Evaluation of a functional variant assay for selecting beef cattle
USDA-ARS?s Scientific Manuscript database
A commercially available genotyping assay for functional variants was chosen to obtain genotypes needed for a selection experiment in populations of pedigreed cattle that have not been extensively genotyped. The assay design included probes for coding sequence variation in 88% of annotated protein c...
Scavuzzo-Duggan, Tess R.; Chaves, Arielle M.; Roberts, Alison W.
2015-07-14
Here, a method for rapid in vivo functional analysis of engineered proteins was developed using Physcomitrella patens. A complementation assay was designed for testing structure/function relationships in cellulose synthase (CESA) proteins. The components of the assay include (1) construction of test vectors that drive expression of epitope-tagged PpCESA5 carrying engineered mutations, (2) transformation of a ppcesa5 knockout line that fails to produce gametophores with test and control vectors, (3) scoring the stable transformants for gametophore production, (4) statistical analysis comparing complementation rates for test vectors to positive and negative control vectors, and (5) analysis of transgenic protein expression by Westernmore » blotting. The assay distinguished mutations that generate fully functional, nonfunctional, and partially functional proteins. In conclusion, compared with existing methods for in vivo testing of protein function, this complementation assay provides a rapid method for investigating protein structure/function relationships in plants.« less
In its first phase, ToxCast™ is profiling over 300 well-characterized chemicals (primarily pesticides) in over 400 HTS endpoints. These endpoints include biochemical assays of protein function, cell-based transcriptional reporter assays, multi-cell interaction assays, transcripto...
Assessing the effects of threonyl-tRNA synthetase on angiogenesis-related responses.
Mirando, Adam C; Abdi, Khadar; Wo, Peibin; Lounsbury, Karen M
2017-01-15
Several recent reports have found a connection between specific aminoacyl-tRNA synthetases and the regulation of angiogenesis. As this new area of research is explored, it is important to have reliable assays to assess the specific angiogenesis functions of these enzymes. This review provides information about specific in vitro and in vivo methods that were used to assess the angiogenic functions of threonyl-tRNA synthetase including endothelial cell migration and tube assays as well as chorioallantoic membrane and tumor vascularization assays. The theory and discussion include best methods of analysis and quantification along with the advantages and limitations of each type of assay. Copyright © 2016 Elsevier Inc. All rights reserved.
Keilholz, Ulrich; Weber, Jeffrey; Finke, James H; Gabrilovich, Dmitry I; Kast, W Martin; Disis, Mary L; Kirkwood, John M; Scheibenbogen, Carmen; Schlom, Jeff; Maino, Vernon C; Lyerly, H Kim; Lee, Peter P; Storkus, Walter; Marincola, Franceso; Worobec, Alexandra; Atkins, Michael B
2002-01-01
The Society for Biological Therapy held a Workshop last fall devoted to immune monitoring for cancer immunotherapy trials. Participants included members of the academic and pharmaceutical communities as well as the National Cancer Institute and the Food and Drug Administration. Discussion focused on the relative merits and appropriate use of various immune monitoring tools. Six breakout groups dealt with assays of T-cell function, serologic and proliferation assays to assess B cell and T helper cell activity, and enzyme-linked immunospot assay, tetramer, cytokine flow cytometry, and reverse transcription polymerase chain reaction assays of T-cell immunity. General conclusions included: (1) future vaccine studies should be designed to determine whether T-cell dysfunction (tumor-specific and nonspecific) correlated with clinical outcome; (2) tetramer-based assays yield quantitative but not functional data (3) enzyme-linked immunospot assays have the lowest limit of detection (4) cytokine flow cytometry have a higher limit of detection than enzyme-linked immunospot assay, but offer the advantages of speed and the ability to identify subsets of reactive cells; (5) antibody tests are simple and accurate and should be incorporated to a greater extent in monitoring plans; (6) proliferation assays are imprecise and should not be emphasized in future studies; (7) the reverse transcription polymerase chain reaction assay is a promising research approach that is not ready for widespread application; and (8)there is a critical need to validate these assays as surrogates for vaccine potency and clinical effect. Current data and opinion support the use of a functional assay like the enzyme-linked immunospot assay or cytokine flow cytometry in combination with a quantitative assay like tetramers for immune monitoring. At present, assays appear to be most useful as measures of vaccine potency. Careful immune monitoring in association with larger scale clinical trials ultimately may enable the correlation of monitoring results with clinical benefit.
Danilova, Ludmila; Anagnostou, Valsamo; Caushi, Justina X; Sidhom, John-William; Guo, Haidan; Chan, Hok Yee; Suri, Prerna; Tam, Ada J; Zhang, Jiajia; El Asmar, Margueritta; Marrone, Kristen A; Naidoo, Jarushka; Brahmer, Julie R; Forde, Patrick M; Baras, Alexander S; Cope, Leslie; Velculescu, Victor E; Pardoll, Drew; Housseau, Franck; Smith, Kellie N
2018-06-12
Mutation-associated neoantigens (MANAs) are a target of antitumor T-cell immunity. Sensitive, simple, and standardized assays are needed to assess the repertoire of functional MANA-specific T cells in oncology. Assays analyzing in vitro cytokine production such as ELISpot and intracellular cytokine staining (ICS) have been useful but have limited sensitivity in assessing tumor-specific T-cell responses and do not analyze antigen-specific T-cell repertoires. The FEST (Functional Expansion of Specific T cells) assay described herein integrates TCR sequencing of short-term, peptide-stimulated cultures with a bioinformatic platform to identify antigen-specific clonotypic amplifications. This assay can be adapted for all types of antigens, including mutation associated neoantigens (MANAs) via tumor exome-guided prediction of MANAs. Following in vitro identification by the MANAFEST assay, the MANA-specific CDR3 sequence can be used as a molecular barcode to detect and monitor the dynamics of these clonotypes in blood, tumor, and normal tissue of patients receiving immunotherapy. MANAFEST is compatible with high-throughput routine clinical and lab practices. Copyright ©2018, American Association for Cancer Research.
Keane, Kevin A.; Parker, George A.; Regan, Karen S.; Picut, Catherine; Dixon, Darlene; Creasy, Dianne; Giri, Dipak; Hukkanen, Renee R.
2015-01-01
The U.S. Environmental Protection Agency Endocrine Disruptor Screening Program (EDSP) is a multitiered approach to determine the potential for environmental chemicals to alter the endocrine system. The Pubertal Development and Thyroid Function in Intact Juvenile/Peripubertal Female and Male Rats (OPPTS 890.1450, 890.1500) are 2 of the 9 EDSP tier 1 test Guidelines, which assess upstream mechanistic pathways along with downstream morphological end points including histological evaluation of the kidneys, thyroid, and select male/female reproductive tissues (ovaries, uterus, testes, and epididymides). These assays are part of a battery of in vivo and in vitro screens used for initial detection of test article endocrine activity. In this Points to Consider article, we describe tissue processing, evaluation, and nomenclature to aid in standardization of assay results across laboratories. Pubertal assay end points addressed include organ weights, estrous cyclicity, clinical pathology, hormonal assays, and histological evaluation. Potential treatment-related findings that may indicate endocrine disruption are reviewed. Additional tissues that may be useful in assessment of endocrine disruption (vagina, mammary glands, and liver) are discussed. This Points to Consider article is intended to provide information for evaluating peripubertal tissues within the context of individual assay end points, the overall pubertal assay, and tier I assays of the EDSP program. PMID:25948506
NASA Astrophysics Data System (ADS)
Guan, Fengyi; Lu, Jiaju; Wang, Xiumei
2017-03-01
A clear understanding on cell migration behaviors contributes to designing novel biomaterials in tissue engineering and elucidating related tissue regeneration processes. Many traditional evaluation methods on cell migration including scratch assay and transwell migration assay possess all kinds of limitations. In this study, a novel honeycomb cell assay kit was designed and made of photosensitive resin by 3D printing. This kit has seven hexagonal culture chambers so that it can evaluate the horizontal cell migration behavior in response to six surrounding environments simultaneously, eliminating the effect of gravity on cells. Here this cell assay kit was successfully applied to evaluate endothelial cell migration cultured on self-assembling peptide (SAP) RADA (AcN-RADARADARADARADA-CONH2) nanofiber hydrogel toward different functionalized SAP hydrogels. Our results indicated that the functionalized RADA hydrogels with different concentration of bioactive motifs of KLT or PRG could induce cell migration in a dose-dependent manner. The total number and migration distance of endothelial cells on functionalized SAP hydrogels significantly increased with increasing concentration of bioactive motif PRG or KLT. Therefore, the honeycomb cell assay kit provides a simple, efficient and convenient tool to investigate cell migration behavior in response to multi-environments simultaneously.
Le Quellec, Sandra; Paris, Mickaël; Nougier, Christophe; Sobas, Frédéric; Rugeri, Lucia; Girard, Sandrine; Bordet, Jean-Claude; Négrier, Claude; Dargaud, Yesim
2017-05-01
Pneumatic tube system (PTS) in hospitals is commonly used for the transport of blood samples to clinical laboratories, as it is rapid and cost-effective. The aim was to compare the effects on haematology samples of a newly acquired ~2km-long PTS that links 2 hospitals with usual transport (non-pneumatic tube system, NPTS). Complete blood cell count, routine coagulation assays, platelet function tests (PFT) with light-transmission aggregometry and global coagulation assays including ROTEM® and thrombin generation assay (TGA) were performed on blood samples from 30 healthy volunteers and 9 healthy volunteers who agreed to take aspirin prior to blood sampling. The turnaround time was reduced by 31% (p<0.001) with the use of PTS. No statistically significant difference was observed for most routine haematology assays including PFT, and ROTEM® analysis. A statistically significant, but not clinically relevant, shortening of the APTT after sample transport by PTS was found (mean±SD: 30s±1.8 vs. 29.5s±2.1 for NPTS). D-dimer levels were 7.4% higher after transport through PTS but were not discordant. A statistically significant increase of thrombin generation was found in both platelet poor- and platelet rich- plasma samples after PTS transport compared to NPTS transport. PTS is suitable for the transport of samples prior to routine haematology assays including PFT, but should not be used for samples intended for thrombin generation measurement. Copyright © 2017 Elsevier Ltd. All rights reserved.
Chemical toxicity can arise from disruption of specific biomolecular functions or through more generalized cell stress and cytotoxicity-mediated processes. Here, concentration-dependent responses of 1063 chemicals including pharmaceuticals, natural products, pesticidals, consumer...
High throughput screening technologies for ion channels
Yu, Hai-bo; Li, Min; Wang, Wei-ping; Wang, Xiao-liang
2016-01-01
Ion channels are involved in a variety of fundamental physiological processes, and their malfunction causes numerous human diseases. Therefore, ion channels represent a class of attractive drug targets and a class of important off-targets for in vitro pharmacological profiling. In the past decades, the rapid progress in developing functional assays and instrumentation has enabled high throughput screening (HTS) campaigns on an expanding list of channel types. Chronologically, HTS methods for ion channels include the ligand binding assay, flux-based assay, fluorescence-based assay, and automated electrophysiological assay. In this review we summarize the current HTS technologies for different ion channel classes and their applications. PMID:26657056
Complexity and performance of on-chip biochemical assays
NASA Astrophysics Data System (ADS)
Kopf-Sill, Anne R.; Nikiforov, Theo; Bousse, Luc J.; Nagle, Rob; Parce, J. W.
1997-03-01
The use of microchips for performing biochemical processes has the potential to reduce reagent use and thus assay costs, increase throughput, and automate complex processes. We are building a multifunctional platform that provides sensing and actuation functions for a variety of microchip- based biochemical and analytical processes. Here we describe recent experiments that include on-chip dilution, reagent mixing, reaction, separation, and detection for important classes of biochemical assays. Issues in chip design and control are discussed.
Yang, Haixia; Xiao, Lei; Wang, Nanping
2017-04-01
Peroxisome proliferator-activated receptor α (PPARα) plays a key role in lipid metabolism and glucose homeostasis and a crucial role in the prevention and treatment of metabolic diseases. Natural dietary compounds, including nutrients and phytochemicals, are PPARα ligands or modulators. High-throughput screening assays have been developed to screen for PPARα ligands and modulators in our diet. In the present review, we discuss recent advances in our knowledge of PPARα, including its structure, function, and ligand and modulator screening assays, and summarize the different types of dietary PPARα ligands and modulators. © 2016 Ruijin Hospital, Shanghai Jiaotong University School of Medicine and John Wiley & Sons Australia, Ltd.
Piezo- and solenoid valve-based liquid dispensing for miniaturized assays.
Niles, Walter D; Coassin, Peter J
2005-04-01
Miniaturization of biological assays requires dispensing liquids in the submicroliter range of volumes. Accuracy and reproducibility of dispensing this range depend on both the dispenser and the receptacle in which the assay is constructed. Miniaturization technologies developed by Aurora Discovery, Inc. (San Diego, CA) include high-density multiwell plates for assay samples and reagent storage, as well as piezo-based and solenoid valve-based liquid dispensers. Some basic principles of small-volume dispensing by jetting are described to provide context for dispenser design and function. Performance of the latest instruments incorporating these dispensing devices is presented.
Development of SNP Genotyping Assays for Seed Composition Traits in Soybean
Patil, Gunvant; Chaudhary, Juhi; Vuong, Tri D.; Jenkins, Brian; Qiu, Dan; Kadam, Suhas; Shannon, Grover J.
2017-01-01
Seed composition is one of the most important determinants of the economic values in soybean. The quality and quantity of different seed components, such as oil, protein, and carbohydrates, are crucial ingredients in food, feed, and numerous industrial products. Soybean researchers have successfully developed and utilized a diverse set of molecular markers for seed trait improvement in soybean breeding programs. It is imperative to design and develop molecular assays that are accurate, robust, high-throughput, cost-effective, and available on a common genotyping platform. In the present study, we developed and validated KASP (Kompetitive allele-specific polymerase chain reaction) genotyping assays based on previously known functional mutant alleles for the seed composition traits, including fatty acids, oligosaccharides, trypsin inhibitor, and lipoxygenase. These assays were validated on mutant sources as well as mapping populations and precisely distinguish the homozygotes and heterozygotes of the mutant genes. With the obvious advantages, newly developed KASP assays in this study can substitute the genotyping assays that were previously developed for marker-assisted selection (MAS). The functional gene-based assay resource developed using common genotyping platform will be helpful to accelerate efforts to improve soybean seed composition traits. PMID:28630621
Wines, Bruce D; Billings, Hugh; Mclean, Milla R; Kent, Stephen J; Hogarth, P Mark
2017-01-01
There is now intense interest in the role of HIV-specific antibodies and the engagement of FcγR functions in the control and prevention of HIV infection. The analyses of the RV144 vaccine trial, natural progression cohorts, and macaque models all point to a role for Fc-dependent effector functions, such as cytotoxicity (ADCC) or phagocytosis (ADCP), in the control of HIV. However, reliable assays that can be reproducibly used across different laboratories to measure Fcdependent functions, such as antibody dependent cellular cytotoxicity (ADCC) are limited. This brief review highlights the importance of Fc properties for immunity to HIV, particularly via FcγR diversity and function. We discuss assays used to study FcR mediated functions of HIV-specific Ab, including our recently developed novel cell-free ELISA using homo-dimeric FcγR ectodomains to detect functionally relevant viral antigen-specific antibodies. The binding of these dimeric FcγR ectodomains, to closely spaced pairs of IgG Fc, mimics the engagement and cross-linking of Fc receptors by IgG opsonized virions or infected cells as the essential prerequisite to the induction of Ab-dependent effector functions. The dimeric FcγR ELISA reliably correlates with ADCC in patient responses to influenza. The assay is amenable to high throughput and could be standardized across laboratories. We propose the assay has broader implications for the evaluation of the quality of antibody responses in viral infections and for the rapid evaluation of responses in vaccine development campaigns for HIV and other viral infections. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Wines, Bruce D.; Billings, Hugh; Mclean, Milla R.; Kent, Stephen J.; Hogarth, P. Mark
2017-01-01
Background: There is now intense interest in the role of HIV-specific antibodies and the engagement of FcγR functions in the control and prevention of HIV infection. The analyses of the RV144 vaccine trial, natural progression cohorts, and macaque models all point to a role for Fc-dependent effector functions, such as cytotoxicity (ADCC) or phagocytosis (ADCP), in the control of HIV. However, reliable assays that can be reproducibly used across different laboratories to measure Fc-dependent functions, such as antibody dependent cellular cytotoxicity (ADCC) are limited. Method: This brief review highlights the importance of Fc properties for immunity to HIV, particular-ly via FcγR diversity and function. We discuss assays used to study FcR mediated functions of HIV-specific Ab, including our recently developed novel cell-free ELISA using homo-dimeric FcγR ecto-domains to detect functionally relevant viral antigen-specific antibodies. Results: The binding of these dimeric FcγR ectodomains, to closely spaced pairs of IgG Fc, mimics the engagement and cross-linking of Fc receptors by IgG opsonized virions or infected cells as the es-sential prerequisite to the induction of Ab-dependent effector functions. The dimeric FcγR ELISA reli-ably correlates with ADCC in patient responses to influenza. The assay is amenable to high throughput and could be standardized across laboratories. Conclusion: We propose the assay has broader implications for the evaluation of the quality of anti-body responses in viral infections and for the rapid evaluation of responses in vaccine development campaigns for HIV and other viral infections. PMID:28322167
Papillomavirus E7 Oncoproteins Share Functions with Polyomavirus Small T Antigens
White, Elizabeth A.; Kramer, Rebecca E.; Hwang, Justin H.; Pores Fernando, Arun T.; Naetar, Nana; Hahn, William C.; Roberts, Thomas M.; Schaffhausen, Brian S.; Livingston, David M.
2014-01-01
ABSTRACT Many of the small DNA tumor viruses encode transforming proteins that function by targeting critical cellular pathways involved in cell proliferation and survival. In this study, we have examined whether some of the functions of the polyomavirus small T antigens (ST) are shared by the E6 and E7 oncoproteins of two oncogenic papillomaviruses. Using three different assays, we have found that E7 can provide some simian virus 40 (SV40) or murine polyomavirus (PyV) ST functions. Both human papillomavirus 16 (HPV16) and bovine papillomavirus (BPV1) E7 proteins are capable of partially substituting for SV40 ST in a transformation assay that also includes SV40 large T antigen, the catalytic subunit of cellular telomerase, and oncogenic Ras. Like SV40 ST, HPV16 E7 has the ability to override a quiescence block induced by mitogen deprivation. Like PyV ST, it also has the ability to inhibit myoblast differentiation. At least two of these activities are dependent upon the interaction of HPV16 E7 with retinoblastoma protein family members. For small T antigens, interaction with PP2A is needed for each of these functions. Even though there is no strong evidence that E6 or E7 share the ability of small T to interact with PP2A, E7 provides these functions related to cellular transformation. IMPORTANCE DNA tumor viruses have provided major insights into how cancers develop. Some viruses, like the human papillomaviruses, can cause cancer directly. Both the papillomaviruses and the polyomaviruses have served as tools for understanding pathways that are often perturbed in cancer. Here, we have compared the functions of transforming proteins from several DNA tumor viruses, including two papillomaviruses and two polyomaviruses. We tested the papillomavirus E6 and E7 oncoproteins in three functional assays and found that E7 can provide some or all of the functions of the SV40 small T antigen, another well-characterized oncoprotein, in two of these assays. In a third assay, papillomavirus E7 has the same effect as the murine polyomavirus small T protein. In summary, we report several new functions for the papillomavirus E7 proteins, which will contribute new insights into the roles of viruses in cancer and the cellular pathways they perturb in carcinogenesis. PMID:25540383
Progress in applying the Three Rs to the potency testing of Botulinum toxin type A.
Straughan, Donald
2006-06-01
Botulinum toxin type A (BTA) is being increasingly used for a range of therapeutic purposes and also for cosmetic reasons. For many years, the potency of BTA has been measured by using an LD50 assay in mice. This assay is a cause for concern due to its unpleasant nature and extreme severity, and the requirement for high numbers of mice to be used. Alternatives to this potency assay are presently reviewed with particular reference to the work at the National Institute for Biological Standards and Control (NIBSC), and to recent work by the UK manufacturer of the substance. An in vivo local paralysis assay with considerably less severity has been developed and is in use at the NIBSC. Alternative, ex vivo functional assays in use include the measurement of BTA-induced paralysis of neurally-stimulated rodent diaphragm or rat intercostal muscle. The latter method has the advantage of allowing more preparations to be derived from one animal. However, these ex vivo methods have not yet been fully validated and accepted by regulatory agencies as potency assays. Endopeptidase assays, although not measuring muscle paralysis directly, may provide a very useful consistency test for batch release and may replace the routine use of the LD50 test for that purpose. These assays measure the cleavage of the SNAP-25 protein (the final stage of BTA action), and have been validated for batch release by the National Control Laboratory (NIBSC), and are in regular use there. ELISA assays, used alongside the endopeptidase assay, also provide useful confirmatory information on the amounts of functional (and non-functional) BTA present. The UK manufacturer is further validating its endopeptidase assay, an ex vivo muscle assay and an ELISA. It is anticipated that their work will lead to a change in the product license, hopefully within the next two years, and will form a critical milestone towards the end of the LD50 potency test.
Hayward, C P M; Moffat, K A; Graf, L
2014-06-01
Diagnostic tests for von Willebrand disease (VWD) are important for the assessment of VWD, which is a commonly encountered bleeding disorder worldwide. Technical innovations have been applied to improve the precision and lower limit of detection of von Willebrand factor (VWF) assays, including the ristocetin cofactor activity assay (VWF:RCo) that uses the antibiotic ristocetin to induce plasma VWF binding to glycoprotein (GP) IbIXV on target platelets. VWF-collagen-binding assays, depending on the type of collagen used, can improve the detection of forms of VWD with high molecular weight VWF multimer loss, although the best method is debatable. A number of innovations have been applied to VWF:RCo (which is commonly performed on an aggregometer), including replacing the target platelets with immobilized GPIbα, and quantification by an enzyme-linked immunosorbent assay (ELISA), immunoturbidimetric, or chemiluminescent end-point. Some common polymorphisms in the VWF gene that do not cause bleeding are associated with falsely low VWF activity by ristocetin-dependent methods. To overcome the need for ristocetin, some new VWF activity assays use gain-of-function GPIbα mutants that bind VWF without the need for ristocetin, with an improved precision and lower limit of detection than measuring VWF:RCo by aggregometry. ELISA of VWF binding to mutated GPIbα shows promise as a method to identify gain-of-function defects from type 2B VWD. The performance characteristics of many new VWF activity assays suggest that the detection of VWD, and monitoring of VWD therapy, by clinical laboratories could be improved through adopting newer generation VWF assays. © 2014 John Wiley & Sons Ltd.
Lovelock, Paul K; Wong, Ee Ming; Sprung, Carl N; Marsh, Anna; Hobson, Karen; French, Juliet D; Southey, Melissa; Sculley, Tom; Pandeya, Nirmala; Brown, Melissa A; Chenevix-Trench, Georgia; Spurdle, Amanda B; McKay, Michael J
2007-09-01
Assays to determine the pathogenicity of unclassified sequence variants in disease-associated genes include the analysis of lymphoblastoid cell lines (LCLs). We assessed the ability of several assays of LCLs to distinguish carriers of germline BRCA1 and BRCA2 gene mutations from mutation-negative controls to determine their utility for use in a diagnostic setting. Post-ionising radiation cell viability and micronucleus formation, and telomere length were assayed in LCLs carrying BRCA1 or BRCA2 mutations, and in unaffected mutation-negative controls. Post-irradiation cell viability and micronucleus induction assays of LCLs from individuals carrying pathogenic BRCA1 mutations, unclassified BRCA1 sequence variants or wildtype BRCA1 sequence showed significant phenotypic heterogeneity within each group. Responses were not consistent with predicted functional consequences of known pathogenic or normal sequences. Telomere length was also highly heterogeneous within groups of LCLs carrying pathogenic BRCA1 or BRCA2 mutations, and normal BRCA1 sequences, and was not predictive of mutation status. Given the significant degree of phenotypic heterogeneity of LCLs after gamma-irradiation, and the lack of association with BRCA1 or BRCA2 mutation status, we conclude that the assays evaluated in this study should not be used as a means of differentiating pathogenic and non-pathogenic sequence variants for clinical application. We suggest that a range of normal controls must be included in any functional assays of LCLs to ensure that any observed differences between samples reflect the genotype under investigation rather than generic inter-individual variation.
Zhou, Jinxu; Wang, Hongxiang; Chu, Junsheng; Huang, Qilin; Li, Guangxu; Yan, Yong; Xu, Tao; Chen, Juxiang; Wang, Yuhai
2018-04-24
Recent studies have found circular RNAs (circRNAs) involved in the biological process of cancers. However, little is known about their functional roles in glioblastoma. Human circRNA microarray analysis was performed to screen the expression profile of circRNAs in IDH1 wild-type glioblastoma tissue. The expression of hsa_circ_0008344 in glioblastoma and normal brain samples was quantified by qRT-PCR. Functional experiments were performed to investigate the biological functions of hsa_circ_0008344, including MTT assay, colony formation assay, transwell assay, and cell apoptosis assay. CircRNA microarray revealed a total of 417 abnormally expressed circRNAs (>1.5-fold, P < .05) in glioblastoma tissue compared with the adjacent normal brain. Hsa_circ_0008344, among the top differentially expressed circRNAs, was significantly upregulated in IDH1 wild-type glioblastoma. Further in vitro studies showed that knockdown of hsa_circ_0008344 suppressed glioblastoma cell proliferation, colony formation, migration, and invasion, but increased cell apoptotic rate. Hsa_circ_0008344 is upregulated in glioblastoma and may contribute to the progression of this malignancy. © 2018 Wiley Periodicals, Inc.
A Comparison of Two Measures of HIV Diversity in Multi-Assay Algorithms for HIV Incidence Estimation
Cousins, Matthew M.; Konikoff, Jacob; Sabin, Devin; Khaki, Leila; Longosz, Andrew F.; Laeyendecker, Oliver; Celum, Connie; Buchbinder, Susan P.; Seage, George R.; Kirk, Gregory D.; Moore, Richard D.; Mehta, Shruti H.; Margolick, Joseph B.; Brown, Joelle; Mayer, Kenneth H.; Kobin, Beryl A.; Wheeler, Darrell; Justman, Jessica E.; Hodder, Sally L.; Quinn, Thomas C.; Brookmeyer, Ron; Eshleman, Susan H.
2014-01-01
Background Multi-assay algorithms (MAAs) can be used to estimate HIV incidence in cross-sectional surveys. We compared the performance of two MAAs that use HIV diversity as one of four biomarkers for analysis of HIV incidence. Methods Both MAAs included two serologic assays (LAg-Avidity assay and BioRad-Avidity assay), HIV viral load, and an HIV diversity assay. HIV diversity was quantified using either a high resolution melting (HRM) diversity assay that does not require HIV sequencing (HRM score for a 239 base pair env region) or sequence ambiguity (the percentage of ambiguous bases in a 1,302 base pair pol region). Samples were classified as MAA positive (likely from individuals with recent HIV infection) if they met the criteria for all of the assays in the MAA. The following performance characteristics were assessed: (1) the proportion of samples classified as MAA positive as a function of duration of infection, (2) the mean window period, (3) the shadow (the time period before sample collection that is being assessed by the MAA), and (4) the accuracy of cross-sectional incidence estimates for three cohort studies. Results The proportion of samples classified as MAA positive as a function of duration of infection was nearly identical for the two MAAs. The mean window period was 141 days for the HRM-based MAA and 131 days for the sequence ambiguity-based MAA. The shadows for both MAAs were <1 year. Both MAAs provided cross-sectional HIV incidence estimates that were very similar to longitudinal incidence estimates based on HIV seroconversion. Conclusions MAAs that include the LAg-Avidity assay, the BioRad-Avidity assay, HIV viral load, and HIV diversity can provide accurate HIV incidence estimates. Sequence ambiguity measures obtained using a commercially-available HIV genotyping system can be used as an alternative to HRM scores in MAAs for cross-sectional HIV incidence estimation. PMID:24968135
Testing for hypothyroidism in dogs.
Ferguson, Duncan C
2007-07-01
Hypothyroidism is the most common endocrinopathy in the dog. Rather than being a comprehensive review of all possible thyroid function tests, the focus in this article is on the logical progression of test choice, highlighting total thyroxine, free thyroxine, triiodothyronine, thyrotropin (TSH), and antithyroid antibodies. This article includes extensive discussion of the current status of the canine TSH assay and the potential for improving this assay.
Evaluation of a BED-SIDE platelet function assay: performance and clinical utility.
Lau, Wei C; Walker, C Ty; Obilby, David; Wash, Mark M; Carville, David G M; Guyer, Kirk E; Bates, Eric R
2002-01-01
Platelets have a pivotal role in the initial defense against insult to the vasculature and are also recognized of critical importance in the acute care settings of percutaneous coronary intervention and cardiopulmonary bypass. In these environments both platelet count and function may be markedly compromised. Unfortunately, current assays to evaluate the parameters of platelet count and function are of limited utility for bed-side testing. Moreover, it is suggested that there may be significant inter patient variation in response to antiplatelet therapy that may be exacerbated by other agents (e.g. heparin) that are routinely administered during cardiac intervention. Here we describe a practical, rapid and user-friendly whole blood platelet function assay that has been developed for use in bed-side settings. Platelet agonists were formulated with an anticoagulant and lyophilized in blood collection tubes standardised to receive a l mL fresh whole blood sample. In the presence of an agonist, platelets are activated and interact (aggregate). Using traditional cell counting principles, non-aggregated platelets are counted whereas aggregated platelets are not. The percentage (%) of functional platelets in reference to a baseline tube may then be determined. Results are available within four minutes. Platelet aggregation in whole blood demonstrated good correlation with turbidometric aggregometry for both ADP (r=0.91) and collagen (r=0.88). Moreover, in clinical settings where antiplatelet agents were administered, this rapid, bed-side, platelet function assay demonstrated utility in monitoring patient response to these therapies. This novel bed-side assay of platelet function is extremely suitable for the clinical environment with a rapid turn-around time. In addition, it provides a full haematology profile, including platelet count, and should permit enhancement of transfusion and interventional decisions.
Jiang, Ming-Ming; Mai, Zhi-Tao; Wan, Shan-Zhi; Chi, Yu-Min; Zhang, Xin; Sun, Bao-Hua; Di, Qing-Guo
2018-04-01
Circular RNAs (circRNAs) are a novel class of non-protein-coding RNA. Emerging evidence indicates that circRNAs participate in the regulation of many pathophysiological processes. This study aims to explore the expression profiles and pathological effects of circRNAs in non-small cell lung cancer (NSCLC). Human circRNAs microarray analysis was performed to screen the expression profile of circRNAs in NSCLC tissue. Expressions of circRNA and miRNA in NSCLC tissues and cells were quantified by qRTPCR. Functional experiments were performed to investigate the biological functions of circRNA, including CCK-8 assay, colony formation assay, transwell assay and xenograft in vivo assay. Human circRNAs microarray revealed a total 957 abnormally expressed circRNAs (> twofold, P < 0.05) in NSCLC tissue compared with adjacent normal tissue. In further studies, hsa_circ_0007385 was significantly up regulated in NSCLC tissue and cells. In vitro experiments with hsa_circ_0007385 knockdown resulted in significant suppression of the proliferation, migration and invasion of NSCLC cells. In vivo xenograft assay using hsa_circ_0007385 knockdown, significantly reduced tumor growth. Bioinformatics analysis and luciferase reporter assay verified the potential target miR-181, suggesting a possible regulatory pathway for hsa_circ_0007385. In summary, results suggest hsa_circ_0007385 plays a role in NSCLC tumorigenesis, providing a potential therapeutic target for NSCLC.
Halaidych, Oleh V; Freund, Christian; van den Hil, Francijna; Salvatori, Daniela C F; Riminucci, Mara; Mummery, Christine L; Orlova, Valeria V
2018-05-08
Several studies have reported endothelial cell (EC) derivation from human induced pluripotent stem cells (hiPSCs). However, few have explored their functional properties in depth with respect to line-to-line and batch-to-batch variability and how they relate to primary ECs. We therefore carried out accurate characterization of hiPSC-derived ECs (hiPSC-ECs) from multiple (non-integrating) hiPSC lines and compared them with primary ECs in various functional assays, which included barrier function using real-time impedance spectroscopy with an integrated assay of electric wound healing, endothelia-leukocyte interaction under physiological flow to mimic inflammation and angiogenic responses in in vitro and in vivo assays. Overall, we found many similarities but also some important differences between hiPSC-derived and primary ECs. Assessment of vasculogenic responses in vivo showed little difference between primary ECs and hiPSC-ECs with regard to functional blood vessel formation, which may be important in future regenerative medicine applications requiring vascularization. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
Giuliani, Cesidio; Cerrone, Dominique; Harii, Norikazu; Thornton, Mark; Kohn, Leonard D; Dagia, Nilesh M; Bucci, Ines; Carpentieri, Maria; Di Nenno, Barbara; Di Blasio, Andrea; Vitti, Paolo; Monaco, Fabrizio; Napolitano, Giorgio
2012-07-01
A functional thyroid-stimulating autoantibodies (TSAb) assay using a thyroid-stimulating hormone receptor chimera (Mc4) appears to be clinically more useful than the commonly used assay, a binding assay that measures all the antibodies binding to the thyroid-stimulating hormone receptor without functional discrimination, in diagnosing patient with Graves' disease (GD). The objective of the study was to investigate whether an Mc4 assay can predict relapse/remission of hyperthyroidism after antithyroid drug (ATD) treatment in patients with GD. An Mc4 assay was used to prospectively track TSAb activity in GD patients treated with ATD over a 5-yr period. GD patients from the Chieti University participated in this study. Interventions included the assessment of patients' sera using the Mc4 assay, the Mc4-derivative assay (Thyretain), and a human monoclonal thyroid-stimulating hormone receptor antibody, M22 assay. The Mc4 assay, a sensitive index of remission and recurrence, was used in this study. The TSAb levels significantly decreased only in the remitting group as evidenced by Mc4 assay values at the end of ATD (0.96 ± 1.47, 10.9 ± 26.6. and 24.7 ± 37.5 arbitrary units for the remitting, relapsing, and unsuspended therapy groups, respectively). Additional prognostic help was obtained by thyroid volume measurements at the end of treatment. Although not statistically significant, the Mc4 assay has a trend toward improved positive predictive value (95.4 vs. 84.2 or 87.5%), specificity (96.4 vs. 86.4 and 90.9%), and accuracy (87.3 vs. 83.3 and 80.9%) comparing the Mc4, Thyretain, and M22 assays, respectively. Thyretain has a trend toward improved negative predictive value (82.6 vs. 81.8 and 76.9%) and sensitivity (80 vs. 77.8 and 70%) comparing Thyretain, Mc4, and M22 assays, respectively. The Mc4 assay is a clinically useful index of remission and relapse in patients with GD. Larger studies are required to confirm these findings.
An Update on ToxCast™ | Science Inventory | US EPA
In its first phase, ToxCast™ is profiling over 300 well-characterized chemicals (primarily pesticides) in over 400 HTS endpoints. These endpoints include biochemical assays of protein function, cell-based transcriptional reporter assays, multi-cell interaction assays, transcriptomics on primary cell cultures, and developmental assays in zebrafish embryos. Almost all of the compounds being examined in Phase 1 of ToxCast™ have been tested in traditional toxicology tests, including developmental toxicity, multi-generation studies, and sub-chronic and chronic rodent bioassays Lessons learned to date for ToxCast: Large amounts of quality HTS data can be economically obtained. Large scale data sets will be required to understand potential for biological activity. Value in having multiple assays with overlapping coverage of biological pathways and a variety of methodologies Concentration-response will be important for ultimate interpretation Data transparency will be important for acceptance. Metabolic capabilities and coverage of developmental toxicity pathways will need additional attention. Need to define the gold standard Partnerships are needed to bring critical mass and expertise.
Patzke, Juergen; Budde, Ulrich; Huber, Andreas; Méndez, Adriana; Muth, Heidrun; Obser, Tobias; Peerschke, Ellinor; Wilkens, Matthias; Schneppenheim, Reinhard
2014-12-01
The functional activity of von Willebrand factor (VWF) is most frequently measured by using the ristocetin cofactor assay (VWF:RCo). However, the method's drawbacks include unsatisfactory precision, sensitivity and availability of automated system applications. We have developed an alternative assay (INNOVANCE VWF Ac) that is based on the binding of VWF to recombinant glycoprotein Ib (GPIb). Two gain-of-function mutations were introduced into a GPIb fragment, allowing an assay format without ristocetin. Fully automated assay applications are available for the BCS/BCS XP systems and the Sysmex CS-2000i, Sysmex CA-7000, Sysmex CA-1500 and Sysmex CA-560 systems.The INNOVANCE VWF Ac assay measuring range extends from 4 to 600% VWF for all systems except the Sysmex CA-560 system. Within-device precision values were found to be between 2 and 7%. The limit of detection was below 2.2% VWF. In a study on the BCS XP system, a total number of 580 sample results yielded a correlation to the VWF:RCo assay of r equal to 0.99 (slope = 0.96). Very similar results were observed when von Willebrand disease samples type 1, 2A, 2B, 2M, 2N and 3 were investigated with the new assay and the VWF:RCo assay. The excellent performance data and comparability to VWF:RCo, together with the ease of use, led us to the conclusion that the ristocetin cofactor assay can be replaced by the new GPIb-binding assay to reliably diagnosing patients with von Willebrand disease.
Chebolu, S; Daniell, H
2009-01-01
Chloroplast genetic engineering offers several advantages, including high levels of transgene expression, transgene containment via maternal inheritance, and multi-gene expression in a single transformation event. Oral delivery is facilitated by hyperexpression of vaccine antigens against cholera, tetanus, anthrax, plague, or canine parvovirus (4%-31% of total soluble protein, TSP) in transgenic chloroplasts (leaves) or non-green plastids (carrots, tomato) as well as the availability of antibiotic free selectable markers or the ability to excise selectable marker genes. Hyperexpression of several therapeutic proteins, including human serum albumin (11.1% TSP), somatotropin (7% TSP), interferon-alpha (19% TSP), interferon-gamma (6% TSP), and antimicrobial peptide (21.5% TSP), facilitates efficient and economic purification. Also, the presence of chaperones and enzymes in chloroplasts facilitates assembly of complex multisubunit proteins and correct folding of human blood proteins with proper disulfide bonds. Functionality of chloroplast-derived vaccine antigens and therapeutic proteins has been demonstrated by several assays, including the macrophage lysis assay, GM1-ganglioside binding assay, protection of HeLA cells or human lung carcinoma cells against encephalomyocarditis virus, systemic immune response, protection against pathogen challenge, and growth or inhibition of cell cultures. Purification of human proinsulin has been achieved using novel purification strategies (inverse temperature transition property) that do not require expensive column chromatography techniques. Thus, transgenic chloroplasts are ideal bio-reactors for production of functional human and animal therapeutic proteins in an environmentally friendly manner.
Chebolu, S.; Daniell, H.
2009-01-01
Chloroplast genetic engineering offers several advantages, including high levels of transgene expression, transgene containment via maternal inheritance, and multi-gene expression in a single transformation event. Oral delivery is facilitated by hyperexpression of vaccine antigens against cholera, tetanus, anthrax, plague, or canine parvovirus (4%–31% of total soluble protein, TSP) in transgenic chloroplasts (leaves) or non-green plastids (carrots, tomato) as well as the availability of antibiotic free selectable markers or the ability to excise selectable marker genes. Hyperexpression of several therapeutic proteins, including human serum albumin (11.1% TSP), somatotropin (7% TSP), interferon-alpha (19% TSP), interferon-gamma (6% TSP), and antimicrobial peptide (21.5% TSP), facilitates efficient and economic purification. Also, the presence of chaperones and enzymes in chloroplasts facilitates assembly of complex multisubunit proteins and correct folding of human blood proteins with proper disulfide bonds. Functionality of chloroplast-derived vaccine antigens and therapeutic proteins has been demonstrated by several assays, including the macrophage lysis assay, GM1-ganglioside binding assay, protection of HeLA cells or human lung carcinoma cells against encephalomyocarditis virus, systemic immune response, protection against pathogen challenge, and growth or inhibition of cell cultures. Purification of human proinsulin has been achieved using novel purification strategies (inverse temperature transition property) that do not require expensive column chromatography techniques. Thus, transgenic chloroplasts are ideal bioreactors for production of functional human and animal therapeutic proteins in an environmentally friendly manner. PMID:19401820
USDA-ARS?s Scientific Manuscript database
This study was conducted as an initial assessment of a newly available genotyping assay containing about 34,000 common SNP included on previous SNP chips, and 199,000 sequence variants predicted to affect gene function. Objectives were to identify functional variants associated with birth weight in...
Xu, Weifeng; Jiang, Hao; Titsch, Craig; Haulenbeek, Jonathan R; Pillutla, Renuka C; Aubry, Anne-Françoise; DeSilva, Binodh S; Arnold, Mark E; Zeng, Jianing; Dodge, Robert W
2015-01-01
Biological therapeutics can induce an undesirable immune response resulting in the formation of anti-drug antibodies (ADA), including neutralizing antibodies (NAbs). Functional (usually cell-based) NAb assays are preferred to determine NAb presence in patient serum, but are often subject to interferences from numerous serum factors, such as growth factors and disease-related cytokines. Many functional cell-based NAb assays are essentially drug concentration assays that imply the presence of NAbs by the detection of small changes in functional drug concentration. Any drug contained in the test sample will increase the total amount of drug in the assay, thus reducing the sensitivity of NAb detection. Biotin-drug Extraction with Acid Dissociation (BEAD) has been successfully applied to extract ADA, thereby removing drug and other interfering factors from human serum samples. However, to date there has been no report to estimate the residual drug level after BEAD treatment when the drug itself is a human monoclonal antibody; mainly due to the limitation of traditional ligand-binding assays. Here we describe a universal BEAD optimization procedure for human monoclonal antibody (mAb) drugs by using a LC-MS/MS method to simultaneously measure drug (a mutant human IgG4), NAb positive control (a mouse IgG), and endogenous human IgGs as an indicator of nonspecific carry-over in the BEAD eluate. This is the first report demonstrating that residual human mAb drug level in clinical sample can be measured after BEAD pre-treatment, which is critical for further BEAD procedure optimization and downstream immunogenicity testing. Copyright © 2014 Elsevier B.V. All rights reserved.
Lee, Dennis; Barnes, Stephen
2010-01-01
The need for new pharmacological agents is unending. Yet the drug discovery process has changed substantially over the past decade and continues to evolve in response to new technologies. There is presently a high demand to reduce discovery time by improving specific lab disciplines and developing new technology platforms in the area of cell-based assay screening. Here we present the developmental concept and early stage testing of the Ab-Sniffer, a novel fiber optic fluorescence device for high-throughput cytotoxicity screening using an immobilized whole cell approach. The fused silica fibers are chemically functionalized with biotin to provide interaction with fluorescently labeled, streptavidin functionalized alginate-chitosan microspheres. The microspheres are also functionalized with Concanavalin A to facilitate binding to living cells. By using lymphoma cells and rituximab in an adaptation of a well-known cytotoxicity protocol we demonstrate the utility of the Ab-Sniffer for functional screening of potential drug compounds rather than indirect, non-functional screening via binding assay. The platform can be extended to any assay capable of being tied to a fluorescence response including multiple target cells in each well of a multi-well plate for high-throughput screening.
Ivaldi, Federico; Starc, Nadia; Landi, Fabiola; Locatelli, Franco; Rutella, Sergio; Tripodi, Gino; Manca, Fabrizio
2014-01-01
Monitoring of antigen-specific T-cell responses is valuable in numerous conditions that include infectious diseases, vaccinations, and opportunistic infections associated with acquired or congenital immune defects. A variety of assays that make use of peripheral lymphocytes to test activation markers, T-cell receptor expression, or functional responses are currently available. The last group of assays calls for large numbers of functional lymphocytes. The number of cells increases with the number of antigens to be tested. Consequently, cells may be the limiting factor, particularly in lymphopenic subjects and in children, the groups that more often require immune monitoring. We have developed immunochemical assays that measure secreted cytokines in the same wells in which peripheral blood mononuclear cells (PBMC) are cultured. This procedure lent itself to miniaturization and automation. Lymphoproliferation and the enzyme-linked immunosorbent spot (ELISPOT) assay have been adapted to a miniaturized format. Here we provide examples of immune profiles and describe a comparison between miniaturized assays based on cytokine secretion or proliferation. We also demonstrate that these assays are convenient for use in testing antigen specificity in established T-cell lines, in addition to analysis of PBMC. In summary, the applicabilities of miniaturization to save cells and reagents and of automation to save time and increase accuracy were demonstrated in this study using different methodological approaches valuable in the clinical immunology laboratory. PMID:24477854
Sperm quality assays: How good are they? The horse perspective.
Love, Charles C
2018-04-22
Sperm quality assays have increased in number in the last 10 years. Most of these assays are flow cytometry based in application and are modified from assays that have been developed to measure somatic cell function. The goal of any sperm quality assay should be to advance the clinicians/researchers understanding of sperm cell function and the relationship to fertility. While these assays appear to measure somatic cell-like functions in sperm there tends to be little understanding how the results of these assays relate to fertility. Copyright © 2018. Published by Elsevier B.V.
Czubatka, Anna; Sarnik, Joanna; Lucent, Del; Blasiak, Janusz; Witczak, Zbigniew J; Poplawski, Tomasz
2015-02-05
1,5-Anhydro-6-deoxy-methane-sulfamido-D-glucitol (FCP5) is a functionalized carbohydrate containing functional groups that render it potentially therapeutically useful. According to our concept of 'functional carb-pharmacophores' (FCPs) incorporation of the methanesulfonamido pharmacophore to 1,5 glucitol could create a therapeutically useful compound. Our previous studies revealed that FCP5 was cytotoxic to cancer cells. Therefore, in this work we assessed the cytotoxic mechanisms of FCP5 in four cancer cell lines - HeLa, LoVo, A549 and MCF-7, with particular focus on DNA damage and repair. A broad spectrum of methods, including comet assay with modifications, DNA repair enzyme assay, plasmid relaxation assay, and DNA fragmentation assay, were used. We also checked the potential for FCP5 to induce apoptosis. The results show that FCP5 can induce DNA strand breaks as well as oxidative modifications of DNA bases. DNA lesions induced by FCP5 were not entirely repaired in HeLa cells and DNA repair kinetics differs from other cell lines. Results from molecular docking and plasmid relaxation assay suggest that FCP5 binds to the major groove of DNA with a preference for adenosine-thymine base pair sequences and directly induces DNA strand breaks. Thus, FCP5 may represent a novel lead for the design of new major groove-binding compounds. The results also confirmed the validity of functional carb-pharmacophores as a new source of innovative drugs. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Myhre, Marit Renee; Olsen, Gunn-Hege; Gosert, Rainer
High-level replication of polyomavirus BK (BKV) in kidney transplant recipients is associated with the emergence of BKV variants with rearranged (rr) non-coding control region (NCCR) increasing viral early gene expression and cytopathology. Cloning and sequencing revealed the presence of a BKV quasispecies which included non-functional variants when assayed in a recombinant virus assay. Here we report that the rr-NCCR of BKV variants RH-3 and RH-12, both bearing a NCCR deletion including the 5' end of the agnoprotein coding sequence, mediated early and late viral reporter gene expression in kidney cells. However, in a recombinant virus they failed to produce infectiousmore » progeny despite large T-antigen and VP1 expression and the formation of nuclear virus-like particles. Infectious progeny was generated when the agnogene was reconstructed in cis or agnoprotein provided in trans from a co-existing BKV rr-NCCR variant. We conclude that complementation can rescue non-functional BKV variants in vitro and possibly in vivo.« less
Identifying Neurofibromin-Specific Regulatory Nodes for Therapeutic Targeting in NF1
2016-10-01
adapter protein SPRED1, to function, and we are utilizing the latest technical innovations including CRISPR technology to find genes that regulate...neurofibromin depends on the adapter protein SPRED1, to function, and we are utilizing the latest technical innovations including CRISPR technology...signaling NF1-Null HEK 293T cells have been generated using CRISPR /Cas9 and single clones have been expanded for biochemical assays (Figure 2). NF1-Null
Improving colorimetric assays through protein enzyme-assisted gold nanoparticle amplification.
Xie, Xiaoji; Xu, Wei; Liu, Xiaogang
2012-09-18
The discovery of the DNA-mediated assembly of gold nanoparticles was a great moment in the history of science; this understanding and chemical control enabled the rational design of functional nanomaterials as novel probes in biodetection. In contrast with conventional probes such as organic dyes, gold nanoparticles exhibit high photostability and unique size-dependent optical properties. Because of their high extinction coefficients and strong distance dependent optical properties, these nanoparticles have emerged over the past decade as a promising platform for rapid, highly sensitive colorimetric assays that allow for the visual detection of low concentrations of metal ions, small molecules, and biomacromolecules. These discoveries have deepened our knowledge of biological phenomena and facilitated the development of many new diagnostic and therapeutic tools. Despite these many advances and continued research efforts, current nanoparticle-based colorimetric detection systems still suffer from several drawbacks, such as limited sensitivity and selectivity. This Account describes the recent development of colorimetric assays based on protein enzyme-assisted gold nanoparticle amplification. The benefits of such detection systems include significantly improved detection sensitivity and selectivity. First, we discuss the general design of enzyme-modified nanoparticle systems in colorimetric assays. We show that a quantitative understanding of the unique properties of different enzymes is paramount for effective biological assays. We then examine the assays for nucleic acid detection based on different types of enzymes, including endonucleases, ligases, and polymerases. For each of these assays, we identify the underlying principles that contribute to the enhanced detection capability of nanoparticle systems and illustrate them with selected examples. Furthermore, we demonstrate that the combination of gold nanoparticles and specific enzymes can probe enzyme dynamics and function with high specificity, offering substantial advantages in both sensitivity and specificity over conventional detection methods. The screening of nuclease, methyltransferase, protease, and kinase activities can be colorimetrically performed in a straightforward manner. Finally, we discuss examples of colorimetric assays for metal ions and small molecules that constitute important advances toward visual monitoring of enzyme catalytic functions and gene expression. Although these enzyme-assisted assay methods hold great promise for myriad applications in biomedicine and bioimaging, the application of the described techniques in vivo faces formidable challenges. In addition, researchers do not fully understand the interactions of gold nanoparticles with enzyme molecules. This understanding will require the development of new techniques to probe enzyme substrate dynamics at the particle interface with higher spatial resolution and chemical specificity.
Quantitation of sperm bindable IgA and IgG in seminal fluid.
Howe, S E; Lynch, D M
1986-05-01
Seminal fluid and serum from 95 infertile males were assayed for sperm bindable immunoglobulins using an indirect ELISA with whole target sperm. The ELISA method was compared to seminal fluid and serum immobilization and agglutination assays (functional assays). In this infertile group, the ELISA assay was positive in 22% of seminal fluids (greater than 1.2 fg IgA/sperm and greater than 0.3 fg IgG/sperm). The seminal fluid antibodies were IgA and had an accompanying elevated IgG component in 78% of patients. There was a 96% correlation between negative seminal fluid functional assays and negative ELISA, and a 95% correlation between positive seminal fluid functional assays and positive ELISA. Positive serum sperm antibody tests were found in 71% of the infertile males with positive seminal fluid sperm antibodies, but 29% of the infertile males with strongly positive IgA seminal fluid sperm antibodies showed normal levels of serum sperm antibodies by either ELISA or functional assays. The ELISA method gives reproducible quantitation of sperm antibodies in seminal fluid and correlates well with accepted functional assays. Comparisons with serum sperm antibody assays suggests that seminal fluid sperm antibody analysis complements the serum analysis of sperm antibodies.
DeWitt, Jamie C; Peden-Adams, Margie M; Keil, Deborah E; Dietert, Rodney R
2012-02-01
Developmental immunotoxicity (DIT) occurs when exposure to environmental risk factors prior to adulthood, including chemical, biological, physical, or physiological factors, alters immune system development. DIT may elicit suppression, hyperactivation, or misregulation of immune responses and may present clinically as decreased resistance to pathogens, allergic and autoimmune diseases, and inflammatory diseases. Immunotoxicity testing guidelines established by the Environmental Protection Agency for adult animals (OPPTS 8703.7800) require functional tests and immunophenotyping that are suitable for detecting immunomodulation, especially immunosuppression. However, evaluating immune function in offspring that are not fully immunocompetent yields results that are challenging to interpret. Therefore, this unit will describe an optimum exposure scenario, reference two assays (immunophenotyping and histopathology) appropriate for detecting immunomodulation in weaning-age offspring, and reference four assays (immunophenotyping, histopathology, T cell-dependent antibody responses, and delayed-type hypersensitivity) appropriate for detecting immunomodulation in immunocompetent offspring. The protocol also will reference other assays (natural killer cell and cytotoxic T lymphocyte) with potential utility for assessing DIT. © 2012 by John Wiley & Sons, Inc.
De Sutter, Valerie; Vanderhaeghen, Rudy; Tilleman, Sofie; Lammertyn, Freya; Vanhoutte, Isabelle; Karimi, Mansour; Inzé, Dirk; Goossens, Alain; Hilson, Pierre
2005-12-01
Although sequence information and genome annotation are improving at an impressive pace, functional ontology is still non-existent or rudimentary for most genes. In this regard, transient expression assays are very valuable for identification of short functional segments in particular pathways, because they can be performed rapidly and at a scale unattainable in stably transformed tissues. Vectors were constructed and protocols developed for systematic transient assays in plant protoplasts. To enhance throughput and reproducibility, protoplast treatments were performed entirely by a liquid-handling robot in multiwell plates, including polyethylene glycol/Ca2+ cell transfection with plasmid mixtures, washes and lysis. All transcriptional readouts were measured using a dual firefly/Renilla luciferase assay, in which the former was controlled by a reporter promoter and the latter by the 35S CaMV promoter, which served as internal normalization standard. The automated protocols were suitable for transient assays in protoplasts prepared from cell cultures of Nicotiana tabacum Bright Yellow-2 and Arabidopsis thaliana. They were implemented in a screen to discover potential regulators of genes coding for key enzymes in nicotine biosynthesis. Two novel tobacco transcription factors were found, NtORC1 and NtJAP1, that positively regulate the putrescine N-methyltransferase (PMT) promoter. In addition, combinatorial tests showed that these two factors act synergistically to induce PMT transcriptional activity. The development and use of high-throughput plant transient expression assays are discussed.
Sadeghi, Nasiredin; Kahn, Daniel; Syed, Daneyal; Iqbal, Omer; Abro, Schuharazad; Eshraghi, Reza; Hoppensteadt, Debra; Fareed, Jawed
2014-09-01
Recombinant factor VIIa (rFVIIa; NovoSeven, Novo Nordisk, Copenhagen, Denmark) is used to control bleeding in patients with hemophilia. A generic version of FVIIa was developed by AryoGen (Tehran, Iran). This study compared the composition and functional activities of AryoSeven and NovoSeven. Each product was compared at equigravimetric (1 mg/mL) stock solution for protein content. The proteomic profile was obtained using surface-enhanced laser desorption ionization mass spectrometry. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis was carried out to determine the protein profile and Western blotting was performed using a polyclonal rabbit antihuman FVIIa antibody. The FVIIa-related antigen was also measured using a commercially available enzyme-linked immunosorbent assay method. Functional assay included the prothrombin time correction in FVII-deficient plasma. The protein content was comparable in 2 products and the mass spectra analysis showed a single peak at 50 kDa in all products. The SDS-PAGE and immunoblotting studies were comparable. Both products exhibited similar coagulant properties in different assays. © The Author(s) 2014.
Impact of host cell variation on the neutralization of HIV-1 in vitro.
Polonis, Victoria R; Schuitemaker, Hanneke; Bunnik, Evelien M; Brown, Bruce K; Scarlatti, Gabriella
2009-09-01
In this review we present current advances in our understanding of HIV-1 neutralization assays that employ primary cell types, as compared with those that utilize cell lines and the newer, more standardized pseudovirus assays. A commentary on the challenges of standardizing in-vitro neutralization assays using primary cells is included. The data from reporter cell line neutralization assays may agree with results observed in primary cells; however, exceptions have recently been reported. Multiple variables exist in primary cell assays using peripheral blood mononuclear cells from HIV-seronegative donors; in-vitro neutralization titers can vary significantly based on the donor cells used for assay targets and for virus propagation. Thus, more research is required to achieve validated primary cell neutralization assays. HIV-vaccine-induced antibody performance in the current neutralization assays may function as a 'gatekeeper' for HIV-1 subunit vaccine advancement. Development of standardized platforms for reproducible measurement of in-vitro neutralization is therefore a high priority. Given the considerable variation in results obtained from some widely applied HIV neutralization platforms, parallel evaluation of new antibodies using different host cells for assay targets, as well as virus propagation, is recommended until immune correlates of protection are identified.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roelofs, Maarke J.E., E-mail: m.j.e.roelofs@uu.nl; Center for Health Protection, National Institute for Public Health and the Environment; Piersma, Aldert H.
The steroidogenic cytochrome P450 17 (CYP17) enzyme produces dehydroepiandrosterone (DHEA), which is the most abundant circulating endogenous sex steroid precursor. DHEA plays a key role in e.g. sexual functioning and development. To date, no rapid screening assay for effects on CYP17 is available. In this study, a novel assay using porcine adrenal cortex microsomes (PACMs) was described. Effects of twenty-eight suggested endocrine disrupting compounds (EDCs) on CYP17 activity were compared with effects in the US EPA validated H295R (human adrenocorticocarcinoma cell line) steroidogenesis assay. In the PACM assay DHEA production was higher compared with the H295R assay (4.4 versus 2.2more » nmol/h/mg protein). To determine the additional value of a CYP17 assay, all compounds were also tested for interaction with CYP19 (aromatase) using human placental microsomes (HPMs) and H295R cells. 62.5% of the compounds showed enzyme inhibition in at least one of the microsomal assays. Only the cAMP inducer forskolin induced CYP17 activity, while CYP19 was induced by four test compounds in the H295R assay. These effects remained unnoticed in the PACM and HPM assays. Diethylstilbestrol and tetrabromobisphenol A inhibited CYP17 but not CYP19 activity, indicating different mechanisms for the inhibition of these enzymes. From our results it becomes apparent that CYP17 can be a target for EDCs and that this interaction differs from interactions with CYP19. Our data strongly suggest that research attention should focus on validating a specific assay for CYP17 activity, such as the PACM assay, that can be included in the EDC screening battery. - Highlights: ► DHEA, produced by CYP17, plays a key role in sexual functioning and development. ► No rapid screening assay for effects on CYP17 is available yet. ► A novel assay using porcine adrenal cortex microsomes (PACMs) was described. ► Endocrine disrupting compounds (EDCs) targeting CYP17 interact differently with CYP19. ► A specific CYP17 assay is a valuable screening for effects early in steroidogenesis.« less
Rampersad, Sephra N.
2012-01-01
Accurate prediction of the adverse effects of test compounds on living systems, detection of toxic thresholds, and expansion of experimental data sets to include multiple toxicity end-point analysis are required for any robust screening regime. Alamar Blue is an important redox indicator that is used to evaluate metabolic function and cellular health. The Alamar Blue bioassay has been utilized over the past 50 years to assess cell viability and cytotoxicity in a range of biological and environmental systems and in a number of cell types including bacteria, yeast, fungi, protozoa and cultured mammalian and piscine cells. It offers several advantages over other metabolic indicators and other cytotoxicity assays. However, as with any bioassay, suitability must be determined for each application and cell model. This review seeks to highlight many of the important considerations involved in assay use and design in addition to the potential pitfalls. PMID:23112716
Fallacara, Dawn M.; Halbrook, Richard S.; French, John B.
2011-01-01
This study evaluated the effects of dietary methylmercury (MeHg) on immune system development in captive-reared nestling American kestrels (Falco sparverius) to determine whether T cell–mediated and antibody-mediated adaptive immunity are targets for MeHg toxicity at environmentally relevant concentrations. Nestlings received various diets, including 0 (control), 0.6, and 3.9 μg/g (dry wt) MeHg for up to 18 d posthatch. Immunotoxicity endpoints included cell-mediated immunity (CMI) using the phytohemagglutinin (PHA) skin-swelling assay and antibody-mediated immune response via the sheep red blood cell (SRBC) hemagglutination assay. T cell– and B cell–dependent histological parameters in the spleen, thymus, and bursa of Fabricius were correlated with the functional assays. For nestlings in the 0.6 and 3.9 μg/g MeHg groups, CMI was suppressed by 73 and 62%, respectively, at 11 d of age. Results of this functional assay were correlated with T cell–dependent components of the spleen and thymus. Dose-dependent lymphoid depletion in spleen tissue directly affected the proliferation of T-lymphocyte populations, insofar as lower stimulation indexes from the PHA assay occurred in nestlings with lower proportions of splenic white pulp and higher THg concentrations. Nestlings in the 3.9 μg/g group also exhibited lymphoid depletion and a lack of macrophage activity in the thymus. Methylmercury did not have a noticeable effect on antibody-mediated immune function or B cell–dependent histological correlates. We conclude that T cell–mediated immunosuppression is the primary target of MeHg toward adaptive immunity in developing kestrels. This study provides evidence that environmentally relevant concentrations of MeHg may compromise immunocompetence in a developing terrestrial predator and raises concern regarding the long-term health effects of kestrels that were exposed to dietary MeHg during early avian development.
Evaluation of the concentration and bioactivity of adenovirus vectors for gene therapy.
Mittereder, N; March, K L; Trapnell, B C
1996-01-01
Development of adenovirus vectors as potential therapeutic agents for multiple applications of in vivo human gene therapy has resulted in numerous preclinical and clinical studies. However, lack of standardization of the methods for quantifying the physical concentration and functionally active fraction of virions in these studies has often made comparison between various studies difficult or impossible. This study was therefore carried out to define the variables for quantification of the concentration of adenovirus vectors. The methods for evaluation of total virion concentration included electron microscopy and optical absorbance. The methods for evaluation of the concentration of functional virions included detection of gene transfer (transgene transfer and expression) and the plaque assay on 293 cells. Enumeration of total virion concentration by optical absorbance was found to be a precise procedure, but accuracy was dependent on physical disruption of the virion to eliminate artifacts from light scattering and also on a correct value for the extinction coefficient. Both biological assays for enumerating functional virions were highly dependent on the assay conditions and in particular the time of virion adsorption and adsorption volume. Under optimal conditions, the bioactivity of the vector, defined as the fraction of total virions which leads to detected target cell infection, was determined to be 0.10 in the plaque assay and 0.29 in the gene transfer assay. This difference is most likely due to the fact that detection by gene transfer requires only measurement of levels of transgene expression in the infected cell whereas plaque formation is dependent on a series of biological events of much greater complexity. These results show that the exact conditions for determination of infectious virion concentration and bioactivity of recombinant adenovirus vectors are critical and must be standardized for comparability. These observations may be very useful in comparison of data from different preclinical and clinical studies and may also have important implications for how adenovirus vectors can optimally be used in human gene therapy. PMID:8892868
NASA Astrophysics Data System (ADS)
Brzicová, Táňa; Lochman, Ivo; Danihelka, Pavel; Lochmanová, Alexandra; Lach, Karel; Mička, Vladimír
2013-04-01
The aim of this pilot study was to evaluate perspectives of the assessment of nonspecific biological effects of airborne particulate matter including nanoparticles using appropriate immunological assays. We have selected various in vitro immunological assays to establish an array allowing us to monitor activation of the cell-mediated and humoral response of both the innate and adaptive immunity. To assess comprehensive interactions and effects, the assays were performed in whole blood cultures from healthy volunteers and we used an original airborne particle mixture from high pollution period in Ostrava region representing areas with one of the most polluted air in Europe. Even if certain effects were observed, the results of the immunological assays did not prove significant effects of airborne particles on immune cells' functions of healthy persons. However, obtained data do not exclude health risks of long-term exposure to airborne particles, especially in case of individuals with genetic predisposition to certain diseases or already existing disease. This study emphasizes the in vitro assessment of complex effects of airborne particles in conditions similar to actual ones in an organism exposed to particle mixture present in the polluted air.
A PDMS Device Coupled with Culture Dish for In Vitro Cell Migration Assay.
Lv, Xiaoqing; Geng, Zhaoxin; Fan, Zhiyuan; Wang, Shicai; Pei, WeiHua; Chen, Hongda
2018-04-30
Cell migration and invasion are important factors during tumor progression and metastasis. Wound-healing assay and the Boyden chamber assay are efficient tools to investigate tumor development because both of them could be applied to measure cell migration rate. Therefore, a simple and integrated polydimethylsiloxane (PDMS) device was developed for cell migration assay, which could perform quantitative evaluation of cell migration behaviors, especially for the wound-healing assay. The integrated device was composed of three units, which included cell culture dish, PDMS chamber, and wound generation mold. The PDMS chamber was integrated with cell culture chamber and could perform six experiments under different conditions of stimuli simultaneously. To verify the function of this device, it was utilized to explore the tumor cell migration behaviors under different concentrations of fetal bovine serum (FBS) and transforming growth factor (TGF-β) at different time points. This device has the unique capability to create the "wound" area in parallel during cell migration assay and provides a simple and efficient platform for investigating cell migration assay in biomedical application.
Pharmacological approaches to restore mitochondrial function
Andreux, Pénélope A.; Houtkooper, Riekelt H.; Auwerx, Johan
2014-01-01
Mitochondrial dysfunction is not only a hallmark of rare inherited mitochondrial disorders, but is also implicated in age-related diseases, including those that affect the metabolic and nervous system, such as type 2 diabetes and Parkinson’s disease. Numerous pathways maintain and/or restore proper mitochondrial function, including mitochondrial biogenesis, mitochondrial dynamics, mitophagy, and the mitochondrial unfolded protein response. New and powerful phenotypic assays in cell-based models, as well as multicellular organisms, have been developed to explore these different aspects of mitochondrial function. Modulating mitochondrial function has therefore emerged as an attractive therapeutic strategy for a range of diseases, which has spurred active drug discovery efforts in this area. PMID:23666487
Gao, Haiyan; Yang, Mei; Zhang, Xiaolan
2018-04-01
The present study aimed to investigate potential recurrence-risk biomarkers based on significant pathways for Luminal A breast cancer through gene expression profile analysis. Initially, the gene expression profiles of Luminal A breast cancer patients were downloaded from The Cancer Genome Atlas database. The differentially expressed genes (DEGs) were identified using a Limma package and the hierarchical clustering analysis was conducted for the DEGs. In addition, the functional pathways were screened using Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses and rank ratio calculation. The multigene prognostic assay was exploited based on the statistically significant pathways and its prognostic function was tested using train set and verified using the gene expression data and survival data of Luminal A breast cancer patients downloaded from the Gene Expression Omnibus. A total of 300 DEGs were identified between good and poor outcome groups, including 176 upregulated genes and 124 downregulated genes. The DEGs may be used to effectively distinguish Luminal A samples with different prognoses verified by hierarchical clustering analysis. There were 9 pathways screened as significant pathways and a total of 18 DEGs involved in these 9 pathways were identified as prognostic biomarkers. According to the survival analysis and receiver operating characteristic curve, the obtained 18-gene prognostic assay exhibited good prognostic function with high sensitivity and specificity to both the train and test samples. In conclusion the 18-gene prognostic assay including the key genes, transcription factor 7-like 2, anterior parietal cortex and lymphocyte enhancer factor-1 may provide a new method for predicting outcomes and may be conducive to the promotion of precision medicine for Luminal A breast cancer.
Design of a functional cyclic HSV1-TK reporter and its application to PET imaging of apoptosis
Wang, Zhe; Wang, Fu; Hida, Naoki; Kiesewetter, Dale O; Tian, Jie; Niu, Gang; Chen, Xiaoyuan
2017-01-01
Positron emission tomography (PET) is a sensitive and noninvasive imaging method that is widely used to explore molecular events in living subjects. PET can precisely and quantitatively evaluate cellular apoptosis, which has a crucial role in various physiological and pathological processes. In this protocol, we describe the design and use of an engineered cyclic herpes simplex virus 1–thymidine kinase (HSV1-TK) PET reporter whose kinase activity is specifically switched on by apoptosis. The expression of cyclic TK (cTK) in healthy cells leads to inactive product, whereas the activation of apoptosis through the caspase-3 pathway cleaves cTK, thus restoring its activity and enabling PET imaging. In addition to detailing the design and construction of the cTK plasmid in this protocol, we include assays for evaluating the function and specificity of the cTK reporter in apoptotic cells, such as assays for measuring the cell uptake of PET tracer in apoptotic cells, correlating doxorubicin (Dox)-induced cell apoptosis to cTK function recovery, and in vivo PET imaging of cancer cell apoptosis, and we also include corresponding data acquisition methods. The time to build the entire cTK reporter is ~2–3 weeks. The selection of a stable cancer cell line takes ~4–6 weeks. The time to implement assays regarding cTK function in apoptotic cells and the in vivo imaging varies depending on the experiment. The cyclization strategy described in this protocol can also be adapted to create other reporter systems for broad biomedical applications. PMID:25927390
Chen, Jie-Fu; Zhu, Yazhen; Lu, Yi-Tsung; Hodara, Elisabeth; Hou, Shuang; Agopian, Vatche G.; Tomlinson, James S.; Posadas, Edwin M.; Tseng, Hsian-Rong
2016-01-01
Liquid biopsy of tumor through isolation of circulating tumor cells (CTCs) allows non-invasive, repetitive, and systemic sampling of disease. Although detecting and enumerating CTCs is of prognostic significance in metastatic cancer, it is conceivable that performing molecular and functional characterization on CTCs will reveal unprecedented insight into the pathogenic mechanisms driving lethal disease. Nanomaterial-embedded cancer diagnostic platforms, i.e., NanoVelcro CTC Assays represent a unique rare-cell sorting method that enables detection isolation, and characterization of CTCs in peripheral blood, providing an opportunity to noninvasively monitor disease progression in individual cancer patients. Over the past decade, a series of NanoVelcro CTC Assays has been demonstrated for exploring the full potential of CTCs as a clinical biomarker, including CTC enumeration, phenotyping, genotyping and expression profiling. In this review article, the authors will briefly introduce the development of three generations of NanoVelcro CTC Assays, and highlight the clinical applications of each generation for various types of solid cancers, including prostate cancer, pancreatic cancer, lung cancer, and melanoma. PMID:27375790
Use of viscoelastic haemostatic assay in emergency and elective surgery.
Yeung, Maximus C F; Tong, Steven Y T; Tong, Paul Y W; Cheung, Billy H H; Ng, Joanne Y W; Leung, Gilberto K K
2015-02-01
To review the current evidence for the use of viscoelastic haemostatic assays in different surgical settings including trauma, cardiac surgery, liver transplantation, as well as the monitoring of antiplatelet agents and anticoagulants prior to surgery. PubMed database. Key words for the literature search were "thromboelastography" or "ROTEM" in combination with "trauma", "antiplatelet", "cardiac surgery", "liver transplantation" or "anticoagulants". Original and major review articles related to the use of viscoelastic haemostatic assays. Haemostatic function is a critical factor determining patient outcomes in emergency or elective surgery. The increasing use of antiplatelet agents and anticoagulants has potentially increased the risks of haemorrhages and the need for transfusion. Conventional coagulation tests have limitations in detecting haemostatic dysfunctions in subgroups of patients and are largely ineffective in diagnosing hyperfibrinolysis. The viscoelastic haemostatic assays are potentially useful point-of-care tools that provide information on clot formation, clot strength, and fibrinolysis, as well as to guide goal-directed transfusion and antifibrinolytic therapy. They may also be used to monitor antiplatelet and anticoagulant therapy. However, standardisation of techniques and reference ranges is required before these tests can be widely used in different clinical settings. Viscoelastic haemostatic assays, as compared with conventional coagulation tests, are better for detecting coagulopathy and are the only tests that can provide rapid diagnosis of hyperfibrinolysis. Goal-directed administration of blood products based on the results of viscoelastic haemostatic assays was associated with reduction in allogeneic blood product transfusions in trauma, cardiac surgery, and liver transplantation cases. However, there is currently no evidence to support the routine use of viscoelastic haemostatic assays for monitoring platelet function prior to surgery.
Optimization and qualification of an Fc Array assay for assessments of antibodies against HIV-1/SIV.
Brown, Eric P; Weiner, Joshua A; Lin, Shu; Natarajan, Harini; Normandin, Erica; Barouch, Dan H; Alter, Galit; Sarzotti-Kelsoe, Marcella; Ackerman, Margaret E
2018-04-01
The Fc Array is a multiplexed assay that assesses the Fc domain characteristics of antigen-specific antibodies with the potential to evaluate up to 500 antigen specificities simultaneously. Antigen-specific antibodies are captured on antigen-conjugated beads and their functional capacity is probed via an array of Fc-binding proteins including antibody subclassing reagents, Fcγ receptors, complement proteins, and lectins. Here we present the results of the optimization and formal qualification of the Fc Array, performed in compliance with Good Clinical Laboratory Practice (GCLP) guidelines. Assay conditions were optimized for performance and reproducibility, and the final version of the assay was then evaluated for specificity, accuracy, precision, limits of detection and quantitation, linearity, range and robustness. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
GFP-complementation assay to detect functional CPP and protein delivery into living cells
Milech, Nadia; Longville, Brooke AC; Cunningham, Paula T; Scobie, Marie N; Bogdawa, Heique M; Winslow, Scott; Anastasas, Mark; Connor, Theresa; Ong, Ferrer; Stone, Shane R; Kerfoot, Maria; Heinrich, Tatjana; Kroeger, Karen M; Tan, Yew-Foon; Hoffmann, Katrin; Thomas, Wayne R; Watt, Paul M; Hopkins, Richard M
2015-01-01
Efficient cargo uptake is essential for cell-penetrating peptide (CPP) therapeutics, which deliver widely diverse cargoes by exploiting natural cell processes to penetrate the cell’s membranes. Yet most current CPP activity assays are hampered by limitations in assessing uptake, including confounding effects of conjugated fluorophores or ligands, indirect read-outs requiring secondary processing, and difficulty in discriminating internalization from endosomally trapped cargo. Split-complementation Endosomal Escape (SEE) provides the first direct assay visualizing true cytoplasmic-delivery of proteins at biologically relevant concentrations. The SEE assay has minimal background, is amenable to high-throughput processes, and adaptable to different transient and stable cell lines. This split-GFP-based platform can be useful to study transduction mechanisms, cellular imaging, and characterizing novel CPPs as pharmaceutical delivery agents in the treatment of disease. PMID:26671759
Ellis-Hutchings, Robert G; Settivari, Raja S; McCoy, Alene T; Kleinstreuer, Nicole; Franzosa, Jill; Knudsen, Thomas B; Carney, Edward W
2017-04-13
Embryonic vascular disruption is an important adverse outcome pathway (AOP) as chemical disruption of cardiovascular development induces broad prenatal defects. High-throughput screening (HTS) assays aid AOP development although linking in vitro data to in vivo apical endpoints remains challenging. This study evaluated two anti-angiogenic agents, 5HPP-33 and TNP-470, across the ToxCastDB HTS assay platform and anchored the results to complex in vitro functional assays: the rat aortic explant assay (AEA), rat whole embryo culture (WEC), and the zebrafish embryotoxicity (ZET) assay. Both were identified as putative vascular disruptive compounds (pVDCs) in ToxCastDB and disrupted angiogenesis and embryogenesis in the functional assays. Differences were observed in potency and adverse effects: 5HPP-33 was embryolethal (WEC and ZET); TNP-470 produced caudal defects at lower concentrations. This study demonstrates how a tiered approach using HTS signatures and complex functional in vitro assays might be used to prioritize further in vivo developmental toxicity testing. Copyright © 2017 Elsevier Inc. All rights reserved.
Ellis-Hutchings, Robert G; Settivari, Raja S; McCoy, Alene T; Kleinstreuer, Nicole; Franzosa, Jill; Knudsen, Thomas B; Carney, Edward W
2017-06-01
Embryonic vascular disruption is an important adverse outcome pathway (AOP) as chemical disruption of cardiovascular development induces broad prenatal defects. High throughput screening (HTS) assays aid AOP development although linking in vitro data to in vivo apical endpoints remains challenging. This study evaluated two anti-angiogenic agents, 5HPP-33 and TNP-470, across the ToxCastDB HTS assay platform and anchored the results to complex in vitro functional assays: the rat aortic explant assay (AEA), rat whole embryo culture (WEC), and the zebrafish embryotoxicity (ZET) assay. Both were identified as putative vascular disruptive compounds (pVDCs) in ToxCastDB and disrupted angiogenesis and embryogenesis in the functional assays. Differences were observed in potency and adverse effects: 5HPP-33 was embryolethal (WEC and ZET); TNP-470 produced caudal defects at lower concentrations. This study demonstrates how a tiered approach using HTS signatures and complex functional in vitro assays might be used to prioritize further in vivo developmental toxicity testing. Copyright © 2017 Elsevier Inc. All rights reserved.
Lactoferricin-related peptides with inhibitory effects on ACE-dependent vasoconstriction.
Centeno, José M; Burguete, María C; Castelló-Ruiz, María; Enrique, María; Vallés, Salvador; Salom, Juan B; Torregrosa, Germán; Marcos, José F; Alborch, Enrique; Manzanares, Paloma
2006-07-26
A selection of lactoferricin B (LfcinB)-related peptides with an angiotensin I-converting enzyme (ACE) inhibitory effect have been examined using in vitro and ex vivo functional assays. Peptides that were analyzed included a set of sequence-related antimicrobial hexapeptides previously reported and two representative LfcinB-derived peptides. In vitro assays using hippuryl-L-histidyl-L-leucine (HHL) and angiotensin I as substrates allowed us to select two hexapeptides, PACEI32 (Ac-RKWHFW-NH2) and PACEI34 (Ac-RKWLFW-NH2), and also a LfcinB-derived peptide, LfcinB17-31 (Ac-FKCRRWQWRMKKLGA-NH2). Ex vivo functional assays using rabbit carotid arterial segments showed PACEI32 (both D- and L-enantiomers) and LfcinB17-31 have inhibitory effects on ACE-dependent angiotensin I-induced contraction. None of the peptides exhibited in vitro ACE inhibitory activity using bradykinin as the substrate. In conclusion, three bioactive lactoferricin-related peptides exhibit inhibitory effects on both ACE activity and ACE-dependent vasoconstriction with potential to modulate hypertension that deserves further investigation.
Uroz, Stéphane; Ioannidis, Panos; Lengelle, Juliette; Cébron, Aurélie; Morin, Emmanuelle; Buée, Marc; Martin, Francis
2013-01-01
In temperate ecosystems, acidic forest soils are among the most nutrient-poor terrestrial environments. In this context, the long-term differentiation of the forest soils into horizons may impact the assembly and the functions of the soil microbial communities. To gain a more comprehensive understanding of the ecology and functional potentials of these microbial communities, a suite of analyses including comparative metagenomics was applied on independent soil samples from a spruce plantation (Breuil-Chenue, France). The objectives were to assess whether the decreasing nutrient bioavailability and pH variations that naturally occurs between the organic and mineral horizons affects the soil microbial functional biodiversity. The 14 Gbp of pyrosequencing and Illumina sequences generated in this study revealed complex microbial communities dominated by bacteria. Detailed analyses showed that the organic soil horizon was significantly enriched in sequences related to Bacteria, Chordata, Arthropoda and Ascomycota. On the contrary the mineral horizon was significantly enriched in sequences related to Archaea. Our analyses also highlighted that the microbial communities inhabiting the two soil horizons differed significantly in their functional potentials according to functional assays and MG-RAST analyses, suggesting a functional specialisation of these microbial communities. Consistent with this specialisation, our shotgun metagenomic approach revealed a significant increase in the relative abundance of sequences related glycoside hydrolases in the organic horizon compared to the mineral horizon that was significantly enriched in glycoside transferases. This functional stratification according to the soil horizon was also confirmed by a significant correlation between the functional assays performed in this study and the functional metagenomic analyses. Together, our results suggest that the soil stratification and particularly the soil resource availability impact the functional diversity and to a lesser extent the taxonomic diversity of the bacterial communities. PMID:23418476
Garritsen, H S; Probst-Kepper, M; Legath, N; Eberl, W; Samaniego, S; Woudenberg, J; Schuitemaker, J H N; Kroll, H; Gurney, D A; Moore, G W; Zehnder, J L
2014-04-01
Heparin-induced thrombocytopenia (HIT) is a life-threatening condition, in which the anticoagulant heparin, platelet factor 4 (PF4), and platelet-activating antibodies form complexes with prothrombotic properties. Laboratory tests to support clinical diagnosis are subdivided into functional, platelet activation assays, which lack standardization, or immunological assays, which have moderate specificity toward HIT. In this study, clinical performance of HITAlert, a novel in vitro diagnostic (IVD) registered platelet activation assay, was tested in a large cohort of HIT-suspected patients and compared with immunological assays. From 346 HIT-suspected patients (single center), clinical data including 4T pretest probability results, citrated platelet-poor plasmas, and sera were collected, allowing direct comparison of clinical observations with HITAlert results. HITAlert performance was compared with PF4 IgG ELISA (246 patients, three centers) and PF4 PaGIA (298 patients, single center). HITAlert showed high sensitivity (88.2%) and specificity (99.1%) when compared with clinical diagnosis. Agreement of HITAlert with PF4 ELISA- and PF4 PaGIA-positive patients is low (52.7 and 23.2%, respectively), while agreement with PF4 IgG ELISA- and PF4 PaGIA-negative patients is very high (98.1 and 99.1%, respectively). HITAlert performance is excellent when compared with clinical HIT diagnosis, making it a suitable assay for rapid testing of platelet activation due to anticoagulant therapy. © 2013 John Wiley & Sons Ltd.
Development of a Targeted Urine Proteome Assay for kidney diseases.
Cantley, Lloyd G; Colangelo, Christopher M; Stone, Kathryn L; Chung, Lisa; Belcher, Justin; Abbott, Thomas; Cantley, Jennifer L; Williams, Kenneth R; Parikh, Chirag R
2016-01-01
Since human urine is the most readily available biofluid whose proteome changes in response to disease, it is a logical sample for identifying protein biomarkers for kidney diseases. Potential biomarkers were identified by using a multiproteomics workflow to compare urine proteomes of kidney transplant patients with immediate and delayed graft function. Differentially expressed proteins were identified, and corresponding stable isotope labeled internal peptide standards were synthesized for scheduled MRM. The Targeted Urine Proteome Assay (TUPA) was then developed by identifying those peptides for which there were at least two transitions for which interference in a urine matrix across 156 MRM runs was <30%. This resulted in an assay that monitors 224 peptides from 167 quantifiable proteins. TUPA opens the way for using a robust mass spectrometric technology, MRM, for quantifying and validating biomarkers from among 167 urinary proteins. This approach, while developed using differentially expressed urinary proteins from patients with delayed versus immediate graft function after kidney transplant, can be expanded to include differentially expressed urinary proteins in multiple kidney diseases. Thus, TUPA could provide a single assay to help diagnose, prognose, and manage many kidney diseases. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Kang, Hong-Jun; Vassilopoulos, Athanassios
2016-01-01
Acetylation has emerged as an important post-translational modification (PTM) regulating a plethora of cellular processes and functions. This is further supported by recent findings in high-resolution mass spectrometry based proteomics showing that many new proteins and sites within these proteins can be acetylated. However the identity of the enzymes regulating these proteins and sites is often unknown. Among these enzymes, sirtuins, which belong to the class III histone lysine deacetylases, have attracted great interest as enzymes regulating the acetylome under different physiological or pathophysiological conditions. Here we describe methods to link SIRT2, the cytoplasmic sirtuin, with its substrates including both in vitro and in vivo deacetylation assays. These assays can be applied in studies focused on other members of the sirtuin family to unravel the specific role of sirtuins and are necessary in order to establish the regulatory interplay of specific deacetylases with their substrates as a first step to better understand the role of protein acetylation. Furthermore, such assays can be used to distinguish functional acetylation sites on a protein from what may be non-regulatory acetylated lysines, as well as to examine the interplay between a deacetylase and its substrate in a physiological context. PMID:26966987
Fajt, V R; Apley, M D; Roth, J A; Frank, D E; Brogden, K A; Skogerboe, T L; Shostrom, V K; Chin, Y-L
2003-06-01
Pneumonia caused by Pasteurella (Mannheimia) haemolytica was induced in weaned beef heifer calves, approximately 6 months of age. Calves were treated at 20 h after challenge with therapeutic doses of danofloxacin or tilmicosin. Peripheral blood neutrophils were collected at 3, 24 and 48 h after treatment. The ex vivo effects on neutrophil function, neutrophil apoptosis, and hematological parameters were examined, as was the effect on percentage lung consolidation. Neutrophil function assays included random migration under agarose, cytochrome C reduction, iodination, Staphylococcus aureus ingestion, chemotaxis, and antibody-dependent and antibody-independent cell-mediated cytotoxicity. Apoptosis was determined using a cell death detection kit. Killing was performed at 72 h after treatment. Statistical comparisons were made among the three groups of challenged-treated animals: saline, danofloxacin, and tilmicosin. Comparisons were also made between nonchallenged nontreated animals (NCH) and challenged saline-treated animals. There were no significant differences for any of the neutrophil function assays or neutrophil apoptosis among the challenged-treated groups. This suggests that danofloxacin and tilmicosin have no clinically significant effects on neutrophil function or apoptosis. There were also no significant differences in percentage lung consolidation among the challenged-treated groups. Significant differences were found between the NCH calves and the challenged saline-treated calves in several neutrophil assays, which were attributed to effects of P. haemolytica infection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giulliani, S. E.; Frank, A. E.; Collart, F. R.
