; Naruchi, Kentaro; Amano, Maho; Hinou, Hiroshi; Nishimura, Shin-Ichiro

    2015-09-18

    A novel strategy for the development of a high performance nanoparticules platform was established by means of cell surface mimetic quantum-dots (QDs)-anchored peptides/glycopeptides, which was developed as a model system for nanoparticle-based drug delivery (NDD) vehicles with defined functions helping the specific intracellular trafficking after initial endocytosis. In this paper, we proposed a standardized protocol for the preparation of multifunctional QDs that allows for efficient cellular uptake and rapid escaping from the endolysosomal system and subsequent cytoplasmic molecular delivery to the target cellular compartment. Chemoselective ligation of the ketone-functionalized hexahistidine derivative facilitated both efficient endocytic entry and rapid endolysosomal escape of the aminooxy/phosphorylcholine self-assembled monolayer-coated QDs (AO/PCSAM-QDs) to the cytosol in various cell lines such as human normal and cancer cells, while modifications of these QDs with cell-penetrating arginine-rich peptides showed poor cellular uptake and induced self-aggregation of AO/PCSAM-QDs. Combined use of hexahistidylated AO/PCSAM-QDs with serglycine-like glycopeptides, namely synthetic proteoglycan initiators (PGIs), elicited the entry and controlled intracellular trafficking, Golgi localization, and also excretion of these nanoparticles, which suggested that the present approach would provide an ideal platform for the design of high performance NDD systems.

  18. Live Cells as Dynamic Laboratories: Time Lapse Raman Spectral Microscopy of Nanoparticles with Both IgE Targeting and pH-Sensing Functions

    DOE PAGES

    Nowak-Lovato, Kristy L.; Rector, Kirk D.

    2012-01-01

    Tmore » his review captures the use of live cells as dynamic microlaboratories through implementation of labeled nanoparticles (nanosensors) that have both sensing and targeting functions. he addition of 2,4-ε-dinitrophenol-L-lysine (DNP) as a FcεRI targeting ligand and 4-mercaptopyridine (4-MPy) as a pH-sensing ligand enables spatial and temporal monitoring of FcεRI receptors and their pH environment within the endocytic pathway. o ensure reliability, the sensor is calibrated in vivo using the ionophore nigericin and standard buffer solutions to equilibrate the external [ H + ] concentration with that of the cell compartments. his review highlights the nanosensors, ability to traffic and respond to pH of receptor-bound nanosensors (1) at physiological temperature ( 37 ° C ) versus room temperature ( 25 ° C ) , (2) after pharmacological treatment with bafilomycin, an H + APase pump inhibitor, or amiloride, an inhibitor of Na + / H + exchange, and (3) in response to both temperature and pharmacological treatment. Whole-cell, time lapse images are demonstrated to show the ability to transform live cells into dynamic laboratories to monitor temporal and spatial endosomal pH. he versatility of these probes shows promise for future applications relevant to intracellular trafficking and intelligent drug design.« less

  19. deep-orange and carnation define distinct stages in late endosomal biogenesis in Drosophila melanogaster.

    PubMed

    Sriram, V; Krishnan, K S; Mayor, Satyajit

    2003-05-12

    Endosomal degradation is severely impaired in primary hemocytes from larvae of eye color mutants of Drosophila. Using high resolution imaging and immunofluorescence microscopy in these cells, products of eye color genes, deep-orange (dor) and carnation (car), are localized to large multivesicular Rab7-positive late endosomes containing Golgi-derived enzymes. These structures mature into small sized Dor-negative, Car-positive structures, which subsequently fuse to form tubular lysosomes. Defective endosomal degradation in mutant alleles of dor results from a failure of Golgi-derived vesicles to fuse with morphologically arrested Rab7-positive large sized endosomes, which are, however, normally acidified and mature with wild-type kinetics. This locates the site of Dor function to fusion of Golgi-derived vesicles with the large Rab7-positive endocytic compartments. In contrast, endosomal degradation is not considerably affected in car1 mutant; fusion of Golgi-derived vesicles and maturation of large sized endosomes is normal. However, removal of Dor from small sized Car-positive endosomes is slowed, and subsequent fusion with tubular lysosomes is abolished. Overexpression of Dor in car1 mutant aggravates this defect, implicating Car in the removal of Dor from endosomes. This suggests that, in addition to an independent role in fusion with tubular lysosomes, the Sec1p homologue, Car, regulates Dor function.

