Sample records for functional brain plasticity

  1. Adaptation, perceptual learning, and plasticity of brain functions.

    PubMed

    Horton, Jonathan C; Fahle, Manfred; Mulder, Theo; Trauzettel-Klosinski, Susanne

    2017-03-01

    The capacity for functional restitution after brain damage is quite different in the sensory and motor systems. This series of presentations highlights the potential for adaptation, plasticity, and perceptual learning from an interdisciplinary perspective. The chances for restitution in the primary visual cortex are limited. Some patterns of visual field loss and recovery after stroke are common, whereas others are impossible, which can be explained by the arrangement and plasticity of the cortical map. On the other hand, compensatory mechanisms are effective, can occur spontaneously, and can be enhanced by training. In contrast to the human visual system, the motor system is highly flexible. This is based on special relationships between perception and action and between cognition and action. In addition, the healthy adult brain can learn new functions, e.g. increasing resolution above the retinal one. The significance of these studies for rehabilitation after brain damage will be discussed.

  2. Brain plasticity and functional losses in the aged: scientific bases for a novel intervention.

    PubMed

    Mahncke, Henry W; Bronstone, Amy; Merzenich, Michael M

    2006-01-01

    Aging is associated with progressive losses in function across multiple systems, including sensation, cognition, memory, motor control, and affect. The traditional view has been that functional decline in aging is unavoidable because it is a direct consequence of brain machinery wearing down over time. In recent years, an alternative perspective has emerged, which elaborates on this traditional view of age-related functional decline. This new viewpoint--based upon decades of research in neuroscience, experimental psychology, and other related fields--argues that as people age, brain plasticity processes with negative consequences begin to dominate brain functioning. Four core factors--reduced schedules of brain activity, noisy processing, weakened neuromodulatory control, and negative learning--interact to create a self-reinforcing downward spiral of degraded brain function in older adults. This downward spiral might begin from reduced brain activity due to behavioral change, from a loss in brain function driven by aging brain machinery, or more likely from both. In aggregate, these interrelated factors promote plastic changes in the brain that result in age-related functional decline. This new viewpoint on the root causes of functional decline immediately suggests a remedial approach. Studies of adult brain plasticity have shown that substantial improvement in function and/or recovery from losses in sensation, cognition, memory, motor control, and affect should be possible, using appropriately designed behavioral training paradigms. Driving brain plasticity with positive outcomes requires engaging older adults in demanding sensory, cognitive, and motor activities on an intensive basis, in a behavioral context designed to re-engage and strengthen the neuromodulatory systems that control learning in adults, with the goal of increasing the fidelity, reliability, and power of cortical representations. Such a training program would serve a substantial unmet need in

  3. An Evolutionary Computation Approach to Examine Functional Brain Plasticity.

    PubMed

    Roy, Arnab; Campbell, Colin; Bernier, Rachel A; Hillary, Frank G

    2016-01-01

    One common research goal in systems neurosciences is to understand how the functional relationship between a pair of regions of interest (ROIs) evolves over time. Examining neural connectivity in this way is well-suited for the study of developmental processes, learning, and even in recovery or treatment designs in response to injury. For most fMRI based studies, the strength of the functional relationship between two ROIs is defined as the correlation between the average signal representing each region. The drawback to this approach is that much information is lost due to averaging heterogeneous voxels, and therefore, the functional relationship between a ROI-pair that evolve at a spatial scale much finer than the ROIs remain undetected. To address this shortcoming, we introduce a novel evolutionary computation (EC) based voxel-level procedure to examine functional plasticity between an investigator defined ROI-pair by simultaneously using subject-specific BOLD-fMRI data collected from two sessions seperated by finite duration of time. This data-driven procedure detects a sub-region composed of spatially connected voxels from each ROI (a so-called sub-regional-pair) such that the pair shows a significant gain/loss of functional relationship strength across the two time points. The procedure is recursive and iteratively finds all statistically significant sub-regional-pairs within the ROIs. Using this approach, we examine functional plasticity between the default mode network (DMN) and the executive control network (ECN) during recovery from traumatic brain injury (TBI); the study includes 14 TBI and 12 healthy control subjects. We demonstrate that the EC based procedure is able to detect functional plasticity where a traditional averaging based approach fails. The subject-specific plasticity estimates obtained using the EC-procedure are highly consistent across multiple runs. Group-level analyses using these plasticity estimates showed an increase in the strength

  4. Structural and Functional Plasticity in the Maternal Brain Circuitry

    ERIC Educational Resources Information Center

    Pereira, Mariana

    2016-01-01

    Parenting recruits a distributed network of brain structures (and neuromodulators) that coordinates caregiving responses attuned to the young's affect, needs, and developmental stage. Many of these structures and connections undergo significant structural and functional plasticity, mediated by the interplay between maternal hormones and social…

  5. The Current Status of Somatostatin-Interneurons in Inhibitory Control of Brain Function and Plasticity

    PubMed Central

    2016-01-01

    The mammalian neocortex contains many distinct inhibitory neuronal populations to balance excitatory neurotransmission. A correct excitation/inhibition equilibrium is crucial for normal brain development, functioning, and controlling lifelong cortical plasticity. Knowledge about how the inhibitory network contributes to brain plasticity however remains incomplete. Somatostatin- (SST-) interneurons constitute a large neocortical subpopulation of interneurons, next to parvalbumin- (PV-) and vasoactive intestinal peptide- (VIP-) interneurons. Unlike the extensively studied PV-interneurons, acknowledged as key components in guiding ocular dominance plasticity, the contribution of SST-interneurons is less understood. Nevertheless, SST-interneurons are ideally situated within cortical networks to integrate unimodal or cross-modal sensory information processing and therefore likely to be important mediators of experience-dependent plasticity. The lack of knowledge on SST-interneurons partially relates to the wide variety of distinct subpopulations present in the sensory neocortex. This review informs on those SST-subpopulations hitherto described based on anatomical, molecular, or electrophysiological characteristics and whose functional roles can be attributed based on specific cortical wiring patterns. A possible role for these subpopulations in experience-dependent plasticity will be discussed, emphasizing on learning-induced plasticity and on unimodal and cross-modal plasticity upon sensory loss. This knowledge will ultimately contribute to guide brain plasticity into well-defined directions to restore sensory function and promote lifelong learning. PMID:27403348

  6. Functional Plasticity in Childhood Brain Disorders: When, What, How, and Whom to Assess

    PubMed Central

    Dennis, Maureen; Spiegler, Brenda J.; Simic, Nevena; Sinopoli, Katia J.; Wilkinson, Amy; Yeates, Keith Owen; Taylor, H. Gerry; Bigler, Erin D.; Fletcher, Jack M.

    2014-01-01

    At every point in the lifespan, the brain balances malleable processes representing neural plasticity that promote change with homeostatic processes that promote stability. Whether a child develops typically or with brain injury, his or her neural and behavioral outcome is constructed through transactions between plastic and homeostatic processes and the environment. In clinical research with children in whom the developing brain has been malformed or injured, behavioral outcomes provide an index of the result of plasticity, homeostasis, and environmental transactions. When should we assess outcome in relation to age at brain insult, time since brain insult, and age of the child at testing? What should we measure? Functions involving reacting to the past and predicting the future, as well as social-affective skills, are important. How should we assess outcome? Information from performance variability, direct measures and informants, overt and covert measures, and laboratory and ecological measures should be considered. In whom are we assessing outcome? Assessment should be cognizant of individual differences in gene, socio-economic status (SES), parenting, nutrition, and interpersonal supports, which are moderators that interact with other factors influencing functional outcome. PMID:24821533

  7. Relating Brain Damage to Brain Plasticity in Patients With Multiple Sclerosis

    PubMed Central

    Tomassini, Valentina; Johansen-Berg, Heidi; Jbabdi, Saad; Wise, Richard G.; Pozzilli, Carlo; Palace, Jacqueline; Matthews, Paul M.

    2013-01-01

    Background Failure of adaptive plasticity with increasing pathology is suggested to contribute to progression of disability in multiple sclerosis (MS). However, functional impairments can be reduced with practice, suggesting that brain plasticity is preserved even in patients with substantial damage. Objective Here, functional magnetic resonance imaging (fMRI) was used to probe systems-level mechanisms of brain plasticity associated with improvements in visuomotor performance in MS patients and related to measures of microstructural damage. Methods 23 MS patients and 12 healthy controls underwent brain fMRI during the first practice session of a visuomotor task (short-term practice) and after 2 weeks of daily practice with the same task (longer-term practice). Participants also underwent a structural brain MRI scan. Results Patients performed more poorly than controls at baseline. Nonetheless, with practice, patients showed performance improvements similar to controls and independent of the extent of MRI measures of brain pathology. Different relationships between performance improvements and activations were found between groups: greater short-term improvements were associated with lower activation in the sensorimotor, posterior cingulate, and parahippocampal cortices for patients, whereas greater long-term improvements correlated with smaller activation reductions in the visual cortex of controls. Conclusions Brain plasticity for visuomotor practice is preserved in MS patients despite a high burden of cerebral pathology. Cognitive systems different from those acting in controls contribute to this plasticity in patients. These findings challenge the notion that increasing pathology is accompanied by an outright failure of adaptive plasticity, supporting a neuroscientific rationale for recovery-oriented strategies even in chronically disabled patients. PMID:22328685

  8. Oxytocin and Maternal Brain Plasticity.

    PubMed

    Kim, Sohye; Strathearn, Lane

    2016-09-01

    Although dramatic postnatal changes in maternal behavior have long been noted, we are only now beginning to understand the neurobiological mechanisms that support this transition. The present paper synthesizes growing insights from both animal and human research to provide an overview of the plasticity of the mother's brain, with a particular emphasis on the oxytocin system. We examine plasticity observed within the oxytocin system and discuss how these changes mediate an array of other adaptations observed within the maternal brain. We outline factors that affect the oxytocin-mediated plasticity of the maternal brain and review evidence linking disruptions in oxytocin functions to challenges in maternal adaptation. We conclude by suggesting a strategy for intervention with mothers who may be at risk for maladjustment during this transition to motherhood, while highlighting areas where further research is needed. © 2016 Wiley Periodicals, Inc.

  9. Brain plasticity and rehabilitation in stroke patients.

    PubMed

    Hara, Yukihiro

    2015-01-01

    In recent years, our understanding of motor learning, neuroplasticity and functional recovery after the occurrence of brain lesion has grown significantly. Novel findings in basic neuroscience have provided an impetus for research in motor rehabilitation. The brain reveals a spectrum of intrinsic capacities to react as a highly dynamic system which can change the properties of its neural circuits. This brain plasticity can lead to an extreme degree of spontaneous recovery and rehabilitative training may modify and boost the neuronal plasticity processes. Animal studies have extended these findings, providing insight into a broad range of underlying molecular and physiological events. Neuroimaging studies in human patients have provided observations at the systems level that often parallel findings in animals. In general, the best recoveries are associated with the greatest return toward the normal state of brain functional organization. Reorganization of surviving central nervous system elements supports behavioral recovery, for example, through changes in interhemispheric lateralization, activity of association cortices linked to injured zones, and organization of cortical representational maps. Evidence from animal models suggests that both motor learning and cortical stimulation alter intracortical inhibitory circuits and can facilitate long-term potentiation and cortical remodeling. Current researches on the physiology and use of cortical stimulation animal models and in humans with stroke related hemiplegia are reviewed in this article. In particular, electromyography (EMG) -controlled electrical muscle stimulation improves the motor function of the hemiparetic arm and hand. A multi-channel near-infrared spectroscopy (NIRS) studies in which the hemoglobin levels in the brain were non-invasively and dynamically measured during functional activity found that the cerebral blood flow in the injured sensory-motor cortex area is greatest during an EMG-controlled FES

  10. Plasticity of brain wave network interactions and evolution across physiologic states

    PubMed Central

    Liu, Kang K. L.; Bartsch, Ronny P.; Lin, Aijing; Mantegna, Rosario N.; Ivanov, Plamen Ch.

    2015-01-01

    Neural plasticity transcends a range of spatio-temporal scales and serves as the basis of various brain activities and physiologic functions. At the microscopic level, it enables the emergence of brain waves with complex temporal dynamics. At the macroscopic level, presence and dominance of specific brain waves is associated with important brain functions. The role of neural plasticity at different levels in generating distinct brain rhythms and how brain rhythms communicate with each other across brain areas to generate physiologic states and functions remains not understood. Here we perform an empirical exploration of neural plasticity at the level of brain wave network interactions representing dynamical communications within and between different brain areas in the frequency domain. We introduce the concept of time delay stability (TDS) to quantify coordinated bursts in the activity of brain waves, and we employ a system-wide Network Physiology integrative approach to probe the network of coordinated brain wave activations and its evolution across physiologic states. We find an association between network structure and physiologic states. We uncover a hierarchical reorganization in the brain wave networks in response to changes in physiologic state, indicating new aspects of neural plasticity at the integrated level. Globally, we find that the entire brain network undergoes a pronounced transition from low connectivity in Deep Sleep and REM to high connectivity in Light Sleep and Wake. In contrast, we find that locally, different brain areas exhibit different network dynamics of brain wave interactions to achieve differentiation in function during different sleep stages. Moreover, our analyses indicate that plasticity also emerges in frequency-specific networks, which represent interactions across brain locations mediated through a specific frequency band. Comparing frequency-specific networks within the same physiologic state we find very different degree of

  11. [Physical activity: positive impact on brain plasticity].

    PubMed

    Achiron, Anat; Kalron, Alon

    2008-03-01

    The central nervous system has a unique capability of plasticity that enables a single neuron or a group of neurons to undergo functional and constructional changes that are important to learning processes and for compensation of brain damage. The current review aims to summarize recent data related to the effects of physical activity on brain plasticity. In the last decade it was reported that physical activity can affect and manipulate neuronal connections, synaptic activity and adaptation to new neuronal environment following brain injury. One of the most significant neurotrophic factors that is critical for synaptic re-organization and is influenced by physical activity is brain-derived neurotrophic factor (BDNF). The frequency of physical activity and the intensity of exercises are of importance to brain remodeling, support neuronal survival and positively affect rehabilitation therapy. Physical activity should be employed as a tool to improve neural function in healthy subjects and in patients suffering from neurological damage.

  12. Brain plasticity and motor practice in cognitive aging.

    PubMed

    Cai, Liuyang; Chan, John S Y; Yan, Jin H; Peng, Kaiping

    2014-01-01

    For more than two decades, there have been extensive studies of experience-based neural plasticity exploring effective applications of brain plasticity for cognitive and motor development. Research suggests that human brains continuously undergo structural reorganization and functional changes in response to stimulations or training. From a developmental point of view, the assumption of lifespan brain plasticity has been extended to older adults in terms of the benefits of cognitive training and physical therapy. To summarize recent developments, first, we introduce the concept of neural plasticity from a developmental perspective. Secondly, we note that motor learning often refers to deliberate practice and the resulting performance enhancement and adaptability. We discuss the close interplay between neural plasticity, motor learning and cognitive aging. Thirdly, we review research on motor skill acquisition in older adults with, and without, impairments relative to aging-related cognitive decline. Finally, to enhance future research and application, we highlight the implications of neural plasticity in skills learning and cognitive rehabilitation for the aging population.

  13. Brain Plasticity and Disease: A Matter of Inhibition

    PubMed Central

    Baroncelli, Laura; Braschi, Chiara; Spolidoro, Maria; Begenisic, Tatjana; Maffei, Lamberto; Sale, Alessandro

    2011-01-01

    One major goal in Neuroscience is the development of strategies promoting neural plasticity in the adult central nervous system, when functional recovery from brain disease and injury is limited. New evidence has underscored a pivotal role for cortical inhibitory circuitries in regulating plasticity both during development and in adulthood. This paper summarizes recent findings showing that the inhibition-excitation balance controls adult brain plasticity and is at the core of the pathogenesis of neurodevelopmental disorders like autism, Down syndrome, and Rett syndrome. PMID:21766040

  14. Forthergillian Lecture. Imaging human brain function.

    PubMed

    Frackowiak, R S

    The non-invasive brain scanning techniques introduced a quarter of a century ago have become crucial for diagnosis in clinical neurology. They have also been used to investigate brain function and have provided information about normal activity and pathogenesis. They have been used to investigate functional specialization in the brain and how specialized areas communicate to generate complex integrated functions such as speech, memory, the emotions and so on. The phenomenon of brain plasticity is poorly understood and yet clinical neurologists are aware, from everyday observations, that spontaneous recovery from brain lesions is common. An improved understanding of the mechanisms of recovery may generate new therapeutic strategies and indicate ways of modulating mechanisms that promote plastic compensation for loss of function. The main methods used to investigate these issues are positron emission tomography and magnetic resonance imaging (M.R.I.). M.R.I. is also used to map brain structure. The techniques of functional brain mapping and computational morphometrics depend on high performance scanners and a validated set of analytic statistical procedures that generate reproducible data and meaningful inferences from brain scanning data. The motor system presents a good paradigm to illustrate advances made by scanning towards an understanding of plasticity at the level of brain areas. The normal motor system is organized in a nested hierarchy. Recovery from paralysis caused by internal capsule strokes involves functional reorganization manifesting itself as changed patterns of activity in the component brain areas of the normal motor system. The pattern of plastic modification depends in part on patterns of residual or disturbed connectivity after brain injury. Therapeutic manipulations in patients with Parkinson's disease using deep brain stimulation, dopaminergic agents or fetal mesencephalic transplantation provide a means to examine mechanisms underpinning

  15. Effects of morphine on brain plasticity.

    PubMed

    Beltrán-Campos, V; Silva-Vera, M; García-Campos, M L; Díaz-Cintra, S

    2015-04-01

    Morphine shares with other opiates and drugs of abuse the ability to modify the plasticity of brain areas that regulate the morphology of dendrites and spines, which are the primary sites of excitatory synapses in regions of the brain involved in incentive motivation, rewards, and learning. In this review we discuss the impact of morphine use during the prenatal period of brain development and its long-term consequences in murines, and then link those consequences to similar effects occurring in human neonates and adults. Repeated exposure to morphine as treatment for pain in terminally ill patients produces long-term changes in the density of postsynaptic sites (dendrites and spines) in sensitive areas of the brain, such as the prefrontal cortex, the limbic system (hippocampus, amygdala), and caudate nuclei and nucleus accumbens. This article reviews the cellular mechanisms and receptors involved, primarily dopaminergic and glutamatergic receptors, as well as synaptic plasticity brought about by changes in dendritic spines in these areas. The actions of morphine on both developing and adult brains produce alterations in the plasticity of excitatory postsynaptic sites of the brain areas involved in limbic system functions (reward and learning). Doctors need further studies on plasticity in dendrites and spines and on signaling molecules, such as calcium, in order to improve treatments for addiction. Copyright © 2014 Sociedad Española de Neurología. Published by Elsevier Espana. All rights reserved.

  16. Brain disease, connectivity, plasticity and cognitive therapy: A neurological view of mental disorders.

    PubMed

    Lubrini, G; Martín-Montes, A; Díez-Ascaso, O; Díez-Tejedor, E

    2018-04-01

    Our conception of the mind-brain relationship has evolved from the traditional idea of dualism to current evidence that mental functions result from brain activity. This paradigm shift, combined with recent advances in neuroimaging, has led to a novel definition of brain functioning in terms of structural and functional connectivity. The purpose of this literature review is to describe the relationship between connectivity, brain lesions, cerebral plasticity, and functional recovery. Assuming that brain function results from the organisation of the entire brain in networks, brain dysfunction would be a consequence of altered brain network connectivity. According to this approach, cognitive and behavioural impairment following brain damage result from disrupted functional organisation of brain networks. However, the dynamic and versatile nature of these circuits makes recovering brain function possible. Cerebral plasticity allows for functional reorganisation leading to recovery, whether spontaneous or resulting from cognitive therapy, after brain disease. Current knowledge of brain connectivity and cerebral plasticity provides new insights into normal brain functioning, the mechanisms of brain damage, and functional recovery, which in turn serve as the foundations of cognitive therapy. Copyright © 2017 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  17. Long-Term Plasticity of Neurotransmitter Release: Emerging Mechanisms and Contributions to Brain Function and Disease.

    PubMed

    Monday, Hannah R; Younts, Thomas J; Castillo, Pablo E

    2018-04-25

    Long-lasting changes of brain function in response to experience rely on diverse forms of activity-dependent synaptic plasticity. Chief among them are long-term potentiation and long-term depression of neurotransmitter release, which are widely expressed by excitatory and inhibitory synapses throughout the central nervous system and can dynamically regulate information flow in neural circuits. This review article explores recent advances in presynaptic long-term plasticity mechanisms and contributions to circuit function. Growing evidence indicates that presynaptic plasticity may involve structural changes, presynaptic protein synthesis, and transsynaptic signaling. Presynaptic long-term plasticity can alter the short-term dynamics of neurotransmitter release, thereby contributing to circuit computations such as novelty detection, modifications of the excitatory/inhibitory balance, and sensory adaptation. In addition, presynaptic long-term plasticity underlies forms of learning and its dysregulation participates in several neuropsychiatric conditions, including schizophrenia, autism, intellectual disabilities, neurodegenerative diseases, and drug abuse. Expected final online publication date for the Annual Review of Neuroscience Volume 41 is July 8, 2018. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

  18. In pursuit of resilience: stress, epigenetics, and brain plasticity.

    PubMed

    McEwen, Bruce S

    2016-06-01

    The brain is the central organ for adaptation to experiences, including stressors, which are capable of changing brain architecture as well as altering systemic function through neuroendocrine, autonomic, immune, and metabolic systems. Because the brain is the master regulator of these systems, as well as of behavior, alterations in brain function by chronic stress can have direct and indirect effects on cumulative allostatic overload, which refers to the cost of adaptation. There is much new knowledge on the neural control of systemic physiology and the feedback actions of physiologic mediators on brain regions regulating higher cognitive function, emotional regulation, and self-regulation. The healthy brain has a considerable capacity for resilience, based upon its ability to respond to interventions designed to open "windows of plasticity" and redirect its function toward better health. As a result, plasticity-facilitating treatments should be given within the framework of a positive behavioral intervention; negative experiences during this window may even make matters worse. Indeed, there are no magic bullets and drugs cannot substitute for targeted interventions that help an individual become resilient, of which mindfulness-based stress reduction and meditation are emerging as useful tools. © 2016 New York Academy of Sciences.

  19. Synaptic plasticity functions in an organic electrochemical transistor

    NASA Astrophysics Data System (ADS)

    Gkoupidenis, Paschalis; Schaefer, Nathan; Strakosas, Xenofon; Fairfield, Jessamyn A.; Malliaras, George G.

    2015-12-01

    Synaptic plasticity functions play a crucial role in the transmission of neural signals in the brain. Short-term plasticity is required for the transmission, encoding, and filtering of the neural signal, whereas long-term plasticity establishes more permanent changes in neural microcircuitry and thus underlies memory and learning. The realization of bioinspired circuits that can actually mimic signal processing in the brain demands the reproduction of both short- and long-term aspects of synaptic plasticity in a single device. Here, we demonstrate the implementation of neuromorphic functions similar to biological memory, such as short- to long-term memory transition, in non-volatile organic electrochemical transistors (OECTs). Depending on the training of the OECT, the device displays either short- or long-term plasticity, therefore, exhibiting non von Neumann characteristics with merged processing and storing functionalities. These results are a first step towards the implementation of organic-based neuromorphic circuits.

  20. Evidence for impaired plasticity after traumatic brain injury in the developing brain.

    PubMed

    Li, Nan; Yang, Ya; Glover, David P; Zhang, Jiangyang; Saraswati, Manda; Robertson, Courtney; Pelled, Galit

    2014-02-15

    The robustness of plasticity mechanisms during brain development is essential for synaptic formation and has a beneficial outcome after sensory deprivation. However, the role of plasticity in recovery after acute brain injury in children has not been well defined. Traumatic brain injury (TBI) is the leading cause of death and disability among children, and long-term disability from pediatric TBI can be particularly devastating. We investigated the altered cortical plasticity 2-3 weeks after injury in a pediatric rat model of TBI. Significant decreases in neurophysiological responses across the depth of the noninjured, primary somatosensory cortex (S1) in TBI rats, compared to age-matched controls, were detected with electrophysiological measurements of multi-unit activity (86.4% decrease), local field potential (75.3% decrease), and functional magnetic resonance imaging (77.6% decrease). Because the corpus callosum is a clinically important white matter tract that was shown to be consistently involved in post-traumatic axonal injury, we investigated its anatomical and functional characteristics after TBI. Indeed, corpus callosum abnormalities in TBI rats were detected with diffusion tensor imaging (9.3% decrease in fractional anisotropy) and histopathological analysis (14% myelination volume decreases). Whole-cell patch clamp recordings further revealed that TBI results in significant decreases in spontaneous firing rate (57% decrease) and the potential to induce long-term potentiation in neurons located in layer V of the noninjured S1 by stimulation of the corpus callosum (82% decrease). The results suggest that post-TBI plasticity can translate into inappropriate neuronal connections and dramatic changes in the function of neuronal networks.

  1. Brain foods: the effects of nutrients on brain function

    PubMed Central

    Gómez-Pinilla, Fernando

    2009-01-01

    It has long been suspected that the relative abundance of specific nutrients can affect cognitive processes and emotions. Newly described influences of dietary factors on neuronal function and synaptic plasticity have revealed some of the vital mechanisms that are responsible for the action of diet on brain health and mental function. Several gut hormones that can enter the brain, or that are produced in the brain itself, influence cognitive ability. In addition, well-established regulators of synaptic plasticity, such as brain-derived neurotrophic factor, can function as metabolic modulators, responding to peripheral signals such as food intake. Understanding the molecular basis of the effects of food on cognition will help us to determine how best to manipulate diet in order to increase the resistance of neurons to insults and promote mental fitness. PMID:18568016

  2. Environment and brain plasticity: towards an endogenous pharmacotherapy.

    PubMed

    Sale, Alessandro; Berardi, Nicoletta; Maffei, Lamberto

    2014-01-01

    Brain plasticity refers to the remarkable property of cerebral neurons to change their structure and function in response to experience, a fundamental theoretical theme in the field of basic research and a major focus for neural rehabilitation following brain disease. While much of the early work on this topic was based on deprivation approaches relying on sensory experience reduction procedures, major advances have been recently obtained using the conceptually opposite paradigm of environmental enrichment, whereby an enhanced stimulation is provided at multiple cognitive, sensory, social, and motor levels. In this survey, we aim to review past and recent work concerning the influence exerted by the environment on brain plasticity processes, with special emphasis on the underlying cellular and molecular mechanisms and starting from experimental work on animal models to move to highly relevant work performed in humans. We will initiate introducing the concept of brain plasticity and describing classic paradigmatic examples to illustrate how changes at the level of neuronal properties can ultimately affect and direct key perceptual and behavioral outputs. Then, we describe the remarkable effects elicited by early stressful conditions, maternal care, and preweaning enrichment on central nervous system development, with a separate section focusing on neurodevelopmental disorders. A specific section is dedicated to the striking ability of environmental enrichment and physical exercise to empower adult brain plasticity. Finally, we analyze in the last section the ever-increasing available knowledge on the effects elicited by enriched living conditions on physiological and pathological aging brain processes.

  3. Plasticity following early-life brain injury: Insights from quantitative MRI.

    PubMed

    Fiori, Simona; Guzzetta, Andrea

    2015-03-01

    Over the last decade, the application of novel advanced neuroimaging techniques to study congenital brain damage has provided invaluable insights into the mechanisms underlying early neuroplasticity. The concept that is clearly emerging, both from human and nun-human studies, is that functional reorganization in the immature brain is substantially different from that of the more mature, developed brain. This applies to the reorganization of language, the sensorimotor system, and the visual system. The rapid implementation and development of higher order imaging methods will offer increased, currently unavailable knowledge about the specific mechanisms of cerebral plasticity in infancy, which is essential to support the development of early therapeutic interventions aimed at supporting and enhancing functional reorganization during a time of greatest potential brain plasticity. Copyright © 2015. Published by Elsevier Inc.

  4. Contrasting Acute and Slow-Growing Lesions: A New Door to Brain Plasticity

    ERIC Educational Resources Information Center

    Desmurget, Michel; Bonnetblanc, FranCois; Duffau, Hugues

    2007-01-01

    The concept of plasticity describes the mechanisms that rearrange cerebral organization following a brain injury. During the last century, plasticity has been mainly investigated in humans with acute strokes. It was then shown: (i) that the brain is organized into highly specialized functional areas, often designated "eloquent" areas and (ii) that…

  5. The effect of inflammation and its reduction on brain plasticity in multiple sclerosis: MRI evidence

    PubMed Central

    d'Ambrosio, Alessandro; Petsas, Nikolaos; Wise, Richard G.; Sbardella, Emilia; Allen, Marek; Tona, Francesca; Fanelli, Fulvia; Foster, Catherine; Carnì, Marco; Gallo, Antonio; Pantano, Patrizia; Pozzilli, Carlo

    2016-01-01

    Abstract Brain plasticity is the basis for systems‐level functional reorganization that promotes recovery in multiple sclerosis (MS). As inflammation interferes with plasticity, its pharmacological modulation may restore plasticity by promoting desired patterns of functional reorganization. Here, we tested the hypothesis that brain plasticity probed by a visuomotor adaptation task is impaired with MS inflammation and that pharmacological reduction of inflammation facilitates its restoration. MS patients were assessed twice before (sessions 1 and 2) and once after (session 3) the beginning of Interferon beta (IFN beta), using behavioural and structural MRI measures. During each session, 2 functional MRI runs of a visuomotor task, separated by 25‐minutes of task practice, were performed. Within‐session between‐run change in task‐related functional signal was our imaging marker of plasticity. During session 1, patients were compared with healthy controls. Comparison of patients' sessions 2 and 3 tested the effect of reduced inflammation on our imaging marker of plasticity. The proportion of patients with gadolinium‐enhancing lesions reduced significantly during IFN beta. In session 1, patients demonstrated a greater between‐run difference in functional MRI activity of secondary visual areas and cerebellum than controls. This abnormally large practice‐induced signal change in visual areas, and in functionally connected posterior parietal and motor cortices, was reduced in patients in session 3 compared with 2. Our results suggest that MS inflammation alters short‐term plasticity underlying motor practice. Reduction of inflammation with IFN beta is associated with a restoration of this plasticity, suggesting that modulation of inflammation may enhance recovery‐oriented strategies that rely on patients' brain plasticity. Hum Brain Mapp 37:2431–2445, 2016. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc. PMID:26991559

  6. Effects of Diet on Brain Plasticity in Animal and Human Studies: Mind the Gap

    PubMed Central

    Dias, Gisele Pereira

    2014-01-01

    Dietary interventions have emerged as effective environmental inducers of brain plasticity. Among these dietary interventions, we here highlight the impact of caloric restriction (CR: a consistent reduction of total daily food intake), intermittent fasting (IF, every-other-day feeding), and diet supplementation with polyphenols and polyunsaturated fatty acids (PUFAs) on markers of brain plasticity in animal studies. Moreover, we also discuss epidemiological and intervention studies reporting the effects of CR, IF and dietary polyphenols and PUFAs on learning, memory, and mood. In particular, we evaluate the gap in mechanistic understanding between recent findings from animal studies and those human studies reporting that these dietary factors can benefit cognition, mood, and anxiety, aging, and Alzheimer's disease—with focus on the enhancement of structural and functional plasticity markers in the hippocampus, such as increased expression of neurotrophic factors, synaptic function and adult neurogenesis. Lastly, we discuss some of the obstacles to harnessing the promising effects of diet on brain plasticity in animal studies into effective recommendations and interventions to promote healthy brain function in humans. Together, these data reinforce the important translational concept that diet, a modifiable lifestyle factor, holds the ability to modulate brain health and function. PMID:24900924

  7. Searching for Factors Underlying Cerebral Plasticity in the Normal and Injured Brain

    ERIC Educational Resources Information Center

    Kolb, Bryan; Muhammad, Arif; Gibb, Robbin

    2011-01-01

    Brain plasticity refers to the capacity of the nervous system to change its structure and ultimately its function over a lifetime. There have been major advances in our understanding of the principles of brain plasticity and behavior in laboratory animals and humans. Over the past decade there have been advances in the application of these…

  8. Plasticity-related genes in brain development and amygdala-dependent learning.

    PubMed

    Ehrlich, D E; Josselyn, S A

    2016-01-01

    Learning about motivationally important stimuli involves plasticity in the amygdala, a temporal lobe structure. Amygdala-dependent learning involves a growing number of plasticity-related signaling pathways also implicated in brain development, suggesting that learning-related signaling in juveniles may simultaneously influence development. Here, we review the pleiotropic functions in nervous system development and amygdala-dependent learning of a signaling pathway that includes brain-derived neurotrophic factor (BDNF), extracellular signaling-related kinases (ERKs) and cyclic AMP-response element binding protein (CREB). Using these canonical, plasticity-related genes as an example, we discuss the intersection of learning-related and developmental plasticity in the immature amygdala, when aversive and appetitive learning may influence the developmental trajectory of amygdala function. We propose that learning-dependent activation of BDNF, ERK and CREB signaling in the immature amygdala exaggerates and accelerates neural development, promoting amygdala excitability and environmental sensitivity later in life. © 2015 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  9. The effect of inflammation and its reduction on brain plasticity in multiple sclerosis: MRI evidence.

    PubMed

    Tomassini, Valentina; d'Ambrosio, Alessandro; Petsas, Nikolaos; Wise, Richard G; Sbardella, Emilia; Allen, Marek; Tona, Francesca; Fanelli, Fulvia; Foster, Catherine; Carnì, Marco; Gallo, Antonio; Pantano, Patrizia; Pozzilli, Carlo

    2016-07-01

    Brain plasticity is the basis for systems-level functional reorganization that promotes recovery in multiple sclerosis (MS). As inflammation interferes with plasticity, its pharmacological modulation may restore plasticity by promoting desired patterns of functional reorganization. Here, we tested the hypothesis that brain plasticity probed by a visuomotor adaptation task is impaired with MS inflammation and that pharmacological reduction of inflammation facilitates its restoration. MS patients were assessed twice before (sessions 1 and 2) and once after (session 3) the beginning of Interferon beta (IFN beta), using behavioural and structural MRI measures. During each session, 2 functional MRI runs of a visuomotor task, separated by 25-minutes of task practice, were performed. Within-session between-run change in task-related functional signal was our imaging marker of plasticity. During session 1, patients were compared with healthy controls. Comparison of patients' sessions 2 and 3 tested the effect of reduced inflammation on our imaging marker of plasticity. The proportion of patients with gadolinium-enhancing lesions reduced significantly during IFN beta. In session 1, patients demonstrated a greater between-run difference in functional MRI activity of secondary visual areas and cerebellum than controls. This abnormally large practice-induced signal change in visual areas, and in functionally connected posterior parietal and motor cortices, was reduced in patients in session 3 compared with 2. Our results suggest that MS inflammation alters short-term plasticity underlying motor practice. Reduction of inflammation with IFN beta is associated with a restoration of this plasticity, suggesting that modulation of inflammation may enhance recovery-oriented strategies that rely on patients' brain plasticity. Hum Brain Mapp 37:2431-2445, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  10. Plasticity of the aging brain: new directions in cognitive neuroscience.

    PubMed

    Gutchess, Angela

    2014-10-31

    Cognitive neuroscience has revealed aging of the human brain to be rich in reorganization and change. Neuroimaging results have recast our framework around cognitive aging from one of decline to one emphasizing plasticity. Current methods use neurostimulation approaches to manipulate brain function, providing a direct test of the ways that the brain differently contributes to task performance for younger and older adults. Emerging research into emotional, social, and motivational domains provides some evidence for preservation with age, suggesting potential avenues of plasticity, alongside additional evidence for reorganization. Thus, we begin to see that aging of the brain, amidst interrelated behavioral and biological changes, is as complex and idiosyncratic as the brain itself, qualitatively changing over the life span. Copyright © 2014, American Association for the Advancement of Science.

  11. Using non-invasive brain stimulation to augment motor training-induced plasticity

    PubMed Central

    Bolognini, Nadia; Pascual-Leone, Alvaro; Fregni, Felipe

    2009-01-01

    Therapies for motor recovery after stroke or traumatic brain injury are still not satisfactory. To date the best approach seems to be the intensive physical therapy. However the results are limited and functional gains are often minimal. The goal of motor training is to minimize functional disability and optimize functional motor recovery. This is thought to be achieved by modulation of plastic changes in the brain. Therefore, adjunct interventions that can augment the response of the motor system to the behavioural training might be useful to enhance the therapy-induced recovery in neurological populations. In this context, noninvasive brain stimulation appears to be an interesting option as an add-on intervention to standard physical therapies. Two non-invasive methods of inducing electrical currents into the brain have proved to be promising for inducing long-lasting plastic changes in motor systems: transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS). These techniques represent powerful methods for priming cortical excitability for a subsequent motor task, demand, or stimulation. Thus, their mutual use can optimize the plastic changes induced by motor practice, leading to more remarkable and outlasting clinical gains in rehabilitation. In this review we discuss how these techniques can enhance the effects of a behavioural intervention and the clinical evidence to date. PMID:19292910

  12. Neural Plasticity in Multiple Sclerosis: The Functional and Molecular Background

    PubMed Central

    Glabinski, Andrzej

    2015-01-01

    Multiple sclerosis is an autoimmune neurodegenerative disorder resulting in motor dysfunction and cognitive decline. The inflammatory and neurodegenerative changes seen in the brains of MS patients lead to progressive disability and increasing brain atrophy. The most common type of MS is characterized by episodes of clinical exacerbations and remissions. This suggests the presence of compensating mechanisms for accumulating damage. Apart from the widely known repair mechanisms like remyelination, another important phenomenon is neuronal plasticity. Initially, neuroplasticity was connected with the developmental stages of life; however, there is now growing evidence confirming that structural and functional reorganization occurs throughout our lifetime. Several functional studies, utilizing such techniques as fMRI, TBS, or MRS, have provided valuable data about the presence of neuronal plasticity in MS patients. CNS ability to compensate for neuronal damage is most evident in RR-MS; however it has been shown that brain plasticity is also preserved in patients with substantial brain damage. Regardless of the numerous studies, the molecular background of neuronal plasticity in MS is still not well understood. Several factors, like IL-1β, BDNF, PDGF, or CB1Rs, have been implicated in functional recovery from the acute phase of MS and are thus considered as potential therapeutic targets. PMID:26229689

  13. Brain damage and behavioural disorders in fish induced by plastic nanoparticles delivered through the food chain.

    PubMed

    Mattsson, Karin; Johnson, Elyse V; Malmendal, Anders; Linse, Sara; Hansson, Lars-Anders; Cedervall, Tommy

    2017-09-13

    The tremendous increases in production of plastic materials has led to an accumulation of plastic pollution worldwide. Many studies have addressed the physical effects of large-sized plastics on organisms, whereas few have focused on plastic nanoparticles, despite their distinct chemical, physical and mechanical properties. Hence our understanding of their effects on ecosystem function, behaviour and metabolism of organisms remains elusive. Here we demonstrate that plastic nanoparticles reduce survival of aquatic zooplankton and penetrate the blood-to-brain barrier in fish and cause behavioural disorders. Hence, for the first time, we uncover direct interactions between plastic nanoparticles and brain tissue, which is the likely mechanism behind the observed behavioural disorders in the top consumer. In a broader perspective, our findings demonstrate that plastic nanoparticles are transferred up through a food chain, enter the brain of the top consumer and affect its behaviour, thereby severely disrupting the function of natural ecosystems.

  14. Microglia across the lifespan: from origin to function in brain development, plasticity and cognition

    PubMed Central

    Savage, Julie C.; Hui, Chin Wai; Bisht, Kanchan

    2016-01-01

    Abstract Microglia are the only immune cells that permanently reside in the central nervous system (CNS) alongside neurons and other types of glial cells. The past decade has witnessed a revolution in our understanding of their roles during normal physiological conditions. Cutting‐edge techniques revealed that these resident immune cells are critical for proper brain development, actively maintain health in the mature brain, and rapidly adapt their function to physiological or pathophysiological needs. In this review, we highlight recent studies on microglial origin (from the embryonic yolk sac) and the factors regulating their differentiation and homeostasis upon brain invasion. Elegant experiments tracking microglia in the CNS allowed studies of their unique roles compared with other types of resident macrophages. Here we review the emerging roles of microglia in brain development, plasticity and cognition, and discuss the implications of the depletion or dysfunction of microglia for our understanding of disease pathogenesis. Immune activation, inflammation and various other conditions resulting in undesirable microglial activity at different stages of life could severely impair learning, memory and other essential cognitive functions. The diversity of microglial phenotypes across the lifespan, between compartments of the CNS, and sexes, as well as their crosstalk with the body and external environment, is also emphasised. Understanding what defines particular microglial phenotypes is of major importance for future development of innovative therapies controlling their effector functions, with consequences for cognition across chronic stress, ageing, neuropsychiatric and neurological diseases. PMID:27104646

  15. Split My Brain: A Case Study of Seizure Disorder and Brain Function

    ERIC Educational Resources Information Center

    Omarzu, Julia

    2004-01-01

    This case involves a couple deciding whether or not their son should undergo brain surgery to treat a severe seizure disorder. In examining this dilemma, students apply knowledge of brain anatomy and function. They also learn about brain scanning techniques and discuss the plasticity of the brain.

  16. Formation and remodeling of the brain extracellular matrix in neural plasticity: Roles of chondroitin sulfate and hyaluronan.

    PubMed

    Miyata, Shinji; Kitagawa, Hiroshi

    2017-10-01

    The extracellular matrix (ECM) of the brain is rich in glycosaminoglycans such as chondroitin sulfate (CS) and hyaluronan. These glycosaminoglycans are organized into either diffuse or condensed ECM. Diffuse ECM is distributed throughout the brain and fills perisynaptic spaces, whereas condensed ECM selectively surrounds parvalbumin-expressing inhibitory neurons (PV cells) in mesh-like structures called perineuronal nets (PNNs). The brain ECM acts as a non-specific physical barrier that modulates neural plasticity and axon regeneration. Here, we review recent progress in understanding of the molecular basis of organization and remodeling of the brain ECM, and the involvement of several types of experience-dependent neural plasticity, with a particular focus on the mechanism that regulates PV cell function through specific interactions between CS chains and their binding partners. We also discuss how the barrier function of the brain ECM restricts dendritic spine dynamics and limits axon regeneration after injury. The brain ECM not only forms physical barriers that modulate neural plasticity and axon regeneration, but also forms molecular brakes that actively controls maturation of PV cells and synapse plasticity in which sulfation patterns of CS chains play a key role. Structural remodeling of the brain ECM modulates neural function during development and pathogenesis. Genetic or enzymatic manipulation of the brain ECM may restore neural plasticity and enhance recovery from nerve injury. This article is part of a Special Issue entitled Neuro-glycoscience, edited by Kenji Kadomatsu and Hiroshi Kitagawa. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Cortical Plasticity and Olfactory Function in Early Blindness

    PubMed Central

    Araneda, Rodrigo; Renier, Laurent A.; Rombaux, Philippe; Cuevas, Isabel; De Volder, Anne G.

    2016-01-01

    Over the last decade, functional brain imaging has provided insight to the maturation processes and has helped elucidate the pathophysiological mechanisms involved in brain plasticity in the absence of vision. In case of congenital blindness, drastic changes occur within the deafferented “visual” cortex that starts receiving and processing non visual inputs, including olfactory stimuli. This functional reorganization of the occipital cortex gives rise to compensatory perceptual and cognitive mechanisms that help blind persons achieve perceptual tasks, leading to superior olfactory abilities in these subjects. This view receives support from psychophysical testing, volumetric measurements and functional brain imaging studies in humans, which are presented here. PMID:27625596

  18. Modulating Hippocampal Plasticity with In Vivo Brain Stimulation

    PubMed Central

    Carhuatanta, Kim A.; McInturf, Shawn M.; Miklasevich, Molly K.; Jankord, Ryan

    2015-01-01

    Investigations into the use of transcranial direct current stimulation (tDCS) in relieving symptoms of neurological disorders and enhancing cognitive or motor performance have exhibited promising results. However, the mechanisms by which tDCS effects brain function remain under scrutiny. We have demonstrated that in vivo tDCS in rats produced a lasting effect on hippocampal synaptic plasticity, as measured using extracellular recordings. Ex vivo preparations of hippocampal slices from rats that have been subjected to tDCS of 0.10 or 0.25 mA for 30 min followed by 30 min of recovery time displayed a robust twofold enhancement in long-term potentiation (LTP) induction accompanied by a 30% increase in paired-pulse facilitation (PPF). The magnitude of the LTP effect was greater with 0.25 mA compared with 0.10 mA stimulations, suggesting a dose-dependent relationship between tDCS intensity and its effect on synaptic plasticity. To test the persistence of these observed effects, animals were stimulated in vivo for 30 min at 0.25 mA and then allowed to return to their home cage for 24 h. Observation of the enhanced LTP induction, but not the enhanced PPF, continued 24 h after completion of 0.25 mA of tDCS. Addition of the NMDA blocker AP-5 abolished LTP in both control and stimulated rats but maintained the PPF enhancement in stimulated rats. The observation of enhanced LTP and PPF after tDCS demonstrates that non-invasive electrical stimulation is capable of modifying synaptic plasticity. SIGNIFICANCE STATEMENT Researchers have used brain stimulation such as transcranial direct current stimulation on human subjects to alleviate symptoms of neurological disorders and enhance their performance. Here, using rats, we have investigated the potential mechanisms of how in vivo brain stimulation can produce such effect. We recorded directly on viable brain slices from rats after brain stimulation to detect lasting changes in pattern of neuronal activity. Our results showed that

  19. Augmentation-related brain plasticity

    PubMed Central

    Di Pino, Giovanni; Maravita, Angelo; Zollo, Loredana; Guglielmelli, Eugenio; Di Lazzaro, Vincenzo

    2014-01-01

    Today, the anthropomorphism of the tools and the development of neural interfaces require reconsidering the concept of human-tools interaction in the framework of human augmentation. This review analyses the plastic process that the brain undergoes when it comes into contact with augmenting artificial sensors and effectors and, on the other hand, the changes that the use of external augmenting devices produces in the brain. Hitherto, few studies investigated the neural correlates of augmentation, but clues on it can be borrowed from logically-related paradigms: sensorimotor training, cognitive enhancement, cross-modal plasticity, sensorimotor functional substitution, use and embodiment of tools. Augmentation modifies function and structure of a number of areas, i.e., primary sensory cortices shape their receptive fields to become sensitive to novel inputs. Motor areas adapt the neuroprosthesis representation firing-rate to refine kinematics. As for normal motor outputs, the learning process recruits motor and premotor cortices and the acquisition of proficiency decreases attentional recruitment, focuses the activity on sensorimotor areas and increases the basal ganglia drive on the cortex. Augmentation deeply relies on the frontoparietal network. In particular, premotor cortex is involved in learning the control of an external effector and owns the tool motor representation, while the intraparietal sulcus extracts its visual features. In these areas, multisensory integration neurons enlarge their receptive fields to embody supernumerary limbs. For operating an anthropomorphic neuroprosthesis, the mirror system is required to understand the meaning of the action, the cerebellum for the formation of its internal model and the insula for its interoception. In conclusion, anthropomorphic sensorized devices can provide the critical sensory afferences to evolve the exploitation of tools through their embodiment, reshaping the body representation and the sense of the self

  20. Removing brakes on adult brain plasticity: from molecular to behavioral interventions

    PubMed Central

    Bavelier, D.; Levi, D.M.; Li, R.W.; Dan, Y.; Hensch, T.K.

    2010-01-01

    Adult brain plasticity, although possible, remains more restricted in scope than during development. Here, we address conditions under which circuit rewiring may be facilitated in the mature brain. At a cellular and molecular level, adult plasticity is actively limited. Some of these “brakes” are structural, such as peri-neuronal nets or myelin, which inhibit neurite outgrowth. Others are functional, acting directly upon excitatory-inhibitory balance within local circuits. Plasticity in adulthood can be induced either by lifting these brakes through invasive interventions or by exploiting endogenous permissive factors, such as neuromodulators. Using the amblyopic visual system as a model, we discuss genetic, pharmacological, and environmental removal of brakes to enable recovery of vision in adult rodents. Although these mechanisms remain largely uncharted in the human, we consider how they may provide a biological foundation for the remarkable increase in plasticity after action video game play by amblyopic subjects. PMID:21068299

  1. Brain plasticity, memory, and aging: a discussion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennett, E.L.; Rosenzweig, M.R.

    1977-12-01

    It is generally assumed that memory faculties decline with age. A discussion of the relationship of memory and aging and the possibility of retarding the potential decline is hampered by the fact that no satisfactory explanation of memory is available in either molecular or anatomical terms. However, this lack of description of memory does not mean that there is a lack of suggested mechanisms for long-term memory storage. Present theories of memory usually include first, neurophysiological or electrical events, followed by a series of chemical events which ultimately lead to long-lasting anatomical changes in the brain. Evidence is increasing formore » the biochemical and anatomical plasticity of the nervous system and its importance in the normal functioning of the brain. Modification of this plasticity may be an important factor in senescence. This discussion reports experiments which indicate that protein synthesis and anatomical changes may be involved in long-term memory storage. Environmental influences can produce quantitative differences in brain anatomy and in behavior. In experimental animals, enriched environments lead to more complex anatomical patterns than do colony or impoverished environments. This raises fundamental questions about the adequacy of the isolated animal which is frequently being used as a model for aging research. A more important applied question is the role of social and intellectual stimulation in influencing aging of the human brain.« less

  2. Narrative Skill in Children with Early Unilateral Brain Injury: A Possible Limit to Functional Plasticity

    ERIC Educational Resources Information Center

    Demir, Ozlem Ece; Levine, Susan C.; Goldin-Meadow, Susan

    2010-01-01

    Children with pre- or perinatal brain injury (PL) exhibit marked plasticity for language learning. Previous work has focused mostly on the emergence of earlier-developing skills, such as vocabulary and syntax. Here we ask whether this plasticity for earlier-developing aspects of language extends to more complex, later-developing language functions…

  3. iPlasticity: induced juvenile-like plasticity in the adult brain as a mechanism of antidepressants.

    PubMed

    Umemori, Juzoh; Winkel, Frederike; Didio, Giuliano; Llach Pou, Maria; Castrén, Eero

    2018-05-26

    The network hypothesis of depression proposes that mood disorders reflect problems in information processing within particular neural networks. Antidepressants, including selective serotonin reuptake inhibitors (SSRIs), function by gradually improving information processing within these networks. Antidepressants have been shown to induce a state of juvenile-like plasticity comparable to that observed during developmental critical periods: such critical-period-like plasticity allows brain networks to better adapt to extrinsic and intrinsic signals. We have coined this drug-induced state of juvenile-like plasticity iPlasticity. A combination of iPlasticity induced by chronic SSRI treatment together with training, rehabilitation, or psychotherapy improves symptoms of neuropsychiatric disorders and issues underlying the developmentally- or genetically-malfunctioning networks. We have proposed that iPlasticity might be a critical component of antidepressant action. We have demonstrated that iPlasticity occurs in the visual cortex, fear erasure network, extinction of aggression caused by social isolation, and spatial reversal memory in rodent models. Chronic SSRI treatment is known to promote neurogenesis and to cause dematuration of granule cells in the dentate gyrus and of interneurons, especially parvalbumin interneurons enwrapped by perineuronal nets in the prefrontal cortex, visual cortex, and amygdala. Brain-derived neurotrophic factor (BDNF), via its receptor Tropomyosin kinase receptor B (TrkB), is involved in processes of the synaptic plasticity, including neurogenesis, neuronal differentiation, weight of synapses, and gene regulation of synaptic formation. BDNF can be activated by both chronic SSRI treatment and neuronal activity. Accordingly, the BDNF/TrkB pathway is critical for iPlasticity, but further analyses will be needed to provide mechanical insight into the processes of iPlasticity. This article is protected by copyright. All rights reserved. This

  4. Neuropeptide Signaling Networks and Brain Circuit Plasticity.

    PubMed

    McClard, Cynthia K; Arenkiel, Benjamin R

    2018-01-01

    The brain is a remarkable network of circuits dedicated to sensory integration, perception, and response. The computational power of the brain is estimated to dwarf that of most modern supercomputers, but perhaps its most fascinating capability is to structurally refine itself in response to experience. In the language of computers, the brain is loaded with programs that encode when and how to alter its own hardware. This programmed "plasticity" is a critical mechanism by which the brain shapes behavior to adapt to changing environments. The expansive array of molecular commands that help execute this programming is beginning to emerge. Notably, several neuropeptide transmitters, previously best characterized for their roles in hypothalamic endocrine regulation, have increasingly been recognized for mediating activity-dependent refinement of local brain circuits. Here, we discuss recent discoveries that reveal how local signaling by corticotropin-releasing hormone reshapes mouse olfactory bulb circuits in response to activity and further explore how other local neuropeptide networks may function toward similar ends.

  5. Plasticity in the Developing Brain: Implications for Rehabilitation

    ERIC Educational Resources Information Center

    Johnston, Michael V.

    2009-01-01

    Neuronal plasticity allows the central nervous system to learn skills and remember information, to reorganize neuronal networks in response to environmental stimulation, and to recover from brain and spinal cord injuries. Neuronal plasticity is enhanced in the developing brain and it is usually adaptive and beneficial but can also be maladaptive…

  6. Modulating Hippocampal Plasticity with In Vivo Brain Stimulation.

    PubMed

    Rohan, Joyce G; Carhuatanta, Kim A; McInturf, Shawn M; Miklasevich, Molly K; Jankord, Ryan

    2015-09-16

    Investigations into the use of transcranial direct current stimulation (tDCS) in relieving symptoms of neurological disorders and enhancing cognitive or motor performance have exhibited promising results. However, the mechanisms by which tDCS effects brain function remain under scrutiny. We have demonstrated that in vivo tDCS in rats produced a lasting effect on hippocampal synaptic plasticity, as measured using extracellular recordings. Ex vivo preparations of hippocampal slices from rats that have been subjected to tDCS of 0.10 or 0.25 mA for 30 min followed by 30 min of recovery time displayed a robust twofold enhancement in long-term potentiation (LTP) induction accompanied by a 30% increase in paired-pulse facilitation (PPF). The magnitude of the LTP effect was greater with 0.25 mA compared with 0.10 mA stimulations, suggesting a dose-dependent relationship between tDCS intensity and its effect on synaptic plasticity. To test the persistence of these observed effects, animals were stimulated in vivo for 30 min at 0.25 mA and then allowed to return to their home cage for 24 h. Observation of the enhanced LTP induction, but not the enhanced PPF, continued 24 h after completion of 0.25 mA of tDCS. Addition of the NMDA blocker AP-5 abolished LTP in both control and stimulated rats but maintained the PPF enhancement in stimulated rats. The observation of enhanced LTP and PPF after tDCS demonstrates that non-invasive electrical stimulation is capable of modifying synaptic plasticity. Researchers have used brain stimulation such as transcranial direct current stimulation on human subjects to alleviate symptoms of neurological disorders and enhance their performance. Here, using rats, we have investigated the potential mechanisms of how in vivo brain stimulation can produce such effect. We recorded directly on viable brain slices from rats after brain stimulation to detect lasting changes in pattern of neuronal activity. Our results showed that 30 min of brain

  7. Neural stem cells and neuro/gliogenesis in the central nervous system: understanding the structural and functional plasticity of the developing, mature, and diseased brain.

    PubMed

    Yamaguchi, Masahiro; Seki, Tatsunori; Imayoshi, Itaru; Tamamaki, Nobuaki; Hayashi, Yoshitaka; Tatebayashi, Yoshitaka; Hitoshi, Seiji

    2016-05-01

    Neurons and glia in the central nervous system (CNS) originate from neural stem cells (NSCs). Knowledge of the mechanisms of neuro/gliogenesis from NSCs is fundamental to our understanding of how complex brain architecture and function develop. NSCs are present not only in the developing brain but also in the mature brain in adults. Adult neurogenesis likely provides remarkable plasticity to the mature brain. In addition, recent progress in basic research in mental disorders suggests an etiological link with impaired neuro/gliogenesis in particular brain regions. Here, we review the recent progress and discuss future directions in stem cell and neuro/gliogenesis biology by introducing several topics presented at a joint meeting of the Japanese Association of Anatomists and the Physiological Society of Japan in 2015. Collectively, these topics indicated that neuro/gliogenesis from NSCs is a common event occurring in many brain regions at various ages in animals. Given that significant structural and functional changes in cells and neural networks are accompanied by neuro/gliogenesis from NSCs and the integration of newly generated cells into the network, stem cell and neuro/gliogenesis biology provides a good platform from which to develop an integrated understanding of the structural and functional plasticity that underlies the development of the CNS, its remodeling in adulthood, and the recovery from diseases that affect it.

  8. Using the virtual brain to reveal the role of oscillations and plasticity in shaping brain's dynamical landscape.

    PubMed

    Roy, Dipanjan; Sigala, Rodrigo; Breakspear, Michael; McIntosh, Anthony Randal; Jirsa, Viktor K; Deco, Gustavo; Ritter, Petra

    2014-12-01

    Spontaneous brain activity, that is, activity in the absence of controlled stimulus input or an explicit active task, is topologically organized in multiple functional networks (FNs) maintaining a high degree of coherence. These "resting state networks" are constrained by the underlying anatomical connectivity between brain areas. They are also influenced by the history of task-related activation. The precise rules that link plastic changes and ongoing dynamics of resting-state functional connectivity (rs-FC) remain unclear. Using the framework of the open source neuroinformatics platform "The Virtual Brain," we identify potential computational mechanisms that alter the dynamical landscape, leading to reconfigurations of FNs. Using a spiking neuron model, we first demonstrate that network activity in the absence of plasticity is characterized by irregular oscillations between low-amplitude asynchronous states and high-amplitude synchronous states. We then demonstrate the capability of spike-timing-dependent plasticity (STDP) combined with intrinsic alpha (8-12 Hz) oscillations to efficiently influence learning. Further, we show how alpha-state-dependent STDP alters the local area dynamics from an irregular to a highly periodic alpha-like state. This is an important finding, as the cortical input from the thalamus is at the rate of alpha. We demonstrate how resulting rhythmic cortical output in this frequency range acts as a neuronal tuner and, hence, leads to synchronization or de-synchronization between brain areas. Finally, we demonstrate that locally restricted structural connectivity changes influence local as well as global dynamics and lead to altered rs-FC.

  9. Narrative Skill in Children with Early Unilateral Brain Injury: A Possible Limit to Functional Plasticity

    PubMed Central

    Demir, Özlem Ece; Levine, Susan C.; Goldin-Meadow, Susan

    2009-01-01

    Children with pre- or perinatal brain injury (PL) exhibit marked plasticity for language learning. Previous work mostly focused on the emergence of earlier developing skills, such as vocabulary and syntax. Here we ask whether this plasticity for earlier developing aspects of language extends to more complex, later-developing language functions by examining the narrative production of children with PL. Using an elicitation technique that involves asking children to create stories de novo in response to a story stem, we collected narratives from 11 children with PL and 20 typically-developing (TD) children. Narratives were analyzed for length, diversity of the vocabulary used, use of complex syntax, complexity of the macro-level narrative structure and use of narrative evaluation. Children’s language performance on vocabulary and syntax tasks outside of the narrative context was also measured. Findings show that children with PL produced shorter stories, used less diverse vocabulary, produced structurally less complex stories at the macro-level, and made fewer inferences regarding the cognitive states of the story characters. These differences in the narrative task emerged even though children with PL did not differ from TD children on vocabulary and syntax tasks outside of the narrative context. Thus, findings suggest that there may be limitations to the plasticity for language functions displayed by children with PL, and that these limitations may be most apparent in complex, decontextualized language tasks such as narrative production. PMID:20590727

  10. Brain-machine interfaces can accelerate clarification of the principal mysteries and real plasticity of the brain.

    PubMed

    Sakurai, Yoshio

    2014-01-01

    This perspective emphasizes that the brain-machine interface (BMI) research has the potential to clarify major mysteries of the brain and that such clarification of the mysteries by neuroscience is needed to develop BMIs. I enumerate five principal mysteries. The first is "how is information encoded in the brain?" This is the fundamental question for understanding what our minds are and is related to the verification of Hebb's cell assembly theory. The second is "how is information distributed in the brain?" This is also a reconsideration of the functional localization of the brain. The third is "what is the function of the ongoing activity of the brain?" This is the problem of how the brain is active during no-task periods and what meaning such spontaneous activity has. The fourth is "how does the bodily behavior affect the brain function?" This is the problem of brain-body interaction, and obtaining a new "body" by a BMI leads to a possibility of changes in the owner's brain. The last is "to what extent can the brain induce plasticity?" Most BMIs require changes in the brain's neuronal activity to realize higher performance, and the neuronal operant conditioning inherent in the BMIs further enhances changes in the activity.

  11. Plasticity of Nonneuronal Brain Tissue: Roles in Developmental Disorders

    ERIC Educational Resources Information Center

    Dong, Willie K.; Greenough, William T.

    2004-01-01

    Neuronal and nonneuronal plasticity are both affected by environmental and experiential factors. Remodeling of existing neurons induced by such factors has been observed throughout the brain, and includes alterations in dendritic field dimensions, synaptogenesis, and synaptic morphology. The brain loci affected by these plastic neuronal changes…

  12. Bridging animal and human models of exercise-induced brain plasticity

    PubMed Central

    Voss, Michelle W.; Vivar, Carmen; Kramer, Arthur F.; van Praag, Henriette

    2015-01-01

    Significant progress has been made in understanding the neurobiological mechanisms through which exercise protects and restores the brain. In this feature review, we integrate animal and human research, examining physical activity effects across multiple levels of description (neurons up to inter-regional pathways). We evaluate the influence of exercise on hippocampal structure and function, addressing common themes such as spatial memory and pattern separation, brain structure and plasticity, neurotrophic factors, and vasculature. Areas of research focused more within species, such as hippocampal neurogenesis in rodents, also provide crucial insight into the protective role of physical activity. Overall, converging evidence suggests exercise benefits brain function and cognition across the mammalian lifespan, which may translate into reduced risk for Alzheimer’s disease (AD) in humans. PMID:24029446

  13. Low-frequency transcranial magnetic stimulation is beneficial for enhancing synaptic plasticity in the aging brain.

    PubMed

    Zhang, Zhan-Chi; Luan, Feng; Xie, Chun-Yan; Geng, Dan-Dan; Wang, Yan-Yong; Ma, Jun

    2015-06-01

    In the aging brain, cognitive function gradually declines and causes a progressive reduction in the structural and functional plasticity of the hippocampus. Transcranial magnetic stimulation is an emerging and novel neurological and psychiatric tool used to investigate the neurobiology of cognitive function. Recent studies have demonstrated that low-frequency transcranial magnetic stimulation (≤1 Hz) ameliorates synaptic plasticity and spatial cognitive deficits in learning-impaired mice. However, the mechanisms by which this treatment improves these deficits during normal aging are still unknown. Therefore, the current study investigated the effects of transcranial magnetic stimulation on the brain-derived neurotrophic factor signal pathway, synaptic protein markers, and spatial memory behavior in the hippocampus of normal aged mice. The study also investigated the downstream regulator, Fyn kinase, and the downstream effectors, synaptophysin and growth-associated protein 43 (both synaptic markers), to determine the possible mechanisms by which transcranial magnetic stimulation regulates cognitive capacity. Transcranial magnetic stimulation with low intensity (110% average resting motor threshold intensity, 1 Hz) increased mRNA and protein levels of brain-derived neurotrophic factor, tropomyosin receptor kinase B, and Fyn in the hippocampus of aged mice. The treatment also upregulated the mRNA and protein expression of synaptophysin and growth-associated protein 43 in the hippocampus of these mice. In conclusion, brain-derived neurotrophic factor signaling may play an important role in sustaining and regulating structural synaptic plasticity induced by transcranial magnetic stimulation in the hippocampus of aging mice, and Fyn may be critical during this regulation. These responses may change the structural plasticity of the aging hippocampus, thereby improving cognitive function.

  14. The maternal brain and its plasticity in humans

    PubMed Central

    Kim, Pilyoung; Strathearn, Lane; Swain, James E.

    2015-01-01

    Early mother-infant relationships play important roles in infants’ optimal development. New mothers undergo neurobiological changes that support developing mother-infant relationships regardless of great individual differences in those relationships. In this article, we review the neural plasticity in human mothers’ brains based on functional magnetic resonance imaging (fMRI) studies. First, we review the neural circuits that are involved in establishing and maintaining mother-infant relationships. Second, we discuss early postpartum factors (e.g., birth and feeding methods, hormones, and parental sensitivity) that are associated with individual differences in maternal brain neuroplasticity. Third, we discuss abnormal changes in the maternal brain related to psychopathology (i.e., postpartum depression, posttraumatic stress disorder, substance abuse) and potential brain remodeling associated with interventions. Last, we highlight potentially important future research directions to better understand normative changes in the maternal brain and risks for abnormal changes that may disrupt early mother-infant relationships. PMID:26268151

  15. Changes of the directional brain networks related with brain plasticity in patients with long-term unilateral sensorineural hearing loss.

    PubMed

    Zhang, G-Y; Yang, M; Liu, B; Huang, Z-C; Li, J; Chen, J-Y; Chen, H; Zhang, P-P; Liu, L-J; Wang, J; Teng, G-J

    2016-01-28

    Previous studies often report that early auditory deprivation or congenital deafness contributes to cross-modal reorganization in the auditory-deprived cortex, and this cross-modal reorganization limits clinical benefit from cochlear prosthetics. However, there are inconsistencies among study results on cortical reorganization in those subjects with long-term unilateral sensorineural hearing loss (USNHL). It is also unclear whether there exists a similar cross-modal plasticity of the auditory cortex for acquired monaural deafness and early or congenital deafness. To address this issue, we constructed the directional brain functional networks based on entropy connectivity of resting-state functional MRI and researched changes of the networks. Thirty-four long-term USNHL individuals and seventeen normally hearing individuals participated in the test, and all USNHL patients had acquired deafness. We found that certain brain regions of the sensorimotor and visual networks presented enhanced synchronous output entropy connectivity with the left primary auditory cortex in the left long-term USNHL individuals as compared with normally hearing individuals. Especially, the left USNHL showed more significant changes of entropy connectivity than the right USNHL. No significant plastic changes were observed in the right USNHL. Our results indicate that the left primary auditory cortex (non-auditory-deprived cortex) in patients with left USNHL has been reorganized by visual and sensorimotor modalities through cross-modal plasticity. Furthermore, the cross-modal reorganization also alters the directional brain functional networks. The auditory deprivation from the left or right side generates different influences on the human brain. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  16. A voxelwise approach to determine consensus regions-of-interest for the study of brain network plasticity.

    PubMed

    Rajtmajer, Sarah M; Roy, Arnab; Albert, Reka; Molenaar, Peter C M; Hillary, Frank G

    2015-01-01

    Despite exciting advances in the functional imaging of the brain, it remains a challenge to define regions of interest (ROIs) that do not require investigator supervision and permit examination of change in networks over time (or plasticity). Plasticity is most readily examined by maintaining ROIs constant via seed-based and anatomical-atlas based techniques, but these approaches are not data-driven, requiring definition based on prior experience (e.g., choice of seed-region, anatomical landmarks). These approaches are limiting especially when functional connectivity may evolve over time in areas that are finer than known anatomical landmarks or in areas outside predetermined seeded regions. An ideal method would permit investigators to study network plasticity due to learning, maturation effects, or clinical recovery via multiple time point data that can be compared to one another in the same ROI while also preserving the voxel-level data in those ROIs at each time point. Data-driven approaches (e.g., whole-brain voxelwise approaches) ameliorate concerns regarding investigator bias, but the fundamental problem of comparing the results between distinct data sets remains. In this paper we propose an approach, aggregate-initialized label propagation (AILP), which allows for data at separate time points to be compared for examining developmental processes resulting in network change (plasticity). To do so, we use a whole-brain modularity approach to parcellate the brain into anatomically constrained functional modules at separate time points and then apply the AILP algorithm to form a consensus set of ROIs for examining change over time. To demonstrate its utility, we make use of a known dataset of individuals with traumatic brain injury sampled at two time points during the first year of recovery and show how the AILP procedure can be applied to select regions of interest to be used in a graph theoretical analysis of plasticity.

  17. Plasticity of Hippocampal Excitatory-Inhibitory Balance: Missing the Synaptic Control in the Epileptic Brain.

    PubMed

    Bonansco, Christian; Fuenzalida, Marco

    2016-01-01

    Synaptic plasticity is the capacity generated by experience to modify the neural function and, thereby, adapt our behaviour. Long-term plasticity of glutamatergic and GABAergic transmission occurs in a concerted manner, finely adjusting the excitatory-inhibitory (E/I) balance. Imbalances of E/I function are related to several neurological diseases including epilepsy. Several evidences have demonstrated that astrocytes are able to control the synaptic plasticity, with astrocytes being active partners in synaptic physiology and E/I balance. Here, we revise molecular evidences showing the epileptic stage as an abnormal form of long-term brain plasticity and propose the possible participation of astrocytes to the abnormal increase of glutamatergic and decrease of GABAergic neurotransmission in epileptic networks.

  18. Plasticity of Hippocampal Excitatory-Inhibitory Balance: Missing the Synaptic Control in the Epileptic Brain

    PubMed Central

    Bonansco, Christian; Fuenzalida, Marco

    2016-01-01

    Synaptic plasticity is the capacity generated by experience to modify the neural function and, thereby, adapt our behaviour. Long-term plasticity of glutamatergic and GABAergic transmission occurs in a concerted manner, finely adjusting the excitatory-inhibitory (E/I) balance. Imbalances of E/I function are related to several neurological diseases including epilepsy. Several evidences have demonstrated that astrocytes are able to control the synaptic plasticity, with astrocytes being active partners in synaptic physiology and E/I balance. Here, we revise molecular evidences showing the epileptic stage as an abnormal form of long-term brain plasticity and propose the possible participation of astrocytes to the abnormal increase of glutamatergic and decrease of GABAergic neurotransmission in epileptic networks. PMID:27006834

  19. Brain-machine interfaces can accelerate clarification of the principal mysteries and real plasticity of the brain

    PubMed Central

    Sakurai, Yoshio

    2014-01-01

    This perspective emphasizes that the brain-machine interface (BMI) research has the potential to clarify major mysteries of the brain and that such clarification of the mysteries by neuroscience is needed to develop BMIs. I enumerate five principal mysteries. The first is “how is information encoded in the brain?” This is the fundamental question for understanding what our minds are and is related to the verification of Hebb’s cell assembly theory. The second is “how is information distributed in the brain?” This is also a reconsideration of the functional localization of the brain. The third is “what is the function of the ongoing activity of the brain?” This is the problem of how the brain is active during no-task periods and what meaning such spontaneous activity has. The fourth is “how does the bodily behavior affect the brain function?” This is the problem of brain-body interaction, and obtaining a new “body” by a BMI leads to a possibility of changes in the owner’s brain. The last is “to what extent can the brain induce plasticity?” Most BMIs require changes in the brain’s neuronal activity to realize higher performance, and the neuronal operant conditioning inherent in the BMIs further enhances changes in the activity. PMID:24904323

  20. Plasticity during Early Brain Development Is Determined by Ontogenetic Potential.

    PubMed

    Krägeloh-Mann, Ingeborg; Lidzba, Karen; Pavlova, Marina A; Wilke, Marko; Staudt, Martin

    2017-04-01

    Two competing hypotheses address neuroplasticity during early brain development: the "Kennard principle" describes the compensatory capacities of the immature developing CNS as superior to those of the adult brain, whereas the "Hebb principle" argues that the young brain is especially sensitive to insults. We provide evidence that these principles are not mutually exclusive. Following early brain lesions that are unilateral, the brain can refer to homotopic areas of the healthy hemisphere. This potential for reorganization is unique to the young brain but available only when, during ontogenesis of brain development, these areas have been used for the functions addressed. With respect to motor function, ipsilateral motor tracts can be recruited, which are only available during early brain development. Language can be reorganized to the right after early left hemispheric lesions, as the representation of the language network is initially bilateral. However, even in these situations, compensatory capacities of the developing brain are found to have limitations, probably defined by early determinants. Thus, plasticity and adaptivity are seen only within ontogenetic potential; that is, axonal or cortical structures cannot be recruited beyond early developmental possibilities. The young brain is probably more sensitive and vulnerable to lesions when these are bilateral. This is shown here for bilateral periventricular white matter lesions that clearly have an impact on cortical architecture and function, thus probably interfering with early network building. Georg Thieme Verlag KG Stuttgart · New York.

  1. Factors Influencing Cerebral Plasticity in the Normal and Injured Brain

    PubMed Central

    Kolb, Bryan; Teskey, G. Campbell; Gibb, Robbin

    2010-01-01

    An important development in behavioral neuroscience in the past 20 years has been the demonstration that it is possible to stimulate functional recovery after cerebral injury in laboratory animals. Rodent models of cerebral injury provide an important tool for developing such rehabilitation programs. The models include analysis at different levels including detailed behavioral paradigms, electrophysiology, neuronal morphology, protein chemistry, and epigenetics. A significant challenge for the next 20 years will be the translation of this work to improve the outcome from brain injury and disease in humans. Our goal in the article will be to synthesize the multidisciplinary laboratory work on brain plasticity and behavior in the injured brain to inform the development of rehabilitation programs. PMID:21120136

  2. Measuring and Inducing Brain Plasticity in Chronic Aphasia

    ERIC Educational Resources Information Center

    Fridriksson, Julius

    2011-01-01

    Brain plasticity associated with anomia recovery in aphasia is poorly understood. Here, I review four recent studies from my lab that focused on brain modulation associated with long-term anomia outcome, its behavioral treatment, and the use of transcranial brain stimulation to enhance anomia treatment success in individuals with chronic aphasia…

  3. Oxytocin and Maternal Brain Plasticity

    ERIC Educational Resources Information Center

    Kim, Sohye; Strathearn, Lane

    2016-01-01

    Although dramatic postnatal changes in maternal behavior have long been noted, we are only now beginning to understand the neurobiological mechanisms that support this transition. The present paper synthesizes growing insights from both animal and human research to provide an overview of the plasticity of the mother's brain, with a particular…

  4. Neural Plasticity and Neurorehabilitation Following Traumatic Brain Injury

    DTIC Science & Technology

    2010-10-01

    for sectioning and staining . To date, the brains have been sectioned and one set stained for Nissl . Using the Nissl stained sections, Dorothy...all behavioral data. • Brains have been harvested and sent to Dr. Jones’ lab • Dr. Jones’ lab has sliced the brains and stained one set with Nissl ...remaining sets of brain sections are currently being stained with markers of plasticity using immunohistochemistry. We have completed immunohistochemical

  5. Sleep, Plasticity and Memory from Molecules to Whole-Brain Networks

    PubMed Central

    Abel, Ted; Havekes, Robbert; Saletin, Jared M.; Walker, Matthew P.

    2014-01-01

    Despite the ubiquity of sleep across phylogeny, its function remains elusive. In this review, we consider one compelling candidate: brain plasticity associated with memory processing. Focusing largely on hippocampus-dependent memory in rodents and humans, we describe molecular, cellular, network, whole-brain and behavioral evidence establishing a role for sleep both in preparation for initial memory encoding, and in the subsequent offline consolidation ofmemory. Sleep and sleep deprivation bidirectionally alter molecular signaling pathways that regulate synaptic strength and control plasticity-related gene transcription and protein translation. At the cellular level, sleep deprivation impairs cellular excitability necessary for inducing synaptic potentiation and accelerates the decay of long-lasting forms of synaptic plasticity. In contrast, NREM and REM sleep enhance previously induced synaptic potentiation, although synaptic de-potentiation during sleep has also been observed. Beyond single cell dynamics, large-scale cell ensembles express coordinated replay of prior learning-related firing patterns during subsequent sleep. This occurs in the hippocampus, in the cortex, and between the hippocampus and cortex, commonly in association with specific NREM sleep oscillations. At the whole-brain level, somewhat analogous learning-associated hippocampal (re)activation during NREM sleep has been reported in humans. Moreover, the same cortical NREM oscillations associated with replay in rodents also promote human hippocampal memory consolidation, and this process can be manipulated using exogenous reactivation cues during sleep. Mirroring molecular findings in rodents, specific NREM sleep oscillations before encoding refresh human hippocampal learning capacity, while deprivation of sleep conversely impairs subsequent hippocampal activity and associated encoding. Together, these cross-descriptive level findings demonstrate that the unique neurobiology of sleep exert

  6. Simultaneous Brain-Cervical Cord fMRI Reveals Intrinsic Spinal Cord Plasticity during Motor Sequence Learning.

    PubMed

    Vahdat, Shahabeddin; Lungu, Ovidiu; Cohen-Adad, Julien; Marchand-Pauvert, Veronique; Benali, Habib; Doyon, Julien

    2015-06-01

    The spinal cord participates in the execution of skilled movements by translating high-level cerebral motor representations into musculotopic commands. Yet, the extent to which motor skill acquisition relies on intrinsic spinal cord processes remains unknown. To date, attempts to address this question were limited by difficulties in separating spinal local effects from supraspinal influences through traditional electrophysiological and neuroimaging methods. Here, for the first time, we provide evidence for local learning-induced plasticity in intact human spinal cord through simultaneous functional magnetic resonance imaging of the brain and spinal cord during motor sequence learning. Specifically, we show learning-related modulation of activity in the C6-C8 spinal region, which is independent from that of related supraspinal sensorimotor structures. Moreover, a brain-spinal cord functional connectivity analysis demonstrates that the initial linear relationship between the spinal cord and sensorimotor cortex gradually fades away over the course of motor sequence learning, while the connectivity between spinal activity and cerebellum gains strength. These data suggest that the spinal cord not only constitutes an active functional component of the human motor learning network but also contributes distinctively from the brain to the learning process. The present findings open new avenues for rehabilitation of patients with spinal cord injuries, as they demonstrate that this part of the central nervous system is much more plastic than assumed before. Yet, the neurophysiological mechanisms underlying this intrinsic functional plasticity in the spinal cord warrant further investigations.

  7. Learning-dependent plasticity with and without training in the human brain.

    PubMed

    Zhang, Jiaxiang; Kourtzi, Zoe

    2010-07-27

    Long-term experience through development and evolution and shorter-term training in adulthood have both been suggested to contribute to the optimization of visual functions that mediate our ability to interpret complex scenes. However, the brain plasticity mechanisms that mediate the detection of objects in cluttered scenes remain largely unknown. Here, we combine behavioral and functional MRI (fMRI) measurements to investigate the human-brain mechanisms that mediate our ability to learn statistical regularities and detect targets in clutter. We show two different routes to visual learning in clutter with discrete brain plasticity signatures. Specifically, opportunistic learning of regularities typical in natural contours (i.e., collinearity) can occur simply through frequent exposure, generalize across untrained stimulus features, and shape processing in occipitotemporal regions implicated in the representation of global forms. In contrast, learning to integrate discontinuities (i.e., elements orthogonal to contour paths) requires task-specific training (bootstrap-based learning), is stimulus-dependent, and enhances processing in intraparietal regions implicated in attention-gated learning. We propose that long-term experience with statistical regularities may facilitate opportunistic learning of collinear contours, whereas learning to integrate discontinuities entails bootstrap-based training for the detection of contours in clutter. These findings provide insights in understanding how long-term experience and short-term training interact to shape the optimization of visual recognition processes.

  8. Training the Brain: Practical Applications of Neural Plasticity From the Intersection of Cognitive Neuroscience, Developmental Psychology, and Prevention Science

    PubMed Central

    Bryck, Richard L.; Fisher, Philip A.