2008-12-08
We have used a fluorescence-based thermal shift (FTS) assay to identify amino acids that bind to solute-binding proteins in the bacterial ABC transporter family. The assay was validated with a set of six proteins with known binding specificity and was consistently able to map proteins with their known binding ligands. The assay also identified additional candidate binding ligands for several of the amino acid-binding proteins in the validation set. We extended this approach to additional targets and demonstrated the ability of the FTS assay to unambiguously identify preferential binding for several homologues of amino acid-binding proteins with known specificity andmore » to functionally annotate proteins of unknown binding specificity. The assay is implemented in a microwell plate format and provides a rapid approach to validate an anticipated function or to screen proteins of unknown function. The ABC-type transporter family is ubiquitous and transports a variety of biological compounds, but the current annotation of the ligand-binding proteins is limited to mostly generic descriptions of function. The results illustrate the feasibility of the FTS assay to improve the functional annotation of binding proteins associated with ABC-type transporters and suggest this approach that can also be extended to other protein families.« less
Assessment of Neutrophil Function in Patients with Septic Shock: Comparison of Methods
Wenisch, C.; Fladerer, P.; Patruta, S.; Krause, R.; Hörl, W.
2001-01-01
Patients with septic shock are shown to have decreased neutrophil phagocytic function by multiple assays, and their assessment by whole-blood assays (fluorescence-activated cell sorter analysis) correlates with assays requiring isolated neutrophils (microscopic and spectrophotometric assays). For patients with similar underlying conditions but without septic shock, this correlation does not occur. PMID:11139215
Lee, Jangwoo; Aguilar, Cristian; Gardiner, David
2013-01-01
The adult salamander has been studied as a model for regeneration of complex tissues for many decades. Only recently with the development of gain-of-function assays for regeneration, has it been possible to screen for and assay the function of the multitude of signaling factors that have been identified in studies of embryonic development and tumorigenesis. Given the conservation of function of these regulatory pathways controlling growth and pattern formation, it is now possible to use the functional assays in the salamander to test the ability of endogenous as well as small-molecule signaling factors to induce a regenerative response.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Je Min, E-mail: jemin@knu.ac.kr; Department of Horticultural Science, Kyungpook National University, Daegu; Lee, Sang-Jik
Highlights: • Yeast secretion trap (YST) is a valuable tool for mining secretome. • A total of 80 secreted proteins are newly identified via YST in pepper fruits. • The secreted proteins are differentially regulated during pepper development and ripening. • Transient GFP-fusion assay and in planta secretion trap can effectively validate the secretion of proteins. - Abstract: Plant cells secrete diverse sets of constitutively- and conditionally-expressed proteins under various environmental and developmental states. Secreted protein populations, or secretomes have multiple functions, including defense responses, signaling, metabolic processes, and developmental regulation. To identify genes encoding secreted proteins that function inmore » fruit development and ripening, a yeast secretion trap (YST) screen was employed using pepper (Capsicum annuum) fruit cDNAs. The YST screen revealed 80 pepper fruit-related genes (CaPFRs) encoding secreted proteins including cell wall proteins, several of which have not been previously described. Transient GFP-fusion assay and an in planta secretion trap were used to validate the secretion of proteins encoded by selected YST clones. In addition, RNA gel blot analyses provided further insights into their expression and regulation during fruit development and ripening. Integrating our data, we conclude that the YST provides a valuable functional genomics tool for the identification of substantial numbers of novel secreted plant proteins that are associated with biological processes, including fruit development and ripening.« less
Protein profile in HBx transfected cells: a comparative iTRAQ-coupled 2D LC-MS/MS analysis.
Feng, Huixing; Li, Xi; Niu, Dandan; Chen, Wei Ning
2010-06-16
The x protein of HBV (HBx) has been involved in the development of hepatocellular carcinoma (HCC), with a possible link to individual genotypes. Nevertheless, the underlying mechanism remains obscure. In this study, we aim to identify the HBx-induced protein profile in HepG2 cells by LC-MS/MS proteomics analysis. Our results indicated that proteins were differentially expressed in HepG2 cells transfected by HBx of various genotypes. Proteins associated with cytoskeleton were found to be either up-regulated (MACF1, HMGB1, Annexin A2) or down-regulated (Lamin A/C). These may in turn result in the decrease of focal adhesion and increase of cell migration in response to HBx. Levels of other cellular proteins with reported impact on the function of extracellular matrix (ECM) proteins and cell migration, including Ca(2+)-binding proteins (S100A11, S100A6, and S100A4) and proteasome protein (PSMA3), were affected by HBx. The differential protein profile identified in this study was also supported by our functional assay which indicated that cell migration was enhanced by HBx. Our preliminary study provided a new platform to establish a comprehensive cellular protein profile by LC-MS/MS proteomics analysis. Further downstream functional assays, including our reported cell migration assay, should provide new insights in the association between HCC and HBx. Copyright 2009 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Pope, Sandi R.; Tolleson, Tonya D.; Williams, R. Jill; Underhill, Russell D.; Deal, S. Todd
1998-06-01
At Georgia Southern University, we offer a sophomore-level introductory biochemistry course that is aimed at nutrition and chemistry education majors. The laboratory portion of this course has long lacked an experimental introduction to enzymes. We have developed a simple enzyme assay utilizing lactase enzyme from crushed LactAid tablets and a 5% lactose solution ("synthetic milk"). In the experiment, the students assay the activity of the enzyme on the "synthetic milk" at pHs of approximately 1, 6, and 8 with the stated goal of determining where lactose functions in the digestive tract. The activity of the lactase may be followed chromatographically or spectrophotometrically. The experiment, which is actually a simple pH assay, is easily implemented in allied health chemistry laboratory courses and readily lends itself to adaptation for more complex kinetic assays in upper-level biochemistry laboratory courses. The experimental details, including a list of required supplies and hints for implementation, are provided.
Lippi, Giuseppe; Pasalic, Leonardo; Favaloro, Emmanuel J
2015-08-01
Although assessment of prior personal and familial bleeding history is an important aspect of the diagnosis of bleeding disorders, patients with mild inherited bleeding disorders are sometimes clinically asymptomatic until presented with a hemostatic challenge. However, bleeding may occur after incursion of trauma or surgery, so detection of these conditions reflects an important facet of clinical and laboratory practice. Mild bleeding disorders may be detected as a result of family studies or following identification of abnormal values in first-line screening tests such as activated partial thromboplastin time, prothrombin time, fibrinogen and global platelet function screen testing, such as the platelet function analyzer. Following determination of abnormal screening tests, subsequent investigation should follow a systematic approach that targets specific diagnostic tests, and including factor assays, full platelet function assays and more extensive specialized hemostasis testing. The current report provides a personal overview on inherited disorders of blood coagulation and their detection.
NASA Technical Reports Server (NTRS)
Lynes, Michael A. (Inventor); Fernandez, Salvador M. (Inventor)
2010-01-01
An assay technique for label-free, highly parallel, qualitative and quantitative detection of specific cell populations in a sample and for assessing cell functional status, cell-cell interactions and cellular responses to drugs, environmental toxins, bacteria, viruses and other factors that may affect cell function. The technique includes a) creating a first array of binding regions in a predetermined spatial pattern on a sensor surface capable of specifically binding the cells to be assayed; b) creating a second set of binding regions in specific spatial patterns relative to the first set designed to efficiently capture potential secreted or released products from cells captured on the first set of binding regions; c) contacting the sensor surface with the sample, and d) simultaneously monitoring the optical properties of all the binding regions of the sensor surface to determine the presence and concentration of specific cell populations in the sample and their functional status by detecting released or secreted bioproducts.
Worbs, Sylvia; Fiebig, Uwe; Zeleny, Reinhard; Schimmel, Heinz; Rummel, Andreas; Luginbühl, Werner; Dorner, Brigitte G.
2015-01-01
In the framework of the EU project EQuATox, a first international proficiency test (PT) on the detection and quantification of botulinum neurotoxins (BoNT) was conducted. Sample materials included BoNT serotypes A, B and E spiked into buffer, milk, meat extract and serum. Different methods were applied by the participants combining different principles of detection, identification and quantification. Based on qualitative assays, 95% of all results reported were correct. Successful strategies for BoNT detection were based on a combination of complementary immunological, MS-based and functional methods or on suitable functional in vivo/in vitro approaches (mouse bioassay, hemidiaphragm assay and Endopep-MS assay). Quantification of BoNT/A, BoNT/B and BoNT/E was performed by 48% of participating laboratories. It turned out that precise quantification of BoNT was difficult, resulting in a substantial scatter of quantitative data. This was especially true for results obtained by the mouse bioassay which is currently considered as “gold standard” for BoNT detection. The results clearly demonstrate the urgent need for certified BoNT reference materials and the development of methods replacing animal testing. In this context, the BoNT PT provided the valuable information that both the Endopep-MS assay and the hemidiaphragm assay delivered quantitative results superior to the mouse bioassay. PMID:26703724
Alix-Panabières, Catherine; Pantel, Klaus
2015-01-01
Circulating tumor cells (CTCs) in the blood of cancer patients have received increasing attention as new diagnostic tool enabling 'liquid biopsies'. In contrast to the wealth of descriptive studies demonstrating the clinical relevance of CTCs as biomarkers, the extremely low concentration of CTCs in the peripheral blood of most cancer patients challenges further functional studies. This article discusses the current possibilities to enrich and, in particular, detect viable CTCs with emphasis on the EPithelial ImmunoSPOT technology. This functional assay detects viable CTCs at the single-cell level and has been used on hundreds of patients with different tumor types including epithelial tumors (breast, prostate and colon cancer) and melanomas. Moreover, the article summarizes recent advances in the in vitro and in vivo expansion of CTCs from cancer patients. These functional analyses will contribute to identifying the biological properties of metastatic cells and reveal new therapeutic targets against disseminating cancer cells.
Song, Chenyang; Liu, Wenge; Li, Jiandong
2017-07-01
USP17 is upregulated in several cancers, indicating that USP17 might play essential functions in tumor development. However, the function of USP17 in osteosarcoma is still unknown. Our work aimed to investigate the function of USP17 in osteosarcoma. We found that the expression of USP17 was upregulated in osteosarcoma tissues and cell lines, including MG-63 and U2OS. Several functional experiments, such as colony formation analysis, Cell Counting Kit-8 assay, wound healing analysis, and transwell assay, showed that USP17 promoted cell proliferation, migration, and invasion. Moreover, we found that USP17 facilitated migration and invasion through promoting epithelial-mesenchymal transition. SMAD4 has been found to regulate epithelial-mesenchymal transition, co-immunopurification, and glutathione S-transferase pull-down analysis demonstrated that USP17 interacted with SMAD4. Furthermore, USP17 stabilized SMAD4 through its deubiquitinase activity. In conclusion, this study shows that USP17 enhances osteosarcoma cell proliferation and invasion through stabilizing SMAD4.
NASA Astrophysics Data System (ADS)
Abdala, Z. M.; Powell, K.; Cronin, D.; Chappell, D.
2016-02-01
A comparative gene expression analysis of iron-limited cultures of Chaetoceros socialis and Pseudo-nitzschia arenysensisusing newly developed iron assays Zuzanna M. Abdala, Kimberly Powell, Dylan P. Cronin, P. Dreux Chappell Diatoms, accounting for about 40% of the primary production in marine ecosystems, play a vital role in the dynamics of marine systems. Iron availability is understood to be a driving factor controlling productivity of many marine phytoplankton, including diatoms, as it functions as a cofactor for many proteins including several involved with photosynthetic processes. Previous work examining transcriptomes of diatoms of the Thalassiosira genus grown in controlled laboratory settings has identified genes whose expression can be used as sensitive markers of iron status. Data mining publically available diatom transcriptome data for these genes enables development of additional iron status assays for environmentally-relevant diatoms. For the present study, gene expression analysis of iron-limited laboratory cultures of Chaetoceros socialis and Pseudo-nitzschia arenysensis grown in continuous light was done using quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). C. socialis and P. arenysensis serve as comparative models for analyzing gene expression in iron limitation in different ecological community assemblages. These data may ultimately assist to illuminate the function of iron in photosynthetic activity in diatoms.
NASA 14 Day Undersea Missions: A Short-Duration Spaceflight Analog for Immune System Dysregulation?
NASA Technical Reports Server (NTRS)
Crucian, B. E.; Stowe, R. P.; Mehta, S. K.; Chouker, A.; Feuerecker, M.; Quiriarte, H.; Pierson, D. L.; Sams, C. F.
2011-01-01
This poster paper reviews the use of 14 day undersea missions as a possible analog for short duration spaceflight for the study of immune system dysregulation. Sixteen subjects from the the NASA Extreme Enviro nment Mission Operations (NEEMO) 12, 13 and 14 missions were studied for immune system dysregulation. The assays that are presented in this poster are the Virleukocyte subsets, the T Cell functions, and the intracellular/secreted cytokine profiles. Other assays were performed, but are not included in this presntation.
A Pan-Cancer Proteogenomic Atlas of PI3K/AKT/mTOR Pathway Alterations | Office of Cancer Genomics
Molecular alterations involving the PI3K/Akt/mTOR pathway (including mutation, copy number, protein, or RNA) were examined across 11,219 human cancers representing 32 major types. Within specific mutated genes, frequency, mutation hotspot residues, in silico predictions, and functional assays were all informative in distinguishing the subset of genetic variants more likely to have functional relevance. Multiple oncogenic pathways including PI3K/Akt/mTOR converged on similar sets of downstream transcriptional targets.
Reporter gene assay for fish-killing activity produced by Pfiesteria piscicida.
Fairey, E R; Edmunds, J S; Deamer-Melia, N J; Glasgow, H; Johnson, F M; Moeller, P R; Burkholder, J M; Ramsdell, J S
1999-01-01
Collaborative studies were performed to develop a functional assay for fish-killing activity produced by Pfiesteria piscicida. Eight cell lines were used to screen organic fractions and residual water fraction by using a 3-[4, 5-dimethylthiazol-(2-4)]-diphenyltetrazolium bromide cytotoxicity assay. Diethyl ether and a residual water fraction were cytotoxic to several cell lines including rat pituitary (GH(4)C(1)) cells. Residual water as well as preextracted culture water containing P. piscicida cells induced c-fos-luciferase expressed in GH(4)C(1) cells with a rapid time course of induction and sensitive detection. The reporter gene assay detected activity in toxic isolates of P. piscicida from several North Carolina estuaries in 1997 and 1998 and may also be suitable for detecting toxic activity in human and animal serum. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:10464070
Kong, Xianming; Yu, Qian; Lv, Zhongpeng; Du, Xuezhong
2013-10-11
Tandem assays of protein and glucose in combination with mannose-functionalized Fe3 O4 @SiO2 and Ag@SiO2 tag particles have promising potential in effective magnetic separation and highly sensitive and selective SERS assays of biomaterials. It is for the first time that tandem assay of glucose is developed using SERS based on the Con A-sandwiched microstructures between the functionalized magnetic and tag particles. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Towards non- and minimally instrumented, microfluidics-based diagnostic devices†
Weigl, Bernhard; Domingo, Gonzalo; LaBarre, Paul; Gerlach, Jay
2009-01-01
In many health care settings, it is uneconomical, impractical, or unaffordable to maintain and access a fully equipped diagnostics laboratory. Examples include home health care, developing-country health care, and emergency situations in which first responders are dealing with pandemics or biowarfare agent release. In those settings, fully disposable diagnostic devices that require no instrument support, reagent, or significant training are well suited. Although the only such technology to have found widespread adoption so far is the immunochromatographic rapid assay strip test, microfluidics holds promise to expand the range of assay technologies that can be performed in formats similar to that of a strip test. In this paper, we review progress toward development of disposable, low-cost, easy-to-use microfluidics-based diagnostics that require no instrument at all. We also present examples of microfluidic functional elements—including mixers, separators, and detectors—as well as complete microfluidic devices that function entirely without any moving parts and external power sources. PMID:19023463
Production of biopharmaceuticals and vaccines in plants via the chloroplast genome.
Daniell, Henry
2006-10-01
Transgenic plants offer many advantages, including low cost of production (by elimination of fermenters), storage and transportation; heat stability; and absence of human pathogens. When therapeutic proteins are orally delivered, plant cells protect antigens in the stomach through bioencapsulation and eliminate the need for expensive purification and sterile injections, in addition to development of both systemic and mucosal immunity. Chloroplast genetic engineering offers several advantages, including high levels of transgene expression, transgene containment via maternal inheritance and multi-gene expression in a single transformation event. Hyper-expression of vaccine antigens against cholera, tetanus, anthrax, plague or canine parvovirus (4-31% of total soluble protein, tsp) in transgenic chloroplasts (leaves) or non-green plastids (carrots, tomato), as well as the availability of antibiotic-free selectable markers or the ability to excise selectable marker genes, facilitate oral delivery. Hyper-expression of several therapeutic proteins, including human serum albumin (11.1% tsp), somatotropin (7% tsp), interferon-gamma (6% tsp), anti-microbial peptide (21.5% tsp), facilitates efficient and economic purification. Also, the presence of chaperones and enzymes in chloroplasts facilitate assembly of complex multi-subunit proteins and correct folding of human blood proteins with proper disulfide bonds. Functionality of chloroplast-derived vaccine antigens and therapeutic proteins has been demonstrated by several assays, including the macrophage lysis assay, GM1-ganglioside binding assay, protection of HeLa cells or human lung carcinoma cells against encephalomyocarditis virus, systemic immune response, protection against pathogen challenge, and growth or inhibition of cell cultures. Thus, transgenic chloroplasts are ideal bioreactors for production of functional human and animal therapeutic proteins in an environmentally friendly manner.
Walker, Mathew W; Lloyd-Evans, Emyr
2015-01-01
Lysosomes are an emerging and increasingly important cellular organelle. With every passing year, more novel proteins and key cellular functions are associated with lysosomes. Despite this, the methodologies for their purification have largely remained unchanged since the days of their discovery. With little advancement in this area, it is no surprise that analysis of lysosomal function has been somewhat stymied, largely in part by the change in buoyant densities that occur under conditions where lysosomes accumulate macromolecules. Such phenotypes are often associated with the lysosomal storage diseases but are increasingly being observed under conditions where lysosomal proteins or, in some cases, cellular functions associated with lysosomal proteins are being manipulated. These altered lysosomes poise a problem to the classical methods to purify lysosomes that are reliant largely on their correct sedimentation by density gradient centrifugation. Building upon a technique developed by others to purify lysosomes magnetically, we have developed a unique assay using superparamagnetic iron oxide nanoparticles (SPIONs) to purify high yields of ultrapure functional lysosomes from multiple cell types including the lysosomal storage disorders. Here we describe this method in detail, including the rationale behind using SPIONs, the potential pitfalls that can be avoided and the potential functional assays these lysosomes can be used for. Finally we also summarize the other methodologies and the exact reasons why magnetic purification of lysosomes is now the method of choice for lysosomal researchers. Copyright © 2015 Elsevier Inc. All rights reserved.
Just, Sarah
2017-02-01
von Willebrand disease (VWD) was first described nearly a century ago in 1924 by Erik Adolf von Willebrand. Diagnostic testing at the time was very limited and it was not until the mid to late 1900s that more tests became available to assist with the diagnosis and classification of VWD. Two of these tests are based on ristocetin, one being ristocetin-induced platelet aggregation (RIPA) and the other the von Willebrand factor (VWF) ristocetin cofactor assay (VWF:RCo). The VWF:RCo assay provides functional assessment of in vitro VWF binding to the platelet glycoprotein (Gp) complex, GPIb-IX-V. Despite some advancements and newer technologies utilizing the principles of the original VWF:RCo assay, the original assay is still referred to as the gold standard for measurement of VWF activity. This article will review the history of VWD diagnostic assays, including RIPA and VWF:RCo over the past 40 years, as well as the newer assays that measure platelet binding with or without ristocetin, and which have been developed with the aim to potentially replace platelet-based ristocetin-dependent assays. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
Functional Assays for Ricin Detection
NASA Astrophysics Data System (ADS)
Ezan, Eric; Duriez, Elodie; Fenaille, François; Becher, François
In this review, we provide background information on ricin structure, present available functional assays for other toxins that are potential biothreat agents, and finish by describing the functional assay of ricin itself. Using appropriate sample preparation and optimized detection based on N-glycosidase activity, we demonstrate that specific detection of whole ricin at a level of around 0.1 ng/mL is possible and applicable to environmental samples.
van der Klift, Heleen M; Jansen, Anne M L; van der Steenstraten, Niki; Bik, Elsa C; Tops, Carli M J; Devilee, Peter; Wijnen, Juul T
2015-01-01
A subset of DNA variants causes genetic disease through aberrant splicing. Experimental splicing assays, either RT-PCR analyses of patient RNA or functional splicing reporter minigene assays, are required to evaluate the molecular nature of the splice defect. Here, we present minigene assays performed for 17 variants in the consensus splice site regions, 14 exonic variants outside these regions, and two deep intronic variants, all in the DNA mismatch-repair (MMR) genes MLH1, MSH2, MSH6, and PMS2, associated with Lynch syndrome. We also included two deep intronic variants in APC and PKD2. For one variant (MLH1 c.122A>G), our minigene assay and patient RNA analysis could not confirm the previously reported aberrant splicing. The aim of our study was to further investigate the concordance between minigene splicing assays and patient RNA analyses. For 30 variants results from patient RNA analyses were available, either performed by our laboratory or presented in literature. Some variants were deliberately included in this study because they resulted in multiple aberrant transcripts in patient RNA analysis, or caused a splice effect other than the prevalent exon skip. While both methods were completely concordant in the assessment of splice effects, four variants exhibited major differences in aberrant splice patterns. Based on the present and earlier studies, together showing an almost 100% concordance of minigene assays with patient RNA analyses, we discuss the weight given to minigene splicing assays in the current criteria proposed by InSiGHT for clinical classification of MMR variants. PMID:26247049
Critical elements in the development of cell therapy potency assays for ischemic conditions.
Porat, Yael; Abraham, Eytan; Karnieli, Ohad; Nahum, Sagi; Woda, Juliana; Zylberberg, Claudia
2015-07-01
A successful potency assay for a cell therapy product (CTP) used in the treatment of ischemic conditions should quantitatively measure relevant biological properties that predict therapeutic activity. This is especially challenging because of numerous degrees of complexity stemming from factors that include a multifactorial complex mechanism of action, cell source, inherent cell characteristics, culture method, administration mode and the in vivo conditions to which the cells are exposed. The expected biological function of a CTP encompasses complex interactions that range from a biochemical, metabolic or immunological activity to structural replacement of damaged tissue or organ. Therefore, the requirements for full characterization of the active substance with respect to biological function could be taxing. Moreover, the specific mechanism of action is often difficult to pinpoint to a specific molecular entity; rather, it is more dependent on the functionality of the cellular components acting in a in a multifactorial fashion. In the case of ischemic conditions, the cell therapy mechanism of action can vary from angiogenesis, vasculogenesis and arteriogenesis that may activate different pathways and clinical outcomes. The CTP cellular attributes with relation to the suggested mechanism of action can be used for the development of quantitative and reproducible analytical potency assays. CTPs selected and released on the basis of such potency assays should have the highest probability of providing meaningful clinical benefit for patients. This White Paper will discuss and give examples for key elements in the development of a potency assay for treatment of ischemic disorders treated by the use of CTPs. Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.
In vivo longitudinal MRI and behavioral studies in experimental spinal cord injury.
Sundberg, Laura M; Herrera, Juan J; Narayana, Ponnada A
2010-10-01
Comprehensive in vivo longitudinal studies that include multi-modal magnetic resonance imaging (MRI) and a battery of behavioral assays to assess functional outcome were performed at multiple time points up to 56 days post-traumatic spinal cord injury (SCI) in rodents. The MRI studies included high-resolution structural imaging for lesion volumetry, and diffusion tensor imaging (DTI) for probing the white matter integrity. The behavioral assays included open-field locomotion, grid walking, inclined plane, computerized activity box performance, and von Frey filament tests. Additionally, end-point histology was assessed for correlation with both the MRI and behavioral data. The temporal patterns of the lesions were documented on structural MRI. DTI studies showed significant changes in white matter that is proximal to the injury epicenter and persisted to day 56. White matter in regions up to 1 cm away from the injury epicenter that appeared normal on conventional MRI also exhibited changes that were indicative of tissue damage, suggesting that DTI is a more sensitive measure of the evolving injury. Correlations between DTI and histology after SCI could not be firmly established, suggesting that injury causes complex pathological changes in multiple tissue components that affect the DTI measures. Histological evidence confirmed a significant decrease in myelin and oligodendrocyte presence 56 days post-SCI. Multiple assays to evaluate aspects of functional recovery correlated with histology and DTI measures, suggesting that damage to specific white matter tracts can be assessed and tracked longitudinally after SCI.
Kristof, Jessica; Sakrison, Kellen; Jin, Xiaoping; Nakamaru, Kenji; Schneider, Matthias; Beckman, Robert A; Freeman, Daniel; Spittle, Cindy; Feng, Wenqin
2017-01-01
In preclinical studies, heregulin ( HRG ) expression was shown to be the most relevant predictive biomarker for response to patritumab, a fully human anti-epidermal growth factor receptor 3 monoclonal antibody. In support of a phase 2 study of erlotinib ± patritumab in non-small cell lung cancer (NSCLC), a reverse-transcription quantitative polymerase chain reaction (RT-qPCR) assay for relative quantification of HRG expression from formalin-fixed paraffin-embedded (FFPE) NSCLC tissue samples was developed and validated and described herein. Test specimens included matched FFPE normal lung and NSCLC and frozen NSCLC tissue, and HRG -positive and HRG -negative cell lines. Formalin-fixed paraffin-embedded tissue was examined for functional performance. Heregulin distribution was also analyzed across 200 NSCLC commercial samples. Applied Biosystems TaqMan Gene Expression Assays were run on the Bio-Rad CFX96 real-time PCR platform. Heregulin RT-qPCR assay specificity, PCR efficiency, PCR linearity, and reproducibility were demonstrated. The final assay parameters included the Qiagen FFPE RNA Extraction Kit for RNA extraction from FFPE NSCLC tissue, 50 ng of RNA input, and 3 reference (housekeeping) genes ( HMBS, IPO8 , and EIF2B1 ), which had expression levels similar to HRG expression levels and were stable among FFPE NSCLC samples. Using the validated assay, unimodal HRG distribution was confirmed across 185 evaluable FFPE NSCLC commercial samples. Feasibility of an RT-qPCR assay for the quantification of HRG expression in FFPE NSCLC specimens was demonstrated.
Zhang, Yiqiang; Fischer, Kathleen E; Soto, Vanessa; Liu, Yuhong; Sosnowska, Danuta; Richardson, Arlan; Salmon, Adam B
2015-06-15
Obesity is a serious chronic disease that increases the risk of numerous co-morbidities including metabolic syndrome, cardiovascular disease and cancer as well as increases risk of mortality, leading some to suggest this condition represents accelerated aging. Obesity is associated with significant increases in oxidative stress in vivo and, despite the well-explored relationship between oxidative stress and aging, the role this plays in the increased mortality of obese subjects remains an unanswered question. Here, we addressed this by undertaking a comprehensive, longitudinal study of a group of high fat-fed obese mice and assessed both their changes in oxidative stress and in their performance in physiological assays known to decline with aging. In female C57BL/6J mice fed a high-fat diet starting in adulthood, mortality was significantly increased as was oxidative damage in vivo. High fat-feeding significantly accelerated the decline in performance in several assays, including activity, gait, and rotarod. However, we also found that obesity had little effect on other markers of function and actually improved performance in grip strength, a marker of muscular function. Together, this first comprehensive assessment of longitudinal, functional changes in high fat-fed mice suggests that obesity may induce segmental acceleration of some of the aging process. Published by Elsevier Inc.
Biochemical Activities of 320 ToxCast Chemicals Evaluated Across 239 Functional Targets
EPA’s ToxCast research program is profiling chemical bioactivity in order to generate predictive signatures of toxicity. The present study evaluated 320 chemicals across 239 biochemical assays. ToxCast phase I chemicals include 309 unique structures, most of which are pesticide ...
High-throughput screening based on label-free detection of small molecule microarrays
NASA Astrophysics Data System (ADS)
Zhu, Chenggang; Fei, Yiyan; Zhu, Xiangdong
2017-02-01
Based on small-molecule microarrays (SMMs) and oblique-incidence reflectivity difference (OI-RD) scanner, we have developed a novel high-throughput drug preliminary screening platform based on label-free monitoring of direct interactions between target proteins and immobilized small molecules. The screening platform is especially attractive for screening compounds against targets of unknown function and/or structure that are not compatible with functional assay development. In this screening platform, OI-RD scanner serves as a label-free detection instrument which is able to monitor about 15,000 biomolecular interactions in a single experiment without the need to label any biomolecule. Besides, SMMs serves as a novel format for high-throughput screening by immobilization of tens of thousands of different compounds on a single phenyl-isocyanate functionalized glass slide. Based on the high-throughput screening platform, we sequentially screened five target proteins (purified target proteins or cell lysate containing target protein) in high-throughput and label-free mode. We found hits for respective target protein and the inhibition effects for some hits were confirmed by following functional assays. Compared to traditional high-throughput screening assay, the novel high-throughput screening platform has many advantages, including minimal sample consumption, minimal distortion of interactions through label-free detection, multi-target screening analysis, which has a great potential to be a complementary screening platform in the field of drug discovery.
Xu, Yan; Hadjiargyrou, M; Rafailovich, Miriam; Mironava, Tatsiana
2017-07-11
Increasing production of nanomaterials requires fast and proper assessment of its potential toxicity. Therefore, there is a need to develop new assays that can be performed in vitro, be cost effective, and allow faster screening of engineered nanomaterials (ENMs). Herein, we report that titanium dioxide (TiO 2 ) nanoparticles (NPs) can induce damage to adipose derived stromal cells (ADSCs) at concentrations which are rated as safe by standard assays such as measuring proliferation, reactive oxygen species (ROS), and lactate dehydrogenase (LDH) levels. Specifically, we demonstrated that low concentrations of TiO 2 NPs, at which cellular LDH, ROS, or proliferation profiles were not affected, induced changes in the ADSCs secretory function and differentiation capability. These two functions are essential for ADSCs in wound healing, energy expenditure, and metabolism with serious health implications in vivo. We demonstrated that cytotoxicity assays based on specialized cell functions exhibit greater sensitivity and reveal damage induced by ENMs that was not otherwise detected by traditional ROS, LDH, and proliferation assays. For proper toxicological assessment of ENMs standard ROS, LDH, and proliferation assays should be combined with assays that investigate cellular functions relevant to the specific cell type.
Prunus transcription factors: breeding perspectives
Bianchi, Valmor J.; Rubio, Manuel; Trainotti, Livio; Verde, Ignazio; Bonghi, Claudio; Martínez-Gómez, Pedro
2015-01-01
Many plant processes depend on differential gene expression, which is generally controlled by complex proteins called transcription factors (TFs). In peach, 1533 TFs have been identified, accounting for about 5.5% of the 27,852 protein-coding genes. These TFs are the reference for the rest of the Prunus species. TF studies in Prunus have been performed on the gene expression analysis of different agronomic traits, including control of the flowering process, fruit quality, and biotic and abiotic stress resistance. These studies, using quantitative RT-PCR, have mainly been performed in peach, and to a lesser extent in other species, including almond, apricot, black cherry, Fuji cherry, Japanese apricot, plum, and sour and sweet cherry. Other tools have also been used in TF studies, including cDNA-AFLP, LC-ESI-MS, RNA, and DNA blotting or mapping. More recently, new tools assayed include microarray and high-throughput DNA sequencing (DNA-Seq) and RNA sequencing (RNA-Seq). New functional genomics opportunities include genome resequencing and the well-known synteny among Prunus genomes and transcriptomes. These new functional studies should be applied in breeding programs in the development of molecular markers. With the genome sequences available, some strategies that have been used in model systems (such as SNP genotyping assays and genotyping-by-sequencing) may be applicable in the functional analysis of Prunus TFs as well. In addition, the knowledge of the gene functions and position in the peach reference genome of the TFs represents an additional advantage. These facts could greatly facilitate the isolation of genes via QTL (quantitative trait loci) map-based cloning in the different Prunus species, following the association of these TFs with the identified QTLs using the peach reference genome. PMID:26124770
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ozanich, Rich M.; Antolick, Kathryn C.; Bruckner-Lea, Cindy J.
2007-09-15
Automated devices and methods for biological sample preparation often utilize surface functionalized microbeads (superparamagnetic or non-magnetic) to allow capture, purification and pre-concentration of trace amounts of proteins, cells, or nucleic acids (DNA/RNA) from complex samples. We have developed unique methods and hardware for trapping either magnetic or non-magnetic functionalized beads that allow samples and reagents to be efficiently perfused over a micro-column of beads. This approach yields enhanced mass transport and up to 5-fold improvements in assay sensitivity or speed, dramatically improving assay capability relative to assays conducted in more traditional “batch modes” (i.e., in tubes or microplate wells). Summarymore » results are given that highlight the analytical performance improvements obtained for automated microbead processing systems utilizing novel microbead trap/flow-cells for various applications, including: 1) simultaneous capture of multiple cytokines using an antibody-coupled polystyrene bead assay with subsequent flow cytometry detection; 2) capture of nucleic acids using oligonucleotide coupled polystyrene beads with flow cytometry detection; and 3) capture of Escherichia coli 0157:H7 (E. coli) from 50 mL sample volumes using antibody-coupled superparamagnetic microbeads with subsequent culturing to assess capture efficiency.« less
Laboratory tests for identification or exclusion of heparin induced thrombocytopenia: HIT or miss?
Favaloro, Emmanuel J
2018-02-01
Heparin induced thrombocytopenia (HIT) is a potentially fatal condition that arises subsequent to formation of antibodies against complexes containing heparin, usually platelet-factor 4-heparin ("anti-PF4-heparin"). Assessment for HIT involves both clinical evaluation and, if indicated, laboratory testing for confirmation or exclusion, typically using an initial immunological assay ("screening"), and only if positive, a secondary functional assay for confirmation. Many different immunological and functional assays have been developed. The most common contemporary immunological assays comprise enzyme-linked immunosorbent assay [ELISA], chemiluminescence, lateral flow, and particle gel techniques. The most common functional assays measure platelet aggregation or platelet activation events (e.g., serotonin release assay; heparin-induced platelet activation (HIPA); flow cytometry). All assays have some sensitivity and specificity to HIT antibodies, but differ in terms of relative sensitivity and specificity for pathological HIT, as well as false negative and false positive error rate. This brief article overviews the different available laboratory methods, as well as providing a suggested approach to diagnosis or exclusion of HIT. © 2017 Wiley Periodicals, Inc.
Sato, Keisaku; Pollock, Neil; Stowell, Kathryn M
2010-06-01
Malignant hyperthermia is associated with mutations within the gene encoding the skeletal muscle ryanodine receptor, the calcium channel that releases Ca from sarcoplasmic reticulum stores triggering muscle contraction, and other metabolic activities. More than 200 variants have been identified in the ryanodine receptor, but only some of these have been shown to functionally affect the calcium channel. To implement genetic testing for malignant hyperthermia, variants must be shown to alter the function of the channel. A number of different ex vivo methods can be used to demonstrate functionality, as long as cells from human patients can be obtained and cultured from at least two unrelated families. Because malignant hyperthermia is an uncommon disorder and many variants seem to be private, including the newly identified H4833Y mutation, these approaches are limited. The authors cloned the human skeletal muscle ryanodine receptor complementary DNA and expressed both normal and mutated forms in HEK-293 cells and carried out functional analysis using ryanodine binding assays in the presence of a specific agonist, 4-chloro-m-cresol, and the antagonist Mg. Transiently expressed human ryanodine receptor proteins colocalized with an endoplasmic reticulum marker in HEK-293 cells. Ryanodine binding assays confirmed that mutations causing malignant hyperthermia resulted in a hypersensitive channel, while those causing central core disease resulted in a hyposensitive channel. The functional assays validate recombinant human skeletal muscle ryanodine receptor for analysis of variants and add an additional mutation (H4833Y) to the repertoire of mutations that can be used for the genetic diagnosis of malignant hyperthermia.
Newton, Sandra; Martineau, Adrian; Kampmann, Beate
2011-09-14
Functional assays have long played a key role in measuring of immunogenicity of a given vaccine. This is conventionally expressed as serum bactericidal titers. Studies of serum bactericidal titers in response to childhood vaccines have enabled us to develop and validate cut-off levels for protective immune responses and such cut-offs are in routine use. No such assays have been taken forward into the routine assessment of vaccines that induce primarily cell-mediated immunity in the form of effector T cell responses, such as TB vaccines. In the animal model, the performance of a given vaccine candidate is routinely evaluated in standardized bactericidal assays, and all current novel TB-vaccine candidates have been subjected to this step in their evaluation prior to phase 1 human trials. The assessment of immunogenicity and therefore likelihood of protective efficacy of novel anti-TB vaccines should ideally undergo a similar step-wise evaluation in the human models now, including measurements in bactericidal assays. Bactericidal assays in the context of tuberculosis vaccine research are already well established in the animal models, where they are applied to screen potentially promising vaccine candidates. Reduction of bacterial load in various organs functions as the main read-out of immunogenicity. However, no such assays have been incorporated into clinical trials for novel anti-TB vaccines to date. Although there is still uncertainty about the exact mechanisms that lead to killing of mycobacteria inside human macrophages, the interaction of macrophages and T cells with mycobacteria is clearly required. The assay described in this paper represents a novel generation of bactericidal assays that enables studies of such key cellular components with all other cellular and humoral factors present in whole blood without making assumptions about their relative individual contribution. The assay described by our group uses small volumes of whole blood and has already been employed in studies of adults and children in TB-endemic settings. We have shown immunogenicity of the BCG vaccine, increased growth of mycobacteria in HIV-positive patients, as well as the effect of anti-retroviral therapy and Vitamin D on mycobacterial survival in vitro. Here we summarise the methodology, and present our reproducibility data using this relatively simple, low-cost and field-friendly model. Note: Definitions/Abbreviations BCG lux = M. bovis BCG, Montreal strain, transformed with shuttle plasmid pSMT1 carrying the luxAB genes from Vibrio harveyi, under the control of the mycobacterial GroEL (hsp60) promoter. CFU = Colony Forming Unit (a measure of mycobacterial viability).
NASA Astrophysics Data System (ADS)
Chen, Huide; Liu, Chunxiu; Xia, Yunsheng
2017-03-01
This study is the first to report one-step synthesis of boronic acid functionalized gold nanoclusters (AuNCs) using mixed ligands of 4-mercaptophenylboronic acid (MPBA) and glutathione. Furthermore, the emission color of the products can be fancily tuned from green to near-infrared by simply changing the proportion of the two stabilizers. In basic media, dopamine (DA) molecules themselves polymerize each other and form polydopamine with large amounts of cis-diol groups, which then react with boronic acid groups on the AuNC’s surface based on the formation of boronate esters. As a result, the photoluminescence of the AuNCs is well quenched by the electron transfer effect. Accordingly, DA molecules are assayed from 0.5 to 9 μM, and the detection limit is as low as 0.1 μM. The as-prepared AuNCs exhibit high selectivity; the existing biomolecules including various amino acids, ascorbic acid, uric acid, glucose, etc, do not interfere with the assay. The proposed method is successfully applied to the assay of DA in human serum, indicating its practical potential.
USDA-ARS?s Scientific Manuscript database
Background: Population studies have shown an inverse association between high-density lipoprotein (HDL) cholesterol levels and risk of coronary heart disease (CHD). HDL has different functions, including the ability to protect biological molecules from oxidation. Our aim was to evaluate the performa...
A Randomized Clinical Trial of Allopregnanolone for the Treatment of Severe Traumatic Brain Injury
2012-10-01
product, including assay, impurity/degradant levels, sterility results, pyrogenicity results, pH, 6 osmolality and particulates; stability data and...as a function of Glasgow Outcome Score. J Clin Exp Neuropsychol 20:270-279. Rogawski MA, Reddy DS (2004) Neurosteroids: Endogenous modulators of
Analysis of the Effects of Cell Stress and Cytotoxicity on In ...
Chemical toxicity can arise from disruption of specific biomolecular functions or through more generalized cell stress and cytotoxicity-mediated processes. Here, concentration-dependent responses of 1063 chemicals including pharmaceuticals, natural products, pesticidals, consumer, and industrial chemicals across a diverse battery of 821 in vitro assay endpoints from 7 high-throughput assay technology platforms were analyzed in order to better distinguish between these types of activities. Both cell-based and cell-free assays showed a rapid increase in the frequency of responses at concentrations where cell stress / cytotoxicity responses were observed in cell-based assays. Chemicals that were positive on at least two viability/cytotoxicity assays within the concentration range tested (typically up to 100 M) activated a median of 12% of assay endpoints while those that were not cytotoxic in this concentration range activated 1.3% of the assays endpoints. The results suggest that activity can be broadly divided into: (1) specific biomolecular interactions against one or more targets (e.g., receptors or enzymes) at concentrations below which overt cytotoxicity-associated activity is observed; and (2) activity associated with cell stress or cytotoxicity, which may result from triggering of specific cell stress pathways, chemical reactivity, physico-chemical disruption of proteins or membranes, or broad low-affinity non-covalent interactions. Chemicals showing a g
Protein immobilization techniques for microfluidic assays
Kim, Dohyun; Herr, Amy E.
2013-01-01
Microfluidic systems have shown unequivocal performance improvements over conventional bench-top assays across a range of performance metrics. For example, specific advances have been made in reagent consumption, throughput, integration of multiple assay steps, assay automation, and multiplexing capability. For heterogeneous systems, controlled immobilization of reactants is essential for reliable, sensitive detection of analytes. In most cases, protein immobilization densities are maximized, while native activity and conformation are maintained. Immobilization methods and chemistries vary significantly depending on immobilization surface, protein properties, and specific assay goals. In this review, we present trade-offs considerations for common immobilization surface materials. We overview immobilization methods and chemistries, and discuss studies exemplar of key approaches—here with a specific emphasis on immunoassays and enzymatic reactors. Recent “smart immobilization” methods including the use of light, electrochemical, thermal, and chemical stimuli to attach and detach proteins on demand with precise spatial control are highlighted. Spatially encoded protein immobilization using DNA hybridization for multiplexed assays and reversible protein immobilization surfaces for repeatable assay are introduced as immobilization methods. We also describe multifunctional surface coatings that can perform tasks that were, until recently, relegated to multiple functional coatings. We consider the microfluidics literature from 1997 to present and close with a perspective on future approaches to protein immobilization. PMID:24003344
A Decision Support Framework for Evaluation of Engineered ...
Engineered nanomaterials (ENM) are currently being developed and applied at rates that far exceed our ability to evaluate their potential for environmental or human health risks. The gap between material development and capacity for assessment grows wider every day. Transformative approaches are required that enhance our ability to forecast potential exposure and adverse health risks based on limited information such as the physical and chemical parameters of ENM, their proposed uses, and functional assays reflective of key ENM - environmental interactions. We are developing a framework that encompasses the potential for release of nanomaterials across a product life cycle, environmental transport, transformations and fate, exposure to sensitive species, including humans, and the potential for causing adverse effects. Each component of the framework is conceive of as a sequential segmented model depicting the movement, transformations and actions of ENM through environmental or biological compartments, and along which targeted functional assays can be developed that are indicative of projected rates of ENM movement or action. The eventual goal is to allow simple predictive models to be built that incorporate the data from key functional assays and thereby allow rapid screening of the projected margin of exposure for proposed applications of ENM enabled products. In this way, cases where a substantially safe margin of exposure is forecast can be reduced in
Zhang, Qiuya; Ma, Xiaoyan; Dzakpasu, Mawuli; Wang, Xiaochang C
2017-08-01
The widespread use of organic ultraviolet (UV) filters in personal care products raises concerns about their potentially hazardous effects on human and ecosystem health. In this study, the toxicities of four commonly used benzophenones (BPs) UV filters including benzophenone (BP), 2-Hydroxybenzophenone (2HB), 2-Hydroxy-4-methoxybenzophenone (BP3), and 2-Hydroxy-4-methoxybenzophenone-5-sulfonicacid (BP4) in water were assayed in vitro using Vibrio fischeri, SOS/umu assay, and yeast estrogen screen (YES) assay, as well as in vivo using zebrafish larvae. The results showed that the luminescent bacteria toxicity, expressed as logEC 50 , increased with the lipophilicity (logKow) of BPs UV filters. Especially, since 2HB, BP3 and BP4 had different substituent groups, namely -OH, -OCH 3 and -SO 3 H, respectively, these substituent functional groups had a major contribution to the lipophilicity and acute toxicity of these BPs. Similar tendency was observed for the genotoxicity, expressed as the value of induction ratio=1.5. Moreover, all the target BPs UV filters showed estrogenic activity, but no significant influences of lipophilicity on the estrogenicity were observed, with BP3 having the weakest estrogenic efficiency in vitro. Although BP3 displayed no noticeable adverse effects in any in vitro assays, multiple hormonal activities were observed in zebrafish larvae including estrogenicity, anti-estrogenicity and anti-androgenicity by regulating the expression of target genes. The results indicated potential hazardous effects of BPs UV filters and the importance of the combination of toxicological evaluation methods including in vitro and in vivo assays. Copyright © 2017 Elsevier Inc. All rights reserved.
Gremmel, Thomas; Kopp, Christoph W; Moertl, Deddo; Seidinger, Daniela; Koppensteiner, Renate; Panzer, Simon; Mannhalter, Christine; Steiner, Sabine
2012-05-01
The antiplatelet effect of clopidogrel has been linked to cytochrome P450 2C19 (CYP2C19) carrier status. The presence of loss of function and gain of function variants were found to have a gene-dose effect on clopidogrel metabolism. However, genotyping is only one aspect of predicting response to clopidogrel and several platelet function tests are available to measure platelet response. Patients and methods We studied the influence of CYP2C19 allelic variants on on-treatment platelet reactivity as assessed by light transmission aggregometry (LTA), the VerifyNow P2Y12 assay, the VASP assay, multiple electrode aggregometry (MEA), and the Impact-R in 288 patients after stenting for cardiovascular disease. Allelic variants of CYP2C19 were determined with the Infiniti® CYP450 2C19+ assay and categorized into four metabolizer states (ultrarapid, extensive, intermediate, poor). Platelet reactivity increased linearly from ultrarapid to poor metabolizers using the VerifyNow P2Y12 assay (P = 0.04), the VASP assay (P = 0.02) and the Impact-R (P = 0.04). The proportion of patients with high on-treatment residual platelet reactivity (HRPR) identified by LTA, the VerifyNow P2Y12 assay and the VASP assay increased when the metabolizer status decreased, while no such relationship could be identified for results of MEA and Impact-R. The presence of loss of function variants (*2/*2, *2-8*/wt, *2/*17) was an independent predictor of HRPR in LTA and the VASP assay while it did not reach statistical significance in the VerifyNow P2Y12 assay, MEA, and the Impact-R. Depending on the type of platelet function test differences in the association of on-treatment platelet reactivity with CYP2C19 carrier status are observed. Copyright © 2011 Elsevier Ltd. All rights reserved.
Development of an opioid self-administration assay to study drug seeking in zebrafish.
Bossé, Gabriel D; Peterson, Randall T
2017-09-29
The zebrafish (Danio rerio) has become an excellent tool to study mental health disorders, due to its physiological and genetic similarity to humans, ease of genetic manipulation, and feasibility of small molecule screening. Zebrafish have been shown to exhibit characteristics of addiction to drugs of abuse in non-contingent assays, including conditioned place preference, but contingent assays have been limited to a single assay for alcohol consumption. Using inexpensive electronic, mechanical, and optical components, we developed an automated opioid self-administration assay for zebrafish, enabling us to measure drug seeking and gain insight into the underlying biological pathways. Zebrafish trained in the assay for five days exhibited robust self-administration, which was dependent on the function of the μ-opioid receptor. In addition, a progressive ratio protocol was used to test conditioned animals for motivation. Furthermore, conditioned fish continued to seek the drug despite an adverse consequence and showed signs of stress and anxiety upon withdrawal of the drug. Finally, we validated our assay by confirming that self-administration in zebrafish is dependent on several of the same molecular pathways as in other animal models. Given the ease and throughput of this assay, it will enable identification of important biological pathways regulating drug seeking and could lead to the development of new therapeutic molecules to treat addiction. Copyright © 2017 Elsevier B.V. All rights reserved.
Ribosomal targets for antibiotic drug discovery
Blanchard, Scott C.; Feldman, Michael Brian; Wang, Leyi; Doudna Cate, James H.; Pulk, Arto; Altman, Roger B.; Wasserman, Michael R
2016-09-13
The present invention relates to methods to identify molecules that binds in the neomycin binding pocket of a bacterial ribosome using structures of an intact bacterial ribosome that reveal how the ribosome binds tRNA in two functionally distinct states, determined by x-ray crystallography. One state positions tRNA in the peptidyl-tRNA binding site. The second, a fully rotated state, is stabilized by ribosome recycling factor (RRF) and binds tRNA in a highly bent conformation in a hybrid peptidyl/exit (P/E) site. Additionally, the invention relates to various assays, including single-molecule assay for ribosome recycling, and methods to identify compounds that interfere with ribosomal function by detecting newly identified intermediate FRET states using known and novel FRET pairs on the ribosome. The invention also provides vectors and compositions with an N-terminally tagged S13 protein.
Simple image-based no-wash method for quantitative detection of surface expressed CFTR
Larsen, Mads Breum; Hu, Jennifer; Frizzell, Raymond A.; Watkins, Simon C.
2016-01-01
Cystic fibrosis (CF) is the most common lethal genetic disease among Caucasians. It is caused by mutations in the CF Transmembrane Conductance Regulator (CFTR) gene, which encodes an apical membrane anion channel that is required for regulating the volume and composition of epithelial secretions. The most common CFTR mutation, present on at least one allele in >90% of CF patients, deletes phenylalanine at position 508 (F508del), which causes the protein to misfold. Endoplasmic reticulum (ER) quality control elicits the degradation of mutant CFTR, compromising its trafficking to the epithelial cell apical membrane. The absence of functional CFTR leads to depletion of airway surface liquid, impaired clearance of mucus and bacteria from the lung, and predisposes to recurrent infections. Ultimately, respiratory failure results from inflammation and bronchiectasis. Although high throughput screening has identified small molecules that can restore the anion transport function of F508del CFTR, they correct less than 15% of WT CFTR activity, yielding insufficient clinical benefit. To date, most primary CF drug discovery assays have employed measurements of CFTR’s anion transport function, a method that depends on the recruitment of a functional CFTR to the cell surface, involves multiple wash steps, and relies on a signal that saturates rapidly. Screening efforts have also included assays for detection of extracellularly HA-tagged or HRP-tagged CFTR, which require multiple washing steps. We have recently developed tools and cell lines that report the correction of mutant CFTR trafficking by currently available small molecules, and have extended this assay to the 96-well format. This new and simple no-wash assay of F508del CFTR at the cell surface may permit the discovery of more efficacious drugs, and hopefully thereby prevent the catastrophic effects of this disease. In addition, the modular design of this platform should make it useful for other diseases where loss-of-function results from folding and/or trafficking defects in membrane proteins. PMID:26361332
A quantitative assay measuring the function of lipase maturation factor 1
Yin, Fen; Doolittle, Mark H.; Péterfy, Miklós
2009-01-01
Newly synthesized lipoprotein lipase (LPL) and related members of the lipase gene family require an endoplasmic reticulum maturation factor for attainment of enzyme activity. This factor has been identified as lipase maturation factor 1 (Lmf1), and mutations affecting its function and/or expression result in combined lipase deficiency (cld) and hypertriglyceridemia. To assess the functional impact of Lmf1 sequence variations, both naturally occurring and induced, we report the development of a cell-based assay using LPL activity as a quantitative reporter of Lmf1 function. The assay uses a cell line homozygous for the cld mutation, which renders endogenous Lmf1 nonfunctional. LPL transfected into the mutant cld cell line fails to attain activity; however, cotransfection of LPL with wild-type Lmf1 restores its ability to support normal lipase maturation. In this report, we describe optimized conditions that ensure the detection of a complete range of Lmf1 function (full, partial, or complete loss of function) using LPL activity as the quantitative reporter. To illustrate the dynamic range of the assay, we tested several novel mutations in mouse Lmf1. Our results demonstrate the ability of the assay to detect and analyze Lmf1 mutations having a wide range of effects on Lmf1 function and protein expression. PMID:19471043
Camuglia, Jaclyn M; Mandigo, Torrey R; Moschella, Richard; Mark, Jenna; Hudson, Christine H; Sheen, Derek; Folker, Eric S
2018-04-06
A strength of Drosophila as a model system is its utility as a tool to screen for novel regulators of various functional and developmental processes. However, the utility of Drosophila as a screening tool is dependent on the speed and simplicity of the assay used. Here, we use larval locomotion as an assay to identify novel regulators of skeletal muscle function. We combined this assay with muscle-specific depletion of 82 genes to identify genes that impact muscle function by their expression in muscle cells. The data from the screen were supported with characterization of the muscle pattern in embryos and larvae that had disrupted expression of the strongest hit from the screen. With this assay, we showed that 12/82 tested genes regulate muscle function. Intriguingly, the disruption of five genes caused an increase in muscle function, illustrating that mechanisms that reduce muscle function exist and that the larval locomotion assay is sufficiently quantitative to identify conditions that both increase and decrease muscle function. We extended the data from this screen and tested the mechanism by which the strongest hit, fascin, impacted muscle function. Compared to controls, animals in which fascin expression was disrupted with either a mutant allele or muscle-specific expression of RNAi had fewer muscles, smaller muscles, muscles with fewer nuclei, and muscles with disrupted myotendinous junctions. However, expression of RNAi against fascin only after the muscle had finished embryonic development did not recapitulate any of these phenotypes. These data suggest that muscle function is reduced due to impaired myoblast fusion, muscle growth, and muscle attachment. Together, these data demonstrate the utility of Drosophila larval locomotion as an assay for the identification of novel regulators of muscle development and implicate fascin as necessary for embryonic muscle development.
Evaluating 6 ricin field detection assays.
Slotved, Hans-Christian; Sparding, Nadja; Tanassi, Julia Tanas; Steenhard, Nina R; Heegaard, Niels H H
2014-01-01
This study presents data showing the performance of 6 commercial detection assays against ricin around concentrations specified as detection limits by the producers. A 2-fold dilution series of 20 ng/ml ricin was prepared and used for testing the lateral-flow kits: BADD, Pro Strips™, ENVI, RAID DX, Ricin BioThreat Alert, and IMASS™ device. Three of the 6 tested field assays (IMASS™ device, ENVI assay, and the BioThreat Alert assay) were able to detect ricin, although differences in the measured detection limits compared to the official detection limits and false-negative results were observed. We were not able to get the BADD, Pro Strips™, and RAID assays to function in our laboratory. We conclude that when purchasing a field responder assay, there is large variation in the specificity of the assays, and a number of in-house tests must be performed to ensure functionality.
Maciel, Rui M B
2007-07-01
The author reviews the literature on the new assays for serum thyroglobulin (sTg) presenting lower functional sensitivity and demonstrates that its use, whilst the patients are taking L-T4, presents better results than sTg following TSH stimulation in the follow-up of patients with differentiated thyroid carcinoma. Therefore, he suggests a revision on the guidelines for the follow-up of these patients (developed when the available assays present a sensitivity of 1 ng/mL), proposing the use of sTg assays with functional sensitivity of 0.1-0.2 ng/mL with the patients on L-T4 treatment instead of sTg stimulated by TSH.
Barabas, Sascha; Spindler, Theresa; Kiener, Richard; Tonar, Charlotte; Lugner, Tamara; Batzilla, Julia; Bendfeldt, Hanna; Rascle, Anne; Asbach, Benedikt; Wagner, Ralf; Deml, Ludwig
2017-03-07
In healthy individuals, Cytomegalovirus (CMV) infection is efficiently controlled by CMV-specific cell-mediated immunity (CMI). Functional impairment of CMI in immunocompromized individuals however can lead to uncontrolled CMV replication and severe clinical complications. Close monitoring of CMV-specific CMI is therefore clinically relevant and might allow a reliable prognosis of CMV disease as well as assist personalized therapeutic decisions. Objective of this work was the optimization and technical validation of an IFN-γ ELISpot assay for a standardized, sensitive and reliable quantification of CMV-reactive effector cells. T-activated® immunodominant CMV IE-1 and pp65 proteins were used as stimulants. All basic assay parameters and reagents were tested and optimized to establish a user-friendly protocol and maximize the signal-to-noise ratio of the ELISpot assay. Optimized and standardized ELISpot revealed low intra-assay, inter-assay and inter-operator variability (coefficient of variation CV below 22%) and CV inter-site was lower than 40%. Good assay linearity was obtained between 6 × 10 4 and 2 × 10 5 PBMC per well upon stimulation with T-activated® IE-1 (R 2 = 0.97) and pp65 (R 2 = 0.99) antigens. Remarkably, stimulation of peripheral blood mononuclear cells (PBMC) with T-activated® IE-1 and pp65 proteins resulted in the activation of a broad range of CMV-reactive effector cells, including CD3 + CD4 + (Th), CD3 + CD8 + (CTL), CD3 - CD56 + (NK) and CD3 + CD56 + (NKT-like) cells. Accordingly, the optimized IFN-γ ELISpot assay revealed very high sensitivity (97%) in a cohort of 45 healthy donors, of which 32 were CMV IgG-seropositive. The combined use of T-activated® IE-1 and pp65 proteins for the stimulation of PBMC with the optimized IFN-γ ELISpot assay represents a highly standardized, valuable tool to monitor the functionality of CMV-specific CMI with great sensitivity and reliability.
2015-10-01
extremity war-time wounds; specifically, its incidence is reported as high as 57% in patients that sustain a poly -trauma blast injury [1]. Complications...related to HO in residual limbs following blast amputation include pain , overlying skin and muscle breakdown, poor fitting and functioning of prosthetic
2016-10-01
incidence is reported between 57-63% in patients that sustain a poly -trauma blast injury [1,2]. Complications related to HO in residual limbs...following blast amputation include pain , overlying skin and muscle breakdown, poor fitting and functioning of prosthetic limbs, reoperation for amputation
In vitro screening assays designed to identify hormone minics or antagonists, including the EDSTAC Tier 1 Screening (TIS) Battery, typically use only mammalian estrogen (ER) and androgen receptors (AR). However, there is uncertainty concerning species differences in binding affin...
Hwang, Hyundoo; Barnes, Dawn E; Matsunaga, Yohei; Benian, Guy M; Ono, Shoichiro; Lu, Hang
2016-01-29
The sarcomere, the fundamental unit of muscle contraction, is a highly-ordered complex of hundreds of proteins. Despite decades of genetics work, the functional relationships and the roles of those sarcomeric proteins in animal behaviors remain unclear. In this paper, we demonstrate that optogenetic activation of the motor neurons that induce muscle contraction can facilitate quantitative studies of muscle kinetics in C. elegans. To increase the throughput of the study, we trapped multiple worms in parallel in a microfluidic device and illuminated for photoactivation of channelrhodopsin-2 to induce contractions in body wall muscles. Using image processing, the change in body size was quantified over time. A total of five parameters including rate constants for contraction and relaxation were extracted from the optogenetic assay as descriptors of sarcomere functions. To potentially relate the genes encoding the sarcomeric proteins functionally, a hierarchical clustering analysis was conducted on the basis of those parameters. Because it assesses physiological output different from conventional assays, this method provides a complement to the phenotypic analysis of C. elegans muscle mutants currently performed in many labs; the clusters may provide new insights and drive new hypotheses for functional relationships among the many sarcomere components.
NASA Astrophysics Data System (ADS)
Hwang, Hyundoo; Barnes, Dawn E.; Matsunaga, Yohei; Benian, Guy M.; Ono, Shoichiro; Lu, Hang
2016-01-01
The sarcomere, the fundamental unit of muscle contraction, is a highly-ordered complex of hundreds of proteins. Despite decades of genetics work, the functional relationships and the roles of those sarcomeric proteins in animal behaviors remain unclear. In this paper, we demonstrate that optogenetic activation of the motor neurons that induce muscle contraction can facilitate quantitative studies of muscle kinetics in C. elegans. To increase the throughput of the study, we trapped multiple worms in parallel in a microfluidic device and illuminated for photoactivation of channelrhodopsin-2 to induce contractions in body wall muscles. Using image processing, the change in body size was quantified over time. A total of five parameters including rate constants for contraction and relaxation were extracted from the optogenetic assay as descriptors of sarcomere functions. To potentially relate the genes encoding the sarcomeric proteins functionally, a hierarchical clustering analysis was conducted on the basis of those parameters. Because it assesses physiological output different from conventional assays, this method provides a complement to the phenotypic analysis of C. elegans muscle mutants currently performed in many labs; the clusters may provide new insights and drive new hypotheses for functional relationships among the many sarcomere components.
Konikoff, Jacob; Brookmeyer, Ron; Longosz, Andrew F.; Cousins, Matthew M.; Celum, Connie; Buchbinder, Susan P.; Seage, George R.; Kirk, Gregory D.; Moore, Richard D.; Mehta, Shruti H.; Margolick, Joseph B.; Brown, Joelle; Mayer, Kenneth H.; Koblin, Beryl A.; Justman, Jessica E.; Hodder, Sally L.; Quinn, Thomas C.; Eshleman, Susan H.; Laeyendecker, Oliver
2013-01-01
Background A limiting antigen avidity enzyme immunoassay (HIV-1 LAg-Avidity assay) was recently developed for cross-sectional HIV incidence estimation. We evaluated the performance of the LAg-Avidity assay alone and in multi-assay algorithms (MAAs) that included other biomarkers. Methods and Findings Performance of testing algorithms was evaluated using 2,282 samples from individuals in the United States collected 1 month to >8 years after HIV seroconversion. The capacity of selected testing algorithms to accurately estimate incidence was evaluated in three longitudinal cohorts. When used in a single-assay format, the LAg-Avidity assay classified some individuals infected >5 years as assay positive and failed to provide reliable incidence estimates in cohorts that included individuals with long-term infections. We evaluated >500,000 testing algorithms, that included the LAg-Avidity assay alone and MAAs with other biomarkers (BED capture immunoassay [BED-CEIA], BioRad-Avidity assay, HIV viral load, CD4 cell count), varying the assays and assay cutoffs. We identified an optimized 2-assay MAA that included the LAg-Avidity and BioRad-Avidity assays, and an optimized 4-assay MAA that included those assays, as well as HIV viral load and CD4 cell count. The two optimized MAAs classified all 845 samples from individuals infected >5 years as MAA negative and estimated incidence within a year of sample collection. These two MAAs produced incidence estimates that were consistent with those from longitudinal follow-up of cohorts. A comparison of the laboratory assay costs of the MAAs was also performed, and we found that the costs associated with the optimal two assay MAA were substantially less than with the four assay MAA. Conclusions The LAg-Avidity assay did not perform well in a single-assay format, regardless of the assay cutoff. MAAs that include the LAg-Avidity and BioRad-Avidity assays, with or without viral load and CD4 cell count, provide accurate incidence estimates. PMID:24386116
Patel, Atit A.; Cox, Daniel N.
2017-01-01
To investigate cellular, molecular and behavioral mechanisms of noxious cold detection, we developed cold plate behavioral assays and quantitative means for evaluating the predominant noxious cold-evoked contraction behavior. To characterize neural activity in response to noxious cold, we implemented a GCaMP6-based calcium imaging assay enabling in vivo studies of intracellular calcium dynamics in intact Drosophila larvae. We identified Drosophila class III multidendritic (md) sensory neurons as multimodal sensors of innocuous mechanical and noxious cold stimuli and to dissect the mechanistic bases of multimodal sensory processing we developed two independent functional assays. First, we developed an optogenetic dose response assay to assess whether levels of neural activation contributes to the multimodal aspects of cold sensitive sensory neurons. Second, we utilized CaMPARI, a photo-switchable calcium integrator that stably converts fluorescence from green to red in presence of high intracellular calcium and photo-converting light, to assess in vivo functional differences in neural activation levels between innocuous mechanical and noxious cold stimuli. These novel assays enable investigations of behavioral and functional roles of peripheral sensory neurons and multimodal sensory processing in Drosophila larvae. PMID:28835907
Overview of ToxCast™ | Science Inventory | US EPA
In 2007, EPA launched ToxCast™ in order to develop a cost-effective approach for prioritizing the toxicity testing of large numbers of chemicals in a short period of time. Using data from state-of-the-art high throughput screening (HTS) bioassays developed in the pharmaceutical industry, ToxCast™ is building computational models to forecast the potential human toxicity of chemicals. These hazard predictions will provide EPA regulatory programs with science-based information helpful in prioritizing chemicals for more detailed toxicological evaluations, and lead to more efficient use of animal testing. In its first phase, ToxCast™ is profiling over 300 well-characterized chemicals (primarily pesticides) in over 400 HTS endpoints. These endpoints include biochemical assays of protein function, cell-based transcriptional reporter assays, multi-cell interaction assays, transcriptomics on primary cell cultures, and developmental assays in zebrafish embryos. Almost all of the compounds being examined in Phase 1 of ToxCast™ have been tested in traditional toxicology tests, including developmental toxicity, multi-generation studies, and sub-chronic and chronic rodent bioassays. ToxRefDB, a relational database being created to house this information, will contain nearly $1B worth of toxicity studies in animals when completed. ToxRefDB is integrated into a more comprehensive data management system developed by NCCT called ACToR (Aggregated Computational Toxicology
Mkit: A Cell Migration Assay Based on Microfluidic Device and Smartphone
Yang, Ke; Wu, Jiandong; Peretz-Soroka, Hagit; Zhu, Ling; Li, Zhigang; Sang, Yaoshuo; Hipolito, Jolly; Zhang, Michael; Santos, Susy; Hillier, Craig; de Faria, Ricardo Lobato; Liu, Yong; Lin, Francis
2017-01-01
Mobile sensing based on the integration of microfluidic device and smartphone, so-called MS2 technology, has enabled many applications over recent years, and continues to stimulate growing interest in both research communities and industries. In particular, it has been envisioned that MS2 technology can be developed for various cell functional assays to enable basic research and clinical applications. Toward this direction, in this paper, we describe the development of a MS2-based cell functional assay for testing cell migration (the Mkit). The system is constructed as an integrated test kit, which includes microfluidic chips, a smartphone-based imaging platform, the phone apps for image capturing and data analysis, and a set of reagent and accessories for performing the cell migration assay. We demonstrated that the Mkit can effectively measure purified neutrophil and cancer cell chemotaxis. Furthermore, neutrophil chemotaxis can be tested from a drop of whole blood using the Mkit with red blood cell (RBC) lysis. The effects of chemoattractant dose and gradient profile on neutrophil chemotaxis were also tested using the Mkit. In addition to research applications, we demonstrated the effective use of the Mkit for on-site test at the hospital and for testing clinical samples from chronic obstructive pulmonary disease patient. Thus, this developed Mkit provides an easy and integrated experimental platform for cell migration related research and potential medical diagnostic applications. PMID:28772229
Fan, Xiaochen; Yuan, Jishan; Xie, Jun; Pan, Zhanpeng; Yao, Xiang; Sun, Xiangyi; Zhang, Pin; Zhang, Lei
2018-06-07
Long noncoding RNAs (lncRNAs) have been known to be involved in multiple diverse diseases, including osteoarthritis (OA). This study aimed to explore the role of differentiation antagonizing non-protein coding RNA (DANCR) in OA and identify the potential molecular mechanisms. The expression of DANCR in cartilage samples from patients with OA was detected using quantitative reverse transcription-polymerase chain reaction. The effects of DANCR on the viability of OA chondrocytes and apoptosis were explored using cell counting kit 8 assay and flow cytometry assay, respectively. Additionally, the interaction among DANCR, miR-577, and SphK2 was explored using dual-luciferase reporter and RIP assays. The present study found that DANCR was significantly upregulated in patients with OA. Functional assays demonstrated that DANCR inhibition suppressed the proliferation of OA chondrocytes and induced cell apoptosis. The study also showed that DANCR acted as a competitive endogenous RNA to sponge miR-577, which targeted the mRNA of SphK2 to regulate the survival of OA chondrocytes. In conclusion, the study revealed that lncRNA DANCR might promote the proliferation of OA chondrocytes and reduce apoptosis through the miR-577/SphK2 axis. Thus, lncRNA DANCR might be considered as a potential therapeutic target for OA treatment. Copyright © 2018 Elsevier Inc. All rights reserved.
A functional dual-coated (FDC) microtiter plate method to replace the botulinum toxin LD50 test.
Liu, Yvonne Y B; Rigsby, Peter; Sesardic, Dorothea; Marks, James D; Jones, Russell G A
2012-06-01
Conventional capture ("Sandwich") ELISAs equally detect denatured inactive and native active botulinum type A toxin. Light chain endoprotease activity assays also fail to distinguish between various inactive molecules including partially denatured and fragmented material still retaining this protease activity. By co-coating microtiter plates with SNAP25 substrate and a monoclonal antibody specific for a conformational epitope of the toxin's Hc domain, it was possible to develop a highly sensitive (130 aM LoD), precise (1.4% GCV) new assay specific for the biologically active toxin molecule. Capture was performed in phosphate buffer with a fixed optimal concentration of chaotropic agent (e.g., 1.2 M urea) to differentially isolate functional toxin molecules. Addition of enzymatically favorable buffer containing zinc and DTT reduced the interchain disulfide bond releasing and activating the captured L-chain with subsequent specific cleavage of the SNAP25(1-206) substrate. A neoepitope antibody specific for the newly exposed Q(197) epitope was used to quantify the cleaved SNAP25(1-197). The assay's requirement for the intact toxin molecule was demonstrated with pre-reduced toxin (heavy and light chains), recombinant LHn fragments, and stressed samples containing partially or fully denatured material. This is the first known immunobiochemical assay that correlates with in vivo potency and provides a realistic alternative. Copyright © 2012 Elsevier Inc. All rights reserved.
Zhang, Yiqiang; Fischer, Kathleen E.; Soto, Vanessa; Liu, Yuhong; Sosnowska, Danuta; Richardson, Arlan; Salmon, Adam B.
2015-01-01
Obesity is a serious chronic disease that increases the risk of numerous co-morbidities including metabolic syndrome, cardiovascular disease and cancer as well as increases risk of mortality leading some to suggest this represents accelerated aging. Obesity is associated with significant increases in oxidative stress in vivo and, despite the well-explored relationship between oxidative stress and aging, the role this plays in the increased mortality of obese subjects remains an unanswered question. Here, we addressed this by undertaking a comprehensive, longitudinal study of a group of high fat-fed obese mice and assessed both their changes in oxidative stress and in their performance in physiological assays known to decline with aging. In female C57BL/6J mice fed a high-fat diet starting in adulthood, mortality was significantly increased in high fat-fed mice as was oxidative damage in vivo. High fat-feeding significantly accelerated the decline in performance in several assays, including activity, gait, and rotarod. However, we also found that obesity had little effect on other markers and actually improved performance in grip strength, a marker of muscular function. Together, this first comprehensive assessment of longitudinal functional changes in high fat-fed mice suggests that obesity may induce segmental acceleration of some of the aging process. PMID:25558793
Favaloro, E J; Bonar, R; Chapman, K; Meiring, M; Funk Adcock, D
2012-06-01
von Willebrand disease (VWD), the most common inherited bleeding disorder, is caused by deficiencies and/or defects in von Willebrand factor (VWF). An effective diagnostic and VWD typing strategy requires plasma testing for factor VIII, and VWF antigen plus one or more VWF 'activity' assays. VWF activity is classically assessed by using VWF ristocetin cofactor activity (VWF:RCo), although VWF collagen-binding (VWF:CB) and VWF mAb-based (VWF activity [VWF:Act]) assays are used by some laboratories. To perform a cross-laboratory study to specifically evaluate these three VWF activity assays for comparative sensitivity to loss of high molecular weight (HMW) VWF, representing the form of VWF that is most functionally active and that is absent in some types of VWD, namely 2A and 2B. A set of eight samples, including six selectively representing stepwise reduction in HMW VWF, were tested by 51 different laboratories using a variety of assays. The combined data showed that the VWF:CB and VWF:RCo assays had higher sensitivity to the loss of HMW VWF than did the VWF:Act assay. Moreover, within-method analysis identified better HMW VWF sensitivity of some VWF:CB assays than of others, with all VWF:CB assays still showing better sensitivity than the VWF:Act assay. Differences were also identified between VWF:RCo methodologies on the basis of either platelet aggregometry or as performed on automated analyzers. We believe that these results have significant clinical implications for the diagnosis of VWD and monitoring of its therapy, as well as for the future diagnosis and therapy monitoring of thrombotic thrombocytopenic purpura. © 2012 International Society on Thrombosis and Haemostasis.
A HIV-1 Tat mutant protein disrupts HIV-1 Rev function by targeting the DEAD-box RNA helicase DDX1.
Lin, Min-Hsuan; Sivakumaran, Haran; Jones, Alun; Li, Dongsheng; Harper, Callista; Wei, Ting; Jin, Hongping; Rustanti, Lina; Meunier, Frederic A; Spann, Kirsten; Harrich, David
2014-12-14
Previously we described a transdominant negative mutant of the HIV-1 Tat protein, termed Nullbasic, that downregulated the steady state levels of unspliced and singly spliced viral mRNA, an activity caused by inhibition of HIV-1 Rev activity. Nullbasic also altered the subcellular localizations of Rev and other cellular proteins, including CRM1, B23 and C23 in a Rev-dependent manner, suggesting that Nullbasic may disrupt Rev function and trafficking by intervening with an unidentified component of the Rev nucleocytoplasmic transport complex. To seek a possible mechanism that could explain how Nullbasic inhibits Rev activity, we used a proteomics approach to identify host cellular proteins that interact with Nullbasic. Forty-six Nullbasic-binding proteins were identified by mass spectrometry including the DEAD-box RNA helicase, DDX1. To determine the effect of DDX1 on Nullbasic-mediated Rev activity, we performed cell-based immunoprecipitation assays, Rev reporter assays and bio-layer interferometry (BLI) assays. Interaction between DDX1 and Nullbasic was observed by co-immunoprecipitation of Nullbasic with endogenous DDX1 from cell lysates. BLI assays showed a direct interaction between Nullbasic and DDX1. Nullbasic affected DDX1 subcellular distribution in a Rev-independent manner. Interestingly overexpression of DDX1 in cells not only restored Rev-dependent mRNA export and gene expression in a Rev reporter assay but also partly reversed Nullbasic-induced Rev subcellular mislocalization. Moreover, HIV-1 wild type Tat co-immunoprecipitated with DDX1 and overexpression of Tat could rescue the unspliced viral mRNA levels inhibited by Nullbasic in HIV-1 expressing cells. Nullbasic was used to further define the complex mechanisms involved in the Rev-dependent nuclear export of the 9 kb and 4 kb viral RNAs. All together, these data indicate that DDX1 can be sequestered by Nullbasic leading to destabilization of the Rev nucleocytoplasmic transport complex and decreased levels of Rev-dependent viral transcripts. The outcomes support a role for DDX1 in maintenance of a Rev nuclear complex that transports viral RRE-containing mRNA to the cytoplasm. To our knowledge Nullbasic is the first anti-HIV protein that specifically targets the cellular protein DDX1 to block Rev's activity. Furthermore, our research raises the possibility that wild type Tat may play a previously unrecognized but very important role in Rev function.
Burenin, Alexandr G; Urusov, Alexandr E; Betin, Alexei V; Orlov, Alexey V; Nikitin, Maxim P; Ksenevich, Tatiana I; Gorshkov, Boris G; Zherdev, Anatoly V; Dzantiev, Boris B; Nikitin, Petr I
2015-05-01
A 3-channel biosensor based on spectral correlation interferometry (SCI) has been adapted for direct optical detection of antigens by measuring changes in thickness of a biolayer on functionalized glass slips employed as affordable single-use sensor chips. The instrument is insensitive to the bulk refractive index of a solution under test and provides signals in metrological units (pm or nm). Using real-time monitoring with the SCI, protocols for fabrication of sensor chips with different functional (epoxylated, carboxylated, and biotinylated) surfaces for antibody immobilization have been developed and optimized to minimize chip-to-chip variations and achieve better limit of detection (LOD), shorter assay time, and longer shelf life. The optimized coupling surfaces have been compared for detection of human serum albumin (HSA) used as a model agent of medical significance. The dynamic ranges for measuring the HSA concentration were 0.07-20, 0.12-30, and 0.25-10 μg/ml, and the assay durations were less than 20, 15, and 30 min for the epoxylated, carboxylated, and biotinylated chips, respectively. The advantages of each type of sensor chip have been shown, namely, the carboxylated chips feature the shortest assay time, the epoxylated ones demonstrate the best LOD, and the biotinylated chips exhibit the longest shelf life in an unprotected environment. The developed protocols of antibody immobilization can be used in different biosensors and assay techniques including those based on fluorescent, magnetic or plasmonic labels, etc. The SCI is well compatible with various partially transparent layers used in biosensing and with microarrays for multi-analyte detection.
Gerstel-Thompson, Jacalyn L; Wilkey, Jonathan F; Baptiste, Jennifer C; Navas, Jennifer S; Pai, Sung-Yun; Pass, Kenneth A; Eaton, Roger B; Comeau, Anne Marie
2010-09-01
Real-time quantitative PCR (qPCR) targeting a specific marker of functional T cells, the T-cell-receptor excision circle (TREC), detects the absence of functional T cells and has a demonstrated clinical validity for detecting severe combined immunodeficiency (SCID) in infants. There is need for a qPCR TREC assay with an internal control to monitor DNA quality and the relative cellular content of the particular dried blood spot punch sampled in each reaction. The utility of the qPCR TREC assay would also be far improved if more tests could be performed on the same newborn screening sample. We approached the multiplexing of qPCR for TREC by attenuating the reaction for the reference gene, with focus on maintaining tight quality assurance for reproducible slopes and for prevention of sample-to-sample cross contamination. Statewide newborn screening for SCID using the multiplexed assay was implemented, and quality-assurance data were recorded. The multiplex qPCR TREC assay showed nearly 100% amplification efficiency for each of the TREC and reference sequences, clinical validity for multiple forms of SCID, and an analytic limit of detection consistent with prevention of contamination. The eluate and residual ghost from a 3.2-mm dried blood spot could be used as source material for multiplexed immunoassays and multiplexed DNA tests (Multiplex Plus), with no disruption to the multiplex TREC qPCR. Population-based SCID newborn screening programs should consider multiplexing for quality assurance purposes. Potential benefits of using Multiplex Plus include the ability to perform multianalyte profiling.
PubChem promiscuity: a web resource for gathering compound promiscuity data from PubChem.
Canny, Stephanie A; Cruz, Yasel; Southern, Mark R; Griffin, Patrick R
2012-01-01
Promiscuity counts allow for a better understanding of a compound's assay activity profile and drug potential. Although PubChem contains a vast amount of compound and assay data, it currently does not have a convenient or efficient method to obtain in-depth promiscuity counts for compounds. PubChem promiscuity fills this gap. It is a Java servlet that uses NCBI Entrez (eUtils) web services to interact with PubChem and provide promiscuity counts in a variety of categories along with compound descriptors, including PAINS-based functional group detection. http://chemutils.florida.scripps.edu/pcpromiscuity southern@scripps.edu
PubChem promiscuity: a web resource for gathering compound promiscuity data from PubChem
Canny, Stephanie A.; Cruz, Yasel; Southern, Mark R.; Griffin, Patrick R.
2012-01-01
Summary: Promiscuity counts allow for a better understanding of a compound's assay activity profile and drug potential. Although PubChem contains a vast amount of compound and assay data, it currently does not have a convenient or efficient method to obtain in-depth promiscuity counts for compounds. PubChem promiscuity fills this gap. It is a Java servlet that uses NCBI Entrez (eUtils) web services to interact with PubChem and provide promiscuity counts in a variety of categories along with compound descriptors, including PAINS-based functional group detection. Availability: http://chemutils.florida.scripps.edu/pcpromiscuity Contact: southern@scripps.edu PMID:22084255
Bicarbonate alters cellular responses in respiration assays.
Krycer, James R; Fisher-Wellman, Kelsey H; Fazakerley, Daniel J; Muoio, Deborah M; James, David E
2017-08-05
Metabolic assay buffers often omit bicarbonate, which is susceptible to alkalinisation in an open environment. Here, we assessed the effect of including bicarbonate in respirometry experiments. By supplementing HEPES-buffered media with low concentrations of bicarbonate, we found increased respiration in adipocytes and hepatocytes, but not myotubes. This was observed across multiple respirometry platforms and was independent of effects on enhanced insulin sensitivity, pH drift, or mitochondrial function. Permeabilised cell experiments suggest that bicarbonate increases substrate availability, likely by acting as a cofactor for carboxylase enzymes. This emphasises the importance of buffer choice in experimental biology. Copyright © 2017 Elsevier Inc. All rights reserved.
Nahas, Shareef A.; Davies, Robert; Fike, Francesca; Nakamura, Kotoka; Du, Liutao; Kayali, Refik; Martin, Nathan T.; Concannon, Patrick; Gatti, Richard A.
2015-01-01
In an effort to explore the possible causes of human radiosensitivity and identify more rapid assays for cellular radiosensitivity, we interrogated a set of assays that evaluate cellular functions involved in recognition and repair of DNA double-strand breaks: (1) neutral comet assay, (2) radiation-induced γ-H2AX focus formation, (3) the temporal kinetics of structural maintenance of chromosomes 1 phosphorylation, (4) intra-S-phase checkpoint integrity, and (5) mitochondrial respiration. We characterized a unique panel of 19 “radiosensitive” human lymphoblastoid cell lines from individuals with undiagnosed diseases suggestive of a DNA repair disorder. Radiosensitivity was defined by reduced cellular survival using a clonogenic survival assay. Each assay identified cell lines with defects in DNA damage response functions. The highest concordance rate observed, 89% (17/19), was between an abnormal neutral comet assay and reduced survival by the colony survival assay. Our data also suggested that the neutral comet assay would be a more rapid surrogate for analyzing DNA repair/processing disorders. PMID:21962002
Yamanaka, Atsushi; Suzuki, Ryosuke; Konishi, Eiji
2014-07-23
Dengue fever and dengue hemorrhagic fever are endemic throughout tropical and subtropical countries. Four serotypes of dengue viruses (DENV-1 to DENV-4), each with several genotypes including various subclades, are co-distributed in most endemic areas. Infection-neutralizing and -enhancing antibodies are believed to play protective and pathogenic roles, respectively. Measurement of these functional antibodies against a variety of viral strains is thus important for evaluating coverage and safety of dengue vaccine candidates. Although transportation of live virus materials beyond national borders is increasingly limited, this difficulty may be overcome using biotechnology that enables generation of an antibody-assay antigen equivalent to authentic virus based on viral sequence information. A rapid system to produce flavivirus single-round infectious particles (SRIPs) was recently developed using a Japanese encephalitis virus (JEV) subgenomic replicon plasmid. This system allows production of chimeric SRIPs that have surface proteins of other flaviviruses. In the present study, SRIPs of DENV-1 (D1-SRIPs) were evaluated as an antigen for functional antibody assays. Inclusion of the whole mature capsid gene of JEV into the replicon plasmid provided higher D1-SRIP yields than did its exclusion in cases where a DENV-1 surface-protein-expressing plasmid was used for co-transfection of 293T cells with the replicon plasmid. In an assay to measure the balance between neutralizing and enhancing activities, dose (antibody dilution)-dependent activity curves in dengue-immune human sera or mouse monoclonal antibodies obtained using D1-SRIP antigen were equivalent to those obtained using DENV-1 antigen. Similar results were obtained using additional DENV-2 and DENV-3 systems. In a conventional Vero-cell neutralization test, a significant correlation was shown between antibody titers obtained using D1-SRIP and DENV-1 antigens. These results demonstrate the utility of D1-SRIPs as an alternative antigen to authentic DENV-1 in functional antibody assays. SRIP antigens may contribute to dengue vaccine candidate evaluation, understanding of dengue pathogenesis, and development of serodiagnostic systems. Copyright © 2014 Elsevier Ltd. All rights reserved.