  20. Desmosome Assembly and Disassembly Are Membrane Raft-Dependent

    PubMed Central

    Faundez, Victor; Koval, Michael; Mattheyses, Alexa L.; Kowalczyk, Andrew P.

    2014-01-01

    Strong intercellular adhesion is critical for tissues that experience mechanical stress, such as the skin and heart. Desmosomes provide adhesive strength to tissues by anchoring desmosomal cadherins of neighboring cells to the intermediate filament cytoskeleton. Alterations in assembly and disassembly compromise desmosome function and may contribute to human diseases, such as the autoimmune skin blistering disease pemphigus vulgaris (PV). We previously demonstrated that PV auto-antibodies directed against the desmosomal cadherin desmoglein 3 (Dsg3) cause loss of adhesion by triggering membrane raft-mediated Dsg3 endocytosis. We hypothesized that raft membrane microdomains play a broader role in desmosome homeostasis by regulating the dynamics of desmosome assembly and disassembly. In human keratinocytes, Dsg3 is raft associated as determined by biochemical and super resolution immunofluorescence microscopy methods. Cholesterol depletion, which disrupts rafts, prevented desmosome assembly and adhesion, thus functionally linking rafts to desmosome formation. Interestingly, Dsg3 did not associate with rafts in cells lacking desmosomal proteins. Additionally, PV IgG-induced desmosome disassembly occurred by redistribution of Dsg3 into raft-containing endocytic membrane domains, resulting in cholesterol-dependent loss of adhesion. These findings demonstrate that membrane rafts are required for desmosome assembly and disassembly dynamics, suggesting therapeutic potential for raft targeting agents in desmosomal diseases such as PV. PMID:24498201

  1. The Role of Drosophila Merlin in the Control of Mitosis Exit and Development

    DTIC Science & Technology

    2006-07-01

    schwannomas and is associated with mutations in the tumor suppressor gene called the neurofibromatosis type 2 (NF2) gene (Chang et al., 2005; Neff...been shown to associate with endocytic compartments and because mutations in the genes , such as clathrin and ff16, that are known to be important... mutations in the Drosophila homologues of the human Neurofibromatosis 2 and yeast CDC42 genes using a simple and efficient reverse-genetic method. Genetics

  2. Identification of siRNA delivery enhancers by a chemical library screen.

    PubMed

    Gilleron, Jerome; Paramasivam, Prasath; Zeigerer, Anja; Querbes, William; Marsico, Giovanni; Andree, Cordula; Seifert, Sarah; Amaya, Pablo; Stöter, Martin; Koteliansky, Victor; Waldmann, Herbert; Fitzgerald, Kevin; Kalaidzidis, Yannis; Akinc, Akin; Maier, Martin A; Manoharan, Muthiah; Bickle, Marc; Zerial, Marino

    2015-09-18

    Most delivery systems for small interfering RNA therapeutics depend on endocytosis and release from endo-lysosomal compartments. One approach to improve delivery is to identify small molecules enhancing these steps. It is unclear to what extent such enhancers can be universally applied to different delivery systems and cell types. Here, we performed a compound library screen on two well-established siRNA delivery systems, lipid nanoparticles and cholesterol conjugated-siRNAs. We identified fifty-one enhancers improving gene silencing 2-5 fold. Strikingly, most enhancers displayed specificity for one delivery system only. By a combination of quantitative fluorescence and electron microscopy we found that the enhancers substantially differed in their mechanism of action, increasing either endocytic uptake or release of siRNAs from endosomes. Furthermore, they acted either on the delivery system itself or the cell, by modulating the endocytic system via distinct mechanisms. Interestingly, several compounds displayed activity on different cell types. As proof of principle, we showed that one compound enhanced siRNA delivery in primary endothelial cells in vitro and in the endocardium in the mouse heart. This study suggests that a pharmacological approach can improve the delivery of siRNAs in a system-specific fashion, by exploiting distinct mechanisms and acting upon multiple cell types. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  3. Megalin-Mediated Endocytosis of Vitamin D Binding Protein Correlates with 25-Hydroxycholecalciferol Actions in Human Mammary Cells1