    2012-01-01

    Prior researchers have shown that the brain has a remarkable ability for adapting to environmental changes. The positive effects of such neural plasticity include enhanced functioning in specific cognitive domains and shifts in cortical representation following naturally occurring cases of sensory deprivation; however, maladaptive changes in brain function and development owing to early developmental adversity and stress have also been well documented. Researchers examining enriched rearing environments in animals have revealed the potential for inducing positive brain plasticity effects and have helped to popularize methods for training the brain to reverse early brain deficits or to boost normal cognitive functioning. In this paper, two classes of empirically based methods of brain training in children are reviewed and critiqued: laboratory-based, mental process training paradigms and ecological interventions based upon neurocognitive conceptual models. Given the susceptibility of executive function disruption, special attention is paid to training programs that emphasize executive function enhancement. In addition, a third approach to brain training, aimed at tapping into compensatory processes, is postulated. Study results showing the effectiveness of this strategy in the field of neurorehabilitation and in terms of naturally occurring compensatory processing in human aging lend credence to the potential of this approach. PMID:21787037

  9. Training the brain: practical applications of neural plasticity from the intersection of cognitive neuroscience, developmental psychology, and prevention science.

    PubMed

    Bryck, Richard L; Fisher, Philip A

    2012-01-01

    Prior researchers have shown that the brain has a remarkable ability for adapting to environmental changes. The positive effects of such neural plasticity include enhanced functioning in specific cognitive domains and shifts in cortical representation following naturally occurring cases of sensory deprivation; however, maladaptive changes in brain function and development owing to early developmental adversity and stress have also been well documented. Researchers examining enriched rearing environments in animals have revealed the potential for inducing positive brain plasticity effects and have helped to popularize methods for training the brain to reverse early brain deficits or to boost normal cognitive functioning. In this article, two classes of empirically based methods of brain training in children are reviewed and critiqued: laboratory-based, mental process training paradigms and ecological interventions based upon neurocognitive conceptual models. Given the susceptibility of executive function disruption, special attention is paid to training programs that emphasize executive function enhancement. In addition, a third approach to brain training, aimed at tapping into compensatory processes, is postulated. Study results showing the effectiveness of this strategy in the field of neurorehabilitation and in terms of naturally occurring compensatory processing in human aging lend credence to the potential of this approach. (PsycINFO Database Record (c) 2012 APA, all rights reserved).

  10. Hearing colors: an example of brain plasticity

    PubMed Central

    Alfaro, Arantxa; Bernabeu, Ángela; Agulló, Carlos; Parra, Jaime; Fernández, Eduardo

    2015-01-01

    Sensory substitution devices (SSDs) are providing new ways for improving or replacing sensory abilities that have been lost due to disease or injury, and at the same time offer unprecedented opportunities to address how the nervous system could lead to an augmentation of its capacities. In this work we have evaluated a color-blind subject using a new visual-to-auditory SSD device called “Eyeborg”, that allows colors to be perceived as sounds. We used a combination of neuroimaging techniques including Functional Magnetic Resonance Imaging (fMRI), Diffusion Tensor Imaging (DTI) and proton Magnetic Resonance Spectroscopy (1H-MRS) to study potential brain plasticity in this subject. Our results suggest that after 8 years of continuous use of this device there could be significant adaptive and compensatory changes within the brain. In particular, we found changes in functional neural patterns, structural connectivity and cortical topography at the visual and auditive cortex of the Eyeborg user in comparison with a control population. Although at the moment we cannot claim that the continuous use of the Eyeborg is the only reason for these findings, our results may shed further light on potential brain changes associated with the use of other SSDs. This could help to better understand how the brain adapts to several pathologies and uncover adaptive resources such as cross-modal representations. We expect that the precise understanding of these changes will have clear implications for rehabilitative training, device development and for more efficient programs for people with disabilities. PMID:25926778

  11. Hearing colors: an example of brain plasticity.

    PubMed

    Alfaro, Arantxa; Bernabeu, Ángela; Agulló, Carlos; Parra, Jaime; Fernández, Eduardo

    2015-01-01

    Sensory substitution devices (SSDs) are providing new ways for improving or replacing sensory abilities that have been lost due to disease or injury, and at the same time offer unprecedented opportunities to address how the nervous system could lead to an augmentation of its capacities. In this work we have evaluated a color-blind subject using a new visual-to-auditory SSD device called "Eyeborg", that allows colors to be perceived as sounds. We used a combination of neuroimaging techniques including Functional Magnetic Resonance Imaging (fMRI), Diffusion Tensor Imaging (DTI) and proton Magnetic Resonance Spectroscopy ((1)H-MRS) to study potential brain plasticity in this subject. Our results suggest that after 8 years of continuous use of this device there could be significant adaptive and compensatory changes within the brain. In particular, we found changes in functional neural patterns, structural connectivity and cortical topography at the visual and auditive cortex of the Eyeborg user in comparison with a control population. Although at the moment we cannot claim that the continuous use of the Eyeborg is the only reason for these findings, our results may shed further light on potential brain changes associated with the use of other SSDs. This could help to better understand how the brain adapts to several pathologies and uncover adaptive resources such as cross-modal representations. We expect that the precise understanding of these changes will have clear implications for rehabilitative training, device development and for more efficient programs for people with disabilities.

  12. The brain-tumor related protein podoplanin regulates synaptic plasticity and hippocampus-dependent learning and memory

    PubMed Central

    Cicvaric, Ana; Yang, Jiaye; Krieger, Sigurd; Khan, Deeba; Kim, Eun-Jung; Dominguez-Rodriguez, Manuel; Cabatic, Maureen; Molz, Barbara; Acevedo Aguilar, Juan Pablo; Milicevic, Radoslav; Smani, Tarik; Breuss, Johannes M.; Kerjaschki, Dontscho; Pollak, Daniela D.; Uhrin, Pavel; Monje, Francisco J.

    2016-01-01

    Abstract Introduction: Podoplanin is a cell-surface glycoprotein constitutively expressed in the brain and implicated in human brain tumorigenesis. The intrinsic function of podoplanin in brain neurons remains however uncharacterized. Materials and methods: Using an established podoplanin-knockout mouse model and electrophysiological, biochemical, and behavioral approaches, we investigated the brain neuronal role of podoplanin. Results: Ex-vivo electrophysiology showed that podoplanin deletion impairs dentate gyrus synaptic strengthening. In vivo, podoplanin deletion selectively impaired hippocampus-dependent spatial learning and memory without affecting amygdala-dependent cued fear conditioning. In vitro, neuronal overexpression of podoplanin promoted synaptic activity and neuritic outgrowth whereas podoplanin-deficient neurons exhibited stunted outgrowth and lower levels of p-Ezrin, TrkA, and CREB in response to nerve growth factor (NGF). Surface Plasmon Resonance data further indicated a physical interaction between podoplanin and NGF. Discussion: This work proposes podoplanin as a novel component of the neuronal machinery underlying neuritogenesis, synaptic plasticity, and hippocampus-dependent memory functions. The existence of a relevant cross-talk between podoplanin and the NGF/TrkA signaling pathway is also for the first time proposed here, thus providing a novel molecular complex as a target for future multidisciplinary studies of the brain function in the physiology and the pathology.Key messagesPodoplanin, a protein linked to the promotion of human brain tumors, is required in vivo for proper hippocampus-dependent learning and memory functions.Deletion of podoplanin selectively impairs activity-dependent synaptic strengthening at the neurogenic dentate-gyrus and hampers neuritogenesis and phospho Ezrin, TrkA and CREB protein levels upon NGF stimulation.Surface plasmon resonance data indicates a physical interaction between podoplanin and NGF. On these

  13. The brain-tumor related protein podoplanin regulates synaptic plasticity and hippocampus-dependent learning and memory.

    PubMed

    Cicvaric, Ana; Yang, Jiaye; Krieger, Sigurd; Khan, Deeba; Kim, Eun-Jung; Dominguez-Rodriguez, Manuel; Cabatic, Maureen; Molz, Barbara; Acevedo Aguilar, Juan Pablo; Milicevic, Radoslav; Smani, Tarik; Breuss, Johannes M; Kerjaschki, Dontscho; Pollak, Daniela D; Uhrin, Pavel; Monje, Francisco J

    2016-12-01

    Podoplanin is a cell-surface glycoprotein constitutively expressed in the brain and implicated in human brain tumorigenesis. The intrinsic function of podoplanin in brain neurons remains however uncharacterized. Using an established podoplanin-knockout mouse model and electrophysiological, biochemical, and behavioral approaches, we investigated the brain neuronal role of podoplanin. Ex-vivo electrophysiology showed that podoplanin deletion impairs dentate gyrus synaptic strengthening. In vivo, podoplanin deletion selectively impaired hippocampus-dependent spatial learning and memory without affecting amygdala-dependent cued fear conditioning. In vitro, neuronal overexpression of podoplanin promoted synaptic activity and neuritic outgrowth whereas podoplanin-deficient neurons exhibited stunted outgrowth and lower levels of p-Ezrin, TrkA, and CREB in response to nerve growth factor (NGF). Surface Plasmon Resonance data further indicated a physical interaction between podoplanin and NGF. This work proposes podoplanin as a novel component of the neuronal machinery underlying neuritogenesis, synaptic plasticity, and hippocampus-dependent memory functions. The existence of a relevant cross-talk between podoplanin and the NGF/TrkA signaling pathway is also for the first time proposed here, thus providing a novel molecular complex as a target for future multidisciplinary studies of the brain function in the physiology and the pathology. Key messages Podoplanin, a protein linked to the promotion of human brain tumors, is required in vivo for proper hippocampus-dependent learning and memory functions. Deletion of podoplanin selectively impairs activity-dependent synaptic strengthening at the neurogenic dentate-gyrus and hampers neuritogenesis and phospho Ezrin, TrkA and CREB protein levels upon NGF stimulation. Surface plasmon resonance data indicates a physical interaction between podoplanin and NGF. On these grounds, a relevant cross-talk between podoplanin and NGF as well

  14. Spatiotemporal Computations of an Excitable and Plastic Brain: Neuronal Plasticity Leads to Noise-Robust and Noise-Constructive Computations

    PubMed Central

    Toutounji, Hazem; Pipa, Gordon

    2014-01-01

    It is a long-established fact that neuronal plasticity occupies the central role in generating neural function and computation. Nevertheless, no unifying account exists of how neurons in a recurrent cortical network learn to compute on temporally and spatially extended stimuli. However, these stimuli constitute the norm, rather than the exception, of the brain's input. Here, we introduce a geometric theory of learning spatiotemporal computations through neuronal plasticity. To that end, we rigorously formulate the problem of neural representations as a relation in space between stimulus-induced neural activity and the asymptotic dynamics of excitable cortical networks. Backed up by computer simulations and numerical analysis, we show that two canonical and widely spread forms of neuronal plasticity, that is, spike-timing-dependent synaptic plasticity and intrinsic plasticity, are both necessary for creating neural representations, such that these computations become realizable. Interestingly, the effects of these forms of plasticity on the emerging neural code relate to properties necessary for both combating and utilizing noise. The neural dynamics also exhibits features of the most likely stimulus in the network's spontaneous activity. These properties of the spatiotemporal neural code resulting from plasticity, having their grounding in nature, further consolidate the biological relevance of our findings. PMID:24651447

  15. Length of Acupuncture Training and Structural Plastic Brain Changes in Professional Acupuncturists

    PubMed Central

    Dong, Minghao; Zhao, Ling; Yuan, Kai; Zeng, Fang; Sun, Jinbo; Liu, Jixin; Yu, Dahua; von Deneen, Karen M.; Liang, Fanrong; Qin, Wei; Tian, Jie

    2013-01-01

    Background The research on brain plasticity has fascinated researchers for decades. Use/training serves as an instrumental factor to influence brain neuroplasticity. Parallel to acquisition of behavioral expertise, extensive use/training is concomitant with substantial changes of cortical structure. Acupuncturists, serving as a model par excellence to study tactile-motor and emotional regulation plasticity, receive intensive training in national medical schools following standardized training protocol. Moreover, their behavioral expertise is corroborated during long-term clinical practice. Although our previous study reported functional plastic brain changes in the acupuncturists, whether or not structural plastic changes occurred in acupuncturists is yet elusive. Methodology/Principal Findings Cohorts of acupuncturists (N = 22) and non-acupuncturists (N = 22) were recruited. Behavioral tests were delivered to assess the acupuncturists’ behavioral expertise. The results confirmed acupuncturists’ tactile-motor skills and emotion regulation proficiency compared to non-acupuncturists. Using the voxel-based morphometry technique, we revealed larger grey matter volumes in acupuncturists in the hand representation of the contralateral primary somatosensory cortex (SI), the right lobule V/VI and the bilateral ventral anterior cingulate cortex/ventral medial prefrontal cortex. Grey matter volumes of the SI and Lobule V/VI positively correlated with the duration of acupuncture practice. Conclusions To our best knowledge, this study provides first evidence for the anatomical alterations in acupuncturists, which would possibly be the neural correlates underlying acupuncturists’ exceptional skills. On one hand, we suggest our findings may have ramifications for tactile-motor rehabilitation. On the other hand, our results in emotion regulation domain may serve as a target for our future studies, from which we can understand how modulations of aversive emotions

  16. Review of Research: Neuroscience and the Impact of Brain Plasticity on Braille Reading

    ERIC Educational Resources Information Center

    Hannan, Cheryl Kamei

    2006-01-01

    In this systematic review of research, the author analyzes studies of neural cortical activation, brain plasticity, and braille reading. The conclusions regarding the brain's plasticity and ability to reorganize are encouraging for individuals with degenerative eye conditions or late-onset blindness because they indicate that the brain can make…

  17. Immune dysregulation and cognitive vulnerability in the aging brain: Interactions of microglia, IL-1β, BDNF and synaptic plasticity.

    PubMed

    Patterson, Susan L

    2015-09-01

    Older individuals often experience declines in cognitive function after events (e.g. infection, or injury) that trigger activation of the immune system. This occurs at least in part because aging sensitizes the response of microglia (the brain's resident immune cells) to signals triggered by an immune challenge. In the aging brain, microglia respond to these signals by producing more pro-inflammatory cytokines (e.g. interleukin-1beta or IL-1β) and producing them for longer than microglia in younger brains. This exaggerated inflammatory response can compromise processes critical for optimal cognitive functioning. Interleukin-1β is central to the inflammatory response and is a key mediator and modulator of an array of associated biological functions; thus its production and release is usually very tightly regulated. This review will focus on the impact of dysregulated production of IL-1β on hippocampus dependent-memory systems and associated synaptic plasticity processes. The neurotrophin brain-derived neurotrophic factor (BNDF) helps to protect neurons from damage caused by infection or injury, and it plays a critical role in many of the same memory and hippocampal plasticity processes compromised by dysregulated production of IL-1β. This suggests that an exaggerated brain inflammatory response, arising from aging and a secondary immune challenge, may erode the capacity to provide the BDNF needed for memory-related plasticity processes at hippocampal synapses. This article is part of a Special Issue entitled 'Neuroimmunology and Synaptic Function'. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Altered resting brain function and structure in professional badminton players.

    PubMed

    Di, Xin; Zhu, Senhua; Jin, Hua; Wang, Pin; Ye, Zhuoer; Zhou, Ke; Zhuo, Yan; Rao, Hengyi

    2012-01-01

    Neuroimaging studies of professional athletic or musical training have demonstrated considerable practice-dependent plasticity in various brain structures, which may reflect distinct training demands. In the present study, structural and functional brain alterations were examined in professional badminton players and compared with healthy controls using magnetic resonance imaging (MRI) and resting-state functional MRI. Gray matter concentration (GMC) was assessed using voxel-based morphometry (VBM), and resting-brain functions were measured by amplitude of low-frequency fluctuation (ALFF) and seed-based functional connectivity. Results showed that the athlete group had greater GMC and ALFF in the right and medial cerebellar regions, respectively. The athlete group also demonstrated smaller ALFF in the left superior parietal lobule and altered functional connectivity between the left superior parietal and frontal regions. These findings indicate that badminton expertise is associated with not only plastic structural changes in terms of enlarged gray matter density in the cerebellum, but also functional alterations in fronto-parietal connectivity. Such structural and functional alterations may reflect specific experiences of badminton training and practice, including high-capacity visuo-spatial processing and hand-eye coordination in addition to refined motor skills.

  19. Altered Resting Brain Function and Structure in Professional Badminton Players

    PubMed Central

    Di, Xin; Zhu, Senhua; Wang, Pin; Ye, Zhuoer; Zhou, Ke; Zhuo, Yan

    2012-01-01

    Abstract Neuroimaging studies of professional athletic or musical training have demonstrated considerable practice-dependent plasticity in various brain structures, which may reflect distinct training demands. In the present study, structural and functional brain alterations were examined in professional badminton players and compared with healthy controls using magnetic resonance imaging (MRI) and resting-state functional MRI. Gray matter concentration (GMC) was assessed using voxel-based morphometry (VBM), and resting-brain functions were measured by amplitude of low-frequency fluctuation (ALFF) and seed-based functional connectivity. Results showed that the athlete group had greater GMC and ALFF in the right and medial cerebellar regions, respectively. The athlete group also demonstrated smaller ALFF in the left superior parietal lobule and altered functional connectivity between the left superior parietal and frontal regions. These findings indicate that badminton expertise is associated with not only plastic structural changes in terms of enlarged gray matter density in the cerebellum, but also functional alterations in fronto-parietal connectivity. Such structural and functional alterations may reflect specific experiences of badminton training and practice, including high-capacity visuo-spatial processing and hand-eye coordination in addition to refined motor skills. PMID:22840241

  20. Linking neocortical, cognitive, and genetic variability in autism with alterations of brain plasticity: the Trigger-Threshold-Target model.

    PubMed

    Mottron, Laurent; Belleville, Sylvie; Rouleau, Guy A; Collignon, Olivier

    2014-11-01

    The phenotype of autism involves heterogeneous adaptive traits (strengths vs. disabilities), different domains of alterations (social vs. non-social), and various associated genetic conditions (syndromic vs. nonsyndromic autism). Three observations suggest that alterations in experience-dependent plasticity are an etiological factor in autism: (1) the main cognitive domains enhanced in autism are controlled by the most plastic cortical brain regions, the multimodal association cortices; (2) autism and sensory deprivation share several features of cortical and functional reorganization; and (3) genetic mutations and/or environmental insults involved in autism all appear to affect developmental synaptic plasticity, and mostly lead to its upregulation. We present the Trigger-Threshold-Target (TTT) model of autism to organize these findings. In this model, genetic mutations trigger brain reorganization in individuals with a low plasticity threshold, mostly within regions sensitive to cortical reallocations. These changes account for the cognitive enhancements and reduced social expertise associated with autism. Enhanced but normal plasticity may underlie non-syndromic autism, whereas syndromic autism may occur when a triggering mutation or event produces an altered plastic reaction, also resulting in intellectual disability and dysmorphism in addition to autism. Differences in the target of brain reorganization (perceptual vs. language regions) account for the main autistic subgroups. In light of this model, future research should investigate how individual and sex-related differences in synaptic/regional brain plasticity influence the occurrence of autism. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. A Plastic Temporal Brain Code for Conscious State Generation

    PubMed Central

    Dresp-Langley, Birgitta; Durup, Jean

    2009-01-01

    Consciousness is known to be limited in processing capacity and often described in terms of a unique processing stream across a single dimension: time. In this paper, we discuss a purely temporal pattern code, functionally decoupled from spatial signals, for conscious state generation in the brain. Arguments in favour of such a code include Dehaene et al.'s long-distance reverberation postulate, Ramachandran's remapping hypothesis, evidence for a temporal coherence index and coincidence detectors, and Grossberg's Adaptive Resonance Theory. A time-bin resonance model is developed, where temporal signatures of conscious states are generated on the basis of signal reverberation across large distances in highly plastic neural circuits. The temporal signatures are delivered by neural activity patterns which, beyond a certain statistical threshold, activate, maintain, and terminate a conscious brain state like a bar code would activate, maintain, or inactivate the electronic locks of a safe. Such temporal resonance would reflect a higher level of neural processing, independent from sensorial or perceptual brain mechanisms. PMID:19644552

  2. Functional MRI and intraoperative brain mapping to evaluate brain plasticity in patients with brain tumours and hemiparesis

    PubMed Central

    Roux, F; Boulanouar, K; Ibarrola, D; Tremoulet, M; Chollet, F; Berry, I

    2000-01-01

    OBJECTIVE—To support the hypothesis about the potential compensatory role of ipsilateral corticofugal pathways when the contralateral pathways are impaired by brain tumours.
METHODS—Retrospective analysis was carried out on the results of functional MRI (fMRI) of a selected group of five paretic patients with Rolandic brain tumours who exhibited an abnormally high ipsilateral/contralateral ratio of activation—that is, movements of the paretic hand activated predominately the ipsilateral cortex. Brain activation was achieved with a flexion extension of the fingers. Statistical parametric activation was obtained using a t test and a threshold of p<0.001. These patients, candidates for tumour resection, also underwent cortical intraoperative stimulation that was correlated to the fMRI spatial data using three dimensional reconstructions of the brain. Three patients also had postoperative control fMRI.
RESULTS—The absence of fMRI activation of the primary sensorimotor cortex normally innervating the paretic hand for the threshold chosen, was correlated with completely negative cortical responses of the cortical hand area during the operation. The preoperative fMRI activation of these patients predominantly found in the ipsilateral frontal and primary sensorimotor cortices could be related to the residual ipsilateral hand function. Postoperatively, the fMRI activation returned to more classic patterns of activation, reflecting the consequences of therapy.
CONCLUSION—In paretic patients with brain tumours, ipsilateral control could be implicated in the residual hand function, when the normal primary pathways are impaired. The possibility that functional tissue still remains in the peritumorous sensorimotor cortex even when the preoperative fMRI and the cortical intraoperative stimulations are negative, should be taken into account when planning the tumour resection and during the operation.

 PMID:10990503

  3. Epigenetic Influences on Brain Development and Plasticity

    PubMed Central

    Fagiolini, Michela; Jensen, Catherine L.; Champagne, Frances A.

    2009-01-01

    A fine interplay exists between sensory experience and innate genetic programs leading to the sculpting of neuronal circuits during early brain development. Recent evidence suggests that the dynamic regulation of gene expression through epigenetic mechanisms is at the interface between environmental stimuli and long-lasting molecular, cellular and complex behavioral phenotypes acquired during periods of developmental plasticity. Understanding these mechanisms may give insight into the formation of critical periods and provide new strategies for increasing plasticity and adaptive change in adulthood. PMID:19545993

  4. Complement peptide C3a stimulates neural plasticity after experimental brain ischaemia.

    PubMed

    Stokowska, Anna; Atkins, Alison L; Morán, Javier; Pekny, Tulen; Bulmer, Linda; Pascoe, Michaela C; Barnum, Scott R; Wetsel, Rick A; Nilsson, Jonas A; Dragunow, Mike; Pekna, Marcela

    2017-02-01

    Ischaemic stroke induces endogenous repair processes that include proliferation and differentiation of neural stem cells and extensive rewiring of the remaining neural connections, yet about 50% of stroke survivors live with severe long-term disability. There is an unmet need for drug therapies to improve recovery by promoting brain plasticity in the subacute to chronic phase after ischaemic stroke. We previously showed that complement-derived peptide C3a regulates neural progenitor cell migration and differentiation in vitro and that C3a receptor signalling stimulates neurogenesis in unchallenged adult mice. To determine the role of C3a-C3a receptor signalling in ischaemia-induced neural plasticity, we subjected C3a receptor-deficient mice, GFAP-C3a transgenic mice expressing biologically active C3a in the central nervous system, and their respective wild-type controls to photothrombotic stroke. We found that C3a overexpression increased, whereas C3a receptor deficiency decreased post-stroke expression of GAP43 (P < 0.01), a marker of axonal sprouting and plasticity, in the peri-infarct cortex. To verify the translational potential of these findings, we used a pharmacological approach. Daily intranasal treatment of wild-type mice with C3a beginning 7 days after stroke induction robustly increased synaptic density (P < 0.01) and expression of GAP43 in peri-infarct cortex (P < 0.05). Importantly, the C3a treatment led to faster and more complete recovery of forepaw motor function (P < 0.05). We conclude that C3a-C3a receptor signalling stimulates post-ischaemic neural plasticity and intranasal treatment with C3a receptor agonists is an attractive approach to improve functional recovery after ischaemic brain injury. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. The role of sleep in regulating structural plasticity and synaptic strength: Implications for memory and cognitive function.

    PubMed

    Raven, Frank; Van der Zee, Eddy A; Meerlo, Peter; Havekes, Robbert

    2018-06-01

    Dendritic spines are the major sites of synaptic transmission in the central nervous system. Alterations in the strength of synaptic connections directly affect the neuronal communication, which is crucial for brain function as well as the processing and storage of information. Sleep and sleep loss bidirectionally alter structural plasticity, by affecting spine numbers and morphology, which ultimately can affect the functional output of the brain in terms of alertness, cognition, and mood. Experimental data from studies in rodents suggest that sleep deprivation may impact structural plasticity in different ways. One of the current views, referred to as the synaptic homeostasis hypothesis, suggests that wake promotes synaptic potentiation whereas sleep facilitates synaptic downscaling. On the other hand, several studies have now shown that sleep deprivation can reduce spine density and attenuate synaptic efficacy in the hippocampus. These data are the basis for the view that sleep promotes hippocampal structural plasticity critical for memory formation. Altogether, the impact of sleep and sleep loss may vary between regions of the brain. A better understanding of the role that sleep plays in regulating structural plasticity may ultimately lead to novel therapeutic approaches for brain disorders that are accompanied by sleep disturbances and sleep loss. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. The birth of new neurons in the maternal brain: hormonal regulation and functional implications

    PubMed Central

    Leuner, Benedetta; Sabihi, Sara

    2016-01-01

    The maternal brain is remarkably plastic and exhibits multifaceted neural modifications. Neurogenesis has emerged as one of the mechanisms by which the maternal brain exhibits plasticity. This review highlights what is currently known about peripartum-associated changes in adult neurogenesis and the underlying hormonal mechanisms. We also consider the functional consequences of neurogenesis in the peripartum brain and extent to which this process may play a role in maternal care, cognitive function and postpartum mood. Finally, while most work investigating the effects of parenting on adult neurogenesis has focused on mothers, a few studies have examined fathers and these results are also discussed. PMID:26969795

  7. Reorganization of Functional Connectivity as a Correlate of Cognitive Recovery in Acquired Brain Injury

    ERIC Educational Resources Information Center

    Castellanos, Nazareth P.; Paul, Nuria; Ordonez, Victoria E.; Demuynck, Olivier; Bajo, Ricardo; Campo, Pablo; Bilbao, Alvaro; Ortiz, Tomas; del-Pozo, Francisco; Maestu, Fernando

    2010-01-01

    Cognitive processes require a functional interaction between specialized multiple, local and remote brain regions. Although these interactions can be strongly altered by an acquired brain injury, brain plasticity allows network reorganization to be principally responsible for recovery. The present work evaluates the impact of brain injury on…

  8. Interpreting and Utilising Intersubject Variability in Brain Function.

    PubMed

    Seghier, Mohamed L; Price, Cathy J

    2018-06-01

    We consider between-subject variance in brain function as data rather than noise. We describe variability as a natural output of a noisy plastic system (the brain) where each subject embodies a particular parameterisation of that system. In this context, variability becomes an opportunity to: (i) better characterise typical versus atypical brain functions; (ii) reveal the different cognitive strategies and processing networks that can sustain similar tasks; and (iii) predict recovery capacity after brain damage by taking into account both damaged and spared processing pathways. This has many ramifications for understanding individual learning preferences and explaining the wide differences in human abilities and disabilities. Understanding variability boosts the translational potential of neuroimaging findings, in particular in clinical and educational neuroscience. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Plasticity in the Developing Brain: Intellectual, Language and Academic Functions in Children with Ischaemic Perinatal Stroke

    ERIC Educational Resources Information Center

    Ballantyne, Angela O.; Spilkin, Amy M.; Hesselink, John; Trauner, Doris A.

    2008-01-01

    The developing brain has the capacity for a great deal of plasticity. A number of investigators have demonstrated that intellectual and language skills may be in the normal range in children following unilateral perinatal stroke. Questions have been raised, however, about whether these skills can be maintained at the same level as the brain…

  10. Exercise-mimetic AICAR transiently benefits brain function

    PubMed Central

    Guerrieri, Davide; van Praag, Henriette

    2015-01-01

    Exercise enhances learning and memory in animals and humans. The role of peripheral factors that may trigger the beneficial effects of running on brain function has been sparsely examined. In particular, it is unknown whether AMP-kinase (AMPK) activation in muscle can predict enhancement of brain plasticity. Here we compare the effects of running and administration of AMPK agonist 5-Aminoimidazole-4-carboxamide 1-β-D-ribofuranoside (AICAR, 500 mg/kg), for 3, 7 or 14 days in one-month-old male C57BL/6J mice, on muscle AMPK signaling. At the time-points where we observed equivalent running- and AICAR-induced muscle pAMPK levels (7 and 14 days), cell proliferation, synaptic plasticity and gene expression, as well as markers of oxidative stress and inflammation in the dentate gyrus (DG) of the hippocampus and lateral entorhinal cortex (LEC) were evaluated. At the 7-day time-point, both regimens increased new DG cell number and brain-derived neurotrophic factor (BDNF) protein levels. Furthermore, microarray analysis of DG and LEC tissue showed a remarkable overlap between running and AICAR in the regulation of neuronal, mitochondrial and metabolism related gene classes. Interestingly, while similar outcomes for both treatments were stable over time in muscle, in the brain an inversion occurred at fourteen days. The compound no longer increased DG cell proliferation or neurotrophin levels, and upregulated expression of apoptotic genes and inflammatory cytokine interleukin-1β. Thus, an exercise mimetic that produces changes in muscle consistent with those of exercise does not have the same sustainable positive effects on the brain, indicating that only running consistently benefits brain function. PMID:26286955

  11. Exercise-mimetic AICAR transiently benefits brain function.

    PubMed

    Guerrieri, Davide; van Praag, Henriette

    2015-07-30

    Exercise enhances learning and memory in animals and humans. The role of peripheral factors that may trigger the beneficial effects of running on brain function has been sparsely examined. In particular, it is unknown whether AMP-kinase (AMPK) activation in muscle can predict enhancement of brain plasticity. Here we compare the effects of running and administration of AMPK agonist 5-Aminoimidazole-4-carboxamide 1-β-D-ribofuranoside (AICAR, 500 mg/kg), for 3, 7 or 14 days in one-month-old male C57BL/6J mice, on muscle AMPK signaling. At the time-points where we observed equivalent running- and AICAR-induced muscle pAMPK levels (7 and 14 days), cell proliferation, synaptic plasticity and gene expression, as well as markers of oxidative stress and inflammation in the dentate gyrus (DG) of the hippocampus and lateral entorhinal cortex (LEC) were evaluated. At the 7-day time-point, both regimens increased new DG cell number and brain-derived neurotrophic factor (BDNF) protein levels. Furthermore, microarray analysis of DG and LEC tissue showed a remarkable overlap between running and AICAR in the regulation of neuronal, mitochondrial and metabolism related gene classes. Interestingly, while similar outcomes for both treatments were stable over time in muscle, in the brain an inversion occurred at fourteen days. The compound no longer increased DG cell proliferation or neurotrophin levels, and upregulated expression of apoptotic genes and inflammatory cytokine interleukin-1β. Thus, an exercise mimetic that produces changes in muscle consistent with those of exercise does not have the same sustainable positive effects on the brain, indicating that only running consistently benefits brain function.

  12. Neural Plasticity and Neurorehabilitation: Teaching the New Brain Old Tricks

    ERIC Educational Resources Information Center

    Kleim, Jeffrey A.

    2011-01-01

    Following brain injury or disease there are widespread biochemical, anatomical and physiological changes that result in what might be considered a new, very different brain. This adapted brain is forced to reacquire behaviors lost as a result of the injury or disease and relies on neural plasticity within the residual neural circuits. The same…

  13. Current trends in stroke rehabilitation. A review with focus on brain plasticity.

    PubMed

    Johansson, B B

    2011-03-01

    Current understanding of brain plasticity has lead to new approaches in ischemic stroke rehabilitation. Stroke units that combine good medical and nursing care with task-oriented intense training in an environment that provides confidence, stimulation and motivation significantly improve outcome. Repetitive trans-cranial magnetic stimulation (rTMS), and trans-cranial direct current stimulation (tDCS) are applied in rehabilitation of motor function. The long-term effect, optimal way of stimulation and possibly efficacy in cognitive rehabilitation need evaluation. Methods based on multisensory integration of motor, cognitive, and perceptual processes including action observation, mental training, and virtual reality are being tested. Different approaches of intensive aphasia training are described. Recent data on intensive melodic intonation therapy indicate that even patients with very severe non-fluent aphasia can regain speech through homotopic white matter tract plasticity. Music therapy is applied in motor and cognitive rehabilitation. To avoid the confounding effect of spontaneous improvement, most trials are preformed ≥3 months post stroke. Randomized controlled trials starting earlier after strokes are needed. More attention should be given to stroke heterogeneity, cognitive rehabilitation, and social adjustment and to genetic differences, including the role of BDNF polymorphism in brain plasticity. © 2010 John Wiley & Sons A/S.

  14. Sensory rehabilitation in the plastic brain.

    PubMed

    Collignon, Olivier; Champoux, François; Voss, Patrice; Lepore, Franco

    2011-01-01

    The purpose of this review is to consider new sensory rehabilitation avenues in the context of the brain's remarkable ability to reorganize itself following sensory deprivation. Here, deafness and blindness are taken as two illustrative models. Mainly, two promising rehabilitative strategies based on opposing theoretical principles will be considered: sensory substitution and neuroprostheses. Sensory substitution makes use of the remaining intact senses to provide blind or deaf individuals with coded information of the lost sensory system. This technique thus benefits from added neural resources in the processing of the remaining senses resulting from crossmodal plasticity, which is thought to be coupled with behavioral enhancements in the intact senses. On the other hand, neuroprostheses represent an invasive approach aimed at stimulating the deprived sensory system directly in order to restore, at least partially, its functioning. This technique therefore relies on the neuronal integrity of the brain areas normally dedicated to the deprived sense and is rather hindered by the compensatory reorganization observed in the deprived cortex. Here, we stress that our understanding of the neuroplastic changes that occur in sensory-deprived individuals may help guide the design and the implementation of such rehabilitative methods. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Structural plasticity of the social brain: Differential change after socio-affective and cognitive mental training.

    PubMed

    Valk, Sofie L; Bernhardt, Boris C; Trautwein, Fynn-Mathis; Böckler, Anne; Kanske, Philipp; Guizard, Nicolas; Collins, D Louis; Singer, Tania

    2017-10-01

    Although neuroscientific research has revealed experience-dependent brain changes across the life span in sensory, motor, and cognitive domains, plasticity relating to social capacities remains largely unknown. To investigate whether the targeted mental training of different cognitive and social skills can induce specific changes in brain morphology, we collected longitudinal magnetic resonance imaging (MRI) data throughout a 9-month mental training intervention from a large sample of adults between 20 and 55 years of age. By means of various daily mental exercises and weekly instructed group sessions, training protocols specifically addressed three functional domains: (i) mindfulness-based attention and interoception, (ii) socio-affective skills (compassion, dealing with difficult emotions, and prosocial motivation), and (iii) socio-cognitive skills (cognitive perspective-taking on self and others and metacognition). MRI-based cortical thickness analyses, contrasting the different training modules against each other, indicated spatially diverging changes in cortical morphology. Training of present-moment focused attention mostly led to increases in cortical thickness in prefrontal regions, socio-affective training induced plasticity in frontoinsular regions, and socio-cognitive training included change in inferior frontal and lateral temporal cortices. Module-specific structural brain changes correlated with training-induced behavioral improvements in the same individuals in domain-specific measures of attention, compassion, and cognitive perspective-taking, respectively, and overlapped with task-relevant functional networks. Our longitudinal findings indicate structural plasticity in well-known socio-affective and socio-cognitive brain networks in healthy adults based on targeted short daily mental practices. These findings could promote the development of evidence-based mental training interventions in clinical, educational, and corporate settings aimed at

  16. Structural plasticity of the social brain: Differential change after socio-affective and cognitive mental training

    PubMed Central

    Valk, Sofie L.; Bernhardt, Boris C.; Trautwein, Fynn-Mathis; Böckler, Anne; Kanske, Philipp; Guizard, Nicolas; Collins, D. Louis; Singer, Tania

    2017-01-01

    Although neuroscientific research has revealed experience-dependent brain changes across the life span in sensory, motor, and cognitive domains, plasticity relating to social capacities remains largely unknown. To investigate whether the targeted mental training of different cognitive and social skills can induce specific changes in brain morphology, we collected longitudinal magnetic resonance imaging (MRI) data throughout a 9-month mental training intervention from a large sample of adults between 20 and 55 years of age. By means of various daily mental exercises and weekly instructed group sessions, training protocols specifically addressed three functional domains: (i) mindfulness-based attention and interoception, (ii) socio-affective skills (compassion, dealing with difficult emotions, and prosocial motivation), and (iii) socio-cognitive skills (cognitive perspective-taking on self and others and metacognition). MRI-based cortical thickness analyses, contrasting the different training modules against each other, indicated spatially diverging changes in cortical morphology. Training of present-moment focused attention mostly led to increases in cortical thickness in prefrontal regions, socio-affective training induced plasticity in frontoinsular regions, and socio-cognitive training included change in inferior frontal and lateral temporal cortices. Module-specific structural brain changes correlated with training-induced behavioral improvements in the same individuals in domain-specific measures of attention, compassion, and cognitive perspective-taking, respectively, and overlapped with task-relevant functional networks. Our longitudinal findings indicate structural plasticity in well-known socio-affective and socio-cognitive brain networks in healthy adults based on targeted short daily mental practices. These findings could promote the development of evidence-based mental training interventions in clinical, educational, and corporate settings aimed at

  17. Processing demands upon cognitive, linguistic, and articulatory functions promote grey matter plasticity in the adult multilingual brain: Insights from simultaneous interpreters.

    PubMed

    Elmer, Stefan; Hänggi, Jürgen; Jäncke, Lutz

    2014-05-01

    Until now, considerable effort has been made to determine structural brain characteristics related to exceptional multilingual skills. However, at least one important question has not yet been satisfactorily addressed in the previous literature, namely whether and to which extent the processing demands upon cognitive, linguistic, and articulatory functions may promote grey matter plasticity in the adult multilingual brain. Based on the premise that simultaneous interpretation is a highly demanding linguistic task that places strong demands on executive and articulatory functions, here we compared grey matter volumes between professional simultaneous interpreters (SI) and multilingual control subjects. Thereby, we focused on a specific set of a-priori defined bilateral brain regions that have previously been shown to support neurocognitional aspects of language control and linguistic functions in the multilingual brain. These regions are the cingulate gyrus, caudate nucleus, frontal operculum (pars triangularis and opercularis), inferior parietal lobe (IPL) (supramarginal and angular gyrus), and the insula. As a main result, we found reduced grey matter volumes in professional SI, compared to multilingual controls, in the left middle-anterior cingulate gyrus, bilateral pars triangularis, left pars opercularis, bilateral middle part of the insula, and in the left supramarginal gyrus (SMG). Interestingly, grey matter volume in left pars triangularis, right pars opercularis, middle-anterior cingulate gyrus, and in the bilateral caudate nucleus was negatively correlated with the cumulative number of interpreting hours. Hence, we provide first evidence for an expertise-related grey matter architecture that may reflect a composite of brain characteristics that were still present before interpreting training and training-related changes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Drug-Induced Alterations of Endocannabinoid-Mediated Plasticity in Brain Reward Regions.

    PubMed

    Zlebnik, Natalie E; Cheer, Joseph F

    2016-10-05

    The endocannabinoid (eCB) system has emerged as one of the most important mediators of physiological and pathological reward-related synaptic plasticity. eCBs are retrograde messengers that provide feedback inhibition, resulting in the suppression of neurotransmitter release at both excitatory and inhibitory synapses, and they serve a critical role in the spatiotemporal regulation of both short- and long-term synaptic plasticity that supports adaptive learning of reward-motivated behaviors. However, mechanisms of eCB-mediated synaptic plasticity in reward areas of the brain are impaired following exposure to drugs of abuse. Because of this, it is theorized that maladaptive eCB signaling may contribute to the development and maintenance of addiction-related behavior. Here we review various forms of eCB-mediated synaptic plasticity present in regions of the brain involved in reward and reinforcement and explore the potential physiological relevance of maladaptive eCB signaling to addiction vulnerability. Copyright © 2016 the authors 0270-6474/16/3610230-09$15.00/0.

  19. Musical training influences linguistic abilities in 8-year-old children: more evidence for brain plasticity.

    PubMed

    Moreno, Sylvain; Marques, Carlos; Santos, Andreia; Santos, Manuela; Castro, São Luís; Besson, Mireille

    2009-03-01

    We conducted a longitudinal study with 32 nonmusician children over 9 months to determine 1) whether functional differences between musician and nonmusician children reflect specific predispositions for music or result from musical training and 2) whether musical training improves nonmusical brain functions such as reading and linguistic pitch processing. Event-related brain potentials were recorded while 8-year-old children performed tasks designed to test the hypothesis that musical training improves pitch processing not only in music but also in speech. Following the first testing sessions nonmusician children were pseudorandomly assigned to music or to painting training for 6 months and were tested again after training using the same tests. After musical (but not painting) training, children showed enhanced reading and pitch discrimination abilities in speech. Remarkably, 6 months of musical training thus suffices to significantly improve behavior and to influence the development of neural processes as reflected in specific pattern of brain waves. These results reveal positive transfer from music to speech and highlight the influence of musical training. Finally, they demonstrate brain plasticity in showing that relatively short periods of training have strong consequences on the functional organization of the children's brain.

  20. Biologic and plastic effects of experimental traumatic brain injury treatment paradigms and their relevance to clinical rehabilitation

    PubMed Central

    Garcia, Alexandra N.; Shah, Mansi A.; Dixon, C. Edward; Wagner, Amy K.; Kline, Anthony E.

    2011-01-01

    Neuroplastic changes, whether induced by traumatic brain injury (TBI) or therapeutic interventions, alter neurobehavioral outcome. Here we present several treatment strategies that have been evaluated using experimental TBI models and discuss potential mechanisms of action (i.e., plasticity) and how such changes affect function. PMID:21703575

  1. Characterizing Brain Cortical Plasticity and Network Dynamics Across the Age-Span in Health and Disease with TMS-EEG and TMS-fMRI

    PubMed Central

    Pascual-Leone, Alvaro; Freitas, Catarina; Oberman, Lindsay; Horvath, Jared C.; Halko, Mark; Eldaief, Mark; Bashir, Shahid; Vernet, Marine; Shafi, Mouhshin; Westover, Brandon; Vahabzadeh-Hagh, Andrew M.; Rotenberg, Alexander

    2012-01-01

    Brain plasticity can be conceptualized as nature’s invention to overcome limitations of the genome and adapt to a rapidly changing environment. As such, plasticity is an intrinsic property of the brain across the life-span. However, mechanisms of plasticity may vary with age. The combination of transcranial magnetic stimulation (TMS) with electroencephalography (EEG) or functional magnetic resonance imaging (fMRI) enables clinicians and researchers to directly study local and network cortical plasticity, in humans in vivo, and characterize their changes across the age-span. Parallel, translational studies in animals can provide mechanistic insights. Here, we argue that, for each individual, the efficiency of neuronal plasticity declines throughout the age-span and may do so more or less prominently depending on variable ‘starting-points’ and different ‘slopes of change’ defined by genetic, biological, and environmental factors. Furthermore, aberrant, excessive, insufficient, or mistimed plasticity may represent the proximal pathogenic cause of neurodevelopmental and neurodegenerative disorders such as autism spectrum disorders or Alzheimer’s disease. PMID:21842407

  2. Complex network analysis of brain functional connectivity under a multi-step cognitive task

    NASA Astrophysics Data System (ADS)

    Cai, Shi-Min; Chen, Wei; Liu, Dong-Bai; Tang, Ming; Chen, Xun

    2017-01-01

    Functional brain network has been widely studied to understand the relationship between brain organization and behavior. In this paper, we aim to explore the functional connectivity of brain network under a multi-step cognitive task involving consecutive behaviors, and further understand the effect of behaviors on the brain organization. The functional brain networks are constructed based on a high spatial and temporal resolution fMRI dataset and analyzed via complex network based approach. We find that at voxel level the functional brain network shows robust small-worldness and scale-free characteristics, while its assortativity and rich-club organization are slightly restricted to the order of behaviors performed. More interestingly, the functional connectivity of brain network in activated ROIs strongly correlates with behaviors and is obviously restricted to the order of behaviors performed. These empirical results suggest that the brain organization has the generic properties of small-worldness and scale-free characteristics, and its diverse functional connectivity emerging from activated ROIs is strongly driven by these behavioral activities via the plasticity of brain.

  3. Plasticity of the Maternal Brain across the Lifespan

    ERIC Educational Resources Information Center

    Champagne, Frances A.; Curley, James P.

    2016-01-01

    Maternal behavior is dynamic and highly sensitive to experiential and contextual factors. In this review, this plasticity will be explored, with a focus on how experiences of females occurring from the time of fetal development through to adulthood impact maternal behavior and the maternal brain. Variation in postpartum maternal behavior is…

  4. Memristive neural network for on-line learning and tracking with brain-inspired spike timing dependent plasticity.

    PubMed

    Pedretti, G; Milo, V; Ambrogio, S; Carboni, R; Bianchi, S; Calderoni, A; Ramaswamy, N; Spinelli, A S; Ielmini, D

    2017-07-13

    Brain-inspired computation can revolutionize information technology by introducing machines capable of recognizing patterns (images, speech, video) and interacting with the external world in a cognitive, humanlike way. Achieving this goal requires first to gain a detailed understanding of the brain operation, and second to identify a scalable microelectronic technology capable of reproducing some of the inherent functions of the human brain, such as the high synaptic connectivity (~10 4 ) and the peculiar time-dependent synaptic plasticity. Here we demonstrate unsupervised learning and tracking in a spiking neural network with memristive synapses, where synaptic weights are updated via brain-inspired spike timing dependent plasticity (STDP). The synaptic conductance is updated by the local time-dependent superposition of pre- and post-synaptic spikes within a hybrid one-transistor/one-resistor (1T1R) memristive synapse. Only 2 synaptic states, namely the low resistance state (LRS) and the high resistance state (HRS), are sufficient to learn and recognize patterns. Unsupervised learning of a static pattern and tracking of a dynamic pattern of up to 4 × 4 pixels are demonstrated, paving the way for intelligent hardware technology with up-scaled memristive neural networks.

  5. Effects of exercise intensity on spatial memory performance and hippocampal synaptic plasticity in transient brain ischemic rats.

    PubMed

    Shih, Pei-Cheng; Yang, Yea-Ru; Wang, Ray-Yau

    2013-01-01

    Memory impairment is commonly noted in stroke survivors, and can lead to delay of functional recovery. Exercise has been proved to improve memory in adult healthy subjects. Such beneficial effects are often suggested to relate to hippocampal synaptic plasticity, which is important for memory processing. Previous evidence showed that in normal rats, low intensity exercise can improve synaptic plasticity better than high intensity exercise. However, the effects of exercise intensities on hippocampal synaptic plasticity and spatial memory after brain ischemia remain unclear. In this study, we investigated such effects in brain ischemic rats. The middle cerebral artery occlusion (MCAO) procedure was used to induce brain ischemia. After the MCAO procedure, rats were randomly assigned to sedentary (Sed), low-intensity exercise (Low-Ex), or high-intensity exercise (High-Ex) group. Treadmill training began from the second day post MCAO procedure, 30 min/day for 14 consecutive days for the exercise groups. The Low-Ex group was trained at the speed of 8 m/min, while the High-Ex group at the speed of 20 m/min. The spatial memory, hippocampal brain-derived neurotrophic factor (BDNF), synapsin-I, postsynaptic density protein 95 (PSD-95), and dendritic structures were examined to document the effects. Serum corticosterone level was also quantified as stress marker. Our results showed the Low-Ex group, but not the High-Ex group, demonstrated better spatial memory performance than the Sed group. Dendritic complexity and the levels of BDNF and PSD-95 increased significantly only in the Low-Ex group as compared with the Sed group in bilateral hippocampus. Notably, increased level of corticosterone was found in the High-Ex group, implicating higher stress response. In conclusion, after brain ischemia, low intensity exercise may result in better synaptic plasticity and spatial memory performance than high intensity exercise; therefore, the intensity is suggested to be considered

  6. High-fat diet transition reduces brain DHA levels associated with altered brain plasticity and behaviour

    PubMed Central

    Sharma, Sandeep; Zhuang, Yumei; Gomez-Pinilla, Fernando

    2012-01-01

    To assess how the shift from a healthy diet rich in omega-3 fatty acids to a diet rich in saturated fatty acid affects the substrates for brain plasticity and function, we used pregnant rats fed with omega-3 supplemented diet from their 2nd day of gestation period as well as their male pups for 12 weeks. Afterwards, the animals were randomly assigned to either a group fed on the same diet or a group fed on a high-fat diet (HFD) rich in saturated fats for 3 weeks. We found that the HFD increased vulnerability for anxiety-like behavior, and that these modifications harmonized with changes in the anxiety-related NPY1 receptor and the reduced levels of BDNF, and its signalling receptor pTrkB, as well as the CREB protein. Brain DHA contents were significantly associated with the levels of anxiety-like behavior in these rats. PMID:22666534

  7. Functional outcomes following lesions in visual cortex: Implications for plasticity of high-level vision.

    PubMed

    Liu, Tina T; Behrmann, Marlene

    2017-10-01

    Understanding the nature and extent of neural plasticity in humans remains a key challenge for neuroscience. Importantly, however, a precise characterization of plasticity and its underlying mechanism has the potential to enable new approaches for enhancing reorganization of cortical function. Investigations of the impairment and subsequent recovery of cognitive and perceptual functions following early-onset cortical lesions in humans provide a unique opportunity to elucidate how the brain changes, adapts, and reorganizes. Specifically, here, we focus on restitution of visual function, and we review the findings on plasticity and re-organization of the ventral occipital temporal cortex (VOTC) in published reports of 46 patients with a lesion to or resection of the visual cortex early in life. Findings reveal that a lesion to the VOTC results in a deficit that affects the visual recognition of more than one category of stimuli (faces, objects and words). In addition, the majority of pediatric patients show limited recovery over time, especially those in whom deficits in low-level vision also persist. Last, given that neither the equipotentiality nor the modularity view on plasticity was clearly supported, we suggest some intermediate possibilities in which some plasticity may be evident but that this might depend on the area that was affected, its maturational trajectory as well as its structural and functional connectivity constraints. Finally, we offer suggestions for future research that can elucidate plasticity further. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Genetic Mapping of Brain Plasticity Across Development in Williams Syndrome: ERP Markers of Face and Language Processing

    PubMed Central

    Mills, D. L.; Dai, L.; Fishman, I.; Yam, A.; Appelbaum, L. G.; Galaburda, A.; Bellugi, U.; Korenberg, J. R.

    2014-01-01

    In Williams Syndrome (WS), a known genetic deletion results in atypical brain function with strengths in face and language processing. We examined how genetic influences on brain activity change with development. In three studies, ERPs from large samples of children, adolescents, and adults with the full genetic deletion for WS were compared to typically developing controls, and two adults with partial deletions for WS. Studies 1 and 2 identified ERP markers of brain plasticity in WS across development. Study 3 suggested that in adults with partial deletions for WS, specific genes may be differentially implicated in face and language processing. PMID:24219698

  9. Methylphenidate and the Juvenile Brain: Enhancement of Attention at the Expense of Cortical Plasticity?

    PubMed Central

    Urban, Kimberly R.; Gao, Wen-Jun

    2013-01-01

    Methylphenidate (Ritalin) is the most commonly prescribed psychoactive drug for juveniles and adolescents. Used to treat attention-deficit/hyperactivity disorder (ADHD) and for cognitive enhancement in healthy individuals, it has been regarded as a relatively safe medication for the past several decades. However, a thorough review of the literature reveals that the age-dependent activities of the drug, as well as potential developmental effects, are largely ignored. In addition, the diagnosis of ADHD is subjective, leaving open the possibility of misdiagnosis and excessive prescription of the drug. Recent studies have suggested that early life exposure of healthy rodent models to methylphenidate resulted in altered sleep/wake cycle, heightened stress reactivity, and, in fact, a dosage previously thought of as therapeutic depressed neuronal function in juvenile rats. Furthermore, juvenile rats exposed to low-dose methylphenidate displayed alterations in neural markers of plasticity, indicating that the drug might alter the basic properties of prefrontal cortical circuits. In this review of the current literature, we propose that juvenile exposure to methylphenidate may cause abnormal prefrontal function and impaired plasticity in the healthy brain, strengthening the case for developing a more thorough understanding of methylphenidate’s actions on the developing, juvenile brain, as well as better diagnostic measures for ADHD. PMID:24095262

  10. Plastic brains and the dialectics of dialectics

    NASA Astrophysics Data System (ADS)

    Loxley, Andrew; Murphy, Colette; Seery, Aidan

    2014-09-01

    This article advances the thinking of Lima, Ostermann and Rezende's "Marxism in Vygotskian approaches to cultural studies of science education" and Mark Zuss' response to their paper. Firstly, it introduces Catherine Malabou's concept of plasticity, from which Hegel's dialectic can be re-read as historical materialist self-determination in a way that embraces science but non-reductively, and which leads to the possibility of challenging theoretical rigidity as a form of transformative action. Secondly, this response article provides political analysis of scientific concepts as they reproduce and reinforce particular interests and are expropriated by policy makers and unaware teacher educators whose understanding lies within a technical-instrumentalism and diluted humanism framework. Both arguments feature the human brain as an object of research in science education. From Malabou, the emancipatory conceptualisation of the brain as material, historical and sociocultural; whilst `Brain Gym' exemplifies a non-science and nonsensical misappropriation of scientific concepts for commercial gain via a para-educational intervention.

  11. Adult cortical plasticity following injury: Recapitulation of critical period mechanisms?

    PubMed Central

    Nahmani, Marc; Turrigiano, Gina G.

    2014-01-01

    A primary goal of research on developmental critical periods is the recapitulation of a juvenile-like state of malleability in the adult brain that might enable recovery from injury. These ambitions are often framed in terms of the simple reinstatement of enhanced plasticity in the growth-restricted milieu of an injured adult brain. Here, we provide an analysis of the similarities and differences between deprivation-induced and injury-induced cortical plasticity, to provide for a nuanced comparison of these remarkably similar processes. As a first step, we review the factors that drive ocular dominance plasticity in the primary visual cortex of the uninjured brain during the critical period (CP) and in adults, to highlight processes that might confer adaptive advantage. In addition, we directly compare deprivation-induced cortical plasticity during the CP and plasticity following acute injury or ischemia in mature brain. We find that these two processes display a biphasic response profile following deprivation or injury: an initial decrease in GABAergic inhibition and synapse loss transitions into a period of neurite expansion and synaptic gain. This biphasic response profile emphasizes the transition from a period of cortical healing to one of reconnection and recovery of function. Yet while injury-induced plasticity in adult shares several salient characteristics with deprivation-induced plasticity during the CP, the degree to which the adult injured brain is able to functionally rewire, and the time required to do so, present major limitations for recovery. Attempts to recapitulate a measure of CP plasticity in an adult injury context will need to carefully dissect the circuit alterations and plasticity mechanisms involved while measuring functional behavioral output to assess their ultimate success. PMID:24791715

  12. Transsynaptic trophic effects of steroid hormones in an avian model of adult brain plasticity

    PubMed Central

    Brenowitz, Eliot A.

    2014-01-01

    The avian song control system provides an excellent model for studying transsynaptic trophic effects of steroid sex hormones. Seasonal changes in systemic testosterone (T) and its metabolites regulate plasticity of this system. Steroids interact with the neurotrophin brain-derived neurotrophic factor (BDNF) to influence cellular processes of plasticity in nucleus HVC of adult birds, including the addition of newborn neurons. This interaction may also occur transsynpatically; T increases the synthesis of BDNF in HVC, and BDNF protein is then released by HVC neurons on to postsynaptic cells in nucleus RA where it has trophic effects on activity and morphology. Androgen action on RA neurons increases their activity and this has a retrograde trophic effect on the addition of new neurons to HVC. The functional linkage of sex steroids to BDNF may be of adaptive value in regulating the trophic effects of the neurotrophin and coordinating circuit function in reproductively relevant contexts. PMID:25285401

  13. Synthesis of Research on Brain Plasticity: The Classroom Environment and Curriculum Enrichment.

    ERIC Educational Resources Information Center

    Sylwester, Robert

    1986-01-01

    Outlines research findings on enriched environment investigations on the development of the brain's neocortex. Although the research has been conducted on animal brains, researchers expect to find related patterns in plasticity in humans. The research is important to educators as it challenges them to define, create, and maintain an emotionally…

  14. Motor Learning Induces Plasticity in the Resting Brain-Drumming Up a Connection.

    PubMed

    Amad, Ali; Seidman, Jade; Draper, Stephen B; Bruchhage, Muriel M K; Lowry, Ruth G; Wheeler, James; Robertson, Andrew; Williams, Steven C R; Smith, Marcus S

    2017-03-01

    Neuroimaging methods have recently been used to investigate plasticity-induced changes in brain structure. However, little is known about the dynamic interactions between different brain regions after extensive coordinated motor learning such as drumming. In this article, we have compared the resting-state functional connectivity (rs-FC) in 15 novice healthy participants before and after a course of drumming (30-min drumming sessions, 3 days a week for 8 weeks) and 16 age-matched novice comparison participants. To identify brain regions showing significant FC differences before and after drumming, without a priori regions of interest, a multivariate pattern analysis was performed. Drum training was associated with an increased FC between the posterior part of bilateral superior temporal gyri (pSTG) and the rest of the brain (i.e., all other voxels). These regions were then used to perform seed-to-voxel analysis. The pSTG presented an increased FC with the premotor and motor regions, the right parietal lobe and a decreased FC with the cerebellum. Perspectives and the potential for rehabilitation treatments with exercise-based intervention to overcome impairments due to brain diseases are also discussed. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  15. Musicians and music making as a model for the study of brain plasticity

    PubMed Central

    Schlaug, Gottfried

    2015-01-01

    Playing a musical instrument is an intense, multisensory, and motor experience that usually commences at an early age and requires the acquisition and maintenance of a range of sensory and motor skills over the course of a musician’s lifetime. Thus, musicians offer an excellent human model for studying behavioral-cognitive as well as brain effects of acquiring, practicing, and maintaining these specialized skills. Research has shown that repeatedly practicing the association of motor actions with specific sound and visual patterns (musical notation), while receiving continuous multisensory feedback will strengthen connections between auditory and motor regions (e.g., arcuate fasciculus) as well as multimodal integration regions. Plasticity in this network may explain some of the sensorimotor and cognitive enhancements that have been associated with music training. Furthermore, the plasticity of this system as a result of long term and intense interventions suggest the potential for music making activities (e.g., forms of singing) as an intervention for neurological and developmental disorders to learn and relearn associations between auditory and motor functions such as vocal motor functions. PMID:25725909

  16. Musicians and music making as a model for the study of brain plasticity.

    PubMed

    Schlaug, Gottfried

    2015-01-01

    Playing a musical instrument is an intense, multisensory, and motor experience that usually commences at an early age and requires the acquisition and maintenance of a range of sensory and motor skills over the course of a musician's lifetime. Thus, musicians offer an excellent human model for studying behavioral-cognitive as well as brain effects of acquiring, practicing, and maintaining these specialized skills. Research has shown that repeatedly practicing the association of motor actions with specific sound and visual patterns (musical notation), while receiving continuous multisensory feedback will strengthen connections between auditory and motor regions (e.g., arcuate fasciculus) as well as multimodal integration regions. Plasticity in this network may explain some of the sensorimotor and cognitive enhancements that have been associated with music training. Furthermore, the plasticity of this system as a result of long term and intense interventions suggest the potential for music making activities (e.g., forms of singing) as an intervention for neurological and developmental disorders to learn and relearn associations between auditory and motor functions such as vocal motor functions. © 2015 Elsevier B.V. All rights reserved.

  17. Variability in functional brain networks predicts expertise during action observation.

    PubMed

    Amoruso, Lucía; Ibáñez, Agustín; Fonseca, Bruno; Gadea, Sebastián; Sedeño, Lucas; Sigman, Mariano; García, Adolfo M; Fraiman, Ricardo; Fraiman, Daniel

    2017-02-01

    Observing an action performed by another individual activates, in the observer, similar circuits as those involved in the actual execution of that action. This activation is modulated by prior experience; indeed, sustained training in a particular motor domain leads to structural and functional changes in critical brain areas. Here, we capitalized on a novel graph-theory approach to electroencephalographic data (Fraiman et al., 2016) to test whether variability in functional brain networks implicated in Tango observation can discriminate between groups differing in their level of expertise. We found that experts and beginners significantly differed in the functional organization of task-relevant networks. Specifically, networks in expert Tango dancers exhibited less variability and a more robust functional architecture. Notably, these expertise-dependent effects were captured within networks derived from electrophysiological brain activity recorded in a very short time window (2s). In brief, variability in the organization of task-related networks seems to be a highly sensitive indicator of long-lasting training effects. This finding opens new methodological and theoretical windows to explore the impact of domain-specific expertise on brain plasticity, while highlighting variability as a fruitful measure in neuroimaging research. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Pathological anxiety and function/dysfunction in the brain's fear/defense circuitry.

    PubMed

    Lang, Peter J; McTeague, Lisa M; Bradley, Margaret M

    2014-01-01

    Research from the University of Florida Center for the Study of Emotion and Attention aims to develop neurobiological measures that objectively discriminate among symptom patterns in patients with anxiety disorders. From this perspective, anxiety and mood pathologies are considered to be brain disorders, resulting from dysfunction and maladaptive plasticity in the neural circuits that determine fearful/defensive and appetitive/reward behavior (Insel et al., 2010). We review recent studies indicating that an enhanced probe startle reflex during the processing of fear memory cues (mediated by cortico-limbic circuitry and thus indicative of plastic brain changes), varies systematically in strength over a spectrum-wide dimension of anxiety pathology-across and within diagnoses-extending from strong focal fear reactions to a consistently blunted reaction in patients with more generalized anxiety and comorbid mood disorders. Preliminary studies with functional magnetic resonance imaging (fMRI) encourage the hypothesis that fear/defense circuit dysfunction covaries with this same dimension of psychopathology. Plans are described for an extended study of the brain's motivation circuitry in anxiety spectrum patients, with the aim of defining the specifics of circuit dysfunction in severe disorders. A sub-project explores the use of real-time fMRI feedback in circuit analysis and as a modality to up-regulate circuit function in the context of blunted affect.

  19. Intraoperative mapping during repeat awake craniotomy reveals the functional plasticity of adult cortex.

    PubMed

    Southwell, Derek G; Hervey-Jumper, Shawn L; Perry, David W; Berger, Mitchel S

    2016-05-01

    OBJECT To avoid iatrogenic injury during the removal of intrinsic cerebral neoplasms such as gliomas, direct electrical stimulation (DES) is used to identify cortical and subcortical white matter pathways critical for language, motor, and sensory function. When a patient undergoes more than 1 brain tumor resection as in the case of tumor recurrence, the use of DES provides an unusual opportunity to examine brain plasticity in the setting of neurological disease. METHODS The authors examined 561 consecutive cases in which patients underwent DES mapping during surgery forglioma resection. "Positive" and "negative" sites-discrete cortical regions where electrical stimulation did (positive) or did not (negative) produce transient sensory, motor, or language disturbance-were identified prior to tumor resection and documented by intraoperative photography for categorization into functional maps. In this group of 561 patients, 18 were identified who underwent repeat surgery in which 1 or more stimulation sites overlapped with those tested during the initial surgery. The authors compared intraoperative sensory, motor, or language mapping results between initial and repeat surgeries, and evaluated the clinical outcomes for these patients. RESULTS A total of 117 sites were tested for sensory (7 sites, 6.0%), motor (9 sites, 7.7%), or language (101 sites, 86.3%) function during both initial and repeat surgeries. The mean interval between surgical procedures was 4.1 years. During initial surgeries, 95 (81.2%) of 117 sites were found to be negative and 22 (18.8%) of 117 sites were found to be positive. During repeat surgeries, 103 (88.0%) of 117 sites were negative and 14 (12.0%) of 117 were positive. Of the 95 sites that were negative at the initial surgery, 94 (98.9%) were also negative at the repeat surgery, while 1 (1.1%) site was found to be positive. Of the 22 sites that were initially positive, 13 (59.1%) remained positive at repeat surgery, while 9 (40.9%) had become

  20. Chronic In Vivo Imaging Shows No Evidence of Dendritic Plasticity or Functional Remapping in the Contralesional Cortex after Stroke

    PubMed Central

    Johnston, David G.; Denizet, Marie; Mostany, Ricardo

    2013-01-01

    Most stroke survivors exhibit a partial recovery from their deficits. This presumably occurs because of remapping of lost capabilities to functionally related brain areas. Functional brain imaging studies suggest that remapping in the contralateral uninjured cortex might represent a transient stage of compensatory plasticity. Some postmortem studies have also shown that cortical lesions, including stroke, can trigger dendritic plasticity in the contralateral hemisphere, but the data are controversial. We used longitudinal in vivo two-photon microscopy in the contralateral homotopic cortex to record changes in dendritic spines of layer 5 pyramidal neurons in green fluorescent protein mice. We could not detect de novo growth of dendrites or changes in the density or turnover of spines for up to 4 weeks after stroke. We also used intrinsic optical signal imaging to investigate whether the forepaw (FP) sensory representation is remapped to the spared homotopic cortex after stroke. Stimulation of the contralateral FP reliably produced strong intrinsic signals in the spared hemisphere, but we could never detect a signal with ipsilateral FP stimulation after stroke. This lack of contralateral plasticity at the level of apical dendrites of layer 5 pyramidal neurons and FP sensory maps suggests that the contralesional cortex may not contribute to functional recovery after stroke and that, at least in mice, the peri-infarct cortex plays the dominant role in postischemic plasticity. PMID:22499800

  1. Chronic in vivo imaging shows no evidence of dendritic plasticity or functional remapping in the contralesional cortex after stroke.

    PubMed

    Johnston, David G; Denizet, Marie; Mostany, Ricardo; Portera-Cailliau, Carlos

    2013-04-01

    Most stroke survivors exhibit a partial recovery from their deficits. This presumably occurs because of remapping of lost capabilities to functionally related brain areas. Functional brain imaging studies suggest that remapping in the contralateral uninjured cortex might represent a transient stage of compensatory plasticity. Some postmortem studies have also shown that cortical lesions, including stroke, can trigger dendritic plasticity in the contralateral hemisphere, but the data are controversial. We used longitudinal in vivo two-photon microscopy in the contralateral homotopic cortex to record changes in dendritic spines of layer 5 pyramidal neurons in green fluorescent protein mice. We could not detect de novo growth of dendrites or changes in the density or turnover of spines for up to 4 weeks after stroke. We also used intrinsic optical signal imaging to investigate whether the forepaw (FP) sensory representation is remapped to the spared homotopic cortex after stroke. Stimulation of the contralateral FP reliably produced strong intrinsic signals in the spared hemisphere, but we could never detect a signal with ipsilateral FP stimulation after stroke. This lack of contralateral plasticity at the level of apical dendrites of layer 5 pyramidal neurons and FP sensory maps suggests that the contralesional cortex may not contribute to functional recovery after stroke and that, at least in mice, the peri-infarct cortex plays the dominant role in postischemic plasticity.

  2. Different Plasticity Patterns of Language Function in Children With Perinatal and Childhood Stroke

    PubMed Central

    Tomberg, Tiiu; Kepler, Joosep; Laugesaar, Rael; Kaldoja, Mari-Liis; Kepler, Kalle; Kolk, Anneli

    2014-01-01

    Plasticity of language function after brain damage can depend on maturation of the brain. Children with left-hemisphere perinatal (n = 7) or childhood stroke (n = 5) and 12 controls were investigated using functional magnetic resonance imaging. The verb generation and the sentence comprehension tasks were employed to activate the expressive and receptive language areas, respectively. Weighted laterality indices were calculated and correlated with results assessed by neuropsychological test battery. Compared to controls, children with childhood stroke showed significantly lower mean scores for the expressive (P < .05) and receptive (P = .05) language tests. On functional magnetic resonance imaging they showed left-side cortical activation, as did controls. Perinatal stroke patients showed atypical right-side or bilateral language lateralization during both tasks. Negative correlation for stroke patients was found between scores for expressive language tests and laterality index during the verb generation task. (Re)organization of language function differs in children with perinatal and childhood stroke and correlates with neurocognitive performance. PMID:23748202

  3. Exercising our brains: how physical activity impacts synaptic plasticity in the dentate gyrus.

    PubMed

    Christie, Brian R; Eadie, Brennan D; Kannangara, Timal S; Robillard, Julie M; Shin, James; Titterness, Andrea K

    2008-01-01

    Exercise that engages the cardiovascular system has a myriad of effects on the body; however, we usually do not give much consideration to the benefits it may have for our minds. An increasing body of evidence suggests that exercise can have some remarkable effects on the brain. In this article, we will introduce how exercise can impact the capacity for neurons in the brain to communicate with one another. To properly convey this information, we will first briefly introduce the field of synaptic plasticity and then examine how the introduction of exercise to the experimental setting can actually alter the basic properties of synaptic plasticity in the brain. Next, we will examine some of the candidate physiological processes that might underlay these alterations. Finally, we will close by noting that, taken together, this data points toward our brains being dynamic systems that are in a continual state of flux and that physical exercise may help us to maximize the performance of both our body and our minds.

  4. Effects of exercise and diet change on cognition function and synaptic plasticity in high fat diet induced obese rats

    PubMed Central

    2013-01-01

    Background Nutritional imbalance-induced obesity causes a variety of diseases and in particular is an important cause of cognitive function decline. This study was performed on Sprague Dawley (SD) rats with 13-weeks of high fat diet-induced obesity in connection to the effects of regular exercise and dietary control for 8 weeks on the synaptic plasticity and cognitive abilities of brain. Methods Four weeks-old SD rats were adopted classified into normal-normal diet-sedentary (NNS, n = 8), obesity-high fat diet-sedentary (OHS, n = 8), obesity-high fat diet-training (OHT, n = 8), obesity-normal diet-sedentary (ONS, n = 8) and obesity- normal diet-training (ONT, n = 8). The exercise program consisted of a treadmill exercise administered at a speed of 8 m/min for 1–4 weeks, and 14 m/min for 5–8 weeks. The Western blot method was used to measure the expression of NGF, BDNF, p38MAPK and p-p38MAPK proteins in hippocampus of the brain, and expressions of NGF, BDNF, TrkA, TrkB, CREB and synapsin1 mRNA were analyzed through qRT-PCR. Results The results suggest cognitive function-related protein levels and mRNA expression to be significantly decreased in the hippocampus of obese rats, and synaptic plasticity as well as cognitive function signaling sub-pathway factors were also significantly decreased. In addition, 8-weeks exercises and treatment by dietary change had induced significant increase of cognitive function-related protein levels and mRNA expression as well as synaptic plasticity and cognitive function signaling sub-pathway factors in obese rats. In particular, the combined treatment had presented even more positive effect. Conclusions Therefore, it was determined that the high fat diet-induced obesity decreases plasticity and cognitive function of the brain, but was identified as being improved by exercises and dietary changes. In particular, it is considered that regular exercise has positive effects on memory span and learning

  5. Short- and long-term functional plasticity of white matter induced by oligodendrocyte depolarization in the hippocampus.

    PubMed

    Yamazaki, Yoshihiko; Fujiwara, Hiroki; Kaneko, Kenya; Hozumi, Yasukazu; Xu, Ming; Ikenaka, Kazuhiro; Fujii, Satoshi; Tanaka, Kenji F

    2014-08-01

    Plastic changes in white matter have received considerable attention in relation to normal cognitive function and learning. Oligodendrocytes and myelin, which constitute the white matter in the central nervous system, can respond to neuronal activity with prolonged depolarization of membrane potential and/or an increase in the intracellular Ca(2+) concentration. Depolarization of oligodendrocytes increases the conduction velocity of an action potential along axons myelinated by the depolarized oligodendrocytes, indicating that white matter shows functional plasticity, as well as structural plasticity. However, the properties and mechanism of oligodendrocyte depolarization-induced functional plastic changes in white matter are largely unknown. Here, we investigated the functional plasticity of white matter in the hippocampus using mice with oligodendrocytes expressing channelrhodopsin-2. Using extracellular recordings of compound action potentials at the alveus of the hippocampus, we demonstrated that light-evoked depolarization of oligodendrocytes induced early- and late-onset facilitation of axonal conduction that was dependent on the magnitude of oligodendrocyte depolarization; the former lasted for approximately 10 min, whereas the latter continued for up to 3 h. Using whole-cell recordings from CA1 pyramidal cells and recordings of antidromic action potentials, we found that the early-onset short-lasting component included the synchronization of action potentials. Moreover, pharmacological analysis demonstrated that the activation of Ba(2+) -sensitive K(+) channels was involved in early- and late-onset facilitation, whereas 4-aminopyridine-sensitive K(+) channels were only involved in the early-onset component. These results demonstrate that oligodendrocyte depolarization induces short- and long-term functional plastic changes in the white matter of the hippocampus and plays active roles in brain functions. © 2014 Wiley Periodicals, Inc.

  6. Adenosine Kinase Deficiency in the Brain Results in Maladaptive Synaptic Plasticity.

    PubMed

    Sandau, Ursula S; Colino-Oliveira, Mariana; Jones, Abbie; Saleumvong, Bounmy; Coffman, Shayla Q; Liu, Long; Miranda-Lourenço, Catarina; Palminha, Cátia; Batalha, Vânia L; Xu, Yiming; Huo, Yuqing; Diógenes, Maria J; Sebastião, Ana M; Boison, Detlev

    2016-11-30

    Adenosine kinase (ADK) deficiency in human patients (OMIM:614300) disrupts the methionine cycle and triggers hypermethioninemia, hepatic encephalopathy, cognitive impairment, and seizures. To identify whether this neurological phenotype is intrinsically based on ADK deficiency in the brain or if it is secondary to liver dysfunction, we generated a mouse model with a brain-wide deletion of ADK by introducing a Nestin-Cre transgene into a line of conditional ADK deficient Adk fl/fl mice. These Adk Δbrain mice developed a progressive stress-induced seizure phenotype associated with spontaneous convulsive seizures and profound deficits in hippocampus-dependent learning and memory. Pharmacological, biochemical, and electrophysiological studies suggest enhanced adenosine levels around synapses resulting in an enhanced adenosine A 1 receptor (A 1 R)-dependent protective tone despite lower expression levels of the receptor. Theta-burst-induced LTP was enhanced in the mutants and this was dependent on adenosine A 2A receptor (A 2A R) and tropomyosin-related kinase B signaling, suggesting increased activation of these receptors in synaptic plasticity phenomena. Accordingly, reducing adenosine A 2A receptor activity in Adk Δbrain mice restored normal associative learning and contextual memory and attenuated seizure risk. We conclude that ADK deficiency in the brain triggers neuronal adaptation processes that lead to dysregulated synaptic plasticity, cognitive deficits, and increased seizure risk. Therefore, ADK mutations have an intrinsic effect on brain physiology and may present a genetic risk factor for the development of seizures and learning impairments. Furthermore, our data show that blocking A 2A R activity therapeutically can attenuate neurological symptoms in ADK deficiency. A novel human genetic condition (OMIM #614300) that is based on mutations in the adenosine kinase (Adk) gene has been discovered recently. Affected patients develop hepatic encephalopathy

  7. Modulating Hippocampal Plasticity with In Vivo Brain Stimulation

    DTIC Science & Technology

    2015-09-16

    persists in the Schaffer collateral–CA1 region of the hippocampus . NMDA-dependent LTP has been shown to be essential for learning and memory ...S114 –S121. CrossRef Medline Neves G, Cooke SF, Bliss TV (2008) Synaptic plasticity, memory and the hippocampus : a neural network approach to causality...and memory . Understanding such molecular effects will lead to a better understanding of the mechanisms by which brain stimulation produces its effects

  8. Early Life Stress Differentially Modulates Distinct Forms of Brain Plasticity in Young and Adult Mice

    PubMed Central

    Reichardt, Wilfried; Clark, Kristin; Geiger, Julia; Gross, Claus M.; Heyer, Andrea; Neagu, Valentin; Bhatia, Harsharan; Atas, Hasan C.; Fiebich, Bernd L.; Bischofberger, Josef; Haas, Carola A.; Normann, Claus

    2012-01-01

    Background Early life trauma is an important risk factor for many psychiatric and somatic disorders in adulthood. As a growing body of evidence suggests that brain plasticity is disturbed in affective disorders, we examined the short-term and remote effects of early life stress on different forms of brain plasticity. Methodology/Principal Findings Mice were subjected to early deprivation by individually separating pups from their dam in the first two weeks after birth. Distinct forms of brain plasticity were assessed in the hippocampus by longitudinal MR volumetry, immunohistochemistry of neurogenesis, and whole-cell patch-clamp measurements of synaptic plasticity. Depression-related behavior was assessed by the forced swimming test in adult animals. Neuropeptides and their receptors were determined by real-time PCR and immunoassay. Early maternal deprivation caused a loss of hippocampal volume, which returned to normal in adulthood. Adult neurogenesis was unaffected by early life stress. Long-term synaptic potentiation, however, was normal immediately after the end of the stress protocol but was impaired in adult animals. In the forced swimming test, adult animals that had been subjected to early life stress showed increased immobility time. Levels of substance P were increased both in young and adult animals after early deprivation. Conclusion Hippocampal volume was affected by early life stress but recovered in adulthood which corresponded to normal adult neurogenesis. Synaptic plasticity, however, exhibited a delayed impairment. The modulation of synaptic plasticity by early life stress might contribute to affective dysfunction in adulthood. PMID:23071534

  9. Executive functions in mild cognitive impairment: emergence and breakdown of neural plasticity.

    PubMed

    Clément, Francis; Gauthier, Serge; Belleville, Sylvie

    2013-05-01

    Our goal was to test the effect of disease severity on the brain activation associated with two executive processes: manipulation and divided attention. This was achieved by administrating a manipulation task and a divided attention task using functional magnetic resonance imaging to 24 individuals with mild cognitive impairment (MCI) and 14 healthy controls matched for age, sex and education. The Mattis Dementia Rating Scale was used to divide persons with MCI into those with better and worse cognitive performances. Both tasks were associated with more brain activation in the MCI group with higher cognition than in healthy controls, particularly in the left frontal areas. Correlational analyses indicated that greater activation in a frontostriatal network hyperactivated by the higher-cognition group was related with better task performance, suggesting that these activations may support functional reorganization of a compensatory nature. By contrast, the lower-cognition group failed to show greater cerebral hyperactivation than controls during the divided attention task and, during the manipulation task, and showed less brain activation than controls in the left ventrolateral cortex, a region commonly hypoactivated in patients with Alzheimer's disease. These findings indicate that, during the early phase of MCI, executive functioning benefits from neural reorganization, but that a breakdown of this brain plasticity characterizes the late stages of MCI. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Brain plasticity and functionality explored by nonlinear optical microscopy

    NASA Astrophysics Data System (ADS)

    Sacconi, L.; Allegra, L.; Buffelli, M.; Cesare, P.; D'Angelo, E.; Gandolfi, D.; Grasselli, G.; Lotti, J.; Mapelli, J.; Strata, P.; Pavone, F. S.