Nong, Rachel Yuan; Wu, Di; Yan, Junhong; Hammond, Maria; Gu, Gucci Jijuan; Kamali-Moghaddam, Masood; Landegren, Ulf; Darmanis, Spyros
2013-06-01
Solid-phase proximity ligation assays share properties with the classical sandwich immunoassays for protein detection. The proteins captured via antibodies on solid supports are, however, detected not by single antibodies with detectable functions, but by pairs of antibodies with attached DNA strands. Upon recognition by these sets of three antibodies, pairs of DNA strands brought in proximity are joined by ligation. The ligated reporter DNA strands are then detected via methods such as real-time PCR or next-generation sequencing (NGS). We describe how to construct assays that can offer improved detection specificity by virtue of recognition by three antibodies, as well as enhanced sensitivity owing to reduced background and amplified detection. Finally, we also illustrate how the assays can be applied for parallel detection of proteins, taking advantage of the oligonucleotide ligation step to avoid background problems that might arise with multiplexing. The protocol for the singleplex solid-phase proximity ligation assay takes ~5 h. The multiplex version of the assay takes 7-8 h depending on whether quantitative PCR (qPCR) or sequencing is used as the readout. The time for the sequencing-based protocol includes the library preparation but not the actual sequencing, as times may vary based on the choice of sequencing platform.
Aging Research Using Mouse Models
Ackert-Bicknell, Cheryl L.; Anderson, Laura; Sheehan, Susan; Hill, Warren G.; Chang, Bo; Churchill, Gary A.; Chesler, Elissa J.; Korstanje, Ron; Peters, Luanne L.
2015-01-01
Despite the dramatic increase in human lifespan over the past century, there remains pronounced variability in “health-span”, or the period of time in which one is generally healthy and free of disease. Much of the variability in health-span and lifespan is thought to be genetic in origin. Understanding the genetic mechanisms of aging and identifying ways to boost longevity is a primary goal in aging research. Here, we describe a pipeline of phenotypic assays for assessing mouse models of aging. This pipeline includes behavior/cognition testing, body composition analysis, and tests of kidney function, hematopoiesis, immune function and physical parameters. We also describe study design methods for assessing lifespan and health-span, and other important considerations when conducting aging research in the laboratory mouse. The tools and assays provided can assist researchers with understanding the correlative relationships between age-associated phenotypes and, ultimately, the role of specific genes in the aging process. PMID:26069080
Agrobacterium-mediated virus-induced gene silencing assay in cotton.
Gao, Xiquan; Britt, Robert C; Shan, Libo; He, Ping
2011-08-20
Cotton (Gossypium hirsutum) is one of the most important crops worldwide. Considerable efforts have been made on molecular breeding of new varieties. The large-scale gene functional analysis in cotton has been lagged behind most of the modern plant species, likely due to its large size of genome, gene duplication and polyploidy, long growth cycle and recalcitrance to genetic transformation(1). To facilitate high throughput functional genetic/genomic study in cotton, we attempt to develop rapid and efficient transient assays to assess cotton gene functions. Virus-Induced Gene Silencing (VIGS) is a powerful technique that was developed based on the host Post-Transcriptional Gene Silencing (PTGS) to repress viral proliferation(2,3). Agrobacterium-mediated VIGS has been successfully applied in a wide range of dicots species such as Solanaceae, Arabidopsis and legume species, and monocots species including barley, wheat and maize, for various functional genomic studies(3,4). As this rapid and efficient approach avoids plant transformation and overcomes functional redundancy, it is particularly attractive and suitable for functional genomic study in crop species like cotton not amenable for transformation. In this study, we report the detailed protocol of Agrobacterium-mediated VIGS system in cotton. Among the several viral VIGS vectors, the tobacco rattle virus (TRV) invades a wide range of hosts and is able to spread vigorously throughout the entire plant yet produce mild symptoms on the hosts5. To monitor the silencing efficiency, GrCLA1, a homolog gene of Arabidopsis Cloroplastos alterados 1 gene (AtCLA1) in cotton, has been cloned and inserted into the VIGS binary vector pYL156. CLA1 gene is involved in chloroplast development(6), and previous studies have shown that loss-of-function of AtCLA1 resulted in an albino phenotype on true leaves(7), providing an excellent visual marker for silencing efficiency. At approximately two weeks post Agrobacterium infiltration, the albino phenotype started to appear on the true leaves, with 100% silencing efficiency in all replicated experiments. The silencing of endogenous gene expression was also confirmed by RT-PCR analysis. Significantly, silencing could potently occur in all the cultivars we tested, including various commercially grown varieties in Texas. This rapid and efficient Agrobacterium-mediated VIGS assay provides a very powerful tool for rapid large-scale analysis of gene functions at genome-wide level in cotton.
Agrobacterium-Mediated Virus-Induced Gene Silencing Assay In Cotton
Gao, Xiquan; Britt Jr., Robert C.; Shan, Libo; He, Ping
2011-01-01
Cotton (Gossypium hirsutum) is one of the most important crops worldwide. Considerable efforts have been made on molecular breeding of new varieties. The large-scale gene functional analysis in cotton has been lagged behind most of the modern plant species, likely due to its large size of genome, gene duplication and polyploidy, long growth cycle and recalcitrance to genetic transformation1. To facilitate high throughput functional genetic/genomic study in cotton, we attempt to develop rapid and efficient transient assays to assess cotton gene functions. Virus-Induced Gene Silencing (VIGS) is a powerful technique that was developed based on the host Post-Transcriptional Gene Silencing (PTGS) to repress viral proliferation2,3. Agrobacterium-mediated VIGS has been successfully applied in a wide range of dicots species such as Solanaceae, Arabidopsis and legume species, and monocots species including barley, wheat and maize, for various functional genomic studies3,4. As this rapid and efficient approach avoids plant transformation and overcomes functional redundancy, it is particularly attractive and suitable for functional genomic study in crop species like cotton not amenable for transformation. In this study, we report the detailed protocol of Agrobacterium-mediated VIGS system in cotton. Among the several viral VIGS vectors, the tobacco rattle virus (TRV) invades a wide range of hosts and is able to spread vigorously throughout the entire plant yet produce mild symptoms on the hosts5. To monitor the silencing efficiency, GrCLA1, a homolog gene of Arabidopsis Cloroplastos alterados 1 gene (AtCLA1) in cotton, has been cloned and inserted into the VIGS binary vector pYL156. CLA1 gene is involved in chloroplast development6, and previous studies have shown that loss-of-function of AtCLA1 resulted in an albino phenotype on true leaves7, providing an excellent visual marker for silencing efficiency. At approximately two weeks post Agrobacterium infiltration, the albino phenotype started to appear on the true leaves, with 100% silencing efficiency in all replicated experiments. The silencing of endogenous gene expression was also confirmed by RT-PCR analysis. Significantly, silencing could potently occur in all the cultivars we tested, including various commercially grown varieties in Texas. This rapid and efficient Agrobacterium-mediated VIGS assay provides a very powerful tool for rapid large-scale analysis of gene functions at genome-wide level in cotton. PMID:21876527
Lynch, D M; Leali, B A; Howe, S E
1986-08-01
An enzyme-linked immunosorbent assay (ELISA) that quantitates antisperm antibody in serum was compared with standard sperm agglutination and immobilization assays with the use of sera from 40 normal and 292 subfertile individuals. Quantitation of the assay was accomplished by standardizing assay parameters, including the incorporation of a standard reference curve, the number of whole target sperm, the optimal dilution of serum, the selection of microtiter plate, and the time and temperatures involved in the adsorption and incubation phases. With this method, the level of antisperm antibody binding to target sperm in 40 normal fertile individuals was found to be 2.3 (+/- 1.1 standard deviation [SD]) fg immunoglobulin (Ig)/sperm. An increased mean level of 7.4 +/- 3.7 fg Ig/sperm was determined in 84 infertile patients with positive agglutination and/or immobilization tests. In 208 individuals with negative agglutination and immobilization tests the mean concentration of antisperm antibody was 2.5 +/- 1.3 fg Ig/sperm. Postvasectomy patients assayed by this method had a mean Ig binding value of 7.1 +/- 2.4 fg Ig/sperm. The infertile group with positive agglutination and/or immobilization tests had a significantly higher mean antisperm antibody level than the normal fertile group, according to the Student's t-test for independent samples (P less than 0.001). This indirect serum-based assay reproducibly quantitates antisperm antibody binding to whole target sperm, suggests the normal and abnormal levels of antisperm antibody, and correlates with standard functional assays.
Hendricson, Adam W; Gallagher, Liz; Matchett, Michele; Ferrante, Meredith; Spence, Steve; Paiva, Tony; Shou, Wilson; Tertyshnikova, Svetlana; Krambis, Mike; Post-Munson, Deborah; Zhang, Litao; Knox, Ron
2012-04-01
Low-volume dispensing of neat dimethyl sulfoxide (DMSO) into plate-based assays conserves compound, assay reagents, and intermediate dilution plate cost and, as we demonstrate here, significantly improves structure-activity relationship resolution. Acoustic dispensing of DMSO solutions into standard volume 384W plates yielded inconsistent results in studies with 2 cell lines because of apparent effects on the integrity of the cell monolayer (increased intracellular Ca⁺⁺ levels as indicated by elevated basal dye fluorescence after acoustic transfer). PocketTip-mediated transfer was successful at increasing apparent potency on a more consistent basis. Notably, the correlation coefficient among fluorescence imaging plate reader (FLIPR):electrophysiology (EP) across a representative ~125 compound collection was increased ~5× via conversion to a PocketTip direct dispensation, indicating a triage assay more predictive of activity in the decisional patch-clamp assay. Very importantly, the EP-benchmarked false-negative rate as measured by compounds with FLIPR EC₅₀ more than the highest concentration tested fell from >11% to 5% assay-wide, and the relative FLIPR:EP rank-order fidelity increased from 55% to 78%. Elimination of the aqueous intermediate step provided additional benefits, including reduced assay cost, decreased cycle time, and reduced wet compound consumption rate. Direct DMSO dispensing has broad applicability to cell-based functional assays of multiple varieties, especially in cases where limit solubility in assay buffer is a recognized impediment to maximizing interassay connectivity.
Raikwar, Shailendra; Srivastava, Vineet K.; Gill, Sarvajeet S.; Tuteja, Renu; Tuteja, Narendra
2015-01-01
Genetic material always remains at the risk of spontaneous or induced damage which challenges the normal functioning of DNA molecule, thus, DNA repair is vital to protect the organisms against genetic damage. Helicases, the unique molecular motors, are emerged as prospective molecules to engineer stress tolerance in plants and are involved in nucleic acid metabolism including DNA repair. The repair helicase, XPB is an evolutionary conserved protein present in different organisms, including plants. Availability of few efficient promoters for gene expression in plants provoked us to study the promoter of XPB for better understanding of gene regulation under stress conditions. Here, we report the in silico analysis of novel stress inducible promoter of Oryza sativa XPB2 (OsXPB2). The in vivo validation of functionality/activity of OsXPB2 promoter under abiotic and hormonal stress conditions was performed by Agrobacterium-mediated transient assay in tobacco leaves using OsXPB2::GUS chimeric construct. The present research revealed that OsXPB2 promoter contains cis-elements accounting for various abiotic stresses (salt, dehydration, or cold) and hormone (Auxin, ABA, or MeJA) induced GUS expression/activity in the promoter-reporter assay. The promoter region of OsXPB2 contains CACG, GTAACG, CACGTG, CGTCA CCGCCGCGCT cis acting-elements which are reported to be salt, dehydration, cold, MeJA, or ABA responsive, respectively. Functional analysis was done by Agrobacterium-mediated transient assay using agroinfiltration in tobacco leaves, followed by GUS staining and fluorescence quantitative analyses. The results revealed high induction of GUS activity under multiple abiotic stresses as compared to mock treated control. The present findings suggest that OsXPB2 promoter is a multi-stress inducible promoter and has potential applications in sustainable crop production under abiotic stresses by regulating desirable pattern of gene expression. PMID:26734018
Raikwar, Shailendra; Srivastava, Vineet K; Gill, Sarvajeet S; Tuteja, Renu; Tuteja, Narendra
2015-01-01
Genetic material always remains at the risk of spontaneous or induced damage which challenges the normal functioning of DNA molecule, thus, DNA repair is vital to protect the organisms against genetic damage. Helicases, the unique molecular motors, are emerged as prospective molecules to engineer stress tolerance in plants and are involved in nucleic acid metabolism including DNA repair. The repair helicase, XPB is an evolutionary conserved protein present in different organisms, including plants. Availability of few efficient promoters for gene expression in plants provoked us to study the promoter of XPB for better understanding of gene regulation under stress conditions. Here, we report the in silico analysis of novel stress inducible promoter of Oryza sativa XPB2 (OsXPB2). The in vivo validation of functionality/activity of OsXPB2 promoter under abiotic and hormonal stress conditions was performed by Agrobacterium-mediated transient assay in tobacco leaves using OsXPB2::GUS chimeric construct. The present research revealed that OsXPB2 promoter contains cis-elements accounting for various abiotic stresses (salt, dehydration, or cold) and hormone (Auxin, ABA, or MeJA) induced GUS expression/activity in the promoter-reporter assay. The promoter region of OsXPB2 contains CACG, GTAACG, CACGTG, CGTCA CCGCCGCGCT cis acting-elements which are reported to be salt, dehydration, cold, MeJA, or ABA responsive, respectively. Functional analysis was done by Agrobacterium-mediated transient assay using agroinfiltration in tobacco leaves, followed by GUS staining and fluorescence quantitative analyses. The results revealed high induction of GUS activity under multiple abiotic stresses as compared to mock treated control. The present findings suggest that OsXPB2 promoter is a multi-stress inducible promoter and has potential applications in sustainable crop production under abiotic stresses by regulating desirable pattern of gene expression.
Identification and Validation of Novel Small Molecule Disruptors of HuR-mRNA Interaction
Wu, Xiaoqing; Lan, Lan; Wilson, David Michael; Marquez, Rebecca T.; Tsao, Wei-chung; Gao, Philip; Roy, Anuradha; Turner, Benjamin Andrew; McDonald, Peter; Tunge, Jon A; Rogers, Steven A; Dixon, Dan A.; Aubé, Jeffrey; Xu, Liang
2015-01-01
HuR, an RNA binding protein, binds to adenine- and uridine-rich elements (ARE) in the 3′-untranslated region (UTR) of target mRNAs, regulating their stability and translation. HuR is highly abundant in many types of cancer, and it promotes tumorigenesis by interacting with cancer-associated mRNAs, which encode proteins that are implicated in different tumor processes including cell proliferation, cell survival, angiogenesis, invasion, and metastasis. Drugs that disrupt the stabilizing effect of HuR upon mRNA targets could have dramatic effects on inhibiting cancer growth and persistence. In order to identify small molecules that directly disrupt the HuR–ARE interaction, we established a fluorescence polarization (FP) assay optimized for high throughput screening (HTS) using HuR protein and an ARE oligo from Musashi RNA-binding protein 1 (Msi1) mRNA, a HuR target. Following the performance of an HTS of ~6000 compounds, we discovered a cluster of potential disruptors, which were then validated by AlphaLISA (Amplified Luminescent Proximity Homogeneous Assay), surface plasmon resonance (SPR), ribonucleoprotein immunoprecipitation (RNP IP) assay, and luciferase reporter functional studies. These compounds disrupted HuR–ARE interactions at the nanomolar level and blocked HuR function by competitive binding to HuR. These results support future studies toward chemical probes for a HuR function study and possibly a novel therapy for HuR-overexpressing cancers. PMID:25750985
Development and Fit-for-Purpose Validation of a Soluble Human Programmed Death-1 Protein Assay.
Ni, Yan G; Yuan, Xiling; Newitt, John A; Peterson, Jon E; Gleason, Carol R; Haulenbeek, Jonathan; Santockyte, Rasa; Lafont, Virginie; Marsilio, Frank; Neely, Robert J; DeSilva, Binodh; Piccoli, Steven P
2015-07-01
Programmed death-1 (PD-1) protein is a co-inhibitory receptor which negatively regulates immune cell activation and permits tumors to evade normal immune defense. Anti-PD-1 antibodies have been shown to restore immune cell activation and effector function-an exciting breakthrough in cancer immunotherapy. Recent reports have documented a soluble form of PD-1 (sPD-1) in the circulation of normal and disease state individuals. A clinical assay to quantify sPD-1 would contribute to the understanding of sPD-1-function and facilitate the development of anti-PD-1 drugs. Here, we report the development and validation of a sPD-1 protein assay. The assay validation followed the framework for full validation of a biotherapeutic pharmacokinetic assay. A purified recombinant human PD-1 protein was characterized extensively and was identified as the assay reference material which mimics the endogenous analyte in structure and function. The lower limit of quantitation (LLOQ) was determined to be 100 pg/mL, with a dynamic range spanning three logs to 10,000 pg/mL. The intra- and inter-assay imprecision were ≤15%, and the assay bias (percent deviation) was ≤10%. Potential matrix effects were investigated in sera from both normal healthy volunteers and selected cancer patients. Bulk-prepared frozen standards and pre-coated Streptavidin plates were used in the assay to ensure consistency in assay performance over time. This assay appears to specifically measure total sPD-1 protein since the human anti-PD-1 antibody, nivolumab, and the endogenous ligands of PD-1 protein, PDL-1 and PDL-2, do not interfere with the assay.
Merlos Rodrigo, Miguel Angel; Krejcova, Ludmila; Kudr, Jiri; Cernei, Natalia; Kopel, Pavel; Richtera, Lukas; Moulick, Amitava; Hynek, David; Adam, Vojtech; Stiborova, Marie; Eckschlager, Tomas; Heger, Zbynek; Zitka, Ondrej
2016-12-15
Metallothioneins (MTs) are involved in heavy metal detoxification in a wide range of living organisms. Currently, it is well known that MTs play substantial role in many pathophysiological processes, including carcinogenesis, and they can serve as diagnostic biomarkers. In order to increase the applicability of MT in cancer diagnostics, an easy-to-use and rapid method for its detection is required. Hence, the aim of this study was to develop a fully automated and high-throughput assay for the estimation of MT levels. Here, we report the optimal conditions for the isolation of MTs from rabbit liver and their characterization using MALDI-TOF MS. In addition, we described a two-step assay, which started with an isolation of the protein using functionalized paramagnetic particles and finished with their electrochemical analysis. The designed easy-to-use, cost-effective, error-free and fully automated procedure for the isolation of MT coupled with a simple analytical detection method can provide a prototype for the construction of a diagnostic instrument, which would be appropriate for the monitoring of carcinogenesis or MT-related chemoresistance of tumors. Copyright © 2016 Elsevier B.V. All rights reserved.
Boesch, Austin W; Kappel, James H; Mahan, Alison E; Chu, Thach H; Crowley, Andrew R; Osei-Owusu, Nana Y; Alter, Galit; Ackerman, Margaret E
2018-05-01
As antibodies continue to gain predominance in drug discovery and development pipelines, efforts to control and optimize their activity in vivo have matured to incorporate sophisticated abilities to manipulate engagement of specific Fc binding partners. Such efforts to promote diverse functional outcomes include modulating IgG-Fc affinity for FcγRs to alternatively potentiate or reduce effector functions, such as antibody-dependent cellular cytotoxicity and phagocytosis. While a number of natural and engineered Fc features capable of eliciting variable effector functions have been demonstrated in vitro and in vivo, elucidation of these important functional relationships has taken significant effort through use of diverse genetic, cellular and enzymatic techniques. As an orthogonal approach, we demonstrate use of FcγR as chromatographic affinity ligands to enrich and therefore simultaneously identify favored binding species from a complex mixture of serum-derived pooled polycloncal human IgG, a load material that contains the natural repertoire of Fc variants and post-translational modifications. The FcγR-enriched IgG was characterized for subclass and glycoform composition and the impact of this bioseparation step on antibody activity was measured in cell-based effector function assays including Natural Killer cell activation and monocyte phagocytosis. This work demonstrates a tractable means to rapidly distinguish complex functional relationships between two or more interacting biological agents by leveraging affinity chromatography followed by secondary analysis with high-resolution biophysical and functional assays and emphasizes a platform capable of surveying diverse natural post-translational modifications that may not be easily produced with high purity or easily accessible with recombinant expression techniques. © 2018 Wiley Periodicals, Inc.
GFP-based fluorescence assay for CAG repeat instability in cultured human cells.
Santillan, Beatriz A; Moye, Christopher; Mittelman, David; Wilson, John H
2014-01-01
Trinucleotide repeats can be highly unstable, mutating far more frequently than point mutations. Repeats typically mutate by addition or loss of units of the repeat. CAG repeat expansions in humans trigger neurological diseases that include myotonic dystrophy, Huntington disease, and several spinocerebellar ataxias. In human cells, diverse mechanisms promote CAG repeat instability, and in mice, the mechanisms of instability are varied and tissue-dependent. Dissection of mechanistic complexity and discovery of potential therapeutics necessitates quantitative and scalable screens for repeat mutation. We describe a GFP-based assay for screening modifiers of CAG repeat instability in human cells. The assay exploits an engineered intronic CAG repeat tract that interferes with expression of an inducible GFP minigene. Like the phenotypes of many trinucleotide repeat disorders, we find that GFP function is impaired by repeat expansion, in a length-dependent manner. The intensity of fluorescence varies inversely with repeat length, allowing estimates of repeat tract changes in live cells. We validate the assay using transcription through the repeat and engineered CAG-specific nucleases, which have previously been reported to induce CAG repeat instability. The assay is relatively fast and should be adaptable to large-scale screens of chemical and shRNA libraries.
GFP-Based Fluorescence Assay for CAG Repeat Instability in Cultured Human Cells
Santillan, Beatriz A.; Moye, Christopher; Mittelman, David; Wilson, John H.
2014-01-01
Trinucleotide repeats can be highly unstable, mutating far more frequently than point mutations. Repeats typically mutate by addition or loss of units of the repeat. CAG repeat expansions in humans trigger neurological diseases that include myotonic dystrophy, Huntington disease, and several spinocerebellar ataxias. In human cells, diverse mechanisms promote CAG repeat instability, and in mice, the mechanisms of instability are varied and tissue-dependent. Dissection of mechanistic complexity and discovery of potential therapeutics necessitates quantitative and scalable screens for repeat mutation. We describe a GFP-based assay for screening modifiers of CAG repeat instability in human cells. The assay exploits an engineered intronic CAG repeat tract that interferes with expression of an inducible GFP minigene. Like the phenotypes of many trinucleotide repeat disorders, we find that GFP function is impaired by repeat expansion, in a length-dependent manner. The intensity of fluorescence varies inversely with repeat length, allowing estimates of repeat tract changes in live cells. We validate the assay using transcription through the repeat and engineered CAG-specific nucleases, which have previously been reported to induce CAG repeat instability. The assay is relatively fast and should be adaptable to large-scale screens of chemical and shRNA libraries. PMID:25423602
The roles of HOXB7 in promoting migration, invasion, and anti-apoptosis in gastric cancer.
Joo, Moon Kyung; Park, Jong-Jae; Yoo, Hyo Soon; Lee, Beom Jae; Chun, Hoon Jai; Lee, Sang Woo; Bak, Young-Tae
2016-10-01
The aim of this study was to compare HOXB7 expression level between gastric cancer and non-cancerous gastric tissues. Additionally, the functional effects of HOXB7, including its pro-migration or invasion and anti-apoptosis roles, were evaluated in gastric cancer cells. Both gene and protein expression levels of HOXB7 were examined in gastric cancer cell lines, and HOXB7 expression was compared between primary or metastatic gastric cancer tissues and chronic gastritis or intestinal metaplasia tissues. Functional studies included a wound healing assay, a Matrigel invasion assay, and an Annexin-V assay were performed, and Akt/PTEN activity was measured by western blotting. Both gene and protein expression levels of HOXB7 could be clearly detected in various gastric cancer cell lines except MKN-28 cell. HOXB7 expression was significantly higher in primary or metastatic gastric cancer tissues than in chronic gastritis or intestinal metaplasia tissues. HOXB7 knockdown led to inhibition of cell invasion and migration, had an apoptotic effect, downregulated phosphor-Akt, and upregulated PTEN in AGS and SNU-638 cells. Reinforced expression of HOXB7 caused the opposite effects in MKN-28 and MKN-45 cells. Our study suggests that HOXB7 has an oncogenic role in gastric cancer, which might be related to the modulation of Akt/PTEN activity to induce cell migration/invasion and anti-apoptotic effects. © 2016 Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd.
Cancer genome characterization efforts now provide an initial view of the somatic alterations in primary tumors. However, most point mutations occur at low frequency, and the function of these alleles remains undefined. We have developed a scalable systematic approach to interrogate the function of cancer-associated gene variants. We subjected 474 mutant alleles curated from 5,338 tumors to pooled in vivo tumor formation assays and gene expression profiling. We identified 12 transforming alleles, including two in genes (PIK3CB, POT1) that have not been shown to be tumorigenic.
Asati, Atul; Kachurina, Olga; Karol, Alex; Dhir, Vipra; Nguyen, Michael; Parkhill, Robert; Kouiavskaia, Diana; Chumakov, Konstantin; Warren, William; Kachurin, Anatoly
2016-01-01
Neutralizing antibodies induced by vaccination or natural infection play a critically important role in protection against the viral diseases. In general, neutralization of the viral infection occurs via two major pathways: pre- and post-attachment modes, the first being the most important for such infections as influenza and polio, the latter being significant for filoviruses. Neutralizing capacity of antibodies is typically evaluated by virus neutralization assays that assess reduction of viral infectivity to the target cells in the presence of functional antibodies. Plaque reduction neutralization test, microneutralization and immunofluorescent assays are often used as gold standard virus neutralization assays. However, these methods are associated with several important prerequisites such as use of live virus requiring safety precautions, tedious evaluation procedure and long assessment time. Hence, there is a need for a robust, inexpensive high throughput functional assay that can be performed rapidly using inactivated virus, without extensive safety precautions. Herein, we report a novel high throughput Fluorescence Adherence Inhibition assay (fADI) using inactivated virus labeled with fluorescent secondary antibodies virus and Vero cells or erythrocytes as targets. It requires only few hours to assess pre-attachment neutralizing capacity of donor sera. fADI assay was tested successfully on donors immunized with polio, yellow fever and influenza vaccines. To further simplify and improve the throughput of the assay, we have developed a mathematical approach for calculating the 50% titers from a single sample dilution, without the need to analyze multi-point titration curves. Assessment of pre- and post-vaccination human sera from subjects immunized with IPOL®, YF-VAX® and 2013–2014 Fluzone® vaccines demonstrated high efficiency of the assay. The results correlated very well with microneutralization assay performed independently by the FDA Center of Biologics Evaluation and Research, with plaque reduction neutralization test performed by Focus Diagnostics, and with hemaglutination inhibition assay performed in-house at Sanofi Pasteur. Taken together, fADI assay appears to be a useful high throughput functional immunoassay for assessment of antibody-related neutralization of the viral infections for which pre-attachment neutralization pathway is predominant, such as polio, influenza, yellow fever and dengue. PMID:26863313
Kerényi, Adrienne; Beke Debreceni, Ildikó; Oláh, Zsolt; Ilonczai, Péter; Bereczky, Zsuzsanna; Nagy, Béla; Muszbek, László; Kappelmayer, János
2017-09-01
Heparin-induced thrombocytopenia (HIT) is a severe side effect of heparin treatment caused by platelet activating IgG antibodies generated against the platelet factor 4 (PF4)-heparin complex. Thrombocytopenia and thrombosis are the leading clinical symptoms of HIT. The clinical pretest probability of HIT was evaluated by the 4T score system. Laboratory testing of HIT was performed by immunological detection of antibodies against PF4-heparin complex (EIA) and two functional assays. Heparin-dependent activation of donor platelets by patient plasma was detected by flow cytometry. Increased binding of Annexin-V to platelets and elevated number of platelet-derived microparticles (PMP) were the indicators of platelet activation. EIA for IgG isotype HIT antibodies was performed in 405 suspected HIT patients. Based on negative EIA results, HIT was excluded in 365 (90%) of cases. In 40 patients with positive EIA test result functional tests were performed. Platelet activating antibodies were detected in 17 cases by Annexin V binding. PMP count analysis provided nearly identical results. The probability of a positive flow cytometric assay result was higher in patients with elevated antibody titer. 71% of patients with positive EIA and functional assay had thrombosis. EIA is an important first line laboratory test in the diagnosis of HIT; however, HIT must be confirmed by a functional test. Annexin V binding and PMP assays using flow cytometry are functional HIT tests convenient in a clinical diagnostic laboratory. The positive results of functional assays may predict the onset of thrombosis. © 2016 International Clinical Cytometry Society. © 2016 International Clinical Cytometry Society.
Jang, Mi Seon; Sahastrabuddhe, Sushant; Yun, Cheol-Heui; Han, Seung Hyun; Yang, Jae Seung
2016-08-01
Typhoid fever, mainly caused by Salmonella enterica serovar Typhi (S. Typhi), is a life-threatening disease, mostly in developing countries. Enzyme-linked immunosorbent assay (ELISA) is widely used to quantify antibodies against S. Typhi in serum but does not provide information about functional antibody titers. Although the serum bactericidal assay (SBA) using an agar plate is often used to measure functional antibody titers against various bacterial pathogens in clinical specimens, it has rarely been used for typhoid vaccines because it is time-consuming and labor-intensive. In the present study, we established an improved SBA against S. Typhi using a semi-automated colony-counting system with a square agar plate harboring 24 samples. The semi-automated SBA efficiently measured bactericidal titers of sera from individuals immunized with S. Typhi Vi polysaccharide vaccines. The assay specifically responded to S. Typhi Ty2 but not to other irrelevant enteric bacteria including Vibrio cholerae and Shigella flexneri. Baby rabbit complement was more appropriate source for the SBA against S. Typhi than complements from adult rabbit, guinea pig, and human. We also examined the correlation between SBA and ELISA for measuring antibody responses against S. Typhi using pre- and post-vaccination sera from 18 human volunteers. The SBA titer showed a good correlation with anti-Vi IgG quantity in the serum as determined by Spearman correlation coefficient of 0.737 (P < 0.001). Taken together, the semi-automated SBA might be efficient, accurate, sensitive, and specific enough to measure functional antibody titers against S. Typhi in sera from human subjects immunized with typhoid vaccines. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Freyburger, Geneviève; Macouillard, Gérard; Khennoufa, Karim; Labrouche, Sylvie; Molimard, Mathieu; Sztark, François
2015-01-01
The aim of this study was to improve knowledge of what happens in the coagulation of orthopaedic patients under rivaroxaban and apixaban, in order to finalize and cross-validate effective measurement methods and to provide arguments for helping to reference one or the other drug in our central pharmacy. One hundred and two patients undergoing total hip or knee replacement were included. Half of them received rivaroxaban and the other half received apixaban. Blood samples (n = 244 with each drug) were taken at Cmax preoperatively and twice a week, apart from the day of the patient's discharge, when Ctrough concentration was targeted. Routine coagulation parameters, and functional and liquid chromatography tandem mass spectrometry assays for measurement of circulating concentrations were studied. The LC-MS/MS assay and the functional assays carried out in patients under routine conditions were highly correlated, apart from low concentrations (<30 ng/ml), which were affected by the variable individual potential to inhibit the exogenous bovine Xa used in the functional assays. After 1 week of treatment, the drugs differed: Cmax and Ctrough were closer when apixaban was taken twice daily (83 ± 39 and 58 ± 17 ng/ml) than with rivaroxaban taken once a day (113 ± 67 and 13 ± 20 ng/ml). Rivaroxaban had a greater influence on routine coagulation tests and reduced the maximum thrombin concentration more efficiently, as assessed by the thrombin generation test. Although rivaroxaban and apixaban present apparently similar constant rates, they exhibit significant differences in their concentrations and anticoagulant effects when studied ex vivo in orthopedic patients. PMID:26258673
NASA Astrophysics Data System (ADS)
Kouyoumdjian, Hovig
The development of a non-invasive method for the detection of Alzheimer's disease is of high current interest, which can be critical in early diagnosis and in guiding preventive treatment of the disease. The aggregates of beta amyloids are a pathological hallmark of Alzheimer's disease. Carbohydrates such as sialic acid terminated gangliosides have been shown to play significant roles in initiation of amyloid aggregation. Herein, we report a biomimetic approach using sialic acid coated iron oxide superparamagnetic nanoparticles for in vitro detection in addition to the assessment of the in vivo mouse-BBB (Blood brain barrier) crossing of the BSA (bovine serum albumin)-modified ones. The sialic acid functionalized dextran nanoparticles were shown to bind with beta amyloids through several techniques including ELISA (enzyme linked immunosorbent assay), MRI (magnetic resonance imaging), TEM (transmission electron microscopy), gel electrophoresis and tyrosine fluorescence assay. The superparamagnetic nature of the nanoparticles allowed easy detection of the beta amyloids in mouse brains in both in vitro and ex vivo model by magnetic resonance imaging. Furthermore, the sialic acid nanoparticles greatly reduced beta amyloid induced cytotoxicity to SH-SY5Y neuroblastoma cells, highlighting the potential of the glyconanoparticles for detection and imaging of beta amyloids. Sialic acid functionalized BSA (bovine serum albumin) nanoparticles also showed significant binding to beta amyloids, through ELISA and ex vivo mouse brain MRI experiments. Alternatively, the BBB crossing was demonstrated by several techniques such as confocal microscopy, endocytosis, exocytosis assays and were affirmed by nanoparticles transcytosis assays through bEnd.3 endothelial cells. Finally, the BBB crossing was confirmed by analyzing the MRI signal of nanoparticle-injected CD-1 mice.
Predicting changes in cardiac myocyte contractility during early drug discovery with in vitro assays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morton, M.J., E-mail: michael.morton@astrazeneca.com; Armstrong, D.; Abi Gerges, N.
2014-09-01
Cardiovascular-related adverse drug effects are a major concern for the pharmaceutical industry. Activity of an investigational drug at the L-type calcium channel could manifest in a number of ways, including changes in cardiac contractility. The aim of this study was to define which of the two assay technologies – radioligand-binding or automated electrophysiology – was most predictive of contractility effects in an in vitro myocyte contractility assay. The activity of reference and proprietary compounds at the L-type calcium channel was measured by radioligand-binding assays, conventional patch-clamp, automated electrophysiology, and by measurement of contractility in canine isolated cardiac myocytes. Activity inmore » the radioligand-binding assay at the L-type Ca channel phenylalkylamine binding site was most predictive of an inotropic effect in the canine cardiac myocyte assay. The sensitivity was 73%, specificity 83% and predictivity 78%. The radioligand-binding assay may be run at a single test concentration and potency estimated. The least predictive assay was automated electrophysiology which showed a significant bias when compared with other assay formats. Given the importance of the L-type calcium channel, not just in cardiac function, but also in other organ systems, a screening strategy emerges whereby single concentration ligand-binding can be performed early in the discovery process with sufficient predictivity, throughput and turnaround time to influence chemical design and address a significant safety-related liability, at relatively low cost. - Highlights: • The L-type calcium channel is a significant safety liability during drug discovery. • Radioligand-binding to the L-type calcium channel can be measured in vitro. • The assay can be run at a single test concentration as part of a screening cascade. • This measurement is highly predictive of changes in cardiac myocyte contractility.« less
Wallace, F Morgan; DiCosimo, Deana; Farnum, Andrew; Tice, George; Andaloro, Bridget; Davis, Eugene; Burns, Frank R
2011-01-01
In 2010, the BAX System PCR assay for Salmonella was modified to include a hot start functionality designed to keep the reaction enzyme inactive until PCR begins. To validate the assay's Official Methods of Analysis status to include this procedure modification, an evaluation was conducted on four food types that were simultaneously analyzed with the BAX System and either the U.S. Food and Drug Administration's Bacteriological Analytical Manual or the U.S. Department of Agriculture-Food Safety and Inspection Service Microbiology Laboratory Guidebook reference method for detecting Salmonella. Identical performance between the BAX System method and the reference methods was observed. Additionally, lysates were analyzed using both the BAX System Classic and BAX System Q7 instruments with identical results using both platforms for all samples tested. Of the 100 samples analyzed, 34 samples were positive for both the BAX System and reference methods, and 66 samples were negative by both the BAX System and reference methods, demonstrating 100% correlation. No instrument platform variation was observed. Additional inclusivity and exclusivity testing using the modified test kit demonstrated the test kit to be 100% accurate in evaluation of test panels of 352 Salmonella strains and 46 non-Salmonella strains.
Fallacara, Dawn M.; Halbrook, Richard S.; French, John B.
2011-01-01
Fifty-nine adult male American kestrels (Falco sparverius) were assigned to one of three diet formulations including 0 (control), 0.6, and 3.9 μg/g (dry wt) methylmercury (MeHg). Kestrels received their diets daily for 13 weeks to assess the effects of dietary MeHg on immunocompetence. Immunotoxic endpoints included assessment of cell-mediated immunity (CMI) using the phytohemagglutinin (PHA) skin-swelling assay and primary and secondary antibody-mediated immune responses (IR) via the sheep red blood cell (SRBC) hemagglutination assay. Select hematology and histology parameters were evaluated to corroborate the results of functional assays and to assess immunosuppression of T and B cell-dependent components in spleen tissue. Kestrels in the 0.6 and 3.9 μg/g MeHg groups exhibited suppression of CMI, including lower PHA stimulation indexes (p = 0.019) and a 42 to 45% depletion of T cell-dependent splenic lymphoid tissue (p = 0.006). Kestrels in the 0.6 μg/g group exhibited suppression of the primary IR to SRBCs (p = 0.014). MeHg did not have a noticeable effect on the secondary IR (p = 0.166). Elevation of absolute heterophil counts (p p p = 0.003) was apparent in the 3.9 μg/g group at week 12. Heterophilia, or the excess of heterophils in peripheral blood above normal ranges, was apparent in seven of 17 (41%) kestrels in the 3.9 μg/g group and was indicative of an acute inflammatory response or physiological stress. This study revealed that adult kestrels were more sensitive to immunotoxic effects of MeHg at environmentally relevant dietary concentrations than they were to reproductive effects as previously reported.
Quantitative Proteomic Profiling of Early and Late Responses to Salicylic Acid in Cucumber Leaves
Li, Liang; Shang, Qing-Mao
2016-01-01
Salicylic acid (SA) is an important phytohormone that plays vital regulatory roles in plant growth, development, and stress responses. However, studies on the molecular mechanism of SA, especially during the early SA responses, are lagging behind. In this study, we initiated a comprehensive isobaric tag for relative and absolute quantitation (iTRAQ)-based proteomic analysis to explore the early and late SA-responsive proteins in leaves of cucumber (Cucumis sativus L.) seedlings. Upon SA application through the roots, endogenous SA accumulated in cucumber leaves. By assaying the changes in marker gene expression and photosynthetic rate, we collected samples at 12 h and 72 h post treatment (hpt) to profile the early and late SA responsiveness, respectively. The iTRAQ assay followed by tandem mass spectrometry revealed 135 differentially expressed proteins (DEPs) at 12 hpt and 301 DEPs at 72 hpt. The functional categories for these SA-responsive proteins included in a variety of biochemical processes, including photosynthesis, redox homeostasis, carbohydrate and energy metabolism, lipid metabolism, transport, protein folding and modification, proteolysis, cell wall organization, and the secondary phenylpropanoid pathway. Conclusively, based on the abundant changes of these DEPs, together with their putative functions, we proposed a possible SA-responsive protein network. It appears that SA could elicit reactive oxygen species (ROS) production via enhancing the photosynthetic electron transferring, and then confer some growth-promoting and stress-priming effects on cells during the late phase, including enhanced photosynthesis and ROS scavenging, altered carbon metabolic flux for the biosynthesis of amino acids and nucleotides, and cell wall reorganization. Overall, the present iTRAQ assay provides higher proteome coverage and deepened our understanding of the molecular basis of SA-responses. PMID:27551830
Some Like It Hot, Some Like It Warm: Phenotyping to Explore Thermotolerance Diversity
Yeh, Ching-Hui; Kaplinsky, Nicholas J.; Hu, Catherine; Charng, Yee-yung
2012-01-01
Plants have evolved overlapping but distinct cellular responses to different aspects of high temperature stress. These responses include basal thermotolerance, short- and long-term acquired thermotolerance, and thermotolerance to moderately high temperatures. This thermotolerance diversity’ means that multiple phenotypic assays are essential for fully describing the functions of genes involved in heat stress responses. A large number of genes with potential roles in heat stress responses have been identified using genetic screens and genome wide expression studies. We examine the range of phenotypic assays that have been used to characterize thermotolerance phenotypes in both Arabidopsis and crop plants. Three major variables differentiate thermotolerance assays: 1) the heat stress regime used, 2) the developmental stage of the plants being studied, and 3) the actual phenotype which is scored. Consideration of these variables will be essential for deepening our understanding of the molecular genetics of plant thermotolerance. PMID:22920995
Functional Assessment of Genetic Variants with Outcomes Adapted to Clinical Decision-Making
Thouvenot, Pierre; Ben Yamin, Barbara; Fourrière, Lou; Lescure, Aurianne; Boudier, Thomas; Del Nery, Elaine; Chauchereau, Anne; Goldgar, David E.; Stoppa-Lyonnet, Dominique; Nicolas, Alain; Millot, Gaël A.
2016-01-01
Understanding the medical effect of an ever-growing number of human variants detected is a long term challenge in genetic counseling. Functional assays, based on in vitro or in vivo evaluations of the variant effects, provide essential information, but they require robust statistical validation, as well as adapted outputs, to be implemented in the clinical decision-making process. Here, we assessed 25 pathogenic and 15 neutral missense variants of the BRCA1 breast/ovarian cancer susceptibility gene in four BRCA1 functional assays. Next, we developed a novel approach that refines the variant ranking in these functional assays. Lastly, we developed a computational system that provides a probabilistic classification of variants, adapted to clinical interpretation. Using this system, the best functional assay exhibits a variant classification accuracy estimated at 93%. Additional theoretical simulations highlight the benefit of this ready-to-use system in the classification of variants after functional assessment, which should facilitate the consideration of functional evidences in the decision-making process after genetic testing. Finally, we demonstrate the versatility of the system with the classification of siRNAs tested for human cell growth inhibition in high throughput screening. PMID:27272900
MDA-9/syntenin and IGFBP-2 promote angiogenesis in human melanoma.
Das, Swadesh K; Bhutia, Sujit K; Azab, Belal; Kegelman, Timothy P; Peachy, Leyla; Santhekadur, Prasanna K; Dasgupta, Santanu; Dash, Rupesh; Dent, Paul; Grant, Steven; Emdad, Luni; Pellecchia, Maurizio; Sarkar, Devanand; Fisher, Paul B
2013-01-15
Melanoma differentiation-associated gene-9 (mda-9/syntenin) encodes an adapter scaffold protein whose expression correlates with and mediates melanoma progression and metastasis. Tumor angiogenesis represents an integral component of cancer metastasis prompting us to investigate a possible role of mda-9/syntenin in inducing angiogenesis. Genetic (gain-of-function and loss-of-function) and pharmacologic approaches were used to modify mda-9/syntenin expression in normal immortal melanocytes, early radial growth phase melanoma, and metastatic melanoma cells. The consequence of modifying mda-9/syntenin expression on angiogenesis was evaluated using both in vitro and in vivo assays, including tube formation assays using human vascular endothelial cells, chorioallantoic membrane (CAM) assays and xenograft tumor animal models. Gain-of-function and loss-of-function experiments confirm that MDA-9/syntenin induces angiogenesis by augmenting expression of several proangiogenic factors/genes. Experimental evidence is provided for a model of angiogenesis induction by MDA-9/syntenin in which MDA-9/syntenin interacts with the extracellular matrix (ECM), activating Src and FAK resulting in activation by phosphorylation of Akt, which induces hypoxia inducible factor 1-α (HIF-1α). The HIF-1α activates transcription of insulin growth factor-binding protein-2 (IGFBP-2), which is secreted thereby promoting angiogenesis and further induces endothelial cells to produce and secrete VEGF-A augmenting tumor angiogenesis. Our studies delineate an unanticipated cell nonautonomous function of MDA-9/syntenin in the context of angiogenesis, which may directly contribute to its metastasis-promoting properties. As a result, targeting MDA-9/syntenin or its downstream-regulated molecules may provide a means of simultaneously impeding metastasis by both directly inhibiting tumor cell transformed properties (autonomous) and indirectly by blocking angiogenesis (nonautonomous).
MDA-9/Syntenin and IGFBP-2 Promote Angiogenesis in Human Melanoma
Das, Swadesh K.; Bhutia, Sujit K.; Azab, Belal; Kegelman, Timothy P.; Peachy, Leyla; Santhekadur, Prasanna K.; Dasgupta, Santanu; Dash, Rupesh; Dent, Paul; Grant, Steven; Emdad, Luni; Pellecchia, Maurizio; Sarkar, Devanand; Fisher, Paul B.
2012-01-01
Melanoma differentiation associated gene-9 (mda-9/syntenin) encodes an adapter scaffold protein whose expression correlates with and mediates melanoma progression and metastasis. Tumor angiogenesis represents an integral component of cancer metastasis prompting us to investigate a possible role of mda-9/syntenin in inducing angiogenesis. Genetic (gain-of-function and loss-of-function) and pharmacological approaches were employed to modify mda-9/syntenin expression in normal immortal melanocytes, early radial growth phase melanoma and metastatic melanoma cells. The consequence of modifying mda-9/syntenin expression on angiogenesis was evaluated using both in vitro and in vivo assays, including tube formation assays using human vascular endothelial cells, CAM assays and xenograft tumor animal models. Gain-of-function and loss-of-function experiments confirm that MDA-9/syntenin induces angiogenesis by augmenting expression of several pro-angiogenic factors/genes. Experimental evidence is provided for a model of angiogenesis induction by MDA-9/syntenin in which MDA-9/syntenin interacts with the ECM activating Src and FAK resulting in activation by phosphorylation of Akt, which induces HIF-1α. The HIF-1α activates transcription of Insulin Growth Factor Binding Protein-2 (IGFBP-2), which is secreted thereby promoting angiogenesis and further induces endothelial cells to produce and secrete VEGF-A augmenting tumor angiogenesis. Our studies delineate an unanticipated cell non-autonomous function of MDA-9/syntenin in the context of angiogenesis, which may directly contribute to its metastasis-promoting properties. As a result, targeting MDA-9/syntenin or its downstream-regulated molecules may provide a means of simultaneously impeding metastasis by both directly inhibiting tumor cell transformed properties (autonomous) and indirectly by blocking angiogenesis (non-autonomous). PMID:23233738
Wang, Yong; Zeng, Xiandong; Wang, Ningning; Zhao, Wei; Zhang, Xi; Teng, Songling; Zhang, Yueyan; Lu, Zhi
2018-05-12
Accumulating evidences indicate that non-coding RNAs (ncRNAs) including long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) acting as crucial regulators in osteosarcoma (OS). Previously, we reported that Rho associated coiled-coil containing protein kinase 1 (ROCK1), a metastatic-related gene was negatively regulated by microRNA-335-5p (miR-335-5p) and work as an oncogene in osteosarcoma. Whether any long non-coding RNAs participate in the upstream of miR-335-5p/ROCK1 axial remains unclear. Expression of differentiation antagonizing non-protein coding RNA (DANCR) and miR-335-5p/miR-1972 in osteosarcoma tissues were determined by a qRT-PCR assay and an ISH assay. Osteosarcoma cells' proliferation and migration/invasion ability changes were measured by a CCK-8/EDU assay and a transwell assay respectively. ROCK1 expression changes were checked by a qRT-PCR assay and a western blot assay. Targeted binding effects between miR-335-5p/miR-1972 and ROCK1 or DANCR were verified by a dual luciferase reporter assay and a RIP assay. In vivo experiments including a nude formation assay as well as a CT scan were applied to detect tumor growth and metastasis changes in animal level. In the present study, an elevated DNACR was found in osteosarcoma tissue specimens and in osteosarcoma cell lines, and the elevated DNACR was closely correlated with poor prognosis in clinical patients. Functional experiments illustrated that a depression of DANCR suppressed ROCK1-mediated proliferation and metastasis in osteosarcoma cells. The results of western blot assays and qRT-PCR assays revealed that DANCR regulated ROCK1 via crosstalk with miR-335-5p and miR-1972. Further cellular behavioral experiments demonstrated that DNACR promoted ROCK1-meidated proliferation and metastasis through decoying both miR-335-5p and miR-1972. Finally, the outcomes of in vivo animal models showed that DANCR promoted tumor growth and lung metastasis of osteosarcoma. LncRNA DANCR work as an oncogene and promoted ROCK1-mediated proliferation and metastasis through acting as a competing endogenous RNA (ceRNA) in osteosarcoma.
Guo, Dong; Mulder-Krieger, Thea; IJzerman, Adriaan P; Heitman, Laura H
2012-01-01
BACKGROUND AND PURPOSE The adenosine A2A receptor belongs to the superfamily of GPCRs and is a promising therapeutic target. Traditionally, the discovery of novel agents for the A2A receptor has been guided by their affinity for the receptor. This parameter is determined under equilibrium conditions, largely ignoring the kinetic aspects of the ligand-receptor interaction. The aim of this study was to assess the binding kinetics of A2A receptor agonists and explore a possible relationship with their functional efficacy. EXPERIMENTAL APPROACH We set up, validated and optimized a kinetic radioligand binding assay (a so-called competition association assay) at the A2A receptor from which the binding kinetics of unlabelled ligands were determined. Subsequently, functional efficacies of A2A receptor agonists were determined in two different assays: a novel label-free impedance-based assay and a more traditional cAMP determination. KEY RESULTS A simplified competition association assay yielded an accurate determination of the association and dissociation rates of unlabelled A2A receptor ligands at their receptor. A correlation was observed between the receptor residence time of A2A receptor agonists and their intrinsic efficacies in both functional assays. The affinity of A2A receptor agonists was not correlated to their functional efficacy. CONCLUSIONS AND IMPLICATIONS This study indicates that the molecular basis of different agonist efficacies at the A2A receptor lies within their different residence times at this receptor. PMID:22324512
Emerging microengineering tools for functional analysis and phenotyping of blood cells
Li, Xiang; Chen, Weiqiang; Li, Zida; Li, Ling; Gu, Hongchen; Fu, Jianping
2014-01-01
The available techniques for assessing blood cell functions are limited considering the various types of blood cells and their diverse functions. In the past decade, rapid advancement in microengineering has enabled an array of blood cell functional measurements that are difficult or impossible to achieve using conventional bulk platforms. Such miniaturized blood cell assay platforms also provide attractive capabilities of reducing chemical consumption, cost, assay time, as well as exciting opportunities of device integration, automation, and assay standardization. This review summarizes these contemporary microengineering tools and discusses their promising potential for constructing accurate in vitro models and rapid clinical diagnosis using minimal amount of whole blood samples. PMID:25283971
GloSensor assay for discovery of GPCR-selective ligands.
Kumar, Boda Arun; Kumari, Poonam; Sona, Chandan; Yadav, Prem N
2017-01-01
G protein-coupled receptors (GPCRs) are modulators of almost every physiological process, and therefore, are most favorite therapeutic target for wide spectrum of diseases. Ideally, high-throughput functional assays should be implemented that allow the screening of large compound libraries in cost-effective manner to identify agonist, antagonist, and allosteric modulators in the same assay. Taking advantage of the increased understanding of the GPCR structure and signaling, several commercially available functional assays based on fluorescence or chemiluminescence detection are being used in both academia and industry. In this chapter, we provide step-by-step method and guidelines to perform cAMP measurement using GloSensor assay. Finally, we have also discussed the analysis and interpretation of results obtained using this assay by providing several examples of G s - and G i -coupled GPCRs. © 2017 Elsevier Inc. All rights reserved.
Gold, Ellen B; Blount, Benjamin C; O'Neill Rasor, Marianne; Lee, Jennifer S; Alwis, Udeni; Srivastav, Anup; Kim, Kyoungmi
2013-07-01
Perchlorate is a widely occurring contaminant, which can competitively inhibit iodide uptake and thus thyroid hormone production. The health effects of chronic low dose perchlorate exposure are largely unknown. In a community-based study, we compared thyroid function and disease in women with differing likelihoods of prior and current perchlorate exposure. Residential blocks were randomly selected from areas: (1) with potential perchlorate exposure via drinking water; (2) with potential exposure to environmental contaminants; and (3) neighboring but without such exposures. Eligibility included having lived in the area for ≥6 months and aged 20-50 years during 1988-1996 (during documented drinking water well contamination). We interviewed 814 women and collected blood samples (assayed for thyroid stimulating hormone and free thyroxine) from 431 interviewed women. Daily urine samples were assayed for perchlorate and iodide for 178 premenopausal women with blood samples. We performed multivariable regression analyses comparing thyroid function and disease by residential area and by urinary perchlorate dose adjusted for urinary iodide levels. Residential location and current perchlorate dose were not associated with thyroid function or disease. No persistent effect of perchlorate on thyroid function or disease was found several years after contaminated wells were capped.
A single-islet microplate assay to measure mouse and human islet insulin secretion.
Truchan, Nathan A; Brar, Harpreet K; Gallagher, Shannon J; Neuman, Joshua C; Kimple, Michelle E
2015-01-01
One complication to comparing β-cell function among islet preparations, whether from genetically identical or diverse animals or human organ donors, is the number of islets required per assay. Islet numbers can be limiting, meaning that fewer conditions can be tested; other islet measurements must be excluded; or islets must be pooled from multiple animals/donors for each experiment. Furthermore, pooling islets negates the possibility of performing single-islet comparisons. Our aim was to validate a 96-well plate-based single islet insulin secretion assay that would be as robust as previously published methods to quantify glucose-stimulated insulin secretion from mouse and human islets. First, we tested our new assay using mouse islets, showing robust stimulation of insulin secretion 24 or 48 h after islet isolation. Next, we utilized the assay to quantify mouse islet function on an individual islet basis, measurements that would not be possible with the standard pooled islet assay methods. Next, we validated our new assay using human islets obtained from the Integrated Islet Distribution Program (IIDP). Human islets are known to have widely varying insulin secretion capacity, and using our new assay we reveal biologically relevant factors that are significantly correlated with human islet function, whether displayed as maximal insulin secretion response or fold-stimulation of insulin secretion. Overall, our results suggest this new microplate assay will be a useful tool for many laboratories, expert or not in islet techniques, to be able to precisely quantify islet insulin secretion from their models of interest.
Guidugli, Lucia; Shimelis, Hermela; Masica, David L; Pankratz, Vernon S; Lipton, Gary B; Singh, Namit; Hu, Chunling; Monteiro, Alvaro N A; Lindor, Noralane M; Goldgar, David E; Karchin, Rachel; Iversen, Edwin S; Couch, Fergus J
2018-01-17
Many variants of uncertain significance (VUS) have been identified in BRCA2 through clinical genetic testing. VUS pose a significant clinical challenge because the contribution of these variants to cancer risk has not been determined. We conducted a comprehensive assessment of VUS in the BRCA2 C-terminal DNA binding domain (DBD) by using a validated functional assay of BRCA2 homologous recombination (HR) DNA-repair activity and defined a classifier of variant pathogenicity. Among 139 variants evaluated, 54 had ≥99% probability of pathogenicity, and 73 had ≥95% probability of neutrality. Functional assay results were compared with predictions of variant pathogenicity from the Align-GVGD protein-sequence-based prediction algorithm, which has been used for variant classification. Relative to the HR assay, Align-GVGD significantly (p < 0.05) over-predicted pathogenic variants. We subsequently combined functional and Align-GVGD prediction results in a Bayesian hierarchical model (VarCall) to estimate the overall probability of pathogenicity for each VUS. In addition, to predict the effects of all other BRCA2 DBD variants and to prioritize variants for functional studies, we used the endoPhenotype-Optimized Sequence Ensemble (ePOSE) algorithm to train classifiers for BRCA2 variants by using data from the HR functional assay. Together, the results show that systematic functional assays in combination with in silico predictors of pathogenicity provide robust tools for clinical annotation of BRCA2 VUS. Copyright © 2017 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
Data transformation methods for multiplexed assays
Tammero, Lance F. Bentley; Dzenitis, John M; Hindson, Benjamin J
2013-07-23
Methods to improve the performance of an array assay are described. A correlation between fluorescence intensity-related parameters and negative control values of the assay is determined. The parameters are then adjusted as a function of the correlation. As a result, sensitivity of the assay is improved without changes in its specificity.
Engelmann, Péter; Hayashi, Yuya; Bodó, Kornélia; Ernszt, Dávid; Somogyi, Ildikó; Steib, Anita; Orbán, József; Pollák, Edit; Nyitrai, Miklós; Németh, Péter; Molnár, László
2016-12-01
Flow cytometry is a common approach to study invertebrate immune cells including earthworm coelomocytes. However, the link between light-scatter- and microscopy-based phenotyping remains obscured. Here we show, by means of light scatter-based cell sorting, both subpopulations (amoebocytes and eleocytes) can be physically isolated with good sort efficiency and purity confirmed by downstream morphological and cytochemical applications. Immunocytochemical analysis using anti-EFCC monoclonal antibodies combined with phalloidin staining has revealed antigenically distinct, sorted subsets. Screening of lectin binding capacity indicated wheat germ agglutinin (WGA) as the strongest reactor to amoebocytes. This is further evidenced by WGA inhibition assays that suggest high abundance of N-acetyl-d-glucosamine in amoebocytes. Post-sort phagocytosis assays confirmed the functional differences between amoebocytes and eleocytes, with the former being in favor of bacterial engulfment. This study has proved successful in linking flow cytometry and microscopy analysis and provides further experimental evidence of phenotypic and functional heterogeneity in earthworm coelomocyte subsets. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Joyce, Malcolm J.; Gamage, Kelum A. A.; Aspinall, M. D.; Cave, F. D.; Lavietes, A.
2014-06-01
The design, principle of operation and the results of measurements made with a four-channel organic scintillator system are described. The system comprises four detectors and a multiplexed analyzer for the real-time parallel processing of fast neutron events. The function of the real-time, digital multiple-channel pulse-shape discrimination analyzer is described together with the results of laboratory-based measurements with 252Cf, 241Am-Li and plutonium. The analyzer is based on a single-board solution with integrated high-voltage supplies and graphical user interface. It has been developed to meet the requirements of nuclear materials assay of relevance to safeguards and security. Data are presented for the real-time coincidence assay of plutonium in terms of doubles count rate versus mass. This includes an assessment of the limiting mass uncertainty for coincidence assay based on a 100 s measurement period and samples in the range 0-50 g. Measurements of count rate versus order of multiplicity for 252Cf and 241Am-Li and combinations of both are also presented.
Self-Checking Cell-Based Assays for GPCR Desensitization and Resensitization.
Fisher, Gregory W; Fuhrman, Margaret H; Adler, Sally A; Szent-Gyorgyi, Christopher; Waggoner, Alan S; Jarvik, Jonathan W
2014-09-01
G protein-coupled receptors (GPCRs) play stimulatory or modulatory roles in numerous physiological states and processes, including growth and development, vision, taste and olfaction, behavior and learning, emotion and mood, inflammation, and autonomic functions such as blood pressure, heart rate, and digestion. GPCRs constitute the largest protein superfamily in the human and are the largest target class for prescription drugs, yet most are poorly characterized, and of the more than 350 nonolfactory human GPCRs, over 100 are orphans for which no endogenous ligand has yet been convincingly identified. We here describe new live-cell assays that use recombinant GPCRs to quantify two general features of GPCR cell biology-receptor desensitization and resensitization. The assays employ a fluorogen-activating protein (FAP) reporter that reversibly complexes with either of two soluble organic molecules (fluorogens) whose fluorescence is strongly enhanced when complexed with the FAP. Both assays require no wash or cleanup steps and are readily performed in microwell plates, making them adaptable to high-throughput drug discovery applications. © 2014 Society for Laboratory Automation and Screening.
Nguyen Hoang, Anh Thu; Chen, Puran; Björnfot, Sofia; Högstrand, Kari; Lock, John G.; Grandien, Alf; Coles, Mark; Svensson, Mattias
2014-01-01
This manuscript describes technical advances allowing manipulation and quantitative analyses of human DC migratory behavior in lung epithelial tissue. DCs are hematopoietic cells essential for the maintenance of tissue homeostasis and the induction of tissue-specific immune responses. Important functions include cytokine production and migration in response to infection for the induction of proper immune responses. To design appropriate strategies to exploit human DC functional properties in lung tissue for the purpose of clinical evaluation, e.g., candidate vaccination and immunotherapy strategies, we have developed a live-imaging assay based on our previously described organotypic model of the human lung. This assay allows provocations and subsequent quantitative investigations of DC functional properties under conditions mimicking morphological and functional features of the in vivo parental tissue. We present protocols to set up and prepare tissue models for 4D (x, y, z, time) fluorescence-imaging analysis that allow spatial and temporal studies of human DCs in live epithelial tissue, followed by flow cytometry analysis of DCs retrieved from digested tissue models. This model system can be useful for elucidating incompletely defined pathways controlling DC functional responses to infection and inflammation in lung epithelial tissue, as well as the efficacy of locally administered candidate interventions. PMID:24899587
Assaying Wnt5A-mediated Invasion in Melanoma Cells
O'Connell, Michael P.; French, Amanda D.; Leotlela, Poloko D.; Weeraratna, Ashani T.
2009-01-01
Wnt5A has been implicated in melanoma metastasis, and the progression of other cancers including pancreatic, gastric, prostate and lung cancers. Assays to test motility and invasion include both in vivo assays, and in vitro assays. The former assays include the use of tail vein or footpad injections of metastatic cells, and are often laborious and expensive. In vitro invasion assays provide quick readouts that can help to establish conditions that either activate or inhibit melanoma cell motility, and to assess whether the conditions in question are worth translating into an in vivo model. Here we describe two standard methods for assaying motility and invasion in vitro including wound healing assays and Matrigel invasion assays (Boyden chamber assays). In addition, we and several other laboratories have previously shown that melanoma cells require MMP-2 for their invasion, and have recently shown that Wnt5A treatment can increase the levels of this enzyme in melanoma cells, as demonstrated by gelatin zymography. The use of these techniques can help to assess the migratory capacity of melanoma cells in response to Wnt treatment. PMID:19099260
Jacobsen, Henning; Rajendran, Madhusudan; Choi, Angela; Sjursen, Haakon; Brokstad, Karl A; Cox, Rebecca J; Palese, Peter; Krammer, Florian; Nachbagauer, Raffael
2017-09-19
The immunogenicity of current influenza virus vaccines is assessed by measuring an increase of influenza virus-specific antibodies in a hemagglutination inhibition assay. This method exclusively measures antibodies against the hemagglutinin head domain. While this domain is immunodominant, it has been shown that hemagglutination inhibition titers do not always accurately predict protection from disease. In addition, several novel influenza virus vaccines that are currently under development do not target the hemagglutinin head domain, but rather more conserved sites, including the hemagglutinin stalk. Importantly, antibodies against the hemagglutinin stalk do not show activity in hemagglutination inhibition assays and will require different methods for quantification. In this study, we tested human serum samples from a seasonal influenza virus vaccination trial and an avian H5N1 virus vaccination trial for antibody activities in multiple types of assays, including binding assays and also functional assays. We then performed serum transfer experiments in mice which then received an H1N1 virus challenge to assess the in vivo protective effects of the antibodies. We found that hemagglutinin-specific antibody levels measured in an enzyme-linked immunosorbent assay (ELISA) correlated well with protection from weight loss in mice. In addition, we found that weight loss was also inversely correlated with the level of serum antibody-dependent cellular cytotoxicity (ADCC) as measured in a reporter assay. These findings indicate that protection is in part conferred by Fc-dependent mechanisms. In conclusion, ELISAs can be used to measure hemagglutinin-specific antibody levels that could serve as a surrogate marker of protection for universal influenza virus vaccines. IMPORTANCE Influenza viruses are a serious concern for public health and cause a large number of deaths worldwide every year. Current influenza virus vaccines can confer protection from disease, but they often show low efficacy due to the ever-changing nature of the viruses. Novel vaccination approaches target conserved epitopes of the virus, including the hemagglutinin stalk domain, to elicit universally protective antibodies that also bind to mutated viruses or new subtypes of viruses. Importantly, the hemagglutination inhibition assay-the only assay that has been accepted as a correlate of protection by regulatory authorities-cannot measure antibodies against the hemagglutinin stalk domain. Therefore, novel correlates of protection and assays to measure vaccine immunogenicity need to be developed. In this study, we correlated the results from multiple assays with protection in mice after transfer of human serum and a lethal virus challenge to investigate potential novel serological surrogate markers for protection. Copyright © 2017 Jacobsen et al.
Open chromatin reveals the functional maize genome
USDA-ARS?s Scientific Manuscript database
Every cellular process mediated through nuclear DNA must contend with chromatin. As results from ENCODE show, open chromatin assays can efficiently integrate across diverse regulatory elements, revealing functional non-coding genome. In this study, we use a MNase hypersensitivity assay to discover o...
2013-01-01
The formalin-fixed, paraffin-embedded (FFPE) biopsy is a challenging sample for molecular assays such as targeted next-generation sequencing (NGS). We compared three methods for FFPE DNA quantification, including a novel PCR assay (‘QFI-PCR’) that measures the absolute copy number of amplifiable DNA, across 165 residual clinical specimens. The results reveal the limitations of commonly used approaches, and demonstrate the value of an integrated workflow using QFI-PCR to improve the accuracy of NGS mutation detection and guide changes in input that can rescue low quality FFPE DNA. These findings address a growing need for improved quality measures in NGS-based patient testing. PMID:24001039
Mkit: A cell migration assay based on microfluidic device and smartphone.
Yang, Ke; Wu, Jiandong; Peretz-Soroka, Hagit; Zhu, Ling; Li, Zhigang; Sang, Yaoshuo; Hipolito, Jolly; Zhang, Michael; Santos, Susy; Hillier, Craig; de Faria, Ricardo Lobato; Liu, Yong; Lin, Francis
2018-01-15
Mobile sensing based on the integration of microfluidic device and smartphone, so-called MS 2 technology, has enabled many applications over recent years, and continues to stimulate growing interest in both research communities and industries. In particular, it has been envisioned that MS 2 technology can be developed for various cell functional assays to enable basic research and clinical applications. Toward this direction, in this paper, we describe the development of a MS 2 -based cell functional assay for testing cell migration (the M kit ). The system is constructed as an integrated test kit, which includes microfluidic chips, a smartphone-based imaging platform, the phone apps for image capturing and data analysis, and a set of reagent and accessories for performing the cell migration assay. We demonstrated that the M kit can effectively measure purified neutrophil and cancer cell chemotaxis. Furthermore, neutrophil chemotaxis can be tested from a drop of whole blood using the M kit with red blood cell (RBC) lysis. The effects of chemoattractant dose and gradient profile on neutrophil chemotaxis were also tested using the M kit . In addition to research applications, we demonstrated the effective use of the M kit for on-site test at the hospital and for testing clinical samples from chronic obstructive pulmonary disease patient. Thus, this developed M kit provides an easy and integrated experimental platform for cell migration related research and potential medical diagnostic applications. Copyright © 2017 Elsevier B.V. All rights reserved.
The use of anti-Müllerian hormone as diagnostic for gonadectomy status in dogs.
Themmen, Axel P N; Kalra, Bhanu; Visser, Jenny A; Kumar, Ajay; Savjani, Gopal; de Gier, Jeffrey; Jaques, Scott
2016-10-01
In the veterinary practice, there is a need for a diagnostic tool to check the gonadal status in female dogs because it may be difficult to determine whether a female animal has been spayed or whether there are ovarian remnants. Although less prevalent, a similar situation pertains to male dogs. Anti-Müllerian hormone (AMH) is an important regulator of gonadal function and is a specific gonadal product that can be determined in circulation. The objective of this study was to develop and test a canine blood AMH assay as a diagnostic tool to determine the presence of functional gonadal tissue in dogs. A prospective study with a training-validation set paradigm was used. A canine AMH assay was developed and serum and plasma AMH concentrations were determined in blood samples from 46 intact female dogs, 48 spayed females, 50 intact males, and 48 castrated males collected at two separate institutes. Using a training-validation set paradigm, it was found that using cutoff values of 1.1 ng/mL (female) and 5.5 ng/mL (male) AMH, the assay reported excellent specificity and sensitivity of 100% and 90% in female dogs, and good specificity and sensitivity of 100% and 76%, in male dogs, respectively. The sensitivity in male dogs could be further enhanced by including a serum testosterone determination. This newly developed canine AMH assay is a valuable diagnostic tool to determine gonadal status in veterinary medicine. Copyright © 2016 Elsevier Inc. All rights reserved.
ANTIDOG IgG SECONDARY ANTIBODY SUCCESSFULLY DETECTS IgG IN A VARIETY OF AQUATIC MAMMALS.
Roehl, Katherine; Jankowski, Mark; Hofmeister, Erik
2016-12-01
Serological tests play an important role in the detection of wildlife diseases. However, while there are many commercial assays and reagents available for domestic species, there is a need to develop efficient serological assays for wildlife. In recent years, marine mammals have represented a wildlife group with emerging infectious diseases, such as influenza, brucellosis, and leptospirosis. However, with the exception of disease-agent-specific assays or functional assays, few reports describe the use of antibody detection assays in marine mammals. In an indirect enzyme-linked immunoassay (EIA) or an immunofluorescence assay, antibody is detected using an antitarget species secondary conjugated antibody. The sensitivity of the assay depends on the avidity of the binding reaction between the bound antibody and the detection antibody. A commercial polyclonal antidog IgG conjugated antibody was tested in an EIA for its ability to sensitively detect the IgG of seven marine mammals including sea otter ( Enhydra lutris ), polar bear ( Ursus maritimus ), grey seal ( Halichoerus grypus ), harbor seal ( Phoca vitulina ), northern elephant seal ( Mirounga angustirostris ), California sea lion ( Zalophus californianus ), Pacific walrus ( Odobenus rosmarus ) and one freshwater mammal: Asian small-clawed otter ( Aonyx cinerea ). With the exception of Asian small-clawed sea otters, the detection of IgG in these marine mammals either exceeded or was nearly equal to detection of dog IgG. The use of the tested commercial antidog IgG antibody may be a valid approach to the detection of antibody response to disease in sea mammals.
Anti-dog IgG secondary antibody successfully detects IgG in a variety of aquatic mammals
Roehl, Katherine; Jankowski, Mark D.; Hofmeister, Erik K.
2016-01-01
Serological tests play an important role in the detection of wildlife diseases. However, while there are many commercial assays and reagents available for domestic species, there is a need to develop efficient serological assays for wildlife. In recent years, marine mammals have represented a wildlife group with emerging infectious diseases, such as influenza, brucellosis, and leptospirosis. However, with the exception of disease-agent-specific assays or functional assays, few reports describe the use of antibody detection assays in marine mammals. In an indirect enzyme-linked immunoassay (EIA) or an immunofluorescence assay, antibody is detected using an antitarget species secondary conjugated antibody. The sensitivity of the assay depends on the avidity of the binding reaction between the bound antibody and the detection antibody. A commercial polyclonal antidog IgG conjugated antibody was tested in an EIA for its ability to sensitively detect the IgG of seven marine mammals including sea otter (Enhydra lutris), polar bear (Ursus maritimus), grey seal (Halichoerus grypus), harbor seal (Phoca vitulina), northern elephant seal (Mirounga angustirostris), California sea lion (Zalophus californianus), Pacific walrus (Odobenus rosmarus) and one freshwater mammal: Asian small-clawed otter (Aonyx cinerea). With the exception of Asian small-clawed sea otters, the detection of IgG in these marine mammals either exceeded or was nearly equal to detection of dog IgG. The use of the tested commercial antidog IgG antibody may be a valid approach to the detection of antibody response to disease in sea mammals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gustafsson, Helena; Runesson, Johan; Lundqvist, Jessica
The objective of the EU-funded integrated project ACuteTox is to develop a strategy in which general cytotoxicity, together with organ-specific toxicity and biokinetic features, are used for the estimation of human acute systemic toxicity. Our role in the project is to characterise the effect of reference chemicals with regard to neurotoxicity. We studied cell membrane potential (CMP), noradrenalin (NA) uptake, acetylcholine esterase (AChE) activity, acetylcholine receptor (AChR) signalling and voltage-operated calcium channel (VOCC) function in human neuroblastoma SH-SY5Y cells after exposure to 23 pharmaceuticals, pesticides or industrial chemicals. Neurotoxic alert chemicals were identified by comparing the obtained data with cytotoxicitymore » data from the neutral red uptake assay in 3T3 mouse fibroblasts. Furthermore, neurotoxic concentrations were correlated with estimated human lethal blood concentrations (LC50). The CMP assay was the most sensitive assay, identifying eight chemicals as neurotoxic alerts and improving the LC50 correlation for nicotine, lindane, atropine and methadone. The NA uptake assay identified five neurotoxic alert chemicals and improved the LC50 correlation for atropine, diazepam, verapamil and methadone. The AChE, AChR and VOCC assays showed limited potential for detection of acute toxicity. The CMP assay was further evaluated by testing 36 additional reference chemicals. Five neurotoxic alert chemicals were generated and orphendrine and amitriptyline showed improved LC50 correlation. Due to the high sensitivity and the simplicity of the test protocol, the CMP assay constitutes a good candidate assay to be included in an in vitro test strategy for prediction of acute systemic toxicity.« less
Gil-Pagés, Macarena; Stiles, Robert J; Parks, Christopher A; Neier, Steven C; Radulovic, Maja; Oliveros, Alfredo; Ferrer, Alejandro; Reed, Brendan K; Wilton, Katelynn M; Schrum, Adam G
2013-08-23
There is significant interest in the generation of improved assays to clearly identify experimental mice possessing functional vision, a property that could qualify mice for inclusion in behavioral and neuroscience studies. Widely employed current methods rely on mouse responses to visual cues in assays of reflexes, depth perception, or cognitive memory. However, commonly assessed mouse reflexes can sometimes be ambiguous in their expression, while depth perception assays are sometimes confounded by variation in anxiety responses and exploratory conduct. Furthermore, in situations where experimental groups vary in their cognitive memory capacity, memory assays may not be ideal for assessing differences in vision. We have optimized a non-invasive behavioral assay that relies on an untrained, innate response to identify individual experimental mice possessing functional vision: slow angled-descent forepaw grasping (SLAG). First, we verified that SLAG performance depends on vision and not olfaction. Next, all members of an age-ranged cohort of 158 C57BL/6 mice (57 wild-type, 101 knockout, age range 44-241 days) were assessed for functional vision using the SLAG test without training or conditioning. Subjecting the population to a second innate behavioral test, Dark Chamber preference, corroborated that the functional vision assessment of SLAG was valid. We propose that the SLAG assay is immediately useful to quickly and clearly identify experimental mice possessing functional vision. SLAG is based on a behavioral readout with a significant innate component with no requirement for training. This will facilitate the selection of mice of known sighted status in vision-dependent experiments that focus on other types of behavior, neuroscience, and/or cognitive memory.
2013-01-01
Background There is significant interest in the generation of improved assays to clearly identify experimental mice possessing functional vision, a property that could qualify mice for inclusion in behavioral and neuroscience studies. Widely employed current methods rely on mouse responses to visual cues in assays of reflexes, depth perception, or cognitive memory. However, commonly assessed mouse reflexes can sometimes be ambiguous in their expression, while depth perception assays are sometimes confounded by variation in anxiety responses and exploratory conduct. Furthermore, in situations where experimental groups vary in their cognitive memory capacity, memory assays may not be ideal for assessing differences in vision. Results We have optimized a non-invasive behavioral assay that relies on an untrained, innate response to identify individual experimental mice possessing functional vision: slow angled-descent forepaw grasping (SLAG). First, we verified that SLAG performance depends on vision and not olfaction. Next, all members of an age-ranged cohort of 158 C57BL/6 mice (57 wild-type, 101 knockout, age range 44–241 days) were assessed for functional vision using the SLAG test without training or conditioning. Subjecting the population to a second innate behavioral test, Dark Chamber preference, corroborated that the functional vision assessment of SLAG was valid. Conclusions We propose that the SLAG assay is immediately useful to quickly and clearly identify experimental mice possessing functional vision. SLAG is based on a behavioral readout with a significant innate component with no requirement for training. This will facilitate the selection of mice of known sighted status in vision-dependent experiments that focus on other types of behavior, neuroscience, and/or cognitive memory. PMID:23971729
Yeger-Lotem, Esti; Riva, Laura; Su, Linhui Julie; Gitler, Aaron D.; Cashikar, Anil; King, Oliver D.; Auluck, Pavan K.; Geddie, Melissa L.; Valastyan, Julie S.; Karger, David R.; Lindquist, Susan; Fraenkel, Ernest
2009-01-01
Cells respond to stimuli by changes in various processes, including signaling pathways and gene expression. Efforts to identify components of these responses increasingly depend on mRNA profiling and genetic library screens, yet the functional roles of the genes identified by these assays often remain enigmatic. By comparing the results of these two assays across various cellular responses, we found that they are consistently distinct. Moreover, genetic screens tend to identify response regulators, while mRNA profiling frequently detects metabolic responses. We developed an integrative approach that bridges the gap between these data using known molecular interactions, thus highlighting major response pathways. We harnessed this approach to reveal cellular pathways related to alpha-synuclein, a small lipid-binding protein implicated in several neurodegenerative disorders including Parkinson disease. For this we screened an established yeast model for alpha-synuclein toxicity to identify genes that when overexpressed alter cellular survival. Application of our algorithm to these data and data from mRNA profiling provided functional explanations for many of these genes and revealed novel relations between alpha-synuclein toxicity and basic cellular pathways. PMID:19234470
Nikolova, Teodora; Marini, Federico; Kaina, Bernd
2017-10-01
Genotoxicity testing relies on the quantitative measurement of adverse effects, such as chromosome aberrations, micronuclei, and mutations, resulting from primary DNA damage. Ideally, assays will detect DNA damage and cellular responses with high sensitivity, reliability, and throughput. Several novel genotoxicity assays may fulfill these requirements, including the comet assay and the more recently developed γH2AX assay. Although they are thought to be specific for genotoxicants, a systematic comparison of the assays has not yet been undertaken. In the present study, we compare the γH2AX focus assay with the alkaline and neutral versions of the comet assay, as to their sensitivities and limitations for detection of genetic damage. We investigated the dose-response relationships of γH2AX foci and comet tail intensities at various times following treatment with four prototypical genotoxicants, methyl methanesulfonate (MMS), N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), mitomycin C, and hydrogen peroxide (H 2 O 2 ) and we tested whether there is a correlation between the endpoints, i.e., alkali-labile sites and DNA strand breaks on the one hand and the cell's response to DNA double-strand breaks and blocked replication forks on the other. Induction of γH2AX foci gave a linear dose response and all agents tested were positive in the assay. The increase in comet tail intensity was also a function of dose; however, mitomycin C was almost completely ineffective in the comet assay, and the doses needed to achieve a significant effect were somewhat higher for some treatments in the comet assay than in the γH2AX foci assay, which was confirmed by threshold analysis. There was high correlation between tail intensity and γH2AX foci for MMS and H 2 O 2 , less for MNNG, and none for mitomycin C. From this we infer that the γH2AX foci assay is more reliable, sensitive, and robust than the comet assay for detecting genotoxicant-induced DNA damage. Copyright © 2017 Elsevier B.V. All rights reserved.
Non-Enzymatic Detection of Bacterial Genomic DNA Using the Bio-Barcode Assay
Hill, Haley D.; Vega, Rafael A.; Mirkin, Chad A.
2011-01-01
The detection of bacterial genomic DNA through a non-enzymatic nanomaterials based amplification method, the bio-barcode assay, is reported. The assay utilizes oligonucleotide functionalized magnetic microparticles to capture the target of interest from the sample. A critical step in the new assay involves the use of blocking oligonucleotides during heat denaturation of the double stranded DNA. These blockers bind to specific regions of the target DNA upon cooling, and prevent the duplex DNA from re-hybridizing, which allows the particle probes to bind. Following target isolation using the magnetic particles, oligonucleotide functionalized gold nanoparticles act as target recognition agents. The oligonucleotides on the nanoparticle (barcodes) act as amplification surrogates. The barcodes are then detected using the Scanometric method. The limit of detection for this assay was determined to be 2.5 femtomolar, and this is the first demonstration of a barcode type assay for the detection of double stranded, genomic DNA. PMID:17927207
Meng, Juncai; Lai, Ming-Tain; Munshi, Vandna; Grobler, Jay; McCauley, John; Zuck, Paul; Johnson, Eric N; Uebele, Victor N; Hermes, Jeffrey D; Adam, Gregory C
2015-06-01
HIV-1 protease (PR) represents one of the primary targets for developing antiviral agents for the treatment of HIV-infected patients. To identify novel PR inhibitors, a label-free, high-throughput mass spectrometry (HTMS) assay was developed using the RapidFire platform and applied as an orthogonal assay to confirm hits identified in a fluorescence resonance energy transfer (FRET)-based primary screen of > 1 million compounds. For substrate selection, a panel of peptide substrates derived from natural processing sites for PR was evaluated on the RapidFire platform. As a result, KVSLNFPIL, a new substrate measured to have a ~ 20- and 60-fold improvement in k cat/K m over the frequently used sequences SQNYPIVQ and SQNYPIV, respectively, was identified for the HTMS screen. About 17% of hits from the FRET-based primary screen were confirmed in the HTMS confirmatory assay including all 304 known PR inhibitors in the set, demonstrating that the HTMS assay is effective at triaging false-positives while capturing true hits. Hence, with a sampling rate of ~7 s per well, the RapidFire HTMS assay enables the high-throughput evaluation of peptide substrates and functions as an efficient tool for hits triage in the discovery of novel PR inhibitors. © 2015 Society for Laboratory Automation and Screening.
The yeast p53 functional assay: a new tool for molecular epidemiology. Hopes and facts.
Fronza, G; Inga, A; Monti, P; Scott, G; Campomenosi, P; Menichini, P; Ottaggio, L; Viaggi, S; Burns, P A; Gold, B; Abbondandolo, A
2000-04-01
The assumption of molecular epidemiology that carcinogens leave fingerprints has suggested that analysis of the frequency, type, and site of mutations in genes frequently altered in carcinogenesis may provide clues to the identification of the factors contributing to carcinogenesis. In this mini-review, we revise the development, and validation of the yeast-based p53 functional assay as a new tool for molecular epidemiology. We show that this assay has some very interesting virtues but also has some drawbacks. The yeast functional assay can be used to determine highly specific mutation fingerprints in the human p53 cDNA sequence. Discrimination is possible when comparing mutation spectra induced by sufficiently different mutagens. However, we also reported that the same carcinogen may induce distinguishable mutation spectra due to known influencing factors.
Emerging microengineered tools for functional analysis and phenotyping of blood cells.
Li, Xiang; Chen, Weiqiang; Li, Zida; Li, Ling; Gu, Hongchen; Fu, Jianping
2014-11-01
The available techniques for assessing blood cell functions are limited considering the various types of blood cell and their diverse functions. In the past decade, rapid advances in microengineering have enabled an array of blood cell functional measurements that are difficult or impossible to achieve using conventional bulk platforms. Such miniaturized blood cell assay platforms also provide the attractive capabilities of reducing chemical consumption, cost, and assay time, as well as exciting opportunities for device integration, automation, and assay standardization. This review summarizes these contemporary microengineered tools and discusses their promising potential for constructing accurate in vitro models and rapid clinical diagnosis using minimal amounts of whole-blood samples. Copyright © 2014 Elsevier Ltd. All rights reserved.
An extended set of yeast-based functional assays accurately identifies human disease mutations
Sun, Song; Yang, Fan; Tan, Guihong; Costanzo, Michael; Oughtred, Rose; Hirschman, Jodi; Theesfeld, Chandra L.; Bansal, Pritpal; Sahni, Nidhi; Yi, Song; Yu, Analyn; Tyagi, Tanya; Tie, Cathy; Hill, David E.; Vidal, Marc; Andrews, Brenda J.; Boone, Charles; Dolinski, Kara; Roth, Frederick P.
2016-01-01
We can now routinely identify coding variants within individual human genomes. A pressing challenge is to determine which variants disrupt the function of disease-associated genes. Both experimental and computational methods exist to predict pathogenicity of human genetic variation. However, a systematic performance comparison between them has been lacking. Therefore, we developed and exploited a panel of 26 yeast-based functional complementation assays to measure the impact of 179 variants (101 disease- and 78 non-disease-associated variants) from 22 human disease genes. Using the resulting reference standard, we show that experimental functional assays in a 1-billion-year diverged model organism can identify pathogenic alleles with significantly higher precision and specificity than current computational methods. PMID:26975778
Luciferase reporter assay in Drosophila and mammalian tissue culture cells
Yun, Chi
2014-01-01
Luciferase reporter gene assays are one of the most common methods for monitoring gene activity. Because of their sensitivity, dynamic range, and lack of endogenous activity, luciferase assays have been particularly useful for functional genomics in cell-based assays, such as RNAi screening. This unit describes delivery of two luciferase reporters with other nucleic acids (siRNA /dsRNA), measurement of the dual luciferase activities, and analysis of data generated. The systematic query of gene function (RNAi) combined with the advances in luminescent technology have made it possible to design powerful whole genome screens to address diverse and significant biological questions. PMID:24652620
Trubiroha, A; Gillotay, P; Giusti, N; Gacquer, D; Libert, F; Lefort, A; Haerlingen, B; De Deken, X; Opitz, R; Costagliola, S
2018-04-04
The foregut endoderm gives rise to several organs including liver, pancreas, lung and thyroid with important roles in human physiology. Understanding which genes and signalling pathways regulate their development is crucial for understanding developmental disorders as well as diseases in adulthood. We exploited unique advantages of the zebrafish model to develop a rapid and scalable CRISPR/Cas-based mutagenesis strategy aiming at the identification of genes involved in morphogenesis and function of the thyroid. Core elements of the mutagenesis assay comprise bi-allelic gene invalidation in somatic mutants, a non-invasive monitoring of thyroid development in live transgenic fish, complementary analyses of thyroid function in fixed specimens and quantitative analyses of mutagenesis efficiency by Illumina sequencing of individual fish. We successfully validated our mutagenesis-phenotyping strategy in experiments targeting genes with known functions in early thyroid morphogenesis (pax2a, nkx2.4b) and thyroid functional differentiation (duox, duoxa, tshr). We also demonstrate that duox and duoxa crispants phenocopy thyroid phenotypes previously observed in human patients with bi-allelic DUOX2 and DUOXA2 mutations. The proposed combination of efficient mutagenesis protocols, rapid non-invasive phenotyping and sensitive genotyping holds great potential to systematically characterize the function of larger candidate gene panels during thyroid development and is applicable to other organs and tissues.