    PubMed Central

    Rowling, Matthew J.; Kemmis, Carly M.; Taffany, David A.; Welsh, JoEllen

    2007-01-01

    The major circulating form of vitamin D is 25-hydroxycholecalciferol [25(OH)D3], which is delivered to target tissues in complex with the serum vitamin D binding protein (DBP). We recently observed that mammary cells can metabolize 25(OH)D3 to 1,25-dihydroxycholecalciferol [1,25(OH)2D3], the vitamin D receptor (VDR) ligand, and the objective of our study was to elucidate the mechanisms by which the 25(OH)D3-DBP complex is internalized by mammary cells prior to metabolism. Using fluorescent microscopy and temperature-shift techniques, we found that T-47D breast cancer cells rapidly internalize DBP via endocytosis, which is blunted by receptor-associated protein, a specific inhibitor of megalin-mediated endocytosis. Endocytosis of DBP was associated with activation of VDR by 25(OH)D3 but not 1,25(OH)2D3 (as measured by induction of the VDR target gene, CYP24). We also found that megalin and its endocytic partner, cubilin, are coexpressed in normal murine mammary tissue, in nontransformed human mammary epithelial cell lines, and in some established human breast cancer cell lines. To our knowledge, our studies are the first to demonstrate that mammary-derived cells express megalin and cubilin, which contribute to the endocytic uptake of 25(OH)D3-DBP and activation of the VDR pathway. PMID:17056796

  4. Endocytosis in the Shiitake Mushroom Lentinula edodes and Involvement of GTPase LeRAB7▿

    PubMed Central

    Lee, Ming Tsung; Szeto, Carol Ying Ying; Ng, Tak Pan; Kwan, Hoi Shan

    2007-01-01

    Endocytosis is the process by which substrates enter a cell without passing through the plasma membrane but rather invaginate the cell membrane and form intracellular vesicles. Rab7 regulates endocytic trafficking between early and late endosomes and between late endosomes and lysosomes. LeRab7 in Lentinula edodes is strongly homologous to Rab7 in Homo sapiens. Receptors for activated C kinase-1 (LeRACK1) and Rab5 GTPase (LeRAB5) were isolated as interacting partners of LeRab7, and the interactions were confirmed by in vivo and in vitro protein interaction assays. The three genes showed differential expression in the various developmental stages of the mushroom. In situ hybridization showed that the three transcripts were localized in regions of active growth, such as the outer region of trama cells, and the subhymenium of the hymenophore of mature fruiting bodies and the prehymenophore of young fruiting bodies. The existence of endocytosis in the mycelium and hymenophores was confirmed by the internalization of FM4-64. LeRAB7 was partially colocalized with the AM4-64 and was located in the late endocytic pathway. This is the first report of the presence of endocytosis in homobasidiomycetes. LeRAB7, LeRAB5, and LeRACK1 may contribute to the growth of L. edodes and cell differentiation in hymenophores. PMID:17921351

  5. N-formyl peptide receptors internalize but do not recycle in the absence of arrestins.

    PubMed

    Vines, Charlotte M; Revankar, Chetana M; Maestas, Diane C; LaRusch, Leah L; Cimino, Daniel F; Kohout, Trudy A; Lefkowitz, Robert J; Prossnitz, Eric R

    2003-10-24

    Arrestins mediate phosphorylation-dependent desensitization, internalization, and initiation of signaling cascades for the majority of G protein-coupled receptors (GPCRs). Many GPCRs undergo agonist-mediated internalization through arrestin-dependent mechanisms, wherein arrestin serves as an adapter between the receptor and endocytic proteins. To understand the role of arrestins in N-formyl peptide receptor (FPR) trafficking, we stably expressed the FPR in a mouse embryonic fibroblast cell line (MEF) that lacked endogenous arrestin 2 and arrestin 3 (arrestin-deficient). We compared FPR internalization and recycling kinetics in these cells to congenic wild type MEF cell lines. Internalization of the FPR was not altered in the absence of arrestins. Since the FPR remains associated with arrestins following internalization, we investigated whether the rate of FPR recycling was altered in arrestin-deficient cells. While the FPR was able to recycle in the wild type cells, receptor recycling was largely absent in the arrestin double knockout cells. Reconstitution of the arrestin-deficient line with either arrestin 2 or arrestin 3 restored receptor recycling. Confocal fluorescence microscopy studies demonstrated that in arrestin-deficient cells the FPR may become trapped in the perinuclear recycling compartment. These observations indicate that, although the FPR can internalize in the absence of arrestins, recycling of internalized receptors to the cell surface is prevented. Our results suggest a novel role for arrestins in the post-endocytic trafficking of GPCRs.