    2010-02-01

    In combination with fluorescent protein (XFP) expression techniques, two-photon microscopy has become an indispensable tool to image cortical plasticity in living mice. In parallel to its application in imaging, multi-photon absorption has also been used as a tool for the dissection of single neurites with submicrometric precision without causing any visible collateral damage to the surrounding neuronal structures. In this work, multi-photon nanosurgery is applied to dissect single climbing fibers expressing GFP in the cerebellar cortex. The morphological consequences are then characterized with time lapse 3-dimensional two-photon imaging over a period of minutes to days after the procedure. Preliminary investigations show that the laser induced fiber dissection recalls a regenerative process in the fiber itself over a period of days. These results show the possibility of this innovative technique to investigate regenerative processes in adult brain. In parallel with imaging and manipulation technique, non-linear microscopy offers the opportunity to optically record electrical activity in intact neuronal networks. In this work, we combined the advantages of second-harmonic generation (SHG) with a random access (RA) excitation scheme to realize a new microscope (RASH) capable of optically recording fast membrane potential events occurring in a wide-field of view. The RASH microscope, in combination with bulk loading of tissue with FM4-64 dye, was used to simultaneously record electrical activity from clusters of Purkinje cells in acute cerebellar slices. Complex spikes, both synchronous and asynchronous, were optically recorded simultaneously across a given population of neurons. Spontaneous electrical activity was also monitored simultaneously in pairs of neurons, where action potentials were recorded without averaging across trials. These results show the strength of this technique in describing the temporal dynamics of neuronal assemblies, opening promising

  11. Physical exercise in overweight to obese individuals induces metabolic- and neurotrophic-related structural brain plasticity

    PubMed Central

    Mueller, Karsten; Möller, Harald E.; Horstmann, Annette; Busse, Franziska; Lepsien, Jöran; Blüher, Matthias; Stumvoll, Michael; Villringer, Arno; Pleger, Burkhard

    2015-01-01

    Previous cross-sectional studies on body-weight-related alterations in brain structure revealed profound changes in the gray matter (GM) and white matter (WM) that resemble findings obtained from individuals with advancing age. This suggests that obesity may lead to structural brain changes that are comparable with brain aging. Here, we asked whether weight-loss-dependent improved metabolic and neurotrophic functioning parallels the reversal of obesity-related alterations in brain structure. To this end we applied magnetic resonance imaging (MRI) together with voxel-based morphometry and diffusion-tensor imaging in overweight to obese individuals who participated in a fitness course with intensive physical training twice a week over a period of 3 months. After the fitness course, participants presented, with inter-individual heterogeneity, a reduced body mass index (BMI), reduced serum leptin concentrations, elevated high-density lipoprotein-cholesterol (HDL-C), and alterations of serum brain-derived neurotrophic factor (BDNF) concentrations suggesting changes of metabolic and neurotrophic function. Exercise-dependent changes in BMI and serum concentration of BDNF, leptin, and HDL-C were related to an increase in GM density in the left hippocampus, the insular cortex, and the left cerebellar lobule. We also observed exercise-dependent changes of diffusivity parameters in surrounding WM structures as well as in the corpus callosum. These findings suggest that weight-loss due to physical exercise in overweight to obese participants induces profound structural brain plasticity, not primarily of sensorimotor brain regions involved in physical exercise, but of regions previously reported to be structurally affected by an increased body weight and functionally implemented in gustation and cognitive processing. PMID:26190989

  12. Method of euthanasia affects amygdala plasticity in horizontal brain slices from mice.

    PubMed

    Kulisch, C; Eckers, N; Albrecht, D

    2011-10-15

    An important consideration in any terminal experiment is the method used for euthanizing animals. Although the prime consideration is that the method is humane, some methods can have a dramatic impact on experimental outcomes. The standard inhalant anesthetic for experiments in brain slices is isoflurane, which replaced the flammable ethers used in the pioneer days of surgery. To our knowledge, there are no data available evaluating the effects of the method of euthanasia on plasticity changes in brain slices. Here, we compare the magnitude of long-term potentiation (LTP) and long-term depression (LTD) in the lateral nucleus of the amygdala (LA) after euthanasia following either ether or isoflurane anesthesia, as well as in mice decapitated without anesthesia. We found no differences in input-output curves using different methods of euthanasia. The LTP magnitude did not differ between ether and normal isoflurane anesthesia. After deep isoflurane anesthesia LTP induced by high frequency stimulation of cortical or intranuclear afferents was significantly reduced compared to ether anesthesia. In contrast to ether anesthesia and decapitation without anesthesia, the low frequency stimulation of cortical afferents induced a reliable LA-LTD after deep isoflurane anesthesia. Low frequency stimulation of intranuclear afferents only caused LTD after pretreatment with ether anesthesia. The results demonstrate that the method of euthanasia can influence brain plasticity for hours at least in the interface chamber. Therefore, the method of euthanasia is an important consideration when brain plasticity will be evaluated. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Diet and cognition: interplay between cell metabolism and neuronal plasticity.

    PubMed

    Gomez-Pinilla, Fernando; Tyagi, Ethika

    2013-11-01

    To discuss studies in humans and animals revealing the ability of foods to benefit the brain: new information with regards to mechanisms of action and the treatment of neurological and psychiatric disorders. Dietary factors exert their effects on the brain by affecting molecular events related to the management of energy metabolism and synaptic plasticity. Energy metabolism influences neuronal function, neuronal signaling, and synaptic plasticity, ultimately affecting mental health. Epigenetic regulation of neuronal plasticity appears as an important mechanism by which foods can prolong their effects on long-term neuronal plasticity. The prime focus of the discussion is to emphasize the role of cell metabolism as a mediator for the action of foods on the brain. Oxidative stress promotes damage to phospholipids present in the plasma membrane such as the omega-3 fatty acid docosahexenoic acid, disrupting neuronal signaling. Thus, dietary docosahexenoic acid seems crucial for supporting plasma membrane function, interneuronal signaling, and cognition. The dual action of brain-derived neurotrophic factor in neuronal metabolism and synaptic plasticity is crucial for activating signaling cascades under the action of diet and other environmental factors, using mechanisms of epigenetic regulation.

  14. Diet and cognition: interplay between cell metabolism and neuronal plasticity

    PubMed Central

    Gomez-Pinilla, Fernando; Tyagi, Ethika

    2014-01-01

    Purpose of Study To discuss studies in humans and animals revealing the ability of foods to benefit the brain: new information with regards to mechanisms of action and the treatment of neurological and psychiatric disorders. Recent Findings Dietary factors exert their effects on the brain by affecting molecular events related to the management of energy metabolism and synaptic plasticity. Energy metabolism influences neuronal function, neuronal signaling, and synaptic plasticity, ultimately affecting mental health. Epigenetic regulation of neuronal plasticity appears as an important mechanism by which foods can prolong their effects on long term neuronal plasticity. Summary The prime focus of the discussion is to emphasize the role of cell metabolism as a mediator for the action of foods on the brain. Oxidative stress promotes damage to phospholipids present in the plasma membrane such as the omega-3 fatty acid DHA, disrupting neuronal signaling. Thus, dietary DHA seems crucial for supporting plasma membrane function, interneuronal signaling, and cognition. The dual action of brain-derived neurotrophic factor (BDNF) in neuronal metabolism and synaptic plasticity is crucial for activating signaling cascades under the action of diet and other environmental factors, using mechanisms of epigenetic regulation. PMID:24071781

  15. The blind brain: how (lack of) vision shapes the morphological and functional architecture of the human brain.

    PubMed

    Ricciardi, Emiliano; Handjaras, Giacomo; Pietrini, Pietro

    2014-11-01

    Since the early days, how we represent the world around us has been a matter of philosophical speculation. Over the last few decades, modern neuroscience, and specifically the development of methodologies for the structural and the functional exploration of the brain have made it possible to investigate old questions with an innovative approach. In this brief review, we discuss the main findings from a series of brain anatomical and functional studies conducted in sighted and congenitally blind individuals by our's and others' laboratories. Historically, research on the 'blind brain' has focused mainly on the cross-modal plastic changes that follow sensory deprivation. More recently, a novel line of research has been developed to determine to what extent visual experience is truly required to achieve a representation of the surrounding environment. Overall, the results of these studies indicate that most of the brain fine morphological and functional architecture is programmed to develop and function independently from any visual experience. Distinct cortical areas are able to process information in a supramodal fashion, that is, independently from the sensory modality that carries that information to the brain. These observations strongly support the hypothesis of a modality-independent, i.e. more abstract, cortical organization, and may contribute to explain how congenitally blind individuals may interact efficiently with an external world that they have never seen. © 2014 by the Society for Experimental Biology and Medicine.

  16. Mother’s voice and heartbeat sounds elicit auditory plasticity in the human brain before full gestation

    PubMed Central

    Webb, Alexandra R.; Heller, Howard T.; Benson, Carol B.; Lahav, Amir

    2015-01-01

    Brain development is largely shaped by early sensory experience. However, it is currently unknown whether, how early, and to what extent the newborn’s brain is shaped by exposure to maternal sounds when the brain is most sensitive to early life programming. The present study examined this question in 40 infants born extremely prematurely (between 25- and 32-wk gestation) in the first month of life. Newborns were randomized to receive auditory enrichment in the form of audio recordings of maternal sounds (including their mother’s voice and heartbeat) or routine exposure to hospital environmental noise. The groups were otherwise medically and demographically comparable. Cranial ultrasonography measurements were obtained at 30 ± 3 d of life. Results show that newborns exposed to maternal sounds had a significantly larger auditory cortex (AC) bilaterally compared with control newborns receiving standard care. The magnitude of the right and left AC thickness was significantly correlated with gestational age but not with the duration of sound exposure. Measurements of head circumference and the widths of the frontal horn (FH) and the corpus callosum (CC) were not significantly different between the two groups. This study provides evidence for experience-dependent plasticity in the primary AC before the brain has reached full-term maturation. Our results demonstrate that despite the immaturity of the auditory pathways, the AC is more adaptive to maternal sounds than environmental noise. Further studies are needed to better understand the neural processes underlying this early brain plasticity and its functional implications for future hearing and language development. PMID:25713382

  17. The Radical Plasticity Thesis: How the Brain Learns to be Conscious.

    PubMed

    Cleeremans, Axel

    2011-01-01

    In this paper, I explore the idea that consciousness is something that the brain learns to do rather than an intrinsic property of certain neural states and not others. Starting from the idea that neural activity is inherently unconscious, the question thus becomes: How does the brain learn to be conscious? I suggest that consciousness arises as a result of the brain's continuous attempts at predicting not only the consequences of its actions on the world and on other agents, but also the consequences of activity in one cerebral region on activity in other regions. By this account, the brain continuously and unconsciously learns to redescribe its own activity to itself, so developing systems of meta-representations that characterize and qualify the target first-order representations. Such learned redescriptions, enriched by the emotional value associated with them, form the basis of conscious experience. Learning and plasticity are thus central to consciousness, to the extent that experiences only occur in experiencers that have learned to know they possess certain first-order states and that have learned to care more about certain states than about others. This is what I call the "Radical Plasticity Thesis." In a sense thus, this is the enactive perspective, but turned both inwards and (further) outwards. Consciousness involves "signal detection on the mind"; the conscious mind is the brain's (non-conceptual, implicit) theory about itself. I illustrate these ideas through neural network models that simulate the relationships between performance and awareness in different tasks.

  18. Effects of Lipoic Acid on High-Fat Diet-Induced Alteration of Synaptic Plasticity and Brain Glucose Metabolism: A PET/CT and 13C-NMR Study.

    PubMed

    Liu, Zhigang; Patil, Ishan; Sancheti, Harsh; Yin, Fei; Cadenas, Enrique

    2017-07-14

    High-fat diet (HFD)-induced obesity is accompanied by insulin resistance and compromised brain synaptic plasticity through the impairment of insulin-sensitive pathways regulating neuronal survival, learning, and memory. Lipoic acid is known to modulate the redox status of the cell and has insulin mimetic effects. This study was aimed at determining the effects of dietary administration of lipoic acid on a HFD-induced obesity model in terms of (a) insulin signaling, (b) brain glucose uptake and neuronal- and astrocytic metabolism, and (c) synaptic plasticity. 3-Month old C57BL/6J mice were divided into 4 groups exposed to their respective treatments for 9 weeks: (1) normal diet, (2) normal diet plus lipoic acid, (3) HFD, and (4) HFD plus lipoic acid. HFD resulted in higher body weight, development of insulin resistance, lower brain glucose uptake and glucose transporters, alterations in glycolytic and acetate metabolism in neurons and astrocytes, and ultimately synaptic plasticity loss evident by a decreased long-term potentiation (LTP). Lipoic acid treatment in mice on HFD prevented several HFD-induced metabolic changes and preserved synaptic plasticity. The metabolic and physiological changes in HFD-fed mice, including insulin resistance, brain glucose uptake and metabolism, and synaptic function, could be preserved by the insulin-like effect of lipoic acid.

  19. Indestructible plastic: the neuroscience of the new aging brain.

    PubMed

    Holman, Constance; de Villers-Sidani, Etienne

    2014-01-01

    In recent years, research on experience-dependent plasticity has provided valuable insight on adaptation to environmental input across the lifespan, and advances in understanding the minute cellular changes underlying the brain's capacity for self-reorganization have opened exciting new possibilities for treating illness and injury. Ongoing work in this line of inquiry has also come to deeply influence another field: cognitive neuroscience of the normal aging. This complex process, once considered inevitable or beyond the reach of treatment, has been transformed into an arena of intense investigation and strategic intervention. However, important questions remain about this characterization of the aging brain, and the assumptions it makes about the social, cultural, and biological space occupied by cognition in the older individual and body. The following paper will provide a critical examination of the move from basic experiments on the neurophysiology of experience-dependent plasticity to the growing market for (and public conception of) cognitive aging as a medicalized space for intervention by neuroscience-backed technologies. Entangled with changing concepts of normality, pathology, and self-preservation, we will argue that this new understanding, led by personalized cognitive training strategies, is approaching a point where interdisciplinary research is crucial to provide a holistic and nuanced understanding of the aging process. This new outlook will allow us to move forward in a space where our knowledge, like our new conception of the brain, is never static.

  20. Neuroanatomical prerequisites for language functions in the maturing brain.

    PubMed

    Brauer, Jens; Anwander, Alfred; Friederici, Angela D

    2011-02-01

    The 2 major language-relevant cortical regions in the human brain, Broca's area and Wernicke's area, are connected via the fibers of the arcuate fasciculus/superior longitudinal fasciculus (AF/SLF). Here, we compared this pathway in adults and children and its relation to language processing during development. Comparison of fiber properties demonstrated lower anisotropy in children's AF/SLF, arguing for an immature status of this particular pathway with conceivably a lower degree of myelination. Combined diffusion tensor imaging (DTI) data and functional magnetic resonance imaging (fMRI) data indicated that in adults the termination of the AF/SLF fiber projection is compatible with functional activation in Broca's area, that is pars opercularis. In children, activation in Broca's area extended from the pars opercularis into the pars triangularis revealing an alternative connection to the temporal lobe (Wernicke's area) via the ventrally projecting extreme capsule fiber system. fMRI and DTI data converge to indicate that adults make use of a more confined language network than children based on ongoing maturation of the structural network. Our data suggest relations between language development and brain maturation and, moreover, indicate the brain's plasticity to adjust its function to available structural prerequisites.

  1. The Exercising Brain: Changes in Functional Connectivity Induced by an Integrated Multimodal Cognitive and Whole-Body Coordination Training

    PubMed Central

    Demirakca, Traute; Cardinale, Vita; Dehn, Sven; Ruf, Matthias; Ende, Gabriele

    2016-01-01

    This study investigated the impact of “life kinetik” training on brain plasticity in terms of an increased functional connectivity during resting-state functional magnetic resonance imaging (rs-fMRI). The training is an integrated multimodal training that combines motor and cognitive aspects and challenges the brain by introducing new and unfamiliar coordinative tasks. Twenty-one subjects completed at least 11 one-hour-per-week “life kinetik” training sessions in 13 weeks as well as before and after rs-fMRI scans. Additionally, 11 control subjects with 2 rs-fMRI scans were included. The CONN toolbox was used to conduct several seed-to-voxel analyses. We searched for functional connectivity increases between brain regions expected to be involved in the exercises. Connections to brain regions representing parts of the default mode network, such as medial frontal cortex and posterior cingulate cortex, did not change. Significant connectivity alterations occurred between the visual cortex and parts of the superior parietal area (BA7). Premotor area and cingulate gyrus were also affected. We can conclude that the constant challenge of unfamiliar combinations of coordination tasks, combined with visual perception and working memory demands, seems to induce brain plasticity expressed in enhanced connectivity strength of brain regions due to coactivation. PMID:26819776

  2. Margaret Kennard (1899–1975): Not a ‘Principle’ of Brain Plasticity But a Founding Mother of Developmental Neuropsychology

    PubMed Central

    Dennis, Maureen

    2009-01-01

    According to the ‘Kennard Principle’, there is a negative linear relation between age at brain injury and functional outcome. Other things being equal, the younger the lesioned organism, the better the outcome. But the ‘Kennard Principle’ is neither Kennard’s nor a principle. In her work, Kennard sought to explain the factors that predicted functional outcome (age, to be sure, but also staging, laterality, location, and number of brain lesions, and outcome domain) and the neural mechanisms that altered the lesioned brain’s functionality. This paper discusses Kennard’s life and years at Yale (1931–1943); considers the genesis and scope of her work on early-onset brain lesions, which represents an empirical and theoretical foundation for current developmental neuropsychology; offers an historical explanation of why the ‘Kennard Principle’ emerged in the context of early 1970s work on brain plasticity; shows why uncritical belief in the ‘Kennard Principle’ continues to shape current research and practice; and reviews the continuing importance of her work. PMID:20079891

  3. In vivo Visuotopic Brain Mapping with Manganese-Enhanced MRI and Resting-State Functional Connectivity MRI

    PubMed Central

    Chan, Kevin C.; Fan, Shu-Juan; Chan, Russell W.; Cheng, Joe S.; Zhou, Iris Y.; Wu, Ed X.

    2014-01-01

    The rodents are an increasingly important model for understanding the mechanisms of development, plasticity, functional specialization and disease in the visual system. However, limited tools have been available for assessing the structural and functional connectivity of the visual brain network globally, in vivo and longitudinally. There are also ongoing debates on whether functional brain connectivity directly reflects structural brain connectivity. In this study, we explored the feasibility of manganese-enhanced MRI (MEMRI) via 3 different routes of Mn2+ administration for visuotopic brain mapping and understanding of physiological transport in normal and visually deprived adult rats. In addition, resting-state functional connectivity MRI (RSfcMRI) was performed to evaluate the intrinsic functional network and structural-functional relationships in the corresponding anatomical visual brain connections traced by MEMRI. Upon intravitreal, subcortical, and intracortical Mn2+ injection, different topographic and layer-specific Mn enhancement patterns could be revealed in the visual cortex and subcortical visual nuclei along retinal, callosal, cortico-subcortical, transsynaptic and intracortical horizontal connections. Loss of visual input upon monocular enucleation to adult rats appeared to reduce interhemispheric polysynaptic Mn2+ transfer but not intra- or inter-hemispheric monosynaptic Mn2+ transport after Mn2+ injection into visual cortex. In normal adults, both structural and functional connectivity by MEMRI and RSfcMRI was stronger interhemispherically between bilateral primary/secondary visual cortex (V1/V2) transition zones (TZ) than between V1/V2 TZ and other cortical nuclei. Intrahemispherically, structural and functional connectivity was stronger between visual cortex and subcortical visual nuclei than between visual cortex and other subcortical nuclei. The current results demonstrated the sensitivity of MEMRI and RSfcMRI for assessing the

  4. Influence of Inflammation on Poststroke Plasticity

    PubMed Central

    Kossut, Malgorzata

    2013-01-01

    Age-related brain injuries including stroke are a leading cause of morbidity and mental disability worldwide. Most patients who survive stroke experience some degree of recovery. The restoration of lost functions can be explained by neuronal plasticity, understood as brain ability to reorganize and remodel itself in response to changed environmental requirements. However, stroke triggers a cascade of events which may prevent the normal development of the plastic changes. One of them may be inflammatory response initiated immediately after stroke, which has been found to contribute to neuronal injury. Some recent evidence though has suggested that inflammatory reaction can be also neuroprotective. This paper attempts to discuss the influence of poststroke inflammatory response on brain plasticity and stroke outcome. We also describe the recent anti-inflammatory strategies that have been effective for recovery in experimental stroke. PMID:23533818

  5. Non-verbal emotion communication training induces specific changes in brain function and structure

    PubMed Central

    Kreifelts, Benjamin; Jacob, Heike; Brück, Carolin; Erb, Michael; Ethofer, Thomas; Wildgruber, Dirk

    2013-01-01

    The perception of emotional cues from voice and face is essential for social interaction. However, this process is altered in various psychiatric conditions along with impaired social functioning. Emotion communication trainings have been demonstrated to improve social interaction in healthy individuals and to reduce emotional communication deficits in psychiatric patients. Here, we investigated the impact of a non-verbal emotion communication training (NECT) on cerebral activation and brain structure in a controlled and combined functional magnetic resonance imaging (fMRI) and voxel-based morphometry study. NECT-specific reductions in brain activity occurred in a distributed set of brain regions including face and voice processing regions as well as emotion processing- and motor-related regions presumably reflecting training-induced familiarization with the evaluation of face/voice stimuli. Training-induced changes in non-verbal emotion sensitivity at the behavioral level and the respective cerebral activation patterns were correlated in the face-selective cortical areas in the posterior superior temporal sulcus and fusiform gyrus for valence ratings and in the temporal pole, lateral prefrontal cortex and midbrain/thalamus for the response times. A NECT-induced increase in gray matter (GM) volume was observed in the fusiform face area. Thus, NECT induces both functional and structural plasticity in the face processing system as well as functional plasticity in the emotion perception and evaluation system. We propose that functional alterations are presumably related to changes in sensory tuning in the decoding of emotional expressions. Taken together, these findings highlight that the present experimental design may serve as a valuable tool to investigate the altered behavioral and neuronal processing of emotional cues in psychiatric disorders as well as the impact of therapeutic interventions on brain function and structure. PMID:24146641

  6. Non-verbal emotion communication training induces specific changes in brain function and structure.

    PubMed

    Kreifelts, Benjamin; Jacob, Heike; Brück, Carolin; Erb, Michael; Ethofer, Thomas; Wildgruber, Dirk

    2013-01-01

    The perception of emotional cues from voice and face is essential for social interaction. However, this process is altered in various psychiatric conditions along with impaired social functioning. Emotion communication trainings have been demonstrated to improve social interaction in healthy individuals and to reduce emotional communication deficits in psychiatric patients. Here, we investigated the impact of a non-verbal emotion communication training (NECT) on cerebral activation and brain structure in a controlled and combined functional magnetic resonance imaging (fMRI) and voxel-based morphometry study. NECT-specific reductions in brain activity occurred in a distributed set of brain regions including face and voice processing regions as well as emotion processing- and motor-related regions presumably reflecting training-induced familiarization with the evaluation of face/voice stimuli. Training-induced changes in non-verbal emotion sensitivity at the behavioral level and the respective cerebral activation patterns were correlated in the face-selective cortical areas in the posterior superior temporal sulcus and fusiform gyrus for valence ratings and in the temporal pole, lateral prefrontal cortex and midbrain/thalamus for the response times. A NECT-induced increase in gray matter (GM) volume was observed in the fusiform face area. Thus, NECT induces both functional and structural plasticity in the face processing system as well as functional plasticity in the emotion perception and evaluation system. We propose that functional alterations are presumably related to changes in sensory tuning in the decoding of emotional expressions. Taken together, these findings highlight that the present experimental design may serve as a valuable tool to investigate the altered behavioral and neuronal processing of emotional cues in psychiatric disorders as well as the impact of therapeutic interventions on brain function and structure.

  7. Role of voltage-gated L-type Ca2+ channel isoforms for brain function.

    PubMed

    Striessnig, J; Koschak, A; Sinnegger-Brauns, M J; Hetzenauer, A; Nguyen, N K; Busquet, P; Pelster, G; Singewald, N

    2006-11-01

    Voltage-gated LTCCs (L-type Ca2+ channels) are established drug targets for the treatment of cardiovascular diseases. LTCCs are also expressed outside the cardiovascular system. In the brain, LTCCs control synaptic plasticity in neurons, and DHP (dihydropyridine) LTCC blockers such as nifedipine modulate brain function (such as fear memory extinction and depression-like behaviour). Voltage-sensitive Ca2+ channels Cav1 .2 and Cav1.3 are the predominant brain LTCCs. As DHPs and other classes of organic LTCC blockers inhibit both isoforms, their pharmacological distinction is impossible and their individual contributions to defined brain functions remain largely unknown. Here, we summarize our recent experiments with two genetically modified mouse strains, which we generated to explore the individual biophysical features of Cav1.2 and Cav1.3 LTCCs and to determine their relative contributions to various physiological peripheral and neuronal functions. The results described here also allow predictions about the pharmacotherapeutic potential of isoform-selective LTCC modulators.

  8. Plastic brain mechanisms for attaining auditory temporal order judgment proficiency.

    PubMed

    Bernasconi, Fosco; Grivel, Jeremy; Murray, Micah M; Spierer, Lucas

    2010-04-15

    Accurate perception of the order of occurrence of sensory information is critical for the building up of coherent representations of the external world from ongoing flows of sensory inputs. While some psychophysical evidence reports that performance on temporal perception can improve, the underlying neural mechanisms remain unresolved. Using electrical neuroimaging analyses of auditory evoked potentials (AEPs), we identified the brain dynamics and mechanism supporting improvements in auditory temporal order judgment (TOJ) during the course of the first vs. latter half of the experiment. Training-induced changes in brain activity were first evident 43-76 ms post stimulus onset and followed from topographic, rather than pure strength, AEP modulations. Improvements in auditory TOJ accuracy thus followed from changes in the configuration of the underlying brain networks during the initial stages of sensory processing. Source estimations revealed an increase in the lateralization of initially bilateral posterior sylvian region (PSR) responses at the beginning of the experiment to left-hemisphere dominance at its end. Further supporting the critical role of left and right PSR in auditory TOJ proficiency, as the experiment progressed, responses in the left and right PSR went from being correlated to un-correlated. These collective findings provide insights on the neurophysiologic mechanism and plasticity of temporal processing of sounds and are consistent with models based on spike timing dependent plasticity. Copyright 2010 Elsevier Inc. All rights reserved.

  9. The Radical Plasticity Thesis: How the Brain Learns to be Conscious

    PubMed Central

    Cleeremans, Axel

    2011-01-01

    In this paper, I explore the idea that consciousness is something that the brain learns to do rather than an intrinsic property of certain neural states and not others. Starting from the idea that neural activity is inherently unconscious, the question thus becomes: How does the brain learn to be conscious? I suggest that consciousness arises as a result of the brain's continuous attempts at predicting not only the consequences of its actions on the world and on other agents, but also the consequences of activity in one cerebral region on activity in other regions. By this account, the brain continuously and unconsciously learns to redescribe its own activity to itself, so developing systems of meta-representations that characterize and qualify the target first-order representations. Such learned redescriptions, enriched by the emotional value associated with them, form the basis of conscious experience. Learning and plasticity are thus central to consciousness, to the extent that experiences only occur in experiencers that have learned to know they possess certain first-order states and that have learned to care more about certain states than about others. This is what I call the “Radical Plasticity Thesis.” In a sense thus, this is the enactive perspective, but turned both inwards and (further) outwards. Consciousness involves “signal detection on the mind”; the conscious mind is the brain's (non-conceptual, implicit) theory about itself. I illustrate these ideas through neural network models that simulate the relationships between performance and awareness in different tasks. PMID:21687455

  10. Plasticity of language-related brain function during recovery from stroke.

    PubMed

    Thulborn, K R; Carpenter, P A; Just, M A

    1999-04-01

    This study was undertaken to correlate functional recovery from aphasia after acute stroke with the temporal evolution of the anatomic, physiological, and functional changes as measured by MRI. Blood oxygenation level-dependent contrast and echo-planar MRI were used to map language comprehension in 6 normal adults and in 2 adult patients during recovery from acute stroke presenting with aphasia. Perfusion, diffusion, sodium, and conventional anatomic MRI were used to follow physiological and structural changes. The normal activation pattern for language comprehension showed activation predominately in left-sided Wernicke's and Broca's areas, with laterality ratios of 0.8 and 0.3, respectively. Recovery of the patient confirmed as having a completed stroke affecting Broca's area occurred rapidly with a shift of activation to the homologous region in the right hemisphere within 3 days, with continued rightward lateralization over 6 months. In the second patient, in whom mapping was performed fortuitously before stroke, recovery of a Wernicke's aphasia showed a similar increasing rightward shift in activation recruitment over 9 months after the event. Recovery of aphasia in adults can occur rapidly and is concomitant with an activation pattern that changes from left to a homologous right hemispheric pattern. Such recovery occurs even when the stroke evolves to completion. Such plasticity must be considered when evaluating stroke interventions based on behavioral and neurological measurements.

  11. Investigating brain functional evolution and plasticity using microelectrode array technology.

    PubMed

    Napoli, Alessandro; Obeid, Iyad

    2015-10-01

    The aim of this work was to investigate long and short-term plasticity responsible for memory formation in dissociated neuronal networks. In order to address this issue, a set of experiments was designed and implemented in which the microelectrode array electrode grid was divided into four quadrants, two of which were chronically stimulated, every two days for one hour with a stimulation paradigm that varied over time. Overall network and quadrant responses were then analyzed to quantify what level of plasticity took place in the network and how this was due to the stimulation interruption. The results demonstrate that there were no spatial differences in the stimulus-evoked activity within quadrants. Furthermore, the implemented stimulation protocol induced depression effects in the neuronal networks as demonstrated by the consistently lower network activity following stimulation sessions. Finally, the analysis demonstrated that the inhibitory effects of the stimulation decreased over time, thus suggesting a habituation phenomenon. These findings are sufficient to conclude that electrical stimulation is an important tool to interact with dissociated neuronal cultures, but localized stimuli are not enough to drive spatial synaptic potentiation or depression. On the contrary, the ability to modulate synaptic temporal plasticity was a feasible task to achieve by chronic network stimulation. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Promoting social plasticity in developmental disorders with non-invasive brain stimulation techniques

    PubMed Central

    Boggio, Paulo S.; Asthana, Manish K.; Costa, Thiago L.; Valasek, Cláudia A.; Osório, Ana A. C.

    2015-01-01

    Being socially connected directly impacts our basic needs and survival. People with deficits in social cognition might exhibit abnormal behaviors and face many challenges in our highly social-dependent world. These challenges and limitations are associated with a substantial economical and subjective impact. As many conditions where social cognition is affected are highly prevalent, more treatments have to be developed. Based on recent research, we review studies where non-invasive neuromodulatory techniques have been used to promote Social Plasticity in developmental disorders. We focused on three populations where non-invasive brain stimulation seems to be a promising approach in inducing social plasticity: Schizophrenia, Autism Spectrum Disorder (ASD) and Williams Syndrome (WS). There are still very few studies directly evaluating the effects of transcranial direct current stimulation (tDCS) and transcranial magnetic stimulation (TMS) in the social cognition of these populations. However, when considering the promising preliminary evidences presented in this review and the limited amount of clinical interventions available for treating social cognition deficits in these populations today, it is clear that the social neuroscientist arsenal may profit from non-invasive brain stimulation techniques for rehabilitation and promotion of social plasticity. PMID:26388712

  13. Neural Plastic Effects of Cognitive Training on Aging Brain

    PubMed Central

    Leung, Natalie T. Y.; Tam, Helena M. K.; Chu, Leung W.; Kwok, Timothy C. Y.; Chan, Felix; Lam, Linda C. W.; Woo, Jean; Lee, Tatia M. C.

    2015-01-01

    Increasing research has evidenced that our brain retains a capacity to change in response to experience until late adulthood. This implies that cognitive training can possibly ameliorate age-associated cognitive decline by inducing training-specific neural plastic changes at both neural and behavioral levels. This longitudinal study examined the behavioral effects of a systematic thirteen-week cognitive training program on attention and working memory of older adults who were at risk of cognitive decline. These older adults were randomly assigned to the Cognitive Training Group (n = 109) and the Active Control Group (n = 100). Findings clearly indicated that training induced improvement in auditory and visual-spatial attention and working memory. The training effect was specific to the experience provided because no significant difference in verbal and visual-spatial memory between the two groups was observed. This pattern of findings is consistent with the prediction and the principle of experience-dependent neuroplasticity. Findings of our study provided further support to the notion that the neural plastic potential continues until older age. The baseline cognitive status did not correlate with pre- versus posttraining changes to any cognitive variables studied, suggesting that the initial cognitive status may not limit the neuroplastic potential of the brain at an old age. PMID:26417460

  14. [Components of plastic disrupt the function of the nervous system].

    PubMed

    Szychowski, Konrad Andrzej; Wójtowicz, Anna Katarzyna

    2013-05-27

    Development of the chemical industry leads to the development of new chemical compounds, which naturally do not exist in the environment. These chemicals are used to reduce flammability, increase plasticity, or improve solubility of other substances. Many of these compounds, which are components of plastic, the new generation of cosmetics, medical devices, food packaging and other everyday products, are easily released into the environment. Many studies have shown that a major lipophilicity characterizes substances such as phthalates, BPA, TBBPA and PCBs. This feature allows them to easily penetrate into living cells, accumulate in the tissues and the organs, and affect human and animal health. Due to the chemical structures, these compounds are able to mimic some endogenous hormones such as estradiol and to disrupt the hormone homeostasis. They can also easily pass the placental barrier and the blood-brain barrier. As numerous studies have shown, these chemicals disturb the proper functions of the nervous system from the earliest moments of life. It has been proven that these compounds affect neurogenesis as well as the synaptic transmission process. As a consequence, they interfere with the formation of the sex of the brain, as well as with the learning processes, memory and behavior. Additionally, the cytotoxic and pro-apoptotic effect may cause neurodegenerative diseases. This article presents the current state of knowledge about the effects of phthalates, BPA, TBBPA, and PCBs on the nervous system.

  15. [Structural plasticity associated with drugs addiction].

    PubMed

    Zhu, Jie; Cao, Guo-fen; Dang, Yong-hui; Chen, Teng

    2011-12-01

    An essential feature of drug addiction is that an individual continues to use drug despite the threat of severely adverse physical or psychosocial consequences. Persistent changes in behavior and psychological function that occur as a function of drugs of abuse are thought to be due to the reorganization of synaptic connections (structural plasticity) in relevant brain circuits (especially the brains reward circuits). In this paper we summarized evidence that, indeed, exposure to amphetamine, cocaine, nicotine or morphine produced persistent changes in the structure of dendrites and dendritic spines on cells in relevant brain regions. We also approached the potential molecular mechanisms of these changes. It is suggested that structural plasticity associated with exposure to drugs of abuse reflects a reorganization of patterns of synaptic connectivity in these neural systems, a reorganization that alters their operation, thus contributing to some of the persistent sequela associated with drug use-including addiction.

  16. Limb remote ischemic post-conditioning mitigates brain recovery in a mouse model of ischemic stroke by regulating reactive astrocytic plasticity.

    PubMed

    Cheng, Xue; Zhao, Haiping; Yan, Feng; Tao, Zhen; Wang, Rongliang; Han, Ziping; Li, Guangwen; Luo, Yumin; Ji, Xunming

    2018-05-01

    Maladaptive alterations of astrocytic plasticity may cause brain edema in the acute stage of stroke and glial scar formation in the recovery stage. The present study was designed to investigate the potential regulation of limb remote ischemic post-conditioning (RIPC) on astrocytic plasticity in experimental cerebral ischemia-reperfusion injury. Cerebral ischemia was induced by transient middle cerebral artery occlusion (tMCAO) for 1 h in C57BL/6 mice, who were treated with RIPC immediately after reperfusion. The results showed that RIPC decreased hemispheric swelling, infarct volume and brain atrophy, and increased neurological function recovery and survival rates of ischemic mice at 3 and 14 d after cerebral ischemia-reperfusion, respectively. Moreover, the proportion of astrocyte subtypes was adjusted by RIPC treatment, demonstrated by decreased expression of the fibrous type (glial fibrillary acidic protein, GFAP) and increased expression of the protoplasmic type (glutamine synthetase, GS) in the ipsilateral side of the mouse brain at 14 d after cerebral ischemia-reperfusion. RIPC treatment adjusted the proportion of GFAP subtypes by downregulating the protein level of GFAPα, as well as upregulating the GFAPδ/GFAPα ratio in the ipsilateral side at 3 and 14 d after reperfusion. Notably, RIPC inhibited the phosphorylation of signal transducer and activators of transcriptions 3 (p-STAT3) in the ipsilateral side at 3 and 14 d after cerebral ischemia-reperfusion. Taken together, the results show that RIPC treatment could regulate reactive astrocytic plasticity and inhibition of STAT3 phosphorylation to promote neurological function recovery following ischemic stroke. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Synapsin-dependent development of glutamatergic synaptic vesicles and presynaptic plasticity in postnatal mouse brain.

    PubMed

    Bogen, I L; Jensen, V; Hvalby, O; Walaas, S I

    2009-01-12

    Inactivation of the genes encoding the neuronal, synaptic vesicle-associated proteins synapsin I and II leads to severe reductions in the number of synaptic vesicles in the CNS. We here define the postnatal developmental period during which the synapsin I and/or II proteins modulate synaptic vesicle number and function in excitatory glutamatergic synapses in mouse brain. In wild-type mice, brain levels of both synapsin I and synapsin IIb showed developmental increases during synaptogenesis from postnatal days 5-20, while synapsin IIa showed a protracted increase during postnatal days 20-30. The vesicular glutamate transporters (VGLUT) 1 and VGLUT2 showed synapsin-independent development during postnatal days 5-10, following which significant reductions were seen when synapsin-deficient brains were compared with wild-type brains following postnatal day 20. A similar, synapsin-dependent developmental profile of vesicular glutamate uptake occurred during the same age periods. Physiological analysis of the development of excitatory glutamatergic synapses, performed in the CA1 stratum radiatum of the hippocampus from the two genotypes, showed that both the synapsin-dependent part of the frequency facilitation and the synapsin-dependent delayed response enhancement were restricted to the period after postnatal day 10. Our data demonstrate that while both synaptic vesicle number and presynaptic short-term plasticity are essentially independent of synapsin I and II prior to postnatal day 10, maturation and function of excitatory synapses appear to be strongly dependent on synapsin I and II from postnatal day 20.

  18. Inter-cortical Modulation from Premotor to Motor Plasticity.

    PubMed

    Huang, Ying-Zu; Chen, Rou-Shayn; Fong, Po-Yu; Rothwell, John C; Chuang, Wen-Li; Weng, Yi-Hsin; Lin, Wey-Yil; Lu, Chin-Song

    2018-06-11

    Plasticity is involved in daily activities but abnormal plasticity may be deleterious. In this study, we found that motor plasticity could be modulated by suppressing the premotor cortex with the theta burst form of repetitive transcranial magnetic stimulation. Such changes in motor plasticity were associated with reduced learning of a simple motor task. We postulate that the premotor cortex adjusts the amount of motor plasticity to modulate motor learning through heterosynaptic metaplasticity. The present results provide an insight into how the brain physiologically coordinates two different areas to bring them into a functional network. This concept could be employed to intervene in diseases with abnormal plasticity. Primary motor cortex (M1) plasticity is known to be influenced by the excitability and prior activation history of M1 itself. However, little is known about how its plasticity is influenced by other areas of the brain. In the present study on humans of either sex who were known to respond to theta burst stimulation from previous studies, we found plasticity of M1 could be modulated by suppressing the premotor cortex with the theta burst form of repetitive transcranial magnetic stimulation. Motor plasticity was distorted and disappeared 30 min and 120 min respectively after premotor excitability was suppressed. Further evaluation revealed that such changes in motor plasticity were associated with impaired learning of a simple motor task. We postulate that the premotor cortex modulates the amount of plasticity within M1 through heterosynaptic metaplasticity, and that this may impact on learning of a simple motor task previously shown to be directly affected by M1 plasticity. The present results provide an insight into how the brain physiologically coordinates two different areas to bring them into a functional network. Furthermore, such concepts could be translated into therapeutic approaches for diseases with aberrant plasticity. This article is

  19. Changes in Brain Resting-state Functional Connectivity Associated with Peripheral Nerve Block: A Pilot Study.

    PubMed

    Melton, M Stephen; Browndyke, Jeffrey N; Harshbarger, Todd B; Madden, David J; Nielsen, Karen C; Klein, Stephen M

    2016-08-01

    Limited information exists on the effects of temporary functional deafferentation (TFD) on brain activity after peripheral nerve block (PNB) in healthy humans. Increasingly, resting-state functional connectivity (RSFC) is being used to study brain activity and organization. The purpose of this study was to test the hypothesis that TFD through PNB will influence changes in RSFC plasticity in central sensorimotor functional brain networks in healthy human participants. The authors achieved TFD using a supraclavicular PNB model with 10 healthy human participants undergoing functional connectivity magnetic resonance imaging before PNB, during active PNB, and during PNB recovery. RSFC differences among study conditions were determined by multiple-comparison-corrected (false discovery rate-corrected P value less than 0.05) random-effects, between-condition, and seed-to-voxel analyses using the left and right manual motor regions. The results of this pilot study demonstrated disruption of interhemispheric left-to-right manual motor region RSFC (e.g., mean Fisher-transformed z [effect size] at pre-PNB 1.05 vs. 0.55 during PNB) but preservation of intrahemispheric RSFC of these regions during PNB. Additionally, there was increased RSFC between the left motor region of interest (PNB-affected area) and bilateral higher order visual cortex regions after clinical PNB resolution (e.g., Fisher z between left motor region of interest and right and left lingual gyrus regions during PNB, -0.1 and -0.6 vs. 0.22 and 0.18 after PNB resolution, respectively). This pilot study provides evidence that PNB has features consistent with other models of deafferentation, making it a potentially useful approach to investigate brain plasticity. The findings provide insight into RSFC of sensorimotor functional brain networks during PNB and PNB recovery and support modulation of the sensory-motor integration feedback loop as a mechanism for explaining the behavioral correlates of peripherally

  20. Blocking PirB up-regulates spines and functional synapses to unlock visual cortical plasticity and facilitate recovery from amblyopia

    PubMed Central

    Bochner, David N.; Sapp, Richard W.; Adelson, Jaimie D.; Zhang, Siyu; Lee, Hanmi; Djurisic, Maja; Syken, Josh; Dan, Yang; Shatz, Carla J.

    2015-01-01

    During critical periods of development, the brain easily changes in response to environmental stimuli, but this neural plasticity declines by adulthood. By acutely disrupting paired immunoglobulin-like receptor B(PirB) function at specific ages, we show that PirB actively represses neural plasticity throughout life. We disrupted PirB function either by genetically introducing a conditional PirB allele into mice or by minipump infusion of a soluble PirB ectodomain (sPirB) into mouse visual cortex. We found that neural plasticity, as measured by depriving mice of vision in one eye and testing ocular dominance, was enhanced by this treatment both during the critical period and when PirB function was disrupted in adulthood. Acute blockade of PirB triggered the formation of new functional synapses, as indicated by increases in miniature excitatory postsynaptic current (mEPSC) frequency and spine density on dendrites of layer 5 pyramidal neurons. In addition, recovery from amblyopia— the decline in visual acuity and spine density resulting from long-term monocular deprivation— was possible after a 1-week infusion of sPirB after the deprivation period. Thus, neural plasticity in adult visual cortex is actively repressed and can be enhanced by blocking PirB function. PMID:25320232

  1. Miniaturized Technologies for Enhancement of Motor Plasticity

    PubMed Central

    Moorjani, Samira

    2016-01-01

    The idea that the damaged brain can functionally reorganize itself – so when one part fails, there lies the possibility for another to substitute – is an exciting discovery of the twentieth century. We now know that motor circuits once presumed to be hardwired are not, and motor-skill learning, exercise, and even mental rehearsal of motor tasks can turn genes on or off to shape brain architecture, function, and, consequently, behavior. This is a very significant alteration from our previously static view of the brain and has profound implications for the rescue of function after a motor injury. Presentation of the right cues, applied in relevant spatiotemporal geometries, is required to awaken the dormant plastic forces essential for repair. The focus of this review is to highlight some of the recent progress in neural interfaces designed to harness motor plasticity, and the role of miniaturization in development of strategies that engage diverse elements of the neuronal machinery to synergistically facilitate recovery of function after motor damage. PMID:27148525

  2. Metaplasticity within the spinal cord: Evidence brain-derived neurotrophic factor (BDNF), tumor necrosis factor (TNF), and alterations in GABA function (ionic plasticity) modulate pain and the capacity to learn.

    PubMed

    Grau, James W; Huang, Yung-Jen

    2018-04-07

    Evidence is reviewed that behavioral training and neural injury can engage metaplastic processes that regulate adaptive potential. This issue is explored within a model system that examines how training affects the capacity to learn within the lower (lumbosacral) spinal cord. Response-contingent (controllable) stimulation applied caudal to a spinal transection induces a behavioral modification indicative of learning. This behavioral change is not observed in animals that receive stimulation in an uncontrollable manner. Exposure to uncontrollable stimulation also engages a process that disables spinal learning for 24-48 h. Controllable stimulation has the opposite effect; it engages a process that enables learning and prevents/reverses the learning deficit induced by uncontrollable stimulation. These observations suggest that a learning episode can impact the capacity to learn in future situations, providing an example of behavioral metaplasticity. The protective/restorative effect of controllable stimulation has been linked to an up-regulation of brain-derived neurotrophic factor (BDNF). The disruption of learning has been linked to the sensitization of pain (nociceptive) circuits, which is enabled by a reduction in GABA-dependent inhibition. After spinal cord injury (SCI), the co-transporter (KCC2) that regulates the outward flow of Cl - is down-regulated. This causes the intracellular concentration of Cl - to increase, reducing (and potentially reversing) the inward flow of Cl - through the GABA-A receptor. The shift in GABA function (ionic plasticity) increases neural excitability caudal to injury and sets the stage for nociceptive sensitization. The injury-induced shift in KCC2 is related to the loss of descending serotonergic (5HT) fibers that regulate plasticity within the spinal cord dorsal horn through the 5HT-1A receptor. Evidence is presented that these alterations in spinal plasticity impact pain in a brain-dependent task (place conditioning). The

  3. Emerging Roles of BAI Adhesion-GPCRs in Synapse Development and Plasticity.

    PubMed

    Duman, Joseph G; Tu, Yen-Kuei; Tolias, Kimberley F

    2016-01-01

    Synapses mediate communication between neurons and enable the brain to change in response to experience, which is essential for learning and memory. The sites of most excitatory synapses in the brain, dendritic spines, undergo rapid remodeling that is important for neural circuit formation and synaptic plasticity. Abnormalities in synapse and spine formation and plasticity are associated with a broad range of brain disorders, including intellectual disabilities, autism spectrum disorders (ASD), and schizophrenia. Thus, elucidating the mechanisms that regulate these neuronal processes is critical for understanding brain function and disease. The brain-specific angiogenesis inhibitor (BAI) subfamily of adhesion G-protein-coupled receptors (adhesion-GPCRs) has recently emerged as central regulators of synapse development and plasticity. In this review, we will summarize the current knowledge regarding the roles of BAIs at synapses, highlighting their regulation, downstream signaling, and physiological functions, while noting the roles of other adhesion-GPCRs at synapses. We will also discuss the relevance of BAIs in various neurological and psychiatric disorders and consider their potential importance as pharmacological targets in the treatment of these diseases.

  4. Neuron-glia metabolic coupling and plasticity.

    PubMed

    Magistretti, Pierre J

    2006-06-01

    The coupling between synaptic activity and glucose utilization (neurometabolic coupling) is a central physiological principle of brain function that has provided the basis for 2-deoxyglucose-based functional imaging with positron emission tomography (PET). Astrocytes play a central role in neurometabolic coupling, and the basic mechanism involves glutamate-stimulated aerobic glycolysis; the sodium-coupled reuptake of glutamate by astrocytes and the ensuing activation of the Na-K-ATPase triggers glucose uptake and processing via glycolysis, resulting in the release of lactate from astrocytes. Lactate can then contribute to the activity-dependent fuelling of the neuronal energy demands associated with synaptic transmission. An operational model, the 'astrocyte-neuron lactate shuttle', is supported experimentally by a large body of evidence, which provides a molecular and cellular basis for interpreting data obtained from functional brain imaging studies. In addition, this neuron-glia metabolic coupling undergoes plastic adaptations in parallel with adaptive mechanisms that characterize synaptic plasticity. Thus, distinct subregions of the hippocampus are metabolically active at different time points during spatial learning tasks, suggesting that a type of metabolic plasticity, involving by definition neuron-glia coupling, occurs during learning. In addition, marked variations in the expression of genes involved in glial glycogen metabolism are observed during the sleep-wake cycle, with in particular a marked induction of expression of the gene encoding for protein targeting to glycogen (PTG) following sleep deprivation. These data suggest that glial metabolic plasticity is likely to be concomitant with synaptic plasticity.

  5. Reorganization of syntactic processing following left-hemisphere brain damage: does right-hemisphere activity preserve function?

    PubMed

    Tyler, Lorraine K; Wright, Paul; Randall, Billi; Marslen-Wilson, William D; Stamatakis, Emmanuel A

    2010-11-01

    The extent to which the human brain shows evidence of functional plasticity across the lifespan has been addressed in the context of pathological brain changes and, more recently, of the changes that take place during healthy ageing. Here we examine the potential for plasticity by asking whether a strongly left-lateralized system can successfully reorganize to the right-hemisphere following left-hemisphere brain damage. To do this, we focus on syntax, a key linguistic function considered to be strongly left-lateralized, combining measures of tissue integrity, neural activation and behavioural performance. In a functional neuroimaging study participants heard spoken sentences that differentially loaded on syntactic and semantic information. While healthy controls activated a left-hemisphere network of correlated activity including Brodmann areas 45/47 and posterior middle temporal gyrus during syntactic processing, patients activated Brodmann areas 45/47 bilaterally and right middle temporal gyrus. However, voxel-based morphometry analyses showed that only tissue integrity in left Brodmann areas 45/47 was correlated with activity and performance; poor tissue integrity in left Brodmann area 45 was associated with reduced functional activity and increased syntactic deficits. Activity in the right-hemisphere was not correlated with damage in the left-hemisphere or with performance. Reduced neural integrity in the left-hemisphere through brain damage or healthy ageing results in increased right-hemisphere activation in homologous regions to those left-hemisphere regions typically involved in the young. However, these regions do not support the same linguistic functions as those in the left-hemisphere and only indirectly contribute to preserved syntactic capacity. This establishes the unique role of the left hemisphere in syntax, a core component in human language.

  6. Environmental enrichment decreases GABAergic inhibition and improves cognitive abilities, synaptic plasticity, and visual functions in a mouse model of Down syndrome

    PubMed Central

    Begenisic, Tatjana; Spolidoro, Maria; Braschi, Chiara; Baroncelli, Laura; Milanese, Marco; Pietra, Gianluca; Fabbri, Maria E.; Bonanno, Giambattista; Cioni, Giovanni; Maffei, Lamberto; Sale, Alessandro

    2011-01-01

    Down syndrome (DS) is the most common genetic disorder associated with mental retardation. It has been repeatedly shown that Ts65Dn mice, the prime animal model for DS, have severe cognitive and neural plasticity defects due to excessive inhibition. We report that increasing sensory-motor stimulation in adulthood through environmental enrichment (EE) reduces brain inhibition levels and promotes recovery of spatial memory abilities, hippocampal synaptic plasticity, and visual functions in adult Ts65Dn mice. PMID:22207837

  7. Plasticity in the Human Visual Cortex: An Ophthalmology-Based Perspective

    PubMed Central

    Rosa, Andreia Martins; Silva, Maria Fátima; Murta, Joaquim

    2013-01-01

    Neuroplasticity refers to the ability of the brain to reorganize the function and structure of its connections in response to changes in the environment. Adult human visual cortex shows several manifestations of plasticity, such as perceptual learning and adaptation, working under the top-down influence of attention. Plasticity results from the interplay of several mechanisms, including the GABAergic system, epigenetic factors, mitochondrial activity, and structural remodeling of synaptic connectivity. There is also a downside of plasticity, that is, maladaptive plasticity, in which there are behavioral losses resulting from plasticity changes in the human brain. Understanding plasticity mechanisms could have major implications in the diagnosis and treatment of ocular diseases, such as retinal disorders, cataract and refractive surgery, amblyopia, and in the evaluation of surgical materials and techniques. Furthermore, eliciting plasticity could open new perspectives in the development of strategies that trigger plasticity for better medical and surgical outcomes. PMID:24205505

  8. Endocannabinoids in brain plasticity: Cortical maturation, HPA axis function and behavior.

    PubMed

    Dow-Edwards, Diana; Silva, Lindsay

    2017-01-01

    Marijuana use during adolescence has reached virtually every strata of society. The general population has the perception that marijuana use is safe for mature people and therefore is also safe for developing adolescents. However, both clinical and preclinical research shows that marijuana use, particularly prior to age 16, could have long-term effects on cognition, anxiety and stress-related behaviors, mood disorders and substance abuse. These effects derive from the role of the endocannabinoid system, the endogenous cannabinoid system, in the development of cortex, amygdala, hippocampus and hypothalamus during adolescence. Endocannabinoids are necessary for normal neuronal excitation and inhibition through actions at glutamate and GABA terminals. Synaptic pruning at excitatory synapses and sparing of inhibitory synapses likely results in changes in the balance of excitation/inhibition in individual neurons and within networks; processes which are necessary for normal cortical development. The interaction between prefrontal cortex (PFC), amygdala and hippocampus is responsible for emotional memory, anxiety-related behaviors and drug abuse and all utilize the endogenous cannabinoid system to maintain homeostasis. Also, endocannabinoids are required for fast and slow feedback in the normal stress response, processes which mature during adolescence. Therefore, exogenous cannabinoids, such as marijuana, have the potential to alter the course of development of each of these major systems (limbic, hypothalamic-pituitary-adrenal (HPA) axis and neocortex) if used during the critical period of brain development, adolescence. This article is part of a Special Issue entitled SI: Adolescent plasticity. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. After-effects of peripheral neurostimulation on brain plasticity and ankle function in chronic stroke: The role of afferents recruited.

    PubMed

    Beaulieu, Louis-David; Massé-Alarie, Hugo; Camiré-Bernier, Samuel; Ribot-Ciscar, Édith; Schneider, Cyril

    2017-09-01

    This study tested the after-effects of neuromuscular electrical stimulation (NMES), repetitive peripheral magnetic stimulation (rPMS) and muscle tendon vibration (VIB) on brain plasticity and sensorimotor impairments in chronic stroke to investigate whether different results could depend on the nature of afferents recruited by each technique. Fifteen people with chronic stroke participated in five sessions (one per week). Baseline measures were collected in session one, then, each participant received 4 randomly ordered interventions (NMES, rPMS, VIB and a 'control' intervention of exercises). Interventions were applied to the paretic ankle muscles and parameters of application were matched as closely as possible. Standardized clinical measures of the ankle function on the paretic side and transcranial magnetic stimulation (TMS) outcomes of both primary motor cortices (M1) were collected at pre- and post-application of each intervention. The ankle muscle strength was significantly improved by rPMS and VIB (P≤0.02). rPMS influenced M1 excitability (increase in the contralesional hemisphere, P=0.03) and inhibition (decrease in both hemispheres, P≤0.04). The group mean of a few clinical outcomes improved across sessions, i.e. independently of the order of interventions. Some TMS outcomes at baseline could predict the responsiveness to rPMS and VIB. This original study suggests that rPMS and VIB were efficient to drive M1 plasticity and sensorimotor improvements, likely via massive inflows of 'pure' proprioceptive information generated. Usefulness of some TMS outcomes to predict which intervention a patient could be more responsive to should be further tested in future studies. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  10. Neural and cognitive plasticity: from maps to minds.

    PubMed

    Mercado, Eduardo

    2008-01-01

    Some species and individuals are able to learn cognitive skills more flexibly than others. Learning experiences and cortical function are known to contribute to such differences, but the specific factors that determine an organism's intellectual capacities remain unclear. Here, an integrative framework is presented suggesting that variability in cognitive plasticity reflects neural constraints on the precision and extent of an organism's stimulus representations. Specifically, it is hypothesized that cognitive plasticity depends on the number and diversity of cortical modules that an organism has available as well as the brain's capacity to flexibly reconfigure and customize networks of these modules. The author relates this framework to past proposals on the neural mechanisms of intelligence, including (a) the relationship between brain size and intellectual capacity; (b) the role of prefrontal cortex in cognitive control and the maintenance of stimulus representations; and (c) the impact of neural plasticity and efficiency on the acquisition and performance of cognitive skills. The proposed framework provides a unified account of variability in cognitive plasticity as a function of species, age, and individual, and it makes specific predictions about how manipulations of cortical structure and function will impact intellectual capacity. Copyright (c) 2008 APA.

  11. Low-grade inflammation disrupts structural plasticity in the human brain.

    PubMed

    Szabó, C; Kelemen, O; Kéri, S

    2014-09-05

    Increased low-grade inflammation is thought to be associated with several neuropsychiatric disorders characterized by decreased neuronal plasticity. The purpose of the present study was to investigate the relationship between structural changes in the human brain during cognitive training and the intensity of low-grade peripheral inflammation in healthy individuals (n=56). A two-month training (30 min/day) with a platformer video game resulted in a significantly increased volume of the right hippocampal formation. The number of stressful life events experienced during the past year was associated with less pronounced enlargement of the hippocampus. However, the main predictor of hippocampal volume expansion was the relative peripheral expression of Nuclear Factor-κB (NF-κB), a transcription factor playing a central role in the effect of pro-inflammatory cytokines. Interleukin-6 (IL-6) and C-reactive protein levels were not related to hippocampal plasticity when NF-κB was taken into consideration. These results suggest that more intensive peripheral inflammation is associated with weaker neuronal plasticity during cognitive training. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  12. Videogame training strategy-induced change in brain function during a complex visuomotor task.

    PubMed

    Lee, Hyunkyu; Voss, Michelle W; Prakash, Ruchika Shaurya; Boot, Walter R; Vo, Loan T K; Basak, Chandramallika; Vanpatter, Matt; Gratton, Gabriele; Fabiani, Monica; Kramer, Arthur F

    2012-07-01

    Although changes in brain function induced by cognitive training have been examined, functional plasticity associated with specific training strategies is still relatively unexplored. In this study, we examined changes in brain function during a complex visuomotor task following training using the Space Fortress video game. To assess brain function, participants completed functional magnetic resonance imaging (fMRI) before and after 30 h of training with one of two training regimens: Hybrid Variable-Priority Training (HVT), with a focus on improving specific skills and managing task priority, or Full Emphasis Training (FET), in which participants simply practiced the game to obtain the highest overall score. Control participants received only 6 h of FET. Compared to FET, HVT learners reached higher performance on the game and showed less brain activation in areas related to visuo-spatial attention and goal-directed movement after training. Compared to the control group, HVT exhibited less brain activation in right dorsolateral prefrontal cortex (DLPFC), coupled with greater performance improvement. Region-of-interest analysis revealed that the reduction in brain activation was correlated with improved performance on the task. This study sheds light on the neurobiological mechanisms of improved learning from directed training (HVT) over non-directed training (FET), which is related to visuo-spatial attention and goal-directed motor planning, while separating the practice-based benefit, which is related to executive control and rule management. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Plasticity of attentional functions in older adults after non-action video game training: a randomized controlled trial.

    PubMed

    Mayas, Julia; Parmentier, Fabrice B R; Andrés, Pilar; Ballesteros, Soledad

    2014-01-01

    A major goal of recent research in aging has been to examine cognitive plasticity in older adults and its capacity to counteract cognitive decline. The aim of the present study was to investigate whether older adults could benefit from brain training with video games in a cross-modal oddball task designed to assess distraction and alertness. Twenty-seven healthy older adults participated in the study (15 in the experimental group, 12 in the control group. The experimental group received 20 1-hr video game training sessions using a commercially available brain-training package (Lumosity) involving problem solving, mental calculation, working memory and attention tasks. The control group did not practice this package and, instead, attended meetings with the other members of the study several times along the course of the study. Both groups were evaluated before and after the intervention using a cross-modal oddball task measuring alertness and distraction. The results showed a significant reduction of distraction and an increase of alertness in the experimental group and no variation in the control group. These results suggest neurocognitive plasticity in the old human brain as training enhanced cognitive performance on attentional functions. ClinicalTrials.gov NCT02007616.

  14. Intravital imaging of dendritic spine plasticity

    PubMed Central

    Sau Wan Lai, Cora

    2014-01-01

    Abstract Dendritic spines are the postsynaptic part of most excitatory synapses in the mammalian brain. Recent works have suggested that the structural and functional plasticity of dendritic spines have been associated with information coding and memories. Advances in imaging and labeling techniques enable the study of dendritic spine dynamics in vivo. This perspective focuses on intravital imaging studies of dendritic spine plasticity in the neocortex. I will introduce imaging tools for studying spine dynamics and will further review current findings on spine structure and function under various physiological and pathological conditions. PMID:28243511

  15. Training your brain to be more creative: brain functional and structural changes induced by divergent thinking training.

    PubMed

    Sun, Jiangzhou; Chen, Qunlin; Zhang, Qinglin; Li, Yadan; Li, Haijiang; Wei, Dongtao; Yang, Wenjing; Qiu, Jiang

    2016-10-01

    Creativity is commonly defined as the ability to produce something both novel and useful. Stimulating creativity has great significance for both individual success and social improvement. Although increasing creative capacity has been confirmed to be possible and effective at the behavioral level, few longitudinal studies have examined the extent to which the brain function and structure underlying creativity are plastic. A cognitive stimulation (20 sessions) method was used in the present study to train subjects and to explore the neuroplasticity induced by training. The behavioral results revealed that both the originality and the fluency of divergent thinking were significantly improved by training. Furthermore, functional changes induced by training were observed in the dorsal anterior cingulate cortex (dACC), dorsal lateral prefrontal cortex (DLPFC), and posterior brain regions. Moreover, the gray matter volume (GMV) was significantly increased in the dACC after divergent thinking training. These results suggest that the enhancement of creativity may rely not only on the posterior brain regions that are related to the fundamental cognitive processes of creativity (e.g., semantic processing, generating novel associations), but also on areas that are involved in top-down cognitive control, such as the dACC and DLPFC. Hum Brain Mapp 37:3375-3387, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  16. The effects of working memory training on functional brain network efficiency.

    PubMed

    Langer, Nicolas; von Bastian, Claudia C; Wirz, Helen; Oberauer, Klaus; Jäncke, Lutz

    2013-10-01

    The human brain is a highly interconnected network. Recent studies have shown that the functional and anatomical features of this network are organized in an efficient small-world manner that confers high efficiency of information processing at relatively low connection cost. However, it has been unclear how the architecture of functional brain networks is related to performance in working memory (WM) tasks and if these networks can be modified by WM training. Therefore, we conducted a double-blind training study enrolling 66 young adults. Half of the subjects practiced three WM tasks and were compared to an active control group practicing three tasks with low WM demand. High-density resting-state electroencephalography (EEG) was recorded before and after training to analyze graph-theoretical functional network characteristics at an intracortical level. WM performance was uniquely correlated with power in the theta frequency, and theta power was increased by WM training. Moreover, the better a person's WM performance, the more their network exhibited small-world topology. WM training shifted network characteristics in the direction of high performers, showing increased small-worldness within a distributed fronto-parietal network. Taken together, this is the first longitudinal study that provides evidence for the plasticity of the functional brain network underlying WM. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Human Maternal Brain Plasticity: Adaptation to Parenting

    ERIC Educational Resources Information Center

    Kim, Pilyoung

    2016-01-01

    New mothers undergo dynamic neural changes that support positive adaptation to parenting and the development of mother-infant relationships. In this article, I review important psychological adaptations that mothers experience during pregnancy and the early postpartum period. I then review evidence of structural and functional plasticity in human…

  18. Indestructible plastic: the neuroscience of the new aging brain

    PubMed Central

    Holman, Constance; de Villers-Sidani, Etienne

    2014-01-01

    In recent years, research on experience-dependent plasticity has provided valuable insight on adaptation to environmental input across the lifespan, and advances in understanding the minute cellular changes underlying the brain’s capacity for self-reorganization have opened exciting new possibilities for treating illness and injury. Ongoing work in this line of inquiry has also come to deeply influence another field: cognitive neuroscience of the normal aging. This complex process, once considered inevitable or beyond the reach of treatment, has been transformed into an arena of intense investigation and strategic intervention. However, important questions remain about this characterization of the aging brain, and the assumptions it makes about the social, cultural, and biological space occupied by cognition in the older individual and body. The following paper will provide a critical examination of the move from basic experiments on the neurophysiology of experience-dependent plasticity to the growing market for (and public conception of) cognitive aging as a medicalized space for intervention by neuroscience-backed technologies. Entangled with changing concepts of normality, pathology, and self-preservation, we will argue that this new understanding, led by personalized cognitive training strategies, is approaching a point where interdisciplinary research is crucial to provide a holistic and nuanced understanding of the aging process. This new outlook will allow us to move forward in a space where our knowledge, like our new conception of the brain, is never static. PMID:24782746

  19. Role of brain allopregnanolone in the plasticity of γ-aminobutyric acid type A receptor in rat brain during pregnancy and after delivery

    PubMed Central

    Concas, A.; Mostallino, M. C.; Porcu, P.; Follesa, P.; Barbaccia, M. L.; Trabucchi, M.; Purdy, R. H.; Grisenti, P.; Biggio, G.

    1998-01-01

    The relation between changes in brain and plasma concentrations of neurosteroids and the function and structure of γ-aminobutyric acid type A (GABAA) receptors in the brain during pregnancy and after delivery was investigated in rats. In contrast with plasma, where all steroids increased in parallel, the kinetics of changes in the cerebrocortical concentrations of progesterone, allopregnanolone (AP), and allotetrahydrodeoxycorticosterone (THDOC) diverged during pregnancy. Progesterone was already maximally increased between days 10 and 15, whereas AP and allotetrahydrodeoxycorticosterone peaked around day 19. The stimulatory effect of muscimol on 36Cl− uptake by cerebrocortical membrane vesicles was decreased on days 15 and 19 of pregnancy and increased 2 days after delivery. Moreover, the expression in cerebral cortex and hippocampus of the mRNA encoding for γ2L GABAA receptor subunit decreased during pregnancy and had returned to control values 2 days after delivery. Also α1,α2, α3, α4, β1, β2, β3, and γ2S mRNAs were measured and failed to change during pregnancy. Subchronic administration of finasteride, a 5α-reductase inhibitor, to pregnant rats reduced the concentrations of AP more in brain than in plasma as well as prevented the decreases in both the stimulatory effect of muscimol on 36Cl− uptake and the decrease of γ2L mRNA observed during pregnancy. These results indicate that the plasticity of GABAA receptors during pregnancy and after delivery is functionally related to fluctuations in endogenous brain concentrations of AP whose rate of synthesis/metabolism appears to differ in the brain, compared with plasma, in pregnant rats. PMID:9789080

  20. Principles of Experience-Dependent Neural Plasticity: Implications for Rehabilitation after Brain Damage

    ERIC Educational Resources Information Center

    Kleim, Jeffrey A.; Jones, Theresa A.

    2008-01-01

    Purpose: This paper reviews 10 principles of experience-dependent neural plasticity and considerations in applying them to the damaged brain. Method: Neuroscience research using a variety of models of learning, neurological disease, and trauma are reviewed from the perspective of basic neuroscientists but in a manner intended to be useful for the…

  1. Exergame and Balance Training Modulate Prefrontal Brain Activity during Walking and Enhance Executive Function in Older Adults

    PubMed Central

    Eggenberger, Patrick; Wolf, Martin; Schumann, Martina; de Bruin, Eling D.

    2016-01-01

    Different types of exercise training have the potential to induce structural and functional brain plasticity in the elderly. Thereby, functional brain adaptations were observed during cognitive tasks in functional magnetic resonance imaging studies that correlated with improved cognitive performance. This study aimed to investigate if exercise training induces functional brain plasticity during challenging treadmill walking and elicits associated changes in cognitive executive functions. Forty-two elderly participants were recruited and randomly assigned to either interactive cognitive-motor video game dancing (DANCE) or balance and stretching training (BALANCE). The 8-week intervention included three sessions of 30 min per week and was completed by 33 participants (mean age 74.9 ± 6.9 years). Prefrontal cortex (PFC) activity during preferred and fast walking speed on a treadmill was assessed applying functional near infrared spectroscopy pre- and post-intervention. Additionally, executive functions comprising shifting, inhibition, and working memory were assessed. The results showed that both interventions significantly reduced left and right hemispheric PFC oxygenation during the acceleration of walking (p < 0.05 or trend, r = 0.25–0.36), while DANCE showed a larger reduction at the end of the 30-s walking task compared to BALANCE in the left PFC [F(1, 31) = 3.54, p = 0.035, r = 0.32]. These exercise training induced modulations in PFC oxygenation correlated with improved executive functions (p < 0.05 or trend, r = 0.31–0.50). The observed reductions in PFC activity may release cognitive resources to focus attention on other processes while walking, which could be relevant to improve mobility and falls prevention in the elderly. This study provides a deeper understanding of the associations between exercise training, brain function during walking, and cognition in older adults. PMID:27148041

  2. Serotonin and brain function: a tale of two receptors.

    PubMed

    Carhart-Harris, R L; Nutt, D J

    2017-09-01

    Previous attempts to identify a unified theory of brain serotonin function have largely failed to achieve consensus. In this present synthesis, we integrate previous perspectives with new and older data to create a novel bipartite model centred on the view that serotonin neurotransmission enhances two distinct adaptive responses to adversity, mediated in large part by its two most prevalent and researched brain receptors: the 5-HT1A and 5-HT2A receptors. We propose that passive coping (i.e. tolerating a source of stress) is mediated by postsynaptic 5-HT1AR signalling and characterised by stress moderation. Conversely, we argue that active coping (i.e. actively addressing a source of stress) is mediated by 5-HT2AR signalling and characterised by enhanced plasticity (defined as capacity for change). We propose that 5-HT1AR-mediated stress moderation may be the brain's default response to adversity but that an improved ability to change one's situation and/or relationship to it via 5-HT2AR-mediated plasticity may also be important - and increasingly so as the level of adversity reaches a critical point. We propose that the 5-HT1AR pathway is enhanced by conventional 5-HT reuptake blocking antidepressants such as the selective serotonin reuptake inhibitors (SSRIs), whereas the 5-HT2AR pathway is enhanced by 5-HT2AR-agonist psychedelics. This bipartite model purports to explain how different drugs (SSRIs and psychedelics) that modulate the serotonergic system in different ways, can achieve complementary adaptive and potentially therapeutic outcomes.

  3. Influence of paravertebral muscles training on brain plasticity and postural control in chronic low back pain.

    PubMed

    Massé-Alarie, Hugo; Beaulieu, Louis-David; Preuss, Richard; Schneider, Cyril

    2016-07-01

    Isometric activation (ISOM) of deep multifidi muscles (MF) can influence postural adjustments and primary motor cortex (M1) function in chronic low back pain (CLBP). In order to better understand how ISOM impacts on CLBP condition, the present study contrasted ISOM after-effects on M1 function, MF postural activation and pain with another training, the global activation of paravertebral muscles (GLOB, hip extension). The main objective of this study was to compare the effects of ISOM and GLOB (3-week training each) on MF postural activation and M1 function in a CLBP population. Twenty-four people with CLBP were randomly allocated to ISOM and GLOB groups for a 3-week daily practice. Pre/post-training after-effects were assessed by the onset of superficial MF (MF-S) activation during ballistic limb movements (bilateral shoulder flexion in standing; unilateral hip extension in prine lying), MF-S corticomotor control tested by transcranial magnetic stimulation of M1, and assessment of pain, kinesiophobia and disability by standardized questionnaires. Both ISOM and GLOB improved pain and disability. However, only ISOM influenced M1 function (decreased corticospinal excitability and increased intracortical inhibition), fastened MF-S postural activation and decreased kinesiophobia. Changes of corticospinal excitability and of MF-S postural adjustments suggest that ISOM better influenced brain plasticity. Future studies should further test whether our novel findings relate to an influence of the exercises on the lumbopelvic control of different muscles and on cognitive function. Clinically, individual's evaluation remains warranted before prescribing one or the other of these two conventional exercises for reducing pain. This original study presents how motor control exercises can influence brain plasticity and postural control in chronic low back pain. This knowledge will impact on the decision of clinicians to prescribe specific exercises with a view of improving motor

  4. Modeling learning in brain stem and cerebellar sites responsible for VOR plasticity

    NASA Technical Reports Server (NTRS)

    Quinn, K. J.; Didier, A. J.; Baker, J. F.; Peterson, B. W.

    1998-01-01

    A simple model of vestibuloocular reflex (VOR) function was used to analyze several hypotheses currently held concerning the characteristics of VOR plasticity. The network included a direct vestibular pathway and an indirect path via the cerebellum. An optimization analysis of this model suggests that regulation of brain stem sites is critical for the proper modification of VOR gain. A more physiologically plausible learning rule was also applied to this network. Analysis of these simulation results suggests that the preferred error correction signal controlling gain modification of the VOR is the direct output of the accessory optic system (AOS) to the vestibular nuclei vs. a signal relayed through the cerebellum via floccular Purkinje cells. The potential anatomical and physiological basis for this conclusion is discussed, in relation to our current understanding of the latency of the adapted VOR response.

  5. Brain plasticity in the adult: modulation of function in amblyopia with rTMS.

    PubMed

    Thompson, Benjamin; Mansouri, Behzad; Koski, Lisa; Hess, Robert F

    2008-07-22

    Amblyopia is a cortically based visual disorder caused by disruption of vision during a critical early developmental period. It is often thought to be a largely intractable problem in adult patients because of a lack of neuronal plasticity after this critical period [1]; however, recent advances have suggested that plasticity is still present in the adult amblyopic visual cortex [2-6]. Here, we present data showing that repetitive transcranial magnetic stimulation (rTMS) of the visual cortex can temporarily improve contrast sensitivity in the amblyopic visual cortex. The results indicate continued plasticity of the amblyopic visual system in adulthood and open the way for a potential new therapeutic approach to the treatment of amblyopia.

  6. Music mnemonics aid Verbal Memory and Induce Learning – Related Brain Plasticity in Multiple Sclerosis

    PubMed Central

    Thaut, Michael H.; Peterson, David A.; McIntosh, Gerald C.; Hoemberg, Volker

    2014-01-01

    Recent research on music and brain function has suggested that the temporal pattern structure in music and rhythm can enhance cognitive functions. To further elucidate this question specifically for memory, we investigated if a musical template can enhance verbal learning in patients with multiple sclerosis (MS) and if music-assisted learning will also influence short-term, system-level brain plasticity. We measured systems-level brain activity with oscillatory network synchronization during music-assisted learning. Specifically, we measured the spectral power of 128-channel electroencephalogram (EEG) in alpha and beta frequency bands in 54 patients with MS. The study sample was randomly divided into two groups, either hearing a spoken or a musical (sung) presentation of Rey’s auditory verbal learning test. We defined the “learning-related synchronization” (LRS) as the percent change in EEG spectral power from the first time the word was presented to the average of the subsequent word encoding trials. LRS differed significantly between the music and the spoken conditions in low alpha and upper beta bands. Patients in the music condition showed overall better word memory and better word order memory and stronger bilateral frontal alpha LRS than patients in the spoken condition. The evidence suggests that a musical mnemonic recruits stronger oscillatory network synchronization in prefrontal areas in MS patients during word learning. It is suggested that the temporal structure implicit in musical stimuli enhances “deep encoding” during verbal learning and sharpens the timing of neural dynamics in brain networks degraded by demyelination in MS. PMID:24982626

  7. Deep mechanisms of social affect - Plastic parental brain mechanisms for sensitivity versus contempt.

    PubMed

    Swain, James E; Ho, S Shaun

    2017-01-01

    Insensitive parental thoughts and affect, similar to contempt, may be mapped onto a network of basic emotions moderated by attitudinal representations of social-relational value. Brain mechanisms that reflect emotional valence of baby signals among parents vary according to individual differences and show plasticity over time. Furthermore, mental health problems and treatments for parents may affect these brain systems toward or away from contempt, respectively.

  8. Plasticity of Attentional Functions in Older Adults after Non-Action Video Game Training: A Randomized Controlled Trial

    PubMed Central

    Mayas, Julia; Parmentier, Fabrice B. R.; Andrés, Pilar; Ballesteros, Soledad

    2014-01-01

    A major goal of recent research in aging has been to examine cognitive plasticity in older adults and its capacity to counteract cognitive decline. The aim of the present study was to investigate whether older adults could benefit from brain training with video games in a cross-modal oddball task designed to assess distraction and alertness. Twenty-seven healthy older adults participated in the study (15 in the experimental group, 12 in the control group. The experimental group received 20 1-hr video game training sessions using a commercially available brain-training package (Lumosity) involving problem solving, mental calculation, working memory and attention tasks. The control group did not practice this package and, instead, attended meetings with the other members of the study several times along the course of the study. Both groups were evaluated before and after the intervention using a cross-modal oddball task measuring alertness and distraction. The results showed a significant reduction of distraction and an increase of alertness in the experimental group and no variation in the control group. These results suggest neurocognitive plasticity in the old human brain as training enhanced cognitive performance on attentional functions. Trial Registration ClinicalTrials.gov NCT02007616 PMID:24647551

  9. Epigenetic Basis of Neuronal and Synaptic Plasticity.

    PubMed

    Karpova, Nina N; Sales, Amanda J; Joca, Samia R

    2017-01-01

    Neuronal network and plasticity change as a function of experience. Altered neural connectivity leads to distinct transcriptional programs of neuronal plasticity-related genes. The environmental challenges throughout life may promote long-lasting reprogramming of gene expression and the development of brain disorders. The modifications in neuronal epigenome mediate gene-environmental interactions and are required for activity-dependent regulation of neuronal differentiation, maturation and plasticity. Here, we highlight the latest advances in understanding the role of the main players of epigenetic machinery (DNA methylation and demethylation, histone modifications, chromatin-remodeling enzymes, transposons, and non-coding RNAs) in activity-dependent and long- term neural and synaptic plasticity. The review focuses on both the transcriptional and post-transcriptional regulation of gene expression levels, including the processes of promoter activation, alternative splicing, regulation of stability of gene transcripts by natural antisense RNAs, and alternative polyadenylation. Further, we discuss the epigenetic aspects of impaired neuronal plasticity and the pathogenesis of neurodevelopmental (Rett syndrome, Fragile X Syndrome, genomic imprinting disorders, schizophrenia, and others), stressrelated (mood disorders) and neurodegenerative Alzheimer's, Parkinson's and Huntington's disorders. The review also highlights the pharmacological compounds that modulate epigenetic programming of gene expression, the potential treatment strategies of discussed brain disorders, and the questions that should be addressed during the development of effective and safe approaches for the treatment of brain disorders.

  10. Describing functional diversity of brain regions and brain networks

    PubMed Central

    Anderson, Michael L.; Kinnison, Josh; Pessoa, Luiz

    2013-01-01

    Despite the general acceptance that functional specialization plays an important role in brain function, there is little consensus about its extent in the brain. We sought to advance the understanding of this question by employing a data-driven approach that capitalizes on the existence of large databases of neuroimaging data. We quantified the diversity of activation in brain regions as a way to characterize the degree of functional specialization. To do so, brain activations were classified in terms of task domains, such as vision, attention, and language, which determined a region’s functional fingerprint. We found that the degree of diversity varied considerably across the brain. We also quantified novel properties of regions and of networks that inform our understanding of several task-positive and task-negative networks described in the literature, including defining functional fingerprints for entire networks and measuring their functional assortativity, namely the degree to which they are composed of regions with similar functional fingerprints. Our results demonstrate that some brain networks exhibit strong assortativity, whereas other networks consist of relatively heterogeneous parts. In sum, rather than characterizing the contributions of individual brain regions using task-based functional attributions, we instead quantified their dispositional tendencies, and related those to each region’s affiliative properties in both task-positive and task-negative contexts. PMID:23396162

  11. The Dancing Brain: Structural and Functional Signatures of Expert Dance Training.

    PubMed

    Burzynska, Agnieszka Z; Finc, Karolina; Taylor, Brittany K; Knecht, Anya M; Kramer, Arthur F

    2017-01-01

    Dance - as a ritual, therapy, and leisure activity - has been known for thousands of years. Today, dance is increasingly used as therapy for cognitive and neurological disorders such as dementia and Parkinson's disease. Surprisingly, the effects of dance training on the healthy young brain are not well understood despite the necessity of such information for planning successful clinical interventions. Therefore, this study examined actively performing, expert-level trained college students as a model of long-term exposure to dance training. To study the long-term effects of dance training on the human brain, we compared 20 young expert female Dancers with normal body mass index with 20 age- and education-matched Non-Dancers with respect to brain structure and function. We used diffusion tensor, morphometric, resting state and task-related functional MRI, a broad cognitive assessment, and objective measures of selected dance skill (Dance Central video game and a balance task). Dancers showed superior performance in the Dance Central video game and balance task, but showed no differences in cognitive abilities. We found little evidence for training-related differences in brain volume in Dancers. Dancers had lower anisotropy in the corticospinal tract. They also activated the action observation network (AON) to greater extent than Non-Dancers when viewing dance sequences. Dancers showed altered functional connectivity of the AON, and of the general motor learning network. These functional connectivity differences were related to dance skill and balance and training-induced structural characteristics. Our findings have the potential to inform future study designs aiming to monitor dance training-induced plasticity in clinical populations.