Fukushima, Kazuyuki; Miura, Yuji; Sawada, Kohei; Yamazaki, Kazuto; Ito, Masashi
2016-01-01
Using human cell models mimicking the central nervous system (CNS) provides a better understanding of the human CNS, and it is a key strategy to improve success rates in CNS drug development. In the CNS, neurons function as networks in which astrocytes play important roles. Thus, an assessment system of neuronal network functions in a co-culture of human neurons and astrocytes has potential to accelerate CNS drug development. We previously demonstrated that human hippocampus-derived neural stem/progenitor cells (HIP-009 cells) were a novel tool to obtain human neurons and astrocytes in the same culture. In this study, we applied HIP-009 cells to a multielectrode array (MEA) system to detect neuronal signals as neuronal network functions. We observed spontaneous firings of HIP-009 neurons, and validated functional formation of neuronal networks pharmacologically. By using this assay system, we investigated effects of several reference compounds, including agonists and antagonists of glutamate and γ-aminobutyric acid receptors, and sodium, potassium, and calcium channels, on neuronal network functions using firing and burst numbers, and synchrony as readouts. These results indicate that the HIP-009/MEA assay system is applicable to the pharmacological assessment of drug candidates affecting synaptic functions for CNS drug development. © 2015 Society for Laboratory Automation and Screening.
Transmission blocking malaria vaccines: Assays and candidates in clinical development.
Sauerwein, R W; Bousema, T
2015-12-22
Stimulated by recent advances in malaria control and increased funding, the elimination of malaria is now considered to be an attainable goal for an increasing number of malaria-endemic regions. This has boosted the interest in transmission-reducing interventions including vaccines that target sexual, sporogenic, and/or mosquito-stage antigens to interrupt malaria transmission (SSM-VIMT). SSM-VIMT aim to prevent human malaria infection in vaccinated communities by inhibiting parasite development within the mosquito after a blood meal taken from a gametocyte carrier. Only a handful of target antigens are in clinical development and progress has been slow over the years. Major stumbling blocks include (i) the expression of appropriately folded target proteins and their downstream purification, (ii) insufficient induction of sustained functional blocking antibody titers by candidate vaccines in humans, and (iii) validation of a number of (bio)-assays as correlate for blocking activity in the field. Here we discuss clinical manufacturing and testing of current SSM-VIMT candidates and the latest bio-assay development for clinical evaluation. New testing strategies are discussed that may accelerate the evaluation and application of SSM-VIMT. Copyright © 2015. Published by Elsevier Ltd.
Use of whole genome expression analysis in the toxicity screening of nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fröhlich, Eleonore, E-mail: eleonore.froehlich@medunigraz.at; Meindl, Claudia; Wagner, Karin
2014-10-15
The use of nanoparticles (NPs) offers exciting new options in technical and medical applications provided they do not cause adverse cellular effects. Cellular effects of NPs depend on particle parameters and exposure conditions. In this study, whole genome expression arrays were employed to identify the influence of particle size, cytotoxicity, protein coating, and surface functionalization of polystyrene particles as model particles and for short carbon nanotubes (CNTs) as particles with potential interest in medical treatment. Another aim of the study was to find out whether screening by microarray would identify other or additional targets than commonly used cell-based assays formore » NP action. Whole genome expression analysis and assays for cell viability, interleukin secretion, oxidative stress, and apoptosis were employed. Similar to conventional assays, microarray data identified inflammation, oxidative stress, and apoptosis as affected by NP treatment. Application of lower particle doses and presence of protein decreased the total number of regulated genes but did not markedly influence the top regulated genes. Cellular effects of CNTs were small; only carboxyl-functionalized single-walled CNTs caused appreciable regulation of genes. It can be concluded that regulated functions correlated well with results in cell-based assays. Presence of protein mitigated cytotoxicity but did not cause a different pattern of regulated processes. - Highlights: • Regulated functions were screened using whole genome expression assays. • Polystyrene particles regulated more genes than short carbon nanotubes. • Protein coating of polystyrene particles did not change regulation pattern. • Functions regulated by microarray were confirmed by cell-based assay.« less
Vitamin D receptor (VDR) promoter targeting through a novel chromatin remodeling complex.
Kato, Shigeaki; Fujiki, Ryoji; Kitagawa, Hirochika
2004-05-01
We have purified nuclear complexes for Vitamin D receptor (VDR), and identified one of them as a novel ATP-dependent chromatine remodeling containing Williams syndrome transcription factor (WSTF), that is supposed to be responsible for Williams syndrome. This complex (WSTF including nucleosome assembly complex (WINAC)) exhibited an ATP-dependent chromatin remodeling activity in vitro. Transient expression assays revealed that WINAC potentiates ligand-induced function of VDR in gene activation and repression. Thus, this study describes a molecular basis of the VDR function on chromosomal DNA through chromatine remodeling.
Mutyam, Venkateshwar; Du, Ming; Xue, Xiaojiao; Keeling, Kim M; White, E Lucile; Bostwick, J Robert; Rasmussen, Lynn; Liu, Bo; Mazur, Marina; Hong, Jeong S; Falk Libby, Emily; Liang, Feng; Shang, Haibo; Mense, Martin; Suto, Mark J; Bedwell, David M; Rowe, Steven M
2016-11-01
Premature termination codons (PTCs) in the cystic fibrosis transmembrane conductance regulator (CFTR) gene cause cystic fibrosis (CF). Several agents are known to suppress PTCs but are poorly efficacious or toxic. To determine whether there are clinically available agents that elicit translational readthrough and improve CFTR function sufficient to confer therapeutic benefit to patients with CF with PTCs. Two independent screens, firefly luciferase and CFTR-mediated transepithelial chloride conductance assay, were performed on a library of 1,600 clinically approved compounds using fisher rat thyroid cells stably transfected with stop codons. Select agents were further evaluated using secondary screening assays including short circuit current analysis on primary cells from patients with CF. In addition, the effect of CFTR modulators (ivacaftor) was tested in combination with the most efficacious agents. From the primary screen, 48 agents were selected as potentially active. Following confirmatory tests in the transepithelial chloride conductance assay and prioritizing agents based on favorable pharmacologic properties, eight agents were advanced for secondary screening. Ivacaftor significantly increased short circuit current following forskolin stimulation in cells treated with pyranoradine tetraphosphate, potassium p-aminobenzoate, and escin as compared with vehicle control. Escin, an herbal agent, consistently induced readthrough activity as demonstrated by enhanced CFTR expression and function in vitro. Clinically approved drugs identified as potential readthrough agents, in combination with ivacaftor, may induce nonsense suppression to restore therapeutic levels of CFTR function. One or more agents may be suitable to advance to human testing.
Evaluation of immune functions in captive immature loggerhead sea turtles (Caretta caretta).
Rousselet, Estelle; Levin, Milton; Gebhard, Erika; Higgins, Benjamin M; DeGuise, Sylvain; Godard-Codding, Céline A J
2013-11-15
Sea turtles face numerous environmental challenges, such as exposure to chemical pollution and biotoxins, which may contribute to immune system impairment, resulting in increased disease susceptibility. Therefore, a more thorough assessment of the host's immune response and its susceptibility is needed for these threatened and endangered animals. In this study, the innate and acquired immune functions of sixty-five clinically healthy, immature, captive loggerhead sea turtles (Caretta caretta) were assayed using non-lethal blood sample collection. Functional immune assays were developed and/or optimized for this species, including mitogen-induced lymphocyte proliferation, natural killer (NK) cell activity, phagocytosis, and respiratory burst. Peripheral blood mononuclear cells (PBMC) and phagocytes were isolated by density gradient centrifugation on Ficoll-Paque and discontinuous Percoll gradients, respectively. The T lymphocyte mitogens ConA significantly induced lymphocyte proliferation at 1 and 2 μg/mL while PHA significantly induced lymphocyte proliferation at 5 and 10 μg/mL. The B lymphocyte mitogen LPS significantly induced proliferation at 1 μg/mL. Monocytes demonstrated higher phagocytic activity than eosinophils. In addition, monocytes exhibited respiratory burst. Natural killer cell activity was higher against YAC-1 than K-562 target cells. These optimized assays may help to evaluate the integrity of loggerhead sea turtle's immune system upon exposure to environmental contaminants, as well as part of a comprehensive health assessment and monitoring program. Copyright © 2013 Elsevier B.V. All rights reserved.
A novel fluorescent assay for sucrose transporters.
Gora, Peter J; Reinders, Anke; Ward, John M
2012-04-04
We have developed a novel assay based on the ability of type I sucrose uptake transporters (SUTs) to transport the fluorescent coumarin β-glucoside, esculin. Budding yeast (Saccharomyces cerevisiae) is routinely used for the heterologous expression of SUTs and does not take up esculin. When type I sucrose transporters StSUT1 from potato or AtSUC2 from Arabidopsis were expressed in yeast, the cells were able to take up esculin and became brightly fluorescent. We tested a variety of incubation times, esculin concentrations, and buffer pH values and found that for these transporters, a 1 hr incubation at 0.1 to 1 mM esculin at pH 4.0 produced fluorescent cells that were easily distinguished from vector controls. Esculin uptake was assayed by several methods including fluorescence microscopy, spectrofluorometry and fluorescence-activiated cell sorting (FACS). Expression of the type II sucrose transporter OsSUT1 from rice did not result in increased esculin uptake under any conditions tested. Results were reproduced successfully in two distinct yeast strains, SEY6210 (an invertase mutant) and BY4742. The esculin uptake assay is rapid and sensitive and should be generally useful for preliminary tests of sucrose transporter function by heterologous expression in yeast. This assay is also suitable for selection of yeast showing esculin uptake activity using FACS.
Aitken, R J; Smith, T B; Lord, T; Kuczera, L; Koppers, A J; Naumovski, N; Connaughton, H; Baker, M A; De Iuliis, G N
2013-03-01
Oxidative stress is known to have a major impact on human sperm function and, as a result, there is a need to develop sensitive methods for measuring reactive oxygen species (ROS) generation by these cells. A variety of techniques have been developed for this purpose including chemiluminescence (luminol and lucigenin), flow cytometry (MitoSOX Red, dihydroethidium, 4,5-diaminofluorescein diacetate and 2',7'-dichlorodihydrofluorescein diacetate) and spectrophotometry (nitroblue tetrazolium). The relative sensitivity of these assays and their comparative ability to detect ROS generated in different subcellular compartments of human spermatozoa, have not previously been investigated. To address this issue, we have compared the performance of these assays when ROS generation was triggered with a variety of reagents including 2-hydroxyestradiol, menadione, 4-hydroxynonenal and arachidonic acid. The results revealed that menadione predominantly induced release of ROS into the extracellular space where these metabolites could be readily detected by luminol-peroxidase and, to a lesser extent, 2',7'-dichlorodihydrofluorescein. However, such sensitivity to extracellular ROS meant that these assays were particularly vulnerable to interference by leucocytes. The remaining reagents predominantly elicited ROS generation by the sperm mitochondria and could be optimally detected by MitoSOX Red and DHE. Examination of spontaneous ROS generation by defective human spermatozoa revealed that MitoSOX Red was the most effective indicator of oxidative stress, thereby emphasizing the general importance of mitochondrial dysregulation in the aetiology of defective sperm function. © 2013 American Society of Andrology and European Academy of Andrology.
Development of a Unique Small Molecule Modulator of CXCR4
Yoon, Younghyoun; Lin, Songbai; Sasaki, Maiko; Klapproth, Jan-Michael A.; Yang, Hua; Grossniklaus, Hans E.; Xu, Jianguo; Rojas, Mauricio; Voll, Ronald J.; Goodman, Mark M.; Arrendale, Richard F.; Liu, Jin; Yun, C. Chris; Snyder, James P.; Liotta, Dennis C.; Shim, Hyunsuk
2012-01-01
Background Metastasis, the spread and growth of tumor cells to distant organ sites, represents the most devastating attribute and plays a major role in the morbidity and mortality of cancer. Inflammation is crucial for malignant tumor transformation and survival. Thus, blocking inflammation is expected to serve as an effective cancer treatment. Among anti-inflammation therapies, chemokine modulation is now beginning to emerge from the pipeline. CXC chemokine receptor-4 (CXCR4) and its ligand stromal cell-derived factor-1 (CXCL12) interaction and the resulting cell signaling cascade have emerged as highly relevant targets since they play pleiotropic roles in metastatic progression. The unique function of CXCR4 is to promote the homing of tumor cells to their microenvironment at the distant organ sites. Methodology/Principal Findings We describe the actions of N,N′-(1,4-phenylenebis(methylene))dipyrimidin-2-amine (designated MSX-122), a novel small molecule and partial CXCR4 antagonist with properties quite unlike that of any other reported CXCR4 antagonists, which was prepared in a single chemical step using a reductive amination reaction. Its specificity toward CXCR4 was tested in a binding affinity assay and a ligand competition assay using 18F-labeled MSX-122. The potency of the compound was determined in two functional assays, Matrigel invasion assay and cAMP modulation. The therapeutic potential of MSX-122 was evaluated in three different murine models for inflammation including an experimental colitis, carrageenan induced paw edema, and bleomycin induced lung fibrosis and three different animal models for metastasis including breast cancer micrometastasis in lung, head and neck cancer metastasis in lung, and uveal melanoma micrometastasis in liver in which CXCR4 was reported to play crucial roles. Conclusions/Significance We developed a novel small molecule, MSX-122, that is a partial CXCR4 antagonist without mobilizing stem cells, which can be safer for long-term blockade of metastasis than other reported CXCR4 antagonists. PMID:22485156
Live-cell imaging of retrograde transport initiation in primary neurons.
Nirschl, Jeffrey J; Holzbaur, Erika L F
2016-01-01
Axonal transport is an essential function in neurons, as mutations in either motor proteins or their adaptors cause neurodegeneration. While some mutations cause a complete block in axonal transport, other mutations affect transport more subtly. This is especially true of mutations identified in human patients, many of which impair but do not block motor function in the cell. Dissecting the pathogenic mechanisms of these more subtle mutations requires assays that can tease apart the distinct phases of axonal transport, including transport initiation, sustained/regulated motility, and cargo-specific sorting or delivery. Here, we describe a live-cell photobleaching assay to assess retrograde flux from the distal axon tip, a measure for distal transport initiation. We have previously used this method to show that the CAP-Gly domain of DCTN1 is required for efficient retrograde transport initiation in the distal axon, but it is not required to maintain retrograde flux along the mid-axon (Moughamian & Holzbaur, 2012). This approach has allowed us to examine the effects of disease-causing mutations in the axonal transport machinery, and in combination with other assays, will be useful in determining the mechanisms and regulation of axonal transport in normal and diseased conditions. Copyright © 2016 Elsevier Inc. All rights reserved.
Identification of chemical vascular disruptors during development using an integrative predictive toxicity model and zebrafish and in vitro functional angiogenesis assays Chemically-induced vascular toxicity during embryonic development can result in a wide range of adverse pre...
Epoxide hydrolases: structure, function, mechanism, and assay.
Arand, Michael; Cronin, Annette; Adamska, Magdalena; Oesch, Franz
2005-01-01
Epoxide hydrolases are a class of enzymes important in the detoxification of genotoxic compounds, as well as in the control of physiological signaling molecules. This chapter gives an overview on the function, structure, and enzymatic mechanism of structurally characterized epoxide hydrolases and describes selected assays for the quantification of epoxide hydrolase activity.
Laughlin, Gail A.
2009-01-01
There are more than 200 published scientific papers showing that estrogen has favorable effects on brain tissue and physiology in cell culture and animal models including nonhuman primates. The biological plausibility for a neuroprotective estrogen effect is overwhelming. However, most studies of endogenous estrogen and cognitive decline or dementia fail to show protection, and some suggest harm. Failure to find any consistent association might reflect the limitations of a single time of estrogen assay or poor assay sensitivity. More than half of the observational studies of hormone therapy suggest benefit. Nearly all long term clinical trials fail to show benefit and the longer trials tend to show harm. Failure to adequately adjust for self-selection of healthier and wealthier women and publication bias could account for some, or all, of the protective effect attributed to estrogen in observational studies. Overall, the evidence does not convincingly support the prescription of early or late postmenopausal estrogen therapy to preserve cognitive function or prevent dementia. PMID:19401958
Microtubule Severing Stymied by Free Tubulin
NASA Astrophysics Data System (ADS)
Ross, Jennifer; Bailey, Megan
2015-03-01
Proper organization of the microtubule cytoskeletal network is required to perform many necessary cellular functions including mitosis, cell development, and cell motility. Network organization is achieved through filament remodeling by microtubule-associated proteins (MAPs) that control microtubule dynamics. MAPs that stabilize are relatively well understood, while less is known about destabilizing MAPs, such as severing enzymes. Katanin, the first-discovered microtubule-severing enzyme, is a AAA + enzyme that oligomerizes into hexamers and uses ATP hydrolysis to sever microtubules. Using quantitative fluorescence imaging on reconstituted microtubule severing assays in vitro we investigate how katanin can regulate microtubule dynamics. Interestingly, we find microtubule dynamics inhibits katanin severing activity; dynamic microtubules are not severed. Using systematic experiments introducing free tubulin into the assays we find that free tubulin can compete for microtubule filaments for the katanin proteins. Our work indicates that katanin could function best on stabile microtubules or stabile regions of microtubules in cells in regions where free tubulin is sequesters, low, or depleted.
Identification of CD147 (basigin) as a mediator of trophoblast functions.
Lee, Cheuk-Lun; Lam, Maggie P Y; Lam, Kevin K W; Leung, Carmen O N; Pang, Ronald T K; Chu, Ivan K; Wan, Tiffany H L; Chai, Joyce; Yeung, William S B; Chiu, Philip C N
2013-11-01
Does CD147 regulate trophoblast functions in vitro? CD147 exists as a receptor complex on human trophoblast and regulates the implantation, invasion and differentiation of trophoblast. CD147 is a membrane protein implicated in a variety of physiological and pathological conditions due to its regulation of cell-cell recognition, cell differentiation and tissue remodeling. Reduced placental CD147 expression is associated with pre-eclampsia, but the mechanism of actions remains unclear. A loss of function approach or functional blocking antibody was used to study the function of CD147 in primary human cytotrophoblasts isolated from first trimester termination of pregnancy and/or in the BeWo cell line, which possesses characteristics of human cytotrophoblasts. CD147 expression was analyzed by immunofluorescence staining and western blotting. CD147-associated protein complex on plasma membrane were separated by blue native gel electrophoresis and identified by reversed-phase liquid chromatography coupled with quadrupole time-of-flight hybrid mass spectrometer. Cell proliferation and invasion were determined by fluorometric cell proliferation assays and transwell invasion assays, respectively. Matrix metalloproteinases (MMPs) and urokinase plasminogen activator (uPA) activities were measured by gelatin gel zymography and uPA assay kits, respectively. Cell migration was determined by wound-healing assays. Cell fusion was analyzed by immunocytochemistry staining of E-cadherin and 4',6-diamidino-2-phenylindole. The transcripts of matrix proteinases and trophoblast lineage markers were measured by quantitative PCR. Extracellular signal-regulated kinase (ERK) activation was analyzed by western blot using antibodies against ERKs. CD147 exists as protein complexes on the plasma membrane of primary human cytotrophoblasts and BeWo cells. Several known CD147-interacting partners, including integrin β1 and monocarboxylate transporter-1, were identified. Suppression of CD147 by siRNA significantly (P < 0.05) reduced trophoblast-endometrial cell interaction, cell invasion, syncytialization, differentiation and ERK activation of BeWo cells. Consistently, anti-CD147 functional blocking antibody suppressed the invasiveness of primary human cytotrophoblasts. The reduced invasiveness was probably due to the restrained (P < 0.05) enzyme activities of MMP-2, MMP-9 and uPA. Most of the above findings are based on BeWo cell lines. These results need to be confirmed with human first trimester primary cytotrophoblast. This is the first study on the role of CD147 in trophoblast function. Further investigation on the function of CD147 and its associated protein complexes will enhance our understanding on human placentation. This work was supported in part by the University of Hong Kong Grant 201011159200. The authors have no competing interests to declare.
Use of the local lymph node assay in assessment of immune function.
van den Berg, Femke A; Baken, Kirsten A; Vermeulen, Jolanda P; Gremmer, Eric R; van Steeg, Harry; van Loveren, Henk
2005-07-01
The murine local lymph node assay (LLNA) was originally developed as a predictive test method for the identification of chemicals with sensitizing potential. In this study we demonstrated that an adapted LLNA can also be used as an immune function assay by studying the effects of orally administered immunomodulating compounds on the T-cell-dependent immune response induced by the contact sensitizer 2,4-dinitrochlorobenzene (DNCB). C57Bl/6 mice were treated with the immunotoxic compounds cyclosporin A (CsA), bis(tri-n-butyltin)oxide (TBTO) or benzo[a]pyrene, (B[a]P). Subsequently, cell proliferation and interferon-gamma (IFN-gamma) and interleukin (IL)-4 release were determined in the auricular lymph nodes (LNs) after DNCB application on both ears. Immunosuppression induced by CsA, TBTO and B[a]P was clearly detectable in this application of the LLNA. Cytokine release measurements proved valuable to confirm the results of the cell proliferation assay and to obtain an indication of the effect on Th1/Th2 balance. We believe to have demonstrated the applicability of an adapted LLNA as an immune function assay in the mouse.
Integrated microfluidic devices for combinatorial cell-based assays.
Yu, Zeta Tak For; Kamei, Ken-ichiro; Takahashi, Hiroko; Shu, Chengyi Jenny; Wang, Xiaopu; He, George Wenfu; Silverman, Robert; Radu, Caius G; Witte, Owen N; Lee, Ki-Bum; Tseng, Hsian-Rong
2009-06-01
The development of miniaturized cell culture platforms for performing parallel cultures and combinatorial assays is important in cell biology from the single-cell level to the system level. In this paper we developed an integrated microfluidic cell-culture platform, Cell-microChip (Cell-microChip), for parallel analyses of the effects of microenvironmental cues (i.e., culture scaffolds) on different mammalian cells and their cellular responses to external stimuli. As a model study, we demonstrated the ability of culturing and assaying several mammalian cells, such as NIH 3T3 fibroblast, B16 melanoma and HeLa cell lines, in a parallel way. For functional assays, first we tested drug-induced apoptotic responses from different cell lines. As a second functional assay, we performed "on-chip" transfection of a reporter gene encoding an enhanced green fluorescent protein (EGFP) followed by live-cell imaging of transcriptional activation of cyclooxygenase 2 (Cox-2) expression. Collectively, our Cell-microChip approach demonstrated the capability to carry out parallel operations and the potential to further integrate advanced functions and applications in the broader space of combinatorial chemistry and biology.
Integrated microfluidic devices for combinatorial cell-based assays
Yu, Zeta Tak For; Kamei, Ken-ichiro; Takahashi, Hiroko; Shu, Chengyi Jenny; Wang, Xiaopu; He, George Wenfu; Silverman, Robert
2010-01-01
The development of miniaturized cell culture platforms for performing parallel cultures and combinatorial assays is important in cell biology from the single-cell level to the system level. In this paper we developed an integrated microfluidic cell-culture platform, Cell-microChip (Cell-μChip), for parallel analyses of the effects of microenvir-onmental cues (i.e., culture scaffolds) on different mammalian cells and their cellular responses to external stimuli. As a model study, we demonstrated the ability of culturing and assaying several mammalian cells, such as NIH 3T3 fibro-blast, B16 melanoma and HeLa cell lines, in a parallel way. For functional assays, first we tested drug-induced apoptotic responses from different cell lines. As a second functional assay, we performed "on-chip" transfection of a reporter gene encoding an enhanced green fluorescent protein (EGFP) followed by live-cell imaging of transcriptional activation of cyclooxygenase 2 (Cox-2) expression. Collectively, our Cell-μChip approach demonstrated the capability to carry out parallel operations and the potential to further integrate advanced functions and applications in the broader space of combinatorial chemistry and biology. PMID:19130244
Issues in solid-organ transplantation in children: translational research from bench to bedside
Lipshultz, Steven E.; Chandar, Jayanthi J.; Rusconi, Paolo G.; Fornoni, Alessia; Abitbol, Carolyn L.; Burke III, George W.; Zilleruelo, Gaston E.; Pham, Si M.; Perez, Elena E.; Karnik, Ruchika; Hunter, Juanita A.; Dauphin, Danielle D.; Wilkinson, James D.
2014-01-01
In this review, we identify important challenges facing physicians responsible for renal and cardiac transplantation in children based on a review of the contemporary medical literature. Regarding pediatric renal transplantation, we discuss the challenge of antibody-mediated rejection, focusing on both acute and chronic antibody-mediated rejection. We review new diagnostic approaches to antibody-mediated rejection, such as panel-reactive antibodies, donor-specific cross-matching, antibody assays, risk assessment and diagnosis of antibody-mediated rejection, the pathology of antibody-mediated rejection, the issue of ABO incompatibility in renal transplantation, new therapies for antibody-mediated rejection, inhibiting of residual antibodies, the suppression or depletion of B-cells, genetic approaches to treating acute antibody-mediated rejection, and identifying future translational research directions in kidney transplantation in children. Regarding pediatric cardiac transplantation, we discuss the mechanisms of cardiac transplant rejection, including the role of endomyocardial biopsy in detecting graft rejection and the role of biomarkers in detecting cardiac graft rejection, including biomarkers of inflammation, cardiomyocyte injury, or stress. We review cardiac allograft vasculopathy. We also address the role of genetic analyses, including genome-wide association studies, gene expression profiling using entities such as AlloMap®, and adenosine triphosphate release as a measure of immune function using the Cylex® ImmuKnow™ cell function assay. Finally, we identify future translational research directions in heart transplantation in children. PMID:24860861
Tat-functionalized liposomes for the treatment of meningitis: an in vitro study
Bartomeu Garcia, Caterina; Shi, Di; Webster, Thomas J
2017-01-01
Bacterial meningitis has become a global concern, because of the emergence of antibiotic-resistant bacteria. It has been demonstrated that liposomes can enter bacteria, thus providing a possible treatment for numerous infections, including meningitis. Fusogenic liposomes are pH-sensitive with a high capacity to fuse with the bacteria membrane and promote intracellular drug release. Moreover, this ability can be improved by using cell-penetrating peptides (such as Tat47–57, which is a peptide derived from the Tat protein of HIV). The purpose of this in vitro study was to demonstrate for the first time the ability of the presently prepared fusogenic liposomes, which were spherical particles with a diameter of 100 nm loaded with antibiotics and functionalized with-cell penetrating peptides (Tat47–57), to fight the main bacteria that cause meningitis. For this, vancomycin, methicillin, and ampicillin antibiotics were loaded inside fusogenic liposomes to fight Streptococcus pneumoniae, methicillin-resistant Staphylococcus aureus, and Escherichia coli. Antibacterial activity of Tat-functionalized and nonfunctionalized liposomes loaded with antibiotics was tested by determining bacteria colony-forming units and growth-curve assays coupled with live/dead assays using fluorescence microscopy. Results showed a remarkable decrease in antibiotic minimum inhibitory concentration when all of the bacteria were treated with these novel liposomes, especially for the functionalized liposomes loaded with methicillin. With antibiotic concentrations of 1.7–3 µg/mL for Tat-functionalized liposomes loaded with methicillin, the bacteria population was totally eradicated. Cytotoxicity tests with astrocytes and endothelial cells, major cellular components of the blood–brain barrier, were also performed for all of the liposomes, including free antibiotic and the Tat peptide. Results showed much promise for the further study of the presently formulated liposomes to treat meningitis. PMID:28442909
Liao, Shan; Xiao, Songshu; Chen, Hongxiang; Zhang, Manying; Chen, Zhifang; Long, Yuehua; Gao, Lu; Zhu, Guangchao; He, Junyu; Peng, Shuping; Xiong, Wei; Zeng, Zhaoyang; Li, Zheng; Zhou, Ming; Li, Xiaoling; Ma, Jian; Wu, Minghua; Xiang, Juanjuan; Li, Guiyuan; Zhou, Yanhong
2017-10-01
Cervical cancer is one of the most common malignant tumors in women all over the world. The exact mechanism of occurrence and development of cervical cancer has not been fully elucidated. CD38 is a type II transmembrane glycoprotein, which was found to mediate diverse activities, including signal transduction, cell adhesion, and cyclic ADP-ribose synthesis. Here, we reported that CD38 promoted cell proliferation and inhibited cell apoptosis in cervical cancer cells by affecting the mitochondria functions. We established stable cervical cancer cell lines with CD38 over-expressed. CCK8 assay and colony formation assay indicated that CD38 promoted cervical cancer cell proliferation. Nude mouse tumorigenicity assay showed that CD38 significantly promotes tumor growth in vivo. CD38 also induced S phase accumulation in cell cycle analysis and suppressed cell apoptosis in cervical cancer cells. Meanwhile, flow cytometry analysis of mitochondria functions suggested that CD38 decreased intracellular Ca 2+ levels in cervical cancer cells and CD38 was involved in down-regulation of ROS levels and prevented mitochondrial apoptosis in cervical cancer cells. The percentage of cells with loss of mitochondrial membrane potential (Δψm) in CD38-overexpressed cervical cancer cells was less than control groups. Furthermore, we found an up-regulation of MDM2, cyclinA1, CDK4, cyclinD1, NF-kB P65, c-rel, and a downregulation of P53, P21, and P38 by Western blot analysis. These results indicated that CD38 enhanced the proliferation and inhibited the apoptosis of cervical cancer cells by affecting the mitochondria functions. © 2017 Wiley Periodicals, Inc.
Protein Science by DNA Sequencing: How Advances in Molecular Biology Are Accelerating Biochemistry.
Higgins, Sean A; Savage, David F
2018-01-09
A fundamental goal of protein biochemistry is to determine the sequence-function relationship, but the vastness of sequence space makes comprehensive evaluation of this landscape difficult. However, advances in DNA synthesis and sequencing now allow researchers to assess the functional impact of every single mutation in many proteins, but challenges remain in library construction and the development of general assays applicable to a diverse range of protein functions. This Perspective briefly outlines the technical innovations in DNA manipulation that allow massively parallel protein biochemistry and then summarizes the methods currently available for library construction and the functional assays of protein variants. Areas in need of future innovation are highlighted with a particular focus on assay development and the use of computational analysis with machine learning to effectively traverse the sequence-function landscape. Finally, applications in the fundamentals of protein biochemistry, disease prediction, and protein engineering are presented.
Vargas, Ana Cristina; Keith, Patricia; Reid, Lynne; Wockner, Leesa; Amiri, Marjan Askarian; Sarkar, Debina; Simpson, Peter T.; Clarke, Catherine; Schmidt, Chris W.; Reynolds, Brent A.
2013-01-01
Mammosphere and breast tumoursphere culture have gained popularity as in vitro assays for propagating and analysing normal and cancer stem cells. Whether the spheres derived from different sources or parent cultures themselves are indeed single entities enriched in stem/progenitor cells compared to other culture formats has not been fully determined. We surveyed sphere-forming capacity across 26 breast cell lines, immunophenotyped spheres from six luminal- and basal-like lines by immunohistochemistry and flow cytometry and compared clonogenicity between sphere, adherent and matrigel culture formats using in vitro functional assays. Analyses revealed morphological and molecular intra- and inter-sphere heterogeneity, consistent with adherent parental cell line phenotypes. Flow cytometry showed sphere culture does not universally enrich for markers previously associated with stem cell phenotypes, although we found some cell-line specific changes between sphere and adherent formats. Sphere-forming efficiency was significantly lower than adherent or matrigel clonogenicity and constant over serial passage. Surprisingly, self-renewal capacity of sphere-derived cells was similar/lower than other culture formats. We observed significant correlation between long-term-proliferating-cell symmetric division rates in sphere and adherent cultures, suggesting functional overlap between the compartments sustaining them. Experiments with normal primary human mammary epithelia, including sorted luminal (MUC1+) and basal/myoepithelial (CD10+) cells revealed distinct luminal-like, basal-like and mesenchymal entities amongst primary mammospheres. Morphological and colony-forming-cell assay data suggested mammosphere culture may enrich for a luminal progenitor phenotype, or induce reversion/relaxation of the basal/mesenchymal in vitro selection occurring with adherent culture. Overall, cell line tumourspheres and primary mammospheres are not homogenous entities enriched for stem cells, suggesting a more cautious approach to interpreting data from these assays and careful consideration of its limitations. Sphere culture may represent an alternative 3-dimensional culture system which rather than universally ‘enriching’ for stem cells, has utility as one of a suite of functional assays that provide a read-out of progenitor activity. PMID:23750209
Biosensors for the determination of environmental inhibitors of enzymes
NASA Astrophysics Data System (ADS)
Evtugyn, Gennadii A.; Budnikov, Herman C.; Nikolskaya, Elena B.
1999-12-01
Characteristic features of functioning and practical application of enzyme-based biosensors for the determination of environmental pollutants as enzyme inhibitors are considered with special emphasis on the influence of the methods used for the measurement of the rates of enzymic reactions, of enzyme immobilisation procedure and of the composition of the reaction medium on the analytical characteristics of inhibitor assays. The published data on the development of biosensors for detecting pesticides and heavy metals are surveyed. Special attention is given to the use of cholinesterase-based biosensors in environmental and analytical monitoring. The approaches to the estimation of kinetic parameters of inhibition are reviewed and the factors determining the selectivity and sensitivity of inhibitor assays in environmental objects are analysed. The bibliography includes 195 references.
Marty, M Sue; O'Connor, John C
2014-01-01
In 2009, companies began screening compounds using the US Environmental Protection Agency's Endocrine Disruptor Screening Program (EDSP). EDSP has two tiers: Tier 1 includes 11 assays to identify compounds with potential endocrine activity. This article describes two laboratories' experiences conducting Tier 1 uterotrophic and Hershberger assays. The uterotrophic assay detects estrogen receptor agonists through increases in uterine weight. The advantages of the uterotrophic rat models (immature vs. adult ovariectomized) and exposure routes are discussed. Across 29 studies, relative differences in uterine weights in the vehicle control group and 17α-ethynylestradiol–positive control group were reasonably reproducible. The Hershberger assay detects androgen receptor (AR) agonists, antagonists, and 5α-reductase inhibitors through changes in accessory sex tissue (AST) weights. Across 23 studies, AST weights were relatively reproducible for the vehicle groups (baseline), testosterone propionate (TP) groups (androgenic response), and flutamide + TP groups (antiandrogenic response). In one laboratory, one and four compounds were positive in the androgenic and antiandrogenic portions of the assay, respectively. Each compound was also positive for AR binding. In the other laboratory, three compounds showed potential antiandrogenic activity, but each compound was negative for AR binding and did not fit the profile for 5α-reductase inhibition. These compounds induced hepatic enzymes that enhanced testosterone metabolism/clearance, resulting in lower testosterone and decreased capacity to maintain AST weights. The Hershberger androgenic and antiandrogenic performance criteria were generally attainable. Overall, the uterotrophic and Hershberger assays were easily adopted and function as described for EDSP screening, although the mode of action for positive results may not be easily determined. PMID:24515841
Sánchez-Soto, Marta; Bonifazi, Alessandro; Cai, Ning Sheng; Ellenberger, Michael P.; Newman, Amy Hauck
2016-01-01
The Gαi/o-coupled dopamine D2-like receptor family comprises three subtypes: the D2 receptor (D2R), with short and long isoform variants (D2SR and D2LR), D3 receptor (D3R), and D4 receptor (D4R), with several polymorphic variants. The common overlap of norepinephrine innervation and D2-like receptor expression patterns prompts the question of a possible noncanonical action by norepinephrine. In fact, previous studies have suggested that norepinephrine can functionally interact with D4R. To our knowledge, significant interactions between norepinephrine and D2R or D3R receptors have not been demonstrated. By using radioligand binding and bioluminescent resonance energy transfer (BRET) assays in transfected cells, the present study attempted a careful comparison between dopamine and norepinephrine in their possible activation of all D2-like receptors, including the two D2R isoforms and the most common D4R polymorphic variants. Functional BRET assays included activation of G proteins with all Gαi/o subunits, adenylyl cyclase inhibition, and β arrestin recruitment. Norepinephrine acted as a potent agonist for all D2-like receptor subtypes, with the general rank order of potency of D3R > D4R ≥ D2SR ≥ D2L. However, for both dopamine and norepinephrine, differences depended on the Gαi/o protein subunit involved. The most striking differences were observed with Gαi2, where the rank order of potencies for both dopamine and norepinephrine were D4R > D2SR = D2LR >> D3R. Furthermore the results do not support the existence of differences in the ability of dopamine and norepinephrine to activate different human D4R variants. The potency of norepinephrine for adrenergic α2A receptor was only about 20-fold higher compared with D3R and D4R across the three functional assays. PMID:26843180
Lipocalin 2 Enhances Migration and Resistance against Cisplatin in Endometrial Carcinoma Cells.
Miyamoto, Tsutomu; Kashima, Hiroyasu; Yamada, Yasushi; Kobara, Hisanori; Asaka, Ryoichi; Ando, Hirofumi; Higuchi, Shotaro; Ida, Koichi; Mvunta, David Hamisi; Shiozawa, Tanri
2016-01-01
Lipocalin 2 (LCN2) is a secretory protein that is involved in various physiological processes including iron transport. We previously identified LCN2 as an up-regulated gene in endometrial carcinoma, and found that the overexpression of LCN2 and its receptor, SLC22A17, was associated with a poor prognosis. However, the functions and mechanism of action of LCN2 currently remain unclear. The LCN2-overexpressing endometrial carcinoma cell lines, HHUA and RL95-2, and LCN2-low-expressing one, HEC1B, were used. The effects of LCN2 on cell migration, cell viability, and apoptosis under various stresses, including ultraviolet (UV) irradiation and cisplatin treatment, were examined using the scratch wound healing assay, WST-1 assay, and Apostrand assay, respectively. LCN2-silencing using shRNA method significantly reduced the migration ability of cells (p<0.05). Cytotoxic stresses significantly decreased the viability of LCN2-silenced cells more than that of control cells. In contrast, LCN2 overexpression was significantly increased cisplatin resistance. These effects were canceled by the addition of the iron chelator, deferoxamine. After UV irradiation, the expression of phosphorylated Akt (pAkt) was decreased in LCN2-silenced cells, and the PI3K inhibitor canceled the difference induced in UV sensitivity by LCN2. The cisplatin-induced expression of pAkt was not affected by LCN2; however, the expression of p53 and p21 was increased by LCN2-silencing. These results indicated that LCN2 was involved in the migration and survival of endometrial carcinoma cells under various stresses in an iron-dependent manner. The survival function of LCN2 may be exerted through the PI3K pathway and suppression of the p53-p21 pathway. These functions of LCN2 may increase the malignant potential of endometrial carcinoma cells.
Lipocalin 2 Enhances Migration and Resistance against Cisplatin in Endometrial Carcinoma Cells
Kashima, Hiroyasu; Yamada, Yasushi; Kobara, Hisanori; Asaka, Ryoichi; Ando, Hirofumi; Higuchi, Shotaro; Ida, Koichi; Mvunta, David Hamisi; Shiozawa, Tanri
2016-01-01
Purpose Lipocalin 2 (LCN2) is a secretory protein that is involved in various physiological processes including iron transport. We previously identified LCN2 as an up-regulated gene in endometrial carcinoma, and found that the overexpression of LCN2 and its receptor, SLC22A17, was associated with a poor prognosis. However, the functions and mechanism of action of LCN2 currently remain unclear. Methods The LCN2-overexpressing endometrial carcinoma cell lines, HHUA and RL95-2, and LCN2-low-expressing one, HEC1B, were used. The effects of LCN2 on cell migration, cell viability, and apoptosis under various stresses, including ultraviolet (UV) irradiation and cisplatin treatment, were examined using the scratch wound healing assay, WST-1 assay, and Apostrand assay, respectively. Results LCN2-silencing using shRNA method significantly reduced the migration ability of cells (p<0.05). Cytotoxic stresses significantly decreased the viability of LCN2-silenced cells more than that of control cells. In contrast, LCN2 overexpression was significantly increased cisplatin resistance. These effects were canceled by the addition of the iron chelator, deferoxamine. After UV irradiation, the expression of phosphorylated Akt (pAkt) was decreased in LCN2-silenced cells, and the PI3K inhibitor canceled the difference induced in UV sensitivity by LCN2. The cisplatin-induced expression of pAkt was not affected by LCN2; however, the expression of p53 and p21 was increased by LCN2-silencing. Conclusions These results indicated that LCN2 was involved in the migration and survival of endometrial carcinoma cells under various stresses in an iron-dependent manner. The survival function of LCN2 may be exerted through the PI3K pathway and suppression of the p53-p21 pathway. These functions of LCN2 may increase the malignant potential of endometrial carcinoma cells. PMID:27168162
Functional characterization of putative cilia genes by high-content analysis
Lai, Cary K.; Gupta, Nidhi; Wen, Xiaohui; Rangell, Linda; Chih, Ben; Peterson, Andrew S.; Bazan, J. Fernando; Li, Li; Scales, Suzie J.
2011-01-01
Cilia are microtubule-based protrusions from the cell surface that are involved in a number of essential signaling pathways, yet little is known about many of the proteins that regulate their structure and function. A number of putative cilia genes have been identified by proteomics and comparative sequence analyses, but functional data are lacking for the vast majority. We therefore monitored the effects in three cell lines of small interfering RNA (siRNA) knockdown of 40 of these genes by high-content analysis. We assayed cilia number, length, and transport of two different cargoes (membranous serotonin receptor 6-green fluorescent protein [HTR6-GFP] and the endogenous Hedgehog [Hh] pathway transcription factor Gli3) by immunofluorescence microscopy; and cilia function using a Gli-luciferase Hh signaling assay. Hh signaling was most sensitive to perturbations, with or without visible structural cilia defects. Validated hits include Ssa2 and mC21orf2 with ciliation defects; Ift46 with short cilia; Ptpdc1 and Iqub with elongated cilia; and Arl3, Nme7, and Ssna1 with distinct ciliary transport but not length defects. Our data confirm various ciliary roles for several ciliome proteins and show it is possible to uncouple ciliary cargo transport from cilia formation in vertebrates. PMID:21289087
Gold, Ellen B.; Blount, Benjamin C.; Rasor, Marianne O’Neill; Lee, Jennifer S.; Alwis, Udeni; Srivastav, Anup; Kim, Kyoungmi
2013-01-01
Background Perchlorate is a widely occurring contaminant, which can competitively inhibit iodide uptake and thus thyroid hormone production. The health effects of chronic low dose perchlorate exposure are largely unknown. Objectives In a community-based study, we compared thyroid function and disease in women with differing likelihoods of prior and current perchlorate exposure. Methods Residential blocks were randomly selected from areas: 1) with potential perchlorate exposure via drinking water; 2) with potential exposure to environmental contaminants; and 3) neighboring but without such exposures. Eligibility included having lived in the area for ≥6 months and aged 20–50 years during 1988–1996 (during documented drinking water well contamination). We interviewed 814 women and collected blood samples (assayed for thyroid stimulating hormone [TSH] and free thyroxine [fT4]) from 431 interviewed women. Daily urine samples were assayed for perchlorate and iodide for 178 premenopausal women with blood samples. We performed multivariable regression analyses comparing thyroid function and disease by residential area and by urinary perchlorate dose adjusted for urinary iodide levels. Results Residential location and current perchlorate dose were not associated with thyroid function or disease. Conclusions No persistent effect of perchlorate on thyroid function or disease was found several years after contaminated wells were capped. PMID:22968349
Respiratory Syncytial Virus (RSV): Neutralizing Antibody, a Correlate of Immune Protection.
Piedra, Pedro A; Hause, Anne M; Aideyan, Letisha
2016-01-01
Assays that measure RSV-specific neutralizing antibody activity are very useful for evaluating vaccine candidates, performing seroprevalence studies, and detecting infection. Neutralizing antibody activity is normally measured by a plaque reduction neutralization assay or by a microneutralization assay with or without complement. These assays measure the functional capacity of serum (or other fluids) to neutralize virus infectivity in cells as compared to ELISA assays that only measure the binding capacity against an antigen. This chapter discusses important elements in standardization of the RSV-specific microneutralization assay for use in the laboratory.
An ELISA Lab-on-a-Chip (ELISA-LOC).
Rasooly, Avraham; Bruck, Hugh A; Kostov, Yordan
2013-01-01
Laminated object manufacturing (LOM) technology using polymer sheets is an easy and affordable method for rapid prototyping of Lab-on-a-Chip (LOC) systems. It has recently been used to fabricate a miniature 96 sample ELISA lab-on-a-chip (ELISA-LOC) by integrating the washing step directly into an ELISA plate. LOM has been shown to be capable of creating complex 3D microfluidics through the assembly of a stack of polymer sheets with features generated by laser micromachining and by bonding the sheets together with adhesive. A six layer ELISA-LOC was fabricated with an acrylic (poly(methyl methacrylate) (PMMA)) core and five polycarbonate layers micromachined by a CO(2) laser with simple microfluidic features including a miniature 96-well sample plate. Immunological assays can be carried out in several configurations (1 × 96 wells, 2 × 48 wells, or 4 × 24 wells). The system includes three main functional elements: (1) a reagent loading fluidics module, (2) an assay and detection wells plate, and (3) a reagent removal fluidics module. The ELISA-LOC system combines several biosensing elements: (1) carbon nanotube (CNT) technology to enhance primary antibody immobilization, (2) sensitive ECL (electrochemiluminescence) detection, and (3) a charge-coupled device (CCD) detector for measuring the light signal generated by ECL. Using a sandwich ELISA assay, the system detected Staphylococcal enterotoxin B (SEB) at concentrations as low as 0.1 ng/ml, a detection level similar to that reported for conventional ELISA. ELISA-LOC can be operated by a syringe and does not require power for operation. This simple point-of-care (POC) system is useful for carrying out various immunological assays and other complex medical assays without the laboratory required for conventional ELISA, and therefore may be more useful for global healthcare delivery.
Wang, Huailing; Guo, Xinbo; Hu, Xiaodan; Li, Tong; Fu, Xiong; Liu, Rui Hai
2017-02-15
Numerous reports have demonstrated that the consumption of fruits and vegetables is beneficial for the human health. Blueberries, in particular, are rich in phytochemicals including free and bound forming. Phytochemical profiles of 14 varieties of blueberry were compared in this study. 12 compounds were analyzed and had significant changes in blueberry fruits. Total antioxidant activities in different blueberry varieties varied about 2.6times by oxygen radical absorbance capacity (ORAC) assay, and 2times by peroxyl radical scavenging capacity (PSC) assay. The cellular antioxidant activities (CAA) in different varieties varied about 3.9times without phosphate buffer saline (PBS) wash, and 4.7times with PBS wash by CAA assay. Blueberry extracts had potent antiproliferative activities against HepG2 human liver cancer cells, indicating the potential protective benefits associated with their use as functional foods. The anti-proliferative activity was observed to be dose-dependent in blueberry extracts. Copyright © 2016 Elsevier Ltd. All rights reserved.
Analysis of the MDM2 antagonist nutlin-3 in human prostate cancer cells.
Logan, Ian R; McNeill, Hesta V; Cook, Susan; Lu, Xiaohong; Lunec, John; Robson, Craig N
2007-06-01
Small molecule MDM2 antagonists including nutlin-3 have been shown to be effective against a range of cancer cell types and nutlin-3 can inhibit growth of LNCaP xenografts. We compared the efficacy of nutlin-3 in three prostate cancer cell types and provide an insight into the mechanism of nutlin-3. Nutlin-3 efficacy was measured using proliferation assays, cell cycle analysis, apoptosis assays, quantitative RT-PCR, and immunoblotting. Chromatin immunoprecipitation (ChIP) assays were also performed. Nutlin-3 can specifically inhibit proliferation of LNCaP cells through cell cycle arrest and apoptosis. This coincides with increased levels of the p53-responsive transcripts p21, PUMA, gadd45, and Mdm2 and recruitment of p53 to chromatin. Nutlin-3 also reduces androgen receptor levels, resulting in altered receptor recruitment to chromatin. Our study demonstrates that small molecule MDM2 antagonists might be useful in the treatment of human prostate cancers that retain functional p53 and androgen receptor signaling. Copyright 2007 Wiley-Liss, Inc.
Turkett, Jeremy A; Bicker, Kevin L
2017-04-10
Growing prevalence of antibiotic resistant bacterial infections necessitates novel antimicrobials, which could be rapidly identified from combinatorial libraries. We report the use of the peptoid library agar diffusion (PLAD) assay to screen peptoid libraries against the ESKAPE pathogens, including the optimization of assay conditions for each pathogen. Work presented here focuses on the tailoring of combinatorial peptoid library design through a detailed study of how peptoid lipophilicity relates to antibacterial potency and mammalian cell toxicity. The information gleaned from this optimization was then applied using the aforementioned screening method to examine the relative potency of peptoid libraries against Staphylococcus aureus, Acinetobacter baumannii, and Enterococcus faecalis prior to and following functionalization with long alkyl tails. The data indicate that overall peptoid hydrophobicity and not simply alkyl tail length is strongly correlated with mammalian cell toxicity. Furthermore, this work demonstrates the utility of the PLAD assay in rapidly evaluating the effect of molecular property changes in similar libraries.
Little, Daniel; Luft, Christin; Mosaku, Olukunbi; Lorvellec, Maëlle; Yao, Zhi; Paillusson, Sébastien; Kriston-Vizi, Janos; Gandhi, Sonia; Abramov, Andrey Y; Ketteler, Robin; Devine, Michael J; Gissen, Paul
2018-06-13
Mitochondrial dysfunction is implicated in many neurodegenerative diseases including Parkinson's disease (PD). Induced pluripotent stem cells (iPSCs) provide a unique cell model for studying neurological diseases. We have established a high-content assay that can simultaneously measure mitochondrial function, morphology and cell viability in iPSC-derived dopaminergic neurons. iPSCs from PD patients with mutations in SNCA and unaffected controls were differentiated into dopaminergic neurons, seeded in 384-well plates and stained with the mitochondrial membrane potential dependent dye TMRM, alongside Hoechst-33342 and Calcein-AM. Images were acquired using an automated confocal screening microscope and single cells were analysed using automated image analysis software. PD neurons displayed reduced mitochondrial membrane potential and altered mitochondrial morphology compared to control neurons. This assay demonstrates that high content screening techniques can be applied to the analysis of mitochondria in iPSC-derived neurons. This technique could form part of a drug discovery platform to test potential new therapeutics for PD and other neurodegenerative diseases.
Izzo, Flavia; Schäfer, Martina; Lienau, Philip; Ganzer, Ursula; Stockman, Robert; Lücking, Ulrich
2018-05-04
An unprecedented set of structurally diverse sulfonimidamides (47 compounds) has been prepared by various N-functionalization reactions of tertiary =NH sulfonimidamide 2 aa. These N-functionalization reactions of model compound 2 aa include arylation, alkylation, trifluoromethylation, cyanation, sulfonylation, alkoxycarbonylation (carbamate formation) and aminocarbonylation (urea formation). Small molecule X-ray analyses of selected N-functionalized products are reported. To gain further insight into the properties of sulfonimidamides relevant to medicinal chemistry, a variety of structurally diverse reaction products were tested in selected in vitro assays. The described N-functionalization reactions provide a short and efficient approach to structurally diverse sulfonimidamides which have been the subject of recent, growing interest in the life sciences. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Nguyen Hoang, Anh Thu; Chen, Puran; Björnfot, Sofia; Högstrand, Kari; Lock, John G; Grandien, Alf; Coles, Mark; Svensson, Mattias
2014-09-01
This manuscript describes technical advances allowing manipulation and quantitative analyses of human DC migratory behavior in lung epithelial tissue. DCs are hematopoietic cells essential for the maintenance of tissue homeostasis and the induction of tissue-specific immune responses. Important functions include cytokine production and migration in response to infection for the induction of proper immune responses. To design appropriate strategies to exploit human DC functional properties in lung tissue for the purpose of clinical evaluation, e.g., candidate vaccination and immunotherapy strategies, we have developed a live-imaging assay based on our previously described organotypic model of the human lung. This assay allows provocations and subsequent quantitative investigations of DC functional properties under conditions mimicking morphological and functional features of the in vivo parental tissue. We present protocols to set up and prepare tissue models for 4D (x, y, z, time) fluorescence-imaging analysis that allow spatial and temporal studies of human DCs in live epithelial tissue, followed by flow cytometry analysis of DCs retrieved from digested tissue models. This model system can be useful for elucidating incompletely defined pathways controlling DC functional responses to infection and inflammation in lung epithelial tissue, as well as the efficacy of locally administered candidate interventions. © 2014 Society for Leukocyte Biology.
GA-DELLA pathway is involved in regulation of nitrogen deficiency-induced anthocyanin accumulation.
Zhang, Yongqiang; Liu, Zhongjuan; Liu, Jianping; Lin, Sheng; Wang, Jianfeng; Lin, Wenxiong; Xu, Weifeng
2017-04-01
DELLA proteins positively regulate nitrogen deficiency-induced anthocyanin accumulation through directly interaction with PAP1 to enhance its transcriptional activity on anthocyanin biosynthetic gene expressions. Plants can survive a limiting nitrogen supply by undergoing adaptive responses, including induction of anthocyanin production. However, the detailed mechanism is still unclear. In this study, we found that this process was impaired and enhanced, respectively, by exogenous GA 3 (an active form of GAs) and paclobutrazol (PAC, a specific GA biosynthesis inhibitor) in Arabidopsis seedlings. Consistently, the nitrogen deficiency-induced transcript levels of several key genes involved in anthocyanin biosynthesis, including F3'H, DFR, LDOX, and UF3GT, were decreased and enhanced by exogenous GA 3 and PAC, respectively. Moreover, the nitrogen deficiency-induced anthocyanin accumulation and biosynthesis gene expressions were impaired in the loss-of-function mutant gai-t6/rga-t2/rgl1-1/rgl2-1/rgl3-1 (della) but enhanced in the GA-insensitive mutant gai, suggesting that DELLA proteins, known as repressors of GA signaling, are necessary for fully induction of nitrogen deficiency-driven anthocyanin biosynthesis. Using yeast two-hybrid (Y2H) assay, pull-down assay, and luciferase complementation assay, it was found that RGA, a DELLA of Arabidopsis, could strongly interact with PAP1, a known regulatory transcription factor positively involved in anthocyanin biosynthesis. Furthermore, transient expression assays indicated that RGA and GAI could enhance the transcriptional activities of PAP1 on its downstream genes, including F3'H and DFR. Taken together, this study suggests that DELLAs are necessary regulators for nitrogen deficiency-induced anthocyanin accumulation through interaction with PAP1 and enhancement of PAP1's transcriptional activity on its target genes. GA-DELLA-involved anthocyanin accumulation is important for plant adaptation to nitrogen deficiency.
Functional characterization of rare FOXP2 variants in neurodevelopmental disorder.
Estruch, Sara B; Graham, Sarah A; Chinnappa, Swathi M; Deriziotis, Pelagia; Fisher, Simon E
2016-01-01
Heterozygous disruption of FOXP2 causes a rare form of speech and language impairment. Screens of the FOXP2 sequence in individuals with speech/language-related disorders have identified several rare protein-altering variants, but their phenotypic relevance is often unclear. FOXP2 encodes a transcription factor with a forkhead box DNA-binding domain, but little is known about the functions of protein regions outside this domain. We performed detailed functional analyses of seven rare FOXP2 variants found in affected cases, including three which have not been previously characterized, testing intracellular localization, transcriptional regulation, dimerization, and interaction with other proteins. To shed further light on molecular functions of FOXP2, we characterized the interaction between this transcription factor and co-repressor proteins of the C-terminal binding protein (CTBP) family. Finally, we analysed the functional significance of the polyglutamine tracts in FOXP2, since tract length variations have been reported in cases of neurodevelopmental disorder. We confirmed etiological roles of multiple FOXP2 variants. Of three variants that have been suggested to cause speech/language disorder, but never before been characterized, only one showed functional effects. For the other two, we found no effects on protein function in any assays, suggesting that they are incidental to the phenotype. We identified a CTBP-binding region within the N-terminal portion of FOXP2. This region includes two amino acid substitutions that occurred on the human lineage following the split from chimpanzees. However, we did not observe any effects of these amino acid changes on CTBP binding or other core aspects of FOXP2 function. Finally, we found that FOXP2 variants with reduced polyglutamine tracts did not exhibit altered behaviour in cellular assays, indicating that such tracts are non-essential for core aspects of FOXP2 function, and that tract variation is unlikely to be a highly penetrant cause of speech/language disorder. Our findings highlight the importance of functional characterization of novel rare variants in FOXP2 in assessing the contribution of such variants to speech/language disorder and provide further insights into the molecular function of the FOXP2 protein.
Knockdown of long noncoding RNA 00152 (LINC00152) inhibits human retinoblastoma progression.
Li, Songhe; Wen, Dacheng; Che, Songtian; Cui, Zhihua; Sun, Yabin; Ren, Hua; Hao, Jilong
2018-01-01
A growing body of evidence supports the involvement of long noncoding RNA 00152 (LINC00152) in the progression and metastasis of multiple cancers. However, the exact roles of LINC00152 in the progression of human retinoblastoma (RB) remain unknown. We explored the expression and biological function of human RB. The expression level of LINC00152 in RB tissues and cells was analyzed using quantitative real-time PCR. The function of LINC00152 was determined using a series of in vitro assays. In vivo, a nude mouse model was established to analyze the function of LINC00152. Gene and protein expressions were detected using quantitative real-time PCR and Western blot assays, respectively. The expression of LINC00152 mRNA was upregulated in RB tissues and cell lines. Knockdown of LINC00152 significantly inhibited cell proliferation, colony formation, migration, and invasion and promoted cell apoptosis and caspase-3 and caspase-8 activities in vitro, as well as suppressing tumorigenesis in vivo. We identified several genes related to proliferation, apoptosis, and invasion including Ki-67, Bcl-2, and MMP-9 that were transcriptionally inactivated by LINC00152. Taken together, these data implicate LINC00152 as a therapeutic target in RB.
Griffin, Vernetta; McMiller, Tracee; Jones, Erika; Johnson, Casonya M.
2003-01-01
A 14-week, undergraduate-level Genetics and Population Biology course at Morgan State University was modified to include a demonstration of functional genomics in the research laboratory. Students performed a rudimentary sequence analysis of the Caenorhabditis elegans genome and further characterized three sequences that were predicted to encode helix–loop–helix proteins. Students then used reverse transcription–polymerase chain reaction to determine which of the three genes is normally expressed in C. elegans. At the end of this laboratory activity, students were 1) to demonstrate a rudimentary knowledge of bioinformatics, including the ability to differentiate between “having” a gene and “expressing” a gene, and 2) to understand basic approaches to functional genomics, including one specific technique for assaying for gene expression. It was also anticipated that students would increase their skills at effectively communicating their research activities through written and/or oral presentation. This article describes the laboratory activity and the assessment of the effectiveness of the activity. PMID:12822036
Functional Characterization of Schizophrenia-Associated Variation in CACNA1C
Eckart, Nicole; Song, Qifeng; Yang, Rebecca; Wang, Ruihua; Zhu, Heng; McCallion, Andrew S.; Avramopoulos, Dimitrios
2016-01-01
Calcium channel subunits, including CACNA1C, have been associated with multiple psychiatric disorders. Specifically, genome wide association studies (GWAS) have repeatedly identified the single nucleotide polymorphism (SNP) rs1006737 in intron 3 of CACNA1C to be strongly associated with schizophrenia and bipolar disorder. Here, we show that rs1006737 marks a quantitative trait locus for CACNA1C transcript levels. We test 16 SNPs in high linkage disequilibrium with rs1007637 and find one, rs4765905, consistently showing allele-dependent regulatory function in reporter assays. We find allele-specific protein binding for 13 SNPs including rs4765905. Using protein microarrays, we identify several proteins binding ≥3 SNPs, but not control sequences, suggesting possible functional interactions and combinatorial haplotype effects. Finally, using circular chromatin conformation capture, we show interaction of the disease-associated region including the 16 SNPs with the CACNA1C promoter and other potential regulatory regions. Our results elucidate the pathogenic relevance of one of the best-supported risk loci for schizophrenia and bipolar disorder. PMID:27276213
Perez-del-Pulgar, S; Lopez, M; Gensana, M; Jorquera, J I
2006-08-01
Preparations of intravenous immunoglobulins must keep functional integrity throughout the purification process. In order to assess Fc fragment functionality, the European Pharmacopoeia proposes the Test for Fc function of immunoglobulin (2.7.9), which is based on a rubella antigen of high titre. Sometimes, such antigen is difficult to obtain. In the present study, we develop the same assay using tetanus toxoid instead of rubella antigen, adapting the procedure for the use of tetanus toxoid. The comparison between rubella-based and tetanus-based assays showed that the slopes of the haemolysis curves were higher if red blood cells had been sensitised with the rubella antigen than with tetanus toxoid. Nonetheless, the tetanus-based assay gave satisfactory results and it could be a good alternative antigen target.
A rapid and efficient branched DNA hybridization assay to titer lentiviral vectors.
Nair, Ayyappan; Xie, Jinger; Joshi, Sarasijam; Harden, Paul; Davies, Joan; Hermiston, Terry
2008-11-01
A robust assay to titer lentiviral vectors is imperative to qualifying their use in drug discovery, target validation and clinical applications. In this study, a novel branched DNA based hybridization assay was developed to titer lentiviral vectors by quantifying viral RNA genome copy numbers from viral lysates without having to purify viral RNA, and this approach was compared with other non-functional (p24 protein ELISA and viral RT-qPCR) and a functional method (reporter gene expression) used commonly. The RT-qPCR method requires purification of viral RNA and the accuracy of titration therefore depends on the efficiency of purification; this requirement is ameliorated in the hybridization assay as RNA is measured directly in viral lysates. The present study indicates that the hybridization based titration assay performed on viral lysates was more accurate and has additional advantages of being rapid, robust and not dependent on transduction efficiency in different cell types.
The Arabidopsis PLAT domain protein1 is critically involved in abiotic stress tolerance.
Hyun, Tae Kyung; van der Graaff, Eric; Albacete, Alfonso; Eom, Seung Hee; Großkinsky, Dominik K; Böhm, Hannah; Janschek, Ursula; Rim, Yeonggil; Ali, Walid Wahid; Kim, Soo Young; Roitsch, Thomas
2014-01-01
Despite the completion of the Arabidopsis genome sequence, for only a relatively low percentage of the encoded proteins experimental evidence concerning their function is available. Plant proteins that harbour a single PLAT (Polycystin, Lipoxygenase, Alpha-toxin and Triacylglycerol lipase) domain and belong to the PLAT-plant-stress protein family are ubiquitously present in monocot and dicots. However, the function of PLAT-plant-stress proteins is still poorly understood. Therefore, we have assessed the function of the uncharacterised Arabidopsis PLAT-plant-stress family members through a combination of functional genetic and physiological approaches. PLAT1 overexpression conferred increased abiotic stress tolerance, including cold, drought and salt stress, while loss-of-function resulted in opposite effects on abiotic stress tolerance. Strikingly, PLAT1 promoted growth under non-stressed conditions. Abiotic stress treatments induced PLAT1 expression and caused expansion of its expression domain. The ABF/ABRE transcription factors, which are positive mediators of abscisic acid signalling, activate PLAT1 promoter activity in transactivation assays and directly bind to the ABRE elements located in this promoter in electrophoretic mobility shift assays. This suggests that PLAT1 represents a novel downstream target of the abscisic acid signalling pathway. Thus, we showed that PLAT1 critically functions as positive regulator of abiotic stress tolerance, but also is involved in regulating plant growth, and thereby assigned a function to this previously uncharacterised PLAT domain protein. The functional data obtained for PLAT1 support that PLAT-plant-stress proteins in general could be promising targets for improving abiotic stress tolerance without yield penalty.
The Arabidopsis PLAT Domain Protein1 Is Critically Involved in Abiotic Stress Tolerance
Eom, Seung Hee; Großkinsky, Dominik K.; Böhm, Hannah; Janschek, Ursula; Rim, Yeonggil; Ali, Walid Wahid; Kim, Soo Young; Roitsch, Thomas
2014-01-01
Despite the completion of the Arabidopsis genome sequence, for only a relatively low percentage of the encoded proteins experimental evidence concerning their function is available. Plant proteins that harbour a single PLAT (Polycystin, Lipoxygenase, Alpha-toxin and Triacylglycerol lipase) domain and belong to the PLAT-plant-stress protein family are ubiquitously present in monocot and dicots. However, the function of PLAT-plant-stress proteins is still poorly understood. Therefore, we have assessed the function of the uncharacterised Arabidopsis PLAT-plant-stress family members through a combination of functional genetic and physiological approaches. PLAT1 overexpression conferred increased abiotic stress tolerance, including cold, drought and salt stress, while loss-of-function resulted in opposite effects on abiotic stress tolerance. Strikingly, PLAT1 promoted growth under non-stressed conditions. Abiotic stress treatments induced PLAT1 expression and caused expansion of its expression domain. The ABF/ABRE transcription factors, which are positive mediators of abscisic acid signalling, activate PLAT1 promoter activity in transactivation assays and directly bind to the ABRE elements located in this promoter in electrophoretic mobility shift assays. This suggests that PLAT1 represents a novel downstream target of the abscisic acid signalling pathway. Thus, we showed that PLAT1 critically functions as positive regulator of abiotic stress tolerance, but also is involved in regulating plant growth, and thereby assigned a function to this previously uncharacterised PLAT domain protein. The functional data obtained for PLAT1 support that PLAT-plant-stress proteins in general could be promising targets for improving abiotic stress tolerance without yield penalty. PMID:25396746
Young, Erin E.; Costigan, Michael; Herbert, Teri A.; Lariviere, William R.
2013-01-01
Prior genetic correlation analysis of 22 heritable behavioral measures of nociception and hypersensitivity in the mouse identified five genetically distinct pain types. In the present study, we reanalyzed that dataset and included the results of an additional nine assays of nociception and hypersensitivity to: 1) replicate the previously identified five pain types; 2) test whether any of the newly added pain assays represent novel genetically distinct pain types; 3) test the level of genetic relatedness among nine commonly employed neuropathic pain assays. Multivariate analysis of pairwise correlations between assays shows that the newly added zymosan-induced heat hypersensitivity assay does not conform to the two previously identified groups of heat hypersensitivity assays and cyclophosphamide-induced cystitis, the first organ-specific visceral pain model examined, is genetically distinct from other inflammatory assays. The four included mechanical hypersensitivity assays are genetically distinct, and do not comprise a single pain type as previously reported. Among the nine neuropathic pain assays including autotomy, chemotherapy, nerve ligation and spared nerve injury assays, at least four genetically distinct types of neuropathic sensory abnormalities were identified, corresponding to differences in nerve injury method. In addition, two itch assays and Comt genotype were compared to the expanded set of nociception and hypersensitivity assays. Comt genotype was strongly related only to spontaneous inflammatory nociception assays. These results indicate the priority for continued investigation of genetic mechanisms in several assays newly identified to represent genetically distinct pain types. PMID:24071598
Isolation of Latex Bead Phagosomes from Dictyostelium for in vitro Functional Assays.
D'Souza, Ashwin; Sanghavi, Paulomi; Rai, Ashim; Pathak, Divya; Mallik, Roop
2016-12-05
We describe a protocol to purify latex bead phagosomes (LBPs) from Dictyostelium cells. These can be later used for various in vitro functional assays. For instance, we use these LBPs to understand the microtubule motor-driven transport on in vitro polymerized microtubules. Phagosomes are allowed to mature for defined periods inside cells before extraction for in vitro motility. These assays allow us to probe how lipids on the phagosome membrane recruit and organize motors, and also measure the motion and force generation resulting from underlying lipid-motor interactions. This provides a unique opportunity to interrogate native-like organelles using biophysical and biochemical assays, and understand the role of motor proteins in phagosome maturation and pathogen clearance.
Li, Qiji; Ye, Liping; Guo, Wei; Wang, Min; Huang, Shuai; Peng, Xinsheng
2017-06-23
PHF21B is newly identified to be involved in the tumor progression; however, its biological role and molecular mechanism in prostate cancer have not been defined. This study is aimed to study the role of PHF21B in the progression of prostate cancer. Real-time PCR, immunohistochemistry and western blotting analysis were used to determine PHF21B expression in prostate cancer cell lines and clinical specimens. The role of PHF21B in maintaining prostate cancer stem cell-like phenotype was examined by tumor-sphere formation assay and expression levels of stem cell markers. Luciferase reporter assay, western blot analysis, enzyme-linked immunosorbent assay and ChIP assay were used to determine whether PHF21B activates the Wnt/β-catenin signaling by transcriptionally downregulating SFRP1 and SFRP2. Our results revealed that PHF21B was markedly upregulated in prostate cancer cell lines and tissues. High PHF21B levels predicted poorer recurrence-free survival in prostate cancer patients. Gain-of-function and loss-of-function studies showed that overexpression of PHF21B enhanced, while downregulation suppressed, the cancer stem cell-like phenotype in prostate cancer cells. Xenograft tumor model showed that silencing PHF21B decreased the ability of tumorigenicity in vivo. Notably, Wnt/β-catenin signaling was hyperactivated in prostate cancer cells overexpressing PHF21B, and mediated PHF21B-induced cancer stem cell-like phenotype. Furthermore, PHF21B suppressed repressors of the Wnt/β-catenin signaling cascade, including SFRP1 and SFRP2. These results demonstrated that PHF21B constitutively activated wnt/β-catenin signaling by transcriptionally downregulating SFRP1 and SFRP2, which promotes prostate cancer stem cell-like phenotype. Our results revealed that PHF21B functions as an oncogene in prostate cancer, and may represent a promising prognostic biomarker and an attractive candidate for target therapy of prostate cancer.
Kollitz, Erin M.; Zhang, Guozhu; Hawkins, Mary Beth; Whitfield, G. Kerr; Reif, David M.; Kullman, Seth W.
2015-01-01
The vertebrate genome is a result of two rapid and successive rounds of whole genome duplication, referred to as 1R and 2R. Furthermore, teleost fish have undergone a third whole genome duplication (3R) specific to their lineage, resulting in the retention of multiple gene paralogs. The more recent 3R event in teleosts provides a unique opportunity to gain insight into how genes evolve through specific evolutionary processes. In this study we compare molecular activities of vitamin D receptors (VDR) from basal species that diverged at key points in vertebrate evolution in order to infer derived and ancestral VDR functions of teleost paralogs. Species include the sea lamprey (Petromyzon marinus), a 1R jawless fish; the little skate (Leucoraja erinacea), a cartilaginous fish that diverged after the 2R event; and the Senegal bichir (Polypterus senegalus), a primitive 2R ray-finned fish. Saturation binding assays and gel mobility shift assays demonstrate high affinity ligand binding and classic DNA binding characteristics of VDR has been conserved across vertebrate evolution. Concentration response curves in transient transfection assays reveal EC50 values in the low nanomolar range, however maximum transactivational efficacy varies significantly between receptor orthologs. Protein-protein interactions were investigated using co-transfection, mammalian 2-hybrid assays, and mutations of coregulator activation domains. We then combined these results with our previous study of VDR paralogs from 3R teleosts into a bioinformatics analysis. Our results suggest that 1, 25D3 acts as a partial agonist in basal species. Furthermore, our bioinformatics analysis suggests that functional differences between VDR orthologs and paralogs are influenced by differential protein interactions with essential coregulator proteins. We speculate that we may be observing a change in the pharmacodynamics relationship between VDR and 1, 25D3 throughout vertebrate evolution that may have been driven by changes in protein-protein interactions between VDR and essential coregulators. PMID:25855982
Sustainable data and metadata management at the BD2K-LINCS Data Coordination and Integration Center
Stathias, Vasileios; Koleti, Amar; Vidović, Dušica; Cooper, Daniel J.; Jagodnik, Kathleen M.; Terryn, Raymond; Forlin, Michele; Chung, Caty; Torre, Denis; Ayad, Nagi; Medvedovic, Mario; Ma'ayan, Avi; Pillai, Ajay; Schürer, Stephan C.
2018-01-01
The NIH-funded LINCS Consortium is creating an extensive reference library of cell-based perturbation response signatures and sophisticated informatics tools incorporating a large number of perturbagens, model systems, and assays. To date, more than 350 datasets have been generated including transcriptomics, proteomics, epigenomics, cell phenotype and competitive binding profiling assays. The large volume and variety of data necessitate rigorous data standards and effective data management including modular data processing pipelines and end-user interfaces to facilitate accurate and reliable data exchange, curation, validation, standardization, aggregation, integration, and end user access. Deep metadata annotations and the use of qualified data standards enable integration with many external resources. Here we describe the end-to-end data processing and management at the DCIC to generate a high-quality and persistent product. Our data management and stewardship solutions enable a functioning Consortium and make LINCS a valuable scientific resource that aligns with big data initiatives such as the BD2K NIH Program and concords with emerging data science best practices including the findable, accessible, interoperable, and reusable (FAIR) principles. PMID:29917015
NASA Astrophysics Data System (ADS)
Lee, Seunghee; Yoon, Jonghee; Choi, Chulhee
2015-03-01
Amyloid β-protein (Aβ) is known as a key molecule related to the pathogenesis of Alzheimer's disease (AD). Over time, the amyloid cascade disrupts essential function of mitochondria including Ca2+ homeostasis and reactive oxygen species (ROS) regulation, and eventually leads to neuronal cell death. However, there have been no methods that analyze and measure neuronal dysfuction in pathologic conditions quantitatively. Here, we suggest a cell-based optical assay to investigate neuronal function in AD using femtosecond-pulsed laser stimulation. We observed that laser stimulation on primary rat hippocampal neurons for a few microseconds induced intracellular Ca2+ level increases or produced intracellular ROS which was a primary cause of neuronal cell death depending on delivered energy. Although Aβ treatment alone had little effect on the neuronal morphologies and networks in a few hours, Aβ-treated neurons showed delayed Ca2+ increasing pattern and were more vulnerable to laser-induced cell death compared to normal neurons. Our results collectively indicate that femtosecond laser stimulation can be a useful tool to study neuronal dysfuction related to AD pathologies. We anticipate this optical method to enable studies in the early progression of neuronal impairments and the quantitative evaluation of drug effects on neurons in neurodegenerative diseases, including AD and Parkinson's disease in a preclinical study.
Lombardo, Fabrizio; Ghani, Yasmeen; Kafatos, Fotis C.; Christophides, George K.
2013-01-01
Reverse genetics in the mosquito Anopheles gambiae by RNAi mediated gene silencing has led in recent years to an advanced understanding of the mosquito immune response against infections with bacteria and malaria parasites. We developed RNAi screens in An. gambiae hemocyte-like cells using a library of double-stranded RNAs targeting 109 genes expressed highly or specifically in mosquito hemocytes to identify novel regulators of the hemocyte immune response. Assays included phagocytosis of bacterial bioparticles, expression of the antimicrobial peptide CEC1, and basal and induced expression of the mosquito complement factor LRIM1. A cell viability screen was also carried out to assess dsRNA cytotoxicity and to identify genes involved in cell growth and survival. Our results identify 22 novel immune regulators, including proteins putatively involved in phagosome assembly and maturation (Ca2+ channel, v-ATPase and cyclin-dependent protein kinase), pattern recognition (fibrinogen-domain lectins and Nimrod), immune modulation (peptidase and serine protease homolog), immune signaling (Eiger and LPS-induced factor), cell adhesion and communication (Laminin B1 and Ninjurin) and immune homeostasis (Lipophorin receptor). The development of robust functional cell-based assays paves the way for genome-wide functional screens to study the mosquito immune response to infections with human pathogens. PMID:23382679
Wetmore, Kelly M.; Price, Morgan N.; Waters, Robert J.; Lamson, Jacob S.; He, Jennifer; Hoover, Cindi A.; Blow, Matthew J.; Bristow, James; Butland, Gareth
2015-01-01
ABSTRACT Transposon mutagenesis with next-generation sequencing (TnSeq) is a powerful approach to annotate gene function in bacteria, but existing protocols for TnSeq require laborious preparation of every sample before sequencing. Thus, the existing protocols are not amenable to the throughput necessary to identify phenotypes and functions for the majority of genes in diverse bacteria. Here, we present a method, random bar code transposon-site sequencing (RB-TnSeq), which increases the throughput of mutant fitness profiling by incorporating random DNA bar codes into Tn5 and mariner transposons and by using bar code sequencing (BarSeq) to assay mutant fitness. RB-TnSeq can be used with any transposon, and TnSeq is performed once per organism instead of once per sample. Each BarSeq assay requires only a simple PCR, and 48 to 96 samples can be sequenced on one lane of an Illumina HiSeq system. We demonstrate the reproducibility and biological significance of RB-TnSeq with Escherichia coli, Phaeobacter inhibens, Pseudomonas stutzeri, Shewanella amazonensis, and Shewanella oneidensis. To demonstrate the increased throughput of RB-TnSeq, we performed 387 successful genome-wide mutant fitness assays representing 130 different bacterium-carbon source combinations and identified 5,196 genes with significant phenotypes across the five bacteria. In P. inhibens, we used our mutant fitness data to identify genes important for the utilization of diverse carbon substrates, including a putative d-mannose isomerase that is required for mannitol catabolism. RB-TnSeq will enable the cost-effective functional annotation of diverse bacteria using mutant fitness profiling. PMID:25968644
A 3'-untranslated region (3'UTR) induces organ adhesion by regulating miR-199a* functions.
Lee, Daniel Y; Shatseva, Tatiana; Jeyapalan, Zina; Du, William W; Deng, Zhaoqun; Yang, Burton B
2009-01-01
Mature microRNAs (miRNAs) are single-stranded RNAs of 18-24 nucleotides that repress post-transcriptional gene expression. However, it is unknown whether the functions of mature miRNAs can be regulated. Here we report that expression of versican 3'UTR induces organ adhesion in transgenic mice by modulating miR-199a* activities. The study was initiated by the hypothesis that the non-coding 3'UTR plays a role in the regulation of miRNA function. Transgenic mice expressing a construct harboring the 3'UTR of versican exhibits the adhesion of organs. Computational analysis indicated that a large number of microRNAs could bind to this fragment potentially including miR-199a*. Expression of versican and fibronectin, two targets of miR-199a*, are up-regulated in transgenic mice, suggesting that the 3'UTR binds and modulates miR-199a* activities, freeing mRNAs of versican and fibronectin from being repressed by miR-199a*. Confirmation of the binding was performed by PCR using mature miR-199a* as a primer and the targeting was performed by luciferase assays. Enhanced adhesion by expression of the 3'UTR was confirmed by in vitro assays. Our results demonstrated that upon arrival in cytoplasm, miRNA activities can be modulated locally by the 3'UTR. Our assay may be developed as sophisticated approaches for studying the mutual regulation of miRNAs and mRNAs in vitro and in vivo. We anticipate that expression of the 3'UTR may be an approach in the development of gene therapy.
Zhang, Ju; Shi, Ruona; Li, Haifeng; Xiang, Yanxia; Xiao, Lingyun; Hu, Minghua; Ma, Fangli; Ma, Chung Wah; Huang, Zebo
2016-11-04
Dictyophora indusiata is a medicinal mushroom traditionally used in China for a variety of conditions, including inflammatory and neural diseases. D. indusiata polysaccharides (DiPS) are shown to have in vitro antioxidant activity but in vivo evidence is lacking. This study aimes to explore the antioxidant capacity and related neuroptotective activities of DiPS using wild-type and neurodegenerative Caenorhabditis elegans models. The antioxidant capacities of DiPS were first determined using paraquat survival and Pgst-4::GFP expression assays in wild-type and transgenic C. elegans models, respectively, and then further investigated by determining reactive oxygen species (ROS) level, malondialdehyde (MDA) content and superoxide dismutase (SOD) activity as well as functional parameters of mitochondria. The activation of stress response transcription factors and neuroptotective activities were examined using nuclear localization and chemosensory behavioral assays in transgenic nematodes, respectively. DiPS was shown not only to increase survival rate and reduce stress level under paraquat-induced oxidative conditions but also to decrease ROS and MDA levels and increase SOD activity in C. elegans models. Moreover, DiPS was also able to restore the functional parameters of mitochondria, including membrane potential and ATP content, in paraquat-stressed nematodes. In addition, nuclear translocation assays demonstrate that the stress response transcription factor DAF-16/FOXO was involved in the antioxidant activity of the polysaccharide. Further experiments reveal that DiPS was capable of reducing ROS levels and alleviating chemosensory behavior dysfunction in transgenic nematode models of neurodegenerative diseases mediated by polyglutamine and amyloid-β protein. These findings demonstrate the antioxidant and neuroprotective activities of the D. indusiata polysaccharide DiPS in wild-type and neurodegenerative C. elegans models, and thus provide an important pharmacological basis for the therapeutic potential of D. indusiata in neurodegeneration. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Daigneault, B W; McNamara, K A; Purdy, P H; Krisher, R L; Knox, R V; Rodriguez-Zas, S L; Miller, D J
2015-05-01
Due to reduced fertility, cryopreserved semen is seldom used for commercial porcine artificial insemination (AI). Predicting the fertility of individual frozen ejaculates for selection of higher quality semen prior to AI would increase overall success. Our objective was to test novel and traditional laboratory analyses to identify characteristics of cryopreserved spermatozoa that are related to boar fertility. Traditional post-thaw analyses of motility, viability, and acrosome integrity were performed on each ejaculate. In vitro fertilization, cleavage, and blastocyst development were also determined. Finally, spermatozoa-oviduct binding and competitive zona-binding assays were applied to assess sperm adhesion to these two matrices. Fertility of the same ejaculates subjected to laboratory assays was determined for each boar by multi-sire AI and defined as (i) the mean percentage of the litter sired and (ii) the mean number of piglets sired in each litter. Means of each laboratory evaluation were calculated for each boar and those values were applied to multiple linear regression analyses to determine which sperm traits could collectively estimate fertility in the simplest model. The regression model to predict the percent of litter sired by each boar was highly effective (p < 0.001, r(2) = 0.87) and included five traits; acrosome-compromised spermatozoa, percent live spermatozoa (0 and 60 min post-thaw), percent total motility, and the number of zona-bound spermatozoa. A second model to predict the number of piglets sired by boar was also effective (p < 0.05, r(2) = 0.57). These models indicate that the fertility of cryopreserved boar spermatozoa can be predicted effectively by including traditional and novel laboratory assays that consider functions of spermatozoa. © 2015 American Society of Andrology and European Academy of Andrology.
Halide peroxidase in tissues that interact with bacteria in the host squid Euprymna scolopes.
Small, A L; McFall-Ngai, M J
1999-03-15
An enzyme with similarities to myeloperoxidase, the antimicrobial halide peroxidase in mammalian neutrophils, occurs abundantly in the light organ tissue of Euprymna scolopes, a squid that maintains a beneficial association with the luminous bacterium Vibrio fischeri. Using three independent assays typically applied to the analysis of halide peroxidase enzymes, we directly compared the activity of the squid enzyme with that of human myeloperoxidase. One of these methods, the diethanolamine assay, confirmed that the squid peroxidase requires halide ions for its activity. The identification of a halide peroxidase in a cooperative bacterial association suggested that this type of enzyme can function not only to control pathogens, but also to modulate the interactions of host animals with their beneficial partners. To determine whether the squid peroxidase functions under both circumstances, we examined its distribution in a variety of host tissues, including those that typically interact with bacteria and those that do not. Tissues interacting with bacteria included those that have specific cooperative associations with bacteria (i.e., the light organ and accessory nidamental gland) and those that have transient nonspecific interactions with bacteria (i.e., the gills, which clear the cephalopod circulatory system of invading microorganisms). These bacteria-associated tissues were compared with the eye, digestive gland, white body, and ink-producing tissues, which do not typically interact directly with bacteria. Peroxidase enzyme assays, immunocytochemical localization, and DNA-RNA hybridizations showed that the halide-dependent peroxidase is consistently expressed in high concentration in tissues that interact bacteria. Elevated levels of the peroxidase were also found in the ink-producing tissues, which are known to have enzymatic pathways associated with antimicrobial activity. Taken together, these data suggest that the host uses a common biochemical response to the variety of types of associations that it forms with microorganisms.