  6. Entry of Human Papillomavirus Type 16 by Actin-Dependent, Clathrin- and Lipid Raft-Independent Endocytosis

    PubMed Central

    Schelhaas, Mario; Shah, Bhavin; Holzer, Michael; Blattmann, Peter; Kühling, Lena; Day, Patricia M.; Schiller, John T.; Helenius, Ari

    2012-01-01

    Infectious endocytosis of incoming human papillomavirus type 16 (HPV-16), the main etiological agent of cervical cancer, is poorly characterized in terms of cellular requirements and pathways. Conflicting reports attribute HPV-16 entry to clathrin-dependent and -independent mechanisms. To comprehensively describe the cell biological features of HPV-16 entry into human epithelial cells, we compared HPV-16 pseudovirion (PsV) infection in the context of cell perturbations (drug inhibition, siRNA silencing, overexpression of dominant mutants) to five other viruses (influenza A virus, Semliki Forest virus, simian virus 40, vesicular stomatitis virus, and vaccinia virus) with defined endocytic requirements. Our analysis included infection data, i.e. GFP expression after plasmid delivery by HPV-16 PsV, and endocytosis assays in combination with electron, immunofluorescence, and video microscopy. The results indicated that HPV-16 entry into HeLa and HaCaT cells was clathrin-, caveolin-, cholesterol- and dynamin-independent. The virus made use of a potentially novel ligand-induced endocytic pathway related to macropinocytosis. This pathway was distinct from classical macropinocytosis in regards to vesicle size, cholesterol-sensitivity, and GTPase requirements, but similar in respect to the need for tyrosine kinase signaling, actin dynamics, Na+/H+ exchangers, PAK-1 and PKC. After internalization the virus was transported to late endosomes and/or endolysosomes, and activated through exposure to low pH. PMID:22536154

  7. Buthionine Sulfoximine Increases the Toxicity of Nifurtimox and Benznidazole to Trypanosoma cruzi

    PubMed Central

    Faundez, Mario; Pino, Laura; Letelier, Paula; Ortiz, Carla; López, Rodrigo; Seguel, Claudia; Ferreira, Jorge; Pavani, Mario; Morello, Antonio; Maya, Juan Diego

    2005-01-01

    l-Buthionine (S,R)-sulfoximine (BSO) increased the toxicity of nifurtimox and benznidazole toward the epimastigote, trypomastigote, and amastigote forms of Trypanosoma cruzi. BSO at 500 μM decreased total glutathione-derived thiols by 70 to 80% in 48 h. In epimastigotes, 500 μM BSO decreased the concentration of nifurtimox needed to inhibit constant growth of the parasites by 50%, from 14.0 to 9.0 μM, and decreased that of benznidazole from 43.6 to 24.1 μM. The survival of epimastigotes or trypomastigotes treated with nifurtimox or benznidazole, as measured by MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) reduction, was significantly decreased by 500 μM BSO. In Vero cells infected with amastigotes, 25 μM BSO was able to potentiate the effect of nifurtimox and benznidazole as measured by the percentage of infected Vero cells multiplied by the average number of intracellular amastigotes (endocytic index). At 0.5 μM nifurtimox, the proportion of Vero cells infected decreased from 27 to 20% and the endocytic index decreased from 2,500 to 980 when 25 μM BSO was added. Similar results were obtained with benznidazole- and BSO-benznidazole-treated cells. This study indicates that potentiation of nifurtimox or benznidazole by BSO could decrease the clinical dose of both drugs and diminish the side effects or the length of therapy. PMID:15616285

  8. Complement opsonization of HIV-1 results in a different intracellular processing pattern and enhanced MHC class I presentation by dendritic cells

    PubMed Central

    Tjomsland, Veronica; Ellegård, Rada; Burgener, Adam; Mogk, Kenzie; Che, Karlhans F; Westmacott, Garrett; Hinkula, Jorma; Lifson, Jeffrey D; Larsson, Marie

    2013-01-01

    Induction of optimal HIV-1-specific T-cell responses, which can contribute to controlling viral infection in vivo, depends on antigen processing and presentation processes occurring in DCs. Opsonization can influence the routing of antigen processing and pathways used for presentation. We studied antigen proteolysis and the role of endocytic receptors in MHC class I (MHCI) and II (MHCII) presentation of antigens derived from HIV-1 in human monocyte-derived immature DCs (IDCs) and mature DCs, comparing free and complement opsonized HIV-1 particles. Opsonization of virions promoted MHCI presentation by DCs, indicating that complement opsonization routes more virions toward the MHCI presentation pathway. Blockade of macrophage mannose receptor (MMR) and β7-integrin enhanced MHCI and MHCII presentation by IDCs and mature DCs, whereas the block of complement receptor 3 decreased MHCI and MHCII presentation. In addition, we found that IDC and MDC proteolytic activities were modulated by HIV-1 exposure; complement-opsonized HIV-1 induced an increased proteasome activity in IDCs. Taken together, these findings indicate that endocytic receptors such as MMR, complement receptor 3, and β7-integrin can promote or disfavor antigen presentation probably by routing HIV-1 into different endosomal compartments with distinct efficiencies for degradation of viral antigens and MHCI and MHCII presentation, and that HIV-1 affects the antigen-processing machinery. PMID:23526630