  12. Musical training induces functional and structural auditory-motor network plasticity in young adults.

    PubMed

    Li, Qiongling; Wang, Xuetong; Wang, Shaoyi; Xie, Yongqi; Li, Xinwei; Xie, Yachao; Li, Shuyu

    2018-05-01

    Playing music requires a strong coupling of perception and action mediated by multimodal integration of brain regions, which can be described as network connections measured by anatomical and functional correlations between regions. However, the structural and functional connectivities within and between the auditory and sensorimotor networks after long-term musical training remain largely uninvestigated. Here, we compared the structural connectivity (SC) and resting-state functional connectivity (rs-FC) within and between the two networks in 29 novice healthy young adults before and after musical training (piano) with those of another 27 novice participants who were evaluated longitudinally but with no intervention. In addition, a correlation analysis was performed between the changes in FC or SC with practice time in the training group. As expected, participants in the training group showed increased FC within the sensorimotor network and increased FC and SC of the auditory-motor network after musical training. Interestingly, we further found that the changes in FC within the sensorimotor network and SC of the auditory-motor network were positively correlated with practice time. Our results indicate that musical training could induce enhanced local interaction and global integration between musical performance-related regions, which provides insights into the mechanism of brain plasticity in young adults. © 2018 Wiley Periodicals, Inc.

  13. The Effects of Long-term Abacus Training on Topological Properties of Brain Functional Networks.

    PubMed

    Weng, Jian; Xie, Ye; Wang, Chunjie; Chen, Feiyan

    2017-08-18

    Previous studies in the field of abacus-based mental calculation (AMC) training have shown that this training has the potential to enhance a wide variety of cognitive abilities. It can also generate specific changes in brain structure and function. However, there is lack of studies investigating the impact of AMC training on the characteristics of brain networks. In this study, utilizing graph-based network analysis, we compared topological properties of brain functional networks between an AMC group and a matched control group. Relative to the control group, the AMC group exhibited higher nodal degrees in bilateral calcarine sulcus and increased local efficiency in bilateral superior occipital gyrus and right cuneus. The AMC group also showed higher nodal local efficiency in right fusiform gyrus, which was associated with better math ability. However, no relationship was significant in the control group. These findings provide evidence that long-term AMC training may improve information processing efficiency in visual-spatial related regions, which extend our understanding of training plasticity at the brain network level.

  14. Temporal entrainment of cognitive functions: musical mnemonics induce brain plasticity and oscillatory synchrony in neural networks underlying memory.

    PubMed

    Thaut, Michael H; Peterson, David A; McIntosh, Gerald C

    2005-12-01

    In a series of experiments, we have begun to investigate the effect of music as a mnemonic device on learning and memory and the underlying plasticity of oscillatory neural networks. We used verbal learning and memory tests (standardized word lists, AVLT) in conjunction with electroencephalographic analysis to determine differences between verbal learning in either a spoken or musical (verbal materials as song lyrics) modality. In healthy adults, learning in both the spoken and music condition was associated with significant increases in oscillatory synchrony across all frequency bands. A significant difference between the spoken and music condition emerged in the cortical topography of the learning-related synchronization. When using EEG measures as predictors during learning for subsequent successful memory recall, significantly increased coherence (phase-locked synchronization) within and between oscillatory brain networks emerged for music in alpha and gamma bands. In a similar study with multiple sclerosis patients, superior learning and memory was shown in the music condition when controlled for word order recall, and subjects were instructed to sing back the word lists. Also, the music condition was associated with a significant power increase in the low-alpha band in bilateral frontal networks, indicating increased neuronal synchronization. Musical learning may access compensatory pathways for memory functions during compromised PFC functions associated with learning and recall. Music learning may also confer a neurophysiological advantage through the stronger synchronization of the neuronal cell assemblies underlying verbal learning and memory. Collectively our data provide evidence that melodic-rhythmic templates as temporal structures in music may drive internal rhythm formation in recurrent cortical networks involved in learning and memory.

  15. Plasticity Related Gene 3 (PRG3) overcomes myelin-associated growth inhibition and promotes functional recovery after spinal cord injury

    PubMed Central

    Broggini, Thomas; Schnell, Lisa; Ghoochani, Ali; Mateos, José María; Buchfelder, Michael; Wiendieck, Kurt; Schäfer, Michael K.; Eyupoglu, Ilker Y.; Savaskan, Nicolai E.

    2016-01-01

    The Plasticity Related Gene family covers five, brain-specific, transmembrane proteins (PRG1-5, also termed LPPR1-5) that operate in neuronal plasticity during development, aging and brain trauma. Here we investigated the role of the PRG family on axonal and filopodia outgrowth. Comparative analysis revealed the strongest outgrowth induced by PRG3 (LPPR1). During development, PRG3 is ubiquitously located at the tip of neuronal processes and at the plasma membrane and declines with age. In utero electroporation of PRG3 induced dendritic protrusions and accelerated spine formations in cortical pyramidal neurons. The neurite growth promoting activity of PRG3 requires RasGRF1 (RasGEF1/Cdc25) mediated downstream signaling. Moreover, in axon collapse assays, PRG3-induced neurites resisted growth inhibitors such as myelin, Nogo-A (Reticulon/RTN-4), thrombin and LPA and impeded the RhoA-Rock-PIP5K induced neurite repulsion. Transgenic adult mice with constitutive PRG3 expression displayed strong axonal sprouting distal to a spinal cord lesion. Moreover, fostered PRG3 expression promoted complex motor-behavioral recovery compared to wild type controls as revealed in the Schnell swim test (SST). Thus, PRG3 emerges as a developmental RasGRF1-dependent conductor of filopodia formation and axonal growth enhancer. PRG3-induced neurites resist brain injury-associated outgrowth inhibitors and contribute to functional recovery after spinal cord lesions. Here, we provide evidence that PRG3 operates as an essential neuronal growth promoter in the nervous system. Maintaining PRG3 expression in aging brain may turn back the developmental clock for neuronal regeneration and plasticity. PMID:27744421

  16. Adolescent Binge Alcohol Exposure Affects the Brain Function Through Mitochondrial Impairment.

    PubMed

    Tapia-Rojas, Cheril; Carvajal, Francisco J; Mira, Rodrigo G; Arce, Camila; Lerma-Cabrera, José Manuel; Orellana, Juan A; Cerpa, Waldo; Quintanilla, Rodrigo A

    2018-05-01

    In the young population, binge drinking is a pattern of problematic alcohol consumption, characterized by a short period of heavy drinking followed by abstinence which is frequently repeated over time. This drinking pattern is associated with mental problems, use of other drugs, and an increased risk of excessive alcohol intake during adulthood. However, little is known about the effects of binge drinking on brain function in adolescents and its neurobiological impact during the adulthood. In the present study, we evaluated the effects of alcohol on hippocampal memory, synaptic plasticity, and mitochondrial function in adolescent rats after a binge drinking episode in vivo. These effects were analyzed at 1, 3, or 7 weeks post alcohol exposure. Our results showed that binge-like ethanol pre-treated (BEP) rats exhibited early alterations in learning and memory tests accompanied by an impairment of synaptic plasticity that was total and partially compensated, respectively. These changes could be attributed to a rapid increase in oxidative damage and a late inflammatory response induced by post ethanol exposure. Additionally, BEP alters the regulation of mitochondrial dynamics and modifies the expression of mitochondrial permeability transition pore (mPTP) components, such as cyclophilin D (Cyp-D) and the voltage-dependent anion channel (VDAC). These mitochondrial structural changes result in the impairment of mitochondrial bioenergetics, decreasing ATP production progressively until adulthood. These results strongly suggest that teenage alcohol binge drinking impairs the function of the adult hippocampus including memory and synaptic plasticity as a consequence of the mitochondrial damage induced by alcohol and that the recovery of hippocampal function could implicate the activation of alternative pathways that fail to reestablish mitochondrial function.

  17. Direct electrical stimulation as an input gate into brain functional networks: principles, advantages and limitations.

    PubMed

    Mandonnet, Emmanuel; Winkler, Peter A; Duffau, Hugues

    2010-02-01

    While the fundamental and clinical contribution of direct electrical stimulation (DES) of the brain is now well acknowledged, its advantages and limitations have not been re-evaluated for a long time. Here, we critically review exactly what DES can tell us about cerebral function. First, we show that DES is highly sensitive for detecting the cortical and axonal eloquent structures. Moreover, DES also provides a unique opportunity to study brain connectivity, since each area responsive to stimulation is in fact an input gate into a large-scale network rather than an isolated discrete functional site. DES, however, also has a limitation: its specificity is suboptimal. Indeed, DES may lead to interpretations that a structure is crucial because of the induction of a transient functional response when stimulated, whereas (1) this effect is caused by the backward spreading of the electro-stimulation along the network to an essential area and/or (2) the stimulated region can be functionally compensated owing to long-term brain plasticity mechanisms. In brief, although DES is still the gold standard for brain mapping, its combination with new methods such as perioperative neurofunctional imaging and biomathematical modeling is now mandatory, in order to clearly differentiate those networks that are actually indispensable to function from those that can be compensated.

  18. Dysregulated expression of neuregulin-1 by cortical pyramidal neurons disrupts synaptic plasticity.

    PubMed

    Agarwal, Amit; Zhang, Mingyue; Trembak-Duff, Irina; Unterbarnscheidt, Tilmann; Radyushkin, Konstantin; Dibaj, Payam; Martins de Souza, Daniel; Boretius, Susann; Brzózka, Magdalena M; Steffens, Heinz; Berning, Sebastian; Teng, Zenghui; Gummert, Maike N; Tantra, Martesa; Guest, Peter C; Willig, Katrin I; Frahm, Jens; Hell, Stefan W; Bahn, Sabine; Rossner, Moritz J; Nave, Klaus-Armin; Ehrenreich, Hannelore; Zhang, Weiqi; Schwab, Markus H

    2014-08-21

    Neuregulin-1 (NRG1) gene variants are associated with increased genetic risk for schizophrenia. It is unclear whether risk haplotypes cause elevated or decreased expression of NRG1 in the brains of schizophrenia patients, given that both findings have been reported from autopsy studies. To study NRG1 functions in vivo, we generated mouse mutants with reduced and elevated NRG1 levels and analyzed the impact on cortical functions. Loss of NRG1 from cortical projection neurons resulted in increased inhibitory neurotransmission, reduced synaptic plasticity, and hypoactivity. Neuronal overexpression of cysteine-rich domain (CRD)-NRG1, the major brain isoform, caused unbalanced excitatory-inhibitory neurotransmission, reduced synaptic plasticity, abnormal spine growth, altered steady-state levels of synaptic plasticity-related proteins, and impaired sensorimotor gating. We conclude that an "optimal" level of NRG1 signaling balances excitatory and inhibitory neurotransmission in the cortex. Our data provide a potential pathomechanism for impaired synaptic plasticity and suggest that human NRG1 risk haplotypes exert a gain-of-function effect. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Harnessing plasticity for the treatment of neurosurgical disorders: an overview.

    PubMed

    Chen, H Isaac; Attiah, Mark; Baltuch, Gordon; Smith, Douglas H; Hamilton, Roy H; Lucas, Timothy H

    2014-11-01

    Plasticity is fundamental to normal central nervous system function and its response to injury. Understanding this adaptive capacity is central to the development of novel surgical approaches to neurologic disease. These innovative interventions offer the promise of maximizing functional recovery for patients by harnessing targeted plasticity. Developing novel therapies will require the unprecedented integration of neuroscience, bioengineering, molecular biology, and physiology. Such synergistic approaches will create therapeutic options for patients previously outside of the scope of neurosurgery, such as those with permanent disability after traumatic brain injury or stroke. In this review, we synthesize the rapidly evolving field of plasticity and explore ways that neurosurgeons may enhance functional recovery in the future. We conclude that understanding plasticity is fundamental to modern neurosurgical education and practice. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Mechanisms of Neuroplasticity and Ethanol’s Effects on Plasticity in the Striatum and Bed Nucleus of the Stria Terminalis

    PubMed Central

    Lovinger, David M.; Kash, Thomas L.

    2015-01-01

    Long-lasting changes in synaptic function (i.e., synaptic plasticity) have long been thought to contribute to information storage in the nervous system. Although synaptic plasticity mainly has adaptive functions that allow the organism to function in complex environments, it is now clear that certain events or exposure to various substances can produce plasticity that has negative consequences for organisms. Exposure to drugs of abuse, in particular ethanol, is a life experience that can activate or alter synaptic plasticity, often resulting in increased drug seeking and taking and in many cases addiction. Two brain regions subject to alcohol’s effects on synaptic plasticity are the striatum and bed nucleus of the stria terminalis (BNST), both of which have key roles in alcohol’s actions and control of intake. The specific effects depend on both the brain region analyzed (e.g., specific subregions of the striatum and BNST) and the duration of ethanol exposure (i.e., acute vs. chronic). Plastic changes in synaptic transmission in these two brain regions following prolonged ethanol exposure are thought to contribute to excessive alcohol drinking and relapse to drinking. Understanding the mechanisms underlying this plasticity may lead to new therapies for treatment of these and other aspects of alcohol use disorder. PMID:26259092

  1. Korea Brain Initiative: Integration and Control of Brain Functions.

    PubMed

    Jeong, Sung-Jin; Lee, Haejin; Hur, Eun-Mi; Choe, Youngshik; Koo, Ja Wook; Rah, Jong-Cheol; Lee, Kea Joo; Lim, Hyun-Ho; Sun, Woong; Moon, Cheil; Kim, Kyungjin

    2016-11-02

    This article introduces the history and the long-term goals of the Korea Brain Initiative, which is centered on deciphering the brain functions and mechanisms that mediate the integration and control of brain functions that underlie decision-making. The goal of this initiative is the mapping of a functional connectome with searchable, multi-dimensional, and information-integrated features. The project also includes the development of novel technologies and neuro-tools for integrated brain mapping. Beyond the scientific goals this grand endeavor will ultimately have socioeconomic ramifications that not only facilitate global collaboration in the neuroscience community, but also develop various brain science-related industrial and medical innovations. Copyright © 2016. Published by Elsevier Inc.

  2. When music and long-term memory interact: effects of musical expertise on functional and structural plasticity in the hippocampus.

    PubMed

    Groussard, Mathilde; La Joie, Renaud; Rauchs, Géraldine; Landeau, Brigitte; Chételat, Gaël; Viader, Fausto; Desgranges, Béatrice; Eustache, Francis; Platel, Hervé

    2010-10-05

    The development of musical skills by musicians results in specific structural and functional modifications in the brain. Surprisingly, no functional magnetic resonance imaging (fMRI) study has investigated the impact of musical training on brain function during long-term memory retrieval, a faculty particularly important in music. Thus, using fMRI, we examined for the first time this process during a musical familiarity task (i.e., semantic memory for music). Musical expertise induced supplementary activations in the hippocampus, medial frontal gyrus, and superior temporal areas on both sides, suggesting a constant interaction between episodic and semantic memory during this task in musicians. In addition, a voxel-based morphometry (VBM) investigation was performed within these areas and revealed that gray matter density of the hippocampus was higher in musicians than in nonmusicians. Our data indicate that musical expertise critically modifies long-term memory processes and induces structural and functional plasticity in the hippocampus.

  3. Early behavioral intervention, brain plasticity, and the prevention of autism spectrum disorder.

    PubMed

    Dawson, Geraldine

    2008-01-01

    Advances in the fields of cognitive and affective developmental neuroscience, developmental psychopathology, neurobiology, genetics, and applied behavior analysis have contributed to a more optimistic outcome for individuals with autism spectrum disorder (ASD). These advances have led to new methods for early detection and more effective treatments. For the first time, prevention of ASD is plausible. Prevention will entail detecting infants at risk before the full syndrome is present and implementing treatments designed to alter the course of early behavioral and brain development. This article describes a developmental model of risk, risk processes, symptom emergence, and adaptation in ASD that offers a framework for understanding early brain plasticity in ASD and its role in prevention of the disorder.

  4. The Dancing Brain: Structural and Functional Signatures of Expert Dance Training

    PubMed Central

    Burzynska, Agnieszka Z.; Finc, Karolina; Taylor, Brittany K.; Knecht, Anya M.; Kramer, Arthur F.

    2017-01-01

    Dance – as a ritual, therapy, and leisure activity – has been known for thousands of years. Today, dance is increasingly used as therapy for cognitive and neurological disorders such as dementia and Parkinson’s disease. Surprisingly, the effects of dance training on the healthy young brain are not well understood despite the necessity of such information for planning successful clinical interventions. Therefore, this study examined actively performing, expert-level trained college students as a model of long-term exposure to dance training. To study the long-term effects of dance training on the human brain, we compared 20 young expert female Dancers with normal body mass index with 20 age- and education-matched Non-Dancers with respect to brain structure and function. We used diffusion tensor, morphometric, resting state and task-related functional MRI, a broad cognitive assessment, and objective measures of selected dance skill (Dance Central video game and a balance task). Dancers showed superior performance in the Dance Central video game and balance task, but showed no differences in cognitive abilities. We found little evidence for training-related differences in brain volume in Dancers. Dancers had lower anisotropy in the corticospinal tract. They also activated the action observation network (AON) to greater extent than Non-Dancers when viewing dance sequences. Dancers showed altered functional connectivity of the AON, and of the general motor learning network. These functional connectivity differences were related to dance skill and balance and training-induced structural characteristics. Our findings have the potential to inform future study designs aiming to monitor dance training-induced plasticity in clinical populations. PMID:29230170

  5. Experience-Dependent Neural Plasticity in the Adult Damaged Brain

    ERIC Educational Resources Information Center

    Kerr, Abigail L.; Cheng, Shao-Ying; Jones, Theresa A.

    2011-01-01

    Behavioral experience is at work modifying the structure and function of the brain throughout the lifespan, but it has a particularly dramatic influence after brain injury. This review summarizes recent findings on the role of experience in reorganizing the adult damaged brain, with a focus on findings from rodent stroke models of chronic upper…

  6. The multisensory brain and its ability to learn music.

    PubMed

    Zimmerman, Emily; Lahav, Amir

    2012-04-01

    Playing a musical instrument requires a complex skill set that depends on the brain's ability to quickly integrate information from multiple senses. It has been well documented that intensive musical training alters brain structure and function within and across multisensory brain regions, supporting the experience-dependent plasticity model. Here, we argue that this experience-dependent plasticity occurs because of the multisensory nature of the brain and may be an important contributing factor to musical learning. This review highlights key multisensory regions within the brain and discusses their role in the context of music learning and rehabilitation. © 2012 New York Academy of Sciences.

  7. Pulmonary functions in plastic factory workers: a preliminary study.

    PubMed

    Khaliq, Farah; Singh, Pawan; Chandra, Prakash; Gupta, Keshav; Vaney, Neelam

    2011-01-01

    Exposure to long term air pollution in the work environment may result in decreased lung functions and various other health problems. A significant occupational hazard to lung functions is experienced by plastic factory workers. The present study is planned to assess the pulmonary functions of workers in the plastic factory where recycling of pastic material was done. These workers were constantly exposed to fumes of various chemicals throughout the day. Thirty one workers of plastic factory were assessed for their pulmonary functions. Parameters were compared with 31 age and sex matched controls not exposed to the same environment. The pulmonary function tests were done using Sibelmed Datospir 120 B portable spirometer. A significant decrease in most of the flow rates (MEF 25%, MEF 50%, MEF 75% and FEF 25-75%) and most of the lung volumes and capacities (FVC, FEV1, VC, TV, ERV, MVV) were observed in the workers. Smoking and duration of exposure were not affecting the lung functions as the non smokers also showed a similar decrement in pulmonary functions. Similarly the workers working for less than 5 years also had decrement in pulmonary functions indicating that their lungs are being affected even if they have worked for one year. Exposure to the organic dust in the work environment should be controlled by adequate engineering measures, complemented by effective personal respiratory protection.

  8. Resting-State Functional Connectivity in the Infant Brain: Methods, Pitfalls, and Potentiality.

    PubMed

    Mongerson, Chandler R L; Jennings, Russell W; Borsook, David; Becerra, Lino; Bajic, Dusica

    2017-01-01

    Early brain development is characterized by rapid growth and perpetual reconfiguration, driven by a dynamic milieu of heterogeneous processes. Postnatal brain plasticity is associated with increased vulnerability to environmental stimuli. However, little is known regarding the ontogeny and temporal manifestations of inter- and intra-regional functional connectivity that comprise functional brain networks. Resting-state functional magnetic resonance imaging (rs-fMRI) has emerged as a promising non-invasive neuroinvestigative tool, measuring spontaneous fluctuations in blood oxygen level dependent (BOLD) signal at rest that reflect baseline neuronal activity. Over the past decade, its application has expanded to infant populations providing unprecedented insight into functional organization of the developing brain, as well as early biomarkers of abnormal states. However, many methodological issues of rs-fMRI analysis need to be resolved prior to standardization of the technique to infant populations. As a primary goal, this methodological manuscript will (1) present a robust methodological protocol to extract and assess resting-state networks in early infancy using independent component analysis (ICA), such that investigators without previous knowledge in the field can implement the analysis and reliably obtain viable results consistent with previous literature; (2) review the current methodological challenges and ethical considerations associated with emerging field of infant rs-fMRI analysis; and (3) discuss the significance of rs-fMRI application in infants for future investigations of neurodevelopment in the context of early life stressors and pathological processes. The overarching goal is to catalyze efforts toward development of robust, infant-specific acquisition, and preprocessing pipelines, as well as promote greater transparency by researchers regarding methods used.

  9. Prentice Award Lecture 2011: Removing the Brakes on Plasticity in the Amblyopic Brain

    PubMed Central

    Levi, Dennis M.

    2012-01-01

    Experience-dependent plasticity is closely linked with the development of sensory function. Beyond this sensitive period, developmental plasticity is actively limited; however, new studies provide growing evidence for plasticity in the adult visual system. The amblyopic visual system is an excellent model for examining the “brakes” that limit recovery of function beyond the critical period. While amblyopia can often be reversed when treated early, conventional treatment is generally not undertaken in older children and adults. However new clinical and experimental studies in both animals and humans provide evidence for neural plasticity beyond the critical period. The results suggest that perceptual learning and video game play may be effective in improving a range of visual performance measures and importantly the improvements may transfer to better visual acuity and stereopsis. These findings, along with the results of new clinical trials, suggest that it might be time to re-consider our notions about neural plasticity in amblyopia. PMID:22581119

  10. Filopodia: A Rapid Structural Plasticity Substrate for Fast Learning

    PubMed Central

    Ozcan, Ahmet S.

    2017-01-01

    Formation of new synapses between neurons is an essential mechanism for learning and encoding memories. The vast majority of excitatory synapses occur on dendritic spines, therefore, the growth dynamics of spines is strongly related to the plasticity timescales. Especially in the early stages of the developing brain, there is an abundant number of long, thin and motile protrusions (i.e., filopodia), which develop in timescales of seconds and minutes. Because of their unique morphology and motility, it has been suggested that filopodia can have a dual role in both spinogenesis and environmental sampling of potential axonal partners. I propose that filopodia can lower the threshold and reduce the time to form new dendritic spines and synapses, providing a substrate for fast learning. Based on this proposition, the functional role of filopodia during brain development is discussed in relation to learning and memory. Specifically, it is hypothesized that the postnatal brain starts with a single-stage memory system with filopodia playing a significant role in rapid structural plasticity along with the stability provided by the mushroom-shaped spines. Following the maturation of the hippocampus, this highly-plastic unitary system transitions to a two-stage memory system, which consists of a plastic temporary store and a long-term stable store. In alignment with these architectural changes, it is posited that after brain maturation, filopodia-based structural plasticity will be preserved in specific areas, which are involved in fast learning (e.g., hippocampus in relation to episodic memory). These propositions aim to introduce a unifying framework for a diversity of phenomena in the brain such as synaptogenesis, pruning and memory consolidation. PMID:28676753

  11. Brain lateralization and neural plasticity for musical and cognitive abilities in an epileptic musician

    PubMed Central

    Trujillo-Pozo, Isabel; Martín-Monzón, Isabel; Rodríguez-Romero, Rafael

    2013-01-01

    The use of intracarotid propofol procedure (IPP) when assessing musical lateralization has not been reported in literature up to now. This procedure (similar to Wada Test) has provided the opportunity to investigate not only lateralization of language and memory functions on epileptic patients but also offers a functional mapping approach with superior spatial and temporal resolution to analyze the lateralization of musical abilities. Findings in literature suggest that musical training modifies functional and structural brain organization. We studied hemispheric lateralization in a professional musician, a 33 years old woman with refractory left medial temporal lobe (MTL) epilepsy (TLE). A longitudinal neuropsychological study was performed over a period of 21 months. Before epilepsy surgery, musical abilities, language and memory were tested during IPP by means of a novel and exhaustive neuropsychological battery focusing on the processing of music. We used a selection of stimuli to analyze listening, score reading, and tempo discrimination. Our results suggested that IPP is an excellent method to determine not only language, semantic, and episodic memory, but also musical dominance in a professional musician who may be candidate for epilepsy surgery. Neuropsychological testing revealed that right hemisphere's patient is involved in semantic and episodic musical memory processes, whereas her score reading and tempo processing require contribution from both hemispheres. At one-year follow-up, outcome was excellent with respect to seizures and professional skills, meanwhile cognitive abilities improved. These findings indicate that IPP helps to predict who might be at risk for postoperative musical, language, and memory deficits after epilepsy surgery. Our research suggests that musical expertise and epilepsy critically modifies long-term memory processes and induces brain structural and functional plasticity. PMID:24367312

  12. α-Tocopherol and Hippocampal Neural Plasticity in Physiological and Pathological Conditions

    PubMed Central

    Ambrogini, Patrizia; Betti, Michele; Galati, Claudia; Di Palma, Michael; Lattanzi, Davide; Savelli, David; Galli, Francesco; Cuppini, Riccardo; Minelli, Andrea

    2016-01-01

    Neuroplasticity is an “umbrella term” referring to the complex, multifaceted physiological processes that mediate the ongoing structural and functional modifications occurring, at various time- and size-scales, in the ever-changing immature and adult brain, and that represent the basis for fundamental neurocognitive behavioral functions; in addition, maladaptive neuroplasticity plays a role in the pathophysiology of neuropsychiatric dysfunctions. Experiential cues and several endogenous and exogenous factors can regulate neuroplasticity; among these, vitamin E, and in particular α-tocopherol (α-T), the isoform with highest bioactivity, exerts potent effects on many plasticity-related events in both the physiological and pathological brain. In this review, the role of vitamin E/α-T in regulating diverse aspects of neuroplasticity is analyzed and discussed, focusing on the hippocampus, a brain structure that remains highly plastic throughout the lifespan and is involved in cognitive functions. Vitamin E-mediated influences on hippocampal synaptic plasticity and related cognitive behavior, on post-natal development and adult hippocampal neurogenesis, as well as on cellular and molecular disruptions in kainate-induced temporal seizures are described. Besides underscoring the relevance of its antioxidant properties, non-antioxidant functions of vitamin E/α-T, mainly involving regulation of cell signaling molecules and their target proteins, have been highlighted to help interpret the possible mechanisms underlying the effects on neuroplasticity. PMID:27983697

  13. Learning to learn – intrinsic plasticity as a metaplasticity mechanism for memory formation

    PubMed Central

    Sehgal, Megha; Song, Chenghui; Ehlers, Vanessa L.; Moyer, James R.

    2013-01-01

    “Use it or lose it” is a popular adage often associated with use-dependent enhancement of cognitive abilities. Much research has focused on understanding exactly how the brain changes as a function of experience. Such experience-dependent plasticity involves both structural and functional alterations that contribute to adaptive behaviors, such as learning and memory, as well as maladaptive behaviors, including anxiety disorders, phobias, and posttraumatic stress disorder. With the advancing age of our population, understanding how use-dependent plasticity changes across the lifespan may also help to promote healthy brain aging. A common misconception is that such experience-dependent plasticity (e.g., associative learning) is synonymous with synaptic plasticity. Other forms of plasticity also play a critical role in shaping adaptive changes within the nervous system, including intrinsic plasticity – a change in the intrinsic excitability of a neuron. Intrinsic plasticity can result from a change in the number, distribution or activity of various ion channels located throughout the neuron. Here, we review evidence that intrinsic plasticity is an important and evolutionarily conserved neural correlate of learning. Intrinsic plasticity acts as a metaplasticity mechanism by lowering the threshold for synaptic changes. Thus, learning-related intrinsic changes can facilitate future synaptic plasticity and learning. Such intrinsic changes can impact the allocation of a memory trace within a brain structure, and when compromised, can contribute to cognitive decline during the aging process. This unique role of intrinsic excitability can provide insight into how memories are formed and, more interestingly, how neurons that participate in a memory trace are selected. Most importantly, modulation of intrinsic excitability can allow for regulation of learning ability – this can prevent or provide treatment for cognitive decline not only in patients with clinical

  14. Use of functional near-infrared spectroscopy to monitor cortical plasticity induced by transcranial direct current stimulation

    NASA Astrophysics Data System (ADS)

    Khan, Bilal; Hervey, Nathan; Stowe, Ann; Hodics, Timea; Alexandrakis, George

    2013-03-01

    Electrical stimulation of the human cortex in conjunction with physical rehabilitation has been a valuable approach in facilitating the plasticity of the injured brain. One such method is transcranial direct current stimulation (tDCS) which is a non-invasive method to elicit neural stimulation by delivering current through electrodes placed on the scalp. In order to better understand the effects tDCS has on cortical plasticity, neuroimaging techniques have been used pre and post tDCS stimulation. Recently, neuroimaging methods have discovered changes in resting state cortical hemodynamics after the application of tDCS on human subjects. However, analysis of the cortical hemodynamic activity for a physical task during and post tDCS stimulation has not been studied to our knowledge. A viable and sensitive neuroimaging method to map changes in cortical hemodynamics during activation is functional near-infrared spectroscopy (fNIRS). In this study, the cortical activity during an event-related, left wrist curl task was mapped with fNIRS before, during, and after tDCS stimulation on eight healthy adults. Along with the fNIRS optodes, two electrodes were placed over the sensorimotor hand areas of both brain hemispheres to apply tDCS. Changes were found in both resting state cortical connectivity and cortical activation patterns that occurred during and after tDCS. Additionally, changes to surface electromyography (sEMG) measurements of the wrist flexor and extensor of both arms during the wrist curl movement, acquired concurrently with fNIRS, were analyzed and related to the transient cortical plastic changes induced by tDCS.

  15. [Brain plastic alterations in subjects with chronic right-sided sensorineural hearing loss: a resting-state MRI study].

    PubMed

    Zhang, L L; Gong, J P; Xu, Y W; Liu, B

    2016-06-21

    To investigate the nodal properties and reorganization of whole-brain functional network in subjects with severe right-sided SNHL. From June 2012 to June 2013, a total of 19 patients with severe right-sided SNHL were collected from Zhongda Hospital or the recruitment advertising along with 31 healthy controls.Based on the graph-theoretical analysis, the whole-brain functional networks were constructed using the BOLD-fMRI data of all subjects.Two sample two-tailed t-tests were used to investigate the differences between two groups in nodal metrics, such as node degree, node betweenness, node global efficiency and node local efficiency.All metrics were corrected by multiple comparisons.Partial correlation analysis was used to estimate the relationship between the significant metrics and the duration or severity of hearing loss. The right-sided SNHL showed significantly increased betweenness centrality in left supramarginal gyrus and right fusiform.However, other nodal parameters showed no statistical difference.Besides, patients exhibited no significant association between the altered metrics and clinical variables. Alterations of local topological properties may underlie cerebral cross-modal plastic reorganization in visual or speech-related regions in severe right-sided SNHL patients.

  16. Deterioration of plasticity and metabolic homeostasis in the brain of the UCD-T2DM rat model of naturally occurring type-2 diabetes.

    PubMed

    Agrawal, Rahul; Zhuang, Yumei; Cummings, Bethany P; Stanhope, Kimber L; Graham, James L; Havel, Peter J; Gomez-Pinilla, Fernando

    2014-09-01

    The rising prevalence of type-2 diabetes is becoming a pressing issue based on emerging reports that T2DM can also adversely impact mental health. We have utilized the UCD-T2DM rat model in which the onset of T2DM develops spontaneously across time and can serve to understand the pathophysiology of diabetes in humans. An increased insulin resistance index and plasma glucose levels manifested the onset of T2DM. There was a decrease in hippocampal insulin receptor signaling in the hippocampus, which correlated with peripheral insulin resistance index along the course of diabetes onset (r=-0.56, p<0.01). T2DM increased the hippocampal levels of 4-hydroxynonenal (4-HNE; a marker of lipid peroxidation) in inverse proportion to the changes in the mitochondrial regulator PGC-1α. Disrupted energy homeostasis was further manifested by a concurrent reduction in energy metabolic markers, including TFAM, SIRT1, and AMPK phosphorylation. In addition, T2DM influenced brain plasticity as evidenced by a significant reduction of BDNF-TrkB signaling. These results suggest that the pathology of T2DM in the brain involves a progressive and coordinated disruption of insulin signaling, and energy homeostasis, with profound consequences for brain function and plasticity. All the described consequences of T2DM were attenuated by treatment with the glucagon-like peptide-1 receptor agonist, liraglutide. Similar results to those of liraglutide were obtained by exposing T2DM rats to a food energy restricted diet, which suggest that normalization of brain energy metabolism is a crucial factor to counteract central insulin sensitivity and synaptic plasticity associated with T2DM. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Brain-computer interface controlled functional electrical stimulation device for foot drop due to stroke.

    PubMed

    Do, An H; Wang, Po T; King, Christine E; Schombs, Andrew; Cramer, Steven C; Nenadic, Zoran

    2012-01-01

    Gait impairment due to foot drop is a common outcome of stroke, and current physiotherapy provides only limited restoration of gait function. Gait function can also be aided by orthoses, but these devices may be cumbersome and their benefits disappear upon removal. Hence, new neuro-rehabilitative therapies are being sought to generate permanent improvements in motor function beyond those of conventional physiotherapies through positive neural plasticity processes. Here, the authors describe an electroencephalogram (EEG) based brain-computer interface (BCI) controlled functional electrical stimulation (FES) system that enabled a stroke subject with foot drop to re-establish foot dorsiflexion. To this end, a prediction model was generated from EEG data collected as the subject alternated between periods of idling and attempted foot dorsiflexion. This prediction model was then used to classify online EEG data into either "idling" or "dorsiflexion" states, and this information was subsequently used to control an FES device to elicit effective foot dorsiflexion. The performance of the system was assessed in online sessions, where the subject was prompted by a computer to alternate between periods of idling and dorsiflexion. The subject demonstrated purposeful operation of the BCI-FES system, with an average cross-correlation between instructional cues and BCI-FES response of 0.60 over 3 sessions. In addition, analysis of the prediction model indicated that non-classical brain areas were activated in the process, suggesting post-stroke cortical re-organization. In the future, these systems may be explored as a potential therapeutic tool that can help promote positive plasticity and neural repair in chronic stroke patients.

  18. Neuron-specific caveolin-1 overexpression improves motor function and preserves memory in mice subjected to brain trauma.

    PubMed

    Egawa, Junji; Schilling, Jan M; Cui, Weihua; Posadas, Edmund; Sawada, Atsushi; Alas, Basheer; Zemljic-Harpf, Alice E; Fannon-Pavlich, McKenzie J; Mandyam, Chitra D; Roth, David M; Patel, Hemal H; Patel, Piyush M; Head, Brian P

    2017-08-01

    Studies in vitro and in vivo demonstrate that membrane/lipid rafts and caveolin (Cav) organize progrowth receptors, and, when overexpressed specifically in neurons, Cav-1 augments neuronal signaling and growth and improves cognitive function in adult and aged mice; however, whether neuronal Cav-1 overexpression can preserve motor and cognitive function in the brain trauma setting is unknown. Here, we generated a neuron-targeted Cav-1-overexpressing transgenic (Tg) mouse [synapsin-driven Cav-1 (SynCav1 Tg)] and subjected it to a controlled cortical impact model of brain trauma and measured biochemical, anatomic, and behavioral changes. SynCav1 Tg mice exhibited increased hippocampal expression of Cav-1 and membrane/lipid raft localization of postsynaptic density protein 95, NMDA receptor, and tropomyosin receptor kinase B. When subjected to a controlled cortical impact, SynCav1 Tg mice demonstrated preserved hippocampus-dependent fear learning and memory, improved motor function recovery, and decreased brain lesion volume compared with wild-type controls. Neuron-targeted overexpression of Cav-1 in the adult brain prevents hippocampus-dependent learning and memory deficits, restores motor function after brain trauma, and decreases brain lesion size induced by trauma. Our findings demonstrate that neuron-targeted Cav-1 can be used as a novel therapeutic strategy to restore brain function and prevent trauma-associated maladaptive plasticity.-Egawa, J., Schilling, J. M., Cui, W., Posadas, E., Sawada, A., Alas, B., Zemljic-Harpf, A. E., Fannon-Pavlich, M. J., Mandyam, C. D., Roth, D. M., Patel, H. H., Patel, P. M., Head, B. P. Neuron-specific caveolin-1 overexpression improves motor function and preserves memory in mice subjected to brain trauma. © FASEB.

  19. Serotonin and brain function: a tale of two receptors

    PubMed Central

    Carhart-Harris, RL; Nutt, DJ

    2017-01-01

    Previous attempts to identify a unified theory of brain serotonin function have largely failed to achieve consensus. In this present synthesis, we integrate previous perspectives with new and older data to create a novel bipartite model centred on the view that serotonin neurotransmission enhances two distinct adaptive responses to adversity, mediated in large part by its two most prevalent and researched brain receptors: the 5-HT1A and 5-HT2A receptors. We propose that passive coping (i.e. tolerating a source of stress) is mediated by postsynaptic 5-HT1AR signalling and characterised by stress moderation. Conversely, we argue that active coping (i.e. actively addressing a source of stress) is mediated by 5-HT2AR signalling and characterised by enhanced plasticity (defined as capacity for change). We propose that 5-HT1AR-mediated stress moderation may be the brain’s default response to adversity but that an improved ability to change one’s situation and/or relationship to it via 5-HT2AR-mediated plasticity may also be important – and increasingly so as the level of adversity reaches a critical point. We propose that the 5-HT1AR pathway is enhanced by conventional 5-HT reuptake blocking antidepressants such as the selective serotonin reuptake inhibitors (SSRIs), whereas the 5-HT2AR pathway is enhanced by 5-HT2AR-agonist psychedelics. This bipartite model purports to explain how different drugs (SSRIs and psychedelics) that modulate the serotonergic system in different ways, can achieve complementary adaptive and potentially therapeutic outcomes. PMID:28858536

  20. Magnetic Resonance, Functional (fMRI) -- Brain

    MedlinePlus

    ... thought, speech, movement and sensation, which is called brain mapping. help assess the effects of stroke, trauma, or degenerative disease (such as Alzheimer's) on brain function. monitor the growth and function of brain ...

  1. Myelin and oligodendrocyte lineage cells in white matter pathology and plasticity after traumatic brain injury.

    PubMed

    Armstrong, Regina C; Mierzwa, Amanda J; Sullivan, Genevieve M; Sanchez, Maria A

    2016-11-01

    Impact to the head or rapid head acceleration-deceleration can cause traumatic brain injury (TBI) with a characteristic pathology of traumatic axonal injury (TAI) and secondary damage in white matter tracts. Myelin and oligodendrocyte lineage cells have significant roles in the progression of white matter pathology after TBI and in the potential for plasticity and subsequent recovery. The myelination pattern of specific brain regions, such as frontal cortex, may also increase susceptibility to neurodegeneration and psychiatric symptoms after TBI. White matter pathology after TBI depends on the extent and distribution of axon damage, microhemorrhages and/or neuroinflammation. TAI occurs in a pattern of damaged axons dispersed among intact axons in white matter tracts. TAI accompanied by bleeding and/or inflammation produces focal regions of overt tissue destruction, resulting in loss of both axons and myelin. White matter regions with TAI may also exhibit demyelination of intact axons. Demyelinated axons that remain viable have the potential for remyelination and recovery of function. Indeed, animal models of TBI have demonstrated demyelination that is associated with evidence of remyelination, including oligodendrocyte progenitor cell proliferation, generation of new oligodendrocytes, and formation of thinner myelin. Changes in neuronal activity that accompany TBI may also involve myelin remodeling, which modifies conduction efficiency along intact myelinated fibers. Thus, effective remyelination and myelin remodeling may be neurobiological substrates of plasticity in neuronal circuits that require long-distance communication. This perspective integrates findings from multiple contexts to propose a model of myelin and oligodendrocyte lineage cell relevance in white matter injury after TBI. This article is part of the Special Issue entitled 'Oligodendrocytes in Health and Disease'. Published by Elsevier Ltd.

  2. Maladaptive spinal plasticity opposes spinal learning and recovery in spinal cord injury

    PubMed Central

    Ferguson, Adam R.; Huie, J. Russell; Crown, Eric D.; Baumbauer, Kyle M.; Hook, Michelle A.; Garraway, Sandra M.; Lee, Kuan H.; Hoy, Kevin C.; Grau, James W.

    2012-01-01

    Synaptic plasticity within the spinal cord has great potential to facilitate recovery of function after spinal cord injury (SCI). Spinal plasticity can be induced in an activity-dependent manner even without input from the brain after complete SCI. A mechanistic basis for these effects is provided by research demonstrating that spinal synapses have many of the same plasticity mechanisms that are known to underlie learning and memory in the brain. In addition, the lumbar spinal cord can sustain several forms of learning and memory, including limb-position training. However, not all spinal plasticity promotes recovery of function. Central sensitization of nociceptive (pain) pathways in the spinal cord may emerge in response to various noxious inputs, demonstrating that plasticity within the spinal cord may contribute to maladaptive pain states. In this review we discuss interactions between adaptive and maladaptive forms of activity-dependent plasticity in the spinal cord below the level of SCI. The literature demonstrates that activity-dependent plasticity within the spinal cord must be carefully tuned to promote adaptive spinal training. Prior work from our group has shown that stimulation that is delivered in a limb position-dependent manner or on a fixed interval can induce adaptive plasticity that promotes future spinal cord learning and reduces nociceptive hyper-reactivity. On the other hand, stimulation that is delivered in an unsynchronized fashion, such as randomized electrical stimulation or peripheral skin injuries, can generate maladaptive spinal plasticity that undermines future spinal cord learning, reduces recovery of locomotor function, and promotes nociceptive hyper-reactivity after SCI. We review these basic phenomena, how these findings relate to the broader spinal plasticity literature, discuss the cellular and molecular mechanisms, and finally discuss implications of these and other findings for improved rehabilitative therapies after SCI. PMID

  3. [Functional neuroimaging of the brain structures associated with language in healthy individuals and patients with post-stroke aphasia].

    PubMed

    Alferova, V V; Mayorova, L A; Ivanova, E G; Guekht, A B; Shklovskij, V M

    2017-01-01

    The introduction of non-invasive functional neuroimaging techniques such as functional magnetic resonance imaging (fMRI), in the practice of scientific and clinical research can increase our knowledge about the organization of cognitive processes, including language, in normal and reorganization of these cognitive functions in post-stroke aphasia. The article discusses the results of fMRI studies of functional organization of the cortex of a healthy adult's brain in the processing of various voice information as well as the main types of speech reorganization after post-stroke aphasia in different stroke periods. The concepts of 'effective' and 'ineffective' brain plasticity in post-stroke aphasia were considered. It was concluded that there was an urgent need for further comprehensive studies, including neuropsychological testing and several complementary methods of functional neuroimaging, to develop a phased treatment plan and neurorehabilitation of patients with post-stroke aphasia.

  4. Thermodynamic laws apply to brain function.

    PubMed

    Salerian, Alen J

    2010-02-01

    Thermodynamic laws and complex system dynamics govern brain function. Thus, any change in brain homeostasis by an alteration in brain temperature, neurotransmission or content may cause region-specific brain dysfunction. This is the premise for the Salerian Theory of Brain built upon a new paradigm for neuropsychiatric disorders: the governing influence of neuroanatomy, neurophysiology, thermodynamic laws. The principles of region-specific brain function thermodynamics are reviewed. The clinical and supporting evidence including the paradoxical effects of various agents that alter brain homeostasis is demonstrated.

  5. Function-selective domain architecture plasticity potentials in eukaryotic genome evolution

    PubMed Central

    Linkeviciute, Viktorija; Rackham, Owen J.L.; Gough, Julian; Oates, Matt E.; Fang, Hai

    2015-01-01

    To help evaluate how protein function impacts on genome evolution, we introduce a new concept of ‘architecture plasticity potential’ – the capacity to form distinct domain architectures – both for an individual domain, or more generally for a set of domains grouped by shared function. We devise a scoring metric to measure the plasticity potential for these domain sets, and evaluate how function has changed over time for different species. Applying this metric to a phylogenetic tree of eukaryotic genomes, we find that the involvement of each function is not random but highly selective. For certain lineages there is strong bias for evolution to involve domains related to certain functions. In general eukaryotic genomes, particularly animals, expand complex functional activities such as signalling and regulation, but at the cost of reducing metabolic processes. We also observe differential evolution of transcriptional regulation and a unique evolutionary role of channel regulators; crucially this is only observable in terms of the architecture plasticity potential. Our findings provide a new layer of information to understand the significance of function in eukaryotic genome evolution. A web search tool, available at http://supfam.org/Pevo, offers a wide spectrum of options for exploring functional importance in eukaryotic genome evolution. PMID:25980317

  6. Induced sensorimotor brain plasticity controls pain in phantom limb patients

    PubMed Central

    Yanagisawa, Takufumi; Fukuma, Ryohei; Seymour, Ben; Hosomi, Koichi; Kishima, Haruhiko; Shimizu, Takeshi; Yokoi, Hiroshi; Hirata, Masayuki; Yoshimine, Toshiki; Kamitani, Yukiyasu; Saitoh, Youichi

    2016-01-01

    The cause of pain in a phantom limb after partial or complete deafferentation is an important problem. A popular but increasingly controversial theory is that it results from maladaptive reorganization of the sensorimotor cortex, suggesting that experimental induction of further reorganization should affect the pain, especially if it results in functional restoration. Here we use a brain–machine interface (BMI) based on real-time magnetoencephalography signals to reconstruct affected hand movements with a robotic hand. BMI training induces significant plasticity in the sensorimotor cortex, manifested as improved discriminability of movement information and enhanced prosthetic control. Contrary to our expectation that functional restoration would reduce pain, the BMI training with the phantom hand intensifies the pain. In contrast, BMI training designed to dissociate the prosthetic and phantom hands actually reduces pain. These results reveal a functional relevance between sensorimotor cortical plasticity and pain, and may provide a novel treatment with BMI neurofeedback. PMID:27807349

  7. Motor programme activating therapy influences adaptive brain functions in multiple sclerosis: clinical and MRI study.

    PubMed

    Rasova, Kamila; Prochazkova, Marie; Tintera, Jaroslav; Ibrahim, Ibrahim; Zimova, Denisa; Stetkarova, Ivana

    2015-03-01

    There is still little scientific evidence for the efficacy of neurofacilitation approaches and their possible influence on brain plasticity and adaptability. In this study, the outcome of a new kind of neurofacilitation approach, motor programme activating therapy (MPAT), was evaluated on the basis of a set of clinical functions and with MRI. Eighteen patients were examined four times with standardized clinical tests and diffusion tensor imaging to monitor changes without therapy, immediately after therapy and 1 month after therapy. Moreover, the strength of effective connectivity was analysed before and after therapy. Patients underwent a 1-h session of MPAT twice a week for 2 months. The data were analysed by nonparametric tests of association and were subsequently statistically evaluated. The therapy led to significant improvement in clinical functions, significant increment of fractional anisotropy and significant decrement of mean diffusivity, and decrement of effective connectivity at supplementary motor areas was observed immediately after the therapy. Changes in clinical functions and diffusion tensor images persisted 1 month after completing the programme. No statistically significant changes in clinical functions and no differences in MRI-diffusion tensor images were observed without physiotherapy. Positive immediate and long-term effects of MPAT on clinical and brain functions, as well as brain microstructure, were confirmed.

  8. [Clinical interest of fMRI and functional exploration methods of brain activity and interactivity: physical and neurophysiological considerations].

    PubMed

    de Marco, G; Menuel, C; Guillevin, R; Vallée, J-N; Lehmann, P; Fall, S; Quaglino, V; Bourdin, B; Devauchelle, B; Chiras, J

    2008-07-01

    After having provided a brief reminder of the principle of the blood oxygen level-dependent (BOLD) contrast effect, the physiological bases of brain activity and the concepts of functional integration and effective connectivity, we describe the most recent approaches, which permit to explore brain activity and putative networks of interconnected active areas in order to examine the normal brain physiology and its dysfunctions. We present various methods and studies of brain activity analysis clinically applicable, and we detail the concepts of functional and effective connectivity, which allow to study the cerebral plasticity which occurs at the child's during the maturation (e.g., dyslexia), at the adult during the ageing (e.g., Alzheimer disease), or still in schizophrenia or Parkinson disease. The study of specific circuits in networks has to allow defining in a more realistic way the dynamic of the central nervous system, which underlies various cerebral functions, both in physiological and pathological conditions. This connectivity approach should improve the diagnostic and facilitate the development of new therapeutic strategies.

  9. Resilience in mathematics after early brain injury: The roles of parental input and early plasticity.

    PubMed

    Glenn, Dana E; Demir-Lira, Özlem Ece; Gibson, Dominic J; Congdon, Eliza L; Levine, Susan C

    2018-04-01

    Children with early focal unilateral brain injury show remarkable plasticity in language development. However, little is known about how early brain injury influences mathematical learning. Here, we examine early number understanding, comparing cardinal number knowledge of typically developing children (TD) and children with pre- and perinatal lesions (BI) between 42 and 50 months of age. We also examine how this knowledge relates to the number words children hear from their primary caregivers early in life. We find that children with BI, are, on average, slightly behind TD children in both cardinal number knowledge and later mathematical performance, and show slightly slower learning rates than TD children in cardinal number knowledge during the preschool years. We also find that parents' "number talk" to their toddlers predicts later mathematical ability for both TD children and children with BI. These findings suggest a relatively optimistic story in which neural plasticity is at play in children's mathematical development following early brain injury. Further, the effects of early number input suggest that intervening to enrich the number talk that children with BI hear during the preschool years could narrow the math achievement gap. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Resting-State Functional Connectivity in the Infant Brain: Methods, Pitfalls, and Potentiality

    PubMed Central

    Mongerson, Chandler R. L.; Jennings, Russell W.; Borsook, David; Becerra, Lino; Bajic, Dusica

    2017-01-01

    Early brain development is characterized by rapid growth and perpetual reconfiguration, driven by a dynamic milieu of heterogeneous processes. Postnatal brain plasticity is associated with increased vulnerability to environmental stimuli. However, little is known regarding the ontogeny and temporal manifestations of inter- and intra-regional functional connectivity that comprise functional brain networks. Resting-state functional magnetic resonance imaging (rs-fMRI) has emerged as a promising non-invasive neuroinvestigative tool, measuring spontaneous fluctuations in blood oxygen level dependent (BOLD) signal at rest that reflect baseline neuronal activity. Over the past decade, its application has expanded to infant populations providing unprecedented insight into functional organization of the developing brain, as well as early biomarkers of abnormal states. However, many methodological issues of rs-fMRI analysis need to be resolved prior to standardization of the technique to infant populations. As a primary goal, this methodological manuscript will (1) present a robust methodological protocol to extract and assess resting-state networks in early infancy using independent component analysis (ICA), such that investigators without previous knowledge in the field can implement the analysis and reliably obtain viable results consistent with previous literature; (2) review the current methodological challenges and ethical considerations associated with emerging field of infant rs-fMRI analysis; and (3) discuss the significance of rs-fMRI application in infants for future investigations of neurodevelopment in the context of early life stressors and pathological processes. The overarching goal is to catalyze efforts toward development of robust, infant-specific acquisition, and preprocessing pipelines, as well as promote greater transparency by researchers regarding methods used. PMID:28856131

  11. Functional Brain Imaging

    PubMed Central

    2006-01-01

    Executive Summary Objective The objective of this analysis is to review a spectrum of functional brain imaging technologies to identify whether there are any imaging modalities that are more effective than others for various brain pathology conditions. This evidence-based analysis reviews magnetoencephalography (MEG), magnetic resonance spectroscopy (MRS), positron emission tomography (PET), and functional magnetic resonance imaging (fMRI) for the diagnosis or surgical management of the following conditions: Alzheimer’s disease (AD), brain tumours, epilepsy, multiple sclerosis (MS), and Parkinson’s disease (PD). Clinical Need: Target Population and Condition Alzheimer’s disease is a progressive, degenerative, neurologic condition characterized by cognitive impairment and memory loss. The Canadian Study on Health and Aging estimated that there will be 97,000 incident cases (about 60,000 women) of dementia (including AD) in Canada in 2006. In Ontario, there will be an estimated 950 new cases and 580 deaths due to brain cancer in 2006. Treatments for brain tumours include surgery and radiation therapy. However, one of the limitations of radiation therapy is that it damages tissue though necrosis and scarring. Computed tomography (CT) and magnetic resonance imaging (MRI) may not distinguish between radiation effects and resistant tissue, creating a potential role for functional brain imaging. Epilepsy is a chronic disorder that provokes repetitive seizures. In Ontario, the rate of epilepsy is estimated to be 5 cases per 1,000 people. Most people with epilepsy are effectively managed with drug therapy; but about 50% do not respond to drug therapy. Surgical resection of the seizure foci may be considered in these patients, and functional brain imaging may play a role in localizing the seizure foci. Multiple sclerosis is a progressive, inflammatory, demyelinating disease of the central nervous system (CNS). The cause of MS is unknown; however, it is thought to be

  12. Brain plasticity and sensorimotor deterioration as a function of 70 days head down tilt bed rest

    PubMed Central

    Bloomberg, Jacob J.; De Dios, Yiri E.; Wood, Scott J.; Reuter-Lorenz, Patricia A.; Kofman, Igor S.; Riascos, Roy; Mulavara, Ajitkumar P.; Seidler, Rachael D.

    2017-01-01

    Background Adverse effects of spaceflight on sensorimotor function have been linked to altered somatosensory and vestibular inputs in the microgravity environment. Whether these spaceflight sequelae have a central nervous system component is unknown. However, experimental studies have shown spaceflight-induced brain structural changes in rodents’ sensorimotor brain regions. Understanding the neural correlates of spaceflight-related motor performance changes is important to ultimately develop tailored countermeasures that ensure mission success and astronauts’ health. Method Head down-tilt bed rest (HDBR) can serve as a microgravity analog because it mimics body unloading and headward fluid shifts of microgravity. We conducted a 70-day 6° HDBR study with 18 right-handed males to investigate how microgravity affects focal gray matter (GM) brain volume. MRI data were collected at 7 time points before, during and post-HDBR. Standing balance and functional mobility were measured pre and post-HDBR. The same metrics were obtained at 4 time points over ~90 days from 12 control subjects, serving as reference data. Results HDBR resulted in widespread increases GM in posterior parietal regions and decreases in frontal areas; recovery was not yet complete by 12 days post-HDBR. Additionally, HDBR led to balance and locomotor performance declines. Increases in a cluster comprising the precuneus, precentral and postcentral gyrus GM correlated with less deterioration or even improvement in standing balance. This association did not survive Bonferroni correction and should therefore be interpreted with caution. No brain or behavior changes were observed in control subjects. Conclusions Our results parallel the sensorimotor deficits that astronauts experience post-flight. The widespread GM changes could reflect fluid redistribution. Additionally, the association between focal GM increase and balance changes suggests that HDBR also may result in neuroplastic adaptation. Future

  13. Norrin/Frizzled4 signaling in retinal vascular development and blood brain barrier plasticity.

    PubMed

    Wang, Yanshu; Rattner, Amir; Zhou, Yulian; Williams, John; Smallwood, Philip M; Nathans, Jeremy

    2012-12-07

    Norrin/Frizzled4 (Fz4) signaling activates the canonical Wnt pathway to control retinal vascular development. Using genetically engineered mice, we show that precocious Norrin production leads to premature retinal vascular invasion and delayed Norrin production leads to characteristic defects in intraretinal vascular architecture. In genetic mosaics, wild-type endothelial cells (ECs) instruct neighboring Fz4(-/-) ECs to produce an architecturally normal mosaic vasculature, a cell nonautonomous effect. However, over the ensuing weeks, Fz4(-/-) ECs are selectively eliminated from the mosaic vasculature, implying the existence of a quality control program that targets defective ECs. In the adult retina and cerebellum, gain or loss of Norrin/Fz4 signaling results in a cell-autonomous gain or loss, respectively, of blood retina barrier and blood brain barrier function, indicating an ongoing requirement for Frizzled signaling in barrier maintenance and substantial plasticity in mature CNS vascular structure. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Presynaptic Protein Synthesis Is Required for Long-Term Plasticity of GABA Release.

    PubMed

    Younts, Thomas J; Monday, Hannah R; Dudok, Barna; Klein, Matthew E; Jordan, Bryen A; Katona, István; Castillo, Pablo E

    2016-10-19

    Long-term changes of neurotransmitter release are critical for proper brain function. However, the molecular mechanisms underlying these changes are poorly understood. While protein synthesis is crucial for the consolidation of postsynaptic plasticity, whether and how protein synthesis regulates presynaptic plasticity in the mature mammalian brain remain unclear. Here, using paired whole-cell recordings in rodent hippocampal slices, we report that presynaptic protein synthesis is required for long-term, but not short-term, plasticity of GABA release from type 1 cannabinoid receptor (CB 1 )-expressing axons. This long-term depression of inhibitory transmission (iLTD) involves cap-dependent protein synthesis in presynaptic interneuron axons, but not somata. Translation is required during the induction, but not maintenance, of iLTD. Mechanistically, CB 1 activation enhances protein synthesis via the mTOR pathway. Furthermore, using super-resolution STORM microscopy, we revealed eukaryotic ribosomes in CB 1 -expressing axon terminals. These findings suggest that presynaptic local protein synthesis controls neurotransmitter release during long-term plasticity in the mature mammalian brain. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. The Effects of Leptin Replacement on Neural Plasticity

    PubMed Central

    Paz-Filho, Gilberto J.

    2016-01-01

    Leptin, an adipokine synthesized and secreted mainly by the adipose tissue, has multiple effects on the regulation of food intake, energy expenditure, and metabolism. Its recently-approved analogue, metreleptin, has been evaluated in clinical trials for the treatment of patients with leptin deficiency due to mutations in the leptin gene, lipodystrophy syndromes, and hypothalamic amenorrhea. In such patients, leptin replacement therapy has led to changes in brain structure and function in intra- and extrahypothalamic areas, including the hippocampus. Furthermore, in one of those patients, improvements in neurocognitive development have been observed. In addition to this evidence linking leptin to neural plasticity and function, observational studies evaluating leptin-sufficient humans have also demonstrated direct correlation between blood leptin levels and brain volume and inverse associations between circulating leptin and risk for the development of dementia. This review summarizes the evidence in the literature on the role of leptin in neural plasticity (in leptin-deficient and in leptin-sufficient individuals) and its effects on synaptic activity, glutamate receptor trafficking, neuronal morphology, neuronal development and survival, and microglial function. PMID:26881138

  16. The Effects of Leptin Replacement on Neural Plasticity.

    PubMed

    Paz-Filho, Gilberto J

    2016-01-01

    Leptin, an adipokine synthesized and secreted mainly by the adipose tissue, has multiple effects on the regulation of food intake, energy expenditure, and metabolism. Its recently-approved analogue, metreleptin, has been evaluated in clinical trials for the treatment of patients with leptin deficiency due to mutations in the leptin gene, lipodystrophy syndromes, and hypothalamic amenorrhea. In such patients, leptin replacement therapy has led to changes in brain structure and function in intra- and extrahypothalamic areas, including the hippocampus. Furthermore, in one of those patients, improvements in neurocognitive development have been observed. In addition to this evidence linking leptin to neural plasticity and function, observational studies evaluating leptin-sufficient humans have also demonstrated direct correlation between blood leptin levels and brain volume and inverse associations between circulating leptin and risk for the development of dementia. This review summarizes the evidence in the literature on the role of leptin in neural plasticity (in leptin-deficient and in leptin-sufficient individuals) and its effects on synaptic activity, glutamate receptor trafficking, neuronal morphology, neuronal development and survival, and microglial function.

  17. Whole-brain functional connectivity identification of functional dyspepsia.

    PubMed

    Nan, Jiaofen; Liu, Jixin; Li, Guoying; Xiong, Shiwei; Yan, Xuemei; Yin, Qing; Zeng, Fang; von Deneen, Karen M; Liang, Fanrong; Gong, Qiyong; Qin, Wei; Tian, Jie

    2013-01-01

    Recent neuroimaging studies have shown local brain aberrations in functional dyspepsia (FD) patients, yet little attention has been paid to the whole-brain resting-state functional network abnormalities. The purpose of this study was to investigate whether FD disrupts the patterns of whole-brain networks and the abnormal functional connectivity could reflect the severity of the disease. The dysfunctional interactions between brain regions at rest were investigated in FD patients as compared with 40 age- and gender- matched healthy controls. Multivariate pattern analysis was used to evaluate the discriminative power of our results for classifying patients from controls. In our findings, the abnormal brain functional connections were mainly situated within or across the limbic/paralimbic system, the prefrontal cortex, the tempo-parietal areas and the visual cortex. About 96% of the subjects among the original dataset were correctly classified by a leave one-out cross-validation approach, and 88% accuracy was also validated in a replication dataset. The classification features were significantly associated with the patients' dyspepsia symptoms, the self-rating depression scale and self-rating anxiety scale, but it was not correlated with duration of FD patients (p>0.05). Our results may indicate the effectiveness of the altered brain functional connections reflecting the disease pathophysiology underling FD. These dysfunctional connections may be the epiphenomena or causative agents of FD, which may be affected by clinical severity and its related emotional dimension of the disease rather than the clinical course.

  18. Fluoxetine increases plasticity and modulates the proteomic profile in the adult mouse visual cortex

    PubMed Central

    Ruiz-Perera, L.; Muniz, M.; Vierci, G.; Bornia, N.; Baroncelli, L.; Sale, A.; Rossi, F.M.

    2015-01-01

    The scarce functional recovery of the adult CNS following injuries or diseases is largely due to its reduced potential for plasticity, the ability to reorganize neural connections as a function of experience. Recently, some new strategies restoring high levels of plasticity in the adult brain have been identified, especially in the paradigmatic model of the visual system. A chronic treatment with the anti-depressant fluoxetine reinstates plasticity in the adult rat primary visual cortex, inducing recovery of vision in amblyopic animals. The molecular mechanisms underlying this effect remain largely unknown. Here, we explored fluoxetine effects on mouse visual cortical plasticity, and exploited a proteomic approach to identify possible candidates mediating the outcome of the antidepressant treatment on adult cortical plasticity. We showed that fluoxetine restores ocular dominance plasticity in the adult mouse visual cortex, and identified 31 differentially expressed protein spots in fluoxetine-treated animals vs. controls. MALDITOF/TOF mass spectrometry identification followed by bioinformatics analysis revealed that these proteins are involved in the control of cytoskeleton organization, endocytosis, molecular transport, intracellular signaling, redox cellular state, metabolism and protein degradation. Altogether, these results indicate a complex effect of fluoxetine on neuronal signaling mechanisms potentially involved in restoring plasticity in the adult brain. PMID:26205348

  19. Growth and development of the brain and impact on cognitive outcomes.

    PubMed

    Hüppi, Petra S

    2010-01-01

    Understanding human brain development from the fetal life to adulthood is of great clinical importance as many neurological and neurobehavioral disorders have their origin in early structural and functional cerebral maturation. The developing brain is particularly prone to being affected by endogenous and exogenous events through the fetal and early postnatal life. The concept of 'developmental plasticity or disruption of the developmental program' summarizes these events. Increases in white matter, which speed up communication between brain cells, growing complexity of neuronal networks suggested by gray and white matter changes, and environmentally sensitive plasticity are all essential aspects in a child's ability to mentalize and maintain the adaptive flexibility necessary for achieving high sociocognitive functioning. Advancement in neuroimaging has opened up new ways for examining the developing human brain in vivo, the study of the effects of early antenatal, perinatal and neonatal events on later structural and functional brain development resulting in developmental disabilities or developmental resilience. In this review, methods of quantitative assessment of human brain development, such as 3D-MRI with image segmentation, diffusion tensor imaging to assess connectivity and functional MRI to visualize brain function will be presented. Copyright (c) 2010 S. Karger AG, Basel.

  20. Dissociated language functions: a matter of atypical language lateralization or cerebral plasticity?

    PubMed

    Acioly, Marcus Andre; Gharabaghi, Alireza; Zimmermann, Christoph; Erb, Michael; Heckl, Stefan; Tatagiba, Marcos

    2014-01-01

    The left hemisphere is generally considered to harbor language functions. Atypical cortical language lateralization is mainly demonstrated in left-handed and ambidextrous individuals, whereas dissociated language functions have been reported in association with brain injuries as a part of the reorganization process. We present a thoughtful discussion on the underlying mechanisms of dissociated language functions through an illustrative case of dissociated expressive language. A 31-year-old left-handed woman presented with a recurrent left frontal glioma. Preoperative language functional magnetic resonance imaging (fMRI) panel revealed right-sided dominance for two different language tasks (verbal fluency and visual naming), and the word chain task demonstrated maximal activation in the left hemisphere at the posterior margin of the tumor. The patient was operated on awake to assess language functions intraoperatively. Preoperative fMRI findings were confirmed revealing a task-specific dissociation of expressive language functions. Surgical resection was taken to the functional boundaries. Postoperatively, no language dysfunction occurred. Dissociated language functions are prone to occur in long-standing lesions. Different patterns of dissociation may be encountered due to interindividual particularities and cerebral plasticity. The presented patient is unique by demonstrating new insight into expressive language dissociation, emphasizing the role of a preoperative language fMRI panel and the capability of intraoperative language mapping for identifying special language networks. Georg Thieme Verlag KG Stuttgart · New York.

  1. Rewiring the Brain: Potential Role of the Premotor Cortex in Motor Control, Learning, and Recovery of Function Following Brain Injury

    PubMed Central

    Kantak, Shailesh S.; Stinear, James W.; Buch, Ethan R.; Cohen, Leonardo G.

    2016-01-01

    The brain is a plastic organ with a capability to reorganize in response to behavior and/or injury. Following injury to the motor cortex or emergent corticospinal pathways, recovery of function depends on the capacity of surviving anatomical resources to recover and repair in response to task-specific training. One such area implicated in poststroke reorganization to promote recovery of upper extremity recovery is the premotor cortex (PMC). This study reviews the role of distinct subdivisions of PMC: dorsal (PMd) and ventral (PMv) premotor cortices as critical anatomical and physiological nodes within the neural networks for the control and learning of goal-oriented reach and grasp actions in healthy individuals and individuals with stroke. Based on evidence emerging from studies of intrinsic and extrinsic connectivity, transcranial magnetic stimulation, functional neuroimaging, and experimental studies in animals and humans, the authors propose 2 distinct patterns of reorganization that differentially engage ipsilesional and contralesional PMC. Research directions that may offer further insights into the role of PMC in motor control, learning, and poststroke recovery are also proposed. This research may facilitate neuroplasticity for maximal recovery of function following brain injury. PMID:21926382

  2. Structural and functional plasticity of dendritic spines – root or result of behavior?

    PubMed Central

    Gipson, Cassandra D.; Olive, M. Foster

    2016-01-01

    Dendritic spines are multifunctional integrative units of the nervous system and are highly diverse and dynamic in nature. Both internal and external stimuli influence dendritic spine density and morphology on the order of minutes. It is clear that the structural plasticity of dendritic spines is related to changes in synaptic efficacy, learning and memory, and other cognitive processes. However, it is currently unclear whether structural changes in dendritic spines are primary instigators of changes in specific behaviors, a consequence of behavioral changes, or both. In this review, we first review the basic structure and function of dendritic spines in the brain, as well as laboratory methods to characterize and quantify morphological changes in dendritic spines. We then discuss the existing literature on the temporal and functional relationship between changes in dendritic spines in specific brain regions and changes in specific behaviors mediated by those regions. Although technological advancements have allowed us to better understand the functional relevance of structural changes in dendritic spines that are influenced by environmental stimuli, the role of spine dynamics as an underlying driver or consequence of behavior still remains elusive. We conclude that while it is likely that structural changes in dendritic spines are both instigators and results of behavioral changes, improved research tools and methods are needed to experimentally and directly manipulate spine dynamics in order to more empirically delineate the relationship between spine structure and behavior. PMID:27561549

  3. Scaling of Brain Metabolism with a Fixed Energy Budget per Neuron: Implications for Neuronal Activity, Plasticity and Evolution

    PubMed Central

    Herculano-Houzel, Suzana

    2011-01-01

    It is usually considered that larger brains have larger neurons, which consume more energy individually, and are therefore accompanied by a larger number of glial cells per neuron. These notions, however, have never been tested. Based on glucose and oxygen metabolic rates in awake animals and their recently determined numbers of neurons, here I show that, contrary to the expected, the estimated glucose use per neuron is remarkably constant, varying only by 40% across the six species of rodents and primates (including humans). The estimated average glucose use per neuron does not correlate with neuronal density in any structure. This suggests that the energy budget of the whole brain per neuron is fixed across species and brain sizes, such that total glucose use by the brain as a whole, by the cerebral cortex and also by the cerebellum alone are linear functions of the number of neurons in the structures across the species (although the average glucose consumption per neuron is at least 10× higher in the cerebral cortex than in the cerebellum). These results indicate that the apparently remarkable use in humans of 20% of the whole body energy budget by a brain that represents only 2% of body mass is explained simply by its large number of neurons. Because synaptic activity is considered the major determinant of metabolic cost, a conserved energy budget per neuron has several profound implications for synaptic homeostasis and the regulation of firing rates, synaptic plasticity, brain imaging, pathologies, and for brain scaling in evolution. PMID:21390261

  4. Scaling of brain metabolism with a fixed energy budget per neuron: implications for neuronal activity, plasticity and evolution.

    PubMed

    Herculano-Houzel, Suzana

    2011-03-01

    It is usually considered that larger brains have larger neurons, which consume more energy individually, and are therefore accompanied by a larger number of glial cells per neuron. These notions, however, have never been tested. Based on glucose and oxygen metabolic rates in awake animals and their recently determined numbers of neurons, here I show that, contrary to the expected, the estimated glucose use per neuron is remarkably constant, varying only by 40% across the six species of rodents and primates (including humans). The estimated average glucose use per neuron does not correlate with neuronal density in any structure. This suggests that the energy budget of the whole brain per neuron is fixed across species and brain sizes, such that total glucose use by the brain as a whole, by the cerebral cortex and also by the cerebellum alone are linear functions of the number of neurons in the structures across the species (although the average glucose consumption per neuron is at least 10× higher in the cerebral cortex than in the cerebellum). These results indicate that the apparently remarkable use in humans of 20% of the whole body energy budget by a brain that represents only 2% of body mass is explained simply by its large number of neurons. Because synaptic activity is considered the major determinant of metabolic cost, a conserved energy budget per neuron has several profound implications for synaptic homeostasis and the regulation of firing rates, synaptic plasticity, brain imaging, pathologies, and for brain scaling in evolution.

  5. Brain Modulyzer: Interactive Visual Analysis of Functional Brain Connectivity

    DOE PAGES

    Murugesan, Sugeerth; Bouchard, Kristopher; Brown, Jesse A.; ...

    2016-05-09

    Here, we present Brain Modulyzer, an interactive visual exploration tool for functional magnetic resonance imaging (fMRI) brain scans, aimed at analyzing the correlation between different brain regions when resting or when performing mental tasks. Brain Modulyzer combines multiple coordinated views—such as heat maps, node link diagrams, and anatomical views—using brushing and linking to provide an anatomical context for brain connectivity data. Integrating methods from graph theory and analysis, e.g., community detection and derived graph measures, makes it possible to explore the modular and hierarchical organization of functional brain networks. Providing immediate feedback by displaying analysis results instantaneously while changing parametersmore » gives neuroscientists a powerful means to comprehend complex brain structure more effectively and efficiently and supports forming hypotheses that can then be validated via statistical analysis. In order to demonstrate the utility of our tool, we also present two case studies—exploring progressive supranuclear palsy, as well as memory encoding and retrieval« less

  6. Brain Modulyzer: Interactive Visual Analysis of Functional Brain Connectivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murugesan, Sugeerth; Bouchard, Kristopher; Brown, Jesse A.

    Here, we present Brain Modulyzer, an interactive visual exploration tool for functional magnetic resonance imaging (fMRI) brain scans, aimed at analyzing the correlation between different brain regions when resting or when performing mental tasks. Brain Modulyzer combines multiple coordinated views—such as heat maps, node link diagrams, and anatomical views—using brushing and linking to provide an anatomical context for brain connectivity data. Integrating methods from graph theory and analysis, e.g., community detection and derived graph measures, makes it possible to explore the modular and hierarchical organization of functional brain networks. Providing immediate feedback by displaying analysis results instantaneously while changing parametersmore » gives neuroscientists a powerful means to comprehend complex brain structure more effectively and efficiently and supports forming hypotheses that can then be validated via statistical analysis. In order to demonstrate the utility of our tool, we also present two case studies—exploring progressive supranuclear palsy, as well as memory encoding and retrieval« less

  7. Cortical Plasticity Induction by Pairing Subthalamic Nucleus Deep-Brain Stimulation and Primary Motor Cortical Transcranial Magnetic Stimulation in Parkinson's Disease.

    PubMed

    Udupa, Kaviraja; Bahl, Nina; Ni, Zhen; Gunraj, Carolyn; Mazzella, Filomena; Moro, Elena; Hodaie, Mojgan; Lozano, Andres M; Lang, Anthony E; Chen, Robert

    2016-01-13

    Noninvasive brain stimulation studies have shown abnormal motor cortical plasticity in Parkinson's disease (PD). These studies used peripheral nerve stimulation paired with transcranial magnetic stimulation (TMS) to primary motor cortex (M1) at specific intervals to induce plasticity. Induction of cortical plasticity through stimulation of the basal ganglia (BG)-M1 connections has not been studied. In the present study, we used a novel technique of plasticity induction by repeated pairing of deep-brain stimulation (DBS) of the BG with M1 stimulation using TMS. We hypothesize that repeated pairing of subthalamic nucleus (STN)-DBS and M1-TMS at specific time intervals will lead to plasticity in the M1. Ten PD human patients with STN-DBS were studied in the on-medication state with DBS set to 3 Hz. The interstimulus intervals (ISIs) between STN-DBS and TMS that produced cortical facilitation were determined individually for each patient. Three plasticity induction conditions with repeated pairings (180 times) at specific ISIs (∼ 3 and ∼ 23 ms) that produced cortical facilitation and a control ISI of 167 ms were tested in random order. Repeated pairing of STN-DBS and M1-TMS at short (∼ 3 ms) and medium (∼ 23 ms) latencies increased M1 excitability that lasted for at least 45 min, whereas the control condition (fixed ISI of 167 ms) had no effect. There were no specific changes in motor thresholds, intracortical circuits, or recruitment curves. Our results indicate that paired-associative cortical plasticity can be induced by repeated STN and M1 stimulation at specific intervals. These results show that STN-DBS can modulate cortical plasticity. We introduced a new experimental paradigm to test the hypothesis that pairing subthalamic nucleus deep-brain stimulation (STN-DBS) with motor cortical transcranial magnetic stimulation (M1-TMS) at specific times can induce cortical plasticity in patients with Parkinson's disease (PD). We found that repeated pairing of STN

  8. Genetic Rescue of Functional Senescence in Synaptic and Behavioral Plasticity

    PubMed Central

    Donlea, Jeffrey M.; Ramanan, Narendrakumar; Silverman, Neal; Shaw, Paul J.

    2014-01-01

    Study Objectives: Aging has been linked with decreased neural plasticity and memory formation in humans and in laboratory model species such as the fruit fly, Drosophila melanogaster. Here, we examine plastic responses following social experience in Drosophila as a high-throughput method to identify interventions that prevent these impairments. Patients or Participants: Wild-type and transgenic Drosophila melanogaster. Design and Interventions: Young (5-day old) or aged (20-day old) adult female Drosophila were housed in socially enriched (n = 35-40) or isolated environments, then assayed for changes in sleep and for structural markers of synaptic terminal growth in the ventral lateral neurons (LNVs) of the circadian clock. Measurements and Results: When young flies are housed in a socially enriched environment, they exhibit synaptic elaboration within a component of the circadian circuitry, the LNVs, which is followed by increased sleep. Aged flies, however, no longer exhibit either of these plastic changes. Because of the tight correlation between neural plasticity and ensuing increases in sleep, we use sleep after enrichment as a high-throughput marker for neural plasticity to identify interventions that prolong youthful plasticity in aged flies. To validate this strategy, we find three independent genetic manipulations that delay age-related losses in plasticity: (1) elevation of dopaminergic signaling, (2) over-expression of the transcription factor blistered (bs) in the LNVs, and (3) reduction of the Imd immune signaling pathway. These findings provide proof-of-principle evidence that measuring changes in sleep in flies after social enrichment may provide a highly scalable assay for the study of age-related deficits in synaptic plasticity. Conclusions: These studies demonstrate that Drosophila provides a promising model for the study of age-related loss of neural plasticity and begin to identify genes that might be manipulated to delay the onset of functional

  9. Enabling Functional Neural Circuit Simulations with Distributed Computing of Neuromodulated Plasticity

    PubMed Central

    Potjans, Wiebke; Morrison, Abigail; Diesmann, Markus

    2010-01-01

    A major puzzle in the field of computational neuroscience is how to relate system-level learning in higher organisms to synaptic plasticity. Recently, plasticity rules depending not only on pre- and post-synaptic activity but also on a third, non-local neuromodulatory signal have emerged as key candidates to bridge the gap between the macroscopic and the microscopic level of learning. Crucial insights into this topic are expected to be gained from simulations of neural systems, as these allow the simultaneous study of the multiple spatial and temporal scales that are involved in the problem. In particular, synaptic plasticity can be studied during the whole learning process, i.e., on a time scale of minutes to hours and across multiple brain areas. Implementing neuromodulated plasticity in large-scale network simulations where the neuromodulatory signal is dynamically generated by the network itself is challenging, because the network structure is commonly defined purely by the connectivity graph without explicit reference to the embedding of the nodes in physical space. Furthermore, the simulation of networks with realistic connectivity entails the use of distributed computing. A neuromodulated synapse must therefore be informed in an efficient way about the neuromodulatory signal, which is typically generated by a population of neurons located on different machines than either the pre- or post-synaptic neuron. Here, we develop a general framework to solve the problem of implementing neuromodulated plasticity in a time-driven distributed simulation, without reference to a particular implementation language, neuromodulator, or neuromodulated plasticity mechanism. We implement our framework in the simulator NEST and demonstrate excellent scaling up to 1024 processors for simulations of a recurrent network incorporating neuromodulated spike-timing dependent plasticity. PMID:21151370

  10. Molecular bases of caloric restriction regulation of neuronal synaptic plasticity.

    PubMed

    Fontán-Lozano, Angela; López-Lluch, Guillermo; Delgado-García, José María; Navas, Placido; Carrión, Angel Manuel

    2008-10-01

    Aging is associated with the decline of cognitive properties. This situation is magnified when neurodegenerative processes associated with aging appear in human patients. Neuronal synaptic plasticity events underlie cognitive properties in the central nervous system. Caloric restriction (CR; either a decrease in food intake or an intermittent fasting diet) can extend life span and increase disease resistance. Recent studies have shown that CR can have profound effects on brain function and vulnerability to injury and disease. Moreover, CR can stimulate the production of new neurons from stem cells (neurogenesis) and can enhance synaptic plasticity, which modulate pain sensation, enhance cognitive function, and may increase the ability of the brain to resist aging. The beneficial effects of CR appear to be the result of a cellular stress response stimulating the production of proteins that enhance neuronal plasticity and resistance to oxidative and metabolic insults; they include neurotrophic factors, neurotransmitter receptors, protein chaperones, and mitochondrial biosynthesis regulators. In this review, we will present and discuss the effect of CR in synaptic processes underlying analgesia and cognitive improvement in healthy, sick, and aging animals. We will also discuss the possible role of mitochondrial biogenesis induced by CR in regulation of neuronal synaptic plasticity.