Genetic Control of Plant Root Colonization by the Biocontrol agent, Pseudomonas fluorescens
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cole, Benjamin J.; Fletcher, Meghan; Waters, Jordan
Plant growth promoting rhizobacteria (PGPR) are a critical component of plant root ecosystems. PGPR promote plant growth by solubilizing inaccessible minerals, suppressing pathogenic microorganisms in the soil, and directly stimulating growth through hormone synthesis. Pseudomonas fluorescens is a well-established PGPR isolated from wheat roots that can also colonize the root system of the model plant, Arabidopsis thaliana. We have created barcoded transposon insertion mutant libraries suitable for genome-wide transposon-mediated mutagenesis followed by sequencing (TnSeq). These libraries consist of over 105 independent insertions, collectively providing loss-of-function mutants for nearly all genes in the P.fluorescens genome. Each insertion mutant can be unambiguouslymore » identified by a randomized 20 nucleotide sequence (barcode) engineered into the transposon sequence. We used these libraries in a gnotobiotic assay to examine the colonization ability of P.fluorescens on A.thaliana roots. Taking advantage of the ability to distinguish individual colonization events using barcode sequences, we assessed the timing and microbial concentration dependence of colonization of the rhizoplane niche. These data provide direct insight into the dynamics of plant root colonization in an in vivo system and define baseline parameters for the systematic identification of the bacterial genes and molecular pathways using TnSeq assays. Having determined parameters that facilitate potential colonization of roots by thousands of independent insertion mutants in a single assay, we are currently establishing a genome-wide functional map of genes required for root colonization in P.fluorescens. Importantly, the approach developed and optimized here for P.fluorescens>A.thaliana colonization will be applicable to a wide range of plant-microbe interactions, including biofuel feedstock plants and microbes known or hypothesized to impact on biofuel-relevant traits including biomass productivity and pathogen resistance.« less
Walpurgis, Katja; Thomas, Andreas; Schänzer, Wilhelm; Thevis, Mario
2016-02-01
Myostatin is a key regulator of skeletal muscle growth and inhibition of its signaling pathway results in an increased muscle mass and function. The aim of this study was to develop a qualitative detection assay for myostatin-neutralizing antibodies for doping control purposes by using immunological approaches. To detect different types of myostatin-neutralizing antibodies irrespective of their amino acid sequence, an immunological assay specific for antibodies directed against myostatin and having a human Fc domain was established. Affinity purification and Western blotting strategies were combined to allow extracting and identifying relevant analytes from 200 μL of plasma/serum in a non-targeted approach. The assay was characterized regarding specificity, linearity, precision, robustness, and recovery. The assay was found to be highly specific, robust, and linear from 0.1 to 1 μg/mL. The precision was successfully specified at three different concentrations and the recovery of the affinity purification was 58%. Within this study, an immunological detection assay for myostatin-neutralizing antibodies present in plasma/serum specimens was developed and successfully characterized. The presented approach can easily be modified to include other therapeutic antibodies and serves as proof-of-concept for the detection of antibody-based myostatin inhibitors in doping control samples. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hepatocyte spheroid arrays inside microwells connected with microchannels
Fukuda, Junji; Nakazawa, Kohji
2011-01-01
Spheroid culture is a preferable cell culture approach for some cell types, including hepatocytes, as this type of culture often allows maintenance of organ-specific functions. In this study, we describe a spheroid microarray chip (SM chip) that allows stable immobilization of hepatocyte spheroids in microwells and that can be used to evaluate drug metabolism with high efficiency. The SM chip consists of 300-μm-diameter cylindrical wells with chemically modified bottom faces that form a 100-μm-diameter cell adhesion region surrounded by a nonadhesion region. Primary hepatocytes seeded onto this chip spontaneously formed spheroids of uniform diameter on the cell adhesion region in each microwell and these could be used for cytochrome P-450 fluorescence assays. A row of microwells could also be connected to a microchannel for simultaneous detection of different cytochrome P-450 enzyme activities on a single chip. The miniaturized features of this SM chip reduce the numbers of cells and the amounts of reagents required for assays. The detection of four cytochrome P-450 enzyme activities was demonstrated following induction by 3-methylcholantlene, with a sensitivity significantly higher than that in conventional monolayer culture. This microfabricated chip could therefore serve as a novel culture platform for various cell-based assays, including those used in drug screening, basic biological studies, and tissue engineering applications. PMID:21799712
Development of antioxidative effect in ice cream with Kalakai (Stenochlaena palustris) water extract
NASA Astrophysics Data System (ADS)
Hadhiwaluyo, Kristania; Rahmawati, Della; Gunawan Puteri, Maria D. P. T.
2017-11-01
Kalakai (Stenochlaena. palustris) extract was used to develop the ice cream. The antioxidant activity of the extracts and its stability over process and storage were evaluated through various antioxidant assay including DPPH assay, Folin-Ciocalteau assay and aluminum chloride colorimetric method. In general, the leaves of S. palustris had a significantly higher antioxidant activity (p < 0.05) than the branches and approximately, 0.10 mg/ml S. palustris leaves extract was able to develop antioxidant activity (IC50) with suitable iron content (< 0.3 mg/l) that could be used to produce ice cream without affecting the sensory properties of the ice cream. In addition, the high phenolic and flavonoid content also suggest the more compounds that were capable to act as an antioxidant. The result of the stability test also suggested the ability low temperature storage and processing in maintaining the stability of the antioxidant activity of the extract (p > 0.05) over processing and storage. Thus, this strengthen the feasibility of S. palustris to be used as a potential functional food ingredient that is low cost and easily accessible with an antioxidant activity and safe iron content that is beneficial to increase the quality of food produced including in ice cream.
Ida, Chieri; Yamashita, Sachiko; Tsukada, Masaki; Sato, Teruaki; Eguchi, Takayuki; Tanaka, Masakazu; Ogata, Shin; Fujii, Takahiro; Nishi, Yoshisuke; Ikegami, Susumu; Moss, Joel; Miwa, Masanao
2016-02-01
PolyADP-ribosylation is mediated by poly(ADP-ribose) (PAR) polymerases (PARPs) and may be involved in various cellular events, including chromosomal stability, DNA repair, transcription, cell death, and differentiation. The physiological level of PAR is difficult to determine in intact cells because of the rapid synthesis of PAR by PARPs and the breakdown of PAR by PAR-degrading enzymes, including poly(ADP-ribose) glycohydrolase (PARG) and ADP-ribosylhydrolase 3. Artifactual synthesis and/or degradation of PAR likely occurs during lysis of cells in culture. We developed a sensitive enzyme-linked immunosorbent assay (ELISA) to measure the physiological levels of PAR in cultured cells. We immediately inactivated enzymes that catalyze the synthesis and degradation of PAR. We validated that trichloroacetic acid is suitable for inactivating PARPs, PARG, and other enzymes involved in metabolizing PAR in cultured cells during cell lysis. The PAR level in cells harvested with the standard radioimmunoprecipitation assay buffer was increased by 450-fold compared with trichloroacetic acid for lysis, presumably because of activation of PARPs by DNA damage that occurred during cell lysis. This ELISA can be used to analyze the biological functions of polyADP-ribosylation under various physiological conditions in cultured cells. Copyright © 2015 Elsevier Inc. All rights reserved.
Zaini, Paulo A; Fogaça, Andréa C; Lupo, Fernanda G N; Nakaya, Helder I; Vêncio, Ricardo Z N; da Silva, Aline M
2008-04-01
Xylella fastidiosa is the etiologic agent of a wide range of plant diseases, including citrus variegated chlorosis (CVC), a major threat to citrus industry. The genomes of several strains of this phytopathogen were completely sequenced, enabling large-scale functional studies. DNA microarrays representing 2,608 (91.6%) coding sequences (CDS) of X. fastidiosa CVC strain 9a5c were used to investigate transcript levels during growth with different iron availabilities. When treated with the iron chelator 2,2'-dipyridyl, 193 CDS were considered up-regulated and 216 were considered down-regulated. Upon incubation with 100 microM ferric pyrophosphate, 218 and 256 CDS were considered up- and down-regulated, respectively. Differential expression for a subset of 44 CDS was further evaluated by reverse transcription-quantitative PCR. Several CDS involved with regulatory functions, pathogenicity, and cell structure were modulated under both conditions assayed, suggesting that major changes in cell architecture and metabolism occur when X. fastidiosa cells are exposed to extreme variations in iron concentration. Interestingly, the modulated CDS include those related to colicin V-like bacteriocin synthesis and secretion and to functions of pili/fimbriae. We also investigated the contribution of the ferric uptake regulator Fur to the iron stimulon of X. fastidiosa. The promoter regions of the strain 9a5c genome were screened for putative Fur boxes, and candidates were analyzed by electrophoretic mobility shift assays. Taken together, our data support the hypothesis that Fur is not solely responsible for the modulation of the iron stimulon of X. fastidiosa, and they present novel evidence for iron regulation of pathogenicity determinants.
Variant Interpretation: Functional Assays to the Rescue.
Starita, Lea M; Ahituv, Nadav; Dunham, Maitreya J; Kitzman, Jacob O; Roth, Frederick P; Seelig, Georg; Shendure, Jay; Fowler, Douglas M
2017-09-07
Classical genetic approaches for interpreting variants, such as case-control or co-segregation studies, require finding many individuals with each variant. Because the overwhelming majority of variants are present in only a few living humans, this strategy has clear limits. Fully realizing the clinical potential of genetics requires that we accurately infer pathogenicity even for rare or private variation. Many computational approaches to predicting variant effects have been developed, but they can identify only a small fraction of pathogenic variants with the high confidence that is required in the clinic. Experimentally measuring a variant's functional consequences can provide clearer guidance, but individual assays performed only after the discovery of the variant are both time and resource intensive. Here, we discuss how multiplex assays of variant effect (MAVEs) can be used to measure the functional consequences of all possible variants in disease-relevant loci for a variety of molecular and cellular phenotypes. The resulting large-scale functional data can be combined with machine learning and clinical knowledge for the development of "lookup tables" of accurate pathogenicity predictions. A coordinated effort to produce, analyze, and disseminate large-scale functional data generated by multiplex assays could be essential to addressing the variant-interpretation crisis. Copyright © 2017 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
Islet Assessment for Transplantation
Papas, Klearchos K.; Suszynski, Thomas M.; Colton, Clark. K.
2010-01-01
Purpose of review There is a critical need for meaningful viability and potency assays that characterize islet preparations for release prior to clinical islet cell transplantation (ICT). Development, testing, and validation of such assays have been the subject of intense investigation for the past decade. These efforts are reviewed, highlighting the most recent results while focusing on the most promising assays. Recent Findings Assays based on membrane integrity do not reflect true viability when applied to either intact islets or dispersed islet cells. Assays requiring disaggregation of intact islets into individual cells for assessment introduce additional problems of cell damage and loss. Assays evaluating mitochondrial function, specifically mitochondrial membrane potential, bioenergetic status, and cellular oxygen consumption rate (OCR), especially when conducted with intact islets, appear most promising in evaluating their quality prior to ICT. Prospective, quantitative assays based on measurements of OCR with intact islets have been developed, validated and their results correlated with transplant outcomes in the diabetic nude mouse bioassay. Conclusion More sensitive and reliable islet viability and potency tests have been recently developed and tested. Those evaluating mitochondrial function are most promising, correlate with transplant outcomes in mice, and are currently being evaluated in the clinical setting. PMID:19812494
Multiplexed detection of serological cancer markers with plasmon-enhanced Raman spectro-immunoassay.
Li, Ming; Kang, Jeon Woong; Sukumar, Saraswati; Dasari, Ramachandra Rao; Barman, Ishan
2015-07-01
Circulating biomarkers have emerged as promising non-invasive, real-time surrogates for cancer diagnosis, prognostication and monitoring of therapeutic response. Emerging data, however, suggest that single markers are inadequate in describing complex pathologic transformations. Architecting assays capable of parallel measurements of multiple biomarkers can help achieve the desired clinical sensitivity and specificity while conserving patient specimen and reducing turn-around time. Here we describe a plasmon-enhanced Raman spectroscopic assay featuring nanostructured biomolecular probes and spectroscopic imaging for multiplexed detection of disseminated breast cancer markers cancer antigen (CA) 15-3, CA 27-29 and cancer embryonic antigen (CEA). In the developed SERS assay, both the assay chip and surface-enhanced Raman spectroscopy (SERS) tags are functionalized with monoclonal antibodies against CA15-3, CA27-29 and CEA, respectively. Sequential addition of biomarkers and functionalized SERS tags onto the functionalized assay chip enable the specific recognition of these biomarkers through the antibody-antigen interactions, leading to a sandwich spectro-immunoassay. In addition to offering extensive multiplexing capability, our method provides higher sensitivity than conventional immunoassays and demonstrates exquisite specificity owing to selective formation of conjugated complexes and fingerprint spectra of the Raman reporter. We envision that clinical translation of this assay may further enable asymptomatic surveillance of cancer survivors and speedy assessment of treatment benefit through a simple blood test.
Towards Establishment of a Rice Stress Response Interactome
Seo, Young-Su; Chern, Mawsheng; Bartley, Laura E.; Han, Muho; Jung, Ki-Hong; Lee, Insuk; Walia, Harkamal; Richter, Todd; Xu, Xia; Cao, Peijian; Bai, Wei; Ramanan, Rajeshwari; Amonpant, Fawn; Arul, Loganathan; Canlas, Patrick E.; Ruan, Randy; Park, Chang-Jin; Chen, Xuewei; Hwang, Sohyun; Jeon, Jong-Seong; Ronald, Pamela C.
2011-01-01
Rice (Oryza sativa) is a staple food for more than half the world and a model for studies of monocotyledonous species, which include cereal crops and candidate bioenergy grasses. A major limitation of crop production is imposed by a suite of abiotic and biotic stresses resulting in 30%–60% yield losses globally each year. To elucidate stress response signaling networks, we constructed an interactome of 100 proteins by yeast two-hybrid (Y2H) assays around key regulators of the rice biotic and abiotic stress responses. We validated the interactome using protein–protein interaction (PPI) assays, co-expression of transcripts, and phenotypic analyses. Using this interactome-guided prediction and phenotype validation, we identified ten novel regulators of stress tolerance, including two from protein classes not previously known to function in stress responses. Several lines of evidence support cross-talk between biotic and abiotic stress responses. The combination of focused interactome and systems analyses described here represents significant progress toward elucidating the molecular basis of traits of agronomic importance. PMID:21533176
Hossain, M. Zulfiquer; Patel, Kalpesh; Kern, Scott E.
2014-01-01
Potent DNA-damaging activities were seen in vitro from dietary chemicals found in coffee, tea, and liquid smoke. A survey of tea varieties confirmed genotoxic activity to be widespread. Constituent pyrogallol-like polyphenols (PLPs) such as epigallocatechin-3-gallate (EGCG), pyrogallol, and gallic acid were proposed as a major source of DNA-damaging activities, inducing DNA double-strand breaks in the p53R assay, a well characterized assay sensitive to DNA strand breaks, and comet assay. Paradoxically, their consumption does not lead to the kind of widespread cellular toxicity and acute disease that might be expected from genotoxic exposure. Existing physiological mechanisms could limit DNA damage from dietary injurants. Serum albumin and salivary α-amylase are known to bind EGCG. Salivary α-amylase, serum albumin, and myoglobin, but not salivary proline-rich proteins, reduced damage from tea, coffee, and PLPs, but did not inhibit damage from the chemotherapeutics etoposide and camptothecin. This represents a novel function for saliva in addition to its known functions including protection against tannins. Cell populations administered repeated pyrogallol exposures had abatement of measured DNA damage by two weeks, indicating an innate cellular adaptation. We suggest that layers of physiological protections may exist toward natural dietary products to which animals have had high-level exposure over evolution. PMID:24842839
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Yuan-I; Hsu, Sheng-Chieh; Chau, Gar-Yang
2011-01-21
Research highlights: {yields} Verifying by direct methylation assay the substrate sites of PRMT1 in the hnRNP K protein. {yields} Identifying the preferred PMRT1 methylation regions in hnRNP K by kinetic analysis. {yields} Linking methylation in regulating nuclear localization of hnRNP K. -- Abstract: Protein arginine methylation plays crucial roles in numerous cellular processes. Heterogeneous nuclear ribonucleoprotein K (hnRNP K) is a multi-functional protein participating in a variety of cellular functions including transcription and RNA processing. HnRNP K is methylated at multiple sites in the glycine- and arginine-rich (RGG) motif. Using various RGG domain deletion mutants of hnRNP K as substrates,more » here we show by direct methylation assay that protein arginine methyltransferase 1 (PRMT1) methylated preferentially in a.a. 280-307 of the RGG motif. Kinetic analysis revealed that deletion of a.a. 280-307, but not a.a. 308-327, significantly inhibited rate of methylation. Importantly, nuclear localization of hnRNP K was significantly impaired in mutant hnRNP K lacking the PRMT1 methylation region or upon pharmacological inhibition of methylation. Together our results identify preferred PRMT1 methylation sequences of hnRNP K by direct methylation assay and implicate a role of arginine methylation in regulating intracellular distribution of hnRNP K.« less
c-Kit modifies the inflammatory status of smooth muscle cells
Song, Lei; Martinez, Laisel; Zigmond, Zachary M.; Hernandez, Diana R.; Lassance-Soares, Roberta M.; Selman, Guillermo
2017-01-01
Background c-Kit is a receptor tyrosine kinase present in multiple cell types, including vascular smooth muscle cells (SMC). However, little is known about how c-Kit influences SMC biology and vascular pathogenesis. Methods High-throughput microarray assays and in silico pathway analysis were used to identify differentially expressed genes between primary c-Kit deficient (KitW/W–v) and control (Kit+/+) SMC. Quantitative real-time RT-PCR and functional assays further confirmed the differences in gene expression and pro-inflammatory pathway regulation between both SMC populations. Results The microarray analysis revealed elevated NF-κB gene expression secondary to the loss of c-Kit that affects both the canonical and alternative NF-κB pathways. Upon stimulation with an oxidized phospholipid as pro-inflammatory agent, c-Kit deficient SMC displayed enhanced NF-κB transcriptional activity, higher phosphorylated/total p65 ratio, and increased protein expression of NF-κB regulated pro-inflammatory mediators with respect to cells from control mice. The pro-inflammatory phenotype of mutant cells was ameliorated after restoring c-Kit activity using lentiviral transduction. Functional assays further demonstrated that c-Kit suppresses NF-κB activity in SMC in a TGFβ-activated kinase 1 (TAK1) and Nemo-like kinase (NLK) dependent manner. Discussion Our study suggests a novel mechanism by which c-Kit suppresses NF-κB regulated pathways in SMC to prevent their pro-inflammatory transformation. PMID:28626608
c-Kit modifies the inflammatory status of smooth muscle cells.
Song, Lei; Martinez, Laisel; Zigmond, Zachary M; Hernandez, Diana R; Lassance-Soares, Roberta M; Selman, Guillermo; Vazquez-Padron, Roberto I
2017-01-01
c-Kit is a receptor tyrosine kinase present in multiple cell types, including vascular smooth muscle cells (SMC). However, little is known about how c-Kit influences SMC biology and vascular pathogenesis. High-throughput microarray assays and in silico pathway analysis were used to identify differentially expressed genes between primary c-Kit deficient (Kit W/W-v ) and control (Kit +/+ ) SMC. Quantitative real-time RT-PCR and functional assays further confirmed the differences in gene expression and pro-inflammatory pathway regulation between both SMC populations. The microarray analysis revealed elevated NF-κB gene expression secondary to the loss of c-Kit that affects both the canonical and alternative NF-κB pathways. Upon stimulation with an oxidized phospholipid as pro-inflammatory agent, c-Kit deficient SMC displayed enhanced NF-κB transcriptional activity, higher phosphorylated/total p65 ratio, and increased protein expression of NF-κB regulated pro-inflammatory mediators with respect to cells from control mice. The pro-inflammatory phenotype of mutant cells was ameliorated after restoring c-Kit activity using lentiviral transduction. Functional assays further demonstrated that c-Kit suppresses NF-κB activity in SMC in a TGFβ-activated kinase 1 (TAK1) and Nemo-like kinase (NLK) dependent manner. Our study suggests a novel mechanism by which c-Kit suppresses NF-κB regulated pathways in SMC to prevent their pro-inflammatory transformation.
Hossain, M Zulfiquer; Patel, Kalpesh; Kern, Scott E
2014-08-01
Potent DNA-damaging activities were seen in vitro from dietary chemicals found in coffee, tea, and liquid smoke. A survey of tea varieties confirmed genotoxic activity to be widespread. Constituent pyrogallol-like polyphenols (PLPs) such as epigallocatechin-3-gallate (EGCG), pyrogallol, and gallic acid were proposed as a major source of DNA-damaging activities, inducing DNA double-strand breaks in the p53R assay, a well characterized assay sensitive to DNA strand breaks, and comet assay. Paradoxically, their consumption does not lead to the kind of widespread cellular toxicity and acute disease that might be expected from genotoxic exposure. Existing physiological mechanisms could limit DNA damage from dietary injurants. Serum albumin and salivary α-amylase are known to bind EGCG. Salivary α-amylase, serum albumin, and myoglobin, but not salivary proline-rich proteins, reduced damage from tea, coffee, and PLPs, but did not inhibit damage from the chemotherapeutics etoposide and camptothecin. This represents a novel function for saliva in addition to its known functions including protection against tannins. Cell populations administered repeated pyrogallol exposures had abatement of measured DNA damage by two weeks, indicating an innate cellular adaptation. We suggest that layers of physiological protections may exist toward natural dietary products to which animals have had high-level exposure over evolution. Copyright © 2014 Elsevier Ltd. All rights reserved.
Su, Jingna; Ma, Renqiang; Yin, Xuyuan; Zhou, Xiuxia; Li, Huabin; Wang, Zhiwei
2015-01-01
Studies have demonstrated that curcumin exerts its tumor suppressor function in a variety of human cancers including glioma. However, the exact underlying molecular mechanisms remain obscure. Emerging evidence has revealed that Skp2 (S-phase kinase associated protein 2) plays an oncogenic role in tumorigenesis. Therefore, we aim to determine whether curcumin suppresses the Skp2 expression, leading to the inhibition of cell growth, invasion, induction of apoptosis, and cell cycle arrest. To this end, we conducted multiple methods such as MTT assay, Flow cytometry, Wound healing assay, invasion assay, RT-PCR, Western blotting, and transfection to explore the functions and molecular insights of curcumin in glioma cells. We found that curcumin significantly inhibited cell growth, suppressed cell migration and invasion, induced apoptosis and cell cycle arrest in glioma cells. Furthermore, we observed that overexpression of Skp2 promoted cell growth, migration, and invasion, whereas depletion of Skp2 suppressed cell growth, migration, and invasion and triggered apoptosis in glioma cells. Mechanistically, we defined that curcumin markedly down-regulated Skp2 expression and subsequently up-regulated p57 expression. Moreover, our results demonstrated that curcumin exerts its antitumor activity through inhibition of Skp2 pathway. Collectively, our findings suggest that targeting Skp2 by curcumin could be a promising therapeutic approach for glioma prevention and therapy. PMID:26046466
Pooley, Hannah B.; de Silva, Kumudika; Purdie, Auriol C.; Begg, Douglas J.; Whittington, Richard J.
2016-01-01
ABSTRACT Determining the viability of bacteria is a key outcome of in vitro cellular infection assays. Currently, this is done by culture, which is problematic for fastidious slow-growing bacteria such as Mycobacterium avium subsp. paratuberculosis, where it can take up to 4 months to confirm growth. This study aimed to identify an assay that can rapidly quantify the number of viable M. avium subsp. paratuberculosis cells in a cellular sample. Three commercially available bacterial viability assays along with a modified liquid culture method coupled with high-throughput quantitative PCR growth detection were assessed. Criteria for assessment included the ability of each assay to differentiate live and dead M. avium subsp. paratuberculosis organisms and their accuracy at low bacterial concentrations. Using the culture-based method, M. avium subsp. paratuberculosis growth was reliably detected and quantified within 2 weeks. There was a strong linear association between the 2-week growth rate and the initial inoculum concentration. The number of viable M. avium subsp. paratuberculosis cells in an unknown sample was quantified based on the growth rate, by using growth standards. In contrast, none of the commercially available viability assays were suitable for use with samples from in vitro cellular infection assays. IMPORTANCE Rapid quantification of the viability of Mycobacterium avium subsp. paratuberculosis in samples from in vitro cellular infection assays is important, as it allows these assays to be carried out on a large scale. In vitro cellular infection assays can function as a preliminary screening tool, for vaccine development or antimicrobial screening, and also to extend findings derived from experimental animal trials. Currently, by using culture, it takes up to 4 months to obtain quantifiable results regarding M. avium subsp. paratuberculosis viability after an in vitro infection assay; however, with the quantitative PCR and liquid culture method developed, reliable results can be obtained at 2 weeks. This method will be important for vaccine and antimicrobial screening work, as it will allow a greater number of candidates to be screened in the same amount of time, which will increase the likelihood that a favorable candidate will be found to be subjected to further testing. PMID:27371585
Novel T lymphocyte proliferation assessment using whole mouse cryo-imaging
NASA Astrophysics Data System (ADS)
Wuttisarnwattana, Patiwet; Raza, Syed A.; Eid, Saada; Cooke, Kenneth R.; Wilson, David L.
2014-03-01
New imaging technologies enable one to assess T-cell proliferation, an important feature of the immunological response. However, none of the traditional imaging modalities allow one to examine quantiatively T-cell function with microscopic resolution and single cell sensitivity over an entire mouse. To address this need, we established T-cells proliferation assays using 3D microscopic cryo-imaging. Assays include: (1) biodistribution of T-cells, (2) secondary lymphoid organ (SLO) volume measurement, (3) carboxyfluorescein succinimidyl ester (CFSE) dilution per cell as cells divide. To demonstrate the application, a graft-versus-host-disease (GVHD) model was used. 3D visualization show that T-cells specifically homed to the SLOs (spleen and lymph nodes) as well as GVHD target organs (such as GI-tract, liver, skin and thymus).The spleen was chosen as representative of the SLOs. For spleen size analysis, volumes of red and white pulp were measured. Spleen volumes of the allogeneic mice (with GVHD) were significantly larger than those of the syngeneic mice (without GVHD) at 72 to 120 hours post-transplant. For CFSE dilution approach, we employed color-coded volume rendering and probability density function (PDF) of single cell intensity to assess T-cell proliferation in the spleen. As compared to syngeneic T-cells, the allogeneic T-cells quickly aggregated in the spleen as indicated by increasing of CFSE signal over the first 48 hours. Then they rapidly proliferated as evidenced by reduced CFSE intensity (at 48-96 hours). Results suggest that assays can be used to study GVHD treatments using T-cell proliferation and biodistibution as assays. In summary, this is the first time that we are able to track and visualize T-cells in whole mouse with single cell sensitivity. We believe that our technique can be an alternative choice to traditional in vitro immunological proliferation assays by providing assessment of proliferation in an in vivo model.
Generation of Reduced Nicotinamide Adenine Dinucleotide for Nitrate Reduction in Green Leaves 1
Klepper, Lowell; Flesher, Donna; Hageman, R. H.
1971-01-01
An in vivo assay of nitrate reductase activity was developed by vacuum infiltration of leaf discs or sections with a solution of 0.2 m KNO3 (with or without phosphate buffer, pH 7.5) and incubation of the infiltrated tissue and medium under essentially anaerobic conditions in the dark. Nitrite production, for computing enzyme activity, was determined on aliquots of the incubation media, removed at intervals. By adding, separately, various metabolites of the glycolytic, pentose phosphate, and citric acid pathways to the infiltrating media, it was possible to use the in vivo assay to determine the prime source of reduced nicotinamide adenine dinucleotide (NADH) required by the cytoplasmically located NADH-specific nitrate reductase. It was concluded that sugars that migrate from the chloroplast to the cytoplasm were the prime source of energy and that the oxidation of glyceraldehyde 3-phosphate was ultimately the in vivo source of NADH for nitrate reduction. This conclusion was supported by experiments that included: inhibition studies with iodoacetate; in vitro studies that established the presence and functionality of the requisite enzymes; and studies showing the effect of light (photosynthate) and exogenous carbohydrate on loss of endogenous nitrate from plant tissue. The level of nitrate reductase activity obtained with the in vitro assay is higher (2.5- to 20-fold) than with the in vivo assay for most plant species. The work done to date would indicate that the in vivo assays are proportional to the in vitro assays with respect to ranking genotypes for nitrate-reducing potential of a given species. The in vivo assay is especially useful in studying nitrate assimilation in species like giant ragweed from which only traces of active nitrate reductase can be extracted. PMID:16657841
Marty, M Sue; O'Connor, John C
2014-02-01
In 2009, companies began screening compounds using the US Environmental Protection Agency's Endocrine Disruptor Screening Program (EDSP). EDSP has two tiers: Tier 1 includes 11 assays to identify compounds with potential endocrine activity. This article describes two laboratories' experiences conducting Tier 1 uterotrophic and Hershberger assays. The uterotrophic assay detects estrogen receptor agonists through increases in uterine weight. The advantages of the uterotrophic rat models (immature vs. adult ovariectomized) and exposure routes are discussed. Across 29 studies, relative differences in uterine weights in the vehicle control group and 17α-ethynylestradiol-positive control group were reasonably reproducible. The Hershberger assay detects androgen receptor (AR) agonists, antagonists, and 5α-reductase inhibitors through changes in accessory sex tissue (AST) weights. Across 23 studies, AST weights were relatively reproducible for the vehicle groups (baseline), testosterone propionate (TP) groups (androgenic response), and flutamide + TP groups (antiandrogenic response). In one laboratory, one and four compounds were positive in the androgenic and antiandrogenic portions of the assay, respectively. Each compound was also positive for AR binding. In the other laboratory, three compounds showed potential antiandrogenic activity, but each compound was negative for AR binding and did not fit the profile for 5α-reductase inhibition. These compounds induced hepatic enzymes that enhanced testosterone metabolism/clearance, resulting in lower testosterone and decreased capacity to maintain AST weights. The Hershberger androgenic and antiandrogenic performance criteria were generally attainable. Overall, the uterotrophic and Hershberger assays were easily adopted and function as described for EDSP screening, although the mode of action for positive results may not be easily determined. © 2014 Wiley Periodicals, Inc.
Regulation of Cell Migration in Breast Cancer
2011-04-01
the wound healing, assay by scarring and Oris plate migration assay, transwell migration assay and live - cell imaging studies. Cell migration capacity...evaluated by the use of techniques that include the wound healing assay by scarring and Oris plate migration assay, transwell migration assay and live - cell imaging studies
Molecular inversion probe assay.
Absalan, Farnaz; Ronaghi, Mostafa
2007-01-01
We have described molecular inversion probe technologies for large-scale genetic analyses. This technique provides a comprehensive and powerful tool for the analysis of genetic variation and enables affordable, large-scale studies that will help uncover the genetic basis of complex disease and explain the individual variation in response to therapeutics. Major applications of the molecular inversion probes (MIP) technologies include targeted genotyping from focused regions to whole-genome studies, and allele quantification of genomic rearrangements. The MIP technology (used in the HapMap project) provides an efficient, scalable, and affordable way to score polymorphisms in case/control populations for genetic studies. The MIP technology provides the highest commercially available multiplexing levels and assay conversion rates for targeted genotyping. This enables more informative, genome-wide studies with either the functional (direct detection) approach or the indirect detection approach.
Zhang, Anqiang; Xiao, Nannan; He, Pengfei; Sun, Peilong
2011-12-01
Boletus edulis is a well-known delicious mushroom. In this study, three crude polysaccharides (BEPF30, BEPF60 and BEPF80) were isolated from the fruiting bodies of B. edulis with boiling water. Chemical and physical characteristics of the three crude polysaccharides were investigated by the combination of chemical and instrumental analysis methods. Their antioxidant activities were investigated in vitro systems including hydroxyl assay, superoxide radical assay, reducing power and chelating activity. Among these three polysaccharides, BEPF60 showed more significant reducing power and chelating activity; and highest inhibitory effects on superoxide radical and hydroxyl radical. These results indicated that polysaccharides extracted from B. edulis might be employed as ingredients in healthy and functional food to alleviate the oxidative stress. Copyright © 2011 Elsevier B.V. All rights reserved.
Szabó, Edit; Türk, Dóra; Telbisz, Ágnes; Kucsma, Nóra; Horváth, Tamás; Szakács, Gergely; Homolya, László; Sarkadi, Balázs; Várady, György
2018-01-01
ABC multidrug transporters are key players in cancer multidrug resistance and in general xenobiotic elimination, thus their functional assays provide important tools for research and diagnostic applications. In this study we have examined the potential interactions of three key human ABC multidrug transporters with PhenGreen diacetate (PGD), a cell permeable fluorescent metal ion indicator. The non-fluorescent, hydrophobic PGD rapidly enters the cells and, after cleavage by cellular esterases, in the absence of quenching metal ions, PhenGreen (PG) becomes highly fluorescent. We found that in cells expressing functional ABCG2, ABCB1, or ABCC1 transporters, cellular PG fluorescence is strongly reduced. This fluorescence signal in the presence of specific transporter inhibitors is increased to the fluorescence levels in the control cells. Thus the PG accumulation assay is a new, unique tool for the parallel determination of the function of the ABCG2, ABCB1, and ABCC1 multidrug transporters. Since PG has very low cellular toxicity, the PG accumulation assay also allows the selection, separation and culturing of selected cell populations expressing either of these transporters.
High content evaluation of shear dependent platelet function in a microfluidic flow assay
Hansen, Ryan R.; Wufsus, Adam R.; Barton, Steven T.; Onasoga, Abimbola A.; Johnson-Paben, Rebecca M.; Neeves, Keith B.
2012-01-01
The high blood volume requirements and low throughput of conventional flow assays for measuring platelet function are unsuitable for drug screening and clinical applications. In this study, we describe a microfluidic flow assay that uses 50 μL of whole blood to measure platelet function on ~300 micropatterned spots of collagen over a range of physiologic shear rates (50–920 s−1). Patterning of collagen thin films (CTF) was achieved using a novel hydrated microcontact stamping method. CTF spots of 20, 50, and 100 μm were defined on glass substrates and consisted of a dense mat of nanoscale collagen fibers (3.74 ± 0.75 nm). We found that a spot size of greater than 20 μm was necessary to support platelet adhesion under flow, suggesting a threshold injury is necessary for stable platelet adhesion. Integrating 50 μm CTF microspots into a multishear microfluidic device yielded a high content assay from which we extracted platelet accumulation metrics (lag time, growth rate, total accumulation) on the spots using Hoffman modulation contrast microscopy. This method has potential broad application in identifying platelet function defects and screening, monitoring and dosing antiplatelet agents. PMID:23001359
Turecek, Peter L; Siekmann, Jürgen; Schwarz, Hans Peter
2002-04-01
For more than two decades, the ristocetin cofactor (RCo) assay, which measures the von Willebrand factor (vWF)-mediated agglutination of platelets in the presence of the antibiotic ristocetin, has been the most common method for measuring the functional activity of vWF. There is, however, general agreement among clinical analysts that this method has major practical disadvantages in performance and reproducibility. Today, collagen-binding assays (CBA) based on the enzyme-linked immunosorbent assay (ELISA) technique that measure the interaction of vWF and collagen are an alternative analytic procedure based on a more physiological function than that of the RCo procedure. We used both assay systems in a comparative study to assess the functional activity of vWF in plasma as well as in therapeutic preparations. We measured RCo activities of plasma from healthy donors and patients with different types of von Willebrand disease (vWD) and of vWF as a drug substance in factor (F) VIII/vWF concentrates using both the aggregometric and the macroscopic methods. In addition, we measured collagen-binding activity (vWF:CB) using a recently developed commercially available CBA system. To investigate the relation between the structure and the functional activity of vWF, we isolated vWF species with different numbers of multimers from FVIII/vWF concentrates by affinity chromatography on immobilized heparin. The vWF:RCo and vWF:CB of the different fractions were measured, and the multimeric structure of vWF was analyzed by sodium dodecyl sulfate (SDS) agarose gel electrophoresis. (vWF:CB and vWF:RCo are part of the nomenclature proposed by the International Society on Thrombosis and Hemostasis Scientific and Standardization Committee [ISTH SSC] subcommittee on von Willebrand factor, in Maastricht, Germany, June 16, 2000.) Measurement of functional vWF activity by CBA can be carried out with substantially higher interassay reproducibility than can measurement of RCo. Both assay systems can be used for diagnosis and subtyping of vWD, but CBA is more sensitive than either of the two RCo methods. The analysis of vWF multimers in the different fractions obtained by affinity chromatography on heparin Sepharose showed that the activity measured both with RCo assay and CBA correlated with the degree of multimerization. Our results suggest that measurement of the functional activity of vWF by the RCo procedure can be replaced by the more reliable CBA, reflecting the physiological hemostatic activity of vWF. The CBA method appears not only to be more sensitive and easier to carry out than the RCo method is but also to have a higher reproducibility and allow better standardization.
Edwards, Thomas; Burke, Patricia A; Smalley, Helen B; Gillies, Liz; Hobbs, Glyn
2014-06-01
A loop-mediated isothermal amplification (LAMP) assay for open reading frame 1 (ORF1) of the glutamine synthetase gene of Neisseria gonorrhoeae was able to tolerate urea concentrations of ≤ 1.8 M, compared with a PCR assay that was functional at concentrations of <100 mM. The LAMP assay was as sensitive as the PCR assay while being faster and simpler to perform. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Trugilho, Monique Ramos de Oliveira; Hottz, Eugenio Damaceno; Brunoro, Giselle Villa Flor; Teixeira-Ferreira, André; Carvalho, Paulo Costa; Salazar, Gustavo Adolfo; Zimmerman, Guy A; Bozza, Fernando A; Bozza, Patrícia T; Perales, Jonas
2017-05-01
Dengue is the most prevalent human arbovirus disease worldwide. Dengue virus (DENV) infection causes syndromes varying from self-limiting febrile illness to severe dengue. Although dengue pathophysiology is not completely understood, it is widely accepted that increased inflammation plays important roles in dengue pathogenesis. Platelets are blood cells classically known as effectors of hemostasis which have been increasingly recognized to have major immune and inflammatory activities. Nevertheless, the phenotype and effector functions of platelets in dengue pathogenesis are not completely understood. Here we used quantitative proteomics to investigate the protein content of platelets in clinical samples from patients with dengue compared to platelets from healthy donors. Our assays revealed a set of 252 differentially abundant proteins. In silico analyses associated these proteins with key molecular events including platelet activation and inflammatory responses, and with events not previously attributed to platelets during dengue infection including antigen processing and presentation, proteasome activity, and expression of histones. From these results, we conducted functional assays using samples from a larger cohort of patients and demonstrated evidence for platelet activation indicated by P-selectin (CD62P) translocation and secretion of granule-stored chemokines by platelets. In addition, we found evidence that DENV infection triggers HLA class I synthesis and surface expression by a mechanism depending on functional proteasome activity. Furthermore, we demonstrate that cell-free histone H2A released during dengue infection binds to platelets, increasing platelet activation. These findings are consistent with functional importance of HLA class I, proteasome subunits, and histones that we found exclusively in proteome analysis of platelets in samples from dengue patients. Our study provides the first in-depth characterization of the platelet proteome in dengue, and sheds light on new mechanisms of platelet activation and platelet-mediated immune and inflammatory responses.
Teixeira-Ferreira, André; Carvalho, Paulo Costa; Salazar, Gustavo Adolfo; Zimmerman, Guy A.; Perales, Jonas
2017-01-01
Dengue is the most prevalent human arbovirus disease worldwide. Dengue virus (DENV) infection causes syndromes varying from self-limiting febrile illness to severe dengue. Although dengue pathophysiology is not completely understood, it is widely accepted that increased inflammation plays important roles in dengue pathogenesis. Platelets are blood cells classically known as effectors of hemostasis which have been increasingly recognized to have major immune and inflammatory activities. Nevertheless, the phenotype and effector functions of platelets in dengue pathogenesis are not completely understood. Here we used quantitative proteomics to investigate the protein content of platelets in clinical samples from patients with dengue compared to platelets from healthy donors. Our assays revealed a set of 252 differentially abundant proteins. In silico analyses associated these proteins with key molecular events including platelet activation and inflammatory responses, and with events not previously attributed to platelets during dengue infection including antigen processing and presentation, proteasome activity, and expression of histones. From these results, we conducted functional assays using samples from a larger cohort of patients and demonstrated evidence for platelet activation indicated by P-selectin (CD62P) translocation and secretion of granule-stored chemokines by platelets. In addition, we found evidence that DENV infection triggers HLA class I synthesis and surface expression by a mechanism depending on functional proteasome activity. Furthermore, we demonstrate that cell-free histone H2A released during dengue infection binds to platelets, increasing platelet activation. These findings are consistent with functional importance of HLA class I, proteasome subunits, and histones that we found exclusively in proteome analysis of platelets in samples from dengue patients. Our study provides the first in-depth characterization of the platelet proteome in dengue, and sheds light on new mechanisms of platelet activation and platelet-mediated immune and inflammatory responses. PMID:28542641
Survey Field Methods for Expanded Biospecimen and Biomeasure Collection in NSHAP Wave 2
Jaszczak, Angela; Hoffmann, Joscelyn N.; You, Hannah M.; Kern, David W.; Pagel, Kristina; McPhillips, Jane; Schumm, L. Philip; Dale, William; Huang, Elbert S.; McClintock, Martha K.
2014-01-01
Objectives. The National Social Life, Health, and Aging Project is a nationally representative, longitudinal survey of older adults. A main component is the collection of biomeasures to objectively assess physiological status relevant to psychosocial variables, aging conditions, and disease. Wave 2 added novel biomeasures, refined those collected in Wave 1, and provides a reference for the collection protocols and strategy common to the biomeasures. The effects of aging, gender, and their interaction are presented in the specific biomeasure papers included in this Special Issue. Method. A transdisciplinary working group expanded the biomeasures collected to include physiological, genetic, anthropometric, functional, neuropsychological, and sensory measures, yielding 37 more than in Wave 1. All were designed for collection in respondents’ homes by nonmedically trained field interviewers. Results. Both repeated and novel biomeasures were successful. Those in Wave 1 were refined to improve quality, and ensure consistency for longitudinal analysis. Four new biospecimens yielded 27 novel measures. During the interview, 19 biomeasures were recorded covering anthropometric, functional, neuropsychological, and sensory measures and actigraphy provided data on activity and sleep. Discussion. Improved field methods included in-home collection, temperature control, establishment of a central survey biomeasure laboratory, and shipping, all of which were crucial for successful collection by the field interviewers and accurate laboratory assay of the biomeasures (92.1% average co-operation rate and 97.3% average assay success rate). Developed for home interviews, these biomeasures are readily applicable to other surveys. PMID:25360025
Kovalchuk, Nataliya; Chew, William; Sornaraj, Pradeep; Borisjuk, Nikolai; Yang, Nannan; Singh, Rohan; Bazanova, Natalia; Shavrukov, Yuri; Guendel, Andre; Munz, Eberhard; Borisjuk, Ljudmilla; Langridge, Peter; Hrmova, Maria; Lopato, Sergiy
2016-07-01
Homeodomain leucine zipper class I (HD-Zip I) transcription factors (TFs) play key roles in the regulation of plant growth and development under stresses. Functions of the TaHDZipI-2 gene isolated from the endosperm of developing wheat grain were revealed. Molecular characterization of TaHDZipI-2 protein included studies of its dimerisation, protein-DNA interactions and gene activation properties using pull-down assays, in-yeast methods and transient expression assays in wheat cells. The analysis of TaHDZipI-2 gene functions was performed using transgenic barley plants. It included comparison of developmental phenotypes, yield components, grain quality, frost tolerance and the levels of expression of potential target genes in transgenic and control plants. Transgenic TaHDZipI-2 lines showed characteristic phenotypic features that included reduced growth rates, reduced biomass, early flowering, light-coloured leaves and narrowly elongated spikes. Transgenic lines produced 25-40% more seeds per spike than control plants, but with 50-60% smaller grain size. In vivo lipid imaging exposed changes in the distribution of lipids between the embryo and endosperm in transgenic seeds. Transgenic lines were significantly more tolerant to frost than control plants. Our data suggest the role of TaHDZipI-2 in controlling several key processes underlying frost tolerance, transition to flowering and spike development. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
Watanabe, Takahito; Noji, Sumihare; Mito, Taro
2016-01-01
Hemimetabolous, or incompletely metamorphosing, insects are phylogenetically basal. These insects include many deleterious species. The cricket, Gryllus bimaculatus, is an emerging model for hemimetabolous insects, based on the success of RNA interference (RNAi)-based gene-functional analyses and transgenic technology. Taking advantage of genome-editing technologies in this species would greatly promote functional genomics studies. Genome editing using transcription activator-like effector nucleases (TALENs) has proven to be an effective method for site-specific genome manipulation in various species. TALENs are artificial nucleases that are capable of inducing DNA double-strand breaks into specified target sequences. Here, we describe a protocol for TALEN-based gene knockout in G. bimaculatus, including a mutant selection scheme via mutation detection assays, for generating homozygous knockout organisms.
Higdon, Lauren E; Lee, Karim; Tang, Qizhi; Maltzman, Jonathan S
2016-09-01
Research on human immune responses frequently involves the use of peripheral blood mononuclear cells (PBMC) immediately, or at significantly delayed timepoints, after collection. This requires PBMC isolation from whole blood and cryopreservation for some applications. It is important to standardize protocols for blood collection, PBMC isolation, cryopreservation, and thawing that maximize survival and functionality of PBMC at the time of analysis. This resource includes detailed protocols describing blood collection tubes, isolation of PBMC using a density gradient, cryopreservation of PBMC, and thawing of cells as well as preparation for functional assays. For each protocol, we include important considerations, such as timing, storage temperatures, and freezing rate. In addition, we provide alternatives so that researchers can make informed decisions in determining the optimal protocol for their application.
Aging Studies in Drosophila melanogaster
Sun, Yaning; Yolitz, Jason; Wang, Cecilia; Spangler, Edward; Zhan, Ming; Zou, Sige
2015-01-01
Summary Drosophila is a genetically tractable system ideal for investigating the mechanisms of aging and developing interventions for promoting healthy aging. Here we describe methods commonly used in Drosophila aging research. These include basic approaches for preparation of diets and measurements of lifespan, food intake and reproductive output. We also describe some commonly used assays to measure changes in physiological and behavioral functions of Drosophila in aging, such as stress resistance and locomotor activity. PMID:23929099
Morwick, Tina; Büttner, Frank H; Cywin, Charles L; Dahmann, Georg; Hickey, Eugene; Jakes, Scott; Kaplita, Paul; Kashem, Mohammed A; Kerr, Steven; Kugler, Stanley; Mao, Wang; Marshall, Daniel; Paw, Zofia; Shih, Cheng-Kon; Wu, Frank; Young, Erick
2010-01-28
A highly selective series of bisbenzamide inhibitors of Rho-associated coiled-coil forming protein kinase (ROCK) and a related ureidobenzamide series, both identified by high throughput screening (HTS), are described. Details of the hit validation and lead generation process, including structure-activity relationship (SAR) studies, a selectivity assessment, target-independent profiling (TIP) results, and an analysis of functional activity using a rat aortic ring assay are discussed.
Nuclear pore proteins are involved in the biogenesis of functional tRNA.
Simos, G; Tekotte, H; Grosjean, H; Segref, A; Sharma, K; Tollervey, D; Hurt, E C
1996-05-01
Los1p and Pus1p, which are involved in tRNA biogenesis, were found in a genetic screen for components interacting with the nuclear pore protein Nsp1p. LOS1, PUS1 and NSP1 interact functionally, since the combination of mutations in the three genes causes synthetic lethality. Pus1p is an intranuclear protein which exhibits a nucleotide-specific and intron-dependent tRNA pseudouridine synthase activity. Los1p was shown previously to be required for efficient pre-tRNA splicing; we report here that Los1p localizes to the nuclear pores and is linked functionally to several components of the tRNA biogenesis machinery including Pus1p and Tfc4p. When the formation of functional tRNA was analyzed by an in vivo assay, the los1(-) pus1(-) double mutant, as well as several thermosensitive nucleoporin mutants including nsp1, nup116, nup133 and nup85, exhibited loss of suppressor tRNA activity even at permissive temperatures. These data suggest that nuclear pore proteins are required for the biogenesis of functional tRNA.
Galipeau, Jacques; Krampera, Mauro; Barrett, John; Dazzi, Francesco; Deans, Robert J; DeBruijn, Joost; Dominici, Massimo; Fibbe, Willem E; Gee, Adrian P; Gimble, Jeffery M; Hematti, Peiman; Koh, Mickey B C; LeBlanc, Katarina; Martin, Ivan; McNiece, Ian K; Mendicino, Michael; Oh, Steve; Ortiz, Luis; Phinney, Donald G; Planat, Valerie; Shi, Yufang; Stroncek, David F; Viswanathan, Sowmya; Weiss, Daniel J; Sensebe, Luc
2016-02-01
Mesenchymal stromal cells (MSCs) as a pharmaceutical for ailments characterized by pathogenic autoimmune, alloimmune and inflammatory processes now cover the spectrum of early- to late-phase clinical trials in both industry and academic sponsored studies. There is a broad consensus that despite different tissue sourcing and varied culture expansion protocols, human MSC-like cell products likely share fundamental mechanisms of action mediating their anti-inflammatory and tissue repair functionalities. Identification of functional markers of potency and reduction to practice of standardized, easily deployable methods of measurements of such would benefit the field. This would satisfy both mechanistic research as well as development of release potency assays to meet Regulatory Authority requirements for conduct of advanced clinical studies and their eventual registration. In response to this unmet need, the International Society for Cellular Therapy (ISCT) addressed the issue at an international workshop in May 2015 as part of the 21st ISCT annual meeting in Las Vegas. The scope of the workshop was focused on discussing potency assays germane to immunomodulation by MSC-like products in clinical indications targeting immune disorders. We here provide consensus perspective arising from this forum. We propose that focused analysis of selected MSC markers robustly deployed by in vitro licensing and metricized with a matrix of assays should be responsive to requirements from Regulatory Authorities. Workshop participants identified three preferred analytic methods that could inform a matrix assay approach: quantitative RNA analysis of selected gene products; flow cytometry analysis of functionally relevant surface markers and protein-based assay of secretome. We also advocate that potency assays acceptable to the Regulatory Authorities be rendered publicly accessible in an "open-access" manner, such as through publication or database collection. Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.
Koch, Cameron J
2018-05-10
Hypoxia in tumors has many well-characterized effects that are known to prevent optimal cancer treatment. Despite the existence of a large number of assays that have supported hypoxia as an important diagnostic, there is no routine clinical assay in use, and anti-hypoxia therapies have often not included parallel hypoxia measurements. Even with a functioning hypoxia assay, it is difficult to match the oxygen dependence of treatment resistance to that of the assay, and this mismatch can vary substantially from assay to assay and even from tumor to tumor [e.g., caused by endogenous variations in non-protein sulfhydryls (NPSH)]. An underlying concern is the current inability to measure the three types of hypoxia; in particular, cycling hypoxia can affect all aspects of detection and treatment strategy. Here we present data that help validate a new two-component hypoxia assay recently suggested by our laboratory. This assay incorporates the long-term bioreduction of the 2-nitroimidazole, EF5, and the short-term production of γ-H2AX (e.g., time of ionizing radiation exposure). The former can be calibrated to provide the average tissue pO 2 over the EF5 exposure time while the latter provides the combined sum of microenvironmental radiation response modifiers (e.g., oxygen and NPSH) at the time of irradiation. Importantly, formation of γ-H2AX is not dependent on blood flow, while EF5 binding is only minimally so, due to the rapid and extensive diffusion characteristics of lipophilic compounds. While both individual assays have their limitations, which are addressed in this article, their combination can dissect the type of hypoxia present. In particular, a mismatch between the two assays can directly detect cycling hypoxia in a therapeutically relevant manner. Preliminary use of this two-component assay in small PC3 tumors showed essentially no binding of EF5. Similarly, there were no tumor regions (for uniform irradiation with 12 Gy) with the low levels of γ-H2AX expected for a condition of cycling hypoxia. Thus, both assays were consistent with an essentially aerobic, radiation-responsive tumor. In a larger PC3 tumor, all regions of high EF5 binding had low levels of γ-H2AX.
Digital Microfluidics Sample Analyzer
NASA Technical Reports Server (NTRS)
Pollack, Michael G.; Srinivasan, Vijay; Eckhardt, Allen; Paik, Philip Y.; Sudarsan, Arjun; Shenderov, Alex; Hua, Zhishan; Pamula, Vamsee K.
2010-01-01
Three innovations address the needs of the medical world with regard to microfluidic manipulation and testing of physiological samples in ways that can benefit point-of-care needs for patients such as premature infants, for which drawing of blood for continuous tests can be life-threatening in their own right, and for expedited results. A chip with sample injection elements, reservoirs (and waste), droplet formation structures, fluidic pathways, mixing areas, and optical detection sites, was fabricated to test the various components of the microfluidic platform, both individually and in integrated fashion. The droplet control system permits a user to control droplet microactuator system functions, such as droplet operations and detector operations. Also, the programming system allows a user to develop software routines for controlling droplet microactuator system functions, such as droplet operations and detector operations. A chip is incorporated into the system with a controller, a detector, input and output devices, and software. A novel filler fluid formulation is used for the transport of droplets with high protein concentrations. Novel assemblies for detection of photons from an on-chip droplet are present, as well as novel systems for conducting various assays, such as immunoassays and PCR (polymerase chain reaction). The lab-on-a-chip (a.k.a., lab-on-a-printed-circuit board) processes physiological samples and comprises a system for automated, multi-analyte measurements using sub-microliter samples of human serum. The invention also relates to a diagnostic chip and system including the chip that performs many of the routine operations of a central labbased chemistry analyzer, integrating, for example, colorimetric assays (e.g., for proteins), chemiluminescence/fluorescence assays (e.g., for enzymes, electrolytes, and gases), and/or conductometric assays (e.g., for hematocrit on plasma and whole blood) on a single chip platform.
Average of delta: a new quality control tool for clinical laboratories.
Jones, Graham R D
2016-01-01
Average of normals is a tool used to control assay performance using the average of a series of results from patients' samples. Delta checking is a process of identifying errors in individual patient results by reviewing the difference from previous results of the same patient. This paper introduces a novel alternate approach, average of delta, which combines these concepts to use the average of a number of sequential delta values to identify changes in assay performance. Models for average of delta and average of normals were developed in a spreadsheet application. The model assessed the expected scatter of average of delta and average of normals functions and the effect of assay bias for different values of analytical imprecision and within- and between-subject biological variation and the number of samples included in the calculations. The final assessment was the number of patients' samples required to identify an added bias with 90% certainty. The model demonstrated that with larger numbers of delta values, the average of delta function was tighter (lower coefficient of variation). The optimal number of samples for bias detection with average of delta was likely to be between 5 and 20 for most settings and that average of delta outperformed average of normals when the within-subject biological variation was small relative to the between-subject variation. Average of delta provides a possible additional assay quality control tool which theoretical modelling predicts may be more valuable than average of normals for analytes where the group biological variation is wide compared with within-subject variation and where there is a high rate of repeat testing in the laboratory patient population. © The Author(s) 2015.
In vivo monitoring of urea cycle activity with (13)C-acetate as a tracer of ureagenesis.
Opladen, Thomas; Lindner, Martin; Das, Anibh M; Marquardt, Thorsten; Khan, Aneal; Emre, Sukru H; Burton, Barbara K; Barshop, Bruce A; Böhm, Thea; Meyburg, Jochen; Zangerl, Kathrin; Mayorandan, Sebene; Burgard, Peter; Dürr, Ulrich H N; Rosenkranz, Bernd; Rennecke, Jörg; Derbinski, Jens; Yudkoff, Marc; Hoffmann, Georg F
2016-01-01
The hepatic urea cycle is the main metabolic pathway for detoxification of ammonia. Inborn errors of urea cycle function present with severe hyperammonemia and a high case fatality rate. Long-term prognosis depends on the residual activity of the defective enzyme. A reliable method to estimate urea cycle activity in-vivo does not exist yet. The aim of this study was to evaluate a practical method to quantify (13)C-urea production as a marker for urea cycle function in healthy subjects, patients with confirmed urea cycle defect (UCD) and asymptomatic carriers of UCD mutations. (13)C-labeled sodium acetate was applied orally in a single dose to 47 subjects (10 healthy subjects, 28 symptomatic patients, 9 asymptomatic carriers). The oral (13)C-ureagenesis assay is a safe method. While healthy subjects and asymptomatic carriers did not differ with regards to kinetic variables for urea cycle flux, symptomatic patients had lower (13)C-plasma urea levels. Although the (13)C-ureagenesis assay revealed no significant differences between individual urea cycle enzyme defects, it reflected the heterogeneity between different clinical subgroups, including male neonatal onset ornithine carbamoyltransferase deficiency. Applying the (13)C-urea area under the curve can differentiate between severe from more mildly affected neonates. Late onset patients differ significantly from neonates, carriers and healthy subjects. This study evaluated the oral (13)C-ureagenesis assay as a sensitive in-vivo measure for ureagenesis capacity. The assay has the potential to become a reliable tool to differentiate UCD patient subgroups, follow changes in ureagenesis capacity and could be helpful in monitoring novel therapies of UCD. Copyright © 2015 Elsevier Inc. All rights reserved.
Peters, R T; Toby, G; Lu, Q; Liu, T; Kulman, J D; Low, S C; Bitonti, A J; Pierce, G F
2013-01-01
Hemophilia A results from a deficiency in factor VIII activity. Current treatment regimens require frequent dosing, owing to the short half-life of FVIII. A recombinant FVIII-Fc fusion protein (rFVIIIFc) was molecularly engineered to increase the half-life of FVIII, by 1.5-2-fold, in several preclinical animal models and humans. To perform a biochemical and functional in vitro characterization of rFVIIIFc, with existing FVIII products as comparators. rFVIIIFc was examined by utilizing a series of structural and analytic assays, including mass spectrometry following lysyl endopeptidase or thrombin digestion. rFVIIIFc activity was determined in both one-stage clotting (activated partial thromboplastin time) and chromogenic activity assays, in the context of the FXase complex with purified components, and in both in vitro and ex vivo rotational thromboelastometry (ROTEM) assays performed in whole blood. rFVIIIFc contained the predicted primary structure and post-translational modifications, with an FVIII moiety that was similar to other recombinant FVIII products. The von Willebrand factor-binding and specific activity of rFVIIIFc were also found to be similar to those of other recombinant FVIII molecules. Both chromogenic and one-stage assays of rFVIIIFc gave similar results. Ex vivo ROTEM studies demonstrated that circulating rFVIIIFc activity was prolonged in mice with hemophilia A in comparison with B-domain-deleted or full-length FVIII. Clot parameters at early time points were similar to those for FVIII, whereas rFVIIIFc showed prolonged improvement of clot formation. rFVIIIFc maintains normal FVIII interactions with other proteins necessary for its activity, with prolonged in vivo activity, owing to fusion with the Fc region of IgG(1) . © 2012 International Society on Thrombosis and Haemostasis.
Guan, Qingdong; Li, Yun; Shpiruk, Tanner; Bhagwat, Swaroop; Wall, Donna A
2018-05-01
Establishment of a potency assay in the manufacturing of clinical-grade mesenchymal stromal cells (MSCs) has been a challenge due to issues of relevance to function, timeline and variability of responder cells. In this study, we attempted to develop a potency assay for MSCs. Clinical-grade bone marrow-derived MSCs were manufactured. The phenotype and immunosuppressive functions of the MSCs were evaluated based on the International Society for Cellular Therapy guidelines. Resting MSCs licensed by interferon (IFN)-γ exposure overnight were evaluated for changes in immune suppression and immune-relevant proteins. The relationship of immune-relevant protein expression with immunosuppression of MSCs was analyzed. MSC supressed third-party T-lymphocyte proliferation with high inter-donor and inter-test variability. The suppression of T-lymphocyte proliferation by IFN-γ-licensed MSCs correlated with that by resting MSCs. Many cellular proteins were up-regulated after IFN-γ exposure, including indoleamine 2,3-dioxygenase 1 (IDO-1), programmed death ligand 1 (PD-L1), vascular cell adhesion molecule 1 (VCAM-1), intercellular adhesion molecule 1 (ICAM-1) and bone marrow stromal antigen 2 (BST-2). The expression levels of IDO-1 and PD-L1 on licensed MSCs, not VCAM-1, ICAM-1 or BST-2 on licensed MSCs, correlated with MSC suppression of third-party T-cell proliferation. A flow cytometry-based assay of MSCs post-IFN-γ exposure measuring expression of intracellular protein IDO-1 and cell surface protein PD-L1 captures two mechanisms of suppression and offers the potential of a relevant, rapid assay for MSC-mediated immune suppression that would fit with the manufacturing process. Copyright © 2018 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.
Genschmer, Kristopher R.; Accavitti-Loper, Mary Ann; Briles, David E.
2013-01-01
Streptococcus pneumoniae causes otitis media, meningitis and pneumonia in patients worldwide; predominantly affecting young children, the elderly, and the immune compromised. Current vaccines against invasive pneumococcal disease are based on the polysaccharide capsules of the most clinically relevant serotypes. Due to serotype replacement, non-vaccine serotypes of S. pneumoniae have become more clinically relevant and as a result pneumococcal vaccines are becoming increasingly complex. These events emphasize the need to evaluate the potential for pneumococcal cross-reactive proteins to contribute to future vaccines. Antibody elicited by the immunization of humans with pneumococcal surface protein A (PspA) can passively protect mice from infection. However, robust in vitro functional assays for antibody to PspA are not available to predict the protective capacity of immune serum. For polysaccharide based vaccines, a standardized opsonophagocytosis killing assay (OPKA) is used. Antibody to PspA, however, does not work well in the standard OPKA. The present studies take advantage of past observations that phagocytosis is more efficient on tissue surfaces than in solution. In a modified surface killing assay (MSKA), monoclonal antibody to PspA, in the presence of complement, opsonized pneumococci for killing by phagocytes on an agar surface. Five monoclonal antibodies to PspA were tested; three demonstrated increased amounts of killing compared to the diluent control and protected mice by passive protection against type 3 pneumococci. The two antibodies that were not functional in the MSKA also failed to protect mice. Thus, an MSKA might be useful as a functional assay for immunity to PspA. PMID:24211169
Zoia, Andrea; Augusto, Monica; Drigo, Michele; Caldin, Marco
2012-11-15
To determine whether dogs with ascites secondary to right-sided congestive heart failure (CHF) have bleeding disorders associated with hypofibrinogenemia and discordant plasma fibrin-fibrinogen degradation products (FDPs) and D-dimer assay results (ie, a circulating concentration of FDPs higher than the reference range and a circulating concentration of D-dimer within the reference range). Retrospective case-control study. 80 client-owned dogs. Dogs with ascites secondary to right-sided CHF (group 1; n = 20), unhealthy dogs without cardiac disease (group 2; 40), and dogs with left-sided CHF (group 3; 20) were included in the study. Urine bile acids-to-creatinine concentration ratios were calculated as a marker of liver function. Differences among groups regarding coagulation profile analysis results and prevalence of discordant FDPs and D-dimer assay results were determined. No significant differences were detected among the 3 groups regarding urine bile acids-to-creatinine concentration ratios. Plasma fibrinogen concentration was significantly lower for group 1 versus groups 2 or 3. Prevalence of discordant FDPs and D-dimer assay results was significantly higher for group 1 versus groups 2 or 3. Eighteen group 1 dogs had discordant FDPs and D-dimer assay results. Ten of these dogs had concurrent hypofibrinogenemia, 2 of which had clinical signs of bleeding. Only 10 dogs in groups 2 or 3 had discordant FDPs and D-dimer assay results; none of these dogs had hypofibrinogenemia or clinical signs of bleeding. Dogs with right-sided CHF and ascites may be at increased risk for primary hyperfibrinogenolysis (ie, hypofibrinogenemia and discordant FDPs and D-dimer assay results).
Development of an opsonophagocytic killing assay for group a streptococcus.
Jones, Scott; Moreland, Nicole J; Zancolli, Marta; Raynes, Jeremy; Loh, Jacelyn M S; Smeesters, Pierre R; Sriskandan, Shiranee; Carapetis, Jonathan R; Fraser, John D; Goldblatt, David
2018-05-15
Group A Streptococcus (GAS) or Streptococcus pyogenes is responsible for an estimated 500,000 deaths worldwide each year. Protection against GAS infection is thought to be mediated by phagocytosis, enhanced by bacteria-specific antibody. There are no licenced GAS vaccines, despite many promising candidates in preclinical and early stage clinical development, the most advanced of which are based on the GAS M-protein. Vaccine progress has been hindered, in part, by the lack of a standardised functional assay suitable for vaccine evaluation. Current assays, developed over 50 years ago, rely on non-immune human whole blood as a source of neutrophils and complement. Variations in complement and neutrophil activity between donors result in variable data that is difficult to interpret. We have developed an opsonophagocytic killing assay (OPKA) for GAS that utilises dimethylformamide (DMF)-differentiated human promyelocytic leukemia cells (HL-60) as a source of neutrophils and baby rabbit complement, thus removing the major sources of variation in current assays. We have standardised the OPKA for several clinically relevant GAS strain types (emm1, emm6 and emm12) and have shown antibody-specific killing for each emm-type using M-protein specific rabbit antisera. Specificity was demonstrated by pre-incubation of the antisera with homologous M-protein antigens that blocked antibody-specific killing. Additional qualifications of the GAS OPKA, including the assessment of the accuracy, precision, linearity and the lower limit of quantification, were also performed. This GAS OPKA assay has the potential to provide a robust and reproducible platform to accelerate GAS vaccine development. Copyright © 2018 Elsevier Ltd. All rights reserved.
High-content adhesion assay to address limited cell samples†
Warrick, Jay W.; Young, Edmond W. K.; Schmuck, Eric G.; Saupe, Kurt W.
2013-01-01
Cell adhesion is a broad topic in cell biology that involves physical interactions between cells and other cells or the surrounding extracellular matrix, and is implicated in major research areas including cancer, development, tissue engineering, and regenerative medicine. While current methods have contributed significantly to our understanding of cell adhesion, these methods are unsuitable for tackling many biological questions requiring intermediate numbers of cells (102–105), including small animal biopsies, clinical samples, and rare cell isolates. To overcome this fundamental limitation, we developed a new assay to quantify the adhesion of ~102–103 cells at a time on engineered substrates, and examined the adhesion strength and population heterogeneity via distribution-based modeling. We validated the platform by testing adhesion strength of cancer cells from three different cancer types (breast, prostate, and multiple myeloma) on both IL-1β activated and non-activated endothelial monolayers, and observed significantly increased adhesion for each cancer cell type upon endothelial activation, while identifying and quantifying distinct subpopulations of cell-substrate interactions. We then applied the assay to characterize adhesion of primary bone marrow stromal cells to different cardiac fibroblast-derived matrix substrates to demonstrate the ability to study limited cell populations in the context of cardiac cell-based therapies. Overall, these results demonstrate the sensitivity and robustness of the assay as well as its ability to enable extraction of high content, functional data from limited and potentially rare primary samples. We anticipate this method will enable a new class of biological studies with potential impact in basic and translational research. PMID:23426645
International Validation of Two Human Recombinant Estrogen Receptor (ERa) Binding Assays
An international validation study has been successfully completed for 2 competitive binding assays using human recombinant ERa. Assays evaluated included the Freyberger-Wilson (FW) assay using a full length human ER, and the Chemical Evaluation and Research Institute (CERI) assay...
Aw, Wen C.; Garvin, Michael R.; Melvin, Richard G.
2017-01-01
Here we determine the sex-specific influence of mtDNA type (mitotype) and diet on mitochondrial functions and physiology in two Drosophila melanogaster lines. In many species, males and females differ in aspects of their energy production. These sex-specific influences may be caused by differences in evolutionary history and physiological functions. We predicted the influence of mtDNA mutations should be stronger in males than females as a result of the organelle’s maternal mode of inheritance in the majority of metazoans. In contrast, we predicted the influence of diet would be greater in females due to higher metabolic flexibility. We included four diets that differed in their protein: carbohydrate (P:C) ratios as they are the two-major energy-yielding macronutrients in the fly diet. We assayed four mitochondrial function traits (Complex I oxidative phosphorylation, reactive oxygen species production, superoxide dismutase activity, and mtDNA copy number) and four physiological traits (fecundity, longevity, lipid content, and starvation resistance). Traits were assayed at 11 d and 25 d of age. Consistent with predictions we observe that the mitotype influenced males more than females supporting the hypothesis of a sex-specific selective sieve in the mitochondrial genome caused by the maternal inheritance of mitochondria. Also, consistent with predictions, we found that the diet influenced females more than males. PMID:29166659
Deletion of ultraconserved elements yields viable mice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahituv, Nadav; Zhu, Yiwen; Visel, Axel
2007-07-15
Ultraconserved elements have been suggested to retainextended perfect sequence identity between the human, mouse, and ratgenomes due to essential functional properties. To investigate thenecessities of these elements in vivo, we removed four non-codingultraconserved elements (ranging in length from 222 to 731 base pairs)from the mouse genome. To maximize the likelihood of observing aphenotype, we chose to delete elements that function as enhancers in amouse transgenic assay and that are near genes that exhibit markedphenotypes both when completely inactivated in the mouse as well as whentheir expression is altered due to other genomic modifications.Remarkably, all four resulting lines of mice lackingmore » these ultraconservedelements were viable and fertile, and failed to reveal any criticalabnormalities when assayed for a variety of phenotypes including growth,longevity, pathology and metabolism. In addition more targeted screens,informed by the abnormalities observed in mice where genes in proximityto the investigated elements had been altered, also failed to revealnotable abnormalities. These results, while not inclusive of all thepossible phenotypic impact of the deleted sequences, indicate thatextreme sequence constraint does not necessarily reflect crucialfunctions required for viability.« less
Morigaki, Kenichi; Mizutani, Kazuyuki; Saito, Makoto; Okazaki, Takashi; Nakajima, Yoshihiro; Tatsu, Yoshiro; Imaishi, Hiromasa
2013-02-26
We describe a stable and functional model biological membrane based on a polymerized lipid bilayer with a chemically modified surface. A polymerized lipid bilayer was formed from a mixture of two diacetylene-containing phospholipids, 1,2-bis(10,12-tricosadiynoyl)-sn-glycero-3-phosphocholine (DiynePC) and 1,2-bis(10,12-tricosadiynoyl)-sn-glycero-3-phosphoethanolamine (DiynePE). DiynePC formed a stable bilayer structure, whereas the ethanolamine headgroup of DiynePE enabled functional molecules to be grafted onto the membrane surface. Copolymerization of DiynePC and DiynePE resulted in a robust bilayer. Functionalization of the polymeric bilayer provided a route to a robust and biomimetic surface that can be linked with biomolecules, cells, and three-dimensional (3D) microstructures. Biotin and peptides were grafted onto the polymeric bilayer for attaching streptavidin and cultured mammalian cells by molecular recognition, respectively. Nonspecific adsorption of proteins and cells on polymeric bilayers was minimum. DiynePE was also used to attach a microstructure made of an elastomer (polydimethylsiloxan: PDMS) onto the membrane, forming a confined aqueous solution between the two surfaces. The microcompartment enabled us to assay the activity of a membrane-bound enzyme (cyochrome P450). Natural (fluid) lipid bilayers were incorporated together with membrane-bound proteins by lithographically polymerizing DiynePC/DiynePE bilayers. The hybrid membrane of functionalized polymeric bilayers and fluid bilayers offers a novel platform for a wide range of biomedical applications including biosensor, bioassay, cell culture, and cell-based assay.
G protein-coupled receptor internalization assays in the high-content screening format.
Haasen, Dorothea; Schnapp, Andreas; Valler, Martin J; Heilker, Ralf
2006-01-01
High-content screening (HCS), a combination of fluorescence microscopic imaging and automated image analysis, has become a frequently applied tool to study test compound effects in cellular disease-modeling systems. This chapter describes the measurement of G protein-coupled receptor (GPCR) internalization in the HCS format using a high-throughput, confocal cellular imaging device. GPCRs are the most successful group of therapeutic targets on the pharmaceutical market. Accordingly, the search for compounds that interfere with GPCR function in a specific and selective way is a major focus of the pharmaceutical industry today. This chapter describes methods for the ligand-induced internalization of GPCRs labeled previously with either a fluorophore-conjugated ligand or an antibody directed against an N-terminal tag of the GPCR. Both labeling techniques produce robust assay formats. Complementary to other functional GPCR drug discovery assays, internalization assays enable a pharmacological analysis of test compounds. We conclude that GPCR internalization assays represent a valuable medium/high-throughput screening format to determine the cellular activity of GPCR ligands.
Antoine, Thomas; Ott, David; Ebell, Katharina; Hansen, Kerrin; Henry, Luc; Becker, Frank; Hannus, Stefan
2016-06-01
G protein-coupled receptors (GPCRs) mediate many important physiological functions and are considered as one of the most successful therapeutic target classes for a wide spectrum of diseases. Drug discovery projects generally benefit from a broad range of experimental approaches for screening compound libraries and for the characterization of binding modes of drug candidates. Owing to the difficulties in solubilizing and purifying GPCRs, assay formats have been so far mainly limited to cell-based functional assays and radioligand binding assays. In this study, we used fluorescence cross-correlation spectroscopy (FCCS) to analyze the interaction of detergent-solubilized receptors to various types of GPCR ligands: endogenous peptides, small molecules, and a large surrogate antagonist represented by a blocking monoclonal antibody. Our work demonstrates the suitability of the homogeneous and time-resolved FCCS assay format for a robust, high-throughput determination of receptor-ligand binding affinities and kinetic rate constants for various therapeutically relevant GPCRs. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Pharmacological profiling of the TRPV3 channel in recombinant and native assays.
Grubisha, Olivera; Mogg, Adrian J; Sorge, Jessica L; Ball, Laura-Jayne; Sanger, Helen; Ruble, Cara L A; Folly, Elizabeth A; Ursu, Daniel; Broad, Lisa M
2014-05-01
Transient receptor potential vanilloid subtype 3 (TRPV3) is implicated in nociception and certain skin conditions. As such, it is an attractive target for pharmaceutical research. Understanding of endogenous TRPV3 function and pharmacology remains elusive as selective compounds and native preparations utilizing higher throughput methodologies are lacking. In this study, we developed medium-throughput recombinant and native cellular assays to assess the detailed pharmacological profile of human, rat and mouse TRPV3 channels. Medium-throughput cellular assays were developed using a Ca(2+) -sensitive dye and a fluorescent imaging plate reader. Human and rat TRPV3 pharmacology was examined in recombinant cell lines, while the mouse 308 keratinocyte cell line was used to assess endogenous TRPV3 activity. A recombinant rat TRPV3 cellular assay was successfully developed after solving a discrepancy in the published rat TRPV3 protein sequence. A medium-throughput, native, mouse TRPV3 keratinocyte assay was also developed and confirmed using genetic approaches. Whereas the recombinant human and rat TRPV3 assays exhibited similar agonist and antagonist profiles, the native mouse assay showed important differences, namely, TRPV3 activity was detected only in the presence of potentiator or during agonist synergy. Furthermore, the native assay was more sensitive to block by some antagonists. Our findings demonstrate similarities but also notable differences in TRPV3 pharmacology between recombinant and native systems. These findings offer insights into TRPV3 function and these assays should aid further research towards developing TRPV3 therapies. © 2013 The British Pharmacological Society.
First 25-hydroxyvitamin D assay for general chemistry analyzers.
Saida, Fakhri B; Chen, Xiaoru; Tran, Kiet; Dou, Chao; Yuan, Chong
2015-03-01
25-Hydroxyvitamin D [25(OH)D], the predominant circulating form of vitamin D, is an accurate indicator of the general vitamin D status of an individual. Because vitamin D deficiencies have been linked to several pathologies (including osteoporosis and rickets), accurate monitoring of 25(OH)D levels is becoming increasingly important in clinical settings. Current 25(OH)D assays are either chromatographic or immunoassay-based assays. These assays include HPLC, liquid chromatography-tandem mass spectrometry (LC-MS/MS), enzyme-immunosorbent, immunochemiluminescence, immunofluorescence and radioimmunoassay. All these assays use heterogeneous formats that require phase separation and special instrumentations. In this article, we present an overview of these assays and introduce the first homogeneous assay of 25(OH)D for use on general chemistry analyzers. A special emphasis is put on the unique challenges posed by the 25(OH)D analyte. These challenges include a low detection limit, the dissociation of the analyte from its serum transporter and the inactivation of various binding proteins without phase separation steps.
Harris, Kate; Aylott, Mike; Cui, Yi; Louttit, James B; McMahon, Nicholas C; Sridhar, Arun
2013-08-01
Human-induced pluripotent stem cell cardiomyocytes (hiPSC-CMs) are a potential source to develop assays for predictive electrophysiological safety screening. Published studies show that the relevant physiology and pharmacology exist but does not show the translation between stem cell cardiomyocyte assays and other preclinical safety screening assays, which is crucial for drug discovery and safety scientists and the regulators. Our studies are the first to show the pharmacology of ion channel blockade and compare them with existing functional cardiac electrophysiology studies. Ten compounds (a mixture of pure hERG [E-4031 and Cisapride], hERG and sodium [Flecainide, Mexiletine, Quinidine, and Terfenadine], calcium channel blockers [Nifedipine and Verapamil], and two proprietary compounds [GSK A and B]) were tested, and results from hiPSC-CMs studied on multielectrode arrays (MEA) were compared with other preclincial models and clinical drug concentrations and effects using integrated risk assessment plots. All ion channel blockers produced (1) functional effects on repolarization and depolarization around the IC25 and IC50 values and (2) excessive blockade of hERG and/or blockade of sodium current precipitated arrhythmias. Our MEA data show that hiPSC-CMs demonstrate relevant pharmacology and show excellent correlations to current functional cardiac electrophysiological studies. Based on these results, MEA assays using iPSC-CMs offer a reliable, cost effective, and surrogate to preclinical in vitro testing, in addition to the 3Rs (refine, reduce, and replace animals in research) benefit.
Antioxidative properties of functional polyphenols and their metabolites assessed by an ORAC assay.
Ishimoto, Hidekazu; Tai, Akihiro; Yoshimura, Morio; Amakura, Yoshiaki; Yoshida, Takashi; Hatano, Tsutomu; Ito, Hideyuki
2012-01-01
We compared the antioxidative activities of polyphenol metabolites with those of intact functional polyphenols by an assay of the oxygen radical absorbance capacity (ORAC). The metabolites of ellagitannin geraniin, chlorogenic acid, and (-)-epigallocatechin gallate displayed more potent antioxidative activity than their respective original compounds. Our findings suggest that these metabolites may play important roles as biological antioxidants after their consumption.
Spectrum of primary immunodeficiency disorders in Sri Lanka
2013-01-01
Background While primary immunodeficiencies (PID has been recognized in the west for decades, recognition has been delayed in the third world. This study attempts to detail the spectrum of PID, the therapy provided, and constraints in the diagnosis and treatment in a middle income country such as Sri Lanka. Methods Nine hundred and forty two patients with recurrent infections and features suggestive of immune deficiency, referred from the entire country in a 4 year period, to the sole immunology unit in Sri Lanka were included. The following tests were performed. Full blood counts, serum Immunoglobulin and complement C3 and C4 levels, functional antibody levels, enumeration of lymphocyte subsets, in vitro and in vivo T cell functional assays,, nitroblue tetrazolium assay to diagnose chronic granulomatous disease, hair shaft assay to diagnose Griscelli syndrome. Sequencing of the common gamma chain to identify x linked severe combined immune deficiency, and X linked agammaglobulinemia was confirmed by assaying for Btk mutations by single sequence conformation polymorphism. HIV/AIDS was excluded in all patients. Results Seventy three patients were diagnosed with a primary immune deficiency. The majority (60.27%) had antibody deficiency. Common variable immune deficiency was the commonest (28.76%), followed by X linked agammaglobulinemia (XLA) (20.54%). Five patients had possible hyper IgM syndrome. Ten patients had severe combined immune deficiency (SCID), including 2 with x linked SCID, in addition to DiGeorge syndrome (2), ataxia telangiectasia (6), autosomal dominant hyper IgE syndrome (2), chronic granulomatous disease (4), leucocyte adhesion deficiency type 1 (2) and Griscelli syndrome (3). Patients with autoinflammatory, innate immune and complement defects could not be identified due to lack of facilities. Conclusions Antibody deficiency is the commonest PID, as in the west.IgA deficiency is rare. Autoinflammatory diseases, innate immune and complement deficiencies could not be identified due to lack of diagnostic facilities. Lack of awareness of PID among adult physicians result in delay in treatment of adult patients. While treatment of antibody deficiencies provided in state hospitals has extended life expectancy, there is no treatment available for severe T cell defects. PMID:24373416
Leung, Travis; Rajendran, Ramkumar; Singh, Subir; Garva, Richa; Krstic-Demonacos, Marija; Demonacos, Constantinos
2013-11-08
The cytochrome P450 (CYP) enzymes are a class of heme-containing enzymes involved in phase I metabolism of a large number of xenobiotics. The CYP family member CYP2E1 metabolises many xenobiotics and pro-carcinogens, it is not just expressed in the liver but also in many other tissues such as the kidney, the lung, the brain, the gastrointestinal tract and the breast tissue. It is induced in several pathological conditions including cancer, obesity, and type II diabetes implying that this enzyme is implicated in other biological processes beyond its role in phase I metabolism. Despite the detailed description of the role of CYP2E1 in the liver, its functions in other tissues have not been extensively studied. In this study, we investigated the functional significance of CYP2E1 in breast carcinogenesis. Cellular levels of reactive oxygen species (ROS) were measured by H2DCFDA (2 2.9.2 2',7'-dichlorodihydrofluorescein diacetate) staining and autophagy was assessed by tracing the cellular levels of autophagy markers using western blot assays. The endoplasmic reticulum stress and the unfolded protein response (UPR) were detected by luciferase assays reflecting the splicing of mRNA encoding the X-box binding protein 1 (XBP1) transcription factor and cell migration was evaluated using the scratch wound assay. Gene expression was recorded with standard transcription assays including luciferase reporter and chromatin immunoprecipitation. Ectopic expression of CYP2E1 induced ROS generation, affected autophagy, stimulated endoplasmic reticulum stress and inhibited migration in breast cancer cells with different metastatic potential and p53 status. Furthermore, evidence is presented indicating that CYP2E1 gene expression is under the transcriptional control of the p53 tumor suppressor. These results support the notion that CYP2E1 exerts an important role in mammary carcinogenesis, provide a potential link between ethanol metabolism and breast cancer and suggest that progression, and metastasis, of advanced stages of breast cancer can be modulated by induction of CYP2E1 activity.
2013-01-01
Introduction The cytochrome P450 (CYP) enzymes are a class of heme-containing enzymes involved in phase I metabolism of a large number of xenobiotics. The CYP family member CYP2E1 metabolises many xenobiotics and pro-carcinogens, it is not just expressed in the liver but also in many other tissues such as the kidney, the lung, the brain, the gastrointestinal tract and the breast tissue. It is induced in several pathological conditions including cancer, obesity, and type II diabetes implying that this enzyme is implicated in other biological processes beyond its role in phase I metabolism. Despite the detailed description of the role of CYP2E1 in the liver, its functions in other tissues have not been extensively studied. In this study, we investigated the functional significance of CYP2E1 in breast carcinogenesis. Methods Cellular levels of reactive oxygen species (ROS) were measured by H2DCFDA (2 2.9.2 2′,7′-dichlorodihydrofluorescein diacetate) staining and autophagy was assessed by tracing the cellular levels of autophagy markers using western blot assays. The endoplasmic reticulum stress and the unfolded protein response (UPR) were detected by luciferase assays reflecting the splicing of mRNA encoding the X-box binding protein 1 (XBP1) transcription factor and cell migration was evaluated using the scratch wound assay. Gene expression was recorded with standard transcription assays including luciferase reporter and chromatin immunoprecipitation. Results Ectopic expression of CYP2E1 induced ROS generation, affected autophagy, stimulated endoplasmic reticulum stress and inhibited migration in breast cancer cells with different metastatic potential and p53 status. Furthermore, evidence is presented indicating that CYP2E1 gene expression is under the transcriptional control of the p53 tumor suppressor. Conclusions These results support the notion that CYP2E1 exerts an important role in mammary carcinogenesis, provide a potential link between ethanol metabolism and breast cancer and suggest that progression, and metastasis, of advanced stages of breast cancer can be modulated by induction of CYP2E1 activity. PMID:24207099
Ohara, Nobumasa; Kaneko, Masanori; Kitazawa, Masaru; Uemura, Yasuyuki; Minagawa, Shinichi; Miyakoshi, Masashi; Kaneko, Kenzo; Kamoi, Kyuzi
2017-02-06
Graves' disease is an autoimmune thyroid disorder characterized by hyperthyroidism, and patients exhibit thyroid-stimulating hormone receptor antibody. The major methods of measuring circulating thyroid-stimulating hormone receptor antibody include the thyroid-stimulating hormone-binding inhibitory immunoglobulin assays. Although the diagnostic accuracy of these assays has been improved, a minority of patients with Graves' disease test negative even on second-generation and third-generation thyroid-stimulating hormone-binding inhibitory immunoglobulins. We report a rare case of a thyroid-stimulating hormone-binding inhibitory immunoglobulin-positive patient with Graves' disease who showed rapid lowering of thyroid-stimulating hormone-binding inhibitory immunoglobulin levels following administration of the anti-thyroid drug thiamazole, but still experienced Graves' hyperthyroidism. A 45-year-old Japanese man presented with severe hyperthyroidism (serum free triiodothyronine >25.0 pg/mL; reference range 1.7 to 3.7 pg/mL) and tested weakly positive for thyroid-stimulating hormone-binding inhibitory immunoglobulins on second-generation tests (2.1 IU/L; reference range <1.0 IU/L). Within 9 months of treatment with oral thiamazole (30 mg/day), his thyroid-stimulating hormone-binding inhibitory immunoglobulin titers had normalized, but he experienced sustained hyperthyroidism for more than 8 years, requiring 15 mg/day of thiamazole to correct. During that period, he tested negative on all first-generation, second-generation, and third-generation thyroid-stimulating hormone-binding inhibitory immunoglobulin assays, but thyroid scintigraphy revealed diffuse and increased uptake, and thyroid ultrasound and color flow Doppler imaging showed typical findings of Graves' hyperthyroidism. The possible explanations for serial changes in the thyroid-stimulating hormone-binding inhibitory immunoglobulin results in our patient include the presence of thyroid-stimulating hormone receptor antibody, which is bioactive but less reactive on thyroid-stimulating hormone-binding inhibitory immunoglobulin assays, or the effect of reduced levels of circulating thyroid-stimulating hormone receptor antibody upon improvement of thyroid autoimmunity with thiamazole treatment. Physicians should keep in mind that patients with Graves' disease may show thyroid-stimulating hormone-binding inhibitory immunoglobulin assay results that do not reflect the severity of Graves' disease or indicate the outcome of the disease, and that active Graves' disease may persist even after negative results on thyroid-stimulating hormone-binding inhibitory immunoglobulin assays. Timely performance of thyroid function tests in combination with sensitive imaging tests, including thyroid ultrasound and scintigraphy, are necessary to evaluate the severity of Graves' disease and treatment efficacy.