  9. Lectins as endocytic ligands: an assessment of lectin binding and uptake to rabbit conjunctival epithelial cells.

    PubMed

    Qaddoumi, Mohamed; Lee, Vincent H L

    2004-07-01

    To investigate the binding and uptake pattern of three plant lectins in rabbit conjunctival epithelial cells (RCECs) with respect to their potential for enhancing cellular macromolecular uptake. Three fluorescein-labeled plant lectins (Lycoperison esculentum, TL; Solanum tuberosum, STL; and Ulex europaeus 1, UEA-1) were screened with respect to time-, concentration-, and temperature-dependent binding and uptake. Chitin (30 mg/ml) and L-alpha-fucose (10 mM) were used as inhibitory sugars to correct for nonspecific binding of TL or STL and UEA-1, respectively. Confocal microscopy was used to confirm internalization of STL. The binding and uptake of all three lectins in RCECs was time-dependent (reaching a plateau at 1-2 h period) and saturable at 1-h period. The rank order of affinity constants (km) was STL>TL>UEA-1 with values of 0.39>0.48>4.81 microM, respectively. However, maximal, specific binding/uptake potential was in the order UEA-1>STL>TL with values of 53.7, 52.3, and 15.0 nM/mg of cell protein, respectively. Lectins showed temperature dependence in their uptake, with STL exhibiting the highest endocytic capacity. Internalized STL was visualized by confocal microscopy to be localized to the cell membrane and cytoplasm. Based on favorable binding and uptake characteristics, potato lectin appears to be a useful candidate for further investigation as an ocular drug delivery system.

  10. Dynamic Properties of the Alkaline Vesicle Population at Hippocampal Synapses

    PubMed Central

    Röther, Mareike; Brauner, Jan M.; Ebert, Katrin; Welzel, Oliver; Jung, Jasmin; Bauereiss, Anna; Kornhuber, Johannes; Groemer, Teja W.

    2014-01-01

    In compensatory endocytosis, scission of vesicles from the plasma membrane to the cytoplasm is a prerequisite for intravesicular reacidification and accumulation of neurotransmitter molecules. Here, we provide time-resolved measurements of the dynamics of the alkaline vesicle population which appears upon endocytic retrieval. Using fast perfusion pH-cycling in live-cell microscopy, synapto-pHluorin expressing rat hippocampal neurons were electrically stimulated. We found that the relative size of the alkaline vesicle population depended significantly on the electrical stimulus size: With increasing number of action potentials the relative size of the alkaline vesicle population expanded. In contrast to that, increasing the stimulus frequency reduced the relative size of the population of alkaline vesicles. Measurement of the time constant for reacification and calculation of the time constant for endocytosis revealed that both time constants were variable with regard to the stimulus condition. Furthermore, we show that the dynamics of the alkaline vesicle population can be predicted by a simple mathematical model. In conclusion, here a novel methodical approach to analyze dynamic properties of alkaline vesicles is presented and validated as a convenient method for the detection of intracellular events. Using this method we show that the population of alkaline vesicles is highly dynamic and depends both on stimulus strength and frequency. Our results implicate that determination of the alkaline vesicle population size may provide new insights into the kinetics of endocytic retrieval. PMID:25079223

  11. Disruption of the vacuolar-type H+-ATPase complex in liver causes MTORC1-independent accumulation of autophagic vacuoles and lysosomes.