  11. Multi-layer plastic/glass microfluidic systems containing electrical and mechanical functionality.

    PubMed

    Han, Arum; Wang, Olivia; Graff, Mason; Mohanty, Swomitra K; Edwards, Thayne L; Han, Ki-Ho; Bruno Frazier, A

    2003-08-01

    This paper describes an approach for fabricating multi-layer microfluidic systems from a combination of glass and plastic materials. Methods and characterization results for the microfabrication technologies underlying the process flow are presented. The approach is used to fabricate and characterize multi-layer plastic/glass microfluidic systems containing electrical and mechanical functionality. Hot embossing, heat staking of plastics, injection molding, microstenciling of electrodes, and stereolithography were combined with conventional MEMS fabrication techniques to realize the multi-layer systems. The approach enabled the integration of multiple plastic/glass materials into a single monolithic system, provided a solution for the integration of electrical functionality throughout the system, provided a mechanism for the inclusion of microactuators such as micropumps/valves, and provided an interconnect technology for interfacing fluids and electrical components between the micro system and the macro world.

  12. Role of the visual experience-dependent nascent proteome in neuronal plasticity

    PubMed Central

    Liu, Han-Hsuan; McClatchy, Daniel B; Schiapparelli, Lucio; Shen, Wanhua; Yates, John R

    2018-01-01

    Experience-dependent synaptic plasticity refines brain circuits during development. To identify novel protein synthesis-dependent mechanisms contributing to experience-dependent plasticity, we conducted a quantitative proteomic screen of the nascent proteome in response to visual experience in Xenopus optic tectum using bio-orthogonal metabolic labeling (BONCAT). We identified 83 differentially synthesized candidate plasticity proteins (CPPs). The CPPs form strongly interconnected networks and are annotated to a variety of biological functions, including RNA splicing, protein translation, and chromatin remodeling. Functional analysis of select CPPs revealed the requirement for eukaryotic initiation factor three subunit A (eIF3A), fused in sarcoma (FUS), and ribosomal protein s17 (RPS17) in experience-dependent structural plasticity in tectal neurons and behavioral plasticity in tadpoles. These results demonstrate that the nascent proteome is dynamic in response to visual experience and that de novo synthesis of machinery that regulates RNA splicing and protein translation is required for experience-dependent plasticity. PMID:29412139

  13. Long-Term Exercise Is Needed to Enhance Synaptic Plasticity in the Hippocampus

    ERIC Educational Resources Information Center

    Patten, Anna R.; Sickmann, Helle; Hryciw, Brett N.; Kucharsky, Tessa; Parton, Roberta; Kernick, Aimee; Christie, Brian R.

    2013-01-01

    Exercise can have many benefits for the body, but it also benefits the brain by increasing neurogenesis, synaptic plasticity, and performance on learning and memory tasks. The period of exercise needed to realize the structural and functional benefits for the brain have not been well delineated, and previous studies have used periods of exercise…

  14. Cardiovascular fitness, cortical plasticity, and aging.

    PubMed

    Colcombe, Stanley J; Kramer, Arthur F; Erickson, Kirk I; Scalf, Paige; McAuley, Edward; Cohen, Neal J; Webb, Andrew; Jerome, Gerry J; Marquez, David X; Elavsky, Steriani

    2004-03-02

    Cardiovascular fitness is thought to offset declines in cognitive performance, but little is known about the cortical mechanisms that underlie these changes in humans. Research using animal models shows that aerobic training increases cortical capillary supplies, the number of synaptic connections, and the development of new neurons. The end result is a brain that is more efficient, plastic, and adaptive, which translates into better performance in aging animals. Here, in two separate experiments, we demonstrate for the first time to our knowledge, in humans that increases in cardiovascular fitness results in increased functioning of key aspects of the attentional network of the brain during a cognitively challenging task. Specifically, highly fit (Study 1) or aerobically trained (Study 2) persons show greater task-related activity in regions of the prefrontal and parietal cortices that are involved in spatial selection and inhibitory functioning, when compared with low-fit (Study 1) or nonaerobic control (Study 2) participants. Additionally, in both studies there exist groupwise differences in activation of the anterior cingulate cortex, which is thought to monitor for conflict in the attentional system, and signal the need for adaptation in the attentional network. These data suggest that increased cardiovascular fitness can affect improvements in the plasticity of the aging human brain, and may serve to reduce both biological and cognitive senescence in humans.

  15. Insulin Action in Brain Regulates Systemic Metabolism and Brain Function

    PubMed Central

    Kleinridders, André; Ferris, Heather A.; Cai, Weikang

    2014-01-01

    Insulin receptors, as well as IGF-1 receptors and their postreceptor signaling partners, are distributed throughout the brain. Insulin acts on these receptors to modulate peripheral metabolism, including regulation of appetite, reproductive function, body temperature, white fat mass, hepatic glucose output, and response to hypoglycemia. Insulin signaling also modulates neurotransmitter channel activity, brain cholesterol synthesis, and mitochondrial function. Disruption of insulin action in the brain leads to impairment of neuronal function and synaptogenesis. In addition, insulin signaling modulates phosphorylation of tau protein, an early component in the development of Alzheimer disease. Thus, alterations in insulin action in the brain can contribute to metabolic syndrome, and the development of mood disorders and neurodegenerative diseases. PMID:24931034

  16. Visual brain plasticity induced by central and peripheral visual field loss.

    PubMed

    Sanda, Nicolae; Cerliani, Leonardo; Authié, Colas N; Sabbah, Norman; Sahel, José-Alain; Habas, Christophe; Safran, Avinoam B; Thiebaut de Schotten, Michel

    2018-06-23

    Disorders that specifically affect central and peripheral vision constitute invaluable models to study how the human brain adapts to visual deafferentation. We explored cortical changes after the loss of central or peripheral vision. Cortical thickness (CoTks) and resting-state cortical entropy (rs-CoEn), as a surrogate for neural and synaptic complexity, were extracted in 12 Stargardt macular dystrophy, 12 retinitis pigmentosa (tunnel vision stage), and 14 normally sighted subjects. When compared to controls, both groups with visual loss exhibited decreased CoTks in dorsal area V3d. Peripheral visual field loss also showed a specific CoTks decrease in early visual cortex and ventral area V4, while central visual field loss in dorsal area V3A. Only central visual field loss exhibited increased CoEn in LO-2 area and FG1. Current results revealed biomarkers of brain plasticity within the dorsal and the ventral visual streams following central and peripheral visual field defects.

  17. [Brain function recovery after prolonged posttraumatic coma].

    PubMed

    Klimash, A V; Zhanaidarov, Z S

    2016-01-01

    To explore the characteristics of brain function recovery in patients after prolonged posttraumatic coma and with long-unconscious states. Eighty-seven patients after prolonged posttraumatic coma were followed-up for two years. An analysis of a clinical/neurological picture after a prolonged episode of coma was based on the dynamics of vital functions, neurological status and patient's reactions to external stimuli. Based on the dynamics of the clinical/neurological picture that shows the recovery of functions of the certain brain areas, three stages of brain function recovery after a prolonged episode of coma were singled out: brain stem areas, diencephalic areas and telencephalic areas. These functional/anatomic areas of brain function recovery after prolonged coma were compared to the present classifications.

  18. Flexible Ionic-Electronic Hybrid Oxide Synaptic TFTs with Programmable Dynamic Plasticity for Brain-Inspired Neuromorphic Computing.

    PubMed

    John, Rohit Abraham; Ko, Jieun; Kulkarni, Mohit R; Tiwari, Naveen; Chien, Nguyen Anh; Ing, Ng Geok; Leong, Wei Lin; Mathews, Nripan

    2017-08-01

    Emulation of biological synapses is necessary for future brain-inspired neuromorphic computational systems that could look beyond the standard von Neuman architecture. Here, artificial synapses based on ionic-electronic hybrid oxide-based transistors on rigid and flexible substrates are demonstrated. The flexible transistors reported here depict a high field-effect mobility of ≈9 cm 2 V -1 s -1 with good mechanical performance. Comprehensive learning abilities/synaptic rules like paired-pulse facilitation, excitatory and inhibitory postsynaptic currents, spike-time-dependent plasticity, consolidation, superlinear amplification, and dynamic logic are successfully established depicting concurrent processing and memory functionalities with spatiotemporal correlation. The results present a fully solution processable approach to fabricate artificial synapses for next-generation transparent neural circuits. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Microglia function in brain tumors.

    PubMed

    Watters, Jyoti J; Schartner, Jill M; Badie, Behnam

    2005-08-01

    Microglia play an important role in inflammatory diseases of the central nervous system (CNS). These cells have also been identified in brain neoplasms; however, as of yet their function largely remains unclear. More recent studies designed to characterize further tumor-associated microglia suggest that the immune effector function of these cells may be suppressed in CNS tumors. Furthermore, microglia and macrophages can secrete various cytokines and growth factors that may contribute to the successful immune evasion, growth, and invasion of brain neoplasms. A better understanding of microglia and macrophage function is essential for the development of immune-based treatment strategies against malignant brain tumors. (c) 2005 Wiley-Liss, Inc.

  20. Structural and metabolic relationships between goldfish brain glycoproteins participating in functional plasticity of the central nervous system.

    PubMed

    Schmidt, R; Shashoua, V E

    1983-03-01

    Ependymins beta and gamma (MW 32,000 and 26,000 daltons) are two secreted goldfish brain glycoproteins that exhibit a specifically enhanced turnover rate when the animals successfully acquire a new pattern of swimming behaviour. Both proteins are bound identically to concanavalin A and can be isolated from brain extracellular fluid and from brain cytoplasm by lectin affinity chromatography. Radioimmunoassay data, using purified 125I-labeled ependymins and antisera directed against ependymin beta or ependymin gamma, show complete cross-reactivity between the two proteins. It is demonstrated by Scatchard-plot analysis that the antisera recognize identical immunological determinants in both proteins. The amino acid composition of the ependymins is similar, and several identical polypeptide fragments are obtained after limited proteolysis with Staphylococcus aureus protease. The proteins are capable of forming complexes of the compositions gamma 2, beta gamma, and beta 2. A protease present in the extracellular fluid of goldfish brain promotes proteolysis of ependymin beta to ependymin gamma. The finding that ependymin gamma is physiologically derived from ependymin beta suggests the possibility that ependymin beta might exert its biological function during consolidation of new behavioural patterns via smaller polypeptide fragments.

  1. Neuroplasticity as a function of second language learning: anatomical changes in the human brain.

    PubMed

    Li, Ping; Legault, Jennifer; Litcofsky, Kaitlyn A

    2014-09-01

    The brain has an extraordinary ability to functionally and physically change or reconfigure its structure in response to environmental stimulus, cognitive demand, or behavioral experience. This property, known as neuroplasticity, has been examined extensively in many domains. But how does neuroplasticity occur in the brain as a function of an individual's experience with a second language? It is not until recently that we have gained some understanding of this question by examining the anatomical changes as well as functional neural patterns that are induced by the learning and use of multiple languages. In this article we review emerging evidence regarding how structural neuroplasticity occurs in the brain as a result of one's bilingual experience. Our review aims at identifying the processes and mechanisms that drive experience-dependent anatomical changes, and integrating structural imaging evidence with current knowledge of functional neural plasticity of language and other cognitive skills. The evidence reviewed so far portrays a picture that is highly consistent with structural neuroplasticity observed for other domains: second language experience-induced brain changes, including increased gray matter (GM) density and white matter (WM) integrity, can be found in children, young adults, and the elderly; can occur rapidly with short-term language learning or training; and are sensitive to age, age of acquisition, proficiency or performance level, language-specific characteristics, and individual differences. We conclude with a theoretical perspective on neuroplasticity in language and bilingualism, and point to future directions for research. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Interfacial interactions between plastic particles in plastics flotation.

    PubMed

    Wang, Chong-qing; Wang, Hui; Gu, Guo-hua; Fu, Jian-gang; Lin, Qing-quan; Liu, You-nian

    2015-12-01

    Plastics flotation used for recycling of plastic wastes receives increasing attention for its industrial application. In order to study the mechanism of plastics flotation, the interfacial interactions between plastic particles in flotation system were investigated through calculation of Lifshitz-van der Waals (LW) function, Lewis acid-base (AB) Gibbs function, and the extended Derjaguin-Landau-Verwey-Overbeek potential energy profiles. The results showed that van der Waals force between plastic particles is attraction force in flotation system. The large hydrophobic attraction, caused by the AB Gibbs function, is the dominant interparticle force. Wetting agents present significant effects on the interfacial interactions between plastic particles. It is found that adsorption of wetting agents promotes dispersion of plastic particles and decreases the floatability. Pneumatic flotation may improve the recovery and purity of separated plastics through selective adsorption of wetting agents on plastic surface. The relationships between hydrophobic attraction and surface properties were also examined. It is revealed that there exists a three-order polynomial relationship between the AB Gibbs function and Lewis base component. Our finding provides some insights into mechanism of plastics flotation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Developmental implications of children's brain networks and learning.

    PubMed

    Chan, John S Y; Wang, Yifeng; Yan, Jin H; Chen, Huafu

    2016-10-01

    The human brain works as a synergistic system where information exchanges between functional neuronal networks. Rudimentary networks are observed in the brain during infancy. In recent years, the question of how functional networks develop and mature in children has been a hotly discussed topic. In this review, we examined the developmental characteristics of functional networks and the impacts of skill training on children's brains. We first focused on the general rules of brain network development and on the typical and atypical development of children's brain networks. After that, we highlighted the essentials of neural plasticity and the effects of learning on brain network development. We also discussed two important theoretical and practical concerns in brain network training. Finally, we concluded by presenting the significance of network training in typically and atypically developed brains.

  4. Psychedelics Promote Structural and Functional Neural Plasticity.

    PubMed

    Ly, Calvin; Greb, Alexandra C; Cameron, Lindsay P; Wong, Jonathan M; Barragan, Eden V; Wilson, Paige C; Burbach, Kyle F; Soltanzadeh Zarandi, Sina; Sood, Alexander; Paddy, Michael R; Duim, Whitney C; Dennis, Megan Y; McAllister, A Kimberley; Ori-McKenney, Kassandra M; Gray, John A; Olson, David E

    2018-06-12

    Atrophy of neurons in the prefrontal cortex (PFC) plays a key role in the pathophysiology of depression and related disorders. The ability to promote both structural and functional plasticity in the PFC has been hypothesized to underlie the fast-acting antidepressant properties of the dissociative anesthetic ketamine. Here, we report that, like ketamine, serotonergic psychedelics are capable of robustly increasing neuritogenesis and/or spinogenesis both in vitro and in vivo. These changes in neuronal structure are accompanied by increased synapse number and function, as measured by fluorescence microscopy and electrophysiology. The structural changes induced by psychedelics appear to result from stimulation of the TrkB, mTOR, and 5-HT2A signaling pathways and could possibly explain the clinical effectiveness of these compounds. Our results underscore the therapeutic potential of psychedelics and, importantly, identify several lead scaffolds for medicinal chemistry efforts focused on developing plasticity-promoting compounds as safe, effective, and fast-acting treatments for depression and related disorders. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  5. Dendritic Learning as a Paradigm Shift in Brain Learning.

    PubMed

    Sardi, Shira; Vardi, Roni; Goldental, Amir; Tugendhaft, Yael; Uzan, Herut; Kanter, Ido

    2018-06-20

    Experimental and theoretical results reveal a new underlying mechanism for fast brain learning process, dendritic learning, as opposed to the misdirected research in neuroscience over decades, which is based solely on slow synaptic plasticity. The presented paradigm indicates that learning occurs in closer proximity to the neuron, the computational unit, dendritic strengths are self-oscillating, and weak synapses, which comprise the majority of our brain and previously were assumed to be insignificant, play a key role in plasticity. The new learning sites of the brain call for a reevaluation of current treatments for disordered brain functionality and for a better understanding of proper chemical drugs and biological mechanisms to maintain, control and enhance learning.

  6. Plasticity in the Interoceptive System.

    PubMed

    Torrealba, Fernando; Madrid, Carlos; Contreras, Marco; Gómez, Karina

    2017-01-01

    The most outstanding manifestations of the plastic capacities of brain circuits and their neuronal and synaptic components in the adult CNS are learning and memory. A reduced number of basic plastic mechanisms underlie learning capacities at many levels and regions of the brain. The interoceptive system is no exception, and some of the most studied behavioral changes that involve learning and memory engage the interoceptive pathways at many levels of their anatomical and functional organization.In this chapter, we will review four examples of learning, mostly in rats, where the interoceptive system has a role. In the case of conditioned taste aversion, the interoceptive system is of outstanding importance. In drug addiction, the role of the insular cortex - the highest level of the interoceptive system- is unusual and complex, as many forebrain regions are engaged by the process of addiction. In the third example, neophobia, the gustatory region of the insular cortex plays a major role. Finally, the role of different areas of the insular cortex in different processes of aversive memory, particularly fear conditioning, will be reviewed.

  7. Astrocyte and Neuronal Plasticity in the Somatosensory System

    PubMed Central

    Sims, Robert E.; Butcher, John B.; Parri, H. Rheinallt; Glazewski, Stanislaw

    2015-01-01

    Changing the whisker complement on a rodent's snout can lead to two forms of experience-dependent plasticity (EDP) in the neurons of the barrel cortex, where whiskers are somatotopically represented. One form, termed coding plasticity, concerns changes in synaptic transmission and connectivity between neurons. This is thought to underlie learning and memory processes and so adaptation to a changing environment. The second, called homeostatic plasticity, serves to maintain a restricted dynamic range of neuronal activity thus preventing its saturation or total downregulation. Current explanatory models of cortical EDP are almost exclusively neurocentric. However, in recent years, increasing evidence has emerged on the role of astrocytes in brain function, including plasticity. Indeed, astrocytes appear as necessary partners of neurons at the core of the mechanisms of coding and homeostatic plasticity recorded in neurons. In addition to neuronal plasticity, several different forms of astrocytic plasticity have recently been discovered. They extend from changes in receptor expression and dynamic changes in morphology to alteration in gliotransmitter release. It is however unclear how astrocytic plasticity contributes to the neuronal EDP. Here, we review the known and possible roles for astrocytes in the barrel cortex, including its plasticity. PMID:26345481

  8. Neurobiological markers of exercise-related brain plasticity in older adults

    PubMed Central

    Voss, Michelle W.; Erickson, Kirk I.; Prakash, Ruchika Shaurya; Chaddock, Laura; Kim, Jennifer S.; Alves, Heloisa; Szabo, Amanda; White, Siobhan M.; Wójcicki, Thomas R.; Mailey, Emily L.; Olson, Erin A.; Gothe, Neha; Potter, Vicki V.; Martin, Stephen A.; Pence, Brandt D.; Cook, Marc D.; Woods, Jeffrey A.; McAuley, Edward; Kramer, Arthur F.

    2012-01-01

    The current study examined how a randomized one-year aerobic exercise program for healthy older adults would affect serum levels of brain-derived neurotrophic factor (BDNF), insulin-like growth factor type 1 (IGF-1), and vascular endothelial growth factor (VEGF) - putative markers of exercise-induced benefits on brain function. The study also examined whether (a) change in the concentration of these growth factors was associated with alterations in functional connectivity following exercise, and (b) the extent to which pre-intervention growth factor levels were associated with training-related changes in functional connectivity. In 65 participants (mean age = 66.4), we found that although there were no group-level changes in growth factors as a function of the intervention, increased temporal lobe connectivity between the bilateral parahippocampus and the bilateral middle temporal gyrus was associated with increased BDNF, IGF-1, and VEGF for an aerobic walking group but not for a non-aerobic control group, and greater pre-intervention VEGF was associated with greater training-related increases in this functional connection. Results are consistent with animal models of exercise and the brain, but are the first to show in humans that exercise-induced increases in temporal lobe functional connectivity are associated with changes in growth factors and may be augmented by greater baseline VEGF. PMID:23123199

  9. Cortical plasticity and preserved function in early blindness

    PubMed Central

    Renier, Laurent; De Volder, Anne G.; Rauschecker, Josef P.

    2013-01-01

    The “neural Darwinism” theory predicts that when one sensory modality is lacking, as in congenital blindness, the target structures are taken over by the afferent inputs from other senses that will promote and control their functional maturation (Edelman, 1993). This view receives support from both cross-modal plasticity experiments in animal models and functional imaging studies in man, which are presented here. PMID:23453908

  10. A common polymorphism in the brain-derived neurotrophic factor gene (BDNF) modulates human cortical plasticity and the response to rTMS.

    PubMed

    Cheeran, Binith; Talelli, Penelope; Mori, Francesco; Koch, Giacomo; Suppa, Antonio; Edwards, Mark; Houlden, Henry; Bhatia, Kailash; Greenwood, Richard; Rothwell, John C

    2008-12-01

    The brain-derived neurotrophic factor gene (BDNF) is one of many genes thought to influence synaptic plasticity in the adult brain and shows a common single nucleotide polymorphism (BDNF Val66Met) in the normal population that is associated with differences in hippocampal volume and episodic memory. It is also thought to influence possible synaptic changes in motor cortex following a simple motor learning task. Here we extend these studies by using new non-invasive transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (TDCS) techniques that directly test the excitability and plasticity of neuronal circuits in human motor cortex in subjects at rest. We investigated whether the susceptibility to TMS probes of plasticity is significantly influenced by the BDNF polymorphism. Val66Met carriers were matched with Val66Val individuals and tested on the following protocols: continuous and intermittent theta burst TMS; median nerve paired associative stimulation; and homeostatic plasticity in the TDCS/1 Hz rTMS model. The response of Met allele carriers differed significantly in all protocols compared with the response of Val66Val individuals. We suggest that this is due to the effect of BNDF on the susceptibility of synapses to undergo LTP/LTD. The circuits tested here are implicated in the pathophysiology of movement disorders such as dystonia and are being assessed as potential new targets in the treatment of stroke. Thus the polymorphism may be one factor that influences the natural response of the brain to injury and disease.

  11. Longitudinal Structural and Functional Brain Network Alterations in a Mouse Model of Neuropathic Pain.

    PubMed

    Bilbao, Ainhoa; Falfán-Melgoza, Claudia; Leixner, Sarah; Becker, Robert; Singaravelu, Sathish Kumar; Sack, Markus; Sartorius, Alexander; Spanagel, Rainer; Weber-Fahr, Wolfgang

    2018-04-22

    Neuropathic pain affects multiple brain functions, including motivational processing. However, little is known about the structural and functional brain changes involved in the transition from an acute to a chronic pain state. Here we combined behavioral phenotyping of pain thresholds with multimodal neuroimaging to longitudinally monitor changes in brain metabolism, structure and connectivity using the spared nerve injury (SNI) mouse model of chronic neuropathic pain. We investigated stimulus-evoked pain responses prior to SNI surgery, and one and twelve weeks following surgery. A progressive development and potentiation of stimulus-evoked pain responses (cold and mechanical allodynia) were detected during the course of pain chronification. Voxel-based morphometry demonstrated striking decreases in volume following pain induction in all brain sites assessed - an effect that reversed over time. Similarly, all global and local network changes that occurred following pain induction disappeared over time, with two notable exceptions: the nucleus accumbens, which played a more dominant role in the global network in a chronic pain state and the prefrontal cortex and hippocampus, which showed lower connectivity. These changes in connectivity were accompanied by enhanced glutamate levels in the hippocampus, but not in the prefrontal cortex. We suggest that hippocampal hyperexcitability may contribute to alterations in synaptic plasticity within the nucleus accumbens, and to pain chronification. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. High-frequency cortical subdural stimulation enhanced plasticity in surgery of a tumor in Broca's area.

    PubMed

    Barcia, Juan A; Sanz, Ana; Balugo, Paloma; Alonso-Lera, Pedro; Brin, Juan Raúl; Yus, Miguel; Gonzalez-Hidalgo, Mercedes; Acedo, Victoria M; Oliviero, Antonio

    2012-03-28

    Functional areas located near or within brain gliomas prevent the complete resection of these tumors. It has recently been described that slow tumor invasion promotes neural reorganization, and even topographic plasticity, allowing a staged resection of those tumors. Thus, our aim was to promote plasticity by mimicking the tumor's capability to displace brain function. This proceeded through the production of a 'virtual lesion' in eloquent areas within a tumor using continuous high-frequency cortical electrical stimulation (cHFCS). An anaplastic astrocytoma located in Broca's area progressed in a patient whose lateralization of language to the side of the lesion was demonstrated with functional MRI. After partial tumor resection using awake cortical monitoring, we implanted a subdural grid over the eloquent cortex located within residual tumor. We then applied cHFCS for 25 days, using a frequency of 130 Hz and a pulse width of 1 ms. Stimulus intensity was set to the threshold wherein mild speech disturbance was evident without any other neurological effects. This treatment successfully achieved the displacement of speech functions, and a more radical resection of the tumor was possible in a second surgery. Critically, a reorganization of motor language areas was demonstrated both with functional MRI and cortical stimulation. Furthermore, motor language areas were also identified in the right hemisphere, where previously they were absent. The patient's speech fluency improved both after stimulation and resection. We therefore demonstrate the first evidence of induced topographic plasticity using cHFCS in eloquent areas within a tumor, which allowed for increased tumor removal. Our results open the possibility to induce plasticity before the resection of brain tumors near eloquent areas, in order to increase the extent of resection.

  13. Are functional fillers improving environmental behavior of plastics? A review on LCA studies.

    PubMed

    Civancik-Uslu, Didem; Ferrer, Laura; Puig, Rita; Fullana-I-Palmer, Pere

    2018-06-01

    The use of functional fillers can be advantageous in terms of cost reduction and improved properties in plastics. There are many types of fillers used in industry, organic and inorganic, with a wide application area. As a response to the growing concerns about environmental damage that plastics cause, recently fillers have started to be considered as a way to reduce it by decreasing the need for petrochemical resources. Life cycle assessment (LCA) is identified as a proper tool to evaluate potential environmental impacts of products or systems. Therefore, in this study, the literature regarding LCA of plastics with functional fillers was reviewed in order to see if the use of fillers in plastics could be environmentally helpful. It was interesting to find out that environmental impacts of functional fillers in plastics had not been studied too often, especially in the case of inorganic fillers. Therefore, a gap in the literature was identified for the future works. Results of the study showed that, although there were not many and some differences exist among the LCA studies, the use of fillers in plastics industry may help to reduce environmental emissions. In addition, how LCA methodology was applied to these materials was also investigated. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Effects of chronic social isolation on Wistar rat behavior and brain plasticity markers.

    PubMed

    Djordjevic, Jelena; Djordjevic, Ana; Adzic, Miroslav; Radojcic, Marija B

    2012-01-01

    Chronic stress is a contributing risk factor in the development of psychiatric illnesses, including depressive disorders. The mechanisms of their psychopathology are multifaceted and include, besides others, alterations in the brain plasticity. Previously, we investigated the effects of chronic social stress in the limbic brain structures of Wistar rats (hippocampus, HIPPO, and prefrontal cortex, PFC) and found multiple characteristics that resembled alterations described in some clinical studies of depression. We extended our investigations and followed the behavior of stressed animals by the open field test (OFT) and forced swimming test (FST), and the expression and polysialylation of synaptic plasticity markers, neural cell adhesion molecule (NCAM) and L1, in the HIPPO and PFC. We also determined the adrenal gland mass and plasma corticosterone (CORT) as a terminal part of the hypothalamic-pituitary-adrenal axis activity. Our data indicated that stressed animals avoided the central zone in the OFT and displayed decreased swimming, but prolonged immobility in the FST. The animals exhibited marked hypertrophy of the adrenal gland cortex, in spite of decreased serum CORT. Simultaneously, the stressed animals exhibited an increase in NCAM mRNA expression in the HIPPO, but not in the PFC. The synaptosomal NCAM of the HIPPO was markedly polysialylated, while cortical PSA-NCAM was significantly decreased. The results showed that chronic social isolation of Wistar rats causes both anxiety-like and depression-like behavior. These alterations are parallel with molecular changes in the limbic brain, including diminished NCAM sialylation in the PFC. Together with our previous results, the current observations suggest that a chronic social isolation model may potentially be used to study molecular mechanisms that underlie depressive symptomatology. Copyright © 2012 S. Karger AG, Basel.

  15. Whole Brain Functional Connectivity Pattern Homogeneity Mapping.

    PubMed

    Wang, Lijie; Xu, Jinping; Wang, Chao; Wang, Jiaojian

    2018-01-01

    Mounting studies have demonstrated that brain functions are determined by its external functional connectivity patterns. However, how to characterize the voxel-wise similarity of whole brain functional connectivity pattern is still largely unknown. In this study, we introduced a new method called functional connectivity homogeneity (FcHo) to delineate the voxel-wise similarity of whole brain functional connectivity patterns. FcHo was defined by measuring the whole brain functional connectivity patterns similarity of a given voxel with its nearest 26 neighbors using Kendall's coefficient concordance (KCC). The robustness of this method was tested in four independent datasets selected from a large repository of MRI. Furthermore, FcHo mapping results were further validated using the nearest 18 and six neighbors and intra-subject reproducibility with each subject scanned two times. We also compared FcHo distribution patterns with local regional homogeneity (ReHo) to identify the similarity and differences of the two methods. Finally, FcHo method was used to identify the differences of whole brain functional connectivity patterns between professional Chinese chess players and novices to test its application. FcHo mapping consistently revealed that the high FcHo was mainly distributed in association cortex including parietal lobe, frontal lobe, occipital lobe and default mode network (DMN) related areas, whereas the low FcHo was mainly found in unimodal cortex including primary visual cortex, sensorimotor cortex, paracentral lobule and supplementary motor area. These results were further supported by analyses of the nearest 18 and six neighbors and intra-subject similarity. Moreover, FcHo showed both similar and different whole brain distribution patterns compared to ReHo. Finally, we demonstrated that FcHo can effectively identify the whole brain functional connectivity pattern differences between professional Chinese chess players and novices. Our findings indicated

  16. Integrating Hebbian and homeostatic plasticity: introduction.

    PubMed

    Fox, Kevin; Stryker, Michael

    2017-03-05

    Hebbian plasticity is widely considered to be the mechanism by which information can be coded and retained in neurons in the brain. Homeostatic plasticity moves the neuron back towards its original state following a perturbation, including perturbations produced by Hebbian plasticity. How then does homeostatic plasticity avoid erasing the Hebbian coded information? To understand how plasticity works in the brain, and therefore to understand learning, memory, sensory adaptation, development and recovery from injury, requires development of a theory of plasticity that integrates both forms of plasticity into a whole. In April 2016, a group of computational and experimental neuroscientists met in London at a discussion meeting hosted by the Royal Society to identify the critical questions in the field and to frame the research agenda for the next steps. Here, we provide a brief introduction to the papers arising from the meeting and highlight some of the themes to have emerged from the discussions.This article is part of the themed issue 'Integrating Hebbian and homeostatic plasticity'. © 2017 The Author(s).

  17. Selector function of MHC I molecules is determined by protein plasticity

    NASA Astrophysics Data System (ADS)

    Bailey, Alistair; Dalchau, Neil; Carter, Rachel; Emmott, Stephen; Phillips, Andrew; Werner, Jörn M.; Elliott, Tim

    2015-10-01

    The selection of peptides for presentation at the surface of most nucleated cells by major histocompatibility complex class I molecules (MHC I) is crucial to the immune response in vertebrates. However, the mechanisms of the rapid selection of high affinity peptides by MHC I from amongst thousands of mostly low affinity peptides are not well understood. We developed computational systems models encoding distinct mechanistic hypotheses for two molecules, HLA-B*44:02 (B*4402) and HLA-B*44:05 (B*4405), which differ by a single residue yet lie at opposite ends of the spectrum in their intrinsic ability to select high affinity peptides. We used in vivo biochemical data to infer that a conformational intermediate of MHC I is significant for peptide selection. We used molecular dynamics simulations to show that peptide selector function correlates with protein plasticity, and confirmed this experimentally by altering the plasticity of MHC I with a single point mutation, which altered in vivo selector function in a predictable way. Finally, we investigated the mechanisms by which the co-factor tapasin influences MHC I plasticity. We propose that tapasin modulates MHC I plasticity by dynamically coupling the peptide binding region and α3 domain of MHC I allosterically, resulting in enhanced peptide selector function.

  18. Mammalian Target of Rapamycin: Its Role in Early Neural Development and in Adult and Aged Brain Function

    PubMed Central

    Garza-Lombó, Carla; Gonsebatt, María E.

    2016-01-01

    The kinase mammalian target of rapamycin (mTOR) integrates signals triggered by energy, stress, oxygen levels, and growth factors. It regulates ribosome biogenesis, mRNA translation, nutrient metabolism, and autophagy. mTOR participates in various functions of the brain, such as synaptic plasticity, adult neurogenesis, memory, and learning. mTOR is present during early neural development and participates in axon and dendrite development, neuron differentiation, and gliogenesis, among other processes. Furthermore, mTOR has been shown to modulate lifespan in multiple organisms. This protein is an important energy sensor that is present throughout our lifetime its role must be precisely described in order to develop therapeutic strategies and prevent diseases of the central nervous system. The aim of this review is to present our current understanding of the functions of mTOR in neural development, the adult brain and aging. PMID:27378854

  19. Genetic influences on individual differences in longitudinal changes in global and subcortical brain volumes: Results of the ENIGMA plasticity working group.

    PubMed

    Brouwer, Rachel M; Panizzon, Matthew S; Glahn, David C; Hibar, Derrek P; Hua, Xue; Jahanshad, Neda; Abramovic, Lucija; de Zubicaray, Greig I; Franz, Carol E; Hansell, Narelle K; Hickie, Ian B; Koenis, Marinka M G; Martin, Nicholas G; Mather, Karen A; McMahon, Katie L; Schnack, Hugo G; Strike, Lachlan T; Swagerman, Suzanne C; Thalamuthu, Anbupalam; Wen, Wei; Gilmore, John H; Gogtay, Nitin; Kahn, René S; Sachdev, Perminder S; Wright, Margaret J; Boomsma, Dorret I; Kremen, William S; Thompson, Paul M; Hulshoff Pol, Hilleke E

    2017-09-01

    Structural brain changes that occur during development and ageing are related to mental health and general cognitive functioning. Individuals differ in the extent to which their brain volumes change over time, but whether these differences can be attributed to differences in their genotypes has not been widely studied. Here we estimate heritability (h 2 ) of changes in global and subcortical brain volumes in five longitudinal twin cohorts from across the world and in different stages of the lifespan (N = 861). Heritability estimates of brain changes were significant and ranged from 16% (caudate) to 42% (cerebellar gray matter) for all global and most subcortical volumes (with the exception of thalamus and pallidum). Heritability estimates of change rates were generally higher in adults than in children suggesting an increasing influence of genetic factors explaining individual differences in brain structural changes with age. In children, environmental influences in part explained individual differences in developmental changes in brain structure. Multivariate genetic modeling showed that genetic influences of change rates and baseline volume significantly overlapped for many structures. The genetic influences explaining individual differences in the change rate for cerebellum, cerebellar gray matter and lateral ventricles were independent of the genetic influences explaining differences in their baseline volumes. These results imply the existence of genetic variants that are specific for brain plasticity, rather than brain volume itself. Identifying these genes may increase our understanding of brain development and ageing and possibly have implications for diseases that are characterized by deviant developmental trajectories of brain structure. Hum Brain Mapp 38:4444-4458, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  20. The development of Human Functional Brain Networks

    PubMed Central

    Power, Jonathan D; Fair, Damien A; Schlaggar, Bradley L

    2010-01-01

    Recent advances in MRI technology have enabled precise measurements of correlated activity throughout the brain, leading to the first comprehensive descriptions of functional brain networks in humans. This article reviews the growing literature on the development of functional networks, from infancy through adolescence, as measured by resting state functional connectivity MRI. We note several limitations of traditional approaches to describing brain networks, and describe a powerful framework for analyzing networks, called graph theory. We argue that characterization of the development of brain systems (e.g. the default mode network) should be comprehensive, considering not only relationships within a given system, but also how these relationships are situated within wider network contexts. We note that, despite substantial reorganization of functional connectivity, several large-scale network properties appear to be preserved across development, suggesting that functional brain networks, even in children, are organized in manners similar to other complex systems. PMID:20826306

  1. Functional brain connectivity when cooperation fails.

    PubMed

    Balconi, Michela; Vanutelli, Maria Elide; Gatti, Laura

    2018-06-01

    Functional connectivity during cooperative actions is an important topic in social neuroscience that has yet to be answered. Here, we examined the effects of administration of (fictitious) negative social feedback in relation to cooperative capabilities. Cognitive performance and neural activation underlying the execution of joint actions was recorded with functional near-infrared spectroscopy (fNIRS) on prefrontal regions during a task where pairs of participants received negative feedback after their joint action. Performance (error rates (ERs) and response times (RTs)) and intra- and inter-brain connectivity indices were computed, along with the ConIndex (inter-brain/intra-brain connectivity). Finally, correlational measures were considered to assess the relation between these different measures. Results showed that the negative feedback was able to modulate participants' responses for both behavioral and neural components. Cognitive performance was decreased after the feedback. Moreover, decreased inter-brain connectivity and increased intra-brain connectivity was induced by the feedback, whereas the cooperative task pre-feedback condition was able to increase the brain-to-brain coupling, mainly localized within the dorsolateral prefrontal cortex (DLPFC). Finally, the presence of significant correlations between RTs and inter-brain connectivity revealed that ineffective joint action produces the worst cognitive performance and a more 'individual strategy' for brain activity, limiting the inter-brain connectivity. The present study provides a significant contribution to the identification of patterns of intra- and inter-brain functional connectivity when negative social reinforcement is provided in relation to cooperative actions. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Impacts of discarded plastic bags on marine assemblages and ecosystem functioning.

    PubMed

    Green, Dannielle Senga; Boots, Bas; Blockley, David James; Rocha, Carlos; Thompson, Richard

    2015-05-05

    The accumulation of plastic debris is a global environmental problem due to its durability, persistence, and abundance. Although effects of plastic debris on individual marine organisms, particularly mammals and birds, have been extensively documented (e.g., entanglement and choking), very little is known about effects on assemblages and consequences for ecosystem functioning. In Europe, around 40% of the plastic items produced are utilized as single-use packaging, which rapidly accumulate in waste management facilities and as litter in the environment. A range of biodegradable plastics have been developed with the aspiration of reducing the persistence of litter; however, their impacts on marine assemblages or ecosystem functioning have never been evaluated. A field experiment was conducted to assess the impact of conventional and biodegradable plastic carrier bags as litter on benthic macro- and meio-faunal assemblages and biogeochemical processes (primary productivity, redox condition, organic matter content, and pore-water nutrients) on an intertidal shore near Dublin, Ireland. After 9 weeks, the presence of either type of bag created anoxic conditions within the sediment along with reduced primary productivity and organic matter and significantly lower abundances of infaunal invertebrates. This indicates that both conventional and biodegradable bags can rapidly alter marine assemblages and the ecosystem services they provide.

  3. Cognitive training with action-related verbs induces neural plasticity in the action representation system as assessed by gray matter brain morphometry.

    PubMed

    Ghio, Marta; Locatelli, Matteo; Tettamanti, Andrea; Perani, Daniela; Gatti, Roberto; Tettamanti, Marco

    2018-06-01

    Embodied cognition theories of semantic memory still face the need for multiple sources of converging evidence in support of the involvement of sensory-motor systems in action-related knowledge. Previous studies showed that training manual actions improves semantic processing of verbs referring to the trained actions. The present work aimed to provide complementary evidence by measuring the brain plasticity effects of a cognitive training requiring sustained lexical-semantic processing of action-related verbs. We included two groups of participants, namely the Proximal Group (PG) and the Distal Group (DG), which underwent a 3-week training with verbs referring to actions involving the proximal and the distal upper limb musculature, respectively. Before and after training, we measured gray matter voxel brain morphometry based on T1 structural magnetic resonance imaging. By means of this 2 (Group: PG, DG) × 2 (Time: pre-, post-training) factorial design, we tested whether sustained cognitive experience with specific action-related verbs induces congruent brain plasticity modifications in target regions of interest pertaining to the action representation system. We found significant post- versus pre-training gray matter volume increases, specifically for PG in the left dorsal precentral gyrus, and for DG in the right cerebellar lobule VIIa. These preliminary results suggest that a cognitive training can induce structural plasticity modifications in brain regions specifically coding for the distal and proximal motor actions the trained verbs refer to. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. [Description of functional outcome in pediatric traumatic brain injury after a comprehensive rehabilitation programme].

    PubMed

    Laxe, Sara; León, Daniel; Salgado, Dalila; Zabaleta, Mikel

    2015-01-01

    Traumatic brain injury is the leading cause of mortality and disability in children in the developed countries. Despite the plasticity of an infant's brain, injury at this early stage can lead to important sequelae that will affect functioning later in life. The understanding of the functional profile after a traumatic brain injury is important for planning interventions and treatment resources once the preventive phase has failed. This was a retrospective study of the patients admitted in a neurorehabilitation unit with the aim of describing their functioning after an intensive rehabilitation programme. A total of 65 records of children with a mean age of 10.38 years that had been admitted to a rehabilitation programme were reviewed. Of the traumatic brain injuries, 89.2% were severe and 78.4% were secondary to traffic accidents. The mean length of stay was 79.35 days. At discharge, 72% were able to walk, but 76.9% showed some cognitive impairment. Despite good physical recovery, only 29.2% of the children were able to return to school. Permanence of deficits made 21.5% of the children unable to return to any type of education. The population under study was characterised by a good clinical outcome as well as good physical improvement. Nevertheless, cognitive problems were notable and were the main factor responsible for the changes in school attendance and return to normal life. Copyright © 2014 Sociedad Española de Neurocirugía. Published by Elsevier España. All rights reserved.

  5. Functional language shift to the right hemisphere in patients with language-eloquent brain tumors.

    PubMed

    Krieg, Sandro M; Sollmann, Nico; Hauck, Theresa; Ille, Sebastian; Foerschler, Annette; Meyer, Bernhard; Ringel, Florian

    2013-01-01

    Language function is mainly located within the left hemisphere of the brain, especially in right-handed subjects. However, functional MRI (fMRI) has demonstrated changes of language organization in patients with left-sided perisylvian lesions to the right hemisphere. Because intracerebral lesions can impair fMRI, this study was designed to investigate human language plasticity with a virtual lesion model using repetitive navigated transcranial magnetic stimulation (rTMS). Fifteen patients with lesions of left-sided language-eloquent brain areas and 50 healthy and purely right-handed participants underwent bilateral rTMS language mapping via an object-naming task. All patients were proven to have left-sided language function during awake surgery. The rTMS-induced language errors were categorized into 6 different error types. The error ratio (induced errors/number of stimulations) was determined for each brain region on both hemispheres. A hemispheric dominance ratio was then defined for each region as the quotient of the error ratio (left/right) of the corresponding area of both hemispheres (ratio >1 = left dominant; ratio <1 = right dominant). Patients with language-eloquent lesions showed a statistically significantly lower ratio than healthy participants concerning "all errors" and "all errors without hesitations", which indicates a higher participation of the right hemisphere in language function. Yet, there was no cortical region with pronounced difference in language dominance compared to the whole hemisphere. This is the first study that shows by means of an anatomically accurate virtual lesion model that a shift of language function to the non-dominant hemisphere can occur.

  6. Cortical Plasticity in Depression

    PubMed Central

    Cantone, Mariagiovanna; Bramanti, Alessia; Pennisi, Manuela; Bramanti, Placido; Pennisi, Giovanni; Bella, Rita

    2017-01-01

    Neural plasticity is considered the neurophysiological correlate of learning and memory, although several studies have also noted that it plays crucial roles in a number of neurological and psychiatric diseases. Indeed, impaired brain plasticity may be one of the pathophysiological mechanisms that underlies both cognitive decline and major depression. Moreover, a degree of cognitive impairment is frequently observed throughout the clinical spectrum of mood disorders, and the relationship between depression and cognition is often bidirectional. However, most evidence for dysfunctional neural plasticity in depression has been indirect. Transcranial magnetic stimulation has emerged as a noninvasive tool for investigating several parameters of cortical excitability with the aim of exploring the functions of different neurotransmission pathways and for probing in vivo plasticity in both healthy humans and those with pathological conditions. In particular, depressed patients exhibit a significant interhemispheric difference in motor cortex excitability, an imbalanced inhibitory or excitatory intracortical neurochemical circuitry, reduced postexercise facilitation, and an impaired long-term potentiation-like response to paired-associative transcranial magnetic stimulation, and these symptoms may indicate disrupted plasticity. Research aimed at disentangling the mechanism by which neuroplasticity plays a role in the pathological processes that lead to depression and evaluating the effects of modulating neuroplasticity are needed for the field to facilitate more powerful translational research studies and identify novel therapeutic targets. PMID:28629225

  7. Functional Plasticity in Somatosensory Cortex Supports Motor Learning by Observing.

    PubMed

    McGregor, Heather R; Cashaback, Joshua G A; Gribble, Paul L

    2016-04-04

    An influential idea in neuroscience is that the sensory-motor system is activated when observing the actions of others [1, 2]. This idea has recently been extended to motor learning, in which observation results in sensory-motor plasticity and behavioral changes in both motor and somatosensory domains [3-9]. However, it is unclear how the brain maps visual information onto motor circuits for learning. Here we test the idea that the somatosensory system, and specifically primary somatosensory cortex (S1), plays a role in motor learning by observing. In experiment 1, we applied stimulation to the median nerve to occupy the somatosensory system with unrelated inputs while participants observed a tutor learning to reach in a force field. Stimulation disrupted motor learning by observing in a limb-specific manner. Stimulation delivered to the right arm (the same arm used by the tutor) disrupted learning, whereas left arm stimulation did not. This is consistent with the idea that a somatosensory representation of the observed effector must be available during observation for learning to occur. In experiment 2, we assessed S1 cortical processing before and after observation by measuring somatosensory evoked potentials (SEPs) associated with median nerve stimulation. SEP amplitudes increased only for participants who observed learning. Moreover, SEPs increased more for participants who exhibited greater motor learning following observation. Taken together, these findings support the idea that motor learning by observing relies on functional plasticity in S1. We propose that visual signals about the movements of others are mapped onto motor circuits for learning via the somatosensory system. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Neonatal brain resting-state functional connectivity imaging modalities.

    PubMed

    Mohammadi-Nejad, Ali-Reza; Mahmoudzadeh, Mahdi; Hassanpour, Mahlegha S; Wallois, Fabrice; Muzik, Otto; Papadelis, Christos; Hansen, Anne; Soltanian-Zadeh, Hamid; Gelovani, Juri; Nasiriavanaki, Mohammadreza

    2018-06-01

    Infancy is the most critical period in human brain development. Studies demonstrate that subtle brain abnormalities during this state of life may greatly affect the developmental processes of the newborn infants. One of the rapidly developing methods for early characterization of abnormal brain development is functional connectivity of the brain at rest. While the majority of resting-state studies have been conducted using magnetic resonance imaging (MRI), there is clear evidence that resting-state functional connectivity (rs-FC) can also be evaluated using other imaging modalities. The aim of this review is to compare the advantages and limitations of different modalities used for the mapping of infants' brain functional connectivity at rest. In addition, we introduce photoacoustic tomography, a novel functional neuroimaging modality, as a complementary modality for functional mapping of infants' brain.

  9. [Three-dimensional reconstruction of functional brain images].

    PubMed

    Inoue, M; Shoji, K; Kojima, H; Hirano, S; Naito, Y; Honjo, I

    1999-08-01

    We consider PET (positron emission tomography) measurement with SPM (Statistical Parametric Mapping) analysis to be one of the most useful methods to identify activated areas of the brain involved in language processing. SPM is an effective analytical method that detects markedly activated areas over the whole brain. However, with the conventional presentations of these functional brain images, such as horizontal slices, three directional projection, or brain surface coloring, makes understanding and interpreting the positional relationships among various brain areas difficult. Therefore, we developed three-dimensionally reconstructed images from these functional brain images to improve the interpretation. The subjects were 12 normal volunteers. The following three types of images were constructed: 1) routine images by SPM, 2) three-dimensional static images, and 3) three-dimensional dynamic images, after PET images were analyzed by SPM during daily dialog listening. The creation of images of both the three-dimensional static and dynamic types employed the volume rendering method by VTK (The Visualization Toolkit). Since the functional brain images did not include original brain images, we synthesized SPM and MRI brain images by self-made C++ programs. The three-dimensional dynamic images were made by sequencing static images with available software. Images of both the three-dimensional static and dynamic types were processed by a personal computer system. Our newly created images showed clearer positional relationships among activated brain areas compared to the conventional method. To date, functional brain images have been employed in fields such as neurology or neurosurgery, however, these images may be useful even in the field of otorhinolaryngology, to assess hearing and speech. Exact three-dimensional images based on functional brain images are important for exact and intuitive interpretation, and may lead to new developments in brain science. Currently, the

  10. Experience-driven plasticity in binocular vision

    PubMed Central

    Klink, P. Christiaan; Brascamp, Jan W.; Blake, Randolph; van Wezel, Richard J.A.

    2010-01-01

    Summary Experience-driven neuronal plasticity allows the brain to adapt its functional connectivity to recent sensory input. Here we use binocular rivalry [1], an experimental paradigm where conflicting images are presented to the individual eyes, to demonstrate plasticity in the neuronal mechanisms that convert visual information from two separated retinas into single perceptual experiences. Perception during binocular rivalry tended to initially consist of alternations between exclusive representations of monocularly defined images, but upon prolonged exposure, mixture percepts became more prevalent. The completeness of suppression, reflected in the incidence of mixture percepts, plausibly reflects the strength of inhibition that likely plays a role in binocular rivalry [2]. Recovery of exclusivity was possible, but required highly specific binocular stimulation. Documenting the prerequisites for these observed changes in perceptual exclusivity, our experiments suggest experience-driven plasticity at interocular inhibitory synapses, driven by the (lack of) correlated activity of neurons representing the conflicting stimuli. This form of plasticity is consistent with a previously proposed, but largely untested, anti-Hebbian learning mechanism for inhibitory synapses in vision [3, 4]. Our results implicate experience-driven plasticity as one governing principle in the neuronal organization of binocular vision. PMID:20674360

  11. Plasticity in neurons synthesizing wake/arousal promoting hormone hypocretin/orexin.

    PubMed

    Gao, Xiao-Bing

    2012-01-01

    The hypothalamus is a critical brain structure regulating physiological functions essential to the survival of individuals and species. One of the striking characteristics of this brain region is the abundance of nerve cells (neurons) expressing a great numbers of neurotransmitters and neuromodulators, among which are hormones released into the blood stream through brain neuroendocrinological routes. The neurons in the lateral hypothalamus take part in intra- and extrahypothalamic circuits controlling basic physiological functions essential for the well being of animal bodies (such as cardiovascular function, respiratory function, immune responses, etc.), animal behaviors required for the maintenance of the survival of individuals (food foraging, flight, fight, etc.) and species (reproductive function), and higher brain functions (learning and memory, mental state, etc.). Hypocretin (also called orexin) comprises of two neuropeptides exclusively synthesized by neurons in the perifornical/lateral hypothalamus. Although hypocretin/orexin was initially found to enhance food intake, it is now clear that the functions mediated by hypocretin/orexin are well beyond what were originally proposed. Specifically, hypocretin/orexin is a crucial promoter of wakefulness; deficiency in the hypocretin/orexin system leads to diseases and disorders such as narcolepsy. It is clear that neurons synthesizing hypocretin/orexin are consistently under regulation originating from various parts of the brain and that the status of activity in hypocretin/orexin neurons is closely related with the nutritional and behavioral state of animals. Therefore, the demand to make adaptive changes in hypocretin/orexin neurons to accommodate the changes in the external environment and behavioral state of animals is expected. The latest developments in the studies of plasticity in hypocretin/orexin neurons under the challenges from environmental and behavioral factors have dramatically shaped the

  12. Implications of oxidative stress in the brain plasticity originated by fasting: a BOLD-fMRI study.

    PubMed

    Belaïch, Rachida; Boujraf, Saïd; Benzagmout, Mohammed; Magoul, Rabia; Maaroufi, Mustapha; Tizniti, Siham

    2017-11-01

    The goal of this study was assessing the intermittent fasting effect on brain plasticity and oxidative stress (OS) using blood-oxygenation-level dependent (BOLD)-functional magnetic resonance image (fMRI) approach. Evidences of physiological and molecular phenomena involved in this process are discussed and compared to reported literature. Six fully healthy male non-smokers volunteered in this study. All volunteers were right handed, and have an equilibrated, consistent and healthy daily nutritional habit, and a healthy lifestyle. Participants were allowed consuming food during evening and night time while fasting with self-prohibiting food and liquids during 14 hours/day from sunrise to sunset. All participants underwent identical brain BOLD-fMRI protocol. The images were acquired in the Department of Radiology and Clinical Imaging of the University Hospital of Fez, Fez, Morocco. The anatomical brain and BOLD-fMRIs were acquired using a 1.5-Tesla scanner (Signa, General Electric, Milwaukee, United States). BOLD-fMRI image acquisition was done using single-shot gradient echo echo-planer imaging sequence. BOLD-fMRI paradigm consisted of the motor task where volunteers were asked to perform finger taping of the right hand. Two BOLD-fMRI scan sessions were performed, the first one between the 5th and 10th days preceding the start of fasting and the second between days 25th and 28th of the fasting month. All sessions were performed between 3:30 PM and 5:30 PM. Although individual maps were originated from different individual participants, they cover the same anatomic area in each case. Image processing and statistical analysis were conducted with Statistical Parameter Mapping version 8 (2008, Welcome Department of Cognitive Neurology, London UK). The maximal BOLD signal changes were calculated for each subject in the motor area M1; Activation maps were calculated and overlaid on the anatomical images. Group analysis of the data was performed, and the average volume

  13. Brain structural plasticity in survivors of a major earthquake

    PubMed Central

    Lui, Su; Chen, Long; Yao, Li; Xiao, Yuan; Wu, Qi-Zhu; Zhang, Jun-Ran; Huang, Xiao-Qi; Zhang, Wei; Wang, Yu-Qin; Chen, Hua-Fu; Chan, Raymond C.K.; Sweeney, John A.; Gong, Qi-Yong

    2013-01-01

    Background Stress responses have been studied extensively in animal models, but effects of major life stress on the human brain remain poorly understood. The aim of this study was to determine whether survivors of a major earthquake, who were presumed to have experienced extreme emotional stress during the disaster, demonstrate differences in brain anatomy relative to individuals who have not experienced such stressors. Methods Healthy survivors living in an area devastated by a major earthquake and matched healthy controls underwent 3-dimentional high-resolution magnetic resonance imaging (MRI). Survivors were scanned 13–25 days after the earthquake; controls had undergone MRI for other studies not long before the earthquake. We used optimized voxel-based morphometry analysis to identify regional differences of grey matter volume between the survivors and controls. Results We included 44 survivors (17 female, mean age 37 [standard deviation (SD) 10.6] yr) and 38 controls (14 female, mean age 35.3 [SD 11.2] yr) in our analysis. Compared with controls, the survivors showed significantly lower grey matter volume in the bilateral insula, hippocampus, left caudate and putamen, and greater grey matter volume in the bilateral orbitofrontal cortex and the parietal lobe (all p < 0.05, corrected for multiple comparison). Limitations Differences in the variance of survivor and control data could impact study findings. Conclusion Acute anatomic alterations could be observed in earthquake survivors in brain regions where functional alterations after stress have been described. Anatomic changes in the present study were observed earlier than previously reported and were seen in prefrontal–limbic, parietal and striatal brain systems. Together with the results of previous functional imaging studies, our observations suggest a complex pattern of human brain response to major life stress affecting brain systems that modulate and respond to heightened affective arousal. PMID

  14. Plasticity in single neuron and circuit computations

    NASA Astrophysics Data System (ADS)

    Destexhe, Alain; Marder, Eve

    2004-10-01

    Plasticity in neural circuits can result from alterations in synaptic strength or connectivity, as well as from changes in the excitability of the neurons themselves. To better understand the role of plasticity in the brain, we need to establish how brain circuits work and the kinds of computations that different circuit structures achieve. By linking theoretical and experimental studies, we are beginning to reveal the consequences of plasticity mechanisms for network dynamics, in both simple invertebrate circuits and the complex circuits of mammalian cerebral cortex.

  15. Strategy-based reasoning training modulates cortical thickness and resting-state functional connectivity in adults with chronic traumatic brain injury.

    PubMed

    Han, Kihwan; Davis, Rebecca A; Chapman, Sandra B; Krawczyk, Daniel C

    2017-05-01

    Prior studies have demonstrated training-induced changes in the healthy adult brain. Yet, it remains unclear how the injured brain responds to cognitive training months-to-years after injury. Sixty individuals with chronic traumatic brain injury (TBI) were randomized into either strategy-based ( N  = 31) or knowledge-based ( N  = 29) training for 8 weeks. We measured cortical thickness and resting-state functional connectivity (rsFC) before training, immediately posttraining, and 3 months posttraining. Relative to the knowledge-based training group, the cortical thickness of the strategy-based training group showed diverse temporal patterns of changes over multiple brain regions ( p vertex  < .05, p cluster  < .05): (1) increases followed by decreases, (2) monotonic increases, and (3) monotonic decreases. However, network-based statistics (NBS) analysis of rsFC among these regions revealed that the strategy-based training group induced only monotonic increases in connectivity, relative to the knowledge-based training group (| Z | > 1.96, p NBS  < 0.05). Complementing the rsFC results, the strategy-based training group yielded monotonic improvement in scores for the trail-making test ( p  <   .05). Analyses of brain-behavior relationships revealed that improvement in trail-making scores were associated with training-induced changes in cortical thickness ( p vertex  < .05, p cluster  < .05) and rsFC ( p vertex  < .05, p cluster  < .005) within the strategy-based training group. These findings suggest that training-induced brain plasticity continues through chronic phases of TBI and that brain connectivity and cortical thickness may serve as markers of plasticity.

  16. Maintaining older brain functionality: A targeted review.

    PubMed

    Ballesteros, Soledad; Kraft, Eduard; Santana, Silvina; Tziraki, Chariklia

    2015-08-01

    The unprecedented growth in the number of older adults in our society is accompanied by the exponential increase in the number of elderly people who will suffer cognitive decline and dementia in the next decades. This will create an enormous cost for governments, families and individuals. Brain plasticity and its role in brain adaptation to the process of aging is influenced by other changes as a result of co-morbidities, environmental factors, personality traits (psychosocial variables) and genetic and epigenetic factors. This review summarizes recent findings obtained mostly from interventional studies that aim to prevent and/or delay age-related cognitive decline in healthy adults. There are a multitude of such studies. In this paper, we focused our review on physical activity, computerized cognitive training and social enhancement interventions on improving cognition, physical health, independent living and wellbeing of older adults. The methodological limitations of some of these studies, and the need for new multi-domain synergistic interventions, based on current advances in neuroscience and social-brain theories, are discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Branched-chain amino acids and brain function.

    PubMed

    Fernstrom, John D

    2005-06-01

    Branched-chain amino acids (BCAAs) influence brain function by modifying large, neutral amino acid (LNAA) transport at the blood-brain barrier. Transport is shared by several LNAAs, notably the BCAAs and the aromatic amino acids (ArAAs), and is competitive. Consequently, when plasma BCAA concentrations rise, which can occur in response to food ingestion or BCAA administration, or with the onset of certain metabolic diseases (e.g., uncontrolled diabetes), brain BCAA concentrations rise, and ArAA concentrations decline. Such effects occur acutely and chronically. Such reductions in brain ArAA concentrations have functional consequences: biochemically, they reduce the synthesis and the release of neurotransmitters derived from ArAAs, notably serotonin (from tryptophan) and catecholamines (from tyrosine and phenylalanine). The functional effects of such neurochemical changes include altered hormonal function, blood pressure, and affective state. Although the BCAAs thus have biochemical and functional effects in the brain, few attempts have been made to characterize time-course or dose-response relations for such effects. And, no studies have attempted to identify levels of BCAA intake that might produce adverse effects on the brain. The only "model" of very high BCAA exposure is a very rare genetic disorder, maple syrup urine disease, a feature of which is substantial brain dysfunction but that probably cannot serve as a useful model for excessive BCAA intake by normal individuals. Given the known biochemical and functional effects of the BCAAs, it should be a straightforward exercise to design studies to assess dose-response relations for biochemical and functional effects and, in this context, to explore for adverse effect thresholds.

  18. Dynamical system with plastic self-organized velocity field as an alternative conceptual model of a cognitive system.

    PubMed

    Janson, Natalia B; Marsden, Christopher J

    2017-12-05

    It is well known that architecturally the brain is a neural network, i.e. a collection of many relatively simple units coupled flexibly. However, it has been unclear how the possession of this architecture enables higher-level cognitive functions, which are unique to the brain. Here, we consider the brain from the viewpoint of dynamical systems theory and hypothesize that the unique feature of the brain, the self-organized plasticity of its architecture, could represent the means of enabling the self-organized plasticity of its velocity vector field. We propose that, conceptually, the principle of cognition could amount to the existence of appropriate rules governing self-organization of the velocity field of a dynamical system with an appropriate account of stimuli. To support this hypothesis, we propose a simple non-neuromorphic mathematical model with a plastic self-organized velocity field, which has no prototype in physical world. This system is shown to be capable of basic cognition, which is illustrated numerically and with musical data. Our conceptual model could provide an additional insight into the working principles of the brain. Moreover, hardware implementations of plastic velocity fields self-organizing according to various rules could pave the way to creating artificial intelligence of a novel type.

  19. Urinary brain-derived neurotrophic factor as a biomarker of executive functioning.

    PubMed

    Koven, Nancy S; Collins, Larisa R

    2014-01-01

    Neurotrophins such as brain-derived neurotrophic factor (BDNF) are vital for neuronal survival and adaptive plasticity. With high BDNF gene expression in the prefrontal cortex, BDNF is a potential regulatory factor for building and maintaining cognitive reserves. Recent studies suggest that individual differences in executive functioning, a broad cognitive domain reliant upon frontal lobe structure and function, are governed in part by variance in BDNF polymorphisms. However, as neurogenetic data are not necessarily indicative of in vivo neurochemistry, this study examines the relationship between executive functioning and the neurotransmitter by measuring peripheral BDNF levels. Fifty-two healthy young adults completed a battery of standardized executive function tests. BDNF levels, adjusted for creatinine, were quantified with enzyme-linked immunosorbent assay of urine samples taken at the time of testing. BDNF concentration was positively associated with cognitive flexibility but had no relationship with working memory, abstract reasoning/planning, self-monitoring/response inhibition, or fluency. These results individuate cognitive flexibility as the specific facet of executive functioning associated with in vivo BDNF levels. This study also validates urinary BDNF as a peripheral biomarker of cognition in healthy adults. © 2014 S. Karger AG, Basel.

  20. Cortical GABAergic Interneurons in Cross-Modal Plasticity following Early Blindness

    PubMed Central

    Desgent, Sébastien; Ptito, Maurice

    2012-01-01

    Early loss of a given sensory input in mammals causes anatomical and functional modifications in the brain via a process called cross-modal plasticity. In the past four decades, several animal models have illuminated our understanding of the biological substrates involved in cross-modal plasticity. Progressively, studies are now starting to emphasise on cell-specific mechanisms that may be responsible for this intermodal sensory plasticity. Inhibitory interneurons expressing γ-aminobutyric acid (GABA) play an important role in maintaining the appropriate dynamic range of cortical excitation, in critical periods of developmental plasticity, in receptive field refinement, and in treatment of sensory information reaching the cerebral cortex. The diverse interneuron population is very sensitive to sensory experience during development. GABAergic neurons are therefore well suited to act as a gate for mediating cross-modal plasticity. This paper attempts to highlight the links between early sensory deprivation, cortical GABAergic interneuron alterations, and cross-modal plasticity, discuss its implications, and further provide insights for future research in the field. PMID:22720175

  1. Activating Developmental Reserve Capacity Via Cognitive Training or Non-invasive Brain Stimulation: Potentials for Promoting Fronto-Parietal and Hippocampal-Striatal Network Functions in Old Age

    PubMed Central

    Passow, Susanne; Thurm, Franka; Li, Shu-Chen

    2017-01-01

    Existing neurocomputational and empirical data link deficient neuromodulation of the fronto-parietal and hippocampal-striatal circuitries with aging-related increase in processing noise and declines in various cognitive functions. Specifically, the theory of aging neuronal gain control postulates that aging-related suboptimal neuromodulation may attenuate neuronal gain control, which yields computational consequences on reducing the signal-to-noise-ratio of synaptic signal transmission and hampering information processing within and between cortical networks. Intervention methods such as cognitive training and non-invasive brain stimulation, e.g., transcranial direct current stimulation (tDCS), have been considered as means to buffer cognitive functions or delay cognitive decline in old age. However, to date the reported effect sizes of immediate training gains and maintenance effects of a variety of cognitive trainings are small to moderate at best; moreover, training-related transfer effects to non-trained but closely related (i.e., near-transfer) or other (i.e., far-transfer) cognitive functions are inconsistent or lacking. Similarly, although applying different tDCS protocols to reduce aging-related cognitive impairments by inducing temporary changes in cortical excitability seem somewhat promising, evidence of effects on short- and long-term plasticity is still equivocal. In this article, we will review and critically discuss existing findings of cognitive training- and stimulation-related behavioral and neural plasticity effects in the context of cognitive aging, focusing specifically on working memory and episodic memory functions, which are subserved by the fronto-parietal and hippocampal-striatal networks, respectively. Furthermore, in line with the theory of aging neuronal gain control we will highlight that developing age-specific brain stimulation protocols and the concurrent applications of tDCS during cognitive training may potentially facilitate

  2. Stimulation of muscarinic receptors mimics experience-dependent plasticity in the honey bee brain

    PubMed Central

    Ismail, Nyla; Robinson, Gene E.; Fahrbach, Susan E.

    2006-01-01

    Honey bees begin life working in the hive. At ≈3 weeks of age, they shift to visiting flowers to forage for pollen and nectar. Foraging is a complex task associated with enlargement of the mushroom bodies, a brain region important in insects for certain forms of learning and memory. We report here that foraging bees had a larger volume of mushroom body neuropil than did age-matched bees confined to the hive. This result indicates that direct experience of the world outside the hive causes mushroom body neuropil growth in bees. We also show that oral treatment of caged bees with pilocarpine, a muscarinic agonist, induced an increase in the volume of the neuropil similar to that seen after a week of foraging experience. Effects of pilocarpine were blocked by scopolamine, a muscarinic antagonist. Our results suggest that signaling in cholinergic pathways couples experience to structural brain plasticity. PMID:16373504

  3. Improving Functional MRI Registration Using Whole-Brain Functional Correlation Tensors.

    PubMed

    Zhou, Yujia; Yap, Pew-Thian; Zhang, Han; Zhang, Lichi; Feng, Qianjin; Shen, Dinggang

    2017-09-01

    Population studies of brain function with resting-state functional magnetic resonance imaging (rs-fMRI) largely rely on the accurate inter-subject registration of functional areas. This is typically achieved through registration of the corresponding T1-weighted MR images with more structural details. However, accumulating evidence has suggested that such strategy cannot well-align functional regions which are not necessarily confined by the anatomical boundaries defined by the T1-weighted MR images. To mitigate this problem, various registration algorithms based directly on rs-fMRI data have been developed, most of which have utilized functional connectivity (FC) as features for registration. However, most of the FC-based registration methods usually extract the functional features only from the thin and highly curved cortical grey matter (GM), posing a great challenge in accurately estimating the whole-brain deformation field. In this paper, we demonstrate that the additional useful functional features can be extracted from brain regions beyond the GM, particularly, white-matter (WM) based on rs-fMRI, for improving the overall functional registration. Specifically, we quantify the local anisotropic correlation patterns of the blood oxygenation level-dependent (BOLD) signals, modeled by functional correlation tensors (FCTs), in both GM and WM. Functional registration is then performed based on multiple components of the whole-brain FCTs using a multichannel Large Deformation Diffeomorphic Metric Mapping (mLDDMM) algorithm. Experimental results show that our proposed method achieves superior functional registration performance, compared with other conventional registration methods.

  4. Advantages in functional imaging of the brain.

    PubMed

    Mier, Walter; Mier, Daniela

    2015-01-01

    As neuronal pathologies cause only minor morphological alterations, molecular imaging techniques are a prerequisite for the study of diseases of the brain. The development of molecular probes that specifically bind biochemical markers and the advances of instrumentation have revolutionized the possibilities to gain insight into the human brain organization and beyond this-visualize structure-function and brain-behavior relationships. The review describes the development and current applications of functional brain imaging techniques with a focus on applications in psychiatry. A historical overview of the development of functional imaging is followed by the portrayal of the principles and applications of positron emission tomography (PET) and functional magnetic resonance imaging (fMRI), two key molecular imaging techniques that have revolutionized the ability to image molecular processes in the brain. We conclude that the juxtaposition of PET and fMRI in hybrid PET/MRI scanners enhances the significance of both modalities for research in neurology and psychiatry and might pave the way for a new area of personalized medicine.

  5. IGF-1 Restores Visual Cortex Plasticity in Adult Life by Reducing Local GABA Levels

    PubMed Central

    Maya-Vetencourt, José Fernando; Baroncelli, Laura; Viegi, Alessandro; Tiraboschi, Ettore; Castren, Eero; Cattaneo, Antonino; Maffei, Lamberto

    2012-01-01

    The central nervous system architecture is markedly modified by sensory experience during early life, but a decline of plasticity occurs with age. Recent studies have challenged this dogma providing evidence that both pharmacological treatments and paradigms based on the manipulation of environmental stimulation levels can be successfully employed as strategies for enhancing plasticity in the adult nervous system. Insulin-like growth factor 1 (IGF-1) is a peptide implicated in prenatal and postnatal phases of brain development such as neurogenesis, neuronal differentiation, synaptogenesis, and experience-dependent plasticity. Here, using the visual system as a paradigmatic model, we report that IGF-1 reactivates neural plasticity in the adult brain. Exogenous administration of IGF-1 in the adult visual cortex, indeed, restores the susceptibility of cortical neurons to monocular deprivation and promotes the recovery of normal visual functions in adult amblyopic animals. These effects were accompanied by a marked reduction of intracortical GABA levels. Moreover, we show that a transitory increase of IGF-1 expression is associated to the plasticity reinstatement induced by environmental enrichment (EE) and that blocking IGF-1 action by means of the IGF-1 receptor antagonist JB1 prevents EE effects on plasticity processes. PMID:22720172

  6. Functional plasticity of macrophages: in situ reprogramming of tumor-associated macrophages

    PubMed Central

    Stout, Robert D.; Watkins, Stephanie K.; Suttles, Jill

    2009-01-01

    The extent to which the functional heterogeneity of Mϕs is dependent on the differentiation of functional sublineages remains unresolved. One alternative hypothesis proposes that Mϕs are functionally plastic cells, which are capable of altering their functional activities progressively in response to progressively changing signaling molecules generated in their microenvironment. This “functional plasticity” hypothesis predicts that the functionally polarized Mϕs in chronic pathologies do not represent Mϕ sublineages but rather, are mutable phenotypes sustained by chronic signaling from the pathological environment. Solid TAMϕs are chronically polarized to provide activities that support tumor growth and metastasis and suppress adaptive immune responses. In support of the functional plasticity hypothesis, administration of slow-release microsphere-encapsulated IL-12 successfully reprogrammed TAMϕs in situ, reducing Mϕ support of tumor growth and metastasis and enhancing Mϕ proimmunogenic activities. Increased knowledge of how Mϕ function is regulated and how polarized Mϕs can be reprogrammed in situ will increase our ability to control Mϕ function in a variety of pathological states, including cancer and chronic inflammatory disease. PMID:19605698

  7. Altered Brain Functional Activity in Infants with Congenital Bilateral Severe Sensorineural Hearing Loss: A Resting-State Functional MRI Study under Sedation.

    PubMed

    Xia, Shuang; Song, TianBin; Che, Jing; Li, Qiang; Chai, Chao; Zheng, Meizhu; Shen, Wen

    2017-01-01

    Early hearing deprivation could affect the development of auditory, language, and vision ability. Insufficient or no stimulation of the auditory cortex during the sensitive periods of plasticity could affect the function of hearing, language, and vision development. Twenty-three infants with congenital severe sensorineural hearing loss (CSSHL) and 17 age and sex matched normal hearing subjects were recruited. The amplitude of low frequency fluctuations (ALFF) and regional homogeneity (ReHo) of the auditory, language, and vision related brain areas were compared between deaf infants and normal subjects. Compared with normal hearing subjects, decreased ALFF and ReHo were observed in auditory and language-related cortex. Increased ALFF and ReHo were observed in vision related cortex, which suggest that hearing and language function were impaired and vision function was enhanced due to the loss of hearing. ALFF of left Brodmann area 45 (BA45) was negatively correlated with deaf duration in infants with CSSHL. ALFF of right BA39 was positively correlated with deaf duration in infants with CSSHL. In conclusion, ALFF and ReHo can reflect the abnormal brain function in language, auditory, and visual information processing in infants with CSSHL. This demonstrates that the development of auditory, language, and vision processing function has been affected by congenital severe sensorineural hearing loss before 4 years of age.

  8. Homeostatic structural plasticity can account for topology changes following deafferentation and focal stroke.

    PubMed

    Butz, Markus; Steenbuck, Ines D; van Ooyen, Arjen

    2014-01-01

    After brain lesions caused by tumors or stroke, or after lasting loss of input (deafferentation), inter- and intra-regional brain networks respond with complex changes in topology. Not only areas directly affected by the lesion but also regions remote from the lesion may alter their connectivity-a phenomenon known as diaschisis. Changes in network topology after brain lesions can lead to cognitive decline and increasing functional disability. However, the principles governing changes in network topology are poorly understood. Here, we investigated whether homeostatic structural plasticity can account for changes in network topology after deafferentation and brain lesions. Homeostatic structural plasticity postulates that neurons aim to maintain a desired level of electrical activity by deleting synapses when neuronal activity is too high and by providing new synaptic contacts when activity is too low. Using our Model of Structural Plasticity, we explored how local changes in connectivity induced by a focal loss of input affected global network topology. In accordance with experimental and clinical data, we found that after partial deafferentation, the network as a whole became more random, although it maintained its small-world topology, while deafferentated neurons increased their betweenness centrality as they rewired and returned to the homeostatic range of activity. Furthermore, deafferentated neurons increased their global but decreased their local efficiency and got longer tailed degree distributions, indicating the emergence of hub neurons. Together, our results suggest that homeostatic structural plasticity may be an important driving force for lesion-induced network reorganization and that the increase in betweenness centrality of deafferentated areas may hold as a biomarker for brain repair.

  9. The effects of vitamin D on brain development and adult brain function.

    PubMed

    Kesby, James P; Eyles, Darryl W; Burne, Thomas H J; McGrath, John J

    2011-12-05

    A role for vitamin D in brain development and function has been gaining support over the last decade. Multiple lines of evidence suggest that this vitamin is actually a neuroactive steroid that acts on brain development, leading to alterations in brain neurochemistry and adult brain function. Early deficiencies have been linked with neuropsychiatric disorders, such as schizophrenia, and adult deficiencies have been associated with a host of adverse brain outcomes, including Parkinson's disease, Alzheimer's disease, depression and cognitive decline. This review summarises the current state of research on the actions of vitamin D in the brain and the consequences of deficiencies in this vitamin. Furthermore, we discuss specific implications of vitamin D status on the neurotransmitter, dopamine. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Oral sodium butyrate impacts brain metabolism and hippocampal neurogenesis, with limited effects on gut anatomy and function in pigs.

    PubMed

    Val-Laillet, David; Guérin, Sylvie; Coquery, Nicolas; Nogret, Isabelle; Formal, Michèle; Romé, Véronique; Le Normand, Laurence; Meurice, Paul; Randuineau, Gwénaëlle; Guilloteau, Paul; Malbert, Charles-Henri; Parnet, Patricia; Lallès, Jean-Paul; Segain, Jean-Pierre

    2018-04-01

    Butyrate can improve gut functions, whereas histone deacetylase inhibitors might alleviate neurocognitive alterations. Our aim was to assess whether oral butyrate could modulate brain metabolism and plasticity and if this would relate to gut function. Sixteen pigs were subjected to sodium butyrate (SB) supplementation via beverage water or water only [control (C)]. All pigs had blood sampled after 2 and 3 wk of treatment, and were subjected to a brain positron emission tomography after 3 wk. Animals were euthanized after 4 wk to sample pancreas, intestine, and brain for gut physiology and anatomy measurements, as well as hippocampal histology, Ki67, and doublecortin (DCX) immunohistochemistry. SB compared with C treatment triggered basal brain glucose metabolism changes in the nucleus accumbens and hippocampus ( P = 0.003), increased hippocampal granular cell layer volume ( P = 0.006), and neurogenesis (Ki67: P = 0.026; DCX: P = 0.029). After 2 wk of treatment, plasma levels of glucose, insulin, lactate, glucagon-like peptide 1, and peptide tyrosine tyrosine remained unchanged. After 3 wk, plasma levels of lactate were lower in SB compared with C animals ( P = 0.028), with no difference for glucose and insulin. Butyrate intake impacted very little gut anatomy and function. These results demonstrate that oral SB impacted brain functions with little effects on the gut.-Val-Laillet, D., Guérin, S., Coquery, N., Nogret, I., Formal, M., Romé, V., Le Normand, L., Meurice, P., Randuineau, G., Guilloteau, P., Malbert, C.-H., Parnet, P., Lallès, J.-P., Segain, J.-P. Oral sodium butyrate impacts brain metabolism and hippocampal neurogenesis, with limited effects on gut anatomy and function in pigs.