NASA Astrophysics Data System (ADS)
Slaney, Anne Margaret
The development of tolerogens, fabricated devices eliciting tolerance toward incompatible donor ABO antigens in implant patients, is the ultimate goal of this project. This would permit ABO incompatible organ transplants, increase the donor pool for patients, increase efficiency in the use of available organs, reduce waitlist times and reduce mortality rates of patients. Stainless steel stents and silica nanoparticles were chosen as platforms for the stationary and circulating tolerogens. Stainless steel was coated with silica by solgel dip-coating, electrodeposition, and atomic layer deposition (ALD). The coatings were evaluated by CV, EIS, SEM, AFM, VASE, FTIR, XPS, and AES. Of the silica films, those deposited by ALD provided superior insulating, conformal, and thin coatings. These silica ALD films outperformed even titania ALD films upon stressing. Silica ALD films were subsequently functionalized with mixtures of silane derivatives of poly(ethylene glycol) (PEG), to prevent nonspecific protein binding, and monosaccharides (MS) or trisaccharide and tetrasaccharide (TS) antigens. Functionalizations were characterized by FTIR, XPS and UV-Vis following enzyme-linked lectin assays (ELLAs) or enzyme-linked immunosorbent assays (ELISAs). Effective functionalization allowing biological availability and activity even after incubation in blood plasma was confirmed. Microarray microscope slides were similarly developed with all ABO antigen subtypes, characterized by ToF-SIMS and ELISA, and proved useful in detecting antibodies in human blood samples. Silica nanoparticles, including fluorescent and magnetic varieties, in a range of sizes were prepared by sol-gel synthesis. The nanoparticles were evaluated by SEM, DLS, zeta potential measurements, fluorescence imaging, flow cytometry, two-photon excitation fluorescence correlation spectroscopy and TEM. Different dye incorporation methods were used for effective detection of NPs, and additional silica layers improved fluorophore characteristics. Functionalization of the nanoparticles with PEG and MS or TS were determined successful using three different methods as characterized by FTIR, XPS and ELLA or ELISA and UV-Vis or flow cytometry. The most cost-effective method involved functionalizing nanoparticles with amine, which was optimized using an assay. The amine-terminated nanoparticles were used to tether a PEG linker molecule for covalent binding of PnP derivatives of MSs and TSs.
Atha, Donald H; Nagy, Amber; Steinbrück, Andrea; Dennis, Allison M; Hollingsworth, Jennifer A; Dua, Varsha; Iyer, Rashi; Nelson, Bryant C
2017-11-09
When evaluating the toxicity of engineered nanomaterials (ENMS) it is important to use multiple bioassays based on different mechanisms of action. In this regard we evaluated the use of gene expression and common cytotoxicity measurements using as test materials, two selected nanoparticles with known differences in toxicity, 5 nm mercaptoundecanoic acid (MUA)-capped InP and CdSe quantum dots (QDs). We tested the effects of these QDs at concentrations ranging from 0.5 to 160 µg/mL on cultured normal human bronchial epithelial (NHBE) cells using four common cytotoxicity assays: the dichlorofluorescein assay for reactive oxygen species (ROS), the lactate dehydrogenase assay for membrane viability (LDH), the mitochondrial dehydrogenase assay for mitochondrial function, and the Comet assay for DNA strand breaks. The cytotoxicity assays showed similar trends when exposed to nanoparticles for 24 h at 80 µg/mL with a threefold increase in ROS with exposure to CdSe QDs compared to an insignificant change in ROS levels after exposure to InP QDs, a twofold increase in the LDH necrosis assay in NHBE cells with exposure to CdSe QDs compared to a 50% decrease for InP QDs, a 60% decrease in the mitochondrial function assay upon exposure to CdSe QDs compared to a minimal increase in the case of InP and significant DNA strand breaks after exposure to CdSe QDs compared to no significant DNA strand breaks with InP. High-throughput quantitative real-time polymerase chain reaction (qRT-PCR) data for cells exposed for 6 h at a concentration of 80 µg/mL were consistent with the cytotoxicity assays showing major differences in DNA damage, DNA repair and mitochondrial function gene regulatory responses to the CdSe and InP QDs. The BRCA2, CYP1A1, CYP1B1, CDK1, SFN and VEGFA genes were observed to be upregulated specifically from increased CdSe exposure and suggests their possible utility as biomarkers for toxicity. This study can serve as a model for comparing traditional cytotoxicity assays and gene expression measurements and to determine candidate biomarkers for assessing the biocompatibility of ENMs.
Biotin Switch Assays for Quantitation of Reversible Cysteine Oxidation.
Li, R; Kast, J
2017-01-01
Thiol groups in protein cysteine residues can be subjected to different oxidative modifications by reactive oxygen/nitrogen species. Reversible cysteine oxidation, including S-nitrosylation, S-sulfenylation, S-glutathionylation, and disulfide formation, modulate multiple biological functions, such as enzyme catalysis, antioxidant, and other signaling pathways. However, the biological relevance of reversible cysteine oxidation is typically underestimated, in part due to the low abundance and high reactivity of some of these modifications, and the lack of methods to enrich and quantify them. To facilitate future research efforts, this chapter describes detailed procedures to target the different modifications using mass spectrometry-based biotin switch assays. By switching the modification of interest to a biotin moiety, these assays leverage the high affinity between biotin and avidin to enrich the modification. The use of stable isotope labeling and a range of selective reducing agents facilitate the quantitation of individual as well as total reversible cysteine oxidation. The biotin switch assay has been widely applied to the quantitative analysis of S-nitrosylation in different disease models and is now also emerging as a valuable research tool for other oxidative cysteine modifications, highlighting its relevance as a versatile, robust strategy for carrying out in-depth studies in redox proteomics. © 2017 Elsevier Inc. All rights reserved.
How well can morphology assess cell death modality? A proteomics study
Chernobrovkin, Alexey L; Zubarev, Roman A
2016-01-01
While the focus of attempts to classify cell death programs has finally shifted in 2010s from microscopy-based morphological characteristics to biochemical assays, more recent discoveries have put the underlying assumptions of many such assays under severe stress, mostly because of the limited specificity of the assays. On the other hand, proteomics can quantitatively measure the abundances of thousands of proteins in a single experiment. Thus proteomics could develop a modern alternative to both semiquantitative morphology assessment as well as single-molecule biochemical assays. Here we tested this hypothesis by analyzing the proteomes of cells dying after been treated with various chemical agents. The most striking finding is that, for a multivariate model based on the proteome changes in three cells lines, the regulation patterns of the 200–500 most abundant proteins typically attributed to household type more accurately reflect that of the proteins directly interacting with the drug than any other protein subset grouped by common function or biological process, including cell death. This is in broad agreement with the 'rigid cell death mechanics' model where drug action mechanism and morphological changes caused by it are bijectively linked. This finding, if confirmed, will open way for a broad use of proteomics in death modality assessment. PMID:27752363
Buchan, Blake W; Peterson, Jess F; Cogbill, Christopher H; Anderson, Dennis K; Ledford, Joellen S; White, Mary N; Quigley, Neil B; Jannetto, Paul J; Ledeboer, Nathan A
2011-10-01
Numerous drugs such as clopidogrel have been developed to reduce coagulation or inhibit platelet function. The hepatic cytochrome P450 (CYP) pathway is involved in the conversion of clopidogrel to its active metabolite. A recent black-box warning was included in the clopidogrel package insert indicating a significant clinical link between specific CYP2C19 genetic variants and poor metabolism of clopidogrel. Of these variants, *2 and *3 are the most common and are associated with complete loss of enzyme activity. In patients who are carriers of a CYP2C19 *2 or *3 allele, the conversion of clopidogrel to its active metabolite may be reduced, which can lead to ischemic events and negative consequence for the patient. We examined the ability of the Verigene CLO assay (Nanosphere, Northbrook, IL) to identify CYP2C19 *2 and *3 polymorphisms in 1,286 unique whole blood samples. The Verigene CLO assay accurately identified homozygous and heterozygous *2 and *3 phenotypes with a specificity of 100% and a final call rate of 99.7%. The assay is fully automated and can produce a result in approximately 3.5 hours.
A Java API for working with PubChem datasets.
Southern, Mark R; Griffin, Patrick R
2011-03-01
PubChem is a public repository of chemical structures and associated biological activities. The PubChem BioAssay database contains assay descriptions, conditions and readouts and biological screening results that have been submitted by the biomedical research community. The PubChem web site and Power User Gateway (PUG) web service allow users to interact with the data and raw files are available via FTP. These resources are helpful to many but there can also be great benefit by using a software API to manipulate the data. Here, we describe a Java API with entity objects mapped to the PubChem Schema and with wrapper functions for calling the NCBI eUtilities and PubChem PUG web services. PubChem BioAssays and associated chemical compounds can then be queried and manipulated in a local relational database. Features include chemical structure searching and generation and display of curve fits from stored dose-response experiments, something that is not yet available within PubChem itself. The aim is to provide researchers with a fast, consistent, queryable local resource from which to manipulate PubChem BioAssays in a database agnostic manner. It is not intended as an end user tool but to provide a platform for further automation and tools development. http://code.google.com/p/pubchemdb.
Krol, Kamil; Jendrysek, Justyna; Debski, Janusz; Skoneczny, Marek; Kurlandzka, Anna; Kaminska, Joanna; Dadlez, Michal; Skoneczna, Adrianna
2017-04-11
Ribosomal RNA-encoding genes (rDNA) are the most abundant genes in eukaryotic genomes. To meet the high demand for rRNA, rDNA genes are present in multiple tandem repeats clustered on a single or several chromosomes and are vastly transcribed. To facilitate intensive transcription and prevent rDNA destabilization, the rDNA-encoding portion of the chromosome is confined in the nucleolus. However, the rDNA region is susceptible to recombination and DNA damage, accumulating mutations, rearrangements and atypical DNA structures. Various sophisticated techniques have been applied to detect these abnormalities. Here, we present a simple method for the evaluation of the activity and integrity of an rDNA region called a "DNA cloud assay". We verified the efficacy of this method using yeast mutants lacking genes important for nucleolus function and maintenance (RAD52, SGS1, RRM3, PIF1, FOB1 and RPA12). The DNA cloud assay permits the evaluation of nucleolus status and is compatible with downstream analyses, such as the chromosome comet assay to identify DNA structures present in the cloud and mass spectrometry of agarose squeezed proteins (ASPIC-MS) to detect nucleolar DNA-bound proteins, including Las17, the homolog of human Wiskott-Aldrich Syndrome Protein (WASP).
Wetter, Justin A; Revankar, Chetana; Hanson, Bonnie J
2009-10-01
Cellular assay development for the endothelial differentiation gene (EDG) family of G-protein-coupled receptors (GPCRs) and related lysophospholipid (LP) receptors is complicated by endogenous receptor expression and divergent receptor signaling. Endogenously expressed LP receptors exist in most tissue culture cell lines. These LP receptors, along with other endogenously expressed GPCRs, contribute to off-target signaling that can complicate interpretation of second-messenger-based cellular assay results. These receptors also activate a diverse and divergent set of cellular signaling pathways, necessitating the use of a variety of assay formats with mismatched procedures and functional readouts. This complicates examination and comparison of these receptors across the entire family. The Tango technology uses the conserved beta-arrestin-dependent receptor deactivation process to allow interrogation of the EDG and related receptors with a single functional assay. This method also isolates the target receptor signal, allowing the use of tissue culture cell lines regardless of their endogenous receptor expression. The authors describe the use of this technique to build cell-based receptor-specific assays for all 8 members of the EDG receptor family as well as the related LPA receptors GPR23, GPR92, and GPR87. In addition, they demonstrate the value of this technology for identification and investigation of functionally selective receptor compounds as demonstrated by the immunosuppressive compound FtY720-P and its action at the EDG(1) and EDG(3) receptors.
[Age-related characteristics of structural support for ovarian function].
Koval'skiĭ, G B
1984-12-01
Histoenzymological assay was used to investigate various structures of the ovaries of rats of two groups aged 3-4 and 12-14 months during estral cycle. The activity of 3 beta-, 17 beta- and 20 alpha-steroid dehydrogenases, glucose-6-phosphate dehydrogenase, NAD and NADP-diaphorases, esterase, acid and alkaline phosphatases was studied. It has been shown that transport alterations in the microcirculation including the hematofollicular barrier play, the leading part in age-dependent depression of reproductive and endocrine functions. Ageing rats demonstrated no linkage between endothelial, thecal and granular cells, which points to the injury of the histophysiological mechanisms of the follicular system integration.
Comparison of five assays for detection of Clostridium difficile toxin.
Chapin, Kimberle C; Dickenson, Roberta A; Wu, Fongman; Andrea, Sarah B
2011-07-01
Performance characteristics of five assays for detection of Clostridium difficile toxin were compared using fresh stool samples from patients with C. difficile infection (CDI). Assays were performed simultaneously and according to the manufacturers' instructions. Patients were included in the study if they exhibited clinical symptoms consistent with CDI. Nonmolecular assays included glutamate dehydrogenase antigen tests, with positive findings followed by the Premier Toxin A and B Enzyme Immunoassay (GDH/EIA), and the C. Diff Quik Chek Complete test. Molecular assays (PCR) included the BD GeneOhm Cdiff Assay, the Xpert C. difficile test, and the ProGastro Cd assay. Specimens were considered true positive if results were positive in two or more assays. For each method, the Youden index was calculated and cost-effectiveness was analyzed. Of 81 patients evaluated, 26 (32.1%) were positive for CDI. Sensitivity of the BD GeneOhm Cdiff assay, the Xpert C. difficile test, the ProGastro Cd assay, C. Diff Quik Chek Complete test, and two-step GDH/EIA was 96.2%, 96.2%, 88.5%, 61.5%, and 42.3%, respectively. Specificity of the Xpert C. difficile test was 96.4%, and for the other four assays was 100%. Compared with nonmolecular methods, molecular methods detected 34.7% more positive specimens. Assessment of performance characteristics and cost-effectiveness demonstrated that the BD GeneOhm Cdiff assay yielded the best results. While costly, the Xpert C. difficile test required limited processing and yielded rapid results. Because of discordant results, specimen processing, and extraction equipment requirements, the ProGastro Cd assay was the least favored molecular assay. The GDH/EIA method lacked sufficient sensitivity to be recommended. Copyright © 2011 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.
Comparison of Five Assays for Detection of Clostridium difficile Toxin
Chapin, Kimberle C.; Dickenson, Roberta A.; Wu, Fongman; Andrea, Sarah B.
2011-01-01
Performance characteristics of five assays for detection of Clostridium difficile toxin were compared using fresh stool samples from patients with C. difficile infection (CDI). Assays were performed simultaneously and according to the manufacturers' instructions. Patients were included in the study if they exhibited clinical symptoms consistent with CDI. Nonmolecular assays included glutamate dehydrogenase antigen tests, with positive findings followed by the Premier Toxin A and B Enzyme Immunoassay (GDH/EIA), and the C. Diff Quik Chek Complete test. Molecular assays (PCR) included the BD GeneOhm Cdiff Assay, the Xpert C. difficile test, and the ProGastro Cd assay. Specimens were considered true positive if results were positive in two or more assays. For each method, the Youden index was calculated and cost-effectiveness was analyzed. Of 81 patients evaluated, 26 (32.1%) were positive for CDI. Sensitivity of the BD GeneOhm Cdiff assay, the Xpert C. difficile test, the ProGastro Cd assay, C. Diff Quik Chek Complete test, and two-step GDH/EIA was 96.2%, 96.2%, 88.5%, 61.5%, and 42.3%, respectively. Specificity of the Xpert C. difficile test was 96.4%, and for the other four assays was 100%. Compared with nonmolecular methods, molecular methods detected 34.7% more positive specimens. Assessment of performance characteristics and cost-effectiveness demonstrated that the BD GeneOhm Cdiff assay yielded the best results. While costly, the Xpert C. difficile test required limited processing and yielded rapid results. Because of discordant results, specimen processing, and extraction equipment requirements, the ProGastro Cd assay was the least favored molecular assay. The GDH/EIA method lacked sufficient sensitivity to be recommended. PMID:21704273
Chan, Y H; Cheng, C H K; Chan, K M
2007-03-01
Using goldfish as a model, the structure-function relationship of goldfish growth hormone was studied using the strategy of homologous domain swapping. Chimeric mutants were constructed by exchanging homologous regions between goldfish growth hormone (gfGH II) and goldfish prolactin (gfPRL) with their cloned complementary DNAs. Six mutants, with their domain-swapped, were generated to have different combinations of three target regions, including the helix a, helix d and the large section in between these helices (possess the helices b, c and other random coiled regions). After expression in E. coli and refolding, these mutants were characterized by using competitive receptor binding assay (RRA) and growth hormone responding promoter activation assay. The different activity profiles of mutants in Spi 2.1 gene promoter assays from that in RRA shows that, for gfGH, receptor binding dose not confer receptor signal activations. When either helices a or d of gfGH was maintained with other helices replaced by their gfPRL counterparts, both receptor binding and hence gene activation activities are reduced. In mutants with helices b and c in gfGH maintained, containing the gfGH middle section, and helices a and d swapped with gfPRL, the had reduced RRA activities but the promoter activation activities retained. In conclusion, as in the case of human GH, the gfGH molecule possesses two functional sites: one of them is composed of discontinuous epitopes located on the target regions of this study and is for receptor binding; another site is located on the middle section of the molecule that helices a and d are not involved, and it is for activation of GH receptor and intracellular signals.
Abd Rahman, Fazliny; Mohd Ali, Johari; Abdullah, Mariam; Abu Kasim, Noor Hayaty; Musa, Sabri
2016-07-01
This study investigates the effects of aspirin (ASA) on the proliferative capacity, osteogenic potential, and expression of growth factor-associated genes in periodontal ligament stem cells (PDLSCs). Mesenchymal stem cells (MSCs) from PDL tissue were isolated from human premolars (n = 3). The MSCs' identity was confirmed by immunophenotyping and trilineage differentiation assays. Cell proliferation activity was assessed through 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Polymerase chain reaction array was used to profile the expression of 84 growth factor-associated genes. Pathway analysis was used to identify the biologic functions and canonic pathways activated by ASA treatment. The osteogenic potential was evaluated through mineralization assay. ASA at 1,000 μM enhances osteogenic potential of PDLSCs. Using a fold change (FC) of 2.0 as a threshold value, the gene expression analyses indicated that 19 genes were differentially expressed, which includes 12 upregulated and seven downregulated genes. Fibroblast growth factor 9 (FGF9), vascular endothelial growth factor A (VEGFA), interleukin-2, bone morphogenetic protein-10, VEGFC, and 2 (FGF2) were markedly upregulated (FC range, 6 to 15), whereas pleotropin, FGF5, brain-derived neurotrophic factor, and Dickkopf WNT signaling pathway inhibitor 1 were markedly downregulated (FC 32). Of the 84 growth factor-associated genes screened, 35 showed high cycle threshold values (≥35). ASA modulates the expression of growth factor-associated genes and enhances osteogenic potential in PDLSCs. ASA upregulated the expression of genes that could activate biologic functions and canonic pathways related to cell proliferation, human embryonic stem cell pluripotency, tissue regeneration, and differentiation. These findings suggest that ASA enhances PDLSC function and may be useful in regenerative dentistry applications, particularly in the areas of periodontal health and regeneration.
Low-Level Laser Effect on Proliferation, Migration, and Antiapoptosis of Mesenchymal Stem Cells.
Yin, Kan; Zhu, Rongjia; Wang, Shihua; Zhao, Robert Chunhua
2017-05-15
Mesenchymal stem cells (MSCs) have been proved to be an important element in cell-based therapy. Photobiomodulation used extremely low-level lasers (LLLs) to affect the behavior of cells. The effect mechanism of LLLs on MSCs from human remained to be discovered. In this study, cell viability was assessed using MTS assays and cell cycle was evaluated by fluorescence-activated cell sorting (FACS). The influence of LLLs on mitochondrial biogenesis (fission or fusion) and function (ATP, reactive oxygen species [ROS], nitric oxide [NO]) was evaluated by transmission electron microscope, FACS, quantitative real time polymerase chain reaction (q-PCR), and immunocytochemistry. Cell migration and cytoskeleton alteration (actin and tubulin) were evaluated using transwell assay, immunocytochemistry, enzyme-linked immunosorbent assay, and western blotting. Cell apoptosis was evaluated using FACS, immunocytochemistry, and western blotting. We investigated that certain influence of LLLs on MSCs in vitro 6 or 24 h after 1 h of LLL irradiation. The mechanism of the effects included proliferation rate increase mediated by increased S phase proportion; mitochondrial biogenesis and function alteration mediated by fusion (Mfn1, Mfn2, and Opa-1) and fission (Fis1, Drp-1, and MTP18)-related proteins, NRF1, TFAM, PGC-1a, and upregulated intracellular ROS and NO concentration; migration acceleration through the ERK1/2 and FAK pathway and upregulation of growth factors such as HGF and PDGF; and resistance to apoptosis with increased Bcl-2 and decreased Bax, or through tunneling nanotube formation between LLL-treated MSCs and 5-fluorouracil-induced apoptotic MSCs. These observations suggested that LLLs enhanced stem cell survival and therapeutic function, which could appear to be an innovative pretreatment in the application of MSCs.
A 3′-Untranslated Region (3′UTR) Induces Organ Adhesion by Regulating miR-199a* Functions
Lee, Daniel Y.; Shatseva, Tatiana; Jeyapalan, Zina; Du, William W.; Deng, Zhaoqun; Yang, Burton B.
2009-01-01
Mature microRNAs (miRNAs) are single-stranded RNAs of 18–24 nucleotides that repress post-transcriptional gene expression. However, it is unknown whether the functions of mature miRNAs can be regulated. Here we report that expression of versican 3′UTR induces organ adhesion in transgenic mice by modulating miR-199a* activities. The study was initiated by the hypothesis that the non-coding 3′UTR plays a role in the regulation of miRNA function. Transgenic mice expressing a construct harboring the 3′UTR of versican exhibits the adhesion of organs. Computational analysis indicated that a large number of microRNAs could bind to this fragment potentially including miR-199a*. Expression of versican and fibronectin, two targets of miR-199a*, are up-regulated in transgenic mice, suggesting that the 3′UTR binds and modulates miR-199a* activities, freeing mRNAs of versican and fibronectin from being repressed by miR-199a*. Confirmation of the binding was performed by PCR using mature miR-199a* as a primer and the targeting was performed by luciferase assays. Enhanced adhesion by expression of the 3′UTR was confirmed by in vitro assays. Our results demonstrated that upon arrival in cytoplasm, miRNA activities can be modulated locally by the 3′UTR. Our assay may be developed as sophisticated approaches for studying the mutual regulation of miRNAs and mRNAs in vitro and in vivo. We anticipate that expression of the 3′UTR may be an approach in the development of gene therapy. PMID:19223980
Engineering a functional three-dimensional human cardiac tissue model for drug toxicity screening.
Lu, Hong Fang; Leong, Meng Fatt; Lim, Tze Chiun; Chua, Ying Ping; Lim, Jia Kai; Du, Chan; Wan, Andrew C A
2017-05-11
Cardiotoxicity is one of the major reasons for clinical drug attrition. In vitro tissue models that can provide efficient and accurate drug toxicity screening are highly desired for preclinical drug development and personalized therapy. Here, we report the fabrication and characterization of a human cardiac tissue model for high throughput drug toxicity studies. Cardiac tissues were fabricated via cellular self-assembly of human transgene-free induced pluripotent stem cells-derived cardiomyocytes in pre-fabricated polydimethylsiloxane molds. The formed tissue constructs expressed cardiomyocyte-specific proteins, exhibited robust production of extracellular matrix components such as laminin, collagen and fibronectin, aligned sarcomeric organization, and stable spontaneous contractions for up to 2 months. Functional characterization revealed that the cardiac cells cultured in 3D tissues exhibited higher contraction speed and rate, and displayed a significantly different drug response compared to cells cultured in age-matched 2D monolayer. A panel of clinically relevant compounds including antibiotic, antidiabetic and anticancer drugs were tested in this study. Compared to conventional viability assays, our functional contractility-based assays were more sensitive in predicting drug-induced cardiotoxic effects, demonstrating good concordance with clinical observations. Thus, our 3D cardiac tissue model shows great potential to be used for early safety evaluation in drug development and drug efficiency testing for personalized therapy.
Normalization methods in time series of platelet function assays
Van Poucke, Sven; Zhang, Zhongheng; Roest, Mark; Vukicevic, Milan; Beran, Maud; Lauwereins, Bart; Zheng, Ming-Hua; Henskens, Yvonne; Lancé, Marcus; Marcus, Abraham
2016-01-01
Abstract Platelet function can be quantitatively assessed by specific assays such as light-transmission aggregometry, multiple-electrode aggregometry measuring the response to adenosine diphosphate (ADP), arachidonic acid, collagen, and thrombin-receptor activating peptide and viscoelastic tests such as rotational thromboelastometry (ROTEM). The task of extracting meaningful statistical and clinical information from high-dimensional data spaces in temporal multivariate clinical data represented in multivariate time series is complex. Building insightful visualizations for multivariate time series demands adequate usage of normalization techniques. In this article, various methods for data normalization (z-transformation, range transformation, proportion transformation, and interquartile range) are presented and visualized discussing the most suited approach for platelet function data series. Normalization was calculated per assay (test) for all time points and per time point for all tests. Interquartile range, range transformation, and z-transformation demonstrated the correlation as calculated by the Spearman correlation test, when normalized per assay (test) for all time points. When normalizing per time point for all tests, no correlation could be abstracted from the charts as was the case when using all data as 1 dataset for normalization. PMID:27428217
Flodin, Mats; Larsson, Anders
2009-06-01
Glomerular filtration rate (GFR) is widely accepted as the best overall measure of kidney function. Cystatin C is a novel endogenous GFR marker that has been shown to be superior to creatinine for estimation of GFR in several studies. There is a need for cystatin C assays adapted to routine chemistry instrument to minimize turnaround times and allowing 24 h/day availability. We have evaluated a new cystatin C assay developed for Architect cSystem (Abbott Laboratories, Abbott Park, IL, USA). The cystatin C assay showed good agreement with the corresponding assay from Dade Behring (Deerfield, IL, USA). The assay has a very low total imprecision and a good linearity. The new cystatin C assay is an interesting alternative to current cystatin C assays. On an Architect cSystem the assay can be performed with the same turnaround times and availability as creatinine.
A Pan-GTPase Inhibitor as a Molecular Probe
Hong, Lin; Guo, Yuna; BasuRay, Soumik; Agola, Jacob O.; Romero, Elsa; Simpson, Denise S.; Schroeder, Chad E.; Simons, Peter; Waller, Anna; Garcia, Matthew; Carter, Mark; Ursu, Oleg; Gouveia, Kristine; Golden, Jennifer E.; Aubé, Jeffrey; Wandinger-Ness, Angela; Sklar, Larry A.
2015-01-01
Overactive GTPases have often been linked to human diseases. The available inhibitors are limited and have not progressed far in clinical trials. We report here a first-in-class small molecule pan-GTPase inhibitor discovered from a high throughput screening campaign. The compound CID1067700 inhibits multiple GTPases in biochemical, cellular protein and protein interaction, as well as cellular functional assays. In the biochemical and protein interaction assays, representative GTPases from Rho, Ras, and Rab, the three most generic subfamilies of the GTPases, were probed, while in the functional assays, physiological processes regulated by each of the three subfamilies of the GTPases were examined. The chemical functionalities essential for the activity of the compound were identified through structural derivatization. The compound is validated as a useful molecular probe upon which GTPase-targeting inhibitors with drug potentials might be developed. PMID:26247207
21 CFR 225.158 - Laboratory assays.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 4 2011-04-01 2011-04-01 false Laboratory assays. 225.158 Section 225.158 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS... Laboratory assays. Where the results of laboratory assays of drug components, including assays by State feed...
21 CFR 225.158 - Laboratory assays.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 4 2010-04-01 2010-04-01 false Laboratory assays. 225.158 Section 225.158 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS... Laboratory assays. Where the results of laboratory assays of drug components, including assays by State feed...
A high-throughput assay of membrane protein stability.
Postis, Vincent L G; Deacon, Sarah E; Roach, Peter C J; Wright, Gareth S A; Xia, Xiaobing; Ingram, Jean C; Hadden, Jonathan M; Henderson, Peter J F; Phillips, Simon E V; McPherson, Michael J; Baldwin, Stephen A
2008-12-01
The preparation of purified, detergent-solubilized membrane proteins in a monodisperse and stable form is usually a prerequisite for investigation not only of their function but also for structural studies by X-ray crystallography and other approaches. Typically, it is necessary to explore a wide range of conditions, including detergent type, buffer pH, and the presence of additives such as glycerol, in order to identify those optimal for stability. Given the difficulty of expressing and purifying membrane proteins in large amounts, such explorations must ideally be performed on as small a scale as practicable. To achieve this objective in the UK Membrane Protein Structure Initiative, we have developed a rapid, economical, light-scattering assay of membrane protein aggregation that allows the testing of 48 buffer conditions in parallel on 6 protein targets, requiring less than 2 mg protein for each target. Testing of the assay on a number of unrelated membrane transporters has shown that it is of generic applicability. Proteins of sufficient purity for this plate-based assay are first rapidly prepared using simple affinity purification procedures performed in batch mode. Samples are then transferred by microdialysis into each of the conditions to be tested. Finally, attenuance at 340 nm is monitored in a 384-well plate using a plate reader. Optimal conditions for protein stability identified in the assay can then be exploited for the tailored purification of individual targets in as stable a form as possible.
Soman, Soja Saghar; Tinson, Alex
2016-10-01
Camel racing is a popular sport in the Middle East region, where the demand is high for racing camels with higher stamina and endurance. Devising a technique to measure oxidative capacity and endurance in camels should be useful. Mitochondria are highly specialized organelles involved in metabolism in all higher organisms for sustaining life and providing energy for physical functions. The ratio of mitochondrial DNA (mtDNA) to nuclear DNA (nDNA) is often used as an estimate for the metabolic status of the tissue. A greater quantity of mitochondria per unit of tissue translates into greater oxidative capacity and endurance. In this report, we describe a simple, sensitive and efficient real-time PCR assay for the quantification of blood mitochondria in racing camels. The primer sequences selected for the SYBR green-based PCR assay included mitochondrial D-loop region, mitochondrial ATP6ase gene and the nuclear β-actin gene. The assay was validated using two groups of camels comprising racing and dairy camels. The racing camels demonstrated a higher mtDNA/nDNA ratio compared with dairy camels based on the ΔΔCt values, with a higher variability among racing camels. The mean ΔΔCt values of adult and young racing camels did not vary considerably. The findings show that the present assay can be used as an evaluative tool for racing camels. Copyright © 2016 Elsevier Ltd. All rights reserved.
Analysis of Ethylene Receptors: Ethylene-Binding Assays.
Binder, Brad M; Schaller, G Eric
2017-01-01
Plant ethylene receptors bind ethylene with high affinity. Most of the characterization of ethylene binding to the receptors has been carried out using a radioligand-binding assay on functional receptors expressed in yeast. In this chapter, we describe methods for expressing ethylene receptors in yeast and conducting ethylene-binding assays on intact yeast and yeast membranes. The ethylene-binding assays can be modified to analyze ethylene binding to intact plants and other organisms as well as membranes isolated from any biological source.
Mercatanti, Alberto; Lodovichi, Samuele; Cervelli, Tiziana; Galli, Alvaro
2017-12-01
Evaluation of the functional impact of cancer-associated missense variants is more difficult than for protein-truncating mutations and consequently standard guidelines for the interpretation of sequence variants have been recently proposed. A number of algorithms and software products were developed to predict the impact of cancer-associated missense mutations on protein structure and function. Importantly, direct assessment of the variants using high-throughput functional assays using simple genetic systems can help in speeding up the functional evaluation of newly identified cancer-associated variants. We developed the web tool CRIMEtoYHU (CTY) to help geneticists in the evaluation of the functional impact of cancer-associated missense variants. Humans and the yeast Saccharomyces cerevisiae share thousands of protein-coding genes although they have diverged for a billion years. Therefore, yeast humanization can be helpful in deciphering the functional consequences of human genetic variants found in cancer and give information on the pathogenicity of missense variants. To humanize specific positions within yeast genes, human and yeast genes have to share functional homology. If a mutation in a specific residue is associated with a particular phenotype in humans, a similar substitution in the yeast counterpart may reveal its effect at the organism level. CTY simultaneously finds yeast homologous genes, identifies the corresponding variants and determines the transferability of human variants to yeast counterparts by assigning a reliability score (RS) that may be predictive for the validity of a functional assay. CTY analyzes newly identified mutations or retrieves mutations reported in the COSMIC database, provides information about the functional conservation between yeast and human and shows the mutation distribution in human genes. CTY analyzes also newly found mutations and aborts when no yeast homologue is found. Then, on the basis of the protein domain localization and functional conservation between yeast and human, the selected variants are ranked by the RS. The RS is assigned by an algorithm that computes functional data, type of mutation, chemistry of amino acid substitution and the degree of mutation transferability between human and yeast protein. Mutations giving a positive RS are highly transferable to yeast and, therefore, yeast functional assays will be more predictable. To validate the web application, we have analyzed 8078 cancer-associated variants located in 31 genes that have a yeast homologue. More than 50% of variants are transferable to yeast. Incidentally, 88% of all transferable mutations have a reliability score >0. Moreover, we analyzed by CTY 72 functionally validated missense variants located in yeast genes at positions corresponding to the human cancer-associated variants. All these variants gave a positive RS. To further validate CTY, we analyzed 3949 protein variants (with positive RS) by the predictive algorithm PROVEAN. This analysis shows that yeast-based functional assays will be more predictable for the variants with positive RS. We believe that CTY could be an important resource for the cancer research community by providing information concerning the functional impact of specific mutations, as well as for the design of functional assays useful for decision support in precision medicine. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Laboratory Testing Protocols for Heparin-Induced Thrombocytopenia (HIT) Testing.
Lau, Kun Kan Edwin; Mohammed, Soma; Pasalic, Leonardo; Favaloro, Emmanuel J
2017-01-01
Heparin-induced thrombocytopenia (HIT) represents a significant high morbidity complication of heparin therapy. The clinicopathological diagnosis of HIT remains challenging for many reasons; thus, laboratory testing represents an important component of an accurate diagnosis. Although there are many assays available to assess HIT, these essentially fall into two categories-(a) immunological assays, and (b) functional assays. The current chapter presents protocols for several HIT assays, being those that are most commonly performed in laboratory practice and have the widest geographic distribution. These comprise a manual lateral flow-based system (STiC), a fully automated latex immunoturbidimetric assay, a fully automated chemiluminescent assay (CLIA), light transmission aggregation (LTA), and whole blood aggregation (Multiplate).
USDA-ARS?s Scientific Manuscript database
The serum virus neutralization (SVN) assay is a serological test to detect the presence and magnitude of functional systemic antibodies that prevent infectivity of a virus. The SVN assay is a highly sensitive and specific test that may be applied to influenza A viruses (IAV) in swine to measure the ...
Messa, Mirko; Fernández-Busnadiego, Rubén; Sun, Elizabeth Wen; Chen, Hong; Czapla, Heather; Wrasman, Kristie; Wu, Yumei; Ko, Genevieve; Ross, Theodora; Wendland, Beverly; De Camilli, Pietro
2014-01-01
Epsin is an evolutionarily conserved endocytic clathrin adaptor whose most critical function(s) in clathrin coat dynamics remain(s) elusive. To elucidate such function(s), we generated embryonic fibroblasts from conditional epsin triple KO mice. Triple KO cells displayed a dramatic cell division defect. Additionally, a robust impairment in clathrin-mediated endocytosis was observed, with an accumulation of early and U-shaped pits. This defect correlated with a perturbation of the coupling between the clathrin coat and the actin cytoskeleton, which we confirmed in a cell-free assay of endocytosis. Our results indicate that a key evolutionary conserved function of epsin, in addition to other roles that include, as we show here, a low affinity interaction with SNAREs, is to help generate the force that leads to invagination and then fission of clathrin-coated pits. DOI: http://dx.doi.org/10.7554/eLife.03311.001 PMID:25122462
Cousins, Matthew M.; Konikoff, Jacob; Laeyendecker, Oliver; Celum, Connie; Buchbinder, Susan P.; Seage, George R.; Kirk, Gregory D.; Moore, Richard D.; Mehta, Shruti H.; Margolick, Joseph B.; Brown, Joelle; Mayer, Kenneth H.; Koblin, Beryl A.; Wheeler, Darrell; Justman, Jessica E.; Hodder, Sally L.; Quinn, Thomas C.; Brookmeyer, Ron
2014-01-01
Multiassay algorithms (MAAs) can be used to estimate cross-sectional HIV incidence. We previously identified a robust MAA that includes the BED capture enzyme immunoassay (BED-CEIA), the Bio-Rad Avidity assay, viral load, and CD4 cell count. In this report, we evaluated MAAs that include a high-resolution melting (HRM) diversity assay that does not require sequencing. HRM scores were determined for eight regions of the HIV genome (2 in gag, 1 in pol, and 5 in env). The MAAs that were evaluated included the BED-CEIA, the Bio-Rad Avidity assay, viral load, and the HRM diversity assay, using HRM scores from different regions and a range of region-specific HRM diversity assay cutoffs. The performance characteristics based on the proportion of samples that were classified as MAA positive by duration of infection were determined for each MAA, including the mean window period. The cross-sectional incidence estimates obtained using optimized MAAs were compared to longitudinal incidence estimates for three cohorts in the United States. The performance of the HRM-based MAA was nearly identical to that of the MAA that included CD4 cell count. The HRM-based MAA had a mean window period of 154 days and provided cross-sectional incidence estimates that were similar to those based on cohort follow-up. HIV diversity is a useful biomarker for estimating HIV incidence. MAAs that include the HRM diversity assay can provide accurate HIV incidence estimates using stored blood plasma or serum samples without a requirement for CD4 cell count data. PMID:24153134
Identification and characterization of MAVS from black carp Mylopharyngodon piceus.
Zhou, Wei; Zhou, Jujun; Lv, Ying; Qu, Yixiao; Chi, Mengdie; Li, Jun; Feng, Hao
2015-04-01
MAVS (mitochondria antiviral signaling protein) plays an important role in the host cellular innate immune response against microbial pathogens. In this study, MAVS has been cloned and characterized from black carp (Mylopharyngodon piceus). The full-length cDNA of black carp MAVS (bcMAVS) consists of 2352 nucleotides and the predicted bcMAVS protein contains 579 amino acids. Structural analysis showed that bcMAVS is composed of functional domains including an N-terminal CARD, a central proline-rich domain, a putative TRAF2-binding motif and a C-terminal TM domain, which is similar to mammalian MAVS. bcMAVS is constitutively transcribed in all the selected tissues including gill, kidney, heart, intestine, liver, muscle, skin and spleen; bcMAVS mRNA level in intestine, liver, muscle increased but decreased in spleen right after GCRV or SVCV infection. Multiple bands of bcMAVS were detected in western blot when it was expressed in tissue culture, which is similar to mammalian MAVS. Immunofluorescence assay determined that bcMAVS is a mitochondria protein and luciferase reporter assay demonstrated that bcMAVS could induce zebrafish IFN and EPC IFN expression in tissue culture. Data generated in this manuscript has built a solid foundation for further elucidating the function of bcMAVS in the innate immune system of black carp. Copyright © 2015 Elsevier Ltd. All rights reserved.
Design and interpretation of microRNA-reporter gene activity.
Carroll, Adam P; Tooney, Paul A; Cairns, Murray J
2013-06-15
MicroRNAs (miRNAs) are small noncoding RNA molecules that act as sequence specificity guides to direct post-transcriptional gene silencing. In doing so, miRNAs regulate many critical developmental processes, including cellular proliferation, differentiation, migration, and apoptosis, as well as more specialized biological functions such as dendritic spine development and synaptogenesis. Interactions between miRNAs and their miRNA recognition elements occur via partial complementarity, rendering tremendous redundancy in targeting such that miRNAs are predicted to regulate 60% of the genome, with each miRNA estimated to regulate more than 200 genes. Because these predictions are prone to false positives and false negatives, there is an ever present need to provide material support to these assertions to firmly establish the biological function of specific miRNAs in both normal and pathophysiological contexts. Using schizophrenia-associated miR-181b as an example, we present detailed guidelines and novel insights for the rapid establishment of a streamlined miRNA-reporter gene assay and explore various design concepts for miRNA-reporter gene applications, including bidirectional miRNA modulation. In exemplifying this approach, we report seven novel miR-181b target sites for five schizophrenia candidate genes (DISC1, BDNF, ENKUR, GRIA1, and GRIK1) and dissect a number of vital concepts regarding future developments for miRNA-reporter gene assays and the interpretation of their results. Copyright © 2013 Elsevier Inc. All rights reserved.
A robust methodology to subclassify pseudokinases based on their nucleotide-binding properties
Murphy, James M.; Zhang, Qingwei; Young, Samuel N.; Reese, Michael L.; Bailey, Fiona P.; Eyers, Patrick A.; Ungureanu, Daniela; Hammaren, Henrik; Silvennoinen, Olli; Varghese, Leila N.; Chen, Kelan; Tripaydonis, Anne; Jura, Natalia; Fukuda, Koichi; Qin, Jun; Nimchuk, Zachary; Mudgett, Mary Beth; Elowe, Sabine; Gee, Christine L.; Liu, Ling; Daly, Roger J.; Manning, Gerard; Babon, Jeffrey J.; Lucet, Isabelle S.
2017-01-01
Protein kinase-like domains that lack conserved residues known to catalyse phosphoryl transfer, termed pseudokinases, have emerged as important signalling domains across all kingdoms of life. Although predicted to function principally as catalysis-independent protein-interaction modules, several pseudokinase domains have been attributed unexpected catalytic functions, often amid controversy. We established a thermal-shift assay as a benchmark technique to define the nucleotide-binding properties of kinase-like domains. Unlike in vitro kinase assays, this assay is insensitive to the presence of minor quantities of contaminating kinases that may otherwise lead to incorrect attribution of catalytic functions to pseudokinases. We demonstrated the utility of this method by classifying 31 diverse pseudokinase domains into four groups: devoid of detectable nucleotide or cation binding; cation-independent nucleotide binding; cation binding; and nucleotide binding enhanced by cations. Whereas nine pseudokinases bound ATP in a divalent cation-dependent manner, over half of those examined did not detectably bind nucleotides, illustrating that pseudokinase domains predominantly function as non-catalytic protein-interaction modules within signalling networks and that only a small subset is potentially catalytically active. We propose that henceforth the thermal-shift assay be adopted as the standard technique for establishing the nucleotide-binding and catalytic potential of kinase-like domains. PMID:24107129
Functional Profiling Using the Saccharomyces Genome Deletion Project Collections.
Nislow, Corey; Wong, Lai Hong; Lee, Amy Huei-Yi; Giaever, Guri
2016-09-01
The ability to measure and quantify the fitness of an entire organism requires considerably more complex approaches than simply using traditional "omic" methods that examine, for example, the abundance of RNA transcripts, proteins, or metabolites. The yeast deletion collections represent the only systematic, comprehensive set of null alleles for any organism in which such fitness measurements can be assayed. Generated by the Saccharomyces Genome Deletion Project, these collections allow the systematic and parallel analysis of gene functions using any measurable phenotype. The unique 20-bp molecular barcodes engineered into the genome of each deletion strain facilitate the massively parallel analysis of individual fitness. Here, we present functional genomic protocols for use with the yeast deletion collections. We describe how to maintain, propagate, and store the deletion collections and how to perform growth fitness assays on single and parallel screening platforms. Phenotypic fitness analyses of the yeast mutants, described in brief here, provide important insights into biological functions, mechanisms of drug action, and response to environmental stresses. It is important to bear in mind that the specific assays described in this protocol represent some of the many ways in which these collections can be assayed, and in this description particular attention is paid to maximizing throughput using growth as the phenotypic measure. © 2016 Cold Spring Harbor Laboratory Press.
Hansen, Randi Westh; Wang, Xiaole; Golab, Agnieszka; Bornert, Olivier; Oswald, Christine; Wagner, Renaud; Martinez, Karen Laurence
2016-01-01
Long-term functional stability of isolated membrane proteins is crucial for many in vitro applications used to elucidate molecular mechanisms, and used for drug screening platforms in modern pharmaceutical industry. Compared to soluble proteins, the understanding at the molecular level of membrane proteins remains a challenge. This is partly due to the difficulty to isolate and simultaneously maintain their structural and functional stability, because of their hydrophobic nature. Here we show, how scintillation proximity assay can be used to analyze time-resolved high-affinity ligand binding to membrane proteins solubilized in various environments. The assay was used to establish conditions that preserved the biological function of isolated human kappa opioid receptor. In detergent solution the receptor lost high-affinity ligand binding to a radiolabelled ligand within minutes at room temperature. After reconstitution in Nanodiscs made of phospholipid bilayer the half-life of high-affinity ligand binding to the majority of receptors increased 70-fold compared to detergent solubilized receptors—a level of stability that is appropriate for further downstream applications. Time-resolved scintillation proximity assay has the potential to screen numerous conditions in parallel to obtain high levels of stable and active membrane proteins, which are intrinsically unstable in detergent solution, and with minimum material consumption. PMID:27035823
Niescierowicz, Katarzyna; Caro, Lydia; Cherezov, Vadim; Vivaudou, Michel; Moreau, Christophe J
2014-01-07
Structural studies of G protein-coupled receptors (GPCRs) extensively use the insertion of globular soluble protein domains to facilitate their crystallization. However, when inserted in the third intracellular loop (i3 loop), the soluble protein domain disrupts their coupling to G proteins and impedes the GPCRs functional characterization by standard G protein-based assays. Therefore, activity tests of crystallization-optimized GPCRs are essentially limited to their ligand binding properties using radioligand binding assays. Functional characterization of additional thermostabilizing mutations requires the insertion of similar mutations in the wild-type receptor to allow G protein-activation tests. We demonstrate that ion channel-coupled receptor technology is a complementary approach for a comprehensive functional characterization of crystallization-optimized GPCRs and potentially of any engineered GPCR. Ligand-induced conformational changes of the GPCRs are translated into electrical signal and detected by simple current recordings, even though binding of G proteins is sterically blocked by the added soluble protein domain. Copyright © 2014 Elsevier Ltd. All rights reserved.
Precision medicine for cancer with next-generation functional diagnostics.
Friedman, Adam A; Letai, Anthony; Fisher, David E; Flaherty, Keith T
2015-12-01
Precision medicine is about matching the right drugs to the right patients. Although this approach is technology agnostic, in cancer there is a tendency to make precision medicine synonymous with genomics. However, genome-based cancer therapeutic matching is limited by incomplete biological understanding of the relationship between phenotype and cancer genotype. This limitation can be addressed by functional testing of live patient tumour cells exposed to potential therapies. Recently, several 'next-generation' functional diagnostic technologies have been reported, including novel methods for tumour manipulation, molecularly precise assays of tumour responses and device-based in situ approaches; these address the limitations of the older generation of chemosensitivity tests. The promise of these new technologies suggests a future diagnostic strategy that integrates functional testing with next-generation sequencing and immunoprofiling to precisely match combination therapies to individual cancer patients.
Nechansky, A; Szolar, O H J; Siegl, P; Zinoecker, I; Halanek, N; Wiederkum, S; Kircheis, R
2009-05-01
The fully humanized Lewis-Y carbohydrate specific monoclonal antibody (mAb) IGN311 is currently tested in a passive immunotherapy approach in a clinical phase I trail and therefore regulatory requirements demand qualified assays for product analysis. To demonstrate the functionality of its Fc-region, the capacity of IGN311 to mediate complement dependent cytotoxicity (CDC) against human breast cancer cells was evaluated. The "classical" radioactive method using chromium-51 and a FACS-based assay were established and qualified according to ICH guidelines. Parameters evaluated were specificity, response function, bias, repeatability (intra-day precision), intermediate precision (operator-time different), and linearity (assay range). In the course of a fully nested design, a four-parameter logistic equation was identified as appropriate calibration model for both methods. For the radioactive assay, the bias ranged from -6.1% to -3.6%. The intermediate precision for future means of duplicate measurements revealed values from 12.5% to 15.9% and the total error (beta-expectation tolerance interval) of the method was found to be <40%. For the FACS-based assay, the bias ranged from -8.3% to 0.6% and the intermediate precision for future means of duplicate measurements revealed values from 4.2% to 8.0%. The total error of the method was found to be <25%. The presented data demonstrate that the FACS-based CDC is more accurate than the radioactive assay. Also, the elimination of radioactivity and the 'real-time' counting of apoptotic cells further justifies the implementation of this method which was subsequently applied for testing the influence of storage at 4 degrees C and 25 degrees C ('stability testing') on the potency of IGN311 drug product. The obtained results demonstrate that the qualified functional assay represents a stability indicating test method.
Goldman, Ellen R.; Egge, Adrienne L.; Medintz, Igor L.; Lassman, Michael E.; Anderson, George P.
2005-01-01
A homogeneous assay was used to detect 2,4,6-trinitrotoluene (TNT) spiked into environmental water samples. This assay is based on changes in fluorescence emission intensity when TNT competitively displaces a fluorescently labeled, TNT analog bound to an anti-TNT antibody. The effectiveness of the assay was highly dependent on the source of the sample being tested. As no correlation between pH and assay performance was observed, ionic strength was assumed to be the reason for variation in assay results. Addition of 10x phosphate-buffered saline to samples to increase their ionic strength to that of our standard laboratory buffer (about 0.17 M) significantly improved the range over which the assay functioned in several river water samples. PMID:15915298
Sarzotti-Kelsoe, Marcella; Bailer, Robert T; Turk, Ellen; Lin, Chen-li; Bilska, Miroslawa; Greene, Kelli M.; Gao, Hongmei; Todd, Christopher A.; Ozaki, Daniel A.; Seaman, Michael S.; Mascola, John R.; Montefiori, David C.
2014-01-01
The TZM-bl assay measures antibody-mediated neutralization of HIV-1 as a function of reductions in HIV-1 Tat-regulated firefly luciferase (Luc) reporter gene expression after a single round of infection with Env-pseudotyped viruses. This assay has become the main endpoint neutralization assay used for the assessment of preclinical and clinical trial samples by a growing number of laboratories worldwide. Here we present the results of the formal optimization and validation of the TZM-bl assay, performed in compliance with Good Clinical Laboratory Practice (GCLP) guidelines. The assay was evaluated for specificity, accuracy, precision, limits of detection and quantitation, linearity, range and robustness. The validated manual TZM-bl assay was also adapted, optimized and qualified to an automated 384-well format. PMID:24291345
Validation of Procedures for Monitoring Crewmember Immune Function
NASA Technical Reports Server (NTRS)
Crucian, Brian; Stowe, Raymond; Mehta, Satish; Uchakin, Peter; Quiriarte, Heather; Pierson, Duane; Sams, Clarence
2009-01-01
There is ample evidence to suggest that space flight leads to immune system dysregulation, however the nature of the phenomenon as it equilibrates over longer flights has not been determined. This dysregulation may be a result of microgravity, confinement, physiological stress, radiation, environment or other mission-associated factors. The clinical risk (if any) for exploration-class space flight is unknown, but may include increased incidence of infection, allergy, hypersensitivity, hematological malignancy or altered wound healing. The objective of this Supplemental Medical Objective (SMO) is to determine the status of the immune system, physiological stress and latent viral reactivation (a clinical outcome that can be measured) during both short and long-duration spaceflight. In addition, this study will develop and validate an immune monitoring strategy consistent with operational flight requirements and constraints. Pre-mission, in-flight and post-flight blood and saliva samples will be obtained from participating crewmembers. Assays included peripheral immunophenotype, T cell function, cytokine profiles (RNA, intracellular, secreted), viral-specific immunity, latent viral reactivation (EBV, CMV, VZV), and stress hormone measurements. This study is currently ongoing. To date, 10 short duration and 5 long-duration crewmembers have completed the study. Technically, the study is progressing well. In-flight blood samples are being collected, and returned for analysis, including functional assays that require live cells. For all in-flight samples to date, sample viability has been acceptable. Preliminary data (n = 4/7; long/short duration, respectively) indicate that distribution of most peripheral leukocyte subsets is largely unaltered during flight. Exceptions include elevated T cells, reduced B/NK cells, increased memory T cells and increased central memory CD8+ T cells. General T cell function, early blastogenesis response to mitogenic stimulation, is markedly reduced in-flight. In-vivo cytokine production profiles are altered, with in-flight dysregulation observed in the Th1/Th2/Treg equilibrium. EBV specific T cell levels are increased during flight, whereas their function is reduced. VZV reactivation was observed inflight and several days post flight with highest levels measured later during long-duration flight. The shedding of CMV in the urine was detected of 4/5 long duration and 4/7 short duration crewmembers. Plasma cortisol was not elevated during flight. Further data will be required to validate the initial observations.
Watanabe, Takahito; Noji, Sumihare; Mito, Taro
2014-08-15
Hemimetabolous, or incompletely metamorphosing, insects are phylogenetically basal. These insects include many deleterious species. The cricket, Gryllus bimaculatus, is an emerging model for hemimetabolous insects, based on the success of RNA interference (RNAi)-based gene-functional analyses and transgenic technology. Taking advantage of genome-editing technologies in this species would greatly promote functional genomics studies. Genome editing using transcription activator-like effector nucleases (TALENs) has proven to be an effective method for site-specific genome manipulation in various species. TALENs are artificial nucleases that are capable of inducing DNA double-strand breaks into specified target sequences. Here, we describe a protocol for TALEN-based gene knockout in G. bimaculatus, including a mutant selection scheme via mutation detection assays, for generating homozygous knockout organisms. Copyright © 2014 Elsevier Inc. All rights reserved.
Moelleken, Jörg; Gassner, Christian; Lingke, Sabine; Tomaschek, Simone; Tyshchuk, Oksana; Lorenz, Stefan; Mølhøj, Michael
2017-01-01
ABSTRACT The determination of the binding strength of immunoglobulins (IgGs) to targets can be influenced by avidity when the targets are soluble di- or multimeric proteins, or associated to cell surfaces, including surfaces introduced from heterogeneous assays. However, for the understanding of the contribution of a second drug-to-target binding site in molecular design, or for ranking of monovalent binders during lead identification, affinity-based assessment of the binding strength is required. Typically, monovalent binders like antigen-binding fragments (Fabs) are generated by proteolytic cleavage with papain, which often results in a combination of under- and over-digestion, and requires specific optimization and chromatographic purification of the desired Fabs. Alternatively, the Fabs are produced by recombinant approaches. Here, we report a lean approach for the functional assessment of human IgG1s during lead identification based on an in-solution digestion with the GingisKHAN™ protease, generating a homogenous pool of intact Fabs and Fcs and enabling direct assaying of the Fab in the digestion mixture. The digest with GingisKHAN™ is highly specific and quantitative, does not require much optimization, and the protease does not interfere with methods typically applied for lead identification, such as surface plasmon resonance or cell-based assays. GingisKHAN™ is highly suited to differentiate between affinity and avidity driven binding of human IgG1 monoclonal and bispecific antibodies during lead identification. PMID:28805498
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guan, Jian; Bywaters, Stephanie M.; Brendle, Sarah A.
2015-09-15
Cryo-electron microscopy (cryo-EM) was used to solve the structures of human papillomavirus type 16 (HPV16) complexed with fragments of antibody (Fab) from three different neutralizing monoclonals (mAbs): H16.1A, H16.14J, and H263.A2. The structure-function analysis revealed predominantly monovalent binding of each Fab with capsid interactions that involved multiple loops from symmetry related copies of the major capsid protein. The residues identified in each Fab-virus interface map to a conformational groove on the surface of the capsomer. In addition to the known involvement of the FG and HI loops, the DE loop was also found to constitute the core of each epitope.more » Surprisingly, the epitope mapping also identified minor contributions by EF and BC loops. Complementary immunological assays included mAb and Fab neutralization. The specific binding characteristics of mAbs correlated with different neutralizing behaviors in pre- and post-attachment neutralization assays. - Highlights: • We present HPV16-Fab complexes from neutralizing mAbs: H16.1A, H16.14J, and H263.A2. • The structure-function analysis revealed predominantly monovalent binding of each mAb. • Capsid–Fab interactions involved multiple loops from symmetry related L1 proteins. • Besides the known FG and HI loops, epitope mapping also identified DE, EF, and BC loops. • Neutralizing assays complement the structures to show multiple neutralization mechanisms.« less
True, Lawrence D
2014-03-01
Paralleling the growth of ever more cost efficient methods to sequence the whole genome in minute fragments of tissue has been the identification of increasingly numerous molecular abnormalities in cancers--mutations, amplifications, insertions and deletions of genes, and patterns of differential gene expression, i.e., overexpression of growth factors and underexpression of tumor suppressor genes. These abnormalities can be translated into assays to be used in clinical decision making. In general terms, the result of such an assay is subject to a large number of variables regarding the characteristics of the available sample, particularities of the used assay, and the interpretation of the results. This review discusses the effects of these variables on assays of tissue-based biomarkers, classified by macromolecule--DNA, RNA (including micro RNA, messenger RNA, long noncoding RNA, protein, and phosphoprotein). Since the majority of clinically applicable biomarkers are immunohistochemically detectable proteins this review focuses on protein biomarkers. However, the principles outlined are mostly applicable to any other analyte. A variety of preanalytical variables impacts on the results obtained, including analyte stability (which is different for different analytes, i.e., DNA, RNA, or protein), period of warm and of cold ischemia, fixation time, tissue processing, sample storage time, and storage conditions. In addition, assay variables play an important role, including reagent specificity (notably but not uniquely an issue concerning antibodies used in immunohistochemistry), technical components of the assay, quantitation, and assay interpretation. Finally, appropriateness of an assay for clinical application is an important issue. Reference is made to publicly available guidelines to improve on biomarker development in general and requirements for clinical use in particular. Strategic goals are formulated in order to improve on the quality of biomarker reporting, including issues of analyte quality, experimental detail, assay efficiency and precision, and assay appropriateness.
Hinz, Marty; Stein, Alvin; Neff, Robert; Weinberg, Robert; Uncini, Thomas
2011-01-01
Background This paper documents a retrospective pilot study of a novel approach for treating attention deficit hyperactivity disorder (ADHD) with amino acid precursors of serotonin and dopamine in conjunction with urinary monoamine assays subjected to organic cation transporter (OCT) functional status determination. The goal of this research was to document the findings and related considerations of a retrospective chart review study designed to identify issues and areas of concern that will define parameters for a prospective controlled study. Methods This study included 85 patients, aged 4–18 years, who were treated with a novel amino acid precursor protocol. Their clinical course during the first 8–10 weeks of treatment was analyzed retrospectively. The study team consisted of PhD clinical psychologists, individuals compiling clinical data from records, and a statistician. The patients had been treated with a predefined protocol for administering amino acid precursors of serotonin and dopamine, along with OCT assay interpretation as indicated. Results In total, 67% of participants achieved significant improvement with only amino acid precursors of serotonin and dopamine. In patients who achieved no significant relief of symptoms with only amino acid precursors, OCT assay interpretation was utilized. In this subgroup, 30.3% achieved significant relief following two or three urine assays and dosage changes as recommended by the assay results. The total percentage of patients showing significant improvement was 77%. Conclusion The efficacy of this novel protocol appears superior to some ADHD prescription drugs, and therefore indicates a need for further studies to verify this observation. The findings of this study justify initiation of further prospective controlled studies in order to evaluate more formally the observed benefits of this novel approach in the treatment of ADHD. PMID:21326653
Cipolleschi, Maria Grazia; Rovida, Elisabetta; Sbarba, Persio Dello
2013-01-01
The Culture-Repopulating Ability (CRA) assays is a method to measure in vitro the bone marrow-repopulating potential of haematopoietic cells. The method was developed in our laboratory in the course of studies based on the use of growth factor-supplemented liquid cultures to study haematopoietic stem/progenitor cell resistance to, and selection at, low oxygen tensions in the incubation atmosphere. These studies led us to put forward the first hypothesis of the existence in vivo of haematopoietic stem cell niches where oxygen tension is physiologically lower than in other bone marrow areas. The CRA assays and incubation in low oxygen were later adapted to the study of leukaemias. Stabilized leukaemia cell lines, ensuring genetically homogeneous cells and enhancing repeatability of results, were found nevertheless phenotypically heterogeneous, comprising cell subsets exhibiting functional phenotypes of stem or progenitor cells. These subsets can be assayed separately, provided an experimental system capable to select one from another (such as different criteria for incubation in low oxygen) is established. On this basis, a two-step procedure was designed, including a primary culture of leukaemia cells in low oxygen for different times, where drug treatment is applied, followed by the transfer of residual cell population (CRA assay) to a drug-free secondary culture incubated at standard oxygen tension, where the expansion of population is allowed. The CRA assays, applied to cell lines first and then to primary cells, represent a simple and relatively rapid, yet accurate and reliable, method for the pre-screening of drugs potentially active on leukaemias which in our opinion could be adopted systematically before they are tested in vivo. PMID:23394087
Jin, Zhao; Di Rienzi, Sara C.; Janzon, Anders; Werner, Jeff J.; Angenent, Largus T.; Dangl, Jeffrey L.; Fowler, Douglas M.
2015-01-01
Metagenomes derived from environmental microbiota encode a vast diversity of protein homologs. How this diversity impacts protein function can be explored through selection assays aimed to optimize function. While artificially generated gene sequence pools are typically used in selection assays, their usage may be limited because of technical or ethical reasons. Here, we investigate an alternative strategy, the use of soil microbial DNA as a starting point. We demonstrate this approach by optimizing the function of a widely occurring soil bacterial enzyme, 1-aminocyclopropane-1-carboxylate (ACC) deaminase. We identified a specific ACC deaminase domain region (ACCD-DR) that, when PCR amplified from the soil, produced a variant pool that we could swap into functional plasmids carrying ACC deaminase-encoding genes. Functional clones of ACC deaminase were selected for in a competition assay based on their capacity to provide nitrogen to Escherichia coli in vitro. The most successful ACCD-DR variants were identified after multiple rounds of selection by sequence analysis. We observed that previously identified essential active-site residues were fixed in the original unselected library and that additional residues went to fixation after selection. We identified a divergent essential residue whose presence hints at the possible use of alternative substrates and a cluster of neutral residues that did not influence ACCD performance. Using an artificial ACCD-DR variant library generated by DNA oligomer synthesis, we validated the same fixation patterns. Our study demonstrates that soil metagenomes are useful starting pools of protein-coding-gene diversity that can be utilized for protein optimization and functional characterization when synthetic libraries are not appropriate. PMID:26637602
High density diffusion-free nanowell arrays.
Takulapalli, Bharath R; Qiu, Ji; Magee, D Mitchell; Kahn, Peter; Brunner, Al; Barker, Kristi; Means, Steven; Miersch, Shane; Bian, Xiaofang; Mendoza, Alex; Festa, Fernanda; Syal, Karan; Park, Jin G; LaBaer, Joshua; Wiktor, Peter
2012-08-03
Proteomics aspires to elucidate the functions of all proteins. Protein microarrays provide an important step by enabling high-throughput studies of displayed proteins. However, many functional assays of proteins include untethered intermediates or products, which could frustrate the use of planar arrays at very high densities because of diffusion to neighboring features. The nucleic acid programmable protein array (NAPPA) is a robust in situ synthesis method for producing functional proteins just-in-time, which includes steps with diffusible intermediates. We determined that diffusion of expressed proteins led to cross-binding at neighboring spots at very high densities with reduced interspot spacing. To address this limitation, we have developed an innovative platform using photolithographically etched discrete silicon nanowells and used NAPPA as a test case. This arrested protein diffusion and cross-binding. We present confined high density protein expression and display, as well as functional protein-protein interactions, in 8000 nanowell arrays. This is the highest density of individual proteins in nanovessels demonstrated on a single slide. We further present proof of principle results on ultrahigh density protein arrays capable of up to 24000 nanowells on a single slide.
[Influence of Cx26/Cx32 gap junction channel on antineoplastic effect of etoposide in Hela cells].
Tong, Xu-Hui; Dong, Shu-Ying; Jiang, Guo-Jun; Fan, Gao-Fu
2012-03-01
To observe the influence of Cx26/Cx32 gap junction channel on the antineoplastic effect of etoposide in Hela cervical cancer cells. Fluorescence trace was used to assay the gap junction intercellular communication mediated by Cx26/Cx32 in Hela cells and its functional modulation by the pharmacological agents (oleamide, retinoid acid). A standard colony-forming assay was applied to determine the cell growth-inhibiting effect of etoposide in Hela cells with functional modulation of the gap junction. Hoechst 33258 staining was used to assess the changes in etoposide-induced apoptosis of Hela cells with altered gap junction functions. Oleamide markedly decreased while retinoid acid obviously increased the gap junction function in Hela cells. Standard colony-forming assay showed that etoposide produced a lowered antiproliferative effect in Hela cells with reduced gap junction and an increased antiproliferative effect in cells with enhanced gap junction function. In cells with a reduced gap junction function, etoposide induced a lowered apoptosis rate, which increased obviously in cells with an enhanced gap junction function. The antineoplastic effect of etoposide is reduced in Hela cells with a decreased gap junction intercellular communication mediated by Cx26/Cx32 and is enhanced in cells with an increased gap junction intercellular communication.
Kang, Jeon Woong; Sukumar, Saraswati; Dasari, Ramachandra Rao
2015-01-01
Circulating biomarkers have emerged as promising non-invasive, real-time surrogates for cancer diagnosis, prognostication and monitoring of therapeutic response. Emerging data, however, suggest that single markers are inadequate in describing complex pathologic transformations. Architecting assays capable of parallel measurements of multiple biomarkers can help achieve the desired clinical sensitivity and specificity while conserving patient specimen and reducing turn-around time. Here we describe a plasmon-enhanced Raman spectroscopic assay featuring nanostructured biomolecular probes and spectroscopic imaging for multiplexed detection of disseminated breast cancer markers cancer antigen (CA) 15-3, CA 27-29 and cancer embryonic antigen (CEA). In the developed SERS assay, both the assay chip and surface-enhanced Raman spectroscopy (SERS) tags are functionalized with monoclonal antibodies against CA15-3, CA27-29 and CEA, respectively. Sequential addition of biomarkers and functionalized SERS tags onto the functionalized assay chip enable the specific recognition of these biomarkers through the antibody-antigen interactions, leading to a sandwich spectro-immunoassay. In addition to offering extensive multiplexing capability, our method provides higher sensitivity than conventional immunoassays and demonstrates exquisite specificity owing to selective formation of conjugated complexes and fingerprint spectra of the Raman reporter. We envision that clinical translation of this assay may further enable asymptomatic surveillance of cancer survivors and speedy assessment of treatment benefit through a simple blood test. PMID:26405519
Hansen, Kasper B.; Mullasseril, Praseeda; Dawit, Sara; Kurtkaya, Natalie L.; Yuan, Hongjie; Vance, Katie M.; Orr, Anna G.; Kvist, Trine; Ogden, Kevin K.; Le, Phuong; Vellano, Kimberly M.; Lewis, Iestyn; Kurtkaya, Serdar; Du, Yuhong; Qui, Min; Murphy, T. J.; Snyder, James P.; Bräuner-Osborne, Hans
2010-01-01
N-Methyl-d-aspartate (NMDA) receptors are ligand-gated ion channels that mediate a slow, Ca2+-permeable component of excitatory synaptic transmission in the central nervous system and play a pivotal role in synaptic plasticity, neuronal development, and several neurological diseases. We describe a fluorescence-based assay that measures NMDA receptor-mediated changes in intracellular calcium in a BHK-21 cell line stably expressing NMDA receptor NR2D with NR1 under the control of a tetracycline-inducible promoter (Tet-On). The assay selectively identifies allosteric modulators by using supramaximal concentrations of glutamate and glycine to minimize detection of competitive antagonists. The assay is validated by successfully identifying known noncompetitive, but not competitive NMDA receptor antagonists among 1800 screened compounds from two small focused libraries, including the commercially available library of pharmacologically active compounds. Hits from the primary screen are validated through a secondary screen that used two-electrode voltage-clamp recordings on recombinant NMDA receptors expressed in Xenopus laevis oocytes. This strategy identified several novel modulators of NMDA receptor function, including the histamine H3 receptor antagonists clobenpropit and iodophenpropit, as well as the vanilloid receptor transient receptor potential cation channel, subfamily V, member 1 (TRPV1) antagonist capsazepine. These compounds are noncompetitive antagonists and the histamine H3 receptor ligand showed submicromolar potency at NR1/NR2B NMDA receptors, which raises the possibility that compounds can be developed that act with high potency on both glutamate and histamine receptor systems simultaneously. Furthermore, it is possible that some actions attributed to histamine H3 receptor inhibition in vivo may also involve NMDA receptor antagonism. PMID:20197375
Cone, Katherine; Lanpher, Janell; Kinens, Abigail; Richard, Philomena; Couture, Sarah; Brackin, Rebecca; Payne, Emily; Harrington, Kylee; Rice, Kenner C; Stevenson, Glenn W
2018-05-01
Although delta/mu receptor interactions vary as a function of behavioral endpoint, there have been no assessments of these interactions using assays of pain-depressed responding. This is the first report of delta/mu interactions using an assay of pain-depressed behavior. A mult-cycle FR10 operant schedule was utilized in the presence of (nociception) and in the absence of (rate suppression) a lactic acid inflammatory pain-like manipulation. SNC80 and methadone were used as selective/high efficacy delta and mu agonists, respectively. Both SNC80 and methadone alone produced a dose-dependent restoration of pain-depressed responding and dose-dependent response rate suppression. Three fixed ratio mixtures, based on the relative potencies of the drugs in the nociception assay, also produced dose-dependent antinociception and sedation. Isobolographic analysis indicated that all three mixtures produced supra-additive antinociceptive effects and simply additive sedation effects. The therapeutic index (TI) inversely varied as a function of amount of SNC80 in the mixture, such that lower amounts of SNC80 produced a higher TI, and larger amounts produced a lower TI. Compared to literature using standard pain-elicited assays, the orderly relationship between SNC80 and TI reported here may be a unique function of assessing pain-depressed behavior.
Wetmore, Kelly M.; Price, Morgan N.; Waters, Robert J.; ...
2015-05-12
Transposon mutagenesis with next-generation sequencing (TnSeq) is a powerful approach to annotate gene function in bacteria, but existing protocols for TnSeq require laborious preparation of every sample before sequencing. Thus, the existing protocols are not amenable to the throughput necessary to identify phenotypes and functions for the majority of genes in diverse bacteria. Here, we present a method, random bar code transposon-site sequencing (RB-TnSeq), which increases the throughput of mutant fitness profiling by incorporating random DNA bar codes into Tn5 and mariner transposons and by using bar code sequencing (BarSeq) to assay mutant fitness. RB-TnSeq can be used with anymore » transposon, and TnSeq is performed once per organism instead of once per sample. Each BarSeq assay requires only a simple PCR, and 48 to 96 samples can be sequenced on one lane of an Illumina HiSeq system. We demonstrate the reproducibility and biological significance of RB-TnSeq with Escherichia coli, Phaeobacter inhibens, Pseudomonas stutzeri, Shewanella amazonensis, and Shewanella oneidensis. To demonstrate the increased throughput of RB-TnSeq, we performed 387 successful genome-wide mutant fitness assays representing 130 different bacterium-carbon source combinations and identified 5,196 genes with significant phenotypes across the five bacteria. In P. inhibens, we used our mutant fitness data to identify genes important for the utilization of diverse carbon substrates, including a putative D-mannose isomerase that is required for mannitol catabolism. RB-TnSeq will enable the cost-effective functional annotation of diverse bacteria using mutant fitness profiling. A large challenge in microbiology is the functional assessment of the millions of uncharacterized genes identified by genome sequencing. Transposon mutagenesis coupled to next-generation sequencing (TnSeq) is a powerful approach to assign phenotypes and functions to genes. However, the current strategies for TnSeq are too laborious to be applied to hundreds of experimental conditions across multiple bacteria. Here, we describe an approach, random bar code transposon-site sequencing (RB-TnSeq), which greatly simplifies the measurement of gene fitness by using bar code sequencing (BarSeq) to monitor the abundance of mutants. We performed 387 genome-wide fitness assays across five bacteria and identified phenotypes for over 5,000 genes. RB-TnSeq can be applied to diverse bacteria and is a powerful tool to annotate uncharacterized genes using phenotype data.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wetmore, Kelly M.; Price, Morgan N.; Waters, Robert J.
Transposon mutagenesis with next-generation sequencing (TnSeq) is a powerful approach to annotate gene function in bacteria, but existing protocols for TnSeq require laborious preparation of every sample before sequencing. Thus, the existing protocols are not amenable to the throughput necessary to identify phenotypes and functions for the majority of genes in diverse bacteria. Here, we present a method, random bar code transposon-site sequencing (RB-TnSeq), which increases the throughput of mutant fitness profiling by incorporating random DNA bar codes into Tn5 and mariner transposons and by using bar code sequencing (BarSeq) to assay mutant fitness. RB-TnSeq can be used with anymore » transposon, and TnSeq is performed once per organism instead of once per sample. Each BarSeq assay requires only a simple PCR, and 48 to 96 samples can be sequenced on one lane of an Illumina HiSeq system. We demonstrate the reproducibility and biological significance of RB-TnSeq with Escherichia coli, Phaeobacter inhibens, Pseudomonas stutzeri, Shewanella amazonensis, and Shewanella oneidensis. To demonstrate the increased throughput of RB-TnSeq, we performed 387 successful genome-wide mutant fitness assays representing 130 different bacterium-carbon source combinations and identified 5,196 genes with significant phenotypes across the five bacteria. In P. inhibens, we used our mutant fitness data to identify genes important for the utilization of diverse carbon substrates, including a putative D-mannose isomerase that is required for mannitol catabolism. RB-TnSeq will enable the cost-effective functional annotation of diverse bacteria using mutant fitness profiling. A large challenge in microbiology is the functional assessment of the millions of uncharacterized genes identified by genome sequencing. Transposon mutagenesis coupled to next-generation sequencing (TnSeq) is a powerful approach to assign phenotypes and functions to genes. However, the current strategies for TnSeq are too laborious to be applied to hundreds of experimental conditions across multiple bacteria. Here, we describe an approach, random bar code transposon-site sequencing (RB-TnSeq), which greatly simplifies the measurement of gene fitness by using bar code sequencing (BarSeq) to monitor the abundance of mutants. We performed 387 genome-wide fitness assays across five bacteria and identified phenotypes for over 5,000 genes. RB-TnSeq can be applied to diverse bacteria and is a powerful tool to annotate uncharacterized genes using phenotype data.« less
Alberti, Michael O; Jones, Jennifer J; Miglietta, Riccardo; Ding, Haitao; Bakshi, Rakesh K; Edmonds, Tara G; Kappes, John C; Ochsenbauer, Christina
2015-12-01
We previously developed replication-competent reporter HIV-1 (referred to herein as LucR.T2A reporter viruses), utilizing a "ribosome skipping" T2A peptide strategy to link Renilla luciferase (LucR) with Nef expression. The demonstrated utility for HIV-1 vaccine and transmission study applications included measurement of neutralizing antibody (NAb) activity in vaccine sera, improved cell-mediated virus inhibition assays, such as T cell-mediated virus inhibition and antibody-dependent cell-mediated cytotoxicity (ADCC) assays, and humanized mouse models. Herein, we extend our prior work and introduce reporter virus technology for applications that require fully functional Nef. We demonstrate that in CD4(+) T cells productively infected with LucR.T2A reporter viruses, T2A peptide-driven Nef expression and function, such as down-regulation of surface CD4 and MHC-I, were impaired. We overcame this limitation of LucR.T2A reporter viruses and achieved physiological Nef expression and function by engineering novel LucR reporter HIV-1 comprising 11 different internal ribosome entry site (IRES) elements chosen for size and relative activity. A range of Nef expression was observed in 293T cells transfected with the different LucR.IRES reporter virus constructs. Iteratively, we identified IRES reporter genomes that expressed Nef closest to physiological levels and produced virus with infectivity, titers, and replication kinetics similar to nonreporter viruses. Our results demonstrated that LucR reporter activity was stable over multiple replication cycles in peripheral blood mononuclear cells (PBMCs). Furthermore, we analyzed Nef functionality, i.e., down-modulation of MHC-I and CD4, following infection of T cell lines and PBMCs. Unlike LucR.T2A reporter virus, one of the redesigned LucR.IRES reporter viruses [containing the modified encephalomyocarditis virus (EMCV) 6ATR IRES element, "6ATRi"] demonstrated Nef expression and function similar to parental "nonreporter" virus. In a previously validated (nef-independent) T cell-based NAb neutralization assay, LucR.6ATRi reporter virus performed indistinguishably from LucR.T2A reporter virus. In summary, reporter viruses comprising the "6ATRi" element promise to augment HIV-1 vaccine and transmission research approaches requiring a sensitive reporter readout combined with wild-type Nef function.
Alberti, Michael O.; Jones, Jennifer J.; Miglietta, Riccardo; Ding, Haitao; Bakshi, Rakesh K.; Edmonds, Tara G.; Kappes, John C.
2015-01-01
Abstract We previously developed replication-competent reporter HIV-1 (referred to herein as LucR.T2A reporter viruses), utilizing a “ribosome skipping” T2A peptide strategy to link Renilla luciferase (LucR) with Nef expression. The demonstrated utility for HIV-1 vaccine and transmission study applications included measurement of neutralizing antibody (NAb) activity in vaccine sera, improved cell-mediated virus inhibition assays, such as T cell-mediated virus inhibition and antibody-dependent cell-mediated cytotoxicity (ADCC) assays, and humanized mouse models. Herein, we extend our prior work and introduce reporter virus technology for applications that require fully functional Nef. We demonstrate that in CD4+ T cells productively infected with LucR.T2A reporter viruses, T2A peptide-driven Nef expression and function, such as down-regulation of surface CD4 and MHC-I, were impaired. We overcame this limitation of LucR.T2A reporter viruses and achieved physiological Nef expression and function by engineering novel LucR reporter HIV-1 comprising 11 different internal ribosome entry site (IRES) elements chosen for size and relative activity. A range of Nef expression was observed in 293T cells transfected with the different LucR.IRES reporter virus constructs. Iteratively, we identified IRES reporter genomes that expressed Nef closest to physiological levels and produced virus with infectivity, titers, and replication kinetics similar to nonreporter viruses. Our results demonstrated that LucR reporter activity was stable over multiple replication cycles in peripheral blood mononuclear cells (PBMCs). Furthermore, we analyzed Nef functionality, i.e., down-modulation of MHC-I and CD4, following infection of T cell lines and PBMCs. Unlike LucR.T2A reporter virus, one of the redesigned LucR.IRES reporter viruses [containing the modified encephalomyocarditis virus (EMCV) 6ATR IRES element, “6ATRi”] demonstrated Nef expression and function similar to parental “nonreporter” virus. In a previously validated (nef-independent) T cell-based NAb neutralization assay, LucR.6ATRi reporter virus performed indistinguishably from LucR.T2A reporter virus. In summary, reporter viruses comprising the “6ATRi” element promise to augment HIV-1 vaccine and transmission research approaches requiring a sensitive reporter readout combined with wild-type Nef function. PMID:26101895
Mussel micronucleus cytome assay.
Bolognesi, Claudia; Fenech, Michael
2012-05-17
The micronucleus (MN) assay is one of the most widely used genotoxicity biomarkers in aquatic organisms, providing an efficient measure of chromosomal DNA damage occurring as a result of either chromosome breakage or chromosome mis-segregation during mitosis. The MN assay is today applied in laboratory and field studies using hemocytes and gill cells from bivalves, mainly from the genera Mytilus. These represent 'sentinel' organisms because of their ability to survive under polluted conditions and to accumulate both organic and inorganic pollutants. Because the mussel MN assay also includes scoring of different cell types, including necrotic and apoptotic cells and other nuclear anomalies, it is in effect an MN cytome assay. The mussel MN cytome (MUMNcyt) assay protocol we describe here reports the recommended experimental design, sample size, cell preparation, cell fixation and staining methods. The protocol also includes criteria and photomicrographs for identifying different cell types and scoring criteria for micronuclei (MNi) and nuclear buds. The complete procedure requires approximately 10 h for each experimental point/sampling station (ten animals).
Derbigny, Wilbert A; Kim, Seong K; Jang, Hyung K; O'Callaghan, Dennis J
2002-03-20
The early 293 amino acid EICP22 protein (EICP22P) of equine herpesvirus 1 localizes within the nucleus and functions as an accessory regulatory protein (J. Virol. 68 (1994) 4329). Transient transfection assays indicated that although the EICP22P by itself only minimally trans-activates EHV-1 promoters, the EICP22P functions synergistically with the immediate-early protein (IEP) to enhance expression of EHV-1 early genes (J. Virol. 71 (1997) 1004). We previously showed that the EICP22 protein enhances the DNA-binding activity of the EHV-1 IEP and that it also physically interacts with the IEP (J. Virol. 74 (2000) 1425). In this communication, we employed transient trans-activation assays utilizing EICP22P deletion mutants to address whether the sequences required for EICP22P-IEP physical interactions are essential for EICP22P's ability to interact synergistically with the IEP. Assays employing various classes of the EHV-1 promoters fused to the chloramphenicol acetyl-transferase (CAT) reporter gene indicated that: (1) neither full length nor any of the EICP22P mutants tested was able to overcome repression of the IE promoter elicited by the IEP, (2) the full-length EICP22P interacted synergistically with the IEP to trans-activate the early and late promoters tested, and (3) all of the EICP22P mutants, including those that were able to physically interact with IEP and itself, failed to function synergistically with the IEP to trans-activate representative EHV-1 early and late promoters. The results suggest that EICP22P sequences required for its interaction with the IE protein are not sufficient to mediate its synergistic effect on the trans-activation function of the IEP. The possible explanations as to why sequences in addition to those that mediate EICP22P-IEP interaction and EICP22P self-interactions are essential for the synergistic function of EICP22P are discussed.