    PubMed

    Kissing, Sandra; Rudnik, Sönke; Damme, Markus; Lüllmann-Rauch, Renate; Ichihara, Atsuhiro; Kornak, Uwe; Eskelinen, Eeva-Liisa; Jabs, Sabrina; Heeren, Jörg; De Brabander, Jef K; Haas, Albert; Saftig, Paul

    2017-04-03

    The vacuolar-type H + -translocating ATPase (v-H + -ATPase) has been implicated in the amino acid-dependent activation of the mechanistic target of rapamycin complex 1 (MTORC1), an important regulator of macroautophagy. To reveal the mechanistic links between the v-H + -ATPase and MTORC1, we destablilized v-H + -ATPase complexes in mouse liver cells by induced deletion of the essential chaperone ATP6AP2. ATP6AP2-mutants are characterized by massive accumulation of endocytic and autophagic vacuoles in hepatocytes. This cellular phenotype was not caused by a block in endocytic maturation or an impaired acidification. However, the degradation of LC3-II in the knockout hepatocytes appeared to be reduced. When v-H + -ATPase levels were decreased, we observed lysosome association of MTOR and normal signaling of MTORC1 despite an increase in autophagic marker proteins. To better understand why MTORC1 can be active when v-H + -ATPase is depleted, the activation of MTORC1 was analyzed in ATP6AP2-deficient fibroblasts. In these cells, very little amino acid-elicited activation of MTORC1 was observed. In contrast, insulin did induce MTORC1 activation, which still required intracellular amino acid stores. These results suggest that in vivo the regulation of macroautophagy depends not only on v-H + -ATPase-mediated regulation of MTORC1.

  12. Modulation of hydrogel nanoparticle intracellular trafficking by multivalent surface engineering with tumor targeting peptide

    NASA Astrophysics Data System (ADS)

    Karamchand, Leshern; Kim, Gwangseong; Wang, Shouyan; Hah, Hoe Jin; Ray, Aniruddha; Jiddou, Ruba; Koo Lee, Yong-Eun; Philbert, Martin A.; Kopelman, Raoul

    2013-10-01

    Surface engineering of a hydrogel nanoparticle (NP) with the tumor-targeting ligand, F3 peptide, enhances both the NP's binding affinity for, and internalization by, nucleolin overexpressing tumor cells. Remarkably, the F3-functionalized NPs consistently exhibited significantly lower trafficking to the degradative lysosomes than the non-functionalized NPs, in the tumor cells, after internalization. This is attributed to the non-functionalized NPs, but not the F3-functionalized NPs, being co-internalized with Lysosome-associated Membrane Protein-1 (LAMP1) from the surface of the tumor cells. Furthermore, it is shown that the intracellular trafficking of the F3-functionalized NPs differs significantly from that of the molecular F3 peptides (untethered to NPs). This has important implications for designing effective, chemically-responsive, controlled-release and multifunctional nanodrugs for multi-drug-resistant cancers.Surface engineering of a hydrogel nanoparticle (NP) with the tumor-targeting ligand, F3 peptide, enhances both the NP's binding affinity for, and internalization by, nucleolin overexpressing tumor cells. Remarkably, the F3-functionalized NPs consistently exhibited significantly lower trafficking to the degradative lysosomes than the non-functionalized NPs, in the tumor cells, after internalization. This is attributed to the non-functionalized NPs, but not the F3-functionalized NPs, being co-internalized with Lysosome-associated Membrane Protein-1 (LAMP1) from the surface of the tumor cells. Furthermore, it is shown that the intracellular trafficking of the F3-functionalized NPs differs significantly from that of the molecular F3 peptides (untethered to NPs). This has important implications for designing effective, chemically-responsive, controlled-release and multifunctional nanodrugs for multi-drug-resistant cancers. Electronic supplementary information (ESI) available: Effect of Potassium depletion on F3 peptide subcellular localization, MTT cytotoxicity data for endocytic inhibitors, size and morphology characterizations of hydrogel PAA nanocarriers, and optimization data for nanocarrier surface functionalization with PEG molecules and F3 peptides. See DOI: 10.1039/c3nr00908d

  13. On the existence and uniqueness of minima and maxima on spheres of the integral functional of the calculus of variations

    NASA Astrophysics Data System (ADS)

    Ricceri, Biagio

    2006-12-01

    Given a bounded domain [Omega][subset of]Rn, we prove that if is a C1 function whose gradient is Lipschitzian in Rn+1 and non-zero at 0, then, for each r>0 small enough, the restriction of the integral functional to the sphere has a unique global minimum and a unique global maximum.