  11. Exercise and the brain: something to chew on

    PubMed Central

    van Praag, Henriette

    2009-01-01

    Evidence is accumulating that exercise has profound benefits for brain function. Physical activity improves learning and memory in humans and animals. Moreover, an active lifestyle might prevent or delay loss of cognitive function with aging or neurodegenerative disease. Recent research indicates that the effects of exercise on the brain can be enhanced by concurrent consumption of natural products such as omega fatty acids or plant polyphenols. The potential synergy between diet and exercise could involve common cellular pathways important for neurogenesis, cell survival, synaptic plasticity and vascular function. Optimal maintenance of brain health might depend on exercise and intake of natural products. PMID:19349082

  12. Functional Language Shift to the Right Hemisphere in Patients with Language-Eloquent Brain Tumors

    PubMed Central

    Krieg, Sandro M.; Sollmann, Nico; Hauck, Theresa; Ille, Sebastian; Foerschler, Annette; Meyer, Bernhard; Ringel, Florian

    2013-01-01

    Objectives Language function is mainly located within the left hemisphere of the brain, especially in right-handed subjects. However, functional MRI (fMRI) has demonstrated changes of language organization in patients with left-sided perisylvian lesions to the right hemisphere. Because intracerebral lesions can impair fMRI, this study was designed to investigate human language plasticity with a virtual lesion model using repetitive navigated transcranial magnetic stimulation (rTMS). Experimental design Fifteen patients with lesions of left-sided language-eloquent brain areas and 50 healthy and purely right-handed participants underwent bilateral rTMS language mapping via an object-naming task. All patients were proven to have left-sided language function during awake surgery. The rTMS-induced language errors were categorized into 6 different error types. The error ratio (induced errors/number of stimulations) was determined for each brain region on both hemispheres. A hemispheric dominance ratio was then defined for each region as the quotient of the error ratio (left/right) of the corresponding area of both hemispheres (ratio >1  =  left dominant; ratio <1  =  right dominant). Results Patients with language-eloquent lesions showed a statistically significantly lower ratio than healthy participants concerning “all errors” and “all errors without hesitations”, which indicates a higher participation of the right hemisphere in language function. Yet, there was no cortical region with pronounced difference in language dominance compared to the whole hemisphere. Conclusions This is the first study that shows by means of an anatomically accurate virtual lesion model that a shift of language function to the non-dominant hemisphere can occur. PMID:24069410

  13. Brain Structure-function Couplings (FY11)

    DTIC Science & Technology

    2012-01-01

    influence time-evolving models of global brain function and dynamic changes in cognitive performance. Both structural and functional connections change on...Artifact Resistant Measure to Detect Cognitive EEG Activity During Locomotion. Journal of NeuroEngineering and Rehabilitation, submitted. 10...Specifically, identifying the communication between brain regions that occurs during tasks may provide information regarding the cognitive processes involved in

  14. Ketamine: differential neurophysiological dynamics in functional networks in the rat brain

    PubMed Central

    Ahnaou, A; Huysmans, H; Biermans, R; Manyakov, N V; Drinkenburg, W H I M

    2017-01-01

    Recently, the N-methyl-d-aspartate-receptor (NMDAR) antagonist ketamine has emerged as a fast-onset mechanism to achieve antidepressant activity, whereas its psychomimetic, dissociative and amnestic effects have been well documented to pharmacologically model schizophrenia features in rodents. Sleep–wake architecture, neuronal oscillations and network connectivity are key mechanisms supporting brain plasticity and cognition, which are disrupted in mood disorders such as depression and schizophrenia. In rats, we investigated the dynamic effects of acute and chronic subcutaneous administration of ketamine (2.5, 5 and 10 mg kg−1) on sleep–wake cycle, multichannels network interactions assessed by coherence and phase–amplitude cross-frequency coupling, locomotor activity (LMA), cognitive information processing as reflected by the mismatch negativity-like (MMN) component of event-related brain potentials (ERPs). Acute ketamine elicited a short, lasting inhibition of rapid eye movement (REM) sleep, increased coherence in higher gamma frequency oscillations independent of LMA, altered theta-gamma phase–amplitude coupling, increased MMN peak-amplitude response and evoked higher gamma oscillations. In contrast, chronic ketamine reduced large-scale communication among cortical regions by decreasing oscillations and coherent activity in the gamma frequency range, shifted networks activity towards slow alpha rhythm, decreased MMN peak response and enhanced aberrant higher gamma neuronal network oscillations. Altogether, our data show that acute and chronic ketamine elicited differential changes in network connectivity, ERPs and event-related oscillations (EROs), supporting possible underlying alterations in NMDAR–GABAergic signaling. The findings underscore the relevance of intermittent dosing of ketamine to accurately maintain the functional integrity of neuronal networks for long-term plastic changes and therapeutic effect. PMID:28926001

  15. The rat perirhinal cortex: A review of anatomy, physiology, plasticity, and function.

    PubMed

    Kealy, John; Commins, Sean

    2011-04-01

    The perirhinal cortex is located in a pivotal position to influence the flow of information into and out of the hippocampal formation. In this review, we examine the anatomical, physiological and functional properties of the rat perirhinal cortex. Firstly, we review the properties of the perirhinal cortex itself, we describe how it can be separated into two distinct subregions and consider how it differs from other neighbouring regions in terms of cell type, cellular organisation and its afferent and efferent projections. We review the forms of neurotransmission present in the perirhinal cortex and the morphological, electrophysiological and plastic properties of its neurons. Secondly, we review the perirhinal cortex in the context of its connections with other brain areas; focussing on the projections to cortical, subcortical and hippocampal/parahippocampal regions. Particular attention is paid the anatomical and electrophysiological properties of these projections. Thirdly, we review the main functions of the perirhinal cortex; its roles in perception, recognition memory, spatial and contextual memory and fear conditioning are explored. Finally, we discuss the idea of anatomical, electrophysiological and functional segregation within the perirhinal cortex itself and as part of a hippocampal-parahippocampal network and suggest that understanding this segregation is of critical importance in understanding the role and contributions made by the perirhinal cortex in general. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Resting-state functional brain connectivity: lessons from functional near-infrared spectroscopy.

    PubMed

    Niu, Haijing; He, Yong

    2014-04-01

    Resting-state functional near-infrared spectroscopy (R-fNIRS) is an active area of interest and is currently attracting considerable attention as a new imaging tool for the study of resting-state brain function. Using variations in hemodynamic concentration signals, R-fNIRS measures the brain's low-frequency spontaneous neural activity, combining the advantages of portability, low-cost, high temporal sampling rate and less physical burden to participants. The temporal synchronization of spontaneous neuronal activity in anatomically separated regions is referred to as resting-state functional connectivity (RSFC). In the past several years, an increasing body of R-fNIRS RSFC studies has led to many important findings about functional integration among local or whole-brain regions by measuring inter-regional temporal synchronization. Here, we summarize recent advances made in the R-fNIRS RSFC methodologies, from the detection of RSFC (e.g., seed-based correlation analysis, independent component analysis, whole-brain correlation analysis, and graph-theoretical topological analysis), to the assessment of RSFC performance (e.g., reliability, repeatability, and validity), to the application of RSFC in studying normal development and brain disorders. The literature reviewed here suggests that RSFC analyses based on R-fNIRS data are valid and reliable for the study of brain function in healthy and diseased populations, thus providing a promising imaging tool for cognitive science and clinics.

  17. Noninvasive and painless magnetic stimulation of nerves improved brain motor function and mobility in a cerebral palsy case.

    PubMed

    Flamand, Véronique H; Schneider, Cyril

    2014-10-01

    Motor deficits in cerebral palsy disturb functional independence. This study tested whether noninvasive and painless repetitive peripheral magnetic stimulation could improve motor function in a 7-year-old boy with spastic hemiparetic cerebral palsy. Stimulation was applied over different nerves of the lower limbs for 5 sessions. We measured the concurrent aftereffects of this intervention on ankle motor control, gait (walking velocity, stride length, cadence, cycle duration), and function of brain motor pathways. We observed a decrease of ankle plantar flexors resistance to stretch, an increase of active dorsiflexion range of movement, and improvements of corticospinal control of ankle dorsiflexors. Joint mobility changes were still present 15 days after the end of stimulation, when all gait parameters were also improved. Resistance to stretch was still lower than prestimulation values 45 days after the end of stimulation. This case illustrates the sustained effects of repetitive peripheral magnetic stimulation on brain plasticity, motor function, and gait. It suggests a potential impact for physical rehabilitation in cerebral palsy. Copyright © 2014 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  18. Non-invasive Brain Stimulation: Probing Intracortical Circuits and Improving Cognition in the Aging Brain

    PubMed Central

    Gomes-Osman, Joyce; Indahlastari, Aprinda; Fried, Peter J.; Cabral, Danylo L. F.; Rice, Jordyn; Nissim, Nicole R.; Aksu, Serkan; McLaren, Molly E.; Woods, Adam J.

    2018-01-01

    The impact of cognitive aging on brain function and structure is complex, and the relationship between aging-related structural changes and cognitive function are not fully understood. Physiological and pathological changes to the aging brain are highly variable, making it difficult to estimate a cognitive trajectory with which to monitor the conversion to cognitive decline. Beyond the information on the structural and functional consequences of cognitive aging gained from brain imaging and neuropsychological studies, non-invasive brain stimulation techniques such as transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) can enable stimulation of the human brain in vivo, offering useful insights into the functional integrity of intracortical circuits using electrophysiology and neuromodulation. TMS measurements can be used to identify and monitor changes in cortical reactivity, the integrity of inhibitory and excitatory intracortical circuits, the mechanisms of long-term potentiation (LTP)/depression-like plasticity and central cholinergic function. Repetitive TMS and tDCS can be used to modulate neuronal excitability and enhance cortical function, and thus offer a potential means to slow or reverse cognitive decline. This review will summarize and critically appraise relevant literature regarding the use of TMS and tDCS to probe cortical areas affected by the aging brain, and as potential therapeutic tools to improve cognitive function in the aging population. Challenges arising from intra-individual differences, limited reproducibility, and methodological differences will be discussed.

  19. Functional vision in children with perinatal brain damage.

    PubMed

    Alimović, Sonja; Jurić, Nikolina; Bošnjak, Vlatka Mejaški

    2014-09-01

    Many authors have discussed the effects of visual stimulations on visual functions, but there is no research about the effects on using vision in everyday activities (i.e. functional vision). Children with perinatal brain damage can develop cerebral visual impairment with preserved visual functions (e.g. visual acuity, contrast sensitivity) but poor functional vision. Our aim was to discuss the importance of assessing and stimulating functional vision in children with perinatal brain damage. We assessed visual functions (grating visual acuity, contrast sensitivity) and functional vision (the ability of maintaining visual attention and using vision in communication) in 99 children with perinatal brain damage and visual impairment. All children were assessed before and after the visual stimulation program. Our first assessment results showed that children with perinatal brain damage had significantly more problems in functional vision than in basic visual functions. During the visual stimulation program both variables of functional vision and contrast sensitivity improved significantly, while grating acuity improved only in 2.7% of children. We also found that improvement of visual attention significantly correlated to improvement on all other functions describing vision. Therefore, functional vision assessment, especially assessment of visual attention is indispensable in early monitoring of child with perinatal brain damage.

  20. Combined Therapy of Iron Chelator and Antioxidant Completely Restores Brain Dysfunction Induced by Iron Toxicity

    PubMed Central

    Sripetchwandee, Jirapas; Pipatpiboon, Noppamas; Chattipakorn, Nipon; Chattipakorn, Siriporn

    2014-01-01

    Background Excessive iron accumulation leads to iron toxicity in the brain; however the underlying mechanism is unclear. We investigated the effects of iron overload induced by high iron-diet consumption on brain mitochondrial function, brain synaptic plasticity and learning and memory. Iron chelator (deferiprone) and antioxidant (n-acetyl cysteine) effects on iron-overload brains were also studied. Methodology Male Wistar rats were fed either normal diet or high iron-diet consumption for 12 weeks, after which rats in each diet group were treated with vehicle or deferiprone (50 mg/kg) or n-acetyl cysteine (100 mg/kg) or both for another 4 weeks. High iron-diet consumption caused brain iron accumulation, brain mitochondrial dysfunction, impaired brain synaptic plasticity and cognition, blood-brain-barrier breakdown, and brain apoptosis. Although both iron chelator and antioxidant attenuated these deleterious effects, combined therapy provided more robust results. Conclusion In conclusion, this is the first study demonstrating that combined iron chelator and anti-oxidant therapy completely restored brain function impaired by iron overload. PMID:24400127

  1. Motor recovery and cortical plasticity after functional electrical stimulation in a rat model of focal stroke.

    PubMed

    Cecatto, Rebeca Boltes; Maximino, Jessica Ruivo; Chadi, Gerson

    2014-09-01

    The aim of this study was to investigate the functional responses and plastic cortical changes in a sample of animals with sequelae of cerebral ischemia that were subjected to a model of functional electrical stimulation (FES). Rats received an ischemic cortical lesion (Rose Bengal method) and were randomized and submitted to an FES stimulation (1-2 mA, 30 Hz, 20-40 mins for 14 days) or sham stimulation. The Foot Fault Test was performed before inducing the cortical lesion and also before and after FES. Brain immunochemistry labeling with microtubule-associated protein-2 and neurofilament-200 markers was performed after FES. The authors found a decreased percentage of errors in the Foot Fault Test (P < 0.001) in the stimulated group compared with the sham group after FES. FES has not altered the lesion size. Spontaneous motor parameters returned to basal values in both groups. The qualitative analysis showed an increased amount of radial microtubule-associated protein-2 immunoreactive fibers in the preserved cortex adjacent to stroke site in the stimulated animals. Regarding the measurements of neurofilament-200 immunostaining, there were no differences between the hemispheres or groups in area or intensity. Acute and short period of FES led to motor recovery of ankle joint neurodisability. The extent to which compensatory plasticity occurs after stroke or after FES and the extent to which it contributes to functional recovery are yet unclear. The changes induced by the stimulation may improve the ability of the nervous system to undergo spontaneous recovery, which is of substantial interest for neurorehabilitation strategies.

  2. Graph analysis of functional brain networks for cognitive control of action in traumatic brain injury.

    PubMed

    Caeyenberghs, Karen; Leemans, Alexander; Heitger, Marcus H; Leunissen, Inge; Dhollander, Thijs; Sunaert, Stefan; Dupont, Patrick; Swinnen, Stephan P

    2012-04-01

    Patients with traumatic brain injury show clear impairments in behavioural flexibility and inhibition that often persist beyond the time of injury, affecting independent living and psychosocial functioning. Functional magnetic resonance imaging studies have shown that patients with traumatic brain injury typically show increased and more broadly dispersed frontal and parietal activity during performance of cognitive control tasks. We constructed binary and weighted functional networks and calculated their topological properties using a graph theoretical approach. Twenty-three adults with traumatic brain injury and 26 age-matched controls were instructed to switch between coordination modes while making spatially and temporally coupled circular motions with joysticks during event-related functional magnetic resonance imaging. Results demonstrated that switching performance was significantly lower in patients with traumatic brain injury compared with control subjects. Furthermore, although brain networks of both groups exhibited economical small-world topology, altered functional connectivity was demonstrated in patients with traumatic brain injury. In particular, compared with controls, patients with traumatic brain injury showed increased connectivity degree and strength, and higher values of local efficiency, suggesting adaptive mechanisms in this group. Finally, the degree of increased connectivity was significantly correlated with poorer switching task performance and more severe brain injury. We conclude that analysing the functional brain network connectivity provides new insights into understanding cognitive control changes following brain injury.

  3. Analysis of functional polymorphisms in three synaptic plasticity-related genes (BDNF, COMT AND UCHL1) in Alzheimer's disease in Colombia.

    PubMed

    Forero, Diego A; Benítez, Bruno; Arboleda, Gonzalo; Yunis, Juan J; Pardo, Rodrigo; Arboleda, Humberto

    2006-07-01

    In recent years, it has been proposed that synaptic dysfunction may be an important etiological factor for Alzheimer's disease (AD). This hypothesis has important implications for the analysis of AD genetic risk in case-control studies. In the present work, we analyzed common functional polymorphisms in three synaptic plasticity-related genes (brain-derived neurotrophic factor, BDNF Val66Met; catechol-O-methyl transferase, COMT Val158; ubiquitin carboxyl-terminal hydroxylase, UCHL1 S18Y) in a sample of 102 AD cases and 168 age and sex matched controls living in Bogotá, Colombia. There was not association between UCHL1 polymorphism and AD in our sample. We have found an initial association with BDNF polymorphism in familial cases and with COMT polymorphism in male and sporadic patients. These initial associations were lost after Bonferroni correction for multiple testing. Unadjusted results may be compatible with the expected functional effect of variations in these genes on pathological memory and cognitive dysfunction, as has been implicated in animal and cell models and also from neuropsychological analysis of normal subjects carriers of the AD associated genotypes. An exploration of functional variants in these and in other synaptic plasticity-related genes (a synaptogenomics approach) in independent larger samples will be important to discover new genes associated with AD.

  4. Effect of brain structure, brain function, and brain connectivity on relapse in alcohol-dependent patients.

    PubMed

    Beck, Anne; Wüstenberg, Torsten; Genauck, Alexander; Wrase, Jana; Schlagenhauf, Florian; Smolka, Michael N; Mann, Karl; Heinz, Andreas

    2012-08-01

    In alcohol-dependent patients, brain atrophy and functional brain activation elicited by alcohol-associated stimuli may predict relapse. However, to date, the interaction between both factors has not been studied. To determine whether results from structural and functional magnetic resonance imaging are associated with relapse in detoxified alcohol-dependent patients. A cue-reactivity functional magnetic resonance experiment with alcohol-associated and neutral stimuli. After a follow-up period of 3 months, the group of 46 detoxified alcohol-dependent patients was subdivided into 16 abstainers and 30 relapsers. Faculty for Clinical Medicine Mannheim at the University of Heidelberg, Germany. A total of 46 detoxified alcohol-dependent patients and 46 age- and sex-matched healthy control subjects Local gray matter volume, local stimulus-related functional magnetic resonance imaging activation, joint analyses of structural and functional data with Biological Parametric Mapping, and connectivity analyses adopting the psychophysiological interaction approach. Subsequent relapsers showed pronounced atrophy in the bilateral orbitofrontal cortex and in the right medial prefrontal and anterior cingulate cortex, compared with healthy controls and patients who remained abstinent. The local gray matter volume-corrected brain response elicited by alcohol-associated vs neutral stimuli in the left medial prefrontal cortex was enhanced for subsequent relapsers, whereas abstainers displayed an increased neural response in the midbrain (the ventral tegmental area extending into the subthalamic nucleus) and ventral striatum. For alcohol-associated vs neutral stimuli in abstainers compared with relapsers, the analyses of the psychophysiological interaction showed a stronger functional connectivity between the midbrain and the left amygdala and between the midbrain and the left orbitofrontal cortex. Subsequent relapsers displayed increased brain atrophy in brain areas associated with

  5. Functional salutogenic mechanisms of the brain.

    PubMed

    Smith, Donald F

    2002-01-01

    Neuroscientists are typically interested in the brain in relation to disease, but much could also be learned by studying the brain in relation to health. The brain has processes, functional salutogenic mechanisms, that contribute to health by enabling one's outlook on life to benefit one's health. For example, the belief that things will work out as well as can reasonably be expected is a key aspect of the outlook of people who tend to stay well even when in potentially stressful situations. Believing in God, feeling happy, being mutually in love, and expecting things to change for the better are also outlooks that can be salutogenic. Beliefs need not even be rational or realistic in order for them to be salutogenic, as shown by phenomena such as faith healing and the placebo effect. Thus, the brain responds to stimuli and interprets them, mainly without one's awareness, in ways that can enhance one's well-being. Although little is presently known concerning neuropathways of functional salutogenic mechanisms, further research on relations between salutogenesis and brain function can be expected to provide new strategies for improving health worldwide.

  6. The Corticohippocampal Circuit, Synaptic Plasticity, and Memory

    PubMed Central

    Basu, Jayeeta; Siegelbaum, Steven A.

    2015-01-01

    Synaptic plasticity serves as a cellular substrate for information storage in the central nervous system. The entorhinal cortex (EC) and hippocampus are interconnected brain areas supporting basic cognitive functions important for the formation and retrieval of declarative memories. Here, we discuss how information flow in the EC–hippocampal loop is organized through circuit design. We highlight recently identified corticohippocampal and intrahippocampal connections and how these long-range and local microcircuits contribute to learning. This review also describes various forms of activity-dependent mechanisms that change the strength of corticohippocampal synaptic transmission. A key point to emerge from these studies is that patterned activity and interaction of coincident inputs gives rise to associational plasticity and long-term regulation of information flow. Finally, we offer insights about how learning-related synaptic plasticity within the corticohippocampal circuit during sensory experiences may enable adaptive behaviors for encoding spatial, episodic, social, and contextual memories. PMID:26525152

  7. Apparent plasticity in functional traits determining competitive ability and spatial distribution: a case from desert.

    PubMed

    Xie, Jiang-Bo; Xu, Gui-Qing; Jenerette, G Darrel; Bai, Yong-fei; Wang, Zhong-Yuan; Li, Yan

    2015-07-20

    Species competitive abilities and their distributions are closely related to functional traits such as biomass allocation patterns. When we consider how nutrient supply affects competitive abilities, quantifying the apparent and true plasticity in functional traits is important because the allometric relationships among traits are universal in plants. We propose to integrate the notion of allometry and the classical reaction norm into a composite theoretical framework that quantifies the apparent and true plasticity. Combining the framework with a meta-analysis, a series of field surveys and a competition experiment, we aimed to determine the causes of the dune/interdune distribution patterns of two Haloxylon species in the Gurbantonggut Desert. We found that (1) the biomass allocation patterns of both Haloxylon species in responses to environmental conditions were apparent rather than true plasticity and (2) the allometric allocation patterns affected the plants' competition for soil nutrient supply. A key implication of our results is that the apparent plasticity in functional traits of plants determines their response to environmental change. Without identifying the apparent and true plasticity, we would substantially overestimate the magnitude, duration and even the direction of plant responses in functional traits to climate change.

  8. Apparent plasticity in functional traits determining competitive ability and spatial distribution: a case from desert

    PubMed Central

    Xie, Jiang-Bo; Xu, Gui-Qing; Jenerette, G. Darrel; Bai, Yong-fei; Wang, Zhong-Yuan; Li, Yan

    2015-01-01

    Species competitive abilities and their distributions are closely related to functional traits such as biomass allocation patterns. When we consider how nutrient supply affects competitive abilities, quantifying the apparent and true plasticity in functional traits is important because the allometric relationships among traits are universal in plants. We propose to integrate the notion of allometry and the classical reaction norm into a composite theoretical framework that quantifies the apparent and true plasticity. Combining the framework with a meta-analysis, a series of field surveys and a competition experiment, we aimed to determine the causes of the dune/interdune distribution patterns of two Haloxylon species in the Gurbantonggut Desert. We found that (1) the biomass allocation patterns of both Haloxylon species in responses to environmental conditions were apparent rather than true plasticity and (2) the allometric allocation patterns affected the plants’ competition for soil nutrient supply. A key implication of our results is that the apparent plasticity in functional traits of plants determines their response to environmental change. Without identifying the apparent and true plasticity, we would substantially overestimate the magnitude, duration and even the direction of plant responses in functional traits to climate change. PMID:26190745

  9. Functional atlas of the awake rat brain: A neuroimaging study of rat brain specialization and integration.

    PubMed

    Ma, Zhiwei; Perez, Pablo; Ma, Zilu; Liu, Yikang; Hamilton, Christina; Liang, Zhifeng; Zhang, Nanyin

    2018-04-15

    Connectivity-based parcellation approaches present an innovative method to segregate the brain into functionally specialized regions. These approaches have significantly advanced our understanding of the human brain organization. However, parallel progress in animal research is sparse. Using resting-state fMRI data and a novel, data-driven parcellation method, we have obtained robust functional parcellations of the rat brain. These functional parcellations reveal the regional specialization of the rat brain, which exhibited high within-parcel homogeneity and high reproducibility across animals. Graph analysis of the whole-brain network constructed based on these functional parcels indicates that the rat brain has a topological organization similar to humans, characterized by both segregation and integration. Our study also provides compelling evidence that the cingulate cortex is a functional hub region conserved from rodents to humans. Together, this study has characterized the rat brain specialization and integration, and has significantly advanced our understanding of the rat brain organization. In addition, it is valuable for studies of comparative functional neuroanatomy in mammalian brains. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. The function of neurocognitive networks. Comment on “Understanding brain networks and brain organization” by Pessoa

    NASA Astrophysics Data System (ADS)

    Bressler, Steven L.

    2014-09-01

    Pessoa [5] has performed a valuable service by reviewing the extant literature on brain networks and making a number of interesting proposals about their cognitive function. The term function is at the core of understanding the brain networks of cognition, or neurocognitive networks (NCNs) [1]. The great Russian neuropsychologist, Luria [4], defined brain function as the common task executed by a distributed brain network of complex dynamic structures united by the demands of cognition. Casting Luria in a modern light, we can say that function emerges from the interactions of brain regions in NCNs as they dynamically self-organize according to cognitive demands. Pessoa rightly details the mapping between brain function and structure, emphasizing both its pluripotency (one structure having multiple functions) and degeneracy (many structures having the same function). However, he fails to consider the potential importance of a one-to-one mapping between NCNs and function. If NCNs are uniquely composed of specific collections of brain areas, then each NCN has a unique function determined by that composition.

  11. Brain structure and functional connectivity associated with pornography consumption: the brain on porn.

    PubMed

    Kühn, Simone; Gallinat, Jürgen

    2014-07-01

    Since pornography appeared on the Internet, the accessibility, affordability, and anonymity of consuming visual sexual stimuli have increased and attracted millions of users. Based on the assumption that pornography consumption bears resemblance with reward-seeking behavior, novelty-seeking behavior, and addictive behavior, we hypothesized alterations of the frontostriatal network in frequent users. To determine whether frequent pornography consumption is associated with the frontostriatal network. In a study conducted at the Max Planck Institute for Human Development in Berlin, Germany, 64 healthy male adults covering a wide range of pornography consumption reported hours of pornography consumption per week. Pornography consumption was associated with neural structure, task-related activation, and functional resting-state connectivity. Gray matter volume of the brain was measured by voxel-based morphometry and resting state functional connectivity was measured on 3-T magnetic resonance imaging scans. We found a significant negative association between reported pornography hours per week and gray matter volume in the right caudate (P < .001, corrected for multiple comparisons) as well as with functional activity during a sexual cue-reactivity paradigm in the left putamen (P < .001). Functional connectivity of the right caudate to the left dorsolateral prefrontal cortex was negatively associated with hours of pornography consumption. The negative association of self-reported pornography consumption with the right striatum (caudate) volume, left striatum (putamen) activation during cue reactivity, and lower functional connectivity of the right caudate to the left dorsolateral prefrontal cortex could reflect change in neural plasticity as a consequence of an intense stimulation of the reward system, together with a lower top-down modulation of prefrontal cortical areas. Alternatively, it could be a precondition that makes pornography consumption more rewarding.

  12. Functional Geometry Alignment and Localization of Brain Areas.

    PubMed

    Langs, Georg; Golland, Polina; Tie, Yanmei; Rigolo, Laura; Golby, Alexandra J

    2010-01-01

    Matching functional brain regions across individuals is a challenging task, largely due to the variability in their location and extent. It is particularly difficult, but highly relevant, for patients with pathologies such as brain tumors, which can cause substantial reorganization of functional systems. In such cases spatial registration based on anatomical data is only of limited value if the goal is to establish correspondences of functional areas among different individuals, or to localize potentially displaced active regions. Rather than rely on spatial alignment, we propose to perform registration in an alternative space whose geometry is governed by the functional interaction patterns in the brain. We first embed each brain into a functional map that reflects connectivity patterns during a fMRI experiment. The resulting functional maps are then registered, and the obtained correspondences are propagated back to the two brains. In application to a language fMRI experiment, our preliminary results suggest that the proposed method yields improved functional correspondences across subjects. This advantage is pronounced for subjects with tumors that affect the language areas and thus cause spatial reorganization of the functional regions.

  13. Editing the Neuronal Genome: a CRISPR View of Chromatin Regulation in Neuronal Development, Function, and Plasticity.

    PubMed

    Yang, Marty G; West, Anne E

    2016-12-01

    The dynamic orchestration of gene expression is crucial for the proper differentiation, function, and adaptation of cells. In the brain, transcriptional regulation underlies the incredible diversity of neuronal cell types and contributes to the ability of neurons to adapt their function to the environment. Recently, novel methods for genome and epigenome editing have begun to revolutionize our understanding of gene regulatory mechanisms. In particular, the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system has proven to be a particularly accessible and adaptable technique for genome engineering. Here, we review the use of CRISPR/Cas9 in neurobiology and discuss how these studies have advanced understanding of nervous system development and plasticity. We cover four especially salient applications of CRISPR/Cas9: testing the consequences of enhancer mutations, tagging genes and gene products for visualization in live cells, directly activating or repressing enhancers in vivo , and manipulating the epigenome. In each case, we summarize findings from recent studies and discuss evolving adaptations of the method.

  14. Structural and synaptic plasticity in stress-related disorders

    PubMed Central

    Christoffel, Daniel J.; Golden, Sam A.; Russo, Scott J.

    2011-01-01

    Stress can have a lasting impact on the structure and function of brain circuitry that results in long-lasting changes in the behavior of an organism. Synaptic plasticity is the mechanism by which information is stored and maintained within individual synapses, neurons, and neuronal circuits to guide the behavior of an organism. Although these mechanisms allow the organism to adapt to its constantly evolving environment, not all of these adaptations are beneficial. Under prolonged bouts of physical or psychological stress, these mechanisms become dysregulated, and the connectivity between brain regions becomes unbalanced, resulting in pathological behaviors. In this review, we highlight the effects of stress on the structure and function of neurons within the mesocorticolimbic brain systems known to regulate mood and motivation. We then discuss the implications of these spine adaptations on neuronal activity and pathological behaviors implicated in mood disorders. Finally, we end by discussing recent brain imaging studies in human depression within the context of these basic findings to provide insight into the underlying mechanisms leading to neural dysfunction in depression. PMID:21967517

  15. Extracellular matrix control of dendritic spine and synapse structure and plasticity in adulthood

    PubMed Central

    Levy, Aaron D.; Omar, Mitchell H.; Koleske, Anthony J.

    2014-01-01

    Dendritic spines are the receptive contacts at most excitatory synapses in the central nervous system. Spines are dynamic in the developing brain, changing shape as they mature as well as appearing and disappearing as they make and break connections. Spines become much more stable in adulthood, and spine structure must be actively maintained to support established circuit function. At the same time, adult spines must retain some plasticity so their structure can be modified by activity and experience. As such, the regulation of spine stability and remodeling in the adult animal is critical for normal function, and disruption of these processes is associated with a variety of late onset diseases including schizophrenia and Alzheimer’s disease. The extracellular matrix (ECM), composed of a meshwork of proteins and proteoglycans, is a critical regulator of spine and synapse stability and plasticity. While the role of ECM receptors in spine regulation has been extensively studied, considerably less research has focused directly on the role of specific ECM ligands. Here, we review the evidence for a role of several brain ECM ligands and remodeling proteases in the regulation of dendritic spine and synapse formation, plasticity, and stability in adults. PMID:25368556

  16. In vitro functional screening as a means to identify new plasticizers devoid of reproductive toxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boisvert, Annie; Jones, Steven; Issop, Leeyah

    Plasticizers are indispensable additives providing flexibility and malleability to plastics. Among them, several phthalates, including di (2-ethylhexyl) phthalate (DEHP), have emerged as endocrine disruptors, leading to their restriction in consumer products and creating a need for new, safer plasticizers. The goal of this project was to use in vitro functional screening tools to select novel non-toxic plasticizers suitable for further in vivo evaluation. A panel of novel compounds with satisfactory plasticizer properties and biodegradability were tested, along with several commercial plasticizers, such as diisononyl-cyclohexane-1,2-dicarboxylate (DINCH®). MEHP, the monoester metabolite of DEHP was also included as reference compound. Because phthalates targetmore » mainly testicular function, including androgen production and spermatogenesis, we used the mouse MA-10 Leydig and C18-4 spermatogonial cell lines as surrogates to examine cell survival, proliferation, steroidogenesis and mitochondrial integrity. The most promising compounds were further assessed on organ cultures of rat fetal and neonatal testes, corresponding to sensitive developmental windows. Dose-response studies revealed the toxicity of most maleates and fumarates, while identifying several dibenzoate and succinate plasticizers as innocuous on Leydig and germ cells. Interestingly, DINCH®, a plasticizer marketed as a safe alternative to phthalates, exerted a biphasic effect on steroid production in MA-10 and fetal Leydig cells. MEHP was the only plasticizer inducing the formation of multinucleated germ cells (MNG) in organ culture. Overall, organ cultures corroborated the cell line data, identifying one dibenzoate and one succinate as the most promising candidates. The adoption of such collaborative approaches for developing new chemicals should help prevent the development of compounds potentially harmful to human health. - Highlights: • Phthalate plasticizers exert toxic effects on male

  17. Activity-Dependent NPAS4 Expression and the Regulation of Gene Programs Underlying Plasticity in the Central Nervous System

    PubMed Central

    2013-01-01

    The capability of the brain to change functionally in response to sensory experience is most active during early stages of development but it decreases later in life when major alterations of neuronal network structures no longer take place in response to experience. This view has been recently challenged by experimental strategies based on the enhancement of environmental stimulation levels, genetic manipulations, and pharmacological treatments, which all have demonstrated that the adult brain retains a degree of plasticity that allows for a rewiring of neuronal circuitries over the entire life course. A hot spot in the field of neuronal plasticity centres on gene programs that underlie plastic phenomena in adulthood. Here, I discuss the role of the recently discovered neuronal-specific and activity-dependent transcription factor NPAS4 as a critical mediator of plasticity in the nervous system. A better understanding of how modifications in the connectivity of neuronal networks occur may shed light on the treatment of pathological conditions such as brain damage or disease in adult life, some of which were once considered untreatable. PMID:24024041

  18. Dance and the brain: a review.

    PubMed

    Karpati, Falisha J; Giacosa, Chiara; Foster, Nicholas E V; Penhune, Virginia B; Hyde, Krista L

    2015-03-01

    Dance is a universal form of human expression that offers a rich source for scientific study. Dance provides a unique opportunity to investigate brain plasticity and its interaction with behavior. Several studies have investigated the behavioral correlates of dance, but less is known about the brain basis of dance. Studies on dance observation suggest that long- and short-term dance training affect brain activity in the action observation and simulation networks. Despite methodological challenges, the feasibility of conducting neuroimaging while dancing has been demonstrated, and several brain regions have been implicated in dance execution. Preliminary work from our laboratory suggests that long-term dance training changes both gray and white matter structure. This article provides a critical summary of work investigating the neural correlates of dance. It covers functional neuroimaging studies of dance observation and performance as well as structural neuroimaging studies of expert dancers. To stimulate ongoing dialogue between dance and science, future directions in dance and brain research as well as implications are discussed. Research on the neuroscience of dance will lead to a better understanding of brain-behavior relationships and brain plasticity in experts and nonexperts and can be applied to the development of dance-based therapy programs. © 2014 New York Academy of Sciences.

  19. Functional network organization of the human brain

    PubMed Central

    Power, Jonathan D; Cohen, Alexander L; Nelson, Steven M; Wig, Gagan S; Barnes, Kelly Anne; Church, Jessica A; Vogel, Alecia C; Laumann, Timothy O; Miezin, Fran M; Schlaggar, Bradley L; Petersen, Steven E

    2011-01-01

    Summary Real-world complex systems may be mathematically modeled as graphs, revealing properties of the system. Here we study graphs of functional brain organization in healthy adults using resting state functional connectivity MRI. We propose two novel brain-wide graphs, one of 264 putative functional areas, the other a modification of voxelwise networks that eliminates potentially artificial short-distance relationships. These graphs contain many subgraphs in good agreement with known functional brain systems. Other subgraphs lack established functional identities; we suggest possible functional characteristics for these subgraphs. Further, graph measures of the areal network indicate that the default mode subgraph shares network properties with sensory and motor subgraphs: it is internally integrated but isolated from other subgraphs, much like a “processing” system. The modified voxelwise graph also reveals spatial motifs in the patterning of systems across the cortex. PMID:22099467

  20. Detecting Brain State Changes via Fiber-Centered Functional Connectivity Analysis

    PubMed Central

    Li, Xiang; Lim, Chulwoo; Li, Kaiming; Guo, Lei; Liu, Tianming

    2013-01-01

    Diffusion tensor imaging (DTI) and functional magnetic resonance imaging (fMRI) have been widely used to study structural and functional brain connectivity in recent years. A common assumption used in many previous functional brain connectivity studies is the temporal stationarity. However, accumulating literature evidence has suggested that functional brain connectivity is under temporal dynamic changes in different time scales. In this paper, a novel and intuitive approach is proposed to model and detect dynamic changes of functional brain states based on multimodal fMRI/DTI data. The basic idea is that functional connectivity patterns of all fiber-connected cortical voxels are concatenated into a descriptive functional feature vector to represent the brain’s state, and the temporal change points of brain states are decided by detecting the abrupt changes of the functional vector patterns via the sliding window approach. Our extensive experimental results have shown that meaningful brain state change points can be detected in task-based fMRI/DTI, resting state fMRI/DTI, and natural stimulus fMRI/DTI data sets. Particularly, the detected change points of functional brain states in task-based fMRI corresponded well to the external stimulus paradigm administered to the participating subjects, thus partially validating the proposed brain state change detection approach. The work in this paper provides novel perspective on the dynamic behaviors of functional brain connectivity and offers a starting point for future elucidation of the complex patterns of functional brain interactions and dynamics. PMID:22941508

  1. Spinal Plasticity and Behavior: BDNF-Induced Neuromodulation in Uninjured and Injured Spinal Cord

    PubMed Central

    Huie, J. Russell

    2016-01-01

    Brain-derived neurotrophic factor (BDNF) is a member of the neurotrophic factor family of signaling molecules. Since its discovery over three decades ago, BDNF has been identified as an important regulator of neuronal development, synaptic transmission, and cellular and synaptic plasticity and has been shown to function in the formation and maintenance of certain forms of memory. Neural plasticity that underlies learning and memory in the hippocampus shares distinct characteristics with spinal cord nociceptive plasticity. Research examining the role BDNF plays in spinal nociception and pain overwhelmingly suggests that BDNF promotes pronociceptive effects. BDNF induces synaptic facilitation and engages central sensitization-like mechanisms. Also, peripheral injury-induced neuropathic pain is often accompanied with increased spinal expression of BDNF. Research has extended to examine how spinal cord injury (SCI) influences BDNF plasticity and the effects BDNF has on sensory and motor functions after SCI. Functional recovery and adaptive plasticity after SCI are typically associated with upregulation of BDNF. Although neuropathic pain is a common consequence of SCI, the relation between BDNF and pain after SCI remains elusive. This article reviews recent literature and discusses the diverse actions of BDNF. We also highlight similarities and differences in BDNF-induced nociceptive plasticity in naïve and SCI conditions. PMID:27721996

  2. Cognitive training and plasticity: Theoretical perspective and methodological consequences

    PubMed Central

    Willis, Sherry L.; Schaie, K. Warner

    2013-01-01

    Purpose To provide an overview of cognitive plasticity concepts and findings from a lifespan developmental perspective. Methods After an evaluation of the general concept of cognitive plasticity, the most important approaches to study behavioral and brain plasticity are reviewed. This includes intervention studies, experimental approaches, cognitive trainings, the study of facilitating factors for strategy learning and strategy use, practice, and person-environment interactions. Transfer and durability of training-induced plasticity is discussed. Results The review indicates that methodological and conceptual advances are needed to improve the match between levels of behavioral and brain plasticity targeted in current developmental research and study designs. Conclusions The results suggest that the emphasis of plasticity studies on treatment effectiveness needs to be complemented by a strong commitment to the grounding of the intervention in a conceptual framework. PMID:19847065

  3. Large-Scale Network Analysis of Whole-Brain Resting-State Functional Connectivity in Spinal Cord Injury: A Comparative Study.

    PubMed

    Kaushal, Mayank; Oni-Orisan, Akinwunmi; Chen, Gang; Li, Wenjun; Leschke, Jack; Ward, Doug; Kalinosky, Benjamin; Budde, Matthew; Schmit, Brian; Li, Shi-Jiang; Muqeet, Vaishnavi; Kurpad, Shekar

    2017-09-01

    Network analysis based on graph theory depicts the brain as a complex network that allows inspection of overall brain connectivity pattern and calculation of quantifiable network metrics. To date, large-scale network analysis has not been applied to resting-state functional networks in complete spinal cord injury (SCI) patients. To characterize modular reorganization of whole brain into constituent nodes and compare network metrics between SCI and control subjects, fifteen subjects with chronic complete cervical SCI and 15 neurologically intact controls were scanned. The data were preprocessed followed by parcellation of the brain into 116 regions of interest (ROI). Correlation analysis was performed between every ROI pair to construct connectivity matrices and ROIs were categorized into distinct modules. Subsequently, local efficiency (LE) and global efficiency (GE) network metrics were calculated at incremental cost thresholds. The application of a modularity algorithm organized the whole-brain resting-state functional network of the SCI and the control subjects into nine and seven modules, respectively. The individual modules differed across groups in terms of the number and the composition of constituent nodes. LE demonstrated statistically significant decrease at multiple cost levels in SCI subjects. GE did not differ significantly between the two groups. The demonstration of modular architecture in both groups highlights the applicability of large-scale network analysis in studying complex brain networks. Comparing modules across groups revealed differences in number and membership of constituent nodes, indicating modular reorganization due to neural plasticity.

  4. Electroencephalographic imaging of higher brain function

    NASA Technical Reports Server (NTRS)

    Gevins, A.; Smith, M. E.; McEvoy, L. K.; Leong, H.; Le, J.

    1999-01-01

    High temporal resolution is necessary to resolve the rapidly changing patterns of brain activity that underlie mental function. Electroencephalography (EEG) provides temporal resolution in the millisecond range. However, traditional EEG technology and practice provide insufficient spatial detail to identify relationships between brain electrical events and structures and functions visualized by magnetic resonance imaging or positron emission tomography. Recent advances help to overcome this problem by recording EEGs from more electrodes, by registering EEG data with anatomical images, and by correcting the distortion caused by volume conduction of EEG signals through the skull and scalp. In addition, statistical measurements of sub-second interdependences between EEG time-series recorded from different locations can help to generate hypotheses about the instantaneous functional networks that form between different cortical regions during perception, thought and action. Example applications are presented from studies of language, attention and working memory. Along with its unique ability to monitor brain function as people perform everyday activities in the real world, these advances make modern EEG an invaluable complement to other functional neuroimaging modalities.

  5. Differential patterns of functional and structural plasticity within and between inferior frontal gyri support training-induced improvements in inhibitory control proficiency.

    PubMed

    Chavan, Camille F; Mouthon, Michael; Draganski, Bogdan; van der Zwaag, Wietske; Spierer, Lucas

    2015-07-01

    Ample evidence indicates that inhibitory control (IC), a key executive component referring to the ability to suppress cognitive or motor processes, relies on a right-lateralized fronto-basal brain network. However, whether and how IC can be improved with training and the underlying neuroplastic mechanisms remains largely unresolved. We used functional and structural magnetic resonance imaging to measure the effects of 2 weeks of training with a Go/NoGo task specifically designed to improve frontal top-down IC mechanisms. The training-induced behavioral improvements were accompanied by a decrease in neural activity to inhibition trials within the right pars opercularis and triangularis, and in the left pars orbitalis of the inferior frontal gyri. Analyses of changes in brain anatomy induced by the IC training revealed increases in grey matter volume in the right pars orbitalis and modulations of white matter microstructure in the right pars triangularis. The task-specificity of the effects of training was confirmed by an absence of change in neural activity to a control working memory task. Our combined anatomical and functional findings indicate that differential patterns of functional and structural plasticity between and within inferior frontal gyri enhanced the speed of top-down inhibition processes and in turn IC proficiency. The results suggest that training-based interventions might help overcoming the anatomic and functional deficits of inferior frontal gyri manifesting in inhibition-related clinical conditions. More generally, we demonstrate how multimodal neuroimaging investigations of training-induced neuroplasticity enable revealing novel anatomo-functional dissociations within frontal executive brain networks. © 2015 Wiley Periodicals, Inc.

  6. Ben's Plastic Brain

    ERIC Educational Resources Information Center

    Kaplan, Susan L.

    2010-01-01

    This article shares a story of Ben who as a result of his premature birth, suffered a brain hemorrhage resulting in cerebral palsy, which affected his left side (left hemiparesis) and caused learning disabilities. Despite these challenges, he graduated from college and currently works doing information management for a local biotech start-up…

  7. Functional brain networks for learning predictive statistics.

    PubMed

    Giorgio, Joseph; Karlaftis, Vasilis M; Wang, Rui; Shen, Yuan; Tino, Peter; Welchman, Andrew; Kourtzi, Zoe

    2017-08-18

    Making predictions about future events relies on interpreting streams of information that may initially appear incomprehensible. This skill relies on extracting regular patterns in space and time by mere exposure to the environment (i.e., without explicit feedback). Yet, we know little about the functional brain networks that mediate this type of statistical learning. Here, we test whether changes in the processing and connectivity of functional brain networks due to training relate to our ability to learn temporal regularities. By combining behavioral training and functional brain connectivity analysis, we demonstrate that individuals adapt to the environment's statistics as they change over time from simple repetition to probabilistic combinations. Further, we show that individual learning of temporal structures relates to decision strategy. Our fMRI results demonstrate that learning-dependent changes in fMRI activation within and functional connectivity between brain networks relate to individual variability in strategy. In particular, extracting the exact sequence statistics (i.e., matching) relates to changes in brain networks known to be involved in memory and stimulus-response associations, while selecting the most probable outcomes in a given context (i.e., maximizing) relates to changes in frontal and striatal networks. Thus, our findings provide evidence that dissociable brain networks mediate individual ability in learning behaviorally-relevant statistics. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Violent Video Games Alter Brain Function in Young Men

    MedlinePlus

    ... the RSNA Annual Meeting Violent Video Games Alter Brain Function in Young Men At A Glance Using ... video games for one week causes changes in brain function. The brain regions affected by violent video ...

  9. Let thy left brain know what thy right brain doeth: Inter-hemispheric compensation of functional deficits after brain damage.

    PubMed

    Bartolomeo, Paolo; Thiebaut de Schotten, Michel

    2016-12-01

    Recent evidence revealed the importance of inter-hemispheric communication for the compensation of functional deficits after brain damage. This review summarises the biological consequences observed using histology as well as the longitudinal findings measured with magnetic resonance imaging methods in brain damaged animals and patients. In particular, we discuss the impact of post-stroke brain hyperactivity on functional recovery in relation to time. The reviewed evidence also suggests that the proportion of the preserved functional network both in the lesioned and in the intact hemispheres, rather than the simple lesion location, determines the extent of functional recovery. Hence, future research exploring longitudinal changes in patients with brain damage may unveil potential biomarkers underlying functional recovery. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. mTOR Signaling: At the Crossroads of Plasticity, Memory, and Disease

    PubMed Central

    Hoeffer, Charles A.; Klann, Eric

    2009-01-01

    Mammalian target of rapamycin (mTOR) is a protein kinase involved in translation control and long-lasting synaptic plasticity. mTOR functions as the central component of two multi-protein signaling complexes, mTORC1 and mTORC2, which can be distinguished from each other based on their unique compositions and substrates. Although majority of evidence linking mTOR function to synaptic plasticity comes from studies utilizing rapamycin, studies in genetically-modified mice also suggest that mTOR couples receptors to the translation machinery for establishing long-lasting synaptic changes that are the basis for higher order brain function, including long-term memory. Finally, perturbation of the mTOR signaling cascade appears to be a common pathophysiological feature of human neurological disorders, including mental retardation syndromes and autism spectrum disorders. PMID:19963289

  11. Diffeomorphic functional brain surface alignment: Functional demons.

    PubMed

    Nenning, Karl-Heinz; Liu, Hesheng; Ghosh, Satrajit S; Sabuncu, Mert R; Schwartz, Ernst; Langs, Georg

    2017-08-01

    Aligning brain structures across individuals is a central prerequisite for comparative neuroimaging studies. Typically, registration approaches assume a strong association between the features used for alignment, such as macro-anatomy, and the variable observed, such as functional activation or connectivity. Here, we propose to use the structure of intrinsic resting state fMRI signal correlation patterns as a basis for alignment of the cortex in functional studies. Rather than assuming the spatial correspondence of functional structures between subjects, we have identified locations with similar connectivity profiles across subjects. We mapped functional connectivity relationships within the brain into an embedding space, and aligned the resulting maps of multiple subjects. We then performed a diffeomorphic alignment of the cortical surfaces, driven by the corresponding features in the joint embedding space. Results show that functional alignment based on resting state fMRI identifies functionally homologous regions across individuals with higher accuracy than alignment based on the spatial correspondence of anatomy. Further, functional alignment enables measurement of the strength of the anatomo-functional link across the cortex, and reveals the uneven distribution of this link. Stronger anatomo-functional dissociation was found in higher association areas compared to primary sensory- and motor areas. Functional alignment based on resting state features improves group analysis of task based functional MRI data, increasing statistical power and improving the delineation of task-specific core regions. Finally, a comparison of the anatomo-functional dissociation between cohorts is demonstrated with a group of left and right handed subjects. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Brain mitochondrial bioenergetics change with rapid and prolonged shifts in aggression in the honey bee, Apis mellifera.

    PubMed

    Rittschof, Clare C; Vekaria, Hemendra J; Palmer, Joseph H; Sullivan, Patrick G

    2018-04-25

    Neuronal function demands high-level energy production, and as such, a decline in mitochondrial respiration characterizes brain injury and disease. A growing number of studies, however, link brain mitochondrial function to behavioral modulation in non-diseased contexts. In the honey bee, we show for the first time that an acute social interaction, which invokes an aggressive response, may also cause a rapid decline in brain mitochondrial bioenergetics. The degree and speed of this decline has only been previously observed in the context of brain injury. Furthermore, in the honey bee, age-related increases in aggressive tendency are associated with increased baseline brain mitochondrial respiration, as well as increased plasticity in response to metabolic fuel type in vitro Similarly, diet restriction and ketone body feeding, which commonly enhance mammalian brain mitochondrial function in vivo , cause increased aggression. Thus, even in normal behavioral contexts, brain mitochondria show a surprising degree of variation in function over both rapid and prolonged time scales, with age predicting both baseline function and plasticity in function. These results suggest that mitochondrial function is integral to modulating aggression-related neuronal signaling. We hypothesize that variation in function reflects mitochondrial calcium buffering activity, and that shifts in mitochondrial function signal to the neuronal soma to regulate gene expression and neural energetic state. Modulating brain energetic state is emerging as a critical component of the regulation of behavior in non-diseased contexts. © 2018. Published by The Company of Biologists Ltd.

  13. Development of the brain's functional network architecture.

    PubMed

    Vogel, Alecia C; Power, Jonathan D; Petersen, Steven E; Schlaggar, Bradley L

    2010-12-01

    A full understanding of the development of the brain's functional network architecture requires not only an understanding of developmental changes in neural processing in individual brain regions but also an understanding of changes in inter-regional interactions. Resting state functional connectivity MRI (rs-fcMRI) is increasingly being used to study functional interactions between brain regions in both adults and children. We briefly review methods used to study functional interactions and networks with rs-fcMRI and how these methods have been used to define developmental changes in network functional connectivity. The developmental rs-fcMRI studies to date have found two general properties. First, regional interactions change from being predominately anatomically local in children to interactions spanning longer cortical distances in young adults. Second, this developmental change in functional connectivity occurs, in general, via mechanisms of segregation of local regions and integration of distant regions into disparate subnetworks.

  14. Development of the Brain's Functional Network Architecture

    PubMed Central

    Power, Jonathan D.; Petersen, Steven E.; Schlaggar, Bradley L.

    2013-01-01

    A full understanding of the development of the brain's functional network architecture requires not only an understanding of developmental changes in neural processing in individual brain regions but also an understanding of changes in inter-regional interactions. Resting state functional connectivity MRI (rs-fcMRI) is increasingly being used to study functional interactions between brain regions in both adults and children. We briefly review methods used to study functional interactions and networks with rs-fcMRI and how these methods have been used to define developmental changes in network functional connectivity. The developmental rs-fcMRI studies to date have found two general properties. First, regional interactions change from being predominately anatomically local in children to interactions spanning longer cortical distances in young adults. Second, this developmental change in functional connectivity occurs, in general, via mechanisms of segregation of local regions and integration of distant regions into disparate subnetworks. PMID:20976563

  15. Functional trait values, not trait plasticity, drive the invasiveness of Rosa sp. in response to light availability.

    PubMed

    Murphy, Jennifer E; Burns, Jean H; Fougère-Danezan, Marie; Drenovsky, Rebecca E

    2016-12-01

    Functional trait plasticity in resource capture traits has been suggested as an underlying mechanism promoting invasive species establishment and spread. Earlier studies on this mechanism treat invasiveness as a discrete characteristic (i.e., invasive vs. noninvasive) and do not consider the potential impacts of evolutionary history. In the present study, we used a continuous measure of invasiveness and a phylogenetic framework to quantify the relationship between functional trait expression, plasticity, and invasiveness in Rosa. In a manipulative greenhouse experiment, we evaluated how light availability affects functional traits and their plasticity in Rosa sp. and the out-group species, Potentilla recta, which vary in their invasiveness. Across functional traits, we found no significant relationship between plasticity and invasiveness. However, more invasive roses demonstrated an ability to produce a more branched plant architecture, promoting optimal light capture. Invasiveness also was linked with lower photosynthetic and stomatal conductance rates, leading to increased water-use efficiency (WUE) in more invasive roses. Our results suggest that functional trait values, rather than plasticity, promote invasive rose success, counter to earlier predictions about the role of plasticity in invasiveness. Furthermore, our study indicates that invasive roses demonstrate key functional traits, such as increased WUE, to promote their success in the high-light, edge habitats they commonly invade. © 2016 Botanical Society of America.

  16. Acute and Chronic Effects of Ethanol on Learning-Related Synaptic Plasticity

    PubMed Central

    Zorumski, Charles F.; Mennerick, Steven; Izumi, Yukitoshi

    2014-01-01

    Alcoholism is associated with acute and long-term cognitive dysfunction including memory impairment, resulting in substantial disability and cost to society. Thus, understanding how ethanol impairs cognition is essential for developing treatment strategies to dampen its adverse impact. Memory processing is thought to involve persistent, use-dependent changes in synaptic transmission, and ethanol alters the activity of multiple signaling molecules involved in synaptic processing, including modulation of the glutamate and gamma-aminobutyric acid (GABA) transmitter systems that mediate most fast excitatory and inhibitory transmission in the brain. Effects on glutamate and GABA receptors contribute to ethanol-induced changes in long-term potentiation (LTP) and long-term depression (LTD), forms of synaptic plasticity thought to underlie memory acquisition. In this paper, we review the effects of ethanol on learning-related forms of synaptic plasticity with emphasis on changes observed in the hippocampus, a brain region that is critical for encoding contextual and episodic memories. We also include studies in other brain regions as they pertain to altered cognitive and mental function. Comparison of effects in the hippocampus to other brain regions is instructive for understanding the complexities of ethanol’s acute and long-term pharmacological consequences. PMID:24447472

  17. Aging and brain rejuvenation as systemic events

    PubMed Central

    Bouchard, Jill; Villeda, Saul A

    2015-01-01

    The effects of aging were traditionally thought to be immutable, particularly evident in the loss of plasticity and cognitive abilities occurring in the aged central nervous system (CNS). However, it is becoming increasingly apparent that extrinsic systemic manipulations such as exercise, caloric restriction, and changing blood composition by heterochronic parabiosis or young plasma administration can partially counteract this age-related loss of plasticity in the aged brain. In this review, we discuss the process of aging and rejuvenation as systemic events. We summarize genetic studies that demonstrate a surprising level of malleability in organismal lifespan, and highlight the potential for systemic manipulations to functionally reverse the effects of aging in the CNS. Based on mounting evidence, we propose that rejuvenating effects of systemic manipulations are mediated, in part, by blood-borne ‘pro-youthful’ factors. Thus, systemic manipulations promoting a younger blood composition provide effective strategies to rejuvenate the aged brain. As a consequence, we can now consider reactivating latent plasticity dormant in the aged CNS as a means to rejuvenate regenerative, synaptic, and cognitive functions late in life, with potential implications even for extending lifespan. PMID:25327899

  18. IMAGING OF BRAIN FUNCTION BASED ON THE ANALYSIS OF FUNCTIONAL CONNECTIVITY - IMAGING ANALYSIS OF BRAIN FUNCTION BY FMRI AFTER ACUPUNCTURE AT LR3 IN HEALTHY INDIVIDUALS.

    PubMed

    Zheng, Yu; Wang, Yuying; Lan, Yujun; Qu, Xiaodong; Lin, Kelin; Zhang, Jiping; Qu, Shanshan; Wang, Yanjie; Tang, Chunzhi; Huang, Yong

    2016-01-01

    This Study observed the relevant brain areas activated by acupuncture at the Taichong acupoint (LR3) and analyzed the functional connectivity among brain areas using resting state functional magnetic resonance imaging (fMRI) to explore the acupoint specificity of the Taichong acupoint. A total of 45 healthy subjects were randomly divided into the Taichong (LR3) group, sham acupuncture group and sham acupoint group. Subjects received resting state fMRI before acupuncture, after true (sham) acupuncture in each group. Analysis of changes in connectivity among the brain areas was performed using the brain functional connectivity method. The right cerebrum temporal lobe was selected as the seed point to analyze the functional connectivity. It had a functional connectivity with right cerebrum superior frontal gyrus, limbic lobe cingulate gyrus and left cerebrum inferior temporal gyrus (BA 37), inferior parietal lobule compared by before vs. after acupuncture at LR3, and right cerebrum sub-lobar insula and left cerebrum middle frontal gyrus, medial frontal gyrus compared by true vs. sham acupuncture at LR3, and right cerebrum occipital lobe cuneus, occipital lobe sub-gyral, parietal lobe precuneus and left cerebellum anterior lobe culmen by acupuncture at LR3 vs. sham acupoint. Acupuncture at LR3 mainly specifically activated the brain functional network that participates in visual function, associative function, and emotion cognition, which are similar to the features on LR3 in tradition Chinese medicine. These brain areas constituted a neural network structure with specific functions that had specific reference values for the interpretation of the acupoint specificity of the Taichong acupoint.

  19. Hierarchical organization of brain functional networks during visual tasks.

    PubMed

    Zhuo, Zhao; Cai, Shi-Min; Fu, Zhong-Qian; Zhang, Jie

    2011-09-01

    The functional network of the brain is known to demonstrate modular structure over different hierarchical scales. In this paper, we systematically investigated the hierarchical modular organizations of the brain functional networks that are derived from the extent of phase synchronization among high-resolution EEG time series during a visual task. In particular, we compare the modular structure of the functional network from EEG channels with that of the anatomical parcellation of the brain cortex. Our results show that the modular architectures of brain functional networks correspond well to those from the anatomical structures over different levels of hierarchy. Most importantly, we find that the consistency between the modular structures of the functional network and the anatomical network becomes more pronounced in terms of vision, sensory, vision-temporal, motor cortices during the visual task, which implies that the strong modularity in these areas forms the functional basis for the visual task. The structure-function relationship further reveals that the phase synchronization of EEG time series in the same anatomical group is much stronger than that of EEG time series from different anatomical groups during the task and that the hierarchical organization of functional brain network may be a consequence of functional segmentation of the brain cortex.

  20. Age-related functional brain changes in young children.

    PubMed

    Long, Xiangyu; Benischek, Alina; Dewey, Deborah; Lebel, Catherine

    2017-07-15

    Brain function and structure change significantly during the toddler and preschool years. However, most studies focus on older or younger children, so the specific nature of these changes is unclear. In the present study, we analyzed 77 functional magnetic resonance imaging datasets from 44 children aged 2-6 years. We extracted measures of both local (amplitude of low frequency fluctuation and regional homogeneity) and global (eigenvector centrality mapping) activity and connectivity, and examined their relationships with age using robust linear correlation analysis and strict control for head motion. Brain areas within the default mode network and the frontoparietal network, such as the middle frontal gyrus, the inferior parietal lobule and the posterior cingulate cortex, showed increases in local and global functional features with age. Several brain areas such as the superior parietal lobule and superior temporal gyrus presented opposite development trajectories of local and global functional features, suggesting a shifting connectivity framework in early childhood. This development of functional connectivity in early childhood likely underlies major advances in cognitive abilities, including language and development of theory of mind. These findings provide important insight into the development patterns of brain function during the preschool years, and lay the foundation for future studies of altered brain development in young children with brain disorders or injury. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Recovery-related indicators of motor network plasticity according to impairment severity after stroke.

    PubMed

    Lee, J; Park, E; Lee, A; Chang, W H; Kim, D-S; Kim, Y-H

    2017-10-01

    Brain connectivity analysis has been widely used to investigate brain plasticity and recovery-related indicators of patients with stroke. However, results remain controversial because of interindividual variability of initial impairment and subsequent recovery of function. In this study, we aimed to investigate the differences in network plasticity and motor recovery-related indicators according to initial severity. We divided participants (16 males and 14 females, aged 54.2 ± 12.0 years) into groups of different severity by Fugl-Mayer Assessment score, i.e. moderate (50-84), severe (20-49) and extremely severe (<20) impairment groups. Longitudinal resting-state functional magnetic resonance imaging data were acquired at 2 weeks and 3 months after onset. The differences in network plasticity and recovery-related indicators between groups were investigated using network distance and graph measurements. As the level of impairment increased, the network balance was more disrupted. Network balance, interhemispheric connectivity and network efficiency were recovered at 3 months only in the moderate impairment group. However, this was not the case in the extremely severe impairment group. A single connection strength between the ipsilesional primary motor cortex and ventral premotor cortex was implicated in the recovery of motor function for the extremely severe impairment group. The connections of the ipsilesional primary motor cortex-ventral premotor cortex were positively associated with motor recovery as the patients were more severely impaired. Differences in plasticity and recovery-related indicators of motor networks were noted according to impairment severity. Our results may suggest meaningful implications for recovery prediction and treatment strategies in future stroke research. © 2017 EAN.

  2. Determination of Vascular Dementia Brain in Distinct Frequency Bands with Whole Brain Functional Connectivity Patterns

    PubMed Central

    Zhang, Delong; Liu, Bo; Chen, Jun; Peng, Xiaoling; Liu, Xian; Fan, Yuanyuan; Liu, Ming; Huang, Ruiwang

    2013-01-01

    Recent studies have shown that multivariate pattern analysis (MVPA) can be useful for distinguishing brain disorders into categories. Such analyses can substantially enrich and facilitate clinical diagnoses. Using MPVA methods, whole brain functional networks, especially those derived using different frequency windows, can be applied to detect brain states. We constructed whole brain functional networks for groups of vascular dementia (VaD) patients and controls using resting state BOLD-fMRI (rsfMRI) data from three frequency bands - slow-5 (0.01∼0.027 Hz), slow-4 (0.027∼0.073 Hz), and whole-band (0.01∼0.073 Hz). Then we used the support vector machine (SVM), a type of MVPA classifier, to determine the patterns of functional connectivity. Our results showed that the brain functional networks derived from rsfMRI data (19 VaD patients and 20 controls) in these three frequency bands appear to reflect neurobiological changes in VaD patients. Such differences could be used to differentiate the brain states of VaD patients from those of healthy individuals. We also found that the functional connectivity patterns of the human brain in the three frequency bands differed, as did their ability to differentiate brain states. Specifically, the ability of the functional connectivity pattern to differentiate VaD brains from healthy ones was more efficient in the slow-5 (0.01∼0.027 Hz) band than in the other two frequency bands. Our findings suggest that the MVPA approach could be used to detect abnormalities in the functional connectivity of VaD patients in distinct frequency bands. Identifying such abnormalities may contribute to our understanding of the pathogenesis of VaD. PMID:23359801

  3. Neuronal plasticity and thalamocortical sleep and waking oscillations

    PubMed Central

    Timofeev, Igor

    2011-01-01

    Throughout life, thalamocortical (TC) network alternates between activated states (wake or rapid eye movement sleep) and slow oscillatory state dominating slow-wave sleep. The patterns of neuronal firing are different during these distinct states. I propose that due to relatively regular firing, the activated states preset some steady state synaptic plasticity and that the silent periods of slow-wave sleep contribute to a release from this steady state synaptic plasticity. In this respect, I discuss how states of vigilance affect short-, mid-, and long-term synaptic plasticity, intrinsic neuronal plasticity, as well as homeostatic plasticity. Finally, I suggest that slow oscillation is intrinsic property of cortical network and brain homeostatic mechanisms are tuned to use all forms of plasticity to bring cortical network to the state of slow oscillation. However, prolonged and profound shift from this homeostatic balance could lead to development of paroxysmal hyperexcitability and seizures as in the case of brain trauma. PMID:21854960

  4. Exercise, Energy Intake, Glucose Homeostasis, and the Brain

    PubMed Central

    van Praag, Henriette; Fleshner, Monika; Schwartz, Michael W.

    2014-01-01

    Here we summarize topics covered in an SFN symposium that considered how and why exercise and energy intake affect neuroplasticity and, conversely, how the brain regulates peripheral energy metabolism. This article is not a comprehensive review of the subject, but rather a view of how the authors' findings fit into a broader context. Emerging findings elucidate cellular and molecular mechanisms by which exercise and energy intake modify the plasticity of neural circuits in ways that affect brain health. By enhancing neurogenesis, synaptic plasticity and neuronal stress robustness, exercise and intermittent energy restriction/fasting may optimize brain function and forestall metabolic and neurodegenerative diseases. Moreover, brain-centered glucoregulatory and immunomodulating systems that mediate peripheral health benefits of intermittent energetic challenges have recently been described. A better understanding of adaptive neural response pathways activated by energetic challenges will enable the development and optimization of interventions to reduce the burden of disease in our communities. PMID:25392482

  5. Exercise, energy intake, glucose homeostasis, and the brain.

    PubMed

    van Praag, Henriette; Fleshner, Monika; Schwartz, Michael W; Mattson, Mark P

    2014-11-12

    Here we summarize topics covered in an SFN symposium that considered how and why exercise and energy intake affect neuroplasticity and, conversely, how the brain regulates peripheral energy metabolism. This article is not a comprehensive review of the subject, but rather a view of how the authors' findings fit into a broader context. Emerging findings elucidate cellular and molecular mechanisms by which exercise and energy intake modify the plasticity of neural circuits in ways that affect brain health. By enhancing neurogenesis, synaptic plasticity and neuronal stress robustness, exercise and intermittent energy restriction/fasting may optimize brain function and forestall metabolic and neurodegenerative diseases. Moreover, brain-centered glucoregulatory and immunomodulating systems that mediate peripheral health benefits of intermittent energetic challenges have recently been described. A better understanding of adaptive neural response pathways activated by energetic challenges will enable the development and optimization of interventions to reduce the burden of disease in our communities. Copyright © 2014 the authors 0270-6474/14/3415139-11$15.00/0.

  6. Functional brain networks reconstruction using group sparsity-regularized learning.

    PubMed

    Zhao, Qinghua; Li, Will X Y; Jiang, Xi; Lv, Jinglei; Lu, Jianfeng; Liu, Tianming

    2018-06-01

    Investigating functional brain networks and patterns using sparse representation of fMRI data has received significant interests in the neuroimaging community. It has been reported that sparse representation is effective in reconstructing concurrent and interactive functional brain networks. To date, most of data-driven network reconstruction approaches rarely take consideration of anatomical structures, which are the substrate of brain function. Furthermore, it has been rarely explored whether structured sparse representation with anatomical guidance could facilitate functional networks reconstruction. To address this problem, in this paper, we propose to reconstruct brain networks utilizing the structure guided group sparse regression (S2GSR) in which 116 anatomical regions from the AAL template, as prior knowledge, are employed to guide the network reconstruction when performing sparse representation of whole-brain fMRI data. Specifically, we extract fMRI signals from standard space aligned with the AAL template. Then by learning a global over-complete dictionary, with the learned dictionary as a set of features (regressors), the group structured regression employs anatomical structures as group information to regress whole brain signals. Finally, the decomposition coefficients matrix is mapped back to the brain volume to represent functional brain networks and patterns. We use the publicly available Human Connectome Project (HCP) Q1 dataset as the test bed, and the experimental results indicate that the proposed anatomically guided structure sparse representation is effective in reconstructing concurrent functional brain networks.

  7. Developing Brain Vital Signs: Initial Framework for Monitoring Brain Function Changes Over Time

    PubMed Central

    Ghosh Hajra, Sujoy; Liu, Careesa C.; Song, Xiaowei; Fickling, Shaun; Liu, Luke E.; Pawlowski, Gabriela; Jorgensen, Janelle K.; Smith, Aynsley M.; Schnaider-Beeri, Michal; Van Den Broek, Rudi; Rizzotti, Rowena; Fisher, Kirk; D'Arcy, Ryan C. N.

    2016-01-01

    Clinical assessment of brain function relies heavily on indirect behavior-based tests. Unfortunately, behavior-based assessments are subjective and therefore susceptible to several confounding factors. Event-related brain potentials (ERPs), derived from electroencephalography (EEG), are often used to provide objective, physiological measures of brain function. Historically, ERPs have been characterized extensively within research settings, with limited but growing clinical applications. Over the past 20 years, we have developed clinical ERP applications for the evaluation of functional status following serious injury and/or disease. This work has identified an important gap: the need for a clinically accessible framework to evaluate ERP measures. Crucially, this enables baseline measures before brain dysfunction occurs, and might enable the routine collection of brain function metrics in the future much like blood pressure measures today. Here, we propose such a framework for extracting specific ERPs as potential “brain vital signs.” This framework enabled the translation/transformation of complex ERP data into accessible metrics of brain function for wider clinical utilization. To formalize the framework, three essential ERPs were selected as initial indicators: (1) the auditory N100 (Auditory sensation); (2) the auditory oddball P300 (Basic attention); and (3) the auditory speech processing N400 (Cognitive processing). First step validation was conducted on healthy younger and older adults (age range: 22–82 years). Results confirmed specific ERPs at the individual level (86.81–98.96%), verified predictable age-related differences (P300 latency delays in older adults, p < 0.05), and demonstrated successful linear transformation into the proposed brain vital sign (BVS) framework (basic attention latency sub-component of BVS framework reflects delays in older adults, p < 0.05). The findings represent an initial critical step in developing, extracting, and

  8. Multivariate Heteroscedasticity Models for Functional Brain Connectivity.

    PubMed

    Seiler, Christof; Holmes, Susan

    2017-01-01

    Functional brain connectivity is the co-occurrence of brain activity in different areas during resting and while doing tasks. The data of interest are multivariate timeseries measured simultaneously across brain parcels using resting-state fMRI (rfMRI). We analyze functional connectivity using two heteroscedasticity models. Our first model is low-dimensional and scales linearly in the number of brain parcels. Our second model scales quadratically. We apply both models to data from the Human Connectome Project (HCP) comparing connectivity between short and conventional sleepers. We find stronger functional connectivity in short than conventional sleepers in brain areas consistent with previous findings. This might be due to subjects falling asleep in the scanner. Consequently, we recommend the inclusion of average sleep duration as a covariate to remove unwanted variation in rfMRI studies. A power analysis using the HCP data shows that a sample size of 40 detects 50% of the connectivity at a false discovery rate of 20%. We provide implementations using R and the probabilistic programming language Stan.

  9. Neuroplastic Changes Following Brain Ischemia and their Contribution to Stroke Recovery: Novel Approaches in Neurorehabilitation

    PubMed Central

    Alia, Claudia; Spalletti, Cristina; Lai, Stefano; Panarese, Alessandro; Lamola, Giuseppe; Bertolucci, Federica; Vallone, Fabio; Di Garbo, Angelo; Chisari, Carmelo; Micera, Silvestro; Caleo, Matteo

    2017-01-01

    Ischemic damage to the brain triggers substantial reorganization of spared areas and pathways, which is associated with limited, spontaneous restoration of function. A better understanding of this plastic remodeling is crucial to develop more effective strategies for stroke rehabilitation. In this review article, we discuss advances in the comprehension of post-stroke network reorganization in patients and animal models. We first focus on rodent studies that have shed light on the mechanisms underlying neuronal remodeling in the perilesional area and contralesional hemisphere after motor cortex infarcts. Analysis of electrophysiological data has demonstrated brain-wide alterations in functional connectivity in both hemispheres, well beyond the infarcted area. We then illustrate the potential use of non-invasive brain stimulation (NIBS) techniques to boost recovery. We finally discuss rehabilitative protocols based on robotic devices as a tool to promote endogenous plasticity and functional restoration. PMID:28360842

  10. SGLT2-inhibitor and DPP-4 inhibitor improve brain function via attenuating mitochondrial dysfunction, insulin resistance, inflammation, and apoptosis in HFD-induced obese rats.

    PubMed

    Sa-Nguanmoo, Piangkwan; Tanajak, Pongpan; Kerdphoo, Sasiwan; Jaiwongkam, Thidarat; Pratchayasakul, Wasana; Chattipakorn, Nipon; Chattipakorn, Siriporn C

    2017-10-15

    Dipeptidyl peptidase-4 inhibitor (vildagliptin) has been shown to exert beneficial effects on insulin sensitivity and neuroprotection in obese-insulin resistance. Recent studies demonstrated the neuroprotection of the sodium-glucose co-transporter 2 inhibitor (dapagliflozin) in diabetes. However, the comparative effects of both drugs and a combination of two drugs on metabolic dysfunction and brain dysfunction impaired by the obese-insulin resistance have never been investigated. Forty male Wistar rats were divided into two groups, and received either a normal-diet (ND, n=8) or a high-fat diet (HFD, n=32) for 16weeks. At week 13, the HFD-fed rats were divided into four subgroups (n=8/subgroup) to receive either a vehicle, vildagliptin (3mg/kg/day) dapagliflozin (1mg/kg/day) or combined drugs for four weeks. ND rats were given a vehicle for four weeks. Metabolic parameters and brain function were investigated. The results demonstrated that HFD rats developed obese-insulin resistance and cognitive decline. Dapagliflozin had greater efficacy on improved peripheral insulin sensitivity and reduced weight gain than vildagliptin. Single therapy resulted in equally improved brain mitochondrial function, insulin signaling, apoptosis and prevented cognitive decline. However, only dapagliflozin improved hippocampal synaptic plasticity. A combination of the drugs had greater efficacy in improving brain insulin sensitivity and reducing brain oxidative stress than the single drug therapy. These findings suggested that dapagliflozin and vildagliptin equally prevented cognitive decline in the obese-insulin resistance, possibly through some similar mechanisms. Dapagliflozin had greater efficacy than vildagliptin for preserving synaptic plasticity, thus combined drugs could be the best therapeutic approach for neuroprotection in the obese-insulin resistance. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Age-Dependent Modulation of Synaptic Plasticity and Insulin Mimetic Effect of Lipoic Acid on a Mouse Model of Alzheimer’s Disease

    PubMed Central

    Sancheti, Harsh; Akopian, Garnik; Yin, Fei; Brinton, Roberta D.; Walsh, John P.; Cadenas, Enrique

    2013-01-01

    Alzheimer’s disease is a progressive neurodegenerative disease that entails impairments of memory, thinking and behavior and culminates into brain atrophy. Impaired glucose uptake (accumulating into energy deficits) and synaptic plasticity have been shown to be affected in the early stages of Alzheimer’s disease. This study examines the ability of lipoic acid to increase brain glucose uptake and lead to improvements in synaptic plasticity on a triple transgenic mouse model of Alzheimer’s disease (3xTg-AD) that shows progression of pathology as a function of age; two age groups: 6 months (young) and 12 months (old) were used in this study. 3xTg-AD mice fed 0.23% w/v lipoic acid in drinking water for 4 weeks showed an insulin mimetic effect that consisted of increased brain glucose uptake, activation of the insulin receptor substrate and of the PI3K/Akt signaling pathway. Lipoic acid supplementation led to important changes in synaptic function as shown by increased input/output (I/O) and long term potentiation (LTP) (measured by electrophysiology). Lipoic acid was more effective in stimulating an insulin-like effect and reversing the impaired synaptic plasticity in the old mice, wherein the impairment of insulin signaling and synaptic plasticity was more pronounced than those in young mice. PMID:23875003

  12. Efficiency of weak brain connections support general cognitive functioning.

    PubMed

    Santarnecchi, Emiliano; Galli, Giulia; Polizzotto, Nicola Riccardo; Rossi, Alessandro; Rossi, Simone

    2014-09-01

    Brain network topology provides valuable information on healthy and pathological brain functioning. Novel approaches for brain network analysis have shown an association between topological properties and cognitive functioning. Under the assumption that "stronger is better", the exploration of brain properties has generally focused on the connectivity patterns of the most strongly correlated regions, whereas the role of weaker brain connections has remained obscure for years. Here, we assessed whether the different strength of connections between brain regions may explain individual differences in intelligence. We analyzed-functional connectivity at rest in ninety-eight healthy individuals of different age, and correlated several connectivity measures with full scale, verbal, and performance Intelligent Quotients (IQs). Our results showed that the variance in IQ levels was mostly explained by the distributed communication efficiency of brain networks built using moderately weak, long-distance connections, with only a smaller contribution of stronger connections. The variability in individual IQs was associated with the global efficiency of a pool of regions in the prefrontal lobes, hippocampus, temporal pole, and postcentral gyrus. These findings challenge the traditional view of a prominent role of strong functional brain connections in brain topology, and highlight the importance of both strong and weak connections in determining the functional architecture responsible for human intelligence variability. Copyright © 2014 Wiley Periodicals, Inc.

  13. Seasonal plasticity in telencephalon mass of a benthic fish.

    PubMed

    McCallum, E S; Capelle, P M; Balshine, S

    2014-11-01

    To gain a deeper understanding of how environmental conditions affect brain plasticity, brain size was explored across different seasons using the invasive round goby Neogobius melanostomus. The results show that N. melanostomus had heavier telencephalon in the spring compared to the autumn across the two years of study. Furthermore, fish in reproductive condition had heavier telencephala, indicating that tissue investment and brain plasticity may be related to reproductive needs in N. melanostomus. © 2014 The Fisheries Society of the British Isles.

  14. Brain structural plasticity with spaceflight.

    PubMed

    Koppelmans, Vincent; Bloomberg, Jacob J; Mulavara, Ajitkumar P; Seidler, Rachael D

    2016-01-01

    Humans undergo extensive sensorimotor adaptation during spaceflight due to altered vestibular inputs and body unloading. No studies have yet evaluated the effects of spaceflight on human brain structure despite the fact that recently reported optic nerve structural changes are hypothesized to occur due to increased intracranial pressure occurring with microgravity. This is the first report on human brain structural changes with spaceflight. We evaluated retrospective longitudinal T2-weighted MRI scans and balance data from 27 astronauts (thirteen ~2-week shuttle crew members and fourteen ~6-month International Space Station crew members) to determine spaceflight effects on brain structure, and whether any pre to postflight brain changes are associated with balance changes. Data were obtained from the NASA Lifetime Surveillance of Astronaut Health. Brain scans were segmented into gray matter maps and normalized into MNI space using a stepwise approach through subject specific templates. Non-parametric permutation testing was used to analyze pre to postflight volumetric gray matter changes. We found extensive volumetric gray matter decreases, including large areas covering the temporal and frontal poles and around the orbits. This effect was larger in International Space Station versus shuttle crew members in some regions. There were bilateral focal gray matter increases within the medial primary somatosensory and motor cortex; i.e., the cerebral areas where the lower limbs are represented. These intriguing findings are observed in a retrospective data set; future prospective studies should probe the underlying mechanisms and behavioral consequences.