,
2008-01-01
Chapter 1 of this CD-ROM is a database of digitized Fischer (shale-oil) assays of cores and cuttings from boreholes drilled in the Eocene Green River oil shale deposits in southwestern Wyoming. Assays of samples from some surface sections are also included. Most of the Fischer assay analyses were made by the former U.S. Bureau of Mines (USBM) at its laboratory in Laramie, Wyoming. Other assays, made by institutional or private laboratories, were donated to the U.S. Geological Survey (USGS) and are included in this database as well as Adobe PDF-scanned images of some of the original laboratory assay reports and lithologic logs prepared by USBM geologists. The size of this database is 75.2 megabytes and includes information on 971 core holes and rotary-drilled boreholes and numerous surface sections. Most of these data were released previously by the USBM and the USGS through the National Technical Information Service but are no longer available from that agency. Fischer assays for boreholes in northeastern Utah and northwestern Colorado have been published by the USGS. Additional data include geophysical logs, groundwater data, chemical and X-ray diffraction analyses, and other data. These materials are available for inspection in the office of the USGS Central Energy Resources Team in Lakewood, Colorado. The digitized assays were checked with the original laboratory reports, but some errors likely remain. Other information, such as locations and elevations of core holes and oil and gas tests, were not thoroughly checked. However, owing to the current interest in oil-shale development, it was considered in the public interest to make this preliminary database available at this time. Chapter 2 of this CD-ROM presents oil-yield histograms of samples of cores and cuttings from exploration drill holes in the Eocene Green River Formation in the Great Divide, Green River, and Washakie Basins of southwestern Wyoming. A database was compiled that includes about 47,000 Fischer assays from 186 core holes and 240 rotary drill holes. Most of the oil yield data are from analyses performed by the former U.S. Bureau of Mines oil shale laboratory in Laramie, Wyoming, with some analyses made by private laboratories. Location data for 971 Wyoming oil-shale drill holes are listed in a spreadsheet that is included in the CD-ROM. These Wyoming Fischer assays and histograms are part of a much larger collection of oil-shale information, including geophysical and lithologic logs, water data, chemical and X-ray diffraction analyses on the Green River oil-shale deposits in Colorado, Utah, and Wyoming held by the U.S. Geological Survey. Because of an increased interest in oil shale, this CD-ROM containing Fischer assay data and oil-yield histograms for the Green River oil-shale deposits in southwestern Wyoming is being released to the public. Microsoft Excel spreadsheets included with Chapter 2 contain the Fischer assay data from the 426 holes and data on the company name and drill-hole name, and location. Histograms of the oil yields obtained from the Fischer assays are presented in both Grapher and PDF format. Fischer assay text data files are also included in the CD-ROM.
Mutational analysis of the SRC homology 2 domain protein-tyrosine phosphatase Corkscrew.
Allard, J D; Herbst, R; Carroll, P M; Simon, M A
1998-05-22
The SRC homology 2 (SH2) domain protein-tyrosine phosphatase, Corkscrew (CSW) is required for signaling by receptor tyrosine kinases, including the Sevenless receptor tyrosine kinase (SEV), which directs Drosophila R7 photoreceptor cell development. To investigate the role of the different domains of CSW, we constructed domain-specific csw mutations and assayed their effects on CSW function. Our results indicate that CSW SH2 domain function is essential, but either CSW SH2 domain can fulfill this requirement. We also found that CSW and activated SEV are associated in vivo in a manner that does not require either CSW SH2 domain function or tyrosine phosphorylation of SEV. In contrast, the interaction between CSW and Daughter of Sevenless, a CSW substrate, is dependent on SH2 domain function. These results suggest that the role of the CSW SH2 domains during SEV signaling is to bind Daughter of Sevenless rather than activated SEV. We also found that although CSW protein-tyrosine phosphatase activity is required for full CSW function, a catalytically inactive CSW is capable of providing partial function. In addition, we found that deletion of either the CSW protein- tyrosine phosphatase insert or the entire CSW carboxyl terminus, which includes a conserved DRK/GRB2 SH2 domain binding sequence, does not abolish CSW function.
Potential role of TRIM3 as a novel tumour suppressor in colorectal cancer (CRC) development.
Piao, Mei-Yu; Cao, Hai-Long; He, Na-Na; Xu, Meng-Que; Dong, Wen-Xiao; Wang, Wei-Qiang; Wang, Bang-Mao; Zhou, Bing
2016-01-01
Colorectal cancer (CRC) is the third leading cause of cancer-related mortality in the United States. Recent cancer genome-sequencing efforts and complementary functional studies have led to the identification of a collection of candidate 'driver' genes involved in CRC tumorigenesis. Tripartite motif (TRIM3) is recently identified as a tumour suppressor in glioblastoma but this tumour-suppressive function has not been investigated in CRC. In this study, we investigated the potential role of TRIM3 as a tumour suppressor in CRC development by manipulating the expression of TRIM3 in two authentic CRC cell lines, HCT116 and DLD1, followed by various functional assays, including cell proliferation, colony formation, scratch wound healing, soft agar, and invasion assays. Xenograft experiment was performed to examine in vivo tumour-suppressive properties of TRIM3. Small-interfering RNA (siRNA) mediated knockdown of TRIM3 conferred growth advantage in CRC cells. In contrast, overexpression of TRIM3 affected cell survival, cell migration, anchorage independent growth and invasive potential in CRC cells. In addition, TRIM3 was found to be down-regulated in human colon cancer tissues compared with matched normal colon tissues. Overexpression of TRIM3 significantly inhibited tumour growth in vivo using xenograft mouse models. Mechanistic investigation revealed that TRIM3 can regulate p53 protein level through its stabilisation. TRIM3 functions as a tumour suppressor in CRC progression. This tumour-suppressive function is exerted partially through regulation of p53 protein. Therefore, this protein may represent a novel therapeutic target for prevention or intervention of CRC.
Falsely undetectable TSH in a cohort of South Asian euthyroid patients.
Drees, Julia C; Stone, Judith A; Reamer, C Randy; Arboleda, Victoria E; Huang, Karl; Hrynkow, Jane; Greene, Dina N; Petrie, Matthew S; Hoke, Carolyn; Lorey, Thomas S; Dlott, Richard S
2014-04-01
An index case of a clinically euthyroid woman of South Asian descent was identified with discordant TSH results: undetectable TSH on our routine assay and normal TSH on an alternate assay. Low TSH concentrations due to functionally compromising TSH mutations have been reported. Here we describe a new phenomenon of functional TSH that is undetectable by 4 widely used US Food and Drug Administration (FDA)-approved TSH immunoassays marketed by a single vendor. The purpose of this study was to identify additional cases and investigate the cause of the falsely undetectable TSH. All samples with TSH results of <0.01 μIU/mL were retested with a second TSH assay. Discordant samples were evaluated on up to 8 FDA-approved TSH immunoassays and the TSHβ gene was sequenced. Retrospectively, thyroid function tests, diagnoses, and medications from 1.6 million individuals were analyzed. Out of approximately 2 million individuals, we have identified a cohort of 20 hypothyroid and euthyroid patients of shared ethnicity with falsely undetectable TSH (<0.01 μIU/mL) in 4 of 8 commercially available TSH assays. Half of these individuals were initially treated based on repeated falsely undetectable TSH values (7 euthyroid patients were treated with methimazole and 2 hypothyroid patients had doses of levothyroxine decreased). In all cases, a retrospective chart review revealed that clinical assessments and free T4 and total T3 results were inconsistent with the undetectable TSH results. Specific antibodies failing to detect TSH in these cases were identified in the 4 affected assays. A novel TSHβ point mutation was identified. Our data suggest that these individuals have a previously unrecognized, functionally normal, TSH variant to which some monoclonal antibodies fail to bind. To assure appropriate patient management, clinicians and laboratorians need to be aware that certain TSH variants may be undetectable in some hyperselective TSH assays.
Gibbs, Gerard M.; Orta, Gerardo; Reddy, Thulasimala; Koppers, Adam J.; Martínez-López, Pablo; Luis de la Vega-Beltràn, José; Lo, Jennifer C. Y.; Veldhuis, Nicholas; Jamsai, Duangporn; McIntyre, Peter; Darszon, Alberto; O'Bryan, Moira K.
2011-01-01
The cysteine-rich secretory proteins (CRISPs) are a group of four proteins in the mouse that are expressed abundantly in the male reproductive tract, and to a lesser extent in other tissues. Analysis of reptile CRISPs and mouse CRISP2 has shown that CRISPs can regulate cellular homeostasis via ion channels. With the exception of the ability of CRISP2 to regulate ryanodine receptors, the in vivo targets of mammalian CRISPs function are unknown. In this study, we have characterized the ion channel regulatory activity of epididymal CRISP4 using electrophysiology, cell assays, and mouse models. Through patch-clamping of testicular sperm, the CRISP4 CRISP domain was shown to inhibit the transient receptor potential (TRP) ion channel TRPM8. These data were confirmed using a stably transfected CHO cell line. TRPM8 is a major cold receptor in the body, but is found in other tissues, including the testis and on the tail and head of mouse and human sperm. Functional assays using sperm from wild-type mice showed that TRPM8 activation significantly reduced the number of sperm undergoing the progesterone-induced acrosome reaction following capacitation, and that this response was reversed by the coaddition of CRISP4. In accordance, sperm from Crisp4 null mice had a compromised ability to undergo to the progesterone-induced acrosome reaction. Collectively, these data identify CRISP4 as an endogenous regulator of TRPM8 with a role in normal sperm function. PMID:21482758
Polyphenolic composition and antioxidant activity of the under-utilised Prunus mahaleb L. fruit.
Blando, Federica; Albano, Clara; Liu, Yazheng; Nicoletti, Isabella; Corradini, Danilo; Tommasi, Noemi; Gerardi, Carmela; Mita, Giovanni; Kitts, David D
2016-06-01
The identification of novel plant-based functional foods or nutraceutical ingredients that possess bioactive properties with antioxidant function has recently become important to the food, nutraceutical and cosmetic industries. This study evaluates the polyphenolic composition, identifies bioactive compounds and assays the total antioxidant capacity of Prunus mahaleb L. fruits collected from different populations and sampling years in the countryside around Bari (Apulia Region, Italy). We identified nine polyphenolic compounds including major anthocyanins, coumaric acid derivatives and flavonols from P. mahaleb fruits. The anthocyanin content (in some populations > 5 g kg(-1) fresh weight; FW) in the fruit was comparable to that reported for so-called superfruits such as bilberries, chokeberries and blackcurrants. Coumaric acid derivatives comprised a large portion of the total polyphenolic content in the P. mahaleb fruits. Antioxidant activities, assessed using ORAC and TEAC assays, measured up to 150 and 45 mmol Trolox equivalents kg(-1) FW, respectively. Therefore antioxidant capacity of P. mahaleb fruits is relatively high and comparable to that of superfruit varieties that are often used in commercial nutraceutical products. Our findings suggest that mahaleb fruit (currently not consumed fresh or used in other ways) could serve as a source of bioactive compounds and therefore find interest from the functional food and nutraceutical industries, as a natural food colorant and antioxidant ingredient in the formulation of functional foods. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.
Novel approach using DNA-RNA hybrids in RNA nanotechnology | Center for Cancer Research
Developing simple approaches to detect interactions, modifications, and cellular locations of macromolecules is essential for understanding biochemical processes. The use of protein fragment complementation assays, also called split-protein systems, is a highly sensitive approach for studying protein interactions in biological systems. In this approach, functional proteins are split into non-functional fragments, and when attached to possible interacting partners, can reassemble and become functional again. Use of split-protein assays can establish differences between a healthy and a diseased state in the cell as well as determine the outcome of a therapeutic intervention.
Appadath Beeran, Asmy; Maliyakkal, Naseer; Rao, Chamallamudi Mallikarjuna; Udupa, Nayanabhirama
2014-12-02
Vernonia cinerea Less. (VC) of the family Asteraceaes is considered as the sacred plant; 'Dasapushpam' which is ethnopharmacologically significant to the people of Kerala in India. In fact, VC has been used in the traditional system of medicine (Ayurveda) for the treatment of various ailments including cancer. Cytotoxicity of the ethanolic extract of VC (VC-ET), petroleum ether fraction (VC-PET), dichloromethane fraction (VC-DCM), n-butyl alcohol fraction (VC-BT), and rest fraction (VC-R) was evaluated in cervical carcinoma (HeLa), lung adenocarcinoma (A549), breast cancer (MCF-7), and colon carcinoma (Caco-2) cells using Sulforhodamine B (SRB) assay. The apoptotic effects of VC-DCM were assessed in cancer cells using Annexin V assay. The effects of VC-DCM on multi-drug resistance (MDR) transporters in HeLa, A549, MCF-7, and Caco-2 cells were evaluated using flow cytometry based functional assays. Similarly, drug uptake in cancer cells and sensitization of cancer cells towards chemotherapeutic drugs in the presence of VC-DCM were studied using Daunorubicin (DNR) accumulation assay and SRB assay, respectively. Cytotoxicity assay revealed that the enriched fraction of VC (VC-DCM) possessed dose-dependent cytotoxic effects in human epithelial cancer cells (HeLa, A549, MCF-7, and Caco-2). Further, treatment of cancer cells (HeLa, A549, MCF-7, and Caco-2) with VC-DCM led to a significant increase in both early and late apoptosis, indicating the induction of apoptosis. Interestingly, VC-DCM significantly inhibited functional activity of MDR transporters (ABC-B1 and ABC-G2), enhanced DNR-uptake in cancer cells, and sensitized cancer cells towards chemotherapeutic drug-mediated cytotoxicity, thus indicating the ability of VC-DCM to reverse MDR in cancer and enhance the cytotoxic effects of anticancer drugs. A methodological investigation on the anti-cancer properties of Vernonia cinerea Less. (VC) revealed that an enriched fraction of VC (VC-DCM) possessed cytotoxic effects, triggered apoptosis, inhibited MDR transporters, enhanced drug uptake, and sensitized cancer cells towards anticancer drug-mediated cytotoxicity in human epithelial cancer cells. Thus, VC appears to be promising for an effective treatment of various drug-resistant human epithelial cancers. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Nuclear pore proteins are involved in the biogenesis of functional tRNA.
Simos, G; Tekotte, H; Grosjean, H; Segref, A; Sharma, K; Tollervey, D; Hurt, E C
1996-01-01
Los1p and Pus1p, which are involved in tRNA biogenesis, were found in a genetic screen for components interacting with the nuclear pore protein Nsp1p. LOS1, PUS1 and NSP1 interact functionally, since the combination of mutations in the three genes causes synthetic lethality. Pus1p is an intranuclear protein which exhibits a nucleotide-specific and intron-dependent tRNA pseudouridine synthase activity. Los1p was shown previously to be required for efficient pre-tRNA splicing; we report here that Los1p localizes to the nuclear pores and is linked functionally to several components of the tRNA biogenesis machinery including Pus1p and Tfc4p. When the formation of functional tRNA was analyzed by an in vivo assay, the los1(-) pus1(-) double mutant, as well as several thermosensitive nucleoporin mutants including nsp1, nup116, nup133 and nup85, exhibited loss of suppressor tRNA activity even at permissive temperatures. These data suggest that nuclear pore proteins are required for the biogenesis of functional tRNA. Images PMID:8641292
Li, Jianjun; Zhang, Yinghui; Wang, Xiuchao; Zhao, Ruibo
2017-01-01
The expression level and roles of microRNA-497 (miR-497) have been frequently reported in previous studies on cancer. However, its expression, function and associated molecular mechanisms in retinoblastoma remain unknown. In the present study, miR-497 expression levels in human retinoblastoma tissues, normal retinal tissues and retinoblastoma cell lines were determined using reverse transcription-quantitative polymerase chain reaction. In addition, a Cell Counting Kit-8 assay, cell migration assay, cell invasion assay, western blot analysis and Dual-Luciferase reporter assay were used to explore the expression, functions and molecular mechanisms of miR-497 in human retinoblastoma. It was demonstrated that miR-497 was significantly downregulated in retinoblastoma tissues and cell lines compared with normal retinal tissues. Ectopic expression of miR-497 decreased the proliferation, migration and invasion of retinoblastoma cells. Furthermore, VEGFA was verified as a potential direct target of miR-497 in vitro. Taken together, the results indicate that miR-497 functions as a tumor suppressor in the carcinogenesis and progression of retinoblastoma via targeting VEGFA. miR-497 should be investigated as a potential therapeutic target for the treatment of retinoblastoma. PMID:28588740
Multiplexing a high-throughput liability assay to leverage efficiencies.
Herbst, John; Anthony, Monique; Stewart, Jeremy; Connors, David; Chen, Taosheng; Banks, Martyn; Petrillo, Edward W; Agler, Michele
2009-06-01
In order to identify potential cytochrome P-450 3A4 (drug-metabolizing enzyme) inducers at an early stage of the drug discovery process, a cell-based transactivation high-throughput luciferase reporter assay for the human pregnane X receptor (PXR) in HepG2 cells has been implemented and multiplexed with a viability end point for data interpretation, as part of a Lead Profiling portfolio of assays. As a routine part of Lead Profiling operations, assays are periodically evaluated for utility as well as for potential improvements in technology or process. We used a recent evaluation of our PXR-transactivation assay as a model for the application of Lean Thinking-based process analysis to lab-bench assay optimization and automation. This resulted in the development of a 384-well multiplexed homogeneous assay simultaneously detecting PXR transactivation and HepG2 cell cytotoxicity. In order to multiplex fluorescent and luminescent read-outs, modifications to each assay were necessary, which included optimization of multiple assay parameters such as cell density, plate type, and reagent concentrations. Subsequently, a set of compounds including known cytotoxic compounds and PXR inducers were used to validate the multiplexed assay. Results from the multiplexed assay correlate well with those from the singleplexed assay formats measuring PXR transactivation and viability separately. Implementation of the multiplexed assay for routine compound profiling provides improved data quality, sample conservation, cost savings, and resource efficiencies.
System and method for detecting components of a mixture including tooth elements for alignment
Sommer, Gregory Jon; Schaff, Ulrich Y.
2016-11-22
Examples are described including assay platforms having tooth elements. An impinging element may sequentially engage tooth elements on the assay platform to sequentially align corresponding detection regions with a detection unit. In this manner, multiple measurements may be made of detection regions on the assay platform without necessarily requiring the starting and stopping of a motor.
Sýkora, Josef; Huml, Michal; Siala, Konrad; Pomahačová, Renáta; Jehlička, Petr; Liška, Jiří; Kuntscherová, Jana; Schwarz, Jan
2016-10-01
Abdominal pain-related functional gastrointestinal disorders in children include functional dyspepsia, functional abdominal pain, irritable bowel syndrome, and abdominal migraine. We aimed to evaluate a possible association between functional abdominal pain disorders and Helicobacter pylori infection and faecal calprotectin level. Prospective observational study including consecutive children with functional gastrointestinal disorders fulfilling Rome III criteria (cases) and age/sex-matched healthy controls. H pylori has been detected by biopsy-based tests and stool-antigen detection, faecal calprotectin by enzyme-linked immunosorbent assay. A total of 56 cases (27 with functional dyspepsia) and 56 controls were enrolled. H pylori being detected in 17 of 56 cases (30.4%) and 4 of 56 controls (7.1%, odds ratio: 5.7; 95% confidence interval [CI]: 1.8-18.2, P = 0.003). H pylori was detected significantly more frequently in cases with functional dyspepsia (14/27, 51.9% odds ratio: 14.0; 95% CI: 3.9-49.7, P = 0.00001) than in controls and not in cases with other well-recognized functional gastrointestinal complaints (3/29, 10.3%). The median faecal calprotectin level was similar in cases (7.8 μg/g, 95% CI: 7.8-8.4) including those with gastritis, and controls (9.1 μg/g, 95% CI: 7.8-11.3). Gastritis features were more frequent in H pylori-infected and noninfected cases with functional dyspepsia (27/27, 100%) than in cases with other abdominal functional complaints (15/29, 51.7%, P = 0.007). H pylori gastritis and noninfectious gastritis were associated with functional dyspepsia in children referred for abdominal pain-related functional gastrointestinal disorders while faecal calprotectin is not a predictor of gastritis and is similar in children with functional abdominal pain symptoms and in controls.
Pharmacological profiling of the TRPV3 channel in recombinant and native assays
Grubisha, Olivera; Mogg, Adrian J; Sorge, Jessica L; Ball, Laura-Jayne; Sanger, Helen; Ruble, Cara L A; Folly, Elizabeth A; Ursu, Daniel; Broad, Lisa M
2014-01-01
Background and Purpose Transient receptor potential vanilloid subtype 3 (TRPV3) is implicated in nociception and certain skin conditions. As such, it is an attractive target for pharmaceutical research. Understanding of endogenous TRPV3 function and pharmacology remains elusive as selective compounds and native preparations utilizing higher throughput methodologies are lacking. In this study, we developed medium-throughput recombinant and native cellular assays to assess the detailed pharmacological profile of human, rat and mouse TRPV3 channels. Experimental Approach Medium-throughput cellular assays were developed using a Ca2+-sensitive dye and a fluorescent imaging plate reader. Human and rat TRPV3 pharmacology was examined in recombinant cell lines, while the mouse 308 keratinocyte cell line was used to assess endogenous TRPV3 activity. Key Results A recombinant rat TRPV3 cellular assay was successfully developed after solving a discrepancy in the published rat TRPV3 protein sequence. A medium-throughput, native, mouse TRPV3 keratinocyte assay was also developed and confirmed using genetic approaches. Whereas the recombinant human and rat TRPV3 assays exhibited similar agonist and antagonist profiles, the native mouse assay showed important differences, namely, TRPV3 activity was detected only in the presence of potentiator or during agonist synergy. Furthermore, the native assay was more sensitive to block by some antagonists. Conclusions and Implications Our findings demonstrate similarities but also notable differences in TRPV3 pharmacology between recombinant and native systems. These findings offer insights into TRPV3 function and these assays should aid further research towards developing TRPV3 therapies. Linked Articles This article is part of a themed section on the pharmacology of TRP channels. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-10 PMID:23848361
A Java API for working with PubChem datasets
Southern, Mark R.; Griffin, Patrick R.
2011-01-01
Summary: PubChem is a public repository of chemical structures and associated biological activities. The PubChem BioAssay database contains assay descriptions, conditions and readouts and biological screening results that have been submitted by the biomedical research community. The PubChem web site and Power User Gateway (PUG) web service allow users to interact with the data and raw files are available via FTP. These resources are helpful to many but there can also be great benefit by using a software API to manipulate the data. Here, we describe a Java API with entity objects mapped to the PubChem Schema and with wrapper functions for calling the NCBI eUtilities and PubChem PUG web services. PubChem BioAssays and associated chemical compounds can then be queried and manipulated in a local relational database. Features include chemical structure searching and generation and display of curve fits from stored dose–response experiments, something that is not yet available within PubChem itself. The aim is to provide researchers with a fast, consistent, queryable local resource from which to manipulate PubChem BioAssays in a database agnostic manner. It is not intended as an end user tool but to provide a platform for further automation and tools development. Availability: http://code.google.com/p/pubchemdb Contact: southern@scripps.edu PMID:21216779
Zhou, Xiuxia; Su, Jingna; Feng, Shaoyan; Wang, Lixia; Yin, Xuyuan; Yan, Jingzhe; Wang, Zhiwei
2016-11-29
Pancreatic cancer (PC) is one of the most aggressive human malignancies worldwide and is the fourth leading cause of cancer-related deaths. Curcumin (diferuloylmethane) is a polyphenol derived from the Curcuma longa plant. Certain studies have demonstrated that curcumin exerts its anti-tumor function in a variety of human cancers including PC, via targeting multiple therapeutically important cancer signaling pathways. However, the detailed molecular mechanisms are not fully understood. Two transcriptional co-activators, YAP (Yes-associated protein) and its close paralog TAZ (transcriptional coactivator with PDZ-binding motif) exert oncogenic activities in various cancers. Therefore, in this study we aimed to determine the molecular basis of curcumin-induced cell proliferation inhibition in PC cells. First, we detected the anti-tumor effects of curcumin on PC cell lines using CTG assay, Flow cytometry, clonogenic assay, wound healing assay and Transwell invasion assay. We found that curcumin significantly suppressed cell growth, weakened clonogenic potential, inhibited migration and invasion, and induced apoptosis and cell cycle arrest in PC cells. We further measured that overexpression of YAP enhanced cell proliferation and abrogated the cytotoxic effects of curcumin on PC cells. Moreover, we found that curcumin markedly down-regulated YAP and TAZ expression and subsequently suppressed Notch-1 expression. Collectively, these findings suggest that pharmacological inhibition of YAP and TAZ activity may be a promising anticancer strategy for the treatment of PC patients.
Multifaceted toxicity assessment of catalyst composites in transgenic zebrafish embryos.
Jang, Gun Hyuk; Lee, Keon Yong; Choi, Jaewon; Kim, Sang Hoon; Lee, Kwan Hyi
2016-09-01
Recent development in the field of nanomaterials has given rise into the inquiries regarding the toxicological characteristics of the nanomaterials. While many individual nanomaterials have been screened for their toxicological effects, composites that accompany nanomaterials are not common subjects to such screening through toxicological assessment. One of the widely used composites that accompany nanomaterials is catalyst composite used to reduce air pollution, which was selected as a target composite with nanomaterials for the multifaceted toxicological assessment. As existing studies did not possess any significant data regarding such catalyst composites, this study focuses on investigating toxicological characteristics of catalyst composites from various angles in both in-vitro and in-vivo settings. Initial toxicological assessment on catalyst composites was conducted using HUVECs for cell viability assays, and subsequent in-vivo assay regarding their direct influence on living organisms was done. The zebrafish embryo and its transgenic lines were used in the in-vivo assays to obtain multifaceted analytic results. Data obtained from the in-vivo assays include blood vessel formation, mutated heart morphology, and heart functionality change. Our multifaceted toxicological assessment pointed out that chemical composites augmented with nanomaterials can too have toxicological threat as much as individual nanomaterials do and alarms us with their danger. This manuscript provides a multifaceted assessment for composites augmented with nanomaterials, of which their toxicological threats have been overlooked. Copyright © 2016 Elsevier Ltd. All rights reserved.
Nicolas, Jonathan; Hendriksen, Peter J M; Gerssen, Arjen; Bovee, Toine F H; Rietjens, Ivonne M C M
2014-01-01
Marine biotoxins can accumulate in fish and shellfish, representing a possible threat for consumers. Many marine biotoxins affect neuronal function essentially through their interaction with ion channels or receptors, leading to different symptoms including paralysis and even death. The detection of marine biotoxins in seafood products is therefore a priority. Official methods for control are often still using in vivo assays, such as the mouse bioassay. This test is considered unethical and the development of alternative assays is urgently required. Chemical analyses as well as in vitro assays have been developed to detect marine biotoxins in seafood. However, most of the current in vitro alternatives to animal testing present disadvantages: low throughput and lack of sensitivity resulting in a high number of false-negative results. Thus, there is an urgent need for the development of new in vitro tests that would allow the detection of marine biotoxins in seafood products at a low cost, with high throughput combined with high sensitivity, reproducibility, and predictivity. Mode of action based in vitro bioassays may provide tools that fulfil these requirements. This review covers the current state of the art of such mode of action based alternative assays to detect neurotoxic marine biotoxins in seafood. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wang, Lixia; Yin, Xuyuan; Yan, Jingzhe; Wang, Zhiwei
2016-01-01
Pancreatic cancer (PC) is one of the most aggressive human malignancies worldwide and is the fourth leading cause of cancer-related deaths. Curcumin (diferuloylmethane) is a polyphenol derived from the Curcuma longa plant. Certain studies have demonstrated that curcumin exerts its anti-tumor function in a variety of human cancers including PC, via targeting multiple therapeutically important cancer signaling pathways. However, the detailed molecular mechanisms are not fully understood. Two transcriptional co-activators, YAP (Yes-associated protein) and its close paralog TAZ (transcriptional coactivator with PDZ-binding motif) exert oncogenic activities in various cancers. Therefore, in this study we aimed to determine the molecular basis of curcumin-induced cell proliferation inhibition in PC cells. First, we detected the anti-tumor effects of curcumin on PC cell lines using CTG assay, Flow cytometry, clonogenic assay, wound healing assay and Transwell invasion assay. We found that curcumin significantly suppressed cell growth, weakened clonogenic potential, inhibited migration and invasion, and induced apoptosis and cell cycle arrest in PC cells. We further measured that overexpression of YAP enhanced cell proliferation and abrogated the cytotoxic effects of curcumin on PC cells. Moreover, we found that curcumin markedly down-regulated YAP and TAZ expression and subsequently suppressed Notch-1 expression. Collectively, these findings suggest that pharmacological inhibition of YAP and TAZ activity may be a promising anticancer strategy for the treatment of PC patients. PMID:27738325
Carmichael, W W; An, J
1999-01-01
Cyanotoxins produced by cyanobacteria (blue-green algae) include potent neurotoxins and hepatotoxins. The hepatotoxins include cyclic peptide microcystins and nodularins plus the alkaloid cylindrospermopsins. Among the cyanotoxins the microcystins have proven to be the most widespread, and are most often implicated in animal and human poisonings. This paper presents a practical guide to two widely used methods for detecting and quantifying microcystins and nodularins in environmental samples-the enzyme linked immunosorbant assay (ELISA) and the protein phosphatase inhibition assay (PPIA).
Functional Carbon Quantum Dots: A Versatile Platform for Chemosensing and Biosensing.
Feng, Hui; Qian, Zhaosheng
2018-05-01
Carbon quantum dot has emerged as a new promising fluorescent nanomaterial due to its excellent optical properties, outstanding biocompatibility and accessible fabrication methods, and has shown huge application perspective in a variety of areas, especially in chemosensing and biosensing applications. In this personal account, we give a brief overview of carbon quantum dots from its origin and preparation methods, present some advance on fluorescence origin of carbon quantum dots, and focus on development of chemosensors and biosensors based on functional carbon quantum dots. Comprehensive advances on functional carbon quantum dots as a versatile platform for sensing from our group are included and summarized as well as some typical examples from the other groups. The biosensing applications of functional carbon quantum dots are highlighted from selective assays of enzyme activity to fluorescent identification of cancer cells and bacteria. © 2018 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Jackson, Michael W; Gordon, Thomas P; McCombe, Pamela A
2008-04-01
Physiological techniques can be used to detect novel autoantibodies causing alteration of autonomic function after passive transfer to mice. Previously, such antibodies have been detected in patients with type I diabetes mellitus, myasthenia gravis, and Sjogren's syndrome. We now describe a patient with an idiopathic nondiabetic neuropathy with prominent autonomic symptoms, including bladder and bowel dysfunction. Physiological assays of whole colon and bladder were used to determine the presence in the patient serum of functional autoantibodies capable of mediating autonomic dysfunction. Immunoglobulin G (IgG) from this patient was able to disrupt bladder and bowel function on passive transfer to mice. This is a new pattern of autoantibody-mediated abnormality. Although the target antigen is unknown, it is likely to be a cell-surface receptor or ion channel. This case highlights the usefulness of passive transfer studies in detecting functional antibodies in patients with autonomic neuropathy.
Jarmuszkiewicz, Wieslawa; Woyda-Ploszczyca, Andrzej; Koziel, Agnieszka; Majerczak, Joanna; Zoladz, Jerzy A
2015-06-01
Mitochondrial respiratory and phosphorylation activities, mitochondrial uncoupling, and hydrogen peroxide formation were studied in isolated rat skeletal muscle mitochondria during experimentally induced hypothermia (25 °C) and hyperthermia (42 °C) compared to the physiological temperature of resting muscle (35 °C). For nonphosphorylating mitochondria, increasing the temperature from 25 to 42 °C led to a decrease in membrane potential, hydrogen peroxide production, and quinone reduction levels. For phosphorylating mitochondria, no temperature-dependent changes in these mitochondrial functions were observed. However, the efficiency of oxidative phosphorylation decreased, whereas the oxidation and phosphorylation rates and oxidative capacities of the mitochondria increased, with increasing assay temperature. An increase in proton leak, including uncoupling protein-mediated proton leak, was observed with increasing assay temperature, which could explain the reduced oxidative phosphorylation efficiency and reactive oxygen species production. Copyright © 2015 Elsevier Inc. All rights reserved.
CellCognition: time-resolved phenotype annotation in high-throughput live cell imaging.
Held, Michael; Schmitz, Michael H A; Fischer, Bernd; Walter, Thomas; Neumann, Beate; Olma, Michael H; Peter, Matthias; Ellenberg, Jan; Gerlich, Daniel W
2010-09-01
Fluorescence time-lapse imaging has become a powerful tool to investigate complex dynamic processes such as cell division or intracellular trafficking. Automated microscopes generate time-resolved imaging data at high throughput, yet tools for quantification of large-scale movie data are largely missing. Here we present CellCognition, a computational framework to annotate complex cellular dynamics. We developed a machine-learning method that combines state-of-the-art classification with hidden Markov modeling for annotation of the progression through morphologically distinct biological states. Incorporation of time information into the annotation scheme was essential to suppress classification noise at state transitions and confusion between different functional states with similar morphology. We demonstrate generic applicability in different assays and perturbation conditions, including a candidate-based RNA interference screen for regulators of mitotic exit in human cells. CellCognition is published as open source software, enabling live-cell imaging-based screening with assays that directly score cellular dynamics.
Kim, Sung-Hee; Yoon, Yeo Cho; Lee, Ae Sin; Kang, NaNa; Koo, JaeHyung; Rhyu, Mee-Ra; Park, Jae-Ho
2015-05-01
ORs are ectopically expressed in non-chemosensory tissues including muscle, kidney, and keratinocytes; however, their physiological roles are largely unknown. We found that human olfactory receptor 10J5 (OR10J5) is expressed in the human aorta, coronary artery, and umbilical vein endothelial cells (HUVEC). Lyral induces Ca(2+) and phosphorylation of AKT in HUVEC. A knockdown study showed the inhibition of the lyral-induced Ca(2+) and the phosphorylation AKT and implied that these processes are mediated by OR10J5. In addition, lyral enhanced migration of HUVEC, which were also inhibited by RNAi in a migration assay. In addition, matrigel plug assay showed that lyral enhanced angiogenesis in vivo. Together these data demonstrate the physiological role of OR10J5 in angiogenesis and represent roles of ORs in HUVEC cells. Copyright © 2015 Elsevier Inc. All rights reserved.
Madou, Marc; Zoval, Jim; Jia, Guangyao; Kido, Horacio; Kim, Jitae; Kim, Nahui
2006-01-01
In this paper, centrifuge-based microfluidic platforms are reviewed and compared with other popular microfluidic propulsion methods. The underlying physical principles of centrifugal pumping in microfluidic systems are presented and the various centrifuge fluidic functions, such as valving, decanting, calibration, mixing, metering, heating, sample splitting, and separation, are introduced. Those fluidic functions have been combined with analytical measurement techniques, such as optical imaging, absorbance, and fluorescence spectroscopy and mass spectrometry, to make the centrifugal platform a powerful solution for medical and clinical diagnostics and high throughput screening (HTS) in drug discovery. Applications of a compact disc (CD)-based centrifuge platform analyzed in this review include two-point calibration of an optode-based ion sensor, an automated immunoassay platform, multiple parallel screening assays, and cellular-based assays. The use of modified commercial CD drives for high-resolution optical imaging is discussed as well. From a broader perspective, we compare technical barriers involved in applying microfluidics for sensing and diagnostic use and applying such techniques to HTS. The latter poses less challenges and explains why HTS products based on a CD fluidic platform are already commercially available, whereas we might have to wait longer to see commercial CD-based diagnostics.
Brambilla, R; Schnapp, A; Casagranda, F; Labrador, J P; Bergemann, A D; Flanagan, J G; Pasquale, E B; Klein, R
1995-01-01
The Eph-related family of receptor tyrosine kinases consists of at least 13 members, several of which display distinctive expression patterns in the developing and adult nervous system. Recently, a small family of ligands, structurally related to the B61 protein, was identified. Binding of these ligands to Eph-related receptors did not, however, elicit measurable biological signals in cultured cells. In order to study functional interactions between B61-related ligands and Eph-related receptors, we constructed chimeric receptors, containing an Eph-related ectodomain and the cytoplasmic domain of the TrkB neurotrophin receptor. Expression and activation of such chimeric receptors in NIH 3T3 cells induced transformation in focus formation assays. Membrane-bound LERK2 ligand is shown to signal through three different Eph-related receptors, namely Cek5, Cek10 and Elk. LERK2, however, fails to interact functionally with the Cek9 receptor. Quantitative analysis including binding assays indicates that Cek10 is the preferred LERK2 receptor. Preliminary mutagenesis of the LERK2 protein suggests a negative regulatory role for its cytoplasmic domain in LERK2 signaling. Images PMID:7621826
Human Nup98 regulates the localization and activity of DExH/D-box helicase DHX9
Capitanio, Juliana S; Montpetit, Ben; Wozniak, Richard W
2017-01-01
Beyond their role at nuclear pore complexes, some nucleoporins function in the nucleoplasm. One such nucleoporin, Nup98, binds chromatin and regulates gene expression. To gain insight into how Nup98 contributes to this process, we focused on identifying novel binding partners and understanding the significance of these interactions. Here we report on the identification of the DExH/D-box helicase DHX9 as an intranuclear Nup98 binding partner. Various results, including in vitro assays, show that the FG/GLFG region of Nup98 binds to N- and C-terminal regions of DHX9 in an RNA facilitated manner. Importantly, binding of Nup98 stimulates the ATPase activity of DHX9, and a transcriptional reporter assay suggests Nup98 supports DHX9-stimulated transcription. Consistent with these observations, our analysis revealed that Nup98 and DHX9 bind interdependently to similar gene loci and their transcripts. Based on our results, we propose that Nup98 functions as a co-factor that regulates DHX9 and, potentially, other RNA helicases. DOI: http://dx.doi.org/10.7554/eLife.18825.001 PMID:28221134
Terreic acid, a quinone epoxide inhibitor of Bruton’s tyrosine kinase
Kawakami, Yuko; Hartman, Stephen E.; Kinoshita, Eiji; Suzuki, Hidefumi; Kitaura, Jiro; Yao, Libo; Inagaki, Naoki; Franco, Alessandra; Hata, Daisuke; Maeda-Yamamoto, Mari; Fukamachi, Hiromi; Nagai, Hiroichi; Kawakami, Toshiaki
1999-01-01
Bruton’s tyrosine kinase (Btk) plays pivotal roles in mast cell activation as well as in B cell development. Btk mutations lead to severe impairments in proinflammatory cytokine production induced by cross-linking of high-affinity IgE receptor on mast cells. By using an in vitro assay to measure the activity that blocks the interaction between protein kinase C and the pleckstrin homology domain of Btk, terreic acid (TA) was identified and characterized in this study. This quinone epoxide specifically inhibited the enzymatic activity of Btk in mast cells and cell-free assays. TA faithfully recapitulated the phenotypic defects of btk mutant mast cells in high-affinity IgE receptor-stimulated wild-type mast cells without affecting the enzymatic activities and expressions of many other signaling molecules, including those of protein kinase C. Therefore, this study confirmed the important roles of Btk in mast cell functions and showed the usefulness of TA in probing into the functions of Btk in mast cells and other immune cell systems. Another insight obtained from this study is that the screening method used to identify TA is a useful approach to finding more efficacious Btk inhibitors. PMID:10051623
Identification of C3b-binding Small Molecule Complement Inhibitors Using Cheminformatics
Garcia, Brandon L.; Skaff, D. Andrew; Chatterjee, Arindam; Hanning, Anders; Walker, John K.; Wyckoff, Gerald J.; Geisbrecht, Brian V.
2017-01-01
The complement system is an elegantly regulated biochemical cascade formed by the collective molecular recognition properties and proteolytic activities of over two dozen membrane-bound or serum proteins. Complement plays diverse roles in human physiology which include acting as a sentry against invading microorganisms, priming of the adaptive immune response, and removal of immune complexes. However, dysregulation of complement can serve as a trigger for a wide range of human diseases which include autoimmune, inflammatory, and degenerative conditions. Despite several potential advantages of modulating complement with small molecule inhibitors, small molecule drugs are highly underrepresented in the current complement-directed therapeutics pipeline. In this study we have employed a cheminformatics drug discovery approach based on the extensive structural and functional knowledge available for the central proteolytic fragment of the cascade, C3b. Using parallel in silico screening methodologies we identified 45 small molecules which putatively bind C3b near ligand-guided functional hot-spots. Surface plasmon resonance experiments resulted in the validation of seven dose-dependent C3b-binding compounds. Competition-based biochemical assays demonstrated the ability of several C3b-binding compounds to interfere with binding of the original C3b ligand which guided their discovery. In vitro assays of complement function identified a single complement inhibitory compound, termed cmp-5, and mechanistic studies of the cmp-5 inhibitory mode revealed it acts at the level of C5 activation. This study has led to the identification of a promising new class of C3b-binding small molecule complement inhibitors, and to our knowledge, provides the first demonstration of cheminformatics-based complement-directed drug discovery. PMID:28298523
Consistent Individual Differences Drive Collective Behavior and Group Functioning of Schooling Fish.
Jolles, Jolle W; Boogert, Neeltje J; Sridhar, Vivek H; Couzin, Iain D; Manica, Andrea
2017-09-25
The ubiquity of consistent inter-individual differences in behavior ("animal personalities") [1, 2] suggests that they might play a fundamental role in driving the movements and functioning of animal groups [3, 4], including their collective decision-making, foraging performance, and predator avoidance. Despite increasing evidence that highlights their importance [5-16], we still lack a unified mechanistic framework to explain and to predict how consistent inter-individual differences may drive collective behavior. Here we investigate how the structure, leadership, movement dynamics, and foraging performance of groups can emerge from inter-individual differences by high-resolution tracking of known behavioral types in free-swimming stickleback (Gasterosteus aculeatus) shoals. We show that individual's propensity to stay near others, measured by a classic "sociability" assay, was negatively linked to swim speed across a range of contexts, and predicted spatial positioning and leadership within groups as well as differences in structure and movement dynamics between groups. In turn, this trait, together with individual's exploratory tendency, measured by a classic "boldness" assay, explained individual and group foraging performance. These effects of consistent individual differences on group-level states emerged naturally from a generic model of self-organizing groups composed of individuals differing in speed and goal-orientedness. Our study provides experimental and theoretical evidence for a simple mechanism to explain the emergence of collective behavior from consistent individual differences, including variation in the structure, leadership, movement dynamics, and functional capabilities of groups, across social and ecological scales. In addition, we demonstrate individual performance is conditional on group composition, indicating how social selection may drive behavioral differentiation between individuals. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Huang, Dong-Sheng; Wang, Zhaohui; He, Xu-Jun; Diplas, Bill H; Yang, Rui; Killela, Patrick J; Meng, Qun; Ye, Zai-Yuan; Wang, Wei; Jiang, Xiao-Ting; Xu, Li; He, Xiang-Lei; Zhao, Zhong-Sheng; Xu, Wen-Juan; Wang, Hui-Ju; Ma, Ying-Yu; Xia, Ying-Jie; Li, Li; Zhang, Ru-Xuan; Jin, Tao; Zhao, Zhong-Kuo; Xu, Ji; Yu, Sheng; Wu, Fang; Liang, Junbo; Wang, Sizhen; Jiao, Yuchen; Yan, Hai; Tao, Hou-Quan
2015-05-01
Several somatic mutation hotspots were recently identified in the telomerase reverse transcriptase (TERT) promoter region in human cancers. Large scale studies of these mutations in multiple tumour types are limited, in particular in Asian populations. This study aimed to: analyse TERT promoter mutations in multiple tumour types in a large Chinese patient cohort, investigate novel tumour types and assess the functional significance of the mutations. TERT promoter mutation status was assessed by Sanger sequencing for 13 different tumour types and 799 tumour tissues from Chinese cancer patients. Thymic epithelial tumours, gastrointestinal leiomyoma, and gastric schwannoma were included, for which the TERT promoter has not been previously sequenced. Functional studies included TERT expression by reverse-transcriptase quantitative polymerase chain reaction (RT-qPCR), telomerase activity by the telomeric repeat amplification protocol (TRAP) assay and promoter activity by the luciferase reporter assay. TERT promoter mutations were highly frequent in glioblastoma (83.9%), urothelial carcinoma (64.5%), oligodendroglioma (70.0%), medulloblastoma (33.3%) and hepatocellular carcinoma (31.4%). C228T and C250T were the most common mutations. In urothelial carcinoma, several novel rare mutations were identified. TERT promoter mutations were absent in gastrointestinal stromal tumour (GIST), thymic epithelial tumours, gastrointestinal leiomyoma, gastric schwannoma, cholangiocarcinoma, gastric and pancreatic cancer. TERT promoter mutations highly correlated with upregulated TERT mRNA expression and telomerase activity in adult gliomas. These mutations differentially enhanced the transcriptional activity of the TERT core promoter. TERT promoter mutations are frequent in multiple tumour types and have similar distributions in Chinese cancer patients. The functional significance of these mutations reflect the importance to telomere maintenance and hence tumourigenesis, making them potential therapeutic targets. Copyright © 2015 Elsevier Ltd. All rights reserved.
Huang, Dong-Sheng; Wang, Zhaohui; He, Xu-Jun; Diplas, Bill H.; Yang, Rui; Killela, Patrick J.; Liang, Junbo; Meng, Qun; Ye, Zai-Yuan; Wang, Wei; Jiang, Xiao-Ting; Xu, Li; He, Xiang-Lei; Zhao, Zhong-Sheng; Xu, Wen-Juan; Wang, Hui-Ju; Ma, Ying-Yu; Xia, Ying-Jie; Li, Li; Zhang, Ru-Xuan; Jin, Tao; Zhao, Zhong-Kuo; Xu, Ji; Yu, Sheng; Wu, Fang; Wang, Si-Zhen; Jiao, Yu-Chen; Yan, Hai; Tao, Hou-Quan
2015-01-01
Background Several somatic mutation hotspots were recently identified in the TERT promoter region in human cancers. Large scale studies of these mutations in multiple tumor types are limited, in particular in Asian populations. This study aimed to: analyze TERT promoter mutations in multiple tumor types in a large Chinese patient cohort, investigate novel tumor types and assess the functional significance of the mutations. Methods TERT promoter mutation status was assessed by Sanger sequencing for 13 different tumor types and 799 tumor tissues from Chinese cancer patients. Thymic epithelial tumors, gastrointestinal leiomyoma, and gastric schwannoma were included, for which the TERT promoter has not been previously sequenced. Functional studies included TERT expression by RT-qPCR, telomerase activity by the TRAP assay, and promoter activity by the luciferase reporter assay. Results TERT promoter mutations were highly frequent in glioblastoma (83.9%), urothelial carcinoma (64.5%), oligodendroglioma (70.0%), medulloblastoma (33.3%), and hepatocellular carcinoma (31.4%). C228T and C250T were the most common mutations. In urothelial carcinoma, several novel rare mutations were identified. TERT promoter mutations were absent in GIST, thymic epithelial tumors, gastrointestinal leiomyoma, gastric schwannoma, cholangiocarcinoma, gastric and pancreatic cancer. TERT promoter mutations highly correlated with upregulated TERT mRNA expression and telomerase activity in adult gliomas. These mutations differentially enhanced the transcriptional activity of the TERT core promoter. Conclusions TERT promoter mutations are frequent in multiple tumor types and have similar distributions in Chinese cancer patients. The functional significance of these mutations reflect the importance to telomere maintenance and hence tumorigenesis, making them potential therapeutic targets. PMID:25843513
Wang, Yingjun; Zhang, Mingzhi; Xu, Huanan; Wang, Yifei; Li, Zhaoming; Chang, Yu; Wang, Xinhuan; Fu, Xiaorui; Zhou, Zhiyuan; Yang, Siyuan; Wang, Bei; Shang, Yufeng
2017-09-22
Diffuse large B-cell lymphoma (DLBCL) is one of the leading causes of cancer-related mortality, and responds badly to existing treatment. Thus, it is of urgent need to identify novel prognostic markers and therapeutic targets of DLBCL. Recent studies have shown that long non-coding RNAs (lncRNAs) play an important role in the development of cancer. By using the next generation HiSeq sequencing assay, we determined lncRNAs exhibiting differential expression between DLBCL patients and healthy controls. Then, RT-qPCR was performed for identification in clinical samples and cell materials, and lncRNA PANDA was verified to be down-regulated in DLBCL patients and have considerable diagnostic potential. In addition, decreased serum PANDA level was correlated to poorer clinical outcome and lower overall survival in DLBCL patients. Subsequently, we determined the experimental role of lncRNA PANDA in DLBCL progression. Luciferase reporter assay and chromatin immunoprecipitation assay suggested that lncRNA PANDA was induced by p53 and p53 interacts with the promoter region of PANDA. Cell functional assay further indicated that PANDA functioned as a tumor suppressor gene through the suppression of cell growth by a G0/G1 cell cycle arrest in DLBCL. More importantly, Cignal Signal Transduction Reporter Array and western blot assay showed that lncRNA PANDA inactivated the MAPK/ERK signaling pathway. In conclusion, our integrated approach demonstrates that PANDA in DLBCL confers a tumor suppressive function through inhibiting cell proliferation and silencing MAPK/ERK signaling pathway. Thus, PANDA may be a promising therapeutic target for patients with DLBCL.
21 CFR 864.7500 - Whole blood hemoglobin assays.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Whole blood hemoglobin assays. 864.7500 Section... blood hemoglobin assays. (a) Identification. A whole blood hemoglobin assay is a device consisting or... hemoglobin content of whole blood for the detection of anemia. This generic device category does not include...
21 CFR 864.7500 - Whole blood hemoglobin assays.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Whole blood hemoglobin assays. 864.7500 Section... blood hemoglobin assays. (a) Identification. A whole blood hemoglobin assay is a device consisting or... hemoglobin content of whole blood for the detection of anemia. This generic device category does not include...
21 CFR 864.7500 - Whole blood hemoglobin assays.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Whole blood hemoglobin assays. 864.7500 Section... blood hemoglobin assays. (a) Identification. A whole blood hemoglobin assay is a device consisting or... hemoglobin content of whole blood for the detection of anemia. This generic device category does not include...
21 CFR 864.7500 - Whole blood hemoglobin assays.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Whole blood hemoglobin assays. 864.7500 Section... blood hemoglobin assays. (a) Identification. A whole blood hemoglobin assay is a device consisting or... hemoglobin content of whole blood for the detection of anemia. This generic device category does not include...
21 CFR 864.7500 - Whole blood hemoglobin assays.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Whole blood hemoglobin assays. 864.7500 Section... blood hemoglobin assays. (a) Identification. A whole blood hemoglobin assay is a device consisting or... hemoglobin content of whole blood for the detection of anemia. This generic device category does not include...
Systems, devices, and methods for agglutination assays using sedimentation
Schaff, Ulrich Y.; Sommer, Gregory J.; Singh, Anup K.
2016-01-26
Embodiments of the present invention include methods for conducting agglutination assays using sedimentation. Aggregates may be exposed to sedimentation forces and travel through a density medium to a detection area. Microfluidic devices, such as microfluidic disks, are described for conducting the agglutination assays, as are systems for conducting the assays.
Saldan, Alda; Forner, Gabriella; Mengoli, Carlo; Tinto, Daniel; Fallico, Loredana; Peracchi, Marta; Gussetti, Nadia
2016-01-01
Human cytomegalovirus (CMV) infection is a major cause of congenital infection leading to birth defects and sensorineural anomalies, including deafness. Recently, cell-mediated immunity (CMI) in pregnant women has been shown to correlate with congenital CMV transmission. In this study, two interferon gamma release assays (IGRA), the CMV enzyme-linked immunosorbent spot (ELISPOT) and CMV QuantiFERON assays, detecting CMV-specific CMI were compared. These assays were performed for 80 CMV-infected (57 primarily and 23 nonprimarily) pregnant women and 115 controls, including 89 healthy CMV-seropositive pregnant women without active CMV infection, 15 CMV-seronegative pregnant women, and 11 seropositive or seronegative nonpregnant women. Statistical tests, including frequency distribution analysis, nonparametric Kruskal-Wallis equality-of-populations rank test, Wilcoxon rank sum test for equality on unmatched data, and lowess smoothing local regression, were employed to determine statistical differences between groups and correlation between the assays. The CMV ELISPOT and CMV QuantiFERON assay data were not normally distributed and did not display equal variance. The CMV ELISPOT but not CMV QuantiFERON assay displayed significant higher values for primarily CMV-infected women than for the healthy seropositive pregnant and nonpregnant groups (P = 0.0057 and 0.0379, respectively) and those with nonprimary infections (P = 0.0104). The lowess local regression model comparing the assays on an individual basis showed a value bandwidth of 0.8. Both assays were highly accurate in discriminating CMV-seronegative pregnant women. The CMV ELISPOT assay was more effective than CMV-QuantiFERON in differentiating primary from the nonprimary infections. A substantial degree of variability exists between CMV ELISPOT and CMV QuantiFERON assay results for CMV-seropositive pregnant women. PMID:26962091
Bartels, Mette Damkjaer; Boye, Kit; Rohde, Susanne Mie; Larsen, Anders Rhod; Torfs, Herbert; Bouchy, Peggy; Skov, Robert; Westh, Henrik
2009-05-01
Rapid tests for detection of methicillin-resistant Staphylococcus aureus (MRSA) carriage are important to limit the transmission of MRSA in the health care setting. We evaluated the performance of the BD GeneOhm MRSA real-time PCR assay using a diverse collection of MRSA isolates, mainly from Copenhagen, Denmark, but also including international isolates, e.g., USA100-1100. Pure cultures of 349 MRSA isolates representing variants of staphylococcal cassette chromosome mec (SCCmec) types I to V and 103 different staphylococcal protein A (spa) types were tested. In addition, 53 methicillin-susceptible Staphylococcus aureus isolates were included as negative controls. Forty-four MRSA isolates were undetectable; of these, 95% harbored SCCmec type IVa, and these included the most-common clone in Copenhagen, spa t024-sequence type 8-IVa. The false-negative MRSA isolates were tested with new primers (analyte-specific reagent [ASR] BD GeneOhm MRSA assay) supplied by Becton Dickinson (BD). The ASR BD GeneOhm MRSA assay detected 42 of the 44 isolates that were false negative in the BD GeneOhm MRSA assay. Combining the BD GeneOhm MRSA assay with the ASR BD GeneOhm MRSA assay greatly improved the results, with only two MRSA isolates being false negative. The BD GeneOhm MRSA assay alone is not adequate for MRSA detection in Copenhagen, Denmark, as more than one-third of our MRSA isolates would not be detected. We recommend that the BD GeneOhm MRSA assay be evaluated against the local MRSA diversity before being established as a standard assay, and due to the constant evolution of SCCmec cassettes, a continuous global surveillance is advisable in order to update the assay as necessary.
Shatsky, Maxim; Allen, Simon; Gold, Barbara; ...
2016-05-01
Numerous affinity purification – mass-spectrometry (AP-MS) and yeast two hybrid (Y2H) screens have each defined thousands of pairwise protein-protein interactions (PPIs), most between functionally unrelated proteins. The accuracy of these networks, however, is under debate. Here we present an AP-MS survey of the bacterium Desulfovibrio vulgaris together with a critical reanalysis of nine published bacterial Y2H and AP-MS screens. We have identified 459 high confidence PPIs from D. vulgaris and 391 from Escherichia coli. Compared to the nine published interactomes, our two networks are smaller; are much less highly connected; have significantly lower false discovery rates; and are much moremore » enriched in protein pairs that are encoded in the same operon, have similar functions, and are reproducibly detected in other physical interaction assays. Lastly, our work establishes more stringent benchmarks for the properties of protein interactomes and suggests that bona fide PPIs much more frequently involve protein partners that are annotated with similar functions or that can be validated in independent assays than earlier studies suggested.« less
Leonard, Jessica T; Raess, Philipp W; Dunlap, Jennifer; Hayes-Lattin, Brandon; Tyner, Jeffrey W; Traer, Elie
2016-03-31
Hematologic malignancies arising in the setting of established germ cell tumors have been previously described and have a dismal prognosis. Identification of targetable mutations and pathway dysregulation through massively parallel sequencing and functional assays provides new approaches to disease management. Herein, we report the case of a 23-year-old male who was diagnosed with a mediastinal germ cell tumor and subsequent acute myeloid leukemia. A shared clonal origin was demonstrated through identification of identical NRAS and TP53 somatic mutations in both malignancies. The patient's leukemia was refractory to standard therapies with short interval relapse. Functional assays demonstrated the patient's blasts to be sensitive to the mitogen-activated protein kinase kinase (MEK) inhibitor trametinib, correlating with the activating NRAS mutation. The patient experienced a sustained partial remission while on trametinib therapy but ultimately suffered relapse of the germ cell tumor. The leukemic clone remained stable and sensitive to trametinib at that time. This case highlights the potential power of combining genetic sequencing and in vitro functional assays with targeted therapies in the treatment of rare diseases.
Functions of ocular surface mucins in health and disease
Mantelli, Flavio; Argüeso, Pablo
2009-01-01
Purpose of review The purpose of the present review is to describe new concepts on the role of mucins in the protection of corneal and conjunctival epithelia and to identify alterations of mucins in ocular surface diseases. Recent findings New evidence indicates that gel-forming and cell surface-associated mucins contribute differently to the protection of the ocular surface against allergens, pathogens, extracellular molecules, abrasive stress, and drying. Summary Mucins are high molecular weight glycoproteins characterized by their extensive O-glycosylation. Major mucins expressed by the ocular surface epithelia include cell surface-associated mucins MUC1, -4 and -16, and the gel-forming mucin MUC5AC. Recent advances using functional assays have allowed the examination of their roles in the protection of corneal and conjunctival epithelia. Alterations in mucin and mucin O-glycan biosynthesis in ocular surface disorders, including allergy, non-autoimmune dry eye, autoimmune dry eye, and infection, are presented. PMID:18769205
Instrument technology for remote-surface exploration, prospecting and assaying, part 2
NASA Technical Reports Server (NTRS)
Brereton, R. G.
1977-01-01
The capability to specify new instrument/mechanism technology needs, for effective remote surface exploration, prospecting and assaying (EPA), requires first, an understanding of the functions or major elements of such a task, and second an understanding of the scientific instruments and support mechanisms that may be involved. An analog or task model was developed from which the various functions, operational procedures, scientific instruments, and support mechanisms for an automated mission could be derived. The task model led to the definition of nine major functions or categories of discrete operational elements that may have to be accomplished on a mission of this type. Each major function may stand alone as an element of an EPA mission, but more probably a major function will require the support of other functions, so they are inter-related.
Biochemical assays on plasminogen activators and hormones from kidney sources
NASA Technical Reports Server (NTRS)
Barlow, Grant H.; Lewis, Marian L.; Morrison, Dennis R.
1988-01-01
Investigations were established for the purpose of analyzing the conditioned media from human embryonic kidney cell subpopulations separated in space by electrophoresis. This data is based on the experiments performed on STS-8 on the continuous flow electrophoresis system. The primary biological activity that was analyzed was plasminogen activator activity, but some assays for erythropoeitin and human granulocyte colony stimulating activity were also performed. It is concluded that a battery of assays are required to completely define the plasminogen activator profile of a conditioned media from cell culture. Each type of assay measures different parts of the mixture and are influenced by different parameters. The functional role of each assay is given along with an indication of which combination of assays are required to answer specific questions. With this type of information it is possible by combinations of assays with mathematical analysis to pinpoint a specific component of the system.
Improved Dual-Luciferase Reporter Assays for Nuclear Receptors
Paguio, Aileen; Stecha, Pete; Wood, Keith V; Fan, Frank
2010-01-01
Nuclear receptors play important roles in many cellular functions through control of gene transcription. It is also a large target class for drug discovery. Luciferase reporter assays are frequently used to study nuclear receptor function because of their wide dynamic range, low endogenous activity, and ease of use. Recent improvements of luciferase genes and vectors have further enhanced their utilities. Here we applied these improvements to two reporter formats for studying nuclear receptors. The first assay contains a Murine Mammary Tumor Virus promoter upstream of a destabilized luciferase. The presence of response elements for nuclear hormone receptor in this promoter allows the studies of endogenous and/or exogenous full length receptors. The second assay contains a ligand binding domain (LBD) of a nuclear receptor fused to the GAL4 DNA binding domain (DBD) on one vector and multiple Gal4 Upstream Activator Sequences (UAS) upstream of luciferase reporter on another vector. We showed that codon optimization of luciferase reporter genes increased expression levels in conjunction with the incorporation of protein destabilizing sequences into luciferase led to a larger assay dynamic range in both formats. The optimum number of UAS to generate the best response was determined. The expression vector for nuclear receptor LBD/GAL4 DBD fusion also constitutively expresses a Renilla luciferase-neoR fusion protein, which provides selection capability (G418 resistance, neoR) as well as an internal control (Renilla luciferase). This dual-luciferase format allowed detecting compound cytotoxicity or off-target change in expression during drug screening, therefore improved data quality. These luciferase reporter assays provided better research and drug discovery tools for studying the functions of full length nuclear receptors and ligand binding domains. PMID:21687560
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Xiaoping; Liu, Shanda; Tian, Hainan
We report that ethylene regulates many aspects of plant growth and development including seed germination, leaf senescence, and fruit ripening, and of plant responses to environmental stimuli including both biotic and abiotic stresses. Ethylene response factors (ERFs) are plant-specific transcription factors and are a subfamily of the AP2 (APETALA2)/ERF transcription factor family. The function of many members in this large gene family remains largely unknown. ERF96, a member of the Group IX ERF family transcription factors, has recently been shown to be a transcriptional activator that is involved in plant defense response in Arabidopsis. Here we provide evidence that ERF96more » is a positive regulator of abscisic acid (ABA) responses. Bioinformatics analysis indicated that there are a total four small ERFs in Arabidopsis including ERF95, ERF96, ERF97, and ERF98, and that ERF96 forms a cluster with ERF95 and ERF97. By using quantitative RT-PCR, we found that ERF96 is expressed in all tissues and organs examined except roots, with relatively high expression in flowers and seeds. Results from the protoplast transfection assay indicated that the EDLL motif-containing C-terminal domain is responsible for ERF96’s transcriptional activity. Although loss-of-function mutant of ERF96 was morphologically similar to wild type plants, transgenic plants overexpressing ERF96 had smaller rosette size and were delayed in flowering time. In ABA sensitivity assays, we found that ERF96 overexpression plants were hypersensitive to ABA in terms of ABA inhibition of seed germination, early seedling development and root elongation. Consistent with these observations, elevated transcript levels of some ABA-responsive genes including RD29A, ABI5, ABF3, ABF4, P5CS, and COR15A were observed in the transgenic plants in the presence of ABA. However, in the absence of ABA treatment, the transcript levels of these ABA-responsive genes remained largely unchanged. Our experiments also showed that water loss in ERF96 overexpression plants was slower than that in Col wild type plants. Stomatal closure assays indicated that ERF96 overexpression plants had reduced stomatal aperture in the presence of ABA. In conclusion, taken together, our results suggest that ERF96 positively regulates ABA responses in Arabidopsis.« less
Wang, Xiaoping; Liu, Shanda; Tian, Hainan; ...
2015-11-26
We report that ethylene regulates many aspects of plant growth and development including seed germination, leaf senescence, and fruit ripening, and of plant responses to environmental stimuli including both biotic and abiotic stresses. Ethylene response factors (ERFs) are plant-specific transcription factors and are a subfamily of the AP2 (APETALA2)/ERF transcription factor family. The function of many members in this large gene family remains largely unknown. ERF96, a member of the Group IX ERF family transcription factors, has recently been shown to be a transcriptional activator that is involved in plant defense response in Arabidopsis. Here we provide evidence that ERF96more » is a positive regulator of abscisic acid (ABA) responses. Bioinformatics analysis indicated that there are a total four small ERFs in Arabidopsis including ERF95, ERF96, ERF97, and ERF98, and that ERF96 forms a cluster with ERF95 and ERF97. By using quantitative RT-PCR, we found that ERF96 is expressed in all tissues and organs examined except roots, with relatively high expression in flowers and seeds. Results from the protoplast transfection assay indicated that the EDLL motif-containing C-terminal domain is responsible for ERF96’s transcriptional activity. Although loss-of-function mutant of ERF96 was morphologically similar to wild type plants, transgenic plants overexpressing ERF96 had smaller rosette size and were delayed in flowering time. In ABA sensitivity assays, we found that ERF96 overexpression plants were hypersensitive to ABA in terms of ABA inhibition of seed germination, early seedling development and root elongation. Consistent with these observations, elevated transcript levels of some ABA-responsive genes including RD29A, ABI5, ABF3, ABF4, P5CS, and COR15A were observed in the transgenic plants in the presence of ABA. However, in the absence of ABA treatment, the transcript levels of these ABA-responsive genes remained largely unchanged. Our experiments also showed that water loss in ERF96 overexpression plants was slower than that in Col wild type plants. Stomatal closure assays indicated that ERF96 overexpression plants had reduced stomatal aperture in the presence of ABA. In conclusion, taken together, our results suggest that ERF96 positively regulates ABA responses in Arabidopsis.« less
Accounting Artifacts in High-Throughput Toxicity Assays.
Hsieh, Jui-Hua
2016-01-01
Compound activity identification is the primary goal in high-throughput screening (HTS) assays. However, assay artifacts including both systematic (e.g., compound auto-fluorescence) and nonsystematic (e.g., noise) complicate activity interpretation. In addition, other than the traditional potency parameter, half-maximal effect concentration (EC50), additional activity parameters (e.g., point-of-departure, POD) could be derived from HTS data for activity profiling. A data analysis pipeline has been developed to handle the artifacts and to provide compound activity characterization with either binary or continuous metrics. This chapter outlines the steps in the pipeline using Tox21 glucocorticoid receptor (GR) β-lactamase assays, including the formats to identify either agonists or antagonists, as well as the counter-screen assays for identifying artifacts as examples. The steps can be applied to other lower-throughput assays with concentration-response data.
Heger, A; Janisch, S; Pock, K; Römisch, J
2016-10-01
The solvent/detergent treatment enables effective and robust inactivation of all lipid-enveloped viruses, but also inactivates partly sensitive plasma proteins such as protein S. The aim of this study was to investigate the thrombin generation capacity of octaplasLG ® , in particular focusing on the function of protein S in thrombin generation assay and the impact of assay settings. Sixteen octaplasLG ® batches and 32 units of single donor fresh frozen plasma (FFP) were investigated. For protein S, both functional activity and free antigen levels were measured. Thrombin generation assay was performed using two fluorogenic tests with different triggers. Finally, rotational thromboelastometry was performed. Mean protein S levels were lower in octaplasLG ® , but a wider range of values was found for FFP. Clotting parameters and thrombin generation capacities overlapped between the two plasma groups as demonstrated using both thrombin generation assays and different triggers. Spiking studies with protein S-depleted plasma, human purified protein S or antibodies against protein S confirmed a correlation between protein S and thrombin generation capacity under specific assay conditions, especially in an assay with low tissue factor concentration. Correlation between protein S and thrombin generation capacity was demonstrated in the TGA. Due to higher variability in protein S content in the FFP group, overlapping haemostatic potentials of the two plasma groups were found. © 2016 International Society of Blood Transfusion.
20170312 - Adverse Outcome Pathway (AOP) framework for ...
Vascular development commences with de novo assembly of a primary capillary plexus (vasculogenesis) followed by its expansion (angiogenesis) and maturation (angio-adaptation) into a hierarchical system of arteries and veins. These processes are tightly regulated by genetic signals and environmental factors linked to morphogenesis and microphysiology. Gestational exposure to some chemicals disrupts vascular development leading to adverse outcomes. To broadly assess consequences of gestational toxicant exposure on vascular development, an Adverse Outcome Pathway (AOP) framework was constructed that integrates data from ToxCast high-throughput screening (HTS) assays with pathway-level information from the literature and public databases. The AOP-based model resolved the ToxCast library (1065 compounds) into a matrix based on several dozen molecular functions critical for developmental angiogenesis. A sample of 38 ToxCast chemicals selected across the matrix tested model performance. Putative vascular disrupting chemical (pVDC) bioactivity was assessed by multiple laboratories utilizing diverse angiogenesis assays, including: transgenic zebrafish, complex human cell co-cultures, engineered microscale systems, and human-synthetic models. The ToxCast pVDC signature predicted vascular disruption in a manner that was chemical-specific and assay-dependent. An AOP for developmental vascular toxicity was constructed that focuses on inhibition of VEGF receptor (VEGFR2). Thi
Behavioral assays with mouse models of Alzheimer’s disease: practical considerations and guidelines
Puzzo, Daniela; Lee, Linda; Palmeri, Agostino; Calabrese, Giorgio; Arancio, Ottavio
2014-01-01
In Alzheimer’s disease (AD) basic research and drug discovery, mouse models are essential resources for uncovering biological mechanisms, validating molecular targets and screening potential compounds. Both transgenic and non-genetically modified mouse models enable access to different types of AD-like pathology in vivo. Although there is a wealth of genetic and biochemical studies on proposed AD pathogenic pathways, as a disease that centrally features cognitive failure, the ultimate readout for any interventions should be measures of learning and memory. This is particularly important given the lack of knowledge on disease etiology – assessment by cognitive assays offers the advantage of targeting relevant memory systems without requiring assumptions about pathogenesis. A multitude of behavioral assays are available for assessing cognitive functioning in mouse models, including ones specific for hippocampal-dependent learning and memory. Here we review the basics of available transgenic and non-transgenic AD mouse models and detail three well-established behavioral tasks commonly used for testing hippocampal-dependent cognition in mice – contextual fear conditioning, radial arm water maze and Morris water maze. In particular, we discuss the practical considerations, requirements and caveats of these behavioral testing paradigms. PMID:24462904
Adverse Outcome Pathway (AOP) framework for embryonic ...
Vascular development commences with de novo assembly of a primary capillary plexus (vasculogenesis) followed by its expansion (angiogenesis) and maturation (angio-adaptation) into a hierarchical system of arteries and veins. These processes are tightly regulated by genetic signals and environmental factors linked to morphogenesis and microphysiology. Gestational exposure to some chemicals disrupts vascular development leading to adverse outcomes. To broadly assess consequences of gestational toxicant exposure on vascular development, an Adverse Outcome Pathway (AOP) framework was constructed that integrates data from ToxCast high-throughput screening (HTS) assays with pathway-level information from the literature and public databases. The AOP-based model resolved the ToxCast library (1065 compounds) into a matrix based on several dozen molecular functions critical for developmental angiogenesis. A sample of 38 ToxCast chemicals selected across the matrix tested model performance. Putative vascular disrupting chemical (pVDC) bioactivity was assessed by multiple laboratories utilizing diverse angiogenesis assays, including: transgenic zebrafish, complex human cell co-cultures, engineered microscale systems, and human-synthetic models. The ToxCast pVDC signature predicted vascular disruption in a manner that was chemical-specific and assay-dependent. An AOP for developmental vascular toxicity was constructed that focuses on inhibition of VEGF receptor (VEGFR2). Thi
Mutational Analysis of Escherichia coli MoeA: Two Functional Activities Map to the Active Site Cleft
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nichols,J.; Xiang, S.; Schindelin, H.
2007-01-01
The molybdenum cofactor is ubiquitous in nature, and the pathway for Moco biosynthesis is conserved in all three domains of life. Recent work has helped to illuminate one of the most enigmatic steps in Moco biosynthesis, ligation of metal to molybdopterin (the organic component of the cofactor) to form the active cofactor. In Escherichia coli, the MoeA protein mediates ligation of Mo to molybdopterin while the MogA protein enhances this process in an ATP-dependent manner. The X-ray crystal structures for both proteins have been previously described as well as two essential MogA residues, Asp49 and Asp82. Here we describe amore » detailed mutational analysis of the MoeA protein. Variants of conserved residues at the putative active site of MoeA were analyzed for a loss of function in two different, previously described assays, one employing moeA{sup -} crude extracts and the other utilizing a defined system. Oddly, no correlation was observed between the activity in the two assays. In fact, our results showed a general trend toward an inverse relationship between the activity in each assay. Moco binding studies indicated a strong correlation between a variant's ability to bind Moco and its activity in the purified component assay. Crystal structures of the functionally characterized MoeA variants revealed no major structural changes, indicating that the functional differences observed are not due to disruption of the protein structure. On the basis of these results, two different functional areas were assigned to regions at or near the MoeA active site cleft.« less
Schmugge, Markus; Speer, Oliver; Kroiss, Sabine; Knirsch, Walter; Kretschmar, Oliver; Rand, Margaret L; Albisetti, Manuela
2015-07-01
Very few studies have investigated dose response of aspirin and agreement of different platelet function assays in children. One hundred five children were studied at baseline and after interventional cardiac catheterization during aspirin treatment and, in cases of aspirin resistance (AR), after dose increase. Results from arachidonate-induced aggregation (AA) were compared with aggregation induced by ADP, PFA-100 closure times (CTs), urinary 11-dehydro-thromboxane B2 (urinary 11-dhTxB2) levels, and Impact-R % surface coverage. Aspirin at 2-5 mg/kg/day inhibited platelet function in a large majority. While 19 % showed bruising and mild epistaxis, no thrombotic complications were recorded. AR was detected by AA in seven children (6.7 %). After dose increase, the majority showed inhibition by aspirin. Infants had higher urinary 11-dhTxB2 baseline levels; this assay showed some correlation with AA. Both assays manifested high sensitivity and specificity for aspirin while inferior results were found for the other assays. With the PFA-100, 15.2 % of patients were found to have AR, but this corresponded to AR by AA in only one of seven children. While there was poor agreement among assays, AA and urinary 11-dhTxB2 show good specificity for the monitoring of aspirin therapy in children. Aspirin at 2-5 mg/kg inhibits platelet function; AR in children is rare and can be overcome by dose increase.
Basavanna, Uma; Muruvanda, Tim; Brown, Eric W.; Sharma, Shashi K.
2013-01-01
The standard procedure for definitive detection of BoNT-producing Clostridia is a culture method combined with neurotoxin detection using a standard mouse bioassay (MBA). The mouse bioassay is highly sensitive and specific, but it is expensive and time-consuming, and there are ethical concerns due to use of laboratory animals. Cell-based assays provide an alternative to the MBA in screening for BoNT-producing Clostridia. Here, we describe a cell-based assay utilizing a fluorescence reporter construct expressed in a neuronal cell model to study toxin activity in situ. Our data indicates that the assay can detect as little as 100 pM BoNT/A activity within living cells, and the assay is currently being evaluated for the analysis of BoNT in food matrices. Among available in vitro assays, we believe that cell-based assays are widely applicable in high-throughput screenings and have the potential to at least reduce and refine animal assays if not replace it. PMID:23533420
A Functional Assay for GPR55: Envision Protocol.
Anavi-Goffer, Sharon; Ross, Ruth A
2016-01-01
AlphaScreen(®) SureFire(®) assay is a novel technology that combines luminescent oxygen channeling technology, nano-beads, and monocloncal antibodies to detect the level of a selected protein in a volume lower than 5 μl. This method is more sensitive compared with the traditional enzyme-linked immunosorbent assays (ELISA), and can detect an increasing number of new targets. Here, we described a method for AlphaScreen(®) SureFire(®) assay that targets ERK1/2 phosphorylation, a primary downstream signaling pathway that conveys activation of GPR55 by L-α-lysophosphatidylinositol (LPI) and certain cannabinoids.
Methods for threshold determination in multiplexed assays
Tammero, Lance F. Bentley; Dzenitis, John M; Hindson, Benjamin J
2014-06-24
Methods for determination of threshold values of signatures comprised in an assay are described. Each signature enables detection of a target. The methods determine a probability density function of negative samples and a corresponding false positive rate curve. A false positive criterion is established and a threshold for that signature is determined as a point at which the false positive rate curve intersects the false positive criterion. A method for quantitative analysis and interpretation of assay results together with a method for determination of a desired limit of detection of a signature in an assay are also described.
Human iPSC-Derived Endothelial Cell Sprouting Assay in Synthetic Hydrogel Arrays
Activation of vascular endothelial cells (ECs) by growth factors initiates a cascade of events in vivo consisting of EC tip cell selection, sprout formation, EC stalk cell proliferation, and ultimately vascular stabilization by support cells. Although EC functional assays can rec...
Herbst, Katie J; Allen, Michael D; Zhang, Jin
2009-05-21
Investigations into the regulation and functional roles of kinases such as cAMP-dependent protein kinase (PKA) increasingly rely on cellular assays. Currently, there are a number of bioluminescence-based assays, for example reporter gene assays, that allow the study of the regulation, activity, and functional effects of PKA in the cellular context. Additionally there are continuing efforts to engineer improved biosensors that are capable of detecting real-time PKA signaling dynamics in cells. These cell-based assays are often utilized to test the involvement of PKA-dependent processes by using H-89, a reversible competitive inhibitor of PKA. We present here data to show that H-89, in addition to being a competitive PKA inhibitor, attenuates the bioluminescence signal produced by Renilla luciferase (RLuc) variants in a population of cells and also in single cells. Using 10 microM of luciferase substrate and 10 microM H-89, we observed that the signal from RLuc and RLuc8, an eight-point mutation variant of RLuc, in cells was reduced to 50% (+/-15%) and 54% (+/-14%) of controls exposed to the vehicle alone, respectively. In vitro, we showed that H-89 decreased the RLuc8 bioluminescence signal but did not compete with coelenterazine-h for the RLuc8 active site, and also did not affect the activity of Firefly luciferase. By contrast, another competitive inhibitor of PKA, KT5720, did not affect the activity of RLuc8. The identification and characterization of the adverse effect of H-89 on RLuc signal will help deconvolute data previously generated from RLuc-based assays looking at the functional effects of PKA signaling. In addition, for the current application and future development of bioluminscence assays, KT5720 is identified as a more suitable PKA inhibitor to be used in conjunction with RLuc-based assays. These principal findings also provide an important lesson to fully consider all of the potential effects of experimental conditions on a cell-based assay readout before drawing conclusions from the data.
The Evaluation and Utilization of Marine-derived Bioactive Compounds with Anti-obesity Effect.
Jin, Qiu; Yu, Huahua; Li, Pengcheng
2018-01-01
Obesity is a global epidemic throughout the world. There is thus increasing interest in searching for natural bioactive compounds with anti-obesity effect. A number of marine compounds have been regarded as potential sources of bioactive compounds and are associated with an anti-obesity effect. Marine-derived compounds with anti-obesity effect and their current applications, methods and indicators for the evaluation of anti-obesity activity are summarized in this review. in order to make contributions to the development of marine-derived functional food against obesity. In this review, an overview of marine-derived compounds with anti-obesity effect, including marine polysaccharides, marine lipid, marine peptides, marine carotenoids is intensively made with an emphasis on their efficacy and mechanism of action. Meanwhile, methods and indicators for the evaluation of anti-obesity activity are discussed. We summarize these methods into three categories: in vitro assay (including adsorption experiments and enzyme inhibitory assay), cell line study, animal experiments and clinical experiments. In addition, a brief introduction of the current applications of marine bioactive compounds with anti-obesity activity is discussed. Marine environment is a rich source of both biological and chemical diversity. In the past decades, numerous novel compounds with anti-obesity activity have been obtained from marine organisms, and many of them have been applied to industrial production such as functional foods and pharmaceuticals. Further studies are needed to explore the above-mentioned facts. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
van der Maten, Erika; de Jonge, Marien I; de Groot, Ronald; van der Flier, Michiel; Langereis, Jeroen D
2017-02-08
Most bacteria entering the bloodstream will be eliminated through complement activation on the bacterial surface and opsonophagocytosis. However, when these protective innate immune systems do not work optimally, or when bacteria are equipped with immune evasion mechanisms that prevent killing, this can lead to serious infections such as bacteremia and meningitis, which is associated with high morbidity and mortality. In order to study the complement evasion mechanisms of bacteria and the capacity of human blood to opsonize and kill bacteria, we developed a versatile whole blood killing assay wherein both phagocyte function and complement activity can easily be monitored and modulated. In this assay we use a selective thrombin inhibitor hirudin to fully preserve complement activity of whole blood. This assay allows controlled analysis of the requirements for active complement by replacing or heat-inactivating plasma, phagocyte function and bacterial immune evasion mechanisms that contribute to survival in human blood.
van der Maten, Erika; de Jonge, Marien I.; de Groot, Ronald; van der Flier, Michiel; Langereis, Jeroen D.
2017-01-01
Most bacteria entering the bloodstream will be eliminated through complement activation on the bacterial surface and opsonophagocytosis. However, when these protective innate immune systems do not work optimally, or when bacteria are equipped with immune evasion mechanisms that prevent killing, this can lead to serious infections such as bacteremia and meningitis, which is associated with high morbidity and mortality. In order to study the complement evasion mechanisms of bacteria and the capacity of human blood to opsonize and kill bacteria, we developed a versatile whole blood killing assay wherein both phagocyte function and complement activity can easily be monitored and modulated. In this assay we use a selective thrombin inhibitor hirudin to fully preserve complement activity of whole blood. This assay allows controlled analysis of the requirements for active complement by replacing or heat-inactivating plasma, phagocyte function and bacterial immune evasion mechanisms that contribute to survival in human blood. PMID:28176849
GeNemo: a search engine for web-based functional genomic data.
Zhang, Yongqing; Cao, Xiaoyi; Zhong, Sheng
2016-07-08
A set of new data types emerged from functional genomic assays, including ChIP-seq, DNase-seq, FAIRE-seq and others. The results are typically stored as genome-wide intensities (WIG/bigWig files) or functional genomic regions (peak/BED files). These data types present new challenges to big data science. Here, we present GeNemo, a web-based search engine for functional genomic data. GeNemo searches user-input data against online functional genomic datasets, including the entire collection of ENCODE and mouse ENCODE datasets. Unlike text-based search engines, GeNemo's searches are based on pattern matching of functional genomic regions. This distinguishes GeNemo from text or DNA sequence searches. The user can input any complete or partial functional genomic dataset, for example, a binding intensity file (bigWig) or a peak file. GeNemo reports any genomic regions, ranging from hundred bases to hundred thousand bases, from any of the online ENCODE datasets that share similar functional (binding, modification, accessibility) patterns. This is enabled by a Markov Chain Monte Carlo-based maximization process, executed on up to 24 parallel computing threads. By clicking on a search result, the user can visually compare her/his data with the found datasets and navigate the identified genomic regions. GeNemo is available at www.genemo.org. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
2012-01-01
Background Chronic pancreatitis is characterized by progressive fibrosis, pain and loss of exocrine and endocrine functions. The long-standing chronic pancreatitis and its associated pancreatic fibrosis are the most common pathogenic events involved in human pancreatic carcinogenesis, but the therapeutic strategies to chronic pancreatitis and the chemoprevention of pancreatic carcinogenesis are very limited. Methods We investigated the effect of sulindac, a non-steroidal anti-inflammatory drug (NSAID), on inhibition of chronic pancreatitis in a caerulein induced chronic pancreatitis mouse model. Results Sulindac significantly reduced the severity of chronic pancreatitis including the extent of acini loss, inflammatory cell infiltration and stromal fibrosis. The protein expression of phosphorylation of MEK/ERK was inhibited in the chronic pancreatic tissues by sulindac treatment as measured by Western blot assay. The levels of inflammatory cytokines including TNF-α and MCP-1 were also significantly decreased with sulindac treatment, as well as the expression of TGF-β, PDGF-β, SHH and Gli in the chronic pancreatic tissue detected by qPCR assay and confirmed by western blot assay. The activation of pancreatic satellet cells was also inhibited by sulindac as measured by the activity of α-smooth muscle actin (α-SMA) in the pancreatic tissue of chronic pancreatitis. Conclusions Sulindac is a promising reagent for the treatment of chronic pancreatitis via inhibition of inflammatory cell infiltration and stromal fibrosis, the inhibitory effect of sulindac on chronic pancreatitis may through targeting the activation ERK/MAPK signaling pathway. PMID:22920325
Development of a microplate coagulation assay for Factor V in human plasma.
Tilley, Derek; Levit, Irina; Samis, John A
2011-06-28
Factor V (FV) in its activated form, FVa, is a critical regulator of thrombin generation during fibrin clot formation. There is a need of a simple, fast, and inexpensive microplate-based coagulation assay to measure the functional activity of FV in human plasma. The objective of this study was to develop a microplate-based assay that measures FV coagulation activity during clot formation in human plasma, which is currently not available. The FV assay requires a kinetic microplate reader to measure the change in absorbance at 405nm during fibrin formation in human plasma. The FV assay accurately measures the time, initial rate, and extent of fibrin clot formation in human plasma. The FV microplate assay is simple, fast, economical, sensitive to approx 24-80pM, and multiple samples may be analyzed simultaneously. All the required materials are commercially available. Standard curves of time or initial rate of fibrin clot formation vs FV activity in the 1-stage assay (Without activation by thrombin) may be used to measure FV activity in samples of human plasma. The assay was used to demonstrate that in nine patients with disseminated intravascular coagulation (DIC), the FV 1-stage, 2-stage (With activation by thrombin), and total (2-stage activity - 1-stage activity) activities were decreased, on average, by approximately 54%, 44%, and 42%, respectively, from prolonged clot times when compared to normal pooled human reference plasma (NHP). The results indicate that the FV in the DIC patient plasmas supported both a delayed and slower rate of fibrin clot formation compared with NHP; however, the extent of fibrin clot formation in the DIC patients remained largely unchanged from that observed with NHP. The FV microplate assay may be easily adapted to measure the activity of any coagulation factor using the appropriate factor-deficient plasma and clot initiating reagent. The microplate assay will find use in both research and clinical laboratories to provide measurement of the functional coagulation activity of FV in human plasma.