  14. GPR3 Stimulates Aβ Production via Interactions with APP and β-Arrestin2

    PubMed Central

    Nelson, Christopher D.; Sheng, Morgan

    2013-01-01

    The orphan G protein-coupled receptor (GPCR) GPR3 enhances the processing of Amyloid Precursor Protein (APP) to the neurotoxic beta-amyloid (Aβ) peptide via incompletely understood mechanisms. Through overexpression and shRNA knockdown experiments in HEK293 cells, we show that β-arrestin2 (βarr2), a GPCR-interacting scaffold protein reported to bind γ-secretase, is an essential factor for GPR3-stimulated Aβ production. For a panel of GPR3 receptor mutants, the degree of stimulation of Aβ production correlates with receptor-β-arrestin binding and receptor trafficking to endocytic vesicles. However, GPR3’s recruitment of βarr2 cannot be the sole explanation, because interaction with βarr2 is common to most GPCRs, whereas GPR3 is relatively unique among GPCRs in enhancing Aβ production. In addition to β-arrestin, APP is present in a complex with GPR3 and stimulation of Aβ production by GPR3 mutants correlates with their level of APP binding. Importantly, among a broader selection of GPCRs, only GPR3 and prostaglandin E receptor 2 subtype EP2 (PTGER2; another GPCR that increases Aβ production) interact with APP, and PTGER2 does so in an agonist-stimulated manner. These data indicate that a subset of GPCRs, including GPR3 and PTGER2, can associate with APP when internalized via βarr2, and thereby promote the cleavage of APP to generate Aβ. PMID:24069330

  15. Rubella virus: first calcium-requiring viral fusion protein.

    PubMed

    Dubé, Mathieu; Rey, Felix A; Kielian, Margaret

    2014-12-01

    Rubella virus (RuV) infection of pregnant women can cause fetal death, miscarriage, or severe fetal malformations, and remains a significant health problem in much of the underdeveloped world. RuV is a small enveloped RNA virus that infects target cells by receptor-mediated endocytosis and low pH-dependent membrane fusion. The structure of the RuV E1 fusion protein was recently solved in its postfusion conformation. RuV E1 is a member of the class II fusion proteins and is structurally related to the alphavirus and flavivirus fusion proteins. Unlike the other known class II fusion proteins, however, RuV E1 contains two fusion loops, with a metal ion complexed between them by the polar residues N88 and D136. Here we demonstrated that RuV infection specifically requires Ca(2+) during virus entry. Other tested cations did not substitute. Ca(2+) was not required for virus binding to cell surface receptors, endocytic uptake, or formation of the low pH-dependent E1 homotrimer. However, Ca(2+) was required for low pH-triggered E1 liposome insertion, virus fusion and infection. Alanine substitution of N88 or D136 was lethal. While the mutant viruses were efficiently assembled and endocytosed by host cells, E1-membrane insertion and fusion were specifically blocked. Together our data indicate that RuV E1 is the first example of a Ca(2+)-dependent viral fusion protein and has a unique membrane interaction mechanism.

  16. Exosomes: Some approaches to cancer diagnosis and therapy

    NASA Astrophysics Data System (ADS)

    Shtam, T.; Samsonov, R.; Kamyshinsky, R.; Pantina, R.; Verlov, N.; Vasiliev, A.; Konevega, A. L.; Malek, A. V.

    2017-09-01

    Exosomes are membrane-bound, intercellular communication shuttle vesicles that are defined by their endocytic origin and size range of 30-120 nm. Secreted by nearly all mammalian cell types and present in bodily fluids, exosomes confer messages between cells, by transporting functionally relevant proteins, nucleic acids, and lipids. The capability of tumor exosomes to house tumorigenic information and induce cellular responses that promote disease pathogenesis make tumor exosomes an attractive tool in identifying cancer biomarkers and exploiting exosomes for therapy. In this paper, we sum up our previous findings to utilize exosomes as biomarkers for early detection, diagnosis and therapy selection of prostate and thyroid cancer and present our results on exosomes in colon cancer. Some of plasma exosomal miRNAs showed their potential as diagnostic markers for colon cancer. All together, the data suggested the potentials of circulating exosomal miRNAs as liquid biopsy markers for cancer. Here we also present the possibilities of delivering therapeutic molecules by exosomes. Previously, we had demonstrated the potential of exosome-mediated siRNA delivery. Here, we present the possibility of carrying the exogenous p53 protein by exosomes in vitro.

  17. A dileucine motif is involved in plasma membrane expression and endocytosis of rat sodium taurocholate cotransporting polypeptide (Ntcp).