  15. Exercise impacts brain-derived neurotrophic factor plasticity by engaging mechanisms of epigenetic regulation.

    PubMed

    Gomez-Pinilla, F; Zhuang, Y; Feng, J; Ying, Z; Fan, G

    2011-02-01

    We have evaluated the possibility that the action of voluntary exercise on the regulation of brain-derived neurotrophic factor (BDNF), a molecule important for rat hippocampal learning, could involve mechanisms of epigenetic regulation. We focused the studies on the Bdnf promoter IV, as this region is highly responsive to neuronal activity. We have found that exercise stimulates DNA demethylation in Bdnf promoter IV, and elevates levels of activated methyl-CpG-binding protein 2, as well as BDNF mRNA and protein in the rat hippocampus. Chromatin immunoprecipitation assay showed that exercise increases acetylation of histone H3, and protein assessment showed that exercise elevates the ratio of acetylated :total for histone H3 but had no effects on histone H4 levels. Exercise also reduces levels of the histone deacetylase 5 mRNA and protein implicated in the regulation of the Bdnf gene [N.M. Tsankova et al. (2006)Nat. Neurosci., 9, 519-525], but did not affect histone deacetylase 9. Exercise elevated the phosphorylated forms of calcium/calmodulin-dependent protein kinase II and cAMP response element binding protein, implicated in the pathways by which neural activity influences the epigenetic regulation of gene transcription, i.e. Bdnf. These results showing the influence of exercise on the remodeling of chromatin containing the Bdnf gene emphasize the importance of exercise on the control of gene transcription in the context of brain function and plasticity. Reported information about the impact of a behavior, inherently involved in the daily human routine, on the epigenome opens exciting new directions and therapeutic opportunities in the war against neurological and psychiatric disorders. © 2010 The Authors. European Journal of Neuroscience © 2010 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  16. Unravelling the development of the visual cortex: implications for plasticity and repair

    PubMed Central

    Bourne, James A

    2010-01-01

    The visual cortex comprises over 50 areas in the human, each with a specified role and distinct physiology, connectivity and cellular morphology. How these individual areas emerge during development still remains something of a mystery and, although much attention has been paid to the initial stages of the development of the visual cortex, especially its lamination, very little is known about the mechanisms responsible for the arealization and functional organization of this region of the brain. In recent years we have started to discover that it is the interplay of intrinsic (molecular) and extrinsic (afferent connections) cues that are responsible for the maturation of individual areas, and that there is a spatiotemporal sequence in the maturation of the primary visual cortex (striate cortex, V1) and the multiple extrastriate/association areas. Studies in both humans and non-human primates have started to highlight the specific neural underpinnings responsible for the maturation of the visual cortex, and how experience-dependent plasticity and perturbations to the visual system can impact upon its normal development. Furthermore, damage to specific nuclei of the visual cortex, such as the primary visual cortex (V1), is a common occurrence as a result of a stroke, neurotrauma, disease or hypoxia in both neonates and adults alike. However, the consequences of a focal injury differ between the immature and adult brain, with the immature brain demonstrating a higher level of functional resilience. With better techniques for examining specific molecular and connectional changes, we are now starting to uncover the mechanisms responsible for the increased neural plasticity that leads to significant recovery following injury during this early phase of life. Further advances in our understanding of postnatal development/maturation and plasticity observed during early life could offer new strategies to improve outcomes by recapitulating aspects of the developmental program

  17. Dynamic Brains and the Changing Rules of Neuroplasticity: Implications for Learning and Recovery

    PubMed Central

    Voss, Patrice; Thomas, Maryse E.; Cisneros-Franco, J. Miguel; de Villers-Sidani, Étienne

    2017-01-01

    A growing number of research publications have illustrated the remarkable ability of the brain to reorganize itself in response to various sensory experiences. A traditional view of this plastic nature of the brain is that it is predominantly limited to short epochs during early development. Although examples showing that neuroplasticity exists outside of these finite time-windows have existed for some time, it is only recently that we have started to develop a fuller understanding of the different regulators that modulate and underlie plasticity. In this article, we will provide several lines of evidence indicating that mechanisms of neuroplasticity are extremely variable across individuals and throughout the lifetime. This variability is attributable to several factors including inhibitory network function, neuromodulator systems, age, sex, brain disease, and psychological traits. We will also provide evidence of how neuroplasticity can be manipulated in both the healthy and diseased brain, including recent data in both young and aged rats demonstrating how plasticity within auditory cortex can be manipulated pharmacologically and by varying the quality of sensory inputs. We propose that a better understanding of the individual differences that exist within the various mechanisms that govern experience-dependent neuroplasticity will improve our ability to harness brain plasticity for the development of personalized translational strategies for learning and recovery following brain injury or disease. PMID:29085312

  18. Correspondence of the brain's functional architecture during activation and rest.

    PubMed

    Smith, Stephen M; Fox, Peter T; Miller, Karla L; Glahn, David C; Fox, P Mickle; Mackay, Clare E; Filippini, Nicola; Watkins, Kate E; Toro, Roberto; Laird, Angela R; Beckmann, Christian F

    2009-08-04

    Neural connections, providing the substrate for functional networks, exist whether or not they are functionally active at any given moment. However, it is not known to what extent brain regions are continuously interacting when the brain is "at rest." In this work, we identify the major explicit activation networks by carrying out an image-based activation network analysis of thousands of separate activation maps derived from the BrainMap database of functional imaging studies, involving nearly 30,000 human subjects. Independently, we extract the major covarying networks in the resting brain, as imaged with functional magnetic resonance imaging in 36 subjects at rest. The sets of major brain networks, and their decompositions into subnetworks, show close correspondence between the independent analyses of resting and activation brain dynamics. We conclude that the full repertoire of functional networks utilized by the brain in action is continuously and dynamically "active" even when at "rest."

  19. The negotiated equilibrium model of spinal cord function.

    PubMed

    Wolpaw, Jonathan R

    2018-04-16

    The belief that the spinal cord is hardwired is no longer tenable. Like the rest of the CNS, the spinal cord changes during growth and aging, when new motor behaviours are acquired, and in response to trauma and disease. This paper describes a new model of spinal cord function that reconciles its recently appreciated plasticity with its long recognized reliability as the final common pathway for behaviour. According to this model, the substrate of each motor behaviour comprises brain and spinal plasticity: the plasticity in the brain induces and maintains the plasticity in the spinal cord. Each time a behaviour occurs, the spinal cord provides the brain with performance information that guides changes in the substrate of the behaviour. All the behaviours in the repertoire undergo this process concurrently; each repeatedly induces plasticity to preserve its key features despite the plasticity induced by other behaviours. The aggregate process is a negotiation among the behaviours: they negotiate the properties of the spinal neurons and synapses that they all use. The ongoing negotiation maintains the spinal cord in an equilibrium - a negotiated equilibrium - that serves all the behaviours. This new model of spinal cord function is supported by laboratory and clinical data, makes predictions borne out by experiment, and underlies a new approach to restoring function to people with neuromuscular disorders. Further studies are needed to test its generality, to determine whether it may apply to other CNS areas such as the cerebral cortex, and to develop its therapeutic implications. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  20. Development of large-scale functional brain networks in children.

    PubMed

    Supekar, Kaustubh; Musen, Mark; Menon, Vinod

    2009-07-01

    The ontogeny of large-scale functional organization of the human brain is not well understood. Here we use network analysis of intrinsic functional connectivity to characterize the organization of brain networks in 23 children (ages 7-9 y) and 22 young-adults (ages 19-22 y). Comparison of network properties, including path-length, clustering-coefficient, hierarchy, and regional connectivity, revealed that although children and young-adults' brains have similar "small-world" organization at the global level, they differ significantly in hierarchical organization and interregional connectivity. We found that subcortical areas were more strongly connected with primary sensory, association, and paralimbic areas in children, whereas young-adults showed stronger cortico-cortical connectivity between paralimbic, limbic, and association areas. Further, combined analysis of functional connectivity with wiring distance measures derived from white-matter fiber tracking revealed that the development of large-scale brain networks is characterized by weakening of short-range functional connectivity and strengthening of long-range functional connectivity. Importantly, our findings show that the dynamic process of over-connectivity followed by pruning, which rewires connectivity at the neuronal level, also operates at the systems level, helping to reconfigure and rebalance subcortical and paralimbic connectivity in the developing brain. Our study demonstrates the usefulness of network analysis of brain connectivity to elucidate key principles underlying functional brain maturation, paving the way for novel studies of disrupted brain connectivity in neurodevelopmental disorders such as autism.

  1. Development of Large-Scale Functional Brain Networks in Children

    PubMed Central

    Supekar, Kaustubh; Musen, Mark; Menon, Vinod

    2009-01-01

    The ontogeny of large-scale functional organization of the human brain is not well understood. Here we use network analysis of intrinsic functional connectivity to characterize the organization of brain networks in 23 children (ages 7–9 y) and 22 young-adults (ages 19–22 y). Comparison of network properties, including path-length, clustering-coefficient, hierarchy, and regional connectivity, revealed that although children and young-adults' brains have similar “small-world” organization at the global level, they differ significantly in hierarchical organization and interregional connectivity. We found that subcortical areas were more strongly connected with primary sensory, association, and paralimbic areas in children, whereas young-adults showed stronger cortico-cortical connectivity between paralimbic, limbic, and association areas. Further, combined analysis of functional connectivity with wiring distance measures derived from white-matter fiber tracking revealed that the development of large-scale brain networks is characterized by weakening of short-range functional connectivity and strengthening of long-range functional connectivity. Importantly, our findings show that the dynamic process of over-connectivity followed by pruning, which rewires connectivity at the neuronal level, also operates at the systems level, helping to reconfigure and rebalance subcortical and paralimbic connectivity in the developing brain. Our study demonstrates the usefulness of network analysis of brain connectivity to elucidate key principles underlying functional brain maturation, paving the way for novel studies of disrupted brain connectivity in neurodevelopmental disorders such as autism. PMID:19621066

  2. Environmental effects on fish neural plasticity and cognition.

    PubMed

    Ebbesson, L O E; Braithwaite, V A

    2012-12-01

    Most fishes experiencing challenging environments are able to adjust and adapt their physiology and behaviour to help them cope more effectively. Much of this flexibility is supported and influenced by cognition and neural plasticity. The understanding of fish cognition and the role played by different regions of the brain has improved significantly in recent years. Techniques such as lesioning, tract tracing and quantifying changes in gene expression help in mapping specialized brain areas. It is now recognized that the fish brain remains plastic throughout a fish's life and that it continues to be sensitive to environmental challenges. The early development of fish brains is shaped by experiences with the environment and this can promote positive and negative effects on both neural plasticity and cognitive ability. This review focuses on what is known about the interactions between the environment, the telencephalon and cognition. Examples are used from a diverse array of fish species, but there could be a lot to be gained by focusing research on neural plasticity and cognition in fishes for which there is already a wealth of knowledge relating to their physiology, behaviour and natural history, e.g. the Salmonidae. © 2012 The Authors. Journal of Fish Biology © 2012 The Fisheries Society of the British Isles.

  3. Structure and function of complex brain networks

    PubMed Central

    Sporns, Olaf

    2013-01-01

    An increasing number of theoretical and empirical studies approach the function of the human brain from a network perspective. The analysis of brain networks is made feasible by the development of new imaging acquisition methods as well as new tools from graph theory and dynamical systems. This review surveys some of these methodological advances and summarizes recent findings on the architecture of structural and functional brain networks. Studies of the structural connectome reveal several modules or network communities that are interlinked by hub regions mediating communication processes between modules. Recent network analyses have shown that network hubs form a densely linked collective called a “rich club,” centrally positioned for attracting and dispersing signal traffic. In parallel, recordings of resting and task-evoked neural activity have revealed distinct resting-state networks that contribute to functions in distinct cognitive domains. Network methods are increasingly applied in a clinical context, and their promise for elucidating neural substrates of brain and mental disorders is discussed. PMID:24174898

  4. Reactive Oxygen Species in the Regulation of Synaptic Plasticity and Memory

    PubMed Central

    Klann, Eric

    2011-01-01

    Abstract The brain is a metabolically active organ exhibiting high oxygen consumption and robust production of reactive oxygen species (ROS). The large amounts of ROS are kept in check by an elaborate network of antioxidants, which sometimes fail and lead to neuronal oxidative stress. Thus, ROS are typically categorized as neurotoxic molecules and typically exert their detrimental effects via oxidation of essential macromolecules such as enzymes and cytoskeletal proteins. Most importantly, excessive ROS are associated with decreased performance in cognitive function. However, at physiological concentrations, ROS are involved in functional changes necessary for synaptic plasticity and hence, for normal cognitive function. The fine line of role reversal of ROS from good molecules to bad molecules is far from being fully understood. This review focuses on identifying the multiple sources of ROS in the mammalian nervous system and on presenting evidence for the critical and essential role of ROS in synaptic plasticity and memory. The review also shows that the inability to restrain either age- or pathology-related increases in ROS levels leads to opposite, detrimental effects that are involved in impairments in synaptic plasticity and memory function. Antioxid. Redox Signal. 14, 2013–2054. PMID:20649473

  5. Laterality patterns of brain functional connectivity: gender effects.

    PubMed

    Tomasi, Dardo; Volkow, Nora D

    2012-06-01

    Lateralization of brain connectivity may be essential for normal brain function and may be sexually dimorphic. Here, we study the laterality patterns of short-range (implicated in functional specialization) and long-range (implicated in functional integration) connectivity and the gender effects on these laterality patterns. Parallel computing was used to quantify short- and long-range functional connectivity densities in 913 healthy subjects. Short-range connectivity was rightward lateralized and most asymmetrical in areas around the lateral sulcus, whereas long-range connectivity was rightward lateralized in lateral sulcus and leftward lateralizated in inferior prefrontal cortex and angular gyrus. The posterior inferior occipital cortex was leftward lateralized (short- and long-range connectivity). Males had greater rightward lateralization of brain connectivity in superior temporal (short- and long-range), inferior frontal, and inferior occipital cortices (short-range), whereas females had greater leftward lateralization of long-range connectivity in the inferior frontal cortex. The greater lateralization of the male's brain (rightward and predominantly short-range) may underlie their greater vulnerability to disorders with disrupted brain asymmetries (schizophrenia, autism).

  6. Laterality Patterns of Brain Functional Connectivity: Gender Effects

    PubMed Central

    Tomasi, Dardo; Volkow, Nora D.

    2012-01-01

    Lateralization of brain connectivity may be essential for normal brain function and may be sexually dimorphic. Here, we study the laterality patterns of short-range (implicated in functional specialization) and long-range (implicated in functional integration) connectivity and the gender effects on these laterality patterns. Parallel computing was used to quantify short- and long-range functional connectivity densities in 913 healthy subjects. Short-range connectivity was rightward lateralized and most asymmetrical in areas around the lateral sulcus, whereas long-range connectivity was rightward lateralized in lateral sulcus and leftward lateralizated in inferior prefrontal cortex and angular gyrus. The posterior inferior occipital cortex was leftward lateralized (short- and long-range connectivity). Males had greater rightward lateralization of brain connectivity in superior temporal (short- and long-range), inferior frontal, and inferior occipital cortices (short-range), whereas females had greater leftward lateralization of long-range connectivity in the inferior frontal cortex. The greater lateralization of the male's brain (rightward and predominantly short-range) may underlie their greater vulnerability to disorders with disrupted brain asymmetries (schizophrenia, autism). PMID:21878483

  7. mTOR signaling: at the crossroads of plasticity, memory and disease.

    PubMed

    Hoeffer, Charles A; Klann, Eric

    2010-02-01

    Mammalian target of rapamycin (mTOR) is a protein kinase involved in translation control and long-lasting synaptic plasticity. mTOR functions as the central component of two multi-protein signaling complexes, mTORC1 and mTORC2, which can be distinguished from each other based on their unique compositions and substrates. Although the majority of evidence linking mTOR function to synaptic plasticity comes from studies utilizing rapamycin, studies in genetically modified mice also suggest that mTOR couples receptors to the translation machinery for establishing long-lasting synaptic changes that are the basis for higher order brain function, including long-term memory. Finally, perturbation of the mTOR signaling cascade appears to be a common pathophysiological feature of human neurological disorders, including mental retardation syndromes and autism spectrum disorders. (c) 2009 Elsevier Ltd. All rights reserved.

  8. Changes in resting-state functional connectivity after stroke in a mouse brain lacking extracellular matrix components.

    PubMed

    Quattromani, Miriana Jlenia; Hakon, Jakob; Rauch, Uwe; Bauer, Adam Q; Wieloch, Tadeusz

    2018-04-01

    In the brain, focal ischemia results in a local region of cell death and disruption of both local and remote functional neuronal networks. Tissue reorganization following stroke can be limited by factors such as extracellular matrix (ECM) molecules that prevent neuronal growth and synaptic plasticity. The brain's ECM plays a crucial role in network formation, development, and regeneration of the central nervous system. Further, the ECM is essential for proper white matter tract development and for the formation of structures called perineuronal nets (PNNs). PNNs mainly surround parvalbumin/GABA inhibitory interneurons, of importance for processing sensory information. Previous studies have shown that downregulating PNNs after stroke reduces the neurite-inhibitory environment, reactivates plasticity, and promotes functional recovery. Resting-state functional connectivity (RS-FC) within and across hemispheres has been shown to correlate with behavioral recovery after stroke. However, the relationship between PNNs and RS-FC has not been examined. Here we studied a quadruple knock-out mouse (Q4) that lacks four ECM components: brevican, neurocan, tenascin-C and tenascin-R. We applied functional connectivity optical intrinsic signal (fcOIS) imaging in Q4 mice and wild-type (129S1 mice) before and 14 days after photothrombotic stroke (PT) to understand how the lack of crucial ECM components affects neuronal networks and functional recovery after stroke. Limb-placement ability was evaluated at 2, 7 and 14 days of recovery through the paw-placement test. Q4 mice exhibited significantly impaired homotopic RS-FC compared to wild-type mice, especially in the sensory and parietal regions. Changes in RS-FC were significantly correlated with the number of interhemispheric callosal crossings in those same regions. PT caused unilateral damage to the sensorimotor cortex and deficits of tactile-proprioceptive placing ability in contralesional fore- and hindlimbs, but the two

  9. Comparing Individual Differences in Inconsistency and Plasticity as Predictors of Cognitive Function in Older Adults

    PubMed Central

    Grand, Jacob H.G.; Stawski, Robert S.; MacDonald, Stuart W.S.

    2016-01-01

    Introduction Recent theorizing differentiates key constraints on cognition, including one’s current range of processing efficiency (i.e., flexibility or inconsistency) as well as the capacity to expand flexibility over time (i.e., plasticity). The present study uses intensive assessment of response time data to examine the interplay between markers of intraindividual variability (inconsistency) and gains across biweekly retest sessions (plasticity) in relation to age-related cognitive function. Method Participants included 304 adults (aged 64 to 92 years: M=74.02, SD=5.95) from Project MIND, a longitudinal burst design study assessing performance across micro and macro intervals (response latency trials, weekly bursts, annual retests). For two reaction time measures (choice RT and one-back choice RT), baseline measures of response time (RT) inconsistency (intraindividual standard deviation (ISD) across-trials at the first testing session) and plasticity (within-person performance gains in average RT across the 5 biweekly burst sessions) were computed, and then employed in linear mixed models as predictors of individual differences in cognitive function and longitudinal (6 year) rates of cognitive change. Results Independent of chronological age and years of education, higher RT inconsistency was associated uniformly with poorer cognitive function at baseline and with increased cognitive decline for measures of episodic memory and crystallized verbal ability. In contrast, predictive associations for plasticity were more modest for baseline cognitive function and were absent for 6-year cognitive change. Conclusions These findings underscore the potential utility of response times for articulating inconsistency and plasticity as dynamic predictors of cognitive function in older adults. PMID:26898536

  10. Comparing individual differences in inconsistency and plasticity as predictors of cognitive function in older adults.

    PubMed

    Grand, Jacob H G; Stawski, Robert S; MacDonald, Stuart W S

    2016-01-01

    Recent theorizing differentiates key constraints on cognition, including one's current range of processing efficiency (i.e., flexibility or inconsistency) as well as the capacity to expand flexibility over time (i.e., plasticity). The present study uses intensive assessment of response time data to examine the interplay between markers of intraindividual variability (inconsistency) and gains across biweekly retest sessions (plasticity) in relation to age-related cognitive function. Participants included 304 adults (aged 64 to 92 years: M = 74.02, SD = 5.95) from Project MIND, a longitudinal burst design study assessing performance across micro and macro intervals (response latency trials, weekly bursts, annual retests). For two reaction time (RT) measures (choice RT and one-back choice RT), baseline measures of RT inconsistency (intraindividual standard deviation, ISD, across trials at the first testing session) and plasticity (within-person performance gains in average RT across the 5 biweekly burst sessions) were computed and were then employed in linear mixed models as predictors of individual differences in cognitive function and longitudinal (6-year) rates of cognitive change. Independent of chronological age and years of education, higher RT inconsistency was associated uniformly with poorer cognitive function at baseline and with increased cognitive decline for measures of episodic memory and crystallized verbal ability. In contrast, predictive associations for plasticity were more modest for baseline cognitive function and were absent for 6-year cognitive change. These findings underscore the potential utility of response times for articulating inconsistency and plasticity as dynamic predictors of cognitive function in older adults.

  11. Disrupted Brain Functional Organization in Epilepsy Revealed by Graph Theory Analysis.

    PubMed

    Song, Jie; Nair, Veena A; Gaggl, Wolfgang; Prabhakaran, Vivek

    2015-06-01

    The human brain is a complex and dynamic system that can be modeled as a large-scale brain network to better understand the reorganizational changes secondary to epilepsy. In this study, we developed a brain functional network model using graph theory methods applied to resting-state fMRI data acquired from a group of epilepsy patients and age- and gender-matched healthy controls. A brain functional network model was constructed based on resting-state functional connectivity. A minimum spanning tree combined with proportional thresholding approach was used to obtain sparse connectivity matrices for each subject, which formed the basis of brain networks. We examined the brain reorganizational changes in epilepsy thoroughly at the level of the whole brain, the functional network, and individual brain regions. At the whole-brain level, local efficiency was significantly decreased in epilepsy patients compared with the healthy controls. However, global efficiency was significantly increased in epilepsy due to increased number of functional connections between networks (although weakly connected). At the functional network level, there were significant proportions of newly formed connections between the default mode network and other networks and between the subcortical network and other networks. There was a significant proportion of decreasing connections between the cingulo-opercular task control network and other networks. Individual brain regions from different functional networks, however, showed a distinct pattern of reorganizational changes in epilepsy. These findings suggest that epilepsy alters brain efficiency in a consistent pattern at the whole-brain level, yet alters brain functional networks and individual brain regions differently.

  12. Correspondence of the brain's functional architecture during activation and rest

    PubMed Central

    Smith, Stephen M.; Fox, Peter T.; Miller, Karla L.; Glahn, David C.; Fox, P. Mickle; Mackay, Clare E.; Filippini, Nicola; Watkins, Kate E.; Toro, Roberto; Laird, Angela R.; Beckmann, Christian F.

    2009-01-01

    Neural connections, providing the substrate for functional networks, exist whether or not they are functionally active at any given moment. However, it is not known to what extent brain regions are continuously interacting when the brain is “at rest.” In this work, we identify the major explicit activation networks by carrying out an image-based activation network analysis of thousands of separate activation maps derived from the BrainMap database of functional imaging studies, involving nearly 30,000 human subjects. Independently, we extract the major covarying networks in the resting brain, as imaged with functional magnetic resonance imaging in 36 subjects at rest. The sets of major brain networks, and their decompositions into subnetworks, show close correspondence between the independent analyses of resting and activation brain dynamics. We conclude that the full repertoire of functional networks utilized by the brain in action is continuously and dynamically “active” even when at “rest.” PMID:19620724

  13. Functional expression of SGLTs in rat brain.

    PubMed

    Yu, Amy S; Hirayama, Bruce A; Timbol, Gerald; Liu, Jie; Basarah, Ernest; Kepe, Vladimir; Satyamurthy, Nagichettiar; Huang, Sung-Cheng; Wright, Ernest M; Barrio, Jorge R

    2010-12-01

    This work provides evidence of previously unrecognized uptake of glucose via sodium-coupled glucose transporters (SGLTs) in specific regions of the brain. The current understanding of functional glucose utilization in brain is largely based on studies using positron emission tomography (PET) with the glucose tracer 2-deoxy-2-[F-18]fluoro-D-glucose (2-FDG). However, 2-FDG is only a good substrate for facilitated-glucose transporters (GLUTs), not for SGLTs. Thus, glucose accumulation measured by 2-FDG omits the role of SGLTs. We designed and synthesized two high-affinity tracers: one, α-methyl-4-[F-18]fluoro-4-deoxy-D-glucopyranoside (Me-4FDG), is a highly specific SGLT substrate and not transported by GLUTs; the other one, 4-[F-18]fluoro-4-deoxy-D-glucose (4-FDG), is transported by both SGLTs and GLUTs and will pass through the blood brain barrier (BBB). In vitro Me-4FDG autoradiography was used to map the distribution of uptake by functional SGLTs in brain slices with a comparable result from in vitro 4-FDG autoradiography. Immunohistochemical assays showed that uptake was consistent with the distribution of SGLT protein. Ex vivo 4-FDG autoradiography showed that SGLTs in these areas are functionally active in the normal in vivo brain. The results establish that SGLTs are a normal part of the physiology of specific areas of the brain, including hippocampus, amygdala, hypothalamus, and cerebral cortices. 4-FDG PET imaging also established that this BBB-permeable SGLT tracer now offers a functional imaging approach in humans to assess regulation of SGLT activity in health and disease.

  14. Plasticity of Neuron-Glial Transmission: Equipping Glia for Long-Term Integration of Network Activity.

    PubMed

    Croft, Wayne; Dobson, Katharine L; Bellamy, Tomas C

    2015-01-01

    The capacity of synaptic networks to express activity-dependent changes in strength and connectivity is essential for learning and memory processes. In recent years, glial cells (most notably astrocytes) have been recognized as active participants in the modulation of synaptic transmission and synaptic plasticity, implicating these electrically nonexcitable cells in information processing in the brain. While the concept of bidirectional communication between neurons and glia and the mechanisms by which gliotransmission can modulate neuronal function are well established, less attention has been focussed on the computational potential of neuron-glial transmission itself. In particular, whether neuron-glial transmission is itself subject to activity-dependent plasticity and what the computational properties of such plasticity might be has not been explored in detail. In this review, we summarize current examples of plasticity in neuron-glial transmission, in many brain regions and neurotransmitter pathways. We argue that induction of glial plasticity typically requires repetitive neuronal firing over long time periods (minutes-hours) rather than the short-lived, stereotyped trigger typical of canonical long-term potentiation. We speculate that this equips glia with a mechanism for monitoring average firing rates in the synaptic network, which is suited to the longer term roles proposed for astrocytes in neurophysiology.

  15. Neural Plasticity and Neurorehabilitation Following Traumatic Brain Injury

    DTIC Science & Technology

    2011-04-01

    produces a decrease in the number of adjustments of the impaired forelimb and unimpaired limb and an increase in abnormal behaviors during pasta eating...eat uncooked vermicelli pasta . In unilateral stroke and Parkinson’s models, animals show deficits in the way they use their paws to manipulate the... pasta as it is eaten. This test has never been used to examine forelimb function in animal models of traumatic brain injury (TBI). The current study

  16. Does puberty mark a transition in sensitive periods for plasticity in the associative neocortex?

    PubMed

    Piekarski, David J; Johnson, Carolyn M; Boivin, Josiah R; Thomas, A Wren; Lin, Wan Chen; Delevich, Kristen; M Galarce, Ezequiel; Wilbrecht, Linda

    2017-01-01

    Postnatal brain development is studded with sensitive periods during which experience dependent plasticity is enhanced. This enables rapid learning from environmental inputs and reorganization of cortical circuits that matches behavior with environmental contingencies. Significant headway has been achieved in characterizing and understanding sensitive period biology in primary sensory cortices, but relatively little is known about sensitive period biology in associative neocortex. One possible mediator is the onset of puberty, which marks the transition to adolescence, when animals shift their behavior toward gaining independence and exploring their social world. Puberty onset correlates with reduced behavioral plasticity in some domains and enhanced plasticity in others, and therefore may drive the transition from juvenile to adolescent brain function. Pubertal onset is also occurring earlier in developed nations, particularly in unserved populations, and earlier puberty is associated with vulnerability for substance use, depression and anxiety. In the present article we review the evidence that supports a causal role for puberty in developmental changes in the function and neurobiology of the associative neocortex. We also propose a model for how pubertal hormones may regulate sensitive period plasticity in associative neocortex. We conclude that the evidence suggests puberty onset may play a causal role in some aspects of associative neocortical development, but that further research that manipulates puberty and measures gonadal hormones is required. We argue that further work of this kind is urgently needed to determine how earlier puberty may negatively impact human health and learning potential. This article is part of a Special Issue entitled SI: Adolescent plasticity. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Dissociations between behavioural and functional magnetic resonance imaging-based evaluations of cognitive function after brain injury

    PubMed Central

    Bardin, Jonathan C.; Fins, Joseph J.; Katz, Douglas I.; Hersh, Jennifer; Heier, Linda A.; Tabelow, Karsten; Dyke, Jonathan P.; Ballon, Douglas J.; Schiff, Nicholas D.

    2011-01-01

    Functional neuroimaging methods hold promise for the identification of cognitive function and communication capacity in some severely brain-injured patients who may not retain sufficient motor function to demonstrate their abilities. We studied seven severely brain-injured patients and a control group of 14 subjects using a novel hierarchical functional magnetic resonance imaging assessment utilizing mental imagery responses. Whereas the control group showed consistent and accurate (for communication) blood-oxygen-level-dependent responses without exception, the brain-injured subjects showed a wide variation in the correlation of blood-oxygen-level-dependent responses and overt behavioural responses. Specifically, the brain-injured subjects dissociated bedside and functional magnetic resonance imaging-based command following and communication capabilities. These observations reveal significant challenges in developing validated functional magnetic resonance imaging-based methods for clinical use and raise interesting questions about underlying brain function assayed using these methods in brain-injured subjects. PMID:21354974

  18. Editing the Neuronal Genome: a CRISPR View of Chromatin Regulation in Neuronal Development, Function, and Plasticity

    PubMed Central

    Yang, Marty G.; West, Anne E.

    2016-01-01

    The dynamic orchestration of gene expression is crucial for the proper differentiation, function, and adaptation of cells. In the brain, transcriptional regulation underlies the incredible diversity of neuronal cell types and contributes to the ability of neurons to adapt their function to the environment. Recently, novel methods for genome and epigenome editing have begun to revolutionize our understanding of gene regulatory mechanisms. In particular, the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system has proven to be a particularly accessible and adaptable technique for genome engineering. Here, we review the use of CRISPR/Cas9 in neurobiology and discuss how these studies have advanced understanding of nervous system development and plasticity. We cover four especially salient applications of CRISPR/Cas9: testing the consequences of enhancer mutations, tagging genes and gene products for visualization in live cells, directly activating or repressing enhancers in vivo, and manipulating the epigenome. In each case, we summarize findings from recent studies and discuss evolving adaptations of the method. PMID:28018138

  19. Leptin and the brain: influences on brain development, cognitive functioning and psychiatric disorders.

    PubMed

    Farr, Olivia M; Tsoukas, Michael A; Mantzoros, Christos S

    2015-01-01

    Receptors of leptin, the prototypical adipokine, are expressed throughout the cortex and several other areas of the brain. Although typically studied for its role in energy intake and expenditure, leptin plays a critical role in many other neurocognitive processes and interacts with various other hormones and neurotransmitters to perform these functions. Here, we review the literature on how leptin influences brain development, neural degradation, Alzheimer's disease, psychiatric disorders, and more complicated cognitive functioning and feeding behaviors. We also discuss modulators of leptin and the leptin receptor as they relate to normal cognitive functioning and may mediate some of the actions of leptin in the brain. Although we are beginning to better understand the critical role leptin plays in normal cognitive functioning, there is much to be discovered. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Neurophysiological mechanisms of cortical plasticity impairments in schizophrenia and modulation by the NMDA receptor agonist D-serine.

    PubMed

    Kantrowitz, Joshua T; Epstein, Michael L; Beggel, Odeta; Rohrig, Stephanie; Lehrfeld, Jonathan M; Revheim, Nadine; Lehrfeld, Nayla P; Reep, Jacob; Parker, Emily; Silipo, Gail; Ahissar, Merav; Javitt, Daniel C

    2016-12-01

    Schizophrenia is associated with deficits in cortical plasticity that affect sensory brain regions and lead to impaired cognitive performance. Here we examined underlying neural mechanisms of auditory plasticity deficits using combined behavioural and neurophysiological assessment, along with neuropharmacological manipulation targeted at the N-methyl-D-aspartate type glutamate receptor (NMDAR). Cortical plasticity was assessed in a cohort of 40 schizophrenia/schizoaffective patients relative to 42 healthy control subjects using a fixed reference tone auditory plasticity task. In a second cohort (n = 21 schizophrenia/schizoaffective patients, n = 13 healthy controls), event-related potential and event-related time-frequency measures of auditory dysfunction were assessed during administration of the NMDAR agonist d-serine. Mismatch negativity was used as a functional read-out of auditory-level function. Clinical trials registration numbers were NCT01474395/NCT02156908 Schizophrenia/schizoaffective patients showed significantly reduced auditory plasticity versus healthy controls (P = 0.001) that correlated with measures of cognitive, occupational and social dysfunction. In event-related potential/time-frequency analyses, patients showed highly significant reductions in sensory N1 that reflected underlying impairments in θ responses (P < 0.001), along with reduced θ and β-power modulation during retention and motor-preparation intervals. Repeated administration of d-serine led to intercorrelated improvements in (i) auditory plasticity (P < 0.001); (ii) θ-frequency response (P < 0.05); and (iii) mismatch negativity generation to trained versus untrained tones (P = 0.02). Schizophrenia/schizoaffective patients show highly significant deficits in auditory plasticity that contribute to cognitive, occupational and social dysfunction. d-serine studies suggest first that NMDAR dysfunction may contribute to underlying cortical plasticity deficits and, second, that repeated

  1. The microglial fractalkine receptor is not required for activity-dependent plasticity in the mouse visual system.

    PubMed

    Lowery, Rebecca L; Tremblay, Marie-Eve; Hopkins, Brittany E; Majewska, Ania K

    2017-11-01

    Microglia have recently been implicated as key regulators of activity-dependent plasticity, where they contribute to the removal of inappropriate or excess synapses. However, the molecular mechanisms that mediate this microglial function are still not well understood. Although multiple studies have implicated fractalkine signaling as a mediator of microglia-neuron communications during synaptic plasticity, it is unclear whether this is a universal signaling mechanism or whether its role is limited to specific brain regions and stages of the lifespan. Here, we examined whether fractalkine signaling mediates microglial contributions to activity-dependent plasticity in the developing and adolescent visual system. Using genetic ablation of fractalkine's cognate receptor, CX 3 CR1, and both ex vivo characterization and in vivo imaging in mice, we examined whether fractalkine signaling is required for microglial dynamics and modulation of synapses, as well as activity-dependent plasticity in the visual system. We did not find a role for fractalkine signaling in mediating microglial properties during visual plasticity. Ablation of CX 3 CR1 had no effect on microglial density, distribution, morphology, or motility, in either adolescent or young adult mice across brain regions that include the visual cortex. Ablation of CX 3 CR1 also had no effect on baseline synaptic turnover or contact dynamics between microglia and neurons. Finally, we found that fractalkine signaling is not required for either early or late forms of activity-dependent visual system plasticity. These findings suggest that fractalkine is not a universal regulator of synaptic plasticity, but rather has heterogeneous roles in specific brain regions and life stages. © 2017 Wiley Periodicals, Inc.

  2. Centrality of Social Interaction in Human Brain Function.

    PubMed

    Hari, Riitta; Henriksson, Linda; Malinen, Sanna; Parkkonen, Lauri

    2015-10-07

    People are embedded in social interaction that shapes their brains throughout lifetime. Instead of emerging from lower-level cognitive functions, social interaction could be the default mode via which humans communicate with their environment. Should this hypothesis be true, it would have profound implications on how we think about brain functions and how we dissect and simulate them. We suggest that the research on the brain basis of social cognition and interaction should move from passive spectator science to studies including engaged participants and simultaneous recordings from the brains of the interacting persons. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Altered Whole-Brain and Network-Based Functional Connectivity in Parkinson's Disease.

    PubMed

    de Schipper, Laura J; Hafkemeijer, Anne; van der Grond, Jeroen; Marinus, Johan; Henselmans, Johanna M L; van Hilten, Jacobus J

    2018-01-01

    Background: Functional imaging methods, such as resting-state functional magnetic resonance imaging, reflect changes in neural connectivity and may help to assess the widespread consequences of disease-specific network changes in Parkinson's disease. In this study we used a relatively new graph analysis approach in functional imaging: eigenvector centrality mapping. This model-free method, applied to all voxels in the brain, identifies prominent regions in the brain network hierarchy and detects localized differences between patient populations. In other neurological disorders, eigenvector centrality mapping has been linked to changes in functional connectivity in certain nodes of brain networks. Objectives: Examining changes in functional brain connectivity architecture on a whole brain and network level in patients with Parkinson's disease. Methods: Whole brain resting-state functional architecture was studied with a recently introduced graph analysis approach (eigenvector centrality mapping). Functional connectivity was further investigated in relation to eight known resting-state networks. Cross-sectional analyses included group comparison of functional connectivity measures of Parkinson's disease patients ( n = 107) with control subjects ( n = 58) and correlations with clinical data, including motor and cognitive impairment and a composite measure of predominantly non-dopaminergic symptoms. Results: Eigenvector centrality mapping revealed that frontoparietal regions were more prominent in the whole-brain network function in patients compared to control subjects, while frontal and occipital brain areas were less prominent in patients. Using standard resting-state networks, we found predominantly increased functional connectivity, namely within sensorimotor system and visual networks in patients. Regional group differences in functional connectivity of both techniques between patients and control subjects partly overlapped for highly connected posterior brain

  4. Human brain activity with functional NIR optical imager

    NASA Astrophysics Data System (ADS)

    Luo, Qingming

    2001-08-01

    In this paper we reviewed the applications of functional near infrared optical imager in human brain activity. Optical imaging results of brain activity, including memory for new association, emotional thinking, mental arithmetic, pattern recognition ' where's Waldo?, occipital cortex in visual stimulation, and motor cortex in finger tapping, are demonstrated. It is shown that the NIR optical method opens up new fields of study of the human population, in adults under conditions of simulated or real stress that may have important effects upon functional performance. It makes practical and affordable for large populations the complex technology of measuring brain function. It is portable and low cost. In cognitive tasks subjects could report orally. The temporal resolution could be millisecond or less in theory. NIR method will have good prospects in exploring human brain secret.

  5. Neuroticism and conscientiousness respectively constrain and facilitate short-term plasticity within the working memory neural network.

    PubMed

    Dima, Danai; Friston, Karl J; Stephan, Klaas E; Frangou, Sophia

    2015-10-01

    Individual differences in cognitive efficiency, particularly in relation to working memory (WM), have been associated both with personality dimensions that reflect enduring regularities in brain configuration, and with short-term neural plasticity, that reflects task-related changes in brain connectivity. To elucidate the relationship of these two divergent mechanisms, we tested the hypothesis that personality dimensions, which reflect enduring aspects of brain configuration, inform about the neurobiological framework within which short-term, task-related plasticity, as measured by effective connectivity, can be facilitated or constrained. As WM consistently engages the dorsolateral prefrontal (DLPFC), parietal (PAR), and anterior cingulate cortex (ACC), we specified a WM network model with bidirectional, ipsilateral, and contralateral connections between these regions from a functional magnetic resonance imaging dataset obtained from 40 healthy adults while performing the 3-back WM task. Task-related effective connectivity changes within this network were estimated using Dynamic Causal Modelling. Personality was evaluated along the major dimensions of Neuroticism, Extraversion, Openness to Experience, Agreeableness, and Conscientiousness. Only two dimensions were relevant to task-dependent effective connectivity. Neuroticism and Conscientiousness respectively constrained and facilitated neuroplastic responses within the WM network. These results suggest individual differences in cognitive efficiency arise from the interplay between enduring and short-term plasticity in brain configuration. © 2015 Wiley Periodicals, Inc.

  6. Viewing the functional consequences of traumatic brain injury by using brain SPECT.

    PubMed

    Pavel, D; Jobe, T; Devore-Best, S; Davis, G; Epstein, P; Sinha, S; Kohn, R; Craita, I; Liu, P; Chang, Y

    2006-03-01

    High-resolution brain SPECT is increasingly benefiting from improved image processing software and multiple complementary display capabilities. This enables detailed functional mapping of the disturbances in relative perfusion occurring after TBI. The patient population consisted of 26 cases (ages 8-61 years)between 3 months and 6 years after traumatic brain injury.A very strong case can be made for the routine use of Brain SPECT in TBI. Indeed it can provide a detailed evaluation of multiple functional consequences after TBI and is thus capable of supplementing the clinical evaluation and tailoring the therapeutic strategies needed. In so doing it also provides significant additional information beyond that available from MRI/CT. The critical factor for Brain SPECT's clinical relevance is a carefully designed technical protocol, including displays which should enable a comprehensive description of the patterns found, in a user friendly mode.

  7. The gravitational field and brain function.

    PubMed

    Mei, L; Zhou, C D; Lan, J Q; Wang, Z G; Wu, W C; Xue, X M

    1983-01-01

    The frontal cortex is recognized as the highest adaptive control center of the human brain. The principle of the "frontalization" of human brain function offers new possibilities for brain research in space. There is evolutionary and experimental evidence indicating the validity of the principle, including it's role in nervous response to gravitational stimulation. The gravitational field is considered here as one of the more constant and comprehensive factors acting on brain evolution, which has undergone some successive crucial steps: "encephalization", "corticalization", "lateralization" and "frontalization". The dominating effects of electrical responses from the frontal cortex have been discovered 1) in experiments under gravitational stimulus; and 2) in processes potentially relating to gravitational adaptation, such as memory and learning, sensory information processing, motor programing, and brain state control. A brain research experiment during space flight is suggested to test the role of the frontal cortex in space adaptation and it's potentiality in brain control.

  8. The serotonin receptor 7 and the structural plasticity of brain circuits

    PubMed Central

    Volpicelli, Floriana; Speranza, Luisa; di Porzio, Umberto; Crispino, Marianna; Perrone-Capano, Carla

    2014-01-01

    Serotonin (5-hydroxytryptamine, 5-HT) modulates numerous physiological processes in the nervous system. Together with its function as neurotransmitter, 5-HT regulates neurite outgrowth, dendritic spine shape and density, growth cone motility and synapse formation during development. In the mammalian brain 5-HT innervation is virtually ubiquitous and the diversity and specificity of its signaling and function arise from at least 20 different receptors, grouped in 7 classes. Here we will focus on the role 5-HT7 receptor (5-HT7R) in the correct establishment of neuronal cytoarchitecture during development, as also suggested by its involvement in several neurodevelopmental disorders. The emerging picture shows that this receptor is a key player contributing not only to shape brain networks during development but also to remodel neuronal wiring in the mature brain, thus controlling cognitive and emotional responses. The activation of 5-HT7R might be one of the mechanisms underlying the ability of the CNS to respond to different stimuli by modulation of its circuit configuration. PMID:25309369

  9. Fetal brain extracellular matrix boosts neuronal network formation in 3D bioengineered model of cortical brain tissue.

    PubMed

    Sood, Disha; Chwalek, Karolina; Stuntz, Emily; Pouli, Dimitra; Du, Chuang; Tang-Schomer, Min; Georgakoudi, Irene; Black, Lauren D; Kaplan, David L

    2016-01-01

    The extracellular matrix (ECM) constituting up to 20% of the organ volume is a significant component of the brain due to its instructive role in the compartmentalization of functional microdomains in every brain structure. The composition, quantity and structure of ECM changes dramatically during the development of an organism greatly contributing to the remarkably sophisticated architecture and function of the brain. Since fetal brain is highly plastic, we hypothesize that the fetal brain ECM may contain cues promoting neural growth and differentiation, highly desired in regenerative medicine. Thus, we studied the effect of brain-derived fetal and adult ECM complemented with matricellular proteins on cortical neurons using in vitro 3D bioengineered model of cortical brain tissue. The tested parameters included neuronal network density, cell viability, calcium signaling and electrophysiology. Both, adult and fetal brain ECM as well as matricellular proteins significantly improved neural network formation as compared to single component, collagen I matrix. Additionally, the brain ECM improved cell viability and lowered glutamate release. The fetal brain ECM induced superior neural network formation, calcium signaling and spontaneous spiking activity over adult brain ECM. This study highlights the difference in the neuroinductive properties of fetal and adult brain ECM and suggests that delineating the basis for this divergence may have implications for regenerative medicine.

  10. Sensory system plasticity in a visually specialized, nocturnal spider.

    PubMed

    Stafstrom, Jay A; Michalik, Peter; Hebets, Eileen A

    2017-04-21

    The interplay between an animal's environmental niche and its behavior can influence the evolutionary form and function of its sensory systems. While intraspecific variation in sensory systems has been documented across distant taxa, fewer studies have investigated how changes in behavior might relate to plasticity in sensory systems across developmental time. To investigate the relationships among behavior, peripheral sensory structures, and central processing regions in the brain, we take advantage of a dramatic within-species shift of behavior in a nocturnal, net-casting spider (Deinopis spinosa), where males cease visually-mediated foraging upon maturation. We compared eye diameters and brain region volumes across sex and life stage, the latter through micro-computed X-ray tomography. We show that mature males possess altered peripheral visual morphology when compared to their juvenile counterparts, as well as juvenile and mature females. Matching peripheral sensory structure modifications, we uncovered differences in relative investment in both lower-order and higher-order processing regions in the brain responsible for visual processing. Our study provides evidence for sensory system plasticity when individuals dramatically change behavior across life stages, uncovering new avenues of inquiry focusing on altered reliance of specific sensory information when entering a new behavioral niche.

  11. Progesterone Receptors: Form and Function in Brain

    PubMed Central

    Brinton, Roberta Diaz; Thompson, Richard F.; Foy, Michael R.; Baudry, Michel; Wang, JunMing; Finch, Caleb E; Morgan, Todd E.; Stanczyk, Frank Z.; Pike, Christian J.; Nilsen, Jon

    2008-01-01

    Emerging data indicate that progesterone has multiple non-reproductive functions in the central nervous system to regulate cognition, mood, inflammation, mitochondrial function, neurogenesis and regeneration, myelination and recovery from traumatic brain injury. Progesterone-regulated neural responses are mediated by an array of progesterone receptors (PR) that include the classic nuclear PRA and PRB receptors and splice variants of each, the seven transmembrane domain 7TMPRβ and the membrane-associated 25-Dx PR (PGRMC1). These PRs induce classic regulation of gene expression while also transducing signaling cascades that originate at the cell membrane and ultimately activate transcription factors. Remarkably, PRs are broadly expressed throughout the brain and can be detected in every neural cell type. The distribution of PRs beyond hypothalamic borders, suggests a much broader role of progesterone in regulating neural function. Despite the large body of evidence regarding progesterone regulation of reproductive behaviors and estrogen-inducible responses as well as effects of progesterone metabolite neurosteroids, much remains to be discovered regarding the functional outcomes resulting from activation of the complex array of PRs in brain by gonadally and / or glial derived progesterone. Moreover, the impact of clinically used progestogens and developing selective PR modulators for targeted outcomes in brain is a critical avenue of investigation as the non-reproductive functions of PRs have far-reaching implications for hormone therapy to maintain neurological health and function throughout menopausal aging. PMID:18374402

  12. Robust Transient Dynamics and Brain Functions

    PubMed Central

    Rabinovich, Mikhail I.; Varona, Pablo

    2011-01-01

    In the last few decades several concepts of dynamical systems theory (DST) have guided psychologists, cognitive scientists, and neuroscientists to rethink about sensory motor behavior and embodied cognition. A critical step in the progress of DST application to the brain (supported by modern methods of brain imaging and multi-electrode recording techniques) has been the transfer of its initial success in motor behavior to mental function, i.e., perception, emotion, and cognition. Open questions from research in genetics, ecology, brain sciences, etc., have changed DST itself and lead to the discovery of a new dynamical phenomenon, i.e., reproducible and robust transients that are at the same time sensitive to informational signals. The goal of this review is to describe a new mathematical framework – heteroclinic sequential dynamics – to understand self-organized activity in the brain that can explain certain aspects of robust itinerant behavior. Specifically, we discuss a hierarchy of coarse-grain models of mental dynamics in the form of kinetic equations of modes. These modes compete for resources at three levels: (i) within the same modality, (ii) among different modalities from the same family (like perception), and (iii) among modalities from different families (like emotion and cognition). The analysis of the conditions for robustness, i.e., the structural stability of transient (sequential) dynamics, give us the possibility to explain phenomena like the finite capacity of our sequential working memory – a vital cognitive function –, and to find specific dynamical signatures – different kinds of instabilities – of several brain functions and mental diseases. PMID:21716642

  13. Activity-dependent synaptic plasticity of a chalcogenide electronic synapse for neuromorphic systems.

    PubMed

    Li, Yi; Zhong, Yingpeng; Zhang, Jinjian; Xu, Lei; Wang, Qing; Sun, Huajun; Tong, Hao; Cheng, Xiaoming; Miao, Xiangshui

    2014-05-09

    Nanoscale inorganic electronic synapses or synaptic devices, which are capable of emulating the functions of biological synapses of brain neuronal systems, are regarded as the basic building blocks for beyond-Von Neumann computing architecture, combining information storage and processing. Here, we demonstrate a Ag/AgInSbTe/Ag structure for chalcogenide memristor-based electronic synapses. The memristive characteristics with reproducible gradual resistance tuning are utilised to mimic the activity-dependent synaptic plasticity that serves as the basis of memory and learning. Bidirectional long-term Hebbian plasticity modulation is implemented by the coactivity of pre- and postsynaptic spikes, and the sign and degree are affected by assorted factors including the temporal difference, spike rate and voltage. Moreover, synaptic saturation is observed to be an adjustment of Hebbian rules to stabilise the growth of synaptic weights. Our results may contribute to the development of highly functional plastic electronic synapses and the further construction of next-generation parallel neuromorphic computing architecture.

  14. Neuronal plasticity and neurotrophic factors in drug responses

    PubMed Central

    Castrén, Eero; Antila, Hanna

    2017-01-01

    Neurotrophic factors, particularly brain-derived neurotrophic factor (BDNF) and other members of the neurotrophin family, are central mediators of the activity-dependent plasticity through which environmental experiences, such as sensory information are translated into the structure and function of neuronal networks. Synthesis, release and action of BDNF is regulated by neuronal activity and BDNF in turn leads to trophic effects such as formation, stabilization and potentiation of synapses through its high-affinity TrkB receptors. Several clinically available drugs directly activate neurotrophins and neuronal plasticity. In particular, antidepressant drugs rapidly activate TrkB signaling and gradually increase BDNF expression, and the behavioral effects of antidepressants are mediated by and dependent on BDNF signaling through TrkB at least in rodents. These findings indicate that antidepressants, widely used drugs, effectively act as TrkB activators. They further imply that neuronal plasticity is a central mechanism in the action of antidepressant drugs. Indeed, it was recently discovered that antidepressants reactivate a state of plasticity in the adult cerebral cortex that closely resembles the enhanced plasticity normally observed during postnatal critical periods. This state of induced plasticity, known as iPlasticity, allows environmental stimuli to beneficially reorganize networks abnormally wired during early life. iPlasticity has been observed in cortical as well as subcortical networks and is induced by several pharmacological and non-pharmacological treatments. iPlasticity is a new pharmacological principle where drug treatment and rehabilitation cooperate: the drug acts permissively to enhance plasticity and rehabilitation provides activity to guide the appropriate wiring of the plastic network. Optimization of iPlastic drug treatment with novel means of rehabilitation may help improve the efficacy of available drug treatments and expand the use of

  15. Self-regulation of brain oscillations as a treatment for aberrant brain connections in children with autism.

    PubMed

    Pineda, J A; Juavinett, A; Datko, M

    2012-12-01

    Autism is a highly varied developmental disorder typically characterized by deficits in reciprocal social interaction, difficulties with verbal and nonverbal communication, and restricted interests and repetitive behaviors. Although a wide range of behavioral, pharmacological, and alternative medicine strategies have been reported to ameliorate specific symptoms for some individuals, there is at present no cure for the condition. Nonetheless, among the many incompatible observations about aspects of the development, anatomy, and functionality of the autistic brain, it is widely agreed that it is characterized by widespread aberrant connectivity. Such disordered connectivity, be it increased, decreased, or otherwise compromised, may complicate healthy synchronization and communication among and within different neural circuits, thereby producing abnormal processing of sensory inputs necessary for normal social life. It is widely accepted that the innate properties of brain electrical activity produce pacemaker elements and linked networks that oscillate synchronously or asynchronously, likely reflecting a type of functional connectivity. Using phase coherence in multiple frequency EEG bands as a measure of functional connectivity, studies have shown evidence for both global hypoconnectivity and local hyperconnectivity in individuals with ASD. However, the nature of the brain's experience-dependent structural plasticity suggests that these abnormal patterns may be reversed with the proper type of treatment. Indeed, neurofeedback (NF) training, an intervention based on operant conditioning that results in self-regulation of brain electrical oscillations, has shown promise in addressing marked abnormalities in functional and structural connectivity. It is hypothesized that neurofeedback produces positive behavioral changes in ASD children by normalizing the aberrant connections within and between neural circuits. NF exploits the brain's plasticity to normalize aberrant

  16. Hierarchical functional modularity in the resting-state human brain.

    PubMed

    Ferrarini, Luca; Veer, Ilya M; Baerends, Evelinda; van Tol, Marie-José; Renken, Remco J; van der Wee, Nic J A; Veltman, Dirk J; Aleman, André; Zitman, Frans G; Penninx, Brenda W J H; van Buchem, Mark A; Reiber, Johan H C; Rombouts, Serge A R B; Milles, Julien

    2009-07-01

    Functional magnetic resonance imaging (fMRI) studies have shown that anatomically distinct brain regions are functionally connected during the resting state. Basic topological properties in the brain functional connectivity (BFC) map have highlighted the BFC's small-world topology. Modularity, a more advanced topological property, has been hypothesized to be evolutionary advantageous, contributing to adaptive aspects of anatomical and functional brain connectivity. However, current definitions of modularity for complex networks focus on nonoverlapping clusters, and are seriously limited by disregarding inclusive relationships. Therefore, BFC's modularity has been mainly qualitatively investigated. Here, we introduce a new definition of modularity, based on a recently improved clustering measurement, which overcomes limitations of previous definitions, and apply it to the study of BFC in resting state fMRI of 53 healthy subjects. Results show hierarchical functional modularity in the brain. Copyright 2009 Wiley-Liss, Inc

  17. Tai Chi Chuan optimizes the functional organization of the intrinsic human brain architecture in older adults

    PubMed Central

    Wei, Gao-Xia; Dong, Hao-Ming; Yang, Zhi; Luo, Jing; Zuo, Xi-Nian

    2014-01-01

    Whether Tai Chi Chuan (TCC) can influence the intrinsic functional architecture of the human brain remains unclear. To examine TCC-associated changes in functional connectomes, resting-state functional magnetic resonance images were acquired from 40 older individuals including 22 experienced TCC practitioners (experts) and 18 demographically matched TCC-naïve healthy controls, and their local functional homogeneities across the cortical mantle were compared. Compared to the controls, the TCC experts had significantly greater and more experience-dependent functional homogeneity in the right post-central gyrus (PosCG) and less functional homogeneity in the left anterior cingulate cortex (ACC) and the right dorsal lateral prefrontal cortex. Increased functional homogeneity in the PosCG was correlated with TCC experience. Intriguingly, decreases in functional homogeneity (improved functional specialization) in the left ACC and increases in functional homogeneity (improved functional integration) in the right PosCG both predicted performance gains on attention network behavior tests. These findings provide evidence for the functional plasticity of the brain’s intrinsic architecture toward optimizing locally functional organization, with great implications for understanding the effects of TCC on cognition, behavior and health in aging population. PMID:24860494

  18. Aromatase in the brain: not just for reproduction anymore.

    PubMed

    Garcia-Segura, L M

    2008-06-01

    Aromatase, the enzyme that synthesises oestrogens from androgen precursors, is expressed in the brain, where it has been classically associated with the regulation of neuroendocrine events and behaviours linked with reproduction. Recent findings, however, have revealed new unexpected roles for brain aromatase, indicating that the enzyme regulates synaptic activity, synaptic plasticity, neurogenesis and the response of neural tissue to injury, and may contribute to control nonreproductive behaviours, mood and cognition. Therefore, the function of brain aromatase is not restricted to the regulation of reproduction as previously thought.

  19. Relationship Between Non-invasive Brain Stimulation-induced Plasticity and Capacity for Motor Learning.

    PubMed

    López-Alonso, Virginia; Cheeran, Binith; Fernández-del-Olmo, Miguel

    2015-01-01

    Cortical plasticity plays a key role in motor learning (ML). Non-invasive brain stimulation (NIBS) paradigms have been used to modulate plasticity in the human motor cortex in order to facilitate ML. However, little is known about the relationship between NIBS-induced plasticity over M1 and ML capacity. NIBS-induced MEP changes are related to ML capacity. 56 subjects participated in three NIBS (paired associative stimulation, anodal transcranial direct current stimulation and intermittent theta-burst stimulation), and in three lab-based ML task (serial reaction time, visuomotor adaptation and sequential visual isometric pinch task) sessions. After clustering the patterns of response to the different NIBS protocols, we compared the ML variables between the different patterns found. We used regression analysis to explore further the relationship between ML capacity and summary measures of the MEPs change. We ran correlations with the "responders" group only. We found no differences in ML variables between clusters. Greater response to NIBS protocols may be predictive of poor performance within certain blocks of the VAT. "Responders" to AtDCS and to iTBS showed significantly faster reaction times than "non-responders." However, the physiological significance of these results is uncertain. MEP changes induced in M1 by PAS, AtDCS and iTBS appear to have little, if any, association with the ML capacity tested with the SRTT, the VAT and the SVIPT. However, cortical excitability changes induced in M1 by AtDCS and iTBS may be related to reaction time and retention of newly acquired skills in certain motor learning tasks. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Intraoperative Functional Ultrasound Imaging of Human Brain Activity.

    PubMed

    Imbault, Marion; Chauvet, Dorian; Gennisson, Jean-Luc; Capelle, Laurent; Tanter, Mickael

    2017-08-04

    The functional mapping of brain activity is essential to perform optimal glioma surgery and to minimize the risk of postoperative deficits. We introduce a new, portable neuroimaging modality of the human brain based on functional ultrasound (fUS) for deep functional cortical mapping. Using plane-wave transmissions at an ultrafast frame rate (1 kHz), fUS is performed during surgery to measure transient changes in cerebral blood volume with a high spatiotemporal resolution (250 µm, 1 ms). fUS identifies, maps and differentiates regions of brain activation during task-evoked cortical responses within the depth of a sulcus in both awake and anaesthetized patients.

  1. Does puberty mark a transition in sensitive periods for plasticity in the associative neocortex?

    PubMed Central

    Piekarski, David J.; Johnson, Carolyn; Boivin, Josiah R.; Thomas, A. Wren; Lin, Wan Chen; Delevich, Kristen; Galarce, Ezequiel; Wilbrecht, Linda

    2016-01-01

    Postnatal brain development is studded with sensitive periods during which experience dependent plasticity is enhanced. This enables rapid learning from environmental inputs and reorganization of cortical circuits that matches behavior with environmental contingencies. Significant headway has been achieved in characterizing and understanding sensitive period biology in primary sensory cortices, but relatively little is known about sensitive period biology in associative neocortex. One possible mediator is the onset of puberty, which marks the transition to adolescence, when animals shift their behavior toward gaining independence and exploring their social world. Puberty onset correlates with reduced behavioral plasticity in some domains and enhanced plasticity in others, and therefore may drive the transition from juvenile to adolescent brain function. Pubertal onset is also occurring earlier in developed nations, particularly in unserved populations, and earlier puberty is associated with vulnerability for substance use, depression and anxiety. In the present article we review the evidence that supports a causal role for puberty in developmental changes in the function and neurobiology of the associative neocortex. We also propose a model for how pubertal hormones may regulate sensitive period plasticity in associative neocortex. We conclude that the evidence suggests puberty onset may play a causal role in some aspects of associative neocortical development, but that further research that manipulates puberty and measures gonadal hormones is required. We argue that further work of this kind is urgently needed to determine how earlier puberty may negatively impact human health and learning potential. PMID:27590721

  2. Regional brain volumetry and brain function in severely brain-injured patients.

    PubMed

    Annen, Jitka; Frasso, Gianluca; Crone, Julia Sophia; Heine, Lizette; Di Perri, Carol; Martial, Charlotte; Cassol, Helena; Demertzi, Athena; Naccache, Lionel; Laureys, Steven

    2018-04-01

    The relationship between residual brain tissue in patients with disorders of consciousness (DOC) and the clinical condition is unclear. This observational study aimed to quantify gray (GM) and white matter (WM) atrophy in states of (altered) consciousness. Structural T1-weighted magnetic resonance images were processed for 102 severely brain-injured and 52 healthy subjects. Regional brain volume was quantified for 158 (sub)cortical regions using Freesurfer. The relationship between regional brain volume and clinical characteristics of patients with DOC and conscious brain-injured patients was assessed using a linear mixed-effects model. Classification of patients with unresponsive wakefulness syndrome (UWS) and minimally conscious state (MCS) using regional volumetric information was performed and compared to classification using cerebral glucose uptake from fluorodeoxyglucose positron emission tomography. For validation, the T1-based classifier was tested on independent datasets. Patients were characterized by smaller regional brain volumes than healthy subjects. Atrophy occurred faster in UWS compared to MCS (GM) and conscious (GM and WM) patients. Classification was successful (misclassification with leave-one-out cross-validation between 2% and 13%) and generalized to the independent data set with an area under the receiver operator curve of 79% (95% confidence interval [CI; 67-91.5]) for GM and 70% (95% CI [55.6-85.4]) for WM. Brain volumetry at the single-subject level reveals that regions in the default mode network and subcortical gray matter regions, as well as white matter regions involved in long range connectivity, are most important to distinguish levels of consciousness. Our findings suggest that changes of brain structure provide information in addition to the assessment of functional neuroimaging and thus should be evaluated as well. Ann Neurol 2018;83:842-853. © 2018 American Neurological Association.

  3. Plasticity in the prefrontal cortex of adult rats

    PubMed Central

    Kolb, Bryan; Gibb, Robbin

    2015-01-01

    We review the plastic changes of the prefrontal cortex of the rat in response to a wide range of experiences including sensory and motor experience, gonadal hormones, psychoactive drugs, learning tasks, stress, social experience, metaplastic experiences, and brain injury. Our focus is on synaptic changes (dendritic morphology and spine density) in pyramidal neurons and the relationship to behavioral changes. The most general conclusion we can reach is that the prefrontal cortex is extremely plastic and that the medial and orbital prefrontal regions frequently respond very differently to the same experience in the same brain and the rules that govern prefrontal plasticity appear to differ for those of other cortical regions. PMID:25691857

  4. Evidence for hubs in human functional brain networks

    PubMed Central

    Power, Jonathan D; Schlaggar, Bradley L; Lessov-Schlaggar, Christina N; Petersen, Steven E

    2013-01-01

    Summary Hubs integrate and distribute information in powerful ways due to the number and positioning of their contacts in a network. Several resting state functional connectivity MRI reports have implicated regions of the default mode system as brain hubs; we demonstrate that previous degree-based approaches to hub identification may have identified portions of large brain systems rather than critical nodes of brain networks. We utilize two methods to identify hub-like brain regions: 1) finding network nodes that participate in multiple sub-networks of the brain, and 2) finding spatial locations where several systems are represented within a small volume. These methods converge on a distributed set of regions that differ from previous reports on hubs. This work identifies regions that support multiple systems, leading to spatially constrained predictions about brain function that may be tested in terms of lesions, evoked responses, and dynamic patterns of activity. PMID:23972601

  5. Artificial neuron operations and spike-timing-dependent plasticity using memristive devices for brain-inspired computing

    NASA Astrophysics Data System (ADS)

    Marukame, Takao; Nishi, Yoshifumi; Yasuda, Shin-ichi; Tanamoto, Tetsufumi

    2018-04-01

    The use of memristive devices for creating artificial neurons is promising for brain-inspired computing from the viewpoints of computation architecture and learning protocol. We present an energy-efficient multiplier accumulator based on a memristive array architecture incorporating both analog and digital circuitries. The analog circuitry is used to full advantage for neural networks, as demonstrated by the spike-timing-dependent plasticity (STDP) in fabricated AlO x /TiO x -based metal-oxide memristive devices. STDP protocols for controlling periodic analog resistance with long-range stability were experimentally verified using a variety of voltage amplitudes and spike timings.

  6. The relationship between spatial configuration and functional connectivity of brain regions

    PubMed Central

    Woolrich, Mark W; Glasser, Matthew F; Robinson, Emma C; Beckmann, Christian F; Van Essen, David C

    2018-01-01

    Brain connectivity is often considered in terms of the communication between functionally distinct brain regions. Many studies have investigated the extent to which patterns of coupling strength between multiple neural populations relates to behaviour. For example, studies have used ‘functional connectivity fingerprints’ to characterise individuals' brain activity. Here, we investigate the extent to which the exact spatial arrangement of cortical regions interacts with measures of brain connectivity. We find that the shape and exact location of brain regions interact strongly with the modelling of brain connectivity, and present evidence that the spatial arrangement of functional regions is strongly predictive of non-imaging measures of behaviour and lifestyle. We believe that, in many cases, cross-subject variations in the spatial configuration of functional brain regions are being interpreted as changes in functional connectivity. Therefore, a better understanding of these effects is important when interpreting the relationship between functional imaging data and cognitive traits. PMID:29451491

  7. The relationship between spatial configuration and functional connectivity of brain regions.

    PubMed

    Bijsterbosch, Janine Diane; Woolrich, Mark W; Glasser, Matthew F; Robinson, Emma C; Beckmann, Christian F; Van Essen, David C; Harrison, Samuel J; Smith, Stephen M

    2018-02-16

    Brain connectivity is often considered in terms of the communication between functionally distinct brain regions. Many studies have investigated the extent to which patterns of coupling strength between multiple neural populations relates to behaviour. For example, studies have used 'functional connectivity fingerprints' to characterise individuals' brain activity. Here, we investigate the extent to which the exact spatial arrangement of cortical regions interacts with measures of brain connectivity. We find that the shape and exact location of brain regions interact strongly with the modelling of brain connectivity, and present evidence that the spatial arrangement of functional regions is strongly predictive of non-imaging measures of behaviour and lifestyle. We believe that, in many cases, cross-subject variations in the spatial configuration of functional brain regions are being interpreted as changes in functional connectivity. Therefore, a better understanding of these effects is important when interpreting the relationship between functional imaging data and cognitive traits. © 2018, Bijsterbosch et al.

  8. [Determinism and Freedom of Choice in the Brain Functioning].

    PubMed

    Ivanitsky, A M

    2015-01-01

    The problem is considered whether the brain response is completely determined by the stimulus and the personal experience or in some cases the brain is free to choose its behavioral response to achieve the desired goal. The attempt is made to approach to this important philosophical problem basing on modern knowledge about the brain. The paper consists of four parts. In the first part the theoretical views about the free choice problem solving are considered, including views about the freedom of choice as a useful illusion, the hypothesis on appliance of quantum mechanics laws to the brain functioning and the theory of mentalism. In other tree parts consequently the more complicated brain functions such as choice reaction, thinking and creation are analyzed. The general conclusion is that the possibility of quite unpredictable, but sometimes very effective decisions increases when the brain functions are more and more complicated. This fact can be explained with two factors: increasing stochasticity of the brain processes and the role of top-down determinations from mental to neural levels, according to the theory of mentalism.

  9. From Brain-Environment Connections to Temporal Dynamics and Social Interaction: Principles of Human Brain Function.

    PubMed

    Hari, Riitta

    2017-06-07

    Experimental data about brain function accumulate faster than does our understanding of how the brain works. To tackle some general principles at the grain level of behavior, I start from the omnipresent brain-environment connection that forces regularities of the physical world to shape the brain. Based on top-down processing, added by sparse sensory information, people are able to form individual "caricature worlds," which are similar enough to be shared among other people and which allow quick and purposeful reactions to abrupt changes. Temporal dynamics and social interaction in natural environments serve as further essential organizing principles of human brain function. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Mapping Functional Brain Development: Building a Social Brain through Interactive Specialization

    ERIC Educational Resources Information Center

    Johnson, Mark H.; Grossmann, Tobias; Kadosh, Kathrin Cohen

    2009-01-01

    The authors review a viewpoint on human functional brain development, interactive specialization (IS), and its application to the emerging network of cortical regions referred to as the "social brain." They advance the IS view in 2 new ways. First, they extend IS into a domain to which it has not previously been applied--the emergence of social…

  11. Simultaneous Brain–Cervical Cord fMRI Reveals Intrinsic Spinal Cord Plasticity during Motor Sequence Learning

    PubMed Central

    Cohen-Adad, Julien; Marchand-Pauvert, Veronique; Benali, Habib; Doyon, Julien

    2015-01-01

    The spinal cord participates in the execution of skilled movements by translating high-level cerebral motor representations into musculotopic commands. Yet, the extent to which motor skill acquisition relies on intrinsic spinal cord processes remains unknown. To date, attempts to address this question were limited by difficulties in separating spinal local effects from supraspinal influences through traditional electrophysiological and neuroimaging methods. Here, for the first time, we provide evidence for local learning-induced plasticity in intact human spinal cord through simultaneous functional magnetic resonance imaging of the brain and spinal cord during motor sequence learning. Specifically, we show learning-related modulation of activity in the C6–C8 spinal region, which is independent from that of related supraspinal sensorimotor structures. Moreover, a brain–spinal cord functional connectivity analysis demonstrates that the initial linear relationship between the spinal cord and sensorimotor cortex gradually fades away over the course of motor sequence learning, while the connectivity between spinal activity and cerebellum gains strength. These data suggest that the spinal cord not only constitutes an active functional component of the human motor learning network but also contributes distinctively from the brain to the learning process. The present findings open new avenues for rehabilitation of patients with spinal cord injuries, as they demonstrate that this part of the central nervous system is much more plastic than assumed before. Yet, the neurophysiological mechanisms underlying this intrinsic functional plasticity in the spinal cord warrant further investigations. PMID:26125597

  12. Joint Attention and Brain Functional Connectivity in Infants and Toddlers

    PubMed Central

    Eggebrecht, Adam T.; Elison, Jed T.; Feczko, Eric; Todorov, Alexandre; Wolff, Jason J.; Kandala, Sridhar; Adams, Chloe M.; Snyder, Abraham Z.; Lewis, John D.; Estes, Annette M.; Zwaigenbaum, Lonnie; Botteron, Kelly N.; McKinstry, Robert C.; Constantino, John N.; Evans, Alan; Hazlett, Heather C.; Dager, Stephen; Paterson, Sarah J.; Schultz, Robert T.; Styner, Martin A.; Gerig, Guido; Das, Samir; Kostopoulos, Penelope; Schlaggar, Bradley L.; Petersen, Steven E.; Piven, Joseph; Pruett, John R.

    2017-01-01

    Abstract Initiating joint attention (IJA), the behavioral instigation of coordinated focus of 2 people on an object, emerges over the first 2 years of life and supports social-communicative functioning related to the healthy development of aspects of language, empathy, and theory of mind. Deficits in IJA provide strong early indicators for autism spectrum disorder, and therapies targeting joint attention have shown tremendous promise. However, the brain systems underlying IJA in early childhood are poorly understood, due in part to significant methodological challenges in imaging localized brain function that supports social behaviors during the first 2 years of life. Herein, we show that the functional organization of the brain is intimately related to the emergence of IJA using functional connectivity magnetic resonance imaging and dimensional behavioral assessments in a large semilongitudinal cohort of infants and toddlers. In particular, though functional connections spanning the brain are involved in IJA, the strongest brain-behavior associations cluster within connections between a small subset of functional brain networks; namely between the visual network and dorsal attention network and between the visual network and posterior cingulate aspects of the default mode network. These observations mark the earliest known description of how functional brain systems underlie a burgeoning fundamental social behavior, may help improve the design of targeted therapies for neurodevelopmental disorders, and, more generally, elucidate physiological mechanisms essential to healthy social behavior development. PMID:28062515

  13. Graph analysis of functional brain networks: practical issues in translational neuroscience

    PubMed Central

    De Vico Fallani, Fabrizio; Richiardi, Jonas; Chavez, Mario; Achard, Sophie

    2014-01-01

    The brain can be regarded as a network: a connected system where nodes, or units, represent different specialized regions and links, or connections, represent communication pathways. From a functional perspective, communication is coded by temporal dependence between the activities of different brain areas. In the last decade, the abstract representation of the brain as a graph has allowed to visualize functional brain networks and describe their non-trivial topological properties in a compact and objective way. Nowadays, the use of graph analysis in translational neuroscience has become essential to quantify brain dysfunctions in terms of aberrant reconfiguration of functional brain networks. Despite its evident impact, graph analysis of functional brain networks is not a simple toolbox that can be blindly applied to brain signals. On the one hand, it requires the know-how of all the methodological steps of the pipeline that manipulate the input brain signals and extract the functional network properties. On the other hand, knowledge of the neural phenomenon under study is required to perform physiologically relevant analysis. The aim of this review is to provide practical indications to make sense of brain network analysis and contrast counterproductive attitudes. PMID:25180301

  14. Traumatic brain injury shows better functional recovery than brain tumor: a rehabilitative perspective.

    PubMed

    Bilgin, S; Kose, N; Karakaya, J; Mut, M

    2014-02-01

    The similar symptoms seen in the brain tumor (BT) and traumatic brain injury (TBI) population. However, functional comparisons between these two diagnostic groups have been limited. To compare functional outcomes in patients with supratentorial BT and TBI after early rehabilitation. This was a retrospective database analysis. Setting. Patients admitted to an Acute Care Unit as inpatient (Hacettepe Hospital, Ankara-Turkey). Population. The population included patients with BT and TBI. Thirty-four patients with BT and TBI were matched one-to-one by lesion side and sex. The Barthel Index was used to assess functional status at the pre- and postrehabilitation. The change rate and efficiency in BI were also calculated. The time between injury onset and admission to rehabilitation (the onset to admission interval, OAI) and length of stay in rehabilitation (LOS rehab) were recorded. In addition, the influence of lesion side (left and right) and age on functional outcome were analyzed. The functional level was significantly lower in TBI patients than in patients BT before rehabilitation (P<0.05). The post-rehabilitation BI score was similar in patients with BT and TBI (P>0.05). Patients with TBI had greater the change rate and efficiency in BI (P<0.05). The OAI and LOS rehab was longer in patients with TBI (P<0.05). In terms of lesion side comparisons, no differences were found (P>0.05). The age had no effect on functional outcome in patients with TBI and BT (P>0.05), expect the age group 45-59 (P<0.05). The early rehabilitation program improved functional ability of patients with brain tumors, as well as patients with traumatic brain injury. Despite the lower functional status, patients with TBI displayed better functional recovery than patients with BT. Lesion side had no effect on functional outcome in patients with TBI and BT. Differences in functional status begin to appear even in patients with TBI between 45 and 59 years. Further investigations with more detailed

  15. Psychotropic medication, psychiatric disorders, and higher brain functions

    PubMed Central

    Schulz, Pierre; Steimer, Thierry

    2000-01-01

    Conventional psychiatric diagnosis is founded on symptom description; this then governs the choice of psychotropic medication. This purely descriptive approach resembles a description of diphtheria from the premicrobiology era. Based on current advances in basic and clinical neuroscience, we propose inserting an intermediate level of analysis between psychiatric symptoms and pharmacologic modes of action. Paradigm 1 is to analyze psychiatric symptoms in terms of which higher brain function(s) is (are) abnormal, ie, symptoms should be analyzed as higher brain dysfunction: a case study in obsessive-compulsive disorder reveals pointers in four common symptoms to the higher functions of working memory, emotional overlay, absence of voluntary control, and the ability to evaluate personal mental phenomena. Paradigm 2 is to view psychotropic drugs as modifying normal higher brain functions, rather than merely treating symptoms, which they do only secondarily: thus depression may respond to agents that act on related aspects of mental life derived from higher brain functions, eg, the ability to enhance bonding. We advocate a strategy in which psychiatric illness is progressively reclassified through knowledge in clinical neuroscience and treatment targets are revised accordingly. PMID:22034249

  16. Functional magnetic resonance imaging reflects changes in brain functioning with sedation.

    PubMed

    Starbuck, Victoria N; Kay, Gary G; Platenberg, R. Craig; Lin, Chin-Shoou; Zielinski, Brandon A

    2000-12-01

    Functional magnetic resonance imaging (fMRI) studies have demonstrated localized brain activation during cognitive tasks. Brain activation increases with task complexity and decreases with familiarity. This study investigates how sleepiness alters the relationship between brain activation and task familiarity. We hypothesize that sleepiness prevents the reduction in activation associated with practice. Twenty-nine individuals rated their sleepiness using the Stanford Sleepiness Scale before fMRI. During imaging, subjects performed the Paced Auditory Serial Addition Test, a continuous mental arithmetic task. A positive correlation was observed between self-rated sleepiness and frontal brain activation. Fourteen subjects participated in phase 2. Sleepiness was induced by evening dosing with chlorpheniramine (CP) (8 mg or 12 mg) and terfenadine (60 mg) in the morning for 3 days before the second fMRI scan. The Multiple Sleep Latency Test (MSLT) was also performed. Results revealed a significant increase in fMRI activation in proportion to the dose of CP. In contrast, for all subjects receiving placebo there was a reduction in brain activation. MSLT revealed significant daytime sleepiness for subjects receiving CP. These findings suggest that sleepiness interferes with efficiency of brain functioning. The sleepy or sedated brain shows increased oxygen utilization during performance of a familiar cognitive task. Thus, the beneficial effect of prior task exposure is lost under conditions of sedation. Copyright 2000 John Wiley & Sons, Ltd.

  17. Permeabilization of brain tissue in situ enables multiregion analysis of mitochondrial function in a single mouse brain.

    PubMed

    Herbst, Eric A F; Holloway, Graham P

    2015-02-15

    Mitochondrial function in the brain is traditionally assessed through analysing respiration in isolated mitochondria, a technique that possesses significant tissue and time requirements while also disrupting the cooperative mitochondrial reticulum. We permeabilized brain tissue in situ to permit analysis of mitochondrial respiration with the native mitochondrial morphology intact, removing the need for isolation time and minimizing tissue requirements to ∼2 mg wet weight. The permeabilized brain technique was validated against the traditional method of isolated mitochondria and was then further applied to assess regional variation in the mouse brain with ischaemia-reperfusion injuries. A transgenic mouse model overexpressing catalase within mitochondria was applied to show the contribution of mitochondrial reactive oxygen species to ischaemia-reperfusion injuries in different brain regions. This technique enhances the accessibility of addressing physiological questions in small brain regions and in applying transgenic mouse models to assess mechanisms regulating mitochondrial function in health and disease. Mitochondria function as the core energy providers in the brain and symptoms of neurodegenerative diseases are often attributed to their dysregulation. Assessing mitochondrial function is classically performed in isolated mitochondria; however, this process requires significant isolation time, demand for abundant tissue and disruption of the cooperative mitochondrial reticulum, all of which reduce reliability when attempting to assess in vivo mitochondrial bioenergetics. Here we introduce a method that advances the assessment of mitochondrial respiration in the brain by permeabilizing existing brain tissue to grant direct access to the mitochondrial reticulum in situ. The permeabilized brain preparation allows for instant analysis of mitochondrial function with unaltered mitochondrial morphology using significantly small sample sizes (∼2 mg), which permits

  18. Revealing topological organization of human brain functional networks with resting-state functional near infrared spectroscopy.

    PubMed

    Niu, Haijing; Wang, Jinhui; Zhao, Tengda; Shu, Ni; He, Yong

    2012-01-01

    The human brain is a highly complex system that can be represented as a structurally interconnected and functionally synchronized network, which assures both the segregation and integration of information processing. Recent studies have demonstrated that a variety of neuroimaging and neurophysiological techniques such as functional magnetic resonance imaging (MRI), diffusion MRI and electroencephalography/magnetoencephalography can be employed to explore the topological organization of human brain networks. However, little is known about whether functional near infrared spectroscopy (fNIRS), a relatively new optical imaging technology, can be used to map functional connectome of the human brain and reveal meaningful and reproducible topological characteristics. We utilized resting-state fNIRS (R-fNIRS) to investigate the topological organization of human brain functional networks in 15 healthy adults. Brain networks were constructed by thresholding the temporal correlation matrices of 46 channels and analyzed using graph-theory approaches. We found that the functional brain network derived from R-fNIRS data had efficient small-world properties, significant hierarchical modular structure and highly connected hubs. These results were highly reproducible both across participants and over time and were consistent with previous findings based on other functional imaging techniques. Our results confirmed the feasibility and validity of using graph-theory approaches in conjunction with optical imaging techniques to explore the topological organization of human brain networks. These results may expand a methodological framework for utilizing fNIRS to study functional network changes that occur in association with development, aging and neurological and psychiatric disorders.