Brulez, H F; ter Wee, P M; Snijders, S V; Donker, A J; Verbrugh, H A
1999-12-01
Previous studies showed that the currently used dextrose based peritoneal dialysis fluids impair several leucocyte functions. To determine which in vitro mononuclear leucocyte (monocyte) function tests most clearly reflect the biocompatibility of peritoneal dialysis fluid. Monocytes were tested for phagocytic capacity, bactericidal activity, Fc and C3 receptor expression, and chemiluminescence response, and by analysis of the release of interleukin 8 (IL-8) and tumour necrosis factor alpha (TNF alpha) in the presence of test fluids. Cytokine release was studied in an alternative dynamic in vitro peritoneal dialysis model in which monocytes were exposed to test fluid that was continuously equilibrated with an interstitial fluid-like medium through a microporous membrane. The chemiluminescence response by stressed monocytes was also tested after an 18 h recovery period. All tests were performed during or after exposure to different degrees of glycerol induced osmotic stress and after exposure to a 1% milk-whey derived, polypeptide enriched test fluid. Cells incubated in 0.1% gel Hanks buffer (GH) served as control. Osmotic stress induced impairment of leucocyte function was found by the chemiluminescence assay (mean (SEM): 179 (20)% v 138 (23)% after 30 minutes in 0.5% and 1.5% glycerol, respectively) and by the analysis of IL-8 released by monocytes (44 (9) ng in 0.7% glycerol v 40 (7) ng in 2.0% glycerol). Only the chemiluminescence assay showed a protective effect of polypeptides on leucocyte function (after > or = 60 minutes). If monocytes were allowed to recover in culture medium after exposure to test fluids, the changes in chemiluminescence response appeared to be reversible after a 30 minute exposure, but became more pronounced after 60 and 120 minutes. The phagocytosis and bacterial killing assays were less sensitive. The observations carried out with the phagocytosis assay did not correspond with the Fc or C3 receptor density data. The release of IL-8 by peripheral blood monocytes in a two compartment model and their chemiluminescence response are appropriate assays for the assessment of changes in leucocyte function in response to different peritoneal dialysis fluids.
Karlsson, Ingrid; Borggren, Marie; Jensen, Sanne Skov; Heyndrickx, Leo; Stewart-Jones, Guillaume; Scarlatti, Gabriella; Fomsgaard, Anders
2017-11-17
The induction of both neutralizing antibodies and non-neutralizing antibodies with effector functions, for example, antibody-dependent cellular cytotoxicity (ADCC), is desired in the search for effective vaccines against HIV-1. In the pursuit of novel immunogens capable of inducing an efficient antibody response, rabbits were immunized with selected antigens using different prime-boost strategies. We immunized 35 different groups of rabbits with Env antigens from clinical HIV-1 subtypes A and B, including immunization with DNA alone, protein alone, and DNA prime with protein boost. The rabbit sera were screened for ADCC activity using a GranToxiLux-based assay with human peripheral blood mononuclear cells as effector cells and CEM.NKR CCR5 cells coated with HIV-1 envelope as target cells. The groups with the highest ADCC activity were further characterized for cross-reactivity between HIV-1 subtypes. The immunogen inducing the most potent and broadest ADCC response was a trimeric gp140. The ADCC activity was highest against the HIV-1 subtype corresponding to the immunogen. The ADCC activity did not necessarily reflect neutralizing activity in the pseudovirus-TZMbl assay, but there was an overall correlation between the two antiviral activities. We present a rabbit vaccination model and an assay suitable for screening HIV-1 vaccine candidates for the induction of ADCC-mediating antibodies in addition to neutralizing antibodies. The antigens and/or immunization strategies capable of inducing antibodies with ADCC activity did not necessarily induce neutralizing activity and vice versa. Nevertheless, we identified vaccine candidates that were able to concurrently induce both types of responses and that had ADCC activity that was cross-reactive between different subtypes. When searching for an effective vaccine candidate, it is important to evaluate the antibody response using a model and an assay measuring the desired function.
NASA Astrophysics Data System (ADS)
Imani, Rana; Emami, Shahriar Hojjati; Faghihi, Shahab
2015-02-01
A method for carboxylation of graphene oxide (GO) with chloroacetic acid that precisely optimizes and controls the efficacy of the process for bioconjugation applications is proposed. Quantification of COOH groups on nano-graphene oxide sheets (NGOS) is performed by novel colorimetric methylene blue (MB) assay. The GO is synthesized and carboxylated by chloroacetic acid treatment under strong basic condition. The size and morphology of the as-prepared NGOS are characterized by scanning electron microscopy, transmission electron microscopy (TEM), and atomic force microscopy (AFM). The effect of acid to base molar ratio on the physical, chemical, and morphological properties of NGOS is analyzed by Fourier-transformed infrared spectrometry (FTIR), UV-Vis spectroscopy, X-ray diffraction (XRD), AFM, and zeta potential. For evaluation of bioconjugation efficacy, the synthesized nano-carriers with different carboxylation ratios are functionalized by octaarginine peptide sequence (R8) as a biomolecule model containing amine groups. The quantification of attached R8 peptides to graphene nano-sheets' surface is performed with a colorimetric-based assay which includes the application of 2,4,6-Trinitrobenzene sulfonic acid (TNBS). The results show that the thickness and lateral size of nano-sheets are dramatically decreased to 0.8 nm and 50-100 nm after carboxylation process, respectively. X-ray analysis shows the nano-sheets interlaying space is affected by the alteration of chloroacetic acid to base ratio. The MB assay reveals that the COOH groups on the surface of NGOS are maximized at the acid to base ratio of 2 which is confirmed by FTIR, XRD, and zeta potential. The TNBS assay also shows that bioconjugation of the optimized carboxylated NGOS sample with octaarginine peptide is 2.5 times more efficient compared to bare NGOS. The present work provides evidence that treatment of GO by chloroacetic acid under an optimized condition would create a functionalized high surface area nano-substrate which can be used for subsequent efficient bioconjugation applications.
Xu, Yuanxin; Theobald, Valerie; Sung, Crystal; DePalma, Kathleen; Atwater, Laura; Seiger, Keirsten; Perricone, Michael A; Richards, Susan M
2008-01-01
Background HLA-A2 tetramer flow cytometry, IFNγ real time RT-PCR and IFNγ ELISPOT assays are commonly used as surrogate immunological endpoints for cancer immunotherapy. While these are often used as research assays to assess patient's immunologic response, assay validation is necessary to ensure reliable and reproducible results and enable more accurate data interpretation. Here we describe a rigorous validation approach for each of these assays prior to their use for clinical sample analysis. Methods Standard operating procedures for each assay were established. HLA-A2 (A*0201) tetramer assay specific for gp100209(210M) and MART-126–35(27L), IFNγ real time RT-PCR and ELISPOT methods were validated using tumor infiltrating lymphocyte cell lines (TIL) isolated from HLA-A2 melanoma patients. TIL cells, specific for gp100 (TIL 1520) or MART-1 (TIL 1143 and TIL1235), were used alone or spiked into cryopreserved HLA-A2 PBMC from healthy subjects. TIL/PBMC were stimulated with peptides (gp100209, gp100pool, MART-127–35, or influenza-M1 and negative control peptide HIV) to further assess assay performance characteristics for real time RT-PCR and ELISPOT methods. Validation parameters included specificity, accuracy, precision, linearity of dilution, limit of detection (LOD) and limit of quantification (LOQ). In addition, distribution was established in normal HLA-A2 PBMC samples. Reference ranges for assay controls were established. Results The validation process demonstrated that the HLA-A2 tetramer, IFNγ real time RT-PCR, and IFNγ ELISPOT were highly specific for each antigen, with minimal cross-reactivity between gp100 and MelanA/MART-1. The assays were sensitive; detection could be achieved at as few as 1/4545–1/6667 cells by tetramer analysis, 1/50,000 cells by real time RT-PCR, and 1/10,000–1/20,000 by ELISPOT. The assays met criteria for precision with %CV < 20% (except ELISPOT using high PBMC numbers with %CV < 25%) although flow cytometric assays and cell based functional assays are known to have high assay variability. Most importantly, assays were demonstrated to be effective for their intended use. A positive IFNγ response (by RT-PCR and ELISPOT) to gp100 was demonstrated in PBMC from 3 melanoma patients. Another patient showed a positive MART-1 response measured by all 3 validated methods. Conclusion Our results demonstrated the tetramer flow cytometry assay, IFNγ real-time RT-PCR, and INFγ ELISPOT met validation criteria. Validation approaches provide a guide for others in the field to validate these and other similar assays for assessment of patient T cell response. These methods can be applied not only to cancer vaccines but to other therapeutic proteins as part of immunogenicity and safety analyses. PMID:18945350
Feitosa, Weber Beringui; Hwang, KeumSil; Morris, Patricia L
2018-02-15
During mammalian meiosis, Polo-like kinase 1 (PLK1) is essential during cell cycle progression. In oocyte maturation, PLK1 expression is well characterized but timing of posttranslational modifications regulating its activity and subcellular localization are less clear. Small ubiquitin-related modifier (SUMO) posttranslational modifier proteins have been detected in mammalian gametes but their precise function during gametogenesis is largely unknown. In the present paper we report for mouse oocytes that both PLK1 and phosphorylated PLK1 undergo SUMOylation in meiosis II (MII) oocytes using immunocytochemistry, immunoprecipitation and in vitro SUMOylation assays. At MII, PLK1 is phosphorylated at threonine-210 and serine-137. MII oocyte PLK1 and phosphorylated PLK1 undergo SUMOylation by SUMO-1, -2 and -3 as shown by individual in vitro assays. Using these assays, forms of phosphorylated PLK1 normalized to PLK1 increased significantly and correlated with SUMOylated PLK1 levels. During meiotic progression and maturation, SUMO-1-SUMOylation of PLK1 is involved in spindle formation whereas SUMO-2/3-SUMOylation may regulate PLK1 activity at kinetochore-spindle attachment sites. Microtubule integrity is required for PLK1 localization with SUMO-1 but not with SUMO-2/3. Inhibition of SUMOylation disrupts proper meiotic bipolar spindle organization and spindle-kinetochore attachment. The data show that both temporal and SUMO-specific-SUMOylation play important roles in orchestrating functional dynamics of PLK1 during mouse oocyte meiosis, including subcellular compartmentalization. Copyright © 2018 Elsevier Inc. All rights reserved.
Immunology presentation at the 1990 NASA/NSF Antarctica Biomedical Science Working Group
NASA Technical Reports Server (NTRS)
Meehan, Richard T.
1990-01-01
An overview of methodology used for determining human in vitro lymphocyte activation, proliferation and effector cell function was presented and results of previous manned space flight immunology studies from Apollo through Shuttle were reviewed. Until the Shuttle era, lymphocyte assays were not very sensitive and had such large variations among normal subjects that it was difficult to define a consistent effect of space flight. More sensitive assay, however, even with Shuttle missions as brief as 6 days indicate depressed T-cell proliferative responses are routinely observed following space flight. Using a slight modification of the Shuttle assay, five different human stress-immunology models have been studied over the last 6 years in our lab. These have included: academic examinations of medical students having blood drawn during major test periods on three separate groups of first year students and two hypoxia studies (at 25,000 feet in a 6 week chamber ascent to the equivalent of Mount Everest and twice on Pikes Peak at 14,000 feet). These studies are particularly pertinent to Antarctica, since the altitude equivalent of 11,000 feet at the South Pole may affect some of the variables that are being measured in immunology, physiology or cognitive studies. An extravehicular study was performed drawing blood from 35 individuals before and immediately following a chamber exposure study. Preliminary results from 30 Shuttle astronauts investigated immunophenotype analysis and the role of a novel monocyte population in modulating the previously observed suppressed in vitro immune function. The results of the Air Force Academy cadet stress study were also presented.
Lin, Lihua; Liu, Shengquan; Nie, Zhou; Chen, Yingzhuang; Lei, Chunyang; Wang, Zhen; Yin, Chao; Hu, Huiping; Huang, Yan; Yao, Shouzhuo
2015-04-21
Nowadays, large-scale screening for enzyme discovery, engineering, and drug discovery processes require simple, fast, and sensitive enzyme activity assay platforms with high integration and potential for high-throughput detection. Herein, a novel automatic and integrated micro-enzyme assay (AIμEA) platform was proposed based on a unique microreaction system fabricated by a engineered green fluorescence protein (GFP)-functionalized monolithic capillary column, with thrombin as an example. The recombinant GFP probe was rationally engineered to possess a His-tag and a substrate sequence of thrombin, which enable it to be immobilized on the monolith via metal affinity binding, and to be released after thrombin digestion. Combined with capillary electrophoresis-laser-induced fluorescence (CE-LIF), all the procedures, including thrombin injection, online enzymatic digestion in the microreaction system, and label-free detection of the released GFP, were integrated in a single electrophoretic process. By taking advantage of the ultrahigh loading capacity of the AIμEA platform and the CE automatic programming setup, one microreaction column was sufficient for many times digestion without replacement. The novel microreaction system showed significantly enhanced catalytic efficiency, about 30 fold higher than that of the equivalent bulk reaction. Accordingly, the AIμEA platform was highly sensitive with a limit of detection down to 1 pM of thrombin. Moreover, the AIμEA platform was robust and reliable to detect thrombin in human serum samples and its inhibition by hirudin. Hence, this AIμEA platform exhibits great potential for high-throughput analysis in future biological application, disease diagnostics, and drug screening.
2013-01-01
Background HIV-1 Nef is a viral accessory protein critical for AIDS progression. Nef lacks intrinsic catalytic activity and binds multiple host cell signaling proteins, including Hck and other Src-family tyrosine kinases. Nef binding induces constitutive Hck activation that may contribute to HIV pathogenesis by promoting viral infectivity, replication and downregulation of cell-surface MHC-I molecules. In this study, we developed a yeast-based phenotypic screen to identify small molecules that inhibit the Nef-Hck complex. Results Nef-Hck interaction was faithfully reconstituted in yeast cells, resulting in kinase activation and growth arrest. Yeast cells expressing the Nef-Hck complex were used to screen a library of small heterocyclic compounds for their ability to rescue growth inhibition. The screen identified a dihydrobenzo-1,4-dioxin-substituted analog of 2-quinoxalinyl-3-aminobenzene-sulfonamide (DQBS) as a potent inhibitor of Nef-dependent HIV-1 replication and MHC-I downregulation in T-cells. Docking studies predicted direct binding of DQBS to Nef which was confirmed in differential scanning fluorimetry assays with recombinant purified Nef protein. DQBS also potently inhibited the replication of HIV-1 NL4-3 chimeras expressing Nef alleles representative of all M-group HIV-1 clades. Conclusions Our findings demonstrate the utility of a yeast-based growth reversion assay for the identification of small molecule Nef antagonists. Inhibitors of Nef function discovered with this assay, such as DQBS, may complement the activity of current antiretroviral therapies by enabling immune recognition of HIV-infected cells through the rescue of cell surface MHC-I. PMID:24229420
A Fly's Eye View of Natural and Drug Reward.
Lowenstein, Eve G; Velazquez-Ulloa, Norma A
2018-01-01
Animals encounter multiple stimuli each day. Some of these stimuli are innately appetitive or aversive, while others are assigned valence based on experience. Drugs like ethanol can elicit aversion in the short term and attraction in the long term. The reward system encodes the predictive value for different stimuli, mediating anticipation for attractive or punishing stimuli and driving animal behavior to approach or avoid conditioned stimuli. The neurochemistry and neurocircuitry of the reward system is partly evolutionarily conserved. In both vertebrates and invertebrates, including Drosophila melanogaster , dopamine is at the center of a network of neurotransmitters and neuromodulators acting in concert to encode rewards. Behavioral assays in D. melanogaster have become increasingly sophisticated, allowing more direct comparison with mammalian research. Moreover, recent evidence has established the functional modularity of the reward neural circuits in Drosophila . This functional modularity resembles the organization of reward circuits in mammals. The powerful genetic and molecular tools for D. melanogaster allow characterization and manipulation at the single-cell level. These tools are being used to construct a detailed map of the neural circuits mediating specific rewarding stimuli and have allowed for the identification of multiple genes and molecular pathways that mediate the effects of reinforcing stimuli, including their rewarding effects. This report provides an overview of the research on natural and drug reward in D. melanogaster , including natural rewards such as sugar and other food nutrients, and drug rewards including ethanol, cocaine, amphetamine, methamphetamine, and nicotine. We focused mainly on the known genetic and neural mechanisms underlying appetitive reward for sugar and reward for ethanol. We also include genes, molecular pathways, and neural circuits that have been identified using assays that test the palatability of the rewarding stimulus, the preference for the rewarding stimulus, or other effects of the stimulus that indicate how it can modify behavior. Commonalities between mechanisms of natural and drug reward are highlighted and future directions are presented, putting forward questions best suited for research using D. melanogaster as a model organism.
A Fly’s Eye View of Natural and Drug Reward
Lowenstein, Eve G.; Velazquez-Ulloa, Norma A.
2018-01-01
Animals encounter multiple stimuli each day. Some of these stimuli are innately appetitive or aversive, while others are assigned valence based on experience. Drugs like ethanol can elicit aversion in the short term and attraction in the long term. The reward system encodes the predictive value for different stimuli, mediating anticipation for attractive or punishing stimuli and driving animal behavior to approach or avoid conditioned stimuli. The neurochemistry and neurocircuitry of the reward system is partly evolutionarily conserved. In both vertebrates and invertebrates, including Drosophila melanogaster, dopamine is at the center of a network of neurotransmitters and neuromodulators acting in concert to encode rewards. Behavioral assays in D. melanogaster have become increasingly sophisticated, allowing more direct comparison with mammalian research. Moreover, recent evidence has established the functional modularity of the reward neural circuits in Drosophila. This functional modularity resembles the organization of reward circuits in mammals. The powerful genetic and molecular tools for D. melanogaster allow characterization and manipulation at the single-cell level. These tools are being used to construct a detailed map of the neural circuits mediating specific rewarding stimuli and have allowed for the identification of multiple genes and molecular pathways that mediate the effects of reinforcing stimuli, including their rewarding effects. This report provides an overview of the research on natural and drug reward in D. melanogaster, including natural rewards such as sugar and other food nutrients, and drug rewards including ethanol, cocaine, amphetamine, methamphetamine, and nicotine. We focused mainly on the known genetic and neural mechanisms underlying appetitive reward for sugar and reward for ethanol. We also include genes, molecular pathways, and neural circuits that have been identified using assays that test the palatability of the rewarding stimulus, the preference for the rewarding stimulus, or other effects of the stimulus that indicate how it can modify behavior. Commonalities between mechanisms of natural and drug reward are highlighted and future directions are presented, putting forward questions best suited for research using D. melanogaster as a model organism. PMID:29720947
Assaying gene function by growth competition experiment.
Merritt, Joshua; Edwards, Jeremy S
2004-07-01
High-throughput screening and analysis is one of the emerging paradigms in biotechnology. In particular, high-throughput methods are essential in the field of functional genomics because of the vast amount of data generated in recent and ongoing genome sequencing efforts. In this report we discuss integrated functional analysis methodologies which incorporate both a growth competition component and a highly parallel assay used to quantify results of the growth competition. Several applications of the two most widely used technologies in the field, i.e., transposon mutagenesis and deletion strain library growth competition, and individual applications of several developing or less widely reported technologies are presented.
Schutten, M; Peters, D; Back, N K T; Beld, M; Beuselinck, K; Foulongne, V; Geretti, A-M; Pandiani, L; Tiemann, C; Niesters, H G M
2007-06-01
The analytical performances of the new Abbott RealTime hepatitis C virus (HCV) and human immunodeficiency virus type 1 viral load assays were compared at nine laboratories with different competitor assays. These included the Abbott LcX, Bayer Versant bDNA, Roche COBAS Amplicor, and Roche COBAS TaqMan assays. Two different protocols used during the testing period with and without a pre-m1000 RNA isolation spin were compared. The difference proved to be nonsignificant. A uracil-N-glycosylase (UNG) contamination control option in the HCV test for previous Roche COBAS Amplicor users was evaluated. It proved to decrease amplicon carryover by 100-fold independent of the amplicon input concentration. The protocol including UNG proved to overcome problems with false-positive negative controls. Comparison with other assays revealed only minor differences. The largest difference was observed between the Abbott HCV RealTime assay and the Roche COBAS Amplicor HCV Monitor version 2.0 assay.
Development of fluorescent methods for DNA methyltransferase assay
NASA Astrophysics Data System (ADS)
Li, Yueying; Zou, Xiaoran; Ma, Fei; Tang, Bo; Zhang, Chun-yang
2017-03-01
DNA methylation modified by DNA methyltransferase (MTase) plays an important role in regulating gene transcription, cell growth and proliferation. The aberrant DNA MTase activity may lead to a variety of human diseases including cancers. Therefore, accurate and sensitive detection of DNA MTase activity is crucial to biomedical research, clinical diagnostics and therapy. However, conventional DNA MTase assays often suffer from labor-intensive operations and time-consuming procedures. Alternatively, fluorescent methods have significant advantages of simplicity and high sensitivity, and have been widely applied for DNA MTase assay. In this review, we summarize the recent advances in the development of fluorescent methods for DNA MTase assay. These emerging methods include amplification-free and the amplification-assisted assays. Moreover, we discuss the challenges and future directions of this area.
Ortiz-Flores, Andrés E; Santacruz, Elisa; Jiménez-Mendiguchia, Lucía; García-Cano, Ana; Nattero-Chávez, Lia; Escobar-Morreale, Héctor F; Luque-Ramírez, Manuel
2018-05-05
Aiming to validate the use of a single poststimulus sampling protocol for cosyntropin test short standard high-dose test (SST) in our institution, our primary objectives were (1) to determine the concordance between 30 and 60 min serum cortisol (SC) measurements during SST; and (2) to evaluate the diagnostic agreement between both sampling times when using classic or assay-specific and sex-specific SC cut-off values. The secondary objectives included (1) estimating the specificity and positive predictive value of 30 and 60 min sampling times while considering the suspected origin of adrenal insufficiency (AI); and (2) obtaining assay-specific cut-off values for SC after SST in a group of subjects with normal hypothalamic-pituitary-adrenal (HPA) axis. This is a retrospective chart review study conducted at a Spanish academic hospital from 2011 to 2015. Two groups were evaluated: (1) a main study group including 370 patients in whom SC was measured at 30 and 60 min during SST; and (2) a confirmative group that included 150 women presenting with a normal HPA axis in whom SST was conducted to rule out late-onset congenital adrenal hyperplasia. Diagnostic agreement between both sampling times was assessed by considering both classic (500 nmol/L) and assay-specific SC cut-off concentrations. Diagnostic agreement between both sampling times was greater when applying sex-specific and assay-specific cut-off values instead of the classic cut-off values. For suspected primary AI, 30 min SC determination was enough to establish a diagnosis in over 95% of cases, without missing any necessary treatment. When central AI is suspected, 60 min SC measurement was more specific, establishing a diagnosis in over 97% of cases. Sex-specific and assay-specific SC cut-off values improve the diagnostic accuracy of SST. For primary disease, a subnormal SC response at 30 min is a reliable marker of adrenal dysfunction. On the contrary, when central AI is suspected, 60 min SC measurement improves the diagnostic accuracy of the test. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Boone, C W; Kelloff, G J
1994-01-01
The tissue changes offering the greatest immediate potential for development as surrogate endpoint biomarkers (SEBs) to be used in Phase II trials of cancer chemopreventive agents are those derived from the microscopic tissue changes pathologists use to make the diagnosis of preinvasive (intraepithelial) neoplasia. These changes comprise four categories: proliferative index, ploidy, nuclear morphometry (size, shape, texture, and pleomorphism), and nucleolar morphometry (number, size, shape, position, and pleomorphism). Computer-assisted image analysis (CIA) permits dozens of additional morphometric parameters to be developed. Other categories of candidate SEBs are: DNA and chromosomal structural changes associated with genomic instability, activation of oncogenes and inactivation of tumor suppressor genes, structural changes in differentiated molecules, and aberrations of growth factor/receptor structure and function. Self-perpetuating DNA breakage with secondary mutator mutations in genomic stability genes is a major mechanism by which the genomic instability characteristic of neoplasia occurs, and from which stem other basic neoplastic properties, including clonal evolution, along multiple pathways of genetic variation that are stochastically determined, continuously increasing proliferation, rate and extent of phenotypic heterogeneity. SEBs resulting from genomic instability include homogeneously staining regions, double minute chromosomes, micronuclei, dicentrics, gene amplification, loss of heterozygosity, and alterations in chromosome number. Newly developed assays for detecting genomic instability include comparative genomic hybridization using fluorescence in situ hybridization on > 20 micron-thick sections monitored by confocal laser scanning microscopy, assays for microsatellite instability, and restriction landmark genomic scanning. These assays offer promise for detecting the earliest molecular changes of neoplasia in normal-appearing epithelium prior to the onset of the dysplastic phase of intraepithelial neoplasia.
A microtitre plate assay for measuring glycosidase activity.
Ball, Andrea L; Chambers, Kirsty A; Hewinson, Meera; Navaratnarajah, Sambavi; Samrin, Lamia; Thomas, Nesta; Tyler, Abigail E H; Wall, Amanda J; Lloyd, Matthew D
2008-02-01
Glycosidases perform a wide range of functions in physiology and pathology, and are potential targets for the treatment of diseases such as influenza, cancer, AIDS and diabetes. This paper reports a convenient discontinuous colourimetric assay for the measurement of glycosidase activity. The assay utilises 4-nitrophenyl- substrates and quantities of product are determined by measuring absorbance at 405 nm. This assay is performed in a 96 well microtitre plate and has been used to characterise the properties of seven different glycosidases from bacteria, yeast and higher eukaryotes and their kinetic parameters determined. Assays in the presence of known inhibitors showed that inhibition modes can be determined, and IC(50) and K(i) values calculated. This assay appears to be of widely applicable and of general utility for the measurement of glycosidase activity and the evaluation of inhibitors.
In vitro chemical screening assays to identify thyroid hormone disruptors.
Identification of chemicals with potential to impact thyroid hormone function is a priority of the US EPA’s Endocrine Disruptor Screening Program (EDSP). In vitro screening assays can be used to significantly reduce the number of chemicals that need to be considered for tes...
Human Naive T Cells Express Functional CXCL8 and Promote Tumorigenesis.
Crespo, Joel; Wu, Ke; Li, Wei; Kryczek, Ilona; Maj, Tomasz; Vatan, Linda; Wei, Shuang; Opipari, Anthony W; Zou, Weiping
2018-05-25
Naive T cells are thought to be functionally quiescent. In this study, we studied and compared the phenotype, cytokine profile, and potential function of human naive CD4 + T cells in umbilical cord and peripheral blood. We found that naive CD4 + T cells, but not memory T cells, expressed high levels of chemokine CXCL8. CXCL8 + naive T cells were preferentially enriched CD31 + T cells and did not express T cell activation markers or typical Th effector cytokines, including IFN-γ, IL-4, IL-17, and IL-22. In addition, upon activation, naive T cells retained high levels of CXCL8 expression. Furthermore, we showed that naive T cell-derived CXCL8 mediated neutrophil migration in the in vitro migration assay, supported tumor sphere formation, and promoted tumor growth in an in vivo human xenograft model. Thus, human naive T cells are phenotypically and functionally heterogeneous and can carry out active functions in immune responses. Copyright © 2018 by The American Association of Immunologists, Inc.
Vyas, Sejal; Chesarone-Cataldo, Melissa; Todorova, Tanya; Huang, Yun-Han; Chang, Paul
2013-01-01
The poly(ADP-ribose) polymerase (PARP) family of proteins use NAD+ as their substrate to modify acceptor proteins with adenosine diphosphate-ribose (ADPr) modifications. The function of most PARPs under physiological conditions is unknown. Here, to better understand this protein family, we systematically analyze the cell cycle localization of each PARP and of poly(ADP-ribose), a product of PARP activity, then identify the knock-down phenotype of each protein and perform secondary assays to elucidate function. We show that most PARPs are cytoplasmic, identify cell cycle differences in the ratio of nuclear to cytoplasmic poly(ADP-ribose), and identify four phenotypic classes of PARP function. These include the regulation of membrane structures, cell viability, cell division, and the actin cytoskeleton. Further analysis of PARP14 shows that it is a component of focal adhesion complexes required for proper cell motility and focal adhesion function. In total, we show that PARP proteins are critical regulators of eukaryotic physiology. PMID:23917125
SIRT3 functions as a tumor suppressor in hepatocellular carcinoma.
Zeng, Xianchun; Wang, Nanzhu; Zhai, Hui; Wang, Rongpin; Wu, Jiahong; Pu, Wei
2017-03-01
Hepatocellular carcinoma is one of the leading causes for cancer-related mortality worldwide. SIRT3 may function as either oncogene or tumor suppressor in a panel of cancers; however, the role of SIRT3 in hepatocellular carcinoma remains unclear. In this study, we assayed the expression level of SIRT3 in hepatocellular carcinoma tissues by quantitative reverse transcriptase-polymerase chain reaction and immunohistochemistry. A loss-of-function approach was used to examine the effects of SIRT3 on biological activity, including cell proliferative activity and invasive potential. The results demonstrated that the expression levels of SIRT3 protein in hepatocellular carcinoma tissues were significantly downregulated compared with those in adjacent non-cancerous tissues. Furthermore, SIRT3 could decrease cell proliferation and inhibit cell migration/invasion in hepatocellular carcinoma cell line. Taken together, these results elucidated the function of SIRT3 in hepatocellular carcinoma development and suggested that SIRT3 might function as tumor suppressor in hepatocellular carcinoma by targeting PI3K/Akt pathway.
Reversal deterioration of renal function accompanied with primary hypothyrodism.
Dragović, Tamara
2012-02-01
Hypothyroidism is often accompanied with decline of kidney function, or inability to maintain electrolyte balance. These changes are usually overlooked in everyday practice. Early recognition of this association eliminates unnecessary diagnostic procedures that postpone the adequate treatment. Two patients with elevated serum creatinine levels due to primary autoimmune hypothyroidism, with complete recovery of creatinine clearance after thyroid hormone substitution therapy are presented. The first patient was a young male whose laboratory tests suggested acute renal failure, and the delicate clinical presentation of reduced thyroid function. The second patient was an elderly woman with a history of a long-term signs and symptoms attributed to ageing, including the deterioration of renal function, with consequently delayed diagnosis of hypothyroidism. Serum thyrotropin and thyroxin levels measurement should be done in all cases of renal failure with undefined renal desease, even if the typical clinical presentation of hypothyroidism is absent. Thyroid hormone assays sholud also be performed in all patients with chronic kidney disease whose kidney function is rapidly worsening.
Glucocorticoid receptor ligand binding in monocytic cells using a microplate assay.
Jansen, J; Uitdehaag, B; Koper, J W; van Den Berg, T K
1999-01-01
Glucocorticoids have profound effects on macrophage function and are widely used as anti-inflammatory drugs. Glucocorticoids receptor (GR) ligand binding capacity is a major determinant of cellular glucocorticoid sensitivity. The number and affinity of GR can be measured in a whole cell binding assay using (3)H-dexamethasone. Here, we describe a rapid and simple microplate assay for GR measurement using the human promonocytic cell line THP-1. Copyright 2000 S. Karger AG, Basel.
Lordkipanidzé, Marie; Lowe, Gillian C; Kirkby, Nicholas S; Chan, Melissa V; Lundberg, Martina H; Morgan, Neil V; Bem, Danai; Nisar, Shaista P; Leo, Vincenzo C; Jones, Matthew L; Mundell, Stuart J; Daly, Martina E; Mumford, Andrew D; Warner, Timothy D; Watson, Steve P
2014-02-20
Up to 1% of the population have mild bleeding disorders, but these remain poorly characterized, particularly with regard to the roles of platelets. We have compared the usefulness of Optimul, a 96-well plate-based assay of 7 distinct pathways of platelet activation to characterize inherited platelet defects in comparison with light transmission aggregometry (LTA). Using Optimul and LTA, concentration-response curves were generated for arachidonic acid, ADP, collagen, epinephrine, Thrombin receptor activating-peptide, U46619, and ristocetin in samples from (1) healthy volunteers (n = 50), (2) healthy volunteers treated with antiplatelet agents in vitro (n = 10), and (3) patients with bleeding of unknown origin (n = 65). The assays gave concordant results in 82% of cases (κ = 0.62, P < .0001). Normal platelet function results were particularly predictive (sensitivity, 94%; negative predictive value, 91%), whereas a positive result was not always substantiated by LTA (specificity, 67%; positive predictive value, 77%). The Optimul assay was significantly more sensitive at characterizing defects in the thromboxane pathway, which presented with normal responses with LTA. The Optimul assay is sensitive to mild platelet defects, could be used as a rapid screening assay in patients presenting with bleeding symptoms, and detects changes in platelet function more readily than LTA. This trial was registered at www.isrctn.org as #ISRCTN 77951167.
Weber, Alfred; Engelmaier, Andrea; Mohr, Gabriele; Haindl, Sonja; Schwarz, Hans Peter; Turecek, Peter L
2017-01-05
BAX 855 (ADYNOVATE) is a PEGylated recombinant factor VIII (rFVIII) that showed prolonged circulatory half-life compared to unmodified rFVIII in hemophilic patients. Here, the development and validation of a novel assay is described that selectively measures the activity of BAX 855 as cofactor for the serine protease factor IX, which actives factor X. This method type, termed modification-dependent activity assay, is based on PEG-specific capture of BAX 855 by an anti-PEG IgG preparation, followed by a chromogenic FVIII activity assay. The assay principle enabled sensitive measurement of the FVIII cofactor activity of BAX 855 down to the pM-range without interference by non-PEGylated FVIII. The selectivity of the capture step, shown by competition studies to primarily target the terminal methoxy group of PEG, also allowed assessment of the intactness of the attached PEG chains. Altogether, the modification-dependent activity not only enriches, but complements the group of methods to selectively, accurately, and precisely measure a PEGylated drug in complex biological matrices. In contrast to all other methods described so far, it allows measurement of the biological activity of the PEGylated protein. Data obtained demonstrate that this new method principle can be extended to protein modifications other than PEGylation and to a variety of functional activity assays. Copyright © 2016 Elsevier B.V. All rights reserved.
Fernández, Dolores; García-Gómez, Concepción; Babín, Mar
2013-05-01
Zinc oxide nanoparticles (ZnO-NPs) are inevitably released into the environment and are potentially dangerous for aquatic life. However, the potential mechanisms of cytotoxicity of zinc nanoparticles remain unclear. Studying the toxicity of ZnO-NPs with In vitro systems will help to determine their interactions with cellular biomolecules. The aim of this study was to evaluate the cytotoxic potentials of ZnO-NPs in established fish cell lines (RTG-2, RTH-149 and RTL-W1) and compare them with those of bulk ZnO and Zn(2+) ions. Membrane function (CFDA-AM assay), mitochondrial function (MTT assay), cell growth (KBP assay), cellular stress (β-galactosidase assay), reductase enzyme activity (AB assay), reactive oxygen species (ROS), total glutathione cellular content (tGSH assay) and glutathione S-transferase (GST) activities were assessed for all cell lines. ZnO-NPs cytotoxicity was greater than those of bulk ZnO and Zn(2+). ZnO-NPs induced oxidative stress is dependent on their dose. Low cost tests, such as CFDA-AM, ROS, GST activity and tGSH cell content test that use fish cell lines, may be used to detect oxidative stress and redox status changes. Particle dissolution of the ZnO-NPs did not appear to play an important role in the observed toxicity in this study. Published by Elsevier B.V.
Zhang, Xu; Zhu, Qing; Tian, Tian; Zhao, Changlong; Zang, Jianye; Xue, Ting; Sun, Baolin
2015-05-15
It has been widely recognized that small RNAs (sRNAs) play important roles in physiology and virulence control in bacteria. In Staphylococcus aureus, many sRNAs have been identified and some of them have been functionally studied. Since it is difficult to identify RNA-binding proteins (RBPs), very little has been known about the RBPs in S. aureus, especially those associated with sRNAs. Here we adopted a tRNA scaffold streptavidin aptamer based pull-down assay to identify RBPs in S. aureus. The tethered RNA was successfully captured by the streptavidin magnetic beads, and proteins binding to RNAIII were isolated and analyzed by mass spectrometry. We have identified 81 proteins, and expressed heterologously 9 of them in Escherichia coli. The binding ability of the recombinant proteins with RNAIII was further analyzed by electrophoresis mobility shift assay, and the result indicates that proteins CshA, RNase J2, Era, Hu, WalR, Pyk, and FtsZ can bind to RNAIII. This study suggests that some proteins can bind to RNA III in S. aureus, and may be involved in RNA III function. And tRSA based pull-down assay is an effective method to search for RBPs in bacteria, which should facilitate the identification and functional study of RBPs in diverse bacterial species.
International Validation of Two Human Recombinant Estrogen ...
An international validation study has been successfully completed for 2 competitive binding assays using human recombinant ERa. Assays evaluated included the Freyberger-Wilson (FW) assay using a full length human ER, and the Chemical Evaluation and Research Institute (CERI) assay using a ligand-binding domain of the human ER. Twenty three compounds were tested in 6 laboratories for the FW assay and 5 for the CERJ assay, which included three controls (used with every run), 9 uncoded, and 14 coded chemicals across 3 subtasks. The overall goal of this validation study was to demonstrate the ability of each of the two assays to reliably classify the test chemicals as binders or non-binders. Laboratories had little trouble with the ER binders that produced a full binding curve when using either the CERI or FW assays. As is typical with all ER competitive binding assays, the weak binders proved to be more challenging. However, overall results from both the FW and CERI assays were consistent and in agreement with expected classifications regardless of the form of the hrER (i.e., full length ER versus an ER ligand binding domain) or the subtle differences in the protocols for conducting each assay. The reproducibility and accuracy for classification of chemicals as potential ER binders and non- binders using the FW and CERI hrER binding assays were comparable to that of the U.S.EPA’s existing ER binding test guideline OPPTS 890.1250, while providing an improved, highe
Olennikov, Daniil N; Kashchenko, Nina I; Chirikova, Nadezhda K
2016-12-26
In recent years, the increased popularity of functional beverages such as herbal teas and decoctions has led to the search for new sources of raw materials that provide appropriate taste and functionality to consumers. The objective of this study was to investigate the nutritional, phytochemical profiles and bioactivities of possible functional beverages produced from F. ulmaria and its alternative substitutes ( F. camtschatica , F. denudata , F. stepposa ). The investigated decoctions were analyzed regarding their macronutrient, carbohydrate, organic acid, amino acid and mineral composition. Quantification of the main phenolic compounds in the decoctions of meadowsweet floral teas was performed by a microcolumn RP-HPLC-UV procedure; the highest content was revealed in F. stepposa tea. The investigation of the essential oil of four meadowsweet teas revealed the presence of 28 compounds, including simple phenols, monoterpenes, sesquiterpenes and aliphatic components. The dominance of methyl salicylate and salicylaldehyde was noted in all samples. Studies on the water soluble polysaccharides of Filipendula flowers allowed us to establish their general affiliation to galactans and/or arabinogalactans with an admixture of glucans of the starch type and galacturonans as minor components. The bioactivity data demonstrated a good ability of meadowsweet teas to inhibit amylase, α-glucosidase and AGE formation. Tea samples showed antioxidant properties by the DPPH • , ABTS •+ and Br • free radicals scavenging assays and the carotene bleaching assay, caused by the presence of highly active ellagitannins. The anti-complement activity of the water-soluble polysaccharide fraction of meadowsweet teas indicated their possible immune-modulating properties. Filipendula beverage formulations can be expected to deliver beneficial effects due to their unique nutritional and phytochemical profiles. Potential applications as health-promoting functional products may be suggested.
Experiences with the in vivo and in vitro comet assay in regulatory testing.
Frötschl, Roland
2015-01-01
The in vivo comet assay has recently been implemented into regulatory genotoxicity testing of pharmaceuticals with inclusion into the ICH S2R1 guidance. Regulatory genotoxicity testing aims to detect DNA alterations in form of gene mutations, larger scale chromosomal damage and recombination and aneuploidy. The ICH S2R1 guideline offers two options of standard batteries of tests for the detection of these endpoints. Both options start with an AMES assay and option 1 includes an in vitro mammalian cell assay and an in vivo micronucleus assay in rodent, whereas option 2 includes an in vivo micronucleus assay in bone marrow in rodent and a second in vivo assay in a second tissue with a second endpoint. The test recommended as second in vivo test is the comet assay in rat liver. The in vivo comet assay is considered as mature enough to ensure reliable detection of relevant in vivo genotoxicants in combination with the micronucleus test in bone marrow and the AMES assay. Although lots of research papers have been published using the in vitro comet assay, the in vitro version has not been implemented into official regulatory testing guidelines. A survey of the years 1999-2014 revealed 27 in vivo comet assays submitted to BfArM with market authorisation procedures, European and national advice procedures and clinical trial applications. In three procedures, in vitro comet assays had been submitted within the genetic toxicology packages. © The Author 2014. Published by Oxford University Press on behalf of the Mutagenesis Society. All rights reserved. For permissions, please email: journals.permissions@oup.com.
The Statistics of wood assays for preservative retention
Patricia K. Lebow; Scott W. Conklin
2011-01-01
This paper covers general statistical concepts that apply to interpreting wood assay retention values. In particular, since wood assays are typically obtained from a single composited sample, the statistical aspects, including advantages and disadvantages, of simple compositing are covered.
High Density Diffusion-Free Nanowell Arrays
Takulapalli, Bharath R; Qiu, Ji; Magee, D. Mitchell; Kahn, Peter; Brunner, Al; Barker, Kristi; Means, Steven; Miersch, Shane; Bian, Xiaofang; Mendoza, Alex; Festa, Fernanda; Syal, Karan; Park, Jin; LaBaer, Joshua; Wiktor, Peter
2012-01-01
Proteomics aspires to elucidate the functions of all proteins. Protein microarrays provide an important step by enabling high-throughput studies of displayed proteins. However, many functional assays of proteins include untethered intermediates or products, which could frustrate the use of planar arrays at very high densities because of diffusion to neighboring features. The nucleic acid programmable protein array (NAPPA), is a robust, in situ synthesis method for producing functional proteins just-in-time, which includes steps with diffusible intermediates. We determined that diffusion of expressed proteins led to cross-binding at neighboring spots at very high densities with reduced inter-spot spacing. To address this limitation, we have developed an innovative platform using photolithographically-etched discrete silicon nanowells and used NAPPA as a test case. This arrested protein diffusion and cross-binding. We present confined high density protein expression and display, as well as functional protein-protein interactions, in 8,000 nanowell arrays. This is the highest density of individual proteins in nano-vessels demonstrated on a single slide. We further present proof of principle results on ultra-high density protein arrays capable of up to 24,000 nanowells on a single slide. PMID:22742968
EPA’s ToxCast chemical library spans diverse chemical use-types, functionalities, structures and features potentially relevant to toxicity and environmental exposure. However, this structural diversity, along with assay noise and low average hit rates across the varied Tox...
EPA’s ToxCast chemical library spans diverse chemical use-types, functionalities, structures and features potentially relevant to toxicity and environmental exposure. However, this structural diversity, along with assay noise and low average hit rates across the varied ToxCast h...
A short-term reproduction assay with the fathead minnow has been developed to detect chemicals with the potential to disrupt reproductive endocrine functions controlled by estrogen- and androgen-mediated pathways. The objective of this study was to characterize the responses of t...
Mahmood, Khalid; Jung, Chol-Hee; Philip, Gayle; Georgeson, Peter; Chung, Jessica; Pope, Bernard J; Park, Daniel J
2017-05-16
Genetic variant effect prediction algorithms are used extensively in clinical genomics and research to determine the likely consequences of amino acid substitutions on protein function. It is vital that we better understand their accuracies and limitations because published performance metrics are confounded by serious problems of circularity and error propagation. Here, we derive three independent, functionally determined human mutation datasets, UniFun, BRCA1-DMS and TP53-TA, and employ them, alongside previously described datasets, to assess the pre-eminent variant effect prediction tools. Apparent accuracies of variant effect prediction tools were influenced significantly by the benchmarking dataset. Benchmarking with the assay-determined datasets UniFun and BRCA1-DMS yielded areas under the receiver operating characteristic curves in the modest ranges of 0.52 to 0.63 and 0.54 to 0.75, respectively, considerably lower than observed for other, potentially more conflicted datasets. These results raise concerns about how such algorithms should be employed, particularly in a clinical setting. Contemporary variant effect prediction tools are unlikely to be as accurate at the general prediction of functional impacts on proteins as reported prior. Use of functional assay-based datasets that avoid prior dependencies promises to be valuable for the ongoing development and accurate benchmarking of such tools.
Szafran, Adam T.; Szwarc, Maria; Marcelli, Marco; Mancini, Michael A.
2008-01-01
Background Understanding how androgen receptor (AR) function is modulated by exposure to steroids, growth factors or small molecules can have important mechanistic implications for AR-related disease therapies (e.g., prostate cancer, androgen insensitivity syndrome, AIS), and in the analysis of environmental endocrine disruptors. Methodology/Principal Findings We report the development of a high throughput (HT) image-based assay that quantifies AR subcellular and subnuclear distribution, and transcriptional reporter gene activity on a cell-by-cell basis. Furthermore, simultaneous analysis of DNA content allowed determination of cell cycle position and permitted the analysis of cell cycle dependent changes in AR function in unsynchronized cell populations. Assay quality for EC50 coefficients of variation were 5–24%, with Z' values reaching 0.91. This was achieved by the selective analysis of cells expressing physiological levels of AR, important because minor over-expression resulted in elevated nuclear speckling and decreased transcriptional reporter gene activity. A small screen of AR-binding ligands, including known agonists, antagonists, and endocrine disruptors, demonstrated that nuclear translocation and nuclear “speckling” were linked with transcriptional output, and specific ligands were noted to differentially affect measurements for wild type versus mutant AR, suggesting differing mechanisms of action. HT imaging of patient-derived AIS mutations demonstrated a proof-of-principle personalized medicine approach to rapidly identify ligands capable of restoring multiple AR functions. Conclusions/Significance HT imaging-based multiplex screening will provide a rapid, systems-level analysis of compounds/RNAi that may differentially affect wild type AR or clinically relevant AR mutations. PMID:18978937
Stessman, Holly A. F.; Xiong, Bo; Coe, Bradley P.; Wang, Tianyun; Hoekzema, Kendra; Fenckova, Michaela; Kvarnung, Malin; Gerdts, Jennifer; Trinh, Sandy; Cosemans, Nele; Vives, Laura; Lin, Janice; Turner, Tychele N.; Santen, Gijs; Ruivenkamp, Claudia; Kriek, Marjolein; van Haeringen, Arie; Aten, Emmelien; Friend, Kathryn; Liebelt, Jan; Barnett, Christopher; Haan, Eric; Shaw, Marie; Gecz, Jozef; Anderlid, Britt-Marie; Nordgren, Ann; Lindstrand, Anna; Schwartz, Charles; Kooy, R. Frank; Vandeweyer, Geert; Helsmoortel, Celine; Romano, Corrado; Alberti, Antonino; Vinci, Mirella; Avola, Emanuela; Giusto, Stefania; Courchesne, Eric; Pramparo, Tiziano; Pierce, Karen; Nalabolu, Srinivasa; Amaral, David; Scheffer, Ingrid E.; Delatycki, Martin B.; Lockhart, Paul J.; Hormozdiari, Fereydoun; Harich, Benjamin; Castells-Nobau, Anna; Xia, Kun; Peeters, Hilde; Nordenskjöld, Magnus; Schenck, Annette; Bernier, Raphael A.; Eichler, Evan E.
2017-01-01
Gene-disruptive mutations contribute to the biology of neurodevelopmental disorders (NDDs), but most pathogenic genes are not known. We sequenced 208 candidate genes from >11,730 patients and >2,867 controls. We report 91 genes with an excess of de novo mutations or private disruptive mutations in 5.7% of patients, including 38 novel NDD genes. Drosophila functional assays of a subset bolster their involvement in NDDs. We identify 25 genes that show a bias for autism versus intellectual disability and highlight a network associated with high-functioning autism (FSIQ>100). Clinical follow-up for NAA15, KMT5B, and ASH1L reveals novel syndromic and non-syndromic forms of disease. PMID:28191889
Functional properties of nisin-carbohydrate conjugates formed by radiation induced Maillard reaction
NASA Astrophysics Data System (ADS)
Muppalla, Shobita R.; Sonavale, Rahul; Chawla, Surinder P.; Sharma, Arun
2012-12-01
Nisin-carbohydrate conjugates were prepared by irradiating nisin either with glucose or dextran. Increase in browning and formation of intermediate products was observed with a concomitant decrease in free amino and reducing sugar groups indicating occurrence of the Maillard reaction catalyzed by irradiation. Nisin-carbohydrate conjugates showed a broad spectrum antibacterial activity against Gram negative bacteria (Escherichia coli, Pseudomonas fluorescence) as well as Gram positive bacteria (Staphylococcus aureus, Bacillus cereus). Results of antioxidant assays, including that of DPPH radical-scavenging activity and reducing power, showed that the nisin-dextran conjugates possessed better antioxidant potential than nisin-glucose conjugate. These results suggested that it was possible to enhance the functional properties of nisin by preparing radiation induced conjugates suitable for application in food industry.
The third dimension bridges the gap between cell culture and live tissue.
Pampaloni, Francesco; Reynaud, Emmanuel G; Stelzer, Ernst H K
2007-10-01
Moving from cell monolayers to three-dimensional (3D) cultures is motivated by the need to work with cellular models that mimic the functions of living tissues. Essential cellular functions that are present in tissues are missed by 'petri dish'-based cell cultures. This limits their potential to predict the cellular responses of real organisms. However, establishing 3D cultures as a mainstream approach requires the development of standard protocols, new cell lines and quantitative analysis methods, which include well-suited three-dimensional imaging techniques. We believe that 3D cultures will have a strong impact on drug screening and will also decrease the use of laboratory animals, for example, in the context of toxicity assays.
RNA structural constraints in the evolution of the influenza A virus genome NP segment
Gultyaev, Alexander P; Tsyganov-Bodounov, Anton; Spronken, Monique IJ; van der Kooij, Sander; Fouchier, Ron AM; Olsthoorn, René CL
2014-01-01
Conserved RNA secondary structures were predicted in the nucleoprotein (NP) segment of the influenza A virus genome using comparative sequence and structure analysis. A number of structural elements exhibiting nucleotide covariations were identified over the whole segment length, including protein-coding regions. Calculations of mutual information values at the paired nucleotide positions demonstrate that these structures impose considerable constraints on the virus genome evolution. Functional importance of a pseudoknot structure, predicted in the NP packaging signal region, was confirmed by plaque assays of the mutant viruses with disrupted structure and those with restored folding using compensatory substitutions. Possible functions of the conserved RNA folding patterns in the influenza A virus genome are discussed. PMID:25180940
Surface modification of poly(dimethylsiloxane) for microfluidic assay applications
NASA Astrophysics Data System (ADS)
Séguin, Christine; McLachlan, Jessica M.; Norton, Peter R.; Lagugné-Labarthet, François
2010-02-01
The surface of a poly(dimethylsiloxane) (PDMS) film was imparted with patterned functionalities at the micron-scale level. Arrays of circles with diameters of 180 and 230 μm were functionalized using plasma oxidation coupled with aluminum deposition, followed by silanization with solutions of 3-aminopropyltrimethoxy silane (3-APTMS) and 3-mercaptopropyltrimethoxy silane (3-MPTMS), to obtain patterned amine and thiol functionalities, respectively. The modification of the samples was confirmed using X-ray photoelectron spectroscopy (XPS), gold nanoparticle adhesion coupled with optical microscopy, as well as by derivatization with fluorescent dyes. To further exploit the novel surface chemistry of the modified PDMS, samples with surface amine functionalities were used to develop a protein assay as well as an array capable of cellular capture and patterning. The modified substrate was shown to successfully selectively immobilize fluorescently labeled immunoglobulin G (IgG) by tethering Protein A to the surface, and, for the cellular arrays, C2C12 rat endothelial cells were captured. Finally, this novel method of patterning chemical functionalities onto PDMS has been incorporated into microfluidic channels. Finally, we demonstrate the in situ chemical modification of the protected PDMS oxidized surface within a microfluidic device. This emphasizes the potential of our method for applications involving micron-scale assays since the aluminum protective layer permits to functionalize the oxidized PDMS surface several weeks after plasma treatment simply after etching away the metallic thin film.
Walker, Christopher J; Rush, Craig M; Dama, Paola; O'Hern, Matthew J; Cosgrove, Casey M; Gillespie, Jessica L; Zingarelli, Roman A; Smith, Blair; Stein, Maggie E; Mutch, David G; Shakya, Reena; Chang, Chia-Wen; Selvendiran, Karuppaiyah; Song, Jonathan W; Cohn, David E; Goodfellow, Paul J
2018-05-01
Genomic studies have revealed that multiple genes are mutated at varying frequency in endometrial cancer (EC); however, the relevance of many of these mutations is poorly understood. An EC-specific recurrent mutation in the MAX transcription factor p.His28Arg was recently discovered. We sought to assess the functional consequences of this hotspot mutation and determine its association with cancer-relevant phenotypes. MAX was sequenced in 509 endometrioid ECs, and associations between mutation status and clinicopathologic features were assessed. EC cell lines stably expressing MAXH28R were established and used for functional experiments. DNA binding was examined using electrophoretic mobility shift assays and chromatin immunoprecipitation. Transcriptional profiling was performed with microarrays. Murine flank (six to 11 mice per group) and intraperitoneal tumor models were used for in vivo studies. Vascularity of xenografts was assessed by MECA-32 immunohistochemistry. The paracrine pro-angiogenic nature of MAXH28R-expressing EC cells was tested using microfluidic HUVEC sprouting assays and VEGFA enzyme-linked immunosorbent assays. All statistical tests were two-sided. Twenty-two of 509 tumors harbored mutations in MAX, including 12 tumors with the p.His28Arg mutation. Patients with a MAX mutation had statistically significantly reduced recurrence-free survival (hazard ratio = 4.00, 95% confidence interval = 1.15 to 13.91, P = .03). MAXH28R increased affinity for canonical E-box sequences, and MAXH28R-expressing EC cells dramatically altered transcriptional profiles. MAXH28R-derived xenografts statistically significantly increased vascular area compared with MAXWT and empty vector tumors (P = .003 and P = .008, respectively). MAXH28R-expressing EC cells secreted nearly double the levels of VEGFA compared with MAXWT cells (P = .03, .005, and .005 at 24, 48, and 72 hours, respectively), and conditioned media from MAXH28R cells increased sprouting when applied to HUVECs. These data highlight the importance of MAX mutations in EC and point to increased vascularity as one mechanism contributing to clinical aggressiveness of EC.
Deschuyteneer, Aude; Boeckstaens, Mélanie; De Mees, Christelle; Van Vooren, Pascale; Wintjens, René; Marini, Anna Maria
2013-01-01
Proteins of the conserved Mep-Amt-Rh family, including mammalian Rhesus factors, mediate transmembrane ammonium transport. Ammonium is an important nitrogen source for the biosynthesis of amino acids but is also a metabolic waste product. Its disposal in urine plays a critical role in the regulation of the acid/base homeostasis, especially with an acid diet, a trait of Western countries. Ammonium accumulation above a certain concentration is however pathologic, the cytotoxicity causing fatal cerebral paralysis in acute cases. Alteration in ammonium transport via human Rh proteins could have clinical outcomes. We used a yeast-based expression assay to characterize human Rh variants resulting from non synonymous single nucleotide polymorphisms (nsSNPs) with known or unknown clinical phenotypes and assessed their ammonium transport efficiency, protein level, localization and potential trans-dominant impact. The HsRhAG variants (I61R, F65S) associated to overhydrated hereditary stomatocytosis (OHSt), a disease affecting erythrocytes, proved affected in intrinsic bidirectional ammonium transport. Moreover, this study reveals that the R202C variant of HsRhCG, the orthologue of mouse MmRhcg required for optimal urinary ammonium excretion and blood pH control, shows an impaired inherent ammonium transport activity. Urinary ammonium excretion was RHcg gene-dose dependent in mouse, highlighting MmRhcg as a limiting factor. HsRhCGR202C may confer susceptibility to disorders leading to metabolic acidosis for instance. Finally, the analogous R211C mutation in the yeast ScMep2 homologue also impaired intrinsic activity consistent with a conserved functional role of the preserved arginine residue. The yeast expression assay used here constitutes an inexpensive, fast and easy tool to screen nsSNPs reported by high throughput sequencing or individual cases for functional alterations in Rh factors revealing potential causal variants. PMID:23967154
Chieosilapatham, Panjit; Niyonsaba, François; Kiatsurayanon, Chanisa; Okumura, Ko; Ikeda, Shigaku; Ogawa, Hideoki
2017-10-01
In addition to their microbicidal properties, host defense peptides (HDPs) display various immunomodulatory functions, including keratinocyte production of cytokines/chemokines, proliferation, migration and wound healing. Recently, a novel HDP named AMP-IBP5 (antimicrobial peptide derived from insulin-like growth factor-binding protein 5) was shown to exhibit antimicrobial activity against numerous pathogens, even at concentrations comparable to those of human β-defensins and LL-37. However, the immunomodulatory role of AMP-IBP5 in cutaneous tissue remains unknown. To investigate whether AMP-IBP5 triggers keratinocyte activation and to clarify its mechanism. Production of cytokines/chemokines and growth factors was determined by appropriate ELISA kits. Cell migration was assessed by in vitro wound closure assay, whereas cell proliferation was analyzed using BrdU incorporation assay complimented with XTT assay. MAPK and NF-κB activation was determined by Western blotting. Intracellular cAMP levels were assessed using cAMP enzyme immunoassay kit. Among various cytokines/chemokines and growth factors tested, AMP-IBP5 selectively increased the production of IL-8 and VEGF. Moreover, AMP-IBP5 markedly enhanced keratinocyte migration and proliferation. AMP-IBP5-induced keratinocyte activation was mediated by Mrg X1-X4 receptors with MAPK and NF-κB pathways working downstream, as evidenced by the inhibitory effects of MrgX1-X4 siRNAs and ERK-, JNK-, p38- and NF-κB-specific inhibitors. We confirmed that AMP-IBP5 indeed induced MAPK and NF-κB activation. Furthermore, AMP-IBP5-induced VEGF but not IL-8 production correlated with an increase in intracellular cAMP. Our findings suggest that in addition to its antimicrobial function, AMP-IBP5 might contribute to wound healing process through activation of keratinocytes. Copyright © 2017 Japanese Society for Investigative Dermatology. Published by Elsevier B.V. All rights reserved.
Biocompatible Quantum Dots for Biological Applications
Rosenthal, Sandra J.; Chang, Jerry C.; Kovtun, Oleg; McBride, James R.; Tomlinson, Ian D.
2011-01-01
Semiconductor quantum dots are quickly becoming a critical diagnostic tool for discerning cellular function at the molecular level. Their high brightness, long-lasting, sizetunable, and narrow luminescence set them apart from conventional fluorescence dyes. Quantum dots are being developed for a variety of biologically oriented applications, including fluorescent assays for drug discovery, disease detection, single protein tracking, and intracellular reporting. This review introduces the science behind quantum dots and describes how they are made biologically compatible. Several applications are also included, illustrating strategies toward target specificity, and are followed by a discussion on the limitations of quantum dot approaches. The article is concluded with a look at the future direction of quantum dots. PMID:21276935
Perera, N C N; Godahewa, G I; Lee, Jehee
2016-10-01
Copper-zinc-superoxide dismutase (CuZnSOD) from Hippocampus abdominalis (HaCuZnSOD) is a metalloenzyme which belongs to the ubiquitous family of SODs. Here, we determined the characteristic structural features of HaCuZnSOD, analyzed its evolutionary relationships, and identified its potential immune responses and biological functions in relation to antioxidant defense mechanisms in the seahorse. The gene had a 5' untranslated region (UTR) of 67 bp, a coding sequence of 465 bp and a 3' UTR of 313 bp. The putative peptide consists of 154 amino acids. HaCuZnSOD had a predicted molecular mass of 15.94 kDa and a theoretical pI value of 5.73, which is favorable for copper binding activity. In silico analysis revealed that HaCuZnSOD had a prominent Cu-Zn_superoxide_dismutase domain, two Cu/Zn signature sequences, a putative N-glycosylation site, and several active sites including Cu(2+) and Zn(2+) binding sites. The three dimensional structure indicated a β-sheet barrel with 8 β-sheets and two short α-helical regions. Multiple alignment analyses revealed many conserved regions and active sites among its orthologs. The highest amino acid identity to HaCuZnSOD was found in Siniperca chuatsi (87.4%), while Maylandia zebra shared a close relationship in the phylogenetic analysis. Functional assays were performed to assess the antioxidant, biophysical and biochemical properties of overexpressed recombinant (r) HaCuZnSOD. A xanthine/XOD assay gave optimum results at pH 9 and 25 °C indicating these may be the best conditions for its antioxidant action in the seahorse. An MTT assay and flow cytometry confirmed that rHaCuZnSOD showed peroxidase activity in the presence of HCO3(-). In all the functional assays, the level of antioxidant activity of rHaCuZnSOD was concentration dependent; metal ion supplementation also increased its activity. The highest mRNA expressional level of HaCuZnSOD was found in blood. Temporal assessment under pathological stress showed a delay response by HaCuZnSOD. Our findings demonstrated that HaCuZnSOD is an important antioxidant, which might be involved in the host antioxidant defense mechanism against oxidative stress. Copyright © 2016 Elsevier Ltd. All rights reserved.
Markers of Developmentally Regulated Programmed Cell Death and Their Analysis in Cereal Seeds.
Domínguez, Fernando; Cejudo, Francisco Javier
2018-01-01
Programmed cell death (PCD) is a key process for the development and differentiation of multicellular organisms, which is characterized by well-defined morphological and biochemical features. These include chromatin condensation, DNA degradation and nuclear fragmentation, with nucleases and proteases playing a relevant function in these processes. In this chapter we describe methods routinely used for the analysis of hallmarks of developmentally regulated PCD in cereal seed tissues, which are based on agarose and polyacrylamide gel electrophoresis, in situ staining of DNA fragmentation, and cell-free assays of relevant enzymatic activities.
NASA Astrophysics Data System (ADS)
Dezhenkova, L. G.; Tsvetkov, V. B.; Shtil, A. A.
2014-01-01
The review summarizes and analyzes recent published data on topoisomerase I and II inhibitors as potential antitumour agents. Functions and the mechanism of action of topoisomerases are considered. The molecular mechanism of interactions between low-molecular-weight compounds and these proteins is discussed. Topoisomerase inhibitors belonging to different classes of chemical compounds are systematically covered. Assays for the inhibition of topoisomerases and the possibilities of using the computer-aided modelling for the rational design of novel drugs for cancer chemotherapy are presented. The bibliography includes 127 references.
Day, J.H.
1985-01-01
A method is presented for assaying radioactive sandstone deposits in situ by using a high-resolution borehole gamma-ray spectrometer. Gamma-ray photopeaks from the same spectrum acquired to analyze a sample are used to characterize gamma-ray attenuation properties, from which a calibration function is determined. Assay results are independent of differences between properties of field samples and those of laboratory or test-hole standards generally used to calibrate a borehole sonde. This assaying technique is also independent of the state of radioactive disequilibrium that usually exists in nature among members of the natural-decay chains. ?? 1985.
Jámbor, Csilla; von Pape, Klaus-Werner; Spannagl, Michael; Dietrich, Wulf; Giebl, Andreas; Weisser, Heike
2011-07-01
Acquired platelet dysfunction due to aspirin ingestion may increase bleeding tendency during surgery. Thus, we examined the diagnostic accuracy of in vivo bleeding time (BT) and 2 platelet function assays for the preoperative assessment of a residual antiplatelet effect in patients treated with aspirin. Consecutive patients scheduled for surgery were prospectively enrolled in this study. The patients' last aspirin ingestion had occurred within the previous 48 hours before blood sampling in the "full aspirin effect" group, between 48 and 96 hours before in the "variable aspirin effect" group, and >96 hours before in the "recovered aspirin effect" group. The control group had not taken any aspirin. Multiple electrode aggregometry, platelet function analyzer (PFA)-100, and in vivo BT were performed to assess the effects of aspirin. One-way analysis of variance on ranks with a post hoc multiple-comparison procedure (Dunn) was used to detect differences among the groups. Categorical data were compared using the z test. Receiver operating characteristic (ROC) curves were created to determine the diagnostic accuracy of the platelet function assays investigated. The area under the ROC curve (AUC), sensitivity, and specificity of the assays were calculated. The level of statistical significance was set at P < 0.05. Three hundred ninety-four patients were included in the analysis (133 control and 261 aspirin-treated patients). All 3 methods were able to detect the antiplatelet effect of aspirin in the full aspirin effect group. Furthermore, no difference in the measurement values between the recovered aspirin effect and control group was found, irrespective of the assay performed. Measurement values in the variable aspirin effect group were different from those of the control group in the ASPItest using multiple electrode aggregometry and COL-EPI using PFA-100 but not in BT. ROC analysis showed the highest diagnostic accuracy in excluding the residual aspirin effect in the ASPItest (AUC 0.81, P < 0.001), followed by COL-EPI (AUC 0.78, P < 0.001) and BT (AUC 0.56, P = 0.05). The cutoff value of 53 U in the ASPItest excluded the effect of aspirin with a sensitivity of 88% and specificity of 71%. The full therapeutic antiplatelet effects of aspirin can be expected within 48 hours of the patient's last aspirin ingestion. Platelet function recovered in our study if aspirin cessation occurred >96 hours (4 days) before; thus, in these patients, preoperative platelet function testing is not useful. To quantify any residual aspirin effect in patients who ceased their intake of aspirin between 48 and 96 hours before surgery, the ASPItest might have the highest diagnostic accuracy.
Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes.
Klionsky, Daniel J; Abeliovich, Hagai; Agostinis, Patrizia; Agrawal, Devendra K; Aliev, Gjumrakch; Askew, David S; Baba, Misuzu; Baehrecke, Eric H; Bahr, Ben A; Ballabio, Andrea; Bamber, Bruce A; Bassham, Diane C; Bergamini, Ettore; Bi, Xiaoning; Biard-Piechaczyk, Martine; Blum, Janice S; Bredesen, Dale E; Brodsky, Jeffrey L; Brumell, John H; Brunk, Ulf T; Bursch, Wilfried; Camougrand, Nadine; Cebollero, Eduardo; Cecconi, Francesco; Chen, Yingyu; Chin, Lih-Shen; Choi, Augustine; Chu, Charleen T; Chung, Jongkyeong; Clarke, Peter G H; Clark, Robert S B; Clarke, Steven G; Clavé, Corinne; Cleveland, John L; Codogno, Patrice; Colombo, María I; Coto-Montes, Ana; Cregg, James M; Cuervo, Ana Maria; Debnath, Jayanta; Demarchi, Francesca; Dennis, Patrick B; Dennis, Phillip A; Deretic, Vojo; Devenish, Rodney J; Di Sano, Federica; Dice, J Fred; Difiglia, Marian; Dinesh-Kumar, Savithramma; Distelhorst, Clark W; Djavaheri-Mergny, Mojgan; Dorsey, Frank C; Dröge, Wulf; Dron, Michel; Dunn, William A; Duszenko, Michael; Eissa, N Tony; Elazar, Zvulun; Esclatine, Audrey; Eskelinen, Eeva-Liisa; Fésüs, László; Finley, Kim D; Fuentes, José M; Fueyo, Juan; Fujisaki, Kozo; Galliot, Brigitte; Gao, Fen-Biao; Gewirtz, David A; Gibson, Spencer B; Gohla, Antje; Goldberg, Alfred L; Gonzalez, Ramon; González-Estévez, Cristina; Gorski, Sharon; Gottlieb, Roberta A; Häussinger, Dieter; He, You-Wen; Heidenreich, Kim; Hill, Joseph A; Høyer-Hansen, Maria; Hu, Xun; Huang, Wei-Pang; Iwasaki, Akiko; Jäättelä, Marja; Jackson, William T; Jiang, Xuejun; Jin, Shengkan; Johansen, Terje; Jung, Jae U; Kadowaki, Motoni; Kang, Chanhee; Kelekar, Ameeta; Kessel, David H; Kiel, Jan A K W; Kim, Hong Pyo; Kimchi, Adi; Kinsella, Timothy J; Kiselyov, Kirill; Kitamoto, Katsuhiko; Knecht, Erwin; Komatsu, Masaaki; Kominami, Eiki; Kondo, Seiji; Kovács, Attila L; Kroemer, Guido; Kuan, Chia-Yi; Kumar, Rakesh; Kundu, Mondira; Landry, Jacques; Laporte, Marianne; Le, Weidong; Lei, Huan-Yao; Lenardo, Michael J; Levine, Beth; Lieberman, Andrew; Lim, Kah-Leong; Lin, Fu-Cheng; Liou, Willisa; Liu, Leroy F; Lopez-Berestein, Gabriel; López-Otín, Carlos; Lu, Bo; Macleod, Kay F; Malorni, Walter; Martinet, Wim; Matsuoka, Ken; Mautner, Josef; Meijer, Alfred J; Meléndez, Alicia; Michels, Paul; Miotto, Giovanni; Mistiaen, Wilhelm P; Mizushima, Noboru; Mograbi, Baharia; Monastyrska, Iryna; Moore, Michael N; Moreira, Paula I; Moriyasu, Yuji; Motyl, Tomasz; Münz, Christian; Murphy, Leon O; Naqvi, Naweed I; Neufeld, Thomas P; Nishino, Ichizo; Nixon, Ralph A; Noda, Takeshi; Nürnberg, Bernd; Ogawa, Michinaga; Oleinick, Nancy L; Olsen, Laura J; Ozpolat, Bulent; Paglin, Shoshana; Palmer, Glen E; Papassideri, Issidora; Parkes, Miles; Perlmutter, David H; Perry, George; Piacentini, Mauro; Pinkas-Kramarski, Ronit; Prescott, Mark; Proikas-Cezanne, Tassula; Raben, Nina; Rami, Abdelhaq; Reggiori, Fulvio; Rohrer, Bärbel; Rubinsztein, David C; Ryan, Kevin M; Sadoshima, Junichi; Sakagami, Hiroshi; Sakai, Yasuyoshi; Sandri, Marco; Sasakawa, Chihiro; Sass, Miklós; Schneider, Claudio; Seglen, Per O; Seleverstov, Oleksandr; Settleman, Jeffrey; Shacka, John J; Shapiro, Irving M; Sibirny, Andrei; Silva-Zacarin, Elaine C M; Simon, Hans-Uwe; Simone, Cristiano; Simonsen, Anne; Smith, Mark A; Spanel-Borowski, Katharina; Srinivas, Vickram; Steeves, Meredith; Stenmark, Harald; Stromhaug, Per E; Subauste, Carlos S; Sugimoto, Seiichiro; Sulzer, David; Suzuki, Toshihiko; Swanson, Michele S; Tabas, Ira; Takeshita, Fumihiko; Talbot, Nicholas J; Tallóczy, Zsolt; Tanaka, Keiji; Tanaka, Kozo; Tanida, Isei; Taylor, Graham S; Taylor, J Paul; Terman, Alexei; Tettamanti, Gianluca; Thompson, Craig B; Thumm, Michael; Tolkovsky, Aviva M; Tooze, Sharon A; Truant, Ray; Tumanovska, Lesya V; Uchiyama, Yasuo; Ueno, Takashi; Uzcátegui, Néstor L; van der Klei, Ida; Vaquero, Eva C; Vellai, Tibor; Vogel, Michael W; Wang, Hong-Gang; Webster, Paul; Wiley, John W; Xi, Zhijun; Xiao, Gutian; Yahalom, Joachim; Yang, Jin-Ming; Yap, George; Yin, Xiao-Ming; Yoshimori, Tamotsu; Yu, Li; Yue, Zhenyu; Yuzaki, Michisuke; Zabirnyk, Olga; Zheng, Xiaoxiang; Zhu, Xiongwei; Deter, Russell L
2008-02-01
Research in autophagy continues to accelerate,(1) and as a result many new scientists are entering the field. Accordingly, it is important to establish a standard set of criteria for monitoring macroautophagy in different organisms. Recent reviews have described the range of assays that have been used for this purpose.(2,3) There are many useful and convenient methods that can be used to monitor macroautophagy in yeast, but relatively few in other model systems, and there is much confusion regarding acceptable methods to measure macroautophagy in higher eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers of autophagosomes versus those that measure flux through the autophagy pathway; thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from fully functional autophagy that includes delivery to, and degradation within, lysosomes (in most higher eukaryotes) or the vacuole (in plants and fungi). Here, we present a set of guidelines for the selection and interpretation of the methods that can be used by investigators who are attempting to examine macroautophagy and related processes, as well as by reviewers who need to provide realistic and reasonable critiques of papers that investigate these processes. This set of guidelines is not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to verify an autophagic response.
Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes
Klionsky, Daniel J.; Abeliovich, Hagai; Agostinis, Patrizia; Agrawal, Devendra K.; Aliev, Gjumrakch; Askew, David S.; Baba, Misuzu; Baehrecke, Eric H.; Bahr, Ben A.; Ballabio, Andrea; Bamber, Bruce A.; Bassham, Diane C.; Bergamini, Ettore; Bi, Xiaoning; Biard-Piechaczyk, Martine; Blum, Janice S.; Bredesen, Dale E.; Brodsky, Jeffrey L.; Brumell, John H.; Brunk, Ulf T.; Bursch, Wilfried; Camougrand, Nadine; Cebollero, Eduardo; Cecconi, Francesco; Chen, Yingyu; Chin, Lih-Shen; Choi, Augustine; Chu, Charleen T.; Chung, Jongkyeong; Clarke, Peter G.H.; Clark, Robert S.B.; Clarke, Steven G.; Clavé, Corinne; Cleveland, John L.; Codogno, Patrice; Colombo, María I.; Coto-Montes, Ana; Cregg, James M.; Cuervo, Ana Maria; Debnath, Jayanta; Demarchi, Francesca; Dennis, Patrick B.; Dennis, Phillip A.; Deretic, Vojo; Devenish, Rodney J.; Di Sano, Federica; Dice, J. Fred; DiFiglia, Marian; Dinesh-Kumar, Savithramma; Distelhorst, Clark W.; Djavaheri-Mergny, Mojgan; Dorsey, Frank C.; Dröge, Wulf; Dron, Michel; Dunn, William A.; Duszenko, Michael; Eissa, N. Tony; Elazar, Zvulun; Esclatine, Audrey; Eskelinen, Eeva-Liisa; Fésüs, László; Finley, Kim D.; Fuentes, José M.; Fueyo, Juan; Fujisaki, Kozo; Galliot, Brigitte; Gao, Fen-Biao; Gewirtz, David A.; Gibson, Spencer B.; Gohla, Antje; Goldberg, Alfred L.; Gonzalez, Ramon; González-Estévez, Cristina; Gorski, Sharon; Gottlieb, Roberta A.; Häussinger, Dieter; He, You-Wen; Heidenreich, Kim; Hill, Joseph A.; Høyer-Hansen, Maria; Hu, Xun; Huang, Wei-Pang; Iwasaki, Akiko; Jäättelä, Marja; Jackson, William T.; Jiang, Xuejun; Jin, Shengkan; Johansen, Terje; Jung, Jae U.; Kadowaki, Motoni; Kang, Chanhee; Kelekar, Ameeta; Kessel, David H.; Kiel, Jan A.K.W.; Kim, Hong Pyo; Kimchi, Adi; Kinsella, Timothy J.; Kiselyov, Kirill; Kitamoto, Katsuhiko; Knecht, Erwin; Komatsu, Masaaki; Kominami, Eiki; Kondo, Seiji; Kovács, Attila L.; Kroemer, Guido; Kuan, Chia-Yi; Kumar, Rakesh; Kundu, Mondira; Landry, Jacques; Laporte, Marianne; Le, Weidong; Lei, Huan-Yao; Lenardo, Michael J.; Levine, Beth; Lieberman, Andrew; Lim, Kah-Leong; Lin, Fu-Cheng; Liou, Willisa; Liu, Leroy F.; Lopez-Berestein, Gabriel; López-Otín, Carlos; Lu, Bo; Macleod, Kay F.; Malorni, Walter; Martinet, Wim; Matsuoka, Ken; Mautner, Josef; Meijer, Alfred J.; Meléndez, Alicia; Michels, Paul; Miotto, Giovanni; Mistiaen, Wilhelm P.; Mizushima, Noboru; Mograbi, Baharia; Monastyrska, Iryna; Moore, Michael N.; Moreira, Paula I.; Moriyasu, Yuji; Motyl, Tomasz; Münz, Christian; Murphy, Leon O.; Naqvi, Naweed I.; Neufeld, Thomas P.; Nishino, Ichizo; Nixon, Ralph A.; Noda, Takeshi; Nürnberg, Bernd; Ogawa, Michinaga; Oleinick, Nancy L.; Olsen, Laura J.; Ozpolat, Bulent; Paglin, Shoshana; Palmer, Glen E.; Papassideri, Issidora; Parkes, Miles; Perlmutter, David H.; Perry, George; Piacentini, Mauro; Pinkas-Kramarski, Ronit; Prescott, Mark; Proikas-Cezanne, Tassula; Raben, Nina; Rami, Abdelhaq; Reggiori, Fulvio; Rohrer, Bärbel; Rubinsztein, David C.; Ryan, Kevin M.; Sadoshima, Junichi; Sakagami, Hiroshi; Sakai, Yasuyoshi; Sandri, Marco; Sasakawa, Chihiro; Sass, Miklós; Schneider, Claudio; Seglen, Per O.; Seleverstov, Oleksandr; Settleman, Jeffrey; Shacka, John J.; Shapiro, Irving M.; Sibirny, Andrei; Silva-Zacarin, Elaine C.M.; Simon, Hans-Uwe; Simone, Cristiano; Simonsen, Anne; Smith, Mark A.; Spanel-Borowski, Katharina; Srinivas, Vickram; Steeves, Meredith; Stenmark, Harald; Stromhaug, Per E.; Subauste, Carlos S.; Sugimoto, Seiichiro; Sulzer, David; Suzuki, Toshihiko; Swanson, Michele S.; Tabas, Ira; Takeshita, Fumihiko; Talbot, Nicholas J.; Tallóczy, Zsolt; Tanaka, Keiji; Tanaka, Kozo; Tanida, Isei; Taylor, Graham S.; Taylor, J. Paul; Terman, Alexei; Tettamanti, Gianluca; Thompson, Craig B.; Thumm, Michael; Tolkovsky, Aviva M.; Tooze, Sharon A.; Truant, Ray; Tumanovska, Lesya V.; Uchiyama, Yasuo; Ueno, Takashi; Uzcátegui, Néstor L.; van der Klei, Ida; Vaquero, Eva C.; Vellai, Tibor; Vogel, Michael W.; Wang, Hong-Gang; Webster, Paul; Wiley, John W.; Xi, Zhijun; Xiao, Gutian; Yahalom, Joachim; Yang, Jin-Ming; Yap, George; Yin, Xiao-Ming; Yoshimori, Tamotsu; Yu, Li; Yue, Zhenyu; Yuzaki, Michisuke; Zabirnyk, Olga; Zheng, Xiaoxiang; Zhu, Xiongwei; Deter, Russell L.
2009-01-01
Research in autophagy continues to accelerate,1 and as a result many new scientists are entering the field. Accordingly, it is important to establish a standard set of criteria for monitoring macroautophagy in different organisms. Recent reviews have described the range of assays that have been used for this purpose.2,3 There are many useful and convenient methods that can be used to monitor macroautophagy in yeast, but relatively few in other model systems, and there is much confusion regarding acceptable methods to measure macroautophagy in higher eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers of autophagosomes versus those that measure flux through the autophagy pathway; thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from fully functional autophagy that includes delivery to, and degradation within, lysosomes (in most higher eukaryotes) or the vacuole (in plants and fungi). Here, we present a set of guidelines for the selection and interpretation of the methods that can be used by investigators who are attempting to examine macroautophagy and related processes, as well as by reviewers who need to provide realistic and reasonable critiques of papers that investigate these processes. This set of guidelines is not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to verify an autophagic response. PMID:18188003
Plasmonic Interrogation of Biomimetic Systems for Enhanced Toxicity Assays
NASA Astrophysics Data System (ADS)
Hinman, Samuel Stuart
In light of their escalating exposure to possible environmental toxicants, there are many biological systems that need to be evaluated in a resource and time efficient manner. Understanding how toxicants behave in relation to their physicochemical properties and within complex biological media is especially important toward developing a stronger scientific foundation of these systems so that adequate regulatory decisions may be made. While there are many emerging methods available for the detection and characterization of these chemicals, nanotechnology has presented itself as a promising alternative toward creating more efficient assays. In particular, metallic nanoparticles and thin films exhibit unique optical properties that allow for highly sensitive and multiplexed studies to be performed. These plasmonic materials often preclude the use of molecular tags and labels, enabling direct characterizations and enhancing the throughput of biomolecular studies. However, their lack of specificity toward certain targets and potential toxicity has thus far precluded their widespread use in toxicity testing. The cell membrane, a natural signal transducer, represents one of the fundamental structures for biological recognition and communication. These interfaces principally function as a selective barrier to exogenous materials, including ions, signaling molecules, growth factors, and toxins; therefore, understanding interactions at membrane interfaces is a vital step in elucidating how biological responses are effected. Supported lipid bilayers, which may easily be tailored in composition and complexity, are ideal interfaces for coupling to plasmonic assays since they may be supported in close proximity to metallic nanoparticles and thin films, where measurements are most sensitive. This research will focus on the coupling of plasmonic materials and biomimetic interfaces to increase the sensitivity, efficiency, and throughput of conventional toxicity assays. The fabrication of new plasmonic materials for membrane-based assays is presented, as well as method developments in membrane array formation and opportunities for hyphenation with complementary analytical techniques.
Ataíde, Ricardo; Hasang, Wina; Wilson, Danny W; Beeson, James G; Mwapasa, Victor; Molyneux, Malcolm E; Meshnick, Steven R; Rogerson, Stephen J
2010-05-25
Pregnant women residing in malaria endemic areas are highly susceptible to Plasmodium falciparum malaria, particularly during their first pregnancy, resulting in low birth weight babies and maternal anaemia. This susceptibility is associated with placental sequestration of parasitised red blood cells expressing pregnancy-specific variant surface antigens. Acquisition of antibodies against these variant surface antigens may protect women and their offspring. Functions of such antibodies may include prevention of placental sequestration or opsonisation of parasitised cells for phagocytic clearance. Here we report the development and optimisation of a new high-throughput flow cytometry-based phagocytosis assay using undifferentiated Thp-1 cells to quantitate the amount of opsonizing antibody in patient sera, and apply this assay to measure the impact of HIV on the levels of antibodies to a pregnancy malaria-associated parasite line in a cohort of Malawian primigravid women. The assay showed high reproducibility, with inter-experimental correlation of r(2) = 0.99. In primigravid women, concurrent malaria infection was associated with significantly increased antibodies, whereas HIV decreased the ability to acquire opsonising antibodies (Mann-Whitney ranksum: p = 0.013). This decrease was correlated with HIV-induced immunosuppression, with women with less than 350 x 10(6) CD4+ T- cells/L having less opsonising antibodies (coef: -11.95,P = 0.002). Levels of antibodies were not associated with protection from low birth weight or anaemia. This flow cytometry-based phagocytosis assay proved to be efficient and accurate for the measurement of Fc-receptor mediated phagocytosis-inducing antibodies in large cohorts. HIV was found to affect mainly the acquisition of antibodies to pregnancy-specific malaria in primigravidae. Further studies of the relationship between opsonising antibodies to malaria in pregnancy and HIV are indicated.
Inoue, Takeshi; Hoshino, Hajime; Yamashita, Taiga; Shimoyama, Seira; Agata, Kiyokazu
2015-01-01
Planarians belong to an evolutionarily early group of organisms that possess a central nervous system including a well-organized brain with a simple architecture but many types of neurons. Planarians display a number of behaviors, such as phototaxis and thermotaxis, in response to external stimuli, and it has been shown that various molecules and neural pathways in the brain are involved in controlling these behaviors. However, due to the lack of combinatorial assay methods, it remains obscure whether planarians possess higher brain functions, including integration in the brain, in which multiple signals coming from outside are coordinated and used in determining behavioral strategies. In the present study, we designed chemotaxis and thigmotaxis/kinesis tracking assays to measure several planarian behaviors in addition to those measured by phototaxis and thermotaxis assays previously established by our group, and used these tests to analyze planarian chemotactic and thigmotactic/kinetic behaviors. We found that headless planarian body fragments and planarians that had specifically lost neural activity following regeneration-dependent conditional gene knockdown (Readyknock) of synaptotagmin in the brain lost both chemotactic and thigmotactic behaviors, suggesting that neural activity in the brain is required for the planarian's chemotactic and thigmotactic behaviors. Furthermore, we compared the strength of phototaxis, chemotaxis, thigmotaxis/kinesis, and thermotaxis by presenting simultaneous binary stimuli to planarians. We found that planarians showed a clear order of predominance of these behaviors. For example, when planarians were simultaneously exposed to 400 lux of light and a chemoattractant, they showed chemoattractive behavior irrespective of the direction of the light source, although exposure to light of this intensity alone induces evasive behavior away from the light source. In contrast, when the light intensity was increased to 800 or 1600 lux and the same dose of chemoattractant was presented, planarian behaviors were gradually shifted to negative phototaxis rather than chemoattraction. These results suggest that planarians may be capable of selecting behavioral strategies via the integration of discrete brain functions when exposed to multiple stimuli. The planarian brain processes external signals received through the respective sensory neurons, thereby resulting in the production of appropriate behaviors. In addition, planarians can adjust behavioral features in response to stimulus conditions by integrating multiple external signals in the brain.