    PubMed

    Stross, Claudia; Kluge, Stefanie; Weissenberger, Katrin; Winands, Elisabeth; Häussinger, Dieter; Kubitz, Ralf

    2013-11-15

    The sodium taurocholate cotransporting polypeptide (Ntcp) is the major uptake transporter for bile salts into liver parenchymal cells, and PKC-mediated endocytosis was shown to regulate the number of Ntcp molecules at the plasma membrane. In this study, mechanisms of Ntcp internalization were analyzed by flow cytometry, immunofluorescence, and Western blot analyses in HepG2 cells. PKC activation induced endocytosis of Ntcp from the plasma membrane by ~30%. Endocytosis of Ntcp was clathrin dependent and was followed by lysosomal degradation. A dileucine motif located in the third intracellular loop of Ntcp was essential for endocytosis but also for processing and plasma membrane targeting, suggesting a dual function of this motif for intracellular trafficking of Ntcp. Mutation of two of five potential phosphorylation sites surrounding the dileucine motif (Thr225 and Ser226) inhibited PKC-mediated endocytosis. In conclusion, we could identify a motif, which is critical for Ntcp plasma membrane localization. Endocytic retrieval protects hepatocytes from elevated bile salt concentrations and is of special interest, because NTCP has been identified as a receptor for the hepatitis B and D virus.

  18. The way we view cellular (glyco)sphingolipids.

    PubMed

    Hoetzl, Sandra; Sprong, Hein; van Meer, Gerrit

    2007-11-01

    Mammalian cells synthesize ceramide in the endoplasmic reticulum (ER) and convert this to sphingomyelin and complex glycosphingolipids on the inner, non-cytosolic surface of Golgi cisternae. From there, these lipids travel towards the outer, non-cytosolic surface of the plasma membrane and all membranes of the endocytic system, where they are eventually degraded. At the basis of the selective, anterograde traffic out of the Golgi lies the propensity of the sphingolipids to self-aggregate with cholesterol into microdomains termed 'lipid rafts'. At the plasma membrane surface these rafts are thought to function as the scaffold for various types of (glyco) signaling domains of different protein and lipid composition that can co-exist on one and the same cell. In the past decade, various unexpected findings on the sites where sphingolipid-mediated events occur have thrown a new light on the localization and transport mechanisms of sphingolipids. These findings are largely based on biochemical experiments. Further progress in the field is hampered by a lack of morphological techniques to localize lipids with nanometer resolution. In the present paper, we critically evaluate the published data and discuss techniques and potential improvements.

  19. Modulation of beta-amyloid precursor protein trafficking and processing by the low density lipoprotein receptor family.

    PubMed

    Cam, Judy A; Bu, Guojun

    2006-08-18

    Amyloid-beta peptide (Abeta) accumulation in the brain is an early, toxic event in the pathogenesis of Alzheimer's disease (AD). Abeta is produced by proteolytic processing of a transmembrane protein, beta-amyloid precursor protein (APP), by beta- and gamma-secretases. Mounting evidence has demonstrated that alterations in APP cellular trafficking and localization directly impact its processing to Abeta. Recent studies have shown that members of the low-density lipoprotein receptor family, including LRP, LRP1B, SorLA/LR11, and apolipoprotein E (apoE) receptor 2, interact with APP and regulate its endocytic trafficking. Another common feature of these receptors is their ability to bind apoE, which exists in three isoforms in humans and the presence of the epsilon4 allele represents a genetic risk factor for AD. In this review, we summarize the current understanding of the function of these apoE receptors with a focus on their role in APP trafficking and processing. Knowledge of the interactions between these distinct low-density lipoprotein receptor family members and APP may ultimately influence future therapies for AD.

  20. Linking innate to adaptive immunity through dendritic cells.

    PubMed

    Steinman, Ralph M

    2006-01-01

    The function of dendritic cells (DCs) in linking innate to adaptive immunity is often summarized with two terms. DCs are sentinels, able to capture, process and present antigens and to migrate to lymphoid tissues to select rare, antigen-reactive T cell clones. DCs are also sensors, responding to a spectrum of environmental cues by extensive differentiation or maturation. The type of DC and the type of maturation induced by different stimuli influences the immunological outcome, such as the differentiation of Thl vs. Th2 T cells. Here we summarize the contributions of DCs to innate defences, particularly the production of immune enhancing cytokines and the activation of innate lymphocytes. Then we outline three innate features of DCs that influence peripheral tolerance and lead to adaptive immunity: a specialized endocytic system for antigen capture and processing, location and movements in vivo, and maturation in response to an array of stimuli. A new approach to the analysis of DC biology is to target antigens selectively to maturing DCs in vivo. This leads to stronger, more prolonged and broader (many immunogenic peptides) immunity by both T cells and B cells.

Top