  19. Genetic Otx2 mis-localization delays critical period plasticity across brain regions.

    PubMed

    Lee, H H C; Bernard, C; Ye, Z; Acampora, D; Simeone, A; Prochiantz, A; Di Nardo, A A; Hensch, T K

    2017-05-01

    Accumulation of non-cell autonomous Otx2 homeoprotein in postnatal mouse visual cortex (V1) has been implicated in both the onset and closure of critical period (CP) plasticity. Here, we show that a genetic point mutation in the glycosaminoglycan recognition motif of Otx2 broadly delays the maturation of pivotal parvalbumin-positive (PV+) interneurons not only in V1 but also in the primary auditory (A1) and medial prefrontal cortex (mPFC). Consequently, not only visual, but also auditory plasticity is delayed, including the experience-dependent expansion of tonotopic maps in A1 and the acquisition of acoustic preferences in mPFC, which mitigates anxious behavior. In addition, Otx2 mis-localization leads to dynamic turnover of selected perineuronal net (PNN) components well beyond the normal CP in V1 and mPFC. These findings reveal widespread actions of Otx2 signaling in the postnatal cortex controlling the maturational trajectory across modalities. Disrupted PV+ network function and deficits in PNN integrity are implicated in a variety of psychiatric illnesses, suggesting a potential global role for Otx2 function in establishing mental health.

  20. Functional split brain in a driving/listening paradigm.

    PubMed

    Sasai, Shuntaro; Boly, Melanie; Mensen, Armand; Tononi, Giulio

    2016-12-13

    We often engage in two concurrent but unrelated activities, such as driving on a quiet road while listening to the radio. When we do so, does our brain split into functionally distinct entities? To address this question, we imaged brain activity with fMRI in experienced drivers engaged in a driving simulator while listening either to global positioning system instructions (integrated task) or to a radio show (split task). We found that, compared with the integrated task, the split task was characterized by reduced multivariate functional connectivity between the driving and listening networks. Furthermore, the integrated information content of the two networks, predicting their joint dynamics above and beyond their independent dynamics, was high in the integrated task and zero in the split task. Finally, individual subjects' ability to switch between high and low information integration predicted their driving performance across integrated and split tasks. This study raises the possibility that under certain conditions of daily life, a single brain may support two independent functional streams, a "functional split brain" similar to what is observed in patients with an anatomical split.

  1. Plasticity of Intact Rubral Projections Mediates Spontaneous Recovery of Function after Corticospinal Tract Injury

    PubMed Central

    Siegel, Chad S.; Fink, Kathren L.; Strittmatter, Stephen M.

    2015-01-01

    Axons in the adult CNS fail to regenerate after injury, and therefore recovery from spinal cord injury (SCI) is limited. Although full recovery is rare, a modest degree of spontaneous recovery is observed consistently in a broad range of clinical and nonclinical situations. To define the mechanisms mediating spontaneous recovery of function after incomplete SCI, we created bilaterally complete medullary corticospinal tract lesions in adult mice, eliminating a crucial pathway for voluntary skilled movement. Anatomic and pharmacogenetic tools were used to identify the pathways driving spontaneous functional recovery in wild-type and plasticity-sensitized mice lacking Nogo receptor 1. We found that plasticity-sensitized mice recovered 50% of normal skilled locomotor function within 5 weeks of lesion. This significant, yet incomplete, spontaneous recovery was accompanied by extensive sprouting of intact rubrofugal and rubrospinal projections with the emergence of a de novo circuit between the red nucleus and the nucleus raphe magnus. Transient silencing of this rubro–raphe circuit in vivo via activation of the inhibitory DREADD (designer receptor exclusively activated by designer drugs) receptor hM4di abrogated spontaneous functional recovery. These data highlight the pivotal role of uninjured motor circuit plasticity in supporting functional recovery after trauma, and support a focus of experimental strategies on enhancing intact circuit rearrangement to promote functional recovery after SCI. PMID:25632122

  2. Confounding Brain Stem Function During Pediatric Brain Death Determination: Two Case Reports.

    PubMed

    Hansen, Gregory; Joffe, Ari R

    2017-06-01

    A patient who has been declared brain dead is considered to be both legally and clinically dead. However, we report 2 pediatric cases in which the patients demonstrated clinical signs of brain stem function that are not recognized or tested in current Canadian or US guidelines.

  3. Sleep and Plasticity in Schizophrenia

    PubMed Central

    Sprecher, Kate E.; Ferrarelli, Fabio

    2016-01-01

    Schizophrenia is a devastating mental illness with a worldwide prevalence of approximately 1 %. Although the clinical features of the disorder were described over one hundred years ago, its neurobiology is still largely elusive despite several decades of research. Schizophrenia is associated with marked sleep disturbances and memory impairment. Above and beyond altered sleep architecture, sleep rhythms including slow waves and spindles are disrupted in schizophrenia. In the healthy brain, these rhythms reflect and participate in plastic processes during sleep. This chapter discusses evidence that schizophrenia patients exhibit dysfunction of sleep-mediated plasticity on a behavioral, cellular, and molecular level and offers suggestions on how the study of sleeping brain activity can shed light on the pathophysiological mechanisms of the disorder. PMID:25608723

  4. Relationship between diet, the gut microbiota, and brain function.

    PubMed

    Tengeler, Anouk C; Kozicz, Tamas; Kiliaan, Amanda J

    2018-04-28

    The human intestinal microbiota, comprising trillions of microorganisms, exerts a substantial effect on the host. The microbiota plays essential roles in the function and development of several physiological processes, including those in the brain. A disruption in the microbial composition of the gut has been associated with many metabolic, inflammatory, neurodevelopmental, and neurodegenerative disorders. Nutrition is one of several key factors that shape the microbial composition during infancy and throughout life, thereby affecting brain structure and function. This review examines the effect of the gut microbiota on brain function. The ability of external factors, such as diet, to influence the microbial composition implies a certain vulnerability of the gut microbiota. However, it also offers a potential therapeutic strategy for ameliorating symptoms of mental and physical disorders. Therefore, this review examines the potential effect of nutritional components on gut microbial composition and brain function.

  5. Reconciling Stable Asymmetry with Recovery of Function: An Adaptive Systems Perspective on Functional Plasticity.

    ERIC Educational Resources Information Center

    Bullock, Daniel; And Others

    1987-01-01

    This commentary, written in response to Witelson's work (1987), examines alternative ways of determining how the developmentally stable functional asymmetry (hemispheric specialization) observed in neurologically intact children can be reconciled with the dramatic recovery of function often displayed following unilateral brain damage. (PCB)

  6. Functional electrical stimulation-facilitated proliferation and regeneration of neural precursor cells in the brains of rats with cerebral infarction

    PubMed Central

    Xiang, Yun; Liu, Huihua; Yan, Tiebin; Zhuang, Zhiqiang; Jin, Dongmei; Peng, Yuan

    2014-01-01

    Previous studies have shown that proliferation of endogenous neural precursor cells cannot alone compensate for the damage to neurons and axons. From the perspective of neural plasticity, we observed the effects of functional electrical stimulation treatment on endogenous neural precursor cell proliferation and expression of basic fibroblast growth factor and epidermal growth factor in the rat brain on the infarct side. Functional electrical stimulation was performed in rat models of acute middle cerebral artery occlusion. Simultaneously, we set up a placebo stimulation group and a sham-operated group. Immunohistochemical staining showed that, at 7 and 14 days, compared with the placebo group, the numbers of nestin (a neural precursor cell marker)-positive cells in the subgranular zone and subventricular zone were increased in the functional electrical stimulation treatment group. Western blot assays and reverse-transcription PCR showed that total protein levels and gene expression of epidermal growth factor and basic fibroblast growth factor were also upregulated on the infarct side. Prehensile traction test results showed that, at 14 days, prehension function of rats in the functional electrical stimulation group was significantly better than in the placebo group. These results suggest that functional electrical stimulation can promote endogenous neural precursor cell proliferation in the brains of acute cerebral infarction rats, enhance expression of basic fibroblast growth factor and epidermal growth factor, and improve the motor function of rats. PMID:25206808

  7. Joint Attention and Brain Functional Connectivity in Infants and Toddlers.

    PubMed

    Eggebrecht, Adam T; Elison, Jed T; Feczko, Eric; Todorov, Alexandre; Wolff, Jason J; Kandala, Sridhar; Adams, Chloe M; Snyder, Abraham Z; Lewis, John D; Estes, Annette M; Zwaigenbaum, Lonnie; Botteron, Kelly N; McKinstry, Robert C; Constantino, John N; Evans, Alan; Hazlett, Heather C; Dager, Stephen; Paterson, Sarah J; Schultz, Robert T; Styner, Martin A; Gerig, Guido; Das, Samir; Kostopoulos, Penelope; Schlaggar, Bradley L; Petersen, Steven E; Piven, Joseph; Pruett, John R

    2017-03-01

    Initiating joint attention (IJA), the behavioral instigation of coordinated focus of 2 people on an object, emerges over the first 2 years of life and supports social-communicative functioning related to the healthy development of aspects of language, empathy, and theory of mind. Deficits in IJA provide strong early indicators for autism spectrum disorder, and therapies targeting joint attention have shown tremendous promise. However, the brain systems underlying IJA in early childhood are poorly understood, due in part to significant methodological challenges in imaging localized brain function that supports social behaviors during the first 2 years of life. Herein, we show that the functional organization of the brain is intimately related to the emergence of IJA using functional connectivity magnetic resonance imaging and dimensional behavioral assessments in a large semilongitudinal cohort of infants and toddlers. In particular, though functional connections spanning the brain are involved in IJA, the strongest brain-behavior associations cluster within connections between a small subset of functional brain networks; namely between the visual network and dorsal attention network and between the visual network and posterior cingulate aspects of the default mode network. These observations mark the earliest known description of how functional brain systems underlie a burgeoning fundamental social behavior, may help improve the design of targeted therapies for neurodevelopmental disorders, and, more generally, elucidate physiological mechanisms essential to healthy social behavior development. © The Author 2017. Published by Oxford University Press.

  8. Spectral mapping of brain functional connectivity from diffusion imaging.

    PubMed

    Becker, Cassiano O; Pequito, Sérgio; Pappas, George J; Miller, Michael B; Grafton, Scott T; Bassett, Danielle S; Preciado, Victor M

    2018-01-23

    Understanding the relationship between the dynamics of neural processes and the anatomical substrate of the brain is a central question in neuroscience. On the one hand, modern neuroimaging technologies, such as diffusion tensor imaging, can be used to construct structural graphs representing the architecture of white matter streamlines linking cortical and subcortical structures. On the other hand, temporal patterns of neural activity can be used to construct functional graphs representing temporal correlations between brain regions. Although some studies provide evidence that whole-brain functional connectivity is shaped by the underlying anatomy, the observed relationship between function and structure is weak, and the rules by which anatomy constrains brain dynamics remain elusive. In this article, we introduce a methodology to map the functional connectivity of a subject at rest from his or her structural graph. Using our methodology, we are able to systematically account for the role of structural walks in the formation of functional correlations. Furthermore, in our empirical evaluations, we observe that the eigenmodes of the mapped functional connectivity are associated with activity patterns associated with different cognitive systems.

  9. Brain Stimulation in Addiction

    PubMed Central

    Salling, Michael C; Martinez, Diana

    2016-01-01

    Localized stimulation of the human brain to treat neuropsychiatric disorders has been in place for over 20 years. Although these methods have been used to a greater extent for mood and movement disorders, recent work has explored brain stimulation methods as potential treatments for addiction. The rationale behind stimulation therapy in addiction involves reestablishing normal brain function in target regions in an effort to dampen addictive behaviors. In this review, we present the rationale and studies investigating brain stimulation in addiction, including transcranial magnetic stimulation, transcranial direct current stimulation, and deep brain stimulation. Overall, these studies indicate that brain stimulation has an acute effect on craving for drugs and alcohol, but few studies have investigated the effect of brain stimulation on actual drug and alcohol use or relapse. Stimulation therapies may achieve their effect through direct or indirect modulation of brain regions involved in addiction, either acutely or through plastic changes in neuronal transmission. Although these mechanisms are not well understood, further identification of the underlying neurobiology of addiction and rigorous evaluation of brain stimulation methods has the potential for unlocking an effective, long-term treatment of addiction. PMID:27240657

  10. The role of the immune system in central nervous system plasticity after acute injury.

    PubMed

    Peruzzotti-Jametti, Luca; Donegá, Matteo; Giusto, Elena; Mallucci, Giulia; Marchetti, Bianca; Pluchino, Stefano

    2014-12-26

    Acute brain injuries cause rapid cell death that activates bidirectional crosstalk between the injured brain and the immune system. In the acute phase, the damaged CNS activates resident and circulating immune cells via the local and systemic release of soluble mediators. This early immune activation is necessary to confine the injured tissue and foster the clearance of cellular debris, thus bringing the inflammatory reaction to a close. In the chronic phase, a sustained immune activation has been described in many CNS disorders, and the degree of this prolonged response has variable effects on spontaneous brain regenerative processes. The challenge for treating acute CNS damage is to understand how to optimally engage and modify these immune responses, thus providing new strategies that will compensate for tissue lost to injury. Herein we have reviewed the available information regarding the role and function of the innate and adaptive immune responses in influencing CNS plasticity during the acute and chronic phases of after injury. We have examined how CNS damage evolves along the activation of main cellular and molecular pathways that are associated with intrinsic repair, neuronal functional plasticity and facilitation of tissue reorganization. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  11. GRASP1 regulates synaptic plasticity and learning through endosomal recycling of AMPA receptors

    PubMed Central

    Chiu, Shu-Ling; Diering, Graham Hugh; Ye, Bing; Takamiya, Kogo; Chen, Chih-Ming; Jiang, Yuwu; Niranjan, Tejasvi; Schwartz, Charles E.; Wang, Tao; Huganir, Richard L.

    2017-01-01

    Summary Learning depends on experience-dependent modification of synaptic efficacy and neuronal connectivity in the brain. We provide direct evidence for physiological roles of the recycling endosome protein GRASP1 in glutamatergic synapse function and animal behavior. Mice lacking GRASP1 showed abnormal excitatory synapse number, synaptic plasticity and hippocampal-dependent learning and memory due to a failure in learning-induced synaptic AMPAR incorporation. We identified two GRASP1 point mutations from intellectual disability (ID) patients that showed convergent disruptive effects on AMPAR recycling and glutamate uncaging-induced structural and functional plasticity. Wild-type GRASP1, but not ID mutants, rescues spine loss in hippocampal CA1 neurons of Grasp1 knockout mice. Together, these results demonstrate a requirement for normal recycling endosome function in AMPAR-dependent synaptic function and neuronal connectivity in vivo, and suggest a potential role for GRASP1 in the pathophysiology of human cognitive disorders. PMID:28285821

  12. EEG-based research on brain functional networks in cognition.

    PubMed

    Wang, Niannian; Zhang, Li; Liu, Guozhong

    2015-01-01

    Recently, exploring the cognitive functions of the brain by establishing a network model to understand the working mechanism of the brain has become a popular research topic in the field of neuroscience. In this study, electroencephalography (EEG) was used to collect data from subjects given four different mathematical cognitive tasks: recite numbers clockwise and counter-clockwise, and letters clockwise and counter-clockwise to build a complex brain function network (BFN). By studying the connectivity features and parameters of those brain functional networks, it was found that the average clustering coefficient is much larger than its corresponding random network and the average shortest path length is similar to the corresponding random networks, which clearly shows the characteristics of the small-world network. The brain regions stimulated during the experiment are consistent with traditional cognitive science regarding learning, memory, comprehension, and other rational judgment results. The new method of complex networking involves studying the mathematical cognitive process of reciting, providing an effective research foundation for exploring the relationship between brain cognition and human learning skills and memory. This could help detect memory deficits early in young and mentally handicapped children, and help scientists understand the causes of cognitive brain disorders.

  13. Do Studies on Cortical Plasticity Provide a Rationale for Using Non-Invasive Brain Stimulation as a Treatment for Parkinson’s Disease Patients?

    PubMed Central

    Koch, Giacomo

    2013-01-01

    Animal models of Parkinson’s disease (PD) have shown that key mechanisms of cortical plasticity such as long-term potentiation (LTP) and long-term depression (LTD) can be impaired by the PD pathology. In humans protocols of non-invasive brain stimulation, such as paired associative stimulation (PAS) and theta-burst stimulation (TBS), can be used to investigate cortical plasticity of the primary motor cortex. Through the amplitude of the motor evoked potential these transcranial magnetic stimulation methods allow to measure both LTP-like and LTD-like mechanisms of cortical plasticity. So far these protocols have reported some controversial findings when tested in PD patients. While various studies described evidence for reduced LTP- and LTD-like plasticity, others showed different results, demonstrating increased LTP-like and normal LTD-like plasticity. Recent evidence provided support to the hypothesis that these different patterns of cortical plasticity likely depend on the stage of the disease and on the concomitant administration of l-DOPA. However, it is still unclear how and if these altered mechanisms of cortical plasticity can be taken as a reliable model to build appropriate protocols aimed at treating PD symptoms by applying repetitive sessions of repetitive TMS (rTMS) or transcranial direct current stimulation (tDCS). The current article will provide an up-to-date overview of these issues together with some reflections on future studies in the field. PMID:24223573

  14. Homological scaffolds of brain functional networks

    PubMed Central

    Petri, G.; Expert, P.; Turkheimer, F.; Carhart-Harris, R.; Nutt, D.; Hellyer, P. J.; Vaccarino, F.

    2014-01-01

    Networks, as efficient representations of complex systems, have appealed to scientists for a long time and now permeate many areas of science, including neuroimaging (Bullmore and Sporns 2009 Nat. Rev. Neurosci. 10, 186–198. (doi:10.1038/nrn2618)). Traditionally, the structure of complex networks has been studied through their statistical properties and metrics concerned with node and link properties, e.g. degree-distribution, node centrality and modularity. Here, we study the characteristics of functional brain networks at the mesoscopic level from a novel perspective that highlights the role of inhomogeneities in the fabric of functional connections. This can be done by focusing on the features of a set of topological objects—homological cycles—associated with the weighted functional network. We leverage the detected topological information to define the homological scaffolds, a new set of objects designed to represent compactly the homological features of the correlation network and simultaneously make their homological properties amenable to networks theoretical methods. As a proof of principle, we apply these tools to compare resting-state functional brain activity in 15 healthy volunteers after intravenous infusion of placebo and psilocybin—the main psychoactive component of magic mushrooms. The results show that the homological structure of the brain's functional patterns undergoes a dramatic change post-psilocybin, characterized by the appearance of many transient structures of low stability and of a small number of persistent ones that are not observed in the case of placebo. PMID:25401177

  15. Remodeling Functional Connectivity in Multiple Sclerosis: A Challenging Therapeutic Approach.

    PubMed

    Stampanoni Bassi, Mario; Gilio, Luana; Buttari, Fabio; Maffei, Pierpaolo; Marfia, Girolama A; Restivo, Domenico A; Centonze, Diego; Iezzi, Ennio

    2017-01-01

    Neurons in the central nervous system are organized in functional units interconnected to form complex networks. Acute and chronic brain damage disrupts brain connectivity producing neurological signs and/or symptoms. In several neurological diseases, particularly in Multiple Sclerosis (MS), structural imaging studies cannot always demonstrate a clear association between lesion site and clinical disability, originating the "clinico-radiological paradox." The discrepancy between structural damage and disability can be explained by a complex network perspective. Both brain networks architecture and synaptic plasticity may play important roles in modulating brain networks efficiency after brain damage. In particular, long-term potentiation (LTP) may occur in surviving neurons to compensate network disconnection. In MS, inflammatory cytokines dramatically interfere with synaptic transmission and plasticity. Importantly, in addition to acute and chronic structural damage, inflammation could contribute to reduce brain networks efficiency in MS leading to worse clinical recovery after a relapse and worse disease progression. These evidence suggest that removing inflammation should represent the main therapeutic target in MS; moreover, as synaptic plasticity is particularly altered by inflammation, specific strategies aimed at promoting LTP mechanisms could be effective for enhancing clinical recovery. Modulation of plasticity with different non-invasive brain stimulation (NIBS) techniques has been used to promote recovery of MS symptoms. Better knowledge of features inducing brain disconnection in MS is crucial to design specific strategies to promote recovery and use NIBS with an increasingly tailored approach.

  16. Fluoxetine Increases Hippocampal Neurogenesis and Induces Epigenetic Factors But Does Not Improve Functional Recovery after Traumatic Brain Injury

    PubMed Central

    Wang, Yonggang; Neumann, Melanie; Hansen, Katharina; Hong, Shuwhey M.; Kim, Sharon; Noble-Haeusslein, Linda J.

    2011-01-01

    Abstract The selective serotonin reuptake inhibitor fluoxetine induces hippocampal neurogenesis, stimulates maturation and synaptic plasticity of adult hippocampal neurons, and reduces motor/sensory and memory impairments in several CNS disorders. In the setting of traumatic brain injury (TBI), its effects on neuroplasticity and function have yet to be thoroughly investigated. Here we examined the efficacy of fluoxetine after a moderate to severe TBI, produced by a controlled cortical impact. Three days after TBI or sham surgery, mice were treated with fluoxetine (10 mg/kg/d) or vehicle for 4 weeks. To evaluate the effects of fluoxetine on neuroplasticity, hippocampal neurogenesis and epigenetic modification were studied. Stereologic analysis of the dentate gyrus revealed a significant increase in doublecortin-positive cells in brain-injured animals treated with fluoxetine relative to controls, a finding consistent with enhanced hippocampal neurogenesis. Epigenetic modifications, including an increase in histone 3 acetylation and induction of methyl-CpG-binding protein, a transcription factor involved in DNA methylation, were likewise seen by immunohistochemistry and quantitative Western immunoblots, respectively, in brain-injured animals treated with fluoxetine. To determine if fluoxetine improves neurological outcomes after TBI, gait function and spatial learning and memory were assessed by the CatWalk-assisted gait test and Barnes maze test, respectively. No differences in these parameters were seen between fluoxetine- and vehicle-treated animals. Thus while fluoxetine enhanced neuroplasticity in the hippocampus after TBI, its chronic administration did not restore locomotor function or ameliorate memory deficits. PMID:21175261

  17. Connectivity and functional profiling of abnormal brain structures in pedophilia

    PubMed Central

    Poeppl, Timm B.; Eickhoff, Simon B.; Fox, Peter T.; Laird, Angela R.; Rupprecht, Rainer; Langguth, Berthold; Bzdok, Danilo

    2015-01-01

    Despite its 0.5–1% lifetime prevalence in men and its general societal relevance, neuroimaging investigations in pedophilia are scarce. Preliminary findings indicate abnormal brain structure and function. However, no study has yet linked structural alterations in pedophiles to both connectional and functional properties of the aberrant hotspots. The relationship between morphological alterations and brain function in pedophilia as well as their contribution to its psychopathology thus remain unclear. First, we assessed bimodal connectivity of structurally altered candidate regions using meta-analytic connectivity modeling (MACM) and resting-state correlations employing openly accessible data. We compared the ensuing connectivity maps to the activation likelihood estimation (ALE) maps of a recent quantitative meta-analysis of brain activity during processing of sexual stimuli. Second, we functionally characterized the structurally altered regions employing meta-data of a large-scale neuroimaging database. Candidate regions were functionally connected to key areas for processing of sexual stimuli. Moreover, we found that the functional role of structurally altered brain regions in pedophilia relates to nonsexual emotional as well as neurocognitive and executive functions, previously reported to be impaired in pedophiles. Our results suggest that structural brain alterations affect neural networks for sexual processing by way of disrupted functional connectivity, which may entail abnormal sexual arousal patterns. The findings moreover indicate that structural alterations account for common affective and neurocognitive impairments in pedophilia. The present multi-modal integration of brain structure and function analyses links sexual and nonsexual psychopathology in pedophilia. PMID:25733379

  18. Connectivity and functional profiling of abnormal brain structures in pedophilia.

    PubMed

    Poeppl, Timm B; Eickhoff, Simon B; Fox, Peter T; Laird, Angela R; Rupprecht, Rainer; Langguth, Berthold; Bzdok, Danilo

    2015-06-01

    Despite its 0.5-1% lifetime prevalence in men and its general societal relevance, neuroimaging investigations in pedophilia are scarce. Preliminary findings indicate abnormal brain structure and function. However, no study has yet linked structural alterations in pedophiles to both connectional and functional properties of the aberrant hotspots. The relationship between morphological alterations and brain function in pedophilia as well as their contribution to its psychopathology thus remain unclear. First, we assessed bimodal connectivity of structurally altered candidate regions using meta-analytic connectivity modeling (MACM) and resting-state correlations employing openly accessible data. We compared the ensuing connectivity maps to the activation likelihood estimation (ALE) maps of a recent quantitative meta-analysis of brain activity during processing of sexual stimuli. Second, we functionally characterized the structurally altered regions employing meta-data of a large-scale neuroimaging database. Candidate regions were functionally connected to key areas for processing of sexual stimuli. Moreover, we found that the functional role of structurally altered brain regions in pedophilia relates to nonsexual emotional as well as neurocognitive and executive functions, previously reported to be impaired in pedophiles. Our results suggest that structural brain alterations affect neural networks for sexual processing by way of disrupted functional connectivity, which may entail abnormal sexual arousal patterns. The findings moreover indicate that structural alterations account for common affective and neurocognitive impairments in pedophilia. The present multimodal integration of brain structure and function analyses links sexual and nonsexual psychopathology in pedophilia. © 2015 Wiley Periodicals, Inc.

  19. Revisiting the Corticomotor Plasticity in Low Back Pain: Challenges and Perspectives

    PubMed Central

    Massé-Alarie, Hugo; Schneider, Cyril

    2016-01-01

    Chronic low back pain (CLBP) is a recurrent debilitating condition that costs billions to society. Refractoriness to conventional treatment, lack of improvement, and associated movement disorders could be related to the extensive brain plasticity present in this condition, especially in the sensorimotor cortices. This narrative review on corticomotor plasticity in CLBP will try to delineate how interventions such as training and neuromodulation can improve the condition. The review recommends subgrouping classification in CLBP owing to brain plasticity markers with a view of better understanding and treating this complex condition. PMID:27618123

  20. A SPECT study of language and brain reorganization three years after pediatric brain injury.

    PubMed

    Chiu Wong, Stephanie B; Chapman, Sandra B; Cook, Lois G; Anand, Raksha; Gamino, Jacquelyn F; Devous, Michael D

    2006-01-01

    Using single photon emission computed tomography (SPECT), we investigated brain plasticity in children 3 years after sustaining a severe traumatic brain injury (TBI). First, we assessed brain perfusion patterns (i.e., the extent of brain blood flow to regions of the brain) at rest in eight children who suffered severe TBI as compared to perfusion patterns in eight normally developing children. Second, we examined differences in perfusion between children with severe TBI who showed good versus poor recovery in complex discourse skills. Specifically, the children were asked to produce and abstract core meaning for two stories in the form of a lesson. Inconsistent with our predictions, children with severe TBI showed areas of increased perfusion as compared to normally developing controls. Adult studies have shown the reverse pattern with TBI associated with reduced perfusion. With regard to the second aim and consistent with previously identified brain-discourse relations, we found a strong positive association between perfusion in right frontal regions and discourse abstraction abilities, with higher perfusion linked to better discourse outcomes and lower perfusion linked to poorer discourse outcomes. Furthermore, brain-discourse patterns of increased perfusion in left frontal regions were associated with lower discourse abstraction ability. The results are discussed in terms of how brain changes may represent adaptive and maladaptive plasticity. The findings offer direction for future studies of brain plasticity in response to neurocognitive treatments.

  1. Graph Analysis of Functional Brain Networks for Cognitive Control of Action in Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Caeyenberghs, Karen; Leemans, Alexander; Heitger, Marcus H.; Leunissen, Inge; Dhollander, Thijs; Sunaert, Stefan; Dupont, Patrick; Swinnen, Stephan P.

    2012-01-01

    Patients with traumatic brain injury show clear impairments in behavioural flexibility and inhibition that often persist beyond the time of injury, affecting independent living and psychosocial functioning. Functional magnetic resonance imaging studies have shown that patients with traumatic brain injury typically show increased and more broadly…

  2. Fructose consumption reduces hippocampal synaptic plasticity underlying cognitive performance

    PubMed Central

    Cisternas, Pedro; Salazar, Paulina; Serrano, Felipe G.; Montecinos-Oliva, Carla; Arredondo, Sebastián B.; Varela-Nallar, Lorena; Barja, Salesa; Vio, Carlos P.; Gomez-Pinilla, Fernando; Inestrosa, Nibaldo C.

    2017-01-01

    Metabolic syndrome (MetS) is a global epidemic, which involves a spectrum of metabolic disorders comprising diabetes and obesity. The impact of MetS on the brain is becoming to be a concern, however, the poor understanding of mechanisms involved has limited the development of therapeutic strategies. We induced a MetS-like condition by exposing mice to fructose feeding for 7 weeks. There was a dramatic deterioration in the capacity of the hippocampus to sustain synaptic plasticity in the forms of long-term potentiation (LTP) and long-term depression (LTD). Mice exposed to fructose showed a reduction in the number of contact zones and the size of postsynaptic densities (PSDs) in the hippocampus, as well as a decrease in hippocampal neurogenesis. There was an increase in lipid peroxidation likely associated with a deficiency in plasma membrane excitability. Consistent with an overall hippocampal dysfunction, there was a subsequent decrease in hippocampal dependent learning and memory performance, i.e., spatial learning and episodic memory. Most of the pathological sequel of MetS in the brain was reversed three month after discontinue fructose feeding. These results are novel to show that MetS triggers a cascade of molecular events, which disrupt hippocampal functional plasticity, and specific aspects of learning and memory function. The overall information raises concerns about the risk imposed by excessive fructose consumption on the pathology of neurological disorders. PMID:26300486

  3. Non-invasive Brain Stimulation: A Paradigm Shift in Understanding Brain Oscillations.

    PubMed

    Vosskuhl, Johannes; Strüber, Daniel; Herrmann, Christoph S

    2018-01-01

    Cognitive neuroscience set out to understand the neural mechanisms underlying cognition. One central question is how oscillatory brain activity relates to cognitive processes. Up to now, most of the evidence supporting this relationship was correlative in nature. This situation changed dramatically with the recent development of non-invasive brain stimulation (NIBS) techniques, which open up new vistas for neuroscience by allowing researchers for the first time to validate their correlational theories by manipulating brain functioning directly. In this review, we focus on transcranial alternating current stimulation (tACS), an electrical brain stimulation method that applies sinusoidal currents to the intact scalp of human individuals to directly interfere with ongoing brain oscillations. We outline how tACS can impact human brain oscillations by employing different levels of observation from non-invasive tACS application in healthy volunteers and intracranial recordings in patients to animal studies demonstrating the effectiveness of alternating electric fields on neurons in vitro and in vivo . These findings likely translate to humans as comparable effects can be observed in human and animal studies. Neural entrainment and plasticity are suggested to mediate the behavioral effects of tACS. Furthermore, we focus on mechanistic theories about the relationship between certain cognitive functions and specific parameters of brain oscillaitons such as its amplitude, frequency, phase and phase coherence. For each of these parameters we present the current state of testing its functional relevance by means of tACS. Recent developments in the field of tACS are outlined which include the stimulation with physiologically inspired non-sinusoidal waveforms, stimulation protocols which allow for the observation of online-effects, and closed loop applications of tACS.

  4. Abnormal rich club organization and functional brain dynamics in schizophrenia.

    PubMed

    van den Heuvel, Martijn P; Sporns, Olaf; Collin, Guusje; Scheewe, Thomas; Mandl, René C W; Cahn, Wiepke; Goñi, Joaquín; Hulshoff Pol, Hilleke E; Kahn, René S

    2013-08-01

    The human brain forms a large-scale structural network of regions and interregional pathways. Recent studies have reported the existence of a selective set of highly central and interconnected hub regions that may play a crucial role in the brain's integrative processes, together forming a central backbone for global brain communication. Abnormal brain connectivity may have a key role in the pathophysiology of schizophrenia. To examine the structure of the rich club in schizophrenia and its role in global functional brain dynamics. Structural diffusion tensor imaging and resting-state functional magnetic resonance imaging were performed in patients with schizophrenia and matched healthy controls. Department of Psychiatry, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht, the Netherlands. Forty-eight patients and 45 healthy controls participated in the study. An independent replication data set of 41 patients and 51 healthy controls was included to replicate and validate significant findings. MAIN OUTCOME(S) AND MEASURES: Measures of rich club organization, connectivity density of rich club connections and connections linking peripheral regions to brain hubs, measures of global brain network efficiency, and measures of coupling between brain structure and functional dynamics. Rich club organization between high-degree hub nodes was significantly affected in patients, together with a reduced density of rich club connections predominantly comprising the white matter pathways that link the midline frontal, parietal, and insular hub regions. This reduction in rich club density was found to be associated with lower levels of global communication capacity, a relationship that was absent for other white matter pathways. In addition, patients had an increase in the strength of structural connectivity-functional connectivity coupling. Our findings provide novel biological evidence that schizophrenia is characterized by a selective

  5. Neural plasticity and its initiating conditions in tinnitus.

    PubMed

    Roberts, L E

    2018-03-01

    Deafferentation caused by cochlear pathology (which can be hidden from the audiogram) activates forms of neural plasticity in auditory pathways, generating tinnitus and its associated conditions including hyperacusis. This article discusses tinnitus mechanisms and suggests how these mechanisms may relate to those involved in normal auditory information processing. Research findings from animal models of tinnitus and from electromagnetic imaging of tinnitus patients are reviewed which pertain to the role of deafferentation and neural plasticity in tinnitus and hyperacusis. Auditory neurons compensate for deafferentation by increasing their input/output functions (gain) at multiple levels of the auditory system. Forms of homeostatic plasticity are believed to be responsible for this neural change, which increases the spontaneous and driven activity of neurons in central auditory structures in animals expressing behavioral evidence of tinnitus. Another tinnitus correlate, increased neural synchrony among the affected neurons, is forged by spike-timing-dependent neural plasticity in auditory pathways. Slow oscillations generated by bursting thalamic neurons verified in tinnitus animals appear to modulate neural plasticity in the cortex, integrating tinnitus neural activity with information in brain regions supporting memory, emotion, and consciousness which exhibit increased metabolic activity in tinnitus patients. The latter process may be induced by transient auditory events in normal processing but it persists in tinnitus, driven by phantom signals from the auditory pathway. Several tinnitus therapies attempt to suppress tinnitus through plasticity, but repeated sessions will likely be needed to prevent tinnitus activity from returning owing to deafferentation as its initiating condition.

  6. An in vivo model of functional and vascularized human brain organoids.

    PubMed

    Mansour, Abed AlFatah; Gonçalves, J Tiago; Bloyd, Cooper W; Li, Hao; Fernandes, Sarah; Quang, Daphne; Johnston, Stephen; Parylak, Sarah L; Jin, Xin; Gage, Fred H

    2018-06-01

    Differentiation of human pluripotent stem cells to small brain-like structures known as brain organoids offers an unprecedented opportunity to model human brain development and disease. To provide a vascularized and functional in vivo model of brain organoids, we established a method for transplanting human brain organoids into the adult mouse brain. Organoid grafts showed progressive neuronal differentiation and maturation, gliogenesis, integration of microglia, and growth of axons to multiple regions of the host brain. In vivo two-photon imaging demonstrated functional neuronal networks and blood vessels in the grafts. Finally, in vivo extracellular recording combined with optogenetics revealed intragraft neuronal activity and suggested graft-to-host functional synaptic connectivity. This combination of human neural organoids and an in vivo physiological environment in the animal brain may facilitate disease modeling under physiological conditions.

  7. Effect of tumor resection on the characteristics of functional brain networks.

    PubMed

    Wang, H; Douw, L; Hernández, J M; Reijneveld, J C; Stam, C J; Van Mieghem, P

    2010-08-01

    Brain functioning such as cognitive performance depends on the functional interactions between brain areas, namely, the functional brain networks. The functional brain networks of a group of patients with brain tumors are measured before and after tumor resection. In this work, we perform a weighted network analysis to understand the effect of neurosurgery on the characteristics of functional brain networks. Statistically significant changes in network features have been discovered in the beta (13-30 Hz) band after neurosurgery: the link weight correlation around nodes and within triangles increases which implies improvement in local efficiency of information transfer and robustness; the clustering of high link weights in a subgraph becomes stronger, which enhances the global transport capability; and the decrease in the synchronization or virus spreading threshold, revealed by the increase in the largest eigenvalue of the adjacency matrix, which suggests again the improvement of information dissemination.

  8. Neuropsychological functioning and brain structure in schizophrenia.

    PubMed

    Crespo-Facorro, Benedicto; Barbadillo, Laura; Pelayo-Terán, José Maria; Rodríguez-Sánchez, José Manuel

    2007-08-01

    Cognitive deficits are core features of schizophrenia that are already evident at early phases of the illness. The study of specific relationships between cognition and brain structure might provide valuable clues about neural basis of schizophrenia and its phenomenology. The aim of this article was to review the most consistent findings of the studies exploring the relationships between cognitive deficits and brain anomalies in schizophrenia. Besides several important methodological shortcomings to bear in mind before drawing any consistent conclusion from the revised literature, we have attempted to systematically summarize these findings. Thus, this review has revealed that whole brain volume tends to positively correlate with a range of cognitive domains in healthy volunteers and female patients. An association between prefrontal morphological characteristics and general inability to control behaviour seems to be present in schizophrenia patients. Parahippocampal volume is related to semantic cognitive functions. Thalamic anomalies have been associated with executive deficits specifically in patients. Available evidence on the relationship between cognitive functions and cerebellar structure is still contradictory. Nonetheless, a larger cerebellum appears to be associated with higher IQ in controls and in female patients. Enlarged ventricles, including lateral and third ventricles, are associated with deficits in attention, executive and premorbid cognitive functioning in patients. Several of these reported findings seem to be counterintuitive according to neural basis of cognitive functioning drawn from animal, lesion, and functional imaging investigations. Therefore, there is still a great need for more methodologically stringent investigations that would help in the advance of our understanding of the cognition/brain structure relationships in schizophrenia.

  9. High-performance biodegradable polylactide composites fabricated using a novel plasticizer and functionalized eggshell powder.

    PubMed

    Kong, Junjun; Li, Yi; Bai, Yungang; Li, Zonglin; Cao, Zengwen; Yu, Yancun; Han, Changyu; Dong, Lisong

    2018-06-01

    A novel polyester poly(diethylene glycol succinate) (PDEGS) was synthesized and evaluated as a plasticizer for polylactide (PLA) in this study. Meanwhile, an effective sustainable filler, functionalized eggshell powder (FES) with a surface layer of calcium phenyphosphonate was also prepared. Then, PLA biocomposites were prepared from FES and PDEGS using a facile melt blending process. The addition of 15 wt% PDEGS as plasticizer showed good miscibility with PLA macromolecules and increased the chain mobility of PLA. The crystallization kinetics of PLA composites revealed that the highly effective nucleating FES significantly improved the crystallization ability of PLA at both of non-isothermal and isothermal conditions. In addition, the effective plasticizer and well-dispersed FES increased the elongation at break from 6% of pure PLA to over 200% for all of the plasticized PLA composites. These biodegradable PLA biocomposites, coupled with excellent crystallization ability and tunable mechanical properties, demonstrate their potential as alternatives to traditional commodity plastics. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Medication Overuse Headache: Pathophysiological Insights from Structural and Functional Brain MRI Research.

    PubMed

    Schwedt, Todd J; Chong, Catherine D

    2017-07-01

    Research imaging of brain structure and function has helped to elucidate the pathophysiology of medication overuse headache (MOH). This is a narrative review of imaging research studies that have investigated brain structural and functional alterations associated with MOH. Studies included in this review have investigated abnormal structure and function of pain processing regions in people with MOH, functional patterns that might predispose individuals to development of MOH, similarity of brain functional patterns in patients with MOH to those found in people with addiction, brain structure that could predict headache improvement following discontinuation of the overused medication, and changes in brain structure and function after discontinuation of medication overuse. MOH is associated with atypical structure and function of brain regions responsible for pain processing as well as brain regions that are commonly implicated in addiction. Several studies have shown "normalization" of structure and function in pain processing regions following discontinuation of the overused medication and resolution of MOH. However, some of the abnormalities in regions also implicated in addiction tend to persist following discontinuation of the overused medication, suggesting that they are a brain trait that predisposes certain individuals to medication overuse and MOH. © 2017 American Headache Society.

  11. Learning to see again: biological constraints on cortical plasticity and the implications for sight restoration technologies

    NASA Astrophysics Data System (ADS)

    Beyeler, Michael; Rokem, Ariel; Boynton, Geoffrey M.; Fine, Ione

    2017-10-01

    The ‘bionic eye’—so long a dream of the future—is finally becoming a reality with retinal prostheses available to patients in both the US and Europe. However, clinical experience with these implants has made it apparent that the visual information provided by these devices differs substantially from normal sight. Consequently, the ability of patients to learn to make use of this abnormal retinal input plays a critical role in whether or not some functional vision is successfully regained. The goal of the present review is to summarize the vast basic science literature on developmental and adult cortical plasticity with an emphasis on how this literature might relate to the field of prosthetic vision. We begin with describing the distortion and information loss likely to be experienced by visual prosthesis users. We then define cortical plasticity and perceptual learning, and describe what is known, and what is unknown, about visual plasticity across the hierarchy of brain regions involved in visual processing, and across different stages of life. We close by discussing what is known about brain plasticity in sight restoration patients and discuss biological mechanisms that might eventually be harnessed to improve visual learning in these patients.

  12. Learning to see again: Biological constraints on cortical plasticity and the implications for sight restoration technologies

    PubMed Central

    Beyeler, Michael; Rokem, Ariel; Boynton, Geoffrey M.; Fine, Ione

    2018-01-01

    The “bionic eye” – so long a dream of the future – is finally becoming a reality with retinal prostheses available to patients in both the US and Europe. However, clinical experience with these implants has made it apparent that the vision provided by these devices differs substantially from normal sight. Consequently, the ability to learn to make use of this abnormal retinal input plays a critical role in whether or not some functional vision is successfully regained. The goal of the present review is to summarize the vast basic science literature on developmental and adult cortical plasticity with an emphasis on how this literature might relate to the field of prosthetic vision. We begin with describing the distortion and information loss likely to be experienced by visual prosthesis users. We then define cortical plasticity and perceptual learning, and describe what is known, and what is unknown, about visual plasticity across the hierarchy of brain regions involved in visual processing, and across different stages of life. We close by discussing what is known about brain plasticity in sight restoration patients and discuss biological mechanisms that might eventually be harnessed to improve visual learning in these patients. PMID:28612755

  13. Network connectivity and individual responses to brain stimulation in the human motor system.

    PubMed

    Cárdenas-Morales, Lizbeth; Volz, Lukas J; Michely, Jochen; Rehme, Anne K; Pool, Eva-Maria; Nettekoven, Charlotte; Eickhoff, Simon B; Fink, Gereon R; Grefkes, Christian

    2014-07-01

    The mechanisms driving cortical plasticity in response to brain stimulation are still incompletely understood. We here explored whether neural activity and connectivity in the motor system relate to the magnitude of cortical plasticity induced by repetitive transcranial magnetic stimulation (rTMS). Twelve right-handed volunteers underwent functional magnetic resonance imaging during rest and while performing a simple hand motor task. Resting-state functional connectivity, task-induced activation, and task-related effective connectivity were assessed for a network of key motor areas. We then investigated the effects of intermittent theta-burst stimulation (iTBS) on motor-evoked potentials (MEP) for up to 25 min after stimulation over left primary motor cortex (M1) or parieto-occipital vertex (for control). ITBS-induced increases in MEP amplitudes correlated negatively with movement-related fMRI activity in left M1. Control iTBS had no effect on M1 excitability. Subjects with better response to M1-iTBS featured stronger preinterventional effective connectivity between left premotor areas and left M1. In contrast, resting-state connectivity did not predict iTBS aftereffects. Plasticity-related changes in M1 following brain stimulation seem to depend not only on local factors but also on interconnected brain regions. Predominantly activity-dependent properties of the cortical motor system are indicative of excitability changes following induction of cortical plasticity with rTMS. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  14. Mind over chatter: plastic up-regulation of the fMRI salience network directly after EEG neurofeedback

    PubMed Central

    Ros, Tomas; Théberge, Jean; Frewen, Paul A.; Kluetsch, Rosemarie; Densmore, Maria; Calhoun, Vince D.; Lanius, Ruth A.

    2016-01-01

    Neurofeedback (NFB) involves a brain-computer interface that allows users to learn to voluntarily control their cortical oscillations, reflected in the electroencephalogram (EEG). Although NFB is being pioneered as a noninvasive tool for treating brain disorders, there is insufficient evidence on the mechanism of its impact on brain function. Furthermore, the dominant rhythm of the human brain is the alpha oscillation (8–12 Hz), yet its behavioral significance remains multifaceted and largely correlative. In this study with 34 healthy participants, we examined whether during the performance of an attentional task, the functional connectivity of distinct fMRI networks would be plastically altered after a 30-min session of voluntary reduction of alpha rhythm (n=17) versus a sham-feedback condition (n=17). We reveal that compared to sham-feedback, NFB induced an increase of connectivity within the salience network (dorsal anterior cingulate focus), which was detectable 30 minutes after termination of training. This increase in connectivity was negatively correlated with changes in 'on-task' mind-wandering as well as resting state alpha rhythm. Crucially, there was a causal dependence between alpha rhythm modulations during NFB and at subsequent resting state, not exhibited by the sham group. Our findings provide neurobehavioral evidence for a temporally direct, plastic impact of NFB on a key cognitive control network of the brain, suggesting a promising basis for its use to treat cognitive disorders under physiological conditions. PMID:23022326

  15. Induction of the plasticity-associated immediate early gene Arc by stress and hallucinogens: role of brain-derived neurotrophic factor.

    PubMed

    Benekareddy, Madhurima; Nair, Amrita R; Dias, Brian G; Suri, Deepika; Autry, Anita E; Monteggia, Lisa M; Vaidya, Vidita A

    2013-03-01

    Exposure to stress and hallucinogens in adulthood evokes persistent alterations in neurocircuitry and emotional behaviour. The structural and functional changes induced by stress and hallucinogen exposure are thought to involve transcriptional alterations in specific effector immediate early genes. The immediate early gene, activity regulated cytoskeletal-associated protein (Arc), is important for both activity and experience dependent plasticity. We sought to examine whether trophic factor signalling through brain-derived neurotrophic factor (BDNF) contributes to the neocortical regulation of Arc mRNA in response to distinct stimuli such as immobilization stress and the hallucinogen 2,5-dimethoxy-4-iodoamphetamine (DOI). Acute exposure to either immobilization stress or DOI induced Arc mRNA levels within the neocortex. BDNF infusion into the neocortex led to a robust up-regulation of local Arc transcript expression. Further, baseline Arc mRNA expression in the neocortex was significantly decreased in inducible BDNF knockout mice with an adult-onset, forebrain specific BDNF loss. The induction of Arc mRNA levels in response to both acute immobilization stress or a single administration of DOI was significantly attenuated in the inducible BDNF knockout mice. Taken together, our results implicate trophic factor signalling through BDNF in the regulation of cortical Arc mRNA expression, both under baseline conditions and following stress and hallucinogen exposure. These findings suggest the possibility that the regulation of Arc expression via BDNF provides a molecular substrate for the structural and synaptic plasticity observed following stimuli such as stress and hallucinogens.

  16. Control channels in the brain and their influence on brain executive functions

    NASA Astrophysics Data System (ADS)

    Meng, Qinglei; Choa, Fow-Sen; Hong, Elliot; Wang, Zhiguang; Islam, Mohammad

    2014-05-01

    In a computer network there are distinct data channels and control channels where massive amount of visual information are transported through data channels but the information streams are routed and controlled by intelligent algorithm through "control channels". Recent studies on cognition and consciousness have shown that the brain control channels are closely related to the brainwave beta (14-40 Hz) and alpha (7-13 Hz) oscillations. The high-beta wave is used by brain to synchronize local neural activities and the alpha oscillation is for desynchronization. When two sensory inputs are simultaneously presented to a person, the high-beta is used to select one of the inputs and the alpha is used to deselect the other so that only one input will get the attention. In this work we demonstrated that we can scan a person's brain using binaural beats technique and identify the individual's preferred control channels. The identified control channels can then be used to influence the subject's brain executive functions. In the experiment, an EEG measurement system was used to record and identify a subject's control channels. After these channels were identified, the subject was asked to do Stroop tests. Binaural beats was again used to produce these control-channel frequencies on the subject's brain when we recorded the completion time of each test. We found that the high-beta signal indeed speeded up the subject's executive function performance and reduced the time to complete incongruent tests, while the alpha signal didn't seem to be able to slow down the executive function performance.

  17. Functionality predictors in acquired brain damage.

    PubMed

    Huertas Hoyas, E; Pedrero Pérez, E J; Águila Maturana, A M; García López-Alberca, S; González Alted, C

    2015-01-01

    Most individuals who have survived an acquired brain injury present consequences affecting the sensorimotor, cognitive, affective or behavioural components. These deficits affect the proper performance of daily living activities. The aim of this study is to identify functional differences between individuals with unilateral acquired brain injury using functional independence, capacity, and performance of daily activities. Descriptive cross-sectional design with a sample of 58 people, with right-sided injury (n=14 TBI; n=15 stroke) or left-sided injury (n = 14 TBI, n = 15 stroke), right handed, and with a mean age of 47 years and time since onset of 4 ± 3.65 years. The functional assessment/functional independence measure (FIM/FAM) and the International Classification of Functioning (ICF) were used for the study. The data showed significant differences (P<.000), and a large size effect (dr=0.78) in the cross-sectional estimates, and point to fewer restrictions for patients with a lesion on their right side. The major differences were in the variables 'speaking' and 'receiving spoken messages' (ICF variables), and 'Expression', 'Writing' and 'intelligible speech' (FIM/FAM variables). In the linear regression analysis, the results showed that only 4 FIM/FAM variables, taken together, predict 44% of the ICF variance, which measures the ability of the individual, and up to 52% of the ICF, which measures the individual's performance. Gait alone predicts a 28% of the variance. It seems that individuals with acquired brain injury in the left hemisphere display important differences regarding functional and communication variables. The motor aspects are an important prognostic factor in functional rehabilitation. Copyright © 2013 Sociedad Española de Neurología. Published by Elsevier España, S.L.U. All rights reserved.

  18. Criticality in the brain

    NASA Astrophysics Data System (ADS)

    de Arcangelis, L.; Lombardi, F.; Herrmann, H. J.

    2014-03-01

    Spontaneous brain activity has been recently characterized by avalanche dynamics with critical features for systems in vitro and in vivo. In this contribution we present a review of experimental results on neuronal avalanches in cortex slices, together with numerical results from a neuronal model implementing several physiological properties of living neurons. Numerical data reproduce experimental results for avalanche statistics. The temporal organization of avalanches can be characterized by the distribution of waiting times between successive avalanches. Experimental measurements exhibit a non-monotonic behaviour, not usually found in other natural processes. Numerical simulations provide evidence that this behaviour is a consequence of the alternation between states of high and low activity, leading to a balance between excitation and inhibition controlled by a single parameter. During these periods both the single neuron state and the network excitability level, keeping memory of past activity, are tuned by homoeostatic mechanisms. Interestingly, the same homoeostatic balance is detected for neuronal activity at the scale of the whole brain. We finally review the learning abilities of this neuronal network. Learning occurs via plastic adaptation of synaptic strengths by a non-uniform negative feedback mechanism. The system is able to learn all the tested rules and the learning dynamics exhibits universal features as a function of the strength of plastic adaptation. Any rule could be learned provided that the plastic adaptation is sufficiently slow.

  19. Correlation-based model of artificially induced plasticity in motor cortex by a bidirectional brain-computer interface.

    PubMed

    Lajoie, Guillaume; Krouchev, Nedialko I; Kalaska, John F; Fairhall, Adrienne L; Fetz, Eberhard E

    2017-02-01

    Experiments show that spike-triggered stimulation performed with Bidirectional Brain-Computer-Interfaces (BBCI) can artificially strengthen connections between separate neural sites in motor cortex (MC). When spikes from a neuron recorded at one MC site trigger stimuli at a second target site after a fixed delay, the connections between sites eventually strengthen. It was also found that effective spike-stimulus delays are consistent with experimentally derived spike-timing-dependent plasticity (STDP) rules, suggesting that STDP is key to drive these changes. However, the impact of STDP at the level of circuits, and the mechanisms governing its modification with neural implants remain poorly understood. The present work describes a recurrent neural network model with probabilistic spiking mechanisms and plastic synapses capable of capturing both neural and synaptic activity statistics relevant to BBCI conditioning protocols. Our model successfully reproduces key experimental results, both established and new, and offers mechanistic insights into spike-triggered conditioning. Using analytical calculations and numerical simulations, we derive optimal operational regimes for BBCIs, and formulate predictions concerning the efficacy of spike-triggered conditioning in different regimes of cortical activity.

  20. Correlation-based model of artificially induced plasticity in motor cortex by a bidirectional brain-computer interface

    PubMed Central

    Lajoie, Guillaume; Kalaska, John F.; Fairhall, Adrienne L.; Fetz, Eberhard E.

    2017-01-01

    Experiments show that spike-triggered stimulation performed with Bidirectional Brain-Computer-Interfaces (BBCI) can artificially strengthen connections between separate neural sites in motor cortex (MC). When spikes from a neuron recorded at one MC site trigger stimuli at a second target site after a fixed delay, the connections between sites eventually strengthen. It was also found that effective spike-stimulus delays are consistent with experimentally derived spike-timing-dependent plasticity (STDP) rules, suggesting that STDP is key to drive these changes. However, the impact of STDP at the level of circuits, and the mechanisms governing its modification with neural implants remain poorly understood. The present work describes a recurrent neural network model with probabilistic spiking mechanisms and plastic synapses capable of capturing both neural and synaptic activity statistics relevant to BBCI conditioning protocols. Our model successfully reproduces key experimental results, both established and new, and offers mechanistic insights into spike-triggered conditioning. Using analytical calculations and numerical simulations, we derive optimal operational regimes for BBCIs, and formulate predictions concerning the efficacy of spike-triggered conditioning in different regimes of cortical activity. PMID:28151957

  1. Macrophage origin limits functional plasticity in helminth-bacterial co-infection

    PubMed Central

    Campbell, Sharon M.; Duncan, Sheelagh; Hewitson, James P.; Barr, Tom A.; Jackson-Jones, Lucy H.; Maizels, Rick M.

    2017-01-01

    Rapid reprogramming of the macrophage activation phenotype is considered important in the defense against consecutive infection with diverse infectious agents. However, in the setting of persistent, chronic infection the functional importance of macrophage-intrinsic adaptation to changing environments vs. recruitment of new macrophages remains unclear. Here we show that resident peritoneal macrophages expanded by infection with the nematode Heligmosomoides polygyrus bakeri altered their activation phenotype in response to infection with Salmonella enterica ser. Typhimurium in vitro and in vivo. The nematode-expanded resident F4/80high macrophages efficiently upregulated bacterial induced effector molecules (e.g. MHC-II, NOS2) similarly to newly recruited monocyte-derived macrophages. Nonetheless, recruitment of blood monocyte-derived macrophages to Salmonella infection occurred with equal magnitude in co-infected animals and caused displacement of the nematode-expanded, tissue resident-derived macrophages from the peritoneal cavity. Global gene expression analysis revealed that although nematode-expanded resident F4/80high macrophages made an anti-bacterial response, this was muted as compared to newly recruited F4/80low macrophages. However, the F4/80high macrophages adopted unique functional characteristics that included enhanced neutrophil-stimulating chemokine production. Thus, our data provide important evidence that plastic adaptation of MΦ activation does occur in vivo, but that cellular plasticity is outweighed by functional capabilities specific to the tissue origin of the cell. PMID:28334040

  2. Decreased Functional Brain Connectivity in Adolescents with Internet Addiction

    PubMed Central

    Hong, Soon-Beom; Zalesky, Andrew; Cocchi, Luca; Fornito, Alex; Choi, Eun-Jung; Kim, Ho-Hyun; Suh, Jeong-Eun; Kim, Chang-Dai; Kim, Jae-Won; Yi, Soon-Hyung

    2013-01-01

    Background Internet addiction has become increasingly recognized as a mental disorder, though its neurobiological basis is unknown. This study used functional neuroimaging to investigate whole-brain functional connectivity in adolescents diagnosed with internet addiction. Based on neurobiological changes seen in other addiction related disorders, it was predicted that connectivity disruptions in adolescents with internet addiction would be most prominent in cortico-striatal circuitry. Methods Participants were 12 adolescents diagnosed with internet addiction and 11 healthy comparison subjects. Resting-state functional magnetic resonance images were acquired, and group differences in brain functional connectivity were analyzed using the network-based statistic. We also analyzed network topology, testing for between-group differences in key graph-based network measures. Results Adolescents with internet addiction showed reduced functional connectivity spanning a distributed network. The majority of impaired connections involved cortico-subcortical circuits (∼24% with prefrontal and ∼27% with parietal cortex). Bilateral putamen was the most extensively involved subcortical brain region. No between-group difference was observed in network topological measures, including the clustering coefficient, characteristic path length, or the small-worldness ratio. Conclusions Internet addiction is associated with a widespread and significant decrease of functional connectivity in cortico-striatal circuits, in the absence of global changes in brain functional network topology. PMID:23451272

  3. Targeting mitochondrially mediated plasticity to develop improved therapeutics for bipolar disorder.

    PubMed

    de Sousa, Rafael T; Machado-Vieira, Rodrigo; Zarate, Carlos A; Manji, Husseini K

    2014-10-01

    Bipolar disorder (BPD) is a severe illness with few treatments available. Understanding BPD pathophysiology and identifying potential relevant targets could prove useful for developing new treatments. Remarkably, subtle impairments of mitochondrial function may play an important role in BPD pathophysiology. This article focuses on human studies and reviews evidence of mitochondrial dysfunction in BPD as a promising target for the development of new, improved treatments. Mitochondria are crucial for energy production, generated mainly through the electron transport chain (ETC) and play an important role in regulating apoptosis and calcium (Ca²⁺) signaling as well as synaptic plasticity. Mitochondria move throughout the neurons to provide energy for intracellular signaling. Studies showed polymorphisms of mitochondria-related genes as risk factors for BPD. Postmortem studies in BPD also show decreased ETC activity/expression and increased nitrosative and oxidative stress (OxS) in patient brains. BPD has been also associated with increased OxS, Ca²⁺ dysregulation and increased proapoptotic signaling in peripheral blood. Neuroimaging studies consistently show decreased energy levels and pH in brains of BPD patients. Targeting mitochondrial function, and their role in energy metabolism, synaptic plasticity and cell survival, may be an important avenue for development of new mood-stabilizing agents.

  4. Targeting mitochondrially mediated plasticity to develop improved therapeutics for bipolar disorder

    PubMed Central

    de Sousa, Rafael T; Machado-Vieira, Rodrigo; Zarate, Carlos A

    2014-01-01

    Introduction Bipolar disorder (BPD) is a severe illness with few treatments available. Understanding BPD pathophysiology and identifying potential relevant targets could prove useful for developing new treatments. Remarkably, subtle impairments of mitochondrial function may play an important role in BPD pathophysiology. Areas covered This article focuses on human studies and reviews evidence of mitochondrial dysfunction in BPD as a promising target for the development of new, improved treatments. Mitochondria are crucial for energy production, generated mainly through the electron transport chain (ETC) and play an important role in regulating apoptosis and calcium (Ca2+) signaling as well as synaptic plasticity. Mitochondria move throughout the neurons to provide energy for intracellular signaling. Studies showed polymorphisms of mitochondria-related genes as risk factors for BPD. Postmortem studies in BPD also show decreased ETC activity/expression and increased nitrosative and oxidative stress (OxS) in patient brains. BPD has been also associated with increased OxS, Ca2+ dysregulation and increased proapoptotic signaling in peripheral blood. Neuroimaging studies consistently show decreased energy levels and pH in brains of BPD patients. Expert opinion Targeting mitochondrial function, and their role in energy metabolism, synaptic plasticity and cell survival, may be an important avenue for development of new mood-stabilizing agents. PMID:25056514

  5. Synaptic Transmission Optimization Predicts Expression Loci of Long-Term Plasticity.

    PubMed

    Costa, Rui Ponte; Padamsey, Zahid; D'Amour, James A; Emptage, Nigel J; Froemke, Robert C; Vogels, Tim P

    2017-09-27

    Long-term modifications of neuronal connections are critical for reliable memory storage in the brain. However, their locus of expression-pre- or postsynaptic-is highly variable. Here we introduce a theoretical framework in which long-term plasticity performs an optimization of the postsynaptic response statistics toward a given mean with minimal variance. Consequently, the state of the synapse at the time of plasticity induction determines the ratio of pre- and postsynaptic modifications. Our theory explains the experimentally observed expression loci of the hippocampal and neocortical synaptic potentiation studies we examined. Moreover, the theory predicts presynaptic expression of long-term depression, consistent with experimental observations. At inhibitory synapses, the theory suggests a statistically efficient excitatory-inhibitory balance in which changes in inhibitory postsynaptic response statistics specifically target the mean excitation. Our results provide a unifying theory for understanding the expression mechanisms and functions of long-term synaptic transmission plasticity. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Improved Mitochondrial Function in Brain Aging and Alzheimer Disease – the New Mechanism of Action of the Old Metabolic Enhancer Piracetam

    PubMed Central

    Leuner, Kristina; Kurz, Christopher; Guidetti, Giorgio; Orgogozo, Jean-Marc; Müller, Walter E.

    2010-01-01

    Piracetam, the prototype of the so-called nootropic drugs’ is used since many years in different countries to treat cognitive impairment in aging and dementia. Findings that piracetam enhances fluidity of brain mitochondrial membranes led to the hypothesis that piracetam might improve mitochondrial function, e.g., might enhance ATP synthesis. This assumption has recently been supported by a number of observations showing enhanced mitochondrial membrane potential, enhanced ATP production, and reduced sensitivity for apoptosis in a variety of cell and animal models for aging and Alzheimer disease. As a specific consequence, substantial evidence for elevated neuronal plasticity as a specific effect of piracetam has emerged. Taken together, this new findings can explain many of the therapeutic effects of piracetam on cognition in aging and dementia as well as different situations of brain dysfunctions. PMID:20877425

  7. A Paleolithic Diet with and without Combined Aerobic and Resistance Exercise Increases Functional Brain Responses and Hippocampal Volume in Subjects with Type 2 Diabetes.

    PubMed

    Stomby, Andreas; Otten, Julia; Ryberg, Mats; Nyberg, Lars; Olsson, Tommy; Boraxbekk, Carl-Johan

    2017-01-01

    Type 2 diabetes is associated with impaired episodic memory functions and increased risk of different dementing disorders. Diet and exercise may potentially reverse these impairments. In this study, sedentary individuals with type 2 diabetes treated by lifestyle ± metformin were randomized to a Paleolithic diet (PD, n = 12) with and without high intensity exercise (PDEX, n = 12) for 12 weeks. Episodic memory function, associated functional brain responses and hippocampal gray matter volume was measured by magnetic resonance imaging. A matched, but not randomized, non-interventional group was included as a reference ( n = 6). The PD included a high intake of unsaturated fatty acids and protein, and excluded the intake of dairy products, grains, refined sugar and salt. The exercise intervention consisted of 180 min of supervised aerobic and resistance exercise per week. Both interventions induced a significant weight loss, improved insulin sensitivity and increased peak oxygen uptake without any significant group differences. Furthermore, both interventions were associated with increased functional brain responses within the right anterior hippocampus, right inferior occipital gyrus and increased volume of the right posterior hippocampus. There were no changes in memory performance. We conclude that life-style modification may improve neuronal plasticity in brain areas linked to cognitive function in type 2 diabetes. Putative long-term effects on cognitive functions including decreased risk of dementing disorders await further studies. Clinical trials registration number: Clinicaltrials. gov NCT01513798.

  8. Mapping Multiplex Hubs in Human Functional Brain Networks

    PubMed Central

    De Domenico, Manlio; Sasai, Shuntaro; Arenas, Alex

    2016-01-01

    Typical brain networks consist of many peripheral regions and a few highly central ones, i.e., hubs, playing key functional roles in cerebral inter-regional interactions. Studies have shown that networks, obtained from the analysis of specific frequency components of brain activity, present peculiar architectures with unique profiles of region centrality. However, the identification of hubs in networks built from different frequency bands simultaneously is still a challenging problem, remaining largely unexplored. Here we identify each frequency component with one layer of a multiplex network and face this challenge by exploiting the recent advances in the analysis of multiplex topologies. First, we show that each frequency band carries unique topological information, fundamental to accurately model brain functional networks. We then demonstrate that hubs in the multiplex network, in general different from those ones obtained after discarding or aggregating the measured signals as usual, provide a more accurate map of brain's most important functional regions, allowing to distinguish between healthy and schizophrenic populations better than conventional network approaches. PMID:27471443

  9. Synaptic plasticity in drug reward circuitry.

    PubMed

    Winder, Danny G; Egli, Regula E; Schramm, Nicole L; Matthews, Robert T

    2002-11-01

    Drug addiction is a major public health issue worldwide. The persistence of drug craving coupled with the known recruitment of learning and memory centers in the brain has led investigators to hypothesize that the alterations in glutamatergic synaptic efficacy brought on by synaptic plasticity may play key roles in the addiction process. Here we review the present literature, examining the properties of synaptic plasticity within drug reward circuitry, and the effects that drugs of abuse have on these forms of plasticity. Interestingly, multiple forms of synaptic plasticity can be induced at glutamatergic synapses within the dorsal striatum, its ventral extension the nucleus accumbens, and the ventral tegmental area, and at least some of these forms of plasticity are regulated by behaviorally meaningful administration of cocaine and/or amphetamine. Thus, the present data suggest that regulation of synaptic plasticity in reward circuits is a tractable candidate mechanism underlying aspects of addiction.

  10. Functional brain imaging: an evidence-based analysis.

    PubMed

    2006-01-01

    The objective of this analysis is to review a spectrum of functional brain imaging technologies to identify whether there are any imaging modalities that are more effective than others for various brain pathology conditions. This evidence-based analysis reviews magnetoencephalography (MEG), magnetic resonance spectroscopy (MRS), positron emission tomography (PET), and functional magnetic resonance imaging (fMRI) for the diagnosis or surgical management of the following conditions: Alzheimer's disease (AD), brain tumours, epilepsy, multiple sclerosis (MS), and Parkinson's disease (PD). TARGET POPULATION AND CONDITION Alzheimer's disease is a progressive, degenerative, neurologic condition characterized by cognitive impairment and memory loss. The Canadian Study on Health and Aging estimated that there will be 97,000 incident cases (about 60,000 women) of dementia (including AD) in Canada in 2006. In Ontario, there will be an estimated 950 new cases and 580 deaths due to brain cancer in 2006. Treatments for brain tumours include surgery and radiation therapy. However, one of the limitations of radiation therapy is that it damages tissue though necrosis and scarring. Computed tomography (CT) and magnetic resonance imaging (MRI) may not distinguish between radiation effects and resistant tissue, creating a potential role for functional brain imaging. Epilepsy is a chronic disorder that provokes repetitive seizures. In Ontario, the rate of epilepsy is estimated to be 5 cases per 1,000 people. Most people with epilepsy are effectively managed with drug therapy; but about 50% do not respond to drug therapy. Surgical resection of the seizure foci may be considered in these patients, and functional brain imaging may play a role in localizing the seizure foci. Multiple sclerosis is a progressive, inflammatory, demyelinating disease of the central nervous system (CNS). The cause of MS is unknown; however, it is thought to be due to a combination of etiologies, including

  11. Handedness- and brain size-related efficiency differences in small-world brain networks: a resting-state functional magnetic resonance imaging study.

    PubMed

    Li, Meiling; Wang, Junping; Liu, Feng; Chen, Heng; Lu, Fengmei; Wu, Guorong; Yu, Chunshui; Chen, Huafu

    2015-05-01

    The human brain has been described as a complex network, which integrates information with high efficiency. However, the relationships between the efficiency of human brain functional networks and handedness and brain size remain unclear. Twenty-one left-handed and 32 right-handed healthy subjects underwent a resting-state functional magnetic resonance imaging scan. The whole brain functional networks were constructed by thresholding Pearson correlation matrices of 90 cortical and subcortical regions. Graph theory-based methods were employed to further analyze their topological properties. As expected, all participants demonstrated small-world topology, suggesting a highly efficient topological structure. Furthermore, we found that smaller brains showed higher local efficiency, whereas larger brains showed higher global efficiency, reflecting a suitable efficiency balance between local specialization and global integration of brain functional activity. Compared with right-handers, significant alterations in nodal efficiency were revealed in left-handers, involving the anterior and median cingulate gyrus, middle temporal gyrus, angular gyrus, and amygdala. Our findings indicated that the functional network organization in the human brain was associated with handedness and brain size.

  12. Plastics in Building.

    ERIC Educational Resources Information Center

    Skeist, Irving, Ed.

    The evaluation and use of plastics in the construction industry are explained. The contributors offer extensive, timely, and thoroughly researched data on the chemistry, properties, functions, engineering behavior, and specific applications of plastics to building requirements. The major subjects discussed in depth are--(1) the role of plastics in…

  13. Adolescent Cannabis Use: What is the Evidence for Functional Brain Alteration?

    PubMed

    Lorenzetti, Valentina; Alonso-Lana, Silvia; Youssef, George J; Verdejo-Garcia, Antonio; Suo, Chao; Cousijn, Janna; Takagi, Michael; Yücel, Murat; Solowij, Nadia

    2016-01-01

    Cannabis use typically commences during adolescence, a period during which the brain undergoes profound remodeling in areas that are high in cannabinoid receptors and that mediate cognitive control and emotion regulation. It is therefore important to determine the impact of adolescent cannabis use on brain function. We investigate the impact of adolescent cannabis use on brain function by reviewing the functional magnetic resonance imaging studies in adolescent samples. We systematically reviewed the literature and identified 13 functional neuroimaging studies in adolescent cannabis users (aged 13 to 18 years) performing working memory, inhibition and reward processing tasks. The majority of the studies found altered brain function, but intact behavioural task performance in adolescent cannabis users versus controls. The most consistently reported differences were in the frontal-parietal network, which mediates cognitive control. Heavier use was associated with abnormal brain function in most samples. A minority of studies controlled for the influence of confounders that can also undermine brain function, such as tobacco and alcohol use, psychopathology symptoms, family history of psychiatric disorders and substance use. Emerging evidence shows abnormal frontal-parietal network activity in adolescent cannabis users, particularly in heavier users. Brain functional alterations may reflect a compensatory neural mechanism that enables normal behavioural performance. It remains unclear if cannabis exposure drives these alterations, as substance use and mental health confounders have not been systematically examined. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. Can physical exercise in old age improve memory and hippocampal function?

    PubMed Central

    van Praag, Henriette; Sendtner, Michael

    2016-01-01

    Abstract Physical exercise can convey a protective effect against cognitive decline in ageing and Alzheimer’s disease. While the long-term health-promoting and protective effects of exercise are encouraging, it’s potential to induce neuronal and vascular plasticity in the ageing brain is still poorly understood. It remains unclear whether exercise slows the trajectory of normal ageing by modifying vascular and metabolic risk factors and/or consistently boosts brain function by inducing structural and neurochemical changes in the hippocampus and related medial temporal lobe circuitry—brain areas that are important for learning and memory. Hence, it remains to be established to what extent exercise interventions in old age can improve brain plasticity above and beyond preservation of function. Existing data suggest that exercise trials aiming for improvement and preservation may require different outcome measures and that the balance between the two may depend on exercise intensity and duration, the presence of preclinical Alzheimer’s disease pathology, vascular and metabolic risk factors and genetic variability. PMID:26912638

  15. TOR on the Brain

    PubMed Central

    Garelick, Michael G.; Kennedy, Brian K.

    2012-01-01

    Signaling by target of rapamycin (mTOR in mammals) has been shown to modulate lifespan in several model organisms ranging from yeast to mice. In mice, reduced mTOR signaling by chronic rapamycin treatment leads to lifespan extension, raising the possibility that rapamycin and its analogs may benefit the aging brain and serve as effective treatments of age-related neurodegenerative diseases. Here, we review mTOR signaling and how neurons utilize mTOR to regulate brain function, including regulation of feeding, synaptic plasticity and memory formation. Additionally, we discuss recent findings that evaluate the mechanisms by which reduced mTOR activity might benefit the aging brain in normal and pathological states. We will focus on recent studies investigating mTOR and Alzheimer s disease, Parkinson s disease, and polyglutamine expansion syndromes such as Huntington s disease. PMID:20849946

  16. Neuronal plasticity and seasonal reproduction in sheep

    PubMed Central

    Lehman, Michael N.; Ladha, Zamin; Coolen, Lique M.; Hileman, Stanley M.; Connors, John M.; Goodman, Robert L.

    2010-01-01

    Seasonal reproduction represents a naturally occurring example of functional plasticity in the adult brain since it reflects changes in neuroendocrine pathways controlling GnRH secretion and, in particular, the responsiveness of GnRH neurons to estradiol negative feedback. Structural plasticity within this neural circuitry may, in part, be responsible for seasonal switches in the negative feedback control of GnRH secretion that underlies annual reproductive transitions. In this paper, we review evidence for structural changes in the circuitry responsible for seasonal inhibition of GnRH secretion in sheep. These include changes in synaptic inputs onto GnRH neurons, as well as onto dopamine neurons in the A15 cell group, a nucleus that play a key role in estradiol negative feedback. We also present preliminary data suggesting a role for neurotrophins and neurotrophin receptors as an early mechanistic step in the plasticity that accompanies seasonal reproductive transitions in the sheep. Finally, we review recent evidence suggesting that kisspeptin cells of the arcuate nucleus constitute a critical intermediary in the control of seasonal reproduction. While a majority of the data for a role of neuronal plasticity in seasonal reproduction has come from the sheep model, the players and principles are likely to have relevance for reproduction in a wide variety of vertebrates, including humans, and in both health and disease. PMID:21143669

  17. DHA Effects in Brain Development and Function

    PubMed Central

    Lauritzen, Lotte; Brambilla, Paolo; Mazzocchi, Alessandra; Harsløf, Laurine B. S.; Ciappolino, Valentina; Agostoni, Carlo

    2016-01-01

    Docosahexaenoic acid (DHA) is a structural constituent of membranes specifically in the central nervous system. Its accumulation in the fetal brain takes place mainly during the last trimester of pregnancy and continues at very high rates up to the end of the second year of life. Since the endogenous formation of DHA seems to be relatively low, DHA intake may contribute to optimal conditions for brain development. We performed a narrative review on research on the associations between DHA levels and brain development and function throughout the lifespan. Data from cell and animal studies justify the indication of DHA in relation to brain function for neuronal cell growth and differentiation as well as in relation to neuronal signaling. Most data from human studies concern the contribution of DHA to optimal visual acuity development. Accumulating data indicate that DHA may have effects on the brain in infancy, and recent studies indicate that the effect of DHA may depend on gender and genotype of genes involved in the endogenous synthesis of DHA. While DHA levels may affect early development, potential effects are also increasingly recognized during childhood and adult life, suggesting a role of DHA in cognitive decline and in relation to major psychiatric disorders. PMID:26742060

  18. DHA Effects in Brain Development and Function.

    PubMed

    Lauritzen, Lotte; Brambilla, Paolo; Mazzocchi, Alessandra; Harsløf, Laurine B S; Ciappolino, Valentina; Agostoni, Carlo

    2016-01-04

    Docosahexaenoic acid (DHA) is a structural constituent of membranes specifically in the central nervous system. Its accumulation in the fetal brain takes place mainly during the last trimester of pregnancy and continues at very high rates up to the end of the second year of life. Since the endogenous formation of DHA seems to be relatively low, DHA intake may contribute to optimal conditions for brain development. We performed a narrative review on research on the associations between DHA levels and brain development and function throughout the lifespan. Data from cell and animal studies justify the indication of DHA in relation to brain function for neuronal cell growth and differentiation as well as in relation to neuronal signaling. Most data from human studies concern the contribution of DHA to optimal visual acuity development. Accumulating data indicate that DHA may have effects on the brain in infancy, and recent studies indicate that the effect of DHA may depend on gender and genotype of genes involved in the endogenous synthesis of DHA. While DHA levels may affect early development, potential effects are also increasingly recognized during childhood and adult life, suggesting a role of DHA in cognitive decline and in relation to major psychiatric disorders.

  19. Nicotine effects on brain function and functional connectivity in schizophrenia.

    PubMed

    Jacobsen, Leslie K; D'Souza, D Cyril; Mencl, W Einar; Pugh, Kenneth R; Skudlarski, Pawel; Krystal, John H

    2004-04-15

    Nicotine in tobacco smoke can improve functioning in multiple cognitive domains. High rates of smoking among schizophrenic patients may reflect an effort to remediate cognitive dysfunction. Our primary aim was to determine whether nicotine improves cognitive function by facilitating activation of brain regions mediating task performance or by facilitating functional connectivity. Thirteen smokers with schizophrenia and 13 smokers with no mental illness were withdrawn from tobacco and underwent functional magnetic resonance imaging (fMRI) scanning twice, once after placement of a placebo patch and once after placement of a nicotine patch. During scanning, subjects performed an n-back task with two levels of working memory load and of selective attention load. During the most difficult (dichotic 2-back) task condition, nicotine improved performance of schizophrenic subjects and worsened performance of control subjects. Nicotine also enhanced activation of a network of regions, including anterior cingulate cortex and bilateral thalamus, and modulated thalamocortical functional connectivity to a greater degree in schizophrenic than in control subjects during dichotic 2-back task performance. In tasks that tax working memory and selective attention, nicotine may improve performance in schizophrenia patients by enhancing activation of and functional connectivity between brain regions that mediate task performance.

  20. Behavioral, Brain Imaging and Genomic Measures to Predict Functional Outcomes Post-Bed Rest and Space Flight

    NASA Technical Reports Server (NTRS)

    Mulavara, A. P.; Peters, B.; De Dios, Y. E.; Gadd, N. E.; Caldwell, E. E.; Batson, C. D.; Goel, R.; Oddsson, L.; Kreutzberg, G.; Zanello, S.; hide

    2017-01-01

    Astronauts experience sensorimotor disturbances during their initial exposure to microgravity and during the re-adaptation phase following a return to an Earth-gravitational environment. These alterations may disrupt crewmembers' ability to perform mission critical functional tasks requiring ambulation, manual control and gaze stability. Interestingly, astronauts who return from spaceflight show substantial differences in their abilities to readapt to a gravitational environment. The ability to predict the manner and degree to which individual astronauts are affected will improve the effectiveness of countermeasure training programs designed to enhance sensorimotor adaptability. For such an approach to succeed, we must develop predictive measures of sensorimotor adaptability that will allow us to foresee, before actual spaceflight, which crewmembers are likely to experience greater challenges to their adaptive capacities. The goals of this project are to identify and characterize this set of predictive measures. Our approach includes: 1) behavioral tests to assess sensory bias and adaptability quantified using both strategic and plastic-adaptive responses; 2) imaging to determine individual brain morphological and functional features, using structural magnetic resonance imaging (MRI), diffusion tensor imaging, resting state functional connectivity MRI, and sensorimotor adaptation task-related functional brain activation; and 3) assessment of genetic polymorphisms in the catechol-O-methyl transferase, dopamine receptor D2, and brain-derived neurotrophic factor genes and genetic polymorphisms of alpha2-adrenergic receptors that play a role in the neural pathways underlying sensorimotor adaptation. We anticipate that these predictive measures will be significantly correlated with individual differences in sensorimotor adaptability after long-duration spaceflight and exposure to an analog bed rest environment. We will be conducting a retrospective study, leveraging